WorldWideScience

Sample records for hybrid nanophotonic interconnect

  1. Nanophotonic Devices for Optical Interconnect

    DEFF Research Database (Denmark)

    Van Thourhout, D.; Spuesens, T.; Selvaraja, S.K.;

    2010-01-01

    We review recent progress in nanophotonic devices for compact optical interconnect networks. We focus on microdisk-laser-based transmitters and discuss improved design and advanced functionality including all-optical wavelength conversion and flip-flops. Next we discuss the fabrication uniformity...... of the passive routing circuits and their thermal tuning. Finally, we discuss the performance of a wavelength selective detector....

  2. Compact models for nanophotonic structures and on-chip interconnects

    Science.gov (United States)

    Alam, Mehboob

    Over the last few years, scaling in deep submicron technologies has shifted the paradigm from device-dominated to interconnect-dominated design methodology. Consequently, there is an increasing interest towards the miniaturization of the guiding medium in nanoscale integrated circuits by exploring plasmon-based waveguides to alleviate the scaling issues associated with today's copper interconnect. In this thesis, we seek short and long-term solutions of on-chip interconnect by developing accurate compact models of on-chip interconnects and impedance characterization of nanophotonic structures. The developed system models are compact and accurate over the operating frequency range and the adopted approach have provided many critical insights and produced many important results. This thesis first presents a new modeling strategy that represents the nanostructure by its equivalent impedance. By applying either quasistatic approximation or separately solving for voltage and current for dominant mode, we reduce the field problem to a circuit problem. The impedance expressed in terms of circuit components is dependent on the material constant as well as the operating frequency. The modeling methodology is successfully applied to nanoparticles and oscillating nanosphere. The proposed model characterizes plasmon resonance in these nanostructures, thereby providing basic building block to develop spice models of complex plasmon-based waveguide for sub-wavelength propagation. We also presented several techniques to develop compact models of on-chip interconnects and passive components for accurate estimation of power, noise and delay of high speed integrated circuits. The automated method generates reduced order models that are accurate across either a narrow or a wide-range of frequencies. The proposed methods are based on Krylov subspace method with interpolation points dynamically selected using either spline based algorithm or discrete wavelet transform. Narrow and

  3. Design of T-shaped nanophotonic wire waveguide for optical interconnection in H-tree network.

    Science.gov (United States)

    Kurt, H; Giden, I H; Citrin, D S

    2011-12-19

    Nanophotonic wire waveguides play an important role for the realization of highly dense integrated photonic circuits. The miniaturization of optoelectronic devices and realization of ultra-small integrated circuits strongly demand compact waveguide branches. T-shaped versions of nanophotonic wires are the first stage of both power splitting and optical-interconnection systems based on guided-wave optics; however, the acute transitions at the waveguide junctions typically induce huge bending losses in terms of radiated modes. Both 2D and 3D finite-difference time-domain methods are employed to monitor the efficient light propagation. By introducing appropriate combinations of dielectric posts around the dielectric-waveguide junctions within the 4.096μm×4.096μm region, we are able to reduce the bending losses dramatically and increase the transmission efficiency from low values of 18% in the absence of the dielectric posts to approximately 49% and 43% in 2D and 3D cases, respectively. These findings may lead to the implementation of such T-junctions in near-future high-density integrated photonics to deliver optical-clock signals via H-tree network.

  4. Hybrid silicon evanescent approach to optical interconnects

    OpenAIRE

    Liang, Di; Fang, Alexander W.; Chen, Hui-Wen; Sysak, Matthew N; Koch, Brian R.; Lively, Erica; Raday, Omri; Kuo, Ying-hao; Jones, Richard; Bowers, John E

    2009-01-01

    We discuss the recently developed hybrid silicon evanescent platform (HSEP), and its application as a promising candidate for optical interconnects in silicon. A number of key discrete components and a wafer-scale integration process are reviewed. The motivation behind this work is to realize silicon-based photonic integrated circuits possessing unique advantages of III–V materials and silicon-on-insulator waveguides simultaneously through a complementary metal-oxide semiconductor fabrication...

  5. Hybrid Plasmonic Waveguide Fed Broadband Nano-antenna for Nanophotonic Applications

    OpenAIRE

    Saad-Bin-Alam, Md; Khalil, Md. Ibrahim; Rahman, Atiqur; Chowdhury, Arshad M.

    2014-01-01

    In this paper, we propose a novel hybrid plasmonic waveguide fed broadband optical patch nano-antenna for nanophotonic applications. Through full wave electromagnetic simulation, we demonstrated our proposed antenna to radiate and receive signal at all optical communication windows (e.g. $\\lambda$ = 850nm, 1310nm & 1550nm) with around 86% bandwidth within the operational domain. Moreover numerical results demonstrate that the proposed nano-antenna has directional radiation pattern with satisf...

  6. Hybrid Plasmonic Waveguide Fed Broadband Nano-antenna for Nanophotonic Applications

    CERN Document Server

    Saad-Bin-Alam, Md; Rahman, Atiqur; Chowdhury, Arshad M

    2014-01-01

    In this paper, we propose a novel hybrid plasmonic waveguide fed broadband optical patch nano-antenna for nanophotonic applications. Through full wave electromagnetic simulation, we demonstrated our proposed antenna to radiate and receive signal at all optical communication windows (e.g. $\\lambda$ = 850nm, 1310nm & 1550nm) with around 86% bandwidth within the operational domain. Moreover numerical results demonstrate that the proposed nano-antenna has directional radiation pattern with satisfactory gain over all three communication bands. Additionally, we evaluated the antenna performances with two different array arrangements (e.g. one dimensional and square array). The proposed broadband antenna can be used for prominent nanophotonic applications such as optical wireless communication in inter and intra-chip devices, optical sensing and optical energy harvesting etc.

  7. Atomic-scale photonic hybrids for mid-infrared and terahertz nanophotonics

    Science.gov (United States)

    Caldwell, Joshua D.; Vurgaftman, Igor; Tischler, Joseph G.; Glembocki, Orest J.; Owrutsky, Jeffrey C.; Reinecke, Thomas L.

    2016-01-01

    The field of nanophotonics focuses on the ability to confine light to nanoscale dimensions, typically much smaller than the wavelength of light. The goal is to develop light-based technologies that are impossible with traditional optics. Subdiffractional confinement can be achieved using either surface plasmon polaritons (SPPs) or surface phonon polaritons (SPhPs). SPPs can provide a gate-tunable, broad-bandwidth response, but suffer from high optical losses; whereas SPhPs offer a relatively low-loss, crystal-dependent optical response, but only over a narrow spectral range, with limited opportunities for active tunability. Here, motivated by the recent results from monolayer graphene and multilayer hexagonal boron nitride heterostructures, we discuss the potential of electromagnetic hybrids -- materials incorporating mixtures of SPPs and SPhPs -- for overcoming the limitations of the individual polaritons. Furthermore, we also propose a new type of atomic-scale hybrid the crystalline hybrid -- where mixtures of two or more atomic-scale (~3 nm or less) polar dielectric materials lead to the creation of a new material resulting from hybridized optic phonon behaviour of the constituents, potentially allowing direct control over the dielectric function. These atomic-scale hybrids expand the toolkit of materials for mid-infrared to terahertz nanophotonics and could enable the creation of novel actively tunable, yet low-loss optics at the nanoscale.

  8. Hybrid silicon evanescent approach to optical interconnects

    Science.gov (United States)

    Liang, Di; Fang, Alexander W.; Chen, Hui-Wen; Sysak, Matthew N.; Koch, Brian R.; Lively, Erica; Raday, Omri; Kuo, Ying-Hao; Jones, Richard; Bowers, John E.

    2009-06-01

    We discuss the recently developed hybrid silicon evanescent platform (HSEP), and its application as a promising candidate for optical interconnects in silicon. A number of key discrete components and a wafer-scale integration process are reviewed. The motivation behind this work is to realize silicon-based photonic integrated circuits possessing unique advantages of III-V materials and silicon-on-insulator waveguides simultaneously through a complementary metal-oxide semiconductor fabrication process. Electrically pumped hybrid silicon distributed feedback and distributed Bragg reflector lasers with integrated hybrid silicon photodetectors are demonstrated coupled to SOI waveguides, serving as the reliable on-chip single-frequency light sources. For the external signal processing, Mach-Zehnder interferometer modulators are demonstrated, showing a resistance-capacitance-limited, 3 dB electrical bandwidth up to 8 GHz and a modulation efficiency of 1.5 V mm. The successful implementation of quantum well intermixing technique opens up the possibility to realize multiple III-V bandgaps in this platform. Sampled grating DBR devices integrated with electroabsorption modulators (EAM) are fabricated, where the bandgaps in gain, mirror, and EAM regions are 1520, 1440 and 1480 nm, respectively. The high-temperature operation characteristics of the HSEP are studied experimentally and theoretically. An overall characteristic temperature ( T 0) of 51°C, an above threshold characteristic temperature ( T 1) of 100°C, and a thermal impedance ( Z T ) of 41.8°C/W, which agrees with the theoretical prediction of 43.5°C/W, are extracted from the Fabry-Perot devices. Scaling this platform to larger dimensions is demonstrated up to 150 mm wafer diameter. A vertical outgassing channel design is developed to accomplish high-quality III-V epitaxial transfer to silicon in a timely and dimension-independent fashion.

  9. Spectrally resolved single-photon imaging with hybrid superconducting - nanophotonic circuits

    CERN Document Server

    Kahl, O; Kovalyuk, V; Vetter, A; Lewes-Malandrakis, G; Nebel, C; Korneev, A; Goltsman, G; Pernice, W

    2016-01-01

    The detection of individual photons is an inherently binary mechanism, revealing either their absence or presence while concealing their spectral information. For multi-color imaging techniques, such as single photon spectroscopy, fluorescence resonance energy transfer microscopy and fluorescence correlation spectroscopy, wavelength discrimination is essential and mandates spectral separation prior to detection. Here, we adopt an approach borrowed from quantum photonic integration to realize a compact and scalable waveguide-integrated single-photon spectrometer capable of parallel detection on multiple wavelength channels, with temporal resolution below 50 ps and dark count rates below 10 Hz. We demonstrate multi-detector devices for telecommunication and visible wavelengths and showcase their performance by imaging silicon vacancy color centers in diamond nanoclusters. The fully integrated hybrid superconducting-nanophotonic circuits enable simultaneous spectroscopy and lifetime mapping for correlative imagi...

  10. Hybrid Group IV Nanophotonic Structures Incorporating Diamond Silicon-Vacancy Color Centers.

    Science.gov (United States)

    Zhang, Jingyuan Linda; Ishiwata, Hitoshi; Babinec, Thomas M; Radulaski, Marina; Müller, Kai; Lagoudakis, Konstantinos G; Dory, Constantin; Dahl, Jeremy; Edgington, Robert; Soulière, Veronique; Ferro, Gabriel; Fokin, Andrey A; Schreiner, Peter R; Shen, Zhi-Xun; Melosh, Nicholas A; Vučković, Jelena

    2016-01-13

    We demonstrate a new approach for engineering group IV semiconductor-based quantum photonic structures containing negatively charged silicon-vacancy (SiV(-)) color centers in diamond as quantum emitters. Hybrid diamond-SiC structures are realized by combining the growth of nano- and microdiamonds on silicon carbide (3C or 4H polytype) substrates, with the subsequent use of these diamond crystals as a hard mask for pattern transfer. SiV(-) color centers are incorporated in diamond during its synthesis from molecular diamond seeds (diamondoids), with no need for ion-implantation or annealing. We show that the same growth technique can be used to grow a diamond layer controllably doped with SiV(-) on top of a high purity bulk diamond, in which we subsequently fabricate nanopillar arrays containing high quality SiV(-) centers. Scanning confocal photoluminescence measurements reveal optically active SiV(-) lines both at room temperature and low temperature (5 K) from all fabricated structures, and, in particular, very narrow line widths and small inhomogeneous broadening of SiV(-) lines from all-diamond nanopillar arrays, which is a critical requirement for quantum computation. At low temperatures (5 K) we observe in these structures the signature typical of SiV(-) centers in bulk diamond, consistent with a double lambda. These results indicate that high quality color centers can be incorporated into nanophotonic structures synthetically with properties equivalent to those in bulk diamond, thereby opening opportunities for applications in classical and quantum information processing.

  11. Diamond Nanophotonics

    CERN Document Server

    Aharonovich, Igor

    2014-01-01

    The burgeoning field of nanophotonics has grown to be a major research area, primarily because of the ability to control and manipulate single quantum systems (emitters) and single photons on demand. For many years studying nanophotonic phenomena was limited to traditional semiconductors (including silicon and GaAs) and experiments were carried out predominantly at cryogenic temperatures. In the last decade, however, diamond has emerged as a new contender to study photonic phenomena at the nanoscale. Offering plethora of quantum emitters that are optically active at room temperature and ambient conditions, diamond has been exploited to demonstrate super-resolution microscopy and realize entanglement, Purcell enhancement and other quantum and classical nanophotonic effects. Elucidating the importance of diamond as a material, this review will highlight the recent achievements in the field of diamond nanophotonics, and convey a roadmap for future experiments and technological advancements.

  12. Amorphous nanophotonics

    CERN Document Server

    Scharf, Toralf

    2013-01-01

    This book represents the first comprehensive overview over amorphous nano-optical and nano-photonic systems. Nanophotonics is a burgeoning branch of optics that enables many applications by steering the mould of light on length scales smaller than the wavelength with devoted nanostructures. Amorphous nanophotonics exploits self-organization mechanisms based on bottom-up approaches to fabricate nanooptical systems. The resulting structures presented in the book are characterized by a deterministic unit cell with tailored geometries; but their spatial arrangement is not controlled. Instead of periodic, the structures appear either amorphous or random. The aim of this book is to discuss all aspects related to observable effects in amorphous nanophotonic material and aspects related to their design, fabrication, characterization and integration into applications. The book has an interdisciplinary nature with contributions from scientists in physics, chemistry and materials sciences and sheds light on the topic fr...

  13. Building complex hybrid carbon architectures by covalent interconnections: graphene-nanotube hybrids and more.

    Science.gov (United States)

    Lv, Ruitao; Cruz-Silva, Eduardo; Terrones, Mauricio

    2014-05-27

    Graphene is theoretically a robust two-dimensional (2D) sp(2)-hybridized carbon material with high electrical conductivity and optical transparency. However, due to the existence of grain boundaries and defects, experimentally synthesized large-area polycrystalline graphene sheets are easily broken and can exhibit high sheet resistances; thus, they are not suitable as flexible transparent conductors. As described in this issue of ACS Nano, Tour et al. circumvented this problem by proposing and synthesizing a novel hybrid structure that they have named "rebar graphene", which is composed of covalently interconnected carbon nanotubes (CNTs) with graphene sheets. In this particular configuration, CNTs act as "reinforcing bars" that not only improve the mechanical strength of polycrystalline graphene sheets but also bridge different crystalline domains so as to enhance the electrical conductivity. This report seems to be only the tip of the iceberg since it is also possible to construct novel and unprecedented hybrid carbon architectures by establishing covalent interconnections between CNTs with graphene, thus yielding graphene-CNT hybrids, three-dimensional (3D) covalent CNT networks, 3D graphene networks, etc. In this Perspective, we review the progress of these carbon hybrid systems and describe the challenges that need to be overcome in the near future.

  14. Integrated nanophotonic frequency shifter on the silicon-organic hybrid (SOH) platform for laser vibrometry

    Energy Technology Data Exchange (ETDEWEB)

    Lauermann, M.; Weimann, C.; Palmer, R.; Schindler, P. C. [Institute of Photonics and Quantum Electronics, Karlsruhe Institute of Technology, 76131 Karlsruhe (Germany); Koeber, S.; Freude, W., E-mail: christian.koos@kit.edu; Koos, C., E-mail: christian.koos@kit.edu [Institute of Photonics and Quantum Electronics, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany and Institute of Microstructure Technology, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen (Germany); Rembe, C. [Polytec GmbH, 76337 Waldbronn (Germany)

    2014-05-27

    We demonstrate a waveguide-based frequency shifter on the silicon photonic platform, enabling frequency shifts up to 10 GHz. The device is realized by silicon-organic hybrid (SOH) integration. Temporal shaping of the drive signal allows the suppression of spurious side-modes by more than 23 dB.

  15. Nanophotonic hybridization of narrow atomic cesium resonances and photonic stop gaps of opaline nanostructures

    CERN Document Server

    Harding, Philip J; Mosk, Allard P; Vos, Willem L

    2014-01-01

    We study a hybrid system consisting of a narrowband atomic optical resonance and the long-range periodic order of an opaline photonic nanostructure. To this end, we have infiltrated atomic cesium vapor in a thin silica opal photonic crystal. With increasing temperature, the frequencies of the opal's reflectivity peaks shift down by >20% due to chemical reduction of the silica. Simultaneously, the photonic bands and gaps shift relative to the fixed near-infrared cesium D1 transitions. As a result the narrow atomic resonances with high finesse (f/df=8E5) dramatically change shape from a usual dispersive shape at the blue edge of a stop gap, to an inverted dispersion lineshape at the red edge of a stop gap. The lineshape, amplitude, and off-resonance reflectivity are well modeled with a transfer-matrix model that includes the dispersion and absorption of Cs hyperfine transitions and the chemically-reduced opal. An ensemble of atoms in a photonic crystal is an intriguing hybrid system that features narrow defect-...

  16. Nanophotonic information physics nanointelligence and nanophotonic computing

    CERN Document Server

    2014-01-01

    This book provides a new direction in the field of nano-optics and nanophotonics from information and computing-related sciences and technology. Entitled by "Information Physics and Computing in NanosScale Photonics and Materials”, IPCN in short, the book aims to bring together recent progresses in the intersection of nano-scale photonics, information, and enabling technologies. The topic will include (1) an overview of information physics in nanophotonics, (2) DNA self-assembled nanophotonic systems, (3) Functional molecular sensing, (4) Smart fold computing, an architecture for nanophotonics, (5) semiconductor nanowire and its photonic applications, (6) single photoelectron manipulation in imaging sensors, (6) hierarchical nanophotonic systems, (8) photonic neuromorphic computing, and (9) SAT solver and decision making based on nanophotonics.

  17. Titanium nitride based hybrid plasmonic-photonic waveguides for on-chip plasmonic interconnects

    Science.gov (United States)

    Dutta, A.; Saha, S.; Kinsey, N.; Guler, U.; Shalaev, V. M.; Boltasseva, A.

    2017-02-01

    Over the past few decades, photonic technologies have emerged as a promising technology for data communications. They offer advantages such as high data bandwidths at comparable or even lower power consumption than electronics. However, photonic integrated circuits suffer from the diffraction limit of light which is a major obstacle in achieving small device footprints and densely packed on-chip interconnects. In recent years, plasmonics has emerged as a possible solution for densely packed on-chip nanophotonic circuitry. The field of plasmonics deals with oscillations of free electrons in a metal coupled to an electromagnetic field. The large wave-vector associated with these oscillations enables light to be localized in volumes much smaller than the diffraction limit. Consequently, there have been many demonstrations of plasmonic interconnects for on-chip communications, using well known metals such as gold and silver. However these materials are not CMOS compatible and hence their use is not technologically feasible. The growing need for plasmonic materials which are robust, cost-effective, and CMOS-compatible has led to the study of alternate plasmonic materials. For the visible and near infrared ranges, transition metal nitrides have been shown to be suitable metals for plasmonic applications These materials have optical properties comparable to that of gold and are CMOS-compatible, hence, they can be easily integrated into a silicon platform for on-chip applications. In this work, we demonstrate titanium nitride based plasmonic interconnects in an all-solid state geometry which can be easily integrated on a silicon platform.

  18. Broadband energy-efficient optical modulation by hybrid integration of silicon nanophotonics and organic electro-optic polymer

    CERN Document Server

    Zhang, Xingyu; Subbaraman, Harish; Luo, Jingdong; Jen, Alex K -Y; Chung, Chi-jui; Yan, Hai; Pan, Zeyu; Nelson, Robert L; Chen, Ray T

    2015-01-01

    Silicon-organic hybrid integrated devices have emerging applications ranging from high-speed optical interconnects to photonic electromagnetic-field sensors. Silicon slot photonic crystal waveguides (PCWs) filled with electro-optic (EO) polymers combine the slow-light effect in PCWs with the high polarizability of EO polymers, which promises the realization of high-performance optical modulators. In this paper, a broadband, power-efficient, low-dispersion, and compact optical modulator based on an EO polymer filled silicon slot PCW is presented. A small voltage-length product of V{\\pi}*L=0.282Vmm is achieved, corresponding to an unprecedented record-high effective in-device EO coefficient (r33) of 1230pm/V. Assisted by a backside gate voltage, the modulation response up to 50GHz is observed, with a 3-dB bandwidth of 15GHz, and the estimated energy consumption is 94.4fJ/bit at 10Gbit/s. Furthermore, lattice-shifted PCWs are utilized to enhance the optical bandwidth by a factor of ~10X over other modulators bas...

  19. Multipolar nonlinear nanophotonics

    CERN Document Server

    Smirnova, Daria

    2016-01-01

    Nonlinear nanophotonics is a rapidly developing field with many useful applications for a design of nonlinear nanoantennas, light sources, nanolasers, sensors, and ultrafast miniature metadevices. A tight confinement of the local electromagnetic fields in resonant photonic nanostructures can boost nonlinear optical effects, thus offering versatile opportunities for subwavelength control of light. To achieve the desired functionalities, it is essential to gain flexible control over the near- and far-field properties of nanostructures. Thus, both modal and multipolar analyses are widely exploited for engineering nonlinear scattering from resonant nanoscale elements, in particular for enhancing the near-field interaction, tailoring the far-field multipolar interference, and optimization of the radiation directionality. Here, we review the recent advances in this recently emerged research field ranging from metallic structures exhibiting localized plasmonic resonances to hybrid metal-dielectric and all-dielectric...

  20. A new hybrid PLL for Interconnecting Renewable Energy Systems to the Grid

    DEFF Research Database (Denmark)

    Hadjidemetriou, Lenos; Kyriakides, Elias; Blaabjerg, Frede

    2012-01-01

    of the phase angle of the grid voltage which may be estimated by using a Phase-Locked Loop (PLL) control circuit. The performance of the PLL under normal and abnormal operational conditions is a crucial aspect, since the RES is desired to operate to support the power system under grid fault conditions....... This paper investigates the performance of three different PLLs: a synchronous reference frame PLL (dqPLL), a stationary reference frame PLL (αβPLL), and a decoupled double synchronous reference frame PLL (ddsrfPLL). The results of this investigation motivate to the development of a new hybrid PLL which...... under unbalanced faults. Further, it has a lower deviation of the estimated phase after the fault occurs. The performance of the new hybrid dαβPLL is verified through simulations and experiments. Further the new PLL is used in an interconnected RES through experiments under normal and RTF operation....

  1. Metal-slotted hybrid optical waveguides for PCB-compatible optical interconnection.

    Science.gov (United States)

    Kim, Jin Tae; Ju, Jung Jin; Park, Suntak

    2012-04-23

    For development of electro-optical printed circuit board (PCB) systems, PCB-compatible metal-slotted hybrid optical waveguide was proposed and its optical characteristics are investigated at a wavelength of 1.31 μm. To confine light in a metallic multilayered structure, a metal film with a wide trench is inserted at the center of a dielectric medium that is sandwiched between metal films of infinite width. A circularly symmetric spot of the guided mode was measured at the center of the metal-slotted optical waveguide, which is a good agreement with the theoretical prediction by using the finite-element method. The measured propagation loss is about 1.5 dB/cm. Successful transmission of 2.5 Gbps optical signal without any distortion of the eye diagram confirms that the proposed hybrid optical waveguide holds a potential transmission line for the PCB-compatible optical interconnection.

  2. Progress in nanophotonics 4

    CERN Document Server

    Yatsui, Takashi

    2017-01-01

    This book presents the recent progress in the field of nanophotonics. It contains review-like chapters focusing on various but mutually related topics in nanophotonics written by the world’s leading scientists. Following the elaboration of the idea of nanophotonics, much theoretical and experimental work has been carried out, and several novel photonic devices, high-resolution fabrication, highly efficient energy conversion, and novel information processing have been developed in these years. Novel theoretical models describing the nanometric light-matter interaction, nonequilibrium statistical mechanical models for photon breeding processes and near-field‐assisted chemical reactions as well as light‐matter interaction are also explained in this book. It describes dressed photon technology and its applications, including implementation of nanophotonic devices and systems, fabrication methods and performance characteristics of ultrathin, ultraflexible organic light‐emitting diodes, organic solar cells ...

  3. Progress in nanophotonics 1

    CERN Document Server

    Ohtsu, Motoichi

    2011-01-01

    This book focuses on the recent progress in nanophotonics technology to be used to develop novel nano-optical devices, fabrication technology, and security systems. It begins with a review of the concept of dressed photons and applications to devices, fabrication, and systems; principles and applications. Further topics include: DNA process for quantum dot chain, photon enhanced emission microscopy, near field spectroscopy of metallic nanostructure, self-organized fabrication of composite semiconductor quantum dots, formation of metallic nanostructure, and nanophotonic information systems with

  4. Fabrication activity for nanophotonics

    DEFF Research Database (Denmark)

    Malureanu, Radu; Chung, Il-Sug; Carletti, Luca

    We present the fabrication and characterization of new structures and materials to be used in nanophotonics. The first structure presented is a fractal metallic metasurface designed to be used as a high-sensitivity sensor for 810nm wavelength. A second structure is a high index contrast grating...

  5. Nanophotonic Image Sensors.

    Science.gov (United States)

    Chen, Qin; Hu, Xin; Wen, Long; Yu, Yan; Cumming, David R S

    2016-09-01

    The increasing miniaturization and resolution of image sensors bring challenges to conventional optical elements such as spectral filters and polarizers, the properties of which are determined mainly by the materials used, including dye polymers. Recent developments in spectral filtering and optical manipulating techniques based on nanophotonics have opened up the possibility of an alternative method to control light spectrally and spatially. By integrating these technologies into image sensors, it will become possible to achieve high compactness, improved process compatibility, robust stability and tunable functionality. In this Review, recent representative achievements on nanophotonic image sensors are presented and analyzed including image sensors with nanophotonic color filters and polarizers, metamaterial-based THz image sensors, filter-free nanowire image sensors and nanostructured-based multispectral image sensors. This novel combination of cutting edge photonics research and well-developed commercial products may not only lead to an important application of nanophotonics but also offer great potential for next generation image sensors beyond Moore's Law expectations.

  6. Enabling inter- and intra-chip optical wireless interconnect by the aid of hybrid plasmonic leaky-wave optical antennas

    Science.gov (United States)

    Ebrahimi, Vahid; Yousefi, Leila; Mohammad-Taheri, Mahmoud

    2017-01-01

    In this paper, we propose a new method to provide optical link in Photonic Integrated Circuits (PICs). The proposed method uses two hybrid plasmonic leaky-wave optical antennas, operating at the standard optical telecommunication wavelength of 1.55 μm, to provide inter-chip interconnect between two layers in a photonic chip and also intra-chip interconnect between two different photonic ICs. Linearly tapered couplers are designed to couple the optical signal from the silicon waveguide to the hybrid plasmonic antennas. The performance of the proposed optical link is verified using numerical full wave simulation. The proposed structure is planar, and can be fabricated using standard CMOS technology which makes it the superior candidate for realization of future multi-layered Photonic Integrated Circuits.

  7. Surface Plasmon Nanophotonics

    CERN Document Server

    Brongersma, Mark L

    2007-01-01

    The development of advanced dielectric photonic structures has enabled tremendous control over the propagation and manipulation of light. Structures such as waveguides, splitters, mixers, and resonators now play a central role in the telecommunications industry. This book will discuss an exciting new class of photonic devices, known as surface plasmon nanophotonic structures. Surface plasmons are easily accessible excitations in metals and semiconductors and involve a collective motion of the conduction electrons. These excitations can be exploited to manipulate electromagnetic waves at optical frequencies ("light") in new ways that are unthinkable in conventional dielectric structures. The field of plasmon nanophotonics is rapidly developing and impacting a wide range of areas including: electronics, photonics, chemistry, biology, and medicine. The book will highlight several exciting new discoveries that have been made, while providing a clear discussion of the underlying physics, the nanofabrication issues...

  8. Resonant Thermoelectric Nanophotonics

    CERN Document Server

    Mauser, Kelly W; Kim, Seyoon; Fleischman, Dagny; Atwater, Harry A

    2016-01-01

    Photodetectors are typically based on photocurrent generation from electron-hole pairs in semiconductor structures and on bolometry for wavelengths that are below bandgap absorption. In both cases, resonant plasmonic and nanophotonic structures have been successfully used to enhance performance. In this work, we demonstrate subwavelength thermoelectric nanostructures designed for resonant spectrally selective absorption, which creates large enough localized temperature gradients to generate easily measureable thermoelectric voltages. We show that such structures are tunable and are capable of highly wavelength specific detection, with an input power responsivity of up to 119 V/W (referenced to incident illumination), and response times of nearly 3 kHz, by combining resonant absorption and thermoelectric junctions within a single structure, yielding a bandgap-independent photodetection mechanism. We report results for both resonant nanophotonic bismuth telluride-antimony telluride structures and chromel-alumel...

  9. Progress in nanophotonics 3

    CERN Document Server

    Yatsui, Takashi

    2015-01-01

    This book focuses on the recent progress in nanophotonics technology to be used to develop novel nano-optical devices, fabrication technology and advanced systems. It reviews light-emitting diodes and lasers made of silicon bulk crystals in which the light emission principle is based on dressed-photon-phonons. Further topics include: theoretical studies of optoelectronic properties of molecular condensates for organic solar cells and light-emitting devices, the basics of topological light beams together with their important properties for laser spectroscopy, spatially localized modes emerging in nonlinear discrete dynamic systems and theoretical methods to explore the dynamics of nanoparticles by the light-induced force of tailored light fields under thermal fluctuations. These topics are reviewed by leading scientists. This overview is a variable resource for engineers and scientists working in the field of nanophotonics.

  10. Progress in nanophotonics 2

    CERN Document Server

    2013-01-01

    This book focuses the recent progress in nanophotonics technology to be used to develop novel nano-optical devices, fabrication technology, and advanced systems. It begins with a review of near-field excitation dynamics in molecules. Further topics include: wavelength up-converting a phonon-assisted excitation process with degenerate beams and non-degenerate beams in dye grains, a fabrication method of semiconductor quantum dots including self-assembly of InAs quantum dots based on the Stranski-Krastanov growth mode, single-nanotube spectroscopy and time-resolved spectroscopy for studying novel excitonic properties of single-walled carbon nanotubes. The striking features of ecxitons in the carbon nanotube, multiple-exciton states, and microfluidic and extended-nano fluidic techniques. These topics are reviewed by nine leading scientists. This overview is a variable resource for engineers and scientists working in the field of nanophotonics.

  11. Passive hybrid technique for the vibration mitigation of systems of interconnected stays

    Science.gov (United States)

    Caracoglia, Luca; Jones, Nicholas P.

    2007-11-01

    The problem of stay oscillation mitigation in cable-stayed bridges, usually induced by wind or wind and rain, may require the introduction of passive devices, such as dampers on individual stays or the use of transverse restrainers (cross-ties). The damper performance is often affected by the geometrical constraints of the bridge deck that limit the installation of such devices to locations very close to the end of the cable. On the other hand, cross-ties are generally incapable of direct energy dissipation. Therefore, the authors have proposed and analyzed a hybrid passive system in which the advantages of both techniques are applied to the oscillation mitigation of complex interconnected systems with multiple external dampers at the deck level, in correspondence with the cross-tie lines. This paper summarizes the relevant findings of a research program involving the authors' efforts focused on the in-plane free-vibration analysis of stay-cable systems. This research is also based upon some recent results associated with the analytical solution of a taut-cable with two attached viscous dampers. These findings are initially extended to a simplified network with reduced number of connectors and one damper, for which the derivation of analytical solution is still possible. Subsequently, an existing multistay multidamped arrangement on a real bridge is considered, in which a fully numerical approach is required. The modal behavior is compared to the simplified examples, also enabling the interpretation of the results in the context of more general guidelines for potential future application.

  12. Low-power nanophotonics: material and device technology

    Science.gov (United States)

    Thylén, Lars; Holmstrom, Petter; Wosinski, Lech; Lourdudoss, Sebastian

    2013-05-01

    Development in photonics for communications and interconnects pose increasing requirements on reduction of footprint, power dissipation and cost, as well as increased bandwidth. Nanophotonics integrated photonics has been viewed as a solution to this, capitalizing on development in nanotechnology and an increased understanding of light matter interaction on the nanoscale. The latter can be exemplified by plasmonics and low dimensional semiconductors such as quantum dots (QDs). In this scenario the development of improved electrooptic materials is of great importance, the electrooptic polymers being an example, since they potentially offer superior properties for optical phase modulators in terms of power and integratability. Phase modulators are essential for e.g. the rapidly developing advanced modulation formats, since phase modulation basically can generate any type of modulation. The electrooptic polymers, in combination with plasmonics nanoparticle array waveguides or nanostructured hybrid plasmonic media can give extremely compact and low power dissipation modulators. Low-dimensional semiconductors, e.g. in the shape of QDs, can be employed for modulation or switching functions, offering possibilities for scaling to 2 or 3 dimensions for advanced switching functions. In both the high field confinement plasmonics and QDs, the nanosizing is due to nearfield interactions, albeit being of different physical origin in the two cases. Epitaxial integration of III-V structures on Si plays an important role in developing high-performance light sources on silicon, eventually integrated with silicon electronics. A brief remark on all-optical vs. electronically controlled optical switching systems is also given.

  13. Recent advances in nanophotonics

    DEFF Research Database (Denmark)

    Hvam, Jørn Märcher

    The optical properties of nanostructured semiconductors and metals have in recent years turned into a research field often referred to as nanophotonics. The nanostructuring may lead to the confinement of electrons and holes as well as of photons, although on a slightly different length scale......, and may significantly alter the optical and optoelectronic properties of the materials structures. In this talk I shall review some of our recent results on the tailoring and the fabrication of photonic crystal waveguides in SOI, and on the properties on surface plasmon polariton waveguides and gratings...

  14. Evaluation of hybrid polymers for high-precision manufacturing of 3D optical interconnects by two-photon absorption lithography

    Science.gov (United States)

    Schleunitz, A.; Klein, J. J.; Krupp, A.; Stender, B.; Houbertz, R.; Gruetzner, G.

    2017-02-01

    The fabrication of optical interconnects has been widely investigated for the generation of optical circuit boards. Twophoton absorption (TPA) lithography (or high-precision 3D printing) as an innovative production method for direct manufacture of individual 3D photonic structures gains more and more attention when optical polymers are employed. In this regard, we have evaluated novel ORMOCER-based hybrid polymers tailored for the manufacture of optical waveguides by means of high-precision 3D printing. In order to facilitate future industrial implementation, the processability was evaluated and the optical performance of embedded waveguides was assessed. The results illustrate that hybrid polymers are not only viable consumables for industrial manufacture of polymeric micro-optics using generic processes such as UV molding. They also are potential candidates to fabricate optical waveguide systems down to the chip level where TPA-based emerging manufacturing techniques are engaged. Hence, it is shown that hybrid polymers continue to meet the increasing expectations of dynamically growing markets of micro-optics and optical interconnects due to the flexibility of the employed polymer material concept.

  15. Graphene nanophotonics: From fundamentals to applications

    DEFF Research Database (Denmark)

    Xiao, Sanshui

    With unique possibilities for controlling light in nanoscale devices, graphene has opened new perspectives to the nanophotonics community with potential applications in metamaterials, modulators, photodetectors, and sensors. Following a brief introduction of graphene, I will address some...... fundamentals, such as excitation of graphene plasmon polartions [1], pushing graphene plasmons to low wavelengths, and investigating of graphene plasmon-phonon interactions [2] and light-matter interactions in graphene-metal hybrid structures [3]. Then I will discuss graphene-based optical modulators......, particularly focusing on graphene-silicon platforms for electro-absorption modulating [4]....

  16. Computational nanophotonics modeling and applications

    CERN Document Server

    Musa, Sarhan M

    2013-01-01

    This reference offers tools for engineers, scientists, biologists, and others working with the computational techniques of nanophotonics. It introduces the key concepts of computational methods in a manner that is easily digestible for newcomers to the field. The book also examines future applications of nanophotonics in the technical industry and covers new developments and interdisciplinary research in engineering, science, and medicine. It provides an overview of the key computational nanophotonics and describes the technologies with an emphasis on how they work and their key benefits.

  17. Visible Quantum Nanophotonics.

    Energy Technology Data Exchange (ETDEWEB)

    Subramania, Ganapathi Subramanian; Wang, George T.; Fischer, Arthur J.; Wierer, Jonathan J.; Tsao, Jeffrey Y.; Koleske, Daniel; Coltrin, Michael E.; Agarwal, Sapan; Anderson, P. Duke; Leung, Ben

    2017-09-01

    The goal of this LDRD is to develop a quantum nanophotonics capability that will allow practical control over electron (hole) and photon confinement in more than one dimension. We plan to use quantum dots (QDs) to control electrons, and photonic crystals to control photons. InGaN QDs will be fabricated using quantum size control processes, and methods will be developed to add epitaxial layers for hole injection and surface passivation. We will also explore photonic crystal nanofabrication techniques using both additive and subtractive fabrication processes, which can tailor photonic crystal properties. These two efforts will be combined by incorporating the QDs into photonic crystal surface emitting lasers (PCSELs). Modeling will be performed using finite-different time-domain and gain analysis to optimize QD-PCSEL designs that balance laser performance with the ability to nano-fabricate structures. Finally, we will develop design rules for QD-PCSEL architectures, to understand their performance possibilities and limits.

  18. Imprinted silicon-based nanophotonics

    DEFF Research Database (Denmark)

    Borel, Peter Ingo; Olsen, Brian Bilenberg; Frandsen, Lars Hagedorn

    2007-01-01

    We demonstrate and optically characterize silicon-on-insulator based nanophotonic devices fabricated by nanoimprint lithography. In our demonstration, we have realized ordinary and topology-optimized photonic crystal waveguide structures. The topology-optimized structures require lateral pattern ...

  19. A nanophotonic solar thermophotovoltaic device.

    Science.gov (United States)

    Lenert, Andrej; Bierman, David M; Nam, Youngsuk; Chan, Walker R; Celanović, Ivan; Soljačić, Marin; Wang, Evelyn N

    2014-02-01

    The most common approaches to generating power from sunlight are either photovoltaic, in which sunlight directly excites electron-hole pairs in a semiconductor, or solar-thermal, in which sunlight drives a mechanical heat engine. Photovoltaic power generation is intermittent and typically only exploits a portion of the solar spectrum efficiently, whereas the intrinsic irreversibilities of small heat engines make the solar-thermal approach best suited for utility-scale power plants. There is, therefore, an increasing need for hybrid technologies for solar power generation. By converting sunlight into thermal emission tuned to energies directly above the photovoltaic bandgap using a hot absorber-emitter, solar thermophotovoltaics promise to leverage the benefits of both approaches: high efficiency, by harnessing the entire solar spectrum; scalability and compactness, because of their solid-state nature; and dispatchablility, owing to the ability to store energy using thermal or chemical means. However, efficient collection of sunlight in the absorber and spectral control in the emitter are particularly challenging at high operating temperatures. This drawback has limited previous experimental demonstrations of this approach to conversion efficiencies around or below 1% (refs 9, 10, 11). Here, we report on a full solar thermophotovoltaic device, which, thanks to the nanophotonic properties of the absorber-emitter surface, reaches experimental efficiencies of 3.2%. The device integrates a multiwalled carbon nanotube absorber and a one-dimensional Si/SiO2 photonic-crystal emitter on the same substrate, with the absorber-emitter areas optimized to tune the energy balance of the device. Our device is planar and compact and could become a viable option for high-performance solar thermophotovoltaic energy conversion.

  20. High-speed reconfigurable card-to-card optical interconnects based on hybrid free-space and multi-mode fiber propagations.

    Science.gov (United States)

    Wang, Ke; Nirmalathas, Ampalavanapillai; Lim, Christina; Skafidas, Efstratios; Alameh, Kamal

    2013-12-16

    In this paper, a high-speed reconfigurable card-to-card optical interconnect architecture based on hybrid free-space and multi-mode fiber (MMF) propagation is proposed. The use of free-space signal transmission provides flexibility and reconfigurability and the MMF extends the achievable interconnection range. A printed-circuit-board (PCB) based integrated optical interconnect module is designed and developed and proof-of-concept demonstration experiments are carried out. Results show that 3 × 10 Gb/s reconfigurable optical interconnect is realized with ~12 cm free-space propagation and a 10 m MMF length. In addition, since air turbulence due to high temperature of electronic components and heat dissipation fans always exists in typical interconnect environments and it normally results in system performance degradation, its impact on the proposed reconfigurable optical interconnect scheme is also experimentally investigated. Results indicate that even with comparatively strong air turbulence, 3 × 10 Gb/s optical interconnects with flexibility can still be achieved and the power penalty is <0.7 dB.

  1. Architecture design of resistor/FET-logic demultiplexer for hybrid CMOS/nanodevice circuit interconnect.

    Science.gov (United States)

    Li, Shu; Zhang, Tong

    2008-05-07

    Hybrid nanoelectronics consisting of nanodevice crossbars on top of CMOS backplane circuits is emerging as one viable option to sustain Moore's law after the CMOS scaling limit is reached. One main design challenge in such hybrid nanoelectronics is the interface between the highly dense nanowires in nanodevice crossbars and relatively coarse microwires in the CMOS domain. Such an interface can be realized through a logic circuit called a demultiplexer (demux). In this context, all the prior work on demux design uses a single type of device, such as resistor, diode or field effect transistor (FET), to realize the demultiplexing function. However, different types of devices have their own advantages and disadvantages in terms of functionality, manufacturability, speed and power consumption. This makes none of them provide a satisfactory solution. To tackle this challenge, this work proposes to combine resistor with FET to implement the demux, leading to the hybrid resistor/FET-logic demux. Such hybrid demux architecture can make these two types of devices complement each other well to improve the overall demux design effectiveness. Furthermore, due to the inevitable fabrication process variations at the nanoscale, the effects of resistor conductance and FET threshold voltage variability are analyzed and evaluated based on computer simulations. The simulation results provide the requirement on the fabrication process to ensure a high demux reliability, and promise the hybrid resistor/FET-logic demux an improved addressability and process variance tolerance.

  2. Architecture design of resistor/FET-logic demultiplexer for hybrid CMOS/nanodevice circuit interconnect

    Energy Technology Data Exchange (ETDEWEB)

    Li Shu; Zhang Tong [Department of Electrical, Computer and Systems Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180 (United States)], E-mail: lis4@rpi.edu, E-mail: tzhang@ecse.rpi.edu

    2008-05-07

    Hybrid nanoelectronics consisting of nanodevice crossbars on top of CMOS backplane circuits is emerging as one viable option to sustain Moore's law after the CMOS scaling limit is reached. One main design challenge in such hybrid nanoelectronics is the interface between the highly dense nanowires in nanodevice crossbars and relatively coarse microwires in the CMOS domain. Such an interface can be realized through a logic circuit called a demultiplexer (demux). In this context, all the prior work on demux design uses a single type of device, such as resistor, diode or field effect transistor (FET), to realize the demultiplexing function. However, different types of devices have their own advantages and disadvantages in terms of functionality, manufacturability, speed and power consumption. This makes none of them provide a satisfactory solution. To tackle this challenge, this work proposes to combine resistor with FET to implement the demux, leading to the hybrid resistor/FET-logic demux. Such hybrid demux architecture can make these two types of devices complement each other well to improve the overall demux design effectiveness. Furthermore, due to the inevitable fabrication process variations at the nanoscale, the effects of resistor conductance and FET threshold voltage variability are analyzed and evaluated based on computer simulations. The simulation results provide the requirement on the fabrication process to ensure a high demux reliability, and promise the hybrid resistor/FET-logic demux an improved addressability and process variance tolerance.

  3. Magnetic Purcell effect in nanophotonics

    CERN Document Server

    Baranov, Denis G; Li, Sergey V; Krasnok, Alexander E; Alù, Andrea

    2016-01-01

    Tailoring of electromagnetic spontaneous emission predicted by E. M. Purcell more than 50 years ago has undoubtedly proven to be one of the most important effects in the rich areas of quantum optics and nanophotonics. Although during the past decades the research in this field has been focused on electric dipole emission, the recent progress in nanofabrication and study of magnetic quantum emitters, such as rare-earth ions, has stimulated the investigation of the magnetic side of spontaneous emission. Here, we review the state-of-the-art advances in the field of spontaneous emission enhancement of magnetic dipole quantum emitters with the use of various nanophotonics systems. We provide the general theory describing the Purcell effect of magnetic emitters, overview realizations of specific nanophotonics structures allowing for the enhanced magnetic dipole spontaneous emission, and give an outlook on the challenges in this field, which remain open to future research.

  4. Organic nanophotonics fundamentals and applications

    CERN Document Server

    Zhao, Yong Sheng

    2014-01-01

    This comprehensive text collects the progress made in recent years in the fabrication, processing, and performance of organic nanophotonic materials and devices. The first part of the book addresses photonic nanofabrications in a chapter on multiphoton processes in nanofabrication and microscopy imaging. The second part of the book is focused on nanoscale light sources for integrated nanophotonic circuits, and is composed of three chapters on organic nano/microcavities, organic laser materials, and polymer light-emitting electrochemical cells (LECs). The third part is focused on the interactio

  5. A New Hybrid PLL for Interconnecting Renewable Energy Systems to the Grid

    DEFF Research Database (Denmark)

    Hadjidemetriou, Lenos; Kyriakides, Elias; Blaabjerg, Frede

    2013-01-01

    of the phase angle of the grid voltage which may be estimated by using a phase-locked loop (PLL) control circuit. The performance of the PLL under normal and abnormal operational conditions is a crucial aspect, since the RES is desired to operate accurately to support the power system under grid fault...... conditions. This paper investigates the performance of three different PLLs: a synchronous reference frame (SRF) PLL, a stationary reference frame PLL, and a decoupled double SRF PLL. The results of this investigation motivate the development of a new hybrid PLL which is a combination of the aforementioned....... Furthermore, it has a lower deviation of the estimated phase after the fault occurs. This could be depicted as a faster response of the dαβPLL within the same frequency limits. The performance of the new hybrid dαβPLL is verified through simulations and experiments. Furthermore, the new PLL is used...

  6. Information physics fundamentals of nanophotonics.

    Science.gov (United States)

    Naruse, Makoto; Tate, Naoya; Aono, Masashi; Ohtsu, Motoichi

    2013-05-01

    Nanophotonics has been extensively studied with the aim of unveiling and exploiting light-matter interactions that occur at a scale below the diffraction limit of light, and recent progress made in experimental technologies--both in nanomaterial fabrication and characterization--is driving further advancements in the field. From the viewpoint of information, on the other hand, novel architectures, design and analysis principles, and even novel computing paradigms should be considered so that we can fully benefit from the potential of nanophotonics. This paper examines the information physics aspects of nanophotonics. More specifically, we present some fundamental and emergent information properties that stem from optical excitation transfer mediated by optical near-field interactions and the hierarchical properties inherent in optical near-fields. We theoretically and experimentally investigate aspects such as unidirectional signal transfer, energy efficiency and networking effects, among others, and we present their basic theoretical formalisms and describe demonstrations of practical applications. A stochastic analysis of light-assisted material formation is also presented, where an information-based approach provides a deeper understanding of the phenomena involved, such as self-organization. Furthermore, the spatio-temporal dynamics of optical excitation transfer and its inherent stochastic attributes are utilized for solution searching, paving the way to a novel computing paradigm that exploits coherent and dissipative processes in nanophotonics.

  7. Hybrid Educational Methodology for the Cognitive Domain of Built Heritage Protection Interconnecting Secondary with Tertiary Level Education

    Directory of Open Access Journals (Sweden)

    Agoritsa Konstanti

    2013-10-01

    Full Text Available Normal 0 false false false MicrosoftInternetExplorer4 In the present work, a hybrid educational methodology has been developed for approaching the cognitive domain of Built Heritage Protection in an interdisciplinary and integrated way. This domain was selected as a pilot one, presenting various remarkable characteristics, such as bringing together STEM subjects with social and human sciences, proving concrete concepts, being attractive for youth, and demanding combination of technical solutions with social aspects. The methodology had the scope to interconnect secondary with tertiary level education for the achievement of the best possible results, as the latter possesses the needed specialised knowledge, expertise and infrastructure. The methodology incorporates problem - based learning, aiming at the effective solution of real and extremely complex problems encountered in monument scale, which is combined with traditional teaching methods, such as lectures, as well as contemporary elements, such as class exercise laboratory experiments, in situ field work, promoting hands - on experience of students. The pilot application and evaluation of the hybrid methodology proved to be a valuable experience for students of secondary level education, which needs to be further exploited and optimised in order to meet the expectations of the interested parties.   /* Style Definitions */ table.MsoNormalTable {mso-style-name:"????????? ???????"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Times New Roman"; mso-ansi-language:#0400; mso-fareast-language:#0400; mso-bidi-language:#0400;}

  8. Three-dimensional interconnected cobalt oxide-carbon hollow spheres arrays as cathode materials for hybrid batteries

    Institute of Scientific and Technical Information of China (English)

    Jiye Zhan; Xinhui Xia n; Yu Zhong; Xiuli Wang; Jiangping Tu n

    2016-01-01

    Hierarchical porous metal oxides arrays is critical for development of advanced energy storage devices. Herein, we report a facile template-assisted electro-deposition plus glucose decomposition method for synthesis of multilayer CoO/C hollow spheres arrays. The CoO/C arrays consist of multilayer inter-connected hollow composite spheres with diameters of ∼350 nm as well as thin walls of ∼20 nm. Hierarchical hollow spheres architecture with 3D porous networks are achieved. As cathode of high-rate hybrid batteries, the multilayer CoO/C hollow sphere arrays exhibit impressive enhanced performances with a high capacity (73.5 mAh g?1 at 2 A g?1), and stable high-rate cycling life (70 mAh g?1 after 12,500 cycles at 2 A g?1). The improved electrochemical performance is owing to the composite hollow-sphere architecture with high contact area between the active materials and electrolyte as well as fast ion/electron transportation path.

  9. Multipolar interference effects in nanophotonics

    CERN Document Server

    Liu, Wei

    2016-01-01

    Scattering of electromagnetic waves by an arbitrary nanoscale object can be characterized by a multipole decomposition of the electromagnetic field that allows to describe the scattering intensity and radiation pattern through interferences of dominating excited multipole modes. In modern nanophotonics, both generation and interference of multipole modes start to play an indispensable role, and they enable nanoscale manipulation of light with many related applications. Here we review the multipolar interference effects in metallic, metal-dielectric, and dielectric nanostructures, and suggest a comprehensive view on many phenomena involving the interferences of electric, magnetic and toroidal multipoles, which drive a number of recently discussed effects in nanophotonics such as unidirectional scattering, effective optical antiferromagnetism, generalized Kerker scattering with controlled angular patterns, generalized Brewster angle, and nonradiating optical anapoles. We further discuss other types of possible ...

  10. Nanophotonic waveguide enhanced Raman spectroscopy of biological submonolayers

    CERN Document Server

    Dhakal, Ashim; Peyskens, Frédéric; Jans, Karolien; Thomas, Nicolas Le; Baets, Roel

    2016-01-01

    Characterizing a monolayer of biological molecules has been a major challenge. We demonstrate nanophotonic wave-guide enhanced Raman spectroscopy (NWERS) of monolayers in the near-infrared region, enabling real-time measurements of the hybridization of DNA strands and the density of sub-monolayers of biotin-streptavidin complex immobilized on top of a photonics chip. NWERS is based on enhanced evanescent excitation and collection of spontaneous Raman scattering near nanophotonic waveguides, which for a one centimeter silicon nitride waveguide delivers a signal that is more than four orders of magnitude higher in comparison to a confocal Raman microscope. The reduced acquisition time and specificity of the signal allows for a quantitative and real-time characterization of surface species, hitherto not possible using Raman spectroscopy. NWERS provides a direct analytic tool for monolayer research and also opens a route to compact microscope-less lab-on-a-chip devices with integrated sources, spectrometers and d...

  11. One-pot self-assembly of graphene/carbon nanotube/sulfur hybrid with three dimensionally interconnected structure for lithium-sulfur batteries

    Science.gov (United States)

    Niu, Shuzhang; Lv, Wei; Zhang, Chen; Shi, Yanting; Zhao, Jianfeng; Li, Baohua; Yang, Quan-Hong; Kang, Feiyu

    2015-11-01

    A graphene/carbon nanotube (CNT)/sulfur (denoted GCS) hybrid with interconnected structure is prepared through a one-pot self-assembly approach initiated by L-ascorbic acid reduction under a mild condition. In such a solution-based assembly process, the formation of an interconnected graphene/CNT conductive network is accompanied by the uniform loading of sulfur, whose fraction is as high as of 70 wt%. The as-prepared GCS hybrid delivers an initial capacity of 1008 mAh g-1 at 0.3C and maintains 704 mAh g-1 after 100 cycles. Remarkably, at a high rate of 1.0C, the cathode shows an excellent cyclic performance with a capacity of 657 mAh g-1 after 450 ycles and the capacity decay is only 0.04% per cycle. Moreover, the superior rate performance of GCS hybrid is attributed to the conductive network formed by interconnected graphene sheets and CNT, which supply an unimpeded and continuous path for electron and Li ion transfer and accommodate the volume variation of sulfur during charge/discharge cycling. In addition, the residual functional groups on GCS can retain intimate contact of the conducting matrix with sulfur and effectively confine the diffusion of polysulfides. This study gives an eco-friendly and highly effective solution-based approach for carbon-sulfur electrode for lithium-sulfur battery.

  12. Dispersion engineering for integrated nanophotonics

    CERN Document Server

    Vanbésien, Olivier

    2014-01-01

    This book shows how dispersion engineering in two dimensional dielectric photonic crystals can provide new effects for the precise control of light propagation for integrated nanophotonics.Dispersion engineering in regular and graded photonic crystals to promote anomalous refraction effects is studied from the concepts to experimental demonstration via nanofabrication considerations. Self collimation, ultra and negative refraction, second harmonic generation, mirage and invisibility effects which lead to an unprecedented control of light propagation at the (sub-)wavelength scale for the

  13. Fundamental Scaling Laws in Nanophotonics

    OpenAIRE

    Ke Liu; Shuai Sun; Arka Majumdar; Volker J. Sorger

    2016-01-01

    The success of information technology has clearly demonstrated that miniaturization often leads to unprecedented performance, and unanticipated applications. This hypothesis of “smaller-is-better” has motivated optical engineers to build various nanophotonic devices, although an understanding leading to fundamental scaling behavior for this new class of devices is missing. Here we analyze scaling laws for optoelectronic devices operating at micro and nanometer length-scale. We show that optoe...

  14. Transurban interconnectivities

    DEFF Research Database (Denmark)

    Jørgensen, Claus Møller

    2012-01-01

    This essay discusses the interpretation of the revolutionary situations of 1848 in light of recent debates on interconnectivity in history. The concept of transurban interconnectivities is proposed as the most precise concept to capture the nature of interconnectivity in 1848. It is argued......, radicalism and nationalism in 1848. In the concluding paragraph, the limitations of the notion of urban–rural nterconnectivity are discussed in order to clarify the nature of transurban interconnectivity. 1848 revolutions; European history; interconnectivity; transurban; urban political movements...

  15. Multipolar interference effects in nanophotonics.

    Science.gov (United States)

    Liu, Wei; Kivshar, Yuri S

    2017-03-28

    Scattering of electromagnetic waves by an arbitrary nanoscale object can be characterized by a multipole decomposition of the electromagnetic field that allows one to describe the scattering intensity and radiation pattern through interferences of dominating multipole modes excited. In modern nanophotonics, both generation and interference of multipole modes start to play an indispensable role, and they enable nanoscale manipulation of light with many related applications. Here, we review the multipolar interference effects in metallic, metal-dielectric and dielectric nanostructures, and suggest a comprehensive view on many phenomena involving the interferences of electric, magnetic and toroidal multipoles, which drive a number of recently discussed effects in nanophotonics such as unidirectional scattering, effective optical antiferromagnetism, generalized Kerker scattering with controlled angular patterns, generalized Brewster angle, and non-radiating optical anapoles. We further discuss other types of possible multipolar interference effects not yet exploited in the literature and envisage the prospect of achieving more flexible and advanced nanoscale control of light relying on the concepts of multipolar interference through full phase and amplitude engineering.This article is part of the themed issue 'New horizons for nanophotonics'.

  16. Metamaterial, plasmonic and nanophotonic devices

    Science.gov (United States)

    Monticone, Francesco; Alù, Andrea

    2017-03-01

    The field of metamaterials has opened landscapes of possibilities in basic science, and a paradigm shift in the way we think about and design emergent material properties. In many scenarios, metamaterial concepts have helped overcome long-held scientific challenges, such as the absence of optical magnetism and the limits imposed by diffraction in optical imaging. As the potential of metamaterials, as well as their limitations, become clearer, these advances in basic science have started to make an impact on several applications in different areas, with far-reaching implications for many scientific and engineering fields. At optical frequencies, the alliance of metamaterials with the fields of plasmonics and nanophotonics can further advance the possibility of controlling light propagation, radiation, localization and scattering in unprecedented ways. In this review article, we discuss the recent progress in the field of metamaterials, with particular focus on how fundamental advances in this field are enabling a new generation of metamaterial, plasmonic and nanophotonic devices. Relevant examples include optical nanocircuits and nanoantennas, invisibility cloaks, superscatterers and superabsorbers, metasurfaces for wavefront shaping and wave-based analog computing, as well as active, nonreciprocal and topological devices. Throughout the paper, we highlight the fundamental limitations and practical challenges associated with the realization of advanced functionalities, and we suggest potential directions to go beyond these limits. Over the next few years, as new scientific breakthroughs are translated into technological advances, the fields of metamaterials, plasmonics and nanophotonics are expected to have a broad impact on a variety of applications in areas of scientific, industrial and societal significance.

  17. Integrated interconnect technologies for 3D nanoelectronic systems

    CERN Document Server

    Bakir, Muhannad S

    2008-01-01

    This cutting-edge book on off-chip technologies puts the hottest breakthroughs in high-density compliant electrical interconnects, nanophotonics, and microfluidics at your fingertips, integrating the full range of mathematics, physics, and technology issues together in a single comprehensive source.

  18. Fundamental Scaling Laws in Nanophotonics

    Science.gov (United States)

    Liu, Ke; Sun, Shuai; Majumdar, Arka; Sorger, Volker J.

    2016-11-01

    The success of information technology has clearly demonstrated that miniaturization often leads to unprecedented performance, and unanticipated applications. This hypothesis of “smaller-is-better” has motivated optical engineers to build various nanophotonic devices, although an understanding leading to fundamental scaling behavior for this new class of devices is missing. Here we analyze scaling laws for optoelectronic devices operating at micro and nanometer length-scale. We show that optoelectronic device performance scales non-monotonically with device length due to the various device tradeoffs, and analyze how both optical and electrical constrains influence device power consumption and operating speed. Specifically, we investigate the direct influence of scaling on the performance of four classes of photonic devices, namely laser sources, electro-optic modulators, photodetectors, and all-optical switches based on three types of optical resonators; microring, Fabry-Perot cavity, and plasmonic metal nanoparticle. Results show that while microrings and Fabry-Perot cavities can outperform plasmonic cavities at larger length-scales, they stop working when the device length drops below 100 nanometers, due to insufficient functionality such as feedback (laser), index-modulation (modulator), absorption (detector) or field density (optical switch). Our results provide a detailed understanding of the limits of nanophotonics, towards establishing an opto-electronics roadmap, akin to the International Technology Roadmap for Semiconductors.

  19. Fundamental Scaling Laws in Nanophotonics.

    Science.gov (United States)

    Liu, Ke; Sun, Shuai; Majumdar, Arka; Sorger, Volker J

    2016-11-21

    The success of information technology has clearly demonstrated that miniaturization often leads to unprecedented performance, and unanticipated applications. This hypothesis of "smaller-is-better" has motivated optical engineers to build various nanophotonic devices, although an understanding leading to fundamental scaling behavior for this new class of devices is missing. Here we analyze scaling laws for optoelectronic devices operating at micro and nanometer length-scale. We show that optoelectronic device performance scales non-monotonically with device length due to the various device tradeoffs, and analyze how both optical and electrical constrains influence device power consumption and operating speed. Specifically, we investigate the direct influence of scaling on the performance of four classes of photonic devices, namely laser sources, electro-optic modulators, photodetectors, and all-optical switches based on three types of optical resonators; microring, Fabry-Perot cavity, and plasmonic metal nanoparticle. Results show that while microrings and Fabry-Perot cavities can outperform plasmonic cavities at larger length-scales, they stop working when the device length drops below 100 nanometers, due to insufficient functionality such as feedback (laser), index-modulation (modulator), absorption (detector) or field density (optical switch). Our results provide a detailed understanding of the limits of nanophotonics, towards establishing an opto-electronics roadmap, akin to the International Technology Roadmap for Semiconductors.

  20. Silicon Nano-Photonic Devices

    DEFF Research Database (Denmark)

    Pu, Minhao

    This thesis deals with the design, fabrication and characterization of nano-photonic devices including ridge waveguide components, microring resonators, and photonic crystal components, and explore the potential for these devices in dierent applications ranging from optical communication...... is achieved with small power variation. A widely tunable microwave notch lter is also experimentally demonstrated at 40 GHz. Other application such as pulse repetition rate multiplication by using microring resonator is also presented. Photonic crystal components are studied. Two dierent types of photonic...... crystal structures are analyzed concerning index sensitivity, dispersion engineering, and slow-light coupling. Several photonic crystal devices such as index sensor, slow-light coupler, and all-optical tunable cavity are presented....

  1. Metamaterial-inspired silicon nanophotonics

    Science.gov (United States)

    Staude, Isabelle; Schilling, Jörg

    2017-04-01

    The prospect of creating metamaterials with optical properties greatly exceeding the parameter space accessible with natural materials has been inspiring intense research efforts in nanophotonics for more than a decade. Following an era of plasmonic metamaterials, low-loss dielectric nanostructures have recently moved into the focus of metamaterial-related research. This development was mainly triggered by the experimental observation of electric and magnetic multipolar Mie-type resonances in high-refractive-index dielectric nanoparticles. Silicon in particular has emerged as a popular material choice, due to not only its high refractive index and very low absorption losses in the telecom spectral range, but also its paramount technological relevance. This Review overviews recent progress on metamaterial-inspired silicon nanostructures, including Mie-resonant and off-resonant regimes.

  2. Graphene nanophotonics: From fundamentals to applications

    DEFF Research Database (Denmark)

    Xiao, Sanshui

    With unique possibilities for controlling light in nanoscale devices, graphene has opened new perspectives to the nanophotonics community with potential applications in metamaterials, modulators, photodetectors, and sensors. Following a brief introduction of graphene, I will address some...

  3. Nanophotonic Design for Broadband Light Management

    Energy Technology Data Exchange (ETDEWEB)

    Kosten, Emily; Callahan, Dennis; Horowitz, Kelsey; Pala, Ragip; Atwater, Harry

    2014-10-13

    We describe nanophotonic design approaches for broadband light management including i) crossed-trapezoidal Si structures ii) Si photonic crystal superlattices, and iii) tapered and inhomogeneous diameter III-V/Si nanowire arrays.

  4. Introduction to the Issue on Organic Nanophotonics

    DEFF Research Database (Denmark)

    2016-01-01

    solar modules in the coming flexible electronics era. Further developments are ongoing across a broad range of organic nanophotonics topics including organic laser devices, organic phototransistors,organic plasmonic devices, etc. This issue introduces recent cutting-edge research from the fast......-breaking area of organic nanophotonics. The subject in this special issue includes organic lasers, OLEDs, organic photovoltaics, organic phototransistors,microcavities, and related materials. In particular, most papers included in this special issue offer insights into technology innovations including flexible...

  5. Nanophotonics: The link between nanotechnology and photonics

    CSIR Research Space (South Africa)

    Sinha Ray, S

    2012-10-01

    Full Text Available and importance ? CSIR 2012 www.csir.co.za/nano Slide 2 ? Birth and definition of nanotechnology ? Benefits of nanotechnology ? The link between nanotechnology and photonics: Nanophotonics ? Importance and future of nanophotonics... of maneuvering things atom by atom. It is not an attempt to violate any laws; it is something, in principle, that can be done; but in practice, it has not been done because we are too big ? Richard Feynman, 1959 Birth of Nanoscience and Nanotechnology 1980...

  6. Optical interconnects

    CERN Document Server

    Chen, Ray T

    2006-01-01

    This book describes fully embedded board level optical interconnect in detail including the fabrication of the thin-film VCSEL array, its characterization, thermal management, the fabrication of optical interconnection layer, and the integration of devices on a flexible waveguide film. All the optical components are buried within electrical PCB layers in a fully embedded board level optical interconnect. Therefore, we can save foot prints on the top real estate of the PCB and relieve packaging difficulty reduced by separating fabrication processes. To realize fully embedded board level optical

  7. Nanophotonic filters for digital imaging

    Science.gov (United States)

    Walls, Kirsty

    There has been an increasing demand for low cost, portable CMOS image sensors because of increased integration, and new applications in the automotive, mobile communication and medical industries, amongst others. Colour reproduction remains imperfect in conventional digital image sensors, due to the limitations of the dye-based filters. Further improvement is required if the full potential of digital imaging is to be realised. In alternative systems, where accurate colour reproduction is a priority, existing equipment is too bulky for anything but specialist use. In this work both these issues are addressed by exploiting nanophotonic techniques to create enhanced trichromatic filters, and multispectral filters, all of which can be fabricated on-chip, i.e. integrated into a conventional digital image sensor, to create compact, low cost, mass produceable imaging systems with accurate colour reproduction. The trichromatic filters are based on plasmonic structures. They exploit the excitation of surface plasmon resonances in arrays of subwavelength holes in metal films to filter light. The currently-known analytical expressions are inadequate for optimising all relevant parameters of a plasmonic structure. In order to obtain arbitrary filter characteristics, an automated design procedure was developed that integrated a genetic algorithm and 3D finite-difference time-domain tool. The optimisation procedure's efficacy is demonstrated by designing a set of plasmonic filters that replicate the CIE (1931) colour matching functions, which themselves mimic the human eye's daytime colour response.

  8. Fiber-Coupled Diamond Quantum Nanophotonic Interface

    Science.gov (United States)

    Burek, Michael J.; Meuwly, Charles; Evans, Ruffin E.; Bhaskar, Mihir K.; Sipahigil, Alp; Meesala, Srujan; Machielse, Bartholomeus; Sukachev, Denis D.; Nguyen, Christian T.; Pacheco, Jose L.; Bielejec, Edward; Lukin, Mikhail D.; Lončar, Marko

    2017-08-01

    Color centers in diamond provide a promising platform for quantum optics in the solid state, with coherent optical transitions and long-lived electron and nuclear spins. Building upon recent demonstrations of nanophotonic waveguides and optical cavities in single-crystal diamond, we now demonstrate on-chip diamond nanophotonics with a high-efficiency fiber-optical interface achieving >90 % power coupling at visible wavelengths. We use this approach to demonstrate a bright source of narrow-band single photons based on a silicon-vacancy color center embedded within a waveguide-coupled diamond photonic crystal cavity. Our fiber-coupled diamond quantum nanophotonic interface results in a high flux (approximately 38 kHz) of coherent single photons (near Fourier limited at quantum networks that interface multiple emitters, both on chip and separated by long distances.

  9. Handbook of nano-optics and nanophotonics

    CERN Document Server

    2013-01-01

    In the 1990s, optical technology and photonics industry developed fast, but further progress became difficult due to a fundamental limit of light known as the diffraction limit. This limit could be overcome using the novel technology of nano-optics or nanophotonics in which the size of the electromagnetic field is decreased down to the nanoscale and is used as a carrier for signal transmission, processing, and fabrication. Such a decrease beyond the diffraction limit is possible by using optical near-fields. The true nature of nano-optics and nanophotonics involves not only their abilities to meet the above requirements but also their abilities to realize qualitative innovations in photonic devices, fabrication techniques, energy conversion and information processing systems. The objective of this work is to review the innovations of optical science and technology by nano-optics and nanophotonics. While in conventional optical science and technology, light and matter are discussed separately, in nano-optics a...

  10. Topology optimization of nano-photonic systems

    DEFF Research Database (Denmark)

    Elesin, Yuriy; Wang, Fengwen; Andkjær, Jacob Anders;

    2012-01-01

    We describe recent developments within nano-photonic systems design based on topology optimization. Applications include linear and non-linear optical waveguides, slow-light waveguides, as well as all-dielectric cloaks that minimize scattering or back-scattering from hard obstacles.......We describe recent developments within nano-photonic systems design based on topology optimization. Applications include linear and non-linear optical waveguides, slow-light waveguides, as well as all-dielectric cloaks that minimize scattering or back-scattering from hard obstacles....

  11. Interconnected networks

    CERN Document Server

    2016-01-01

    This volume provides an introduction to and overview of the emerging field of interconnected networks which include multi layer or multiplex networks, as well as networks of networks. Such networks present structural and dynamical features quite different from those observed in isolated networks. The presence of links between different networks or layers of a network typically alters the way such interconnected networks behave – understanding the role of interconnecting links is therefore a crucial step towards a more accurate description of real-world systems. While examples of such dissimilar properties are becoming more abundant – for example regarding diffusion, robustness and competition – the root of such differences remains to be elucidated. Each chapter in this topical collection is self-contained and can be read on its own, thus making it also suitable as reference for experienced researchers wishing to focus on a particular topic.

  12. Nanoimprint Lithography for Nanophotonics in Silicon

    NARCIS (Netherlands)

    Bruinink, Christiaan M.; Burresi, Matteo; Boer, de Meint J.; Segerink, Frans B.; Jansen, Henri V.; Berenschot, E.; Reinhoudt, David N.; Huskens, Jurriaan; Kuipers, L.

    2008-01-01

    A novel inverse imprinting procedure for nanolithography is presented which offers a transfer accuracy and feature definition that is comparable to state-of-the-art nanofabrication techniques. We illustrate the fabrication quality of a demanding nanophotonic structure: a photonic crystal waveguide.

  13. Canceling disorder-induced localization in nanophotonic cavity arrays

    CERN Document Server

    Sokolov, Sergei; Yüce, Emre; Combrié, Sylvain; De Rossi, Alfredo; Mosk, Allard P

    2016-01-01

    Optical circuits containing high-Q photonic crystal nanocavities have been proposed for delay lines, optical memory storage, optomechanics and quantum communication. However, unavoidable fabrication disorder in nanophotonic structures causes scattering which leads to frequency detuning, signal attenuation, and eventually localizes optical modes which ruins the transmission properties of the whole system. Even state-of-the-art nanofabrication with random spatial variations of only $\\Delta x=1\\ \\rm{nm}$ can lead to resonance wavelength detunings of more than $\\Delta \\lambda =1\\ \\rm{nm}$. In this work, we present a new method to cancel disorder-induced localization of light in a system of coupled nanocavities. We use holographic laser-induced heating to tune individual cavities, introduce a thermal response matrix approach and as a result we observe fully hybridized resonances of three coupled nanocavities, indicating that the effect of the disorder has been canceled. Our method is scalable to large arrays and e...

  14. Quantum-dot supercrystals for future nanophotonics

    Science.gov (United States)

    Baimuratov, Anvar S.; Rukhlenko, Ivan D.; Turkov, Vadim K.; Baranov, Alexander V.; Fedorov, Anatoly V.

    2013-01-01

    The study of supercrystals made of periodically arranged semiconductor quantum dots is essential for the advancement of emerging nanophotonics technologies. By combining the strong spatial confinement of elementary excitations inside quantum dots and exceptional design flexibility, quantum-dot supercrystals provide broad opportunities for engineering desired optical responses and developing superior light manipulation techniques on the nanoscale. Here we suggest tailoring the energy spectrum and wave functions of the supercrystals' collective excitations through the variation of different structural and material parameters. In particular, by calculating the excitonic spectra of quantum dots assembled in two-dimensional Bravais lattices we demonstrate a wide variety of spectrum transformation scenarios upon alterations in the quantum dot arrangement. This feature offers unprecedented control over the supercrystal's electromagnetic properties and enables the development of new nanophotonics materials and devices.

  15. Towards all-dielectric metamaterials and nanophotonics

    CERN Document Server

    Krasnok, Alexander; Petrov, Mikhail; Savelev, Roman; Belov, Pavel; Kivshar, Yuri

    2015-01-01

    We review a new, rapidly developing field of all-dielectric nanophotonics which allows to control both magnetic and electric response of structured matter by engineering the Mie resonances in high-index dielectric nanoparticles. We discuss optical properties of such dielectric nanoparticles, methods of their fabrication, and also recent advances in all-dielectric metadevices including couple-resonator dielectric waveguides, nanoantennas, and metasurfaces.

  16. Forewords Special Topic Issue on Nanophotonics

    Institute of Scientific and Technical Information of China (English)

    Yiping Cui; Joseph W.Haus

    2009-01-01

    @@ This Special Topic Issue has grown out of research that has been highlighted at the Nanophotonics Conference series held in China for the past three years.The fourteen papers appearing in this issue are a small sampling of the total scope of the conference.Broadly speaking,the subjects covered by the contributing authors include quantum properties using semiconductor materials,nanocharacterization especially with applications to medical fields,photonic crystals and fibers,and plasmonics.

  17. Interconnections 180

    CERN Multimedia

    180

    2013-01-01

    The LHC's main magnets operate at a temperature of 1.9 K (-271.3°C), colder than the 2.7 K (-270.5°C) of outer space. This ensures that the cables supplying power to the magnets operate in a superconducting state; they conduct electricity with no resistance. The cold magnets are insulated from the surrounding tunnel – kept at room temperature – with multiple layers of thermal insulation. Over the next 18 months, 1695 interconnections between LHC magnets will be opened and their insulation consolidated. In the video above, narrated by Jean-Philippe Tock of the Technology department, technicians demonstrate the process on an interconnection between spare LHC magnets. A "W bellows" system slides out of the way to reveal accelerator components inside. The technicians add aluminium sheeting and further insulating material before closing the W bellows for a leak-proof connection. The section is then brought to a pressure of 10-6 mbar, to further limit the possibility of heat leaks from the cold magnets. Insul...

  18. Nanophotonics for Molecular Diagnostics and Therapy Applications

    Directory of Open Access Journals (Sweden)

    João Conde

    2012-01-01

    Full Text Available Light has always fascinated mankind and since the beginning of recorded history it has been both a subject of research and a tool for investigation of other phenomena. Today, with the advent of nanotechnology, the use of light has reached its own dimension where light-matter interactions take place at wavelength and subwavelength scales and where the physical/chemical nature of nanostructures controls the interactions. This is the field of nanophotonics which allows for the exploration and manipulation of light in and around nanostructures, single molecules, and molecular complexes. What is more is the use of nanophotonics in biomolecular interactions—nanobiophotonics—has prompt for a plethora of molecular diagnostics and therapeutics making use of the remarkable nanoscale properties. In this paper, we shall focus on the uses of nanobiophotonics for molecular diagnostics involving specific sequence characterization of nucleic acids and for gene delivery systems of relevance for therapy strategies. The use of nanobiophotonics for the combined diagnostics/therapeutics (theranostics will also be addressed, with particular focus on those systems enabling the development of safer, more efficient, and specific platforms. Finally, the translation of nanophotonics for theranostics into the clinical setting will be discussed.

  19. Electrical interconnect

    Energy Technology Data Exchange (ETDEWEB)

    Frost, John S.; Brandt, Randolph J.; Hebert, Peter; Al Taher, Omar

    2015-10-06

    An interconnect includes a first set of connector pads, a second set of connector pads, and a continuous central portion. A first plurality of legs extends at a first angle from the continuous central portion. Each leg of the first plurality of legs is connected to a connector pad of a first set of connector pads. A second plurality of legs extends at a second angle from the continuous central portion. Each leg of the second plurality of legs is connected to a connector pad of the second set of connector pads. Gaps are defined between legs. The gaps enable movement of the first set of connector pads relative to the second set of connector pads.

  20. Interconnections 180

    CERN Multimedia

    CERN Visual Media Office; Noemi Caraban Gonzales

    2013-01-01

    Throughout the LS1 (Long Shutdown 1 planned for 2013-14), the consolidation of the 13 kA splices consists of the opening of M sleeves to access the bus-bars and install the consolidation system features (shunt, electrical insulation and mechanical restraint system). Once the features are installed, the sleeves are rewelded (10000 welds in total). The interconnect regions between adjacent cryomagnets consist of a number of lines spanning from one machine element to another. Within a magnet-to-magnet connection several welds are made. An automatic orbital weld without filler material closes the three main bus-bar lines M1, M2 and M3 (M1 and M2 for the main quadrupole bus-bars and M3 for the main dipole bus-bars). These welds are performed in a radial clearance of only 45 mm. A very reliable weld process is required. The weld configuration shall also ease future interventions. Automatic orbital TIG welding associated to specific weld geometry meets all these requirements. Edge weld preparation has the following ...

  1. Selective epitaxy of semiconductor nanopyramids for nanophotonics.

    Science.gov (United States)

    Poole, P J; Dalacu, D; Lefebvre, J; Williams, R L

    2010-07-23

    We present a detailed study of the parameters which affect the geometrical perfection of nanopyramids used for the site-selected nucleation of quantum dots. Through an understanding of crystal facet formation, we demonstrate that undesirable high index planes can be suppressed using carefully optimized lithography together with properly orientated source fluxes in the growth reactor. High quality InP nanopyramids are reported with individual InAs/InP quantum dots positioned with high precision. This represents an important milestone for the fabrication of complex quantum dot based nanophotonic devices.

  2. Cascaded logic gates in nanophotonic plasmon networks.

    Science.gov (United States)

    Wei, Hong; Wang, Zhuoxian; Tian, Xiaorui; Käll, Mikael; Xu, Hongxing

    2011-07-12

    Optical computing has been pursued for decades as a potential strategy for advancing beyond the fundamental performance limitations of semiconductor-based electronic devices, but feasible on-chip integrated logic units and cascade devices have not been reported. Here we demonstrate that a plasmonic binary NOR gate, a 'universal logic gate', can be realized through cascaded OR and NOT gates in four-terminal plasmonic nanowire networks. This finding provides a path for the development of novel nanophotonic on-chip processor architectures for future optical computing technologies.

  3. Interconnection networks

    Science.gov (United States)

    Faber, V.; Moore, J.W.

    1988-06-20

    A network of interconnected processors is formed from a vertex symmetric graph selected from graphs GAMMA/sub d/(k) with degree d, diameter k, and (d + 1)exclamation/ (d /minus/ k + 1)exclamation processors for each d greater than or equal to k and GAMMA/sub d/(k, /minus/1) with degree d /minus/ 1, diameter k + 1, and (d + 1)exclamation/(d /minus/ k + 1)exclamation processors for each d greater than or equal to k greater than or equal to 4. Each processor has an address formed by one of the permutations from a predetermined sequence of letters chosen a selected number of letters at a time, and an extended address formed by appending to the address the remaining ones of the predetermined sequence of letters. A plurality of transmission channels is provided from each of the processors, where each processor has one less channel than the selected number of letters forming the sequence. Where a network GAMMA/sub d/(k, /minus/1) is provided, no processor has a channel connected to form an edge in a direction delta/sub 1/. Each of the channels has an identification number selected from the sequence of letters and connected from a first processor having a first extended address to a second processor having a second address formed from a second extended address defined by moving to the front of the first extended address the letter found in the position within the first extended address defined by the channel identification number. The second address is then formed by selecting the first elements of the second extended address corresponding to the selected number used to form the address permutations. 9 figs.

  4. Reconfigurable exciton-plasmon interconversion for nanophotonic circuits

    Science.gov (United States)

    Lee, Hyun Seok; Luong, Dinh Hoa; Kim, Min Su; Jin, Youngjo; Kim, Hyun; Yun, Seokjoon; Lee, Young Hee

    2016-11-01

    The recent challenges for improving the operation speed of nanoelectronics have motivated research on manipulating light in on-chip integrated circuits. Hybrid plasmonic waveguides with low-dimensional semiconductors, including quantum dots and quantum wells, are a promising platform for realizing sub-diffraction limited optical components. Meanwhile, two-dimensional transition metal dichalcogenides (TMDs) have received broad interest in optoelectronics owing to tightly bound excitons at room temperature, strong light-matter and exciton-plasmon interactions, available top-down wafer-scale integration, and band-gap tunability. Here, we demonstrate principal functionalities for on-chip optical communications via reconfigurable exciton-plasmon interconversions in ~200-nm-diameter Ag-nanowires overlapping onto TMD transistors. By varying device configurations for each operation purpose, three active components for optical communications are realized: field-effect exciton transistors with a channel length of ~32 μm, field-effect exciton multiplexers transmitting multiple signals through a single NW and electrical detectors of propagating plasmons with a high On/Off ratio of~190. Our results illustrate the unique merits of two-dimensional semiconductors for constructing reconfigurable device architectures in integrated nanophotonic circuits.

  5. All-dielectric nanophotonics: fundamentals, fabrication, and applications

    CERN Document Server

    Krasnok, Alexander; Baranov, Denis; Belov, Pavel

    2016-01-01

    In this Article, we review a novel, rapidly developing field of modern light science named all-dielectric nanophotonics. This branch of nanophotonics is based on the properties of high-index dielectric nanoparticles which allow for controlling both magnetic and electric responses of a nanostructured matter. Here, we discuss optical properties of high-index dielectric nanoparticles, methods of their fabrication, and recent advances in practical applications, including the quantum source emission engineering, Fano resonances in all-dielectric nanoclusters, surface enhanced spectroscopy and sensing, coupled-resonator optical waveguides, metamaterials and metasurfaces, and nonlinear nanophotonics.

  6. Integrated diamond networks for quantum nanophotonics

    CERN Document Server

    Hausmann, Birgit J M; Quan, Qimin; Maletinsky, Patrick; McCutcheon, Murray; Choy, Jennifer T; Babinec, Tom M; Kubanek, Alexander; Yacoby, Amir; Lukin, Mikhail D; Loncar, Marko

    2011-01-01

    Diamond is a unique material with exceptional physical and chemical properties that offers potential for the realization of high-performance devices with novel functionalities. For example diamond's high refractive index, transparency over wide wavelength range, and large Raman gain are of interest for the implementation of novel photonic devices. Recently, atom-like impurities in diamond emerged as an exceptional system for quantum information processing, quantum sensing and quantum networks. For these and other applications, it is essential to develop an integrated nanophotonic platform based on diamond. Here, we report on the realization of such an integrated diamond photonic platform, diamond on insulator (DOI), consisting of a thin single crystal diamond film on top of an insulating silicon dioxide/silicon substrate. Using this approach, we demonstrate diamond ring resonators that operate in a wide wavelength range, including the visible (630nm) and near-infrared (1,550nm). Finally, we demonstrate an int...

  7. Deep Learning with Coherent Nanophotonic Circuits

    CERN Document Server

    Shen, Yichen; Skirlo, Scott; Prabhu, Mihika; Baehr-Jones, Tom; Hochberg, Michael; Sun, Xin; Zhao, Shijie; Larochelle, Hugo; Englund, Dirk; Soljacic, Marin

    2016-01-01

    Artificial Neural Networks are computational network models inspired by signal processing in the brain. These models have dramatically improved the performance of many learning tasks, including speech and object recognition. However, today's computing hardware is inefficient at implementing neural networks, in large part because much of it was designed for von Neumann computing schemes. Significant effort has been made to develop electronic architectures tuned to implement artificial neural networks that improve upon both computational speed and energy efficiency. Here, we propose a new architecture for a fully-optical neural network that, using unique advantages of optics, promises a computational speed enhancement of at least two orders of magnitude over the state-of-the-art and three orders of magnitude in power efficiency for conventional learning tasks. We experimentally demonstrate essential parts of our architecture using a programmable nanophotonic processor.

  8. Deep learning with coherent nanophotonic circuits

    Science.gov (United States)

    Shen, Yichen; Harris, Nicholas C.; Skirlo, Scott; Prabhu, Mihika; Baehr-Jones, Tom; Hochberg, Michael; Sun, Xin; Zhao, Shijie; Larochelle, Hugo; Englund, Dirk; Soljačić, Marin

    2017-07-01

    Artificial neural networks are computational network models inspired by signal processing in the brain. These models have dramatically improved performance for many machine-learning tasks, including speech and image recognition. However, today's computing hardware is inefficient at implementing neural networks, in large part because much of it was designed for von Neumann computing schemes. Significant effort has been made towards developing electronic architectures tuned to implement artificial neural networks that exhibit improved computational speed and accuracy. Here, we propose a new architecture for a fully optical neural network that, in principle, could offer an enhancement in computational speed and power efficiency over state-of-the-art electronics for conventional inference tasks. We experimentally demonstrate the essential part of the concept using a programmable nanophotonic processor featuring a cascaded array of 56 programmable Mach-Zehnder interferometers in a silicon photonic integrated circuit and show its utility for vowel recognition.

  9. Planar nanophotonic devices and integration technologies

    Science.gov (United States)

    De La Rue, Richard M.; Sorel, Marc; Samarelli, Antonio; Velha, Philippe; Strain, Michael; Johnson, Nigel P.; Sharp, Graham; Rahman, Faiz; Khokhar, Ali Z.; Macintyre, Douglas S.; McMeekin, Scott G.; Lahiri, Basudev

    2011-07-01

    Planar devices that can be categorised as having a nanophotonic dimension constitute an increasingly important area of photonics research. Device structures that come under the headings of photonic crystals, photonic wires and metamaterials are all of interest - and devices based on combinations of these conceptual approaches may also play an important role. Planar micro-/nano-photonic devices seem likely to be exploited across a wide spectrum of applications in optoelectronics and photonics. This spectrum includes the domains of display devices, biomedical sensing and sensing more generally, advanced fibre-optical communications systems - and even communications down to the local area network (LAN) level. This article will review both device concepts and the applications possibilities of the various different devices.

  10. Optical gears in a nanophotonic directional coupler

    CERN Document Server

    Zhang, Fengchun; Zhang, Heran; Zhang, Yong; Huang, Xu-Guang; Jia, Baohua; Liu, Songhao

    2016-01-01

    Gears are rotating machines, meshing with each other by teeth to transmit torque. Interestingly, the rotating directions of two meshing gears are opposite, clockwise and counterclockwise. Although this opposite handedness motion has been widely investigated in machinery science, the analogue behavior of photons remains undiscovered. Here, we present a simple nanophotonic directional coupler structure which can generate two meshing gears of angular momentum (AM) of light, optical gears. Due to the abrupt phase shift effect and birefringence effect, the AM states of photons vary with the propagation distance in two adjacent waveguides of the coupler. Thus, by the choice of coupling length, it is able to obtain two light beams with opposite handedness of AM, confirming the appearance of optical gears. The full control in the handedness of output beams is achieved via tuning the relative phase between two orthogonal modes at the input ports. Optical gears thus offer the possibility of exploring light-matter inter...

  11. Frontiers in Surface Nanophotonics Principles and Applications

    CERN Document Server

    Andrews, David L

    2007-01-01

    With the rapid technical advancement of nanoscale fabrication, the science of optics has recently undergone a renaissance with the characterization of new and distinctive kinds of photonic interaction. Beyond the well-known plasmonic processes, many of these effects also arise from intricate local field effects associated with surfaces, where the surface morphology determines the detailed electromagnetic behavior. As such interactions move into practical device applications across the globe, this book presents an overview of some cutting edge developments, contributed by members of several highly renowned research groups. Copiously illustrated and with extensive references to original literature, Frontiers in Surface Nanophotonics will appeal to a wide readership with interests in optics, materials science and nanotechnology.

  12. Nanophotonic modal dichroism: mode-multiplexed modulators.

    Science.gov (United States)

    Das, Susobhan; Fardad, Shima; Kim, Inki; Rho, Junsuk; Hui, Rongqing; Salandrino, Alessandro

    2016-09-15

    As the diffraction limit is approached, device miniaturization to integrate more functionality per area becomes more and more challenging. Here we propose a strategy to increase the functionality-per-area by exploiting the modal properties of a waveguide system. With such an approach the design of a mode-multiplexed nanophotonic modulator relying on the mode-selective absorption of a patterned indium-tin-oxide (ITO) is proposed. Full-wave simulations of a device operating at the telecom wavelength of 1550 nm show that two modes can be independently modulated, while maintaining performances in line with conventional single-mode ITO modulators reported in the recent literature. The proposed design principles can pave the way to a class of mode-multiplexed compact photonic devices able to effectively multiply the functionality-per-area in integrated photonic systems.

  13. Bridging the Mid-Infrared-to-Telecom Gap with Silicon Nanophotonic Spectral Translation

    CERN Document Server

    Liu, Xiaoping; Roelkens, Gunther; Baets, Roel; Osgood, Richard M; Green, William M J

    2012-01-01

    Expanding far beyond traditional applications in optical interconnects at telecommunications wavelengths, the silicon nanophotonic integrated circuit platform has recently proven its merits for working with mid-infrared (mid-IR) optical signals in the 2-8 {\\mu}m range. Mid-IR integrated optical systems are capable of addressing applications including industrial process and environmental monitoring, threat detection, medical diagnostics, and free-space communication. Rapid progress has led to the demonstration of various silicon components designed for the on-chip processing of mid-IR signals, including waveguides, vertical grating couplers, microcavities, and electrooptic modulators. Even so, a notable obstacle to the continued advancement of chip-scale systems is imposed by the narrow-bandgap semiconductors, such as InSb and HgCdTe, traditionally used to convert mid-IR photons to electrical currents. The cryogenic or multi-stage thermo-electric cooling required to suppress dark current noise, exponentially d...

  14. Time domain topology optimization of 3D nanophotonic devices

    DEFF Research Database (Denmark)

    Elesin, Yuriy; Lazarov, Boyan Stefanov; Jensen, Jakob Søndergaard;

    2014-01-01

    We present an efficient parallel topology optimization framework for design of large scale 3D nanophotonic devices. The code shows excellent scalability and is demonstrated for optimization of broadband frequency splitter, waveguide intersection, photonic crystal-based waveguide and nanowire...

  15. Integration and Evaluation of Nanophotonic Devices Using Optical Near Field

    Science.gov (United States)

    Yatsui, Takashi; Nomura, Wataru; Yi, Gyu-Chul; Ohtsu, Motoichi

    In this chapter, we review the optical near-field phenomena and their applications to realize the nanophotonic device. To realize the nanometer-scale controllability in size and position, we demonstrate the feasibility of nanometer-scale chemical vapor deposition using optical near-field techniques (see Sect. 15.2). In which, the probe-less fabrication method for mass production is also demonstrated. To confirm the promising optical properties of individual ZnO for realizing nanophotonic devices, we performed the near-field evaluation of the ZnO quantum structure (see Sect. 15.3). To drive the nanophotonic device with external conventional diffraction-limited photonic device, the far-/near-field conversion device is required. Section 15.4 reviews nanometer-scale waveguide to be used as such a conversion device of the nanophotonic ICs.

  16. From molecular design and materials construction to organic nanophotonic devices.

    Science.gov (United States)

    Zhang, Chuang; Yan, Yongli; Zhao, Yong Sheng; Yao, Jiannian

    2014-12-16

    CONSPECTUS: Nanophotonics has recently received broad research interest, since it may provide an alternative opportunity to overcome the fundamental limitations in electronic circuits. Diverse optical materials down to the wavelength scale are required to develop nanophotonic devices, including functional components for light emission, transmission, and detection. During the past decade, the chemists have made their own contributions to this interdisciplinary field, especially from the controlled fabrication of nanophotonic molecules and materials. In this context, organic micro- or nanocrystals have been developed as a very promising kind of building block in the construction of novel units for integrated nanophotonics, mainly due to the great versatility in organic molecular structures and their flexibility for the subsequent processing. Following the pioneering works on organic nanolasers and optical waveguides, the organic nanophotonic materials and devices have attracted increasing interest and developed rapidly during the past few years. In this Account, we review our research on the photonic performance of molecular micro- or nanostructures and the latest breakthroughs toward organic nanophotonic devices. Overall, the versatile features of organic materials are highlighted, because they brings tunable optical properties based on molecular design, size-dependent light confinement in low-dimensional structures, and various device geometries for nanophotonic integration. The molecular diversity enables abundant optical transitions in conjugated π-electron systems, and thus brings specific photonic functions into molecular aggregates. The morphology of these micro- or nanostructures can be further controlled based on the weak intermolecular interactions during molecular assembly process, making the aggregates show photon confinement or light guiding properties as nanophotonic materials. By adoption of some active processes in the composite of two or more

  17. Last electrical interconnections

    CERN Multimedia

    CERN audiovisual service

    2009-01-01

    Sector 3-4 was closely followed by Sector 5-6, where interconnections were completely closed two days later. All the helium pressure release ports were installed in the sector back in April, but the sector remained open so that tests and repairs could be made on the copper stabilized busbar interconnections: in total ten busbar interconnections were repaired.

  18. Packaging considerations for planar optical interconnection systems.

    Science.gov (United States)

    Acklin, B; Jahns, J

    1994-03-10

    We discuss various aspects of building an integrated optoelectronic system that is based on the concept of planar optics. A particular optical interconnection system has been fabricated and demonstrated. It provides parallel interconnections with 1024 optical channels that could be useful as an optical backplane in an optoelectronic multichip module. We consider the design and the fabrication of the optical system, schemes for the hybrid integration with optoelectronic device arrays, and the thermal management of an integrated system. The proposed hybrid integration scheme is based on mature technologies such as thermal anodic bonding and flip-chip bonding. Possibilities for efficient heat sinking are described.

  19. 一种基于RIPv2的轻量级IP/SDN混合互联架构%A lightweight hybrid interconnection architecture of IP/SDN based on RIPv2

    Institute of Scientific and Technical Information of China (English)

    舒兆港; 林甲祥; 杨长才; 张振昌; 景林

    2016-01-01

    分析了现有IP/SDN混合互联架构方案的优缺点,提出一个基于RIPv2路由协议的轻量级IP/SDN互联架构。其主要原理是将SDN网络抽象成RIPv2协议中的单个虚拟路由节点,在控制器内部实现RIPv2路由表和Openflow流表信息的转换。从RIPv2的协议角度来看,无论SDN网络内部包含多少个交换机和子网,网络报文穿过该SDN,其跳数只经过1跳。在开源控制器Floodlight上实现了该架构并进行了试验验证和性能评估。与现有架构相比,该架构不需要增加额外的协议转换设备,能够实现与传统IP网络的多出口节点互联,且具有较低的性能开销,适用于中小型园区网的IP/SDN互联场景。%Basing on advantages and disadvantages of existing hybrid interconnection architectures of IP/SDN, a lightweight hybrid interconnection architecture of IP/SDN was proposed based on IPRv2. Its main principle is to abstract single virtual router from the whole SDN network, in which RIPv2 routing table can be transformed from/into flow table by the SDN controller. Theoretically, hop count will only increase by one when network packet gets through SDN domain, despite of the number of switches and subnets SDN domain contains according to RIPv2 protocol. The architecture was successfully implemented based on an open source controller Floodlight, then its functionality and performance were evaluated. Compared with existing architecture, the new architecture can be connected with multiple traditional IP network in the same topology without further conversion equipment, as well as being in low performance overhead, which makes it suitable for small or medium-sized IP/SDN interconnection scenarios.

  20. Diamond electro-optomechanical resonators integrated in nanophotonic circuits

    CERN Document Server

    Rath, P; Diewald, S; Lewes-Malandrakis, G; Brink, D; Heidrich, N; Nebel, C; Pernice, W H P

    2014-01-01

    Diamond integrated photonic devices are promising candidates for emerging applications in nanophotonics and quantum optics. Here we demonstrate active modulation of diamond nanophotonic circuits by exploiting mechanical degrees of freedom in free-standing diamond electro-optomechanical resonators. We obtain high quality factors up to 9600, allowing us to read out the driven nanomechanical response with integrated optical interferometers with high sensitivity. We are able to excite higher order mechanical modes up to 115 MHz and observe the nanomechanical response also under ambient conditions.

  1. Nanophotonic quantum computer based on atomic quantum transistor

    Energy Technology Data Exchange (ETDEWEB)

    Andrianov, S N [Institute of Advanced Research, Academy of Sciences of the Republic of Tatarstan, Kazan (Russian Federation); Moiseev, S A [Kazan E. K. Zavoisky Physical-Technical Institute, Kazan Scientific Center, Russian Academy of Sciences, Kazan (Russian Federation)

    2015-10-31

    We propose a scheme of a quantum computer based on nanophotonic elements: two buses in the form of nanowaveguide resonators, two nanosized units of multiatom multiqubit quantum memory and a set of nanoprocessors in the form of photonic quantum transistors, each containing a pair of nanowaveguide ring resonators coupled via a quantum dot. The operation modes of nanoprocessor photonic quantum transistors are theoretically studied and the execution of main logical operations by means of them is demonstrated. We also discuss the prospects of the proposed nanophotonic quantum computer for operating in high-speed optical fibre networks. (quantum computations)

  2. HYBRID GREY WOLF OPTIMIZATION-PATTERN SEARCH (hGWO-PS OPTIMIZED 2DOF-PID CONTROLLERS FOR LOAD FREQUENCY CONTROL (LFC IN INTERCONNECTED THERMAL POWER PLANTS

    Directory of Open Access Journals (Sweden)

    V Soni

    2016-04-01

    Full Text Available The combination of Grey Wolf Optimization and Pattern Search Technique (hGWO-PS has been introduced to optimize the parameters of two Degree of Freedom Proportional-Integral-Derivative Controller (2DOF-PID for controlling the load frequency in Automatic Generation Control (AGC for interconnected power system. The interconnected two area power system of non-reheat thermal power plants consisting of 2DOF-PID controller in each area has been considered for design and analysis. Firstly, the proposed approach has been implemented in the aforementioned standard test system and thereafter, the robustness of the system consisting 2DOF-PID controller optimized by proposed technique has been estimated using the sensitivity analysis for the same. The robustness of the system consisting of 2DOF-PID controller optimized by proposed scheme is examined by varying the parameters of standard test system, loading conditions during operation, size and location of the disturbances. The performance of the 2DOF-PID controller optimized by proposed approach has also been compared with recently published approaches in the literature. The simulation results show that the proposed hGWOPS optimized 2DOF-PID controller shows far better performance than recently published approaches in the literature in terms of dynamic response. The simulation results also show that system performances hardly change when the operating load condition and system parameters are changed by ±50% from their nominal values, i.e. the proposed controllers are quite robust for a wide range of the system parameters and operating load conditions from their nominal values.

  3. Optical Backplane Interconnection

    Science.gov (United States)

    Hendricks, Herbert D.

    1991-01-01

    Optical backplane interconnection (OBIT), method of optically interconnecting many parallel outputs from data processor to many parallel inputs of other data processors by optically changing wavelength of output optical beam. Requires only one command: exact wavelength necessary to make connection between two desired processors. Many features, including smallness advantageous to incorporate OBIT into integrated optical device. Simplifies or eliminates wiring and speeds transfer of data over existing electrical or optical interconnections. Computer hookups and fiber-optical communication networks benefit from concept.

  4. Unified Scattering Parameters formalism in terms of Coupled-Mode Theory for investigating hybrid single-mode/two-mode photonic interconnects

    Directory of Open Access Journals (Sweden)

    Boucher Yann G.

    2017-01-01

    Full Text Available In terms of Linear Algebra, a directional coupler between a single-mode waveguide and a two-mode waveguide can be thought of as formally equivalent to a set of three mutually coupled single-mode waveguides. Its responses, easily derived in the frame of ternary Coupled-Mode Theory, are used to establish analytically the scattering parameters of a hybrid ring-based modal multiplexer.

  5. Unified Scattering Parameters formalism in terms of Coupled-Mode Theory for investigating hybrid single-mode/two-mode photonic interconnects

    Science.gov (United States)

    Boucher, Yann G.; Parini, Alberto; Féron, Patrice

    2017-03-01

    In terms of Linear Algebra, a directional coupler between a single-mode waveguide and a two-mode waveguide can be thought of as formally equivalent to a set of three mutually coupled single-mode waveguides. Its responses, easily derived in the frame of ternary Coupled-Mode Theory, are used to establish analytically the scattering parameters of a hybrid ring-based modal multiplexer.

  6. Integrating nanophotonic concepts and topics into optics curricula

    Science.gov (United States)

    Sonek, Gregory J.

    2007-06-01

    Nanophotonics has emerged as a new and important field of study, not only in research, but also in undergraduate optics and photonics education and training. Beyond the study of classical and quantum optics, it is important for students to learn about how the flow of light can be manipulated on a nanoscale level, and used in applications such as telecommunications, imaging, and medicine. This paper reports on our work to integrate basic nanophotonic concepts and topics into existing optics and optical electronics courses, as well as independent study projects, at the undergraduate level. Through classroom lectures, topical readings, computer modeling exercises, and laboratory experiments, students are introduced to nanophotonic concepts subsequent to a study of physical and geometrical optics. A compare and contrast methodology is employed to help students identify similarities and differences that exist in the optical behavior of bulk and nanostructured media. Training is further developed through engineering design and simulation exercises that use advanced, vector-diffraction-based, modeling software for simulating the performance of various materials and structures. To date, the addition of a nanophotonics component to the optics curriculum has proven successful, been enthusiastically received by students, and should serve as a basis for further course development efforts that emphasize the combined capabilities of nanotechnology and photonics.

  7. Spectral analysis based on compressive sensing in nanophotonic structures.

    Science.gov (United States)

    Wang, Zhu; Yu, Zongfu

    2014-10-20

    A method of spectral sensing based on compressive sensing is shown to have the potential to achieve high resolution in a compact device size. The random bases used in compressive sensing are created by the optical response of a set of different nanophotonic structures, such as photonic crystal slabs. The complex interferences in these nanostructures offer diverse spectral features suitable for compressive sensing.

  8. Thin film interconnect processes

    Science.gov (United States)

    Malik, Farid

    Interconnects and associated photolithography and etching processes play a dominant role in the feature shrinkage of electronic devices. Most interconnects are fabricated by use of thin film processing techniques. Planarization of dielectrics and novel metal deposition methods are the focus of current investigations. Spin-on glass, polyimides, etch-back, bias-sputtered quartz, and plasma-enhanced conformal films are being used to obtain planarized dielectrics over which metal films can be reliably deposited. Recent trends have been towards chemical vapor depositions of metals and refractory metal silicides. Interconnects of the future will be used in conjunction with planarized dielectric layers. Reliability of devices will depend to a large extent on the quality of the interconnects.

  9. Zee electrical interconnect

    Science.gov (United States)

    Rust, Thomas M. (Inventor); Gaddy, Edward M. (Inventor); Herriage, Michael J. (Inventor); Patterson, Robert E. (Inventor); Partin, Richard D. (Inventor)

    2001-01-01

    An interconnect, having some length, that reliably connects two conductors separated by the length of the interconnect when the connection is made but in which one length if unstressed would change relative to the other in operation. The interconnect comprises a base element an intermediate element and a top element. Each element is rectangular and formed of a conducting material and has opposed ends. The elements are arranged in a generally Z-shape with the base element having one end adapted to be connected to one conductor. The top element has one end adapted to be connected to another conductor and the intermediate element has its ends disposed against the other end of the base and the top element. Brazes mechanically and electrically interconnect the intermediate element to the base and the top elements proximate the corresponding ends of the elements. When the respective ends of the base and the top elements are connected to the conductors, an electrical connection is formed therebetween, and when the conductors are relatively moved or the interconnect elements change length the elements accommodate the changes and the associated compression and tension forces in such a way that the interconnect does not mechanically fatigue.

  10. Coupling of Surface Plasmons and Semiconductor Nanocrystals for Nanophotonics Applications

    Science.gov (United States)

    Jayanti, Sriharsha V.

    The goal of this thesis is to engineer the interaction between surface plasmons and semiconductor nanocrystals for nanophotonic applications. Plasmonic metals support surface plasmon polaritons, hybrid photon and electron waves that propagate along a metal-dielectric interface. Unlike photons, surface plasmons can be confined in sub-diffraction geometries. This has two important consequences: 1) optical devices can be designed at the nanoscale, and 2) the high density of electromagnetic fields allows study of enhanced light-matter interactions. Surface plasmons have been exploited to demonstrate components of optoelectronic circuits, optical antennas, surface enhanced spectroscopy, enhanced fluorescence from fluorophores, and nanolasers. Despite the advances, surface plasmon losses limit their propagation lengths to tens of micrometers in the visible wavelengths, hindering many applications. Recently, the template-stripping approach was shown to fabricate metal films that exhibit larger grains and smoother surface, reducing the grain boundary and roughness scattering. To further improve the plasmonic properties, we investigate the importance of deposition conditions in the template-stripping approach. We provide insight and recipes to enhance the plasmonic performance of the most commonly used metals in the ultraviolet, visible, and near-infrared. We also explore the potential of low temperatures to improve the performance of metal films, where the electron-electron and electron-phonon scattering should be reduced. This sets a limit on the minimum loss metals can exhibit. Using this knowledge, we study the optical properties of quantum-confined semiconductor nanocrystals near metal structures. Semiconductor nanocrystals have many attractive characteristics that make them suitable for solid-state lighting and solar cells among others. Specifically, CdSe nanocrystals have been heavily studied for their large absorption and emission cross-sections, size dependent

  11. Influence of Parameters of a Printing Plate on Photoluminescence of Nanophotonic Printed Elements of Novel Packaging

    OpenAIRE

    Olha Sarapulova; Valentyn Sherstiuk

    2015-01-01

    In order to produce nanophotonic elements for smart packaging, we investigated the influence of the parameters of screen and offset gravure printing plates on features of printed application of coatings with nanophotonic components and on parameters of their photoluminescence. To determine the dependence of luminescence intensity on the thickness of solid coating, we carried out the formation of nanophotonic solid surfaces by means of screen printing with different layer thickness on polyprop...

  12. Nanophotonic Fabrication Self-Assembly and Deposition Techniques

    CERN Document Server

    Yatsui, Takashi

    2012-01-01

    Nanophotonics, a novel optical technology, utilizes the local interaction between nanometric particles via optical near fields. The optical near fields are the elementary surface excitations on nanometric particles, i.e. dressed photons that carry material energy. Of the variety of qualitative innovations in optical technology realized by nanophotonics, this books focuses on fabrication. To fabricate nano-scale photonic devices with nanometer-scale controllability in size and position, we developed a self-assembly method for size- and position-controlled ultra-long nanodot chains using a novel effect of near-field optical desorption. A novel deposition and etching scheme under nonresonant conditions is also demonstrated and its origin is reviewed.

  13. Superconducting single photon detectors integrated with diamond nanophotonic circuits

    CERN Document Server

    Rath, Patrik; Ferrari, Simone; Sproll, Fabian; Lewes-Malandrakis, Georgia; Brink, Dietmar; Ilin, Konstantin; Siegel, Michael; Nebel, Christoph; Pernice, Wolfram

    2015-01-01

    Photonic quantum technologies promise to repeat the success of integrated nanophotonic circuits in non-classical applications. Using linear optical elements, quantum optical computations can be performed with integrated optical circuits and thus allow for overcoming existing limitations in terms of scalability. Besides passive optical devices for realizing photonic quantum gates, active elements such as single photon sources and single photon detectors are essential ingredients for future optical quantum circuits. Material systems which allow for the monolithic integration of all components are particularly attractive, including III-V semiconductors, silicon and also diamond. Here we demonstrate nanophotonic integrated circuits made from high quality polycrystalline diamond thin films in combination with on-chip single photon detectors. Using superconducting nanowires coupled evanescently to travelling waves we achieve high detection efficiencies up to 66 % combined with low dark count rates and timing resolu...

  14. Fluidic Integration of Nanophotonic Devices Using Decomposable Polymers

    CERN Document Server

    Hosseini, Ehsan Shah; Kohl, Paul; Adibi, Ali

    2015-01-01

    Polynorbornene-based decomposable polymer which can be patterned with ultraviolet or electron-beam radiation is used to create micrometer-scale fluidic channels. Silicon nitride substrates are used to fabricate nanophotonic wavegide and resonators operating in the visible range of the spectrum. Fluidic channels generated by thermally decomposing the polymer through the oxide cladding is used to deliver ultra-small amounts of florescent samples to the optical sensors.

  15. Breaking reciprocity in nanophotonics: optomechanical interactions (Conference Presentation)

    Science.gov (United States)

    Alù, Andrea

    2016-09-01

    Lorentz reciprocity refers to a fundamental symmetry relation that governs several physical systems. In this talk, we will discuss our recent theoretical, design, experimental, and commercialization efforts in the area of non-reciprocal photonics, using temporal modulation of metamaterial elements to realize isolation for guided waves in nanophotonic systems and radio-frequency circuits, and for propagating waves in free-space, as well as to break the symmetry between emission and absorption in optical and radio-frequency open systems.

  16. Silicon Nanophotonics for Many-Core On-Chip Networks

    Science.gov (United States)

    Mohamed, Moustafa

    Number of cores in many-core architectures are scaling to unprecedented levels requiring ever increasing communication capacity. Traditionally, architects follow the path of higher throughput at the expense of latency. This trend has evolved into being problematic for performance in many-core architectures. Moreover, the trends of power consumption is increasing with system scaling mandating nontraditional solutions. Nanophotonics can address these problems, offering benefits in the three frontiers of many-core processor design: Latency, bandwidth, and power. Nanophotonics leverage circuit-switching flow control allowing low latency; in addition, the power consumption of optical links is significantly lower compared to their electrical counterparts at intermediate and long links. Finally, through wave division multiplexing, we can keep the high bandwidth trends without sacrificing the throughput. This thesis focuses on realizing nanophotonics for communication in many-core architectures at different design levels considering reliability challenges that our fabrication and measurements reveal. First, we study how to design on-chip networks for low latency, low power, and high bandwidth by exploiting the full potential of nanophotonics. The design process considers device level limitations and capabilities on one hand, and system level demands in terms of power and performance on the other hand. The design involves the choice of devices, designing the optical link, the topology, the arbitration technique, and the routing mechanism. Next, we address the problem of reliability in on-chip networks. Reliability not only degrades performance but can block communication. Hence, we propose a reliability-aware design flow and present a reliability management technique based on this flow to address reliability in the system. In the proposed flow reliability is modeled and analyzed for at the device, architecture, and system level. Our reliability management technique is

  17. Photonics and Nanophotonics and Information and Communication Technologies in Modern Food Packaging

    National Research Council Canada - National Science Library

    Sarapulova, Olha; Sherstiuk, Valentyn; Shvalagin, Vitaliy; Kukhta, Aleksander

    2015-01-01

    ...) with packaging industry and food production was made. The perspective of combining the latest advances of nanotechnology, including nanophotonics, and ICT for creating modern smart packaging was shown...

  18. Quantifying losses and thermodynamic limits in nanophotonic solar cells

    Science.gov (United States)

    Mann, Sander A.; Oener, Sebastian Z.; Cavalli, Alessandro; Haverkort, Jos E. M.; Bakkers, Erik P. A. M.; Garnett, Erik C.

    2016-12-01

    Nanophotonic engineering shows great potential for photovoltaics: the record conversion efficiencies of nanowire solar cells are increasing rapidly and the record open-circuit voltages are becoming comparable to the records for planar equivalents. Furthermore, it has been suggested that certain nanophotonic effects can reduce costs and increase efficiencies with respect to planar solar cells. These effects are particularly pronounced in single-nanowire devices, where two out of the three dimensions are subwavelength. Single-nanowire devices thus provide an ideal platform to study how nanophotonics affects photovoltaics. However, for these devices the standard definition of power conversion efficiency no longer applies, because the nanowire can absorb light from an area much larger than its own size. Additionally, the thermodynamic limit on the photovoltage is unknown a priori and may be very different from that of a planar solar cell. This complicates the characterization and optimization of these devices. Here, we analyse an InP single-nanowire solar cell using intrinsic metrics to place its performance on an absolute thermodynamic scale and pinpoint performance loss mechanisms. To determine these metrics we have developed an integrating sphere microscopy set-up that enables simultaneous and spatially resolved quantitative absorption, internal quantum efficiency (IQE) and photoluminescence quantum yield (PLQY) measurements. For our record single-nanowire solar cell, we measure a photocurrent collection efficiency of >90% and an open-circuit voltage of 850 mV, which is 73% of the thermodynamic limit (1.16 V).

  19. Novel interconnect methodologies for ultra-thin chips on foils

    NARCIS (Netherlands)

    Sridhar, A.; Cauwe, M.; Fledderus, H.; Kusters, R.H.L.; Brand, J. van den

    2012-01-01

    Reliable interconnection technology is key to the realization of reliable hybrid microelectronic systems that combine printed electronics and silicon technology. Flexible hybrid electronic systems-in-foil (SiF) that are typically suited for roll-to-roll (R2R) manufacturing place additional requireme

  20. Nanophotonic boost of intermolecular energy transfer

    CERN Document Server

    de Roque, P M; Sapienza, R

    2015-01-01

    We propose a scheme for efficient long-range energy transfer between two distant light emitters separated by more than one wavelength of light, i.e. much beyond the classical Forster radius. A hybrid nanoantenna-waveguide system mediates the transmission of energy, showing enhancements up to 10^8 as compared to vacuum. Our model shows how energy transfer in nanostructured media can be boosted, beyond the simple donor Purcell enhancement, and in particular for large donor-acceptor separations. The scheme we propose connects realistic emitters and could lead to practical on-chip implementations.

  1. Welded solar cell interconnection

    Science.gov (United States)

    Stofel, E. J.; Browne, E. R.; Meese, R. A.; Vendura, G. J.

    1982-01-01

    The efficiency of the welding of solar-cell interconnects is compared with the efficiency of soldering such interconnects, and the cases in which welding may be superior are examined. Emphasis is placed on ultrasonic welding; attention is given to the solar-cell welding machine, the application of the welding process to different solar-cell configurations, producibility, and long-life performance of welded interconnects. Much of the present work has been directed toward providing increased confidence in the reliability of welding using conditions approximating those that would occur with large-scale array production. It is concluded that there is as yet insufficient data to determine which of three methods (soldering, parallel gap welding, and ultrasonic welding) provides the longest-duration solar panel life.

  2. Review Article: Quantum Nanophotonics in Diamond

    CERN Document Server

    Schröder, Tim; Zheng, Jiabao; Trusheim, Matthew E; Walsh, Michael; Chen, Edward H; Li, Luozhou; Bayn, Igal; Englund, Dirk

    2016-01-01

    The past decade has seen great advances in developing color centers in diamond for sensing, quantum information processing, and tests of quantum foundations. Increasingly, the success of these applications as well as fundamental investigations of light-matter interaction depend on improved control of optical interactions with color centers -- from better fluorescence collection to efficient and precise coupling with confined single optical modes. Wide ranging research efforts have been undertaken to address these demands through advanced nanofabrication of diamond. This review will cover recent advances in diamond nano- and microphotonic structures for efficient light collection, color center to nanocavity coupling, hybrid integration of diamond devices with other material systems, and the wide range of fabrication methods that have enabled these complex photonic diamond systems.

  3. Low power interconnect design

    CERN Document Server

    Saini, Sandeep

    2015-01-01

    This book provides practical solutions for delay and power reduction for on-chip interconnects and buses.  It provides an in depth description of the problem of signal delay and extra power consumption, possible solutions for delay and glitch removal, while considering the power reduction of the total system.  Coverage focuses on use of the Schmitt Trigger as an alternative approach to buffer insertion for delay and power reduction in VLSI interconnects. In the last section of the book, various bus coding techniques are discussed to minimize delay and power in address and data buses.   ·         Provides practical solutions for delay and power reduction for on-chip interconnects and buses; ·         Focuses on Deep Sub micron technology devices and interconnects; ·         Offers in depth analysis of delay, including details regarding crosstalk and parasitics;  ·         Describes use of the Schmitt Trigger as a versatile alternative approach to buffer insertion for del...

  4. Interconnecting with VIPs

    Science.gov (United States)

    Collins, Robert

    2013-01-01

    Interconnectedness changes lives. It can even save lives. Recently the author got to witness and be part of something in his role as a teacher of primary science that has changed lives: it may even have saved lives. It involved primary science teaching--and the climate. Robert Collins describes how it is all interconnected. The "Toilet…

  5. QCD Interconnection Effects

    CERN Document Server

    Sjöstrand, Torbjörn

    1999-01-01

    Heavy objects like the W, Z and t are short-lived compared with typical hadronization times. When pairs of such particles are produced, the subsequent hadronic decay systems may therefore become interconnected. We study such potential effects at Linear Collider energies.

  6. Coplanar interconnection module

    Science.gov (United States)

    Steward, R. D.; Windsor, H. F.

    1970-01-01

    Module for interconnecting a semiconductor array to external leads or components incorporates a metal external heat sink for cooling the array. Heat sink, extending down from the molded block that supports the array, is immersed in a liquid nitrogen bath which is designed to maintain the desired array temperature.

  7. DNA-Protected Silver Clusters for Nanophotonics

    Directory of Open Access Journals (Sweden)

    Elisabeth Gwinn

    2015-02-01

    Full Text Available DNA-protected silver clusters (AgN-DNA possess unique fluorescence properties that depend on the specific DNA template that stabilizes the cluster. They exhibit peak emission wavelengths that range across the visible and near-IR spectrum. This wide color palette, combined with low toxicity, high fluorescence quantum yields of some clusters, low synthesis costs, small cluster sizes and compatibility with DNA are enabling many applications that employ AgN-DNA. Here we review what is known about the underlying composition and structure of AgN-DNA, and how these relate to the optical properties of these fascinating, hybrid biomolecule-metal cluster nanomaterials. We place AgN-DNA in the general context of ligand-stabilized metal clusters and compare their properties to those of other noble metal clusters stabilized by small molecule ligands. The methods used to isolate pure AgN-DNA for analysis of composition and for studies of solution and single-emitter optical properties are discussed. We give a brief overview of structurally sensitive chiroptical studies, both theoretical and experimental, and review experiments on bringing silver clusters of distinct size and color into nanoscale DNA assemblies. Progress towards using DNA scaffolds to assemble multi-cluster arrays is also reviewed.

  8. Optical tuning of near and far fields form hybrid dimer nanoantennas via laser-induced melting

    Science.gov (United States)

    Kolodny, Stanislav A.; Sun, Yali; Zuev, Dmitry A.; Makarov, Sergey V.; Krasnok, Alexander E.; Belov, Pavel A.

    2016-08-01

    Hybrid nanophotonics based on metal-dielectric nanostructures unifies the advantages of plasmonics and all-dielectric nanophotonics providing strong localization of light, magnetic optical response and specifically designed scattering properties. Here, we propose a new method for optical properties tuning of hybrid dimer nanoantenas via laser-induced melting at the nanoscale. We demonstrate numerically that near- and farfield properties of a hybrid nanoantenna dramatically changes with fs-laser modification of Au particle. The results lay the groundwork for the fine-tuning of hybrid nanoantennas and can be applied for effective light manipulation at the nanoscale, as well as biomedical and energy applications.

  9. VLSI micro- and nanophotonics science, technology, and applications

    CERN Document Server

    Lee, El-Hang; Razeghi, Manijeh; Jagadish, Chennupati

    2011-01-01

    Addressing the growing demand for larger capacity in information technology, VLSI Micro- and Nanophotonics: Science, Technology, and Applications explores issues of science and technology of micro/nano-scale photonics and integration for broad-scale and chip-scale Very Large Scale Integration photonics. This book is a game-changer in the sense that it is quite possibly the first to focus on ""VLSI Photonics"". Very little effort has been made to develop integration technologies for micro/nanoscale photonic devices and applications, so this reference is an important and necessary early-stage pe

  10. Aluminum nitride nanophotonic circuits operating at ultraviolet wavelengths

    Energy Technology Data Exchange (ETDEWEB)

    Stegmaier, M.; Ebert, J.; Pernice, W. H. P., E-mail: wolfram.pernice@kit.edu [Institute of Nanotechnology, Karlsruhe Institute of Technology, 76133 Karlsruhe (Germany); Meckbach, J. M.; Ilin, K.; Siegel, M. [Institute of Micro- und Nanoelectronic Systems, Karlsruhe Institute of Technology, 76187 Karlsruhe (Germany)

    2014-03-03

    Aluminum nitride (AlN) has recently emerged as a promising material for integrated photonics due to a large bandgap and attractive optical properties. Exploiting the wideband transparency, we demonstrate waveguiding in AlN-on-Insulator circuits from near-infrared to ultraviolet wavelengths using nanophotonic components with dimensions down to 40 nm. By measuring the propagation loss over a wide spectral range, we conclude that both scattering and absorption of AlN-intrinsic defects contribute to strong attenuation at short wavelengths, thus providing guidelines for future improvements in thin-film deposition and circuit fabrication.

  11. Ultra-thin Metal and Dielectric Layers for Nanophotonic Applications

    DEFF Research Database (Denmark)

    Shkondin, Evgeniy; Leandro, Lorenzo; Malureanu, Radu;

    2015-01-01

    In our talk we first give an overview of the various thin films used in the field of nanophotonics. Then we describe our own activity in fabrication and characterization of ultra-thin films of high quality. We particularly focus on uniform gold layers having thicknesses down to 6 nm fabricated by......-beam deposition on dielectric substrates and Al-oxides/Ti-oxides multilayers prepared by atomic layer deposition in high aspect ratio trenches. In the latter case we show more than 1:20 aspect ratio structures can be achieved....

  12. Fuel cell system with interconnect

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Zhien; Goettler, Richard; Delaforce, Philip Mark

    2016-03-08

    The present invention includes a fuel cell system having an interconnect that reduces or eliminates diffusion (leakage) of fuel and oxidant by providing an increased densification, by forming the interconnect as a ceramic/metal composite.

  13. Hybrid Interconnect Design for Heterogeneous Hardware Accelerators

    NARCIS (Netherlands)

    Pham-Quoc Cuong, P.

    2015-01-01

    Heterogeneous multicore systems are becoming increasingly important as the need for computation power grows, especially when we are entering into the big data era. As one of the main trends in heterogeneous multicore, hardware accelerator systems provide application specific hardware circuits and

  14. Silicon Hybrid Wafer Scale Integration Interconnect Evaluation

    Science.gov (United States)

    1989-12-01

    M1 F. 1 . Schematic of thle ge oral I wo-concltict or con figutrat ion .. .. .. .... F- 7 1 .2. S( hevin a t I c of thle general t.wo-condltct or con...G.5. Measured chtaracter’ist ic ImpJedlance of St ructutre (G5 fromi Ill’ [)IQ\\ VIh (ceniter conduictor). (a) Niagnit tide. (1)) Ph1ase

  15. Hybrid Interconnect Design for Heterogeneous Hardware Accelerators

    NARCIS (Netherlands)

    Pham-Quoc Cuong, P.

    2015-01-01

    Heterogeneous multicore systems are becoming increasingly important as the need for computation power grows, especially when we are entering into the big data era. As one of the main trends in heterogeneous multicore, hardware accelerator systems provide application specific hardware circuits and ar

  16. Photovoltaic sub-cell interconnects

    Energy Technology Data Exchange (ETDEWEB)

    van Hest, Marinus Franciscus Antonius Maria; Swinger Platt, Heather Anne

    2017-05-09

    Photovoltaic sub-cell interconnect systems and methods are provided. In one embodiment, a photovoltaic device comprises a thin film stack of layers deposited upon a substrate, wherein the thin film stack layers are subdivided into a plurality of sub-cells interconnected in series by a plurality of electrical interconnection structures; and wherein the plurality of electrical interconnection structures each comprise no more than two scribes that penetrate into the thin film stack layers.

  17. Interconnection of Distributed Energy Resources

    Energy Technology Data Exchange (ETDEWEB)

    Reiter, Emerson [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-04-19

    This is a presentation on interconnection of distributed energy resources, including the relationships between different aspects of interconnection, best practices and lessons learned from different areas of the U.S., and an update on technical advances and standards for interconnection.

  18. Electromagnetism and interconnections

    CERN Document Server

    Charruau, S

    2009-01-01

    This book covers the theoretical problems of modeling electrical behavior of the interconnections encountered in everyday electronic products. The coverage shows the theoretical tools of waveform prediction at work in the design of a complex and high-speed digital electronic system. Scientists, research engineers, and postgraduate students interested in electromagnetism, microwave theory, electrical engineering, or the development of simulation tools software for high speed electronic system design automation will find this book an illuminating resource.

  19. Interconnectivity: Benefits and Challenges

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-09-15

    Access to affordable and reliable electricity supplies is a basic prerequisite for economic and social development, prosperity, health, education and all other aspects of modern society. Electricity can be generated both near and far from the consumption areas as transmission lines, grid interconnections and distribution systems can transport it to the final consumer. In the vast majority of countries, the electricity sector used to be owned and run by the state. The wave of privatisation and market introduction in a number of countries and regions which started in the late 1980's has in many cases involved unbundling of generation from transmission and distribution (T and D). This has nearly everywhere exposed transmission bottlenecks limiting the development of well-functioning markets. Transmission on average accounts for about 10-15% of total final kWh cost paid by the end-user but it is becoming a key issue for effective operation of liberalised markets and for their further development. An integrated and adequate transmission infrastructure is of utmost importance for ensuring the delivery of the most competitively priced electricity, including externalities, to customers, both near and far from the power generating facilities. In this report, the role of interconnectivity in the development of energy systems is examined with the associated socio-economic, environmental, financial and regulatory aspects that must be taken into account for successful interconnection projects.

  20. Interconnected network of cameras

    Science.gov (United States)

    Hosseini Kamal, Mahdad; Afshari, Hossein; Leblebici, Yusuf; Schmid, Alexandre; Vandergheynst, Pierre

    2013-02-01

    The real-time development of multi-camera systems is a great challenge. Synchronization and large data rates of the cameras adds to the complexity of these systems as well. The complexity of such system also increases as the number of their incorporating cameras increases. The customary approach to implementation of such system is a central type, where all the raw stream from the camera are first stored then processed for their target application. An alternative approach is to embed smart cameras to these systems instead of ordinary cameras with limited or no processing capability. Smart cameras with intra and inter camera processing capability and programmability at the software and hardware level will offer the right platform for distributed and parallel processing for multi- camera systems real-time application development. Inter camera processing requires the interconnection of smart cameras in a network arrangement. A novel hardware emulating platform is introduced for demonstrating the concept of the interconnected network of cameras. A methodology is demonstrated for the interconnection network of camera construction and analysis. A sample application is developed and demonstrated.

  1. All-nanophotonic NEMS biosensor on a chip

    Science.gov (United States)

    Fedyanin, Dmitry Yu.; Stebunov, Yury V.

    2015-06-01

    Integrated chemical and biological sensors give advantages in cost, size and weight reduction and open new prospects for parallel monitoring and analysis. Biosensors based on nanoelectromechanical systems (NEMS) are the most attractive candidates for the integrated platform. However, actuation and transduction techniques (e.g. electrostatic, magnetomotive, thermal or piezoelectric) limit their operation to laboratory conditions. All-optical approach gives the possibility to overcome this problem, nevertheless, the existing schemes are either fundamentally macroscopic or excessively complicated and expensive in mass production. Here we propose a novel scheme of extremely compact NEMS biosensor monolithically integrated on a chip with all-nanophotonic transduction and actuation. It consists of the nanophotonic waveguide and the nanobeam cantilever placed above the waveguide, both fabricated in the same CMOS-compatible process. Being in the near field of the strongly confined photonic or plasmonic mode, cantilever is efficiently actuated and its response is directly read out using the same waveguide, which results in a very high sensitivity and capability of single-molecule detection even in atmosphere.

  2. Silicon nanophotonics for scalable quantum coherent feedback networks

    Energy Technology Data Exchange (ETDEWEB)

    Sarovar, Mohan; Brif, Constantin [Sandia National Laboratories, Livermore, CA (United States); Soh, Daniel B.S. [Sandia National Laboratories, Livermore, CA (United States); Stanford University, Edward L. Ginzton Laboratory, Stanford, CA (United States); Cox, Jonathan; DeRose, Christopher T.; Camacho, Ryan; Davids, Paul [Sandia National Laboratories, Albuquerque, NM (United States)

    2016-12-15

    The emergence of coherent quantum feedback control (CQFC) as a new paradigm for precise manipulation of dynamics of complex quantum systems has led to the development of efficient theoretical modeling and simulation tools and opened avenues for new practical implementations. This work explores the applicability of the integrated silicon photonics platform for implementing scalable CQFC networks. If proven successful, on-chip implementations of these networks would provide scalable and efficient nanophotonic components for autonomous quantum information processing devices and ultra-low-power optical processing systems at telecommunications wavelengths. We analyze the strengths of the silicon photonics platform for CQFC applications and identify the key challenges to both the theoretical formalism and experimental implementations. In particular, we determine specific extensions to the theoretical CQFC framework (which was originally developed with bulk-optics implementations in mind), required to make it fully applicable to modeling of linear and nonlinear integrated optics networks. We also report the results of a preliminary experiment that studied the performance of an in situ controllable silicon nanophotonic network of two coupled cavities and analyze the properties of this device using the CQFC formalism. (orig.)

  3. Interconnection policy: a theoretical survey

    Directory of Open Access Journals (Sweden)

    César Mattos

    2003-01-01

    Full Text Available This article surveys the theoretical foundations of interconnection policy. The requirement of an interconnection policy should not be taken for granted in all circumstances, even considering the issue of network externalities. On the other hand, when it is required, an encompassing interconnection policy is usually justified. We provide an overview of the theory on interconnection pricing that results in several different prescriptions depending on which problem the regulator aims to address. We also present a survey on the literature on two-way interconnection.

  4. Influence of Parameters of a Printing Plate on Photoluminescence of Nanophotonic Printed Elements of Novel Packaging

    Directory of Open Access Journals (Sweden)

    Olha Sarapulova

    2015-01-01

    Full Text Available In order to produce nanophotonic elements for smart packaging, we investigated the influence of the parameters of screen and offset gravure printing plates on features of printed application of coatings with nanophotonic components and on parameters of their photoluminescence. To determine the dependence of luminescence intensity on the thickness of solid coating, we carried out the formation of nanophotonic solid surfaces by means of screen printing with different layer thickness on polypropylene film. The obtained analytical dependencies were used to confirm the explanation of the processes that occur during the fabrication of nanophotonic coverings with offset gravure printing plates. As a result of experimental studies, it was determined that the different character of the dependency of total luminescence intensity of nanophotonic elements from the percentage of a pad is explained by the use of different types of offset gravure printing plates, where the size of raster points remains constant in one case and changes in the other case, while the depth of the printing elements accordingly changes or remains constant. To obtain nanophotonic areas with predetermined photoluminescent properties, the influence of investigated factors on changes of photoluminescent properties of nanophotonic printed surfaces should be taken into consideration.

  5. Imaging Nanophotonic Modes of Microresonators using a Focused Ion Beam

    CERN Document Server

    Twedt, Kevin A; Davanco, Marcelo; Srinivasan, Kartik; McClelland, Jabez J; Aksyuk, Vladimir A

    2016-01-01

    Optical microresonators have proven powerful in a wide range of applications, including cavity quantum electrodynamics, biosensing, microfludics, and cavity optomechanics. Their performance depends critically on the exact distribution of optical energy, confined and shaped by the nanoscale device geometry. Near-field optical probes can image this distribution, but the physical probe necessarily perturbs the near field, which is particularly problematic for sensitive high quality factor resonances. We present a new approach to mapping nanophotonic modes that uses a controllably small and local optomechanical perturbation introduced by a focused lithium ion beam. An ion beam (radius about 50 nm) induces a picometer-scale dynamic deformation of the resonator surface, which we detect through a shift in the optical resonance wavelength. We map five modes of a silicon microdisk resonator (Q > 20,000) with both high spatial and spectral resolution. Our technique also enables in-situ observation of ion implantation d...

  6. Broadband directional coupling in aluminum nitride nanophotonic circuits

    CERN Document Server

    Stegmaier, Matthias

    2013-01-01

    Aluminum nitride (AlN)-on-insulator has emerged as a promising platform for the realization of linear and non-linear integrated photonic circuits. In order to efficiently route optical signals on-chip, precise control over the interaction and polarization of evanescently coupled waveguide modes is required. Here we employ nanophotonic AlN waveguides to realize directional couplers with a broad coupling bandwidth and low insertion loss. We achieve uniform splitting of incoming modes, confirmed by high extinction-ratio exceeding 33dB in integrated Mach-Zehnder Interferometers. Optimized three-waveguide couplers furthermore allow for extending the coupling bandwidth over traditional side-coupled devices by almost an order of magnitude, with variable splitting ratio. Our work illustrates the potential of AlN circuits for coupled waveguide optics, DWDM applications and integrated polarization diversity schemes.

  7. All-nanophotonic NEMS biosensor on a chip

    CERN Document Server

    Fedyanin, Dmitry Yu

    2014-01-01

    Integrated chemical and biological sensors give advantages in cost, size and weight reduction and open new prospects for parallel monitoring and analysis. Biosensors based on nanoelectromechanical systems (NEMS) are the most attractive candidates for the integrated platform. However, actuation and transduction techniques (e.g. electrostatic, magnetomotive, thermal or piezoelectric) limit their operation to laboratory conditions. All-optical approach gives the possibility to overcome this problem, nevertheless, the existing schemes are either fundamentally macroscopic or excessively complicated and expensive in mass production. Here we propose a novel scheme of extremely compact NEMS biosensor monolithically integrated on a chip with all-nanophotonic transduction and actuation. It consists of the photonic waveguide and the nanobeam cantilever placed above the waveguide, both fabricated in the same CMOS-compatible process. Being in the near field of the strongly confined photonic mode, cantilever is efficiently...

  8. Sunlight-thin nanophotonic monocrystalline silicon solar cells

    Science.gov (United States)

    Depauw, Valérie; Trompoukis, Christos; Massiot, Inès; Chen, Wanghua; Dmitriev, Alexandre; Cabarrocas, Pere Roca i.; Gordon, Ivan; Poortmans, Jef

    2017-09-01

    Introducing nanophotonics into photovoltaics sets the path for scaling down the surface texture of crystalline-silicon solar cells from the micro- to the nanoscale, allowing to further boost the photon absorption while reducing silicon material loss. However, keeping excellent electrical performance has proven to be very challenging, as the absorber is damaged by the nanotexturing and the sensitivity to the surface recombination is dramatically increased. Here we realize a light-wavelength-scale nanotextured monocrystalline silicon cell with the confirmed efficiency of 8.6% and an effective thickness of only 830 nm. For this we adopt a self-assembled large-area and industry-compatible amorphous ordered nanopatterning, combined with an advanced surface passivation, earning strongly enhanced solar light absorption while retaining efficient electron collection. This prompts the development of highly efficient flexible and semitransparent photovoltaics, based on the industrially mature monocrystalline silicon technology.

  9. Silicon nanophotonics for scalable quantum coherent feedback networks

    CERN Document Server

    Sarovar, Mohan; Cox, Jonathan; Brif, Constantin; DeRose, Christopher T; Camacho, Ryan; Davids, Paul

    2016-01-01

    The emergence of coherent quantum feedback control (CQFC) as a new paradigm for precise manipulation of dynamics of complex quantum systems has led to the development of efficient theoretical modeling and simulation tools and opened avenues for new practical implementations. This work explores the applicability of the integrated silicon photonics platform for implementing scalable CQFC networks. If proven successful, on-chip implementations of these networks would provide scalable and efficient nanophotonic components for autonomous quantum information processing devices and ultra-low-power optical processing systems at telecommunications wavelengths. We analyze the strengths of the silicon photonics platform for CQFC applications and identify the key challenges to both the theoretical formalism and experimental implementations. In particular, we determine specific extensions to the theoretical CQFC framework (which was originally developed with bulk-optics implementations in mind), required to make it fully ...

  10. Investigation of a Nanophotonic Sensor with Electrode Modified by Semiconductor Quantum Dots

    Directory of Open Access Journals (Sweden)

    O.A. Sushko

    2014-10-01

    Full Text Available This paper focuses on optical sensors, namely nanophotonic ones intended for liquid media contained polynuclear aromatics assay. Developed by us nanophotonic sensor includes optically transparent working electrode modified by quantum-dimensional structures such as spherical semiconductor quantum dots (QDs. Monomolecular layer of QDs is plotted onto the electrode by Langmuir-Blodgett technology. Particular attention is paid to the processes of assay in nanophotonic sensor. As an analyte we used polycyclic aromatic hydrocarbon (PAH such as benzo[a]pyrene (BP, which is known for its carcinogenic properties. The developed nanophotonic sensor can be used in ecology for organic carcinogens detection in water objects of environment as well as for biomedical, physical chemical assays and some others.

  11. All-Dielectric Nanophotonic Structures: Exploring the Magnetic Component of Light

    CERN Document Server

    Hopkins, Ben; Kivshar, Yuri S

    2016-01-01

    We discuss nanophotonic structures composed of high-index dielectric nanoparticles that each support Mie-type electric and magnetic dipole resonances. Several basic approaches are introduced for analytical and numerical study of these collective, all-dielectric, nanophotonic structures. We also provide comparison on the optical behavior of all-dielectric structures with that of corresponding plasmonic structures, and review recent experimental demonstrations of Fano resonances in all-dielectric nanoparticle oligomers.

  12. Forster resonance energy transfer rate in any dielectric nanophotonic medium with weak dispersion

    DEFF Research Database (Denmark)

    Wubs, Martijn; Vos, Willem L.

    2016-01-01

    Motivated by the ongoing debate about nanophotonic control of Forster resonance energy transfer (FRET), notably by the local density of optical states (LDOS), we study FRET and spontaneous emission in arbitrary nanophotonic media with weak dispersion and weak absorption in the frequency overlap...... to the mirror, typically a few nm. Finally, we discuss the consequences of our results to applications of Forster resonance energy transfer, for instance in quantum information processing....

  13. Free-Standing Nanomechanical and Nanophotonic Structures in Single-Crystal Diamond

    OpenAIRE

    Burek, Michael John

    2016-01-01

    Realizing complex three-dimensional structures in a range of material systems is critical to a variety of emerging nanotechnologies. This is particularly true of nanomechanical and nanophotonic systems, both relying on free-standing small-scale components. In the case of nanomechanics, necessary mechanical degrees of freedom require physically isolated structures, such as suspended beams, cantilevers, and membranes. For nanophotonics, elements like waveguides and photonic crystal cavities rel...

  14. Printed interconnects for photovoltaic modules

    Energy Technology Data Exchange (ETDEWEB)

    Fields, J. D.; Pach, G.; Horowitz, K. A. W.; Stockert, T. R.; Woodhouse, M.; van Hest, M. F. A. M.

    2017-01-01

    Film-based photovoltaic modules employ monolithic interconnects to minimize resistance loss and enhance module voltage via series connection. Conventional interconnect construction occurs sequentially, with a scribing step following deposition of the bottom electrode, a second scribe after deposition of absorber and intermediate layers, and a third following deposition of the top electrode. This method produces interconnect widths of about 300 um, and the area comprised by interconnects within a module (generally about 3%) does not contribute to power generation. The present work reports on an increasingly popular strategy capable of reducing the interconnect width to less than 100 um: printing interconnects. Cost modeling projects a savings of about $0.02/watt for CdTe module production through the use of printed interconnects, with savings coming from both reduced capital expense and increased module power output. Printed interconnect demonstrations with copper-indium-gallium-diselenide and cadmium-telluride solar cells show successful voltage addition and miniaturization down to 250 um. Material selection guidelines and considerations for commercialization are discussed.

  15. Interconnect Challenges in Highly Integrated MEMS/ASIC Subsystems

    CERN Document Server

    Marenco, N; Reinert, W

    2008-01-01

    Micromechanical devices like accelerometers or rotation sensors form an increasing segment beneath the devices supplying the consumer market. A hybrid integration approach to build smart sensor clusters for the precise detection of movements in all spatial dimensions requires a large toolbox of interconnect technologies, each with its own constraints regarding the total process integration. Specific challenges described in this paper are post-CMOS feedthroughs, front-to-front die contact arrays, vacuum-compliant lateral interconnect and fine-pitch solder balling to finally form a Chip-Scale System-in-Package (CSSiP).

  16. Graph theory and interconnection networks

    CERN Document Server

    Hsu, Lih-Hsing

    2008-01-01

    The advancement of large scale integrated circuit technology has enabled the construction of complex interconnection networks. Graph theory provides a fundamental tool for designing and analyzing such networks. Graph Theory and Interconnection Networks provides a thorough understanding of these interrelated topics. After a brief introduction to graph terminology, the book presents well-known interconnection networks as examples of graphs, followed by in-depth coverage of Hamiltonian graphs. Different types of problems illustrate the wide range of available methods for solving such problems. The text also explores recent progress on the diagnosability of graphs under various models.

  17. Resolving nanophotonic spectra with quasi-normal modes (Conference Presentation)

    Science.gov (United States)

    Powell, David A.

    2016-09-01

    Many nanophotonic systems are strongly coupled to radiating waves, or suffer significant dissipative losses. Furthermore, they may have complex shapes which are not amenable to closed form calculations. This makes it challenging to determine their modes without resorting to quasi-static or point dipole approximations. To solve this problem, the quasi-normal modes (QNMs) are found from an integral equation model of the particle. These give complex frequencies where excitation can be supported without any incident field. The corresponding eigenvectors yield the modal distributions, which are non-orthogonal due to the non-Hermitian nature of the system. The model based on quasi-normal modes is applied to plasmonic and dielectric particles, and compared with a spherical multipole decomposition. Only with the QNMs is it possible to resolve all features of the extinction spectrum, as each peak in the spectrum can be attributed to a particular mode. In contrast, many of the multipole coefficient have multiple peaks and dips. Furthermore, by performing a multipolar decomposition of each QNM, the spectrum of multipole coefficients is explained in terms of destructive interference between modes of the same multipole order.

  18. Nanophotonics-enabled smart windows, buildings and wearables

    Directory of Open Access Journals (Sweden)

    Smith Geoff

    2016-06-01

    Full Text Available Design and production of spectrally smart windows, walls, roofs and fabrics has a long history, which includes early examples of applied nanophotonics. Evolving nanoscience has a special role to play as it provides the means to improve the functionality of these everyday materials. Improvement in the quality of human experience in any location at any time of year is the goal. Energy savings, thermal and visual comfort indoors and outdoors, visual experience, air quality and better health are all made possible by materials, whose “smartness” is aimed at designed responses to environmental energy flows. The spectral and angle of incidence responses of these nanomaterials must thus take account of the spectral and directional aspects of solar energy and of atmospheric thermal radiation plus the visible and color sensitivity of the human eye. The structures required may use resonant absorption, multilayer stacks, optical anisotropy and scattering to achieve their functionality. These structures are, in turn, constructed out of particles, columns, ultrathin layers, voids, wires, pure and doped oxides, metals, polymers or transparent conductors (TCs. The need to cater for wavelengths stretching from 0.3 to 35 μm including ultraviolet-visible, near-infrared (IR and thermal or Planck radiation, with a spectrally and directionally complex atmosphere, and both being dynamic, means that hierarchical and graded nanostructures often feature. Nature has evolved to deal with the same energy flows, so biomimicry is sometimes a useful guide.

  19. Design and Fabrication of 1 × 2 Nanophotonic Switch

    Directory of Open Access Journals (Sweden)

    Asaf Shahmoon

    2010-01-01

    Full Text Available We present the design and the fabrication of a novel 1×2 nanophotonic switch. The switch is a photonic T-junction in which a gold nano particle is being positioned in the junction using the tip of an atomic force microscope (AFM. The novelty of this 1×2 switch is related to its ability to control the direction of wave that propagates along a photonic structure. The selectivity of the direction is determined by a gold nanoparticle having dimension of a few tens of nanometer. This particle can be shifted. The shift of the gold nano particle can be achieved by applying voltage or by illuminating it with a light source. The shifts of the particle, inside the air gap, direct the input beam ones to the left output of the junction and once to its right output. Three types of simulations have been done in order to realize the photonic T-junction, and they are as follows: photonic crystal structures, waveguide made out of PMMA, and a silicon waveguide.

  20. True stopping of light: a new regime for nanophotonics

    Science.gov (United States)

    Tsakmakidis, Kosmas L.; Zhang, Xiang; Hess, Ortwin

    2014-09-01

    The extremely large speed of light is a tremendous asset but also makes it challenging to control, store or shrink beyond its wavelength. Particularly, reducing the speed of light down to zero is of fundamental scientific interest that could usher in a host of important photonic applications, some of which are hitherto fundamentally inaccessible. These include cavity-free, low-threshold nanolasers, novel solar-cell designs for efficient harvesting of light, nanoscale quantum information processing (owing to the enhanced density of states), as well as enhanced biomolecular sensing. We shall here present nanoplasmonic-based schemes where timedependent sources excite "complex-frequency" modes in uniform (plasmonic) heterostructures, enabling complete and dispersion-free stopping of light pulses, resilient to realistic levels of dissipative, radiative and surface-roughness losses. Our theoretical and computational results demonstrate extraordinary large lightdeceleration factors (of the order of 15,000,000) in integrated nanophotonic media, comparable only to those attainable with ultracold atomic vapours or with quantum coherence effects, such as coherent population oscillations, in ruby crystals.

  1. Nanophotonic interactions between organic excitons and plasmonic metasurfaces (Conference Presentation)

    Science.gov (United States)

    O'Carroll, Deirdre M.

    2016-09-01

    Thin-film organic semiconductor materials are emerging as energy-efficient, versatile alternatives to inorganic semiconductors for display and solid-state lighting applications. Additionally, thin-film organic laser and photovoltaic technologies, while not yet competitive with inorganic semiconductor-based analogues, can exhibit small device embodied energies (due to comparatively low temperature and low energy-use fabrication processes) which is of interest for reducing overall device cost. To improve energy conversion efficiency in thin-film organic optoelectronics, light management using nanophotonic structures is necessary. Here, our recent work on improving light trapping and light extraction in organic semiconductor thin films using nanostructured silver plasmonic metasurfaces will be presented [1,2]. Numerous optical phenomena, such as absorption induced scattering, out-of-plane waveguiding and morphology-dependent surface plasmon outcoupling, are identified due to exciton-plasmon coupling between the organic semiconductor and the metasurface. Interactions between localized and propagating surface plasmon polaritons and the excitonic transitions of a variety of organic conjugated polymer materials will be discussed and ways in which these interactions may be optimized for particular optoelectronic applications will be presented. [1] C. E. Petoukhoff, D. M. O'Carroll, Absorption-Induced Scattering and Surface Plasmon Out-Coupling from Absorber-Coated Plasmonic Metasurfaces. Nat. Commun. 6, 7899-1-13 (2015). [2] Z. Shen, D. M. O'Carroll, Nanoporous Silver Thin Films: Multifunctional Platforms for Influencing Chain Morphology and Optical Properties of Conjugated Polymers. Adv. Funct. Mater. 25, 3302-3313 (2015).

  2. Mid-infrared optical parametric amplifier using silicon nanophotonic waveguides

    CERN Document Server

    Liu, Xiaoping; Vlasov, Yurii A; Green, William M J

    2010-01-01

    All-optical signal processing is envisioned as an approach to dramatically decrease power consumption and speed up performance of next-generation optical telecommunications networks. Nonlinear optical effects, such as four-wave mixing (FWM) and parametric gain, have long been explored to realize all-optical functions in glass fibers. An alternative approach is to employ nanoscale engineering of silicon waveguides to enhance the optical nonlinearities by up to five orders of magnitude, enabling integrated chip-scale all-optical signal processing. Previously, strong two-photon absorption (TPA) of the telecom-band pump has been a fundamental and unavoidable obstacle, limiting parametric gain to values on the order of a few dB. Here we demonstrate a silicon nanophotonic optical parametric amplifier exhibiting gain as large as 25.4 dB, by operating the pump in the mid-IR near one-half the band-gap energy (E~0.55eV, lambda~2200nm), at which parasitic TPA-related absorption vanishes. This gain is high enough to comp...

  3. Plasmonic antennas as design elements for coherent ultrafast nanophotonics.

    Science.gov (United States)

    Brinks, Daan; Castro-Lopez, Marta; Hildner, Richard; van Hulst, Niek F

    2013-11-12

    Broadband excitation of plasmons allows control of light-matter interaction with nanometric precision at femtosecond timescales. Research in the field has spiked in the past decade in an effort to turn ultrafast plasmonics into a diagnostic, microscopy, computational, and engineering tool for this novel nanometric-femtosecond regime. Despite great developments, this goal has yet to materialize. Previous work failed to provide the ability to engineer and control the ultrafast response of a plasmonic system at will, needed to fully realize the potential of ultrafast nanophotonics in physical, biological, and chemical applications. Here, we perform systematic measurements of the coherent response of plasmonic nanoantennas at femtosecond timescales and use them as building blocks in ultrafast plasmonic structures. We determine the coherent response of individual nanoantennas to femtosecond excitation. By mixing localized resonances of characterized antennas, we design coupled plasmonic structures to achieve well-defined ultrafast and phase-stable field dynamics in a predetermined nanoscale hotspot. We present two examples of the application of such structures: control of the spectral amplitude and phase of a pulse in the near field, and ultrafast switching of mutually coherent hotspots. This simple, reproducible and scalable approach transforms ultrafast plasmonics into a straightforward tool for use in fields as diverse as room temperature quantum optics, nanoscale solid-state physics, and quantum biology.

  4. Nanophotonics-enabled smart windows, buildings and wearables

    Science.gov (United States)

    Smith, Geoff; Gentle, Angus; Arnold, Matthew; Cortie, Michael

    2016-06-01

    Design and production of spectrally smart windows, walls, roofs and fabrics has a long history, which includes early examples of applied nanophotonics. Evolving nanoscience has a special role to play as it provides the means to improve the functionality of these everyday materials. Improvement in the quality of human experience in any location at any time of year is the goal. Energy savings, thermal and visual comfort indoors and outdoors, visual experience, air quality and better health are all made possible by materials, whose "smartness" is aimed at designed responses to environmental energy flows. The spectral and angle of incidence responses of these nanomaterials must thus take account of the spectral and directional aspects of solar energy and of atmospheric thermal radiation plus the visible and color sensitivity of the human eye. The structures required may use resonant absorption, multilayer stacks, optical anisotropy and scattering to achieve their functionality. These structures are, in turn, constructed out of particles, columns, ultrathin layers, voids, wires, pure and doped oxides, metals, polymers or transparent conductors (TCs). The need to cater for wavelengths stretching from 0.3 to 35 μm including ultraviolet-visible, near-infrared (IR) and thermal or Planck radiation, with a spectrally and directionally complex atmosphere, and both being dynamic, means that hierarchical and graded nanostructures often feature. Nature has evolved to deal with the same energy flows, so biomimicry is sometimes a useful guide.

  5. Disorder improves nanophotonic light trapping in thin-film solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Paetzold, U. W., E-mail: u.paetzold@fz-juelich.de; Smeets, M.; Meier, M.; Bittkau, K.; Merdzhanova, T.; Smirnov, V.; Carius, R.; Rau, U. [IEK5—Photovoltaik, Forschungszentrum Jülich GmbH, 52425 Jülich (Germany); Michaelis, D.; Waechter, C. [Fraunhofer Institut für Angewandte Optik und Feinmechanik, Albert Einstein Str. 7, D-07745 Jena (Germany)

    2014-03-31

    We present a systematic experimental study on the impact of disorder in advanced nanophotonic light-trapping concepts of thin-film solar cells. Thin-film solar cells made of hydrogenated amorphous silicon were prepared on imprint-textured glass superstrates. For periodically textured superstrates of periods below 500 nm, the nanophotonic light-trapping effect is already superior to state-of-the-art randomly textured front contacts. The nanophotonic light-trapping effect can be associated to light coupling to leaky waveguide modes causing resonances in the external quantum efficiency of only a few nanometer widths for wavelengths longer than 500 nm. With increasing disorder of the nanotextured front contact, these resonances broaden and their relative altitude decreases. Moreover, overall the external quantum efficiency, i.e., the light-trapping effect, increases incrementally with increasing disorder. Thereby, our study is a systematic experimental proof that disorder is conceptually an advantage for nanophotonic light-trapping concepts employing grating couplers in thin-film solar cells. The result is relevant for the large field of research on nanophotonic light trapping in thin-film solar cells which currently investigates and prototypes a number of new concepts including disordered periodic and quasi periodic textures.

  6. Renewable Systems Interconnection: Executive Summary

    Energy Technology Data Exchange (ETDEWEB)

    Kroposki, B.; Margolis, R.; Kuswa, G.; Torres, J.; Bower, W.; Key, T.; Ton, D.

    2008-02-01

    The U.S. Department of Energy launched the Renewable Systems Interconnection (RSI) study in 2007 to address the challenges to high penetrations of distributed renewable energy technologies. The RSI study consists of 14 additional reports.

  7. Fuel cell system with interconnect

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Zhien; Goettler, Richard

    2016-12-20

    The present invention includes an integrated planar, series connected fuel cell system having electrochemical cells electrically connected via interconnects, wherein the anodes of the electrochemical cells are protected against Ni loss and migration via an engineered porous anode barrier layer.

  8. SU-8 cantilever chip interconnection

    DEFF Research Database (Denmark)

    Johansson, Alicia Charlotte; Janting, Jakob; Schultz, Peter;

    2006-01-01

    the electrodes on the SU-8 chip to a printed circuit board. Here, we present two different methods of electrically connecting an SU-8 chip, which contains a microfluidic network and free-hanging mechanical parts. The tested electrical interconnection techniques are flip chip bonding using underfill or flip chip...... bonding using an anisotropic conductive film (ACF). These are both widely used in the Si industry and might also be used for the large scale interconnection of SU-8 chips. The SU-8 chip, to which the interconnections are made, has a microfluidic channel with integrated micrometer-sized cantilevers...... that can be used for label-free biochemical detection. All the bonding tests are compared with results obtained using similar Si chips. It is found that it is significantly more complicated to interconnect SU-8 than Si cantilever chips primarily due to the softness of SU-8....

  9. Supramolecular Organic Nanowires as Plasmonic Interconnects.

    Science.gov (United States)

    Armao, Joseph J; Domoto, Yuya; Umehara, Teruhiko; Maaloum, Mounir; Contal, Christophe; Fuks, Gad; Moulin, Emilie; Decher, Gero; Javahiraly, Nicolas; Giuseppone, Nicolas

    2016-02-23

    Metallic nanostructures are able to interact with an incident electromagnetic field at subwavelength scales by plasmon resonance which involves the collective oscillation of conduction electrons localized at their surfaces. Among several possible applications of this phenomenon, the theoretical prediction is that optical circuits connecting multiple plasmonic elements will surpass classical electronic circuits at nanoscale because of their much faster light-based information processing. However, the placement and coupling of metallic elements smaller than optical wavelengths currently remain a formidable challenge by top-down manipulations. Here, we show that organic supramolecular triarylamine nanowires of ≈1 nm in diameter are able to act as plasmonic waveguides. Their self-assembly into plasmonic interconnects between arrays of gold nanoparticles leads to the bottom-up construction of basic optical nanocircuits. When the resonance modes of these metallic nanoparticles are coupled through the organic nanowires, the optical conductivity of the plasmonic layer dramatically increases from 259 to 4271 Ω(-1)·cm(-1). We explain this effect by the coupling of a hot electron/hole pair in the nanoparticle antenna with the half-filled polaronic band of the organic nanowire. We also demonstrate that the whole hybrid system can be described by using the abstraction of the lumped circuit theory, with a far field optical response which depends on the number of interconnects. Overall, our supramolecular bottom-up approach opens the possibility to implement processable, soft, and low cost organic plasmonic interconnects into a large number of applications going from sensing to metamaterials and information technologies.

  10. Nanophotonic enhancement of the F\\"orster resonance energy transfer rate on single DNA molecules

    CERN Document Server

    Ghenuche, Petru; Moparthi, Satish Babu; Grigoriev, Victor; Wenger, Jérôme

    2014-01-01

    Nanophotonics achieves accurate control over the luminescence properties of a single quantum emitter by tailoring the light-matter interaction at the nanoscale and modifying the local density of optical states (LDOS). This paradigm could also benefit to F\\"orster resonance energy transfer (FRET) by enhancing the near-field electromagnetic interaction between two fluorescent emitters. Despite the wide applications of FRET in nanosciences, using nanophotonics to enhance FRET remains a debated and complex challenge. Here, we demonstrate enhanced energy transfer within single donor-acceptor fluorophore pairs confined in gold nanoapertures. Experiments monitoring both the donor and the acceptor emission photodynamics at the single molecule level clearly establish a linear dependence of the FRET rate on the LDOS in nanoapertures. These findings are applied to enhance the FRET rate in nanoapertures up to six times, demonstrating that nanophotonics can be used to intensify the near-field energy transfer and improve t...

  11. Novel Organo-Soluble Optically Tunable Chiral Hybrid Gold Nanorods

    Science.gov (United States)

    2014-12-04

    alignment in liquid crystal media was achieved. Furthermore, 3D layer-by-layer graphene –gold nanoparticle hybrid architecture with tunable interlayer...nanoparticles which could further guide to fabricate novel nanophotonic and optical metamaterials . Figure TEM images of P8GNR in LCP. (A) Before UV...Building 3D layer-by-layer gold- graphene nanoparticle hybrid architecture with tunable interlayer distance. The ability to construct self-assembled

  12. Misalignment corrections in optical interconnects

    Science.gov (United States)

    Song, Deqiang

    Optical interconnects are considered a promising solution for long distance and high bitrate data transmissions, outperforming electrical interconnects in terms of loss and dispersion. Due to the bandwidth and distance advantage of optical interconnects, longer links have been implemented with optics. Recent studies show that optical interconnects have clear advantages even at very short distances---intra system interconnects. The biggest challenge for such optical interconnects is the alignment tolerance. Many free space optical components require very precise assembly and installation, and therefore the overall cost could be increased. This thesis studied the misalignment tolerance and possible alignment correction solutions for optical interconnects at backplane or board level. First the alignment tolerance for free space couplers was simulated and the result indicated the most critical alignments occur between the VCSEL, waveguide and microlens arrays. An in-situ microlens array fabrication method was designed and experimentally demonstrated, with no observable misalignment with the waveguide array. At the receiver side, conical lens arrays were proposed to replace simple microlens arrays for a larger angular alignment tolerance. Multilayer simulation models in CodeV were built to optimized the refractive index and shape profiles of the conical lens arrays. Conical lenses fabricated with micro injection molding machine and fiber etching were characterized. Active component VCSOA was used to correct misalignment in optical connectors between the board and backplane. The alignment correction capability were characterized for both DC and AC (1GHz) optical signal. The speed and bandwidth of the VCSOA was measured and compared with a same structure VCSEL. Based on the optical inverter being studied in our lab, an all-optical flip-flop was demonstrated using a pair of VCSOAs. This memory cell with random access ability can store one bit optical signal with set or

  13. Integrated Nanophotonic Silicon Devices for Next Generation Computing Chips

    Science.gov (United States)

    Djordjevic, Stevan

    Development of the computing platform of the future depends largely on high bandwidth interconnects at intra-die level. Silicon photonics, as an innately CMOS compatible technology, is a promising candidate for delivering terabit per second bandwidths through the use of wavelength division multiplex (WDM) signaling. Silicon photonic interconnects offer unmatched bandwidth, density, energy efficiency, latency and reach, compared with the electrical interconnects. WDM silicon photonic links are viewed today as a promising solution for resolving the inter/intra-chip communication bottlenecks for high performance computing systems. Towards its maturity, silicon photonic technology has to resolve the issues of waveguide propagation loss, density of device integration, thermal stability of resonant devices, heterogeneous integration of various materials and many other problems. This dissertation describes the development of integrated photonic technology on silicon and silicon nitride platforms in the increased order of device complexity, from the fabrication process of low loss waveguides and efficient off-chip coupling devices, to the die-size reconfigurable lattice filters for optical signal processing. Particular emphasis of the dissertation is on the demonstration of CMOS-compatible, athermal silicon ring modulators that potentially hold the key to solving the thermal problem of silicon photonic devices. The development of high quality amorphous titanium dioxide films with negative thermo-optic coefficient enabled the fabrication of gigahertz-bandwidth silicon ring modulators that can be made insensitive to ambient temperature changes.

  14. 47 CFR 64.1401 - Expanded interconnection.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 3 2010-10-01 2010-10-01 false Expanded interconnection. 64.1401 Section 64...) MISCELLANEOUS RULES RELATING TO COMMON CARRIERS Expanded Interconnection § 64.1401 Expanded interconnection. (a... 69, subpart G of this chapter, shall offer expanded interconnection for interstate special...

  15. Nanophotonic Modulator with Bismuth Ferrite as Low-loss Switchable Material

    DEFF Research Database (Denmark)

    Babicheva, Viktoriia; Zhukovsky, Sergei; Lavrinenko, Andrei

    2015-01-01

    We propose a nanophotonic waveguide modulator with bismuth ferrite as a tunable material. Due to near-zero losses in bismuth ferrite, modulation with up to 20 dB/μm extinction ratio and 12 μm propagation length is achieved.......We propose a nanophotonic waveguide modulator with bismuth ferrite as a tunable material. Due to near-zero losses in bismuth ferrite, modulation with up to 20 dB/μm extinction ratio and 12 μm propagation length is achieved....

  16. Centrality in Interconnected Multilayer Networks

    CERN Document Server

    De Domenico, Manlio; Omodei, Elisa; Gómez, Sergio; Arenas, Alex

    2013-01-01

    Real-world complex systems exhibit multiple levels of relationships. In many cases, they require to be modeled by interconnected multilayer networks, characterizing interactions on several levels simultaneously. It is of crucial importance in many fields, from economics to biology, from urban planning to social sciences, to identify the most (or the less) influent nodes in a network. However, defining the centrality of actors in an interconnected structure is not trivial. In this paper, we capitalize on the tensorial formalism, recently proposed to characterize and investigate this kind of complex topologies, to show how several centrality measures -- well-known in the case of standard ("monoplex") networks -- can be extended naturally to the realm of interconnected multiplexes. We consider diagnostics widely used in different fields, e.g., computer science, biology, communication and social sciences, to cite only some of them. We show, both theoretically and numerically, that using the weighted monoplex obta...

  17. Manufacturing of planar ceramic interconnects

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, B.L.; Coffey, G.W.; Meinhardt, K.D.; Armstrong, T.R. [Pacific Northwest National Lab., Richland, WA (United States)

    1996-12-31

    The fabrication of ceramic interconnects for solid oxide fuel cells (SOFC) and separator plates for electrochemical separation devices has been a perennial challenge facing developers. Electrochemical vapor deposition (EVD), plasma spraying, pressing, tape casting and tape calendering are processes that are typically utilized to fabricate separator plates or interconnects for the various SOFC designs and electrochemical separation devices. For sake of brevity and the selection of a planar fuel cell or gas separation device design, pressing will be the only fabrication technique discussed here. This paper reports on the effect of the characteristics of two doped lanthanum manganite powders used in the initial studies as a planar porous separator for a fuel cell cathode and as a dense interconnect for an oxygen generator.

  18. High-speed photonics interconnects

    CERN Document Server

    Chrostowski, Lukas

    2013-01-01

    Dramatic increases in processing power have rapidly scaled on-chip aggregate bandwidths into the Tb/s range. This necessitates a corresponding increase in the amount of data communicated between chips, so as not to limit overall system performance. To meet the increasing demand for interchip communication bandwidth, researchers are investigating the use of high-speed optical interconnect architectures. Unlike their electrical counterparts, optical interconnects offer high bandwidth and negligible frequency-dependent loss, making possible per-channel data rates of more than 10 Gb/s. High-Speed

  19. Interconnection blocks: a method for providing reusable, rapid, multiple, aligned and planar microfluidic interconnections

    DEFF Research Database (Denmark)

    Sabourin, David; Snakenborg, Detlef; Dufva, Hans Martin

    2009-01-01

    In this paper a method is presented for creating 'interconnection blocks' that are re-usable and provide multiple, aligned and planar microfluidic interconnections. Interconnection blocks made from polydimethylsiloxane allow rapid testing of microfluidic chips and unobstructed microfluidic...

  20. Modeling open nanophotonic systems using the Fourier modal method: Generalization to 3D Cartesian coordinates

    DEFF Research Database (Denmark)

    Häyrynen, Teppo; Østerkryger, Andreas Dyhl; de Lasson, Jakob Rosenkrantz

    2017-01-01

    . Am. A 33, 1298 (2016)]. Here, we generalize the approach to three-dimensional (3D) Cartesian coordinates allowing for the modeling of rectangular geometries in open space. The open boundary condition is a consequence of having an infinite computational domain described using basis functions...... convergence enabling more accurate and efficient modeling of open 3D nanophotonic structures....

  1. Silicon integrated nanophotonics: from fundamental science to manufacturable technology (Presentation Video)

    Science.gov (United States)

    Vlasov, Yurii A.

    2015-02-01

    The IBM Silicon Nanophotonics technology enables cost-efficient optical links that connect racks, modules, and chips together with ultralow power single-die optical transceivers. I will give an overview of its historical development, technology differentiators, current status and a roadmap.

  2. Nanophotonic Optical Isolator Controlled by the Internal State of Cold Atoms

    NARCIS (Netherlands)

    Sayrin, Clement; Christian, Junge; Mitsch, Rudolf; Albrecht, Bernhard; O'Shea, Danny; Schneeweiss, Philipp; Volz, Jürgen; Rauschenbeutel, Arno

    2015-01-01

    The realization of nanophotonic optical isolators with high optical isolation even at ultralow light levels and low optical losses is an open problem. Here, we employ the link between the local polarization of strongly confined light and its direction of propagation to realize low-loss nonreciprocal

  3. Butterfly scales as bionic templates for complex ordered nanophotonic materials: A pathway to biomimetic plasmonics

    Science.gov (United States)

    Jakšić, Zoran; Pantelić, Dejan; Sarajlić, Milija; Savić-Šević, Svetlana; Matović, Jovan; Jelenković, Branislav; Vasiljević-Radović, Dana; Ćurčić, Srećko; Vuković, Slobodan; Pavlović, Vladimir; Buha, Jelena; Lačković, Vesna; Labudović-Borović, Milica; Ćurčić, Božidar

    2013-08-01

    In this paper we propose a possible use of butterfly scales as templates for ordered 2D or 3D nanophotonic materials, with complexity not easily reproducible by conventional micro/nanofabrication methods. Functionalization through laminar nanocompositing is utilized to impart novel properties to the biological scaffold. An extremely wide variability of butterfly scale forms, shapes, sizes and fine structures is observed in nature, many of them already possessing peculiar optical properties. Their nanophotonic functionalization ensures a large choice of forms and functions, including enhanced light localization, light and plasmon waveguiding and general metamaterial behavior, to mention a few. We show that one is able to achieve a combination of plasmonics and bionics, resulting in functionalities seldom if ever met in nature. As an illustration we have analyzed the photonic properties of the nanostructured scales on the wings of Purple Emperor butterflies Apatura ilia, Apatura iris and Sasakia charonda. Their intricate nanometer-sized structures produce remarkable ultraviolet-blue iridescence, spectrally and directionally narrow. We present our analysis of their plasmonic/nanophotonic functionalization including preliminary calculations and initial experimental results. As a simple example, we used radiofrequent sputtering to produce nanoaperture-based plasmonic structures at a fraction of the cost and necessary engineering efforts compared to the conventional top-down methods. We conclude that the described pathway to biomimetic plasmonics offers potentials for significant expansion of the nanophotonic and nanoplasmonic material toolbox.

  4. Probing the dispersion properties of 1D nanophotonic waveguides with far-field Fourier optics

    DEFF Research Database (Denmark)

    Le Thomas, N.; Jágerská, J.; Houdré, R.

    2008-01-01

    We present an advanced Fourier space imaging technique to probe guided light in nanophotonic structures with an effective numerical aperture of 2.5. This superresolution technique allows us to successfully investigate the dispersive properties of 1D nanowaveguides such as photonic crystal W1...

  5. Fully-integrated, bezel-less transistor arrays using reversibly foldable interconnects and stretchable origami substrates

    Science.gov (United States)

    Kim, Mijung; Park, Jihun; Ji, Sangyoon; Shin, Sung-Ho; Kim, So-Yun; Kim, Young-Cheon; Kim, Ju-Young; Park, Jang-Ung

    2016-05-01

    Here we demonstrate fully-integrated, bezel-less transistor arrays using stretchable origami substrates and foldable conducting interconnects. Reversible folding of these arrays is enabled by origami substrates which are composed of rigid support fixtures and foldable elastic joints. In addition, hybrid structures of thin metal films and metallic nanowires worked as foldable interconnects which are located on the elastomeric joints.Here we demonstrate fully-integrated, bezel-less transistor arrays using stretchable origami substrates and foldable conducting interconnects. Reversible folding of these arrays is enabled by origami substrates which are composed of rigid support fixtures and foldable elastic joints. In addition, hybrid structures of thin metal films and metallic nanowires worked as foldable interconnects which are located on the elastomeric joints. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr02041k

  6. On interconnections, control, and feedback

    NARCIS (Netherlands)

    Willems, JC

    1997-01-01

    The purpose of this paper is to study interconnections and control of dynamical systems in a behavioral context. We start with an extensive physical example which serves to illustrate that the familiar input-output feedback loop structure is not as universal as we have been taught to believe, This l

  7. Regulatory Issues Surrounding Merchant Interconnection

    Energy Technology Data Exchange (ETDEWEB)

    Kuijlaars, Kees-Jan; Zwart, Gijsbert [Office for Energy Regulation (DTe), The Hague (Netherlands)

    2003-11-01

    We discussed various issues concerning the regulatory perspective on private investment in interconnectors. One might claim that leaving investment in transmission infrastructure to competing market parties is more efficient than relying on regulated investment only (especially in the case of long (DC) lines connecting previously unconnected parts of the grids, so that externalities from e.g. loop flows do not play a significant role). We considered that some aspects of interconnection might reduce these market benefits. In particular, the large fixed costs of interconnection construction may lead to significant under investment (due to both first mover monopoly power and the fact that part of generation cost efficiencies realised by interconnection are not captured by the investor itself, and remain external to the investment decision). Second, merchant ownership restricts future opportunities for adaptation of regulation, as would be required e.g. for introduction of potentially more sophisticated methods of congestion management or market splitting. Some of the disadvantages of merchant investment may be mitigated however by a suitable regulatory framework, and we discussed some views in this direction. The issues we discussed are not intended to give a complete framework, and detailed regulation will certainly involve many more specific requirements. Areas we did not touch upon include e.g. the treatment of deep connection costs, rules for operation and maintenance of the line, and impact on availability of capacity on other interconnections.

  8. On interconnections, control, and feedback

    NARCIS (Netherlands)

    Willems, JC

    The purpose of this paper is to study interconnections and control of dynamical systems in a behavioral context. We start with an extensive physical example which serves to illustrate that the familiar input-output feedback loop structure is not as universal as we have been taught to believe, This

  9. Local Network Wideband Interconnection Alternatives.

    Science.gov (United States)

    1984-01-01

    greater than 1.5 Mbps and two standard televison channels. 1.1 SCOPE Interconnection of local area networks within the continental United States is...may influence : a. Media selection, b. Interface design, c. The use of the 1.5 Mbps data transmission capacity, and d. Adherence to the full-motion video

  10. Fiber-coupled nanophotonic devices for nonlinear optics and cavity QED

    Science.gov (United States)

    Barclay, Paul Edward

    2007-10-01

    The sub-wavelength optical confinement and low optical loss of nanophotonic devices dramatically enhances the interaction between light and matter within these structures. When nanophotonic devices are combined with an efficient optical coupling channel, nonlinear optical behavior can be observed at low power levels in weakly-nonlinear materials. In a similar vein, when resonant atomic systems interact with nanophotonic devices, atom-photon coupling effects can be observed at a single quanta level. Crucially, the chip based nature of nanophotonics provides a scalable platform from which to study these effects. This thesis addresses the use of nanophotonic devices in nonlinear and quantum optics, including device design, optical coupling, fabrication and testing, modeling, and integration with more complex systems. We present a fiber taper coupling technique that allows efficient power transfer from an optical fiber into a photonic crystal waveguide. Greater than 97% power transfer into a silicon photonic crystal waveguide is demonstrated. This optical channel is then connected to a high-Q (> 40,000), ultra-small mode volume (V 44% of the photons input to a fiber. This permits the observation of optical bistability in silicon for sub-mW input powers at telecommunication wavelengths. To port this technology to cavity QED experiments at near-visible wavelengths, we also study silicon nitride microdisk cavities at wavelengths near 852 nm, and observe resonances with Q > 3 million and V device with an atom chip, creating an "atom-cavity chip" which can magnetically trap laser cooled atoms above the microcavity. Calculations of the microcavity single atom sensitivity as a function of Q/V are presented and compared with numerical simulations. Taking into account non-idealities, these cavities should allow detection of single laser cooled cesium atoms.

  11. Characterization of nanophotonic soft contact lenses based on poly (2-hydroxyethyl methacrylate and fullerene

    Directory of Open Access Journals (Sweden)

    Debeljković Aleksandra D.

    2013-01-01

    Full Text Available This work presents comparative research of characteristics of a basic and new nanophotonic material, the latter of which was obtained by incorporation fullerene, C60, in the base material for soft contact lenses. The basic (SL38 and nanophotonic materials (SL38-A for soft contact lenses were obtained by radical polymerization of 2-hydroxyethyl methacrylate and 2-hydroxyethyl methacrylate and fullerene, which were derived by the technology in the production lab of the company Soleko (Milan, Italy. The materials were used for production of soft contact lenses in the company Optix (Belgrade, Serbia for the purposes of this research. Fullerene was used due to its apsorption transmission characteristics in ultraviolet, visible and near infrared spectrum. For the purposes of material characterization for potential application as soft contact lenses, network parameters were calculated and SEM analysis of the materials was performed while the optical properties of the soft contact lenses were measured by a Rotlex device. The values of the diffusion exponent, n, close to 0.5 indicated Fick's kinetics corresponding to diffusion. The investigated hydrogels could be classified as nonporous hydrogels. With Rotlex device, values of optical power and map of defects were showed. The obtained values of optical power and map of defects showed that the optical power of synthesized nanophotonic soft contact lens is identical to the nominal value while this was not the case for the basic lens. Also, the quality of the nanophotonic soft contact lens is better than the basic soft contact lens. Hence, it is possible to synthesize new nanophotonic soft contact lenses of desired optical characteristics, implying possibilities for their application in this field.

  12. Immortality of Cu damascene interconnects

    Science.gov (United States)

    Hau-Riege, Stefan P.

    2002-04-01

    We have studied short-line effects in fully-integrated Cu damascene interconnects through electromigration experiments on lines of various lengths and embedded in different dielectric materials. We compare these results with results from analogous experiments on subtractively-etched Al-based interconnects. It is known that Al-based interconnects exhibit three different behaviors, depending on the magnitude of the product of current density, j, and line length, L: For small values of (jL), no void nucleation occurs, and the line is immortal. For intermediate values, voids nucleate, but the line does not fail because the current can flow through the higher-resistivity refractory-metal-based shunt layers. Here, the resistance of the line increases but eventually saturates, and the relative resistance increase is proportional to (jL/B), where B is the effective elastic modulus of the metallization system. For large values of (jL/B), voiding leads to an unacceptably high resistance increase, and the line is considered failed. By contrast, we observed only two regimes for Cu-based interconnects: Either the resistance of the line stays constant during the duration of the experiment, and the line is considered immortal, or the line fails due to an abrupt open-circuit failure. The absence of an intermediate regime in which the resistance saturates is due to the absence of a shunt layer that is able to support a large amount of current once voiding occurs. Since voids nucleate much more easily in Cu- than in Al-based interconnects, a small fraction of short Cu lines fails even at low current densities. It is therefore more appropriate to consider the probability of immortality in the case of Cu rather than assuming a sharp boundary between mortality and immortality. The probability of immortality decreases with increasing amount of material depleted from the cathode, which is proportional to (jL2/B) at steady state. By contrast, the immortality of Al-based interconnects is

  13. Luminescent Properties of Arylpolyene Organic Dyes and Cross-Conjugated Ketones Promising for Quantum Optics and Nanophotonics Applications

    Directory of Open Access Journals (Sweden)

    Naumova N. L.

    2015-01-01

    Full Text Available The spectral-luminescent properties of some dyes of substituted arylpolyenes and cross-conjugated ketones class in Shpolsky matrices, promising for using in solving quantum optics and nanophotonics, were studied.

  14. 47 CFR 101.519 - Interconnection.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Interconnection. 101.519 Section 101.519... SERVICES 24 GHz Service and Digital Electronic Message Service § 101.519 Interconnection. (a) All DEMS... the public all information necessary to allow interconnection of DEMS networks....

  15. 47 CFR 51.305 - Interconnection.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 3 2010-10-01 2010-10-01 false Interconnection. 51.305 Section 51.305 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES (CONTINUED) INTERCONNECTION Additional Obligations of Incumbent Local Exchange Carriers § 51.305 Interconnection. (a) An incumbent...

  16. 18 CFR 292.306 - Interconnection costs.

    Science.gov (United States)

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Interconnection costs... § 292.306 Interconnection costs. (a) Obligation to pay. Each qualifying facility shall be obligated to pay any interconnection costs which the State regulatory authority (with respect to any...

  17. 14 CFR 23.701 - Flap interconnection.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Flap interconnection. 23.701 Section 23.701... Systems § 23.701 Flap interconnection. (a) The main wing flaps and related movable surfaces as a system must— (1) Be synchronized by a mechanical interconnection between the movable flap surfaces that...

  18. 47 CFR 69.124 - Interconnection charge.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 3 2010-10-01 2010-10-01 false Interconnection charge. 69.124 Section 69.124... Computation of Charges § 69.124 Interconnection charge. (a) Until December 31, 2001, local exchange carriers not subject to price cap regulation shall assess an interconnection charge expressed in dollars...

  19. Driving Interconnected Networks to Supercriticality

    Directory of Open Access Journals (Sweden)

    Filippo Radicchi

    2014-04-01

    Full Text Available Networks in the real world do not exist as isolated entities, but they are often part of more complicated structures composed of many interconnected network layers. Recent studies have shown that such mutual dependence makes real networked systems potentially exposed to atypical structural and dynamical behaviors, and thus there is an urgent necessity to better understand the mechanisms at the basis of these anomalies. Previous research has mainly focused on the emergence of atypical properties in relation to the moments of the intra- and interlayer degree distributions. In this paper, we show that an additional ingredient plays a fundamental role for the possible scenario that an interconnected network can face: the correlation between intra- and interlayer degrees. For sufficiently high amounts of correlation, an interconnected network can be tuned, by varying the moments of the intra- and interlayer degree distributions, in distinct topological and dynamical regimes. When instead the correlation between intra- and interlayer degrees is lower than a critical value, the system enters in a supercritical regime where dynamical and topological phases are no longer distinguishable.

  20. 基于混合储能的并网光伏电站有功分级控制策略%Active Power Hierarchical Control Strategy of Interconnected Photovoltaic Station Based on Hybrid Energy Storage

    Institute of Scientific and Technical Information of China (English)

    鲍雪娜; 张建成; 徐明; 刘汉民

    2013-01-01

    针对自然条件下光伏电源有功出力的波动性,以超级电容器和磷酸铁锂电池组成的混合储能系统为基础,制定了有功分级控制策略.首先分析了光伏电站整体结构及混合储能装置的接入方式,然后考虑电网需求利用指数平滑法来实时更新光伏电站整体出力参考值,实现第1级控制.根据储能元件能量存储与功率吞吐特性,提出了以超级电容器为充放电主体的混合储能系统能量管理策略,实现第2级控制,并设计了脉宽调制的控制原理电路.编程计算结果证实了所述方法的有效性.%In view of the active power fluctuation of large capacity photovoltaic (PV) power systems, based on a hybrid energy storage system consisting of supercapacitors and lithium-ion ferrous phosphate batteries, an active power hierarchical control strategy is formulated to optimize the output power of PV source. First, the overall structure of photovoltaic power station and the way of accessing the hybrid energy storage system are analyzed. Then, by considering the power grid needs, the exponential smoothing method is used to real-time update the reference values of output power to realize the first level control. The energy management strategy is put forward according to the storage characteristics of energy storage components and power throughput so as to realize the second level control of the hybrid energy storage system. In addition, an energy management strategy is put forward with supercapacitors as the principal part of charge and discharge. Finally, a control circuit of pulse width modulation (PWM) is designed. Programming results demonstrate the effectiveness of the proposed method.

  1. Interconnects for nanoscale MOSFET technology: a review

    Institute of Scientific and Technical Information of China (English)

    Amit Chaudhry

    2013-01-01

    In this paper,a review of Cu/low-k,carbon nanotube (CNT),graphene nanoribbon (GNR) and optical based interconnect technologies has been done.Interconnect models,challenges and solutions have also been discussed.Of all the four technologies,CNT interconnects satisfy most of the challenges and they are most suited for nanometer scale technologies,despite some minor drawbacks.It is concluded that beyond 32 nm technology,a paradigm shift in the interconnect material is required as Cu/low-k interconnects are approaching fundamental limits.

  2. Interconnects for nanoscale MOSFET technology: a review

    Science.gov (United States)

    Chaudhry, Amit

    2013-06-01

    In this paper, a review of Cu/low-k, carbon nanotube (CNT), graphene nanoribbon (GNR) and optical based interconnect technologies has been done. Interconnect models, challenges and solutions have also been discussed. Of all the four technologies, CNT interconnects satisfy most of the challenges and they are most suited for nanometer scale technologies, despite some minor drawbacks. It is concluded that beyond 32 nm technology, a paradigm shift in the interconnect material is required as Cu/low-k interconnects are approaching fundamental limits.

  3. In-memory interconnect protocol configuration registers

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Kevin Y.; Roberts, David A.

    2017-09-19

    Systems, apparatuses, and methods for moving the interconnect protocol configuration registers into the main memory space of a node. The region of memory used for storing the interconnect protocol configuration registers may also be made cacheable to reduce the latency of accesses to the interconnect protocol configuration registers. Interconnect protocol configuration registers which are used during a startup routine may be prefetched into the host's cache to make the startup routine more efficient. The interconnect protocol configuration registers for various interconnect protocols may include one or more of device capability tables, memory-side statistics (e.g., to support two-level memory data mapping decisions), advanced memory and interconnect features such as repair resources and routing tables, prefetching hints, error correcting code (ECC) bits, lists of device capabilities, set and store base address, capability, device ID, status, configuration, capabilities, and other settings.

  4. Interconnectivity structure of a general interdependent network.

    Science.gov (United States)

    Van Mieghem, P

    2016-04-01

    A general two-layer network consists of two networks G_{1} and G_{2}, whose interconnection pattern is specified by the interconnectivity matrix B. We deduce desirable properties of B from a dynamic process point of view. Many dynamic processes are described by the Laplacian matrix Q. A regular topological structure of the interconnectivity matrix B (constant row and column sum) enables the computation of a nontrivial eigenmode (eigenvector and eigenvalue) of Q. The latter eigenmode is independent from G_{1} and G_{2}. Such a regularity in B, associated to equitable partitions, suggests design rules for the construction of interconnected networks and is deemed crucial for the interconnected network to show intriguing behavior, as discovered earlier for the special case where B=wI refers to an individual node to node interconnection with interconnection strength w. Extensions to a general m-layer network are also discussed.

  5. In-memory interconnect protocol configuration registers

    Science.gov (United States)

    Cheng, Kevin Y.; Roberts, David A.

    2017-09-19

    Systems, apparatuses, and methods for moving the interconnect protocol configuration registers into the main memory space of a node. The region of memory used for storing the interconnect protocol configuration registers may also be made cacheable to reduce the latency of accesses to the interconnect protocol configuration registers. Interconnect protocol configuration registers which are used during a startup routine may be prefetched into the host's cache to make the startup routine more efficient. The interconnect protocol configuration registers for various interconnect protocols may include one or more of device capability tables, memory-side statistics (e.g., to support two-level memory data mapping decisions), advanced memory and interconnect features such as repair resources and routing tables, prefetching hints, error correcting code (ECC) bits, lists of device capabilities, set and store base address, capability, device ID, status, configuration, capabilities, and other settings.

  6. Vertical optical ring resonators fully integrated with nanophotonic waveguides on silicon-on-insulator substrates

    CERN Document Server

    Madani, Abbas; Stolarek, David; Zimmermann, Lars; Ma, Libo; Schmidt, Oliver G

    2015-01-01

    We demonstrate full integration of vertical optical ring resonators with silicon nanophotonic waveguides on silicon-on-insulator substrates to accomplish a significant step towards 3D photonic integration. The on-chip integration is realized by rolling up 2D differentially strained TiO2 nanomembranes into 3D microtube cavities on a nanophotonic microchip. The integration configuration allows for out of plane optical coupling between the in-plane nanowaveguides and the vertical microtube cavities as a compact and mechanically stable optical unit, which could enable refined vertical light transfer in 3D stacks of multiple photonic layers. In this vertical transmission scheme, resonant filtering of optical signals at telecommunication wavelengths is demonstrated based on subwavelength thick walled microcavities. Moreover, an array of microtube cavities is prepared and each microtube cavity is integrated with multiple waveguides which opens up interesting perspectives towards parallel and multi-routing through a ...

  7. High performance nanophotonic circuits based on partially buried horizontal slot waveguides

    CERN Document Server

    Xiong, Chi; Li, Mo; Tang, Hong X

    2014-01-01

    We present a novel platform to construct high-performance nanophotonic devices in low refractive index dielectric films at telecoms wavelengths. The formation of horizontal slots by PECVD deposition of high index amorphous silicon provides a convenient and low-cost way to tailor nanophotonic devices to application needs. Low propagation loss of less than 2 dB/cm is obtained allowing us to fabricate optical resonators with measured high optical quality factors exceeding 10^5. We design and experimentally demonstrate on-chip grating couplers to efficiently couple light into integrated circuitry with coupling loss of 4 dB and optical bandwidth exceeding 110 nm. The entire on-chip circuitry consisting of input/output couplers, Mach-Zehnder interferometers with high extinction ratio and ring, racetrack resonators are designed, fabricated and characterized.

  8. Quantum Optics and Nanophotonics : Lecture Notes of the Les Houches Summer School : Session CI

    CERN Document Server

    Sandoghdar, Vahid; Treps, Nicolas; Cugliandolo, Leticia F

    2017-01-01

    Quantum Optics and Nanophotonics consists of the lecture notes of the Les Houches Summer School 101 held in August 2013. Some of the most eminent experts in this flourishing area of research have contributed chapters lying at the intersection of basic quantum science and advanced nanotechnology. The book is part of the renowned series of tutorial books that contain the lecture notes of all the Les Houches Summer Schools since the 1950's and cover the latest developments in physics and related fields.

  9. Increasing the density of passive photonic-integrated circuits via nanophotonic cloaking

    Science.gov (United States)

    Shen, Bing; Polson, Randy; Menon, Rajesh

    2016-11-01

    Photonic-integrated devices need to be adequately spaced apart to prevent signal cross-talk. This fundamentally limits their packing density. Here we report the use of nanophotonic cloaking to render neighbouring devices invisible to one another, which allows them to be placed closer together than is otherwise feasible. Specifically, we experimentally demonstrated waveguides that are spaced by a distance of ~λ0/2 and designed waveguides with centre-to-centre spacing as small as 600 nm (experiments show a transmission efficiency >-2 dB and an extinction ratio >15 dB over a bandwidth larger than 60 nm. This performance can be improved with better design algorithms and industry-standard lithography. The nanophotonic cloak relies on multiple guided-mode resonances, which render such devices very robust to fabrication errors. Our devices are broadly complimentary-metal-oxide-semiconductor compatible, have a minimum pitch of 200 nm and can be fabricated with a single lithography step. The nanophotonic cloaks can be generally applied to all passive integrated photonics.

  10. Efficient photoelectrochemical water splitting with ultrathin films of hematite on three-dimensional nanophotonic structures.

    Science.gov (United States)

    Qiu, Yongcai; Leung, Siu-Fung; Zhang, Qianpeng; Hua, Bo; Lin, Qingfeng; Wei, Zhanhua; Tsui, Kwong-Hoi; Zhang, Yuegang; Yang, Shihe; Fan, Zhiyong

    2014-01-01

    Photoelectrochemical (PEC) solar water splitting represents a clean and sustainable approach for hydrogen (H2) production and substantial research are being performed to improve the conversion efficiency. Hematite (α-Fe2O3) is considered as a promising candidate for PEC water splitting due to its chemical stability, appropriate band structure, and abundance. However, PEC performance based on hematite is hindered by the short hole diffusion length that put a constraint on the active layer thickness and its light absorption capability. In this work, we have designed and fabricated novel PEC device structure with ultrathin hematite film deposited on three-dimensional nanophotonic structure. In this fashion, the nanophotonic structures can largely improve the light absorption in the ultrathin active materials. In addition, they also provide large surface area to accommodate the slow surface water oxidation process. As the result, high current density of 3.05 mA cm(-2) at 1.23 V with respect to the reversible hydrogen electrode (RHE) has been achieved on such nanophotonic structure, which is about three times of that for a planar photoelectrode. More importantly, our systematic analysis with experiments and modeling revealed that the design of high performance PEC devices needs to consider not only total optical absorption, but also the absorption profile in the active material, in addition to electrode surface area and carrier collection.

  11. Influence of Parameters of Screen Printing on Photoluminescence Properties of Nanophotonic Labels for Smart Packaging

    Directory of Open Access Journals (Sweden)

    Olha Hrytsenko

    2017-01-01

    Full Text Available Smart packaging is becoming more popular on world market as a new type of packaging able to react to changes in a packaged product during storage and informs a customer about the safety of consumption of packaged food. This article investigates the main technological issues of the use of nanophotonic printing inks based on ZnO/SiO2 nanoparticles and polyvinylpyrrolidone (PVP for printing active elements of smart packaging on paper substrates, concerning material properties and parameters of screen printing. It is determined that the use of ink compositions with medium content of ZnO/SiO2 nanoparticles allows obtaining blue-green and blue shades of luminescence color of screen printed images by changing ink layer thickness on papers with different contents of optical brightness agents (OBAs. The minimum content of ZnO/SiO2 nanoparticles in the developed fluorescent inks leads to blue luminescence colors regardless the contents of OBAs of the papers and ink layer thickness. The luminescence intensity is directly proportional to ink layer thickness and partly depends on the content of OBAs in the selected paper. In order to fabricate nanophotonic elements of smart packaging with predetermined photoluminescence properties, the influence of investigated factors on photoluminescence properties of printed nanophotonic labels should be taken into account.

  12. Data base for Interconnect welds

    CERN Document Server

    Wildner, E

    2007-01-01

    The interconnect work for the LHC equipment involves a large amount of data and files generated by the machines and the tooling. Different kinds of technologies for different kinds of interconnections result in different data, file types and file formats. This data should normally be stored in the MTF, file by file. This was too time consuming and error prone. In order to free time for quality control to improve the correct handling of the data files and information a data-base system was developed to organize and handle as automatically as possible dataflow and checks. This was the first goal set up. This is now in operation and is giving satisfaction in industry and at CERN. An important bonus of a data base system is that we can get an overview of the quality of the data and make possible feed back to the process. For the moment we cannot see clear correlation between data and non conformities which means that the tuning of the tooling is satisfactory. It is important to have efficient access to the data t...

  13. Multi-net optimization of VLSI interconnect

    CERN Document Server

    Moiseev, Konstantin; Wimer, Shmuel

    2015-01-01

    This book covers layout design and layout migration methodologies for optimizing multi-net wire structures in advanced VLSI interconnects. Scaling-dependent models for interconnect power, interconnect delay and crosstalk noise are covered in depth, and several design optimization problems are addressed, such as minimization of interconnect power under delay constraints, or design for minimal delay in wire bundles within a given routing area. A handy reference or a guide for design methodologies and layout automation techniques, this book provides a foundation for physical design challenges of interconnect in advanced integrated circuits.  • Describes the evolution of interconnect scaling and provides new techniques for layout migration and optimization, focusing on multi-net optimization; • Presents research results that provide a level of design optimization which does not exist in commercially-available design automation software tools; • Includes mathematical properties and conditions for optimal...

  14. Dynamic interconnection component using wireless infrared technology

    Institute of Scientific and Technical Information of China (English)

    JIA Dagong; WANG Guanghui; ZHANG Yimo; ZHANG Yinxin; JING Wencai; ZHOU Ge

    2007-01-01

    An efficient dynamic interconnection model using wireless infrared technology and the theory of optical interconnections was constructed to design a dual-channel interconnection component.There were three conditions between the rotating optical field and the stationary optical field:end separation,angle misalignment and lateral misalignment.The calculation formulas were given for these three conditions.A dual-channel optical interconnection component was designed based on the dynamic interconnection model and the data transmission rate of the component was measured.The experimental result showed that the dualchannel optical interconnection component could transmit optical signals across the rotating interface.The maximum transmission rate can reach 2.14 Mb/s.

  15. Integrated Optical Interconnect Architectures for Embedded Systems

    CERN Document Server

    Nicolescu, Gabriela

    2013-01-01

    This book provides a broad overview of current research in optical interconnect technologies and architectures. Introductory chapters on high-performance computing and the associated issues in conventional interconnect architectures, and on the fundamental building blocks for integrated optical interconnect, provide the foundations for the bulk of the book which brings together leading experts in the field of optical interconnect architectures for data communication. Particular emphasis is given to the ways in which the photonic components are assembled into architectures to address the needs of data-intensive on-chip communication, and to the performance evaluation of such architectures for specific applications.   Provides state-of-the-art research on the use of optical interconnects in Embedded Systems; Begins with coverage of the basics for high-performance computing and optical interconnect; Includes a variety of on-chip optical communication topologies; Features coverage of system integration and opti...

  16. Statistical Elmore delay of RC interconnect tree

    Institute of Scientific and Technical Information of China (English)

    Dong Gang; Yang Yang; Chai Chang-Chun; Yang Yin-Tang

    2010-01-01

    As feature size keeps scaling down, process variations can dramatically reduce the accuracy in the estimation of interconnect performance. This paper proposes a statistical Elmore delay model for RC interconnect tree in the presence of process variations. The suggested method translates the process variations into parasitic parameter extraction and statistical Elmore delay evaluation. Analytical expressions of mean and standard deviation of interconnect delay can be obtained in a given fluctuation range of interconnect geometric parameters. Experimental results demonstrate that the approach matches well with Monte Carlo simulations. The errors of proposed mean and standard deviation are less than 1% and 7%, respectively. Simulations prove that our model is efficient and accurate.

  17. Visualizing interconnections among climate risks

    Science.gov (United States)

    Tanaka, K.; Yokohata, T.; Nishina, K.; Takahashi, K.; Emori, S.; Kiguchi, M.; Iseri, Y.; Honda, Y.; Okada, M.; Masaki, Y.; Yamamoto, A.; Shigemitsu, M.; Yoshimori, M.; Sueyoshi, T.; Hanasaki, N.; Ito, A.; Sakurai, G.; Iizumi, T.; Nishimori, M.; Lim, W. H.; Miyazaki, C.; Kanae, S.; Oki, T.

    2015-12-01

    It is now widely recognized that climate change is affecting various sectors of the world. Climate change impact on one sector may spread out to other sectors including those seemingly remote, which we call "interconnections of climate risks". While a number of climate risks have been identified in the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5), there has been no attempt to explore their interconnections comprehensively. Here we present a first and most exhaustive visualization of climate risks drawn based on a systematic literature survey. Our risk network diagrams depict that changes in the climate system impact natural capitals (terrestrial water, crop, and agricultural land) as well as social infrastructures, influencing the socio-economic system and ultimately our access to food, water, and energy. Our findings suggest the importance of incorporating climate risk interconnections into impact and vulnerability assessments and call into question the widely used damage function approaches, which address a limited number of climate change impacts in isolation. Furthermore, the diagram is useful to educate decision makers, stakeholders, and general public about cascading risks that can be triggered by the climate change. Socio-economic activities today are becoming increasingly more inter-dependent because of the rapid technological progress, urbanization, and the globalization among others. Equally complex is the ecosystem that is susceptible to climate change, which comprises interwoven processes affecting one another. In the context of climate change, a number of climate risks have been identified and classified according to regions and sectors. These reports, however, did not fully address the inter-relations among risks because of the complexity inherent in this issue. Climate risks may ripple through sectors in the present inter-dependent world, posing a challenge ahead of us to maintain the resilience of the system. It is

  18. Fabrication and characterization of integrated nanostructures & their applications to nanophotonics

    Science.gov (United States)

    Shukla, Shobha

    Current developments in optical devices are being directed toward nanocrystals based devices, where photons are manipulated using nanoscale optical phenomenon. Nanochemistry is a powerful tool for making nanostructures based on such nanocrystals. In this dissertation, various applications such as photodetectors/photovoltaics, photonic crystals and plasmonic applications involving nanoparticles and organic: inorganic hybrid systems have been investigated. The hall marks of quantum dots are well defined excitonic absorption and sharp emission profiles and their unique behavior comprises intense and immune to photobleaching luminescence, photon upconversion, slow exciton relaxation, multiexciton generation due to impact ionization, enhanced lasing, etc. Various quantum dots such as Indium Phosphide (InP), Cadmium Sulphide (CdS), Cadmium Selenide (CdSe), InP-CdS type-II core-shell, Lead Sulphide (PbS), Lead Selenide (PbSe) etc. have been prepared via hot colloidal synthesis and have been extensively characterized spectroscopically as well as structurally. These quantum dots were utilized for making solution processed organic: inorganic hybrid photodevices. Photodetecting device with enhanced efficiency has been fabricated using physical blend of PbSe and carbon nanotubes. Type-II quantum dots (InP-CdS) were also utilized for making solar cells and their efficiency was found to be much more than their parent quantum dots (InP and CdS). Photonic composite materials, such as polymers doped with nanoparticles, have attracted a great deal of attention because of relative ease and flexibility of their engineering as well as improved performance for applications in photonic or optoelectronic devices. 2D Photonic Crystals of enhanced structural and optical properties were fabricated by doping small amount of colloidal gold nanoparticles and patterned via multi-beam interference lithography. Spontaneous emission of quantum rods doped in such photonic crystal was controlled by

  19. Interconnection blocks with minimal dead volumes permitting planar interconnection to thin microfluidic devices

    DEFF Research Database (Denmark)

    Sabourin, David; Snakenborg, Detlef; Dufva, Martin

    2010-01-01

    We have previously described 'Interconnection Blocks' which are re-usable, non-integrated PDMS blocks which allowing multiple, aligned and planar microfluidic interconnections. Here, we describe Interconnection Block versions with zero dead volumes that allow fluidic interfacing to flat or thin s...

  20. Tuning the Photon Statistics of a Strongly Coupled Nanophotonic System

    CERN Document Server

    Dory, Constantin; Müller, Kai; Lagoudakis, Konstantinos G; Sarmiento, Tomas; Rundquist, Armand; Zhang, Jingyuan L; Kelaita, Yousif; Sapra, Neil V; Vučković, Jelena

    2016-01-01

    We investigate the dynamics of single- and multi-photon emission from detuned strongly coupled systems based on the quantum-dot-photonic-crystal resonator platform. Transmitting light through such systems can generate a range of non-classical states of light with tunable photon counting statistics due to the nonlinear ladder of hybridized light-matter states. By controlling the detuning between emitter and resonator, the transmission can be tuned to strongly enhance either single- or two-photon emission processes. Despite the strongly-dissipative nature of these systems, we find that by utilizing a self-homodyne interference technique combined with frequency-filtering we are able to find a strong two-photon component of the emission in the multi-photon regime. In order to explain our correlation measurements, we propose rate equation models that capture the dominant processes of emission both in the single- and multi-photon regimes. These models are then supported by quantum-optical simulations that fully cap...

  1. Interconnections in ULSI: Correlation and Crosstalk

    Science.gov (United States)

    1992-12-31

    cide interconnects. Finally. in Section V. we present the 2L conclusions. -_-. - ax, II. THEORY + A"- a- ) A. Coupling Between Optical Interconnects - To... TesIs . Note that the circulating urrent pattems hardly carry any net current in the x.direction. Therefore, the conductance of the stmctue will be very

  2. Interconnection of J-lossless behaviours

    NARCIS (Netherlands)

    Rao, S.

    In this paper, motivated by the phenomenon of the interconnection of lossless electrical networks, a class of behaviours known as J-lossless behaviours is introduced, where J is a symmetric two-variable polynomial matrix. It is shown that for certain values of J, interconnection of J-lossless

  3. Colligation or, The Logical Inference of Interconnection

    DEFF Research Database (Denmark)

    Franksen, Ole Immanuel; Falster, Peter

    2000-01-01

    laws or assumptions. Yet interconnection as an abstract concept seems to be without scientific underpinning in oure logic. Adopting a historical viewpoint, our aim is to show that the reasoning of interconnection may be identified with a neglected kind of logical inference, called "colligation...

  4. Epidemics in interconnected small-world networks

    NARCIS (Netherlands)

    Liu, M.; Li, D.; Qin, P.; Liu, C.; Wang, H.; Wang, F.

    2015-01-01

    Networks can be used to describe the interconnections among individuals, which play an important role in the spread of disease. Although the small-world effect has been found to have a significant impact on epidemics in single networks, the small-world effect on epidemics in interconnected networks

  5. Interconnection of J-lossless behaviours

    NARCIS (Netherlands)

    Rao, Shodhan

    2010-01-01

    In this paper, motivated by the phenomenon of the interconnection of lossless electrical networks, a class of behaviours known as J-lossless behaviours is introduced, where J is a symmetric two-variable polynomial matrix. It is shown that for certain values of J, interconnection of J-lossless behav

  6. Interconnection of systems : the network paradigm

    NARCIS (Netherlands)

    Maschke, B.M.; Schaft, A.J. van der

    1996-01-01

    In this paper we propose first to recall the different interconnection structures appearing in network models and to show their exact correspondence with Dirac structures. This definition of interconnection is purely implicit hence does not discriminate between inputs and outputs among the interconn

  7. 47 CFR 95.141 - Interconnection prohibited.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Interconnection prohibited. 95.141 Section 95.141 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES PERSONAL RADIO SERVICES General Mobile Radio Service (GMRS) § 95.141 Interconnection prohibited. No...

  8. Updating Technical Screens for PV Interconnection: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Coddington, M.; Ellis, A.; Lynn, K.; Razon, A.; Key, T.; Kroposki, B.; Mather, B.; Hill, R.; Nicole, K.; Smith, J.

    2012-08-01

    Solar photovoltaics (PV) is the dominant type of distributed generation (DG) technology interconnected to electric distribution systems in the United States, and deployment of PV systems continues to increase rapidly. Considering the rapid growth and widespread deployment of PV systems in United States electric distribution grids, it is important that interconnection procedures be as streamlined as possible to avoid unnecessary interconnection studies, costs, and delays. Because many PV interconnection applications involve high penetration scenarios, the process needs to allow for a sufficiently rigorous technical evaluation to identify and address possible system impacts. Existing interconnection procedures are designed to balance the need for efficiency and technical rigor for all DG. However, there is an implicit expectation that those procedures will be updated over time in order to remain relevant with respect to evolving standards, technology, and practical experience. Modifications to interconnection screens and procedures must focus on maintaining or improving safety and reliability, as well as accurately allocating costs and improving expediency of the interconnection process. This paper evaluates the origins and usefulness of the capacity penetration screen, offers potential short-term solutions which could effectively allow fast-track interconnection to many PV system applications, and considers longer-term solutions for increasing PV deployment levels in a safe and reliable manner while reducing or eliminating the emphasis on the penetration screen.

  9. 47 CFR 90.477 - Interconnected systems.

    Science.gov (United States)

    2010-10-01

    ...) Applicants for new land stations to be interconnected with the public switched telephone network must... switched telephone network only after modifying their license. See § 1.929 of this chapter. In all cases a..., 896-901 MHz, and 935-940 MHz, interconnection with the public switched telephone network is...

  10. Modeling interconnect corners under double patterning misalignment

    Science.gov (United States)

    Hyun, Daijoon; Shin, Youngsoo

    2016-03-01

    Publisher's Note: This paper, originally published on March 16th, was replaced with a corrected/revised version on March 28th. If you downloaded the original PDF but are unable to access the revision, please contact SPIE Digital Library Customer Service for assistance. Interconnect corners should accurately reflect the effect of misalingment in LELE double patterning process. Misalignment is usually considered separately from interconnect structure variations; this incurs too much pessimism and fails to reflect a large increase in total capacitance for asymmetric interconnect structure. We model interconnect corners by taking account of misalignment in conjunction with interconnect structure variations; we also characterize misalignment effect more accurately by handling metal pitch at both sides of a target metal independently. Identifying metal space at both sides of a target metal.

  11. Decentralized Control for a Class of Similar Composite Systems with Interconnections with Unsatisfying Interconnection Condition

    Institute of Scientific and Technical Information of China (English)

    WANG Zheng; LI Zhong-hai; ZHANG Si-ying; HOU Xue-zhang

    2001-01-01

    In this paper, a class of similar composite systems is discussed, whose interconnections areasymmetrical and mismatched. The interconnection condition is proposed. Based on it, the interconnectionsare divided into two parts. One satisfies the interconnection condition, by means of the two--step method,the decentralized controllers are designed. The other does not satisfy the interconnection condition, but thisis offsetted by good quality of the system itself. Based on these, a sufficient condition is given by some linearmatrix inequalities, which makes the studied systems quadratic stabile via linear decentralized controllers bymaking use of the information of interconnections better.

  12. Broadband nanophotonic wireless links and networks using on-chip integrated plasmonic antennas.

    Science.gov (United States)

    Yang, Yuanqing; Li, Qiang; Qiu, Min

    2016-01-19

    Owing to their high capacity and flexibility, broadband wireless communications have been widely employed in radio and microwave regimes, playing indispensable roles in our daily life. Their optical analogs, however, have not been demonstrated at the nanoscale. In this paper, by exploiting plasmonic nanoantennas, we demonstrate the complete design of broadband wireless links and networks in the realm of nanophotonics. With a 100-fold enhancement in power transfer superior to previous designs as well as an ultrawide bandwidth that covers the entire telecommunication wavelength range, such broadband nanolinks and networks are expected to pave the way for future optical integrated nanocircuits.

  13. Near-infrared III-nitride-on-silicon nanophotonic platform with microdisk resonators.

    Science.gov (United States)

    Roland, I; Zeng, Y; Checoury, X; El Kurdi, M; Sauvage, S; Brimont, C; Guillet, T; Gayral, B; Gromovyi, M; Duboz, J Y; Semond, F; de Micheli, M P; Boucaud, P

    2016-05-02

    We have developed a nanophotonic platform with microdisks using epitaxial III-nitride materials on silicon. The two-dimensional platform consists of suspended waveguides and mushroom-type microdisks as resonators side-coupled with a bus waveguide. Loaded quality factors up to 80000 have been obtained in the near-infrared spectral range for microdisk diameters between 8 and 15 μm. We analyze the dependence of the quality factors as a function of coupling efficiency. We have performed continuous-wave second harmonic generation experiments in resonance with the whispering gallery modes supported by the microdisks.

  14. Roundtrip matrix method for calculating the leaky resonant modes of open nanophotonic structures

    DEFF Research Database (Denmark)

    de Lasson, Jakob Rosenkrantz; Kristensen, Philip Trøst; Mørk, Jesper

    2014-01-01

    We present a numerical method for calculating quasi-normal modes of open nanophotonic structures. The method is based on scattering matrices and a unity eigenvalue of the roundtrip matrix of an internal cavity, and we develop it in detail with electromagnetic fields expanded on Bloch modes...... cavities are side-coupled and in-line-coupled to an infinite W1 waveguide and show that the scattering spectrum of these types of cavities can be reconstructed from the complex quasi-normal mode frequency....

  15. Nanolithography the art of fabricating nanoelectronic and nanophotonic devices and systems

    CERN Document Server

    2014-01-01

    Lithography is the process of patterning and etching to create integrated circuits and other devices on semiconductor wafers. Photolithography cannot be scaled down much further so in order to cope with the future reduction in size of semiconductor chips to nanoscale dimensions, scientists have turned to alternative nanolithography technologies. In addition to scaling issues, the increasing integration of multiple functions within a single device poses further challenges which drive innovations in nanolithography and nanofabrication. Chapters cover lithographic techniques, including optical projection, extreme ultraviolet (EUV), nanoimprint, electron beam and ion beam lithography, and applications of nanolithography in nanoelectronics, nanophotonics and microfluidics.

  16. Efficient and low-noise single-photon-level frequency conversion interfaces using silicon nanophotonics

    Science.gov (United States)

    Li, Qing; Davanço, Marcelo; Srinivasan, Kartik

    2016-06-01

    Optical frequency conversion has applications ranging from tunable light sources to telecommunications-band interfaces for quantum information science. Here, we demonstrate efficient, low-noise frequency conversion on a nanophotonic chip through four-wave-mixing Bragg scattering in compact (footprint 60% for the last two processes, a signal conversion bandwidth of >1 GHz, a required continuous-wave pump power of equations and the Lugiato-Lefever equation are used to model device performance, and show quantitative agreement with measurements.

  17. Progress in Nano-Electro-Optics VII Chemical, Biological, and Nanophotonic Technologies for Nano-Optical Devices and Systems

    CERN Document Server

    Ohtsu, Motoichi

    2010-01-01

    This book focuses on chemical and nanophotonic technology to be used to develop novel nano-optical devices and systems. It begins with temperature- and photo-induced phase transition of ferromagnetic materials. Further topics include: energy transfer in artificial photosynthesis, homoepitaxial multiple quantum wells in ZnO, near-field photochemical etching and nanophotonic devices based on a nonadiabatic process and optical near-field energy transfer, respectively and polarization control in the optical near-field for optical information security. Taken as a whole, this overview will be a valuable resource for engineers and scientists working in the field of nano-electro-optics.

  18. Large data centers interconnect bottlenecks.

    Science.gov (United States)

    Ghiasi, Ali

    2015-02-09

    Large data centers interconnect bottlenecks are dominated by the switch I/O BW and the front panel BW as a result of pluggable modules. To overcome the front panel BW and the switch ASIC BW limitation one approach is to either move the optics onto the mid-plan or integrate the optics into the switch ASIC. Over the last 4 years, VCSEL based optical engines have been integrated into the packages of large-scale HPC routers, moderate size Ethernet switches, and even FPGA's. Competing solutions based on Silicon Photonics (SiP) have also been proposed for integration into HPC and Ethernet switch packages but with better integration path through the use of TSV (Through Silicon Via) stack dies. Integrating either VCSEL or SiP based optical engines into complex ASIC package that operates at high temperatures, where the required reliability is not trivial, one should ask what is the technical or the economic advantage before embarking on such a complex integration. High density Ethernet switches addressing data centers currently in development are based on 25G NRZ signaling and QSFP28 optical module that can support up to 3.6 Tb of front panel bandwidth.

  19. Vocabulary of interconnections. Vocabulaire des interconnexions

    Energy Technology Data Exchange (ETDEWEB)

    1990-03-01

    A French vocabulary of terms used in the field of interconnection of electric power systems, is provided in order to standardize terminology at Hydro-Quebec. The vocabulary encompasses many subfields directly or indirectly related to interconnections, such as overhead lines, load forecasting, network operation, and interconnection contracts and conventions. International French terminology is adopted throughout, except for specifically North American realities for which new terms have been proposed. English equivalents of terms are provided for informative purposes and are not standardized. An index of the English terms is included. 128 refs.

  20. MFT - Muon Forward Tracker Sensor Interconnection Techniques

    CERN Document Server

    Catania, Alessandro

    2016-01-01

    Most detectors nowadays take the form of an active pixel sensor, which enables the detection and characterization of particles. This pixel sensor needs to be interconnected to some circuit board in order for this data to be read out and analyzed. Therefore various interconnection techniques are being tested out to assess the read out performance and data validity. One of these interconnection techniques is conductive gluing which is being tested in order to observe if it is a viable solution for this project and other project.

  1. Partial Synchronization of Interconnected Boolean Networks.

    Science.gov (United States)

    Chen, Hongwei; Liang, Jinling; Lu, Jianquan

    2017-01-01

    This paper addresses the partial synchronization problem for the interconnected Boolean networks (BNs) via the semi-tensor product (STP) of matrices. First, based on an algebraic state space representation of BNs, a necessary and sufficient criterion is presented to ensure the partial synchronization of the interconnected BNs. Second, by defining an induced digraph of the partial synchronized states set, an equivalent graphical description for the partial synchronization of the interconnected BNs is established. Consequently, the second partial synchronization criterion is derived in terms of adjacency matrix of the induced digraph. Finally, two examples (including an epigenetic model) are provided to illustrate the efficiency of the obtained results.

  2. Uniform wire segmentation algorithm of distributed interconnects

    Institute of Scientific and Technical Information of China (English)

    Yin Guoli; Lin Zhenghui

    2007-01-01

    A uniform wire segmentation algorithm for performance optimization of distributed RLC interconnects was proposed in this paper. The optimal wire length for identical segments and buffer size for buffer insertion are obtained through computation and derivation, based on a 2-pole approximation model of distributed RLC interconnect. For typical inductance value and long wires under 180nm technology, experiments show that the uniform wire segmentation technique proposed in the paper can reduce delay by about 27% ~ 56% , while requires 34%~69% less total buffer usage and thus 29% to 58% less power consumption. It is suitable for long RLC interconnect performance optimization.

  3. 华北-华中-华东交直流输电系统数模混合仿真%Digital and Analog Hybrid Simulation of Interconnected UHVAC/UHVDC Transmission System From North China via Central China to East China

    Institute of Scientific and Technical Information of China (English)

    郭剑波; 刘耀; 陈凌芳; 周俊; 郭强; 朱艺颖; 胡涛; 董鹏; 呙虎; 刘翀; 李新年

    2011-01-01

    Combining full digital real-time simulation with physical simulation device for high voltage DC power transmission, a detailed electromagnetic transient real-time simulation model integrating with physical DC transmission system model of the equivalent network for the interconnected UHV power grid consisiting of North China power grid, Central China power grid and East China power grid is built. The main contents of detailed real-time simulation of the main network of the interconnected UHV power grid are bipolar emergency outage of the DC system and the interaction between AC and DC system in the region with multi-infeed DC system. Simulation results show that when bipolar emergency outage occurres in ±500 kV and ±660 kV DC system, the system is stable and it is not necessary to adopt security and stability measures; when when bipolar emergency outage occurres in ±800 kV DC system, the stable operation can be revocered by properly tripping out generation units at sending system; the fault occurred in the region with multi-infeed DC system in East China UHVAC system will cause commutation failures of multi DC circuits in this region, however after the AC fault is cleared, the DC power transmission will successivele recovered and the stable operation will also recovered; the UHV power backbone in 2015 can meet the requirements of guidelines for power system stability, the network structure of this inteconnected power grid is feasible.Digital-analog hybrid simulation; power grid%将全数字实时仿真与高压直流输电物理仿真装置相结合,建立了三华等值电网的详细电磁暂态实时仿真模型和物理直流系统仿真模型.详细模拟了“三纵三横一环网”特高压网架,主要针对以下内容进行了实时仿真试验研究:直流系统双极紧急停运;直流多落点地区交直流相互影响.试验结果表明:±500 kV和±660 kV直流系统发生双极闭锁故障时,无需采取安稳措施:±800 kV直流输电系

  4. Bridging the Gap between Dielectric Nanophotonics and the Visible Regime with Effectively Lossless Gallium Phosphide Antennas.

    Science.gov (United States)

    Cambiasso, Javier; Grinblat, Gustavo; Li, Yi; Rakovich, Aliaksandra; Cortés, Emiliano; Maier, Stefan A

    2017-02-08

    We present all-dielectric gallium phosphide (GaP) nanoantennas as an efficient nanophotonic platform for surface-enhanced second harmonic generation (SHG) and fluorescence (SEF), showing negligible losses in the visible range. Employing single GaP nanodisks, we observe an increase of more than 3 orders of magnitude in the SHG conversion signal in comparison with the bulk. This constitutes an SHG efficiency as large as 0.0002%, which is to the best of our knowledge the highest yet achieved value for a single nano-object in the optical region. Furthermore, we show that GaP dimers with 35 nm gap can enhance up to 3600 times the fluorescence emission of dyes located in the gap of the nanoantenna. This is accomplished by a fluorescence lifetime reduction of at least 22 times, accompanied by a high-intensity field confinement in the gap region. These results open new avenues for low-loss nanophotonics in the optical regime.

  5. Nano-photonic chemical sensor using rare-earth upconversion phosphors

    Science.gov (United States)

    Patel, Darayas N.; Blockmon, Avery; Ochieng, Vanesa; Sarkisov, Sergey S.; Darwish, Abdalla M.; Sarkisov, Avedik S.

    2017-02-01

    The objective of the paper was to demonstrate feasibility of a chemical (ammonia) sensor using dye-doped polymer nanocomposite with upconversion phosphor nano-particles. The micro-crystalline powder of upconversion rare-earth phosphor NaYF4:Yb3+, Er3+ was synthesized using a simple wet process followed up by baking in open air. The powder was reduced into nano-colloid with 100-nm nano-particles using the ball milling process. The nano-colloid was added to the solution of polymer poly(methyl methacrylate) known as PMMA. Additionally, a pH indicator dye (Phenol Red or Bromothymol Blue) was dissolved in polymer solution. The dye-doped polymer nanocomposite films were deposited on substrates using the dipping process followed by baking in order to evaporate the solvent. The deposited nano-photonic sensor film had bright green upconversion fluorescence with a spectral peak at 540 nm attributed to the nano-photonic rare-earth phosphor pumped with a 980 nm infrared diode laser. The spectrum of green emission matched the absorption band of the indicator dye exposed to ammonia. When the film was exposed to ammonia, it demonstrated an optical response in the form of the drop of intensity of green radiation measured with a silicon photodiode power meter. The sensitivity of the developed chemical sensor was close to 0.4% ammonia in air, and the response time was close to 5 minutes.

  6. Opportunities and Limitations for Nanophotonic Structures To Exceed the Shockley-Queisser Limit.

    Science.gov (United States)

    Mann, Sander A; Grote, Richard R; Osgood, Richard M; Alù, Andrea; Garnett, Erik C

    2016-09-27

    Nanophotonic engineering holds great promise for photovoltaics, with several recently proposed approaches that have enabled efficiencies close to the Shockley-Queisser limit. Here, we theoretically demonstrate that suitably designed nanophotonic structures may be able to surpass the 1 sun Shockley-Queisser limit by utilizing tailored directivity of the scattering response of nanoparticles. We show that large absorption cross sections do not play a significant role in the efficiency enhancement, and on the contrary, directivity enhancement constitutes the nanoscale equivalent to concentration in macroscopic photovoltaic systems. Based on this principle, we discuss fundamental limits to the efficiency based on directivity bounds and a number of approaches to get close to these limits. We also highlight that, in practice, achieving efficiencies above the Shockley-Queisser limit is strongly hindered by whether high short-circuit currents can be maintained. Finally, we discuss how our results are affected by the presence of significant nonradiative recombination, in which case both directivity and photon escape probability should be increased to achieve voltage enhancement.

  7. Scalable Fabrication of Integrated Nanophotonic Circuits on Arrays of Thin Single Crystal Diamond Membrane Windows.

    Science.gov (United States)

    Piracha, Afaq H; Rath, Patrik; Ganesan, Kumaravelu; Kühn, Stefan; Pernice, Wolfram H P; Prawer, Steven

    2016-05-11

    Diamond has emerged as a promising platform for nanophotonic, optical, and quantum technologies. High-quality, single crystalline substrates of acceptable size are a prerequisite to meet the demanding requirements on low-level impurities and low absorption loss when targeting large photonic circuits. Here, we describe a scalable fabrication method for single crystal diamond membrane windows that achieves three major goals with one fabrication method: providing high quality diamond, as confirmed by Raman spectroscopy; achieving homogeneously thin membranes, enabled by ion implantation; and providing compatibility with established planar fabrication via lithography and vertical etching. On such suspended diamond membranes we demonstrate a suite of photonic components as building blocks for nanophotonic circuits. Monolithic grating couplers are used to efficiently couple light between photonic circuits and optical fibers. In waveguide coupled optical ring resonators, we find loaded quality factors up to 66 000 at a wavelength of 1560 nm, corresponding to propagation loss below 7.2 dB/cm. Our approach holds promise for the scalable implementation of future diamond quantum photonic technologies and all-diamond photonic metrology tools.

  8. Photonic Wire Bonds for Terabit/s Chip-to-Chip Interconnects

    CERN Document Server

    Lindenmann, Nicole; Hillerkuss, David; Schmogrow, Rene; Jordan, Meinert; Leuthold, Juerg; Freude, Wolfgang; Koos, Christian

    2011-01-01

    Photonic integration has witnessed tremendous progress over the last years, and chip-scale transceiver systems with Terabit/s data rates have come into reach. However, as on-chip integration density increases, efficient off-chip interfaces are becoming more and more crucial. A technological breakthrough is considered indispensable to cope with the challenges arising from large-scale photonic integration, and this particularly applies to short-distance optical interconnects. In this letter we introduce the concept of photonic wire bonding, where transparent waveguide wire bonds are used to bridge the gap between nanophotonic circuits located on different chips. We demonstrate for the first time the fabrication of three-dimensional freeform photonic wire bonds (PWB), and we confirm their viability in a multi-Terabit/s data transmission experiment. First-generation prototypes allow for efficient broadband coupling with overall losses of only 1.6 dB. Photonic wire bonding will enable flexible optical multi-chip a...

  9. One-Dimensional Dielectric/Metallic Hybrid Materials for Photonic Applications.

    Science.gov (United States)

    Li, Yong Jun; Xiong, Xiao; Zou, Chang-Ling; Ren, Xi Feng; Zhao, Yong Sheng

    2015-08-01

    Explorations of 1D nanostructures have led to great progress in the area of nanophotonics in the past decades. Based on either dielectric or metallic materials, a variety of 1D photonic devices have been developed, such as nanolasers, waveguides, optical switches, and routers. What's interesting is that these dielectric systems enjoy low propagation losses and usually possess active optical performance, but they have a diffraction-limited field confinement. Alternatively, metallic systems can guide light on deep subwavelength scales, but they suffer from high metallic absorption and can work as passive devices only. Thus, the idea to construct a hybrid system that combines the merits of both dielectric and metallic materials was proposed. To date, unprecedented optical properties have been achieved in various 1D hybrid systems, which manifest great potential for functional nanophotonic devices. Here, the focus is on recent advances in 1D dielectric/metallic hybrid systems, with a special emphasis on novel structure design, rational fabrication techniques, unique performance, as well as their wide application in photonic components. Gaining a better understanding of hybrid systems would benefit the design of nanophotonic components aimed at optical information processing.

  10. Recent Development of SOFC Metallic Interconnect

    Energy Technology Data Exchange (ETDEWEB)

    Wu JW, Liu XB

    2010-04-01

    Interest in solid oxide fuel cells (SOFC) stems from their higher e±ciencies and lower levels of emitted pollu- tants, compared to traditional power production methods. Interconnects are a critical part in SOFC stacks, which connect cells in series electrically, and also separate air or oxygen at the cathode side from fuel at the anode side. Therefore, the requirements of interconnects are the most demanding, i:e:, to maintain high elec- trical conductivity, good stability in both reducing and oxidizing atmospheres, and close coe±cient of thermal expansion (CTE) match and good compatibility with other SOFC ceramic components. The paper reviewed the interconnect materials, and coatings for metallic interconnect materials.

  11. Variation Tolerant On-Chip Interconnects

    CERN Document Server

    Nigussie, Ethiopia Enideg

    2012-01-01

    This book presents design techniques, analysis and implementation of high performance and power efficient, variation tolerant on-chip interconnects.  Given the design paradigm shift to multi-core, interconnect-centric designs and the increase in sources of variability and their impact in sub-100nm technologies, this book will be an invaluable reference for anyone concerned with the design of next generation, high-performance electronics systems. Provides comprehensive, circuit-level explanation of high-performance, energy-efficient, variation-tolerant on-chip interconnect; Describes design techniques to mitigate problems caused by variation; Includes techniques for design and implementation of self-timed on-chip interconnect, delay variation insensitive communication protocols, high speed signaling techniques and circuits, bit-width independent completion detection and process, voltage and temperature variation tolerance.                          

  12. Optical Interconnects for Future Data Center Networks

    CERN Document Server

    Bergman, Keren; Tomkos, Ioannis

    2013-01-01

    Optical Interconnects for Future Data Center Networks covers optical networks and how they can provide high bandwidth, energy efficient interconnects with increased communication bandwidth. This volume, with contributions from leading researchers in the field, presents an integrated view of the expected future requirements of data centers and serves as a reference for some of the most advanced and promising solutions proposed by researchers from leading universities, research labs, and companies. The work also includes several novel architectures, each demonstrating different technologies such as optical circuits, optical switching, MIMO optical OFDM, and others. Additionally, Optical Interconnects for Future Data Center Networks provides invaluable insights into the benefits and advantages of optical interconnects and how they can be a promising alternative for future data center networks.

  13. Traffic congestion in interconnected complex networks.

    Science.gov (United States)

    Tan, Fei; Wu, Jiajing; Xia, Yongxiang; Tse, Chi K

    2014-06-01

    Traffic congestion in isolated complex networks has been investigated extensively over the last decade. Coupled network models have recently been developed to facilitate further understanding of real complex systems. Analysis of traffic congestion in coupled complex networks, however, is still relatively unexplored. In this paper, we try to explore the effect of interconnections on traffic congestion in interconnected Barabási-Albert scale-free networks. We find that assortative coupling can alleviate traffic congestion more readily than disassortative and random coupling when the node processing capacity is allocated based on node usage probability. Furthermore, the optimal coupling probability can be found for assortative coupling. However, three types of coupling preferences achieve similar traffic performance if all nodes share the same processing capacity. We analyze interconnected Internet autonomous-system-level graphs of South Korea and Japan and obtain similar results. Some practical suggestions are presented to optimize such real-world interconnected networks accordingly.

  14. The Interconnections of the LHC Cryomagnets

    CERN Document Server

    Jacquemod, A; Skoczen, Blazej; Tock, J P

    2001-01-01

    The main components of the LHC, the next world-class facility in high-energy physics, are the twin-aperture high-field superconducting cryomagnets to be installed in the existing 26.7-km long tunnel. After installation and alignment, the cryomagnets have to be interconnected. The interconnections must ensure the continuity of several functions: vacuum enclosures, beam pipe image currents (RF contacts), cryogenic circuits, electrical power supply, and thermal insulation. In the machine, about 1700 interconnections between cryomagnets are necessary. The interconnections constitute a unique system that is nearly entirely assembled in the tunnel. For each of them, various operations must be done: TIG welding of cryogenic channels (~ 50 000 welds), induction soldering of main superconducting cables (~ 10 000 joints), ultrasonic welding of auxiliary superconducting cables (~ 20 000 welds), mechanical assembly of various elements, and installation of the multi-layer insulation (~ 200 000 m2). Defective junctions cou...

  15. Traffic congestion in interconnected complex networks

    CERN Document Server

    Tan, Fei; Xia, Yongxiang; Tse, Chi K

    2014-01-01

    Traffic congestion in isolated complex networks has been investigated extensively over the last decade. Coupled network models have recently been developed to facilitate further understanding of real complex systems. Analysis of traffic congestion in coupled complex networks, however, is yet to come. In this paper, we try to explore the effect of interconnections on traffic congestion in interconnected BA scale-free networks. We find that assortative coupling can alleviate traffic congestion better than disassortative and random coupling when the node processing capacity is allocated based on node usage probability. Furthermore, the optimal coupling probability can be found for assortative coupling. However, three types of coupling preferences achieve similar traffic performance if all nodes share the same processing capacity. We analyze interconnected Internet AS-level graphs of Japan and South Korea and obtain similar results. Some practical suggestions are presented to optimize such real-world interconnect...

  16. One-dimensional nano-interconnection formation.

    Science.gov (United States)

    Ji, Jianlong; Zhou, Zhaoying; Yang, Xing; Zhang, Wendong; Sang, Shengbo; Li, Pengwei

    2013-09-23

    Interconnection of one-dimensional nanomaterials such as nanowires and carbon nanotubes with other parts or components is crucial for nanodevices to realize electrical contacts and mechanical fixings. Interconnection has been being gradually paid great attention since it is as significant as nanomaterials properties, and determines nanodevices performance in some cases. This paper provides an overview of recent progress on techniques that are commonly used for one-dimensional interconnection formation. In this review, these techniques could be categorized into two different types: two-step and one-step methods according to their established process. The two-step method is constituted by assembly and pinning processes, while the one-step method is a direct formation process of nano-interconnections. In both methods, the electrodeposition approach is illustrated in detail, and its potential mechanism is emphasized.

  17. Fluidic interconnections for microfluidic systems: A new integrated fluidic interconnection allowing plug 'n' play functionality

    DEFF Research Database (Denmark)

    Perozziello, Gerardo; Bundgaard, Frederik; Geschke, Oliver

    2008-01-01

    A crucial challenge in packaging of microsystems is microfluidic interconnections. These have to seal the ports of the system, and have to provide the appropriate interface to other devices or the external environment. Integrated fluidic interconnections appear to be a good solution...... for interconnecting polymer microsystems in terms of cost, space and performance. Following this path we propose a new reversible, integrated fluidic interconnection composed of custom-made cylindrical rings integrated in a polymer house next to the fluidic network. This allows plug 'n' play functionality between...... external metal ferrules and the system. Theoretical calculations are made to dimension and model the integrated fluidic interconnection. Leakage tests are performed on the interconnections, in order to experimentally confirm the model, and detect its limits....

  18. Types of solutions improving passenger transport interconnectivity

    Directory of Open Access Journals (Sweden)

    Monika BĄK

    2012-01-01

    Full Text Available The objective of the paper is to present different types of solutions which could improve interconnectivity of passenger transport especially within interconnections between long and short transport distance. The topic has particular relevance at the European level because the European transport networks’ role as integrated international networks is compromised by poor interconnectivity and because the next generation of European transport policies will have to be sensitive to the differences between short, medium and long-term transport markets and the market advantages of each transport mode. In this context, a realistic assessment of intermodal opportunities is a key ingredient to future policy development.Effective interconnection requires the provision of integrated networks and services which are attractive to potential users and this is likely to require co-operation between a range of authorities and providers in the public and private sectors and may necessitate a wider vision than might otherwise prevail.The paper is based on the results of the project realised by the team of the University of Gdansk in the EU funded 7 Framework Programme - INTERCONNECT (Interconnection between short- and long-distance transport networks with partners in the UK, Germany, Denmark, Poland, Spain and Italy. Different types of solutions will be summarized in the paper including e.g. local link infrastructure solutions, improved local public transport services, improvements at the interchange, solutions involving improved procedures for check-in or luggage transfer & documentation, pricing and ticketing solutions, solutions involving marketing, information and sales.

  19. Epidemics spreading in interconnected complex networks

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Y. [School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Institute of High Performance Computing, Agency for Science, Technology and Research (A-STAR), Singapore 138632 (Singapore); Xiao, G., E-mail: egxxiao@ntu.edu.sg [School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798 (Singapore)

    2012-09-03

    We study epidemic spreading in two interconnected complex networks. It is found that in our model the epidemic threshold of the interconnected network is always lower than that in any of the two component networks. Detailed theoretical analysis is proposed which allows quick and accurate calculations of epidemic threshold and average outbreak/epidemic size. Theoretical analysis and simulation results show that, generally speaking, the epidemic size is not significantly affected by the inter-network correlation. In interdependent networks which can be viewed as a special case of interconnected networks, however, impacts of inter-network correlation on the epidemic threshold and outbreak size are more significant. -- Highlights: ► We study epidemic spreading in two interconnected complex networks. ► The epidemic threshold is lower than that in any of the two networks. And Interconnection correlation has impacts on threshold and average outbreak size. ► Detailed theoretical analysis is proposed which allows quick and accurate calculations of epidemic threshold and average outbreak/epidemic size. ► We demonstrated and proved that Interconnection correlation does not affect epidemic size significantly. ► In interdependent networks, impacts of inter-network correlation on the epidemic threshold and outbreak size are more significant.

  20. Navigability of interconnected networks under random failures

    Science.gov (United States)

    De Domenico, Manlio; Solé-Ribalta, Albert; Gómez, Sergio; Arenas, Alex

    2014-01-01

    Assessing the navigability of interconnected networks (transporting information, people, or goods) under eventual random failures is of utmost importance to design and protect critical infrastructures. Random walks are a good proxy to determine this navigability, specifically the coverage time of random walks, which is a measure of the dynamical functionality of the network. Here, we introduce the theoretical tools required to describe random walks in interconnected networks accounting for structure and dynamics inherent to real systems. We develop an analytical approach for the covering time of random walks in interconnected networks and compare it with extensive Monte Carlo simulations. Generally speaking, interconnected networks are more resilient to random failures than their individual layers per se, and we are able to quantify this effect. As an application––which we illustrate by considering the public transport of London––we show how the efficiency in exploring the multiplex critically depends on layers’ topology, interconnection strengths, and walk strategy. Our findings are corroborated by data-driven simulations, where the empirical distribution of check-ins and checks-out is considered and passengers travel along fastest paths in a network affected by real disruptions. These findings are fundamental for further development of searching and navigability strategies in real interconnected systems. PMID:24912174

  1. Thin-film chip-to-substrate interconnect and methods for making same

    Science.gov (United States)

    Tuckerman, David B.

    1991-01-01

    Integrated circuit chips are electrically connected to a silica wafer interconnection substrate. Thin film wiring is fabricated down bevelled edges of the chips. A subtractive wire fabrication method uses a series of masks and etching steps to form wires in a metal layer. An additive method direct laser writes or deposits very thin metal lines which can then be plated up to form wires. A quasi-additive or subtractive/additive method forms a pattern of trenches to expose a metal surface which can nucleate subsequent electrolytic deposition of wires. Low inductance interconnections on a 25 micron pitch (1600 wires on a 1 cm square chip) can be produced. The thin film hybrid interconnect eliminates solder joints or welds, and minimizes the levels of metallization. Advantages include good electrical properties, very high wiring density, excellent backside contact, compactness, and high thermal and mechanical reliability.

  2. Free-standing nanomechanical and nanophotonic structures in single-crystal diamond

    Science.gov (United States)

    Burek, Michael John

    Realizing complex three-dimensional structures in a range of material systems is critical to a variety of emerging nanotechnologies. This is particularly true of nanomechanical and nanophotonic systems, both relying on free-standing small-scale components. In the case of nanomechanics, necessary mechanical degrees of freedom require physically isolated structures, such as suspended beams, cantilevers, and membranes. For nanophotonics, elements like waveguides and photonic crystal cavities rely on light confinement provided by total internal reflection or distributed Bragg reflection, both of which require refractive index contrast between the device and surrounding medium (often air). Such suspended nanostructures are typically fabricated in a heterolayer structure, comprising of device (top) and sacrificial (middle) layers supported by a substrate (bottom), using standard surface nanomachining techniques. A selective, isotropic etch is then used to remove the sacrificial layer, resulting in free-standing devices. While high-quality, crystalline, thin film heterolayer structures are readily available for silicon (as silicon-on-insulator (SOI)) or III-V semiconductors (i.e. GaAs/AlGaAs), there remains an extensive list of materials with attractive electro-optic, piezoelectric, quantum optical, and other properties for which high quality single-crystal thin film heterolayer structures are not available. These include complex metal oxides like lithium niobate (LiNbO3), silicon-based compounds such as silicon carbide (SiC), III-V nitrides including gallium nitride (GaN), and inert single-crystals such as diamond. Diamond is especially attractive for a variety of nanoscale technologies due to its exceptional physical and chemical properties, including high mechanical hardness, stiffness, and thermal conductivity. Optically, it is transparent over a wide wavelength range (from 220 nm to the far infrared), has a high refractive index (n ~ 2.4), and is host to a vast

  3. Synthesis of lanthanum tungstate interconnecting nanoparticles by high voltage electrospinning

    Energy Technology Data Exchange (ETDEWEB)

    Keereeta, Yanee, E-mail: ynkeereeta@gmail.com [Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thongtem, Titipun, E-mail: ttpthongtem@yahoo.com [Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Materials Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thongtem, Somchai [Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Materials Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand)

    2015-10-01

    Graphical abstract: - Highlights: • La{sub 2}(WO{sub 4}){sub 3} as one of semiconducting materials. • H.V. electrospinning was used to synthesize La{sub 2}(WO{sub 4}){sub 3} interconnecting nanoparticles. • A promising material for photoemission. - Abstract: Lanthanum tungstate (La{sub 2}(WO{sub 4}){sub 3}) interconnecting nanoparticles in the shape of fibers were successfully synthesized by electrospinning in combination with high temperature calcination. In this research, calcination temperature for the synthesis of the fibers evidently influenced the diameter, morphology and crystalline degree. The crystalline monoclinic La{sub 2}(WO{sub 4}){sub 3} fibers with 200–700 nm in diameter, two main Raman peaks at 945 and 927 cm{sup −1}, FTIR stretching modes at 936 and 847 cm{sup −1}, 2.02 eV energy gap and 415–430 nm blue emission were synthesized by calcination of inorganic/organic hybrid fibers at 750 °C for 5 h, characterized by X-ray diffraction, scanning electron microscopy (SEM), transmission electron microscopy (TEM), selected area electron diffraction (SAED), thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, UV–visible spectroscopy and photoluminescence (PL) spectroscopy. The surface of the composite fibers before calcination was very smooth. Upon calcination the composite fibers at 750 °C for 5 h, they were transformed into nanoparticles join together in the shape of fibers with rough surface.

  4. Middleware Architecture for the Interconnection of Distributed and Parallel Systems

    Directory of Open Access Journals (Sweden)

    Ovidiu Gherman

    2012-01-01

    Full Text Available Grid computing is a fast evolving technology, bringing more computing power to its users. Two main directions are observable: creating dedicated supercomputers for scientific and commercial tasks and creating distributed commodity-based systems. The first ones are usually much expensive, but have the advantage of performance, better control and uniformity in platforms. The second one is more affordable but lacks in flexibility and easy maintenance. The computing necessities that often require supplementary computing power for certain time periods are better satisfied by interconnecting available resources than buying new, expensive ones. But interconnecting platforms – sometimes radically different – can be a difficult task. The proliferation of hybrid parallel computing systems can be even more complicated because it puts in contact systems with various operating flows at the parallelism level. In this frame, the present article proposes a new middleware architecture that can connect multiple parallel or distributed resources, of different types, allowing unitary resource utilization and reservation for the user’s jobs. The new architecture is described functionally and structurally.

  5. Nanophotonics-enabled solar membrane distillation for off-grid water purification

    Science.gov (United States)

    Dongare, Pratiksha D.; Alabastri, Alessandro; Pedersen, Seth; Zodrow, Katherine R.; Hogan, Nathaniel J.; Neumann, Oara; Wu, Jinjian; Wang, Tianxiao; Deshmukh, Akshay; Elimelech, Menachem; Li, Qilin; Nordlander, Peter; Halas, Naomi J.

    2017-01-01

    With more than a billion people lacking accessible drinking water, there is a critical need to convert nonpotable sources such as seawater to water suitable for human use. However, energy requirements of desalination plants account for half their operating costs, so alternative, lower energy approaches are equally critical. Membrane distillation (MD) has shown potential due to its low operating temperature and pressure requirements, but the requirement of heating the input water makes it energy intensive. Here, we demonstrate nanophotonics-enabled solar membrane distillation (NESMD), where highly localized photothermal heating induced by solar illumination alone drives the distillation process, entirely eliminating the requirement of heating the input water. Unlike MD, NESMD can be scaled to larger systems and shows increased efficiencies with decreased input flow velocities. Along with its increased efficiency at higher ambient temperatures, these properties all point to NESMD as a promising solution for household- or community-scale desalination. PMID:28630307

  6. Microwave platform as a valuable tool for characterization of nanophotonic devices

    Science.gov (United States)

    Shishkin, Ivan; Baranov, Dmitry; Slobozhanyuk, Alexey; Filonov, Dmitry; Lukashenko, Stanislav; Samusev, Anton; Belov, Pavel

    2016-01-01

    The rich potential of the microwave experiments for characterization and optimization of optical devices is discussed. While the control of the light fields together with their spatial mapping at the nanoscale is still laborious and not always clear, the microwave setup allows to measure both amplitude and phase of initially determined magnetic and electric field components without significant perturbation of the near-field. As an example, the electromagnetic properties of an add-drop filter, which became a well-known workhorse of the photonics, is experimentally studied with the aid of transmission spectroscopy measurements in optical and microwave ranges and through direct mapping of the near fields at microwave frequencies. We demonstrate that the microwave experiments provide a unique platform for the comprehensive studies of electromagnetic properties of micro- and nanophotonic devices, and allow to obtain data which are hardly acquirable by conventional optical methods. PMID:27759058

  7. High visibility time-energy entangled photons from a silicon nanophotonic chip

    CERN Document Server

    Rogers, Steven; Lu, Xiyuan; Jiang, Wei C; Lin, Qiang

    2016-01-01

    Advances in quantum photonics have shown that chip-scale quantum devices are translating from the realm of basic research to applied technologies. Recent developments in integrated photonic circuits and single photon detectors indicate that the bottleneck for fidelity in quantum photonic processes will ultimately lie with the photon sources. We present and demonstrate a silicon nanophotonic chip capable of emitting telecommunication band photon pairs that exhibit the highest raw degree of time-energy entanglement from a micro/nanoscale source, to date. Biphotons are generated through cavity-enhanced spontaneous four-wave mixing (SFWM) in a high-Q silicon microdisk resonator, wherein the nature of the triply-resonant generation process leads to a dramatic Purcell enhancement, resulting in highly efficient pair creation rates as well as extreme suppression of the photon noise background. The combination of the excellent photon source and a new phase locking technique, allow for the observation of a nearly perfe...

  8. Efficient and low-noise single-photon-level frequency conversion interfaces using silicon nanophotonics

    CERN Document Server

    Li, Qing; Srinivasan, Kartik

    2015-01-01

    Optical frequency conversion has applications ranging from tunable light sources to telecommunications-band interfaces for quantum information science. Here, we demonstrate efficient, low-noise frequency conversion on a nanophotonic chip through four-wave-mixing Bragg scattering in compact (footprint 60 % for the last two processes, a signal conversion bandwidth > 1 GHz, < 60 mW of continuous-wave pump power needed, and background noise levels between a few fW and a few pW, these devices are suitable for quantum frequency conversion of single photon states from InAs quantum dots. Simulations based on coupled mode equations and the Lugiato-Lefever equation are used to model device performance, and show quantitative agreement with measurements.

  9. Single-Photon Switching and Entanglement of Solid-State Qubits in an Integrated Nanophotonic System

    CERN Document Server

    Sipahigil, Alp; Sukachev, Denis D; Burek, Michael J; Borregaard, Johannes; Bhaskar, Mihir K; Nguyen, Christian T; Pacheco, Jose L; Atikian, Haig A; Meuwly, Charles; Camacho, Ryan M; Jelezko, Fedor; Bielejec, Edward; Park, Hongkun; Lončar, Marko; Lukin, Mikhail D

    2016-01-01

    Efficient interfaces between photons and quantum emitters form the basis for quantum networks and enable nonlinear optical devices operating at the single-photon level. We demonstrate an integrated platform for scalable quantum nanophotonics based on silicon-vacancy (SiV) color centers coupled to nanoscale diamond devices. By placing SiV centers inside diamond photonic crystal cavities, we realize a quantum-optical switch controlled by a single color center. We control the switch using SiV metastable orbital states and verify optical switching at the single-photon level by using photon correlation measurements. We use Raman transitions to realize a single-photon source with a tunable frequency and bandwidth in a diamond waveguide. Finally, we create entanglement between two SiV centers by detecting indistinguishable Raman photons emitted into a single waveguide. Entanglement is verified using a novel superradiant feature observed in photon correlation measurements, paving the way for the realization of quantu...

  10. Bosonic transport simulations in a large-scale programmable nanophotonic processor

    CERN Document Server

    Harris, Nicholas C; Mower, Jacob; Lahini, Yoav; Prabhu, Mihika; Baehr-Jones, Tom; Hochberg, Michael; Lloyd, Seth; Englund, Dirk

    2015-01-01

    Environmental noise and disorder play a critical role in quantum particle and wave transport in complex media, including solid-state and biological systems. Recent work has predicted that coupling between noisy environments and disordered systems, in which coherent transport has been arrested due to localization effects, could actually enhance transport. Photonic integrated circuits are promising platforms for studying such effects, with a central goal being the development of large systems providing low-loss, high-fidelity control over all parameters of the transport problem. Here, we fully map out the role of static and dynamic disorder in quantum transport using a low-loss, phase-stable, nanophotonic processor consisting of a mesh of 56 generalized beamsplitters programmable on microsecond timescales. Over 85,600 transport experiments, we observe several distinct transport regimes, including environment-enhanced transport in strong, statically disordered systems. Low loss and programmability make this nano...

  11. Parametric down-conversion photon pair source on a nanophotonic chip

    CERN Document Server

    Guo, Xiang; Schuck, Carsten; Jung, Hojoong; Cheng, Risheng; Tang, Hong X

    2016-01-01

    Quantum photonic chips, which integrate quantum light sources alongside active and passive optical elements, as well as single photon detectors, show great potential for photonic quantum information processing and quantum technology. Mature semiconductor nanofabrication processes allow for scaling such photonic integrated circuits to on-chip networks of increasing complexity. Second order nonlinear materials are the method of choice for generating photonic quantum states in the overwhelming part of linear optic experiments using bulk components but integration with waveguide circuitry on a nanophotonic chip proved to be challenging. Here we demonstrate such an on-chip parametric down-conversion source of photon pairs based on second order nonlinearity in an Aluminum nitride microring resonator. We show the potential of our source for quantum information processing by measuring high-visibility antibunching of heralded single photons with nearly ideal state purity. Our down conversion source operates with high ...

  12. Generation of ultra broadband supercontinuum in dispersion managed silicon nanophotonic waveguides

    CERN Document Server

    Ciret, Charles

    2016-01-01

    Dispersion managed (DM) silicon nanophotonic waveguides are investigated for the generation of optimal ultra broadband supercontinuum (SC). DM waveguides are made of a longitudinally dependent group velocity dispersion resulting from the variation of the waveguide width with the propagation distance. For the generation of optimal SC, a genetic algorithm has been used to find the best dispersion map. This allows for the generation of a highly coherent supercontinuum spanning from 1100~nm to 2950~nm at -40~dB level for 2\\,$\\mu$m, 200 fs and 6.4 pJ input pulse. The comparison with optimal fixed width and tapered waveguides shows that the SC is 300\\,nm broader in the DM waveguide, while the high coherence is ensured by the varying dispersion.

  13. Low-loss, infrared and terahertz nanophotonics using surface phonon polaritons

    Directory of Open Access Journals (Sweden)

    Caldwell Joshua D.

    2015-04-01

    Full Text Available The excitation of surface-phonon-polariton (SPhP modes in polar dielectric crystals and the associated new developments in the field of SPhPs are reviewed. The emphasis of this work is on providing an understanding of the general phenomenon, including the origin of the Reststrahlen band, the role that optical phonons in polar dielectric lattices play in supporting sub-diffraction-limited modes and how the relatively long optical phonon lifetimes can lead to the low optical losses observed within these materials. Based on this overview, the achievements attained to date and the potential technological advantages of these materials are discussed for localized modes in nanostructures, propagating modes on surfaces and in waveguides and novel metamaterial designs, with the goal of realizing low-loss nanophotonics and metamaterials in the mid-infrared to terahertz spectral ranges.

  14. Grating-assisted coupling to nanophotonic circuits in microcrystalline diamond thin films

    Directory of Open Access Journals (Sweden)

    Patrik Rath

    2013-05-01

    Full Text Available Synthetic diamond films can be prepared on a waferscale by using chemical vapour deposition (CVD on suitable substrates such as silicon or silicon dioxide. While such films find a wealth of applications in thermal management, in X-ray and terahertz window design, and in gyrotron tubes and microwave transmission lines, their use for nanoscale optical components remains largely unexplored. Here we demonstrate that CVD diamond provides a high-quality template for realizing nanophotonic integrated optical circuits. Using efficient grating coupling devices prepared from partially etched diamond thin films, we investigate millimetre-sized optical circuits and achieve single-mode waveguiding at telecoms wavelengths. Our results pave the way towards broadband optical applications for sensing in harsh environments and visible photonic devices.

  15. Telecommunications-band heralded single photons from a silicon nanophotonic chip

    CERN Document Server

    Davanco, Marcelo; Shehata, Andrea Bahgat; Tosi, Alberto; Agha, Imad; Assefa, Solomon; Xia, Fengnian; Green, William M J; Mookherjea, Shayan; Srinivasan, Kartik

    2012-01-01

    We demonstrate heralded single photon generation in a CMOS-compatible silicon nanophotonic device. The strong modal confinement and slow group velocity provided by a coupled resonator optical waveguide (CROW) produced a large four-wave-mixing nonlinearity coefficient gamma_eff ~4100 W^-1 m^-1 at telecommunications wavelengths. Spontaneous four-wave-mixing using a degenerate pump beam at 1549.6 nm created photon pairs at 1529.5 nm and 1570.5 nm with a coincidence-to-accidental ratio exceeding 20. A photon correlation measurement of the signal (1529.5 nm) photons heralded by the detection of the idler (1570.5 nm) photons showed antibunching with g^(2)(0) = 0.19 \\pm 0.03. The demonstration of a single photon source within a silicon platform holds promise for future integrated quantum photonic circuits.

  16. Advancement of photonic interconnects for spaceborne systems

    Science.gov (United States)

    Bristow, Julian P.; Lehman, John A.; Morgan, Robert A.; Deruiter, John L.

    1997-07-01

    Optical interconnects have long promised significant advantages over their electrical counterparts. Specific advantages include increased bandwidths at long (ten meters or more) interconnection distances, immunity to EMI effects, negligible crosstalk, reduced size, and lower weight. Optical interconnects have been developed for, and are being used in, a range of ground based and aircraft applications, however they are only now beginning to gain acceptance in spaceborne systems. In addition to the maturity demanded from components destined for ground-based applications and the wider temperature excursions characteristic of airborne applications, spaceborne components must also be able to survive the radiation environments associated with their intended applications. The additional qualification required has resulted in delayed introduction of photonic interconnects. We describe the tradeoffs involved in implementing for the first time a spaceborne fiber optic data bus with a clock speed of 1.2 Gbps. The tradeoffs include emitter, detectors, fiber, connectors and packaging. We have selected a series of commercial grade optoelectronic devices which were then qualified for use in spaceborne environments and have developed a space quantifiable packaging scheme. We have designed and implemented the optoelectronic subsystem of the data bus and have simulated its operation. We also describe recent advances in Vertical Cavity Surface Emitting Lasers (VCSELs) for spaceborne databuses. VCSELs also offer advantages in simplicity of packaging and electronic control. We summarize available initial radiation data on these devices and project their impact on spaceborne photonic interconnects.

  17. Optical transceivers for interconnections in satellite payloads

    Science.gov (United States)

    Karppinen, Mikko; Heikkinen, Veli; Juntunen, Eveliina; Kautio, Kari; Ollila, Jyrki; Sitomaniemi, Aila; Tanskanen, Antti

    2013-02-01

    The increasing data rates and processing on board satellites call for the use of photonic interconnects providing high-bitrate performance as well as valuable savings in mass and volume. Therefore, optical transmitter and receiver technology is developed for aerospace applications. The metal-ceramic-packaging with hermetic fiber pigtails enables robustness for the harsh spacecraft environment, while the 850-nm VCSEL-based transceiver technology meets the high bit-rate and low power requirements. The developed components include 6 Gbps SpaceFibre duplex transceivers for intra-satellite data links and 40 Gbps parallel optical transceivers for board-to-board interconnects. Also, integration concept of interchip optical interconnects for onboard processor ICs is presented.

  18. Random walk centrality in interconnected multilayer networks

    CERN Document Server

    Solé-Ribalta, Albert; Gómez, Sergio; Arenas, Alex

    2015-01-01

    Real-world complex systems exhibit multiple levels of relationships. In many cases they require to be modeled as interconnected multilayer networks, characterizing interactions of several types simultaneously. It is of crucial importance in many fields, from economics to biology and from urban planning to social sciences, to identify the most (or the less) influential nodes in a network using centrality measures. However, defining the centrality of actors in interconnected complex networks is not trivial. In this paper, we rely on the tensorial formalism recently proposed to characterize and investigate this kind of complex topologies, and extend two well known random walk centrality measures, the random walk betweenness and closeness centrality, to interconnected multilayer networks. For each of the measures we provide analytical expressions that completely agree with numerically results.

  19. Laser printing of 3D metallic interconnects

    Science.gov (United States)

    Beniam, Iyoel; Mathews, Scott A.; Charipar, Nicholas A.; Auyeung, Raymond C. Y.; Piqué, Alberto

    2016-04-01

    The use of laser-induced forward transfer (LIFT) techniques for the printing of functional materials has been demonstrated for numerous applications. The printing gives rise to patterns, which can be used to fabricate planar interconnects. More recently, various groups have demonstrated electrical interconnects from laser-printed 3D structures. The laser printing of these interconnects takes place through aggregation of voxels of either molten metal or of pastes containing dispersed metallic particles. However, the generated 3D structures do not posses the same metallic conductivity as a bulk metal interconnect of the same cross-section and length as those formed by wire bonding or tab welding. An alternative is to laser transfer entire 3D structures using a technique known as lase-and-place. Lase-and-place is a LIFT process whereby whole components and parts can be transferred from a donor substrate onto a desired location with one single laser pulse. This paper will describe the use of LIFT to laser print freestanding, solid metal foils or beams precisely over the contact pads of discrete devices to interconnect them into fully functional circuits. Furthermore, this paper will also show how the same laser can be used to bend or fold the bulk metal foils prior to transfer, thus forming compliant 3D structures able to provide strain relief for the circuits under flexing or during motion from thermal mismatch. These interconnect "ridges" can span wide gaps (on the order of a millimeter) and accommodate height differences of tens of microns between adjacent devices. Examples of these laser printed 3D metallic bridges and their role in the development of next generation electronics by additive manufacturing will be presented.

  20. An Improved Interconnection Network Based on NIN

    Institute of Scientific and Technical Information of China (English)

    Li Fei; Li Zhi-tang

    2004-01-01

    The Novel Interconnection Network (NIN)based on inverted-graph topology and crossbar switch is a kind of lower latency and higher throughput interconnection network. But it bas a vital disadvantage, high hardware complexity. In order to reduce system hardware cost, an improved NIN (ININ) structure is proposed. As same as NIN,ININ has constant network diameter. Besides of keeping ad vantages of NIN, hardware cost of ININ is lower than NIN.Furthermore, we design a new deadlock-free routing algorithm for the improved NIN.

  1. A Thermal Model for Carbon Nanotube Interconnects

    Science.gov (United States)

    Mohsin, Kaji Muhammad; Srivastava, Ashok; Sharma, Ashwani K.; Mayberry, Clay

    2013-01-01

    In this work, we have studied Joule heating in carbon nanotube based very large scale integration (VLSI) interconnects and incorporated Joule heating influenced scattering in our previously developed current transport model. The theoretical model explains breakdown in carbon nanotube resistance which limits the current density. We have also studied scattering parameters of carbon nanotube (CNT) interconnects and compared with the earlier work. For 1 µm length single-wall carbon nanotube, 3 dB frequency in S12 parameter reduces to ~120 GHz from 1 THz considering Joule heating. It has been found that bias voltage has little effect on scattering parameters, while length has very strong effect on scattering parameters.

  2. Hybrid optical antennas with photonic resistors.

    Science.gov (United States)

    Butakov, N A; Schuller, J A

    2015-11-16

    Hybrid optical antennas, comprising active materials placed in the gaps of plasmonic split-ring-resonators and nano-dimers, have been the subject of numerous recent investigations. Engineered coupling between the two plasmonic resonators is achieved by modulating the active material, enabling control over the near- and far-field electromagnetic properties. Here, using electromagnetics calculations, we study the evolving optical response of a hybrid metal-semiconductor-metal nanorod antenna as the semiconductor free charge carrier density is continuously varied. In particular, we demonstrate qualitatively new behavior arising from epsilon-near-zero properties in intermediately doped semiconductors. In agreement with optical nano-circuit theory, we show that in the epsilon-near-zero regime such a load acts as an ideal optical resistor with an optimized damping response and strongly suppressed electromagnetic scattering. In periodic arrays, or metasurfaces, we then show how to use these effects to construct high-efficiency nanophotonic intensity modulators for dynamically shaping light.

  3. Generalized Interconnect Delay Time and Crosstalk Models: I. Applications of Interconnect Optimization Design

    Science.gov (United States)

    Lee, Trent Gwo-Yann; Tseng, Tseung-Yuen; Wong, Shyh-Chyi; Yang, Cheng-Jer; Liang, Mong Song; Cheng, Huang-Chung

    2001-12-01

    New analytical models for estimating the delay time of single line and coupled interconnect for ramp input waveform are derived. The accuracy of the signal delay time and crosstalk noise voltage models for various driver resistances, loading capacitances, and input-ramping rates has also been verified by simulation program with integrated circuit emphasis (SPICE) simulation. Based on the delay and crosstalk models, interconnect optimization design can be discussed thoroughly. The proposed guaranteed-performance interconnect design method is also discussed. These models are useful for performance estimation and layout optimization in VLSI synthesis as well as process optimization in technology development.

  4. Electromigration of damascene copper of IC interconnect

    Science.gov (United States)

    Meyer, William Kevin

    Copper metallization patterned with multi-level damascene process is prone to electromigration failure, which affects the reliability and performance of IC interconnect. In typical products, interconnect that is not already constrained by I·R drop or Joule self-heating operates at 'near threshold' conditions. Measurement of electromigration damage near threshold is very difficult due to slow degradation requiring greatly extended stress times, or high currents that cause thermal anomalies. Software simulations of the electromigration mechanism combined with characterization of temperature profiles allows extracting material parameters and calculation of design rules to ensure reliable interconnect. Test structures capable of demonstrating Blech threshold effects while allowing thermal characterization were designed and processed. Electromigration stress tests at various conditions were performed to extract both shortline (threshold) and long-line (above threshold) performance values. The resistance increase time constant shows immortality below Je·L (product of current density and segment length) of 3200 amp/cm. Statistical analysis of times-to-failure show that long lines last 105 hours at 3.1 mA/mum2 (120°C). While this is more robust than aluminum interconnect, the semiconductor industry will be challenged to improve that performance as future products require.

  5. Systems theory of interconnected port contact systems

    NARCIS (Netherlands)

    Eberard, D.; Maschke, B.M.; Schaft, A.J. van der

    2005-01-01

    Port-based network modeling of a large class of complex physical systems leads to dynamical systems known as port-Hamiltonian systems. The key ingredient of any port-Hamiltonian system is a power-conserving interconnection structure (mathematically formalized by the geometric notion of a Dirac struc

  6. Optical interconnections to focal plane arrays

    Energy Technology Data Exchange (ETDEWEB)

    Rienstra, J.L.; Hinckley, M.K.

    2000-11-01

    The authors have successfully demonstrated an optical data interconnection from the output of a focal plane array to the downstream data acquisition electronics. The demonstrated approach included a continuous wave laser beam directed at a multiple quantum well reflectance modulator connected to the focal plane array analog output. The output waveform from the optical interconnect was observed on an oscilloscope to be a replica of the input signal. They fed the output of the optical data link to the same data acquisition system used to characterize focal plane array performance. Measurements of the signal to noise ratio at the input and output of the optical interconnection showed that the signal to noise ratio was reduced by a factor of 10 or more. Analysis of the noise and link gain showed that the primary contributors to the additional noise were laser intensity noise and photodetector receiver noise. Subsequent efforts should be able to reduce these noise sources considerably and should result in substantially improved signal to noise performance. They also observed significant photocurrent generation in the reflectance modulator that imposes a current load on the focal plane array output amplifier. This current loading is an issue with the demonstrated approach because it tends to negate the power saving feature of the reflectance modulator interconnection concept.

  7. Patterned electrodeposition of interconnects using microcontact printing

    NARCIS (Netherlands)

    Hovestad, A.; Rendering, H.; Maijenburg, A.W.

    2012-01-01

    Microcontact printing combined with electroless deposition is a potential low cost technique to make electrical interconnects for opto-electronic devices. Microcontact printed inhibitors locally prevent electroless deposition resulting in a pre-defined pattern of metal tracks. The inhibition of elec

  8. Vector Lyapunov Functions for Stochastic Interconnected Systems

    Science.gov (United States)

    Boussalis, D.

    1985-01-01

    Theoretical paper presents set of sufficient conditions for asymptotic and exponential stability with probability 1 for class of stochastic interconnected systems. Theory applicable to complicated, large-scale mechanical or electrical systems, and, for several design problems, it reduces computational difficulty by relating stability criteria to fundamental structural features of system.

  9. Adapting Memory Hierarchies for Emerging Datacenter Interconnects

    Institute of Scientific and Technical Information of China (English)

    江涛; 董建波; 侯锐; 柴琳; 张立新; 孙凝晖; 田斌

    2015-01-01

    Efficient resource utilization requires that emerging datacenter interconnects support both high performance communication and efficient remote resource sharing. These goals require that the network be more tightly coupled with the CPU chips. Designing a new interconnection technology thus requires considering not only the interconnection itself, but also the design of the processors that will rely on it. In this paper, we study memory hierarchy implications for the design of high-speed datacenter interconnects—particularly as they affect remote memory access—and we use PCIe as the vehicle for our investigations. To that end, we build three complementary platforms: a PCIe-interconnected prototype server with which we measure and analyze current bottlenecks; a software simulator that lets us model microarchitectural and cache hierarchy changes;and an FPGA prototype system with a streamlined switchless customized protocol Thunder with which we study hardware optimizations outside the processor. We highlight several architectural modifications to better support remote memory access and communication, and quantify their impact and limitations.

  10. Colligation or, The Logical Inference of Interconnection

    DEFF Research Database (Denmark)

    Franksen, Ole Immanuel; Falster, Peter

    2000-01-01

    The concept of interconnection is fundamental to the modelling of disrete physical systems. On the bais of centuries of scientific experience, everyone will agree that the concept is part of a logically consistent approach, permitting us to draw conclusions, verifiable by observations, from basic......" by Charles Sanders Peirce....

  11. QCD Interconnection Studies at Linear Colliders

    CERN Document Server

    Khoze, V A; Khoze, Valery A.; Sjöstrand, Torbjörn

    1999-01-01

    Heavy objects like the W, Z and t are short-lived compared with typical hadronization times. When pairs of such particles are produced, the subsequent hadronic decay systems may therefore become interconnected. We study such potential effects at Linear Collider energies.

  12. Impulse free interconnection of dynamical systems

    NARCIS (Netherlands)

    Vinjamoor, Harsh; Belur, Madhu N.

    2010-01-01

    In this paper we address the problem that impulses might occur when a to-be-controlled plant is connected to a suitable controller. In the behavioral literature this issue is dealt when studying the so-called 'regular feedback interconnection' (RFI) of the plant and the controller behaviors. We addr

  13. An new representation for interconnection network structures

    Institute of Scientific and Technical Information of China (English)

    刘丽华; 陈建二; 陈松乔; 贾维嘉

    2002-01-01

    An important theoretic interest is to study the relations between different interconnection networks, and to compare the capability and performance of the network structures. The most popular way to do the investigation is network emulation. Based on the classical voltage graph theory, the authors develop a new representation scheme for interconnection network structures. The new approach is a combination of algebraic methods and combinatorial methods. The results demonstrate that the voltage graph theory is a powerful tool for representing well-known interconnection networks and in implementing optimal network emulation algorithms, and in particular, show that all popular interconnection networks have very simple and intuitive representations under the new scheme. The new representation scheme also offers powerful tools for the study of network routings and emulations. For example, we present very simple constructions for optimal network emulations from the cube-connected cycles networks to the butterfly networks, and from the butterfly networks to the hypercube networks. Compared with the most popular way of network emulation, this new scheme is intuitive and easy to realize, and easy to apply to other network structures.

  14. Vector Lyapunov Functions for Stochastic Interconnected Systems

    Science.gov (United States)

    Boussalis, D.

    1985-01-01

    Theoretical paper presents set of sufficient conditions for asymptotic and exponential stability with probability 1 for class of stochastic interconnected systems. Theory applicable to complicated, large-scale mechanical or electrical systems, and, for several design problems, it reduces computational difficulty by relating stability criteria to fundamental structural features of system.

  15. Some LCP Decompositions of Multistage Interconnection Networks

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Some useful layered cross product decompositons are derived both for general bit permutation networks and for(2n-1)-stage multistage interconnection networks. Several issues in related works are clarified and the rearrangeability of some interesting networks are considered. In particular, the rearrangeability of one class of networks is formulated as a new type of combinatorial design problmes.

  16. Impulse free interconnection of dynamical systems

    NARCIS (Netherlands)

    Vinjamoor, Harsh; Belur, Madhu N.

    2010-01-01

    In this paper we address the problem that impulses might occur when a to-be-controlled plant is connected to a suitable controller. In the behavioral literature this issue is dealt when studying the so-called 'regular feedback interconnection' (RFI) of the plant and the controller behaviors. We addr

  17. Colligation, Or the Logical Inference of Interconnection

    DEFF Research Database (Denmark)

    Falster, Peter

    1998-01-01

    The concept of interconnection is fundamental to the modelling of discrete, physical systems. On the basis of centuries of scientific experience, everyone will agree that the concept is part of a logically consistent approach, permitting us to draw conclusions, verifiable by observation, from bas...

  18. 47 CFR 95.1313 - Interconnection prohibited.

    Science.gov (United States)

    2010-10-01

    ... facilities of the public switched telephone network to permit the transmission of messages or signals between points in the wireline or radio network of a public telephone company and persons served by multi-use... prohibited. MURS stations are prohibited from interconnection with the public switched...

  19. Laser printed interconnects for flexible electronics

    Science.gov (United States)

    Pique, Alberto; Beniam, Iyoel; Mathews, Scott; Charipar, Nicholas

    Laser-induced forward transfer (LIFT) can be used to generate microscale 3D structures for interconnect applications non-lithographically. The laser printing of these interconnects takes place through aggregation of voxels of either molten metal or dispersed metallic nanoparticles. However, the resulting 3D structures do not achieve the bulk conductivity of metal interconnects of the same cross-section and length as those formed by wire bonding or tab welding. It is possible, however, to laser transfer entire structures using a LIFT technique known as lase-and-place. Lase-and-place allows whole components and parts to be transferred from a donor substrate onto a desired location with one single laser pulse. This talk will present the use of LIFT to laser print freestanding solid metal interconnects to connect individual devices into functional circuits. Furthermore, the same laser can bend or fold the thin metal foils prior to transfer, thus forming compliant 3D structures able to provide strain relief due to flexing or thermal mismatch. Examples of these laser printed 3D metallic bridges and their role in the development of next generation flexible electronics by additive manufacturing will be presented. This work was funded by the Office of Naval Research (ONR) through the Naval Research Laboratory Basic Research Program.

  20. Probabilistic immortality of Cu damascene interconnects

    Science.gov (United States)

    Hau-Riege, Stefan P.

    2002-02-01

    We have studied electromigration short-line effects in Cu damascene interconnects through experiments on lines of various lengths L, stressed at a variety of current densities j, and embedded in different dielectric materials. We observed two modes of resistance evolution: Either the resistance of the lines remains constant for the duration of the test, so that the lines are considered immortal, or the lines fail due to abrupt open-circuit failure. The resistance was not observed to gradually increase and then saturate, as commonly observed in Al-based interconnects, because the barrier is too thin and resistive to serve as a redundant current path should voiding occur. The critical stress for void nucleation was found to be smaller than 41 MPa, since voiding occurred even under the mildest test conditions of j=2 MA/cm2 and L=10.5 μm at 300 °C. A small fraction of short Cu lines failed even at low current densities, which deems necessary a concept of probabilistic immortality rather than deterministic immortality. Experiments and modeling suggest that the probability of immortality is described by (jL2/B), where B is the effective elastic modulus of the metallization scheme. By contrast, the immortality of Al-based interconnects with shunt layers is described by (jL) if no voids nucleate, and (jL/B) if voids do nucleate. Even though the phenomenology of short-line effects differs for Al- and Cu-based interconnects, the immortality of interconnects of either materials system can be explained by the phenomena of nucleation barriers for void formation and void-growth saturation. The differences are due solely to the absence of a shunt layer and the low critical stress for void nucleation in the case of Cu.

  1. Toward large-area roll-to-roll printed nanophotonic sensors

    Science.gov (United States)

    Karioja, Pentti; Hiltunen, Jussi; Aikio, Sanna M.; Alajoki, Teemu; Tuominen, Jarkko; Hiltunen, Marianne; Siitonen, Samuli; Kontturi, Ville; Böhlen, Karl; Hauser, Rene; Charlton, Martin; Boersma, Arjen; Lieberzeit, Peter; Felder, Thorsten; Eustace, David; Haskal, Eliav

    2014-05-01

    Polymers have become an important material group in fabricating discrete photonic components and integrated optical devices. This is due to their good properties: high optical transmittance, versatile processability at relative low temperatures and potential for low-cost production. Recently, nanoimprinting or nanoimprint lithography (NIL) has obtained a plenty of research interest. In NIL, a mould is pressed against a substrate coated with a moldable material. After deformation of the material, the mold is separated and a replica of the mold is formed. Compared with conventional lithographic methods, imprinting is simple to carry out, requires less-complicated equipment and can provide high-resolution with high throughput. Nanoimprint lithography has shown potential to become a method for low-cost and high-throughput fabrication of nanostructures. We show the development process of nano-structured, large-area multi-parameter sensors using Photonic Crystal (PC) and Surface Enhanced Raman Scattering (SERS) methodologies for environmental and pharmaceutical applications. We address these challenges by developing roll-to-roll (R2R) UV-nanoimprint fabrication methods. Our development steps are the following: Firstly, the proof of concept structures are fabricated by the use of wafer-level processes in Si-based materials. Secondly, the master molds of successful designs are fabricated, and they are used to transfer the nanophotonic structures into polymer materials using sheet-level UV-nanoimprinting. Thirdly, the sheet-level nanoimprinting processes are transferred to roll-to-roll fabrication. In order to enhance roll-to-roll manufacturing capabilities, silicone-based polymer material development was carried out. In the different development phases, Photonic Crystal and SERS sensor structures with increasing complexities were fabricated using polymer materials in order to enhance sheet-level and roll-to-roll manufacturing processes. In addition, chemical and molecular

  2. for hybrid dynamical systems

    Directory of Open Access Journals (Sweden)

    Wassim M. Haddad

    2001-01-01

    Full Text Available In this paper we develop a unified dynamical systems framework for a general class of systems possessing left-continuous flows; that is, left-continuous dynamical systems. These systems are shown to generalize virtually all existing notions of dynamical systems and include hybrid, impulsive, and switching dynamical systems as special cases. Furthermore, we generalize dissipativity, passivity, and nonexpansivity theory to left-continuous dynamical systems. Specifically, the classical concepts of system storage functions and supply rates are extended to left-continuous dynamical systems providing a generalized hybrid system energy interpretation in terms of stored energy, dissipated energy over the continuous-time dynamics, and dissipated energy over the resetting events. Finally, the generalized dissipativity notions are used to develop general stability criteria for feedback interconnections of left-continuous dynamical systems. These results generalize the positivity and small gain theorems to the case of left-continuous, hybrid, and impulsive dynamical systems.

  3. National Offshore Wind Energy Grid Interconnection Study Executive Summary

    Energy Technology Data Exchange (ETDEWEB)

    Daniel, John P. [ABB, Inc., Cary, NC (United States); Liu, Shu [ABB, Inc., Cary, NC (United States); Ibanez, Eduardo [National Renewable Energy Lab. (NREL), Golden, CO (United States); Pennock, Ken [AWS Truepower, Albany, NY (United States); Reed, Gregory [Univ. of Pittsburgh, PA (United States); Hanes, Spencer [Duke Energy, Charlotte, NC (United States)

    2014-07-30

    The National Offshore Wind Energy Grid Interconnection Study (NOWEGIS) considers the availability and potential impacts of interconnecting large amounts of offshore wind energy into the transmission system of the lower 48 contiguous United States.

  4. National Offshore Wind Energy Grid Interconnection Study Full Report

    Energy Technology Data Exchange (ETDEWEB)

    Daniel, John P. [ABB, Inc., Cary, NC (United States); Liu, Shu [ABB, Inc., Cary, NC (United States); Ibanez, Eduardo [National Renewable Energy Lab. (NREL), Golden, CO (United States); Pennock, Ken [AWS Truepower, Albany, NY (United States); Reed, Gregory [Univ. of Pittsburgh, PA (United States); Hanes, Spencer [Duke Energy, Charlotte, NC (United States)

    2014-07-30

    The National Offshore Wind Energy Grid Interconnection Study (NOWEGIS) considers the availability and potential impacts of interconnecting large amounts of offshore wind energy into the transmission system of the lower 48 contiguous United States.

  5. Graphene-Boron Nitride Heterostructure Based Optoelectronic Devices for On-Chip Optical Interconnects

    Science.gov (United States)

    Gao, Yuanda

    Graphene has emerged as an appealing material for a variety of optoelectronic applications due to its unique electrical and optical characteristics. In this thesis, I will present recent advances in integrating graphene and graphene-boron nitride (BN) heterostructures with confined optical architectures, e.g. planar photonic crystal (PPC) nanocavities and silicon channel waveguides, to make this otherwise weakly absorbing material optically opaque. Based on these integrations, I will further demonstrate the resulting chip-integrated optoelectronic devices for optical interconnects. After transferring a layer of graphene onto PPC nanocavities, spectral selectivity at the resonance frequency and orders-of-magnitude enhancement of optical coupling with graphene have been observed in infrared spectrum. By applying electrostatic potential to graphene, electro-optic modulation of the cavity reflection is possible with contrast in excess of 10 dB. And furthermore, a novel and complex modulator device structure based on the cavity-coupled and BN-encapsulated dual-layer graphene capacitor is demonstrated to operate at a speed of 1.2 GHz. On the other hand, an enhanced broad-spectrum light-graphene interaction coupled with silicon channel waveguides is also demonstrated with ?0.1 dB/?m transmission attenuation due to graphene absorption. A waveguide-integrated graphene photodetector is fabricated and shown 0.1 A/W photoresponsivity and 20 GHz operation speed. An improved version of a similar photodetector using graphene-BN heterostructure exhibits 0.36 A/W photoresponsivity and 42 GHz response speed. The integration of graphene and graphene-BN heterostructures with nanophotonic architectures promises a new generation of compact, energy-efficient, high-speed optoelectronic device concepts for on-chip optical communications that are not yet feasible or very difficult to realize using traditional bulk semiconductors.

  6. BALANCED TRUNCATED MODELS OF RC INTERCONNECT CIRCUITS AND THEIR SIMULATION

    Institute of Scientific and Technical Information of China (English)

    Yuan Baoguo; Wang Ben; Wang Shengguo

    2005-01-01

    The Balanced Truncation Method (BTM) is applied to an even distributed RC interconnect case by using Wang's closed-forms of even distributed RC interconnect models. The results show that extremely high order RC interconnect can be high-accurately approximated by only third order balanced model. Related simulations are executed in both time domain and frequency domain. The results may be applied to VLSI interconnect model reduction and design.

  7. Floating dielectric slab optical interconnection between metal-dielectric interface surface plasmon polariton waveguides.

    Science.gov (United States)

    Kang, Minsu; Park, Junghyun; Lee, Il-Min; Lee, Byoungho

    2009-01-19

    A simple and effective optical interconnection which connects two distanced single metal-dielectric interface surface plasmon waveguides by a floating dielectric slab waveguide (slab bridge) is proposed. Transmission characteristics of the suggested structure are numerically studied using rigorous coupled wave analysis, and design rules based on the study are given. In the wave-guiding part, if the slab bridge can support more than the fundamental mode, then the transmission efficiency of the interconnection shows strong periodic dependency on the length of the bridge, due to the multi-mode interference (MMI) effect. Otherwise, only small fluctuation occurs due to the Fabry-Pérot effect. In addition, light beating happens when the slab bridge is relatively short. In the wave-coupling part, on the other hand, gap-assisted transmission occurs at each overlapping region as a consequence of mode hybridization. Periodic dependency on the length of the overlap region also appears due to the MMI effect. According to these results, we propose design principles for achieving both high transmission efficiency and stability with respect to the variation of the interconnection distance, and we show how to obtain the transmission efficiency of 68.3% for the 1mm-long interconnection.

  8. Communication Requirements and Interconnect Optimization forHigh-End Scientific Applications

    Energy Technology Data Exchange (ETDEWEB)

    Kamil, Shoaib; Oliker, Leonid; Pinar, Ali; Shalf, John

    2007-11-12

    The path towards realizing peta-scale computing isincreasingly dependent on building supercomputers with unprecedentednumbers of processors. To prevent the interconnect from dominating theoverall cost of these ultra-scale systems, there is a critical need forhigh-performance network solutions whose costs scale linearly with systemsize. This work makes several unique contributions towards attaining thatgoal. First, we conduct one of the broadest studies to date of high-endapplication communication requirements, whose computational methodsinclude: finite-difference, lattice-bolzmann, particle in cell, sparselinear algebra, particle mesh ewald, and FFT-based solvers. Toefficiently collect this data, we use the IPM (Integrated PerformanceMonitoring) profiling layer to gather detailed messaging statistics withminimal impact to code performance. Using the derived communicationcharacterizations, we next present fit-trees interconnects, a novelapproach for designing network infrastructure at a fraction of thecomponent cost of traditional fat-tree solutions. Finally, we propose theHybrid Flexibly Assignable Switch Topology (HFAST) infrastructure, whichuses both passive (circuit) and active (packet) commodity switchcomponents to dynamically reconfigure interconnects to suit thetopological requirements of scientific applications. Overall ourexploration leads to a promising directions for practically addressingthe interconnect requirements of future peta-scale systems.

  9. Characterization of a Cobalt-Tungsten Interconnect

    DEFF Research Database (Denmark)

    Harthøj, Anders; Holt, Tobias; Caspersen, Michael

    2012-01-01

    A ferritic steel interconnect for a solid oxide fuel cell must be coated in order to prevent chromium evaporation from the steel substrate. The Technical University of Denmark and Topsoe Fuel Cell have developed an interconnect coating based on a cobalt-tungsten alloy. The purpose of the coating...... is to act both as a diffusion barrier for chromium and provide better protection against high temperature oxidation than a pure cobalt coating. This work presents a characterization of a cobalt-tungsten alloy coating electrodeposited on the ferritic steel Crofer 22 H which subsequently was oxidized in air...... of oxidation time. The coating had completely oxidized during the 300 h oxidation time. GDOES measurements showed that the tungsten was located in an inner zone in the coating/substrate interface. The outer layer of the coating did not contain any tungsten after oxidation but consisted mainly of cobalt...

  10. Development of Interconnect Technologies for Particle Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Tripathi, Mani [Univ. of California, Davis, CA (United States)

    2015-01-29

    This final report covers the three years of this grant, for the funding period 9/1/2010 - 8/31/2013. The project consisted of generic detector R&D work at UC Davis, with an emphasis on developing interconnect technologies for applications in HEP. Much of the work is done at our Facility for Interconnect Technologies (FIT) at UC Davis. FIT was established using ARRA funds, with further studies supported by this grant. Besides generic R&D work at UC Davis, FIT is engaged in providing bump bonding help to several DOE supported detector R&D efforts. Some of the developmental work was also supported by funding from other sources: continuing CMS project funds and the Linear Collider R&D funds. The latter program is now terminated. The three year program saw a good deal of progress on several fronts, which are reported here.

  11. A Thermal Model for Carbon Nanotube Interconnects

    Directory of Open Access Journals (Sweden)

    Clay Mayberry

    2013-04-01

    Full Text Available In this work, we have studied Joule heating in carbon nanotube based very large scale integration (VLSI interconnects and incorporated Joule heating influenced scattering in our previously developed current transport model. The theoretical model explains breakdown in carbon nanotube resistance which limits the current density. We have also studied scattering parameters of carbon nanotube (CNT interconnects and compared with the earlier work. For 1 µm length single-wall carbon nanotube, 3 dB frequency in S12 parameter reduces to ~120 GHz from 1 THz considering Joule heating. It has been found that bias voltage has little effect on scattering parameters, while length has very strong effect on scattering parameters.

  12. Interconnection of bundled solid oxide fuel cells

    Science.gov (United States)

    Brown, Michael; Bessette, II, Norman F; Litka, Anthony F; Schmidt, Douglas S

    2014-01-14

    A system and method for electrically interconnecting a plurality of fuel cells to provide dense packing of the fuel cells. Each one of the plurality of fuel cells has a plurality of discrete electrical connection points along an outer surface. Electrical connections are made directly between the discrete electrical connection points of adjacent fuel cells so that the fuel cells can be packed more densely. Fuel cells have at least one outer electrode and at least one discrete interconnection to an inner electrode, wherein the outer electrode is one of a cathode and and anode and wherein the inner electrode is the other of the cathode and the anode. In tubular solid oxide fuel cells the discrete electrical connection points are spaced along the length of the fuel cell.

  13. Architecture for on-die interconnect

    Science.gov (United States)

    Khare, Surhud; More, Ankit; Somasekhar, Dinesh; Dunning, David S.

    2016-03-15

    In an embodiment, an apparatus includes: a plurality of islands configured on a semiconductor die, each of the plurality of islands having a plurality of cores; and a plurality of network switches configured on the semiconductor die and each associated with one of the plurality of islands, where each network switch includes a plurality of output ports, a first set of the output ports are each to couple to the associated network switch of an island via a point-to-point interconnect and a second set of the output ports are each to couple to the associated network switches of a plurality of islands via a point-to-multipoint interconnect. Other embodiments are described and claimed.

  14. 14 CFR 23.957 - Flow between interconnected tanks.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Flow between interconnected tanks. 23.957... Fuel System § 23.957 Flow between interconnected tanks. (a) It must be impossible, in a gravity feed system with interconnected tank outlets, for enough fuel to flow between the tanks to cause an...

  15. 14 CFR 25.701 - Flap and slat interconnection.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Flap and slat interconnection. 25.701....701 Flap and slat interconnection. (a) Unless the airplane has safe flight characteristics with the... sides of the plane of symmetry must be synchronized by a mechanical interconnection or...

  16. 47 CFR 69.121 - Connection charges for expanded interconnection.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 3 2010-10-01 2010-10-01 false Connection charges for expanded interconnection... interconnection. (a) Appropriate connection charge subelements shall be established for the use of equipment and facilities that are associated with offerings of expanded interconnection for special access and...

  17. Algorithms for interconnection and decomposition problems with multidimensional systems

    NARCIS (Netherlands)

    Napp Avelli, Diego; Trentelman, Harry L.

    2007-01-01

    The notion of interconnection is the basis of control in the behavioral approach. In this setting, feedback interconnection of systems is based on the still more fundamental concept of regular interconnection, which has been introduced previously. In this paper, the following problem is addressed: g

  18. Nanophotonic approaches for nanoscale imaging and single-molecule detection at ultrahigh concentrations.

    Science.gov (United States)

    Mivelle, Mathieu; Van Zanten, Thomas S; Manzo, Carlo; Garcia-Parajo, Maria F

    2014-07-01

    Over the last decade, we have witnessed an outburst of many different optical techniques aimed at breaking the diffraction limit of light, providing super-resolution imaging on intact fixed cells. In parallel, single-molecule detection by means of fluorescence has become a common tool to investigate biological interactions at the molecular level both in vitro and in living cells. Despite these advances, visualization of dynamic events at relevant physiological concentrations at the nanometer scale remains challenging. In this review, we focus on recent advancements in the field of nanophotonics toward nanoimaging and single-molecule detection at ultrahigh sample concentrations. These approaches rely on the use of metal nanostructures known as optical antennas to localize and manipulate optical fields at the nanometer scale. We highlight examples on how different optical antenna geometries are being implemented for nanoscale imaging of cell membrane components. We also discuss different implementations of self-standing and two-dimensional antenna arrays for studying nanoscale dynamics in living cell membranes as well as detection of individual biomolecular interactions in the µM range for sensing applications.

  19. Nanophotonic lab-on-a-chip platforms including novel bimodal interferometers, microfluidics and grating couplers.

    Science.gov (United States)

    Duval, Daphné; González-Guerrero, Ana Belén; Dante, Stefania; Osmond, Johann; Monge, Rosa; Fernández, Luis J; Zinoviev, Kirill E; Domínguez, Carlos; Lechuga, Laura M

    2012-05-08

    One of the main limitations for achieving truly lab-on-a-chip (LOC) devices for point-of-care diagnosis is the incorporation of the "on-chip" detection. Indeed, most of the state-of-the-art LOC devices usually require complex read-out instrumentation, losing the main advantages of portability and simplicity. In this context, we present our last advances towards the achievement of a portable and label-free LOC platform with highly sensitive "on-chip" detection by using nanophotonic biosensors. Bimodal waveguide interferometers fabricated by standard silicon processes have been integrated with sub-micronic grating couplers for efficient light in-coupling, showing a phase resolution of 6.6 × 10(-4)× 2π rad and a limit of detection of 3.3 × 10(-7) refractive index unit (RIU) in bulk. A 3D network of SU-8 polymer microfluidics monolithically assembled at the wafer-level was included, ensuring perfect sealing and compact packaging. To overcome some of the drawbacks inherent to interferometric read-outs, a novel all-optical wavelength modulation system has been implemented, providing a linear response and a direct read-out of the phase variation. Sensitivity, specificity and reproducibility of the wavelength modulated BiMW sensor has been demonstrated through the label-free immunodetection of the human hormone hTSH at picomolar level using a reliable biofunctionalization process.

  20. Biocompatibility and cytotoxicity study of nanophotonic rigid gas permeable contact lens material

    Science.gov (United States)

    Tomić, M.; Munćan, J.; Stamenković, D.; Jokanović, M.; Matija, L.

    2013-04-01

    Since materials on nanoscale have different characteristics from materials on macro scale their biocompatibility should be precisely and specifically investigated. Fullerenes, the third carbon allotrope, are one of the most used nanomaterials. The least stable and the most common is fullerene C60. One of the main disadvantages of fullerene is its low solubility in water. In order to make it soluble, it must be functionalized with polar groups such as -OH and -COOH. From all the water soluble fullerenes the most important ones are those with -OH groups attached named fullerols. We have developed new materials for contact lenses by adding fullerene (C60) and fullerol (C60(OH)24) into PMMA. The aim of our investigation was to compare the influences of those materials on aqueous solutions similar to tear film. For the analysis of the solutions we used opto-magnetic imaging and IR spectroscopy. The acquired spectrums were commented and compared with the standard contact lens material, which was analyzed by the same methods. The ISO 10993 cytotoxicity test on extract of nanophotonic material with incorporated C60 was done as well. This research contributes to better understanding of the biocompatibility of new rigid gas permeable contact lens materials.

  1. Analysis of alternative splicing events for cancer diagnosis using a multiplexing nanophotonic biosensor.

    Science.gov (United States)

    Huertas, César S; Domínguez-Zotes, Santos; Lechuga, Laura M

    2017-01-25

    Personalized medicine is a promising tool not only for prevention, screening and development of more efficient treatment strategies, but also for diminishing the side effects caused by current therapies. Deciphering gene regulation pathways provides a reliable prognostic analysis to elucidate the origin of grave diseases and facilitate the selection of the most adequate treatment for each individual. Alternative splicing of mRNA precursors is one of these gene regulation pathways and enables cells to generate different protein outputs from the same gene depending on their developmental or homeostatic status. Its deregulation is strongly linked to disease onset and progression constituting a relevant and innovative class of biomarker. Herein we report a highly selective and sensitive nanophotonic biosensor based on the direct monitoring of the aberrant alternative splicing of Fas gene. Unlike conventional methods, the nanobiosensor performs a real-time detection of the specific isoforms in the fM-pM range without any cDNA synthesis or PCR amplification requirements. The nanobiosensor has been proven isoform-specific with no crosshybridization, greatly minimizing detection biases. The demonstrated high sensitivity and specificity make our nanobiosensor ideal for examining significant tumor-associated expression shifts of alternatively spliced isoforms for the early and accurate theranostics of cancer.

  2. Advanced in-situ electron-beam lithography for deterministic nanophotonic device processing

    Energy Technology Data Exchange (ETDEWEB)

    Kaganskiy, Arsenty; Gschrey, Manuel; Schlehahn, Alexander; Schmidt, Ronny; Schulze, Jan-Hindrik; Heindel, Tobias; Rodt, Sven, E-mail: srodt@physik.tu-berlin.de; Reitzenstein, Stephan [Institut für Festkörperphysik, Technische Universität Berlin, Hardenbergstraße 36, D-10623 Berlin (Germany); Strittmatter, André [Institut für Festkörperphysik, Technische Universität Berlin, Hardenbergstraße 36, D-10623 Berlin (Germany); Otto-von-Guericke Universität Magdeburg, Universitätsplatz 2, D-39106 Magdeburg (Germany)

    2015-07-15

    We report on an advanced in-situ electron-beam lithography technique based on high-resolution cathodoluminescence (CL) spectroscopy at low temperatures. The technique has been developed for the deterministic fabrication and quantitative evaluation of nanophotonic structures. It is of particular interest for the realization and optimization of non-classical light sources which require the pre-selection of single quantum dots (QDs) with very specific emission features. The two-step electron-beam lithography process comprises (a) the detailed optical study and selection of target QDs by means of CL-spectroscopy and (b) the precise retrieval of the locations and integration of target QDs into lithographically defined nanostructures. Our technology platform allows for a detailed pre-process determination of important optical and quantum optical properties of the QDs, such as the emission energies of excitonic complexes, the excitonic fine-structure splitting, the carrier dynamics, and the quantum nature of emission. In addition, it enables a direct and precise comparison of the optical properties of a single QD before and after integration which is very beneficial for the quantitative evaluation of cavity-enhanced quantum devices.

  3. Nano-photonic light trapping near the Lambertian limit in organic solar cell architectures.

    Science.gov (United States)

    Biswas, Rana; Timmons, Erik

    2013-09-09

    A critical step to achieving higher efficiency solar cells is the broad band harvesting of solar photons. Although considerable progress has recently been achieved in improving the power conversion efficiency of organic solar cells, these cells still do not absorb upto ~50% of the solar spectrum. We have designed and developed an organic solar cell architecture that can boost the absorption of photons by 40% and the photo-current by 50% for organic P3HT-PCBM absorber layers of typical device thicknesses. Our solar cell architecture is based on all layers of the solar cell being patterned in a conformal two-dimensionally periodic photonic crystal architecture. This results in very strong diffraction of photons- that increases the photon path length in the absorber layer, and plasmonic light concentration near the patterned organic-metal cathode interface. The absorption approaches the Lambertian limit. The simulations utilize a rigorous scattering matrix approach and provide bounds of the fundamental limits of nano-photonic light absorption in periodically textured organic solar cells. This solar cell architecture has the potential to increase the power conversion efficiency to 10% for single band gap organic solar cells utilizing long-wavelength absorbers.

  4. Photonics and nanophotonics and information and communication technologies in modern food packaging.

    Science.gov (United States)

    Sarapulova, Olha; Sherstiuk, Valentyn; Shvalagin, Vitaliy; Kukhta, Aleksander

    2015-01-01

    The analysis of the problem of conjunction of information and communication technologies (ICT) with packaging industry and food production was made. The perspective of combining the latest advances of nanotechnology, including nanophotonics, and ICT for creating modern smart packaging was shown. There were investigated luminescent films with zinc oxide nanoparticles, which change luminescence intensity as nano-ZnO interacts with decay compounds of food products, for active and intelligent packaging. High luminescent transparent films were obtained from colloidal suspension of ZnO and polyvinylpyrrolidone (PVP). The influence of molecular mass, concentration of nano-ZnO, and film thickness on luminescent properties of films was studied in order to optimize the content of the compositions. The possibility of covering the obtained films with polyvinyl alcohol was considered for eliminating water soluble properties of PVP. The luminescent properties of films with different covers were studied. The insoluble in water composition based on ZnO stabilized with colloidal silicon dioxide and PVP in polymethylmethacrylate was developed, and the luminescent properties of films were investigated. The compositions are non-toxic, safe, and suitable for applying to the inner surface of active and intelligent packaging by printing techniques, such as screen printing, flexography, inkjet, and pad printing.

  5. Light Controlling at Subwavelength Scales in Nanophotonic Systems: Physics and Applications

    Science.gov (United States)

    Shen, Yuecheng

    The capability of controlling light at scales that are much smaller than the operating wave-length enables new optical functionalities, and opens up a wide range of applications. Such a capability is out of the realm of conventional optical approaches. This dissertation aims to explore the light-matter interactions at nanometer scale, and to investigate the novel scien-tific and industrial applications. In particular, we will explain how to detect nanoparticles using an ultra-sensitive nano-sensor; we will also describe a photonic diode which gener-ates a unidirectional flow of single photons; Moreover, in an one-dimensional waveguide QED system where the fermionic degree of freedom is present, we will show that strong photon-photon interactions can be generated through scattering means, leading to photonic bunching and anti-bunching with various applications. Finally, we will introduce a mecha-nism to achieve super-resolution to discern fine features that are orders of magnitude smaller than the illuminating wavelength. These research projects incorporate recent advances in quantum nanophotonics, nanotechnologies, imaging reconstruction techniques, and rigorous numerical simulations.

  6. Nanophotonic detection of freely interacting molecules on a single influenza virus

    Science.gov (United States)

    Kang, Pilgyu; Schein, Perry; Serey, Xavier; O'Dell, Dakota; Erickson, David

    2015-07-01

    Biomolecular interactions, such as antibody-antigen binding, are fundamental to many biological processes. At present, most techniques for analyzing these interactions require immobilizing one or both of the interacting molecules on an assay plate or a sensor surface. This is convenient experimentally but can constrain the natural binding affinity and capacity of the molecules, resulting in data that can deviate from the natural free-solution behavior. Here we demonstrate a label-free method for analyzing free-solution interactions between a single influenza virus and specific antibodies at the single particle level using near-field optical trapping and light-scattering techniques. We determine the number of specific antibodies binding to an optically trapped influenza virus by analyzing the change of the Brownian fluctuations of the virus. We develop an analytical model that determines the increased size of the virus resulting from antibodies binding to the virus membrane with uncertainty of ±1-2 nm. We present stoichiometric results of 26 ± 4 (6.8 ± 1.1 attogram) anti-influenza antibodies binding to an H1N1 influenza virus. Our technique can be applied to a wide range of molecular interactions because the nanophotonic tweezer can handle molecules from tens to thousands of nanometers in diameter.

  7. Viewing Integrated-Circuit Interconnections By SEM

    Science.gov (United States)

    Lawton, Russel A.; Gauldin, Robert E.; Ruiz, Ronald P.

    1990-01-01

    Back-scattering of energetic electrons reveals hidden metal layers. Experiment shows that with suitable operating adjustments, scanning electron microscopy (SEM) used to look for defects in aluminum interconnections in integrated circuits. Enables monitoring, in situ, of changes in defects caused by changes in temperature. Gives truer picture of defects, as etching can change stress field of metal-and-passivation pattern, causing changes in defects.

  8. Market Based Analysis of Power System Interconnections

    Science.gov (United States)

    Obushevs, Artjoms; Turcik, Mario; Oleinikova, Irina; Junghans, Gatis

    2011-01-01

    Analysis in this Article is focused on usage of transmission grid under liberalized market with implicit transmission capacity allocation method, e.g. Nordic market. Attention is paid on fundamental changes in transmission utilization and its economical effective operation. For interconnection and power flow analysis and losses calculation model of Nordic grid was developed and transmission losses calculation method was created. Given approach will improve economical efficiency of system operation in electricity market conditions.

  9. Stackable Electronic Computer Modules And Interconnections

    Science.gov (United States)

    Bolotin, Gary S.

    1996-01-01

    Design concept for multiprocessor computer system calls for digital electronic processing circuits of various functionalities contained within identically shaped and sized regular polygonal modules interconnected and stacked by use of rings around edges. Rings contain wide-band bus circuits configured to provide connections to adjacent modules in same layer of stack and/or to modules in different layers. Provides flexibility of configuration to implement any of large variety of designs.

  10. High Performance Interconnect Network for Tianhe System

    Institute of Scientific and Technical Information of China (English)

    廖湘科; 庞征斌; 王克非; 卢宇彤; 谢旻; 夏军; 董德尊; 所光

    2015-01-01

    In this paper, we present the Tianhe-2 interconnect network and message passing services. We describe the architecture of the router and network interface chips, and highlight a set of hardware and software features effectively supporting high performance communications, ranging over remote direct memory access, collective optimization, hardware-enable reliable end-to-end communication, user-level message passing services, etc. Measured hardware performance results are also presented.

  11. Reconfigurable Optical Interconnections Using Dynamic Optoelectronic Holograms

    Science.gov (United States)

    Schulze, Elmar

    1988-04-01

    Increasing complexity and processing speed of electronic circuits and a high device density have led to serious problems in electrical interconnections. Their limitations arise from their signal transmission capacity. power consumption. crosstalk. and reliability. Optical links may solve such problems by offering high data rates of several gigabits per second. large fanouts of up to 100 loads. good reliability and less power expenditure. Optical fibers, integrated optical waveguides or free-space transmission links may be applicable. For the free-space links, lenses. mirrors and holograms can be used to guide the light waves. In this paper, reconfigurable optical interconnection schemes are proposed and described which are based on optoelectronic holograms. Their interference patterns can be changed dynamically. To establish connections as free-space links, the light beams emitted from even hundreds of light sources are imaged onto an array of small dynamic holograms. Their interference patterns are optically and electronically controllable. These holograms diffract and focus each of the incident light beams individually onto the receiving photo-diodes. By changing the hologram interference patterns dynamically. an optical switch is obtained. It renders the establishment of reconfigurable optical interconnections. As optoelectronic holograms very-high-resolution spatial light modulators are proposed.

  12. The first LHC sector is fully interconnected

    CERN Multimedia

    2006-01-01

    Sector 7-8 is the first sector of the LHC to become fully operational. All the magnets, cryogenic line, vacuum chambers and services are interconnected. The cool down of this sector can soon commence. LHC project leader Lyn Evans, the teams from CERN's AT/MCS, AT/VAC and AT/MEL groups, and the members of the IEG consortium celebrate the completion of the first LHC sector. The 10th of November was a red letter day for the LHC accelerator teams, marking the completion of the first sector of the machine. The magnets of sector 7-8, together with the cryogenic line, the vacuum chambers and the distribution feedboxes (DFBs) are now all completely interconnected. Sector 7-8 has thus been closed and is the first LHC sector to become operational. The interconnection work required several thousand electrical, cryogenic and insulating connections to be made on the 210 interfaces between the magnets in the arc, the 30 interfaces between the special magnets and the interfaces with the cryogenic line. 'This represent...

  13. Potential roles of optical interconnections within broadband switching modules

    Science.gov (United States)

    Lalk, Gail R.; Habiby, Sarry F.; Hartman, Davis H.; Krchnavek, Robert R.; Wilson, Donald K.; Young, Kenneth C., Jr.

    1991-04-01

    An investigation of potential physical design bottlenecks in future broadband telecommunication switches has led to the identification of several areas where optical interconnections may play a role in the practical realization of required system performance. In the model used the speed and interconnection densities as well as requirements for ease-of-access and efficient power utilization challenge conventional partitioning and packaging strategies. Potential areas where optical interconnections may relieve some of the physical design bottlenecks include fiber management at the customer interface to the switch routing and distribution of high-density interconnections within the fabric of the switch and backplane interconnections to increase system throughput.

  14. Compact Models and Measurement Techniques for High-Speed Interconnects

    CERN Document Server

    Sharma, Rohit

    2012-01-01

    Compact Models and Measurement Techniques for High-Speed Interconnects provides detailed analysis of issues related to high-speed interconnects from the perspective of modeling approaches and measurement techniques. Particular focus is laid on the unified approach (variational method combined with the transverse transmission line technique) to develop efficient compact models for planar interconnects. This book will give a qualitative summary of the various reported modeling techniques and approaches and will help researchers and graduate students with deeper insights into interconnect models in particular and interconnect in general. Time domain and frequency domain measurement techniques and simulation methodology are also explained in this book.

  15. Parallel Interconnection of Broadcast Systems with Multiple FIFO Channels

    Science.gov (United States)

    de Juan Marín, Ruben; Cholvi, Vicent; Jiménez, Ernesto; Muñoz-Escoí, Francesc D.

    This paper proposes new protocols for the interconnection of FIFO- and causal-ordered broadcast systems, thus increasing their scalability. They use several interconnection links between systems, which avoids bottleneck problems due to the network traffic, since messages are not forced to go throughout a single link but instead through the several links we establish. General architectures to interconnect FIFO- and causal-ordered systems are proposed. Failure management is also discussed and a performance analysis is given, detailing the benefits introduced by these interconnection approaches that are able to easily increase the resulting interconnection bandwidth.

  16. Economic and environmental benefits of interconnected systems. The Spanish example

    Energy Technology Data Exchange (ETDEWEB)

    Chicharro, A.S.; Dios Alija, R. de [Red Electrica de Espana, Madrid (Spain)

    1996-12-31

    The interconnected systems provide large technical and economic benefits which, evaluated and contrasted with the associated network investment cost, usually produce important net savings. There are continental electrical systems formed by many interconnected subsystems. The optimal size of an interconnection should be defined within an economic background. It is necessary to take into account the global environmental effects. The approach and results of studies carried out by Red Electrica is presented, in order to analyse both economic and environmental benefits resulting from an increase in the present Spanish interconnection capacities. From both economic and environmental points of view, the development of the interconnected systems is highly positive. (author). 4 refs.

  17. Crosstalk in modern on-chip interconnects a FDTD approach

    CERN Document Server

    Kaushik, B K; Patnaik, Amalendu

    2016-01-01

    The book provides accurate FDTD models for on-chip interconnects, covering most recent advancements in materials and design. Furthermore, depending on the geometry and physical configurations, different electrical equivalent models for CNT and GNR based interconnects are presented. Based on the electrical equivalent models the performance comparison among the Cu, CNT and GNR-based interconnects are also discussed in the book. The proposed models are validated with the HSPICE simulations. The book introduces the current research scenario in the modeling of on-chip interconnects. It presents the structure, properties, and characteristics of graphene based on-chip interconnects and the FDTD modeling of Cu based on-chip interconnects. The model considers the non-linear effects of CMOS driver as well as the transmission line effects of interconnect line that includes coupling capacitance and mutual inductance effects. In a more realistic manner, the proposed model includes the effect of width-dependent MFP of the ...

  18. Carbon nanotubes for interconnects process, design and applications

    CERN Document Server

    Dijon, Jean; Maffucci, Antonio

    2017-01-01

    This book provides a single-source reference on the use of carbon nanotubes (CNTs) as interconnect material for horizontal, on-chip and 3D interconnects. The authors demonstrate the uses of bundles of CNTs, as innovative conducting material to fabricate interconnect through-silicon vias (TSVs), in order to improve the performance, reliability and integration of 3D integrated circuits (ICs). This book will be first to provide a coherent overview of exploiting carbon nanotubes for 3D interconnects covering aspects from processing, modeling, simulation, characterization and applications. Coverage also includes a thorough presentation of the application of CNTs as horizontal on-chip interconnects which can potentially revolutionize the nanoelectronics industry. This book is a must-read for anyone interested in the state-of-the-art on exploiting carbon nanotubes for interconnects for both 2D and 3D integrated circuits. Provides a single-source reference on carbon nanotubes for interconnect applications; Includes c...

  19. Focused-ion beam patterning of organolead trihalide perovskite for subwavelength grating nanophotonic applications

    KAUST Repository

    Alias, Mohd Sharizal

    2015-07-30

    The coherent amplified spontaneous emission and high photoluminescence quantum efficiency of organolead trihalide perovskite have led to research interest in this material for use in photonic devices. In this paper, the authors present a focused-ion beam patterning strategy for methylammonium lead tribromide (MAPbBr3) perovskite crystal for subwavelength grating nanophotonic applications. The essential parameters for milling, such as the number of scan passes, dwell time, ion dose, ion current, ion incident angle, and gas-assisted etching, were experimentally evaluated to determine the sputtering yield of the perovskite. Based on our patterning conditions, the authors observed that the sputtering yield ranged from 0.0302 to 0.0719 μm3/pC for the MAPbBr3 perovskite crystal. Using XeF2 for the focused-ion beam gas-assisted etching, the authors determined that the etching rate was reduced to between 0.40 and 0.97, depending on the ion dose, compared with milling with ions only. Using the optimized patterning parameters, the authors patterned binary and circular subwavelength grating reflectors on the MAPbBr3 perovskite crystal using the focused-ion beam technique. Based on the computed grating structure with around 97% reflectivity, all of the grating dimensions (period, duty cycle, and grating thickness) were patterned with nanoscale precision (>±3 nm), high contrast, and excellent uniformity. Our results provide a platform for utilizing the focused-ion beam technique for fast prototyping of photonic nanostructures or nanodevices on organolead trihalide perovskite.

  20. Resonant dielectric nanostructures: a low-loss platform for functional nanophotonics

    Science.gov (United States)

    Decker, Manuel; Staude, Isabelle

    2016-10-01

    This review overviews the state of the art of research into high-index dielectric nanoresonators and their use in functional photonic nanostructures at optical frequencies. We start by providing the motivations for this research area and by putting it into context with the more well-established subfields of nanophotonics, in particular nanoplasmonics. Following the introduction, fundamental concepts regarding the optical properties of subwavelength dielectric nanoresonators are established. To this end, we provide a brief summary of the Mie theory, before focussing on optically induced magnetic response in Mie-resonant dielectric nanoparticles. We discuss the influence of the nanoparticle’s shape on its optical response, and provide an overview of directional effects that can occur when light is scattered by a Mie-resonant nanoparticle. We then dedicate a few words to technology-related aspects, including an overview of fabrication methods for Mie-resonant dielectric nanoparticles. Next, recent progress on all-dielectric nanoantennas is presented, focussing on strategies to locally enhance optical near-fields and to achieve directional emission patterns. We then turn to all-dielectric metasurfaces and their potential applications. We touch on dielectric metamaterial reflectors and Fano-resonant dielectric metasurfaces, before discussing graded Mie-resonant dielectric metasurfaces for wavefront control applications in more detail. Following this, an overview of the recent progress in active, tunable and nonlinear dielectric nanostructures is provided. Finally, prospects and challenges are discussed, particularly the realization of highly efficient Mie-resonant nanostructures at visible frequencies, the integration of Mie-resonant nanostructures with active and functional materials, and the construction of three-dimensional high-index dielectric nanostructures.

  1. Nanophotonics and nanochemistry: controlling the excitation dynamics for frequency up- and down-conversion in lanthanide-doped nanoparticles.

    Science.gov (United States)

    Chen, Guanying; Yang, Chunhui; Prasad, Paras N

    2013-07-16

    Nanophotonics is an emerging science dealing with the interaction of light and matter on a nanometer scale and holds promise to produce new generation nanophosphors with highly efficient frequency conversion of infrared (IR) light. Scientists can control the excitation dynamics by using nanochemistry to produce hierarchically built nanostructures and tailor their interfaces. These nanophosphors can either perform frequency up-conversion from IR to visible or ultraviolet (UV) or down-conversion, which results in the IR light being further red shifted. Nanophotonics and nanochemistry open up numerous opportunities for these photon converters, including in high contrast bioimaging, photodynamic therapy, drug release and gene delivery, nanothermometry, and solar cells. Applications of these nanophosphors in these directions derive from three main stimuli. Light excitation and emission within the near-infrared (NIR) "optical transparency window" of tissues is ideal for high contrast in vitro and in vivo imaging. This is due to low natural florescence, reduced scattering background, and deep penetration in tissues. Secondly, the naked eye is highly sensitive in the visible range, but it has no response to IR light. Therefore, many scientists have interest in the frequency up-conversion of IR wavelengths for security and display applications. Lastly, frequency up-conversion can convert IR photons to higher energy photons, which can then readily be absorbed by solar materials. Current solar devices do not use abundant IR light that comprises almost half of solar energy. In this Account, we present our recent work on nanophotonic control of frequency up- and down-conversion in fluoride nanophosphors, and their biophotonic and nanophotonic applications. Through nanoscopic control of phonon dynamics, electronic energy transfer, local crystal field, and surface-induced non-radiative processes, we were able to produce new generation nanophosphors with highly efficient frequency

  2. Updating Interconnection Screens for PV System Integration

    Energy Technology Data Exchange (ETDEWEB)

    Coddington, M.; Mather, B.; Kroposki, B.; Lynn, K.; Razon, A.; Ellis, A.; Hill, R.; Key, T.; Nicole, K.; Smith, J.

    2012-02-01

    This white paper evaluates the origins and usefulness of the capacity penetration screen, offer short-term solutions which could effectively allow fast-track interconnection to many PV system applications, and considers longer-term solutions for increasing PV deployment levels in a safe and reliable manner while reducing or eliminating the emphasis on the penetration screen. Short-term and longer-term alternatives approaches are offered as examples; however, specific modifications to screening procedures should be discussed with stakeholders and must ultimately be adopted by state and federal regulatory bodies.

  3. Environmental Regulation Impacts on Eastern Interconnection Performance

    Energy Technology Data Exchange (ETDEWEB)

    Markham, Penn N [ORNL; Liu, Yilu [ORNL; Young II, Marcus Aaron [ORNL

    2013-07-01

    In the United States, recent environmental regulations will likely result in the removal of nearly 30 GW of oil and coal-fired generation from the power grid, mostly in the Eastern Interconnection (EI). The effects of this transition on voltage stability and transmission line flows have previously not been studied from a system-wide perspective. This report discusses the results of power flow studies designed to simulate the evolution of the EI over the next few years as traditional generation sources are replaced with environmentally friendlier ones such as natural gas and wind.

  4. Cryogenic microstripline-on-Kapton microwave interconnects

    CERN Document Server

    Harris, A I; Lau, J M; Church, S E; Samoska, L A; Cleary, K

    2012-01-01

    Simple broadband microwave interconnects are needed for increasing the size of focal plane heterodyne radiometer arrays. We have measured loss and cross-talk for arrays of microstrip transmission lines in flex circuit technology at 297 and 77 K, finding good performance to at least 20 GHz. The dielectric constant of Kapton substrates changes very little from 297 to 77 K, and the electrical loss drops. The small cross-sectional area of metal in a printed circuit structure yields overall thermal conductivities similar to stainless steel coaxial cable. Operationally, the main performance tradeoffs are between crosstalk and thermal conductivity. We tested a patterned ground plane to reduce heat flux.

  5. Repairable chip bonding/interconnect process

    Science.gov (United States)

    Bernhardt, Anthony F.; Contolini, Robert J.; Malba, Vincent; Riddle, Robert A.

    1997-01-01

    A repairable, chip-to-board interconnect process which addresses cost and testability issues in the multi-chip modules. This process can be carried out using a chip-on-sacrificial-substrate technique, involving laser processing. This process avoids the curing/solvent evolution problems encountered in prior approaches, as well is resolving prior plating problems and the requirements for fillets. For repairable high speed chip-to-board connection, transmission lines can be formed on the sides of the chip from chip bond pads, ending in a gull wing at the bottom of the chip for subsequent solder.

  6. Manipulating Multistage Interconnection Networks Using Fundamental Arrangements

    Directory of Open Access Journals (Sweden)

    E. Gur

    2010-12-01

    Full Text Available Optimizing interconnection networks is a prime object in switching schemes. In this work the authors present a novel approach for obtaining a required channel arrangement in a multi-stage interconnectionnetwork, using a new concept – a fundamental arrangement. The fundamental arrangement is an initial N-1 stage switch arrangement that allows obtaining any required output channel arrangement given an input arrangement, using N/2 binary switches at each stage. The paper demonstrates how a fundamental arrangement can be achieved and how, once this is done, any required arrangement may be obtained within 2(N-1 steps.

  7. NITINOL Interconnect Device for Optical Fiber Waveguides

    Science.gov (United States)

    1981-07-01

    LE EL,~NAVSEA REPORT NO. S27L~kV-NL 4P fNSWNC TR 81-129 1 JULY 1981 0 NITINOL INTERC&INECT DEVICE FOR OPTICAL FIBER WAVEGUIDES FINAL REPORT A...ACCESSION NO. 3. RECIPIENT’S CATALOG NUMBER NSWC TR 81-129I 1-19 -A )ci , ’ 4 TI TL E (and Sbtitle) S. TYPE OF REPORT & PERIOD COVERED NITINOL ... NITINOL Optical Fibers 20. ABSTRACT (Continue on reverse side if neceeewy and identify by block number) Two different interconnect devices for optical

  8. Hot Chips and Hot Interconnects for High End Computing Systems

    Science.gov (United States)

    Saini, Subhash

    2005-01-01

    I will discuss several processors: 1. The Cray proprietary processor used in the Cray X1; 2. The IBM Power 3 and Power 4 used in an IBM SP 3 and IBM SP 4 systems; 3. The Intel Itanium and Xeon, used in the SGI Altix systems and clusters respectively; 4. IBM System-on-a-Chip used in IBM BlueGene/L; 5. HP Alpha EV68 processor used in DOE ASCI Q cluster; 6. SPARC64 V processor, which is used in the Fujitsu PRIMEPOWER HPC2500; 7. An NEC proprietary processor, which is used in NEC SX-6/7; 8. Power 4+ processor, which is used in Hitachi SR11000; 9. NEC proprietary processor, which is used in Earth Simulator. The IBM POWER5 and Red Storm Computing Systems will also be discussed. The architectures of these processors will first be presented, followed by interconnection networks and a description of high-end computer systems based on these processors and networks. The performance of various hardware/programming model combinations will then be compared, based on latest NAS Parallel Benchmark results (MPI, OpenMP/HPF and hybrid (MPI + OpenMP). The tutorial will conclude with a discussion of general trends in the field of high performance computing, (quantum computing, DNA computing, cellular engineering, and neural networks).

  9. An interconnecting bus power optimization method combining interconnect wire spacing with wire ordering

    Institute of Scientific and Technical Information of China (English)

    Zhu Zhang-Ming; Hao Bao-Tian; En Yun-Fei; Yang Yin-Tang; Li Yue-Jin

    2011-01-01

    On-chip interconnect buses consume tens of percents of dynamic power in a nanometer scale integrated circuit and they will consume more power with the rapid scaling down of technology size and continuously rising clock frequency,therefore it is meaningful to lower the interconnecting bus power in design. In this paper, a simple yet accurate interconnect parasitic capacitance model is presented first and then, based on this model, a novel interconnecting bus optimization method is proposed. Wire spacing is a process for spacing wires for minimum dynamic power, while wire ordering is a process that searches for wire orders that maximally enhance it. The method, i.e., combining wire spacing with wire ordering, focuses on bus dynamic power optimization with a consideration of bus performance requirements.The optimization method is verified based on various nanometer technology parameters, showing that with 50% slack of routing space, 25.71% and 32.65% of power can be saved on average by the proposed optimization method for a globalbus and an intermediate bus, respectively, under a 65-nm technology node, compared with 21.78% and 27.68% of power saved on average by uniform spacing technology. The proposed method is especially suitable for computer-aided designof nanometer scale on-chip buses.

  10. National Offshore Wind Energy Grid Interconnection Study

    Energy Technology Data Exchange (ETDEWEB)

    Daniel, John P. [ABB Inc; Liu, Shu [ABB Inc; Ibanez, Eduardo [National Renewable Energy Laboratory; Pennock, Ken [AWS Truepower; Reed, Greg [University of Pittsburgh; Hanes, Spencer [Duke Energy

    2014-07-30

    The National Offshore Wind Energy Grid Interconnection Study (NOWEGIS) considers the availability and potential impacts of interconnecting large amounts of offshore wind energy into the transmission system of the lower 48 contiguous United States. A total of 54GW of offshore wind was assumed to be the target for the analyses conducted. A variety of issues are considered including: the anticipated staging of offshore wind; the offshore wind resource availability; offshore wind energy power production profiles; offshore wind variability; present and potential technologies for collection and delivery of offshore wind energy to the onshore grid; potential impacts to existing utility systems most likely to receive large amounts of offshore wind; and regulatory influences on offshore wind development. The technologies considered the reliability of various high-voltage ac (HVAC) and high-voltage dc (HVDC) technology options and configurations. The utility system impacts of GW-scale integration of offshore wind are considered from an operational steady-state perspective and from a regional and national production cost perspective.

  11. Message Passing Framework for Globally Interconnected Clusters

    Science.gov (United States)

    Hafeez, M.; Asghar, S.; Malik, U. A.; Rehman, A.; Riaz, N.

    2011-12-01

    In prevailing technology trends it is apparent that the network requirements and technologies will advance in future. Therefore the need of High Performance Computing (HPC) based implementation for interconnecting clusters is comprehensible for scalability of clusters. Grid computing provides global infrastructure of interconnecting clusters consisting of dispersed computing resources over Internet. On the other hand the leading model for HPC programming is Message Passing Interface (MPI). As compared to Grid computing, MPI is better suited for solving most of the complex computational problems. MPI itself is restricted to a single cluster. It does not support message passing over the internet to use the computing resources of different clusters in an optimal way. We propose a model that provides message passing capabilities between parallel applications over the internet. The proposed model is based on Architecture for Java Universal Message Passing (A-JUMP) framework and Enterprise Service Bus (ESB) named as High Performance Computing Bus. The HPC Bus is built using ActiveMQ. HPC Bus is responsible for communication and message passing in an asynchronous manner. Asynchronous mode of communication offers an assurance for message delivery as well as a fault tolerance mechanism for message passing. The idea presented in this paper effectively utilizes wide-area intercluster networks. It also provides scheduling, dynamic resource discovery and allocation, and sub-clustering of resources for different jobs. Performance analysis and comparison study of the proposed framework with P2P-MPI are also presented in this paper.

  12. SIP Trunking — General Requirements for Interconnecting Enterprise Networks

    Directory of Open Access Journals (Sweden)

    Stephan Massner

    2013-10-01

    Full Text Available Based on defined User-to-Network Interconnection (UNI as well as Network-to-Network Interconnection (NNI types various interconnection modes are practicable. These modes allow a further description of interconnection models as well as architecture models including interconnection functions and related interfaces. Topics covered in this article comprise functional entities and related interfaces interconnecting Internet Protocol (IP network domains as well as interfaces between these border functions. Mainly focussed functionalities are Session Border Controllers (SBC from various vendors handling Voice over IP (VoIP session control traffic, SIP traffic specifically. Furthermore, partial and not standardised topics belonging to sub-functions and reference points are disclosed. Prerequisites in view of the continuous work are treated of beyond analyses and classifications of standardisation even if not all open-end questions can be answered completely in subsequent studies 

  13. IP Telephony Interconnection Reference Challenges, Models, and Engineering

    CERN Document Server

    Boucadair, Mohamed; Neves, Pedro Miguel; Einarsson, Olafur Pall

    2011-01-01

    Addressing the growth of IP telephony service offerings within the corporate and residential realm, IP Telephony Interconnection Reference: Challenges, Models, and Engineering examines the technical and regulatory issues related to IP telephony interconnection at the large scale. It describes business and interconnection models, reviews emerging architectures such as IMS and TISPAN, identifies commonly-encountered issues, and supplies solutions to technical issues. The authors offer a detailed overview of SPEERMINT activity and proposed architecture, the current work undertaken in i3 Forum, an

  14. Probability density function modeling for sub-powered interconnects

    Science.gov (United States)

    Pater, Flavius; Amaricǎi, Alexandru

    2016-06-01

    This paper proposes three mathematical models for reliability probability density function modeling the interconnect supplied at sub-threshold voltages: spline curve approximations, Gaussian models,and sine interpolation. The proposed analysis aims at determining the most appropriate fitting for the switching delay - probability of correct switching for sub-powered interconnects. We compare the three mathematical models with the Monte-Carlo simulations of interconnects for 45 nm CMOS technology supplied at 0.25V.

  15. Research on optical multistage butterfly interconnection and optoelectronic logic operations

    Science.gov (United States)

    Sun, De-Gui; Wang, Na-Xin; He, Li-Ming; Xu, Mai; Liang, Guo-Dong; Zheng, Jie

    We briefly study butterfly interconnection construction and propose an experimental approach to implementing multistage butterfly interconnection networks by using a special interconnection grating with the reflection ladder structure and liquid crystal light valves (LCLVs), and implementing the optical butterfly interconnections and primary optical digital logic operations. With this foundation, we analyse and discuss the features of the approach by computer simulations. In terms of our theoretical analyses, we improve the ring-circuit approach, based on the reflection ladder structure gratings, into a more suitable form based on transmission gratings, and we substitute the LCLVs with optoelectronic switches. Finally we give the experimental results of both the transmission grating and optoelectronic switches.

  16. 78 FR 73239 - Small Generator Interconnection Agreements and Procedures

    Science.gov (United States)

    2013-12-05

    ... technologies. (Institute of Electrical and Electronics Engineers (IEEE) Standard 1547 for Interconnecting... Electricity Consumers Resource Council, American Chemistry Council, American Forest & Paper...

  17. Cost based interconnection charges as a way to induce competition

    DEFF Research Database (Denmark)

    Falch, Morten

    The objective of this paper is to analyse the relationship between regulation of interconnection charges and the level of competition. One of the most important issues in the debate on interconnect regulation has been use of forward looking costs for setting of interconnection charges. This debate...... has been ongoing within the EU as well as in US. This paper discusses the European experiences and in particular the Danish experiences with use of cost based interconnection charges, and their impact on competition in the telecom market....

  18. High efficiency light conversion between micro- and nano-photonic circuits

    Science.gov (United States)

    Gu, Zhiyuan; Xiao, Shumin; Song, Qinghai

    2016-07-01

    We theoretically demonstrate a tapered waveguide that is compatible with a silicon waveguide and hybrid plasmonic waveguide simultaneously. As much as 90% of the energy can be transferred from the photonic mode to plasmonic mode and vice versa.

  19. Electrical Properties of Graphene for Interconnect Applications

    Directory of Open Access Journals (Sweden)

    Antonio Maffucci

    2014-05-01

    Full Text Available A semi-classical electrodynamical model is derived to describe the electrical transport along graphene, based on the modified Boltzmann transport equation. The model is derived in the typical operating conditions predicted for future integrated circuits nano-interconnects, i.e., a low bias condition and an operating frequency up to 1 THz. A generalized non-local dispersive Ohm’s law is derived, which can be regarded as the constitutive equation for the material. The behavior of the electrical conductivity is studied with reference to a 2D case (the infinite graphene layer and a 1D case (the graphene nanoribbons. The modulation effects of the nanoribbons’ size and chirality are highlighted, as well as the spatial dispersion introduced in the 2D case by the dyadic nature of the conductivity.

  20. Functionality Inspection of Interconnected Fire Protection Systems

    DEFF Research Database (Denmark)

    Kærup, René; Jomaas, Grunde

    2014-01-01

    systems, such as a smoke detection system, sprinkler system, warning system and fire ventilation system. However, only smoke detections systems and sprinkler systems require inspection from an independent accredited company, whereas the other systems’ functionality is entirely up to the professionals...... that install them and the owner’s maintenance schedule, both of which do not require any supervision from the authorities. Herein, 12 complex buildings, in which all fire protections systems were inspected by an independent accredited company, were studied to see whether or not the buildings adhere to the fire...... safety design in their operational phase. The results showed that the functionality of the interconnected fire protection systems was not as designed in the performance-based analysis. Furthermore, due to the lack of this functionality the fire safety level is not at high as the authorities’ demand...

  1. Virtual interconnection platform initiative scoping study

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yong [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kou, Gefei [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Pan, Zuohong [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Liu, Yilu [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); King Jr., Thomas J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-01-01

    Due to security and liability concerns, the research community has limited access to realistic large-scale power grid models to test and validate new operation and control methodologies. It is also difficult for industry to evaluate the relative value of competing new tools without a common platform for comparison. This report proposes to develop a large-scale virtual power grid model that retains basic features and represents future trends of major U.S. electric interconnections. This model will include realistic power flow and dynamics information as well as a relevant geospatial distribution of assets. This model will be made widely available to the research community for various power system stability and control studies and can be used as a common platform for comparing the efficacies of various new technologies.

  2. Multimode siloxane polymer components for optical interconnects

    Science.gov (United States)

    Bamiedakis, Nikolaos; Beals, Joseph, IV; Penty, Richard V.; White, Ian H.; DeGroot, Jon v., Jr.; Clapp, Terry V.; De Shazer, David

    2009-02-01

    This paper presents an overview of multimode waveguides and waveguide components formed from siloxane polymer materials which are suitable for use in optical interconnection applications. The components can be cost-effectively integrated onto conventional PCBs and offer increased functionality in optical transmission. The multimode waveguides exhibit low loss (0.04 dB/cm at 850 nm) and low crosstalk (benefit from the multimode nature of the waveguides allowing low loss combining (4 dB for an 8×1 device). A large range of power splitting ratios between 30% and 75% is achieved with multimode coupler devices. Examples of system applications benefiting from the use of these components are briefly presented including a terabit capacity optical backplane, a radio-over-fibre multicasting system and a SCM passive optical network.

  3. Tomographic reconstruction of an integrated circuit interconnect

    Energy Technology Data Exchange (ETDEWEB)

    Levine, Z.H. [National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States); Kalukin, A.R. [Physics Department, Rensselaer Polytechnic Institute, Troy, New York 12180-3590 (United States); Frigo, S.P.; McNulty, I. [Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Kuhn, M. [Digital Equipment Corporation, Hudson, Massachusetts 01749 (United States)

    1999-01-01

    An Al{endash}W-silica integrated circuit interconnect sample was thinned to several {mu}m and scanned across a 200 nm focal spot of a Fresnel zone plate operating at photon energy of 1573 eV. The experiment was performed on beamline 2-ID-B of the Advanced Photon Source, a third-generation synchrotron facility. Thirteen scanned projections of the sample were acquired over the angular range {plus_minus}69.2{degree}. At least 301{times}301 pixels were acquired at each angle with a step size of 77{times}57 nm. A three-dimensional image with an approximate uncertainty of 400 nm was reconstructed from projection data using a standard algorithm. The two layers of the integrated circuit and the presence of the focused ion beam markers on the surface of the sample are clearly shown in the reconstruction. {copyright} {ital 1999 American Institute of Physics.}

  4. New transmission interconnection reduces consumer costs

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2008-09-15

    The Central American electric interconnection system (SIEPAC) project will involve the construction of a 1830 km 230 kV transmission system that will link Guatemala, El Salvador, Honduras, Costa Rica, Nicaragua, and Panama. The system is expected to alleviate the region's power shortages and reduce electricity costs for consumers. Costs for the SIEPAC project have been estimated at $370 million. The system will serve approximately 37 million customers, and will include 15 substations. The contract for building the electrical equipment has been awarded to Schweitzer Engineering Laboratories (SEL) who plan to manufacture components at a plant in Mexico. The equipment will include high speed line protection, automation, and control systems. Line current differential systems and satellite-synchronized clocks will also be used. The new transmission system is expected to be fully operational by 2009. 1 fig.

  5. Electric currents in networks of interconnected memristors.

    Science.gov (United States)

    Nedaaee Oskoee, Ehsan; Sahimi, Muhammad

    2011-03-01

    Chua [IEEE Trans. Circuit Theory 1, 507 (1971).] argued that, in addition to the standard resistors, capacitors, and inductors, there must be a fourth fundamental element in electrical circuits, which he called a memory resistor or memristor. Strukov et al. [Nature (London) 453, 80 (2008)] showed how memristive behavior arises in some thin semiconducting films. Unlike other passive elements, however, a memristor with large sizes cannot be fabricated, because scale up of a memristor to dimensions of the order of microns causes loss of the memristive effect by decreasing the width of the doped region relative to the overall size of the memristor. A microscale memristor is, however, essential to most of the potential applications. One way of fabricating such a microscale memristor without losing the memristive effect is to make a network of very small interconnected memristors. We report the results of numerical simulations of electrical currents in such networks of interconnected memristors, as well as memristors and Ohmic conductors. The memristor networks exhibit a rich variety of interesting properties, including weakly and strongly memristive regimes, a possible first-order transition at the connectivity threshold, generation of second harmonics in the strongly memristive regime, and the universal dependence of the network's strength on the frequency. Moreover, we show that the polarity of the memristors can play an important role in the overall properties of the memristor network, in particular its speed of switching, which may have a potentially important application to faster computers. None of these properties are exhibited by linear resistor networks, or even by nonlinear resistor networks without a memory effect.

  6. Development of 3d micro-nano hybrid patterns using anodized aluminum and micro-indentation

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Hong Gue; Kwon, Jong Tae [Division of Mechanical Engineering and Mechatronics, Kangwon National University, 1 Kangwondaehakgil, Chunchon, Gangwon-do, 200-701 (Korea, Republic of); Seo, Young Ho [Division of Mechanical Engineering and Mechatronics, Kangwon National University, 1 Kangwondaehakgil, Chunchon, Gangwon-do, 200-701 (Korea, Republic of)], E-mail: mems@kangwon.ac.kr; Kim, Byeong Hee [Division of Mechanical Engineering and Mechatronics, Kangwon National University, 1 Kangwondaehakgil, Chunchon, Gangwon-do, 200-701 (Korea, Republic of)

    2008-07-31

    We developed a simple and cost-effective method of fabricating 3D micro-nano hybrid patterns in which micro-indentation is applied on the anodized aluminum substrate. Nano-patterns were formed first on the aluminum substrate, and then micro-patterns were fabricated by deforming the nano-patterned aluminum substrate. Hemispherical nano-patterns with a 150 nm-diameter on an aluminum substrate were fabricated by anodizing and alumina removing process. Then, micro-pyramid patterns with a side-length of 50 {mu}m were formed on the nano-patterns using micro-indentation. To verify 3D micro-nano hybrid patterns, we replicated 3D micro-nano hybrid patterns by a hot-embossing process. 3D micro-nano hybrid patterns may be used in nano-photonic devices and nano-biochips applications.

  7. Very Large Scale Optical Interconnect Systems For Different Types of Optical Interconnection Networks

    Directory of Open Access Journals (Sweden)

    Ahmed Nabih Zaki Rashed

    2012-04-01

    Full Text Available The need for scalable systems in market demands in terms of lower computing costs and protection of customer investment in computing: scaling up the system to quickly meet business growth is obviously a better way of protecting investment: hardware, software, and human resources. A scalable system should be incrementally expanded, delivering linear incremental performance with a near linear cost increase, and with minimal system redesign (size scalability, additionally, it should be able to use successive, faster processors with minimal additional costs and redesign (generation scalability. On the architecture side, the key design element is the interconnection network. The interconnection network must be able to increase in size using few building blocks and with minimum redesign, deliver a bandwidth that grows linearly with the increase in system size, maintain a low or (constant latency, incur linear cost increase, and readily support the use of new faster processors. The major problem is the ever-increasing speed of the processors themselves and the growing performance gap between processor technology and interconnect technology. Increased central processing unit (CPU speeds and effectiveness of memory latency-tolerating techniques.

  8. Circuit and interconnect design for high bit-rate applications

    NARCIS (Netherlands)

    Veenstra, H.

    2006-01-01

    This thesis presents circuit and interconnect design techniques and design flows that address the most difficult and ill-defined aspects of the design of ICs for high bit-rate applications. Bottlenecks in interconnect design, circuit design and on-chip signal distribution for high bit-rate applicati

  9. Updating Small Generator Interconnection Procedures for New Market Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Coddington, M.; Fox, K.; Stanfield, S.; Varnado, L.; Culley, T.; Sheehan, M.

    2012-12-01

    Federal and state regulators are faced with the challenge of keeping interconnection procedures updated against a backdrop of evolving technology, new codes and standards, and considerably transformed market conditions. This report is intended to educate policymakers and stakeholders on beneficial reforms that will keep interconnection processes efficient and cost-effective while maintaining a safe and reliable power system.

  10. 76 FR 35210 - Peetz Logan Interconnect, LLC; Notice of Filing

    Science.gov (United States)

    2011-06-16

    ... From the Federal Register Online via the Government Publishing Office ] DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Peetz Logan Interconnect, LLC; Notice of Filing Take notice that on June 3, 2011, Peetz Logan Interconnect, LLC (PLI) filed a response to a staff deficiency letter...

  11. Perspectives on the metallic interconnects for solid oxide fuel cells

    Institute of Scientific and Technical Information of China (English)

    ZHU Wei-zhong; YAN Mi

    2004-01-01

    The various stages and progress in the development of interconnect materials for solid oxide fuel cells (SOFCs) over the last two decades are reviewed. The criteria for the application of materials as interconnects are highlighted. Interconnects based on lanthanum chromite ceramics demonstrate many inherent drawbacks and therefore are only useful for SOFCs operating around 1000 ℃. The advance in the research of anode-supported flat SOFCs facilitates the replacement of ceramic interconnects with metallic ones due to their significantly lowered working temperature. Besides, interconnects made of metals or alloys offer many advantages as compared to their ceramic counterpart. The oxidation response and thermal expansion behaviors of various prospective metallic interconnects are examined and evaluated. The minimization of contact resistance to achieve desired and reliable stack performance during their projected lifetime still remains a highly challenging issue with metallic interconnects. Inexpensive coating materials and techniques may play a key role in pro moting the commercialization of SOFC stack whose interconnects are constructed of some current commercially available alloys. Alternatively, development of new metallic materials that are capable of forming stable oxide scales with sluggish growth rate and sufficient electrical conductivity is called for.

  12. High Speed Global On-Chip Interconnects and Transceivers

    NARCIS (Netherlands)

    Mensink, E.

    2007-01-01

    The data rate of global on-chip interconnects (up to 10 mm) is limited by a large distributed resistance and capacitance. This thesis describes methods to increase the achievable data rate of global on-chip interconnects with minimal chip area and power consumption, while maintaining data integrity.

  13. Interconnection of Dirac structures via kernel/image representation

    NARCIS (Netherlands)

    Iftime, Orest V.; Sandovici, Adrian

    2011-01-01

    Dirac structures are used to mathematically formalize the power-conserving interconnection structure of physical systems. For finite-dimensional systems several representations are available and it is known that the composition (or interconnection) of two Dirac structures is again a Dirac structure.

  14. Interconnection of subsystems in closed-loop systems

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik; Poulsen, Niels Kjølstad

    2009-01-01

    The focus in this paper is analysis of stability and controller design for interconnected systems. This includes both the case with known and unknown interconnected sub-system. The key element in both the stability analysis and controller design is the application of the Youla-Jabr-Bongiorno-Kuce...

  15. Laser induced forward transfer of interconnects for 3D integration

    NARCIS (Netherlands)

    Oosterhuis, G.; Prenen, A.; Huis in 't veld, A.J.

    2011-01-01

    Interconnects are an important cost driver in advanced 3D chip packaging. This holds for Through Silicon Vias (TSVs) for chip stacking, but also for other interconnect steps like re-distribution layers and solder bumps. Especially in applications with a low number (<100 mm-2) of relatively large

  16. Neuro-Fuzzy Computational Technique to Control Load Frequency in Hydro-Thermal Interconnected Power System

    Science.gov (United States)

    Prakash, S.; Sinha, S. K.

    2015-09-01

    In this research work, two areas hydro-thermal power system connected through tie-lines is considered. The perturbation of frequencies at the areas and resulting tie line power flows arise due to unpredictable load variations that cause mismatch between the generated and demanded powers. Due to rising and falling power demand, the real and reactive power balance is harmed; hence frequency and voltage get deviated from nominal value. This necessitates designing of an accurate and fast controller to maintain the system parameters at nominal value. The main purpose of system generation control is to balance the system generation against the load and losses so that the desired frequency and power interchange between neighboring systems are maintained. The intelligent controllers like fuzzy logic, artificial neural network (ANN) and hybrid fuzzy neural network approaches are used for automatic generation control for the two area interconnected power systems. Area 1 consists of thermal reheat power plant whereas area 2 consists of hydro power plant with electric governor. Performance evaluation is carried out by using intelligent (ANFIS, ANN and fuzzy) control and conventional PI and PID control approaches. To enhance the performance of controller sliding surface i.e. variable structure control is included. The model of interconnected power system has been developed with all five types of said controllers and simulated using MATLAB/SIMULINK package. The performance of the intelligent controllers has been compared with the conventional PI and PID controllers for the interconnected power system. A comparison of ANFIS, ANN, Fuzzy and PI, PID based approaches shows the superiority of proposed ANFIS over ANN, fuzzy and PI, PID. Thus the hybrid fuzzy neural network controller has better dynamic response i.e., quick in operation, reduced error magnitude and minimized frequency transients.

  17. Solar-cell interconnect design for terrestrial photovoltaic modules

    Science.gov (United States)

    Mon, G. R.; Moore, D. M.; Ross, R. G., Jr.

    1984-01-01

    Useful solar cell interconnect reliability design and life prediction algorithms are presented, together with experimental data indicating that the classical strain cycle (fatigue) curve for the interconnect material does not account for the statistical scatter that is required in reliability predictions. This shortcoming is presently addressed by fitting a functional form to experimental cumulative interconnect failure rate data, which thereby yields statistical fatigue curves enabling not only the prediction of cumulative interconnect failures during the design life of an array field, but also the quantitative interpretation of data from accelerated thermal cycling tests. Optimal interconnect cost reliability design algorithms are also derived which may allow the minimization of energy cost over the design life of the array field.

  18. Fuel cell electrode interconnect contact material encapsulation and method

    Science.gov (United States)

    Derose, Anthony J.; Haltiner, Jr., Karl J.; Gudyka, Russell A.; Bonadies, Joseph V.; Silvis, Thomas W.

    2016-05-31

    A fuel cell stack includes a plurality of fuel cell cassettes each including a fuel cell with an anode and a cathode. Each fuel cell cassette also includes an electrode interconnect adjacent to the anode or the cathode for providing electrical communication between an adjacent fuel cell cassette and the anode or the cathode. The interconnect includes a plurality of electrode interconnect protrusions defining a flow passage along the anode or the cathode for communicating oxidant or fuel to the anode or the cathode. An electrically conductive material is disposed between at least one of the electrode interconnect protrusions and the anode or the cathode in order to provide a stable electrical contact between the electrode interconnect and the anode or cathode. An encapsulating arrangement segregates the electrically conductive material from the flow passage thereby, preventing volatilization of the electrically conductive material in use of the fuel cell stack.

  19. Optimum intermediate fibers for reducing interconnection loss: exact solution.

    Science.gov (United States)

    Yablon, Andrew D; Sumetsky, M

    2007-03-15

    We derive an exact analytical solution for a transmission line of N single-mode intermediate optical fibers that minimize the interconnection loss between any two dissimilar fiber modes that are well described by that paraxial scalar wave equation. Our solution shows that N optimum intermediate fibers reduce the original interconnection loss by a factor of least 1/(N+1) and that the total interconnection loss is only a function of N and the original direct interconnection loss. Our solution is not restricted to axisymmetric fibers or mode fields and therefore could be useful for reducing the interconnection loss between microstructured optical fibers, between certain slab waveguides, or between fibers and optical sources or detectors.

  20. 76 FR 39870 - PJM Interconnection, LLC; PJM Power Providers Group v. PJM Interconnection, LLC; Notice of Date...

    Science.gov (United States)

    2011-07-07

    ... Energy Regulatory Commission PJM Interconnection, LLC; PJM Power Providers Group v. PJM Interconnection... presents an opportunity to exercise buyer market power; (2) whether the Fixed Resource Requirement (FRR... FRR option that allow parties to self-supply while deterring buyer market power. Parties will have...

  1. Quantum-statistical approach to electromagnetic wave propagation and dissipation inside dielectric media, nanophotonic and plasmonic waveguides

    CERN Document Server

    Zloshchastiev, Konstantin G

    2016-01-01

    Quantum-statistical effects occur during the propagation of electromagnetic (EM) waves inside the dielectric media or metamaterials, which include a large class of nanophotonic and plasmonic waveguides with dissipation and noise. Exploiting the formal analogy between the Schroedinger equation and the Maxwell equations for dielectric linear media, we rigorously derive the effective Hamiltonian operator which describes such propagation. This operator turns out to be essentially non-Hermitian in general, and pseudo-Hermitian in some special cases. Using the density operator approach for general non-Hermitian Hamiltonians, we derive a master equation that describes the statistical ensembles of EM wave modes. The method also describes the quantum dissipative and decoherence processes which happen during the wave's propagation, and, among other things, it reveals the conditions that are necessary to control the energy and information loss inside the above-mentioned materials.

  2. Laser fabrication of crystalline silicon nanoresonators from an amorphous film for low-loss all-dielectric nanophotonics

    CERN Document Server

    Dmitriev, P A; Milichko, V A; Mukhin, I S; Gudovskikh, A S; Sitnikova, A A; Samusev, A K; Krasnok, A E; Belov, P A

    2015-01-01

    The concept of high refractive index subwavelength dielectric nanoresonators, supporting electric and magnetic optical resonances, is a promising platform for waveguiding, sensing, and nonlinear nanophotonic devices. However, high concentration of defects in the nanoresonators diminishes their resonant properties, which are crucially dependent on their internal losses. Therefore, it seems to be inevitable to use initially crystalline materials for fabrication of the nanoresonators. Here, we show that the fabrication of crystalline (low-loss) resonant silicon nanoparticles by femtosecond laser ablation of amorphous (high-loss) silicon thin films is possible. We apply two conceptually different approaches: recently proposed laser-induced transfer and a novel laser writing technique for large-scale fabrication of the crystalline nanoparticles. The crystallinity of the fabricated nanoparticles is proven by Raman spectroscopy and electron transmission microscopy, whereas optical resonant properties of the nanopart...

  3. Laser fabrication of crystalline silicon nanoresonators from an amorphous film for low-loss all-dielectric nanophotonics

    Science.gov (United States)

    Dmitriev, P. A.; Makarov, S. V.; Milichko, V. A.; Mukhin, I. S.; Gudovskikh, A. S.; Sitnikova, A. A.; Samusev, A. K.; Krasnok, A. E.; Belov, P. A.

    2016-02-01

    The concept of high refractive index subwavelength dielectric nanoresonators, supporting electric and magnetic optical resonance, is a promising platform for waveguiding, sensing, and nonlinear nanophotonic devices. However, high concentration of defects in the nanoresonators diminishes their resonant properties, which are crucially dependent on their internal losses. Therefore, it seems to be inevitable to use initially crystalline materials for fabrication of the nanoresonators. Here, we show that the fabrication of crystalline (low-loss) resonant silicon nanoparticles by femtosecond laser ablation of amorphous (high-loss) silicon thin films is possible. We apply two conceptually different approaches: recently proposed laser-induced transfer and a novel laser writing technique for large-scale fabrication of the crystalline nanoparticles. The crystallinity of the fabricated nanoparticles is proven by Raman spectroscopy and electron transmission microscopy, whereas optical resonant properties of the nanoparticles are studied using dark-field optical spectroscopy and full-wave electromagnetic simulations.

  4. Multifunctional all-dielectric nano-optical systems using collective multipole Mie resonances: Towards on-chip integrated nanophotonics

    CERN Document Server

    Chattaraj, Swarnabha

    2016-01-01

    We present an analysis of the optical response of a class of on-chip integrated nano-photonic systems comprising all-dielectric building block based multifunctional light manipulating units (LMU) integrated with quantum dot (QD) light sources. The multiple functions (such as focusing excitation light, QD emission rate enhancement, photon guidance, and lossless propagation) are simultaneously realized using the collective Mie resonances of dipole and higher order multipole modes of the dielectric building blocks (DBBs) constituting a single structural unit, the LMU. Using analytical formulation based on Mie theory we demonstrate enhancement of the excitation light simultaneously with the guiding and propagation of the emitted light from a QD emitter integrated with the DBB based LMU. The QD-DBB integrated structures can serve as the basic element for building nano-optical active circuits for optical information processing in both classical and quantum realms.

  5. Atomic layer deposited second-order nonlinear optical metamaterial for back-end integration with CMOS-compatible nanophotonic circuitry.

    Science.gov (United States)

    Clemmen, Stéphane; Hermans, Artur; Solano, Eduardo; Dendooven, Jolien; Koskinen, Kalle; Kauranen, Martti; Brainis, Edouard; Detavernier, Christophe; Baets, Roel

    2015-11-15

    We report the fabrication of artificial unidimensional crystals exhibiting an effective bulk second-order nonlinearity. The crystals are created by cycling atomic layer deposition of three dielectric materials such that the resulting metamaterial is noncentrosymmetric in the direction of the deposition. Characterization of the structures by second-harmonic generation Maker-fringe measurements shows that the main component of their nonlinear susceptibility tensor is about 5 pm/V, which is comparable to well-established materials and more than an order of magnitude greater than reported for a similar crystal [Appl. Phys. Lett.107, 121903 (2015)APPLAB0003-695110.1063/1.4931492]. Our demonstration opens new possibilities for second-order nonlinear effects on CMOS-compatible nanophotonic platforms.

  6. Thermal Runaways in LHC Interconnections: Experiments

    CERN Document Server

    Willering, G P; Bottura, L; Scheuerlein, C; Verweij, A P

    2011-01-01

    The incident in the LHC in September 2008 occurred in an interconnection between two magnets of the 13 kA dipole circuit. This event was traced to a defect in one of the soldered joints between two superconducting cables stabilized by a copper busbar. Further investigation revealed defective joints of other types. A combination of (1) a poor contact between the superconducting cable and the copper stabilizer and (2) an electrical discontinuity in the stabilizer at the level of the connection can lead to an unprotected quench of the busbar. Once the heating power in the unprotected superconducting cable exceeds the heat removal capacity a thermal run-away occurs, resulting in a fast melt-down of the non-stabilized cable. We have performed a thorough investigation of the conditions upon which a thermal run-away in the defect can occur. To this aim, we have prepared heavily instrumented samples with well-defined and controlled defects. In this paper we describe the experiment, and the analysis of the data, and w...

  7. Maximizing Algebraic Connectivity in Interconnected Networks

    CERN Document Server

    Shakeri, Heman; Sahneh, Faryad Darabi; Poggi-Corradini, Pietro; Scoglio, Caterina

    2015-01-01

    Algebraic connectivity, the second eigenvalue of the Laplacian matrix, is a measure of node and link connectivity on networks. When studying interconnected networks it is useful to consider a multiplex model, where the component networks operate together with inter-layer links among them. In order to have a well-connected multilayer structure, it is necessary to optimally design these inter-layer links considering realistic constraints. In this work, we solve the problem of finding an optimal weight distribution for one-to-one inter-layer links under budget constraint. We show that for the special multiplex configurations with identical layers, the uniform weight distribution is always optimal. On the other hand, when the two layers are arbitrary, increasing the budget reveals the existence of two different regimes. Up to a certain threshold budget, the second eigenvalue of the supra-Laplacian is simple, the optimal weight distribution is uniform, and the Fiedler vector is constant on each layer. Increasing t...

  8. Additive Manufacturing of Hybrid Circuits

    Science.gov (United States)

    Sarobol, Pylin; Cook, Adam; Clem, Paul G.; Keicher, David; Hirschfeld, Deidre; Hall, Aaron C.; Bell, Nelson S.

    2016-07-01

    There is a rising interest in developing functional electronics using additively manufactured components. Considerations in materials selection and pathways to forming hybrid circuits and devices must demonstrate useful electronic function; must enable integration; and must complement the complex shape, low cost, high volume, and high functionality of structural but generally electronically passive additively manufactured components. This article reviews several emerging technologies being used in industry and research/development to provide integration advantages of fabricating multilayer hybrid circuits or devices. First, we review a maskless, noncontact, direct write (DW) technology that excels in the deposition of metallic colloid inks for electrical interconnects. Second, we review a complementary technology, aerosol deposition (AD), which excels in the deposition of metallic and ceramic powder as consolidated, thick conformal coatings and is additionally patternable through masking. Finally, we show examples of hybrid circuits/devices integrated beyond 2-D planes, using combinations of DW or AD processes and conventional, established processes.

  9. Effect of the Interconnected Network Structure on the Epidemic Threshold

    CERN Document Server

    Wang, Huijuan; D'Agostino, Gregorio; Havlin, Shlomo; Stanley, H Eugene; Van Mieghem, Piet

    2013-01-01

    Most real-world networks are not isolated. In order to function fully, they are interconnected with other networks, and this interconnection influences their dynamic processes. For example, when the spread of a disease involves two species, the dynamics of the spread within each species (the contact network) differs from that of the spread between the two species (the interconnected network). We model two generic interconnected networks using two adjacency matrices, A and B, in which A is a 2N*2N matrix that depicts the connectivity within each of two networks of size N, and B a 2N*2N matrix that depicts the interconnections between the two. Using an N-intertwined mean-field approximation, we determine that a critical susceptable-infected-susceptable (SIS) epidemic threshold in two interconnected networks is 1/{\\lambda}1(A+\\alpha B), where the infection rate is \\beta within each of the two individual networks and \\alpha\\beta in the interconnected links between the two networks and {\\lambda}1(A+\\alpha B) is th...

  10. Ultrahigh-speed hybrid laser for silicon photonic integrated chips

    DEFF Research Database (Denmark)

    Chung, Il-Sug; Park, Gyeong Cheol; Ran, Qijiang;

    2013-01-01

    and will be 80% in near future. This challenge strongly has motivated replacing electrical interconnects with optical ones even in chip level communications [1]. This chip-level optical interconnects need quite different performance of optoelectronic devices than required for conventional optical communications....... For a light source, the energy consumption per sending a bit is required to be laser diode...... and light-emitting diode (LED) structures have been proposed so far. Our hybrid laser is one of these efforts [2]. The hybrid laser consists of a dielectric reflector, a III-V semiconductor active material, and a high-index-contrast grating (HCG) reflector formed in the silicon layer of a silicon...

  11. Architectural evaluation of beam-steered shuffle optical interconnect

    Science.gov (United States)

    Murdocca, Miles J.; Batchu, Ravi V.; Dennison, Michael

    1996-06-01

    We report on a reconfigurable optical interconnection approach in which static communication graphs are extracted from high level programs and are mapped onto a two stage optical beam-steered/perfect shuffle interconnect. An array of processing elements (PEs) is partitioned into functional units of equal size that are served by one optical input/output (I/O) port per PE. PEs within a functional unit can use any of the optical I/O ports served by that functional unit. An optical beam-steering mechanism in conjunction with an optical perfect shuffle interconnects the functional units. At the highest level, computer programs are written in the Id dataflow programming language. At the next level, dataflow graphs (communication graphs that represent the natural parallelism in a computation) are automatically extracted from the high-level programs. At the lowest level, the dataflow graphs are mapped onto the optical beam-steered/perfect shuffle interconnect. This mapping step is facilitated by a mechanism that redirects optical beams to that the physical interconnect takes the form of the dataflow graph. An intended application is to create low latency realizations of specialized hardware on-the-fly, such as for rapid prototyping. An advantage of this approach over competing all-electronic or static free-space optical interconnection approaches is that the optical interconnect has low depth (two stages) with low fan-out (typically 1 to 3). In previous work, the behaviors of the mappings are studied for randomly generated dataflow graphs. In the work reported here, the behaviors of the mappings are studied for extracted dataflow graphs. We conclude that this interconnection approach is effective for extracted dataflow graphs, using only a single pass through the network, if the interconnect is augmented with a small crossbar within each functional unit.

  12. On-chip photonic interconnects a computer architect's perspective

    CERN Document Server

    Nitta, Christopher J; Akella, Venkatesh

    2013-01-01

    As the number of cores on a chip continues to climb, architects will need to address both bandwidth and power consumption issues related to the interconnection network. Electrical interconnects are not likely to scale well to a large number of processors for energy efficiency reasons, and the problem is compounded by the fact that there is a fixed total power budget for a die, dictated by the amount of heat that can be dissipated without special (and expensive) cooling and packaging techniques. Thus, there is a need to seek alternatives to electrical signaling for on-chip interconnection appli

  13. Robust decentralized adaptive stabilization for a class of interconnected systems

    Institute of Scientific and Technical Information of China (English)

    Zhaojing WU; Xuejun XIE; Siying ZHANG

    2004-01-01

    The robust decentralized adaptive output-feedback stabilization for a class of interconnected systems with static and dynamic interconnections by using the MT-filters and backstepping design method is studied. By introducing a new filtered tramformation, the adaptive laws were derived for measurement. Under the assumption of the nonlinear growth conditions imposed on the nonlinear interconnections and by constructing the error system and using a new proof method, the global stability of the closed-loop system was effectively analyzed, and the exponential convergence of all the signals except for parameter estimates were guaranteed.

  14. Disturbance Attenuation State-Feedback Control for Uncertain Interconnected Systems

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    This paper studies the problem of robust H∞ control design for a class of uncertain interconnected systems viastate feedback. This class of systems are described by a state space model, which contains unknown nonlinear interactionand time-varying norm-bounded parametric uncertainties in state equation. Using the Riccati-equation-based approach wedesign state feedback control laws, which guarantee the decentralized stability with disturbance attenuation for the inter-connected uncertain systems. A simple example of an interconnected uncertain linear system is presented to illustrate theresults.

  15. Interconnectivity analysis of supercritical CO₂-foamed scaffolds.

    Science.gov (United States)

    Lemon, Greg; Reinwald, Yvonne; White, Lisa J; Howdle, Steven M; Shakesheff, Kevin M; King, John R

    2012-06-01

    This paper describes a computer algorithm for the determination of the interconnectivity of the pore space inside scaffolds used for tissue engineering. To validate the algorithm and its computer implementation, the algorithm was applied to a computer-generated scaffold consisting of a set of overlapping spherical pores, for which the interconnectivity was calculated exactly. The algorithm was then applied to micro-computed X-ray tomography images of supercritical CO(2)-foamed scaffolds made from poly(lactic-co-glycolic acid) (PLGA), whereby the effect of using different weight average molecular weight polymer on the interconnectivity was investigated.

  16. Interacting Social Processes on Interconnected Networks

    Science.gov (United States)

    Alvarez-Zuzek, Lucila G.; La Rocca, Cristian E.; Vazquez, Federico; Braunstein, Lidia A.

    2016-01-01

    We propose and study a model for the interplay between two different dynamical processes –one for opinion formation and the other for decision making– on two interconnected networks A and B. The opinion dynamics on network A corresponds to that of the M-model, where the state of each agent can take one of four possible values (S = −2,−1, 1, 2), describing its level of agreement on a given issue. The likelihood to become an extremist (S = ±2) or a moderate (S = ±1) is controlled by a reinforcement parameter r ≥ 0. The decision making dynamics on network B is akin to that of the Abrams-Strogatz model, where agents can be either in favor (S = +1) or against (S = −1) the issue. The probability that an agent changes its state is proportional to the fraction of neighbors that hold the opposite state raised to a power β. Starting from a polarized case scenario in which all agents of network A hold positive orientations while all agents of network B have a negative orientation, we explore the conditions under which one of the dynamics prevails over the other, imposing its initial orientation. We find that, for a given value of β, the two-network system reaches a consensus in the positive state (initial state of network A) when the reinforcement overcomes a crossover value r*(β), while a negative consensus happens for r βc. We develop an analytical mean-field approach that gives an insight into these regimes and shows that both dynamics are equivalent along the crossover line (r*, β*). PMID:27689698

  17. Hybrid Baryons

    CERN Document Server

    Page, P R

    2003-01-01

    We review the status of hybrid baryons. The only known way to study hybrids rigorously is via excited adiabatic potentials. Hybrids can be modelled by both the bag and flux-tube models. The low-lying hybrid baryon is N 1/2^+ with a mass of 1.5-1.8 GeV. Hybrid baryons can be produced in the glue-rich processes of diffractive gamma N and pi N production, Psi decays and p pbar annihilation.

  18. Towards CMOS-compatible nanophotonics: Ultra-compact modulators using alternative plasmonic materials

    DEFF Research Database (Denmark)

    Babicheva, Viktoriia; Kinsey, Nathaniel; Naik, Gururaj V.;

    2013-01-01

    We propose several planar layouts of ultra-compact plasmonic modulators that utilize alternative plasmonic materials such as transparent conducting oxides and titanium nitride. The modulation is achieved by tuning the carrier concentration in a transparent conducting oxide layer into and out...... at the telecommunication wavelength. Our multilayer structures can be integrated with existing plasmonic and photonic waveguides as well as novel semiconductor-based hybrid photonic/electronic circuits....

  19. An electro-optic waveform interconnect based on quantum interference

    CERN Document Server

    Qin, Li-Guo; Gong, Shang-Qing

    2016-01-01

    The ability to modulate an optical field via an electric field is regarded as a key function of electro-optic interconnects, which are used in optical communications and information processing systems. One of the main required devices for such interconnects is the electro-optic modulator (EOM). Current EOM based on the electro-optic effect and the electro-absorption effect often is bulky and power inefficient due to the weak electro-optic properties of its constituent materials. Here we propose a new mechanism to produce an arbitrary-waveform EOM based on the quantum interference, in which both the real and imaginary parts of the susceptibility are engineered coherently with the superhigh efficiency. Based on this EOM, a waveform interconnect from the voltage to the modulated optical absorption is realised. We expect that such a new type of electro-optic interconnect will have a broad range of applications including the optical communications and network.

  20. Extraction of ULSI Interconnect Resistance at High Frequencies

    Institute of Scientific and Technical Information of China (English)

    XIAO Xia; JIAN Duanduan; YAO Suying; ZHANG Shengcai; RUAN Gang

    2005-01-01

    Correct extraction of the ultra-large-scale integrated (ULSI) interconnect components at hight frequencies is very important for evaluating electrical performances of high-speed ULSI circuits.In this paper, the extraction of the interconnect resistance at high frequencies is derived from the Ohm′s law and verified by the software FastHenry.The results are also compared with those of another resistance formula originated from the effective area of the current flowing. The applicability of these two formulae is discussed.The influence of the interconnect geometry on the resistance at high frequencies is studied.The computation indicates that the effect of frequency on the resistance is weak when the skin depth is larger than half of the short side of the rectangular interconnect cross section.With further increase of frequency, the resistance increases obviously. Results imply that conductor with a square cross section exhibits the largest resistance for rectangular conductors of constant cross section area.

  1. Bus Encoder for Crosstalk Avoidance in RLC Modeled Interconnects

    Directory of Open Access Journals (Sweden)

    G. Nagendra Babu

    2012-02-01

    Full Text Available Most of the encoding methods proposed in recent years have dealt with only RC modeled VLSI interconnects. For deep sub micron technologies (DSM, on-chip inductive effects have increased due to faster clock speeds, smaller signal rise times and longer length of on-chip interconnects. All these issues raise the concern for cross talk, propagation delay and power dissipation of overall. Therefore, this research work introduces an efficient Bus Encoder using Bus Inverting (BI method. The proposed design dramatically reduces both cross talk and power dissipation in RLC modeled interconnects which makes it suitable for current high-speed low-power VLSI interconnects. The proposed model demonstrates an overall reduction of power dissipation and cross talk induced delay by 55.43% and 45.87%, respectively.

  2. 78 FR 7523 - Small Generator Interconnection Agreements and Procedures

    Science.gov (United States)

    2013-02-01

    ... explored methods to address then current queue management challenges in a manner consistent with..., e.g., IEEE Standard 1547 for Interconnecting Distributed Resources with Electric Power Systems and...

  3. Lightweight Metal RubberTM Sensors and Interconnects Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of the proposed program is to develop lightweight and highly elastic electrically conducting interconnects and strain sensor arrays for next generation...

  4. Free-Space Optical Interconnect Employing VCSEL Diodes

    Science.gov (United States)

    Simons, Rainee N.; Savich, Gregory R.; Torres, Heidi

    2009-01-01

    Sensor signal processing is widely used on aircraft and spacecraft. The scheme employs multiple input/output nodes for data acquisition and CPU (central processing unit) nodes for data processing. To connect 110 nodes and CPU nodes, scalable interconnections such as backplanes are desired because the number of nodes depends on requirements of each mission. An optical backplane consisting of vertical-cavity surface-emitting lasers (VCSELs), VCSEL drivers, photodetectors, and transimpedance amplifiers is the preferred approach since it can handle several hundred megabits per second data throughput.The next generation of satellite-borne systems will require transceivers and processors that can handle several Gb/s of data. Optical interconnects have been praised for both their speed and functionality with hopes that light can relieve the electrical bottleneck predicted for the near future. Optoelectronic interconnects provide a factor of ten improvement over electrical interconnects.

  5. In-plane biocompatible microfluidic interconnects for implantable microsystems.

    Science.gov (United States)

    Johnson, Dean G; Frisina, Robert D; Borkholder, David A

    2011-04-01

    Small mammals, particularly mice, are very useful animal models for biomedical research. Extremely small anatomical dimensions, however, make design of implantable microsystems quite challenging. A method for coupling external fluidic systems to microfluidic channels via in-plane interconnects is presented. Capillary tubing is inserted into channels etched in the surface of a Si wafer with a seal created by Parylene-C deposition. Prediction of Parylene-C deposition into tapered channels based on Knudsen diffusion and deposition characterizations allows for design optimization. Low-volume interconnects using biocompatible, chemical resistant materials have been demonstrated and shown to withstand pressure as high as 827 kPa (120 psi) with an average pull test strength of 2.9 N. Each interconnect consumes less than 0.018 mm3 (18 nL) of volume. The low added volume makes this an ideal interconnect technology for medical applications where implant volume is critical.

  6. Developing Generic Dynamic Models for the 2030 Eastern Interconnection Grid

    Energy Technology Data Exchange (ETDEWEB)

    Kou, Gefei [ORNL; Hadley, Stanton W [ORNL; Markham, Penn N [ORNL; Liu, Yilu [ORNL

    2013-12-01

    The Eastern Interconnection Planning Collaborative (EIPC) has built three major power flow cases for the 2030 Eastern Interconnection (EI) based on various levels of energy/environmental policy conditions, technology advances, and load growth. Using the power flow cases, this report documents the process of developing the generic 2030 dynamic models using typical dynamic parameters. The constructed model was validated indirectly using the synchronized phasor measurements by removing the wind generation temporarily.

  7. Performance evaluation of interconnected logistics networks confronted to hub disruptions

    OpenAIRE

    2016-01-01

    International audience; This paper investigates performance of interconnected logistics networks confronted to disruptions at hub level. With traditional supply chain network design, companies define and optimize their own logistics networks, resulting in current logistics systems being a set of independent heterogeneous logistics networks. The concept of PI aims to integrate independent logistics networks into a global, open, interconnected system. Prior research has shown that the new organ...

  8. Interconnection Optimization for Multi-Cluster Avionics Networks

    OpenAIRE

    2013-01-01

    National audience; The increasing complexity and heterogeneity of avionics networks make resource optimization a challenging task. In contrast to many previous approaches pursuing the optimization of traffic-source mapping and backbone network analysis, our work presented herein mainly focuses on the optimization of interconnection devices for multi-cluster avionics networks. In this paper, we introduce an optimized interconnection device, integrating novel frame packing strategies and schedu...

  9. WDM Nanoscale Laser Diodes for Si Photonic Interconnects

    Science.gov (United States)

    2016-07-25

    IEEE , (12 2012): 0. doi: TOTAL: 1 Number of Papers published in non peer-reviewed journals: 0.00 (c) Presentations Number of Presentations: Non Peer...out: Integration of VCSELs with Si, IEEE OPTICAL INTERCONNECTS CONFERENCE 2014. 06-MAY-14, Coronado, CA. : , G. Zhou, D.G. Deppe, X. Yang, Y. Zhang...SC. : , Dennis Deppe, Mingxin Li, Guowei Zhao, Xu Yang. Impact of VCSEL Scaling on Speed and BIt Energy for High Speed Interconnects, IEEE Summer

  10. Chip-to-board interconnects for high-performance computing

    Science.gov (United States)

    Riester, Markus B. K.; Houbertz-Krauss, Ruth; Steenhusen, Sönke

    2013-02-01

    Super computing is reaching out to ExaFLOP processing speeds, creating fundamental challenges for the way that computing systems are designed and built. One governing topic is the reduction of power used for operating the system, and eliminating the excess heat generated from the system. Current thinking sees optical interconnects on most interconnect levels to be a feasible solution to many of the challenges, although there are still limitations to the technical solutions, in particular with regard to manufacturability. This paper explores drivers for enabling optical interconnect technologies to advance into the module and chip level. The introduction of optical links into High Performance Computing (HPC) could be an option to allow scaling the manufacturing technology to large volume manufacturing. This will drive the need for manufacturability of optical interconnects, giving rise to other challenges that add to the realization of this type of interconnection. This paper describes a solution that allows the creation of optical components on module level, integrating optical chips, laser diodes or PIN diodes as components much like the well known SMD components used for electrical components. The paper shows the main challenges and potential solutions to this challenge and proposes a fundamental paradigm shift in the manufacturing of 3-dimensional optical links for the level 1 interconnect (chip package).

  11. On Maintenance of Inter-connectivity Among Multi-representations

    Institute of Scientific and Technical Information of China (English)

    WANG Yan-hui; MENG Hao; LIU Xiao-meng

    2006-01-01

    As the problems of conceptual and representational differences will arise among multi-representations, inter-connectivity maintenance among multi-representations exists as a foundational task in building multi-scale data model. Since the existing methods are still not satisfactory in practice, the inter-connectivity among multiple representations can be only achieved if the multi-scale model is capable of explicitly inter-relating them and dealing with their differences. So, this paper firstly explores the relation among multiple representations from the same entity, such as multi-semantic, multi-geometry, multi-attributes, hierarchical semantic relations and so on. Based on these, this paper proposes aggregation-based semantic hierarchical matching rules (ASHMR) as the basis of tackling inter-connectivity among multi-representations, and defines the available hierarchical semantic knowledge, namely semantically equal, semantically related and semantically irrelevant. According to different change among multi-representations from different types of objects, the applications and techniques of the corresponding hierarchy inter-connectivity matching criterion are explored. And taken the road intersections as examples, a case in point is given in details for describing the strategies of inter-connectivity maintenance, showing that this method is feasible to deal with inter-connectivity.

  12. About message routing in different hypercube interconnection network types

    Directory of Open Access Journals (Sweden)

    M. Popa

    1999-10-01

    Full Text Available The paper treats the problem of message routing in different hypercube interconnection network types. Because the communication algorithms frequently use a few basic communication operations, the purpose was to optain relationships for the total communication time at the implementation of these basic operations in different hypercube interconnection types. The basic communication operations considered were: simple message transfer between two processors, one to all broadcast, all to all broadcast, one to all personalized communication, and all to all personalized communication. For establishing the desired relationships, the starting point were the relationships for the total communication time for the above mentioned operations implemented on three basic interconnection networks: classical hypercube, ring and mesh. The different hypercube interconnection network types considered were: the cube connected cycles network, the extended hypercube, the hypernet network, the k array n hypercube and the composed hypercube. The obtained relationships are useful to establish the performances of the considered networks, from the total communication time point of view, making comparisons between them and between them and the classical hypercube interconnection network with the same number of nodes. The most advantageous interconnection network from the above mentioned point of view, is the composed hypercube with the dynamic position of the nodes.

  13. Isothermal test as a WLR monitor for Cu interconnects

    Science.gov (United States)

    Marathe, Amit P.; Pham, Van; Chan, Jay; Weidner, Jorg-Oliver; Heinig, Volker; Thierbach, Steffi

    2000-08-01

    The need for higher interconnect current densities has been increasing rapidly for advanced integrated circuits. Cu interconnects have emerged as viable candidates to replace Aluminium due to the lower sheet resistivity and increased electro migration lifetime of Cu. Previously, we had reported the use of the isothermal test as a WLR monitor for detecting process defects such as voids in the Aluminium interconnects. This paper further extends the application of the isothermal test methodology for detecting and characterizing process defects in Cu interconnect technology. Package electro migration test are time consuming and may be impractical in detecting process defects in a timely manner. Isothermal test, on the other hand, can be effectively used as a fast WLR process monitor. This paper reports the influence of direction of test current as well as different types of test structures, such as a single level NIST structure and a via chain structure and a via chain structure, on the isothermal test results for Cu interconnects. The isothermal test data has been shown to be helpful in evaluating the location and severity of the process defects through a proper choice of test structures. Joule heating due to high current density is found to be the major driving force for the sensitivity of isothermal test failures. A good correlation is also seen with the package electro migration data. A simple wafer level isothermal test has thus been successfully demonstrated as a reliability tool for process monitoring in Cu VLSI interconnects.

  14. New Architecture of Optical Interconnect for High-Speed Optical Computerized Data Networks (Nonlinear Response

    Directory of Open Access Journals (Sweden)

    El-Sayed A. El-Badawy

    2008-02-01

    Full Text Available Although research into the use of optics in computers has increased in the last and current decades, the fact remains that electronics is still superior to optics in almost every way. Research into the use of optics at this stage mirrors the research into electronics after the 2nd World War. The advantages of using fiber optics over wiring are the same as the argument for using optics over electronics in computers. Even through totally optical computers are now a reality, computers that combine both electronics and optics, electro-optic hybrids, have been in use for some time. In the present paper, architecture of optical interconnect is built up on the bases of four Vertical-Cavity Surface- Emitting Laser Diodes (VCSELD and two optical links where thermal effects of both the diodes and the links are included. Nonlinear relations are correlated to investigate the power-current and the voltage-current dependences of the four devices. The good performance (high speed of the interconnect is deeply and parametrically investigated under wide ranges of the affecting parameters. The high speed performance is processed through three different effects, namely the device 3-dB bandwidth, the link dispersion characteristics, and the transmitted bit rate (soliton. Eight combinations are investigated; each possesses its own characteristics. The best architecture is the one composed of VCSELD that operates at 850 nm and the silica fiber whatever the operating set of causes. This combination possesses the largest device 3-dB bandwidth, the largest link bandwidth and the largest soliton transmitted bit rate. The increase of the ambient temperature reduces the high-speed performance of the interconnect

  15. New Architecture of Optical Interconnect for High-Speed Optical Computerized Data Networks (Nonlinear Response

    Directory of Open Access Journals (Sweden)

    El-Sayed A. El-Badawy

    2008-02-01

    Full Text Available Although research into the use of optics in computers has increased in the last and current decades, the fact remains that electronics is still superior to optics in almost every way. Research into the use of optics at this stage mirrors the research into electronics after the 2nd World War. The advantages of using fiber optics over wiring are the same as the argument for using optics over electronics in computers. Even through totally optical computers are now a reality, computers that combine both electronics and optics, electro-optic hybrids, have been in use for some time. In the present paper, architecture of optical interconnect is built up on the bases of four Vertical-Cavity Surface- Emitting Laser Diodes (VCSELD and two optical links where thermal effects of both the diodes and the links are included. Nonlinear relations are correlated to investigate the power-current and the voltage-current dependences of the four devices. The good performance (high speed of the interconnect is deeply and parametrically investigated under wide ranges of the affecting parameters. The high speed performance is processed through three different effects, namely the device 3-dB bandwidth, the link dispersion characteristics, and the transmitted bit rate (soliton. Eight combinations are investigated; each possesses its own characteristics. The best architecture is the one composed of VCSELD that operates at 850 nm and the silica fiber whatever the operating set of causes. This combination possesses the largest device 3-dB bandwidth, the largest link bandwidth and the largest soliton transmitted bit rate. The increase of the ambient temperature reduces the high-speed performance of the interconnect

  16. Hybrid plasmonic-photonic resonators (Conference Presentation)

    Science.gov (United States)

    Koenderink, A. Femius; Doeleman, Hugo M.; Ruesink, Freek; Verhagen, Ewold; Osorio, Clara I.

    2016-09-01

    Hybrid nanophotonic structures are structures that integrate different nanoscale platforms to harness light-matter interaction. We propose that combinations of plasmonic antennas inside modest-Q dielectric cavities can lead to very high Purcell factors, yielding plasmonic mode volumes at essentially cavity quality factors. The underlying physics is subtle: for instance, how plasmon antennas with large cross sections spoil or improve cavities and vice versa, contains physics beyond perturbation theory, depending on interplays of back-action, and interferences. This is evident from the fact that the local density of states of hybrid systems shows the rich physics of Fano interferences. I will discuss recent scattering experiments performed on toroidal microcavities coupled to plasmon particle arrays that probe both cavity resonance shifts and particle polarizability changes illustrating these insights. Furthermore I will present our efforts to probe single plasmon antennas coupled to emitters and complex environments using scatterometry. An integral part of this approach is the recently developed measurement method of `k-space polarimetry', a microscopy technique to completely classify the intensity and polarization state of light radiated by a single nano-object into any emission direction that is based on back focal plane imaging and Stokes polarimetry. I show benchmarks of this technique for the cases of scattering, fluorescence, and cathodoluminescence applied to directional surface plasmon polariton antennas.

  17. Hybrid nonlinear model of the angular vestibulo-ocular reflex.

    Science.gov (United States)

    Ranjbaran, Mina; Galiana, Henrietta L

    2013-01-01

    A hybrid nonlinear bilateral model for the horizontal angular vestibulo-ocular reflex (AVOR) is presented in this paper. The model relies on known interconnections between saccadic burst circuits in the brainstem and ocular premotor areas in the vestibular nuclei during slow and fast phase intervals. A viable switching strategy for the timing of nystagmus events is proposed. Simulations show that this hybrid model replicates AVOR nystagmus patterns that are observed in experimentally recorded data.

  18. Electronic interconnects and devices with topological surface states and methods for fabricating same

    Energy Technology Data Exchange (ETDEWEB)

    Yazdani, Ali; Ong, N. Phuan; Cava, Robert J.

    2017-04-04

    An interconnect is disclosed with enhanced immunity of electrical conductivity to defects. The interconnect includes a material with charge carriers having topological surface states. Also disclosed is a method for fabricating such interconnects. Also disclosed is an integrated circuit including such interconnects. Also disclosed is a gated electronic device including a material with charge carriers having topological surface states.

  19. Electronic interconnects and devices with topological surface states and methods for fabricating same

    Energy Technology Data Exchange (ETDEWEB)

    Yazdani, Ali; Ong, N. Phuan; Cava, Robert J.

    2016-05-03

    An interconnect is disclosed with enhanced immunity of electrical conductivity to defects. The interconnect includes a material with charge carriers having topological surface states. Also disclosed is a method for fabricating such interconnects. Also disclosed is an integrated circuit including such interconnects. Also disclosed is a gated electronic device including a material with charge carriers having topological surface states.

  20. All-optical code routing in interconnected optical CDMA and WDM ring networks.

    Science.gov (United States)

    Deng, Yanhua; Fok, Mable P; Prucnal, Paul R; Wang, Ting

    2010-11-01

    We propose an all-optical hybrid network composed of optical code division multiple access (CDMA) rings interconnecting through a reconfigurable wavelength division multiplexing (WDM) metro area ring. This network retains the advantages of both the optical CDMA and WDM techniques, including asynchronous access and differentiated quality of service, while removing the hard limit on the number of subscribers and increasing network flexibility. The all-optical network is enabled by using nonlinear optical loop mirrors in an add/drop router (ADR) that performs code conversion, dropping, and switching asynchronously. We experimentally demonstrate the functionalities of the ADR in the proposed scheme asynchronously and obtain error-free performance. The bit-error rate measurements show acceptable power penalties for different code routes.

  1. The Distributed Network Processor: a novel off-chip and on-chip interconnection network architecture

    CERN Document Server

    Biagioni, Andrea; Lonardo, Alessandro; Paolucci, Pier Stanislao; Perra, Mersia; Rossetti, Davide; Sidore, Carlo; Simula, Francesco; Tosoratto, Laura; Vicini, Piero

    2012-01-01

    One of the most demanding challenges for the designers of parallel computing architectures is to deliver an efficient network infrastructure providing low latency, high bandwidth communications while preserving scalability. Besides off-chip communications between processors, recent multi-tile (i.e. multi-core) architectures face the challenge for an efficient on-chip interconnection network between processor's tiles. In this paper, we present a configurable and scalable architecture, based on our Distributed Network Processor (DNP) IP Library, targeting systems ranging from single MPSoCs to massive HPC platforms. The DNP provides inter-tile services for both on-chip and off-chip communications with a uniform RDMA style API, over a multi-dimensional direct network with a (possibly) hybrid topology.

  2. Load flow computations in hybrid transmission - distributed power systems

    NARCIS (Netherlands)

    Wobbes, E.D.; Lahaye, D.J.P.

    2013-01-01

    We interconnect transmission and distribution power systems and perform load flow computations in the hybrid network. In the largest example we managed to build, fifty copies of a distribution network consisting of fifteen nodes is connected to the UCTE study model, resulting in a system consisting

  3. Microcoil Spring Interconnects for Ceramic Grid Array Integrated Circuits

    Science.gov (United States)

    Strickland, S. M.; Hester, J. D.; Gowan, A. K.; Montgomery, R. K.; Geist, D. L.; Blanche, J. F.; McGuire, G. D.; Nash, T. S.

    2011-01-01

    As integrated circuit miniaturization trends continue, they drive the need for smaller higher input/output (I/O) packages. Hermetically sealed ceramic area array parts are the package of choice by the space community for high reliability space flight electronic hardware. Unfortunately, the coefficient of thermal expansion mismatch between the ceramic area array package and the epoxy glass printed wiring board limits the life of the interconnecting solder joint. This work presents the results of an investigation by Marshall Space Flight Center into a method to increase the life of this second level interconnection by the use of compliant microcoil springs. The design of the spring and its attachment process are presented along with thermal cycling results of microcoil springs (MCS) compared with state-of-the-art ball and column interconnections. Vibration testing has been conducted on MCS and high lead column parts. Radio frequency simulation and measurements have been made and the MCS has been modeled and a stress analysis performed. Thermal cycling and vibration testing have shown MCS interconnects to be significantly more reliable than solder columns. Also, MCS interconnects are less prone to handling damage than solder columns. Future work that includes shock testing, incorporation into a digital signal processor board, and process evaluation of expansion from a 400 I/O device to a device with over 1,100 I/O is identified.

  4. Electrochemical Migration of Fine-Pitch Nanopaste Ag Interconnects

    Science.gov (United States)

    Tsou, Chia-Hung; Liu, Kai-Ning; Lin, Heng-Tien; Ouyang, Fan-Yi

    2016-12-01

    With the development of intelligent electronic products, usage of fine-pitch interconnects has become mainstream in high performance electronic devices. Electrochemical migration (ECM) of interconnects would be a serious reliability problem under temperature, humidity and biased voltage environments. In this study, ECM behavior of nanopaste Ag interconnects with pitch size from 20 μm to 50 μm was evaluated by thermal humidity bias (THB) and water drop (WD) tests with deionized water through in situ leakage current-versus-time (CVT) curve. The results indicate that the failure time of ECM in fine-pitch samples occurs within few seconds under WD testing and it increases with increasing pitch size. The microstructure examination indicated that intensive dendrite formation of Ag through the whole interface was found to bridge the two electrodes. In the THB test, the CVT curve exhibited two stages, incubation and ramp-up; failure time of ECM was about 173.7 min. In addition, intensive dendrite formation was observed only at the protrusion of the Ag interconnects due to the concentration of the electric field at the protrusion of the Ag interconnects.

  5. Polyguide polymeric technology for optical interconnect circuits and components

    Science.gov (United States)

    Booth, Bruce L.; Marchegiano, Joseph E.; Chang, Catherine T.; Furmanak, Robert J.; Graham, Douglas M.; Wagner, Richard G.

    1997-04-01

    The expanding information revolution has been made possible by the development of optical communication technology. To meet the escalating demand for information transmitted and processed at high data rates and the need to circumvent the growing electronic circuit bottlenecks, mass deployment of not only optical fiber networks but manufacturable optical interconnect circuits, components and connectors for interfacing fibers and electronics that meet economic and performance constraints are absolutely necessary. Polymeric waveguide optical interconnection are considered increasingly important to meet these market needs. DuPont's polyguide polymeric integrated optic channel waveguide system is thought by many to have considerable potential for a broad range of passive optical interconnect applications. In this paper the recent advances, status, and unique attributes of the technology are reviewed. Product and technology developments currently in progress including parallel optical ink organization and polymer optical interconnect technology developments funded by DARPA are used as examples to describe polyguide breadth and potential for manufacture and deployment of optical interconnection products for single and multimode telecom and datacom waveguide applications.

  6. Nanophotonics for quantum optics using nitrogen-vacancy centers in diamond.

    Science.gov (United States)

    Santori, C; Barclay, P E; Fu, K-M C; Beausoleil, R G; Spillane, S; Fisch, M

    2010-07-09

    Optical microcavities and waveguides coupled to diamond are needed to enable efficient communication between quantum systems such as nitrogen-vacancy centers which are known already to have long electron spin coherence lifetimes. This paper describes recent progress in realizing microcavities with low loss and small mode volume in two hybrid systems: silica microdisks coupled to diamond nanoparticles, and gallium phosphide microdisks coupled to single-crystal diamond. A theoretical proposal for a gallium phosphide nanowire photonic crystal cavity coupled to diamond is also discussed. Comparing the two material systems, silica microdisks are easier to fabricate and test. However, at low temperature, nitrogen-vacancy centers in bulk diamond are spectrally more stable, and we expect that in the long term the bulk diamond approach will be better suited for on-chip integration of a photonic network.

  7. Foerster resonance energy transfer rate and local density of optical states are uncorrelated in any dielectric nanophotonic medium

    CERN Document Server

    Wubs, Martijn

    2015-01-01

    Motivated by the ongoing debate about nanophotonic control of Foerster resonance energy transfer (FRET), notably by the local density of optical states (LDOS), we study an analytic model system wherein a pair of ideal dipole emitters - donor and acceptor - exhibit energy transfer in the vicinity of an ideal mirror. The FRET rate is controlled by the mirror up to distances comparable to the donor-acceptor distance, that is, the few-nanometer range. For vanishing distance, we find a complete inhibition or a four-fold enhancement, depending on dipole orientation. For mirror distances on the wavelength scale, where the well-known `Drexhage' modification of the spontaneous-emission rate occurs, the FRET rate is constant. Hence there is no correlation between the Foerster (or total) energy transfer rate and the LDOS. At any distance to the mirror, the total energy transfer between a closely-spaced donor and acceptor is dominated by Foerster transfer, i.e., by the static dipole-dipole interaction that yields the cha...

  8. Simultaneous Characterization of Nanoparticle Size and Particle-Surface Interactions with Three-Dimensional Nanophotonic Force Microscopy

    Science.gov (United States)

    O'Dell, Dakota; Schein, Perry; Erickson, David

    2016-09-01

    The behavior of a nanoparticle in solution depends strongly on the particle's physical and chemical characteristics, most notably the particle size and the surface properties. Accurately characterizing these properties is critical for quality control in a wide variety of industries. To understand a complex and polydisperse nanoparticle suspension, however, ensemble averaging is not sufficient, and there is a great need for direct measurements of size and surface properties at the individual nanoparticle level. In this work, we present an analysis technique for simultaneous characterization of particle-surface interactions and size using near-field light scattering and verify it using Brownian-dynamics simulations. Using a nanophotonic waveguide, single particles can be stably held near the waveguide's surface by strongly localized optical forces. By tracking the dynamic 3D motion of the particle under the influence of these forces using an optical microscope, it is possible to extract the particle-surface interaction forces, as well as to estimate the size and refractive index of the nanoparticle. Because of the strong light-scattering signal, this method is viable for high-throughput characterization of particles as small as 100 nm in only a few seconds each.

  9. A comparative study of in-flow and micro-patterning biofunctionalization protocols for nanophotonic silicon-based biosensors.

    Science.gov (United States)

    González-Guerrero, Ana Belén; Alvarez, Mar; García Castaño, Andrés; Domínguez, Carlos; Lechuga, Laura M

    2013-03-01

    Reliable immobilization of bioreceptors over any sensor surface is the most crucial step for achieving high performance, selective and sensitive biosensor devices able to analyze human samples without the need of previous processing. With this aim, we have implemented an optimized scheme to covalently biofunctionalize the sensor area of a novel nanophotonic interferometric biosensor. The proposed method is based on the ex-situ silanization of the silicon nitride transducer surface by the use of a carboxyl water soluble silane, the carboxyethylsilanetriol sodium salt (CTES). The use of an organosilane stable in water entails advantages in comparison with usual trialkoxysilanes such as avoiding the generation of organic waste and leading to the assembly of compact monolayers due to the high dielectric constant of water. Additionally, cross-linking is prevented when the conditions (e.g. immersion time, concentration of silane) are optimized. This covalent strategy is followed by the bioreceptor linkage on the sensor area surface using two different approaches: an in-flow patterning and a microcontact printing using a biodeposition system. The performance of the different bioreceptor layers assembled is compared by the real-time and label-free immunosensing of the proteins BSA/mAb BSA, employed as a model molecular pair. Although the results demonstrated that both strategies provide the biosensor with a stable biological interface, the performance of the bioreceptor layer assembled by microcontact printing slightly improves the biosensing capabilities of the photonic biosensor.

  10. High temperature corrosion of metallic interconnects in solid oxide fuel cells

    OpenAIRE

    Martínez Bastidas, David

    2006-01-01

    Research and development has made it possible to use metallic interconnects in solid oxide fuel cells (SOFC) instead of ceramic materials. The use of metallic interconnects was formerly hindered by the high operating temperature, which made the interconnect degrade too much and too fast to be an efficient alternative. When the operating temperature was lowered, the use of metallic interconnects proved to be favourable since they are easier and cheaper to produce than ceramic interconnects....

  11. Hybrid vehicles

    Energy Technology Data Exchange (ETDEWEB)

    West, J.G.W. [Electrical Machines (United Kingdom)

    1997-07-01

    The reasons for adopting hybrid vehicles result mainly from the lack of adequate range from electric vehicles at an acceptable cost. Hybrids can offer significant improvements in emissions and fuel economy. Series and parallel hybrids are compared. A combination of series and parallel operation would be the ideal. This can be obtained using a planetary gearbox as a power split device allowing a small generator to transfer power to the propulsion motor giving the effect of a CVT. It allows the engine to run at semi-constant speed giving better fuel economy and reduced emissions. Hybrid car developments are described that show the wide range of possible hybrid systems. (author)

  12. Crosstalk Model and Estimation Formula for VLSI Interconnect Wires

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    We develop an interconnect crosstalk estimation model on the assumption of linearity for CMOS device. First, we analyze the terminal response of RC model on the worst condition from the S field to the time domain. The exact 3 order coefficients in S field are obtained due to the interconnect tree model. Based on this, a crosstalk peak estimation formula is presented. Unlike other crosstalk equations in the literature, this formula is only used coupled capacitance and grand capacitance as parameter. Experimental results show that, compared with the SPICE results, the estimation formulae are simple and accurate. So the model is expected to be used in such fields as layout-driven logic and high level synthesis, performance-driven floorplanning and interconnect planning.

  13. Spontaneous synchronization driven by energy transport in interconnected networks

    CERN Document Server

    Nicosia, Vincenzo; Latora, Vito; Arenas, Alex

    2014-01-01

    The existence of intertwined dynamical processes in interconnected networks is a distinctive aspect of complex systems. For example, cerebral circulation delivers oxygenated blood to the brain through blood vessels, and in turn the neural system in the brain is responsible, through neural network connections, for mediating changes in cerebral blood flow. To understand the effects of the coupling between different processes we study the case of two interconnected networks, one accounting for energy transport and the other for a synchronization dynamics. We observe the emergence of switch-like spontaneous synchronization, similar to that seen in the transition between resting-state and cognitive activity in the human brain, for a wide range of control parameters and for different network topologies. We suggest that similarly interconnected dynamical processes could be responsible for spontaneous synchronization transitions observed in natural systems.

  14. Communication issues in parallel systems with optical interconnections

    Science.gov (United States)

    Berthome, Pascal; Ferreira, A.

    1995-02-01

    In classical massively parallel computers, the complexity of the interconnection networks is much higher than the complexity of the processing elements themselves. Optical interconnections may provide a way to reconsider very large parallel architectures. We compare some optically interconnected parallel multicomputer models with regard to their communication capabilities. We first establish a distinction of such systems, based on the independence of the communication elements embedded in the processors (transmitters and receivers). Then, motivated by the fact that in multicomputers some communication operations have to be very efficiently performed, we study two fundamental communication problems, namely, one-to-all and all-to-all, under the hypothesis of bounded fanout. Our results take also into account a bounded number of available wavelengths.

  15. Generation adequacy and transmission interconnection in regional electricity markets

    Energy Technology Data Exchange (ETDEWEB)

    Cepeda, Mauricio [EDF R and D Division and LARSEN, 27 Avenue Lombart, 92260 Fontenay-aux-Roses (France); Saguan, Marcelo [University of Paris XI-GRJM Group, 27 Avenue Lombart, 92260 Fontenay-aux-Roses (France); Finon, Dominique [CIRED and CNRS, 45 bis avenue de La Belle Gabrielle, 94736 Nogent sur Marne-cedex (France); Pignon, Virginie [EDF R and D Division, 2 avenue du General de Gaulle, 92127 Clamart-cedex (France)

    2009-12-15

    The power system capacity adequacy has public good features that cannot be entirely solved by electricity markets. Regulatory intervention is then necessary and established methods have been used to assess adequacy and help regulators to fix this market failure. In regional electricity markets, transmission interconnections play an important role in contributing to adequacy. However, the adequacy problem and related policy are typically considered at a national level. This paper presents a simple model to study how the interconnection capacity interacts with generation adequacy. First results indicate that increasing interconnection capacity between systems improves adequacy up to a certain level; further increases do not procure additional adequacy improvements. Furthermore, besides adequacy improvement, increasing transmission capacity under asymmetric adequacy criteria or national system characteristics could create several concerns about externalities. These results imply that regional coordination of national adequacy policies is essential to internalise adequacy of cross-border effects. (author)

  16. Carbon nanotube based VLSI interconnects analysis and design

    CERN Document Server

    Kaushik, Brajesh Kumar

    2015-01-01

    The brief primarily focuses on the performance analysis of CNT based interconnects in current research scenario. Different CNT structures are modeled on the basis of transmission line theory. Performance comparison for different CNT structures illustrates that CNTs are more promising than Cu or other materials used in global VLSI interconnects. The brief is organized into five chapters which mainly discuss: (1) an overview of current research scenario and basics of interconnects; (2) unique crystal structures and the basics of physical properties of CNTs, and the production, purification and applications of CNTs; (3) a brief technical review, the geometry and equivalent RLC parameters for different single and bundled CNT structures; (4) a comparative analysis of crosstalk and delay for different single and bundled CNT structures; and (5) various unique mixed CNT bundle structures and their equivalent electrical models.

  17. Distributed Robustness Analysis of Interconnected Uncertain Systems Using Chordal Decomposition

    DEFF Research Database (Denmark)

    Pakazad, Sina Khoshfetrat; Hansson, Anders; Andersen, Martin Skovgaard

    2014-01-01

    Large-scale interconnected uncertain systems commonly have large state and uncertainty dimensions. Aside from the heavy computational cost of performing robust stability analysis in a centralized manner, privacy requirements in the network can also introduce further issues. In this paper, we...... utilize IQC analysis for analyzing large-scale interconnected uncertain systems and we evade these issues by describing a decomposition scheme that is based on the interconnection structure of the system. This scheme is based on the so-called chordal decomposition and does not add any conservativeness...... to the analysis approach. The decomposed problem can be solved using distributed computational algorithms without the need for a centralized computational unit. We further discuss the merits of the proposed analysis approach using a numerical experiment....

  18. Modeling Interconnect Variability Using Efficient Parametric Model Order Reduction

    CERN Document Server

    Li, Peng; Li, Xin; Pileggi, Lawrence T; Nassif, Sani R

    2011-01-01

    Assessing IC manufacturing process fluctuations and their impacts on IC interconnect performance has become unavoidable for modern DSM designs. However, the construction of parametric interconnect models is often hampered by the rapid increase in computational cost and model complexity. In this paper we present an efficient yet accurate parametric model order reduction algorithm for addressing the variability of IC interconnect performance. The efficiency of the approach lies in a novel combination of low-rank matrix approximation and multi-parameter moment matching. The complexity of the proposed parametric model order reduction is as low as that of a standard Krylov subspace method when applied to a nominal system. Under the projection-based framework, our algorithm also preserves the passivity of the resulting parametric models.

  19. Beam Vacuum Interconnects for the LHC Cold Arcs

    CERN Document Server

    Veness, R J M; Gröbner, Oswald; Lepeule, P; Reymermier, C; Schneider, G; Skoczen, Blazej; Kleimenok, V; Nikitin, I N

    1999-01-01

    The design of the beam vacuum interconnect is described in this paper. Features include a novel RF bridge design to maximise lateral flexibility during cryostat Cold arcs of the LHC will consist of twin aperture dipole, quadrupole and corrector magnets in cryostats, operating at 1.9 K. Beam vacuum chambers, along with all connecting elements require flexible 'interconnects' between adjacent cryostats to allow for thermal and mechanical offsets foreseen during machine operation and alignment. In addition, the beam vacuum chambers contain perforated beam screens to intercept beam induced heat loads at an intermediate temperature. These must also be connected with low impedance RF bridges in the interconnect zones.alignment and so-called 'nested' bellows to minimise the required length of the assembly.

  20. Parallel optical interconnects utilizing VLSI/FLC spatial light modulators

    Science.gov (United States)

    Genco, Sheryl M.

    1991-12-01

    Interconnection architectures are a cornerstone of parallel computing systems. However, interconnections can be a bottleneck in conventional computer architectures because of queuing structures that are necessary to handle the traffic through a switch at very high data rates and bandwidths. These issues must find new solutions to advance the state of the art in computing beyond the fundamental limit of silicon logic technology. Today's optoelectronic (OE) technology in particular VLSI/FLC spatial light modulators (SLMs) can provide a unique and innovative solution to these issues. This paper reports on the motivations for the system, describes the major areas of architectural requirements, discusses interconnection topologies and processor element alternatives, and documents an optical arbitration (i.e., control) scheme using `smart' SLMs and optical logic gates. The network topology is given in section 2.1 `Architectural Requirements -- Networks,' but it should be noted that the emphasis is on the optical control scheme (section 2.4) and the system.

  1. Net Metering and Interconnection Procedures-- Incorporating Best Practices

    Energy Technology Data Exchange (ETDEWEB)

    Jason Keyes, Kevin Fox, Joseph Wiedman, Staff at North Carolina Solar Center

    2009-04-01

    State utility commissions and utilities themselves are actively developing and revising their procedures for the interconnection and net metering of distributed generation. However, the procedures most often used by regulators and utilities as models have not been updated in the past three years, in which time most of the distributed solar facilities in the United States have been installed. In that period, the Interstate Renewable Energy Council (IREC) has been a participant in more than thirty state utility commission rulemakings regarding interconnection and net metering of distributed generation. With the knowledge gained from this experience, IREC has updated its model procedures to incorporate current best practices. This paper presents the most significant changes made to IREC’s model interconnection and net metering procedures.

  2. A one-semester course in modeling of VSLI interconnections

    CERN Document Server

    Goel, Ashok

    2014-01-01

    Quantitative understanding of the parasitic capacitances and inductances, and the resultant propagation delays and crosstalk phenomena associated with the metallic interconnections on the very large scale integrated (VLSI) circuits has become extremely important for the optimum design of the state-of-the-art integrated circuits. More than 65 percent of the delays on the integrated circuit chip occur in the interconnections and not in the transistors on the chip. Mathematical techniques to model the parasitic capacitances, inductances, propagation delays, crosstalk noise, and electromigration-i

  3. Real-time synthesis of sparsely interconnected neural associative memories.

    Science.gov (United States)

    Chan, Hubert Y.; Zak, Stanislaw H.

    1998-06-01

    The problem of implementing associative memories using sparsely interconnected generalized Brain-State-in-a-Box (gBSB) network is addressed in this paper. In particular, a "designer" neural network that synthesizes the associative memories is proposed. An upper bound on the time required for the designer network to reach a solution is determined. A neighborhood criterion with toroidal geometry for the cellular gBSB network is analyzed, in which the number of adjacent cells is independent of the generic cell location. A design method of neural associative memories with prespecified interconnecting weights is presented. The effectiveness of the proposed synthesis method is demonstrated with numerical examples.

  4. Compact models and performance investigations for subthreshold interconnects

    CERN Document Server

    Dhiman, Rohit

    2014-01-01

    The book provides a detailed analysis of issues related to sub-threshold interconnect performance from the perspective of analytical approach and design techniques. Particular emphasis is laid on the performance analysis of coupling noise and variability issues in sub-threshold domain to develop efficient compact models. The proposed analytical approach gives physical insight of the parameters affecting the transient behavior of coupled interconnects. Remedial design techniques are also suggested to mitigate the effect of coupling noise. The effects of wire width, spacing between the wires, wi

  5. Decentralized impulsive control for a class of uncertain interconnected systems

    Institute of Scientific and Technical Information of China (English)

    成新明; 关治洪; 刘新芝

    2004-01-01

    A great deal of stabilization criteria has been obtained from study of stabilizing interconnected systems. The results obtained are usually based on continuous systems by state feedback. In this paper, decentralized impulsive control is presented to stabilize a class of uncertain interconnected systems based on Lyapunov theory. The system under consideration involves parameter uncertainties and unknown nonlinear interactions among subsystems. Some new criteria of stabilization under impulsive control are established. Two numerical examples are offered to prove the effectiveness and practicality of the proposed method.

  6. EEG simulation by 2D interconnected chaotic oscillators

    Energy Technology Data Exchange (ETDEWEB)

    Kubany, Adam, E-mail: adamku@bgu.ac.i [Department of Industrial Engineering and Management, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105 (Israel); Mhabary, Ziv; Gontar, Vladimir [Department of Industrial Engineering and Management, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105 (Israel)

    2011-01-15

    Research highlights: ANN of 2D interconnected chaotic oscillators is explored for EEG simulation. An inverse problem solution (PRCGA) is proposed. Good matching between the simulated and experimental EEG signals has been achieved. - Abstract: An artificial neuronal network composed by 2D interconnected chaotic oscillators is explored for brain waves (EEG) simulation. For the inverse problem solution a parallel real-coded genetic algorithm (PRCGA) is proposed. In order to conduct thorough comparison between the simulated and target signal characteristics, a spectrum analysis of the signals is undertaken. A good matching between the theoretical and experimental EEG signals has been achieved. Numerical results of calculations are presented and discussed.

  7. Fundamentals of reliability engineering applications in multistage interconnection networks

    CERN Document Server

    Gunawan, Indra

    2014-01-01

    This book presents fundamentals of reliability engineering with its applications in evaluating reliability of multistage interconnection networks. In the first part of the book, it introduces the concept of reliability engineering, elements of probability theory, probability distributions, availability and data analysis.  The second part of the book provides an overview of parallel/distributed computing, network design considerations, and more.  The book covers a comprehensive reliability engineering methods and its practical aspects in the interconnection network systems. Students, engineers, researchers, managers will find this book as a valuable reference source.

  8. Interconnects for intermediate temperature solid oxide fuel cells

    Science.gov (United States)

    Huang, Wenhua

    Presently, one of the principal goals of solid oxide fuel cells (SOFCs) research is to reduce the stack operating temperature to between 600 and 800°C. However, one of the principal technological barriers is the non-availability of a suitable material satisfying all of the stability requirements for the interconnect. In this work two approaches for intermediate temperature SOFC interconnects have been explored. The first approach comprises an interconnect consisting of a bi-layer structure, a p-type oxide (La0.96Sr0.08MnO 2.001/LSM) layer exposed to a cathodic environment, and an n-type oxide (Y0.08Sr0.88Ti0.95Al0.05O 3-delta/YSTA) layer exposed to anodic conditions. Theoretical analysis based on the bi-layer structure has established design criteria to implement this approach. The analysis shows that the interfacial oxygen partial pressure, which determines the interconnect stability, is independent of the electronic conductivities of both layers but dependent on the oxygen ion layer interconnects, the oxygen ion conductivities of LSM and YSTA were measured as a function of temperature and oxygen partial pressure. Based on the measured data, it has been determined that if the thickness of YSTA layer is around 0.1cm, the thickness of LSM layer should be around 0.6 mum in order to maintain the stability of LSM. In a second approach, a less expensive stainless steel interconnect has been studied. However, one of the major concerns associated with the use of metallic interconnects is the development of a semi-conducting or insulating oxide scale and chromium volatility during extended exposure to the SOFC operating environment. Dense and well adhered Mn-Cu spinet oxide coatings were successfully deposited on stainless steel by an electrophoretic deposition (EPD) technique. It was found that the Mn-Cu-O coating significantly reduced the oxidation rate of the stainless steel and the volatility of chromium. The area specific resistance (ASR) of coated Crofer 22 APU is

  9. DECENTRALIZED STABILIZATION OF A CLASS OF INTERCONNECTED SYSTEMS

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    This paper is concerned with the decentralized stabilization of continuous and discrete linear interconnected systems with the structural constraints about the interconnection matrices. For the continuous case,the main improvement in the paper as compared with the corresponding results in the literature is to extend the considered class of systems from S to S*(both will be defined in the paper)without resulting in high decentralized gain and difficult numerical computation. The algorithm for obtaining decentralized state feedback control to stable the overall system is presented. The discrete case and some very useful results are discussed as well.

  10. Testing Interconnections using Conductive Adhesives for Application in PV Modules

    Energy Technology Data Exchange (ETDEWEB)

    Broek, K.M.; De Jong, P.C.; Kloos, M.J.H. [ECN Solar Energy, Petten (Netherlands); Van den Nieuwenhof, M.A.C.J.; Bots, T.L.; Meuwissen, M.H.H.; Steijvers, H.L.A.H. [TNO Science and Industry, Eindhoven (Netherlands)

    2006-09-15

    In current module production the electrical interconnections are soldered to the solar cells. For current modules with thin cells and new module concepts with back contact cells, the replacement of solder by conductive adhesives can be advantageous. However, the current IEC tests were developed for soldered interconnections, which have other failure mechanisms. Therefore, three additional tests have been developed for the testing of conductive adhesives to be used in solar modules. In combination with computer simulation techniques developed in the same project, the tests will contribute to a better understanding of failure mechanisms of PV modules with conductive adhesives.

  11. Novel paradigm for integrated photonics circuits: transient interconnection network

    Science.gov (United States)

    Fazio, Eugenio; Belardini, Alessandro; Bastiani, Lorenzo; Alonzo, Massimo; Chauvet, Mathieu; Zheludev, Nikolay I.; Soci, Cesare

    2017-01-01

    Self-confined beams and spatial solitons were always investigated for a purely academic point of view, describing their formation and cross-interaction. We propose a novel paradigm for integrated photonics circuits based on self-confined interconnections. We consider that circuits are not designed since beginning; a network of writing lasers provide the circuit configuration inside which information at a different wavelength travels. we propose new designs for interconnections and both digital and analog switching gates somehow inspired by Nature, following analog decision routes used in biological networks like brain synapsis or animal path finding.

  12. Early resistance change and stress/electromigrationmodeling in aluminium interconnects

    NARCIS (Netherlands)

    Petrescu, V.; Mouthaan, A.J.; Schoenmaker, W.

    1997-01-01

    A complete description for early resistance change and two dimensional simulation of mechanical stress evolution in confined Al interconnects, related to the electromigration, is given in this paper. The model, combines the stress/ vacancy concentration evolution with the early resistance change of

  13. Fast wafer-level detection and control of interconnect reliability

    Science.gov (United States)

    Foley, Sean; Molyneaux, James; Mathewson, Alan

    2000-08-01

    Many of the technological advances in the semiconductor industry have led to dramatic increases in device density and performance in conjunction with enhanced circuit reliability. As reliability is improved, the time taken to characterize particular failure modes with traditional test methods is getting substantially longer. Furthermore, semiconductor customers expect low product cost and fast time-to-market. The limits of traditional reliability testing philosophies are being reached and new approaches need to be investigated to enable the next generation of highly reliable products to be tested. This is especially true in the area of IC interconnect, where significant challenges are predicted for the next decade. A number of fast, wafer level test methods exist for interconnect reliability evaluation. The relative abilities of four such methods to detect the quality and reliability of IC interconnect over very short test times are evaluated in this work. Four different test structure designs are also evaluated and the results are bench-marked against conventional package level Median Time to Failure results. The Isothermal test method combine with SWEAT-type test structures is shown to be the most suitable combination for defect detection and interconnect reliability control over very short test times.

  14. 100 GHz Externally Modulated Laser for Optical Interconnects Applications

    DEFF Research Database (Denmark)

    Ozolins, Oskars; Pang, Xiaodan; Iglesias Olmedo, Miguel

    2017-01-01

    We report on a 116 Gb/s on-off keying (OOK), four pulse amplitude modulation (PAM) and 105-Gb/s 8-PAM optical transmitter using an InP-based integrated and packaged externally modulated laser for high-speed optical interconnects with up to 30 dB static extinction ratio and over 100-GHz 3-d...

  15. Toward Interpreting Failure in Sintered-Silver Interconnection Systems

    Energy Technology Data Exchange (ETDEWEB)

    Wereszczak, Andrew A [ORNL; Waters, Shirley B [ORNL

    2016-01-01

    The mechanical strength and subsequent reliability of a sintered-silver interconnection system is a function of numerous independent parameters. That system is still undergoing process development. Most of those parameters (e.g., choice of plating) are arguably and unfortunately taken for granted and are independent of the silver s cohesive strength. To explore such effects, shear strength testing and failure analyses were completed on a simple, mock sintered-silver interconnection system consisting of bonding two DBC ceramic substrates. Silver and gold platings were part of the test matrix, as was pre-drying strategies, and the consideration of stencil-printing vs. screen-printing. Shear strength of sintered-silver interconnect systems was found to be was insensitive to the choice of plating, drying practice, and printing method provided careful and consistent processing of the sintered-silver are practiced. But if the service stress in sintered silver interconnect systems is anticipated to exceed ~ 60 MPa, then the system will likely fail.

  16. Democracy and Spiritual Awareness: Interconnections and Implications for Educational Leadership

    Science.gov (United States)

    Woods, Glenys J.; Woods, Philip A.

    2008-01-01

    This article sets out theorisations of developmental democracy and spiritual awareness formulated in previous work by the authors. These are used to explore collegial leadership in a case study Steiner school, with the aim of illuminating and illustrating the transformative demands of developmental democracy and its interconnection with spiritual…

  17. Parallel optical interconnects - Implementation of optoelectronics in multiprocessor architectures

    Science.gov (United States)

    Frietman, E. E. E.; Dekker, L.; van Nifterick, W.; Jongeling, T. J. M.

    1990-03-01

    Optoelectronic logic element circuitries are described which can be used for the implementation of a wide variety of interconnection schemes. Particular attention is given to the design, construction, and application of an electrooptic communication system (EOCS) using dedicated free space multiple data distributors and integrated optically writable input buffer arrays with fully parallel access. Some experimental results obtained on the complete EOCS are presented.

  18. Interconnecting Microgrids via the Energy Router with Smart Energy Management

    Directory of Open Access Journals (Sweden)

    Yingshu Liu

    2017-08-01

    Full Text Available A novel and flexible interconnecting framework for microgrids and corresponding energy management strategies are presented, in response to the situation of increasing renewable-energy penetration and the need to alleviate dependency on energy storage equipment. The key idea is to establish complementary energy exchange between adjacent microgrids through a multiport electrical energy router, according to the consideration that adjacent microgrids may differ substantially in terms of their patterns of energy production and consumption, which can be utilized to compensate for each other’s instant energy deficit. Based on multiport bidirectional voltage source converters (VSCs and a shared direct current (DC power line, the energy router serves as an energy hub, and enables flexible energy flow among the adjacent microgrids and the main grid. The analytical model is established for the whole system, including the energy router, the interconnected microgrids and the main grid. Various operational modes of the interconnected microgrids, facilitated by the energy router, are analyzed, and the corresponding control strategies are developed. Simulations are carried out on the Matlab/Simulink platform, and the results have demonstrated the validity and reliability of the idea for microgrid interconnection as well as the corresponding control strategies for flexible energy flow.

  19. On the Computation of Lyapunov Functions for Interconnected Systems

    DEFF Research Database (Denmark)

    Sloth, Christoffer

    2016-01-01

    This paper addresses the computation of additively separable Lyapunov functions for interconnected systems. The presented results can be applied to reduce the complexity of the computations associated with stability analysis of large scale systems. We provide a necessary and sufficient condition...

  20. Bandwidth Analysis of Functional Interconnects Used as Test Access Mechanism

    NARCIS (Netherlands)

    Van den Berg, A.; Ren, P.; Marinissen, E.J.; Gaydadjiev, G.; Goossens, K.

    2010-01-01

    Test data travels through a System on Chip (SOC) from the chip pins to the Core-Under-Test (CUT) and vice versa via a Test Access Mechanism (TAM). Conventionally, a TAM is implemented using dedicated communication infrastructure. However, also existing functional interconnect, such as a bus or Netwo

  1. Additive interconnect fabrication by picosecond Laser Induced Forward Transfer

    NARCIS (Netherlands)

    Oosterhuis, G.; Veld, B.H. in 't; Ebberink, G.; Del Cerro, D.A.; Eijnden, E. van den; Chall, P.; Zon, B. van der

    2010-01-01

    Laser Induced Forward Transfer (LIFT) is a single step, dry deposition process which shows great potential for interconnect fabrication. TNO, in cooperation with ALSI and University of Twente have studied the feature size and resistivity of copper structures deposited using picosecond (ps) LIFT. Sma

  2. Use of Fiber Optic Interconnects for Signal Integrity

    Science.gov (United States)

    Phal, Yamuna D.; Phal, Deovrat D.

    2016-05-01

    Signal integrity (SI) is always a concern when it comes to high-speed data transmission. Even in space, there is a need for high-speed data transmission such as in the communication systems, monitoring various sub- systems and for other on-board experiments and applications.From Electromagneticperspective, using fiber-optic interconnect is highly recommended to avoid interference issues. This field has been explored for quite some time now, but mostly limited to applications that are on earth. Using these interconnects for harsh and extreme environments i.e. in space, requires reliability and ruggedness of interconnects and the system.This study suggests methods for optical fiber based communication systems for internal unit communication, communication within various instruments, as well as inter-board communication. A conclusion in terms of what areas need to be explored for enabling high-speed data transmission for space applications would be discussed in details. This study also explores and compares the existing technologies in the fiber-optic interconnects for space applications.

  3. Cascaded wavelength division multiplexing for byte-wide optical interconnects

    Energy Technology Data Exchange (ETDEWEB)

    Deri, R. J.; Garrett, H. E.; Germelos, S.; Haigh,R. E.; Henderer, B. D.; Lowry, M. E.; Walker, J.D.

    1997-11-17

    We demonstrate a wavelength division multiplexing approach for byte-wide optical interconnects over multimode fiber optic ribbon cable using filters based on common plastic ferrules. A dual wavelength link with eight cascaded filter stages exhibits bit error rates {le}l0{sup -l4}.

  4. Ultra-Stretchable Interconnects for High-Density Stretchable Electronics

    Directory of Open Access Journals (Sweden)

    Salman Shafqat

    2017-09-01

    Full Text Available The exciting field of stretchable electronics (SE promises numerous novel applications, particularly in-body and medical diagnostics devices. However, future advanced SE miniature devices will require high-density, extremely stretchable interconnects with micron-scale footprints, which calls for proven standardized (complementary metal-oxide semiconductor (CMOS-type process recipes using bulk integrated circuit (IC microfabrication tools and fine-pitch photolithography patterning. Here, we address this combined challenge of microfabrication with extreme stretchability for high-density SE devices by introducing CMOS-enabled, free-standing, miniaturized interconnect structures that fully exploit their 3D kinematic freedom through an interplay of buckling, torsion, and bending to maximize stretchability. Integration with standard CMOS-type batch processing is assured by utilizing the Flex-to-Rigid (F2R post-processing technology to make the back-end-of-line interconnect structures free-standing, thus enabling the routine microfabrication of highly-stretchable interconnects. The performance and reproducibility of these free-standing structures is promising: an elastic stretch beyond 2000% and ultimate (plastic stretch beyond 3000%, with <0.3% resistance change, and >10 million cycles at 1000% stretch with <1% resistance change. This generic technology provides a new route to exciting highly-stretchable miniature devices.

  5. Additive interconnect fabrication by picosecond Laser Induced Forward Transfer

    NARCIS (Netherlands)

    Oosterhuis, G.; Veld, B.H. in 't; Ebberink, G.; Del Cerro, D.A.; Eijnden, E. van den; Chall, P.; Zon, B. van der

    2010-01-01

    Laser Induced Forward Transfer (LIFT) is a single step, dry deposition process which shows great potential for interconnect fabrication. TNO, in cooperation with ALSI and University of Twente have studied the feature size and resistivity of copper structures deposited using picosecond (ps) LIFT. Sma

  6. Interconnects and On-Chip Data Communication Techniques

    NARCIS (Netherlands)

    Mensink, E.; Schinkel, Daniel; Klumperink, Eric A.M.; van Tuijl, Adrianus Johannes Maria

    Global on-chip communication is rapidly becoming a speed and power bottleneck in CMOS circuits. In this paper, a ‘mixed-signal’ approach is taken to analyze on-chip interconnects and it is investigated how data-rates can be improved. It is shown that complex signaling schemes such as OFDM and CDMA

  7. Two Component Injection Moulding for Moulded Interconnect Devices

    DEFF Research Database (Denmark)

    Islam, Aminul

    The moulded interconnect devices (MIDs) contain huge possibilities for many applications in micro electro-mechanical-systems because of their potential in reducing the number of components, process steps and finally in miniaturization of the product. Among the available MID process chains, two...

  8. 78 FR 14532 - Small Generator Interconnection Agreements and Procedures; Workshop

    Science.gov (United States)

    2013-03-06

    ...,049 (2013), 78 FR 7524 (2013). This workshop is not intended to address the substance of any... Energy Regulatory Commission Small Generator Interconnection Agreements and Procedures; Workshop Take... workshop is to discuss certain topics related to the proposals in the Small Generator...

  9. 78 FR 29672 - Small Generator Interconnection Agreements and Procedures

    Science.gov (United States)

    2013-05-21

    ... Federal Register of Friday, February 1, 2013 (78 FR 7524). The regulations revised the pro forma Small....'' In FR Doc. 2013-01366 appearing on page 7523 in the Federal Register of Friday, February 1, 2013, the... Energy Regulatory Commission 18 CFR Part 35 Small Generator Interconnection Agreements and...

  10. Crosstalk in dynamic optical interconnects in photorefractive crystals

    DEFF Research Database (Denmark)

    Andersen, Peter E.; Petersen, Paul Michael; Buchhave, Preben

    1994-01-01

    We have investigated the crosstalk between two neighboring gratings in photorefractive Bi12SiO20 optical interconnects. The gratings are induced by the interference between one reference beam and two object beams. By applying a suitable phase shift in one of the object beams, we can selectively...

  11. Optical interconnection networks for high-performance computing systems.

    Science.gov (United States)

    Biberman, Aleksandr; Bergman, Keren

    2012-04-01

    Enabled by silicon photonic technology, optical interconnection networks have the potential to be a key disruptive technology in computing and communication industries. The enduring pursuit of performance gains in computing, combined with stringent power constraints, has fostered the ever-growing computational parallelism associated with chip multiprocessors, memory systems, high-performance computing systems and data centers. Sustaining these parallelism growths introduces unique challenges for on- and off-chip communications, shifting the focus toward novel and fundamentally different communication approaches. Chip-scale photonic interconnection networks, enabled by high-performance silicon photonic devices, offer unprecedented bandwidth scalability with reduced power consumption. We demonstrate that the silicon photonic platforms have already produced all the high-performance photonic devices required to realize these types of networks. Through extensive empirical characterization in much of our work, we demonstrate such feasibility of waveguides, modulators, switches and photodetectors. We also demonstrate systems that simultaneously combine many functionalities to achieve more complex building blocks. We propose novel silicon photonic devices, subsystems, network topologies and architectures to enable unprecedented performance of these photonic interconnection networks. Furthermore, the advantages of photonic interconnection networks extend far beyond the chip, offering advanced communication environments for memory systems, high-performance computing systems, and data centers.

  12. Process chains for the manufacturing of moulded interconnect devices

    DEFF Research Database (Denmark)

    Islam, Mohammad Aminul; Hansen, Hans Nørgaard; Tang, Peter Torben

    2009-01-01

    Moulded interconnect device (MID) can be defined as an injection-molded plastic part that incorporates both electrical and mechanical functionalities in a single device. It is a relatively new area with enormous potential for industrial applications. At present, there are a number of available pr...

  13. An Intra-Server Interconnect Fabric for Heterogeneous Computing

    Institute of Scientific and Technical Information of China (English)

    曹政; 刘小丽; 李强; 刘小兵; 王展; 安学军

    2014-01-01

    With the increasing diversity of application needs and computing units, the server with heterogeneous pro-cessors is more and more widespread. However, conventional SMP/ccNUMA server architecture introduces communication bottleneck between heterogeneous processors and only uses heterogeneous processors as coprocessors, which limits the efficiency and flexibility of using heterogeneous processors. To solve this problem, this paper proposes an intra-server inter-connect fabric that supports both intra-server peer-to-peer interconnection and I/O resource sharing among heterogeneous processors. By connecting processors and I/O devices with the proposed fabric, heterogeneous processors can perform direct communication with each other and run in stand-alone mode with shared intra-server resources. We design the proposed fabric by extending the de-facto system I/O bus protocol PCIe (Peripheral Computer Interconnect Express) and implement it with a single chip cZodiac. By making full use of PCIe’s original advantages, the interconnection and the I/O sharing mechanism are light weight and efficient. Evaluations that have been carried out on both the FPGA (Field Programmable Gate Array) prototype and the cycle-accurate simulator demonstrate that our design is feasible and scalable. In addition, our design is suitable for not only the heterogeneous server but also the high density server.

  14. At the speed of light? electricity interconnections for Europe

    Energy Technology Data Exchange (ETDEWEB)

    Nies, S.

    2010-07-01

    Electricity moves almost at the speed of light: 273,000 km per second. The speed of electricity makes it the ultimate 'just in time' commodity. A problem anywhere can be transmitted every where in a nanosecond. Electricity interconnection is a prominent issue in the news, sometimes even featured as a panacea for the shortcomings of the European electricity market - a panacea that will ensure security o supply, solidarity and pave the way for a promising use of renewables in the future. The present study is devoted to electricity interconnections in Europe, their current state and the projects concerning them. The study addresses the following questions: - What is the role of interconnections in the development of a sustainable grid that can emerge from the existing pieces, make optimum use of existing generation capacity, ensure energy security, and offer economies of scales? What is their role in the process of building a different energy concept, one that would be concerned with climate change and thus in favour of the use of renewables? - How are existing interconnections exploited and governed, and how can their exploitation be improved? Does the EU need more and new interconnections; and if so, where and why, and who is going to finance them? Prominent projects as such as Desertec, the debate on DC or AC lines, or the limits of synchronization, as well as the state of a potential East-West electricity linkage between Former Soviet Union and EU, termed UCTE-UPS/IPS, are discussed in the volume. Part I develops definitions and basic notions necessary for the understanding of the subject. It also addresses the independent variables that influence interconnections (here the dependent variable), and recounts the historical legacies and their enduring impact on today's grid. Part II is devoted to the EU legal framework and to the complex landscape of governance and its current state of transition. Part III addresses the management of existing

  15. The electronics hybrid of the ATLAS-SCT endcap detector modules

    CERN Document Server

    Ketterer, C

    2004-01-01

    An electronics hybrid has been developed for the ATLAS silicon microstrip tracker endcaps. The high-density interconnect board carries 12 readout ASICs, as well as ASICs for the optical data transmission. Special requirements are that this hybrid has to be double sided, radiation hard, and low mass. A six-layer flexible circuit in copper-polyimide technology has been chosen for this purpose. It is folded around a highly heat conducting carbon-carbon composite substrate to form the rigid double-sided hybrid. Adequate thermal, mechanical, and electrical performance of the hybrid has been demonstrated. The production of the hybrids started in May 2003. (12 refs).

  16. New optical sensing technique of tissue viability and blood flow based on nanophotonic iterative multi-plane reflectance measurements

    Directory of Open Access Journals (Sweden)

    Yariv I

    2016-10-01

    Full Text Available Inbar Yariv,1 Menashe Haddad,2,3 Hamootal Duadi,1 Menachem Motiei,1 Dror Fixler1 1Faculty of Engineering and the Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan, Israel; 2Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel; 3Mayanei Hayeshua Medical Center, Benei Brak, Israel Abstract: Physiological substances pose a challenge for researchers since their optical properties change constantly according to their physiological state. Examination of those substances noninvasively can be achieved by different optical methods with high sensitivity. Our research suggests the application of a novel noninvasive nanophotonics technique, ie, iterative multi-plane optical property extraction (IMOPE based on reflectance measurements, for tissue viability examination and gold nanorods (GNRs and blood flow detection. The IMOPE model combines an experimental setup designed for recording light intensity images with the multi-plane iterative Gerchberg-Saxton algorithm for reconstructing the reemitted light phase and calculating its standard deviation (STD. Changes in tissue composition affect its optical properties which results in changes in the light phase that can be measured by its STD. We have demonstrated this new concept of correlating the light phase STD and the optical properties of a substance, using transmission measurements only. This paper presents, for the first time, reflectance based IMOPE tissue viability examination, producing a decrease in the computed STD for older tissues, as well as investigating their organic material absorption capability. Finally, differentiation of the femoral vein from adjacent tissues using GNRs and the detection of their presence within blood circulation and tissues are also presented with high sensitivity (better than computed tomography to low quantities of GNRs (<3 mg. Keywords: Gerchberg-Saxton, optical properties, gold nanorods, blood vessel, tissue viability

  17. Fatigue properties of Graphene interconnects on flexible substrates

    Science.gov (United States)

    Paradee, Gary

    This thesis represents the first determination of the fatigue behavior of Graphene as interconnect material electronic components on flexible substrates. The potential application of this interconnect material is for displays on flexible substrates where fatigue resistance is required due to the stress placed on the interconnect during mechanical bending. As the display is cyclically deformed (fatigued) during normal operation, cracks in the interconnect layer initiate and propagate leading to the lineout failure condition. The major contribution of this work is to show that Graphene is a superior interconnect material to the present state of the art Indium Tin Oxide (ITO) due to its electrical, optical and mechanical properties. The experimental approach in this thesis is based on Graphene samples which were fabricated on Silicon Nitrite (Si3N4)/Polyethylene Naphthalate (PEN) substrates. For comparison, both patterned and uniform ITO films ITO films on Si3N4/PEN were fabricated. The results of the in-depth characterization of Graphene are reported and based on Atomic Force Microscopy (AFM), Raman Spectroscopy and Scanning Electron Microscopy (SEM) are reported. The fatigue characteristics of ITO were determined at stress amplitudes ranging from 2000 MPa to 400 MPa up to 5000 cycles. The fatigue characteristics of Graphene were determined at stress amplitudes ranging from 80 GPa to 40 GPa up to 5000 cycles. The fatigue S-N curves were determined and showed that Graphene's endurance limit is 40 GPa. Beyond the endurance limit, there is no observable high cycle or low cycle fatigue indication for Graphene on a flexible substrate such as PEN. The microstructural analysis by SEM and AFM did not reveal normal fatigue crack growth and propagation. This thesis presents the first comprehensive behavior of Graphene in a bending fatigue stress environment present in numerous flexible electronic applications. The design and stress environments for safe operation has been

  18. Metal Interconnects for Solid Oxide Fuel Cell Power Systems

    Energy Technology Data Exchange (ETDEWEB)

    S. Elangovan

    2006-04-01

    Interconnect development is identified by the US Department of energy as a key technical area requiring focused research to meet the performance and cost goals under the Solid State Energy Conversion Alliance initiative. In the Phase I SECA Core Technology Program, Ceramatec investigated a commercial ferritic stainless steel composition for oxidation resistance properties by measuring the weight gain when exposed to air at the fuel cell operating temperature. A pre-treatment process that results in a dense, adherent scale was found to reduce the oxide scale growth rate significantly. A process for coating the surface of the alloy in order to reduce the in-plane resistance and potentially inhibit chromium oxide evaporation was also identified. The combination of treatments provided a very low resistance through the scale. The resistance measured was as low as 10 milliohm-cm2 at 750 C in air. The oxide scale was also found to be stable in humidified air at 750 C. The resistance value was stable over several thermal cycles. A similar treatment and coating for the fuel side of the interconnect also showed an exceptionally low resistance of one milliohm-cm2 in humidified hydrogen at 750 c, and was stable through multiple thermal cycles. Measurement of interconnect resistance when it was exposed to both air and humidified hydrogen on opposite sides also showed low, stable resistance after additional modification to the pre-treatment process. Resistance stacks, using an interconnect stack with realistic gas flows, also provided favorable results. Chromium evaporation issue however requires testing of fuel stacks and was outside of the scope of this project. based on results to-date, the alloy selection and the treatment processes appear to be well suited for SOFC interconnect application.

  19. Scattering of a cross-polarized linear wave by a soliton at an optical event horizon in a birefringent nanophotonic waveguide

    CERN Document Server

    Ciret, Charles

    2016-01-01

    The scattering of a linear wave on an optical event horizon, induced by a cross polarized soliton, is experimentally and numerically investigated in integrated structures. The experiments are performed in a dispersion-engineered birefringent silicon nanophotonic waveguide. In stark contrast with co-polarized waves, the large difference between the group velocity of the two cross-polarized waves enables a frequency conversion almost independent on the soliton wavelength. It is shown that the generated idler is only shifted by 10 nm around 1550 nm over a pump tuning range of 350 nm. Simulations using two coupled full vectorial nonlinear Schr\\"odinger equations fully support the experimental results.

  20. 76 FR 45248 - PJM Interconnection, L.L.C., PJM Power Providers Group v. PJM Interconnection, L.L.C...

    Science.gov (United States)

    2011-07-28

    ... Energy Regulatory Commission PJM Interconnection, L.L.C., PJM Power Providers Group v. PJM... Load Group, PJM Power Providers Group, and PSEG Companies. All interested parties are invited to attend... Load Group Dr. Roy Shanker, Consultant, PJM Power Providers Group Dr. William Hogan, Professor,...

  1. Development of low cost custom hybrid microcircuit technology

    Science.gov (United States)

    Perkins, K. L.; Licari, J. J.

    1981-01-01

    Selected potentially low cost, alternate packaging and interconnection techniques were developed and implemented in the manufacture of specific NASA/MSFC hardware, and the actual cost savings achieved by their use. The hardware chosen as the test bed for this evaluation ws the hybrids and modules manufactured by Rockwell International fo the MSFC Flight Accelerometer Safety Cut-Off System (FASCOS). Three potentially low cost packaging and interconnection alternates were selected for evaluation. This study was performed in three phases: hardware fabrication and testing, cost comparison, and reliability evaluation.

  2. Lasing in silicon-organic hybrid waveguides

    Science.gov (United States)

    Korn, Dietmar; Lauermann, Matthias; Koeber, Sebastian; Appel, Patrick; Alloatti, Luca; Palmer, Robert; Dumon, Pieter; Freude, Wolfgang; Leuthold, Juerg; Koos, Christian

    2016-03-01

    Silicon photonics enables large-scale photonic-electronic integration by leveraging highly developed fabrication processes from the microelectronics industry. However, while a rich portfolio of devices has already been demonstrated on the silicon platform, on-chip light sources still remain a key challenge since the indirect bandgap of the material inhibits efficient photon emission and thus impedes lasing. Here we demonstrate a class of infrared lasers that can be fabricated on the silicon-on-insulator (SOI) integration platform. The lasers are based on the silicon-organic hybrid (SOH) integration concept and combine nanophotonic SOI waveguides with dye-doped organic cladding materials that provide optical gain. We demonstrate pulsed room-temperature lasing with on-chip peak output powers of up to 1.1 W at a wavelength of 1,310 nm. The SOH approach enables efficient mass-production of silicon photonic light sources emitting in the near infrared and offers the possibility of tuning the emission wavelength over a wide range by proper choice of dye materials and resonator geometry.

  3. Lasing in silicon-organic hybrid waveguides.

    Science.gov (United States)

    Korn, Dietmar; Lauermann, Matthias; Koeber, Sebastian; Appel, Patrick; Alloatti, Luca; Palmer, Robert; Dumon, Pieter; Freude, Wolfgang; Leuthold, Juerg; Koos, Christian

    2016-03-07

    Silicon photonics enables large-scale photonic-electronic integration by leveraging highly developed fabrication processes from the microelectronics industry. However, while a rich portfolio of devices has already been demonstrated on the silicon platform, on-chip light sources still remain a key challenge since the indirect bandgap of the material inhibits efficient photon emission and thus impedes lasing. Here we demonstrate a class of infrared lasers that can be fabricated on the silicon-on-insulator (SOI) integration platform. The lasers are based on the silicon-organic hybrid (SOH) integration concept and combine nanophotonic SOI waveguides with dye-doped organic cladding materials that provide optical gain. We demonstrate pulsed room-temperature lasing with on-chip peak output powers of up to 1.1 W at a wavelength of 1,310 nm. The SOH approach enables efficient mass-production of silicon photonic light sources emitting in the near infrared and offers the possibility of tuning the emission wavelength over a wide range by proper choice of dye materials and resonator geometry.

  4. 78 FR 73112 - Monitoring System Conditions-Transmission Operations Reliability Standards; Interconnection...

    Science.gov (United States)

    2013-12-05

    ..., performance, and maintenance of real-time monitoring and analysis capabilities for reliability coordinators... Reliability Standards; Interconnection Reliability Operations and Coordination Reliability Standards AGENCY... Transmission Operations and Interconnection Reliability Operations and Coordination Reliability Standards...

  5. 76 FR 16240 - Mandatory Reliability Standards for Interconnection Reliability Operating Limits

    Science.gov (United States)

    2011-03-23

    ... Reliability Operating Limits AGENCY: Federal Energy Regulatory Commission, DOE. ACTION: Final rule. SUMMARY... instances of exceeding Interconnection Reliability. Operating Limits. The Commission also approves the... system operating limits other than interconnection reliability operating limits. DATES: Effective...

  6. 77 FR 6110 - Bishop Hill Interconnection LLC; Supplemental Notice that Initial Market-Based Rate Filing...

    Science.gov (United States)

    2012-02-07

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Bishop Hill Interconnection LLC; Supplemental Notice that Initial Market... in the above-referenced proceeding of Bishop Hill Interconnection LLC's application for...

  7. 75 FR 12536 - Midwest Independent Transmission System Operator, Inc. Complainant v PJM Interconnection, LLC...

    Science.gov (United States)

    2010-03-16

    ... Interconnection, LLC Respondent; Notice of Complaint March 9, 2010. Take notice that on March 8, 2010, pursuant to... System Operator, Inc. (Complainant) filed a formal complaint against PJM Interconnection, LLC...

  8. 77 FR 5008 - Minco Wind Interconnection Services, LLC; Supplemental Notice That Initial Market-Based Rate...

    Science.gov (United States)

    2012-02-01

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Minco Wind Interconnection Services, LLC; Supplemental Notice That Initial... notice in the above-referenced proceeding of Minco Wind Interconnection Services, LLC's application...

  9. 75 FR 32458 - Virginia Electric and Power Company v. PJM Interconnection, LLC; Notice of Complaint

    Science.gov (United States)

    2010-06-08

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Virginia Electric and Power Company v. PJM Interconnection, LLC; Notice of... Power Company (Complainant) filed a formal complaint against PJM Interconnection, LLC...

  10. 75 FR 12535 - Midwest Independent Transmission System Operator, Inc., Complainant v. PJM Interconnection, LLC...

    Science.gov (United States)

    2010-03-16

    ... Interconnection, LLC Respondent; Notice of Complaint March 9, 2010. Take notice that on March 8, 2010, pursuant to... complaint against PJM Interconnection, LLC (Respondent) alleging that the Respondent is in violation of...

  11. 78 FR 69664 - Notice of Intent To Prepare a Supplemental Draft Environmental Impact Statement-Interconnection...

    Science.gov (United States)

    2013-11-20

    ... Statement--Interconnection of the Proposed Wilton IV Wind Energy Center Project, North Dakota (DOE/EIS-0469...), intends to prepare a Supplemental Draft Environmental Impact Statement (SDEIS) for the interconnection...

  12. 150 mW deep-ultraviolet light-emitting diodes with large-area AlN nanophotonic light-extraction structure emitting at 265 nm

    Science.gov (United States)

    Inoue, Shin-ichiro; Tamari, Naoki; Taniguchi, Manabu

    2017-04-01

    High-power 265 nm deep-ultraviolet (DUV) AlGaN-based light-emitting diodes (LEDs) with large-area AlN nanophotonic light-extraction structures that were fabricated by a nanoimprint lithography process are presented. Each DUV-LED has a large active area (mesa size of ˜0.35 mm2) and a uniform current spreading design that allows high injection current operation. We have shown that these DUV-LEDs with their large-area nanoimprinted AlN nanophotonic structures exhibit wider near-field emitting areas, stronger far-field extracted light intensities, and an approximately 20-fold increase in output power when compared with a conventional flat-surface DUV-LED. A large-area nanoimprinted single-chip DUV-LED operating in the UV-C wavelength regime has demonstrated a record continuous-wave output power in excess of 150 mW for an injection current of 850 mA at a peak emission wavelength of 265 nm.

  13. CRISIS AND THE INTERCONNECTIONS BETWEEN WORLD’S ECONOMIES

    Directory of Open Access Journals (Sweden)

    Emilia Ungureanu

    2010-12-01

    Full Text Available This paper has like primary objective to present the crisis that hit the global economy since 1929 and the interconnections between different regions and countries. We will present also the big financial crisis that struck countries all around the world in the 21 century and the effects on the Romanian Economy. Each time when a develop country has passed through a turning point (crisis, even if the determinant factors were of a different nature, this thing led to a negative influence of the countries from the region and not only, showing by this the strong existing interconnection between the countries of the modern world (Asian crisis example, and especially the big financial crisis of the 21 century.

  14. Monolithic interconnected modules (MIMs) for thermophotovoltaic energy conversion

    Science.gov (United States)

    Wilt, David; Wehrer, Rebecca; Palmisiano, Marc; Wanlass, Mark; Murray, Christopher

    2003-05-01

    Monolithic interconnected modules (MIMs) are under development for thermophotovoltaic (TPV) energy conversion applications. MIM devices are typified by series-interconnected photovoltaic cells on a common, semi-insulating substrate and generally include rear-surface infrared (IR) reflectors. The MIM architecture is being implemented in InGaAsSb materials without semi-insulating substrates through the development of alternative isolation methodologies. Motivations for developing the MIM structure include: reduced resistive losses, higher output power density than for systems utilizing front surface spectral control, improved thermal coupling and ultimately higher system efficiency. Numerous design and material changes have been investigated since the introduction of the MIM concept in 1994. These developments as well as the current design strategies are addressed.

  15. Advanced Modulation Techniques for High-Performance Computing Optical Interconnects

    DEFF Research Database (Denmark)

    Karinou, Fotini; Borkowski, Robert; Zibar, Darko

    2013-01-01

    We experimentally assess the performance of a 64 × 64 optical switch fabric used for ns-speed optical cell switching in supercomputer optical interconnects. More specifically, we study four alternative modulation formats and detection schemes, namely, 10-Gb/s nonreturn-to-zero differential phase......-shift keying with balanced direct detection, 10-Gb/s polarization division multiplexed (PDM) quadrature phase-shift keying, 40-Gb/s single-polarization 16-ary quadrature amplitude modulation (16QAM), and 80-Gb/s PDM-16QAM, with coherent intradyne detection, in conjunction with an optimized version...... of the optical shared memory supercomputer interconnect system switch fabric. In particular, we investigate the resilience of the aforementioned advanced modulation formats to the nonlinearities of semiconductor optical amplifiers, used as ON/OFF gates in the supercomputer optical switch fabric under study...

  16. Fractal Characteristics Analysis of Blackouts in Interconnected Power Grid

    DEFF Research Database (Denmark)

    Wang, Feng; Li, Lijuan; Li, Canbing

    2017-01-01

    The power failure models are a key to understand the mechanism of large scale blackouts. In this letter, the similarity of blackouts in interconnected power grids (IPGs) and their sub-grids is discovered by the fractal characteristics analysis to simplify the failure models of the IPG. The distri......The power failure models are a key to understand the mechanism of large scale blackouts. In this letter, the similarity of blackouts in interconnected power grids (IPGs) and their sub-grids is discovered by the fractal characteristics analysis to simplify the failure models of the IPG....... The distribution characteristics of blackouts in various sub-grids are demonstrated based on the Kolmogorov-Smirnov (KS) test. The fractal dimensions (FDs) of the IPG and its sub-grids are then obtained by using the KS test and the maximum likelihood estimation (MLE). The blackouts data in China were used...

  17. Evaluation of Global Wind Power and Interconnected Wind Farms

    Science.gov (United States)

    Archer, C. L.; Jacobson, M. Z.

    2005-12-01

    The world wind power potential is evaluated in this study. Wind speeds are calculated at 80 m, the hub height of modern, 77-m diameter, 1500 W turbines. Since relatively few observations are available at 80 m, the Least Square extrapolation technique is utilized to obtain estimates of wind speeds at 80 m given observed wind speeds at 10 m (widely available) and a network of sounding stations. Globally, about 13% of all reporting stations experience annual mean wind speeds >= 6.9 m/s at 80 m (i.e., wind power class 3 or greater) and can therefore be considered suitable for low-cost wind power generation. This estimate is believed to be conservative. Of all continents, North America has the largest number of stations in class >= 3 (453). Areas with great potential are found in Northern Europe along the North Sea, the southern tip of the South American continent, the island of Tasmania in Australia, the Great Lakes region, and the northeastern and northwestern coasts of North America. Assuming that statistics generated from all stations analyzed here are representative of the global distribution of winds, global wind power generated at locations with mean annual wind speeds >= 6.9 m/s at 80 m is found to be approximately 72 TW (54,000 Mtoe) for the year 2000. Even if only 20% of this power could be captured, it could satisfy 100% of the world's energy demand for all purposes (6,995-10,177 Mtoe) and over seven times the world electricity needs (1.6-1.8 TW). Several practical barriers need to be overcome to fully realize this potential. Wind intermittency could be perceived as one of them. However, interconnecting wind farms through the transmission grid, also known as distributed wind power, is a simple and effective way of reducing deliverable wind power swings caused by wind intermittency. As more farms are interconnected in an array, wind speed correlation among sites decreases and so does the probability that all sites experience the same wind regime at the same

  18. Prediction of interconnect delay variations using pattern matching

    Science.gov (United States)

    Chin, Eric Y.; Holwill, Juliet A.; Neureuther, Andrew R.

    2007-03-01

    An exploratory Process Variation Net Scanning (PVNS) approach to estimate interconnect delay variations is presented. It is shown that the geometrical response of lithographic nonidealities can be quickly predicted to first order with Pattern Matching. This concept can be extended to other process nonidealities by developing Maximum Lateral Impact Functions to capture the effects of variations in conductor sidewall angle and thickness from etch and CMP processes. The geometrical response for each variation can then be used to model the effective change in resistance and capacitance and perturb the corresponding values in the extracted netlist. The impact of PVNS is demonstrated using a 90nm digital design, and the runtime analysis indicates that this approach may potentially be twice as fast as traditional extraction. This allows for fast electrical analysis of independent process variations on different interconnect layers instead of traditional best and worst case corner analyses.

  19. Exploiting the Capabilities of the Interconnection Network on Dawning-1000

    Institute of Scientific and Technical Information of China (English)

    XIAO Limin; ZHU Mingfa

    1999-01-01

    On Dawning-1000, the two-dimension mesh interconnection network enables low-latency, high-bandwidth communication, however, these capabilities have not been realized because of the high processing overhead imposed by existing communication software. Active Messages provide an efficient communication mechanism with small overhead, which may expose the raw capabilities of the underlying hardware. In addition, one of the most promising techniques, user-level communication, is often used to improve the performance of the traditional protocols such as TCP and UDP, andis also adopted in implementing the novel abstractions like Active Messages. Thus a user-level Active Messages model is designed and implemented on Dawning-1000. Preliminary experiments show that the combination of Active Messages mechanism and user-level communication technique is quite efficient in reducing software overhead associated with sending and receiving messages, and in exploiting the capabilitiesof the interconnection network.

  20. A Prototype Embedded Microprocessor Interconnect for Distributed and Parallel Computing

    Directory of Open Access Journals (Sweden)

    Bryan Hughes

    2008-08-01

    Full Text Available Parallel computing is currently undergoing a transition from a niche use to widespread acceptance due to new, computationally intensive applications and multi-core processors. While parallel processing is an invaluable tool for increasing performance, more time and expertise are required to develop a parallel system than are required for sequential systems. This paper discusses a toolkit currently in development that will simplify both the hardware and software development of embedded distributed and parallel systems. The hardware interconnection mechanism uses the Serial Peripheral Interface as a physical medium and provides routing and management services for the system. The topics in this paper are primarily limited to the interconnection aspect of the toolkit.