WorldWideScience

Sample records for hybrid mos-saw sensors

  1. Hybrid Ocean Wind Sensor (HOWS) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposed Phase I effort will investigate and develop the necessary innovations to realize the Hybrid Ocean Wind Sensor system that will provide critical...

  2. Hybrid architecture for building secure sensor networks

    Science.gov (United States)

    Owens, Ken R., Jr.; Watkins, Steve E.

    2012-04-01

    Sensor networks have various communication and security architectural concerns. Three approaches are defined to address these concerns for sensor networks. The first area is the utilization of new computing architectures that leverage embedded virtualization software on the sensor. Deploying a small, embedded virtualization operating system on the sensor nodes that is designed to communicate to low-cost cloud computing infrastructure in the network is the foundation to delivering low-cost, secure sensor networks. The second area focuses on securing the sensor. Sensor security components include developing an identification scheme, and leveraging authentication algorithms and protocols that address security assurance within the physical, communication network, and application layers. This function will primarily be accomplished through encrypting the communication channel and integrating sensor network firewall and intrusion detection/prevention components to the sensor network architecture. Hence, sensor networks will be able to maintain high levels of security. The third area addresses the real-time and high priority nature of the data that sensor networks collect. This function requires that a quality-of-service (QoS) definition and algorithm be developed for delivering the right data at the right time. A hybrid architecture is proposed that combines software and hardware features to handle network traffic with diverse QoS requirements.

  3. Hybrid Piezoelectric/Fiber-Optic Sensor Sheets

    Science.gov (United States)

    Lin, Mark; Qing, Xinlin

    2004-01-01

    Hybrid piezoelectric/fiber-optic (HyPFO) sensor sheets are undergoing development. They are intended for use in nondestructive evaluation and long-term monitoring of the integrity of diverse structures, including aerospace, aeronautical, automotive, and large stationary ones. It is anticipated that the further development and subsequent commercialization of the HyPFO sensor systems will lead to economic benefits in the form of increased safety, reduction of life-cycle costs through real-time structural monitoring, increased structural reliability, reduction of maintenance costs, and increased readiness for service. The concept of a HyPFO sensor sheet is a generalization of the concept of a SMART Layer(TradeMark), which is a patented device that comprises a thin dielectric film containing an embedded network of distributed piezoelectric actuator/sensors. Such a device can be mounted on the surface of a metallic structure or embedded inside a composite-material structure during fabrication of the structure. There is has been substantial interest in incorporating sensors other than piezoelectric ones into SMART Layer(TradeMark) networks: in particular, because of the popularity of the use of fiber-optic sensors for monitoring the "health" of structures in recent years, it was decided to incorporate fiber-optic sensors, giving rise to the concept of HyPFO devices.

  4. Existing PON Infrastructure Supported Hybrid Fiber-Wireless Sensor Networks

    DEFF Research Database (Denmark)

    Yu, Xianbin; Zhao, Ying; Deng, Lei;

    2012-01-01

    We propose a hybrid fiber wireless sensor network based on the existing PON infrastructure. The feasibility of remote sensing and PON convergence is experimentally proven by transmitting direct-sequence spread-spectrum wireless sensing and 2.5Gbps GPON signals.......We propose a hybrid fiber wireless sensor network based on the existing PON infrastructure. The feasibility of remote sensing and PON convergence is experimentally proven by transmitting direct-sequence spread-spectrum wireless sensing and 2.5Gbps GPON signals....

  5. High-Bandwidth Hybrid Sensor (HYSENS) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — ATA has demonstrated the primary innovation of combining a precision MEMS gyro (BAE SiRRS01) with a high bandwidth angular rate sensor, ATA's ARS-14 resulting in a...

  6. A hybrid Michelson-FP interference fiber sensor

    Science.gov (United States)

    Liu, Zhihai; Zhang, Yaxun; Wang, Zhenzhen; Zhang, Yu; Zhao, Enming; Zhou, Ai; Yuan, Libo

    2015-09-01

    A novel hybrid Michelson-FP (M-FP) interference fiber sensor based on a twin-core fiber has been proposed. It consists of an in-fiber integrated Michelson interferometer and an air FP cavities. The radial strain and axial strain sensing properties are explored and analyzed. By using this novel structure, we can measure radial strain and axial strain simultaneously.

  7. Novel hybrid sol-gel materials for smart sensor windows

    Science.gov (United States)

    Wencel, Dorota; Higgins, Clare; Guckian, Adrian; McDonagh, Colette; MacCraith, Brian D.

    2005-06-01

    Current sensor trends, such as multianalyte capability, miniaturisation and patternability are important drivers for materials requirements in optical chemical sensors. In particular, issues such as enhanced sensitivity and printablity are key in developing optimised sensor materials for smart windows for bioprocessing applications. This study focuses on combining novel sol-gel-based hybrid matrices with engineered luminescent complexes to produce stable luminescence-based optical sensors with enhanced sensitivity for a range of analytes including oxygen, pH and carbon dioxide. As well as optimising sensor performance, issues such as surface modification of the plastic substrate and compatibility with different deposition techniques were addressed. Hybrid sol-gel matrices were developed using a range of precursors including tetraethoxysilane (TEOS), methyltriethoxysilane (MTEOS), ethyltriethoxysilane (ETEOS), n-propyltriethoxysilane (PTEOS), phenyltriethoxysilane (PhTEOS), and n-octyltriethoxysilane (C8TEOS). Oxygen sensing, based on luminescence quenching of ruthenium phenanthroline complexes, has been realised with each of these hybrid materials. Furthermore, the possibility of immobilising pH-indicators for pH and carbon dioxide sensing has been investigated with some success. In the context of in-situ monitoring of bioprocesses, issues such as humidity interference as well as the chemical robustness of the multianalyte platform, were addressed.

  8. A fiber optic hybrid multifunctional AC voltage sensor

    Energy Technology Data Exchange (ETDEWEB)

    Sokolovsky, A.; Zadvornov, S. [IRE, Moscow (Russian Federation); Ryabko, M. [UFD, Moscow (Russian Federation)

    2008-07-01

    Hybrid sensors have the advantages of both electronic and optical technologies. Their sensing element is based on conventional transducers and the optical fiber is used as a transmission media for the optical signal encoded with information between the local module and the remote module. The power supply for the remote module is usually provided by a built-in photoelectric converter illuminated by the optical radiation going through the same or another optical fiber. Electro-optic hybrid sensors have been widely used because of the electrical isolation provided by optical fiber. In the conventional fiber optic voltage sensor, piezoelectric or electro-optic transducers are implemented. Processing and conditioning measurement information is a complex task in these sensors. Moreover, the considerable drawback of most of these systems is that only one parameter, usually voltage value, is measured. This paper presented a novel fiber optic hybrid sensor for alternating current voltage measurements. This instrument provides the simultaneous measurement of four parameters, notably voltage value, frequency, phase angle and the external temperature. The paper described the measurement technology of the instrument including the remote module and optical powering as well as the unique modulation algorithm. The results and conclusions were also presented. 7 refs., 4 figs.

  9. Electrochemical DNA Hybridization Sensors Based on Conducting Polymers

    Directory of Open Access Journals (Sweden)

    Md. Mahbubur Rahman

    2015-02-01

    Full Text Available Conducting polymers (CPs are a group of polymeric materials that have attracted considerable attention because of their unique electronic, chemical, and biochemical properties. This is reflected in their use in a wide range of potential applications, including light-emitting diodes, anti-static coating, electrochromic materials, solar cells, chemical sensors, biosensors, and drug-release systems. Electrochemical DNA sensors based on CPs can be used in numerous areas related to human health. This review summarizes the recent progress made in the development and use of CP-based electrochemical DNA hybridization sensors. We discuss the distinct properties of CPs with respect to their use in the immobilization of probe DNA on electrode surfaces, and we describe the immobilization techniques used for developing DNA hybridization sensors together with the various transduction methods employed. In the concluding part of this review, we present some of the challenges faced in the use of CP-based DNA hybridization sensors, as well as a future perspective.

  10. Nanopore sensors : From hybrid to abiotic systems

    NARCIS (Netherlands)

    Kocer, Armagan; Tauk, Lara; Dejardin, Philippe

    2012-01-01

    The use of nanopores of well controlled geometry for sensing molecules in solution is reviewed. Focus is concentrated especially on synthetic track-etch pores in polymer foils and on biological nanopores, i.e. ion channels. After a brief section about multipore sensors, specific attention is provide

  11. Hybrid energy sources for embedded sensor nodes

    Science.gov (United States)

    Silva, Ramon; Farinholt, Kevin; Park, Gyuhae

    2011-04-01

    In this paper, we present a series of hybrid energy configurations that are designed to provide a robust power source for embedded sensing hardware. The proper management of energy resources is a critical component in the design of any deployed sensing network. For systems that are installed in remote or inaccessible locations, or those with an operational lifespan that exceeds traditional battery technologies, energy harvesting is an attractive alternative. Unfortunately, the dependence on a single energy source (i.e. solar) can cause potential problems when environmental conditions preclude the system from operating at peak performance. In this paper we consider the use of a hybrid energy source that extracts energy from multiple sources and uses this collective energy to power sensing hardware. The sources considered in this work include: solar, vibration, thermal gradients, and RF energy capture. Methods of increasing the efficiency, energy storage medium, target applications and the integrated use of energy harvesting sources with wireless energy transmission will be discussed.

  12. Fastest Distributed Consensus on Star-Mesh Hybrid Sensor Networks

    CERN Document Server

    Jafarizadeh, Saber

    2010-01-01

    Solving Fastest Distributed Consensus (FDC) averaging problem over sensor networks with different topologies has received some attention recently and one of the well known topologies in this issue is star-mesh hybrid topology. Here in this work we present analytical solution for the problem of FDC algorithm by means of stratification and semidefinite programming, for the Star-Mesh Hybrid network with K-partite core (SMHK) which has rich symmetric properties. Also the variations of asymptotic and per step convergence rate of SMHK network versus its topological parameters have been studied numerically.

  13. Active Low Intrusion Hybrid Monitor for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Marlon Navia

    2015-09-01

    Full Text Available Several systems have been proposed to monitor wireless sensor networks (WSN. These systems may be active (causing a high degree of intrusion or passive (low observability inside the nodes. This paper presents the implementation of an active hybrid (hardware and software monitor with low intrusion. It is based on the addition to the sensor node of a monitor node (hardware part which, through a standard interface, is able to receive the monitoring information sent by a piece of software executed in the sensor node. The intrusion on time, code, and energy caused in the sensor nodes by the monitor is evaluated as a function of data size and the interface used. Then different interfaces, commonly available in sensor nodes, are evaluated: serial transmission (USART, serial peripheral interface (SPI, and parallel. The proposed hybrid monitor provides highly detailed information, barely disturbed by the measurement tool (interference, about the behavior of the WSN that may be used to evaluate many properties such as performance, dependability, security, etc. Monitor nodes are self-powered and may be removed after the monitoring campaign to be reused in other campaigns and/or WSNs. No other hardware-independent monitoring platforms with such low interference have been found in the literature.

  14. Active Low Intrusion Hybrid Monitor for Wireless Sensor Networks.

    Science.gov (United States)

    Navia, Marlon; Campelo, Jose C; Bonastre, Alberto; Ors, Rafael; Capella, Juan V; Serrano, Juan J

    2015-09-18

    Several systems have been proposed to monitor wireless sensor networks (WSN). These systems may be active (causing a high degree of intrusion) or passive (low observability inside the nodes). This paper presents the implementation of an active hybrid (hardware and software) monitor with low intrusion. It is based on the addition to the sensor node of a monitor node (hardware part) which, through a standard interface, is able to receive the monitoring information sent by a piece of software executed in the sensor node. The intrusion on time, code, and energy caused in the sensor nodes by the monitor is evaluated as a function of data size and the interface used. Then different interfaces, commonly available in sensor nodes, are evaluated: serial transmission (USART), serial peripheral interface (SPI), and parallel. The proposed hybrid monitor provides highly detailed information, barely disturbed by the measurement tool (interference), about the behavior of the WSN that may be used to evaluate many properties such as performance, dependability, security, etc. Monitor nodes are self-powered and may be removed after the monitoring campaign to be reused in other campaigns and/or WSNs. No other hardware-independent monitoring platforms with such low interference have been found in the literature.

  15. Adaptive Optoelectronic Eyes: Hybrid Sensor/Processor Architectures

    Science.gov (United States)

    2006-11-13

    J.  Lange , C. von der Malsburg, R. P. Würtz, and W. Konen, “Distortion Invariant Object Recognition Adaptive Optoelectronic Eyes: Hybrid Sensor...Meeting, Dallas, Texas, (November, 1998). 17.  G. Sáry, G. Kovács, K. Köteles, G.  Benedek , J. Fiser, and I. Biederman, “Selectivity Variations in Monkey

  16. A Hybrid Structure for Data Aggregation in Wireless Sensor Network

    Directory of Open Access Journals (Sweden)

    Hedieh Sajedi

    2014-01-01

    Full Text Available In recent years, wireless sensor networks have been used for various applications such as environmental monitoring, military and medical applications. A wireless sensor network uses a large number of sensor nodes that continuously collect and send data from a specific region to a base station. Data from sensors are collected from the study area in the common scenario of sensor networks. Afterward, sensed data is sent to the base station. However, neighboring sensors often lead to redundancy of data. Transmission of redundant data to the base station consumes energy and produces traffic, because process is run in a large network. Data aggregation was proposed in order to reduce redundancy in data transformation and traffic. The most popular communication protocol in this field is cluster based data aggregation. Clustering causes energy balance, but sometimes energy consumption is not efficient due to the long distance between cluster heads and base station. In another communication protocol, which is based on a tree construction, because of the short distance between the sensors, energy consumption is low. In this data aggregation approach, since each sensor node is considered as one of the vertices of a tree, the depth of tree is usually high. In this paper, an efficient hierarchical hybrid approach for data aggregation is presented. It reduces energy consumption based on clustering and minimum spanning tree. The benefit of combining clustering and tree structure is reducing the disadvantages of previous structures. The proposed method firstly employs clustering algorithm and then a minimum spanning tree is constructed based on cluster heads. Our proposed method was compared to LEACH which is a well-known data aggregation method in terms of energy consumption and the amount of energy remaining in each sensor network lifetime. Simulation results indicate that our proposed method is more efficient than LEACH algorithm considering energy

  17. Hybrid wireless sensor network for rescue site monitoring after earthquake

    Science.gov (United States)

    Wang, Rui; Wang, Shuo; Tang, Chong; Zhao, Xiaoguang; Hu, Weijian; Tan, Min; Gao, Bowei

    2016-07-01

    This paper addresses the design of a low-cost, low-complexity, and rapidly deployable wireless sensor network (WSN) for rescue site monitoring after earthquakes. The system structure of the hybrid WSN is described. Specifically, the proposed hybrid WSN consists of two kinds of wireless nodes, i.e., the monitor node and the sensor node. Then the mechanism and the system configuration of the wireless nodes are detailed. A transmission control protocol (TCP)-based request-response scheme is proposed to allow several monitor nodes to communicate with the monitoring center. UDP-based image transmission algorithms with fast recovery have been developed to meet the requirements of in-time delivery of on-site monitor images. In addition, the monitor node contains a ZigBee module that used to communicate with the sensor nodes, which are designed with small dimensions to monitor the environment by sensing different physical properties in narrow spaces. By building a WSN using these wireless nodes, the monitoring center can display real-time monitor images of the monitoring area and visualize all collected sensor data on geographic information systems. In the end, field experiments were performed at the Training Base of Emergency Seismic Rescue Troops of China and the experimental results demonstrate the feasibility and effectiveness of the monitor system.

  18. Space magnetometer based on an anisotropic magnetoresistive hybrid sensor

    Science.gov (United States)

    Brown, P.; Whiteside, B. J.; Beek, T. J.; Fox, P.; Horbury, T. S.; Oddy, T. M.; Archer, M. O.; Eastwood, J. P.; Sanz-Hernández, D.; Sample, J. G.; Cupido, E.; O'Brien, H.; Carr, C. M.

    2014-12-01

    We report on the design and development of a low resource, dual sensor vector magnetometer for space science applications on very small spacecraft. It is based on a hybrid device combining an orthogonal triad of commercial anisotropic magnetoresistive (AMR) sensors with a totem pole H-Bridge drive on a ceramic substrate. The drive enables AMR operation in the more sensitive flipped mode and this is achieved without the need for current spike transmission down a sensor harness. The magnetometer has sensitivity of better than 3 nT in a 0-10 Hz band and a total mass of 104 g. Three instruments have been launched as part of the TRIO-CINEMA space weather mission, inter-calibration against the International Geomagnetic Reference Field model makes it possible to extract physical signals such as field-aligned current deflections of 20-60 nT within an approximately 45 000 nT ambient field.

  19. Space magnetometer based on an anisotropic magnetoresistive hybrid sensor.

    Science.gov (United States)

    Brown, P; Whiteside, B J; Beek, T J; Fox, P; Horbury, T S; Oddy, T M; Archer, M O; Eastwood, J P; Sanz-Hernández, D; Sample, J G; Cupido, E; O'Brien, H; Carr, C M

    2014-12-01

    We report on the design and development of a low resource, dual sensor vector magnetometer for space science applications on very small spacecraft. It is based on a hybrid device combining an orthogonal triad of commercial anisotropic magnetoresistive (AMR) sensors with a totem pole H-Bridge drive on a ceramic substrate. The drive enables AMR operation in the more sensitive flipped mode and this is achieved without the need for current spike transmission down a sensor harness. The magnetometer has sensitivity of better than 3 nT in a 0-10 Hz band and a total mass of 104 g. Three instruments have been launched as part of the TRIO-CINEMA space weather mission, inter-calibration against the International Geomagnetic Reference Field model makes it possible to extract physical signals such as field-aligned current deflections of 20-60 nT within an approximately 45,000 nT ambient field.

  20. Extreme Environment Silicon Carbide Hybrid Temperature & Pressure Optical Sensors

    Energy Technology Data Exchange (ETDEWEB)

    Nabeel Riza

    2010-09-01

    This final report contains the main results from a 3-year program to further investigate the merits of SiC-based hybrid sensor designs for extreme environment measurements in gas turbines. The study is divided in three parts. Part 1 studies the material properties of SiC such as temporal response, refractive index change with temperature, and material thermal response reversibility. Sensor data from a combustion rig-test using this SiC sensor technology is analyzed and a robust distributed sensor network design is proposed. Part 2 of the study focuses on introducing redundancy in the sensor signal processing to provide improved temperature measurement robustness. In this regard, two distinct measurement methods emerge. A first method uses laser wavelength sensitivity of the SiC refractive index behavior and a second method that engages the Black-Body (BB) radiation of the SiC package. Part 3 of the program investigates a new way to measure pressure via a distance measurement technique that applies to hot objects including corrosive fluids.

  1. Hybrid Exploration Agent Platform and Sensor Web System

    Science.gov (United States)

    Stoffel, A. William; VanSteenberg, Michael E.

    2004-01-01

    A sensor web to collect the scientific data needed to further exploration is a major and efficient asset to any exploration effort. This is true not only for lunar and planetary environments, but also for interplanetary and liquid environments. Such a system would also have myriad direct commercial spin-off applications. The Hybrid Exploration Agent Platform and Sensor Web or HEAP-SW like the ANTS concept is a Sensor Web concept. The HEAP-SW is conceptually and practically a very different system. HEAP-SW is applicable to any environment and a huge range of exploration tasks. It is a very robust, low cost, high return, solution to a complex problem. All of the technology for initial development and implementation is currently available. The HEAP Sensor Web or HEAP-SW consists of three major parts, The Hybrid Exploration Agent Platforms or HEAP, the Sensor Web or SW and the immobile Data collection and Uplink units or DU. The HEAP-SW as a whole will refer to any group of mobile agents or robots where each robot is a mobile data collection unit that spends most of its time acting in concert with all other robots, DUs in the web, and the HEAP-SWs overall Command and Control (CC) system. Each DU and robot is, however, capable of acting independently. The three parts of the HEAP-SW system are discussed in this paper. The Goals of the HEAP-SW system are: 1) To maximize the amount of exploration enhancing science data collected; 2) To minimize data loss due to system malfunctions; 3) To minimize or, possibly, eliminate the risk of total system failure; 4) To minimize the size, weight, and power requirements of each HEAP robot; 5) To minimize HEAP-SW system costs. The rest of this paper discusses how these goals are attained.

  2. Robot Positioning and Navigation Based on Hybrid Wireless Sensor Network

    Institute of Scientific and Technical Information of China (English)

    Shun-cai YAO; Jin-dong TAN; Hong-xia PAN

    2010-01-01

    Traditional sensor network and robot navigation are based an the map of detecting the fields available in advance.The optimal algorithms are developed to solve the energy saving,the shortest path problems,etc.However,in the practical encironment,there are many fields,whose map is difficult to get,and needs to be detected.In this paper a kind of ad-hoc navigation algorithm is explored,which is based on the hybrid sensor network without the prior map in advance.The navigation system is composed of static nodes and dynamic nodes.The static nodes monitor the occurrances of the events and broadcast them.In the system,a kind of algorithm is to locate the robot,which is based on cluster broadcasting.The dynamic nodes detect the adversary or dangerous fields and broadcast warning messages.The robot gets the message and follows ad-hoc routine to arrive where the events occur.In the whole process,energy saving has been taken into account.The algorithms,which are based on the hybrid sensor network,are given in this paper.The simulation and practical results are also available.

  3. Fiber sensor network with multipoint sensing using double-pass hybrid LPFG-FBG sensor configuration

    Science.gov (United States)

    Yong, Yun-Thung; Lee, Sheng-Chyan; Rahman, Faidz Abd

    2017-03-01

    This is a study on double-pass intensity-based hybrid Long Period Fiber Grating (LPFG)and Fiber Bragg Grating (FBG) sensor configuration where a fiber sensor network was constructed with multiple sensing capability. The sensing principle is based on interrogation of intensity changes of the reflected signal from an FBG caused by the LPFG spectral response to the surrounding perturbations. The sensor network developed was tested in monitoring diesel adulteration of up to a distance of 8 km. Kerosene concentration from 0% to 50% was added as adulterant into diesel. The sensitivity of the double-pass hybrid LPFG-FBG sensor over multiple points was>0.21 dB/% (for adulteration range of 0-30%) and >0.45 dB/% from 30% to 50% adulteration. It is found that the sensitivity can drop up to 35% when the fiber length increased from 0 km to 8 km (for the case of adulteration of 0-30%). With the multiple sensing capabilities, normalized FBG's reflected power can be demodulated at the same time for comparison of sensitivity performance across various fiber sensors.

  4. Nanostructured Fiber Optic Cantilever Arrays and Hybrid MEMS Sensors for Chemical and Biological Detection Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Advancements in nano-/micro-scale sensor fabrication and molecular recognition surfaces offer promising opportunities to develop miniaturized hybrid fiber optic and...

  5. RH+: A Hybrid Localization Algorithm for Wireless Sensor Networks

    Science.gov (United States)

    Basaran, Can; Baydere, Sebnem; Kucuk, Gurhan

    Today, localization of nodes in Wireless Sensor Networks (WSNs) is a challenging problem. Especially, it is almost impossible to guarantee that one algorithm giving optimal results for one topology will give optimal results for any other random topology. In this study, we propose a centralized, range- and anchor-based, hybrid algorithm called RH+ that aims to combine the powerful features of two orthogonal techniques: Classical Multi-Dimensional Scaling (CMDS) and Particle Spring Optimization (PSO). As a result, we find that our hybrid approach gives a fast-converging solution which is resilient to range-errors and very robust to topology changes. Across all topologies we studied, the average estimation error is less than 0.5m. when the average node density is 10 and only 2.5% of the nodes are beacons.

  6. Bonding techniques for hybrid active pixel sensors (HAPS)

    Science.gov (United States)

    Bigas, M.; Cabruja, E.; Lozano, M.

    2007-05-01

    A hybrid active pixel sensor (HAPS) consists of an array of sensing elements which is connected to an electronic read-out unit. The most used way to connect these two different devices is bump bonding. This interconnection technique is very suitable for these systems because it allows a very fine pitch and a high number of I/Os. However, there are other interconnection techniques available such as direct bonding. This paper, as a continuation of a review [M. Lozano, E. Cabruja, A. Collado, J. Santander, M. Ullan, Nucl. Instr. and Meth. A 473 (1-2) (2001) 95-101] published in 2001, presents an update of the different advanced bonding techniques available for manufacturing a hybrid active pixel detector.

  7. Novel Hybrid Intrusion Detection System For Clustered Wireless Sensor Network

    Directory of Open Access Journals (Sweden)

    Hichem Sedjelmaci

    2011-08-01

    Full Text Available Wireless sensor network (WSN is regularly deployed in unattended and hostile environments. The WSN isvulnerable to security threats and susceptible to physical capture. Thus, it is necessary to use effective mechanisms to protect the network. It is widely known, that the intrusion detection is one of the mostefficient security mechanisms to protect the network against malicious attacks or unauthorized access. In this paper, we propose a hybrid intrusion detection system for clustered WSN. Our intrusion framework uses a combination between the Anomaly Detection based on support vector machine (SVM and the Misuse Detection. Experiments results show that most of routing attacks can be detected with low falsealarm.

  8. Microcantilver-based DNA hybridization sensors for Salmonella identification

    Directory of Open Access Journals (Sweden)

    Carlo Ricciardi

    2012-02-01

    Full Text Available The detection of pathogenic microorganisms in foods remains a challenging since the safety of foodstuffs has to be ensured by the food producing companies. Conventional methods for the detection and identification of bacteria mainly rely on specific microbiological and biochemical identification. Biomolecular methods, are commonly used as a support for traditional techniques, thanks to their high sensitivity, specificity and not excessive costs. However, new methods like biosensors for example, can be an exciting alternative to the more traditional tecniques for the detection of pathogens in food. In this study we report Salmonella enterica serotype Enteritidis DNA detection through a novel class of label-free biosensors: microcantilevers (MCs. In general, MCs can operate as a microbalance and is used to detect the mass of the entities anchored to the cantilever surface using the decrease in the resonant frequency. We use DNA hybridization as model reaction system and for this reason, specific single stranded probe DNA of the pathogen and three different DNA targets (single-stranded complementary DNA, PCR product and serial dilutions of DNA extracted from S. Enteritidis strains were applied. Two protocols were reported in order to allow the probe immobilization on cantilever surface: i MC surface was functionalized with 3-aminopropyltriethoxysilane and glutaraldehyde and an amino-modified DNA probe was used; ii gold-coated sensors and thiolated DNA probes were used in order to generate a covalent bonding (Th-Au. For the first one, measures after hybridization with the PCR product showed related frequency shift 10 times higher than hybridization with complementary probe and detectable signals were obtained at the concentrations of 103 and 106 cfu/mL after hybridization with bacterial DNA. There are currently optimizations of the second protocol, where preliminary results have shown to be more uniform and therefore more precise within each of the

  9. Hybrid Feedforward-Feedback Noise Control Using Virtual Sensors

    Science.gov (United States)

    Bean, Jacob; Fuller, Chris; Schiller, Noah

    2016-01-01

    Several approaches to active noise control using virtual sensors are evaluated for eventual use in an active headrest. Specifically, adaptive feedforward, feedback, and hybrid control structures are compared. Each controller incorporates the traditional filtered-x least mean squares algorithm. The feedback controller is arranged in an internal model configuration to draw comparisons with standard feedforward control theory results. Simulation and experimental results are presented that illustrate each controllers ability to minimize the pressure at both physical and virtual microphone locations. The remote microphone technique is used to obtain pressure estimates at the virtual locations. It is shown that a hybrid controller offers performance benefits over the traditional feedforward and feedback controllers. Stability issues associated with feedback and hybrid controllers are also addressed. Experimental results show that 15-20 dB reduction in broadband disturbances can be achieved by minimizing the measured pressure, whereas 10-15 dB reduction is obtained when minimizing the estimated pressure at a virtual location.

  10. Novel near infrared sensors for hybrid BCI applications

    Science.gov (United States)

    Almajidy, Rand K.; Le, Khang S.; Hofmann, Ulrich G.

    2015-07-01

    This study's goal is to develop a low cost, portable, accurate and comfortable NIRS module that can be used simultaneously with EEG in a dual modality system for brain computer interface (BCI). The sensing modules consist of electroencephalography (EEG) electrodes (at the positions Fp1, Fpz and Fp2 in the international 10-20 system) with eight custom made functional near infrared spectroscopy (fNIRS) channels, positioned on the prefrontal cortex area with two extra channels to measure and eliminate extra-cranial oxygenation. The NIRS sensors were designed to guarantee good sensor-skin contact, without causing subject discomfort, using springs to press them to the skin instead of pressing them by cap fixture. Two open source software packages were modified to carry out dual modality hybrid BCI experiments. The experimental paradigm consisted of a mental task (arithmetic task or text reading) and a resting period. Both oxygenated hemoglobin concentration changes (HbO), and EEG signals showed an increase during the mental task, but the onset, period and amount of that increase depends on each modality's characteristics. The subject's degree of attention played an important role especially during online sessions. The sensors can be easily used to acquire brain signals from different cerebral cortex parts. The system serves as a simple technological test bed and will be used for stroke patient rehabilitation purposes.

  11. Ultrasensitive Cracking-Assisted Strain Sensors Based on Silver Nanowires/Graphene Hybrid Particles.

    Science.gov (United States)

    Chen, Song; Wei, Yong; Wei, Siman; Lin, Yong; Liu, Lan

    2016-09-28

    Strain sensors with ultrahigh sensitivity under microstrain have numerous potential applications in heartbeat monitoring, pulsebeat detection, sound signal acquisition, and recognition. In this work, a two-part strain sensor (i.e., polyurethane part and brittle conductive hybrid particles layer on top) based on silver nanowires/graphene hybrid particles is developed via a simple coprecipitation, reduction, vacuum filtration, and casting process. Because of the nonuniform interface, weak interfacial bonding, and the hybrid particles' point-to-point conductive networks, the crack and overlap morphologies are successfully formed on the strain sensor after a prestretching; the crack-based stain sensor exhibits gauge factors as high as 20 (Δε sensor. Combined with its good response to bending, high strain resolution, and high working stability, the developed strain sensor is promising in the applications of electronic skins, motion sensors, and health monitoring sensors.

  12. Hybrid Collaborative Learning for Classification and Clustering in Sensor Networks

    Science.gov (United States)

    Wagstaff, Kiri L.; Sosnowski, Scott; Lane, Terran

    2012-01-01

    Traditionally, nodes in a sensor network simply collect data and then pass it on to a centralized node that archives, distributes, and possibly analyzes the data. However, analysis at the individual nodes could enable faster detection of anomalies or other interesting events as well as faster responses, such as sending out alerts or increasing the data collection rate. There is an additional opportunity for increased performance if learners at individual nodes can communicate with their neighbors. In previous work, methods were developed by which classification algorithms deployed at sensor nodes can communicate information about event labels to each other, building on prior work with co-training, self-training, and active learning. The idea of collaborative learning was extended to function for clustering algorithms as well, similar to ideas from penta-training and consensus clustering. However, collaboration between these learner types had not been explored. A new protocol was developed by which classifiers and clusterers can share key information about their observations and conclusions as they learn. This is an active collaboration in which learners of either type can query their neighbors for information that they then use to re-train or re-learn the concept they are studying. The protocol also supports broadcasts from the classifiers and clusterers to the rest of the network to announce new discoveries. Classifiers observe an event and assign it a label (type). Clusterers instead group observations into clusters without assigning them a label, and they collaborate in terms of pairwise constraints between two events [same-cluster (mustlink) or different-cluster (cannot-link)]. Fundamentally, these two learner types speak different languages. To bridge this gap, the new communication protocol provides four types of exchanges: hybrid queries for information, hybrid "broadcasts" of learned information, each specified for classifiers-to-clusterers, and clusterers

  13. Organic/Inorganic Hybrid Nanostructures for Chemical Plasmonic Sensors

    Science.gov (United States)

    Chang, Sehoon

    2011-12-01

    The work presented in this dissertation suggests novel design of chemical plasmonic sensors which have been developed based on Localized Surface Plasmon Resonance (LSPR), and Surface-enhanced Raman scattering (SERS) phenomena. The goal of the study is to understand the SERS phenomena for 3D hybrid (organic/inorganic) templates and to design of the templates for trace-level detection of selected chemical analytes relevant to liquid explosives and hazardous chemicals. The key design criteria for the development of the SERS templates are utilizing selective polymeric nanocoatings within cylindrical nanopores for promoting selective adsorption of chemical analyte molecules, maximizing specific surface area, and optimizing concentration of hot spots with efficient light interaction inside nanochannels. The organic/inorganic hybrid templates are optimized through a comprehensive understanding of the LSPR properties of the gold nanoparticles, gold nanorods, interaction of light with highly porous alumina template, and the choice of physical and chemical attributes of the selective coating. Furthermore, novel method to assemble silver nanoparticles in 3D as the active SERS-active substrate has been demonstrated by uniform, in situ growth of silver nanoparticles from electroless deposited silver seeds excluding any adhesive polymer layer on template. This approach can be the optimal for SERS sensing applications because it is not necessary to separate the Raman bands of the polyelectrolyte binding layer from those of the desired analyte. The fabrication method is an efficient, simple and fast way to assemble nanoparticles into 3D nanostructures. Addressable Raman markers from silver nanowire crossbars with silver nanoparticles are also introduced and studied. Assembly of silver nanowire crossbar structure is achieved by simple, double-step capillary transfer lithography. The on/off SERS properties can be observed on silver nanowire crossbars with silver nanoparticles

  14. Mobility-aware Hybrid Synchronization for Wireless Sensor Network

    DEFF Research Database (Denmark)

    Dnyaneshwar, Mantri; Prasad, Neeli R.; Prasad, Ramjee

    2015-01-01

    Random mobility of node causes the frequent changes in the network dynamics causing the increased cost in terms of energy and bandwidth. It needs the additional efforts to synchronize the activities of nodes during data collection and transmission in Wireless Sensor Networks (WSNs). A key challenge...... in maintaining the effective data collection and transmission is to schedule and synchronize the activities of the nodes with the global clock. This paper proposes the Mobility-aware Hybrid Synchronization Algorithm (MHS) which works on the formation of cluster based on spanning tree mechanism (SPT). Nodes used...... for formation of the network have random mobility and heterogeneous in terms of energy with static sink. The nodes in the cluster and cluster heads in the network are synchronized with the notion of global time scale. In the initial stage, the algorithm establishes the hierarchical structure of the network...

  15. Bandwidth Efficient Hybrid Synchronization for Wireless Sensor Network

    DEFF Research Database (Denmark)

    Dnyaneshwar, Mantri; Prasad, Neeli R.; Prasad, Ramjee

    2015-01-01

    Data collection and transmission are the fundamental operations of Wireless Sensor Networks (WSNs). A key challenge in effective data collection and transmission is to schedule and synchronize the activities of the nodes with the global clock. This paper proposes the Bandwidth Efficient Hybrid...... Synchronization Data Aggregation Algorithm (BESDA) using spanning tree mechanism (SPT). It uses static sink and mobile nodes in the network. BESDA considers the synchronization of a local clock of node with global clock of the network. In the initial stage algorithm established the hierarchical structure...... in the network and then perform the pair-wise synchronization. With the mobility of node, the structure frequently changes causing an increase in energy consumption. To mitigate the problem BESDA aggregate data with the notion of a global timescale throughout the network and schedule based time-division multiple...

  16. SIMULATION OF WIRELESS SENSOR NETWORK WITH HYBRID TOPOLOGY

    Directory of Open Access Journals (Sweden)

    J. Jaslin Deva Gifty

    2016-03-01

    Full Text Available The design of low rate Wireless Personal Area Network (WPAN by IEEE 802.15.4 standard has been developed to support lower data rates and low power consuming application. Zigbee Wireless Sensor Network (WSN works on the network and application layer in IEEE 802.15.4. Zigbee network can be configured in star, tree or mesh topology. The performance varies from topology to topology. The performance parameters such as network lifetime, energy consumption, throughput, delay in data delivery and sensor field coverage area varies depending on the network topology. In this paper, designing of hybrid topology by using two possible combinations such as star-tree and star-mesh is simulated to verify the communication reliability. This approach is to combine all the benefits of two network model. The parameters such as jitter, delay and throughput are measured for these scenarios. Further, MAC parameters impact such as beacon order (BO and super frame order (SO for low power consumption and high channel utilization, has been analysed for star, tree and mesh topology in beacon disable mode and beacon enable mode by varying CBR traffic loads.

  17. Hybrid optical-fibre/geopolymer sensors for structural health monitoring of concrete structures

    Science.gov (United States)

    Perry, M.; Saafi, M.; Fusiek, G.; Niewczas, P.

    2015-04-01

    In this work, we demonstrate hybrid optical-fibre/geopolymer sensors for monitoring temperature, uniaxial strain and biaxial strain in concrete structures. The hybrid sensors detect these measurands via changes in geopolymer electrical impedance, and via optical wavelength measurements of embedded fibre Bragg gratings. Electrical and optical measurements were both facilitated by metal-coated optical fibres, which provided the hybrid sensors with a single, shared physical path for both voltage and wavelength signals. The embedded fibre sensors revealed that geopolymer specimens undergo 2.7 mɛ of shrinkage after one week of curing at 42 °C. After curing, an axial 2 mɛ compression of the uniaxial hybrid sensor led to impedance and wavelength shifts of 7 × 10-2 and -2 × 10-4 respectively. The typical strain resolution in the uniaxial sensor was 100 μ \\varepsilon . The biaxial sensor was applied to the side of a concrete cylinder, which was then placed under 0.6 mɛ of axial, compressive strain. Fractional shifts in impedance and wavelength, used to monitor axial and circumferential strain, were 3 × 10-2 and 4 × 10-5 respectively. The biaxial sensor’s strain resolution was approximately 10 μ \\varepsilon in both directions. Due to several design flaws, the uniaxial hybrid sensor was unable to accurately measure ambient temperature changes. The biaxial sensor, however, successfully monitored local temperature changes with 0.5 °C resolution.

  18. A novel Michelson Fabry-Perot hybrid interference sensor based on the micro-structured fiber

    Science.gov (United States)

    Zhang, Yaxun; Zhang, Yu; Wang, Zhenzhen; Liu, Zhihai; Wei, Yong; Zhao, Enming; Yang, Xinghua; Zhang, Jianzhong; Yang, Jun; Yuan, Libo

    2016-09-01

    We propose and demonstrate a novel Michelson Fabry-Perot hybrid fiber interference sensor. By integrating a Michelson interferometer in a two-core fiber and a Fabry-Perot interferometer in a micro silica-capillary, we produce the Michelson Fabry-Perot hybrid interference sensor. Owing to the structure characteristic of the micro-structured fiber, this hybrid fiber interference sensor can achieve the measurement of the axial strain and radial bending simultaneously. The measurement sensitivity of the axial train is 0.015 nm/με and the measurement sensitivity of the radial bending is 1.393 nm/m-1.

  19. A Two-Phase Coverage-Enhancing Algorithm for Hybrid Wireless Sensor Networks.

    Science.gov (United States)

    Zhang, Qingguo; Fok, Mable P

    2017-01-09

    Providing field coverage is a key task in many sensor network applications. In certain scenarios, the sensor field may have coverage holes due to random initial deployment of sensors; thus, the desired level of coverage cannot be achieved. A hybrid wireless sensor network is a cost-effective solution to this problem, which is achieved by repositioning a portion of the mobile sensors in the network to meet the network coverage requirement. This paper investigates how to redeploy mobile sensor nodes to improve network coverage in hybrid wireless sensor networks. We propose a two-phase coverage-enhancing algorithm for hybrid wireless sensor networks. In phase one, we use a differential evolution algorithm to compute the candidate's target positions in the mobile sensor nodes that could potentially improve coverage. In the second phase, we use an optimization scheme on the candidate's target positions calculated from phase one to reduce the accumulated potential moving distance of mobile sensors, such that the exact mobile sensor nodes that need to be moved as well as their final target positions can be determined. Experimental results show that the proposed algorithm provided significant improvement in terms of area coverage rate, average moving distance, area coverage-distance rate and the number of moved mobile sensors, when compare with other approaches.

  20. High capacity fiber optic sensor networks using hybrid multiplexing techniques and their applications

    Science.gov (United States)

    Sun, Qizhen; Li, Xiaolei; Zhang, Manliang; Liu, Qi; Liu, Hai; Liu, Deming

    2013-12-01

    Fiber optic sensor network is the development trend of fiber senor technologies and industries. In this paper, I will discuss recent research progress on high capacity fiber sensor networks with hybrid multiplexing techniques and their applications in the fields of security monitoring, environment monitoring, Smart eHome, etc. Firstly, I will present the architecture of hybrid multiplexing sensor passive optical network (HSPON), and the key technologies for integrated access and intelligent management of massive fiber sensor units. Two typical hybrid WDM/TDM fiber sensor networks for perimeter intrusion monitor and cultural relics security are introduced. Secondly, we propose the concept of "Microstructure-Optical X Domin Refecltor (M-OXDR)" for fiber sensor network expansion. By fabricating smart micro-structures with the ability of multidimensional encoded and low insertion loss along the fiber, the fiber sensor network of simple structure and huge capacity more than one thousand could be achieved. Assisted by the WDM/TDM and WDM/FDM decoding methods respectively, we built the verification systems for long-haul and real-time temperature sensing. Finally, I will show the high capacity and flexible fiber sensor network with IPv6 protocol based hybrid fiber/wireless access. By developing the fiber optic sensor with embedded IPv6 protocol conversion module and IPv6 router, huge amounts of fiber optic sensor nodes can be uniquely addressed. Meanwhile, various sensing information could be integrated and accessed to the Next Generation Internet.

  1. Localisation of Sensor Nodes with Hybrid Measurements in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Muhammad W. Khan

    2016-07-01

    Full Text Available Localisation in wireless networks faces challenges such as high levels of signal attenuation and unknown path-loss exponents, especially in urban environments. In response to these challenges, this paper proposes solutions to localisation problems in noisy environments. A new observation model for localisation of static nodes is developed based on hybrid measurements, namely angle of arrival and received signal strength data. An approach for localisation of sensor nodes is proposed as a weighted linear least squares algorithm. The unknown path-loss exponent associated with the received signal strength is estimated jointly with the coordinates of the sensor nodes via the generalised pattern search method. The algorithm’s performance validation is conducted both theoretically and by simulation. A theoretical mean square error expression is derived, followed by the derivation of the linear Cramer-Rao bound which serves as a benchmark for the proposed location estimators. Accurate results are demonstrated with 25%–30% improvement in estimation accuracy with a weighted linear least squares algorithm as compared to linear least squares solution.

  2. Significant Storage on Sensor Storage Space, Energy Consumption and Better Security Based on Routing in Hybrid Sensor Networks

    Directory of Open Access Journals (Sweden)

    K.Nageswara rao

    2011-12-01

    Full Text Available WSNs are characterized by limited resources in term s of communication, computation and energy supply. A critical constraint on sensors networks is that s ensor nodes employ batteries. A second constraint i s that sensors will be deployed unattended and in large nu mbers, so that it will be difficult to change or re charge batteries in the sensors .The Energy Consumption in wireless sensor networks varies greatly based on t he protocols the sensors use and computations used to generate keys for communication among neighbor nodes. Previous research on sensor network security mainly considers homogeneous sensor networks, where all sensor nodes have the same capabilities. Research has shown that homogeneous ad hoc networks have poor performance and scalability. The many-to- one traffic pattern dominates in sensor networks, a nd hence a sensor may only communicate with a small po rtion of its neighbors. Key Management is a fundamental security operation. Most existing key m anagement schemes try to establish shared keys for all pairs of neighbor sensors, no matter whether these nodes communicate with each other or not, and this causes large overhead and more energy consumption a nd more storage requirement. In this paper, we adopt a Hybrid Sensor Network (HSN model for bette r performance and security. We propose a novel routing-driven key establishment scheme, which only establishes shared keys for neighbor sensors that communicate with each other. We utilize Elliptic Cu rve Cryptography in the design of an efficient key Establishment scheme for sensor nodes. The performa nce evaluation and security analysis show that our key Establishment scheme can provide better securit y with significant reductions on communication overhead, storage space and energy consumption than other key Establishment schemes.

  3. A Bio-Hybrid Tactile Sensor Incorporating Living Artificial Skin and an Impedance Sensing Array

    Directory of Open Access Journals (Sweden)

    David Cheneler

    2014-12-01

    Full Text Available The development of a bio-hybrid tactile sensor array that incorporates a skin analogue comprised of alginate encapsulated fibroblasts is described. The electrical properties are modulated by mechanical stress induced during contact, and changes are detected by a ten-channel dual-electrode impedance sensing array. By continuously monitoring the impedance of the sensor array at a fixed frequency, whilst normal and tangential loads are applied to the skin surface, transient mechanotransduction has been observed. The results demonstrate the effectiveness and feasibility of the preliminary prototype bio-hybrid tactile sensor.

  4. The resilient hybrid fiber sensor network with self-healing function.

    Science.gov (United States)

    Xu, Shibo; Liu, Tiegen; Ge, Chunfeng; Chen, Qinnan; Zhang, Hongxia

    2015-03-01

    This paper presents a novel resilient fiber sensor network (FSN) with multi-ring architecture, which could interconnect various kinds of fiber sensors responsible for more than one measurands. We explain how the intelligent control system provides sensors with self-healing function meanwhile sensors are working properly, besides each fiber in FSN is under real-time monitoring. We explain the software process and emergency mechanism to respond failures or other circumstances. To improve the efficiency in the use of limited spectrum resources in some situations, we have two different structures to distribute the light sources rationally. Then, we propose a hybrid sensor working in FSN which is a combination of a distributed sensor and a FBG (Fiber Bragg Grating) array fused in a common fiber sensing temperature and vibrations simultaneously with neglectable crosstalk to each other. By making a failure to a working fiber in experiment, the feasibility and effectiveness of the network with a hybrid sensor has been demonstrated, hybrid sensors could not only work as designed but also survive from destructive failures with the help of resilient network and smart and quick self-healing actions. The network has improved the viability of the fiber sensors and diversity of measurands.

  5. A Comparative Analysis for Hybrid Routing Protocol for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Ms. Manisha M. Magdum

    2015-04-01

    Full Text Available Wireless Sensor Networks (WSNs consist of smallnodes with sensing, computation and wireless communicationscapabilities. These sensor networks interconnect a several othernodes when established in large and this opens up severaltechnical challenges and immense application possibilities.These wireless sensor networks communicate using multi-hopwireless communications, regular ad hoc routing techniquescannot be directly applied to sensor networks domain due tothe limited processing power and the finite power available toeach sensor nodes hence recent advances in wireless sensornetworks have developed many protocols depending on theapplication and network architecture and are specificallydesigned for sensor networks where energy awareness is anessential consideration. This paper presents routingprotocols for sensor networks and compares the routingprotocols that are presently of increasing importance. In this paper, we propose Hybrid Routing Protocol whichcombines the merits of proactive and reactive approach andovercome their demerits.

  6. A hybrid fiber-optic sensor system for condition monitoring of large scale wind turbine blades

    Science.gov (United States)

    Kim, Dae-gil; Kim, Hyunjin; Sampath, Umesh; Song, Minho

    2015-07-01

    A hybrid fiber-optic sensor system which combines fiber Bragg grating (FBG) sensors and a Michelson interferometer is suggested for condition monitoring uses of large scale wind turbine blades. The system uses single broadband light source to address both sensors, which simplifies the optical setup and enhances the cost-effectiveness of condition monitoring system. An athermal-packaged FBG is used to supply quasi-coherent light for the Michelson interferometer demodulation. For the feasibility test, different profiles of test strain, temperature and vibration have been applied to test structures, and successfully reconstructed with the proposed sensor system.

  7. Piezoresistive Carbon-based Hybrid Sensor for Body-Mounted Biomedical Applications

    Science.gov (United States)

    Melnykowycz, M.; Tschudin, M.; Clemens, F.

    2017-02-01

    For body-mounted sensor applications, the evolution of soft condensed matter sensor (SCMS) materials offer conformability andit enables mechanical compliance between the body surface and the sensing mechanism. A piezoresistive hybrid sensor and compliant meta-material sub-structure provided a way to engineer sensor physical designs through modification of the mechanical properties of the compliant design. A piezoresistive fiber sensor was produced by combining a thermoplastic elastomer (TPE) matrix with Carbon Black (CB) particles in 1:1 mass ratio. Feedstock was extruded in monofilament fiber form (diameter of 300 microns), resulting in a highly stretchable sensor (strain sensor range up to 100%) with linear resistance signal response. The soft condensed matter sensor was integrated into a hybrid design including a 3D printed metamaterial structure combined with a soft silicone. An auxetic unit cell was chosen (with negative Poisson’s Ratio) in the design in order to combine with the soft silicon, which exhibits a high Poisson’s Ratio. The hybrid sensor design was subjected to mechanical tensile testing up to 50% strain (with gauge factor calculation for sensor performance), and then utilized for strain-based sensing applications on the body including gesture recognition and vital function monitoring including blood pulse-wave and breath monitoring. A 10 gesture Natural User Interface (NUI) test protocol was utilized to show the effectiveness of a single wrist-mounted sensor to identify discrete gestures including finger and hand motions. These hand motions were chosen specifically for Human Computer Interaction (HCI) applications. The blood pulse-wave signal was monitored with the hand at rest, in a wrist-mounted. In addition different breathing patterns were investigated, including normal breathing and coughing, using a belt and chest-mounted configuration.

  8. Numerical investigation of magnetic sensor for DNA hybridization detection using planar transformer

    Directory of Open Access Journals (Sweden)

    Sayyed M. Azimi

    2007-12-01

    Full Text Available This paper introduces a sensor for detection of DNA hybridization and investigates its performance by means of computer simulation. A planar transformer with spiral windings is proposed for hybridization detection. In order to detect the occurrence of hybridization, single strand target DNA’s are tagged with magnetic beads. Target DNA’s are then exposed to known single strand probe DNA’s which are immobilized on the surface of a functionalized layer in the proximity of the sensor. The primary winding of the transformer is driven by an AC current source. The voltage at the secondary winding is used for detection. Once the hybridization is occurred, a layer of magnetic material is formed and the coupling between the windings is varied. These variations are reflected into the detecting output voltage. The magnitude of the output voltage is numerically calculated in terms of geometrical and physical parameters and the parameter values resulting in maximum response are derived.

  9. A Faster Routing Scheme for Stationary Wireless Sensor Networks - A Hybrid Approach

    CERN Document Server

    Norman, Jasmine; Roja, P Prapoorna; 10.5121/ijasuc.2010.1101

    2010-01-01

    A wireless sensor network consists of light-weight, low power, small size sensor nodes. Routing in wireless sensor networks is a demanding task. This demand has led to a number of routing protocols which efficiently utilize the limited resources available at the sensor nodes. Most of these protocols are either based on single hop routing or multi hop routing and typically find the minimum energy path without addressing other issues such as time delay in delivering a packet, load balancing, and redundancy of data. Response time is very critical in environment monitoring sensor networks where typically the sensors are stationary and transmit data to a base station or a sink node. In this paper a faster load balancing routing protocol based on location with a hybrid approach is proposed.

  10. Electrospun ZnO/SiO2 hybrid nanofibrous mat for flexible ultraviolet sensor

    Science.gov (United States)

    Xi, Min; Wang, Xiaoxu; Zhao, Yong; Zhu, Zhengtao; Fong, Hao

    2014-03-01

    A freestanding/flexible hybrid mat consisting of crystalline ZnO nanofibers (˜75 wt. %) and amorphous SiO2 nanofibers (˜25 wt. %) was prepared by the technique of electrospinning followed by the pyrolysis in air at 650 °C. The electrospun ZnO/SiO2 hybrid mat was then studied to fabricate a flexible ultraviolet (UV) sensor, and the photo-response of this sensor was characterized under varied UV light intensities; additionally, the sensor performance under the bending condition was also evaluated. The results indicated that the flexible UV sensor had excellent sensitivity and reproducibility/reversibility, and it also exhibited high performance under the bending condition.

  11. Hybrid bronchoscope tracking using a magnetic tracking sensor and image registration.

    Science.gov (United States)

    Mori, Kensaku; Deguchi, Daisuke; Akiyama, Kenta; Kitasaka, Takayuki; Maurer, Calvin R; Suenaga, Yasuhito; Takabatake, Hirotsugu; Mori, Masaki; Natori, Hiroshi

    2005-01-01

    In this paper, we propose a hybrid method for tracking a bronchoscope that uses a combination of magnetic sensor tracking and image registration. The position of a magnetic sensor placed in the working channel of the bronchoscope is provided by a magnetic tracking system. Because of respiratory motion, the magnetic sensor provides only the approximate position and orientation of the bronchoscope in the coordinate system of a CT image acquired before the examination. The sensor position and orientation is used as the starting point for an intensity-based registration between real bronchoscopic video images and virtual bronchoscopic images generated from the CT image. The output transformation of the image registration process is the position and orientation of the bronchoscope in the CT image. We tested the proposed method using a bronchial phantom model. Virtual breathing motion was generated to simulate respiratory motion. The proposed hybrid method successfully tracked the bronchoscope at a rate of approximately 1 Hz.

  12. Design and implementation of a hybrid circuit system for micro sensor signal processing

    Energy Technology Data Exchange (ETDEWEB)

    Wang Zhuping; Chen Jing; Liu Ruqing, E-mail: wangzhuping169@163.com [School of Information and Electronics, Beijing Institute of Technology, Beijing 100081 (China)

    2011-04-15

    This paper covers a micro sensor analog signal processing circuit system (MASPS) chip with low power and a digital signal processing circuit board implementation including hardware connection and software design. Attention has been paid to incorporate the MASPS chip into the digital circuit board. The ultimate aim is to form a hybrid circuit used for mixed-signal processing, which can be applied to a micro sensor flow monitoring system. (semiconductor integrated circuits)

  13. Design and implementation of a hybrid circuit system for micro sensor signal processing*

    Institute of Scientific and Technical Information of China (English)

    Wang Zhuping; Chen Jing; Liu Ruqing

    2011-01-01

    This paper covers a micro sensor analog signal processing circuit system (MASPS) chip with low power and a digital signal processing circuit board implementation including hardware connection and software design.Attention has been paid to incorporate the MASPS chip into the digital circuit board. The ultimate aim is to form a hybrid circuit used for mixed-signal processing, which can be applied to a micro sensor flow monitoring system.

  14. Optical temperature sensor with enhanced sensitivity by employing hybrid waveguides in a silicon Mach-Zehnder interferometer

    DEFF Research Database (Denmark)

    Guan, Xiaowei; Wang, Xiaoyan; Frandsen, Lars Hagedorn

    2016-01-01

    of the fabricated sensor with silicon/polymer hybrid waveguides is measured to be 172 pm/°C, which is two times larger than a conventional all-silicon optical temperature sensor (∼80 pm/°C). Moreover, a design with silicon/titanium dioxide hybrid waveguides is by calculation expected to have a sensitivity as high...

  15. Magnetic Particle-Based Hybrid Platforms for Bioanalytical Sensors

    Directory of Open Access Journals (Sweden)

    Silvana Andreescu

    2009-04-01

    Full Text Available Biomagnetic nano and microparticles platforms have attracted considerable interest in the field of biological sensors due to their interesting physico-chemical properties, high specific surface area, good mechanical stability and opportunities for generating magneto-switchable devices. This review discusses recent advances in the development and characterization of active biomagnetic nanoassemblies, their interaction with biological molecules and their use in bioanalytical sensors.

  16. Hybridized electromagnetic-triboelectric nanogenerator for scavenging air-flow energy to sustainably power temperature sensors.

    Science.gov (United States)

    Wang, Xue; Wang, Shuhua; Yang, Ya; Wang, Zhong Lin

    2015-04-28

    We report a hybridized nanogenerator with dimensions of 6.7 cm × 4.5 cm × 2 cm and a weight of 42.3 g that consists of two triboelectric nanogenerators (TENGs) and two electromagnetic generators (EMGs) for scavenging air-flow energy. Under an air-flow speed of about 18 m/s, the hybridized nanogenerator can deliver largest output powers of 3.5 mW for one TENG (in correspondence of power per unit mass/volume: 8.8 mW/g and 14.6 kW/m(3)) at a loading resistance of 3 MΩ and 1.8 mW for one EMG (in correspondence of power per unit mass/volume: 0.3 mW/g and 0.4 kW/m(3)) at a loading resistance of 2 kΩ, respectively. The hybridized nanogenerator can be utilized to charge a capacitor of 3300 μF to sustainably power four temperature sensors for realizing self-powered temperature sensor networks. Moreover, a wireless temperature sensor driven by a hybridized nanogenerator charged Li-ion battery can work well to send the temperature data to a receiver/computer at a distance of 1.5 m. This work takes a significant step toward air-flow energy harvesting and its potential applications in self-powered wireless sensor networks.

  17. Energy-Saving Traffic Scheduling in Hybrid Software Defined Wireless Rechargeable Sensor Networks.

    Science.gov (United States)

    Wei, Yunkai; Ma, Xiaohui; Yang, Ning; Chen, Yijin

    2017-09-15

    Software Defined Wireless Rechargeable Sensor Networks (SDWRSNs) are an inexorable trend for Wireless Sensor Networks (WSNs), including Wireless Rechargeable Sensor Network (WRSNs). However, the traditional network devices cannot be completely substituted in the short term. Hybrid SDWRSNs, where software defined devices and traditional devices coexist, will last for a long time. Hybrid SDWRSNs bring new challenges as well as opportunities for energy saving issues, which is still a key problem considering that the wireless chargers are also exhaustible, especially in some rigid environment out of the main supply. Numerous energy saving schemes for WSNs, or even some works for WRSNs, are no longer suitable for the new features of hybrid SDWRSNs. To solve this problem, this paper puts forward an Energy-saving Traffic Scheduling (ETS) algorithm. The ETS algorithm adequately considers the new characters in hybrid SDWRSNs, and takes advantage of the Software Defined Networking (SDN) controller's direct control ability on SDN nodes and indirect control ability on normal nodes. The simulation results show that, comparing with traditional Minimum Transmission Energy (MTE) protocol, ETS can substantially improve the energy efficiency in hybrid SDWRSNs for up to 20-40% while ensuring feasible data delay.

  18. Integrated ion sensor device applications based on printed hybrid material systems (Conference Presentation)

    Science.gov (United States)

    List-Kratochvil, Emil J. W.

    2016-09-01

    Comfortable, wearable sensors and computers will enhance every person's awareness of his or her health condition, environment, chemical pollutants, potential hazards, and information of interest. In agriculture and in the food industry there is a need for a constant control of the condition and needs of plants, animals, and farm products. Yet many of these applications depend upon the development of novel, cheap devices and sensors that are easy to implement and to integrate. Organic semiconductors as well as several inorganic materials and hybrid material systems have proven to combine a number of intriguing optical and electronic properties with simple processing methods. As it will be reviewed in this contribution, these materials are believed to find their application in printed electronic devices allowing for the development of smart disposable devices in food-, health-, and environmental monitoring, diagnostics and control, possibly integrated into arrays of sensor elements for multi-parameter detection. In this contribution we review past and recent achievements in the field. Followed by a brief introduction, we will focus on two topics being on the agenda recently: a) the use of electrolyte-gated organic field-effect transistor (EGOFET) and ion-selective membrane based sensors for in-situ sensing of ions and biological substances and b) the development of hybrid material based resistive switches and their integration into fully functional, printed hybrid crossbar sensor array structures.

  19. Magnetoresistive sensors for measurements of DNA hybridization kinetics - effect of TINA modifications

    DEFF Research Database (Denmark)

    Rizzi, Giovanni; Dufva, Martin; Hansen, Mikkel Fougt

    2017-01-01

    Acid (TINA) was studied. Such modifications have been demonstrated to increase the melting temperature of DNA hybrids in solution and are also relevant for surface-based DNA sensing. Kinetic data for DNA probes with no TINA modification or with TINA modifications at the 5' end (1 × TINA) or at both......We present the use of magnetoresistive sensors integrated in a microfluidic system for real-time studies of the hybridization kinetics of DNA labeled with magnetic nanoparticles to an array of surface-tethered probes. The nanoparticles were magnetized by the magnetic field from the sensor current....... A local negative reference ensured that only the specific binding signal was measured. Analysis of the real-time hybridization using a two-compartment model yielded both the association and dissociation constants kon, and koff. The effect of probe modifications with ortho-Twisted Intercalating Nucleic...

  20. A Game Theoretic Optimization Method for Energy Efficient Global Connectivity in Hybrid Wireless Sensor Networks.

    Science.gov (United States)

    Lee, JongHyup; Pak, Dohyun

    2016-08-29

    For practical deployment of wireless sensor networks (WSN), WSNs construct clusters, where a sensor node communicates with other nodes in its cluster, and a cluster head support connectivity between the sensor nodes and a sink node. In hybrid WSNs, cluster heads have cellular network interfaces for global connectivity. However, when WSNs are active and the load of cellular networks is high, the optimal assignment of cluster heads to base stations becomes critical. Therefore, in this paper, we propose a game theoretic model to find the optimal assignment of base stations for hybrid WSNs. Since the communication and energy cost is different according to cellular systems, we devise two game models for TDMA/FDMA and CDMA systems employing power prices to adapt to the varying efficiency of recent wireless technologies. The proposed model is defined on the assumptions of the ideal sensing field, but our evaluation shows that the proposed model is more adaptive and energy efficient than local selections.

  1. A Game Theoretic Optimization Method for Energy Efficient Global Connectivity in Hybrid Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    JongHyup Lee

    2016-08-01

    Full Text Available For practical deployment of wireless sensor networks (WSN, WSNs construct clusters, where a sensor node communicates with other nodes in its cluster, and a cluster head support connectivity between the sensor nodes and a sink node. In hybrid WSNs, cluster heads have cellular network interfaces for global connectivity. However, when WSNs are active and the load of cellular networks is high, the optimal assignment of cluster heads to base stations becomes critical. Therefore, in this paper, we propose a game theoretic model to find the optimal assignment of base stations for hybrid WSNs. Since the communication and energy cost is different according to cellular systems, we devise two game models for TDMA/FDMA and CDMA systems employing power prices to adapt to the varying efficiency of recent wireless technologies. The proposed model is defined on the assumptions of the ideal sensing field, but our evaluation shows that the proposed model is more adaptive and energy efficient than local selections.

  2. Reconstruction of in-plane strain maps using hybrid dense sensor network composed of sensing skin

    Science.gov (United States)

    Downey, Austin; Laflamme, Simon; Ubertini, Filippo

    2016-12-01

    The authors have recently developed a soft-elastomeric capacitive (SEC)-based thin film sensor for monitoring strain on mesosurfaces. Arranged in a network configuration, the sensing system is analogous to a biological skin, where local strain can be monitored over a global area. Under plane stress conditions, the sensor output contains the additive measurement of the two principal strain components over the monitored surface. In applications where the evaluation of strain maps is useful, in structural health monitoring for instance, such signal must be decomposed into linear strain components along orthogonal directions. Previous work has led to an algorithm that enabled such decomposition by leveraging a dense sensor network configuration with the addition of assumed boundary conditions. Here, we significantly improve the algorithm’s accuracy by leveraging mature off-the-shelf solutions to create a hybrid dense sensor network (HDSN) to improve on the boundary condition assumptions. The system’s boundary conditions are enforced using unidirectional RSGs and assumed virtual sensors. Results from an extensive experimental investigation demonstrate the good performance of the proposed algorithm and its robustness with respect to sensors’ layout. Overall, the proposed algorithm is seen to effectively leverage the advantages of a hybrid dense network for application of the thin film sensor to reconstruct surface strain fields over large surfaces.

  3. Hierarchical Wireless Multimedia Sensor Networks for Collaborative Hybrid Semi-Supervised Classifier Learning

    Directory of Open Access Journals (Sweden)

    Liang Ding

    2007-11-01

    Full Text Available Wireless multimedia sensor networks (WMSN have recently emerged as one ofthe most important technologies, driven by the powerful multimedia signal acquisition andprocessing abilities. Target classification is an important research issue addressed in WMSN,which has strict requirement in robustness, quickness and accuracy. This paper proposes acollaborative semi-supervised classifier learning algorithm to achieve durative onlinelearning for support vector machine (SVM based robust target classification. The proposedalgorithm incrementally carries out the semi-supervised classifier learning process inhierarchical WMSN, with the collaboration of multiple sensor nodes in a hybrid computingparadigm. For decreasing the energy consumption and improving the performance, somemetrics are introduced to evaluate the effectiveness of the samples in specific sensor nodes,and a sensor node selection strategy is also proposed to reduce the impact of inevitablemissing detection and false detection. With the ant optimization routing, the learningprocess is implemented with the selected sensor nodes, which can decrease the energyconsumption. Experimental results demonstrate that the collaborative hybrid semi-supervised classifier learning algorithm can effectively implement target classification inhierarchical WMSN. It has outstanding performance in terms of energy efficiency and timecost, which verifies the effectiveness of the sensor nodes selection and ant optimizationrouting.

  4. A hybrid Fabry-Perot/Michelson interferometer sensor using a dual asymmetric core microstructured fiber

    Science.gov (United States)

    Frazão, O.; Silva, S. F.; Viegas, J.; Baptista, J. M.; Santos, J. L.; Roy, P.

    2010-02-01

    A hybrid Fabry-Perot/Michelson interferometer sensor using a dual asymmetric core microstructured fiber is demonstrated. The hybrid interferometer presents three waves. Two parallel Fabry-Perot cavities with low finesse are formed between the splice region and the end of a dual-core microstructured fiber. A Michelson configuration is obtained by the two small cores of the microstructured fiber. The spectral response of the hybrid interferometer presents two pattern fringes with different frequencies due to the respective optical path interferometers. The hybrid interferometer was characterized in strain and temperature presenting different sensitivity coefficients for each topology. Due to these characteristics, this novel sensing head is able to measure strain and temperature, simultaneously.

  5. DNA Hybridization Sensors Based on Electrochemical Impedance Spectroscopy as a Detection Tool

    Directory of Open Access Journals (Sweden)

    Jin-Young Park

    2009-11-01

    Full Text Available Recent advances in label free DNA hybridization sensors employing electrochemical impedance spectroscopy (EIS as a detection tool are reviewed. These sensors are based on the modulation of the blocking ability of an electrode modified with a probe DNA by an analyte, i.e., target DNA. The probe DNA is immobilized on a self-assembled monolayer, a conducting polymer film, or a layer of nanostructures on the electrode such that desired probe DNA would selectively hybridize with target DNA. The rate of charge transfer from the electrode thus modified to a redox indicator, e.g., [Fe(CN6]3–/4–, which is measured by EIS in the form of charge transfer resistance (Rct, is modulated by whether or not, as well as how much, the intended target DNA is selectively hybridized. Efforts made to enhance the selectivity as well as the sensitivity of DNA sensors and to reduce the EIS measurement time are briefly described along with brief future perspectives in developing DNA sensors.

  6. DNA Hybridization Sensors Based on Electrochemical Impedance Spectroscopy as a Detection Tool

    Science.gov (United States)

    Park, Jin-Young; Park, Su-Moon

    2009-01-01

    Recent advances in label free DNA hybridization sensors employing electrochemical impedance spectroscopy (EIS) as a detection tool are reviewed. These sensors are based on the modulation of the blocking ability of an electrode modified with a probe DNA by an analyte, i.e., target DNA. The probe DNA is immobilized on a self-assembled monolayer, a conducting polymer film, or a layer of nanostructures on the electrode such that desired probe DNA would selectively hybridize with target DNA. The rate of charge transfer from the electrode thus modified to a redox indicator, e.g., [Fe(CN)6]3−/4−, which is measured by EIS in the form of charge transfer resistance (Rct), is modulated by whether or not, as well as how much, the intended target DNA is selectively hybridized. Efforts made to enhance the selectivity as well as the sensitivity of DNA sensors and to reduce the EIS measurement time are briefly described along with brief future perspectives in developing DNA sensors. PMID:22303136

  7. Silver cluster-biomolecule hybrids: from basics towards sensors.

    Science.gov (United States)

    Bonačić-Koutecký, Vlasta; Kulesza, Alexander; Gell, Lars; Mitrić, Roland; Antoine, Rodolphe; Bertorelle, Franck; Hamouda, Ramzi; Rayane, Driss; Broyer, Michel; Tabarin, Thibault; Dugourd, Philippe

    2012-07-14

    We focus on the functional role of small silver clusters in model hybrid systems involving peptides in the context of a new generation of nanostructured materials for biosensing. The optical properties of hybrids in the gas phase and at support will be addressed with the aim to bridge fundamental and application aspects. We show that extension and enhancement of absorption of peptides can be achieved by small silver clusters due to the interaction of intense intracluster excitations with the π-π* excitations of chromophoric aminoacids. Moreover, we demonstrate that the binding of a peptide to a supported silver cluster can be detected by the optical fingerprint. This illustrates that supported silver clusters can serve as building blocks for biosensing materials. Moreover, the clusters can be used simultaneously to immobilize biomolecules and to increase the sensitivity of detection, thus replacing the standard use of organic dyes and providing label-free detection. Complementary to that, we show that protected silver clusters containing a cluster core and a shell liganded by thiolates exhibit absorption properties with intense transitions in the visible regime which are also suitable for biosensing applications.

  8. Synthesis, Characterization and Utility of Carbon Nanotube Based Hybrid Sensors in Bioanalytical Applications

    Science.gov (United States)

    Badhulika, Sushmee

    The detection of gaseous analytes and biological molecules is of prime importance in the fields of environmental pollution control, food and water - safety and analysis; and medical diagnostics. This necessitates the development of advanced and improved technology that is reliable, inexpensive and suitable for high volume production. The conventional sensors are often thin film based which lack sensitivity due to the phenomena of current shunting across the charge depleted region when an analyte binds with them. One dimensional (1-D) nanostructures provide a better alternative for sensing applications by eliminating the issue of current shunting due to their 1-D geometries and facilitating device miniaturization and low power operations. Carbon nanotubes (CNTs) are 1-D nanostructures that possess small size, high mechanical strength, high electrical and thermal conductivity and high specific area that have resulted in their wide spread applications in sensor technology. To overcome the issue of low sensitivity of pristine CNTs and to widen their scope, hybrid devices have been fabricated that combine the synergistic properties of CNTs along with materials like metals and conducting polymers (CPs). CPs exhibit electronic, magnetic and optical properties of metals and semiconductors while retaining the processing advantages of polymers. Their high chemical sensitivity, room temperature operation and tunable charge transport properties has made them ideal for use as transducing elements in chemical sensors. In this dissertation, various CNT based hybrid devices such as CNT-conducting polymer and graphene-CNT-metal nanoparticles based sensors have been developed and demonstrated towards bioanalytical applications such as detection of volatile organic compounds (VOCs) and saccharides. Electrochemical polymerization enabled the synthesis of CPs and metal nanoparticles in a simple, cost effective and controlled way on the surface of CNT based platforms thus resulting in

  9. Gravimetric chemical sensors based on silica-based mesoporous organic-inorganic hybrids.

    Science.gov (United States)

    Xu, Jiaqiang; Zheng, Qi; Zhu, Yongheng; Lou, Huihui; Xiang, Qun; Cheng, Zhixuan

    2014-09-01

    Silica-based mesoporous organic-inorganic hybrid material modified quartz crystal microbalance (QCM) sensors have been examined for their ability to achieve highly sensitive and selective detection. Mesoporous silica SBA-15 serves as an inorganic host with large specific surface area, facilitating gas adsorption, and thus leads to highly sensitive response; while the presence of organic functional groups contributes to the greatly improved specific sensing property. In this work, we summarize our efforts in the rational design and synthesis of novel sensing materials for the detection of hazardous substances, including simulant nerve agent, organic vapor, and heavy metal ion, and develop high-performance QCM-based chemical sensors.

  10. Implementation of a DSP-based hybrid sensor for switched reluctance motor converter

    Energy Technology Data Exchange (ETDEWEB)

    Whei-Min Lin; Ching-Ming Hong; Huang-Chen Chien [Department of Electrical Engineering National Sun Yat-Sen University, Kaohsiung 80424, Taiwan, R.O.C. (China); Huang-Chen Chien [Electronic Communication Engineering, National Kaohsiung Marine University, Kaohsiung 81157, Taiwan, R.O.C. (China)

    2010-07-01

    The Switched Reluctance Motor (SRM) inherits a simple and reliable structure with an economical manufacturing cost. The DC power output supplies the unipolar converter to control the pulses sent to SRM. Thus, the velocity and torque are controllable for various velocity commands, and the SRM is gaining more and more applications on high torque requirement field with constant power. This paper proposes a DSP based hybrid sensor for switched reluctance motor with easy implementation. The current transducer is used to monitor the energized current and proximity sensors for rotor salient. The signals are then fed back to DSP. This design will improve the performance of SRM to operate more smoothly.

  11. Implementation of a DSP-based hybrid sensor for switched reluctance motor converter

    Directory of Open Access Journals (Sweden)

    Whei-Min Lin, Chih-Ming Hong, Huang -Chen Chien, Huang-Chen Chien

    2010-09-01

    Full Text Available The Switched Reluctance Motor (SRM inherits a simple and reliable structure with an economical manufacturing cost. The DC power output supplies the unipolar converter to control the pulses sent to SRM. Thus, the velocity and torque are controllable for various velocity commands, and the SRM is gaining more and more applications on high torque requirement field with constant power. This paper proposes a DSP based hybrid sensor for switched reluctance motor with easy implementation. The current transducer is used to monitor the energized current and proximity sensors for rotor salient. The signals are then fed back to DSP. This design will improve the performance of SRM to operate more smoothly.

  12. Feature-based Analysis of Large-scale Spatio-Temporal Sensor Data on Hybrid Architectures.

    Science.gov (United States)

    Saltz, Joel; Teodoro, George; Pan, Tony; Cooper, Lee; Kong, Jun; Klasky, Scott; Kurc, Tahsin

    2013-08-01

    Analysis of large sensor datasets for structural and functional features has applications in many domains, including weather and climate modeling, characterization of subsurface reservoirs, and biomedicine. The vast amount of data obtained from state-of-the-art sensors and the computational cost of analysis operations create a barrier to such analyses. In this paper, we describe middleware system support to take advantage of large clusters of hybrid CPU-GPU nodes to address the data and compute-intensive requirements of feature-based analyses in large spatio-temporal datasets.

  13. In situ corrosion monitoring of PC structures with distributed hybrid carbon fiber reinforced polymer sensors

    Science.gov (United States)

    Yang, C. Q.; Wu, Z. S.

    2007-08-01

    Firstly, the fabrication and sensing properties of hybrid carbon fiber reinforced polymer (HCFRP) composite sensors are addressed. In order to provide a distributed sensing manner, the HCFRP sensors were divided into multi-zones with electrodes, and each zone was regarded as a separate sensor. Secondly, their application is studied to monitor the steel corrosion of prestressed concrete (PC) beams. The HCFRP sensors with different gauge lengths were mounted on a PC tendon, steel bar and embedded in tensile and compressive sides of the PC beam. The experiment was carried out under an electric accelerated corrosion and a constant load of about 54 kN. The results reveal that the corrosion of the PC tendon can be monitored through measuring the electrical resistance (ER) change of the HCFRP sensors. For the sensors embedded in tensile side of the PC beam, their ER increases as the corrosion progresses, whereas for the sensors embedded in compressive side, their ER decreases with corrosion time. Moreover, the strains due to the corrosion can be obtained based on the ER change and calibration curves of HCFRP sensors. The strains measured with traditional strain gauges agree with the strains calculated from the ER changes of HCFRP sensors. The electrical behavior of the zones where the corrosion was performed is much different from those of the other zones. In these zones, either there exist jumps in ER, or the ER increases with a much larger rate than those of the other zones. Distributed corrosion monitoring for PC structures is thus demonstrated with the application of HCFRP sensors through a proper installation of multi-electrodes.

  14. Hybrid Control of Long-Endurance Aerial Robotic Vehicles for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Deok-Jin Lee

    2011-06-01

    Full Text Available This paper presents an effective hybrid control approach for building stable wireless sensor networks between heterogeneous unmanned vehicles using long‐ endurance aerial robotic vehicles. For optimal deployment of the aerial vehicles in communication networks, a gradient climbing based self‐estimating control algorithm is utilized to locate the aerial platforms to maintain maximum communication throughputs between distributed multiple nodes. The autonomous aerial robots, which function as communication relay nodes, extract and harvest thermal energy from the atmospheric environment to improve their flight endurance within specified communication coverage areas. The rapidly‐deployable sensor networks with the high‐endurance aerial vehicles can be used for various application areas including environment monitoring, surveillance, tracking, and decision‐making support. Flight test and simulation studies are conducted to evaluate the effectiveness of the proposed hybrid control technique for robust communication networks.

  15. A Hybrid Time Synchronization Algorithm Based on Broadcast Sequencing for Wireless Sensor Networks

    Science.gov (United States)

    2014-09-01

    sequence per the flow charts detailed in Figures 43–45 located in Appendix A. The input 1 in Figure 12 is a recursive step from some of the...SYNCHRONIZATION ALGORITHM BASED ON BROADCAST SEQUENCING FOR WIRELESS SENSOR NETWORKS by Sung C. Park September 2014 Thesis Co-Advisors...REPORT TYPE AND DATES COVERED Master’s Thesis 4. TITLE AND SUBTITLE A HYBRID TIME SYNCHRONIZATION ALGORITHM BASED ON BROADCAST SEQUENCING FOR

  16. One-chip electronic detection of DNA hybridization using precision impedance-based CMOS array sensor.

    Science.gov (United States)

    Lee, Kang-Ho; Lee, Jeong-Oen; Sohn, Mi-Jin; Lee, Byunghun; Choi, Suk-Hwan; Kim, Sang Kyu; Yoon, Jun-Bo; Cho, Gyu-Hyeong

    2010-12-15

    This paper describes a label-free and fully electronic detection method of DNA hybridization, which is achieved through the use of a 16×8 microarray sensor in conjunction with a new type of impedance spectroscopy constructed with standard complementary metal-oxide-semiconductor (CMOS) technology. The impedance-based method is based on changes in the reactive capacitance and the charge-transfer resistance after hybridization with complementary DNA targets. In previously published label-free techniques, the measured capacitance presented unstable capacitive properties due to the parallel resistance that is not infinite and can cause a leakage by discharging the charge on the capacitor. This paper presents an impedance extraction method that uses excitation by triangular wave voltage, which enables a reliable measurement of both C and R producing a highly sensitive sensor with a stable operation independent of external variables. The system was fabricated in an industrial 0.35-μm 4-metal 2-poly CMOS process, integrating working electrodes and readout electronics into one chip. The integrated readout, which uses a parasitic insensitive integrator, achieves an enlarged detection range and improved noise performance. The maximum average relative variations of C and R are 31.5% and 68.6%, respectively, after hybridization with a 1 μM target DNA. The proposed sensor allows quantitative evaluation of the molecule densities on the chip with distinguishable variation in the impedance. This fully electronic microsystem has great potential for use with bioanalytical tools and point-of-care diagnosis.

  17. Development of an SH-SAW sensor for detection of DNA immobilization and hybridization

    Science.gov (United States)

    Roh, Yongrae; Woo, Jeongdong; Hur, Youngjune; Pak, Yukeun E.

    2005-05-01

    We have developed SH (shear horizontal) surface acoustic wave (SAW) sensors for detection of the immobilization and hybrdization of DNA (deoxyribonucleic acid) on the gold coated delay line of transverse SAW devices. The experiments of DNA immobilization and hybridization were performed with 15-mer oligonucleotides (probe and complementary target DNA). The sensor consists of twin SAW delay line oscillators (sensing channel and reference channel) operating at 100 MHz fabricated on 36° rotated Y-cut X-propagation LiTaO3 piezoelectric single crystals. The relative change in the frequency of the two oscillators was monitored to detect the immobilization of probe DNA with thiol group on the Au coated delay line and the hybridization between target DNA and immobilized probe DNA in a pH 7.4 PBS (phosphate buffered saline) solution. The measurement results showed a good response of the sensor to the mass loading effects of the DNA immobilization and hybridization with the sensitivity up to 1.5 ng/ml/Hz.

  18. HyberLoc: Providing Physical Layer Location Privacy in Hybrid Sensor Networks

    CERN Document Server

    El-Badry, Rania; Youssef, Moustafa

    2010-01-01

    In many hybrid wireless sensor networks' applications, sensor nodes are deployed in hostile environments where trusted and un-trusted nodes co-exist. In anchor-based hybrid networks, it becomes important to allow trusted nodes to gain full access to the location information transmitted in beacon frames while, at the same time, prevent un-trusted nodes from using this information. The main challenge is that un-trusted nodes can measure the physical signal transmitted from anchor nodes, even if these nodes encrypt their transmission. Using the measured signal strength, un-trusted nodes can still tri-laterate the location of anchor nodes. In this paper, we propose HyberLoc, an algorithm that provides anchor physical layer location privacy in anchor-based hybrid sensor networks. The idea is for anchor nodes to dynamically change their transmission power following a certain probability distribution, degrading the localization accuracy at un-trusted nodes while maintaining high localization accuracy at trusted node...

  19. Magnetoresistive sensors for measurements of DNA hybridization kinetics – effect of TINA modifications

    Science.gov (United States)

    Rizzi, G.; Dufva, M.; Hansen, M. F.

    2017-01-01

    We present the use of magnetoresistive sensors integrated in a microfluidic system for real-time studies of the hybridization kinetics of DNA labeled with magnetic nanoparticles to an array of surface-tethered probes. The nanoparticles were magnetized by the magnetic field from the sensor current. A local negative reference ensured that only the specific binding signal was measured. Analysis of the real-time hybridization using a two-compartment model yielded both the association and dissociation constants kon, and koff. The effect of probe modifications with ortho-Twisted Intercalating Nucleic Acid (TINA) was studied. Such modifications have been demonstrated to increase the melting temperature of DNA hybrids in solution and are also relevant for surface-based DNA sensing. Kinetic data for DNA probes with no TINA modification or with TINA modifications at the 5′ end (1 × TINA) or at both the 5′ and 3′ ends (2 × TINA) were compared. TINA modifications were found to provide a relative decrease of koff by a factor of 6-20 at temperatures from 57.5 °C to 60 °C. The values of kon were generally in the range between 0.5-2 × 105 M−1s−1 and showed lower values for the unmodified probe than for the TINA modified probes. The observations correlated well with measured melting temperatures of the DNA hybrids. PMID:28167835

  20. Simple hybrid wire-wireless fiber laser sensor by direct photonic generation of beat signal.

    Science.gov (United States)

    Liu, Shengchun; Gao, Liang; Yin, Zuowei; Shi, Yuechun; Zhang, Liang; Chen, Xiangfei; Cheng, Jianchun

    2011-04-20

    Based on direct photonic generation of a beat signal, a simple hybrid wire-wireless fiber laser sensor is proposed. In the sensor, an improved multilongitudinal modes fiber laser cavity is set up by only a fiber Bragg grating, a section of erbium-doped fiber, and a broadband reflector. A photodetector is used to detect the electrical beat signal. Next, the beat signal including the sensor information can access the wireless network through the wireless transmission. At last, a frequency spectrum analyzer is used to demodulate the sensing information. With this method, the long-distance real-time monitor of the fiber sensor can be realized. The proposed technique offers a simple and cheap way for sensing information of the fiber sensor to access the wireless sensor network. An experiment was implemented to measure the strain and the corresponding root mean square deviation is about -5.7 με at 916 MHz and -3.8 με at 1713 MHz after wireless transmission.

  1. Label-free detection of DNA hybridization using InAs μ-Hall sensors

    Science.gov (United States)

    Aledealat, Khaled; Hira, S.; Chen, K.; Strouse, G. F.; Chase, P. B.; Xiong, P.; von Molnar, S.; Mihajlovic, G.; Field, M.; Sullivan, G.

    2010-03-01

    We present results on label-free detection of DNA hybridization using InAs μ-Hall sensors. The μ-Hall sensor consisted of six 1-μm Hall crosses defined on an InAs quantum well substrate. The sensor was then covered with sputter-deposited SiO2 and Au pads were patterned on top of some of the Hall crosses. Thiolated ssDNA strands that are complementary to one end of the target ssDNA were assembled on the Au pads and the rest of the device platform was passivated with PEG-silane. Biotinylated and fluorescently-tagged complementary ssDNA to the other end of the target ssDNA were labeled with commercial streptavidin-coated 350 nm superparamagnetic beads. Labeled ssDNA were found to assemble selectively onto the Au pads after mixing with the target ssDNA, indicating successful hybridization of the three ssDNA sequences. The presence of the assembled beads was successfully detected via the Hall sensor and confirmed using laser scanning confocal microscopy. This work was supported by NIH NIGMS GM079592.

  2. Elaboration of ammonia gas sensors based on electrodeposited polypyrrole--cobalt phthalocyanine hybrid films.

    Science.gov (United States)

    Patois, Tilia; Sanchez, Jean-Baptiste; Berger, Franck; Fievet, Patrick; Segut, Olivier; Moutarlier, Virginie; Bouvet, Marcel; Lakard, Boris

    2013-12-15

    The electrochemical incorporation of a sulfonated cobalt phthalocyanine (sCoPc) in conducting polypyrrole (PPy) was done, in the presence or absence of LiClO4, in order to use the resulting hybrid material for the sensing of ammonia. After electrochemical deposition, the morphological features and structural properties of polypyrrole/phthalocyanine hybrid films were investigated and compared to those of polypyrrole films. A gas sensor consisting in platinum microelectrodes arrays was fabricated using silicon microtechnologies, and the polypyrrole and polypyrrole/phthalocyanine films were electrochemically deposited on the platinum microelectrodes arrays of this gas sensor. When exposed to ammonia, polymer-based gas sensors exhibited a decrease in conductance due to the electron exchange between ammonia and sensitive polymer-based layer. The characteristics of the gas sensors (response time, response amplitude, reversibility) were studied for ammonia concentrations varying from 1 ppm to 100 ppm. Polypyrrole/phthalocyanine films exhibited a high sensitivity and low detection limit to ammonia as well as a fast and reproducible response at room temperature. The response to ammonia exposition of polypyrrole films was found to be strongly enhanced thanks to the incorporation of the phthalocyanine in the polypyrrole matrix. © 2013 Elsevier B.V. All rights reserved.

  3. Connectivity and Coverage in Hybrid Wireless Sensor Networks using Dynamic Random Geometric Graph Model

    Directory of Open Access Journals (Sweden)

    Jasmine Norman

    2011-10-01

    Full Text Available Random Geometric Graphs have been a very influential and well-studied model of large networks, such assensor networks, where the network nodes are represented by the vertices of the RGG, and the direct connectivity between nodes is represented by the edges. This assumes homogeneous wireless nodes with uniform transmission ranges. In real life, there exist heterogeneous wireless networks in which devices have dramatically different capabilities. The connectivity of a WSN is related to the positions of nodes, and those positions are heavily affected by the method of sensor deployment. As sensors may be spread in an arbitrary manner, one of the fundamental issues in a wireless sensor network is the coverage problem. In this paper, I study connectivity and coverage in hybrid WSN based on dynamic random geometric graph.

  4. H-MAC: A Hybrid MAC Protocol for Wireless Sensor Networks

    CERN Document Server

    Mehta, S; 10.5121/ijcnc.2010.2208

    2010-01-01

    In this paper, we propose a hybrid medium access control protocol (H-MAC) for wireless sensor networks. It is based on the IEEE 802.11's power saving mechanism (PSM) and slotted aloha, and utilizes multiple slots dynamically to improve performance. Existing MAC protocols for sensor networks reduce energy consumptions by introducing variation in an active/sleep mechanism. But they may not provide energy efficiency in varying traffic conditions as well as they did not address Quality of Service (QoS) issues. H-MAC, the propose MAC protocol maintains energy efficiency as well as QoS issues like latency, throughput, and channel utilization. Our numerical results show that H-MAC has significant improvements in QoS parameters than the existing MAC protocols for sensor networks while consuming comparable amount of energy.

  5. An Evolutionary Mobility Aware Multi-Objective Hybrid Routing Algorithm for Heterogeneous Wireless Sensor Networks

    DEFF Research Database (Denmark)

    Kulkarni, Nandkumar P.; Prasad, Neeli R.; Prasad, Ramjee

    Researchers have faced numerous challenges while designing WSNs and protocols in many applications such as object tracking in military, detection of disastrous events, environment and health monitoring etc. Amongst all sustaining connectivity and capitalizing on the network lifetime is a serious...... deliberation. To tackle these two problems, Mobile Wireless Sensor Networks (MWSNs) is a better choice. In MWSN, Sensor nodes move freely to a target area without the need for any special infrastructure. Due to mobility, the routing process in MWSN has become more complicated as connections in the network can...... change dynamically. In this paper, the authors put forward an Evolutionary Mobility aware multi-objective hybrid Routing Protocol for heterogeneous wireless sensor networks (EMRP). EMRP uses two-level hierarchical clustering. EMRP selects the optimal path from source to sink using multiple metrics...

  6. Non-invasive Blood Glucose Quantification Using a Hybrid Sensor

    Directory of Open Access Journals (Sweden)

    Sundararajan JAYAPAL

    2009-02-01

    Full Text Available Diabetes Mellitus is a group of metabolic diseases characterized by high blood sugar (glucose levels which result from defects in insulin secretion. It is very important for the diabetics and normal people to have a correct blood glucose level. The HbA1c test is the most preferred test by renowned doctors for glucose quantification. But this test is an invasive one. At present, there are many available techniques for this purpose but these are mostly invasive or minimally non-invasive and most of these are under research. Among the different methods available, the photo acoustic (PA methods provide a reliable solution since the acoustical energy loss is much less compared to the optical or other techniques. Here a novel framework is presented for blood glucose level measurement using a combination of the HbA1c test and a PA method to get an absolutely consistent and precise, non-invasive technique. The setup uses a pulsed laser diode with pulse duration of 5-15 ns and at a repetition rate of 10 Hz as the source. The detector setup is based on the piezoelectric detection. It consists of a ring detector that includes two double ring sensors that are attached to the ring shaped module that can be worn around the finger. The major aim is to detect the photo acoustic signals from the glycated hemoglobin with the least possible error. The proposed monitoring system is designed with extreme consideration to precision and compatibility with the other computing devices. The results obtained in this research have been studied and analyzed by comparing these with those of in-vitro techniques like the HPLC. The comparison has been plotted and it shows a least error. The results also show a positive drive for using this concept as a basis for future extension in quantifying the other blood components.

  7. Flexible Pressure Sensor Based on PVDF Nanocomposites Containing Reduced Graphene Oxide-Titania Hybrid Nanolayers

    Directory of Open Access Journals (Sweden)

    Aisha Al-Saygh

    2017-01-01

    Full Text Available A novel flexible nanocomposite pressure sensor with a tensile strength of about 47 MPa is fabricated in this work. Nanolayers of titanium dioxide (titania nanolayers, TNL synthesized by hydrothermal method are used to reinforce the polyvinylidene fluoride (PVDF by simple solution mixing. A hybrid composite is prepared by incorporating the TNL (2.5 wt % with reduced graphene oxide (rGO (2.5 wt % synthesized by improved graphene oxide synthesis to form a PVDF/rGO-TNL composite. A comparison between PVDF, PVDF/rGO (5 wt %, PVDF/TNL (5 wt % and PVDF/rGO-TNL (total additives 5 wt % samples are analyzed for their sensing, thermal and dielectric characteristics. The new shape of additives (with sharp morphology, good interaction and well distributed hybrid additives in the matrix increased the sensitivity by 333.46% at 5 kPa, 200.7% at 10.7 kPa and 246.7% at 17.6 kPa compared to the individual PVDF composite of TNL, confirming its possible application in fabricating low cost and light weight pressure sensing devices and electronic devices with reduced quantity of metal oxides. Increase in the β crystallinity percentage and removal of α phase for PVDF was detected for the hybrid composite and linked to the improvement in the mechanical properties. Tensile strength for the hybrid composite (46.91 MPa was 115% higher than that of the neat polymer matrix. Improvement in the wettability and less roughness in the hybrid composites were observed, which can prevent fouling, a major disadvantage in many sensor applications.

  8. A Non-Invasive Multichannel Hybrid Fiber-Optic Sensor System for Vital Sign Monitoring

    Directory of Open Access Journals (Sweden)

    Marcel Fajkus

    2017-01-01

    Full Text Available In this article, we briefly describe the design, construction, and functional verification of a hybrid multichannel fiber-optic sensor system for basic vital sign monitoring. This sensor uses a novel non-invasive measurement probe based on the fiber Bragg grating (FBG. The probe is composed of two FBGs encapsulated inside a polydimethylsiloxane polymer (PDMS. The PDMS is non-reactive to human skin and resistant to electromagnetic waves, UV absorption, and radiation. We emphasize the construction of the probe to be specifically used for basic vital sign monitoring such as body temperature, respiratory rate and heart rate. The proposed sensor system can continuously process incoming signals from up to 128 individuals. We first present the overall design of this novel multichannel sensor and then elaborate on how it has the potential to simplify vital sign monitoring and consequently improve the comfort level of patients in long-term health care facilities, hospitals and clinics. The reference ECG signal was acquired with the use of standard gel electrodes fixed to the monitored person's chest using a real-time monitoring system for ECG signals with virtual instrumentation. The outcomes of these experiments have unambiguously proved the functionality of the sensor system and will be used to inform our future research in this fast developing and emerging field.

  9. A Non-Invasive Multichannel Hybrid Fiber-Optic Sensor System for Vital Sign Monitoring

    Science.gov (United States)

    Fajkus, Marcel; Nedoma, Jan; Martinek, Radek; Vasinek, Vladimir; Nazeran, Homer; Siska, Petr

    2017-01-01

    In this article, we briefly describe the design, construction, and functional verification of a hybrid multichannel fiber-optic sensor system for basic vital sign monitoring. This sensor uses a novel non-invasive measurement probe based on the fiber Bragg grating (FBG). The probe is composed of two FBGs encapsulated inside a polydimethylsiloxane polymer (PDMS). The PDMS is non-reactive to human skin and resistant to electromagnetic waves, UV absorption, and radiation. We emphasize the construction of the probe to be specifically used for basic vital sign monitoring such as body temperature, respiratory rate and heart rate. The proposed sensor system can continuously process incoming signals from up to 128 individuals. We first present the overall design of this novel multichannel sensor and then elaborate on how it has the potential to simplify vital sign monitoring and consequently improve the comfort level of patients in long-term health care facilities, hospitals and clinics. The reference ECG signal was acquired with the use of standard gel electrodes fixed to the monitored person’s chest using a real-time monitoring system for ECG signals with virtual instrumentation. The outcomes of these experiments have unambiguously proved the functionality of the sensor system and will be used to inform our future research in this fast developing and emerging field. PMID:28075341

  10. A Hybrid Optimized Weighted Minimum Spanning Tree for the Shortest Intrapath Selection in Wireless Sensor Network

    Directory of Open Access Journals (Sweden)

    Matheswaran Saravanan

    2014-01-01

    Full Text Available Wireless sensor network (WSN consists of sensor nodes that need energy efficient routing techniques as they have limited battery power, computing, and storage resources. WSN routing protocols should enable reliable multihop communication with energy constraints. Clustering is an effective way to reduce overheads and when this is aided by effective resource allocation, it results in reduced energy consumption. In this work, a novel hybrid evolutionary algorithm called Bee Algorithm-Simulated Annealing Weighted Minimal Spanning Tree (BASA-WMST routing is proposed in which randomly deployed sensor nodes are split into the best possible number of independent clusters with cluster head and optimal route. The former gathers data from sensors belonging to the cluster, forwarding them to the sink. The shortest intrapath selection for the cluster is selected using Weighted Minimum Spanning Tree (WMST. The proposed algorithm computes the distance-based Minimum Spanning Tree (MST of the weighted graph for the multihop network. The weights are dynamically changed based on the energy level of each sensor during route selection and optimized using the proposed bee algorithm simulated annealing algorithm.

  11. Novel Hybrid Scheduling Technique for Sensor Nodes with Mixed Criticality Tasks

    Directory of Open Access Journals (Sweden)

    Mihai-Victor Micea

    2017-06-01

    Full Text Available Sensor networks become increasingly a key technology for complex control applications. Their potential use in safety- and time-critical domains has raised the need for task scheduling mechanisms specially adapted to sensor node specific requirements, often materialized in predictable jitter-less execution of tasks characterized by different criticality levels. This paper offers an efficient scheduling solution, named Hybrid Hard Real-Time Scheduling (H2RTS, which combines a static, clock driven method with a dynamic, event driven scheduling technique, in order to provide high execution predictability, while keeping a high node Central Processing Unit (CPU utilization factor. From the detailed, integrated schedulability analysis of the H2RTS, a set of sufficiency tests are introduced and demonstrated based on the processor demand and linear upper bound metrics. The performance and correct behavior of the proposed hybrid scheduling technique have been extensively evaluated and validated both on a simulator and on a sensor mote equipped with ARM7 microcontroller.

  12. Efficient MAC Protocol for Hybrid Wireless Network with Heterogeneous Sensor Nodes

    Directory of Open Access Journals (Sweden)

    Md. Nasre Alam

    2016-01-01

    Full Text Available Although several Directional Medium Access Control (DMAC protocols have been designed for use with homogeneous networks, it can take a substantial amount of time to change sensor nodes that are equipped with an omnidirectional antenna for sensor nodes with a directional antenna. Thus, we require a novel MAC protocol for use with an intermediate wireless network that consists of heterogeneous sensor nodes equipped with either an omnidirectional antenna or a directional antenna. The MAC protocols that have been designed for use in homogeneous networks are not suitable for use in a hybrid network due to deaf, hidden, and exposed nodes. Therefore, we propose a MAC protocol that exploits the characteristics of a directional antenna and can also work efficiently with omnidirectional nodes in a hybrid network. In order to address the deaf, hidden, and exposed node problems, we define RTS/CTS for the neighbor (RTSN/CTSN and Neighbor Information (NIP packets. The performance of the proposed MAC protocol is evaluated through a numerical analysis using a Markov model. In addition, the analytical results of the MAC protocol are verified through an OPNET simulation.

  13. Detection of the Lipopeptide Pam3CSK4 Using a Hybridized Toll-like Receptor Electrochemical Sensor.

    Science.gov (United States)

    She, Zhe; Topping, Kristin; Ma, Tianxiao; Zhao, Tiantian; Zhou, Wenxia; Kamal, Ajar; Ahmadi, Soha; Kraatz, Heinz-Bernhard

    2017-04-12

    Electrochemical detection of Pam3CSK4, a synthetic triacylated lipopeptide that mimics the structural moieties of its natural Gram negative bacterial pathogen-associated molecular pattern (PAMP) counterpart, has been achieved using hybridized toll-like receptors (TLR) combining TLR1 and TLR2 onto a single sensor surface. These sensors represent the first hybridized TLR sensors. The limit of detection for Pam3CSK4 attained was 7.5 μg/mL, which is within the same order of magnitude for that of the more labor-intensive and time-consuming cell-assay technique, 2.0 μg/mL. The results gathered in these electrochemical experiments show that sensors fabricated by immobilizing a mixture of cooperative TLR1 and -2 generate higher responses when exposed to the analyte in comparison to the control sensors fabricated using pure TLR1 or -2 standalone. A PAMP selectivity test was carried out in line with our inspiration from the mammalian innate immune response. TLRs1-5 as standalone biorecognition elements and the hybridized "TLR1 and 2" sensor surface were investigated, understanding the known TLR-PAMP interactions, through the exploitation of this electrochemical sensor fabrication technique. The experimental result is consistent with observations from previously published in vivo and in vitro studies, and it is the first demonstration of the simultaneous evaluation of electrochemical responses from multiple, unique fabricated TLR sensor surfaces against the same analyte.

  14. A multi-band shunt hybrid active filter with reduced sensor count

    Indian Academy of Sciences (India)

    S Surendra Kumar; Partha Sarathi Sensarma

    2008-10-01

    A Shunt Hybrid Active Filter (SHAF) is an attractive option for realizing low-cost harmonic compensation solutions. This paper proposes a SHAF with multiple harmonic compensation capability using a single Voltage Source Inverter and reduced sensor count. This strategy is apt for harmonic filtering solutions where low cost is the exclusive priority. In this paper, a new estimation approach is proposed to obviate requirement of a large number of sensors. Multiple Synchronous Reference Frames (MSRF) and low pass filters are used to measure 5th and 7th harmonic components separately from load as well as filter currents. Individual current controllers are designed for the 5th and 7th harmonic currents. Control is realized in the synchronously rotating, orthogonal (dq) reference frame. Performance of the controller is validated through simulation, using realistic plant and controller models. Experimental results are provided to corroborate the analytical and simulation results.

  15. The Proposal Of Hybrid Intrusion Detection For Defence Of Sync Flood Attack In Wireless Sensor Network

    Directory of Open Access Journals (Sweden)

    Ruchi Bhatnagar

    2012-05-01

    Full Text Available Data security is a huge responsibility for sensor network as there are various ways in which security can be breached, enabling hackers to access sensitive data. Threats to wireless sensor networks are numerous and potentially devastating. Security issues ranging from session hijacking to Denial of Service (DOS can plague a WSN. To aid in the defense and detection of these potential threats, WSN employ a security solution that includes an intrusion detection system (IDS. Different neural methods have been proposed in recent years for the development of intrusion detection system. In this paper, we surveyeddenial of service attacks that disseminate the WSN such a way that it temporarily paralyses a network and proposed a hybrid Intrusion Detection approach based on stream flow and session state transition analysis that monitor and analyze stream flow of data, identify abnormal network activity, detect policy violations against sync flood attack.

  16. Position Error Compensation via a Variable Reluctance Sensor Applied to a Hybrid Vehicle Electric Machine

    Directory of Open Access Journals (Sweden)

    İhsan Ömür Bucak

    2010-03-01

    Full Text Available In the automotive industry, electromagnetic variable reluctance (VR sensors have been extensively used to measure engine position and speed through a toothed wheel mounted on the crankshaft. In this work, an application that already uses the VR sensing unit for engine and/or transmission has been chosen to infer, this time, the indirect position of the electric machine in a parallel Hybrid Electric Vehicle (HEV system. A VR sensor has been chosen to correct the position of the electric machine, mainly because it may still become critical in the operation of HEVs to avoid possible vehicle failures during the start-up and on-the-road, especially when the machine is used with an internal combustion engine. The proposed method uses Chi-square test and is adaptive in a sense that it derives the compensation factors during the shaft operation and updates them in a timely fashion.

  17. Position error compensation via a variable reluctance sensor applied to a Hybrid Vehicle Electric machine.

    Science.gov (United States)

    Bucak, Ihsan Ömür

    2010-01-01

    In the automotive industry, electromagnetic variable reluctance (VR) sensors have been extensively used to measure engine position and speed through a toothed wheel mounted on the crankshaft. In this work, an application that already uses the VR sensing unit for engine and/or transmission has been chosen to infer, this time, the indirect position of the electric machine in a parallel Hybrid Electric Vehicle (HEV) system. A VR sensor has been chosen to correct the position of the electric machine, mainly because it may still become critical in the operation of HEVs to avoid possible vehicle failures during the start-up and on-the-road, especially when the machine is used with an internal combustion engine. The proposed method uses Chi-square test and is adaptive in a sense that it derives the compensation factors during the shaft operation and updates them in a timely fashion.

  18. Detection of Nitroaromatic Explosives Using an Electrical- Electrochemical and Optical Hybrid Sensor

    Science.gov (United States)

    Diaz Aguilar, Alvaro

    In today's world there is a great need for sensing methods as tools to provide critical information to solve today's problems in security applications. Real time detection of trace chemicals, such as explosives, in a complex environment containing various interferents using a portable device that can be reliably deployed in a field has been a difficult challenge. A hybrid nanosensor based on the electrochemical reduction of trinitrotoluene (TNT) and the interaction of the reduction products with conducting polymer nanojunctions in an ionic liquid was fabricated. The sensor simultaneously measures the electrochemical current from the reduction of TNT and the conductance change of the polymer nanojunction caused from the reduction product. The hybrid detection mechanism, together with the unique selective preconcentration capability of the ionic liquid, provides a selective, fast, and sensitive detection of TNT. The sensor, in its current form, is capable of detecting parts per trillion level TNT in the presence of various interferents within a few minutes. A novel hybrid electrochemical-colorimetric (EC-C) sensing platform was also designed and fabricated to meet these challenges. The hybrid sensor is based on electrochemical reactions of trace explosives, colorimetric detection of the reaction products, and unique properties of the explosives in an ionic liquid (IL). This approach affords not only increased sensitivity but also selectivity as evident from the demonstrated null rate of false positives and low detection limits. Using an inexpensive webcam a detection limit of part per billion in volume (ppbV) has been achieved and demonstrated selective detection of explosives in the presence of common interferences (perfumes, mouth wash, cleaners, petroleum products, etc.). The works presented in this dissertation, were published in the Journal of the American Chemical Society (JACS, 2009) and Nano Letters (2010), won first place in the National Defense Research

  19. Electrocatalytic Organic-Inorganic Hybrid Films and Their Applications in Chemical Sensors and Biosensors

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    @@ In this report, we will present the organic-inorganic hybrid molecular films prepared in our group and their applications in chemical sensors and biosensors.Many types of multi-layered films have been prepared in an alternatively assembled organic-inorganic and layer-by-layer manner. We will focus on the alternatively organized organic surfactant and metal-complex films and their conversion into electrocatalytically active films. Especially, we will demonstrate the preparation of bifunctional films for the detection of two different but correlated species, such as nitric oxide and oxygen, in biomedia.

  20. Electrocatalytic Organic-Inorganic Hybrid Films and Their Applications in Chemical Sensors and Biosensors

    Institute of Scientific and Technical Information of China (English)

    LI; XiaoYuan

    2001-01-01

    In this report, we will present the organic-inorganic hybrid molecular films prepared in our group and their applications in chemical sensors and biosensors.Many types of multi-layered films have been prepared in an alternatively assembled organic-inorganic and layer-by-layer manner. We will focus on the alternatively organized organic surfactant and metal-complex films and their conversion into electrocatalytically active films. Especially, we will demonstrate the preparation of bifunctional films for the detection of two different but correlated species, such as nitric oxide and oxygen, in biomedia.  ……

  1. Hybrid Binary Exponential Back-Off Mechanism for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Arshad Mohammed

    2013-06-01

    Full Text Available Many mechanisms to improve the performance have been proposed in the IEEE 802.15.4 Wireless sensor networks area, due to its high influence in the modern day world. Most of them have improved the performance of the network compared to the standard CSMA/CA backoff method. But still there are improvements to almost every method proposed. In this paper, we have proposed a hybrid binary exponential backoff (HBEB, where we have used two mechanisms to effectively increase the performance, when there are moderate numbers of nodes. The performance analysis using markov chain analysis has been given in this paper along with simulation results for the proposed method.

  2. Hybrid ARQ Scheme with Autonomous Retransmission for Multicasting in Wireless Sensor Networks

    Science.gov (United States)

    Jung, Young-Ho; Choi, Jihoon

    2017-01-01

    A new hybrid automatic repeat request (HARQ) scheme for multicast service for wireless sensor networks is proposed in this study. In the proposed algorithm, the HARQ operation is combined with an autonomous retransmission method that ensure a data packet is transmitted irrespective of whether or not the packet is successfully decoded at the receivers. The optimal number of autonomous retransmissions is determined to ensure maximum spectral efficiency, and a practical method that adjusts the number of autonomous retransmissions for realistic conditions is developed. Simulation results show that the proposed method achieves higher spectral efficiency than existing HARQ techniques. PMID:28245604

  3. Polyaniline nanoparticle-carbon nanotube hybrid network vapour sensors with switchable chemo-electrical polarity

    Science.gov (United States)

    Lu, Jianbo; Park, Bong Jun; Kumar, Bijandra; Castro, Mickaël; Choi, Hyoung Jin; Feller, Jean-François

    2010-06-01

    Chemo-resistive sensors were prepared from monodisperse poly(aniline) nanoparticles (PaniNP) synthesized via oxidative dispersion polymerization. Poly(styrene sulfonic acid) (PSSA) was used as the stabilizer and dopant agent. PaniNP transducers were assembled by spraying layer by layer a solution containing different concentrations of PaniNP and multi-wall carbon nanotubes (MWNT) onto interdigitated electrodes. This process led to stable sensors with reproducible responses upon chemical cycling. Chemo-electrical properties of these sensors have been investigated in sequential flows of pure nitrogen and nitrogen saturated with a set of volatile organic compounds (VOC). Interestingly the sensing mode of PaniNP transducers (the NVC or PVC effect) can be switched simply by increasing PaniNP content or by the addition of only 0.5% of MWNT to reach a resistance lower than 150 Ω. Due to their original conducting architecture well imaged by atomic force microscopy (AFM), i.e. a double percolated conductive network, PaniNP-MWNT hybrids present both higher sensitivity and selectivity than other formulations, demonstrating a positive synergy. Mechanisms are proposed to describe the original chemo-electrical behaviours of PaniNP-based sensors and explain the origin of their selectivity and sensing principle. These features make them attractive to be integrated in e-noses.

  4. Polyaniline nanoparticle-carbon nanotube hybrid network vapour sensors with switchable chemo-electrical polarity

    Energy Technology Data Exchange (ETDEWEB)

    Lu Jianbo; Kumar, Bijandra; Castro, Mickael; Feller, Jean-Francois [Smart Plastics Group, European University of Brittany (UEB), LIMAT-B-UBS, Lorient 56321 (France); Park, Bong Jun; Choi, Hyoung Jin, E-mail: jean-francois.feller@univ-ubs.fr [Department of Polymer Science and Engineering, Inha University, Incheon 402-751 (Korea, Republic of)

    2010-06-25

    Chemo-resistive sensors were prepared from monodisperse poly(aniline) nanoparticles (PaniNP) synthesized via oxidative dispersion polymerization. Poly(styrene sulfonic acid) (PSSA) was used as the stabilizer and dopant agent. PaniNP transducers were assembled by spraying layer by layer a solution containing different concentrations of PaniNP and multi-wall carbon nanotubes (MWNT) onto interdigitated electrodes. This process led to stable sensors with reproducible responses upon chemical cycling. Chemo-electrical properties of these sensors have been investigated in sequential flows of pure nitrogen and nitrogen saturated with a set of volatile organic compounds (VOC). Interestingly the sensing mode of PaniNP transducers (the NVC or PVC effect) can be switched simply by increasing PaniNP content or by the addition of only 0.5% of MWNT to reach a resistance lower than 150 {Omega}. Due to their original conducting architecture well imaged by atomic force microscopy (AFM), i.e. a double percolated conductive network, PaniNP-MWNT hybrids present both higher sensitivity and selectivity than other formulations, demonstrating a positive synergy. Mechanisms are proposed to describe the original chemo-electrical behaviours of PaniNP-based sensors and explain the origin of their selectivity and sensing principle. These features make them attractive to be integrated in e-noses.

  5. Hybrid energy storage system for wireless sensor node powered by aircraft specific thermoelectric energy harvesting

    Science.gov (United States)

    Thangaraj, K.; Elefsiniotis, A.; Aslam, S.; Becker, Th.; Schmid, U.; Lees, J.; Featherston, C. A.; Pullin, R.

    2013-05-01

    This paper describes an approach for efficiently storing the energy harvested from a thermoelectric module for powering autonomous wireless sensor nodes for aeronautical health monitoring applications. A representative temperature difference was created across a thermo electric generator (TEG) by attaching a thermal mass and a cavity containing a phase change material to one side, and a heat source (to represent the aircraft fuselage) to the other. Batteries and supercapacitors are popular choices of storage device, but neither represents the ideal solution; supercapacitors have a lower energy density than batteries and batteries have lower power density than supercapacitors. When using only a battery for storage, the runtime of a typical sensor node is typically reduced by internal impedance, high resistance and other internal losses. Supercapacitors may overcome some of these problems, but generally do not provide sufficient long-term energy to allow advanced health monitoring applications to operate over extended periods. A hybrid energy storage unit can provide both energy and power density to the wireless sensor node simultaneously. Techniques such as acoustic-ultrasonic, acoustic-emission, strain, crack wire sensor and window wireless shading require storage approaches that can provide immediate energy on demand, usually in short, high intensity bursts, and that can be sustained over long periods of time. This application requirement is considered as a significant constraint when working with battery-only and supercapacitor-only solutions and they should be able to store up-to 40-50J of energy.

  6. k-CONNECTED HYBRID RELAY NODE PLACEMENT IN WIRELESS SENSOR NETWORK FOR RESTORING CONNECTIVITY

    Directory of Open Access Journals (Sweden)

    Vijayvignesh Selvaraj

    2014-06-01

    Full Text Available Wireless Sensor Network (WSN consists of a number of sensor nodes for monitoring the environment. Scenario like floods, volcanic eruptions, earthquakes, tsunamis, avalanches, hailstorms and blizzards causes the sensor nodes to be damaged. In such worst case scenario, the deployed nodes in the monitoring area may split up into several segments. As a result sensor nodes in the network cannot communicate with each other due to partitions. Our algorithm investigates a strategy for restoring such kind of damage through either placement of Relay Nodes (RN’s or repositioning the existing nodes in the network. Unlike traditional schemes like minimum spanning tree, our proposed approach generates a different topology called as spider web. In this approach, both stationary and mobile relay nodes are used. Thus we are making our topology as a hybrid one. Though the numbers of relay nodes are increased, the robust connectivity and the balanced traffic load can be ensured. The validation of the proposed approach has been simulated and verified by QualNet Developer 5.0.2.

  7. An Optical Sensor with Polyaniline-Gold Hybrid Nanostructures for Monitoring pH in Saliva

    Directory of Open Access Journals (Sweden)

    Chongdai Luo

    2017-03-01

    Full Text Available Saliva contains important personal physiological information that is related to some diseases, and it is a valuable source of biochemical information that can be collected rapidly, frequently, and without stress. In this article, we reported a new and simple localized surface plasmon resonance (LSPR substrate composed of polyaniline (PANI-gold hybrid nanostructures as an optical sensor for monitoring the pH of saliva samples. The overall appearance and topography of the substrates, the composition, and the wettability of the LSPR surfaces were characterized by optical and scanning electron microscope (SEM images, infrared spectra, and contact angles measurement, respectively. The PANI-gold hybrid substrate readily responded to the pH. The response time was very short, which was 3.5 s when the pH switched from 2 to 7, and 4.5 s from 7 to 2. The changes of visible-near-infrared (NIR spectra of this sensor upon varying pH in solution showed that—for the absorption at given wavelengths of 665 nm and 785 nm—the sensitivities were 0.0299 a.u./pH (a.u. = arbitrary unit with a linear range of pH = 5–8 and 0.0234 a.u./pH with linear range of pH = 2–8, respectively. By using this new sensor, the pH of a real saliva sample was monitored and was consistent with the parallel measurements with a standard laboratory method. The results suggest that this novel LSPR sensor shows great potential in the field of mobile healthcare and home medical devices, and could also be modified by different sensitive materials to detect various molecules or ions in the future.

  8. Anodized aluminum oxide-based capacitance sensors for the direct detection of DNA hybridization.

    Science.gov (United States)

    Kang, Bongkeun; Yeo, Unjin; Yoo, Kyung-Hwa

    2010-03-15

    We fabricated a capacitance sensor based on an anodized aluminum oxide (AAO) nanoporous structure to detect DNA hybridization. We utilized Au film deposited on the surface of the AAO membrane and Au nanowires infiltrating the nanopores as the top and bottom electrodes, respectively. When completely complementary target DNA molecules were added to the sensor-immobilized DNA molecule probes, the capacitance was reduced; with a concentration of 1pM, the capacitance decreased by approximately 10%. We measured the capacitance change for different concentrations of the target DNA solution. A linear relationship was found between the capacitance change and DNA concentration on a semi-logarithmic scale. We also investigated the possibility of detecting DNA molecules with a single-base mismatch to the probe DNA molecule. In contrast to complementary target DNA molecules, the addition of one-base mismatch DNA molecules caused no significant change in capacitance, demonstrating that DNA hybridization was detected with single nucleotide polymorphism sensitivity. (c) 2009 Elsevier B.V. All rights reserved.

  9. Rotating-Disk-Based Hybridized Electromagnetic-Triboelectric Nanogenerator for Sustainably Powering Wireless Traffic Volume Sensors.

    Science.gov (United States)

    Zhang, Binbin; Chen, Jun; Jin, Long; Deng, Weili; Zhang, Lei; Zhang, Haitao; Zhu, Minhao; Yang, Weiqing; Wang, Zhong Lin

    2016-06-28

    Wireless traffic volume detectors play a critical role for measuring the traffic-flow in a real-time for current Intelligent Traffic System. However, as a battery-operated electronic device, regularly replacing battery remains a great challenge, especially in the remote area and wide distribution. Here, we report a self-powered active wireless traffic volume sensor by using a rotating-disk-based hybridized nanogenerator of triboelectric nanogenerator and electromagnetic generator as the sustainable power source. Operated at a rotating rate of 1000 rpm, the device delivered an output power of 17.5 mW, corresponding to a volume power density of 55.7 W/m(3) (Pd = P/V, see Supporting Information for detailed calculation) at a loading resistance of 700 Ω. The hybridized nanogenerator was demonstrated to effectively harvest energy from wind generated by a moving vehicle through the tunnel. And the delivered power is capable of triggering a counter via a wireless transmitter for real-time monitoring the traffic volume in the tunnel. This study further expands the applications of triboelectric nanogenerators for high-performance ambient mechanical energy harvesting and as sustainable power sources for driving wireless traffic volume sensors.

  10. A Hybrid Data Compression Scheme for Power Reduction in Wireless Sensors for IoT.

    Science.gov (United States)

    Deepu, Chacko John; Heng, Chun-Huat; Lian, Yong

    2017-04-01

    This paper presents a novel data compression and transmission scheme for power reduction in Internet-of-Things (IoT) enabled wireless sensors. In the proposed scheme, data is compressed with both lossy and lossless techniques, so as to enable hybrid transmission mode, support adaptive data rate selection and save power in wireless transmission. Applying the method to electrocardiogram (ECG), the data is first compressed using a lossy compression technique with a high compression ratio (CR). The residual error between the original data and the decompressed lossy data is preserved using entropy coding, enabling a lossless restoration of the original data when required. Average CR of 2.1 × and 7.8 × were achieved for lossless and lossy compression respectively with MIT/BIH database. The power reduction is demonstrated using a Bluetooth transceiver and is found to be reduced to 18% for lossy and 53% for lossless transmission respectively. Options for hybrid transmission mode, adaptive rate selection and system level power reduction make the proposed scheme attractive for IoT wireless sensors in healthcare applications.

  11. Throughput and Energy Efficiency of a Cooperative Hybrid ARQ Protocol for Underwater Acoustic Sensor Networks

    Directory of Open Access Journals (Sweden)

    Arindam Ghosh

    2013-11-01

    Full Text Available Due to its efficiency, reliability and better channel and resource utilization, cooperative transmission technologies have been attractive options in underwater as well as terrestrial sensor networks. Their performance can be further improved if merged with forward error correction (FEC techniques. In this paper, we propose and analyze a retransmission protocol named Cooperative-Hybrid Automatic Repeat reQuest (C-HARQ for underwater acoustic sensor networks, which exploits both the reliability of cooperative ARQ (CARQ and the efficiency of incremental redundancy-hybrid ARQ (IR-HARQ using rate-compatible punctured convolution (RCPC codes. Extensive Monte Carlo simulations are performed to investigate the performance of the protocol, in terms of both throughput and energy efficiency. The results clearly reveal the enhancement in performance achieved by the C-HARQ protocol, which outperforms both CARQ and conventional stop and wait ARQ (S&W ARQ. Further, using computer simulations, optimum values of various network parameters are estimated so as to extract the best performance out of the C-HARQ protocol.

  12. Opportunistic Hybrid Transport Protocol (OHTP) for Cognitive Radio Ad Hoc Sensor Networks.

    Science.gov (United States)

    Bin Zikria, Yousaf; Nosheen, Summera; Ishmanov, Farruh; Kim, Sung Won

    2015-12-15

    The inefficient assignment of spectrum for different communications purposes, plus technology enhancements and ever-increasing usage of wireless technology is causing spectrum scarcity. To address this issue, one of the proposed solutions in the literature is to access the spectrum dynamically or opportunistically. Therefore, the concept of cognitive radio appeared, which opens up a new research paradigm. There is extensive research on the physical, medium access control and network layers. The impact of the transport layer on the performance of cognitive radio ad hoc sensor networks is still unknown/unexplored. The Internet's de facto transport protocol is not well suited to wireless networks because of its congestion control mechanism. We propose an opportunistic hybrid transport protocol for cognitive radio ad hoc sensor networks. We developed a new congestion control mechanism to differentiate true congestion from interruption loss. After such detection and differentiation, we propose methods to handle them opportunistically. There are several benefits to window- and rate-based protocols. To exploit the benefits of both in order to enhance overall system performance, we propose a hybrid transport protocol. We empirically calculate the optimal threshold value to switch between window- and rate-based mechanisms. We then compare our proposed transport protocol to Transmission Control Protocol (TCP)-friendly rate control, TCP-friendly rate control for cognitive radio, and TCP-friendly window-based control. We ran an extensive set of simulations in Network Simulator 2. The results indicate that the proposed transport protocol performs better than all the others.

  13. Throughput and energy efficiency of a cooperative hybrid ARQ protocol for underwater acoustic sensor networks.

    Science.gov (United States)

    Ghosh, Arindam; Lee, Jae-Won; Cho, Ho-Shin

    2013-11-08

    Due to its efficiency, reliability and better channel and resource utilization, cooperative transmission technologies have been attractive options in underwater as well as terrestrial sensor networks. Their performance can be further improved if merged with forward error correction (FEC) techniques. In this paper, we propose and analyze a retransmission protocol named Cooperative-Hybrid Automatic Repeat reQuest (C-HARQ) for underwater acoustic sensor networks, which exploits both the reliability of cooperative ARQ (CARQ) and the efficiency of incremental redundancy-hybrid ARQ (IR-HARQ) using rate-compatible punctured convolution (RCPC) codes. Extensive Monte Carlo simulations are performed to investigate the performance of the protocol, in terms of both throughput and energy efficiency. The results clearly reveal the enhancement in performance achieved by the C-HARQ protocol, which outperforms both CARQ and conventional stop and wait ARQ (S&W ARQ). Further, using computer simulations, optimum values of various network parameters are estimated so as to extract the best performance out of the C-HARQ protocol.

  14. Piezoresistive Sensor with High Elasticity Based on 3D Hybrid Network of Sponge@CNTs@Ag NPs.

    Science.gov (United States)

    Zhang, Hui; Liu, Nishuang; Shi, Yuling; Liu, Weijie; Yue, Yang; Wang, Siliang; Ma, Yanan; Wen, Li; Li, Luying; Long, Fei; Zou, Zhengguang; Gao, Yihua

    2016-08-31

    Pressure sensors with high elasticity are in great demand for the realization of intelligent sensing, but there is a need to develope a simple, inexpensive, and scalable method for the manufacture of the sensors. Here, we reported an efficient, simple, facile, and repeatable "dipping and coating" process to manufacture a piezoresistive sensor with high elasticity, based on homogeneous 3D hybrid network of carbon nanotubes@silver nanoparticles (CNTs@Ag NPs) anchored on a skeleton sponge. Highly elastic, sensitive, and wearable sensors are obtained using the porous structure of sponge and the synergy effect of CNTs/Ag NPs. Our sensor was also tested for over 2000 compression-release cycles, exhibiting excellent elasticity and cycling stability. Sensors with high performance and a simple fabrication process are promising devices for commercial production in various electronic devices, for example, sport performance monitoring and man-machine interfaces.

  15. Detection of Defective Sensors in Phased Array Using Compressed Sensing and Hybrid Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Shafqat Ullah Khan

    2016-01-01

    Full Text Available A compressed sensing based array diagnosis technique has been presented. This technique starts from collecting the measurements of the far-field pattern. The system linking the difference between the field measured using the healthy reference array and the field radiated by the array under test is solved using a genetic algorithm (GA, parallel coordinate descent (PCD algorithm, and then a hybridized GA with PCD algorithm. These algorithms are applied for fully and partially defective antenna arrays. The simulation results indicate that the proposed hybrid algorithm outperforms in terms of localization of element failure with a small number of measurements. In the proposed algorithm, the slow and early convergence of GA has been avoided by combining it with PCD algorithm. It has been shown that the hybrid GA-PCD algorithm provides an accurate diagnosis of fully and partially defective sensors as compared to GA or PCD alone. Different simulations have been provided to validate the performance of the designed algorithms in diversified scenarios.

  16. Optical protein modulation via quantum dot coupling and use of a hybrid sensor protein.

    Science.gov (United States)

    Griep, Mark; Winder, Eric; Lueking, Donald; Friedrich, Craig; Mallick, Govind; Karna, Shashi

    2010-09-01

    Harnessing the energy transfer interactions between the optical protein bacteriorhodopsin (bR) and CdSe/ZnS quantum dots (QDs) could provide a novel bio-nano electronics substrate with a variety of applications. In the present study, a polydimethyldiallyammonium chloride based I-SAM technique has been utilized to produce bilayers, trilayers and multilayers of alternating monolayers of bR, PDAC and QD's on a conductive ITO substrate. The construction of multilayer systems was directly monitored by measuring the unique A570 nm absorbance of bR, as well as QD fluorescence emission. Both of these parameters displayed a linear relationship to the number of monolayers present on the ITO substrate. The photovoltaic response of bilayers of bR/PDAC was observed over a range of 3 to 12 bilayers and the ability to efficiently create an electrically active multilayered substrate composed of bR and QDs has been demonstrated for the first time. Evaluation of QD fluorescence emission in the multilayer system strongly suggests that FRET coupling is occurring and, since the I-SAM technique provide a means to control the bR/QD separation distance on the nanometer scale, this technique may prove highly valuable for optimizing the distance dependent energy transfer effects for maximum sensitivity to target molecule binding by a biosensor. Finally, preliminary studies on the production of a sensor protein/bR hybrid gene construct are presented. It is proposed that the energy associated with target molecule binding to a hybrid sensor protein would provide a means to directly modulate the electrical output from a sensor protein/bR biosensor platform.

  17. Hybrid Integration of Magnetoresistive Sensors with MEMS as a Strategy to Detect Ultra-Low Magnetic Fields

    Directory of Open Access Journals (Sweden)

    João Valadeiro

    2016-05-01

    Full Text Available In this paper, we describe how magnetoresistive sensors can be integrated with microelectromechanical systems (MEMS devices enabling the mechanical modulation of DC or low frequency external magnetic fields to high frequencies using MEMS structures incorporating magnetic flux guides. In such a hybrid architecture, lower detectivities are expected when compared with those obtained for individual sensors. This particularity results from the change of sensor’s operating point to frequencies above the 1/f noise knee.

  18. Self-powered pH sensor based on a flexible organic-inorganic hybrid composite nanogenerator.

    Science.gov (United States)

    Saravanakumar, Balasubramaniam; Soyoon, Shin; Kim, Sang-Jae

    2014-08-27

    In this study, we developed an innovative, flexible, organic-inorganic hybrid composite nanogenerator, which was used to drive a self-powered microwire-based pH sensor. The hybrid composite nanogenerator was fabricated using ZnO nanowire and piezoelectric polymer poly(vinylidene fluoride), through a simple, inexpensive solution-casting technique. The fabricated hybrid composite nanogenerator delivered a maximum open-circuit voltage of 6.9 V and a short-circuit current of 0.96 μA, with an output power of 6.624 μW under uniaxial compression. This high-performance, electric poling free composite nanogenerator opens up the possibility of industrial-scale fabrication. The hybrid nanogenerator demonstrated its ability to drive five green LEDs simultaneously, without using an energy-storage device. Additionally, we constructed a self-powered pH sensor, using a ZnO microwire powered with our hybrid nanogenerator. The output voltage varied according to changes in the pH level. This study demonstrates the feasibility of using a hybrid nanogenerator as a self-powered device that can be extended for use as a biosensor for environmental monitoring and/or as a smart, wearable, vibration sensor in future applications.

  19. Hybrid Intelligent System to Perform Fault Detection on BIS Sensor During Surgeries

    Science.gov (United States)

    Casteleiro-Roca, José-Luis; Calvo-Rolle, José Luis; Méndez Pérez, Juan Albino; Roqueñí Gutiérrez, Nieves; de Cos Juez, Francisco Javier

    2017-01-01

    This paper presents a new fault detection system in hypnotic sensors used for general anesthesia during surgery. Drug infusion during surgery is based on information received from patient monitoring devices; accordingly, faults in sensor devices can put patient safety at risk. Our research offers a solution to cope with these undesirable scenarios. We focus on the anesthesia process using intravenous propofol as the hypnotic drug and employing a Bispectral Index (BISTM) monitor to estimate the patient’s unconsciousness level. The method developed identifies BIS episodes affected by disturbances during surgery with null clinical value. Thus, the clinician—or the automatic controller—will not take those measures into account to calculate the drug dose. Our method compares the measured BIS signal with expected behavior predicted by the propofol dose provider and the electromyogram (EMG) signal. For the prediction of the BIS signal, a model based on a hybrid intelligent system architecture has been created. The model uses clustering combined with regression techniques. To validate its accuracy, a dataset taken during surgeries with general anesthesia was used. The proposed fault detection method for BIS sensor measures has also been verified using data from real cases. The obtained results prove the method’s effectiveness. PMID:28106793

  20. Hybrid swarm intelligence optimization approach for optimal data storage position identification in wireless sensor networks.

    Science.gov (United States)

    Mohanasundaram, Ranganathan; Periasamy, Pappampalayam Sanmugam

    2015-01-01

    The current high profile debate with regard to data storage and its growth have become strategic task in the world of networking. It mainly depends on the sensor nodes called producers, base stations, and also the consumers (users and sensor nodes) to retrieve and use the data. The main concern dealt here is to find an optimal data storage position in wireless sensor networks. The works that have been carried out earlier did not utilize swarm intelligence based optimization approaches to find the optimal data storage positions. To achieve this goal, an efficient swam intelligence approach is used to choose suitable positions for a storage node. Thus, hybrid particle swarm optimization algorithm has been used to find the suitable positions for storage nodes while the total energy cost of data transmission is minimized. Clustering-based distributed data storage is utilized to solve clustering problem using fuzzy-C-means algorithm. This research work also considers the data rates and locations of multiple producers and consumers to find optimal data storage positions. The algorithm is implemented in a network simulator and the experimental results show that the proposed clustering and swarm intelligence based ODS strategy is more effective than the earlier approaches.

  1. A hybrid humidity sensor using optical waveguides on a quartz crystal microbalance

    Energy Technology Data Exchange (ETDEWEB)

    Shinbo, Kazunari, E-mail: kshinbo@eng.niigata-u.ac.j [Graduate School of Science and Technology, Niigata University, 2-8050 Ikarashi, Nishi-ku, Niigata City, Niigata 950-2181 (Japan); Center for Transdisciplinary Research, Niigata University, 2-8050 Ikarashi, Nishi-ku, Niigata City, Niigata 950-2181 (Japan); Otuki, Shunya; Kanbayashi, Yuichi [Graduate School of Science and Technology, Niigata University, 2-8050 Ikarashi, Nishi-ku, Niigata City, Niigata 950-2181 (Japan); Ohdaira, Yasuo [Graduate School of Science and Technology, Niigata University, 2-8050 Ikarashi, Nishi-ku, Niigata City, Niigata 950-2181 (Japan); Center for Transdisciplinary Research, Niigata University, 2-8050 Ikarashi, Nishi-ku, Niigata City, Niigata 950-2181 (Japan); Baba, Akira [Center for Transdisciplinary Research, Niigata University, 2-8050 Ikarashi, Nishi-ku, Niigata City, Niigata 950-2181 (Japan); Kato, Keizo; Kaneko, Futao [Graduate School of Science and Technology, Niigata University, 2-8050 Ikarashi, Nishi-ku, Niigata City, Niigata 950-2181 (Japan); Center for Transdisciplinary Research, Niigata University, 2-8050 Ikarashi, Nishi-ku, Niigata City, Niigata 950-2181 (Japan); Miyadera, Nobuo [Hitachi Chemical Co., Ltd., 48 Wadai, Tsukuba City, Ibaraki 300-4247 (Japan)

    2009-11-30

    In this study, slab and ridge optical waveguides (OWGs) made of fluorinated polyimides were deposited on a quartz crystal microbalance (QCM), and hybrid sensors using OWG spectroscopy and the QCM technique were prepared. Polyvinyl alcohol (PVA) film with CoCl{sub 2} was deposited on the OWGs, and the characteristics of humidity sensing were investigated. A prism coupler was used to enter a He-Ne laser beam ({lambda} = 632.8 nm) to the slab OWG. The output light intensity markedly changed due to chromism of the CoCl{sub 2} as a result of humidity sorption, and this change was dependent on the incident angle of the laser beam to the slab OWG. During the measurement of output light, the QCM frequency was simultaneously monitored. The humidity dependence of the sensor with the slab OWG was also investigated in the range from 15 to 85%. For the sensor with the ridge OWG, white light was entered by butt-coupling, and the characteristics of humidity sensing were investigated by observing the output light spectrum and the QCM frequency.

  2. Balancing energy consumption with hybrid clustering and routing strategy in wireless sensor networks.

    Science.gov (United States)

    Xu, Zhezhuang; Chen, Liquan; Liu, Ting; Cao, Lianyang; Chen, Cailian

    2015-10-20

    Multi-hop data collection in wireless sensor networks (WSNs) is a challenge issue due to the limited energy resource and transmission range of wireless sensors. The hybrid clustering and routing (HCR) strategy has provided an effective solution, which can generate a connected and efficient cluster-based topology for multi-hop data collection in WSNs. However, it suffers from imbalanced energy consumption, which results in the poor performance of the network lifetime. In this paper, we evaluate the energy consumption of HCR and discover an important result: the imbalanced energy consumption generally appears in gradient k = 1, i.e., the nodes that can communicate with the sink directly. Based on this observation, we propose a new protocol called HCR-1, which includes the adaptive relay selection and tunable cost functions to balance the energy consumption. The guideline of setting the parameters in HCR-1 is provided based on simulations. The analytical and numerical results prove that, with minor modification of the topology in Sensors 2015, 15 26584 gradient k = 1, the HCR-1 protocol effectively balances the energy consumption and prolongs the network lifetime.

  3. Hybrid Swarm Intelligence Optimization Approach for Optimal Data Storage Position Identification in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Ranganathan Mohanasundaram

    2015-01-01

    Full Text Available The current high profile debate with regard to data storage and its growth have become strategic task in the world of networking. It mainly depends on the sensor nodes called producers, base stations, and also the consumers (users and sensor nodes to retrieve and use the data. The main concern dealt here is to find an optimal data storage position in wireless sensor networks. The works that have been carried out earlier did not utilize swarm intelligence based optimization approaches to find the optimal data storage positions. To achieve this goal, an efficient swam intelligence approach is used to choose suitable positions for a storage node. Thus, hybrid particle swarm optimization algorithm has been used to find the suitable positions for storage nodes while the total energy cost of data transmission is minimized. Clustering-based distributed data storage is utilized to solve clustering problem using fuzzy-C-means algorithm. This research work also considers the data rates and locations of multiple producers and consumers to find optimal data storage positions. The algorithm is implemented in a network simulator and the experimental results show that the proposed clustering and swarm intelligence based ODS strategy is more effective than the earlier approaches.

  4. Integrated optical sensor using hybrid plasmonics for lab on chip applications

    Science.gov (United States)

    Zaki, Aya O.; Kirah, Khaled; Swillam, Mohamed A.

    2016-08-01

    We propose a novel, compact plasmonic sensing structure based on a metal-insulator-metal waveguide hybridly-coupled to a rectangular side cavity. The structure has been numerically investigated using the finite-difference time-domain method. Transmission spectra obtained from numerical simulations are used to analyze the sensing characteristics of the structure. The effects of the geometrical parameters on transmission and sensing of the structure are studied. With optimum design, sensitivity can reach as high as 1500 nm per refractive-index unit around the resonance wavelength of 1550 nm with a cavity area of 1 μm2. The proposed structure can potentially be applied in on-chip pressure and gas micro-sensors.

  5. A Network Coding Based Hybrid ARQ Protocol for Underwater Acoustic Sensor Networks.

    Science.gov (United States)

    Wang, Hao; Wang, Shilian; Zhang, Eryang; Zou, Jianbin

    2016-01-01

    Underwater Acoustic Sensor Networks (UASNs) have attracted increasing interest in recent years due to their extensive commercial and military applications. However, the harsh underwater channel causes many challenges for the design of reliable underwater data transport protocol. In this paper, we propose an energy efficient data transport protocol based on network coding and hybrid automatic repeat request (NCHARQ) to ensure reliability, efficiency and availability in UASNs. Moreover, an adaptive window length estimation algorithm is designed to optimize the throughput and energy consumption tradeoff. The algorithm can adaptively change the code rate and can be insensitive to the environment change. Extensive simulations and analysis show that NCHARQ significantly reduces energy consumption with short end-to-end delay.

  6. A Network Coding Based Hybrid ARQ Protocol for Underwater Acoustic Sensor Networks

    Directory of Open Access Journals (Sweden)

    Hao Wang

    2016-09-01

    Full Text Available Underwater Acoustic Sensor Networks (UASNs have attracted increasing interest in recent years due to their extensive commercial and military applications. However, the harsh underwater channel causes many challenges for the design of reliable underwater data transport protocol. In this paper, we propose an energy efficient data transport protocol based on network coding and hybrid automatic repeat request (NCHARQ to ensure reliability, efficiency and availability in UASNs. Moreover, an adaptive window length estimation algorithm is designed to optimize the throughput and energy consumption tradeoff. The algorithm can adaptively change the code rate and can be insensitive to the environment change. Extensive simulations and analysis show that NCHARQ significantly reduces energy consumption with short end-to-end delay.

  7. A Hybrid Adaptive Routing Algorithm for Event-Driven Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Antonio A. F. Loureiro

    2009-09-01

    Full Text Available Routing is a basic function in wireless sensor networks (WSNs. For these networks, routing algorithms depend on the characteristics of the applications and, consequently, there is no self-contained algorithm suitable for every case. In some scenarios, the network behavior (traffic load may vary a lot, such as an event-driven application, favoring different algorithms at different instants. This work presents a hybrid and adaptive algorithm for routing in WSNs, called Multi-MAF, that adapts its behavior autonomously in response to the variation of network conditions. In particular, the proposed algorithm applies both reactive and proactive strategies for routing infrastructure creation, and uses an event-detection estimation model to change between the strategies and save energy. To show the advantages of the proposed approach, it is evaluated through simulations. Comparisons with independent reactive and proactive algorithms show improvements on energy consumption.

  8. A Network Coding Based Hybrid ARQ Protocol for Underwater Acoustic Sensor Networks

    Science.gov (United States)

    Wang, Hao; Wang, Shilian; Zhang, Eryang; Zou, Jianbin

    2016-01-01

    Underwater Acoustic Sensor Networks (UASNs) have attracted increasing interest in recent years due to their extensive commercial and military applications. However, the harsh underwater channel causes many challenges for the design of reliable underwater data transport protocol. In this paper, we propose an energy efficient data transport protocol based on network coding and hybrid automatic repeat request (NCHARQ) to ensure reliability, efficiency and availability in UASNs. Moreover, an adaptive window length estimation algorithm is designed to optimize the throughput and energy consumption tradeoff. The algorithm can adaptively change the code rate and can be insensitive to the environment change. Extensive simulations and analysis show that NCHARQ significantly reduces energy consumption with short end-to-end delay. PMID:27618044

  9. A hybrid adaptive routing algorithm for event-driven wireless sensor networks.

    Science.gov (United States)

    Figueiredo, Carlos M S; Nakamura, Eduardo F; Loureiro, Antonio A F

    2009-01-01

    Routing is a basic function in wireless sensor networks (WSNs). For these networks, routing algorithms depend on the characteristics of the applications and, consequently, there is no self-contained algorithm suitable for every case. In some scenarios, the network behavior (traffic load) may vary a lot, such as an event-driven application, favoring different algorithms at different instants. This work presents a hybrid and adaptive algorithm for routing in WSNs, called Multi-MAF, that adapts its behavior autonomously in response to the variation of network conditions. In particular, the proposed algorithm applies both reactive and proactive strategies for routing infrastructure creation, and uses an event-detection estimation model to change between the strategies and save energy. To show the advantages of the proposed approach, it is evaluated through simulations. Comparisons with independent reactive and proactive algorithms show improvements on energy consumption.

  10. Sensor-based hip control with hybrid neuroprosthesis for walking in paraplegia.

    Science.gov (United States)

    To, Curtis S; Kobetic, Rudi; Bulea, Thomas C; Audu, Musa L; Schnellenberger, John R; Pinault, Gilles; Triolo, Ronald J

    2014-01-01

    The objectives of this study were to test whether a hybrid neuroprosthesis (HNP) with an exoskeletal variable-constraint hip mechanism (VCHM) combined with a functional neuromuscular stimulation (FNS) controller can maintain upright posture with less upper-limb support and improve gait speed as compared with walking with either an isocentric reciprocating gait orthosis (IRGO) or FNS only. The results show that walking with the HNP significantly reduced forward lean in FNS-only walking and the maximum upper-limb forces by 42% and 19% as compared with the IRGO and FNS-only gait, respectively. Walking speed increased significantly with VCHM as compared with 1:1 reciprocal coupling and by 15% when using the sensor-based FNS controller as compared with HNP with fixed baseline stimulation without the controller active.

  11. Sensor-based hip control with hybrid neuroprosthesis for walking in paraplegia

    Directory of Open Access Journals (Sweden)

    Curtis S. To, PhD

    2014-03-01

    Full Text Available The objectives of this study were to test whether a hybrid neuroprosthesis (HNP with an exoskeletal variable-­constraint hip mechanism (VCHM combined with a functional neuromuscular stimulation (FNS controller can maintain upright posture with less upper-limb support and improve gait speed as compared with walking with either an isocentric reciprocating gait orthosis (IRGO or FNS only. The results show that walking with the HNP significantly reduced forward lean in FNS-only walking and the maximum upper-limb forces by 42% and 19% as compared with the IRGO and FNS-only gait, respectively. Walking speed increased significantly with VCHM as compared with 1:1 reciprocal coupling and by 15% when using the sensor-based FNS controller as compared with HNP with fixed baseline stimulation without the controller active.

  12. Field-effect-based multifunctional hybrid sensor module for the determination of both (bio-)chemical and physical parameters

    Science.gov (United States)

    Schoening, Michael J.; Poghossian, Arshak; Schultze, J. Walter; Lueth, Hans

    2002-02-01

    Sensor systems for multi-parameter detection in fluidics usually combine different sensors, which are designed to detect either a physical or (bio-)chemical parameter. Therefore, such systems include a more complicated fabrication technology and measuring set-up. In this work, an ISFET (ion-sensitive field-effect transistor), which is well known as a (bio-)chemical sensor, is utilized as transducer for the detection of both (bio-)chemical and physical parameters. A multifunctional hybrid module for the determination of two (bio-)chemical parameters (pH, penicillin concentration) and three physical parameters (temperature, flow velocity and flow direction) using only two sensor structures, an ion generator and a reference electrode, is realized and its performance has been investigated. Here, a multifunctionality of the sensor system is achieved by means of different sensor arrangements and/or different operation modes. A Ta2O5-gate ISFET was used as transducer for all sensors. A novel time-of-flight type ISFET-based flow-velocity (flow rate) and flow-direction sensor using in-situ electrochemical generation of chemical tracers is presented. Due to the fast response of the ISFET (usually in the millisecond range), an ISFET-based flow sensor is suitable for the measurement of the flow velocity in a wide range. With regard to practical applications, pH measurements with this ISFET were performed in rain droplets.

  13. Opportunistic Hybrid Transport Protocol (OHTP for Cognitive Radio Ad Hoc Sensor Networks

    Directory of Open Access Journals (Sweden)

    Yousaf Bin Zikria

    2015-12-01

    Full Text Available The inefficient assignment of spectrum for different communications purposes, plus technology enhancements and ever-increasing usage of wireless technology is causing spectrum scarcity. To address this issue, one of the proposed solutions in the literature is to access the spectrum dynamically or opportunistically. Therefore, the concept of cognitive radio appeared, which opens up a new research paradigm. There is extensive research on the physical, medium access control and network layers. The impact of the transport layer on the performance of cognitive radio ad hoc sensor networks is still unknown/unexplored. The Internet’s de facto transport protocol is not well suited to wireless networks because of its congestion control mechanism. We propose an opportunistic hybrid transport protocol for cognitive radio ad hoc sensor networks. We developed a new congestion control mechanism to differentiate true congestion from interruption loss. After such detection and differentiation, we propose methods to handle them opportunistically. There are several benefits to window- and rate-based protocols. To exploit the benefits of both in order to enhance overall system performance, we propose a hybrid transport protocol. We empirically calculate the optimal threshold value to switch between window- and rate-based mechanisms. We then compare our proposed transport protocol to Transmission Control Protocol (TCP-friendly rate control, TCP-friendly rate control for cognitive radio, and TCP-friendly window-based control. We ran an extensive set of simulations in Network Simulator 2. The results indicate that the proposed transport protocol performs better than all the others.

  14. Excellent ammonia sensing performance of gas sensor based on graphene/titanium dioxide hybrid with improved morphology

    Science.gov (United States)

    Ye, Zongbiao; Tai, Huiling; Guo, Rui; Yuan, Zhen; Liu, Chunhua; Su, Yuanjie; Chen, Zhi; Jiang, Yadong

    2017-10-01

    Reduced graphene oxide (rGO)-titanium dioxide (TiO2) hybrid material has been prepared through a facile hydrothermal method for ammonia detection at room temperature. The combined characterizations including X-ray diffraction (XRD), ultraviolet-visible spectroscopy (UV-vis) and scanning electron microscopy (SEM) indicated the successful formation of rGO-TiO2 hybrid. It also showed that the morphology of graphene sheets was greatly improved to become porous and undulating due to introduction of synthetic titanium dioxide. Accordingly, the hybrid-based sensor showed much more excellent sensing properties in comparison to that of bare graphene film sensor. The mechanism for the improvement could be ascribed to the synergetic effect between rGO sheets and TiO2 nanospheres, specifically, the enrichment of active adsorption sites on account of the supporting function of TiO2 nanospheres.

  15. Double-Slot Hybrid Plasmonic Ring Resonator Used for Optical Sensors and Modulators

    Directory of Open Access Journals (Sweden)

    Xu Sun

    2015-11-01

    Full Text Available An ultra-high sensitivity double-slot hybrid plasmonic (DSHP ring resonator, used for optical sensors and modulators, is developed. Due to high index contrast, as well as plasmonic enhancement, a considerable part of the optical energy is concentrated in the narrow slots between Si and plasmonic materials (silver is used in this paper, which leads to high sensitivity to the infiltrating materials. By partial opening of the outer plasmonic circular sheet of the DSHP ring, a conventional side-coupled silicon on insulator (SOI bus waveguide can be used. Experimental results demonstrate ultra-high sensitivity (687.5 nm/RIU of the developed DSHP ring resonator, which is about five-times higher than for the conventional Si ring with the same geometry. Further discussions show that a very low detection limit (5.37 × 10−6 RIU can be achieved after loaded Q factor modifications. In addition, the plasmonic metal structures offer also the way to process optical and electronic signals along the same hybrid plasmonic circuits with small capacitance (~0.275 fF and large electric field, which leads to possible applications in compact high-efficiency electro-optic modulators, where no extra electrodes for electronic signals are required.

  16. An energy efficient hybrid interference-resilient frame fragmentation for wireless sensor networks

    KAUST Repository

    Meer, Ammar M.

    2015-08-30

    Frame fragmentation into small blocks with dedicated error detection codes per block can reduce the unnecessary retransmission of the correctly received blocks. However, the optimal block size varies based on the wireless channel conditions. Further, blocks within a single frame may have different optimal sizes based on variations in interference patterns. This paper proposes a hybrid interference-resilient frame fragmentation (Hi-Frag) link-layer scheme for wireless sensor networks. It effectively addresses the challenges associated with dynamic partitioning of blocks while accounting for the observed error patterns. Hi-Frag is the first work to introduce an adaptive frame fragmentation scheme with hybrid block sizing, implemented and evaluated on a real WSN testbed. Hi-Frag shows substantial enhancements over fixed-size partial packet recovery protocols, achieving up to 2.5× improvement in throughput when the channel condition is noisy, while reducing network delays by up to 14% of the observed delay. On average, Hi-Frag shows 35% gain in throughput compared to static fragmentation approaches across all channel conditions used in our experiments. Also, Hi-Frag lowers the energy consumed per useful bit by 66% on average compared to conventional protocols, which increases the energy efficiency.

  17. Fuzzy Based Advanced Hybrid Intrusion Detection System to Detect Malicious Nodes in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Rupinder Singh

    2017-01-01

    Full Text Available In this paper, an Advanced Hybrid Intrusion Detection System (AHIDS that automatically detects the WSNs attacks is proposed. AHIDS makes use of cluster-based architecture with enhanced LEACH protocol that intends to reduce the level of energy consumption by the sensor nodes. AHIDS uses anomaly detection and misuse detection based on fuzzy rule sets along with the Multilayer Perceptron Neural Network. The Feed Forward Neural Network along with the Backpropagation Neural Network are utilized to integrate the detection results and indicate the different types of attackers (i.e., Sybil attack, wormhole attack, and hello flood attack. For detection of Sybil attack, Advanced Sybil Attack Detection Algorithm is developed while the detection of wormhole attack is done by Wormhole Resistant Hybrid Technique. The detection of hello flood attack is done by using signal strength and distance. An experimental analysis is carried out in a set of nodes; 13.33% of the nodes are determined as misbehaving nodes, which classified attackers along with a detection rate of the true positive rate and false positive rate. Sybil attack is detected at a rate of 99,40%; hello flood attack has a detection rate of 98, 20%; and wormhole attack has a detection rate of 99, 20%.

  18. Using hybrid angle/distance information for distributed topology control in vehicular sensor networks.

    Science.gov (United States)

    Huang, Chao-Chi; Chiu, Yang-Hung; Wen, Chih-Yu

    2014-10-27

    In a vehicular sensor network (VSN), the key design issue is how to organize vehicles effectively, such that the local network topology can be stabilized quickly. In this work, each vehicle with on-board sensors can be considered as a local controller associated with a group of communication members. In order to balance the load among the nodes and govern the local topology change, a group formation scheme using localized criteria is implemented. The proposed distributed topology control method focuses on reducing the rate of group member change and avoiding the unnecessary information exchange. Two major phases are sequentially applied to choose the group members of each vehicle using hybrid angle/distance information. The operation of Phase I is based on the concept of the cone-based method, which can select the desired vehicles quickly. Afterwards, the proposed time-slot method is further applied to stabilize the network topology. Given the network structure in Phase I, a routing scheme is presented in Phase II. The network behaviors are explored through simulation and analysis in a variety of scenarios. The results show that the proposed mechanism is a scalable and effective control framework for VSNs.

  19. A Hybrid Stochastic Approach for Self-Location of Wireless Sensors in Indoor Environments

    Directory of Open Access Journals (Sweden)

    Alejandro Canovas

    2009-05-01

    Full Text Available Indoor location systems, especially those using wireless sensor networks, are used in many application areas. While the need for these systems is widely proven, there is a clear lack of accuracy. Many of the implemented applications have high errors in their location estimation because of the issues arising in the indoor environment. Two different approaches had been proposed using WLAN location systems: on the one hand, the so-called deductive methods take into account the physical properties of signal propagation. These systems require a propagation model, an environment map, and the position of the radio-stations. On the other hand, the so-called inductive methods require a previous training phase where the system learns the received signal strength (RSS in each location. This phase can be very time consuming. This paper proposes a new stochastic approach which is based on a combination of deductive and inductive methods whereby wireless sensors could determine their positions using WLAN technology inside a floor of a building. Our goal is to reduce the training phase in an indoor environment, but, without an loss of precision. Finally, we compare the measurements taken using our proposed method in a real environment with the measurements taken by other developed systems. Comparisons between the proposed system and other hybrid methods are also provided.

  20. WRHT: A Hybrid Technique for Detection of Wormhole Attack in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Rupinder Singh

    2016-01-01

    Full Text Available Wormhole attack is a challenging security threat to wireless sensor networks which results in disrupting most of the routing protocols as this attack can be triggered in different modes. In this paper, WRHT, a wormhole resistant hybrid technique, is proposed, which can detect the presence of wormhole attack in a more optimistic manner than earlier techniques. WRHT is based on the concept of watchdog and Delphi schemes and ensures that the wormhole will not be left untreated in the sensor network. WRHT makes use of the dual wormhole detection mechanism of calculating probability factor time delay probability and packet loss probability of the established path in order to find the value of wormhole presence probability. The nodes in the path are given different ranking and subsequently colors according to their behavior. The most striking feature of WRHT consists of its capacity to defend against almost all categories of wormhole attacks without depending on any required additional hardware such as global positioning system, timing information or synchronized clocks, and traditional cryptographic schemes demanding high computational needs. The experimental results clearly indicate that the proposed technique has significant improvement over the existing wormhole attack detection techniques.

  1. Cost analysis of hybrid adaptive routing protocol for heterogeneous wireless sensor network

    Indian Academy of Sciences (India)

    NONITA SHARMA; AJAY K SHARMA

    2016-03-01

    This study aims to explore the impact of heterogeneity on a hybrid algorithm called Multi Adaptive Filter Algorithm by constructing series of experiments. Here, the simulations were made between ‘Total Energy Spent’ and ‘Number of Sources’ considering temporal correlation. The results were drawn from the trace information generated using ‘Monte Carlo’ simulation methods. After keen analysis, the results show that different levels of heterogeneity are best suited for correlated event detections. Moreover, based on the conclusions drawn,it can be safely inferred that n-level heterogeneity reduces the total energy spent close to 60%. Further, cost analysis recommends that adding progressive nodes preserves the cost factor in the bracket of 230–280$/Joule. Thenovel approach can immensely help the future solution providers to overcome the battery limitations of wireless sensor networks. This study provides insights into designing heterogeneous wireless sensor networks and aims atproviding the cost-benefit analysis that can be used in selecting the critical parameters of the network.

  2. Hybrid Evolutionary Approaches to Maximum Lifetime Routing and Energy Efficiency in Sensor Mesh Networks.

    Science.gov (United States)

    Rahat, Alma A M; Everson, Richard M; Fieldsend, Jonathan E

    2015-01-01

    Mesh network topologies are becoming increasingly popular in battery-powered wireless sensor networks, primarily because of the extension of network range. However, multihop mesh networks suffer from higher energy costs, and the routing strategy employed directly affects the lifetime of nodes with limited energy resources. Hence when planning routes there are trade-offs to be considered between individual and system-wide battery lifetimes. We present a multiobjective routing optimisation approach using hybrid evolutionary algorithms to approximate the optimal trade-off between the minimum lifetime and the average lifetime of nodes in the network. In order to accomplish this combinatorial optimisation rapidly, our approach prunes the search space using k-shortest path pruning and a graph reduction method that finds candidate routes promoting long minimum lifetimes. When arbitrarily many routes from a node to the base station are permitted, optimal routes may be found as the solution to a well-known linear program. We present an evolutionary algorithm that finds good routes when each node is allowed only a small number of paths to the base station. On a real network deployed in the Victoria & Albert Museum, London, these solutions, using only three paths per node, are able to achieve minimum lifetimes of over 99% of the optimum linear program solution's time to first sensor battery failure.

  3. Hybrid Swarm Intelligence Energy Efficient Clustered Routing Algorithm for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Rajeev Kumar

    2016-01-01

    Full Text Available Currently, wireless sensor networks (WSNs are used in many applications, namely, environment monitoring, disaster management, industrial automation, and medical electronics. Sensor nodes carry many limitations like low battery life, small memory space, and limited computing capability. To create a wireless sensor network more energy efficient, swarm intelligence technique has been applied to resolve many optimization issues in WSNs. In many existing clustering techniques an artificial bee colony (ABC algorithm is utilized to collect information from the field periodically. Nevertheless, in the event based applications, an ant colony optimization (ACO is a good solution to enhance the network lifespan. In this paper, we combine both algorithms (i.e., ABC and ACO and propose a new hybrid ABCACO algorithm to solve a Nondeterministic Polynomial (NP hard and finite problem of WSNs. ABCACO algorithm is divided into three main parts: (i selection of optimal number of subregions and further subregion parts, (ii cluster head selection using ABC algorithm, and (iii efficient data transmission using ACO algorithm. We use a hierarchical clustering technique for data transmission; the data is transmitted from member nodes to the subcluster heads and then from subcluster heads to the elected cluster heads based on some threshold value. Cluster heads use an ACO algorithm to discover the best route for data transmission to the base station (BS. The proposed approach is very useful in designing the framework for forest fire detection and monitoring. The simulation results show that the ABCACO algorithm enhances the stability period by 60% and also improves the goodput by 31% against LEACH and WSNCABC, respectively.

  4. A hybrid solar panel maximum power point search method that uses light and temperature sensors

    Science.gov (United States)

    Ostrowski, Mariusz

    2016-04-01

    Solar cells have low efficiency and non-linear characteristics. To increase the output power solar cells are connected in more complex structures. Solar panels consist of series of connected solar cells with a few bypass diodes, to avoid negative effects of partial shading conditions. Solar panels are connected to special device named the maximum power point tracker. This device adapt output power from solar panels to load requirements and have also build in a special algorithm to track the maximum power point of solar panels. Bypass diodes may cause appearance of local maxima on power-voltage curve when the panel surface is illuminated irregularly. In this case traditional maximum power point tracking algorithms can find only a local maximum power point. In this article the hybrid maximum power point search algorithm is presented. The main goal of the proposed method is a combination of two algorithms: a method that use temperature sensors to track maximum power point in partial shading conditions and a method that use illumination sensor to track maximum power point in equal illumination conditions. In comparison to another methods, the proposed algorithm uses correlation functions to determinate the relationship between values of illumination and temperature sensors and the corresponding values of current and voltage in maximum power point. In partial shading condition the algorithm calculates local maximum power points bases on the value of temperature and the correlation function and after that measures the value of power on each of calculated point choose those with have biggest value, and on its base run the perturb and observe search algorithm. In case of equal illumination algorithm calculate the maximum power point bases on the illumination value and the correlation function and on its base run the perturb and observe algorithm. In addition, the proposed method uses a special coefficient modification of correlation functions algorithm. This sub

  5. An energy-efficient and secure hybrid algorithm for wireless sensor networks using a mobile data collector

    Science.gov (United States)

    Dayananda, Karanam Ravichandran; Straub, Jeremy

    2017-05-01

    This paper proposes a new hybrid algorithm for security, which incorporates both distributed and hierarchal approaches. It uses a mobile data collector (MDC) to collect information in order to save energy of sensor nodes in a wireless sensor network (WSN) as, in most networks, these sensor nodes have limited energy. Wireless sensor networks are prone to security problems because, among other things, it is possible to use a rogue sensor node to eavesdrop on or alter the information being transmitted. To prevent this, this paper introduces a security algorithm for MDC-based WSNs. A key use of this algorithm is to protect the confidentiality of the information sent by the sensor nodes. The sensor nodes are deployed in a random fashion and form group structures called clusters. Each cluster has a cluster head. The cluster head collects data from the other nodes using the time-division multiple access protocol. The sensor nodes send their data to the cluster head for transmission to the base station node for further processing. The MDC acts as an intermediate node between the cluster head and base station. The MDC, using its dynamic acyclic graph path, collects the data from the cluster head and sends it to base station. This approach is useful for applications including warfighting, intelligent building and medicine. To assess the proposed system, the paper presents a comparison of its performance with other approaches and algorithms that can be used for similar purposes.

  6. Underwater imaging using a hybrid Kirchhoff migration: direction of arrival method and a sparse surface sensor array.

    Science.gov (United States)

    Dord, Jean-Francois; Farhat, Charbel

    2010-08-01

    This paper considers the problem of imaging a complex object submerged in shallow waters using a sparse surface sensor array and a hybrid signal processing method. This method is constructed by refining the Kirchhoff migration technique to incorporate a zoning of the sensors and an analysis of multiple reflections, and combining it with the direction of arrival estimation method. Its performance is assessed and analyzed with the shape identification of a mockup submarine by numerical simulation. The obtained numerical results highlight the potential of this approach for identifying underwater intruders.

  7. Large-Scale, Multi-Sensor Atmospheric Data Fusion Using Hybrid Cloud Computing

    Science.gov (United States)

    Wilson, B. D.; Manipon, G.; Hua, H.; Fetzer, E. J.

    2015-12-01

    NASA's Earth Observing System (EOS) is an ambitious facility for studying global climate change. The mandate now is to combine measurements from the instruments on the "A-Train" platforms (AIRS, MODIS, MLS, and CloudSat) and other Earth probes to enable large-scale studies of climate change over decades. Moving to multi-sensor, long-duration presents serious challenges for large-scale data mining and fusion. For example, one might want to compare temperature and water vapor retrievals from one instrument (AIRS) to another (MODIS), and to a model (ECMWF), stratify the comparisons using a classification of the "cloud scenes" from CloudSat, and repeat the entire analysis over 10 years of data. HySDS is a Hybrid-Cloud Science Data System that has been developed and applied under NASA AIST, MEaSUREs, and ACCESS grants. HySDS uses the SciFlow workflow engine to partition analysis workflows into parallel tasks (e.g. segmenting by time or space) that are pushed into a durable job queue. The tasks are "pulled" from the queue by worker Virtual Machines (VM's) and executed in an on-premise Cloud (Eucalyptus or OpenStack) or at Amazon in the public Cloud or govCloud. In this way, years of data (millions of files) can be processed in a massively parallel way. Input variables (arrays) are pulled on-demand into the Cloud using OPeNDAP URLs or other subsetting services, thereby minimizing the size of the transferred data. We are using HySDS to automate the production of multiple versions of a ten-year A-Train water vapor climatology under a MEASURES grant. We will present the architecture of HySDS, describe the achieved "clock time" speedups in fusing datasets on our own nodes and in the Amazon Cloud, and discuss the Cloud cost tradeoffs for storage, compute, and data transfer. Our system demonstrates how one can pull A-Train variables (Levels 2 & 3) on-demand into the Amazon Cloud, and cache only those variables that are heavily used, so that any number of compute jobs can be

  8. An Integrated Hybrid Energy Harvester for Autonomous Wireless Sensor Network Nodes

    Directory of Open Access Journals (Sweden)

    Mukter Zaman

    2014-01-01

    Full Text Available Profiling environmental parameter using a large number of spatially distributed wireless sensor network (WSN NODEs is an extensive illustration of advanced modern technologies, but high power requirement for WSN NODEs limits the widespread deployment of these technologies. Currently, WSN NODEs are extensively powered up using batteries, but the battery has limitation of lifetime, power density, and environmental concerns. To overcome this issue, energy harvester (EH is developed and presented in this paper. Solar-based EH has been identified as the most viable source of energy to be harvested for autonomous WSN NODEs. Besides, a novel chemical-based EH is reported as the potential secondary source for harvesting energy because of its uninterrupted availability. By integrating both solar-based EH and chemical-based EH, a hybrid energy harvester (HEH is developed to power up WSN NODEs. Experimental results from the real-time deployment shows that, besides supporting the daily operation of WSN NODE and Router, the developed HEH is capable of producing a surplus of 971 mA·hr equivalent energy to be stored inside the storage for NODE and 528.24 mA·hr equivalent energy for Router, which is significantly enough for perpetual operation of autonomous WSN NODEs used in environmental parameter profiling.

  9. Hybrid Recovery Strategy Based on Random Terrain in Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Xiaoding Wang

    2017-01-01

    Full Text Available Providing successful data collection and aggregation is a primary goal for a broad spectrum of critical applications of wireless sensor networks. Unfortunately, the problem of connectivity loss, which may occur when a network suffers from natural disasters or human sabotages, may cause failure in data aggregation. To tackle this issue, plenty of strategies that deploy relay devices on target areas to restore connectivity have been devised. However, all of them assume that either the landforms of target areas are flat or there are sufficient relay devices. In real scenarios, such assumptions are not realistic. In this paper, we propose a hybrid recovery strategy based on random terrain (simply, HRSRT that takes both realistic terrain influences and quantitative limitations of relay devices into consideration. HRSRT is proved to accomplish the biconnectivity restoration and meanwhile minimize the energy cost for data collection and aggregation. In addition, both of complexity and approximation ratio of HRSRT are explored. The simulation results show that HRSRT performs well in terms of overall/maximum energy cost.

  10. Hybrid control and data acquisition system for geographically distributed sensors for environmental monitoring

    Science.gov (United States)

    Garufi, Fabio; Acernese, Fausto; Boiano, Alfonso; De Rosa, Rosario; Romano, Rocco; Barone, Fabrizio

    2007-10-01

    In this paper we describe the architecture and the performances of a hybrid modular acquisition and control system prototype for environmental monitoring and geophysics. The system, an improvement of a VME-UDP/IP based system we developed for interferometric detectors of gravitational waves, is based on a dual-channel 18-bit low noise ADC, a 16-bit DAC module at 1MHz, and a 20-bit slower ADC necessary for the acquisition of an external calibration signal. The module can be configured as stand-alone or mounted on a motherboard as mezzanine in parallel with other modules. Both the modules and the motherboard can send/receive the configuration and the acquired/correction data for control through a standard EPP parallel port to a standard PC, where the real-time computation is performed. Experimental tests have demonstrated that the distributed control systems implemented with this architecture exihibit a delay time of less than 25 μs on a single channel, that is a sustained sampling frequency of more than 40kHz. The system is now under extensive test in two different experiments: the remote control and data acquisition of a set of seismometers, velocimeters and accelerometers to simulate a geophysics networks of sensors and the remote control of the end mirrors of a suspended Michelson interferometer through electrostatic actuators for interferometric detectors of gravitational waves.

  11. Hybrid environment for software sensors design applied to the petrochemical industry problems; Ambiente hibrido para a concepcao de sensores de software aplicados aos problemas da industria petroquimica

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Bruno X.; Ramalho, Leonardo S.G.; Rodrigues, Igor O.; Martins, Daniel L.; Doria Neto, Adriao D.; Melo, Jorge D.; Oliveira, Luiz A.H.G.G. [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil)

    2008-07-01

    This article will show a hybrid environment for the conception of software sensors in Foundation Fieldbus (FF) industrial network. These sensors are focused on the measurement and control problems in the petroleum industry, more specifically in oil and gas refining, contributing for the efficiency increase and operation costs decrease of a refining process. The software sensors are based on intelligent algorithms, as neural networks, fuzzy logic and genetic algorithms. These algorithms need input data, in this case the historical variables data associated to industrial petrochemical plant. One option allowed by the environment is the data acquisition from a simulated process by the FF network. Then, the environment presents a hybrid feature, since it is composed by a real (the industrial network) and a simulated (the process) part, with the use of real control and measurements signals. The environment is flexible, allowing typical dynamics of industrial process reproduction without necessity of the physical network amendment and enabling the creation of several situations from a real industrial environment. (author)

  12. The coronagraphic Modal Wavefront Sensor: a hybrid focal-plane sensor for the high-contrast imaging of circumstellar environments

    CERN Document Server

    Wilby, Michael J; Snik, Frans; Korkiakoski, Visa; Pietrow, Alexander G M

    2016-01-01

    The raw coronagraphic performance of current high-contrast imaging instruments is limited by the presence of a quasi-static speckle (QSS) background, resulting from instrumental non-common path errors (NCPEs). Rapid development of efficient speckle subtraction techniques in data reduction has enabled final contrasts of up to 10-6 to be obtained, however it remains preferable to eliminate the underlying NCPEs at the source. In this work we introduce the coronagraphic Modal Wavefront Sensor (cMWS), a new wavefront sensor suitable for real-time NCPE correction. This pupil-plane optic combines the apodizing phase plate coronagraph with a holographic modal wavefront sensor, to provide simultaneous coronagraphic imaging and focal-plane wavefront sensing using the science point spread function. We first characterise the baseline performance of the cMWS via idealised closed-loop simulations, showing that the sensor successfully recovers diffraction-limited coronagraph performance over an effective dynamic range of +/...

  13. Electrochemical sensor for catechol and dopamine based on a catalytic molecularly imprinted polymer-conducting polymer hybrid recognition element.

    Science.gov (United States)

    Lakshmi, Dhana; Bossi, Alessandra; Whitcombe, Michael J; Chianella, Iva; Fowler, Steven A; Subrahmanyam, Sreenath; Piletska, Elena V; Piletsky, Sergey A

    2009-05-01

    One of the difficulties with using molecularly imprinted polymers (MIPs) and other electrically insulating materials as the recognition element in electrochemical sensors is the lack of a direct path for the conduction of electrons from the active sites to the electrode. We have sought to address this problem through the preparation and characterization of novel hybrid materials combining a catalytic MIP, capable of oxidizing the template, catechol, with an electrically conducting polymer. In this way a network of "molecular wires" assists in the conduction of electrons from the active sites within the MIP to the electrode surface. This was made possible by the design of a new monomer that combines orthogonal polymerizable functionality; comprising an aniline group and a methacrylamide. Conducting films were prepared on the surface of electrodes (Au on glass) by electropolymerization of the aniline moiety. A layer of MIP was photochemically grafted over the polyaniline, via N,N'-diethyldithiocarbamic acid benzyl ester (iniferter) activation of the methacrylamide groups. Detection of catechol by the hybrid-MIP sensor was found to be specific, and catechol oxidation was detected by cyclic voltammetry at the optimized operating conditions: potential range -0.6 V to +0.8 V (vs Ag/AgCl), scan rate 50 mV/s, PBS pH 7.4. The calibration curve for catechol was found to be linear to 144 microM, with a limit of detection of 228 nM. Catechol and dopamine were detected by the sensor, whereas analogues and potentially interfering compounds, including phenol, resorcinol, hydroquinone, serotonin, and ascorbic acid, had minimal effect (< or = 3%) on the detection of either analyte. Non-imprinted hybrid electrodes and bare gold electrodes failed to give any response to catechol at concentrations below 0.5 mM. Finally, the catalytic properties of the sensor were characterized by chronoamperometry and were found to be consistent with Michaelis-Menten kinetics.

  14. Mobilization Protocols for Hybrid Sensors for Environmental AOP Sampling (HySEAS) Observations

    Science.gov (United States)

    Hooker, Stanford B.

    2014-01-01

    The protocols presented here enable the proper mobilization of the latest-generation instruments for measuring the apparent optical properties (AOPs) of aquatic ecosystems. The protocols are designed for the Hybrid Sensors for Environmental AOP Sampling (HySEAS) class of instruments, but are applicable to the community of practice for AOP measurements. The protocols are organized into eleven sections beyond an introductory overview: a) cables and connectors, b) HySEAS instruments, c) platform preparation, d) instrument installation, e) cable installation, f) test deployment, g) test recovery, h) maintenance, i) shipping, j) storage, and k) smallboat operations. Each section concentrates on documenting how to prevent the most likely faults, remedy them should they occur, and accomplishing both with the proper application of a modest set of useful tools. Within the twelve sections, there are Socratic exercises to stimulate thought, and the answers to these exercises appear in Appendix A. Frequently asked questions (FAQs) are summarized in a separate section after the answers to the exercises in Appendix B. For practitioners unfamiliar with the nautical terms used throughout this document plus others likely encountered at sea, an abbreviated dictionary of nautical terms appears in Appendix C. An abbreviated dictionary of radiotelephone terms is presented in Appendix D. To ensure familiarity with many of the tools that are presented, Appendix E provides a description of the tools alongside a thumbnail picture. Abbreviated deployment checklists and cable diagrams are provided in Appendix F. The document concludes with an acknowledgments section, a glossary of acronyms, a definition of symbols, and a list of references.

  15. K-edge imaging with the XPAD3 hybrid pixel detector, direct comparison of CdTe and Si sensors.

    Science.gov (United States)

    Cassol, F; Portal, L; Graber-Bolis, J; Perez-Ponce, H; Dupont, M; Kronland, C; Boursier, Y; Blanc, N; Bompard, F; Boudet, N; Buton, C; Clémens, J C; Dawiec, A; Debarbieux, F; Delpierre, P; Hustache, S; Vigeolas, E; Morel, C

    2015-07-21

    We investigate the improvement from the use of high-Z CdTe sensors for pre-clinical K-edge imaging with the hybrid pixel detectors XPAD3. We compare XPAD3 chips bump bonded to Si or CdTe sensors in identical experimental conditions. Image performance for narrow energy bin acquisitions and contrast-to-noise ratios of K-edge images are presented and compared. CdTe sensors achieve signal-to-noise ratios at least three times higher than Si sensors within narrow energy bins, thanks to their much higher detection efficiency. Nevertheless Si sensors provide better contrast-to-noise ratios in K-edge imaging when working at equivalent counting statistics, due to their better estimation of the attenuation coefficient of the contrast agent. Results are compared to simulated data in the case of the XPAD3/Si detector. Good agreement is observed when including charge sharing between pixels, which have a strong impact on contrast-to-noise ratios in K-edge images.

  16. Arrays of Remote Autonomous Sensors Using On-Board Hybrid Power Supplies Project

    Data.gov (United States)

    National Aeronautics and Space Administration — There is significant need for arrays of miniature sensors that are completely wireless. Ideally these sensors would be built as an integrated device, including...

  17. Ferroelectric hybrid fibers to develop flexible sensors for shape sensing of smart textiles and soft condensed matter bodies

    Science.gov (United States)

    Sebastian, Tutu; Lusiola, Tony; Clemens, Frank

    2017-04-01

    Piezoelectric fibers are widely used in composites for actuator and sensor applications due to its ability to convert electrical pulses into mechanical vibrations and transform the returned mechanical vibrations back into electrical signal. They are beneficial for the fabrication of composites especially 1–3 composites, active fiber composites (unidirectional axially aligned PZT fibers sandwiched between interdigitated electrodes and embedded in a polymer matrix) etc, with potential applications in medical imaging, structural health monitoring, energy harvesting, vibration and noise control. However, due to the brittle nature of PZT fibers, maximum strain is limited to 0.2% and cannot be integrated into flexible sensor applications. In this contribution, a new approach to develop flexible ferroelectric hybrid fibers for soft body shape sensing is investigated. Piezoelectric particles incorporated in a polymer matrix and extruded as fiber, 0–3 composite in fibrous form is studied. Commercially obtained calcined PZT and calcined BaTiO3 powders were used in the unsintered form to obtain flexible soft condensed matter ferroelectric hybrid fibers. The extruded fibers were subjected to investigation for their electromechanical behavior as a function of electric field. The hybrid fibers reached 10% of the maximum polarization of their sintered counterpart.

  18. Magnetic particle-based sandwich sensor with DNA-modified carbon nanotubes as recognition elements for detection of DNA hybridization.

    Science.gov (United States)

    Hu, Po; Huang, Cheng Zhi; Li, Yuan Fang; Ling, Jian; Liu, Yu Ling; Fei, Liang Run; Xie, Jian Ping

    2008-03-01

    In this contribution, we design a visual sensor for DNA hybridization with DNA probe-modified magnetic particles (MPs) and multiwalled carbon nanotubes (MWNTs) without involving a visual recognition element such as fluorescent/chemiluminescent reagents. It was found that DNA probe-modified MWNTs, which could be dispersed in aqueous medium and have strong light scattering signals under the excitation of a light beam in the UV-vis region, could connect with DNA probe-modified MPs together in the presence of perfectly complementary target DNA and form a sandwich structure. In a magnetic field, the formed MP-MWNT species can easily be removed from the solution, resulting in a decrease of light scattering signals. Thus, a magnetic particle-based sandwich sensor could be developed to detect DNA hybridization by measuring the light scattering signals with DNA-modified MWNTs as recognition elements. Experiments showed that the DNA-modified MPs sensor could be reused at least 17 times and was stable for more than 6 months.

  19. The coronagraphic Modal Wavefront Sensor: a hybrid focal-plane sensor for the high-contrast imaging of circumstellar environments

    Science.gov (United States)

    Wilby, M. J.; Keller, C. U.; Snik, F.; Korkiakoski, V.; Pietrow, A. G. M.

    2017-01-01

    The raw coronagraphic performance of current high-contrast imaging instruments is limited by the presence of a quasi-static speckle (QSS) background, resulting from instrumental Non-Common Path Errors (NCPEs). Rapid development of efficient speckle subtraction techniques in data reduction has enabled final contrasts of up to 10-6 to be obtained, however it remains preferable to eliminate the underlying NCPEs at the source. In this work we introduce the coronagraphic Modal Wavefront Sensor (cMWS), a new wavefront sensor suitable for real-time NCPE correction. This combines the Apodizing Phase Plate (APP) coronagraph with a holographic modal wavefront sensor to provide simultaneous coronagraphic imaging and focal-plane wavefront sensing with the science point-spread function. We first characterise the baseline performance of the cMWS via idealised closed-loop simulations, showing that the sensor is able to successfully recover diffraction-limited coronagraph performance over an effective dynamic range of ±2.5 radians root-mean-square (rms) wavefront error within 2-10 iterations, with performance independent of the specific choice of mode basis. We then present the results of initial on-sky testing at the William Herschel Telescope, which demonstrate that the sensor is capable of NCPE sensing under realistic seeing conditions via the recovery of known static aberrations to an accuracy of 10 nm (0.1 radians) rms error in the presence of a dominant atmospheric speckle foreground. We also find that the sensor is capable of real-time measurement of broadband atmospheric wavefront variance (50% bandwidth, 158 nm rms wavefront error) at a cadence of 50 Hz over an uncorrected telescope sub-aperture. When combined with a suitable closed-loop adaptive optics system, the cMWS holds the potential to deliver an improvement of up to two orders of magnitude over the uncorrected QSS floor. Such a sensor would be eminently suitable for the direct imaging and spectroscopy of

  20. A hybrid MAC protocol design for energy-efficient very-high-throughput millimeter wave, wireless sensor communication networks

    Science.gov (United States)

    Jian, Wei; Estevez, Claudio; Chowdhury, Arshad; Jia, Zhensheng; Wang, Jianxin; Yu, Jianguo; Chang, Gee-Kung

    2010-12-01

    This paper presents an energy-efficient Medium Access Control (MAC) protocol for very-high-throughput millimeter-wave (mm-wave) wireless sensor communication networks (VHT-MSCNs) based on hybrid multiple access techniques of frequency division multiplexing access (FDMA) and time division multiplexing access (TDMA). An energy-efficient Superframe for wireless sensor communication network employing directional mm-wave wireless access technologies is proposed for systems that require very high throughput, such as high definition video signals, for sensing, processing, transmitting, and actuating functions. Energy consumption modeling for each network element and comparisons among various multi-access technologies in term of power and MAC layer operations are investigated for evaluating the energy-efficient improvement of proposed MAC protocol.

  1. Sticker-type ECG/PPG concurrent monitoring system hybrid integration of CMOS SoC and organic sensor device.

    Science.gov (United States)

    Lee, Yongsu; Lee, Hyeonwoo; Yoo, Seunghyup; Yoo, Hoi-Jun; Yongsu Lee; Hyeonwoo Lee; Seunghyup Yoo; Hoi-Jun Yoo; Yoo, Seunghyup; Lee, Yongsu; Yoo, Hoi-Jun; Lee, Hyeonwoo

    2016-08-01

    The sticker-type sensor system is proposed targeting ECG/PPG concurrent monitoring for cardiovascular diseases. The stickers are composed of two types: Hub and Sensor-node (SN) sticker. Low-power CMOS SoC for measuring ECG and PPG signal is hybrid integrated with organic light emitting diodes (OLEDs) and organic photo detector (OPD). The sticker has only 2g weight and only consumes 141μW. The optical calibration loop is adopted for maintaining SNR of PPG signal higher than 30dB. The pulse arrival time (PAT) and SpO2 value can be extracted from various body parts and verified comparing with the reference device from 20 people in-vivo experiments.

  2. Multi-enzyme co-embedded organic-inorganic hybrid nanoflowers: synthesis and application as a colorimetric sensor

    Science.gov (United States)

    Sun, Jiayu; Ge, Jiechao; Liu, Weimin; Lan, Minhua; Zhang, Hongyan; Wang, Pengfei; Wang, Yanming; Niu, Zhongwei

    2013-12-01

    This study reports a facile method for the synthesis of multi-enzyme co-embedded organic-inorganic hybrid nanoflowers, using glucose oxidase (GOx) and horseradish peroxidase (HRP) as the organic components, and Cu3(PO4)2.3H2O as the inorganic component. The synthesized nanoflowers enable the combination of a two-enzyme cascade reaction in one step, in which the GOx component of the nanoflowers oxidizes glucose to generate H2O2, which then reacts with the adjacent HRP component on the nanoflowers to oxidize the chromogenic substrates, resulting in an apparent color change. Given the close proximity of the two enzyme components in a single nanoflower, this novel sensor greatly reduces the diffusion and decomposition of H2O2, and greatly enhances the sensitivity of glucose detection. Thus, the obtained multi-enzyme co-embedded organic-inorganic hybrid nanoflowers can be unquestionably used as highly sensitive colorimetric sensors for the detection of glucose. Notably, this work presents a very facile route for the synthesis of multi-enzyme co-embedded nanomaterials for the simultaneous catalysis of multi-step cascade enzymatic reactions. Furthermore, it has great potential for application in biotechnology, and biomedical and environmental chemistry.This study reports a facile method for the synthesis of multi-enzyme co-embedded organic-inorganic hybrid nanoflowers, using glucose oxidase (GOx) and horseradish peroxidase (HRP) as the organic components, and Cu3(PO4)2.3H2O as the inorganic component. The synthesized nanoflowers enable the combination of a two-enzyme cascade reaction in one step, in which the GOx component of the nanoflowers oxidizes glucose to generate H2O2, which then reacts with the adjacent HRP component on the nanoflowers to oxidize the chromogenic substrates, resulting in an apparent color change. Given the close proximity of the two enzyme components in a single nanoflower, this novel sensor greatly reduces the diffusion and decomposition of H2O2

  3. Sensors

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, H. [PBI-Dansensor A/S (Denmark); Toft Soerensen, O. [Risoe National Lab., Materials Research Dept. (Denmark)

    1999-10-01

    A new type of ceramic oxygen sensors based on semiconducting oxides was developed in this project. The advantage of these sensors compared to standard ZrO{sub 2} sensors is that they do not require a reference gas and that they can be produced in small sizes. The sensor design and the techniques developed for production of these sensors are judged suitable by the participating industry for a niche production of a new generation of oxygen sensors. Materials research on new oxygen ion conducting conductors both for applications in oxygen sensors and in fuel was also performed in this project and finally a new process was developed for fabrication of ceramic tubes by dip-coating. (EHS)

  4. Sensors

    CERN Document Server

    Pigorsch, Enrico

    1997-01-01

    This is the 5th edition of the Metra Martech Directory "EUROPEAN CENTRES OF EXPERTISE - SENSORS." The entries represent a survey of European sensors development. The new edition contains 425 detailed profiles of companies and research institutions in 22 countries. This is reflected in the diversity of sensors development programmes described, from sensors for physical parameters to biosensors and intelligent sensor systems. We do not claim that all European organisations developing sensors are included, but this is a good cross section from an invited list of participants. If you see gaps or omissions, or would like your organisation to be included, please send details. The data base invites the formation of effective joint ventures by identifying and providing access to specific areas in which organisations offer collaboration. This issue is recognised to be of great importance and most entrants include details of collaboration offered and sought. We hope the directory on Sensors will help you to find the ri...

  5. Multi-enzyme co-embedded organic-inorganic hybrid nanoflowers: synthesis and application as a colorimetric sensor.

    Science.gov (United States)

    Sun, Jiayu; Ge, Jiechao; Liu, Weimin; Lan, Minhua; Zhang, Hongyan; Wang, Pengfei; Wang, Yanming; Niu, Zhongwei

    2014-01-07

    This study reports a facile method for the synthesis of multi-enzyme co-embedded organic-inorganic hybrid nanoflowers, using glucose oxidase (GOx) and horseradish peroxidase (HRP) as the organic components, and Cu3(PO4)2 · 3H2O as the inorganic component. The synthesized nanoflowers enable the combination of a two-enzyme cascade reaction in one step, in which the GOx component of the nanoflowers oxidizes glucose to generate H2O2, which then reacts with the adjacent HRP component on the nanoflowers to oxidize the chromogenic substrates, resulting in an apparent color change. Given the close proximity of the two enzyme components in a single nanoflower, this novel sensor greatly reduces the diffusion and decomposition of H2O2, and greatly enhances the sensitivity of glucose detection. Thus, the obtained multi-enzyme co-embedded organic-inorganic hybrid nanoflowers can be unquestionably used as highly sensitive colorimetric sensors for the detection of glucose. Notably, this work presents a very facile route for the synthesis of multi-enzyme co-embedded nanomaterials for the simultaneous catalysis of multi-step cascade enzymatic reactions. Furthermore, it has great potential for application in biotechnology, and biomedical and environmental chemistry.

  6. Activity recognition using hybrid generative/discriminative models on home environments using binary sensors.

    Science.gov (United States)

    Ordóñez, Fco Javier; de Toledo, Paula; Sanchis, Araceli

    2013-04-24

    Activities of daily living are good indicators of elderly health status, and activity recognition in smart environments is a well-known problem that has been previously addressed by several studies. In this paper, we describe the use of two powerful machine learning schemes, ANN (Artificial Neural Network) and SVM (Support Vector Machines), within the framework of HMM (Hidden Markov Model) in order to tackle the task of activity recognition in a home setting. The output scores of the discriminative models, after processing, are used as observation probabilities of the hybrid approach. We evaluate our approach by comparing these hybrid models with other classical activity recognition methods using five real datasets. We show how the hybrid models achieve significantly better recognition performance, with significance level p < 0.05, proving that the hybrid approach is better suited for the addressed domain.

  7. Activity Recognition Using Hybrid Generative/Discriminative Models on Home Environments Using Binary Sensors

    Directory of Open Access Journals (Sweden)

    Araceli Sanchis

    2013-04-01

    Full Text Available Activities of daily living are good indicators of elderly health status, and activity recognition in smart environments is a well-known problem that has been previously addressed by several studies. In this paper, we describe the use of two powerful machine learning schemes, ANN (Artificial Neural Network and SVM (Support Vector Machines, within the framework of HMM (Hidden Markov Model in order to tackle the task of activity recognition in a home setting. The output scores of the discriminative models, after processing, are used as observation probabilities of the hybrid approach. We evaluate our approach by comparing these hybrid models with other classical activity recognition methods using five real datasets. We show how the hybrid models achieve significantly better recognition performance, with significance level p < 0:05, proving that the hybrid approach is better suited for the addressed domain.

  8. Mechanically Self-Assembled, Three-Dimensional Graphene-Gold Hybrid Nanostructures for Advanced Nanoplasmonic Sensors.

    Science.gov (United States)

    Leem, Juyoung; Wang, Michael Cai; Kang, Pilgyu; Nam, SungWoo

    2015-11-11

    Hybrid structures of graphene and metal nanoparticles (NPs) have been actively investigated as higher quality surface enhanced Raman spectroscopy (SERS) substrates. Compared with SERS substrates, which only contain metal NPs, the additional graphene layer provides structural, chemical, and optical advantages. However, the two-dimensional (2D) nature of graphene limits the fabrication of the hybrid structure of graphene and NPs to 2D. Introducing three-dimensionality to the hybrid structure would allow higher detection sensitivity of target analytes by utilizing the three-dimensional (3D) focal volume. Here, we report a mechanical self-assembly strategy to enable a new class of 3D crumpled graphene-gold (Au) NPs hybrid nanoplasmonic structures for SERS applications. We achieve a 3D crumpled graphene-Au NPs hybrid structure by the delamination and buckling of graphene on a thermally activated, shrinking polymer substrate. We also show the precise control and optimization of the size and spacing of integrated Au NPs on crumpled graphene and demonstrate the optimized NPs' size and spacing for higher SERS enhancement. The 3D crumpled graphene-Au NPs exhibits at least 1 order of magnitude higher SERS detection sensitivity than that of conventional, flat graphene-Au NPs. The hybrid structure is further adapted to arbitrary curvilinear structures for advanced, in situ, nonconventional, nanoplasmonic sensing applications. We believe that our approach shows a promising material platform for universally adaptable SERS substrate with high sensitivity.

  9. A Hybrid Positioning Strategy for Vehicles in a Tunnel Based on RFID and In-Vehicle Sensors

    Directory of Open Access Journals (Sweden)

    Xiang Song

    2014-12-01

    Full Text Available Many intelligent transportation system applications require accurate, reliable, and continuous vehicle positioning. How to achieve such positioning performance in extended GPS-denied environments such as tunnels is the main challenge for land vehicles. This paper proposes a hybrid multi-sensor fusion strategy for vehicle positioning in tunnels. First, the preliminary positioning algorithm is developed. The Radio Frequency Identification (RFID technology is introduced to achieve preliminary positioning in the tunnel. The received signal strength (RSS is used as an indicator to calculate the distances between the RFID tags and reader, and then a Least Mean Square (LMS federated filter is designed to provide the preliminary position information for subsequent global fusion. Further, to improve the positioning performance in the tunnel, an interactive multiple model (IMM-based global fusion algorithm is developed to fuse the data from preliminary positioning results and low-cost in-vehicle sensors, such as electronic compasses and wheel speed sensors. In the actual implementation of IMM, the strong tracking extended Kalman filter (STEKF algorithm is designed to replace the conventional extended Kalman filter (EKF to achieve model individual filtering. Finally, the proposed strategy is evaluated through experiments. The results validate the feasibility and effectiveness of the proposed strategy.

  10. A hybrid positioning strategy for vehicles in a tunnel based on RFID and in-vehicle sensors.

    Science.gov (United States)

    Song, Xiang; Li, Xu; Tang, Wencheng; Zhang, Weigong; Li, Bin

    2014-01-01

    Many intelligent transportation system applications require accurate, reliable, and continuous vehicle positioning. How to achieve such positioning performance in extended GPS-denied environments such as tunnels is the main challenge for land vehicles. This paper proposes a hybrid multi-sensor fusion strategy for vehicle positioning in tunnels. First, the preliminary positioning algorithm is developed. The Radio Frequency Identification (RFID) technology is introduced to achieve preliminary positioning in the tunnel. The received signal strength (RSS) is used as an indicator to calculate the distances between the RFID tags and reader, and then a Least Mean Square (LMS) federated filter is designed to provide the preliminary position information for subsequent global fusion. Further, to improve the positioning performance in the tunnel, an interactive multiple model (IMM)-based global fusion algorithm is developed to fuse the data from preliminary positioning results and low-cost in-vehicle sensors, such as electronic compasses and wheel speed sensors. In the actual implementation of IMM, the strong tracking extended Kalman filter (STEKF) algorithm is designed to replace the conventional extended Kalman filter (EKF) to achieve model individual filtering. Finally, the proposed strategy is evaluated through experiments. The results validate the feasibility and effectiveness of the proposed strategy.

  11. Au-Graphene Hybrid Plasmonic Nanostructure Sensor Based on Intensity Shift

    Directory of Open Access Journals (Sweden)

    Raed Alharbi

    2017-01-01

    Full Text Available Integrating plasmonic materials, like gold with a two-dimensional material (e.g., graphene enhances the light-material interaction and, hence, plasmonic properties of the metallic nanostructure. A localized surface plasmon resonance sensor is an effective platform for biomarker detection. They offer a better bulk surface (local sensitivity than a regular surface plasmon resonance (SPR sensor; however, they suffer from a lower figure of merit compared to that one in a propagating surface plasmon resonance sensors. In this work, a decorated multilayer graphene film with an Au nanostructures was proposed as a liquid sensor. The results showed a significant improvement in the figure of merit compared with other reported localized surface plasmon resonance sensors. The maximum figure of merit and intensity sensitivity of 240 and 55 RIU−1 (refractive index unit at refractive index change of 0.001 were achieved which indicate the capability of the proposed sensor to detect a small change in concentration of liquids in the ng/mL level which is essential in early-stage cancer disease detection.

  12. Generation of Localized Surface Plasmon Resonance Using Hybrid Au–Ag Nanoparticle Arrays as a Sensor of Polychlorinated Biphenyls Detection

    Directory of Open Access Journals (Sweden)

    Jing Liu

    2016-08-01

    Full Text Available In this study, the hybrid Au–Ag hexagonal lattice of triangular and square lattice of quadrate periodic nanoparticle arrays (PNAs were designed to investigate their extinction spectra of the localized surface plasmon resonances (LSPRs. First, their simulating extinction spectra were calculated by discrete dipole approximation (DDA numerical method by changing the media refractive index. Simulation results showed that as the media refractive index was changed from 1.0 to 1.2, the maximum peak intensity of LSPRs spectra had no apparent change and the wavelength to reveal the maximum peak intensity of LSPRs spectra was shifted lower value. Polystyrene (PS nanospheres with two differently arranged structures were used as the templates to deposit the hybrid Au–Ag hexagonal lattice of triangular and square lattice of quadrate periodic PNAs by evaporation method. The hybrid Au–Ag hexagonal lattice of triangular and square lattice of quadrate PNAs were grown on single crystal silicon (c-Si substrates, and their measured extinction spectra were compared with the calculated results. Finally, the fabricated hexagonal lattices of triangular PNAs were investigated as a sensor of polychlorinated biphenyl solution (PCB-77 by observing the wavelength to reveal the maximum extinction efficiency (λmax. We show that the adhesion of β-cyclodextrins (SH-β-CD on the hybrid Au–Ag hexagonal lattice of triangular PNAs could be used to increase the variation of λmax. We also demonstrate that the adhesion of SH-β-CD increases the sensitivity and detection effect of PCB-77 in hexagonal lattice of triangular PNAs.

  13. Graphene hybrids: Synthesis strategies and applications in sensors and sensitized solar cells

    Directory of Open Access Journals (Sweden)

    Sushmee eBadhulika

    2015-06-01

    Full Text Available Graphene exhibits unique 2-D structural, chemical and electronic properties that lead to its many potential applications. In order to expand the scope of its usage, graphene hybrids which combine the synergetic properties of graphene along with metals/ metal oxides and other nanostructured materials have been synthesized and are a widely emerging field of research. This review presents an overview of the recent progress made in the field of graphene hybrid architectures with a focus on the synthesis of graphene-carbon nanotube (G-CNT, graphene-semiconductor nanomaterial (G-SNM and graphene-metal nanomaterial (G-MNM hybrids. It attempts to identify the bottlenecks involved and outlines future directions for development and comprehensively summarizes their applications in the field of sensing and sensitized solar cells.

  14. Arginine-responsive terbium luminescent hybrid sensors triggered by two crown ether carboxylic acids

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Lasheng [Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China); School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China); Tang, Ke; Ding, Xiaoping [School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China); Wang, Qianming, E-mail: qmwang@scnu.edu.cn [Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China); School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China); Zhou, Zhan; Xiao, Rui [School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China)

    2013-12-01

    Crown ether carboxylic acids constitute main building blocks for the synthesis of terbium containing covalent cross-linked luminescent materials. Both the complexes and the hybrid nanomaterials could exhibit remarkable green emissions in pure water. More importantly, they were found to have a profound effect on the luminescence responses to arginine compared with glutamic acid, histidine, tryptophan, threonine, tyrosine and phenylalanine in aqueous environment. The present study provided the possibility of using a host–guest mechanism as a way of signal transduction based on lanthanide supramolecular hybrid materials. - Highlights: • Crown ether carboxylic acids were found to sensitize terbium ions among a group of ethers. • The complexes and silica hybrid materials were both prepared and characterized. • They could exhibit remarkable green emissions in pure water.

  15. High-Performance Wireless Ammonia Gas Sensors Based on Reduced Graphene Oxide and Nano-Silver Ink Hybrid Material Loaded on a Patch Antenna.

    Science.gov (United States)

    Wu, Bian; Zhang, Xingfei; Huang, Beiju; Zhao, Yutong; Cheng, Chuantong; Chen, Hongda

    2017-09-09

    Reduced graphene oxide (rGO) has been studied as a resistive ammonia gas sensor at room temperature. The sensitive hybrid material composed of rGO and nano-silver ink (Ag-ink) was loaded on a microstrip patch antenna to realize high-performance wireless ammonia sensors. The material was investigated using scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). Firstly, interdigital electrodes (IDEs) printed on the polyethylene terephthalate (PET) by direct printing were employed to measure the variation of resistance of the sensitive material with the ammonia concentration. The results indicated the response of sensor varied from 4.25% to 14.7% under 15-200 ppm ammonia concentrations. Furthermore, the hybrid material was loaded on a microstrip patch antenna fabricated by a conventional printed circuit board (PCB) process, and a 10 MHz frequency shift of the sensor antenna could be observed for 200 ppm ammonia gas. Finally, the wireless sensing property of the sensor antenna was successfully tested using the same emitted antenna outside the gas chamber with a high gain of 5.48 dBi, and an increased reflection magnitude of the emitted antenna due to the frequency mismatch of the sensor antenna was observed. Therefore, wireless ammonia gas sensors loaded on a patch antenna have significant application prospects in the field of Internet of Things (IoTs).

  16. Ratiometric fluorescent paper sensor utilizing hybrid carbon dots-quantum dots for the visual determination of copper ions

    Science.gov (United States)

    Wang, Yahui; Zhang, Cheng; Chen, Xiaochun; Yang, Bo; Yang, Liang; Jiang, Changlong; Zhang, Zhongping

    2016-03-01

    A simple and effective ratiometric fluorescence nanosensor for the selective detection of Cu2+ has been developed by covalently connecting the carboxyl-modified red fluorescent cadmium telluride (CdTe) quantum dots (QDs) to the amino-functionalized blue fluorescent carbon nanodots (CDs). The sensor exhibits the dual-emissions peaked at 437 and 654 nm, under a single excitation wavelength of 340 nm. The red fluorescence can be selectively quenched by Cu2+, while the blue fluorescence is a internal reference, resulting in a distinguishable fluorescence color change from pink to blue under a UV lamp. The detection limit of this highly sensitive ratiometric probe is as low as 0.36 nM, which is lower than the U.S. Environmental Protection Agency (EPA) defined limit (20 μM). Moreover, a paper-based sensor has been prepared by printing the hybrid carbon dots-quantum dots probe on a microporous membrane, which provides a convenient and simple approach for the visual detection of Cu2+. Therefore, the as-synthesized probe shows great potential application for the determination of Cu2+ in real samples.A simple and effective ratiometric fluorescence nanosensor for the selective detection of Cu2+ has been developed by covalently connecting the carboxyl-modified red fluorescent cadmium telluride (CdTe) quantum dots (QDs) to the amino-functionalized blue fluorescent carbon nanodots (CDs). The sensor exhibits the dual-emissions peaked at 437 and 654 nm, under a single excitation wavelength of 340 nm. The red fluorescence can be selectively quenched by Cu2+, while the blue fluorescence is a internal reference, resulting in a distinguishable fluorescence color change from pink to blue under a UV lamp. The detection limit of this highly sensitive ratiometric probe is as low as 0.36 nM, which is lower than the U.S. Environmental Protection Agency (EPA) defined limit (20 μM). Moreover, a paper-based sensor has been prepared by printing the hybrid carbon dots-quantum dots probe on a

  17. A flexible sensor based on polyaniline hybrid using ZnO as template and sensing properties to triethylamine at room temperature

    Science.gov (United States)

    Quan, Le; Sun, Jianhua; Bai, Shouli; Luo, Ruixian; Li, Dianqing; Chen, Aifan; Liu, Chung Chiun

    2017-03-01

    A network structure of PANI/SnO2 hybrid was synthesized by an in situ chemical oxidative polymerization using cheaper ZnO nanorods as sacrificial template and the hybrid was loaded on a flexible polyethylene terephthalate (PET) thin film to construct a flexible smart sensor. The sensor not only exhibits high sensitivity which is 20 times higher than that of pure PANI to 10 ppm triethylamine, good selectivity and linear response at room temperature but also has flexible, structure simple, economical and portable characters compared with recently existing sensors. Room temperature operating of the sensor is also particularly interesting, which leads to low power consumption, environmental safety and long life times. The improvement of sensing properties is attributed to the network structure of hybrid and formation of p-n heterojunction at the interface between the PANI and SnO2. The research is expected to open a new window for development of a kind of wearable electronic devices based on the hybrid of conducting polymer and metal oxides.

  18. Analysis methodology for flow-level evaluation of a hybrid mobile-sensor network

    NARCIS (Netherlands)

    Dimitrova, D.C.; Heijenk, G.; Braun, T.

    2011-01-01

    Our society uses a large diversity of co-existing wired and wireless networks in order to satisfy its communication needs. A cooper- ation between these networks can benefit performance, service availabil- ity and deployment ease, and leads to the emergence of hybrid networks. This position paper fo

  19. Analysis methodology for flow-level evaluation of a hybrid mobile-sensor network

    NARCIS (Netherlands)

    Dimitrova, D.C.; Heijenk, Gerhard J.; Braun, T.

    2012-01-01

    Our society uses a large diversity of co-existing wired and wireless networks in order to satisfy its communication needs. A cooper- ation between these networks can benefit performance, service availabil- ity and deployment ease, and leads to the emergence of hybrid networks. This position paper

  20. Quasi-analytical solutions of hybrid platform and the optimization of highly sensitive thin-film sensors for terahertz radiation

    CERN Document Server

    Tapsanit, Piyawath; Ishihara, Teruya; Otani, Chiko

    2016-01-01

    We present quasi-analytical solutions (QANS) of hybrid platform (HP) comprising metallic grating (MG) and stacked-dielectric layers for terahertz (THz) radiation. The QANS are validated by finite difference time domain simulation. It is found that the Wood anomalies induce the high-order spoof surface plasmon resonances in the HP. The QANS are applied to optimize new perfect absorber for THz sensing of large-area thin film with ultrahigh figure of merit reaching fifth order of magnitude for the film thickness 0.0001p (p: MG period). The first-order Wood's anomaly of the insulator layer and the Fabry-Perot in the slit's cavity account for the resonance of the perfect absorber. The QANS and the new perfect absorber may lead to highly sensitive and practical nano-film refractive index sensor for THz radiation.

  1. Poly(ethylene oxide)-silica hybrids entrapping sensitive dyes for biomedical optical pH sensors: Molecular dynamics and optical response

    Science.gov (United States)

    Fabbri, Paola; Pilati, Francesco; Rovati, Luigi; McKenzie, Ruel; Mijovic, Jovan

    2011-06-01

    Polymer-silica hybrid nanocomposites prepared by sol-gel process based on triethoxisilane-terminated poly(ethylene oxide) chains and tetraethoxysilane as silica precursor, doped with organic pH sensitive dyes, have been prepared and their suitability for use as sensors coupled with plastic optic fibers has been evaluated. Sensors were prepared by immobilizing a drop of the hybrid materials onto the tip of a multi-mode poly(methyl methacrylate) optical fiber. The performance of the optical sensor in terms of sensitivity and response time was tested in different experimental conditions, and was found to be markedly higher than analogous sensors present on the market. The very fast kinetic of the hybrid's optical response was supported by studies performed at the molecular level by broadband dielectric relaxation spectroscopy (DRS), investigated over a wide range of frequency and temperature, showing that poly(ethylene oxide) chains maintain their dynamics even when covalently bonded to silica domains, which decrease the self-association interactions and promote motions of polymer chain segments. Due to the fast response kinetic observed, these pH optical sensors result suitable for the fast-detection of biomedical parameters, i.e. fast esophageous pH-metry.

  2. Non-contact characterization of hybrid aluminium/carbon-fibre-reinforced plastic sheets using multi-frequency eddy-current sensors

    Science.gov (United States)

    Yin, W.; Li, X.; Withers, P. J.; Peyton, A. J.

    2010-10-01

    The characterization of hybrid aluminium/carbon-fibre-reinforced plastic (CFRP) sheets using multi-frequency eddy-current sensors is presented in this paper. Both air-cored circular sensors and highly directional ferrite-cored sensors are designed for bulk conductivity measurements and directionality characterization. An analytical model describing the interaction of the circular sensors with the hybrid planar structure is developed. Finite element (FE) models that take into account the anisotropicity of CFRP have also been proposed. Both models are in good agreement with experimental results. The features of the sensor output signals are analysed and explained. It is proved that an anisotropic model (tensor expression for conductivity) is appropriate for the CFRP materials under investigation. A formula to link the bulk conductivity with the conductivity tensor is proposed and verified. Lift-off effects are also discussed. It is believed that this is amongst the first published reports of using eddy-current techniques for characterizing the hybrid aluminium/CFRP material.

  3. Full-scale validation of wireless hybrid sensor on an in-service highway bridge

    Science.gov (United States)

    Jang, Shinae; Dahal, Sushil; Li, Jingcheng

    2013-04-01

    With the rapid development of electrical circuits, Micro electromechanical system (MEMS) and network technology, wireless smart sensor networks (WSSN) have shown significant potential for replacing existing wired SHM systems due to their cost effectiveness and versatility. A few structural systems have been monitored using WSSN measuring acceleration, temperature, wind speed, humidity; however, a multi-scale sensing device which has the capability to measure the displacement has not been yet developed. In the previous paper, a new high-accuracy displacement sensing system was developed combining a high resolution analog displacement sensor and MEMS-based wireless microprocessor platform. Also, the wireless sensor was calibrated in the laboratory to get the high precision displacement data from analog sensor, and its performance was validated to measure simulated thermal expansion of a laboratory bridge structure. This paper expands the validation of the developed system on full-scale experiments to measure both static and dynamic displacement of expansion joints, temperature, and vibration of an in-service highway bridge. A brief visual investigation of bridges, comparison between theoretical and measured thermal expansion are also provided. The developed system showed the capability to measure the displacement with accuracy of 0.00027 in.

  4. A Hybrid Sensor Based Backstepping Control Approach with its Application to Fault-Tolerant Flight Control

    NARCIS (Netherlands)

    Sun, L.G.; De Visser, C.C.; Chu, Q.P.; Falkena, W.

    2013-01-01

    Recently, an incremental type sensor based backstepping (SBB) control approach, based on singular perturbation theory and Tikhonov’s theorem, has been proposed. This Lyapunov function based method uses measurements of control variables and less model knowledge, and it is not susceptible to the model

  5. A Hybrid Sensor Based Backstepping Control Approach with its Application to Fault-Tolerant Flight Control

    NARCIS (Netherlands)

    Sun, L.G.; De Visser, C.C.; Chu, Q.P.; Falkena, W.

    2013-01-01

    Recently, an incremental type sensor based backstepping (SBB) control approach, based on singular perturbation theory and Tikhonov’s theorem, has been proposed. This Lyapunov function based method uses measurements of control variables and less model knowledge, and it is not susceptible to the model

  6. A Temperature Compensation Method for Piezo-Resistive Pressure Sensor Utilizing Chaotic Ions Motion Algorithm Optimized Hybrid Kernel LSSVM.

    Science.gov (United States)

    Li, Ji; Hu, Guoqing; Zhou, Yonghong; Zou, Chong; Peng, Wei; Alam Sm, Jahangir

    2016-10-14

    A piezo-resistive pressure sensor is made of silicon, the nature of which is considerably influenced by ambient temperature. The effect of temperature should be eliminated during the working period in expectation of linear output. To deal with this issue, an approach consists of a hybrid kernel Least Squares Support Vector Machine (LSSVM) optimized by a chaotic ions motion algorithm presented. To achieve the learning and generalization for excellent performance, a hybrid kernel function, constructed by a local kernel as Radial Basis Function (RBF) kernel, and a global kernel as polynomial kernel is incorporated into the Least Squares Support Vector Machine. The chaotic ions motion algorithm is introduced to find the best hyper-parameters of the Least Squares Support Vector Machine. The temperature data from a calibration experiment is conducted to validate the proposed method. With attention on algorithm robustness and engineering applications, the compensation result shows the proposed scheme outperforms other compared methods on several performance measures as maximum absolute relative error, minimum absolute relative error mean and variance of the averaged value on fifty runs. Furthermore, the proposed temperature compensation approach lays a foundation for more extensive research.

  7. A Temperature Compensation Method for Piezo-Resistive Pressure Sensor Utilizing Chaotic Ions Motion Algorithm Optimized Hybrid Kernel LSSVM

    Directory of Open Access Journals (Sweden)

    Ji Li

    2016-10-01

    Full Text Available A piezo-resistive pressure sensor is made of silicon, the nature of which is considerably influenced by ambient temperature. The effect of temperature should be eliminated during the working period in expectation of linear output. To deal with this issue, an approach consists of a hybrid kernel Least Squares Support Vector Machine (LSSVM optimized by a chaotic ions motion algorithm presented. To achieve the learning and generalization for excellent performance, a hybrid kernel function, constructed by a local kernel as Radial Basis Function (RBF kernel, and a global kernel as polynomial kernel is incorporated into the Least Squares Support Vector Machine. The chaotic ions motion algorithm is introduced to find the best hyper-parameters of the Least Squares Support Vector Machine. The temperature data from a calibration experiment is conducted to validate the proposed method. With attention on algorithm robustness and engineering applications, the compensation result shows the proposed scheme outperforms other compared methods on several performance measures as maximum absolute relative error, minimum absolute relative error mean and variance of the averaged value on fifty runs. Furthermore, the proposed temperature compensation approach lays a foundation for more extensive research.

  8. Optical sensor based on hybrid FBG/titanium dioxide coated LPFG for monitoring organic solvents in edible oils.

    Science.gov (United States)

    Coelho, Luís; Viegas, Diana; Santos, José Luís; de Almeida, José Manuel Marques Martins

    2016-01-01

    A hybrid optical sensing scheme based on a fiber Bragg grating (FBG) combined with a titanium dioxide coated long period fiber grating (LPFG) for monitoring organic solvents in high refractive index edible oils is reported. In order to investigate and optimize the sensor performance, two different FBG/LPFG interrogation systems were investigated. The readout of the sensor was implemented using either the wavelength shift of the LPFG resonance dip or the variation in the optical power level of the reflected/transmitted light at the FBG wavelength peak, which in turn depends on the wavelength position of the LPFG resonance. Hexane concentrations up to 20%V/V, corresponding to the refractive index range from 1.451 to 1.467, were considered. For the transmission mode of operation, sensitivities of 1.41 nm/%V/V and 0.11 dB/%V/V, with resolutions of 0.58%V/V and 0.29%V/V, were achieved when using the LPFG wavelength shift and the FBG transmitted optical power, respectively. For the FBG reflection mode of operation, a sensitivity of 0.07 dB/%V/V and a resolution better than 0.16%V/V were estimated.

  9. Ultrasensitive electrochemical sensor for Hg(2+) by using hybridization chain reaction coupled with Ag@Au core-shell nanoparticles.

    Science.gov (United States)

    Li, Zongbing; Miao, Xiangmin; Xing, Ke; Peng, Xue; Zhu, Aihua; Ling, Liansheng

    2016-06-15

    A novel electrochemical biosensor for Hg(2+) detection was reported by using DNA-based hybridization chain reaction (HCR) coupled with positively charged Ag@Au core-shell nanoparticles ((+)Ag@Au CSNPs) amplification. To construct the sensor, capture probe (CP ) was firstly immobilized onto the surface of glass carbon electrode (GCE). In the presence of Hg(2+), the sandwiched complex can be formed between the immobilized CP on the electrode surface and the detection probe (DP) modified on the gold nanoparticles (AuNPs) based on T-Hg(2+)-T coordination chemistry. The carried DP then opened two ferrocene (Fc) modified hairpin DNA (H1 and H2) in sequence and propagated the happen of HCR to form a nicked double-helix. Numerous Fc molecules were formed on the neighboring probe and produced an obvious electrochemical signal. Moreover, (+)Ag@Au CSNPs were assembly onto such dsDNA polymers as electrochemical signal enhancer. Under optimal conditions, such sensor presents good electrochemical responses for Hg(2+) detection with a detection limit of 3.6 pM. Importantly, the methodology has high selectivity for Hg(2+) detection.

  10. Ratiometric fluorescent paper sensor utilizing hybrid carbon dots-quantum dots for the visual determination of copper ions.

    Science.gov (United States)

    Wang, Yahui; Zhang, Cheng; Chen, Xiaochun; Yang, Bo; Yang, Liang; Jiang, Changlong; Zhang, Zhongping

    2016-03-21

    A simple and effective ratiometric fluorescence nanosensor for the selective detection of Cu(2+) has been developed by covalently connecting the carboxyl-modified red fluorescent cadmium telluride (CdTe) quantum dots (QDs) to the amino-functionalized blue fluorescent carbon nanodots (CDs). The sensor exhibits the dual-emissions peaked at 437 and 654 nm, under a single excitation wavelength of 340 nm. The red fluorescence can be selectively quenched by Cu(2+), while the blue fluorescence is a internal reference, resulting in a distinguishable fluorescence color change from pink to blue under a UV lamp. The detection limit of this highly sensitive ratiometric probe is as low as 0.36 nM, which is lower than the U.S. Environmental Protection Agency (EPA) defined limit (20 μM). Moreover, a paper-based sensor has been prepared by printing the hybrid carbon dots-quantum dots probe on a microporous membrane, which provides a convenient and simple approach for the visual detection of Cu(2+). Therefore, the as-synthesized probe shows great potential application for the determination of Cu(2+) in real samples.

  11. Hybrid approach to data reduction for multi-sensor hot wires

    Science.gov (United States)

    Hooper, C. L.; Westphal, R. V.

    1991-01-01

    A hybrid approach to implementing the calibration equations for a multisensor hot-wire probe is discussed. The approach combines some of the speed of a look-up approach with the moderate storage requirements of direct calculation based on functional fitting. Particular attention is given to timing and storage comparisons for an X-wire probe. The method depends on the oft-employed concept of an effective cooling velocity which is a function only of the bridge output voltage.

  12. Graphene-Multiwalled Carbon Nanotube Hybrids Synthesized by Gamma Radiations: Application as a Glucose Sensor

    Directory of Open Access Journals (Sweden)

    Leila Shahriary

    2014-01-01

    Full Text Available Three-dimensional hybrid nanomaterial of graphene-multiwalled carbon nanotubes (G-MWCNTs was synthesized using gamma rays emitted by a 60Co source with a dose rate of 3.95 Gy min−1. The products were characterized by fourier transform infrared (FTIR, ultraviolet-visible (UV-Vis, photoluminescence (PL, and micro-Raman spectroscopy, X-ray diffraction analysis (XRD, scanning electron microscopy (SEM, and transmission electron microscopy (TEM. FTIR and UV-Vis analysis reveals the formation of hybrid nanomaterial which is confirmed by XRD, micro-Raman analysis, and PL. SEM micrograph depicts the composite structure of graphene layers and MWCNTs, while the TEM micrograph exhibits graphene layers covered by MWCNTs. The G-MWCNTs hybrid used as electrode for electrochemical studies in K3Fe(CN6 shows enhancement in electrocatalytic behavior, compared to each individual starting material, therefore, has been applied for amperometric sensing of glucose in alkaline solution and exhibits sensitivity of 12.5 μAmM-1 cm−2 and low detection limit 1.45 μM (S/N=3 in a linear range of 0.1 to 14 mM (R2=0.985.

  13. Damage detection of hybrid aramid/metal–PVB composite materials using optical fiber sensors

    Directory of Open Access Journals (Sweden)

    A. Kojović

    2009-09-01

    Full Text Available Embedding optical fiber sensors within laminar thermoplastic composite material results in forming a system known as «smart structure». These sensors present the information about the inner structure health during the material exploitation and especially in the case of exterior impacts when a geometric configuration or the property changes of the material should be expected. This paper evaluates the feasibility of the real-time monitoring of indentation and low energy impact damage in composite laminates from indentation loading and Charpy pendulum impact, using the embedded intensity-based optical fiber sensors. An optical fiber sensing system, which relies solely on monitoring light intensity for providing the indication of the composite structural health, offers simplicity in design and cost-effectiveness. For this, aramid/polyvinylbutyral (PVB and aramid/metal/PVB laminates with embedded optical fibers were fabricated. Four configurations of woven composites were tested, namely, aramid/PVB, and aramid/metal/PVB in three stacking sequences of aramid and metallic woven layers. The initiation of damage and fracture during testing was detected by observation of the intensity drop of light signal transmitted through an optical fiber.

  14. A Novel Cluster-head Selection Algorithm Based on Hybrid Genetic Optimization for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Lejiang Guo

    2011-05-01

    Full Text Available Wireless Sensor Networks (WSN represent a new dimension in the field of network research. The cluster algorithm can significantly reduce the energy consumption of wireless sensor networks and prolong the network lifetime. This paper uses neuron to describe the WSN node and constructs neural network model for WSN. The neural network model includes three aspects: WSN node neuron model, WSN node control model and WSN node connection model. Through learning the framework of cluster algorithm for wireless sensor networks, this paper presents a weighted average of cluster-head selection algorithm based on an improved Genetic Optimization which makes the node weights directly related to the decision-making predictions. The Algorithm consists of two stages: single-parent evolution and population evolution. The initial population is formed in the stage of single-parent evolution by using gene pool, then the algorithm continues to the next further evolution process, finally the best solution will be generated and saved in the population. The simulation results illustrate that the new algorithm has the high convergence speed and good global searching capacity. It is to effectively balance the network energy consumption, improve the network life-cycle, ensure the communication quality and provide a certain theoretical foundation for the applications of the neural networks.

  15. Fuzzy-Neural Petri Net Distributed Control System Using Hybrid Wireless Sensor Network and CAN Fieldbus

    Directory of Open Access Journals (Sweden)

    Ali A. Abed

    2016-06-01

    Full Text Available The reluctance of industry to allow wireless paths to be incorporated in process control loops has limited the potential applications and benefits of wireless systems. The challenge is to maintain the performance of a control loop, which is degraded by slow data rates and delays in a wireless path. To overcome these challenges, this paper presents an application–level design for a wireless sensor/actuator network (WSAN based on the “automated architecture”. The resulting WSAN system is used in the developing of a wireless distributed control system (WDCS. The implementation of our wireless system involves the building of a wireless sensor network (WSN for data acquisition and controller area network (CAN protocol fieldbus system for plant actuation. The sensor/actuator system is controlled by an intelligent digital control algorithm that involves a controller developed with velocity PID-like Fuzzy Neural Petri Net (FNPN system. This control system satisfies two important real-time requirements: bumpless transfer and anti-windup, which are needed when manual/auto operating aspect is adopted in the system. The intelligent controller is learned by a learning algorithm based on back-propagation. The concept of petri net is used in the development of FNN to get a correlation between the error at the input of the controller and the number of rules of the fuzzy-neural controller leading to a reduction in the number of active rules. The resultant controller is called robust fuzzy neural petri net (RFNPN controller which is created as a software model developed with MATLAB. The developed concepts were evaluated through simulations as well validated by real-time experiments that used a plant system with a water bath to satisfy a temperature control. The effect of disturbance is also studied to prove the system's robustness.

  16. Optical Flow in a Smart Sensor Based on Hybrid Analog-Digital Architecture

    Directory of Open Access Journals (Sweden)

    Pablo Guzmán

    2010-03-01

    Full Text Available The purpose of this study is to develop a motion sensor (delivering optical flow estimations using a platform that includes the sensor itself, focal plane processing resources, and co-processing resources on a general purpose embedded processor. All this is implemented on a single device as a SoC (System-on-a-Chip. Optical flow is the 2-D projection into the camera plane of the 3-D motion information presented at the world scenario. This motion representation is widespread well-known and applied in the science community to solve a wide variety of problems. Most applications based on motion estimation require work in real-time; hence, this restriction must be taken into account. In this paper, we show an efficient approach to estimate the motion velocity vectors with an architecture based on a focal plane processor combined on-chip with a 32 bits NIOS II processor. Our approach relies on the simplification of the original optical flow model and its efficient implementation in a platform that combines an analog (focal-plane and digital (NIOS II processor. The system is fully functional and is organized in different stages where the early processing (focal plane stage is mainly focus to pre-process the input image stream to reduce the computational cost in the post-processing (NIOS II stage. We present the employed co-design techniques and analyze this novel architecture. We evaluate the system’s performance and accuracy with respect to the different proposed approaches described in the literature. We also discuss the advantages of the proposed approach as well as the degree of efficiency which can be obtained from the focal plane processing capabilities of the system. The final outcome is a low cost smart sensor for optical flow computation with real-time performance and reduced power consumption that can be used for very diverse application domains.

  17. Optical flow in a smart sensor based on hybrid analog-digital architecture.

    Science.gov (United States)

    Guzmán, Pablo; Díaz, Javier; Agís, Rodrigo; Ros, Eduardo

    2010-01-01

    The purpose of this study is to develop a motion sensor (delivering optical flow estimations) using a platform that includes the sensor itself, focal plane processing resources, and co-processing resources on a general purpose embedded processor. All this is implemented on a single device as a SoC (System-on-a-Chip). Optical flow is the 2-D projection into the camera plane of the 3-D motion information presented at the world scenario. This motion representation is widespread well-known and applied in the science community to solve a wide variety of problems. Most applications based on motion estimation require work in real-time; hence, this restriction must be taken into account. In this paper, we show an efficient approach to estimate the motion velocity vectors with an architecture based on a focal plane processor combined on-chip with a 32 bits NIOS II processor. Our approach relies on the simplification of the original optical flow model and its efficient implementation in a platform that combines an analog (focal-plane) and digital (NIOS II) processor. The system is fully functional and is organized in different stages where the early processing (focal plane) stage is mainly focus to pre-process the input image stream to reduce the computational cost in the post-processing (NIOS II) stage. We present the employed co-design techniques and analyze this novel architecture. We evaluate the system's performance and accuracy with respect to the different proposed approaches described in the literature. We also discuss the advantages of the proposed approach as well as the degree of efficiency which can be obtained from the focal plane processing capabilities of the system. The final outcome is a low cost smart sensor for optical flow computation with real-time performance and reduced power consumption that can be used for very diverse application domains.

  18. A Hybrid Indoor Ambient Light and Vibration Energy Harvester for Wireless Sensor Nodes

    Directory of Open Access Journals (Sweden)

    Hua Yu

    2014-05-01

    Full Text Available To take advantage of applications where both light and vibration energy are available, a hybrid indoor ambient light and vibration energy harvesting scheme is proposed in this paper. This scheme uses only one power conditioning circuit to condition the combined output power harvested from both energy sources so as to reduce the power dissipation. In order to more accurately predict the instantaneous power harvested from the solar panel, an improved five-parameter model for small-scale solar panel applying in low light illumination is presented. The output voltage is increased by using the MEMS piezoelectric cantilever arrays architecture. It overcomes the disadvantage of traditional MEMS vibration energy harvester with low voltage output. The implementation of the maximum power point tracking (MPPT for indoor ambient light is implemented using analog discrete components, which improves the whole harvester efficiency significantly compared to the digital signal processor. The output power of the vibration energy harvester is improved by using the impedance matching technique. An efficient mechanism of energy accumulation and bleed-off is also discussed. Experiment results obtained from an amorphous-silicon (a-Si solar panel of 4.8 × 2.0 cm2 and a fabricated piezoelectric MEMS generator of 11 × 12.4 mm2 show that the hybrid energy harvester achieves a maximum efficiency around 76.7%.

  19. A hybrid indoor ambient light and vibration energy harvester for wireless sensor nodes.

    Science.gov (United States)

    Yu, Hua; Yue, Qiuqin; Zhou, Jielin; Wang, Wei

    2014-05-19

    To take advantage of applications where both light and vibration energy are available, a hybrid indoor ambient light and vibration energy harvesting scheme is proposed in this paper. This scheme uses only one power conditioning circuit to condition the combined output power harvested from both energy sources so as to reduce the power dissipation. In order to more accurately predict the instantaneous power harvested from the solar panel, an improved five-parameter model for small-scale solar panel applying in low light illumination is presented. The output voltage is increased by using the MEMS piezoelectric cantilever arrays architecture. It overcomes the disadvantage of traditional MEMS vibration energy harvester with low voltage output. The implementation of the maximum power point tracking (MPPT) for indoor ambient light is implemented using analog discrete components, which improves the whole harvester efficiency significantly compared to the digital signal processor. The output power of the vibration energy harvester is improved by using the impedance matching technique. An efficient mechanism of energy accumulation and bleed-off is also discussed. Experiment results obtained from an amorphous-silicon (a-Si) solar panel of 4.8 × 2.0 cm2 and a fabricated piezoelectric MEMS generator of 11 × 12.4 mm2 show that the hybrid energy harvester achieves a maximum efficiency around 76.7%.

  20. DNA Immobilization and Hybridization Detection by the Intrinsic Molecular Charge Using Capacitive Field-Effect Sensors Modified with a Charged Weak Polyelectrolyte Layer.

    Science.gov (United States)

    Bronder, Thomas S; Poghossian, Arshak; Scheja, Sabrina; Wu, Chunsheng; Keusgen, Michael; Mewes, Dieter; Schöning, Michael J

    2015-09-16

    Miniaturized setup, compatibility with advanced micro- and nanotechnologies, and ability to detect biomolecules by their intrinsic molecular charge favor the semiconductor field-effect platform as one of the most attractive approaches for the development of label-free DNA chips. In this work, a capacitive field-effect EIS (electrolyte-insulator-semiconductor) sensor covered with a layer-by-layer prepared, positively charged weak polyelectrolyte layer of PAH (poly(allylamine hydrochloride)) was used for the label-free electrical detection of DNA (deoxyribonucleic acid) immobilization and hybridization. The negatively charged probe single-stranded DNA (ssDNA) molecules were electrostatically adsorbed onto the positively charged PAH layer, resulting in a preferentially flat orientation of the ssDNA molecules within the Debye length, thus yielding a reduced charge-screening effect and a higher sensor signal. Each sensor-surface modification step (PAH adsorption, probe ssDNA immobilization, hybridization with complementary target DNA (cDNA), reducing an unspecific adsorption by a blocking agent, incubation with noncomplementary DNA (ncDNA) solution) was monitored by means of capacitance-voltage and constant-capacitance measurements. In addition, the surface morphology of the PAH layer was studied by atomic force microscopy and contact-angle measurements. High hybridization signals of 34 and 43 mV were recorded in low-ionic strength solutions of 10 and 1 mM, respectively. In contrast, a small signal of 4 mV was recorded in the case of unspecific adsorption of fully mismatched ncDNA. The density of probe ssDNA and dsDNA molecules as well as the hybridization efficiency was estimated using the experimentally measured DNA immobilization and hybridization signals and a simplified double-layer capacitor model. The results of field-effect experiments were supported by fluorescence measurements, verifying the DNA-immobilization and hybridization event.

  1. Flexible room-temperature formaldehyde sensors based on rGO film and rGo/MoS2 hybrid film

    Science.gov (United States)

    Li, Xian; Wang, Jing; Xie, Dan; Xu, Jianlong; Xia, Yi; Li, Weiwei; Xiang, Lan; Li, Zhemin; Xu, Shiwei; Komarneni, Sridhar

    2017-08-01

    Gas sensors based on reduced graphene oxide (rGO) films and rGO/MoS2 hybrid films were fabricated on polyethylene naphthalate substrates by a simple self-assembly method, which yielded flexible devices for detection of formaldehyde (HCHO) at room temperature. The sensing test results indicated that the rGO and rGO/MoS2 sensors were highly sensitive and fully recoverable to a ppm-level of HCHO. The bending and fatigue test results revealed that the sensors were also mechanically robust, durable and effective for long-term use. The rGO/MoS2 sensors showed higher sensitivities than rGO sensors, which was attributed to the enhanced HCHO adsorption and electron transfer mediated by MoS2. Furthermore, two kinds of MoS2 nanosheets were prepared by either hydrothermal synthesis or chemical exfoliation and were compared for their detection of HCHO, which revealed that the hydrothermally produced MoS2 nanosheets with rich defects led to enhanced sensitivity of the rGO/MoS2 sensors. Moreover, these fabricated flexible sensors can be applied for the HCHO detection in food packaging.

  2. A Hybrid Global Minimization Scheme for Accurate Source Localization in Sensor Networks

    CERN Document Server

    Aghasi, Hamidreza

    2011-01-01

    We consider the localization problem of multiple wideband sources by coherently taking into account the attenuation characteristics and the time delays in the reception of the signal. Our proposed method leaves the space for unavailability of an accurate signal attenuation model in the environment by considering the model as an unknown function with reasonable prior assumptions about its functional space. Such approach is capable of enhancing the localization performance compared to only utilizing the signal attenuation information or the time delays. In this paper the localization problem is modelled as a cost function in terms of the source locations and the attenuation model parameters. To globally perform the minimization we propose a hybrid algorithm combining the differential evolution algorithm with the Levenberg-Marquardt algorithm. Beside the proposed combination scheme, supporting technical details such as closed forms of cost function sensitivity matrices are provided. Finally the validity of the p...

  3. Optimization of an extraordinary magnetoresistance sensor in the semiconductor-metal hybrid structure

    KAUST Repository

    Sun, Jian

    2010-11-01

    The purpose of this paper is to show by numerical computation how geometric parameters influence the Extraordinary Magnetoresistance (EMR) effect in an InAs-Au hybrid device. Symmetric IVVI and VIIV configurations were considered. The results show that the width and the length-width ratio of InAs are important geometrical parameters for the EMR effect along with the placement of the leads. Approximately the same EMR effect was obtained for both IVVI and VIIV configurations when the applied magnetic field ranged from -1T to 1T. In an optimized geometry the EMR effect can reach 43000% at 1Tesla for IVVI and 42700% at 1 Tesla for the VIIV configuration. ©2010 IEEE.

  4. Hybrid Visible Light and Ultrasound-Based Sensor for Distance Estimation

    Directory of Open Access Journals (Sweden)

    Jose Rabadan

    2017-02-01

    Full Text Available Distance estimation plays an important role in location-based services, which has become very popular in recent years. In this paper, a new short range cricket sensor-based approach is proposed for indoor location applications. This solution uses Time Difference of Arrival (TDoA between an optical and an ultrasound signal which are transmitted simultaneously, to estimate the distance from the base station to the mobile receiver. The measurement of the TDoA at the mobile receiver endpoint is proportional to the distance. The use of optical and ultrasound signals instead of the conventional radio wave signal makes the proposed approach suitable for environments with high levels of electromagnetic interference or where the propagation of radio frequencies is entirely restricted. Furthermore, unlike classical cricket systems, a double-way measurement procedure is introduced, allowing both the base station and mobile node to perform distance estimation simultaneously.

  5. AN EFFICIENT MAC PROTOCOL BASED ON HYBRID SUPERFRAME FOR WIRELESS SENSOR NETWORKS

    Directory of Open Access Journals (Sweden)

    Ge Ma

    2009-07-01

    Full Text Available Designing low energy consumption, high efficiency Media Access Control (MAC protocols are one ofthe most important directions in wireless sensor networks (WSN. In this paper, we proposed a newcontention reserve MAC protocol, named CRMAC, under the inspiration of IEEE 802.15.4’s superframestructure. CRMAC is a MAC protocol suitable for intra-cluster WSN that combines the advantages ofcontention and schedule-based MAC protocols. We introduce the mechanism and superframe structure ofCRMAC in detail and verified the performance of this protocol through simulations. Our results showthat CRMAC performs better than IEEE 802.15.4 in energy consumption, system delay and networkthroughput. CRMAC is especially suitable for short packet transmission under low load networks, whichis the main situation in WSN.

  6. A Hybrid Secure Scheme for Wireless Sensor Networks against Timing Attacks Using Continuous-Time Markov Chain and Queueing Model

    Directory of Open Access Journals (Sweden)

    Tianhui Meng

    2016-09-01

    Full Text Available Wireless sensor networks (WSNs have recently gained popularity for a wide spectrum of applications. Monitoring tasks can be performed in various environments. This may be beneficial in many scenarios, but it certainly exhibits new challenges in terms of security due to increased data transmission over the wireless channel with potentially unknown threats. Among possible security issues are timing attacks, which are not prevented by traditional cryptographic security. Moreover, the limited energy and memory resources prohibit the use of complex security mechanisms in such systems. Therefore, balancing between security and the associated energy consumption becomes a crucial challenge. This paper proposes a secure scheme for WSNs while maintaining the requirement of the security-performance tradeoff. In order to proceed to a quantitative treatment of this problem, a hybrid continuous-time Markov chain (CTMC and queueing model are put forward, and the tradeoff analysis of the security and performance attributes is carried out. By extending and transforming this model, the mean time to security attributes failure is evaluated. Through tradeoff analysis, we show that our scheme can enhance the security of WSNs, and the optimal rekeying rate of the performance and security tradeoff can be obtained.

  7. M-DNA/Transition Metal Dichalcogenide Hybrid Structure-based Bio-FET sensor with Ultra-high Sensitivity

    Science.gov (United States)

    Park, Hyung-Youl; Dugasani, Sreekantha Reddy; Kang, Dong-Ho; Yoo, Gwangwe; Kim, Jinok; Gnapareddy, Bramaramba; Jeon, Jaeho; Kim, Minwoo; Song, Young Jae; Lee, Sungjoo; Heo, Jonggon; Jeon, Young Jin; Park, Sung Ha; Park, Jin-Hong

    2016-01-01

    Here, we report a high performance biosensor based on (i) a Cu2+-DNA/MoS2 hybrid structure and (ii) a field effect transistor, which we refer to as a bio-FET, presenting a high sensitivity of 1.7 × 103 A/A. This high sensitivity was achieved by using a DNA nanostructure with copper ions (Cu2+) that induced a positive polarity in the DNA (receptor). This strategy improved the detecting ability for doxorubicin-like molecules (target) that have a negative polarity. Very short distance between the biomolecules and the sensor surface was obtained without using a dielectric layer, contributing to the high sensitivity. We first investigated the effect of doxorubicin on DNA/MoS2 and Cu2+-DNA/MoS2 nanostructures using Raman spectroscopy and Kelvin force probe microscopy. Then, we analyzed the sensing mechanism and performance in DNA/MoS2- and Cu2+-DNA/MoS2-based bio-FETs by electrical measurements (ID-VG at various VD) for various concentrations of doxorubicin. Finally, successful operation of the Cu2+-DNA/MoS2 bio-FET was demonstrated for six cycles (each cycle consisted of four steps: 2 preparation steps, a sensing step, and an erasing step) with different doxorubicin concentrations. The bio-FET showed excellent reusability, which has not been achieved previously in 2D biosensors. PMID:27775004

  8. An Energy-Aware Hybrid ARQ Scheme with Multi-ACKs for Data Sensing Wireless Sensor Networks.

    Science.gov (United States)

    Zhang, Jinhuan; Long, Jun

    2017-06-12

    Wireless sensor networks (WSNs) are one of the important supporting technologies of edge computing. In WSNs, reliable communications are essential for most applications due to the unreliability of wireless links. In addition, network lifetime is also an important performance metric and needs to be considered in many WSN studies. In the paper, an energy-aware hybrid Automatic Repeat-reQuest protocol (ARQ) scheme is proposed to ensure energy efficiency under the guarantee of network transmission reliability. In the scheme, the source node sends data packets continuously with the correct window size and it does not need to wait for the acknowledgement (ACK) confirmation for each data packet. When the destination receives K data packets, it will return multiple copies of one ACK for confirmation to avoid ACK packet loss. The energy consumption of each node in flat circle network applying the proposed scheme is statistical analyzed and the cases under which it is more energy efficiency than the original scheme is discussed. Moreover, how to select parameters of the scheme is addressed to extend the network lifetime under the constraint of the network reliability. In addition, the energy efficiency of the proposed schemes is evaluated. Simulation results are presented to demonstrate that a node energy consumption reduction could be gained and the network lifetime is prolonged.

  9. 3D fiber-based hybrid nanogenerator for energy harvesting and as a self-powered pressure sensor.

    Science.gov (United States)

    Li, Xiuhan; Lin, Zong-Hong; Cheng, Gang; Wen, Xiaonan; Liu, Ying; Niu, Simiao; Wang, Zhong Lin

    2014-10-28

    In the past years, scientists have shown that development of a power suit is no longer a dream by integrating the piezoelectric nanogenerator (PENG) or triboelectric nanogenerator (TENG) with commercial carbon fiber cloth. However, there is still no design applying those two kinds of NG together to collect the mechanical energy more efficiently. In this paper, we demonstrate a fiber-based hybrid nanogenerator (FBHNG) composed of TENG and PENG to collect the mechanical energy in the environment. The FBHNG is three-dimensional and can harvest the energy from all directions. The TENG is positioned in the core and covered with PENG as a coaxial core/shell structure. The PENG design here not only enhances the collection efficiency of mechanical energy by a single carbon fiber but also generates electric output when the TENG is not working. We also show the potential that the FBHNG can be weaved into a smart cloth to harvest the mechanical energy from human motions and act as a self-powered strain sensor. The instantaneous output power density of TENG and PENG can achieve 42.6 and 10.2 mW/m(2), respectively. And the rectified output of FBHNG has been applied to charge the commercial capacitor and drive light-emitting diodes, which are also designed as a self-powered alert system.

  10. A Hybrid Sender- and Receiver-Initiated Protocol Scheme in Underwater Acoustic Sensor Networks.

    Science.gov (United States)

    Lee, Jae-Won; Cho, Ho-Shin

    2015-01-01

    In this paper, we propose a method for sharing the handshakes of control packets among multiple nodes, which we call a hybrid sender- and receiver-initiated (HSR) protocol scheme. Handshake-sharing can be achieved by inviting neighbors to join the current handshake and by allowing them to send their data packets without requiring extra handshakes. Thus, HSR can reduce the signaling overhead involved in control packet exchanges during handshakes, as well as resolve the spatial unfairness problem between nodes. From an operational perspective, HSR resembles the well-known handshake-sharing scheme referred to as the medium access control (MAC) protocol using reverse opportunistic packet appending (ROPA). However, in ROPA the waiting time is not controllable for the receiver's neighbors and thus unexpected collisions may occur at the receiver due to hidden neighbors, whereas the proposed scheme allows all nodes to avoid hidden-node-induced collisions according to an elaborately calculated waiting time. Our computer simulations demonstrated that HSR outperforms ROPA with respect to both the throughput and delay by around 9.65% and 11.36%, respectively.

  11. A Hybrid Sender- and Receiver-Initiated Protocol Scheme in Underwater Acoustic Sensor Networks

    Directory of Open Access Journals (Sweden)

    Jae-Won Lee

    2015-11-01

    Full Text Available In this paper, we propose a method for sharing the handshakes of control packets among multiple nodes, which we call a hybrid sender- and receiver-initiated (HSR protocol scheme. Handshake-sharing can be achieved by inviting neighbors to join the current handshake and by allowing them to send their data packets without requiring extra handshakes. Thus, HSR can reduce the signaling overhead involved in control packet exchanges during handshakes, as well as resolve the spatial unfairness problem between nodes. From an operational perspective, HSR resembles the well-known handshake-sharing scheme referred to as the medium access control (MAC protocol using reverse opportunistic packet appending (ROPA. However, in ROPA the waiting time is not controllable for the receiver’s neighbors and thus unexpected collisions may occur at the receiver due to hidden neighbors, whereas the proposed scheme allows all nodes to avoid hidden-node-induced collisions according to an elaborately calculated waiting time. Our computer simulations demonstrated that HSR outperforms ROPA with respect to both the throughput and delay by around 9.65% and 11.36%, respectively.

  12. A Hybrid Spectral Clustering and Deep Neural Network Ensemble Algorithm for Intrusion Detection in Sensor Networks

    Directory of Open Access Journals (Sweden)

    Tao Ma

    2016-10-01

    Full Text Available The development of intrusion detection systems (IDS that are adapted to allow routers and network defence systems to detect malicious network traffic disguised as network protocols or normal access is a critical challenge. This paper proposes a novel approach called SCDNN, which combines spectral clustering (SC and deep neural network (DNN algorithms. First, the dataset is divided into k subsets based on sample similarity using cluster centres, as in SC. Next, the distance between data points in a testing set and the training set is measured based on similarity features and is fed into the deep neural network algorithm for intrusion detection. Six KDD-Cup99 and NSL-KDD datasets and a sensor network dataset were employed to test the performance of the model. These experimental results indicate that the SCDNN classifier not only performs better than backpropagation neural network (BPNN, support vector machine (SVM, random forest (RF and Bayes tree models in detection accuracy and the types of abnormal attacks found. It also provides an effective tool of study and analysis of intrusion detection in large networks.

  13. A Hybrid Spectral Clustering and Deep Neural Network Ensemble Algorithm for Intrusion Detection in Sensor Networks.

    Science.gov (United States)

    Ma, Tao; Wang, Fen; Cheng, Jianjun; Yu, Yang; Chen, Xiaoyun

    2016-10-13

    The development of intrusion detection systems (IDS) that are adapted to allow routers and network defence systems to detect malicious network traffic disguised as network protocols or normal access is a critical challenge. This paper proposes a novel approach called SCDNN, which combines spectral clustering (SC) and deep neural network (DNN) algorithms. First, the dataset is divided into k subsets based on sample similarity using cluster centres, as in SC. Next, the distance between data points in a testing set and the training set is measured based on similarity features and is fed into the deep neural network algorithm for intrusion detection. Six KDD-Cup99 and NSL-KDD datasets and a sensor network dataset were employed to test the performance of the model. These experimental results indicate that the SCDNN classifier not only performs better than backpropagation neural network (BPNN), support vector machine (SVM), random forest (RF) and Bayes tree models in detection accuracy and the types of abnormal attacks found. It also provides an effective tool of study and analysis of intrusion detection in large networks.

  14. Photonic gas sensors exploiting directly the optical properties of hybrid carbon nanotube localized surface plasmon structures

    Institute of Scientific and Technical Information of China (English)

    Thomas Allsop; Raz Arif; Ron Neal; Kyriacos Kalli; Vojtěch Kundrát; Aleksey Rozhin; Phil Culverhouse

    2016-01-01

    We investigate the modification of the optical properties of carbon nanotubes (CNTs) resulting from a chemical reaction triggered by the presence of a specific compound (gaseous carbon dioxide (CO2)) and show this mechanism has important consequences for chemical sensing.CNTs have attracted significant research interest because they can be functionalized for a particular chemical,yielding a specific physical response which suggests many potential applications in the fields of nanotechnology and sensing.So far,however,utilizing their optical properties for this purpose has proven to be challenging.We demonstrate the use of localized surface plasmons generated on a nanostructured thin film,resembling a large array of nano-wires,to detect changes in the optical properties of the CNTs.Chemical selectivity is demonstrated using CO2 in gaseous form at room temperature.The demonstrated methodology results additionally in a new,electrically passive,optical sensing configuration that opens up the possibilities of using CNTs as sensors in hazardous/explosive environments.

  15. Biologically templated assembly of hybrid semiconducting nanomesh for high performance field effect transistors and sensors

    Science.gov (United States)

    Byeon, Hye-Hyeon; Lee, Seung-Woo; Lee, Eun-Hee; Kim, Woong; Yi, Hyunjung

    2016-10-01

    Delicately assembled composites of semiconducting nanomaterials and biological materials provide an attractive interface for emerging applications, such as chemical/biological sensors, wearable health monitoring devices, and therapeutic agent releasing devices. The nanostructure of composites as a channel and a sensing material plays a critical role in the performance of field effect transistors (FETs). Therefore, it is highly desirable to prepare elaborate composite that can allow the fabrication of high performance FETs and also provide high sensitivity and selectivity in detecting specific chemical/biological targets. In this work, we demonstrate that high performance FETs can be fabricated with a hydrodynamically assembled composite, a semiconducting nanomesh, of semiconducting single-walled carbon nanotubes (S-SWNTs) and a genetically engineered M13 phage to show strong binding affinity toward SWNTs. The semiconducting nanomesh enables a high on/off ratio (~104) of FETs. We also show that the threshold voltage and the channel current of the nanomesh FETs are sensitive to the change of the M13 phage surface charge. This biological gate effect of the phage enables the detection of biologically important molecules such as dopamine and bisphenol A using nanomesh-based FETs. Our results provide a new insight for the preparation of composite material platform for highly controllable bio/electronics interfaces.

  16. Biologically templated assembly of hybrid semiconducting nanomesh for high performance field effect transistors and sensors

    Science.gov (United States)

    Byeon, Hye-Hyeon; Lee, Seung-Woo; Lee, Eun-Hee; Kim, Woong; Yi, Hyunjung

    2016-01-01

    Delicately assembled composites of semiconducting nanomaterials and biological materials provide an attractive interface for emerging applications, such as chemical/biological sensors, wearable health monitoring devices, and therapeutic agent releasing devices. The nanostructure of composites as a channel and a sensing material plays a critical role in the performance of field effect transistors (FETs). Therefore, it is highly desirable to prepare elaborate composite that can allow the fabrication of high performance FETs and also provide high sensitivity and selectivity in detecting specific chemical/biological targets. In this work, we demonstrate that high performance FETs can be fabricated with a hydrodynamically assembled composite, a semiconducting nanomesh, of semiconducting single-walled carbon nanotubes (S-SWNTs) and a genetically engineered M13 phage to show strong binding affinity toward SWNTs. The semiconducting nanomesh enables a high on/off ratio (~104) of FETs. We also show that the threshold voltage and the channel current of the nanomesh FETs are sensitive to the change of the M13 phage surface charge. This biological gate effect of the phage enables the detection of biologically important molecules such as dopamine and bisphenol A using nanomesh-based FETs. Our results provide a new insight for the preparation of composite material platform for highly controllable bio/electronics interfaces. PMID:27762315

  17. Determining the behaviour of high-rise structures with geodetic hybrid sensors

    Directory of Open Access Journals (Sweden)

    Hüseyin Pehlivan

    2015-11-01

    Full Text Available Observing the normal oscillations and the behaviours of high-engineering structures has become almost a necessity in terms of construction security and human health. For this purpose, an real-time kinematic GPS (NovAtel 400 and a tilt sensor (Leica Nivel20 were installed in a TV tower (220 m high located in Istanbul, Turkey. The observation serials were recorded over a period of 9 days. All data-sets in X and Y directions were examined in the time domain and were analyzed using FFT€. The dominant frequency values (significant frequencies were determined by comparing at the high- and low-frequency values. These dominant frequencies showed that the tower made 4- and 6-second short-period oscillations and 24- and 12-hour long-period oscillations. All the observation signals were re-created by the significant low-frequency values using the inverse Fourier transform. Thus, the motion model of the tower was determined over 9 days. In this study, the 24-hour and 12-hour periodic oscillations were defined that represent the behaviour of the tower in relation to the effect of the sun's radiation and the temperature changes.

  18. SEMICONDUCTOR DEVICES: Chlorine gas sensors using hybrid organic semiconductors of PANI/ZnPcCl16

    Science.gov (United States)

    Tingping, Lei; Yunbo, Shi; Wenlong, Lü; Yang, Liu; Wei, Tao; Pengliang, Yuan; Liwei, Lin; Daoheng, Sun; Liquan, Wang

    2010-08-01

    PANI/ZnPcCl16 (polyaniline doped with sulfosalicylic acid/hexadecachloro zinc phthalocyanine) powders were vacuum co-deposited onto Si substrates, where Pt interdigitated electrodes were made by micromachining. The PANI/ZnPcCl16 films were characterized and analyzed by SEM, and the influencing factors on its intrinsic performance were analyzed and sensitivities of the sensors were investigated by exposure to chlorine (Cl2) gas. The results showed that powders prepared with a stoichiometric ratio of (ZnPcCl16)0.6(PANI)0.4 had a preferential sensitivity to Cl2 gas, superior to those prepared otherwise; the optimal vacuum co-deposition conditions for the films are a substrate temperature of 160 °C, an evaporation temperature of 425 °C and a film thickness of 75 nm; elevating the operation temperature (above 100 °C) or increasing the gas concentration (over 100 ppm) would improve the response characteristics, but there should be upper levels for each. Finally, the gas sensing mechanism of PANI/ZnPcCl16 films was also discussed.

  19. Porous silicon-VO{sub 2} based hybrids as possible optical temperature sensor: Wavelength-dependent optical switching from visible to near-infrared range

    Energy Technology Data Exchange (ETDEWEB)

    Antunez, E. E.; Salazar-Kuri, U.; Estevez, J. O.; Basurto, M. A.; Agarwal, V., E-mail: vagarwal@uaem.mx [Centro de Investigación en Ingeniería y Ciencias Aplicadas, Instituto de Investigación en Ciencias Básicas y Aplicadas, UAEM, Av. Universidad 1001, Col. Chamilpa, Cuernavaca, Mor. 62209 (Mexico); Campos, J. [Instituto de Energías Renovables, UNAM, Priv. Xochicalco S/N, Temixco, Mor. 62580 (Mexico); Jiménez Sandoval, S. [Laboratorio de Investigación en Materiales, Centro de Investigación y estudios Avanzados del Instituto Politécnico Nacional, Unidad Querétaro, Qro. 76001 (Mexico)

    2015-10-07

    Morphological properties of thermochromic VO{sub 2}—porous silicon based hybrids reveal the growth of well-crystalized nanometer-scale features of VO{sub 2} as compared with typical submicron granular structure obtained in thin films deposited on flat substrates. Structural characterization performed as a function of temperature via grazing incidence X-ray diffraction and micro-Raman demonstrate reversible semiconductor-metal transition of the hybrid, changing from a low-temperature monoclinic VO{sub 2}(M) to a high-temperature tetragonal rutile VO{sub 2}(R) crystalline structure, coupled with a decrease in phase transition temperature. Effective optical response studied in terms of red/blue shift of the reflectance spectra results in a wavelength-dependent optical switching with temperature. As compared to VO{sub 2} film over crystalline silicon substrate, the hybrid structure is found to demonstrate up to 3-fold increase in the change of reflectivity with temperature, an enlarged hysteresis loop and a wider operational window for its potential application as an optical temperature sensor. Such silicon based hybrids represent an exciting class of functional materials to display thermally triggered optical switching culminated by the characteristics of each of the constituent blocks as well as device compatibility with standard integrated circuit technology.

  20. Strain-driven and ultrasensitive resistive sensor/switch based on conductive alginate/nitrogen-doped carbon-nanotube-supported Ag hybrid aerogels with pyramid design.

    Science.gov (United States)

    Zhao, Songfang; Zhang, Guoping; Gao, Yongju; Deng, Libo; Li, Jinhui; Sun, Rong; Wong, Ching-Ping

    2014-12-24

    Flexible strain-driven sensor is an essential component in the flexible electronics. Especially, high durability and sensitivity to strain are required. Here, we present an efficient and low-cost fabrication strategy to construct a highly sensitive and flexible pressure sensor based on a conductive, elastic aerogel with pyramid design. When pressure is loaded, the contact area between the interfaces of the conductive aerogel and the copper electrode as well as among the building blocks of the nitrogen-doped carbon-nanotube-supported Ag (N-CNTs/Ag) aerogel monoliths, changes in reversible and directional manners. This contact resistance mechanism enables the hybrid aerogels to act as strain-driven sensors with high sensitivity and excellent on/off swithching behavior, and the gauge factor (GF) is ∼15 under strain of 3%, which is superior to those reported for other aerogels. In addition, robust, elastomeric and conductive nanocomposites can be fabricated by injecting polydimethylsiloxane (PDMS) into alginate/N-CNTs/Ag aerogels. Importantly, the building blocks forming the aerogels retain their initial contact and percolation after undergoing large-strain deformation, PDMS infiltration, and cross-linking of PDMS, suggesting their potential applications as strain sensors.

  1. New hybrid reflectance optical pulse oximetry sensor for lower oxygen saturation measurement and for broader clinical application

    Science.gov (United States)

    Nogawa, Masamichi; Ching, Chong Thong; Ida, Takeyuki; Itakura, Keiko; Takatani, Setsuo

    1997-06-01

    A new reflectance pulse oximeter sensor for lower arterial oxygen saturation (Sa)2) measurement has been designed and evaluated in animals prior to clinical trials. The new sensor incorporates ten light emitting diode chips for each wavelength of 730 and 880 nm mounted symmetrically and at the radial separation distance of 7 mm around a photodiode chip. The separation distance of 7 mm was chosen to maximize the ratio of the pulsatile to the average plethysmographic signal level at each wavelength. The 730 and 880 wavelength combination was determined to obtain a linear relationship between the reflectance ratio of the 730 and 880 nm wavelengths and Sa)2. In addition to these features of the sensor, the Fast Fourier Transform method was employed to compute the pulsatile and average signal level at each wavelength. The performance of the new reflectance pulse oximeter sensor was evaluated in dogs in comparison to the 665/910 nm sensor. As predicted by the theoretical simulation based on a 3D photon diffusion theory, the 730/880 nm sensor demonstrated an excellent linearity over the SaO2 range from 100 to 30 percent. For the SaO2 range between 100 and 70 percent, the 665/910 and 730/880 sensors showed the standard error of around 3.5 percent and 2.1 percent, respectively, in comparison to the blood samples. For the range between 70 and 30 percent, the standard error of the 730/880 nm sensor was only 2.7 percent, while that of the 665/910 nm sensor was 9.5 percent. The 730/880 sensor showed improved accuracy for a wide range of SaO2 particularly over the range between 70 and 30 percent. This new reflectance sensor can provide noninvasive measurement of SaO2 accurately over the wide saturation range from 100 to 30 percent.

  2. Designing a Hybrid Clustering Routing Algorithm based on Cellular Learning Automata for Optimizing Lifetime of Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Reza Dovlatabadi

    Full Text Available One of the most important factors in wireless sensor networks is energy consumption, hence the lifetime of these networks are strongly depending on remaining energy in the nodes. According to sensors placement farness and wireless communication between th ...

  3. A Novel Hybrid Error Criterion-Based Active Control Method for on-Line Milling Vibration Suppression with Piezoelectric Actuators and Sensors.

    Science.gov (United States)

    Zhang, Xingwu; Wang, Chenxi; Gao, Robert X; Yan, Ruqiang; Chen, Xuefeng; Wang, Shibin

    2016-01-06

    Milling vibration is one of the most serious factors affecting machining quality and precision. In this paper a novel hybrid error criterion-based frequency-domain LMS active control method is constructed and used for vibration suppression of milling processes by piezoelectric actuators and sensors, in which only one Fast Fourier Transform (FFT) is used and no Inverse Fast Fourier Transform (IFFT) is involved. The correction formulas are derived by a steepest descent procedure and the control parameters are analyzed and optimized. Then, a novel hybrid error criterion is constructed to improve the adaptability, reliability and anti-interference ability of the constructed control algorithm. Finally, based on piezoelectric actuators and acceleration sensors, a simulation of a spindle and a milling process experiment are presented to verify the proposed method. Besides, a protection program is added in the control flow to enhance the reliability of the control method in applications. The simulation and experiment results indicate that the proposed method is an effective and reliable way for on-line vibration suppression, and the machining quality can be obviously improved.

  4. A Novel Hybrid Error Criterion-Based Active Control Method for on-Line Milling Vibration Suppression with Piezoelectric Actuators and Sensors

    Directory of Open Access Journals (Sweden)

    Xingwu Zhang

    2016-01-01

    Full Text Available Milling vibration is one of the most serious factors affecting machining quality and precision. In this paper a novel hybrid error criterion-based frequency-domain LMS active control method is constructed and used for vibration suppression of milling processes by piezoelectric actuators and sensors, in which only one Fast Fourier Transform (FFT is used and no Inverse Fast Fourier Transform (IFFT is involved. The correction formulas are derived by a steepest descent procedure and the control parameters are analyzed and optimized. Then, a novel hybrid error criterion is constructed to improve the adaptability, reliability and anti-interference ability of the constructed control algorithm. Finally, based on piezoelectric actuators and acceleration sensors, a simulation of a spindle and a milling process experiment are presented to verify the proposed method. Besides, a protection program is added in the control flow to enhance the reliability of the control method in applications. The simulation and experiment results indicate that the proposed method is an effective and reliable way for on-line vibration suppression, and the machining quality can be obviously improved.

  5. Hybrid fabrication process of additive manufacturing and direct writing for a 4 X 4 mm matrix flexible tactile sensor

    Energy Technology Data Exchange (ETDEWEB)

    Woo, Sang Gu; Lee, In Hwan [Chungbuk National University, Chungju (Korea, Republic of); Lee, Kyong Chang [Pukyong National University, Busan (Korea, Republic of)

    2015-09-15

    Various machines require data from their external environments for safety and/or accuracy. In this respect, many sensors that mimic the human sensory system have been investigated. Among these, tactile sensors may be useful for obtaining data on the roughness of, and external forces acting upon, an object. Several tactile sensors have been developed; however, these are typically fabricated via a series of complex processes, and hence are unsuitable for volume manufacturing. In this paper, we report a fabrication process for a 4 X 4 mm matrix flexible sensor element using layered manufacturing and direct-write technology. A composite composed of photocurable resin and Multi-walled carbon nanotubes (MWCNTs) was used as the sensing material. The MWCNTs were mixed with the photocurable resin using ultrasonic dispersion, and the liquid mixture exhibited excellent piezoresistive properties following curing using ultraviolet light. The used photocurable resin is flexible and elastic after curing. Therefore, the composite material can be bent and deformed. To use this composite material with the flexible sensor, dispensing characteristics were examined using direct-write technology. For the acquisition of sensor data, a commercial pin-header was inserted and photocurable resin was filled up to the height of pin-header and cured . Then, the composite material was dispensed onto the pin-header as a sensing material. Using this process, a flexible sensor with piezoresistive properties was formed.

  6. Hybrid optical fiber sensor system based on fiber Bragg gratings and plastic optical fibers for health monitoring of engineering structures

    Science.gov (United States)

    Kuang, K. S. C.; Maalej, M.; Quek, S. T.

    2006-03-01

    In this paper, packaged fibre Bragg grating (PFBG) sensors were fabricated by embedding them in 70mm x 10mm x 0.3mm carbon-fibre composites which were then surface-bonded to an aluminium beam and a steel I-beam to investigate their strain monitoring capability. Initially, the response of these packaged sensors under tensile loading was compared to bare FBGs and electrical strain gauges located in the vicinity. The effective calibration constant/ coefficient of the PFBG sensor was also compared with the non-packaged version. These PFBG sensors were then attached to an I-section steel beam to monitor their response under flexural loading conditions. These realistic structures provide a platform to assess the potential and reliability of the PFBG sensors when used in harsh environment. The results obtained in this study gave clear experimental evidence of the difference in performance between the coated and uncoated PFBG fabricated for the study. In another experimental set-up, bare FBG and POF vibration sensors were surface-bonded to the side-surface of a CFRPwrapped reinforced concrete beam which was then subjected to cyclic loading to assess their long-term survivability. Plain plastic optical fibre (POF) sensors were also attached to the side of the 2-meter concrete beam to monitor the progression of cracks developed during the cyclic loading. The results showed excellent long-term survivability by the FBG and POF vibration sensors and provided evidence of the potential of the plain POF sensor to detect and monitor the propagation of the crack developed during the test.

  7. Hybrid optimal design of the eco-hydrological wireless sensor network in the middle reach of the Heihe River Basin, China.

    Science.gov (United States)

    Kang, Jian; Li, Xin; Jin, Rui; Ge, Yong; Wang, Jinfeng; Wang, Jianghao

    2014-10-14

    The eco-hydrological wireless sensor network (EHWSN) in the middle reaches of the Heihe River Basin in China is designed to capture the spatial and temporal variability and to estimate the ground truth for validating the remote sensing productions. However, there is no available prior information about a target variable. To meet both requirements, a hybrid model-based sampling method without any spatial autocorrelation assumptions is developed to optimize the distribution of EHWSN nodes based on geostatistics. This hybrid model incorporates two sub-criteria: one for the variogram modeling to represent the variability, another for improving the spatial prediction to evaluate remote sensing productions. The reasonability of the optimized EHWSN is validated from representativeness, the variogram modeling and the spatial accuracy through using 15 types of simulation fields generated with the unconditional geostatistical stochastic simulation. The sampling design shows good representativeness; variograms estimated by samples have less than 3% mean error relative to true variograms. Then, fields at multiple scales are predicted. As the scale increases, estimated fields have higher similarities to simulation fields at block sizes exceeding 240 m. The validations prove that this hybrid sampling method is effective for both objectives when we do not know the characteristics of an optimized variables.

  8. Model-Based Fault Tolerant Control for Hybrid Dynamic Systems with Sensor Faults%一类带有传染器故障的混合系统的容错控制

    Institute of Scientific and Technical Information of China (English)

    杨浩; 冒泽慧; 姜斌

    2006-01-01

    A model-based fault tolerant control approach for hybrid linear dynamic systems is proposed in this paper. The proposed method, taking advantage of reliable control, can maintain the performance of the faulty system during the time delay of fault detection and diagnosis (FDD) and fault accommodation (FA), which can be regarded as the first line of defence against sensor faults.Simulation results of a three-tank system with sensor fault are given to show the efficiency of the method.

  9. Tightly-coupled multi-sensor hybrid tracking algorithm%紧耦合多传感器混合跟踪算法

    Institute of Scientific and Technical Information of China (English)

    李薪宇; 陈东义

    2011-01-01

    在增强现实应用中实现对运动目标的准确跟踪是一个具有挑战性的任务.基于混合跟踪通过对多传感器信息的融合通常比单一传感器跟踪算法更为优越的特性,提出了一种新的紧耦合混合跟踪算法实现视觉与惯性传感器信息的实时融合.该算法基于多频率的测量数据同步,通过强跟踪滤波器引入时变衰减因子自适应调整滤波预测误差协方差,实现对运动目标位置数据的准确估计.通过标示物被遮挡状态下的跟踪实验结果表明,该方法能有效改善基于扩展卡尔曼滤波器的混合跟踪算法对运动目标位置信息预测估计的准确性,提高跟踪快速移动目标的稳定性,适用于大范围移动条件下的增强现实系统.%Accurate tracking for augmented reality applications is a challenging task. Multi-sensor hybrid tracking generally provides more stable resalts than single visual tracking. A new tightly-coupled hybrid tracking approach combining vision-based systems with an inertia] sensor is presented in this paper. Based on the multi-frequency sampling theory in the measurement data synchronization, a strong tracking filter is used to smooth sensor data and estimate the position and orientation. Through adding a time-varying fading factor to adaptively adjust the prediction error covariance of the filter, this method improves the performance of tracking for fast moving targets. Experimental results with occluded markers show that proposed approach can effectively improve the prediction accuracy of location information to target motion with the hybrid tracking algorithm based on the extended Kalman filter, improve the stability of fast moving target tracking. Our approach is suitable for a large range of mobile conditions.

  10. Fabrication of fast, highly sensitive all-printed capacitive humidity sensors with carbon nanotube/polyimide hybrid electrodes

    Science.gov (United States)

    Itoh, Eiji; Takada, Akinori

    2016-02-01

    We have developed capacitive humidity sensors with highly gas permeable carbon nanotube top electrodes using solution techniques. The hydrophobic, porous carbon nanotube (CNT) network with polyimide as a binder was suitable for gas permeation, and the response of the capacitive humidity sensors was faster than that of the device with a 20-nm-thick Au top electrode. The capacitance change of the polymide capacitive humidity sensor with the printed CNT top electrode was almost proportional to the relative humidity and the capacitance was almost independent of the environmental temperature. The CNT electrodes strongly adhered to the partially fluorinated polyimide when CNT/polyimide nanocomposites were used as top electrodes. The response time was almost proportional to the square of the thickness of the polyimide dielectric layer, d, and the sensitivity was inversely proportional to d. The response time and sensitivity respectively decreased to less than 1 s and 1 pF/%RH in the device with d less than 1 µm.

  11. An integrated/hybrid D-GNSS/LORAN-C sensor combination as basis for a reliable and economic transport telematic system

    Energy Technology Data Exchange (ETDEWEB)

    Forst, C. [Wasser- und Schiffahrtsdirektion Nord, Kiel (Germany); Maurer, M. [MAN Technologie AG, Augsburg (Germany); Niklasch, N. [ViCon Engineering GmbH, Muenchen (Germany); Richert, W. [Muenchen Univ. (Germany)

    1999-07-01

    Systems like Vessel traffic services must be seen as critical infrastructure for the safety of navigation. Thus such systems should not be based on technology, that solely depends on a GNSS position determination sensor. A very high potential for an enhancement of accuracy and integrity for traffic management systems is seen in a hybrid receiver technology where GNSS, LORAN-C and Eurofix are combined. Such a combined receiver can be able to overcome the technical and institutional shortcomings. In this presentation an overview is given over the german Radionavigation Concept for Maritime Safety and some results of software and hardware design for an integrated receiver, based on a full digital processing software radio approach. (orig.)

  12. Hierarchical ZnO Nanosheet-Nanorod Architectures for Fabrication of Poly(3-hexylthiophene)/ZnO Hybrid NO2 Sensor.

    Science.gov (United States)

    Wang, Jing; Li, Xian; Xia, Yi; Komarneni, Sridhar; Chen, Haoyuan; Xu, Jianlong; Xiang, Lan; Xie, Dan

    2016-04-06

    A facile one-step solution method has been developed here to fabricate hierarchical ZnO nanosheet-nanorod architectures for compositing with poly(3-hexylthiophene) (P3HT) for fabricating a hybrid NO2 sensor. The hierarchical ZnO nanosheet-nanorod architectures were controllably synthesized by aging the solutions containing 0.05 mol·L(-1) Zn(2+) and 0.33 mol·L(-1) OH(-) at 60 °C through a metastable phase-directed mechanism. The concentration of OH(-) played a huge role on the morphology evolution. When the [OH(-)] concentration was decreased from 0.5 to 0.3 mol·L(-1), the morphology of the ZnO nanostructures changed gradually from monodispersed nanorods (NR) to nanorod assemblies (NRA), and then to nanosheet-nanorod architectures (NS-NR) and nanosheet assemblies (NSA), depending on the formation of various metastable, intermediate phases. The formation of NS-NR included the initial formation of ZnO nanosheets/γ-Zn(OH)2 mixed intermediates, followed by the dissolution of Zn(OH)2, which served as soluble zinc source. Soluble Zn(OH)2 facilitated the dislocation-driven secondary growth of ZnO nanorod arrays on the primary defect-rich nanosheet substrates. Hybrid sensors based on composite films composed of P3HT and the as-prepared ZnO nanostructures were fabricated for the detection of NO2 at room temperature. The P3HT/ZnO NS-NR bilayer film exhibited not only the highest sensitivity but also good reproducibility and selectivity to NO2 at room temperature. The enhanced sensing performance was attributed to the formation of the P3HT/ZnO heterojunction in addition to the enhanced adsorption of NO2 by NS-NR ZnO rich in oxygen-vacancy defects.

  13. Flexible, Hybrid Piezoelectric Film (BaTi(1-x)Zr(x)O3)/PVDF Nanogenerator as a Self-Powered Fluid Velocity Sensor.

    Science.gov (United States)

    Alluri, Nagamalleswara Rao; Saravanakumar, Balasubramaniam; Kim, Sang-Jae

    2015-05-13

    We demonstrate a flexible piezoelectric nanogenerator (PNG) constructed using a hybrid (or composite) film composed of highly crystalline BaTi(1-x)Zr(x)O3 (x = 0, 0.05, 0.1, 0.15, and 0.2) nanocubes (abbreviated as BTZO) synthesized using a molten-salt process embedded into a poly(vinylidene fluoride) (PVDF) matrix solution via ultrasonication. The potential of a BTZO/PVDF hybrid film is realized in fabricating eco-friendly devices, active sensors, and flexible nanogenerators to interpret its functionality. Our strategy is based on the incorporation of various Zr(4+) doping ratios into the Ti(4+) site of BaTiO3 nanocubes to enhance the performance of the PNG. The flexible nanogenerator (BTZO/PVDF) exhibits a high electrical output up to ∼11.9 V and ∼1.35 μA compared to the nanogenerator (BTO/PVDF) output of 7.99 V and 1.01 μA upon the application of cyclic pushing-releasing frequencies with a constant load (11 N). We also demonstrate another exciting application of the PNG as a self-powered sensor to measure different water velocities at an outlet pipe. The average maximum peak power of the PNG varies from 0.2 to 15.8 nW for water velocities ranging from 31.43 to 125.7 m/s during the water ON condition. This study shows the compositional dependence approach, fabrication of nanostructures for energy harvesting, and self-powered devices in the field of monitoring for remote area applications.

  14. A hybrid path-oriented code assignment CDMA-based MAC protocol for underwater acoustic sensor networks.

    Science.gov (United States)

    Chen, Huifang; Fan, Guangyu; Xie, Lei; Cui, Jun-Hong

    2013-11-04

    Due to the characteristics of underwater acoustic channel, media access control (MAC) protocols designed for underwater acoustic sensor networks (UWASNs) are quite different from those for terrestrial wireless sensor networks. Moreover, in a sink-oriented network with event information generation in a sensor field and message forwarding to the sink hop-by-hop, the sensors near the sink have to transmit more packets than those far from the sink, and then a funneling effect occurs, which leads to packet congestion, collisions and losses, especially in UWASNs with long propagation delays. An improved CDMA-based MAC protocol, named path-oriented code assignment (POCA) CDMA MAC (POCA-CDMA-MAC), is proposed for UWASNs in this paper. In the proposed MAC protocol, both the round-robin method and CDMA technology are adopted to make the sink receive packets from multiple paths simultaneously. Since the number of paths for information gathering is much less than that of nodes, the length of the spreading code used in the POCA-CDMA-MAC protocol is shorter greatly than that used in the CDMA-based protocols with transmitter-oriented code assignment (TOCA) or receiver-oriented code assignment (ROCA). Simulation results show that the proposed POCA-CDMA-MAC protocol achieves a higher network throughput and a lower end-to-end delay compared to other CDMA-based MAC protocols.

  15. A Hybrid Path-Oriented Code Assignment CDMA-Based MAC Protocol for Underwater Acoustic Sensor Networks

    Directory of Open Access Journals (Sweden)

    Huifang Chen

    2013-11-01

    Full Text Available Due to the characteristics of underwater acoustic channel, media access control (MAC protocols designed for underwater acoustic sensor networks (UWASNs are quite different from those for terrestrial wireless sensor networks. Moreover, in a sink-oriented network with event information generation in a sensor field and message forwarding to the sink hop-by-hop, the sensors near the sink have to transmit more packets than those far from the sink, and then a funneling effect occurs, which leads to packet congestion, collisions and losses, especially in UWASNs with long propagation delays. An improved CDMA-based MAC protocol, named path-oriented code assignment (POCA CDMA MAC (POCA-CDMA-MAC, is proposed for UWASNs in this paper. In the proposed MAC protocol, both the round-robin method and CDMA technology are adopted to make the sink receive packets from multiple paths simultaneously. Since the number of paths for information gathering is much less than that of nodes, the length of the spreading code used in the POCA-CDMA-MAC protocol is shorter greatly than that used in the CDMA-based protocols with transmitter-oriented code assignment (TOCA or receiver-oriented code assignment (ROCA. Simulation results show that the proposed POCA-CDMA-MAC protocol achieves a higher network throughput and a lower end-to-end delay compared to other CDMA-based MAC protocols.

  16. Hybrid Motion Planning Method for Autonomous Robots Using Kinect Based Sensor Fusion and Virtual Plane Approach in Dynamic Environments

    Directory of Open Access Journals (Sweden)

    Doopalam Tuvshinjargal

    2015-01-01

    Full Text Available A new reactive motion planning method for an autonomous vehicle in dynamic environments is proposed. The new dynamic motion planning method combines a virtual plane based reactive motion planning technique with a sensor fusion based obstacle detection approach, which results in improving robustness and autonomy of vehicle navigation within unpredictable dynamic environments. The key feature of the new reactive motion planning method is based on a local observer in the virtual plane which allows the effective transformation of complex dynamic planning problems into simple stationary in the virtual plane. In addition, a sensor fusion based obstacle detection technique provides the pose estimation of moving obstacles by using a Kinect sensor and a sonar sensor, which helps to improve the accuracy and robustness of the reactive motion planning approach in uncertain dynamic environments. The performance of the proposed method was demonstrated through not only simulation studies but also field experiments using multiple moving obstacles even in hostile environments where conventional method failed.

  17. Development of a hybrid solar tracking device using a GPS and a photo-sensor capable of operating at low solar radiation intensity

    Science.gov (United States)

    Lee, Hyo Geun; Kim, Sang Suk; Kim, Sung Jo; Park, Su-Jin; Yun, Chang-wuk; Im, Gil-pyeong

    2015-09-01

    The PhotoVoltaic System, which is and environmentally-sound source of sustainable energy among most representaion of what alternative energy resources, is in the limelight [1]. Especially, the concentration photovoltaic system (CPV) is more effective than the general photovoltaic system. However, In existing CPV systems tracking the sun position when insolation is low or rapidly changing due to clouds and fog is pratically impossible. For this reason, obtain satisfactory power generation is difficult. In this reserely a hybrid method for tracking the sun's altitude/latitude angles by combining a GPS sensor with an existing tracking system was developed. This study tested the accuracy of tracking when the hybrid tracking system was applied to a 5 kW photovoltaic system, Currently, this study is performing tests to demonstrate the tracking accuracy by testing CPV modules instead of applying general PV modules for the system. In the future, the application of this system in a define MCPV(MCPV) module will improve the efficiency of power generation.

  18. Preparation of new molecularly imprinted quartz crystal microbalance hybride sensor system for 8-hydroxy-2'-deoxyguanosine determination.

    Science.gov (United States)

    Say, Ridvan; Gültekin, Aytaç; Ozcan, Ayça Atilir; Denizli, Adil; Ersöz, Arzu

    2009-04-27

    The routine measurement of 8-hydroxy-2'-deoxyguanosine (8-OHdG) in biological samples is a difficult analytical problem due to the low levels of the analyte and complex matrix. A new 8-OHdG imprinted quartz crystal microbalance (QCM) sensor has been developed for selective determination of 8-OHdG in serum samples. To fulfil the desired results, we have used methacryloyl aminoantipyrine-Fe(III) [MAAP-Fe(III)] and methacryloyl histidine-Pt(II) [MAH-Pt(II)] as metal-chelating monomers via double metal coordination-chelation interactions for the preparation of additional selective molecular imprinted polymers (MIP). The study includes the measurement of binding interaction of 8-OHdG imprinted quartz crystal microbalance (QCM) sensor, selectivity experiments and analytical performance of QCM chip. The obtained results have showed that the application of double metal-chelate monomer systems has been more effective than single metal-chelate monomer systems. In this study, the detection limit and the linear working range were found to be 0.0075 and 0.0100-3.5 microM, respectively. The affinity constant (K(affinity)) was found to be 1.54x10(5) M(-1) for 8-OHdG using MAH-Pt-8-OHdG-MAAP-Fe based thin film. Also, selectivity of prepared QCM sensor was found as being very high in the presence of competitive species. At the last step of this procedure, 8-OHdG level in blood serum which belongs to a intestinal cancer patient was determined by the prepared QCM sensor.

  19. Dynamical investigation of macromolecular hybridization bioassays

    CERN Document Server

    Bittner, R; Wixforth, A

    2002-01-01

    A novel sensoric technique for the dynamical in situ investigation of a hybridization bio assay is presented, which utilizes a metal bead labeling method. Therein, hybridization results in an increased metal coverage on parts of a substrate, where it takes place. Our sensing principle relies on the measurement of the radio frequency impedance of the hybridization spots. We propose several examples for sensor devices.

  20. Broadband, Common-path, Interferometric Wavefront Sensor

    Science.gov (United States)

    Wallace, James Kent (Inventor)

    2015-01-01

    Hybrid sensors comprising Shack-Hartmann Wavefront Sensor (S-HWFS) and Zernike Wavefront Sensor (Z-WFS) capabilities are presented. The hybrid sensor includes a Z-WFS optically arranged in-line with a S-HWFS such that the combined wavefront sensor operates across a wide dynamic range and noise conditions. The Z-WFS may include the ability to introduce a dynamic phase shift in both transmissive and reflective modes.

  1. Sensitivity enhancement of surface plasmon resonance sensor based on graphene-MoS{sub 2} hybrid structure with TiO{sub 2}-SiO{sub 2} composite layer

    Energy Technology Data Exchange (ETDEWEB)

    Maurya, J.B.; Prajapati, Y.K. [Motilal Nehru National Institute of Technology, Electronics and Communication Engineering Department, Allahabad, Uttar Pradesh (India); Singh, V. [Banaras Hindu University, Department of Physics, Varanasi, Uttar Pradesh (India); Saini, J.P. [Bundelkhand Institute of Engineering and Technology, Electronics and Communication Engineering Department, Jhansi, Uttar Pradesh (India)

    2015-11-15

    In this paper, surface plasmon resonance (SPR) sensor based on graphene-MoS{sub 2} hybrid structure with composite layer of TiO{sub 2}-SiO{sub 2} is presented. The angular interrogation method is used for the analysis of reflected light from the sensor. For the calculation of the sensitivity, first of all the thicknesses of TiO{sub 2}, SiO{sub 2} and gold layers are optimized for the monolayer graphene and MoS{sub 2}. Thereafter, at these optimum thicknesses the reflectance curves are plotted for different sensor structure and comparison of change in resonance angle is made among these structures. It is observed that the sensitivity of the graphene-MoS{sub 2}-based sensor is enhanced by 9.24 % with respect conventional SPR sensor. The sensitivity is further enhanced by including TiO{sub 2}-SiO{sub 2} composite layer between prism base and metal layer and observed that the enhanced sensitivity for this sensor is 12.82 % with respect to conventional SPR sensor and 3.28 % with respect to graphene-MoS{sub 2}-based SPR sensor. At the end of this paper, the variation of the sensitivity and minimum reflectance is plotted with respect to sensing layer refractive index at the optimum thickness of all the layers and optimum number of MoS{sub 2} and graphene layers. It is also observed that four layers of MoS{sub 2} and monolayer graphene are best selection for the maximum enhancement of the sensitivity. (orig.)

  2. 基于TDMA与CDMA混合的传感器网络MAC协议%TDMA/CDMA Hybrid MAC Protocol for Wireless Sensor Network

    Institute of Scientific and Technical Information of China (English)

    古志春; 肖德琴

    2011-01-01

    An efficient MAC protocol is one of the keys for long-time working and high-performance communication of WSN.There are several mechanisms for wireless channel allocation, such as Contention-base Random Access, TDMA (Time Division Multiple Access), FDMA(Frequency Division Multiple Access) and CDMA(Code Division Multiple Access).According to WSN,the CSMA-based MAC protocol bas disadvantages like idle listening and collision; the TDMA-based and FDMA-based MAC protocol has low scalability problem; the CDMA-based MAC protocol has the problem of additional power consumption.After analyzing energy model of the pure TDMA, pure CDMA and hybrid TDMA/CDMA, the paper presented a hybrid TDMA/CDMA MAC protocol based on cluster,which can solve the low latency and the conflict with interference.The protocol proposes the cluster nodes use TDMA and the cluster heads use CDMA.MAC could achieve collision avoidance and low latency in clusters,and do not have to ensure high accuracy synchronization between each cluster, so that the scalability of the sensor network would be enhanced.%MAC协议是保证无线传感器网络正常运作、高效通信的关键.无线传感器网络的无线信道分配机制主要有随机竞争机制、TDMA机制、FDMA机制以及CDMA机制.基于随机竞争的MAC协议存在空闲侦听和数据碰撞等能耗问题;基于TDMA和FDMA的MAC协议存在扩展性差的问题;基于CDMA则存在较多额外能耗开销的问题.在分析纯TDMA、纯CDMA和TDMA/CDMA混合的能耗模型的基础上,提出了一种基于分簇的TDMA/CDMA混合的HCT-MAC协议,它较好地解决了低时延和冲突干扰问题,其簇内节点采用TDMA机制进行信道分配,避免碰撞串扰问题,从而实现低延迟快速上传数据;簇首节点则采用CDMA机制,避免多跳同步问题,增强可扩展性.

  3. Bifunctional sensor of pentachlorophenol and copper ions based on nanostructured hybrid films of humic acid and exfoliated layered double hydroxide via a facile layer-by-layer assembly.

    Science.gov (United States)

    Yuan, Shuang; Peng, Dinghua; Hu, Xianluo; Gong, Jingming

    2013-06-27

    A new, highly sensitive bifunctional electrochemical sensor for the simultaneous determination of pentachlorophenol (PCP) and copper ions (Cu(2+)) has been developed, where organic-inorganic hybrid ultrathin films were fabricated by alternate assembly of humic acid (HA) and exfoliated Mg-Al-layered double hydroxide (LDH) nanosheets onto ITO substrates via a layer-by-layer (LBL) approach. The multilayer films were then characterized by means of UV-vis spectrometry, scanning electron microscopy (SEM), and atomic force microscope (AFM). These films were found to have a relatively smooth surface with almost equal amounts of HA incorporated in each cycle. Its electrochemical performance was systematically investigated. Our results demonstrate that such a newly designed (LDH/HA)n multilayer films, combining the individual properties of HA (dual recognition ability for organic herbicides and metal ions) together with LDH nanosheets (a rigid inorganic matrix), can be applied to the simultaneous analysis of PCP and Cu(II) without interference from each other. The LBL assembled nanoarchitectures were further investigated by X-ray photoelectron spectroscopy (XPS) and infrared spectroscopy (IR), which provides insight for bifunctional sensing behavior. Under the optimized conditions, the detection limit was found to be as low as 0.4 nM PCP, well below the guideline value of PCP in drinking water (3.7 nM) set by the United States Environmental Protection Agency (U.S. EPA), and 2.0 nM Cu(2+), much below the guideline value (2.0 mg L(-1), ~31.2 nM) from the World Health Organization (WHO), respectively. Toward the goal for practical applications, this simple and cost-effective probe was further evaluated by monitoring PCP and Cu(II) in water samples.

  4. Autonomous sensor manager agents (ASMA)

    Science.gov (United States)

    Osadciw, Lisa A.

    2004-04-01

    Autonomous sensor manager agents are presented as an algorithm to perform sensor management within a multisensor fusion network. The design of the hybrid ant system/particle swarm agents is described in detail with some insight into their performance. Although the algorithm is designed for the general sensor management problem, a simulation example involving 2 radar systems is presented. Algorithmic parameters are determined by the size of the region covered by the sensor network, the number of sensors, and the number of parameters to be selected. With straight forward modifications, this algorithm can be adapted for most sensor management problems.

  5. Caffeine electrochemical sensor using imprinted film as recognition element based on polypyrrole, sol-gel, and gold nanoparticles hybrid nanocomposite modified pencil graphite electrode.

    Science.gov (United States)

    Rezaei, Behzad; Khalili Boroujeni, Malihe; Ensafi, Ali A

    2014-10-15

    In the present study, a novel sensitive and selective nanocomposite imprinted electrochemical sensor for the indirect determination of caffeine has been prepared. The imprinted sensor was fabricated on the surface of pencil graphite electrode (PGE) via one-step electropolymerization of the imprinted polymer composed of conductive polymer, sol-gel, gold nanoparticles (AuNPs), and caffeine. Due to such combination like the thin film of molecularly imprinted polymer (MIP) with specific binding sites, the sensor responded quickly to caffeine. AuNPs were introduced for the enhancement of electrical response by facilitating charge transfer processes of [Fe(CN)6](3-)/[Fe(CN)6](4-) which was used as an electrochemical active probe. The fabrication process of the sensor was characterized by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Several important parameters controlling the performance of the sensor were investigated and optimized. The imprinted sensor has the advantages of high porous surface structure, inexpensive, disposable, excellent stability, good reproducibility and repeatability. The linear ranges of the MIP sensor were in the range from 2.0 to 50.0 and 50.0 to 1000.0 nmol L(-1), with the limit of detection (LOD) of 0.9 nmol L(-1) (S/N=3). Furthermore, the proposed method was successfully intended for the determination of caffeine in real samples (urine, plasma, tablet, green tea, energy and soda drink).

  6. 刚柔混合三腿六维力传感器测力性能分析%Analysis of measuring performance for a parallel sensor with three rigid-compliment hybrid limb

    Institute of Scientific and Technical Information of China (English)

    路懿; 陈立伟

    2014-01-01

    A novel prototype of parallel sensor with three rigid-compliment hybrid limb is built. Its measuring performances are analyzed. The statics formula of the parallel sensor with three rigid-compliment hybrid limb is established based on statics formula of the 3-RPS parallel manipulator. Its measuring performances such as isotropy, linearity, sensitivity, stiffness are analyzed. The experiment statics calibration is conducted. Finally, the analytical solutions of the statics model of the developed sensor are obtained and verified. The theoretical solutions are verified by experiments.%研究了一种新型的三腿六维力传感器的测力性能,基于3-RPS(转动副-移动副-球副)并联机构研制传感器样机,建立了该样机的静力模型,得到了施加在传感器上的外力与传感器本身6个单维力传感器的映射关系;对新型传感器进行了静态标定实验,根据实验结果分析传感器的测力性能,得到三腿六维力传感器的测力性能评价指标,为该传感器的优化及应用提供了参考依据和基础。

  7. 基于混合建模技术的复合肥养分含量MIMO软测量模型%MIMO Soft-sensor Model of Nutrient Content for Compound Fertilizer Based on Hybrid Modeling Technique

    Institute of Scientific and Technical Information of China (English)

    傅永峰; 苏宏业; 褚健

    2007-01-01

    In compound fertilizer production, several quality variables need to be monitored and controlled simultaneously. It is very difficult to measure these variables on-line by existing instruments and sensors. So, soft-sensor technique becomes an indispensable method to implement real-time quality control. In this article, a new model of multi-inputs multi-outputs (MIMO) soft-sensor, which is constructed based on hybrid modeling technique, is proposed for these interactional variables. Data-driven modeling method and simplified first principle modeling method are combined in this model. Data-driven modeling method based on limited memory partial least squares (LM-PLS) algorithm is used to build soft-senor models for some secondary variables; then, the simplified first principle model is used to compute three primary variables on line. The proposed model has been used in practical process; the results indicate that the proposed model is precise and efficient, and it is possible to realize on line quality control for compound fertilizer process.

  8. Chemical Gated Field Effect Transistor by Hybrid Integration of One-Dimensional Silicon Nanowire and Two-Dimensional Tin Oxide Thin Film for Low Power Gas Sensor.

    Science.gov (United States)

    Han, Jin-Woo; Rim, Taiuk; Baek, Chang-Ki; Meyyappan, M

    2015-09-30

    Gas sensors based on metal-oxide-semiconductor transistor with the polysilicon gate replaced by a gas sensitive thin film have been around for over 50 years. These are not suitable for the emerging mobile and wearable sensor platforms due to operating voltages and powers far exceeding the supply capability of batteries. Here we present a novel approach to decouple the chemically sensitive region from the conducting channel for reducing the drive voltage and increasing reliability. This chemically gated field effect transistor uses silicon nanowire for the current conduction channel with a tin oxide film on top of the nanowire serving as the gas sensitive medium. The potential change induced by the molecular adsorption and desorption allows the electrically floating tin oxide film to gate the silicon channel. As the device is designed to be normally off, the power is consumed only during the gas sensing event. This feature is attractive for the battery operated sensor and wearable electronics. In addition, the decoupling of the chemical reaction and the current conduction regions allows the gas sensitive material to be free from electrical stress, thus increasing reliability. The device shows excellent gas sensitivity to the tested analytes relative to conventional metal oxide transistors and resistive sensors.

  9. 基于人工鱼群和微粒群混合算法的WSN节点部署策略%Deployment Strategy of Wireless Sensor Network Nodes Based on AFSA-PSO Hybrid Algorithm

    Institute of Scientific and Technical Information of China (English)

    孙伟; 朱正礼; 郑磊; 侯迎坤

    2012-01-01

    将无线传感器网络节点分布部署问题形式化为一个组合优化问题,以网络覆盖率为目标函数.针对该模型提出基于人工鱼群与微粒群的混合算法的无线传感器网络节点部署优化策略.微粒群算法搜索效率高,而人工鱼群算法进行搜索时有很好的全局性.AFSA-POS算法将这两种算法相结合,局部搜索速度快,而且有效地解决了标准PSO算法中的粒子“早熟”问题.最后使用MATLAB进行了实验,结果表明提出的算法减少了迭代次数,并且提高了网络覆盖率,相对于人工鱼群算法和微粒群算法来说能取得更好的效果.%The deployment of sensor nodes was formalized as a combinatorial optimization problem, and the network coverage was used as the objective function. For the model this paper proposed a hybrid algorithm of artificial fish swarm algorithm(AFSA) and particle swarm optimization (PSO) by combining the advantages of the two algorithms. Particle swarm optimization can achieve the effective local search,and artificial fish swarm algorithm can enhance the a-bility of global optimization. The AFSA-PSO hybrid algorithm proposed in this paper has the advantages of both. The simulation results show that AFSA -PSO hybrid algorithm is superior to the artificial fish swarm algorithm and particle swarm optimization algorithm, can effectively improve network coverage with fewer iterations.

  10. Integration of thermal photovoltaic hybrid sensors to the building. Final report july 2004. Integrated research project 6.2; Integration de capteurs hybrides photovoltaiques thermiques au bati. Rapport final juillet 2004. Projet de recherche integre 6.2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    The electricity and the heat are two complementary energies necessary for the accommodation. A thermal solar installation needs the electric power for the coolant fluid flow. This research project concerns the optimization of integrated solutions to the building, providing simultaneously these two energies. This document presents the proposed researches programs: analysis of the socio-economic aspects, the physical phenomena knowledge, simulation of the behavior, experimentation, hybrid components integration, simulation of the photovoltaic modules operating and thermal simulation of an electric converter. (A.L.B.)

  11. Aircraft Engine Sensor Fault Diagnostics Through Dual-Channel Sensor Measurements Based on a Bank of Hybrid Kalman Filters%基于混合卡尔曼滤波器组的航空发动机双通道传感器故障检测

    Institute of Scientific and Technical Information of China (English)

    张书刚; 郭迎清; 陆军

    2012-01-01

    Based on a bank of hybrid Kalman filters which are hybrids of a nonlinear on-board engine model (NOBEM) and piecewise linear Kalman fillers, a civil aircraft engine sensor fault diagnostics system which utilizes dual -channel sensor measurements is developed. Principles and algorithms of sensor fault detection, isolation and accommodation are given. By this system applied to some typical civil turbo-fan engine sensor faults, simulation results show that the diagnostic effectiveness of the system is maintained to avoid false alarms as the health of the engine degrades over time through a simple process: by feeding the health degradation values into the NUBEM and not changing the parameters of the linear Kalman filters. The update process, which can be completed automatically online to save time and effort, is feasible in the real application environment.%基于机载非线性模型与分段线性卡尔曼滤波器混合组成的混合卡尔曼滤波器组,结合双通道传感器的特点,建立了民用航空发动机传感器故障诊断系统;给出故障诊断原理及算法的同时,将该系统应用于民用涡扇发动机传感器常见典型故障进行了仿真;仿真结果表明,诊断系统可以在发动机发生健康蜕化后,通过只简单更新机载模型的蜕化因子,而保持线性卡尔曼滤波器的参数不变,便能准确地检测和隔离各类传感器故障而不发生误报;该更新过程可以在线自动完成,省时省力,易于工程实现.

  12. 自适应Tree-Mesh结构的大棚无线监测网络设计%Design of adaptive tree-mesh hybrid wireless sensor networks for greenhouses

    Institute of Scientific and Technical Information of China (English)

    石繁荣; 黄玉清; 任珍文; 伍春

    2013-01-01

    Wireless sensor networks have been widely utilized in agricultural production in such as crop information monitoring systems, agricultural facilities’wireless control systems, etc. The wireless sensor networks could promote the development of agricultural information and intelligence, and more research has been focused on using ZigBee wireless technology to build the networks in recent years. To collect the base crop status and environmental information of greenhouses in a wireless way, a wireless sensor monitoring network system was designed. The basic work of this paper was the software and hardware system design; further work is projected to be low-power adaptive mechanism design. In analyzing the distribution characteristics of the greenhouse base, it could be seen that the greenhouses were concentrated in their distribution, but independent from each other. So the network topology architecture was designed as clustering Tree-Mesh hybrid topology architecture, and the nodes of the cluster belonged to the same greenhouse. The network was built up by a coordinator, and a large number of routers and sensor nodes were joined in. The coordinator was a sink node, it was designed as a gateway, and there were some routers which played the role of cluster head in the network. The clustering Tree-Mesh hybrid network was built in two steps: First, the mesh network was established by the coordinator and cluster head. Then, the tree network was built by the cluster head, and the tree was a cluster with routers and sensor nodes. The system utilized ZigBee to build the wireless sensor network and multi-hop communication, and the hardware of a single chip multi-sensor wireless node based CC2530 was designed. The modular design of the hardware subsystem was composed of a radio module, sensor module and power module. The finite state machine node software and the low-power improvement were designed based on Z-Stack. The stack ran on a task allocation mechanism that was similar

  13. A CMOS-compatible poly-Si nanowire device with hybrid sensor/memory characteristics for System-on-Chip applications.

    Science.gov (United States)

    Chen, Min-Cheng; Chen, Hao-Yu; Lin, Chia-Yi; Chien, Chao-Hsin; Hsieh, Tsung-Fan; Horng, Jim-Tong; Qiu, Jian-Tai; Huang, Chien-Chao; Ho, Chia-Hua; Yang, Fu-Liang

    2012-01-01

    This paper reports a versatile nano-sensor technology using "top-down" poly-silicon nanowire field-effect transistors (FETs) in the conventional Complementary Metal-Oxide Semiconductor (CMOS)-compatible semiconductor process. The nanowire manufacturing technique reduced nanowire width scaling to 50 nm without use of extra lithography equipment, and exhibited superior device uniformity. These n type polysilicon nanowire FETs have positive pH sensitivity (100 mV/pH) and sensitive deoxyribonucleic acid (DNA) detection ability (100 pM) at normal system operation voltages. Specially designed oxide-nitride-oxide buried oxide nanowire realizes an electrically V(th)-adjustable sensor to compensate device variation. These nanowire FETs also enable non-volatile memory application for a large and steady V(th) adjustment window (>2 V Programming/Erasing window). The CMOS-compatible manufacturing technique of polysilicon nanowire FETs offers a possible solution for commercial System-on-Chip biosensor application, which enables portable physiology monitoring and in situ recording.

  14. A CMOS-Compatible Poly-Si Nanowire Device with Hybrid Sensor/Memory Characteristics for System-on-Chip Applications

    Directory of Open Access Journals (Sweden)

    Chia-Hua Ho

    2012-03-01

    Full Text Available This paper reports a versatile nano-sensor technology using “top-down” poly-silicon nanowire field-effect transistors (FETs in the conventional Complementary Metal-Oxide Semiconductor (CMOS-compatible semiconductor process. The nanowire manufacturing technique reduced nanowire width scaling to 50 nm without use of extra lithography equipment, and exhibited superior device uniformity. These n type polysilicon nanowire FETs have positive pH sensitivity (100 mV/pH and sensitive deoxyribonucleic acid (DNA detection ability (100 pM at normal system operation voltages. Specially designed oxide-nitride-oxide buried oxide nanowire realizes an electrically Vth-adjustable sensor to compensate device variation. These nanowire FETs also enable non-volatile memory application for a large and steady Vth adjustment window (>2 V Programming/Erasing window. The CMOS-compatible manufacturing technique of polysilicon nanowire FETs offers a possible solution for commercial System-on-Chip biosensor application, which enables portable physiology monitoring and in situ recording.

  15. Adaptive reconfigurable distributed sensor architecture

    Science.gov (United States)

    Akey, Mark L.

    1997-07-01

    The infancy of unattended ground based sensors is quickly coming to an end with the arrival of on-board GPS, networking, and multiple sensing capabilities. Unfortunately, their use is only first-order at best: GPS assists with sensor report registration; networks push sensor reports back to the warfighter and forwards control information to the sensors; multispectral sensing is a preset, pre-deployment consideration; and the scalability of large sensor networks is questionable. Current architectures provide little synergy among or within the sensors either before or after deployment, and do not map well to the tactical user's organizational structures and constraints. A new distributed sensor architecture is defined which moves well beyond single sensor, single task architectures. Advantages include: (1) automatic mapping of tactical direction to multiple sensors' tasks; (2) decentralized, distributed management of sensor resources and tasks; (3) software reconfiguration of deployed sensors; (4) network scalability and flexibility to meet the constraints of tactical deployments, and traditional combat organizations and hierarchies; and (5) adaptability to new battlefield communication paradigms such as BADD (Battlefield Analysis and Data Dissemination). The architecture is supported in two areas: a recursive, structural definition of resource configuration and management via loose associations; and a hybridization of intelligent software agents with tele- programming capabilities. The distributed sensor architecture is examined within the context of air-deployed ground sensors with acoustic, communication direction finding, and infra-red capabilities. Advantages and disadvantages of the architecture are examined. Consideration is given to extended sensor life (up to 6 months), post-deployment sensor reconfiguration, limited on- board sensor resources (processor and memory), and bandwidth. It is shown that technical tasking of the sensor suite can be automatically

  16. Development of a Hybrid Piezo Natural Rubber Piezoelectricity and Piezoresistivity Sensor with Magnetic Clusters Made by Electric and Magnetic Field Assistance and Filling with Magnetic Compound Fluid

    Directory of Open Access Journals (Sweden)

    Kunio Shimada

    2017-02-01

    Full Text Available Piezoelements used in robotics require large elasticity and extensibility to be installed in an artificial robot skin. However, the piezoelements used until recently are vulnerable to large forces because of the thin solid materials employed. To resolve this issue, we utilized a natural rubber and applied our proposed new method of aiding with magnetic and electric fields as well as filling with magnetic compound fluid (MCF and doping. We have verified the piezoproperties of the resulting MCF rubber. The effect of the created magnetic clusters is featured in a new two types of multilayered structures of the piezoelement. By measuring the piezoelectricity response to pressure, the synergetic effects of the magnetic clusters, the doping and the electric polymerization on the piezoelectric effect were clarified. In addition, by examining the relation between the piezoelectricity and the piezoresistivity created in the MCF piezo element, we propose a hybrid piezoelement.

  17. Development of a Hybrid Piezo Natural Rubber Piezoelectricity and Piezoresistivity Sensor with Magnetic Clusters Made by Electric and Magnetic Field Assistance and Filling with Magnetic Compound Fluid.

    Science.gov (United States)

    Shimada, Kunio; Saga, Norihiko

    2017-02-10

    Piezoelements used in robotics require large elasticity and extensibility to be installed in an artificial robot skin. However, the piezoelements used until recently are vulnerable to large forces because of the thin solid materials employed. To resolve this issue, we utilized a natural rubber and applied our proposed new method of aiding with magnetic and electric fields as well as filling with magnetic compound fluid (MCF) and doping. We have verified the piezoproperties of the resulting MCF rubber. The effect of the created magnetic clusters is featured in a new two types of multilayered structures of the piezoelement. By measuring the piezoelectricity response to pressure, the synergetic effects of the magnetic clusters, the doping and the electric polymerization on the piezoelectric effect were clarified. In addition, by examining the relation between the piezoelectricity and the piezoresistivity created in the MCF piezo element, we propose a hybrid piezoelement.

  18. Development of a Hybrid Piezo Natural Rubber Piezoelectricity and Piezoresistivity Sensor with Magnetic Clusters Made by Electric and Magnetic Field Assistance and Filling with Magnetic Compound Fluid

    Science.gov (United States)

    Shimada, Kunio; Saga, Norihiko

    2017-01-01

    Piezoelements used in robotics require large elasticity and extensibility to be installed in an artificial robot skin. However, the piezoelements used until recently are vulnerable to large forces because of the thin solid materials employed. To resolve this issue, we utilized a natural rubber and applied our proposed new method of aiding with magnetic and electric fields as well as filling with magnetic compound fluid (MCF) and doping. We have verified the piezoproperties of the resulting MCF rubber. The effect of the created magnetic clusters is featured in a new two types of multilayered structures of the piezoelement. By measuring the piezoelectricity response to pressure, the synergetic effects of the magnetic clusters, the doping and the electric polymerization on the piezoelectric effect were clarified. In addition, by examining the relation between the piezoelectricity and the piezoresistivity created in the MCF piezo element, we propose a hybrid piezoelement. PMID:28208625

  19. First detective quantum efficiency measurement of 500 {mu}m silicon hybrid pixel sensor with photon counting readout for X-ray medical imaging

    Energy Technology Data Exchange (ETDEWEB)

    Surre, Benjamin [Laboratoire de Biophysique medicale, University of Auvergne, Clermont-Ferrand (France)]. E-mail: Benjamin.surre@u-clermontl.fr; Caria, Mario [Laboratoire de Biophysique medicale, University of Auvergne, Clermont-Ferrand (France); Chaput, Julien [Laboratoire de Biophysique medicale, University of Auvergne, Clermont-Ferrand (France); Hassoun, Thierry [Laboratoire de Biophysique medicale, University of Auvergne, Clermont-Ferrand (France); Laverroux, Fabien [Laboratoire de Biophysique medicale, University of Auvergne, Clermont-Ferrand (France); Sarry, Laurent [Equipe de Recherche en Signal et Imagerie Medicale, EA3295, Clermont-Ferrand (France)

    2005-07-01

    We report the performances of a 500 {mu}m pixellated silicon sensor bonded to the photon counting chip Medipix2 [1]. In order to perform an absolute characterization of our detector, we measured both the pre-sampling MTF and NPS with respect to the International standard IEC-62220-1. From those data we have been able to extract the Detective Quantum Efficiency (DQE) and hence to assess the suitability of our detector for X-ray medical imaging purpose. Due to poor absorption of the Si at 70 kV the DQE peaked at 0.06 for null frequency. Nevertheless, these results are very promising since thicker Si or more absorbing material such as GaAs will soon be available.

  20. Hybrid Baryons

    CERN Document Server

    Page, P R

    2003-01-01

    We review the status of hybrid baryons. The only known way to study hybrids rigorously is via excited adiabatic potentials. Hybrids can be modelled by both the bag and flux-tube models. The low-lying hybrid baryon is N 1/2^+ with a mass of 1.5-1.8 GeV. Hybrid baryons can be produced in the glue-rich processes of diffractive gamma N and pi N production, Psi decays and p pbar annihilation.

  1. A research on dynamic and hybrid key management scheme of heterogeneous sensor network%异构无线传感器网络动态混合密钥管理方案研究

    Institute of Scientific and Technical Information of China (English)

    刘梦君; 刘树波; 刘泓晖; 蔡朝晖; 涂国庆

    2012-01-01

    In the application of Wireless Sensor Networks (WSN) needing secure communications, asymmetric key scheme is supposed difficult to be implemented on resources limited sensor node, and the symmetric key scheme based on probability pre-distribution possess the disadvantages of weak nodes connectivity, big memory consuming, compli- cated and inflexible key agreement. Hence, a dynamic hybrid key management scheme associated asymmetric and sym- metric scheme (DHKAS) was proposed based on the heterogeneous wireless sensor networks. The scheme solved the Node Authentication problem in key management with a simple and reliable way. The analysis result shows that the pro- posed scheme effectively improves the connectivity of the node, reduces memory consuming and enhances the network secure ability.%在需要进行安全通信的无线传感器网络应用中,复杂的公钥系统难以在资源有限的传感节点上实现,而基于随机预分配的对称密钥系统有节点连通性不强、密钥存储空间过大、密钥协商过程复杂且不灵活等问题。因此,在畀构无线传感器网络基础上,提出一种联合公钥机制与私钥机制的混合密钥管理方案(DHKAS)。该方案使用一种简便可靠的方法,以较小的代价解决了密钥管理中最关键的节点认证问题。分析结果显示,所提方案有效提高了节点的连通性、减少了密钥存储空间,并增强了网络抗攻击能力。

  2. Single nucleotide polymorphism (SNP) detection on a magnetoresistive sensor

    DEFF Research Database (Denmark)

    Rizzi, Giovanni; Østerberg, Frederik Westergaard; Dufva, Martin

    2013-01-01

    We present a magnetoresistive sensor platform for hybridization assays and demonstrate its applicability on single nucleotide polymorphism (SNP) genotyping. The sensor relies on anisotropic magnetoresistance in a new geometry with a local negative reference and uses the magnetic field from...... the sensor bias current to magnetize magnetic beads in the vicinity of the sensor. The method allows for real-time measurements of the specific bead binding to the sensor surface during DNA hybridization and washing. Compared to other magnetic biosensing platforms, our approach eliminates the need...... for external electromagnets and thus allows for miniaturization of the sensor platform....

  3. 一种多信道混合方式的无线传感器网络MAC协议%A multichannel hybrid MAC protocol for wireless sensor networks

    Institute of Scientific and Technical Information of China (English)

    2013-01-01

    In order to improve wireless sensor networks throughput and reduce time delay, a multichannel MAC protocol called MCHMAC is designed, which use contention based and scheduled based hybrid access mechanism to transmit information, the energy is saved by dynamically adjusts the active and sleep time of nodes. MCHMAC use channel state estimation algorithm to evaluate channel, it also proposes to find a best channel by a channel schedule table for nodes. Experimental results show that this protocol improves the throughput and reduces the network delay.%  为了提高无线传感器网络的吞吐量,降低时延,本文设计了一种多信道MAC协议——MCHMAC。它采用调度和竞争访问机制相结的混合方式来传输信息,通过动态调整节点的活跃与睡眠状态的时长来节省能量。MCHMAC使用信道状态估计算法对信道进行评估,利用信道调度表来为节点调度状态最优的信道。仿真实验结果证明,本协议提高了吞吐量,降低了网络时延。

  4. Modification of hybrid NaY/ZSM-5/IDC zeolite composite with exchanged Cu2+ and its application as ammonia gas sensor

    Science.gov (United States)

    Lisnawati, Elsita; Krisnandi, Yuni Krisyuningsih; Triyono, Djoko

    2017-03-01

    A Modified NaY/ZSM-5/IDC zeolite composite with Cu2+ has been succsessfully prepared on the surface of quartz based Interdigitated Capacitor (IDC). The ZSM-5 was synthesized with double template using hydrothermal method and NaY zeolite was synthesized using sol-gel method. Powder XRD patterns confirmed that structures were ZSM-5 and NaY zeolites. Surface area analysis using BET method are 472,27 m2/g with pore size 2,32 nm for mesoporous ZSM-5 and 392,81 m2/g with pore size 1,6 nm for microporous NaY zeolite. NaY/ZSM-5/IDC and Cu/NaY/ZSM-5/IDC prior ammonia gas sensor testing using Electrochemical Impedance Spectroscopy (EIS) method. The composite has different sensitivity in range concentration of ammonia 0-300 ppm. The Cu/NaY/ZSM5/IDC has higher sensitivity compared to NaY/ZSM5/IDC.

  5. Energy-efficient hybrid media access control protocol in wireless sensor networks%一种节能混合无线传感器网络MAC协议

    Institute of Scientific and Technical Information of China (English)

    刘一哲; 袁睿翕

    2011-01-01

    针对无线传感器网络的节能和网络性能流量自适应的需求,在Z-MAC协议的基础上,提出了EFHMAC协议.经过分析表明,EHMAC在保持Z-MAC高信道利用率和低延迟的同时,可以减少Z-MAC低功耗侦听机制造成的大量串音能耗以及pream-ble传输所造成的网络开销.此外,EHMAC对Z-MAC在内的TDMA类协议无法应对的非对称隐藏终端问题提出了解决方案,取得了较高的网络吞吐量和较低的端到端延迟.%This paper puts forward an Energy-efficient Hybrid Media Access Control(EHMAC) protocol in WSNs,based on Z-MAC, in order to meet requirement of power consumption and obtain network performance adaptability to burst flow. Through analysis and NS2 simulation,this paper evaluates and verifies EHMAC's low power consumption due to Low Power Listening (LPL) and maintenance of high channel utilization as Z-MAC does.Meanwhile, EHMAC can decrease the long preamble overhead.Besides,EHMAC proposes the solution to asymmetric hidden terminal problem,and gets higher throughput and lower end to end delay than TDMA category protocol,Z-MAC included.

  6. CO Responses of Sensors Based on Cerium Oxide Thick Films Prepared from Clustered Spherical Nanoparticles

    OpenAIRE

    Woosuck Shin; Takafumi Akamatsu; Toshio Itoh; Ichiro Matsubara; Noriya Izu

    2013-01-01

    Various types of CO sensors based on cerium oxide (ceria) have been reported recently. It has also been reported that the response speed of CO sensors fabricated from porous ceria thick films comprising nanoparticles is extremely high. However, the response value of such sensors is not suitably high. In this study, we investigated methods of improving the response values of CO sensors based on ceria and prepared gas sensors from core-shell ceria polymer hybrid nanoparticles. These hybrid nano...

  7. Ambient Sensors

    NARCIS (Netherlands)

    Börner, Dirk; Specht, Marcus

    2014-01-01

    This software sketches comprise two custom-built ambient sensors, i.e. a noise and a movement sensor. Both sensors measure an ambient value and process the values to a color gradient (green > yellow > red). The sensors were built using the Processing 1.5.1 development environment. Available under th

  8. Ambient Sensors

    NARCIS (Netherlands)

    Börner, Dirk; Specht, Marcus

    2014-01-01

    This software sketches comprise two custom-built ambient sensors, i.e. a noise and a movement sensor. Both sensors measure an ambient value and process the values to a color gradient (green > yellow > red). The sensors were built using the Processing 1.5.1 development environment. Available under

  9. Hybridizing matter-wave and classical accelerometers

    Science.gov (United States)

    Lautier, J.; Volodimer, L.; Hardin, T.; Merlet, S.; Lours, M.; Pereira Dos Santos, F.; Landragin, A.

    2014-10-01

    We demonstrate a hybrid accelerometer that benefits from the advantages of both conventional and atomic sensors in terms of bandwidth (DC to 430 Hz) and long term stability. First, the use of a real time correction of the atom interferometer phase by the signal from the classical accelerometer enables to run it at best performance without any isolation platform. Second, a servo-lock of the DC component of the conventional sensor output signal by the atomic one realizes a hybrid sensor. This method paves the way for applications in geophysics and in inertial navigation as it overcomes the main limitation of atomic accelerometers, namely, the dead times between consecutive measurements.

  10. Hybridizing matter-wave and classical accelerometers

    Energy Technology Data Exchange (ETDEWEB)

    Lautier, J.; Volodimer, L.; Hardin, T.; Merlet, S.; Lours, M.; Pereira Dos Santos, F.; Landragin, A., E-mail: arnaud.landragin@obspm.fr [LNE-SYRTE, Observatoire de Paris, CNRS, UPMC, 61 avenue de l' Observatoire, 75014 Paris (France)

    2014-10-06

    We demonstrate a hybrid accelerometer that benefits from the advantages of both conventional and atomic sensors in terms of bandwidth (DC to 430 Hz) and long term stability. First, the use of a real time correction of the atom interferometer phase by the signal from the classical accelerometer enables to run it at best performance without any isolation platform. Second, a servo-lock of the DC component of the conventional sensor output signal by the atomic one realizes a hybrid sensor. This method paves the way for applications in geophysics and in inertial navigation as it overcomes the main limitation of atomic accelerometers, namely, the dead times between consecutive measurements.

  11. Hybridizing matter-wave and classical accelerometers

    CERN Document Server

    Lautier, Jean; Hardin, Thomas; Merlet, Sebastien; Santos, Franck Pereira Dos; Landragin, Arnaud

    2014-01-01

    We demonstrate a hybrid accelerometer that benefits from the advantages of both conventional and atomic sensors in terms of bandwidth (DC to 430 Hz) and long term stability. First, the use of a real time correction of the atom interferometer phase by the signal from the classical accelerometer enables to run it at best performances without any isolation platform. Second, a servo-lock of the DC component of the conventional sensor output signal by the atomic one realizes a hybrid sensor. This method paves the way for applications in geophysics and in inertial navigation as it overcomes the main limitation of atomic accelerometers, namely the dead times between consecutive measurements.

  12. Hybrid vehicles

    Energy Technology Data Exchange (ETDEWEB)

    West, J.G.W. [Electrical Machines (United Kingdom)

    1997-07-01

    The reasons for adopting hybrid vehicles result mainly from the lack of adequate range from electric vehicles at an acceptable cost. Hybrids can offer significant improvements in emissions and fuel economy. Series and parallel hybrids are compared. A combination of series and parallel operation would be the ideal. This can be obtained using a planetary gearbox as a power split device allowing a small generator to transfer power to the propulsion motor giving the effect of a CVT. It allows the engine to run at semi-constant speed giving better fuel economy and reduced emissions. Hybrid car developments are described that show the wide range of possible hybrid systems. (author)

  13. Optical sensors for harsh environment applications

    Science.gov (United States)

    Sharma, R.; Maity, S.; Bekal, A.; Vartak, S.; Sridharan, A. K.; Mitra, C.

    2015-05-01

    The development of a harsh environment ammonia slip sensor based on tunable diode laser absorption spectroscopy is presented. A hybrid optical sensor design, through combination of wavelength modulation spectroscopy (WMS) and alignment control, is proposed as an approach towards reliable in-situ measurements in misalignment prone harsh environments. 1531.59 nm, 1553.4 nm and 1555.56 nm are suggested as possible absorption lines for trace ammonia measurement (system are presented in detail. Effect of misalignment related measurement degradation is investigated and significant improvement in measurement fidelity is demonstrated through the use of the hybrid optical sensor design.

  14. Metamaterial Sensors

    Directory of Open Access Journals (Sweden)

    Jing Jing Yang

    2013-01-01

    Full Text Available Metamaterials have attracted a great deal of attention due to their intriguing properties, as well as the large potential applications for designing functional devices. In this paper, we review the current status of metamaterial sensors, with an emphasis on the evanescent wave amplification and the accompanying local field enhancement characteristics. Examples of the sensors are given to illustrate the principle and the performance of the metamaterial sensor. The paper concludes with an optimistic outlook regarding the future of metamaterial sensor.

  15. Attention Sensor

    NARCIS (Netherlands)

    Börner, Dirk; Kalz, Marco; Specht, Marcus

    2014-01-01

    This software sketch was used in the context of an experiment for the PhD project “Ambient Learning Displays”. The sketch comprises a custom-built attention sensor. The sensor measured (during the experiment) whether a participant looked at and thus attended a public display. The sensor was built us

  16. Attention Sensor

    NARCIS (Netherlands)

    Börner, Dirk; Kalz, Marco; Specht, Marcus

    2014-01-01

    This software sketch was used in the context of an experiment for the PhD project “Ambient Learning Displays”. The sketch comprises a custom-built attention sensor. The sensor measured (during the experiment) whether a participant looked at and thus attended a public display. The sensor was built us

  17. Cryogenic Hybrid Magnetic Bearing

    Science.gov (United States)

    Meeks, Crawford R.; Dirusso, Eliseo; Brown, Gerald V.

    1994-01-01

    Cryogenic hybrid magnetic bearing is example of class of magnetic bearings in which permanent magnets and electromagnets used to suspend shafts. Electromagnets provide active control of position of shaft. Bearing operates at temperatures from -320 degrees F (-196 degrees C) to 650 degrees F (343 degrees C); designed for possible use in rocket-engine turbopumps, where effects of cryogenic environment and fluid severely limit lubrication of conventional ball bearings. This and similar bearings also suitable for terrestrial rotating machinery; for example, gas-turbine engines, high-vacuum pumps, canned pumps, precise gimbals that suspend sensors, and pumps that handle corrosive or gritty fluids.

  18. The novel block encryption scheme based on hybrid chaotic maps for the wireless sensor networks%基于无线传感器网络的混合混沌新分组加密算法

    Institute of Scientific and Technical Information of China (English)

    佟晓筠; 左科; 王翥

    2012-01-01

    Traditional encryption schemes are not suitable for the Wireless sensor networks(WSNS) due to some intrinsic features of nodes in WSNS such as low energy,limited computation ability and storage resources.In this paper,we present a novel block encryption scheme based on hybrid chaotic maps dynamically and propose an integer digital random method,and the Feistel network structure, which is a kind of fast,secure,low resource consumption and suited for WSNS nodes encryption scheme.The experimental tests show the new encryption scheme has the following prefect performances:large key space,very good diffusion and disrupt performance, strict avalanche effect,excellent statistical balance and fast encryption speed of the new scheme,and the encryption scheme passes the SP800-22 test;meanwhile,the analysis and the testing of speed,time and storage space on the simulator platform show that this new encryption scheme is well able to hide the data information about the node in WSNS.%针对无线传感器网络(WSNS)中节点配备的能源少、节点计算能力低、存储资源有限以及化统的加密方法不适用于WSNS中等问题,提出了一种新的基于动态迭代的混合混沌方程及其整型数值化方法.并结合Feistel网络结构设计了一种快速、安全且资源消耗低的适用于WSNS节点的分组加密算法.通过对混合混沌分组加密算法进行了大量的实验测试之后,发现该算法具有密钥空间大、严格的雪崩效应、扩散及扰乱性高以及均等的统计平衡性等优点,同时该算法还成功地通过了SP800-22的严格测试;算法经过仿真器平台上运行的速度、时间及所占存储空间的测试分析,结果表明设计的混合混沌分组加密算法是完全能够通用于WSNS节点的数据加密.

  19. Nanohybrid TiO2/carbon black sensor for NO2 gas

    Institute of Scientific and Technical Information of China (English)

    Wei-Jen Liou; Hong-Ming Lin

    2007-01-01

    A nanohybrid sensor of nanosized TiO2-coated carbon black particles, prepared by sol-gel technology for the detection of NO2 gas, has been developed. The response of the electric resistance of the hybrid sensor to NO2 concentration is investigated, showing that the sensitivity of the hybrid sensor is raised as certain ratio of the TiO2 content in the sensor. Easy and cheap to fabricate, the hybrid TiO2/carbon black promises to be a practical sensor for detecting NO2 gas.

  20. Fluorescent sensor for mercury

    Science.gov (United States)

    Wang, Zidong [Urbana, IL; Lee, Jung Heon [Evanston, IL; Lu, Yi [Champaign, IL

    2011-11-22

    The present invention provides a sensor for detecting mercury, comprising: a first polynucleotide, comprising a first region, and a second region, a second polynucleotide, a third polynucleotide, a fluorophore, and a quencher, wherein the third polynucleotide is optionally linked to the second region; the fluorophore is linked to the first polynucleotide and the quencher is linked to the second polynucleotide, or the fluorophore is linked to the second polynucleotide and the quencher is linked to the first polynucleotide; the first region and the second region hybridize to the second polynucleotide; and the second region binds to the third polynucleotide in the presence of Hg.sup.2+ ions.

  1. Hybrid Metaheuristics

    CERN Document Server

    2013-01-01

    The main goal of this book is to provide a state of the art of hybrid metaheuristics. The book provides a complete background that enables readers to design and implement hybrid metaheuristics to solve complex optimization problems (continuous/discrete, mono-objective/multi-objective, optimization under uncertainty) in a diverse range of application domains. Readers learn to solve large scale problems quickly and efficiently combining metaheuristics with complementary metaheuristics, mathematical programming, constraint programming and machine learning. Numerous real-world examples of problems and solutions demonstrate how hybrid metaheuristics are applied in such fields as networks, logistics and transportation, bio-medical, engineering design, scheduling.

  2. Sensor Compendium

    CERN Document Server

    Artuso, M; Bolla, G; Bortoletto, D; Caberera, B; Carlstrom, J E; Chang, C L; Cooper, W; Da Via, C; Demarteau, M; Fast, J; Frisch, H; Garcia-Sciveres, M; Golwala, S; Haber, C; Hall, J; Hoppe, E; Irwin, K D; Kagan, H; Kenney, C; Lee, A T; Lynn, D; Orrell, J; Pyle, M; Rusack, R; Sadrozinski, H; Sanchez, M C; Seiden, A; Trischuk, W; Vavra, J; Wetstein, M; Zhu, R-Y

    2013-01-01

    Sensors play a key role in detecting both charged particles and photons for all three frontiers in Particle Physics. The signals from an individual sensor that can be used include ionization deposited, phonons created, or light emitted from excitations of the material. The individual sensors are then typically arrayed for detection of individual particles or groups of particles. Mounting of new, ever higher performance experiments, often depend on advances in sensors in a range of performance characteristics. These performance metrics can include position resolution for passing particles, time resolution on particles impacting the sensor, and overall rate capabilities. In addition the feasible detector area and cost frequently provides a limit to what can be built and therefore is often another area where improvements are important. Finally, radiation tolerance is becoming a requirement in a broad array of devices. We present a status report on a broad category of sensors, including challenges for the future ...

  3. Wind Sensor

    OpenAIRE

    Li, Jiaoyang; Ni, Jiqin

    2014-01-01

    Wind measurement is needed in many practical and scientific research situations. Some specific applications require to precisely measuring both wind direction and wind speed at the same time. Current commercial sensors for wind direction and wind speed measurement usually use ultrasonic technology and the sensors are very expensive (> $1500). In addition, the sensors are large in dimension and cannot measure airflow patterns in high spatial resolution. Therefore new and low cost wind speed an...

  4. Gas Sensor

    KAUST Repository

    Luebke, Ryan

    2015-01-22

    A gas sensor using a metal organic framework material can be fully integrated with related circuitry on a single substrate. In an on-chip application, the gas sensor can result in an area-efficient fully integrated gas sensor solution. In one aspect, a gas sensor can include a first gas sensing region including a first pair of electrodes, and a first gas sensitive material proximate to the first pair of electrodes, wherein the first gas sensitive material includes a first metal organic framework material.

  5. Sensor web

    Science.gov (United States)

    Delin, Kevin A. (Inventor); Jackson, Shannon P. (Inventor)

    2011-01-01

    A Sensor Web formed of a number of different sensor pods. Each of the sensor pods include a clock which is synchronized with a master clock so that all of the sensor pods in the Web have a synchronized clock. The synchronization is carried out by first using a coarse synchronization which takes less power, and subsequently carrying out a fine synchronization to make a fine sync of all the pods on the Web. After the synchronization, the pods ping their neighbors to determine which pods are listening and responded, and then only listen during time slots corresponding to those pods which respond.

  6. Hybrid intermediaries

    OpenAIRE

    Cetorelli, Nicola

    2014-01-01

    I introduce the concept of hybrid intermediaries: financial conglomerates that control a multiplicity of entity types active in the "assembly line" process of modern financial intermediation, a system that has become known as shadow banking. The complex bank holding companies of today are the best example of hybrid intermediaries, but I argue that financial firms from the "nonbank" space can just as easily evolve into conglomerates with similar organizational structure, thus acquiring the cap...

  7. Hybrid composites

    CSIR Research Space (South Africa)

    Jacob John, Maya

    2009-04-01

    Full Text Available effect was observed for the elongation at break of the hybrid composites. The impact strength of the hybrid composites increased with the addition of glass fibres. The tensile and impact properties of thermoplastic natural rubber reinforced short... panels made from conventional structural materials. Figure 3 illustrates the performance of cellular biocomposite panels against conventional systems used for building and residential construction, namely a pre- cast pre-stressed hollow core concrete...

  8. Graphene Hybrid Materials in Gas Sensing Applications

    Directory of Open Access Journals (Sweden)

    Usman Latif

    2015-12-01

    Full Text Available Graphene, a two dimensional structure of carbon atoms, has been widely used as a material for gas sensing applications because of its large surface area, excellent conductivity, and ease of functionalization. This article reviews the most recent advances in graphene hybrid materials developed for gas sensing applications. In this review, synthetic approaches to fabricate graphene sensors, the nano structures of hybrid materials, and their sensing mechanism are presented. Future perspectives of this rapidly growing field are also discussed.

  9. Intraply Hybrid Composites Would Contain Control Strips

    Science.gov (United States)

    Chamis, Christos C.; Shiao, Chi-Yu

    1996-01-01

    "Smart" structural components with sensors and/or actuators distributed throughout their volumes made of intraply hybrid composite materials, according to proposal. Strips of hybrid control material interspersed with strips of ordinary (passive) composite material in some layers, providing distributed control capability. For example, near and far edges of plate bent upward by commanding bottom control strips to expand and simultaneously commanding upper control strips to contract.

  10. Chemical sensors

    Science.gov (United States)

    Lowell, J.R. Jr.; Edlund, D.J.; Friesen, D.T.; Rayfield, G.W.

    1991-07-02

    Sensors responsive to small changes in the concentration of chemical species are disclosed. The sensors comprise a mechanochemically responsive polymeric film capable of expansion or contraction in response to a change in its chemical environment. They are operatively coupled to a transducer capable of directly converting the expansion or contraction to a measurable electrical response. 9 figures.

  11. Pathogen Sensors

    Directory of Open Access Journals (Sweden)

    Joseph Irudayaraj

    2009-10-01

    Full Text Available The development of sensors for detecting foodborne pathogens has been motivated by the need to produce safe foods and to provide better healthcare. However, in the more recent times, these needs have been expanded to encompass issues relating to biosecurity, detection of plant and soil pathogens, microbial communities, and the environment. The range of technologies that currently flood the sensor market encompass PCR and microarray-based methods, an assortment of optical sensors (including bioluminescence and fluorescence, in addition to biosensor-based approaches that include piezoelectric, potentiometric, amperometric, and conductometric sensors to name a few. More recently, nanosensors have come into limelight, as a more sensitive and portable alternative, with some commercial success. However, key issues affecting the sensor community is the lack of standardization of the testing protocols and portability, among other desirable elements, which include timeliness, cost-effectiveness, user-friendliness, sensitivity and specificity. [...

  12. Smart Sensors

    Science.gov (United States)

    Corsi, C.

    2007-01-01

    The term "Smart Sensors" refers to sensors which contain both sensing and signal processing capabilities with objectives ranging from simple viewing to sophisticated remote sensing, surveillance, search/track, weapon guidance, robotics, perceptronics and intelligence applications. Recently this approach is achieving higher goals by a new and revolutionary sensors concept which introduced inside the sensor some of the basic functions of living eyes, such as dynamic stare, non-uniformity compensation, spatial and temporal filtering. New objectives and requirements are presented for this type of new infrared smart sensor systems. This paper is concerned with the front end of FPA microbolometers processing, namely, the enhancement of target-to-noise ratio by background clutter suppression and the improvement in target detection by "smart" and pattern correlation thresholding.

  13. Hybrid viscous damper with filtered integral force feedback control

    DEFF Research Database (Denmark)

    Høgsberg, Jan; Brodersen, Mark L.

    2016-01-01

    In hybrid damper systems active control devices are usually introduced to enhance the performance of otherwise passive dampers. In the present paper a hybrid damper concept is comprised of a passive viscous damper placed in series with an active actuator and a force sensor. The actuator motion...

  14. Electrical potential-assisted DNA hybridization. How to mitigate electrostatics for surface DNA hybridization.

    Science.gov (United States)

    Tymoczko, Jakub; Schuhmann, Wolfgang; Gebala, Magdalena

    2014-12-24

    Surface-confined DNA hybridization reactions are sensitive to the number and identity of DNA capture probes and experimental conditions such as the nature and the ionic strength of the electrolyte solution. When the surface probe density is high or the concentration of bulk ions is much lower than the concentration of ions within the DNA layer, hybridization is significantly slowed down or does not proceed at all. However, high-density DNA monolayers are attractive for designing high-sensitivity DNA sensors. Thus, circumventing sluggish DNA hybridization on such interfaces allows a high surface concentration of target DNA and improved signal/noise ratio. We present potential-assisted hybridization as a strategy in which an external voltage is applied to the ssDNA-modified interface during the hybridization process. Results show that a significant enhancement of hybridization can be achieved using this approach.

  15. Automotive sensors

    Science.gov (United States)

    Marek, Jiri; Illing, Matthias

    2003-01-01

    Sensors are an essential component of most electronic systems in the car. They deliver input parameters for comfort features, engine and emission control as well as for the active and passive safety systems. New technologies such as silicon micromachining play an important role for the introduction of these sensors in all vehicle classes. The importance and use of these sensor technologies in today"s automotive applications will be shown in this article. Finally an outlook on important current developments and new functions in the car will be given.

  16. Piezoceramic Sensors

    CERN Document Server

    Sharapov, Valeriy

    2011-01-01

    This book presents the latest and complete information about various types of piezosensors. A sensor is a converter of the measured physical size to an electric signal. Piezoelectric transducers and sensors are based on piezoelectric effects. They have proven to be versatile tools for the measurement of various processes. They are used for quality assurance, process control and for research and development in many different industries. In each area of application specific requirements to the parameters of transducers and sensors are developed. This book presents the fundamentals, technical des

  17. Hybrid optofluidic biosensors

    Science.gov (United States)

    Parks, Joshua W.

    Optofluidics, born of the desire to create a system containing microfluidic environments with integrated optical elements, has seen dramatic increases in popularity over the last 10 years. In particular, the application of this technology towards chip based molecular sensors has undergone significant development. The most sensitive of these biosensors interface liquid- and solid-core antiresonant reflecting optical waveguides (ARROWs). These sensor chips are created using conventional silicon microfabrication. As such, ARROW technology has previously been unable to utilize state-of-the-art microfluidic developments because the technology used--soft polydimethyl siloxane (PDMS) micromolded chips--is unamenable to the silicon microfabrication workflows implemented in the creation of ARROW detection chips. The original goal of this thesis was to employ hybrid integration, or the connection of independently designed and fabricated optofluidic and microfluidic chips, to create enhanced biosensors with the capability of processing and detecting biological samples on a single hybrid system. After successful demonstration of this paradigm, this work expanded into a new direction--direct integration of sensing and detection technologies on a new platform with dynamic, multi-dimensional photonic re-configurability. This thesis reports a number of firsts, including: • 1,000 fold optical transmission enhancement of ARROW optofluidic detection chips through thermal annealing, • Detection of single nucleic acids on a silicon-based ARROW chip, • Hybrid optofluidic integration of ARROW detection chips and passive PDMS microfluidic chips, • Hybrid optofluidic integration of ARROW detection chips and actively controllable PDMS microfluidic chips with integrated microvalves, • On-chip concentration and detection of clinical Ebola nucleic acids, • Multimode interference (MMI) waveguide based wavelength division multiplexing for detection of single influenza virions,

  18. Vibrissa Sensor

    Science.gov (United States)

    2016-09-30

    Docket No. 300119 1 of 11 VIBRISSA SENSOR STATEMENT OF GOVERNMENT INTEREST [0001] The invention described herein may be manufactured and used by...REFERENCE TO OTHER PATENT APPLICATIONS [0002] None. BACKGROUND OF THE INVENTION (1) Field of the Invention [0003] The present invention provides a... measured as strain. [0009] Thus, there is a need for a sensor utilizing a vibrissa that can detect dynamic and high frequency movement of the

  19. Hybrid optical acoustic seafloor mapping

    Science.gov (United States)

    Inglis, Gabrielle

    The oceanographic research and industrial communities have a persistent demand for detailed three dimensional sea floor maps which convey both shape and texture. Such data products are used for archeology, geology, ship inspection, biology, and habitat classification. There are a variety of sensing modalities and processing techniques available to produce these maps and each have their own potential benefits and related challenges. Multibeam sonar and stereo vision are such two sensors with complementary strengths making them ideally suited for data fusion. Data fusion approaches however, have seen only limited application to underwater mapping and there are no established methods for creating hybrid, 3D reconstructions from two underwater sensing modalities. This thesis develops a processing pipeline to synthesize hybrid maps from multi-modal survey data. It is helpful to think of this processing pipeline as having two distinct phases: Navigation Refinement and Map Construction. This thesis extends existing work in underwater navigation refinement by incorporating methods which increase measurement consistency between both multibeam and camera. The result is a self consistent 3D point cloud comprised of camera and multibeam measurements. In map construction phase, a subset of the multi-modal point cloud retaining the best characteristics of each sensor is selected to be part of the final map. To quantify the desired traits of a map several characteristics of a useful map are distilled into specific criteria. The different ways that hybrid maps can address these criteria provides justification for producing them as an alternative to current methodologies. The processing pipeline implements multi-modal data fusion and outlier rejection with emphasis on different aspects of map fidelity. The resulting point cloud is evaluated in terms of how well it addresses the map criteria. The final hybrid maps retain the strengths of both sensors and show significant improvement

  20. Vibration sensors

    Science.gov (United States)

    Gupta, Amita; Singh, Ranvir; Ahmad, Amir; Kumar, Mahesh

    2003-10-01

    Today, vibration sensors with low and medium sensitivities are in great demand. Their applications include robotics, navigation, machine vibration monitoring, isolation of precision equipment & activation of safety systems e.g. airbags in automobiles. Vibration sensors have been developed at SSPL, using silicon micromachining to sense vibrations in a system in the 30 - 200 Hz frequency band. The sensing element in the silicon vibration sensor is a seismic mass suspended by thin silicon hinges mounted on a metallized glass plate forming a parallel plate capacitor. The movement of the seismic mass along the vertical axis is monitored to sense vibrations. This is obtained by measuring the change in capacitance. The movable plate of the parallel plate capacitor is formed by a block connected to a surrounding frame by four cantilever beams located on sides or corners of the seismic mass. This element is fabricated by silicon micromachining. Several sensors in the chip sizes 1.6 cm x 1.6 cm, 1 cm x 1 cm and 0.7 cm x 0.7 cm have been fabricated. Work done on these sensors, techniques used in processing and silicon to glass bonding are presented in the paper. Performance evaluation of these sensors is also discussed.

  1. MEMS sensor technology

    Institute of Scientific and Technical Information of China (English)

    Jiang Zhuangde

    2012-01-01

    Since 1992 the author has led research group in Xi'an Jiaotong University to investigate and develop microelectro mechanical systems (MEMS) sensors, including pressure sensor, acceleration sensor, gas sensor, viscosity & density sensor, polymerase chain reaction (PCR) chip and integrated sensor etc. This paper introduces the technologies and research results related to MEMS sensors we achieved in the last 20 years.

  2. Coverage analysis for sensor networks based on Clifford algebra

    Institute of Scientific and Technical Information of China (English)

    XIE WeiXin; CAO WenMing; MENG Shan

    2008-01-01

    The coverage performance is the foundation of information acquisition in distrib-uted sensor networks. The previously proposed coverage work was mostly based on unit disk coverage model or ball coverage model in 2D or 3D space, respectively. However, most methods cannot give a homogeneous coverage model for targets with hybrid types. This paper presents a coverage analysis approach for sensor networks based on Clifford algebra and establishes a homogeneous coverage model for sensor networks with hybrid types of targets. The effectiveness of the approach is demonstrated with examples.

  3. Hybrid microelectronic technology

    Science.gov (United States)

    Moran, P.

    Various areas of hybrid microelectronic technology are discussed. The topics addressed include: basic thick film processing, thick film pastes and substrates, add-on components and attachment methods, thin film processing, and design of thick film hybrid circuits. Also considered are: packaging hybrid circuits, automating the production of hybrid circuits, application of hybrid techniques, customer's view of hybrid technology, and quality control and assurance in hybrid circuit production.

  4. Load sensor

    NARCIS (Netherlands)

    Van den Ende, D.; Almeida, P.M.R.; Dingemans, T.J.; Van der Zwaag, S.

    2007-01-01

    The invention relates to a load sensor comprising a polymer matrix and a piezo-ceramic material such as PZT, em not bedded in the polymer matrix, which together form a compos not ite, wherein the polymer matrix is a liquid crystalline resin, and wherein the piezo-ceramic material is a PZT powder for

  5. Gas sensor

    Science.gov (United States)

    Schmid, Andreas K.; Mascaraque, Arantzazu; Santos, Benito; de la Figuera, Juan

    2014-09-09

    A gas sensor is described which incorporates a sensor stack comprising a first film layer of a ferromagnetic material, a spacer layer, and a second film layer of the ferromagnetic material. The first film layer is fabricated so that it exhibits a dependence of its magnetic anisotropy direction on the presence of a gas, That is, the orientation of the easy axis of magnetization will flip from out-of-plane to in-plane when the gas to be detected is present in sufficient concentration. By monitoring the change in resistance of the sensor stack when the orientation of the first layer's magnetization changes, and correlating that change with temperature one can determine both the identity and relative concentration of the detected gas. In one embodiment the stack sensor comprises a top ferromagnetic layer two mono layers thick of cobalt deposited upon a spacer layer of ruthenium, which in turn has a second layer of cobalt disposed on its other side, this second cobalt layer in contact with a programmable heater chip.

  6. 耐温布拉格光栅传感器用纳米蒙脱土改性环氧丙烯酸酯涂层的制备%Preparation of OMMT/EA hybrid coating with high temperature resistance for FBG sensors

    Institute of Scientific and Technical Information of China (English)

    殷燕子; 王继辉; 李晗; 孙九霄; 冀运东

    2013-01-01

    Hybrid coating of epoxy acrylate(EA) and modified nano organic montmorillonite (OMMT) was prepared for optical fiber Bragg grating(FBG) sensors. Mechanical performance testing and heat performance testing were carried on the OMMT/EA hybrid coating. The results demonstrate that, the performance of OMMT/EA coating with 2% mass fraction of nano OMMT is the best. SEM photographs and XRD analysis show that the single-lamellar nano OMMT is even distribution in EA. The tensile property, adhesion force, pencil hardness and glass temperature of OMMT/EA coating can be improved by adding nano OMMT, while the linear thermal expansion coefficient is decreased. FBG sensors with OMMT/EA coating and EA were embedded in the composites which processed under certain temperature and pressure, respectively. Comparing two groups of data, the results show that the modified OMMT/EA coating could obviously decrease the hysteresis of FBG sensor signals.%对纳米蒙脱土(OMMT)进行改性,用改性后的蒙脱土对环氧丙烯酸酯(EA)涂层进行改性,并对改性后的OMMT/EA涂层进行了力学性能和热性能测试.研究表明,加入质量分数2%改性蒙脱土的OMMT/EA涂层性能最好.OMMT的加入可提高涂层的拉伸性能、附着力和硬度,并有效提高EA涂层的玻璃化温度,降低其线性热膨胀系数.电镜和XRD分析表明,OMMT在OMMT/EA涂层中以单层片层均匀分布.将涂有该涂层的光纤布拉格光栅(FBG)传感器埋入复合材料中,经一定温度与压力成型后,与涂有未改性EA涂层的FBG传感器采集到的信号进行对比,发现改性后涂层可明显降低FBG传感器信号滞后现象.

  7. Hybrid neural network models of transducers

    Science.gov (United States)

    Xie, Shilin; Zhang, Xinong; Chen, Shenglai; Zhu, Changchun

    2011-10-01

    A hybrid neural network (NN) approach is proposed and applied to modeling of transducers in the paper. The modeling procedures are also presented in detail. First, the simulated studies on the modeling of single input-single output and multi input-multi output transducers are conducted respectively by use of the developed hybrid NN scheme. Secondly, the hybrid NN modeling approach is utilized to characterize a six-axis force sensor prototype based on the measured data. The results show that the hybrid NN approach can significantly improve modeling precision in comparison with the conventional modeling method. In addition, the method is superior to NN black-box modeling because the former possesses smaller network scale, higher convergence speed, higher model precision and better generalization performance.

  8. Hybrid Gear

    Science.gov (United States)

    Handschuh, Robert F. (Inventor); Roberts, Gary D. (Inventor)

    2016-01-01

    A hybrid gear consisting of metallic outer rim with gear teeth and metallic hub in combination with a composite lay up between the shaft interface (hub) and gear tooth rim is described. The composite lay-up lightens the gear member while having similar torque carrying capability and it attenuates the impact loading driven noise/vibration that is typical in gear systems. The gear has the same operational capability with respect to shaft speed, torque, and temperature as an all-metallic gear as used in aerospace gear design.

  9. Hybrid Qualifications

    DEFF Research Database (Denmark)

    has turned out as a major focus of European education and training policies and certainly is a crucial principle underlying the European Qualifications Framework (EQF). In this context, «hybrid qualifications» (HQ) may be seen as an interesting approach to tackle these challenges as they serve «two...... masters», i.e. by producing skills for the labour market and enabling individuals to progress more or less directly to higher education. The specific focus of this book is placed on conditions, structures and processes which help to combine VET with qualifications leading into higher education...

  10. Biomolecule/nanomaterial hybrid systems for nanobiotechnology.

    Science.gov (United States)

    Tel-Vered, Ran; Yehezkeli, Omer; Willner, Itamar

    2012-01-01

    The integration of biomolecules with metallic or semiconductor nanoparticles or carbon nanotubes yields new hybrid nanostructures of unique features that combine the properties of the biomolecules and of the nano-elements. These unique features of the hybrid biomolecule/nanoparticle systems provide the basis for the rapid development of the area of nanobiotechnology. Recent advances in the implementation of hybrid materials consisting of biomolecules and metallic nanoparticles or semiconductor quantum dots will be discussed. The following topics will be exemplified: (i) The electrical wiring of redox enzymes with electrodes by means of metallic nanoparticles or carbon nanotubes, and the application of the modified electrodes as amperometric biosensors or for the construction of biofuel cells. (ii) The biocatalytic growth of metallic nanoparticles as a means to construct optical or electrical sensors. (iii) The functionalization of semiconductor quantum dots with biomolecules and the application of the hybrid nanostructures for developing different optical sensors, including intracellular sensor systems. (iv) The use of biomolecule-metallic nanoparticle nanostructures as templates for growing metallic nanowires, and the construction of fuel-driven nano-transporters.

  11. Rapid Global Calibration Technology for Hybrid Visual Inspection System

    Directory of Open Access Journals (Sweden)

    Tao Liu

    2017-06-01

    Full Text Available Vision-based methods for product quality inspection are playing an increasingly important role in modern industries for their good performance and high efficiency. A hybrid visual inspection system, which consists of an industrial robot with a flexible sensor and several stationary sensors, has been widely applied in mass production, especially in automobile manufacturing. In this paper, a rapid global calibration method for the hybrid visual inspection system is proposed. Global calibration of a flexible sensor is performed first based on the robot kinematic. Then, with the aid of the calibrated flexible sensor, stationary sensors are calibrated globally one by one based on homography. Only a standard sphere and an auxiliary target with a 2D planar pattern are applied during the system global calibration, and the calibration process can be easily re-performed during the system’s periodical maintenance. An error compensation method is proposed for the hybrid inspection system, and the final accuracy of the hybrid system is evaluated with the deviation and correlation coefficient between the measured results of the hybrid system and Coordinate Measuring Machine (CMM. An accuracy verification experiment shows that deviation of over 95% of featured points are less than ±0.3 mm, and the correlation coefficients of over 85% of points are larger than 0.7.

  12. Rapid Global Calibration Technology for Hybrid Visual Inspection System.

    Science.gov (United States)

    Liu, Tao; Yin, Shibin; Guo, Yin; Zhu, Jigui

    2017-06-19

    Vision-based methods for product quality inspection are playing an increasingly important role in modern industries for their good performance and high efficiency. A hybrid visual inspection system, which consists of an industrial robot with a flexible sensor and several stationary sensors, has been widely applied in mass production, especially in automobile manufacturing. In this paper, a rapid global calibration method for the hybrid visual inspection system is proposed. Global calibration of a flexible sensor is performed first based on the robot kinematic. Then, with the aid of the calibrated flexible sensor, stationary sensors are calibrated globally one by one based on homography. Only a standard sphere and an auxiliary target with a 2D planar pattern are applied during the system global calibration, and the calibration process can be easily re-performed during the system's periodical maintenance. An error compensation method is proposed for the hybrid inspection system, and the final accuracy of the hybrid system is evaluated with the deviation and correlation coefficient between the measured results of the hybrid system and Coordinate Measuring Machine (CMM). An accuracy verification experiment shows that deviation of over 95% of featured points are less than ±0.3 mm, and the correlation coefficients of over 85% of points are larger than 0.7.

  13. Intuitionistic hybrid logic

    DEFF Research Database (Denmark)

    Braüner, Torben

    2011-01-01

    Intuitionistic hybrid logic is hybrid modal logic over an intuitionistic logic basis instead of a classical logical basis. In this short paper we introduce intuitionistic hybrid logic and we give a survey of work in the area.......Intuitionistic hybrid logic is hybrid modal logic over an intuitionistic logic basis instead of a classical logical basis. In this short paper we introduce intuitionistic hybrid logic and we give a survey of work in the area....

  14. Continuity Controlled Hybrid Automata

    OpenAIRE

    Bergstra, J. A.; Middelburg, C.A.

    2004-01-01

    We investigate the connections between the process algebra for hybrid systems of Bergstra and Middelburg and the formalism of hybrid automata of Henzinger et al. We give interpretations of hybrid automata in the process algebra for hybrid systems and compare them with the standard interpretation of hybrid automata as timed transition systems. We also relate the synchronized product operator on hybrid automata to the parallel composition operator of the process algebra. It turns out that the f...

  15. Optical network of silicon micromachined sensors

    Science.gov (United States)

    Wilson, Mark L.; Burns, David W.; Zook, J. David

    1996-03-01

    The Honeywell Technology Center, in collaboration with the University of Wisconsin and the Mobil Corporation, and under funding from this ARPA sponsored program, are developing a new type of `hybrid' micromachined silicon/fiber optic sensor that utilizes the best attributes of each technology. Fiber optics provide a noise free method to read out the sensor without electrical power required at the measurement point. Micromachined silicon sensor techniques provide a method to design many different types of sensors such as temperature, pressure, acceleration, or magnetic field strength and report the sensor data using FDM methods. Our polysilicon resonant microbeam structures have a built in Fabry-Perot interferometer that offers significant advantages over other configurations described in the literature. Because the interferometer is an integral part of the structure, the placement of the fiber becomes non- critical, and packaging issues become considerably simpler. The interferometer spacing are determined by the thin-film fabrication processes and therefore can be extremely well controlled. The main advantage, however, is the integral vacuum cavity that ensures high Q values. Testing results have demonstrated relaxed alignment tolerances in packaging these devices, with an excellent Signal to Noise Ratio. Networks of 16 or more sensors are currently being developed. STORM (Strain Transduction by Optomechanical Resonant Microbeams) sensors can also provide functionality and self calibration information which can be used to improve the overall system reliability. Details of the sensor and network design, as well as test results, are presented.

  16. Pressure sensor

    Science.gov (United States)

    Mee, David K.; Ripley, Edward B.; Nienstedt, Zachary C.; Nienstedt, Alex W.; Howell, Jr., Layton N.

    2015-09-29

    Disclosed is a passive, in-situ pressure sensor. The sensor includes a sensing element having a ferromagnetic metal and a tension inducing mechanism coupled to the ferromagnetic metal. The tension inducing mechanism is operable to change a tensile stress upon the ferromagnetic metal based on a change in pressure in the sensing element. Changes in pressure are detected based on changes in the magnetic switching characteristics of the ferromagnetic metal when subjected to an alternating magnetic field caused by the change in the tensile stress. The sensing element is embeddable in a closed system for detecting pressure changes without the need for any penetrations of the system for power or data acquisition by detecting changes in the magnetic switching characteristics of the ferromagnetic metal caused by the tensile stress.

  17. Semiconductor sensors

    Energy Technology Data Exchange (ETDEWEB)

    Hartmann, Frank, E-mail: frank.hartmann@cern.c [Institut fuer Experimentelle Kernphysik, KIT, Wolfgang-Gaede-Str. 1, Karlsruhe 76131 (Germany)

    2011-02-01

    Semiconductor sensors have been around since the 1950s and today, every high energy physics experiment has one in its repertoire. In Lepton as well as Hadron colliders, silicon vertex and tracking detectors led to the most amazing physics and will continue doing so in the future. This contribution tries to depict the history of these devices exemplarily without being able to honor all important developments and installations. The current understanding of radiation damage mechanisms and recent R and D topics demonstrating the future challenges and possible technical solutions for the SLHC detectors are presented. Consequently semiconductor sensor candidates for an LHC upgrade and a future linear collider are also briefly introduced. The work presented here is a collage of the work of many individual silicon experts spread over several collaborations across the world.

  18. Corrosion sensor

    Science.gov (United States)

    Glass, Robert S.; Clarke, Jr., Willis L.; Ciarlo, Dino R.

    1994-01-01

    A corrosion sensor array incorporating individual elements for measuring various elements and ions, such as chloride, sulfide, copper, hydrogen (pH), etc. and elements for evaluating the instantaneous corrosion properties of structural materials. The exact combination and number of elements measured or monitored would depend upon the environmental conditions and materials used which are subject to corrosive effects. Such a corrosion monitoring system embedded in or mounted on a structure exposed to the environment would serve as an early warning system for the onset of severe corrosion problems for the structure, thus providing a safety factor as well as economic factors. The sensor array is accessed to an electronics/computational system, which provides a means for data collection and analysis.

  19. Study of hybrid orientation structure wafer*

    Institute of Scientific and Technical Information of China (English)

    Tan Kaizhou; Zhang Jing; Xu Shiliu; Zhang Zhengfan; Yang Yonghui; Chen Jun; Liang Tao

    2011-01-01

    Two types of 5 μm thick hybrid orientation structure wafers, which were integrated by (110) or (100) orientation silicon wafers as the substrate, have been investigated for 15-40 V voltage ICs and MEMS sensor applications. They have been obtained mainly by SOI wafer bonding and a non-selective epitaxy technique, and have been presented in China for the first time. The thickness of BOX SiO2 buried in wafer is 220 nm. It has been found that the quality of hybrid orientation structure with (100) wafer substrate is better than that with (110) wafer substrate by “Sirtl defect etching of HOSW”.

  20. Hybridized tetraquarks

    Directory of Open Access Journals (Sweden)

    A. Esposito

    2016-07-01

    Full Text Available We propose a new interpretation of the neutral and charged X,Z exotic hadron resonances. Hybridized-tetraquarks are neither purely compact tetraquark states nor bound or loosely bound molecules but rather a manifestation of the interplay between the two. While meson molecules need a negative or zero binding energy, its counterpart for h-tetraquarks is required to be positive. The formation mechanism of this new class of hadrons is inspired by that of Feshbach metastable states in atomic physics. The recent claim of an exotic resonance in the Bs0π± channel by the D0 Collaboration and the negative result presented subsequently by the LHCb Collaboration are understood in this scheme, together with a considerable portion of available data on X,Z particles. Considerations on a state with the same quantum numbers as the X(5568 are also made.

  1. Hybridized Tetraquarks

    CERN Document Server

    Esposito, A.; Polosa, A.D.

    2016-01-01

    We propose a new interpretation of the neutral and charged X, Z exotic hadron resonances. Hybridized-tetraquarks are neither purely compact tetraquark states nor bound or loosely bound molecules. The latter would require a negative or zero binding energy whose counterpart in h-tetraquarks is a positive quantity. The formation mechanism of this new class of hadrons is inspired by that of Feshbach metastable states in atomic physics. The recent claim of an exotic resonance in the Bs pi+- channel by the D0 collaboration and the negative result presented subsequently by the LHCb collaboration are understood in this scheme, together with a considerable portion of available data on X, Z particles. Considerations on a state with the same quantum numbers as the X(5568) are also made.

  2. Thermal flow micro sensors

    OpenAIRE

    Elwenspoek, M.

    1999-01-01

    A review is given on sensors fabricated by silicon micromachining technology using the thermal domain for the measurement of fluid flow. Attention is paid especially to performance and geometry of the sensors. Three basic types of thermal flow sensors are discussed: anemometers, calorimetric flow sensors and time of flight flow sensors. Anemometers may comprise several heaters and temperature sensors and from a geometric point of view are similar sometimes for calorimetric flow sensors. We fi...

  3. Hydrogen sensor

    Science.gov (United States)

    Duan, Yixiang; Jia, Quanxi; Cao, Wenqing

    2010-11-23

    A hydrogen sensor for detecting/quantitating hydrogen and hydrogen isotopes includes a sampling line and a microplasma generator that excites hydrogen from a gas sample and produces light emission from excited hydrogen. A power supply provides power to the microplasma generator, and a spectrometer generates an emission spectrum from the light emission. A programmable computer is adapted for determining whether or not the gas sample includes hydrogen, and for quantitating the amount of hydrogen and/or hydrogen isotopes are present in the gas sample.

  4. Continuity Controlled Hybrid Automata

    NARCIS (Netherlands)

    Bergstra, J.A.; Middelburg, C.A.

    2004-01-01

    We investigate the connections between the process algebra for hybrid systems of Bergstra and Middelburg and the formalism of hybrid automata of Henzinger et al. We give interpretations of hybrid automata in the process algebra for hybrid systems and compare them with the standard interpretation of

  5. Continuity controlled Hybrid Automata

    NARCIS (Netherlands)

    Bergstra, J.A.; Middelburg, C.A.

    2008-01-01

    We investigate the connections between the process algebra for hybrid systems of Bergstra and Middelburg and the formalism of hybrid automata of Henzinger et al. We give interpretations of hybrid automata in the process algebra for hybrid systems and compare them with the standard interpretation of

  6. Microcantilever sensor

    Science.gov (United States)

    Thundat, T.G.; Wachter, E.A.

    1998-02-17

    An improved microcantilever sensor is fabricated with at least one microcantilever attached to a piezoelectric transducer. The microcantilever is partially surface treated with a compound selective substance having substantially exclusive affinity for a targeted compound in a monitored atmosphere. The microcantilever sensor is also provided with a frequency detection means and a bending detection means. The frequency detection means is capable of detecting changes in the resonance frequency of the vibrated microcantilever in the monitored atmosphere. The bending detection means is capable of detecting changes in the bending of the vibrated microcantilever in the monitored atmosphere coactively with the frequency detection means. The piezoelectric transducer is excited by an oscillator means which provides a signal driving the transducer at a resonance frequency inducing a predetermined order of resonance on the partially treated microcantilever. Upon insertion into a monitored atmosphere, molecules of the targeted chemical attach to the treated regions of the microcantilever resulting in a change in oscillating mass as well as a change in microcantilever spring constant thereby influencing the resonant frequency of the microcantilever oscillation. Furthermore, the molecular attachment of the target chemical to the treated regions induce areas of mechanical strain in the microcantilever consistent with the treated regions thereby influencing microcantilever bending. The rate at which the treated microcantilever accumulates the target chemical is a function of the target chemical concentration. Consequently, the extent of microcantilever oscillation frequency change and bending is related to the concentration of target chemical within the monitored atmosphere. 16 figs.

  7. Characterization of a hybrid-smectite nanomaterial formed by immobilizing of N-pyridin-2-ylmethylsuccinamic acid onto (3-aminopropyl)triethoxysilane modified smectite and its potentiometric sensor application

    Science.gov (United States)

    Topcu, Cihan; Caglar, Sema; Caglar, Bulent; Coldur, Fatih; Cubuk, Osman; Sarp, Gokhan; Gedik, Kubra; Bozkurt Cirak, Burcu; Tabak, Ahmet

    2016-09-01

    A novel N-pyridin-2-ylmethylsuccinamic acid-functionalized smectite nanomaterial was synthesized by immobilizing of N-pyridin-2-ylmethylsuccinamic acid through chemical bonding onto (3-aminopropyl)triethoxysilane modified smectite. The structural, thermal, morphological and surface properties of raw, silane-grafted and the N-pyridin-2-ylmethylsuccinamic acid-functionalized smectites were investigated by various characterization techniques. The thermal analysis data showed the presence of peaks in the temperature range from 200 °C to 600 °C due to the presence of physically adsorbed silanes, intercalated silanes, surface grafted silanes and chemically grafted silane molecules between the smectite layers. The powder x-ray diffraction patterns clearly indicated that the aminopropyl molecules also intercalated into the smectite interlayers as bilayer arrangement whereas N-pyridin-2-ylmethylsuccinamic acid molecules were only attached to 3-aminopropyltriethoxysilane molecules on the external surface and edges of clay and they did not intercalate. Fourier transform infrared spectroscopy confirms N-pyridin-2-ylmethylsuccinamic acid molecules bonding through the amide bond between the amine group of aminopropyltriethoxysilane molecules and a carboxylic acid functional group of N-pyridin-2-ylmethylsuccinamic acid molecules. The guest molecules functionalized onto the smectite caused significant alterations in the textural and morphological parameters of the raw smectite. The anchoring of N-pyridin-2-ylmethylsuccinamic acid molecules led to positive electrophoretic mobility values when compared to starting materials. N-pyridin-2-ylmethylsuccinamic acid-functionalized smectite was employed as an electroactive ingredient in the structure of potentiometric PVC-membrane sensor. The sensor exhibited more selective potentiometric response towards chlorate ions compared to the other common anionic species.

  8. Graphene Hybrid Materials in Gas Sensing Applications †

    Science.gov (United States)

    Latif, Usman; Dickert, Franz L.

    2015-01-01

    Graphene, a two dimensional structure of carbon atoms, has been widely used as a material for gas sensing applications because of its large surface area, excellent conductivity, and ease of functionalization. This article reviews the most recent advances in graphene hybrid materials developed for gas sensing applications. In this review, synthetic approaches to fabricate graphene sensors, the nano structures of hybrid materials, and their sensing mechanism are presented. Future perspectives of this rapidly growing field are also discussed. PMID:26690156

  9. Hybrid-Actuated Finger Prosthesis with Tactile Sensing

    OpenAIRE

    2013-01-01

    Finger prostheses are devices developed to emulate the functionality of natural human fingers. On top of their aesthetic appearance in terms of shape, size and colour, such biomimetic devices require a high level of dexterity. They must be capable of gripping an object, and even manipulating it in the hand. This paper presents a biomimetic robotic finger actuated by a hybrid mechanism and integrated with a tactile sensor. The hybrid actuation mechanism comprises a DC micromotor and a Shape Me...

  10. Sensors for Entertainment.

    Science.gov (United States)

    Lamberti, Fabrizio; Sanna, Andrea; Rokne, Jon

    2016-07-15

    Sensors are becoming ubiquitous in all areas of science, technology, and society. In this Special Issue on "Sensors for Entertainment", developments in progress and the current state of application scenarios for sensors in the field of entertainment is explored.

  11. DNA and RNA sensor

    Institute of Scientific and Technical Information of China (English)

    LIU; Tao; LIN; Lin; ZHAO; Hong; JIANG; Long

    2005-01-01

    This review summarizes recent advances in DNA sensor. Major areas of DNA sensor covered in this review include immobilization methods of DNA, general techniques of DNA detection and application of nanoparticles in DNA sensor.

  12. Engineering Hybrid Chemotaxis Receptors in Bacteria.

    Science.gov (United States)

    Bi, Shuangyu; Pollard, Abiola M; Yang, Yiling; Jin, Fan; Sourjik, Victor

    2016-09-16

    Most bacteria use transmembrane sensors to detect a wide range of environmental stimuli. A large class of such sensors are the chemotaxis receptors used by motile bacteria to follow environmental chemical gradients. In Escherichia coli, chemotaxis receptors are known to mediate highly sensitive responses to ligands, making them potentially useful for biosensory applications. However, with only four ligand-binding chemotaxis receptors, the natural ligand spectrum of E. coli is limited. The design of novel chemoreceptors to extend the sensing capabilities of E. coli is therefore a critical aspect of chemotaxis-based biosensor development. One path for novel sensor design is to harvest the large natural diversity of chemosensory functions found in bacteria by creating hybrids that have the signaling domain from E. coli chemotaxis receptors and sensory domains from other species. In this work, we demonstrate that the E. coli receptor Tar can be successfully combined with most typical sensory domains found in chemotaxis receptors and in evolutionary-related two-component histidine kinases. We show that such functional hybrids can be generated using several different fusion points. Our work further illustrates how hybrid receptors could be used to quantitatively characterize ligand specificity of chemotaxis receptors and histidine kinases using standardized assays in E. coli.

  13. On-chip magnetic bead-based DNA melting curve analysis using a magnetoresistive sensor

    Energy Technology Data Exchange (ETDEWEB)

    Rizzi, Giovanni, E-mail: giori@nanotech.dtu.dk; Østerberg, Frederik W.; Henriksen, Anders D.; Dufva, Martin; Hansen, Mikkel F., E-mail: mikkel.hansen@nanotech.dtu.dk

    2015-04-15

    We present real-time measurements of DNA melting curves in a chip-based system that detects the amount of surface-bound magnetic beads using magnetoresistive magnetic field sensors. The sensors detect the difference between the amount of beads bound to the top and bottom sensor branches of the differential sensor geometry. The sensor surfaces are functionalized with wild type (WT) and mutant type (MT) capture probes, differing by a single base insertion (a single nucleotide polymorphism, SNP). Complementary biotinylated targets in suspension couple streptavidin magnetic beads to the sensor surface. The beads are magnetized by the field arising from the bias current passed through the sensors. We demonstrate the first on-chip measurements of the melting of DNA hybrids upon a ramping of the temperature. This overcomes the limitation of using a single washing condition at constant temperature. Moreover, we demonstrate that a single sensor bridge can be used to genotype a SNP. - Highlights: • We apply magnetoresistive sensors to study solid-surface hybridization kinetics of DNA. • We measure DNA melting profiles for perfectly matching DNA duplexes and for a single base mismatch. • We present a procedure to correct for temperature dependencies of the sensor output. • We reliably extract melting temperatures for the DNA hybrids. • We demonstrate direct measurement of differential binding signal for two probes on a single sensor.

  14. Advances in wireless sensors and sensor networks

    CERN Document Server

    Mukhopadhyay, Subhas Chandra; Leung, Henry

    2010-01-01

    Written by experts, this book illustrates and collects recent advances in wireless sensors and sensor networks. It provides clever support for scientists, students and researchers in order to stimulate exchange and discussions for further developments.

  15. Optical arc sensor using energy harvesting power source

    Science.gov (United States)

    Choi, Kyoo Nam; Rho, Hee Hyuk

    2016-06-01

    Wireless sensors without external power supply gained considerable attention due to convenience both in installation and operation. Optical arc detecting sensor equipping with self sustaining power supply using energy harvesting method was investigated. Continuous energy harvesting method was attempted using thermoelectric generator to supply standby power in micro ampere scale and operating power in mA scale. Peltier module with heat-sink was used for high efficiency electricity generator. Optical arc detecting sensor with hybrid filter showed insensitivity to fluorescent and incandescent lamps under simulated distribution panel condition. Signal processing using integrating function showed selective arc discharge detection capability to different arc energy levels, with a resolution below 17J energy difference, unaffected by bursting arc waveform. The sensor showed possibility for application to arc discharge detecting sensor in power distribution panel. Also experiment with proposed continuous energy harvesting method using thermoelectric power showed possibility as a self sustainable power source of remote sensor.

  16. Characterization of active CMOS sensors for capacitively coupled pixel detectors

    Energy Technology Data Exchange (ETDEWEB)

    Hirono, Toko; Gonella, Laura; Janssen, Jens; Hemperek, Tomasz; Huegging, Fabian; Krueger, Hans; Wermes, Norbert [Institute of Physics, University of Bonn (Germany); Peric, Ivan [Institut fuer Prozessdatenverarbeitung und Elektronik, Karlsruher Institut fuer Technologie, Karlsruhe (Germany)

    2015-07-01

    Active CMOS pixel sensor is one of the most attractive candidates for detectors of upcoming particle physics experiments. In contrast to conventional sensors of hybrid detectors, signal processing circuit can be integrated in the active CMOS sensor. The characterization and optimization of the pixel circuit are indispensable to obtain a good performance from the sensors. The prototype chips of the active CMOS sensor were fabricated in the AMS 180nm and L-Foundry 150 nm CMOS processes, respectively a high voltage and high resistivity technology. Both chips have a charge sensitive amplifier and a comparator in each pixel. The chips are designed to be glued to the FEI4 pixel readout chip. The signals from 3 pixels of the prototype chips are capacitively coupled to the FEI4 input pads. We have performed lab tests and test beams to characterize the prototypes. In this presentation, the measurement results of the active CMOS prototype sensors are shown.

  17. Optical arc sensor using energy harvesting power source

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Kyoo Nam, E-mail: knchoi@inu.ac.kr; Rho, Hee Hyuk, E-mail: rdoubleh0902@inu.ac.kr [Dept. of Information and Telecommunication Engineering Incheon National University Incheon 22012 (Korea, Republic of)

    2016-06-03

    Wireless sensors without external power supply gained considerable attention due to convenience both in installation and operation. Optical arc detecting sensor equipping with self sustaining power supply using energy harvesting method was investigated. Continuous energy harvesting method was attempted using thermoelectric generator to supply standby power in micro ampere scale and operating power in mA scale. Peltier module with heat-sink was used for high efficiency electricity generator. Optical arc detecting sensor with hybrid filter showed insensitivity to fluorescent and incandescent lamps under simulated distribution panel condition. Signal processing using integrating function showed selective arc discharge detection capability to different arc energy levels, with a resolution below 17 J energy difference, unaffected by bursting arc waveform. The sensor showed possibility for application to arc discharge detecting sensor in power distribution panel. Also experiment with proposed continuous energy harvesting method using thermoelectric power showed possibility as a self sustainable power source of remote sensor.

  18. 面向混合业务的无线传感器网络能量有效接入策略%Eenergy effiency access strategy:towards hybrid wireless sensor network

    Institute of Scientific and Technical Information of China (English)

    王亚松; 张钦宇; 李云鹤; 韩晶

    2013-01-01

    A dynamically access mechanism of non-real-time sensor nodes with adaptive listening and sleeping, against the background, co-existence of real-time traffic and non-real-time traffic in the networks, was studied. The energy consumption is very slow while the node is in a sleep state;however, the long sleep time may make the network nodes miss transmission opportunity. Thus, according to the usage of the channel, a reasonable set of wireless sensor network nodes sleep time in the network energy consumption and transmission efficiency could be adjusted to maximize the energy transmission efficiency of wireless sensor network. Firstly, the continuous-time Markov modeling the problem was used and analyzed. Then system model based on perturbation analysis theory was proposed to obtain the gradient algorithm for solving the optimal sleep time. Finally, the feasibility of the recommended program is verified by comparing the theoretical results and computer simulation.%研究了在实时业务和非实时业务同时存在的混合背景下,非实时业务的无线传感器节点自适应侦听和睡眠的动态接入机制。网络节点处于睡眠状态时所需的能量很低,节约了无线传感器网络节点的平均能量消耗;但是,过长的睡眠时间可能使得网络节点错失传输机会。因此,根据信道的使用情况,合理地设定无线传感器网络节点的睡眠时间,能够在网络能量消耗和传输效率之间进行调整,从而最大化无线传感器网络的能量传输效率。首先,利用连续时间 Markov 方法对问题进行建模,并利用基于摄动分析理论对系统模型进行分析,获得求解无线传感器网络能量效率最大化的最优睡眠时间梯度算法。最后通过理论结果和计算机仿真模拟的对比,验证了推荐方法的可行性。

  19. Wireless sensor platform

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, Pooran C.; Killough, Stephen M.; Kuruganti, Phani Teja

    2017-08-08

    A wireless sensor platform and methods of manufacture are provided. The platform involves providing a plurality of wireless sensors, where each of the sensors is fabricated on flexible substrates using printing techniques and low temperature curing. Each of the sensors can include planar sensor elements and planar antennas defined using the printing and curing. Further, each of the sensors can include a communications system configured to encode the data from the sensors into a spread spectrum code sequence that is transmitted to a central computer(s) for use in monitoring an area associated with the sensors.

  20. EDITORIAL: Humidity sensors Humidity sensors

    Science.gov (United States)

    Regtien, Paul P. L.

    2012-01-01

    produced at relatively low cost. Therefore, they find wide use in lots of applications. However, the method requires a material that possesses some conflicting properties: stable and reproducible relations between air humidity, moisture uptake and a specific property (for instance the length of a hair, the electrical impedance of the material), fast absorption and desorption of the water vapour (to obtain a short response time), small hysteresis, wide range of relative humidity (RH) and temperature-independent output (only responsive to RH). For these reasons, much research is done and is still going on to find suitable materials that combine high performance and low price. In this special feature, three of the four papers report on absorption sensors, all with different focus. Aziz et al describe experiments with newly developed materials. The surface structure is extensively studied, in view of its ability to rapidly absorb water vapour and exhibit a reproducible change in the resistance and capacitance of the device. Sanchez et al employ optical fibres coated with a thin moisture-absorbing layer as a sensitive humidity sensor. They have studied various coating materials and investigated the possibility of using changes in optical properties of the fibre (here the lossy mode resonance) due to a change in humidity of the surrounding air. The third paper, by Weremczuk et al, focuses on a cheap fabrication method for absorption-based humidity sensors. The inkjet technology appears to be suitable for mass fabrication of such sensors, which is demonstrated by extensive measurements of the electrical properties (resistance and capacitance) of the absorbing layers. Moreover, they have developed a model that describes the relation between humidity and the electrical parameters of the moisture-sensitive layer. Despite intensive research, absorption sensors still do not meet the requirements for high accuracy applications. The dew-point temperature method is more appropriate

  1. CO responses of sensors based on cerium oxide thick films prepared from clustered spherical nanoparticles.

    Science.gov (United States)

    Izu, Noriya; Matsubara, Ichiro; Itoh, Toshio; Akamatsu, Takafumi; Shin, Woosuck

    2013-03-08

    Various types of CO sensors based on cerium oxide (ceria) have been reported recently. It has also been reported that the response speed of CO sensors fabricated from porous ceria thick films comprising nanoparticles is extremely high. However, the response value of such sensors is not suitably high. In this study, we investigated methods of improving the response values of CO sensors based on ceria and prepared gas sensors from core-shell ceria polymer hybrid nanoparticles. These hybrid nanoparticles have been reported to have a unique structure: The core consists of a cluster of ceria crystallites several nanometers in size. We compared the characteristics of the sensors based on thick films prepared from core-shell nanoparticles with those of sensors based on thick films prepared from conventionally used precipitated nanoparticles. The sensors prepared from the core-shell nanoparticles exhibited a resistance that was ten times greater than that of the sensors prepared from the precipitated nanoparticles. The response values of the gas sensors based on the core-shell nanoparticles also was higher than that of the sensors based on the precipitated nanoparticles. Finally, improvements in sensor response were also noticed after the addition of Au nanoparticles to the thick films used to fabricate the two types of sensors.

  2. Localization Algorithms of Underwater Wireless Sensor Networks: A Survey

    Science.gov (United States)

    Han, Guangjie; Jiang, Jinfang; Shu, Lei; Xu, Yongjun; Wang, Feng

    2012-01-01

    In Underwater Wireless Sensor Networks (UWSNs), localization is one of most important technologies since it plays a critical role in many applications. Motivated by widespread adoption of localization, in this paper, we present a comprehensive survey of localization algorithms. First, we classify localization algorithms into three categories based on sensor nodes’ mobility: stationary localization algorithms, mobile localization algorithms and hybrid localization algorithms. Moreover, we compare the localization algorithms in detail and analyze future research directions of localization algorithms in UWSNs. PMID:22438752

  3. Self-organization of a hybrid nanostructure consisting of a nanoneedle and nanodot.

    Science.gov (United States)

    Liu, Hai; Wu, Junsheng; Wang, Ying; Chow, Chee Lap; Liu, Qing; Gan, Chee Lip; Tang, Xiaohong; Rawat, Rajdeep Singh; Tan, Ooi Kiang; Ma, Jan; Huang, Yizhong

    2012-09-24

    A special materials system that allows the self-organization of a unique hybrid nanonipple structure is developed. The system consists of a nanoneedle with a small nanodot sitting on top. Such hybrid nanonipples provide building blocks to assemble functional devices with significantly improved performance. The application of the system to high-sensitivity gas sensors is also demonstrated.

  4. Soil specific re-calibration of water content sensors for a field-scale sensor network

    Science.gov (United States)

    Gasch, Caley K.; Brown, David J.; Anderson, Todd; Brooks, Erin S.; Yourek, Matt A.

    2015-04-01

    Obtaining accurate soil moisture data from a sensor network requires sensor calibration. Soil moisture sensors are factory calibrated, but multiple site specific factors may contribute to sensor inaccuracies. Thus, sensors should be calibrated for the specific soil type and conditions in which they will be installed. Lab calibration of a large number of sensors prior to installation in a heterogeneous setting may not be feasible, and it may not reflect the actual performance of the installed sensor. We investigated a multi-step approach to retroactively re-calibrate sensor water content data from the dielectric permittivity readings obtained by sensors in the field. We used water content data collected since 2009 from a sensor network installed at 42 locations and 5 depths (210 sensors total) within the 37-ha Cook Agronomy Farm with highly variable soils located in the Palouse region of the Northwest United States. First, volumetric water content was calculated from sensor dielectric readings using three equations: (1) a factory calibration using the Topp equation; (2) a custom calibration obtained empirically from an instrumented soil in the field; and (3) a hybrid equation that combines the Topp and custom equations. Second, we used soil physical properties (particle size and bulk density) and pedotransfer functions to estimate water content at saturation, field capacity, and wilting point for each installation location and depth. We also extracted the same reference points from the sensor readings, when available. Using these reference points, we re-scaled the sensor readings, such that water content was restricted to the range of values that we would expect given the physical properties of the soil. The re-calibration accuracy was assessed with volumetric water content measurements obtained from field-sampled cores taken on multiple dates. In general, the re-calibration was most accurate when all three reference points (saturation, field capacity, and wilting

  5. Position Sensing for Rotor in Hybrid Stepper Motor

    Science.gov (United States)

    Howard, David E. (Inventor); Alhorn, Dean C. (Inventor); Smith, Dennis A. (Inventor)

    2011-01-01

    A method and system are provided for sensing the position of a rotor in a hybrid stepper motor. First and second Hall sensors are positioned in a spaced-apart relationship with the first and second armatures of the rotor such that the first and second Hall sensors generate electrical outputs that are 90.degree. out of phase with one another as the rotor rotates. The electrical outputs are adjusted relative to a reference, and the amplitude of the electrical outputs is further adjusted to account for spacing differences between the rotor and each of the first and second Hall sensors.

  6. Planar pixel sensors in commercial CMOS technologies

    Energy Technology Data Exchange (ETDEWEB)

    Gonella, Laura; Hemperek, Tomasz; Huegging, Fabian; Krueger, Hans; Wermes, Norbert [Physikalisches Institut der Universitaet Bonn, Nussallee 12, 53115 Bonn (Germany); Macchiolo, Anna [Max-Planck-Institut fuer Physik, Foehringer Ring 6, 80805 Muenchen (Germany)

    2015-07-01

    For the upgrade of the ATLAS experiment at the high luminosity LHC, an all-silicon tracker is foreseen to cope with the increased rate and radiation levels. Pixel and strip detectors will have to cover an area of up to 200m2. To produce modules in high number at reduced costs, new sensor and bonding technologies have to be investigated. Commercial CMOS technologies on high resistive substrates can provide significant advantages in this direction. They offer cost effective, large volume sensor production. In addition to this, production is done on 8'' wafers allowing wafer-to-wafer bonding to the electronics, an interconnection technology substantially cheaper than the bump bonding process used for hybrid pixel detectors at the LHC. Both active and passive n-in-p pixel sensor prototypes have been submitted in a 150 nm CMOS technology on a 2kΩ cm substrate. The passive sensor design will be used to characterize sensor properties and to investigate wafer-to-wafer bonding technologies. This first prototype is made of a matrix of 36 x 16 pixels of size compatible with the FE-I4 readout chip (i.e. 50 μm x 250 μm). Results from lab characterization of this first submission are shown together with TCAD simulations. Work towards a full size FE-I4 sensor for wafer-to-wafer bonding is discussed.

  7. Gas Sensors Based on Electrodeposited Polymers

    Directory of Open Access Journals (Sweden)

    Boris Lakard

    2015-07-01

    Full Text Available Electrochemically deposited polymers, also called “synthetic metals”, have emerged as potential candidates for chemical sensing due to their interesting and tunable chemical, electrical, and structural properties. In particular, most of these polymers (including polypyrrole, polyaniline, polythiophene and their derivatives can be used as the sensitive layer of conductimetric gas sensors because of their conducting properties. An important advantage of polymer-based gas sensors is their efficiency at room temperature. This characteristic is interesting since most of the commercially-available sensors, usually based on metal oxides, work at high temperatures (300–400 °C. Consequently, polymer-based gas sensors are playing a growing role in the improvement of public health and environment control because they can lead to gas sensors operating with rapid detection, high sensitivity, small size, and specificity in atmospheric conditions. In this review, the recent advances in electrodeposited polymer-based gas sensors are summarized and discussed. It is shown that the sensing characteristics of electrodeposited polymers can be improved by chemical functionalization, nanostructuration, or mixing with other functional materials to form composites or hybrid materials.

  8. Wireless ferroelectric resonating sensor.

    Science.gov (United States)

    Viikari, Ville; Seppa, Heikki; Mattila, Tomi; Alastalo, Ari

    2010-04-01

    This paper presents a passive wireless resonating sensor that is based on a ferroelectric varactor. The sensor replies with its data at an intermodulation frequency when a reader device illuminates it at 2 closely located frequencies. The paper derives a theoretical equation for the response of such a sensor, verifies the theory by simulations, and demonstrates a temperature sensor based on a ferroelectric varactor.

  9. Integrated Optical Sensors

    NARCIS (Netherlands)

    Lambeck, Paul; Hoekstra, Hugo

    2003-01-01

    The optical (tele-) communication is the main driving force for the worldwide R&D on integrated optical devices and microsystems. lO-sensors have to compete with many other sensor types both within the optical domain (fiber sensors) and outside that domain, where sensors based on measurand induced c

  10. Integrated Optical Sensors

    NARCIS (Netherlands)

    Lambeck, Paul V.; Hoekstra, Hugo

    2003-01-01

    The optical (tele-) communication is the main driving force for the worldwide R&D on integrated optical devices and microsystems. lO-sensors have to compete with many other sensor types both within the optical domain (fiber sensors) and outside that domain, where sensors based on measurand induced c

  11. From hybrid swarms to swarms of hybrids

    Science.gov (United States)

    The introgression of modern humans (Homo sapiens) with Neanderthals 40,000 YBP after a half-million years of separation, may have led to the best example of a hybrid swarm on earth. Modern trade and transportation in support of the human hybrids has continued to introduce additional species, genotyp...

  12. The Hybrid Museum: Hybrid Economies of Meaning

    DEFF Research Database (Denmark)

    Vestergaard, Vitus

    2013-01-01

    this article shows that there are two different museum mindsets where the second mindset leans towards participatory practices. It is shown how a museum can support a hybrid economy of meaning that builds on both a user generated economy of meaning and an institutional economy of meaning and adds value to both....... Such a museum is referred to as a hybrid museum....

  13. Hydraulic Hybrid Vehicles

    Science.gov (United States)

    EPA and the United Parcel Service (UPS) have developed a hydraulic hybrid delivery vehicle to explore and demonstrate the environmental benefits of the hydraulic hybrid for urban pick-up and delivery fleets.

  14. Hybrid Management in Hospitals

    DEFF Research Database (Denmark)

    Byrkjeflot, Haldor; Jespersen, Peter Kragh

    2010-01-01

    Artiklen indeholder et litteraturbaseret studium af ledelsesformer i sygehuse, hvor sundhedsfaglig ledelse og generel ledelse mikses til hybride ledelsesformer......Artiklen indeholder et litteraturbaseret studium af ledelsesformer i sygehuse, hvor sundhedsfaglig ledelse og generel ledelse mikses til hybride ledelsesformer...

  15. Vortex Anemometer Using MEMS Cantilever Sensor

    CERN Document Server

    Zylka, P; Zylka, Pawel; Modrzynski, Pawel

    2010-01-01

    This paper presents construction and performance of a novel hybrid microelectromechanical system (MEMS) vortex flowmeter. A miniature cantilever MEMS displacement sensor was used to detect frequency of vortices development. 3-mm-long silicon cantilever, protruding directly out of a trailing edge of a trapezoidal glass-epoxy composite bluff body was put into oscillatory motion by vortices shed alternately from side surfaces of the obstacle. Verified linearmeasurement range of the device extended from 5 to 22 m/s; however, it could be broadened in absence of external 50-Hz mains electrical interfering signal which required bandpass frequency-domain digital sensor signal processing. The MEMS vortex sensor proved its effectiveness in detection of semilaminar airflow velocity distribution in a 40-mm-diameter tubular pipe.

  16. Resin Catalyst Hybrids

    Institute of Scientific and Technical Information of China (English)

    S. Asaoka

    2005-01-01

    @@ 1Introduction: What are resin catalyst hybrids? There are typically two types of resin catalyst. One is acidic resin which representative is polystyrene sulfonic acid. The other is basic resin which is availed as metal complex support. The objective items of this study on resin catalyst are consisting of pellet hybrid, equilibrium hybrid and function hybrid of acid and base,as shown in Fig. 1[1-5].

  17. Mesoscale hybrid calibration artifact

    Science.gov (United States)

    Tran, Hy D.; Claudet, Andre A.; Oliver, Andrew D.

    2010-09-07

    A mesoscale calibration artifact, also called a hybrid artifact, suitable for hybrid dimensional measurement and the method for make the artifact. The hybrid artifact has structural characteristics that make it suitable for dimensional measurement in both vision-based systems and touch-probe-based systems. The hybrid artifact employs the intersection of bulk-micromachined planes to fabricate edges that are sharp to the nanometer level and intersecting planes with crystal-lattice-defined angles.

  18. Sensor sentinel computing device

    Science.gov (United States)

    Damico, Joseph P.

    2016-08-02

    Technologies pertaining to authenticating data output by sensors in an industrial environment are described herein. A sensor sentinel computing device receives time-series data from a sensor by way of a wireline connection. The sensor sentinel computing device generates a validation signal that is a function of the time-series signal. The sensor sentinel computing device then transmits the validation signal to a programmable logic controller in the industrial environment.

  19. Realizing the Hybrid Library.

    Science.gov (United States)

    Pinfield, Stephen; Eaton, Jonathan; Edwards, Catherine; Russell, Rosemary; Wissenburg, Astrid; Wynne, Peter

    1998-01-01

    Outlines five projects currently funded by the United Kingdom's Electronic Libraries Program (eLib): HyLiFe (Hybrid Library of the Future), MALIBU (MAnaging the hybrid Library for the Benefit of Users), HeadLine (Hybrid Electronic Access and Delivery in the Library Networked Environment), ATHENS (authentication scheme), and BUILDER (Birmingham…

  20. Homoploid hybrid expectations

    Science.gov (United States)

    Homoploid hybrid speciation occurs when a stable, fertile, and reproductively isolated lineage results from hybridization between two distinct species without a change in ploidy level. Reproductive isolation between a homoploid hybrid species and its parents is generally attained via chromosomal re...

  1. Hybrid armature projectile

    Science.gov (United States)

    Hawke, Ronald S.; Asay, James R.; Hall, Clint A.; Konrad, Carl H.; Sauve, Gerald L.; Shahinpoor, Mohsen; Susoeff, Allan R.

    1993-01-01

    A projectile for a railgun that uses a hybrid armature and provides a seed block around part of the outer surface of the projectile to seed the hybrid plasma brush. In addition, the hybrid armature is continuously vaporized to replenish plasma in a plasma armature to provide a tandem armature and provides a unique ridge and groove to reduce plasama blowby.

  2. Intraply Hybrid Composite Design

    Science.gov (United States)

    Chamis, C. C.; Sinclair, J. H.

    1986-01-01

    Several theoretical approaches combined in program. Intraply hybrid composites investigated theoretically and experimentally at Lewis Research Center. Theories developed during investigations and corroborated by attendant experiments used to develop computer program identified as INHYD (Intraply Hybrid Composite Design). INHYD includes several composites micromechanics theories, intraply hybrid composite theories, and integrated hygrothermomechanical theory. Equations from theories used by program as appropriate for user's specific applications.

  3. Hybrid quantum information processing

    Energy Technology Data Exchange (ETDEWEB)

    Furusawa, Akira [Department of Applied Physics, School of Engineering, The University of Tokyo (Japan)

    2014-12-04

    I will briefly explain the definition and advantage of hybrid quantum information processing, which is hybridization of qubit and continuous-variable technologies. The final goal would be realization of universal gate sets both for qubit and continuous-variable quantum information processing with the hybrid technologies. For that purpose, qubit teleportation with a continuousvariable teleporter is one of the most important ingredients.

  4. Development of an Electrochemical-Cantilever Hybrid Platform

    DEFF Research Database (Denmark)

    Fischer, Lee MacKenzie

    I denne afhandling er udviklingen af en nyskabende elektrokemisk-cantilever hybrid sensor platform præsenteret. Mikro cantileverer er meget følsomme over for ændringer i overflade stress, mens elektrokemiske metoder tillader kontrol og udlæsning af overflade ladning og potentiale. Det kan bruges...

  5. Hybrid mask for deep etching

    KAUST Repository

    Ghoneim, Mohamed T.

    2017-08-10

    Deep reactive ion etching is essential for creating high aspect ratio micro-structures for microelectromechanical systems, sensors and actuators, and emerging flexible electronics. A novel hybrid dual soft/hard mask bilayer may be deposited during semiconductor manufacturing for deep reactive etches. Such a manufacturing process may include depositing a first mask material on a substrate; depositing a second mask material on the first mask material; depositing a third mask material on the second mask material; patterning the third mask material with a pattern corresponding to one or more trenches for transfer to the substrate; transferring the pattern from the third mask material to the second mask material; transferring the pattern from the second mask material to the first mask material; and/or transferring the pattern from the first mask material to the substrate.

  6. Electrochemical techniques for characterization of stem-loop probe and linear probe-based DNA sensors.

    Science.gov (United States)

    Lai, Rebecca Y; Walker, Bryce; Stormberg, Kent; Zaitouna, Anita J; Yang, Weiwei

    2013-12-15

    Here we present a summary of the sensor performance of the stem-loop probe (SLP) and linear probe (LP) electrochemical DNA sensors when interrogated using alternating current voltammetry (ACV), cyclic voltammetry (CV), and differential pulse voltammetry (DPV). Specifically, we identified one critical parameter for each voltammetric technique that can be adjusted for optimal sensor performance. Overall, the SLP sensor displayed good sensor performance (i.e., 60+% signal attenuation in the presence of the target) over a wider range of experimental conditions when compared to the LP sensor. When used with ACV, the optimal frequency range was found to be between 5 and 5000 Hz, larger than the 5-100 Hz range observed with the LP sensor. A similar trend was observed for the two sensors in CV; the LP sensor was operational only at scan rates between 30 and 100 V/s, whereas the SLP sensor performed well at scan rates between 1 and 1000 V/s. Unlike ACV and CV, DPV has demonstrated to be a more versatile sensor interrogation technique for this class of sensors. Despite the minor differences in total signal attenuation upon hybridization to the target DNA, both SLP and LP sensors performed optimally under most pulse widths used in this study. More importantly, when used with longer pulse widths, both sensors showed "signal-on" behavior, which is generally more desirable for sensor applications.

  7. The hydrogen hybrid option

    Energy Technology Data Exchange (ETDEWEB)

    Smith, J.R.

    1993-10-15

    The energy efficiency of various piston engine options for series hybrid automobiles are compared with conventional, battery powered electric, and proton exchange membrane (PEM) fuel cell hybrid automobiles. Gasoline, compressed natural gas (CNG), and hydrogen are considered for these hybrids. The engine and fuel comparisons are done on a basis of equal vehicle weight, drag, and rolling resistance. The relative emissions of these various fueled vehicle options are also presented. It is concluded that a highly optimized, hydrogen fueled, piston engine, series electric hybrid automobile will have efficiency comparable to a similar fuel cell hybrid automobile and will have fewer total emissions than the battery powered vehicle, even without a catalyst.

  8. Hybrid Nanogenerator for Concurrently Harvesting Biomechanical and Biochemical Energy

    KAUST Repository

    Hansen, Benjamin J.

    2010-07-27

    Harvesting energy from multiple sources available in our personal and daily environments is highly desirable, not only for powering personal electronics, but also for future implantable sensor-transmitter devices for biomedical and healthcare applications. Here we present a hybrid energy scavenging device for potential in vivo applications. The hybrid device consists of a piezoelectric poly(vinylidene fluoride) nanofiber nanogenerator for harvesting mechanical energy, such as from breathing or from the beat of a heart, and a flexible enzymatic biofuel cell for harvesting the biochemical (glucose/O2) energy in biofluid, which are two types of energy available in vivo. The two energy harvesting approaches can work simultaneously or individually, thereby boosting output and lifetime. Using the hybrid device, we demonstrate a "self-powered" nanosystem by powering a ZnO nanowire UV light sensor. © 2010 American Chemical Society.

  9. Sensors an introductory course

    CERN Document Server

    Kalantar-zadeh, Kourosh

    2013-01-01

    Sensors: An Introductory Course provides an essential reference on the fundamentals of sensors. The book is designed to help readers in developing skills and the understanding required in order to implement a wide range of sensors that are commonly used in our daily lives. This book covers the basic concepts in the sensors field, including definitions and terminologies. The physical sensing effects are described, and devices which utilize these effects are presented. The most frequently used organic and inorganic sensors are introduced and the techniques for implementing them are discussed. This book: Provides a comprehensive representation of the most common sensors and can be used as a reference in relevant fields Presents learning materials in a concise and easy to understand manner Includes examples of how sensors are incorporated in real life measurements Contains detailed figures and schematics to assist in understanding the sensor performance Sensors: An Introductory Course is ideal for university stu...

  10. Hybridization and extinction.

    Science.gov (United States)

    Todesco, Marco; Pascual, Mariana A; Owens, Gregory L; Ostevik, Katherine L; Moyers, Brook T; Hübner, Sariel; Heredia, Sylvia M; Hahn, Min A; Caseys, Celine; Bock, Dan G; Rieseberg, Loren H

    2016-08-01

    Hybridization may drive rare taxa to extinction through genetic swamping, where the rare form is replaced by hybrids, or by demographic swamping, where population growth rates are reduced due to the wasteful production of maladaptive hybrids. Conversely, hybridization may rescue the viability of small, inbred populations. Understanding the factors that contribute to destructive versus constructive outcomes of hybridization is key to managing conservation concerns. Here, we survey the literature for studies of hybridization and extinction to identify the ecological, evolutionary, and genetic factors that critically affect extinction risk through hybridization. We find that while extinction risk is highly situation dependent, genetic swamping is much more frequent than demographic swamping. In addition, human involvement is associated with increased risk and high reproductive isolation with reduced risk. Although climate change is predicted to increase the risk of hybridization-induced extinction, we find little empirical support for this prediction. Similarly, theoretical and experimental studies imply that genetic rescue through hybridization may be equally or more probable than demographic swamping, but our literature survey failed to support this claim. We conclude that halting the introduction of hybridization-prone exotics and restoring mature and diverse habitats that are resistant to hybrid establishment should be management priorities.

  11. Smart Sensor Systems

    Science.gov (United States)

    Hunter, G. W.; Stetter, J. R.; Hesketh, P. J.; Liu, C. C.

    Sensors and sensor systems are vital to our awareness of our surroundings and provide safety, security, and surveillance, as well as enable monitoring of our health and environment. A transformative advance in the field of sensor technology has been the development of "Smart Sensor Systems". The definition of a Smart Sensor may vary, but typically at a minimum a Smart Sensor is the combination of a sensing element with processing capabilities provided by a microprocessor. That is, Smart Sensors are basic sensing elements with embedded intelligence. The sensor signal is fed to the microprocessor, which processes the data and provides an informative output to an external user. A more expansive view of a Smart Sensor System, which is used in this article, is illustrated in Fig. 19.1: a complete self-contained sensor system that includes the capabilities for logging, processing with a model of sensor response and other data, self-contained power, and an ability to transmit or display informative data to an outside user. The fundamental idea of a smart sensor is that the integration of silicon microprocessors with sensor technology cannot only provide interpretive power and customized outputs, but also significantly improve sensor system performance and capabilities.

  12. Spoof Plasmon Hybridization

    CERN Document Server

    Zhang, Jingjing; Luo, Yu; Shen, Xiaopeng; Maier, Stefan A; Cui, Tie Jun

    2016-01-01

    Plasmon hybridization between closely spaced nanoparticles yields new hybrid modes not found in individual constituents, allowing for the engineering of resonance properties and field enhancement capabilities of metallic nanostructure. Experimental verifications of plasmon hybridization have been thus far mostly limited to optical frequencies, as metals cannot support surface plasmons at longer wavelengths. Here, we introduce the concept of 'spoof plasmon hybridization' in highly conductive metal structures and investigate experimentally the interaction of localized surface plasmon resonances (LSPR) in adjacent metal disks corrugated with subwavelength spiral patterns. We show that the hybridization results in the splitting of spoof plasmon modes into bonding and antibonding resonances analogous to molecular orbital rule and plasmonic hybridization in optical spectrum. These hybrid modes can be manipulated to produce enormous field enhancements (larger than 5000) by tuning the separation between disks or alte...

  13. Ubiquitous Sensor Network for Chemical Sensors

    Institute of Scientific and Technical Information of China (English)

    Wan-Young Chung; Risto Myllylae

    2006-01-01

    Wireless sensor networks have been identified as one of the most important technologies for the 21st century. Recent advances in micro sensor fabrication technology and wireless communication technology enable the practical deployment of large-scale, low-power, inexpensive sensor networks. Such an approach offers an advantage over traditional sensing methods in many ways: large-scale, dense deployment not only extends spatial coverage and achieves higher resolution, but also increases the system's fault-tolerance and robustness. Moreover, the ad-hoc nature of wireless sensor networks makes them even more attractive for military and other risk-associated applications, such as environmental observation and habitat monitoring.

  14. GaAs Medipix2 hybrid pixel detector

    CERN Document Server

    Kostamo, P; Vähänen, S; Tlustos, L; Fröjdh, C; Campbell, M; Zhilyaev, Y; Lipsanen, H

    2008-01-01

    A GaAs Medipix2 hybrid pixel detector based on high purity epitaxial GaAs material was successfully fabricated. The mesa type GaAs sensor with 256×256 pixels and total area of 1.4×1.4 cm2 was made of a 140-μm-thick epitaxial p–i–n structure utilizing reactive ion etching. A final thickness of approximately 110 μm for the all-epitaxial sensor element is achieved by back-thinning procedure. The sensor element is bump bonded to a Medipix2 read-out ASIC. The detector is capable of room temperature spectroscopic operation and it demonstrates the potential of GaAs for high resolution X-ray imaging systems operating at room temperature. This work describes the manufacturing process and electrical properties of the GaAs Medipix2 hybrid detector.

  15. On-chip magnetic bead-based DNA melting curve analysis using a magnetoresistive sensor

    Science.gov (United States)

    Rizzi, Giovanni; Østerberg, Frederik W.; Henriksen, Anders D.; Dufva, Martin; Hansen, Mikkel F.

    2015-04-01

    We present real-time measurements of DNA melting curves in a chip-based system that detects the amount of surface-bound magnetic beads using magnetoresistive magnetic field sensors. The sensors detect the difference between the amount of beads bound to the top and bottom sensor branches of the differential sensor geometry. The sensor surfaces are functionalized with wild type (WT) and mutant type (MT) capture probes, differing by a single base insertion (a single nucleotide polymorphism, SNP). Complementary biotinylated targets in suspension couple streptavidin magnetic beads to the sensor surface. The beads are magnetized by the field arising from the bias current passed through the sensors. We demonstrate the first on-chip measurements of the melting of DNA hybrids upon a ramping of the temperature. This overcomes the limitation of using a single washing condition at constant temperature. Moreover, we demonstrate that a single sensor bridge can be used to genotype a SNP.

  16. Energy optimization in mobile sensor networks

    Science.gov (United States)

    Yu, Shengwei

    consuming negligible amount of energy for mobility cost. For the second problem, the problem is extended to accommodate mobile robotic nodes with energy harvesting capability, which makes it a non-convex optimization problem. The non-convexity issue is tackled by using the existing sequential convex approximation method, based on which we propose a novel procedure of modified sequential convex approximation that has fast convergence speed. For the third problem, the proposed procedure is used to solve another challenging non-convex problem, which results in utilizing mobility and routing simultaneously in mobile robotic sensor networks to prolong the network lifetime. The results indicate that joint design of mobility and routing has an edge over other methods in prolonging network lifetime, which is also the justification for the use of mobility in mobile sensor networks for energy efficiency purpose. For the fourth problem, we include the dynamics of the robotic nodes in the problem by modeling the networked robotic system using hybrid systems theory. A novel distributed method for the networked hybrid system is used to solve the optimal moving trajectories for robotic nodes and optimal network links, which are not answered by previous approaches. Finally, the fact that mobility is more effective in prolonging network lifetime for a data-intensive network leads us to apply our methods to study mobile visual sensor networks, which are useful in many applications. We investigate the joint design of mobility, data routing, and encoding power to help improving the video quality while maximizing the network lifetime. This study leads to a better understanding of the role mobility can play in data-intensive surveillance sensor networks.

  17. Development of Electrochemical Cantilever Sensors for DNA Applications

    DEFF Research Database (Denmark)

    Quan, Xueling; Heiskanen, Arto; Yi, Sun;

    2013-01-01

    In this work, we develop a generic DNA based sensing platform used for characterizing surface functionalization and detecting DNA hybridization. Silicon nitride cantilever sensors are fabricated with an integrated three-electrode system and integrated in a microfluidic chip. Cantilevers with gold...

  18. Marine Fish Hybridization

    KAUST Repository

    He, Song

    2017-04-01

    Natural hybridization is reproduction (without artificial influence) between two or more species/populations which are distinguishable from each other by heritable characters. Natural hybridizations among marine fishes were highly underappreciated due to limited research effort; it seems that this phenomenon occurs more often than is commonly recognized. As hybridization plays an important role in biodiversity processes in the marine environment, detecting hybridization events and investigating hybridization is important to understand and protect biodiversity. The first chapter sets the framework for this disseration study. The Cohesion Species Concept was selected as the working definition of a species for this study as it can handle marine fish hybridization events. The concept does not require restrictive species boundaries. A general history and background of natural hybridization in marine fishes is reviewed during in chapter as well. Four marine fish hybridization cases were examed and documented in Chapters 2 to 5. In each case study, at least one diagnostic nuclear marker, screened from among ~14 candidate markers, was found to discriminate the putative hybridizing parent species. To further investigate genetic evidence to support the hybrid status for each hybrid offspring in each case, haploweb analysis on diagnostic markers (nuclear and/or mitochondrial) and the DAPC/PCA analysis on microsatellite data were used. By combining the genetic evidences, morphological traits, and ecological observations together, the potential reasons that triggered each hybridization events and the potential genetic/ecology effects could be discussed. In the last chapter, sequences from 82 pairs of hybridizing parents species (for which COI barcoding sequences were available either on GenBank or in our lab) were collected. By comparing the COI fragment p-distance between each hybridizing parent species, some general questions about marine fish hybridization were discussed: Is

  19. Experimental validation of GPS-INS-STAR hybrid navigation system for space autonomy

    Science.gov (United States)

    Tanabe, Toru; Harigae, Masatoshi

    The experimental validation of the GPS-INS-STAR hybrid navigation system concept is performed. The hybrid navigation system combines the best features of employed sensors to improve total navigation performances. The GPS-INS-STAR hybrid navigation system consists of the three different sensors, a GPS receiver, an inertial navigation system and a STAR image sensor. In this concept, the system integrates a high positioning performance of the GPS system, an accurate attitude determination capability of the STAR image sensor and the INS signal with a wide bandwidth. It results in a complete 6-DOF (degrees of freedom) autonomous navigation system. The present paper shows the validation of the concept by the experiments using GPS, INS and STAR hardware systems. The experiments are divided into three steps. Firstly, the INS-STAR hybrid navigation system is constructed on the 3-axis motion table to verify the performances of its attitude loop. Secondly, the GPS-INS hybrid navigation system installed on the car shows the performance improvement in its translational loop. Finally, the full configuration of the GPS-INS-STAR hybrid navigation system is evaluated at night. Each experiment result is checked by the theoretical analysis. In the theoretical analysis, the concept of observability well explains the performances of the system. Its feasibility for space application is also evaluated in the point of existing hardware technology. It is concluded that the experiments vaidate the concept of the hybrid navigation system and confirm its capability to realize space autonomy.

  20. A highly selective and self-powered gas sensor via organic surface functionalization of p-Si/n-ZnO diodes.

    Science.gov (United States)

    Hoffmann, Martin W G; Mayrhofer, Leonhard; Casals, Olga; Caccamo, Lorenzo; Hernandez-Ramirez, Francisco; Lilienkamp, Gerhard; Daum, Winfried; Moseler, Michael; Waag, Andreas; Shen, Hao; Prades, J Daniel

    2014-12-17

    Selectivity and low power consumption are major challenges in the development of sophisticated gas sensor devices. A sensor system is presented that unifies selective sensor-gas interactions and energy-harvesting properties, using defined organic-inorganic hybrid materials. Simulations of chemical-binding interactions and the consequent electronic surface modulation give more insight into the complex sensing mechanism of selective gas detection.

  1. Embedded sensor systems

    CERN Document Server

    Agrawal, Dharma Prakash

    2017-01-01

    This inspiring textbook provides an introduction to wireless technologies for sensors, explores potential use of sensors for numerous applications, and utilizes probability theory and mathematical methods as a means of embedding sensors in system design. It discusses the need for synchronization and underlying limitations, inter-relation between given coverage and connectivity to number of sensors needed, and the use of geometrical distance to determine location of the base station for data collection and explore use of anchor nodes for relative position determination of sensors. The book explores energy conservation, communication using TCP, the need for clustering and data aggregation, and residual energy determination and energy harvesting. It covers key topics of sensor communication like mobile base stations and relay nodes, delay-tolerant sensor networks, and remote sensing and possible applications. The book defines routing methods and do performance evaluation for random and regular sensor topology an...

  2. Towards Sensor Database Systems

    DEFF Research Database (Denmark)

    Bonnet, Philippe; Gehrke, Johannes; Seshadri, Praveen

    2001-01-01

    Sensor networks are being widely deployed for measurement, detection and surveillance applications. In these new applications, users issue long-running queries over a combination of stored data and sensor data. Most existing applications rely on a centralized system for collecting sensor data....... These systems lack flexibility because data is extracted in a predefined way; also, they do not scale to a large number of devices because large volumes of raw data are transferred regardless of the queries that are submitted. In our new concept of sensor database system, queries dictate which data is extracted...... from the sensors. In this paper, we define the concept of sensor databases mixing stored data represented as relations and sensor data represented as time series. Each long-running query formulated over a sensor database defines a persistent view, which is maintained during a given time interval. We...

  3. Sensors for Process Control

    Science.gov (United States)

    Tschulena, G.

    1988-01-01

    Sensors are one of the key elements for the automation in the manufacturing and process technology. The sensor field is presently within a restructuring process, directed to a stronger utilization of solid state technologies. This restructuring is governed by the utilization of solid state physical effects, by the use of reproducible fabrication techniques, and by the market driving forces. The state of the art of sensors in modern fabrication techniques will be demonstrated in examples, namely for sensors in silicon technology, in thin film technology and in thick film/screen printing technology. Some important physical and technological problems to be solved for the development of new and advanced sensor families will be outlined. Sensor development is strongly directed to the minaturization of devices and to the integration of different sensors to multisensors, as well as the integration between sensors and microelectronics.

  4. Air Sensor Toolbox

    Science.gov (United States)

    Air Sensor Toolbox provides information to citizen scientists, researchers and developers interested in learning more about new lower-cost compact air sensor technologies and tools for measuring air quality.

  5. Digital Sensor Technology

    Energy Technology Data Exchange (ETDEWEB)

    Ted Quinn; Jerry Mauck; Richard Bockhorst; Ken Thomas

    2013-07-01

    The nuclear industry has been slow to incorporate digital sensor technology into nuclear plant designs due to concerns with digital qualification issues. However, the benefits of digital sensor technology for nuclear plant instrumentation are substantial in terms of accuracy, reliability, availability, and maintainability. This report demonstrates these benefits in direct comparisons of digital and analog sensor applications. It also addresses the qualification issues that must be addressed in the application of digital sensor technology.

  6. Fiber optic geophysical sensors

    Science.gov (United States)

    Homuth, Emil F.

    1991-01-01

    A fiber optic geophysical sensor in which laser light is passed through a sensor interferometer in contact with a geophysical event, and a reference interferometer not in contact with the geophysical event but in the same general environment as the sensor interferometer. In one embodiment, a single tunable laser provides the laser light. In another embodiment, separate tunable lasers are used for the sensor and reference interferometers. The invention can find such uses as monitoring for earthquakes, and the weighing of objects.

  7. Extreme Velocity Wind Sensor

    Science.gov (United States)

    Perotti, Jose; Voska, Ned (Technical Monitor)

    2002-01-01

    This presentation provides an overview of the development of new hurricane wind sensor (Extreme Velocity Wind Sensor) for the Kennedy Space Center (KSC) which is designed to withstand winds of up to three hundred miles an hour. The proposed Extreme Velocity Wind Sensor contains no moveable components that would be exposed to extreme wind conditions. Topics covered include: need for new hurricane wind sensor, conceptual design, software applications, computational fluid dynamic simulations of design concept, preliminary performance tests, and project status.

  8. Henkin and Hybrid Logic

    DEFF Research Database (Denmark)

    Blackburn, Patrick Rowan; Huertas, Antonia; Manzano, Maria;

    2014-01-01

    Leon Henkin was not a modal logician, but there is a branch of modal logic that has been deeply influenced by his work. That branch is hybrid logic, a family of logics that extend orthodox modal logic with special proposition symbols (called nominals) that name worlds. This paper explains why...... Henkin’s techniques are so important in hybrid logic. We do so by proving a completeness result for a hybrid type theory called HTT, probably the strongest hybrid logic that has yet been explored. Our completeness result builds on earlier work with a system called BHTT, or basic hybrid type theory...... is due to the first-order perspective, which lies at the heart of Henin’s best known work and hybrid logic....

  9. Selected examples of intelligent (micro) sensor systems: state-of-the-art and tendencies

    Science.gov (United States)

    Hauptmann, Peter R.

    2006-03-01

    The capability of intelligent sensors to have more intelligence built into them continues to drive their application in areas including automotive, aerospace and defense, industrial, intelligent house and wear, medical and homeland security. In principle it is difficult to overestimate the importance of intelligent (micro) sensors or sensor systems within advanced societies but one characteristic feature is the global market for sensors, which is now about 20 billion annually. Therefore sensors or sensor systems play a dominant role in many fields from the macro sensor in manufacturing industry down to the miniaturized sensor for medical applications. The diversity of sensors precludes a complete description of the state-of-the-art; selected examples will illustrate the current situation. MEMS (microelectromechanical systems) devices are of special interest in the context of micro sensor systems. In past the main requirements of a sensor were in terms of metrological performance. The electrical (or optical) signal produced by the sensor needed to match the measure relatively accurately. Such basic functionality is no longer sufficient. Data processing near the sensor, the extraction of more information than just the direct sensor information by signal analysis, system aspects and multi-sensor information are the new demands. A shifting can be observed away from aiming to design perfect single-function transducers and towards the utilization of system-based sensors as system components. In the ideal case such systems contain sensors, actuators and electronics. They can be realized in monolithic, hybrid or discrete form—which kind is used depends on the application. In this article the state-of-the-art of intelligent sensors or sensor systems is reviewed using selected examples. Future trends are deduced.

  10. Correction of Faulty Sensors in Phased Array Radars Using Symmetrical Sensor Failure Technique and Cultural Algorithm with Differential Evolution

    Directory of Open Access Journals (Sweden)

    S. U. Khan

    2014-01-01

    Full Text Available Three issues regarding sensor failure at any position in the antenna array are discussed. We assume that sensor position is known. The issues include raise in sidelobe levels, displacement of nulls from their original positions, and diminishing of null depth. The required null depth is achieved by making the weight of symmetrical complement sensor passive. A hybrid method based on memetic computing algorithm is proposed. The hybrid method combines the cultural algorithm with differential evolution (CADE which is used for the reduction of sidelobe levels and placement of nulls at their original positions. Fitness function is used to minimize the error between the desired and estimated beam patterns along with null constraints. Simulation results for various scenarios have been given to exhibit the validity and performance of the proposed algorithm.

  11. Thermal flow micro sensors

    NARCIS (Netherlands)

    Elwenspoek, M.

    1999-01-01

    A review is given on sensors fabricated by silicon micromachining technology using the thermal domain for the measurement of fluid flow. Attention is paid especially to performance and geometry of the sensors. Three basic types of thermal flow sensors are discussed: anemometers, calorimetric flow se

  12. Sensors for Entertainment

    Science.gov (United States)

    Lamberti, Fabrizio; Sanna, Andrea; Rokne, Jon

    2016-01-01

    Sensors are becoming ubiquitous in all areas of science, technology, and society. In this Special Issue on “Sensors for Entertainment”, developments in progress and the current state of application scenarios for sensors in the field of entertainment is explored. PMID:27428981

  13. Environmental Sensor Networks

    OpenAIRE

    Martinez, Kirk; Hart, Jane; Ong, Royan

    2004-01-01

    Sensor networks for the natural environment require an understanding of earth science, combined with sensor, communications and computer technology. We discuss the evolution from data logging to sensor networks, describe our research from a glacial environment and highlight future challenges in this field.

  14. Optical waveguide sensors

    NARCIS (Netherlands)

    Fluitman, J.; Popma, Th.

    1986-01-01

    An overview of the field of optical waveguide sensors is presented. Some emphasis is laid on the development of a single scheme under which the diversity of sensor principles can be arranged. First three types of sensors are distinguished: intrinsic, extrinsic and active. Next, two steps are disting

  15. Sensors and actuators, Twente

    NARCIS (Netherlands)

    Bergveld, P.

    1989-01-01

    This paper describes the organization and the research programme of the Sensor and Actuator (S&A) Research Unit of the University of Twente, Enschede, the Netherlands. It includes short descriptions of all present projects concerning: micromachined mechanical sensors and actuators, optical sensors,

  16. Automotive vehicle sensors

    Energy Technology Data Exchange (ETDEWEB)

    Sheen, S.H.; Raptis, A.C.; Moscynski, M.J.

    1995-09-01

    This report is an introduction to the field of automotive vehicle sensors. It contains a prototype data base for companies working in automotive vehicle sensors, as well as a prototype data base for automotive vehicle sensors. A market analysis is also included.

  17. Sensors for Entertainment

    Directory of Open Access Journals (Sweden)

    Fabrizio Lamberti

    2016-07-01

    Full Text Available Sensors are becoming ubiquitous in all areas of science, technology, and society. In this Special Issue on “Sensors for Entertainment”, developments in progress and the current state of application scenarios for sensors in the field of entertainment is explored.

  18. BSA Hybrid Synthesized Polymer

    Institute of Scientific and Technical Information of China (English)

    Zong Bin LIU; Xiao Pei DENG; Chang Sheng ZHAO

    2006-01-01

    Bovine serum albumin (BSA), a naturally occurring biopolymer, was regarded as a polymeric material to graft to an acrylic acid (AA)-N-vinyl pyrrolidone (NVP) copolymer to form a biomacromolecular hybrid polymer. The hybrid polymer can be blended with polyethersulfone (PES) to increase the hydrophilicity of the PES membrane, which suggested that the hybrid polymer might have a wide application in the modification of biomaterials.

  19. Hybrid Action Systems

    DEFF Research Database (Denmark)

    Ronkko, Mauno; Ravn, Anders P.

    1997-01-01

    a differential action, which allows differential equations as primitive actions. The extension allows us to model hybrid systems with both continuous and discrete behaviour. The main result of this paper is an extension of such a hybrid action system with parallel composition. The extension does not change...... the original meaning of the parallel composition, and therefore also the ordinary action systems can be composed in parallel with the hybrid action systems....

  20. HYBRID VEHICLE CONTROL SYSTEM

    Directory of Open Access Journals (Sweden)

    V. Dvadnenko

    2016-06-01

    Full Text Available The hybrid vehicle control system includes a start–stop system for an internal combustion engine. The system works in a hybrid mode and normal vehicle operation. To simplify the start–stop system, there were user new possibilities of a hybrid car, which appeared after the conversion. Results of the circuit design of the proposed system of basic blocks are analyzed.

  1. Nanoscale Organic Hybrid Electrolytes

    KAUST Repository

    Nugent, Jennifer L.

    2010-08-20

    Nanoscale organic hybrid electrolytes are composed of organic-inorganic hybrid nanostructures, each with a metal oxide or metallic nanoparticle core densely grafted with an ion-conducting polyethylene glycol corona - doped with lithium salt. These materials form novel solvent-free hybrid electrolytes that are particle-rich, soft glasses at room temperature; yet manifest high ionic conductivity and good electrochemical stability above 5V. © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Hybrid radiator cooling system

    Science.gov (United States)

    France, David M.; Smith, David S.; Yu, Wenhua; Routbort, Jules L.

    2016-03-15

    A method and hybrid radiator-cooling apparatus for implementing enhanced radiator-cooling are provided. The hybrid radiator-cooling apparatus includes an air-side finned surface for air cooling; an elongated vertically extending surface extending outwardly from the air-side finned surface on a downstream air-side of the hybrid radiator; and a water supply for selectively providing evaporative cooling with water flow by gravity on the elongated vertically extending surface.

  3. Rotorwash wind sensor evaluation

    Science.gov (United States)

    Meyerhoff, Curtis L.; Lake, Robert E.; Gordge, Dennis N.

    1993-08-01

    This project's purpose was to assess and document the ability of the Qualimetrics, Inc. model 2132 wind sensor (a cup and vane type sensor) to measure a rotor wash flow field as compared to the TSI, Inc. model 204D ion beam deflection sensor. The tests concentrated on the sensor's ability to capture dynamic characteristics of a helicopter rotor wash flow field. The project was conducted from April to November 1992 and consisted of quantitative laboratory and field testing. The laboratory testing included 9.5 hours of wind tunnel test time, subjecting each sensor to three step input tests at velocities of 20 knots, 50 knots, and 80 knots. Field test data were collected during one hour of SH-60B helicopter hover time at heights of 15 and 25 feet above ground level at distances of 35 and 70 feet from the wind sensors. Aircraft gross weights ranged between 19,600 and 20,500 pounds. All field test data were obtained in ambient wind conditions of approximately 8 knots at 40 degrees relative to the aircraft nose, -40 feet pressure altitude in an ambient temperature of 85 F. Laboratory data analysis indicates the model 2132 cup and vane sensor's time constant values were significantly higher than those of the model 204D ion beam sensor and varied relative to wind tunnel velocity settings. This indicates the model 2132 sensor's ability to accurately capture oscillations in a dynamic flow field is significantly less than the model 204D sensor. The model 2132 sensor did detect periodic or pulsating velocity magnitudes, but failed to capture significant oscillations as compared to the model 204D sensor. Comparative analysis of all field test event data indicate the model 2132 sensor only detected frequencies below 1.5 Hz and only captured an average of 46 percent of the model 204D sensor's maximum amplitude pulse values that were below 1.5 Hz. The model 2132 sensor's inability to capture many of the maximum pulse amplitudes is evidence of the sensor's limited capability to

  4. Hybrid Unifying Variable Supernetwork Model

    Institute of Scientific and Technical Information of China (English)

    LIU; Qiang; FANG; Jin-qing; LI; Yong

    2015-01-01

    In order to compare new phenomenon of topology change,evolution,hybrid ratio and network characteristics of unified hybrid network theoretical model with unified hybrid supernetwork model,this paper constructed unified hybrid variable supernetwork model(HUVSM).The first layer introduces a hybrid ratio dr,the

  5. Large Unifying Hybrid Supernetwork Model

    Institute of Scientific and Technical Information of China (English)

    LIU; Qiang; FANG; Jin-qing; LI; Yong

    2015-01-01

    For depicting multi-hybrid process,large unifying hybrid network model(so called LUHNM)has two sub-hybrid ratios except dr.They are deterministic hybrid ratio(so called fd)and random hybrid ratio(so called gr),respectively.

  6. Hybrid Rocket Technology

    National Research Council Canada - National Science Library

    Sankaran Venugopal; K K Rajesh; V Ramanujachari

    2011-01-01

    With their unique operational characteristics, hybrid rockets can potentially provide safer, lower-cost avenues for spacecraft and missiles than the current solid propellant and liquid propellant systems...

  7. Hybrid FOSS Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Armstrong researchers are continuing their efforts to further develop FOSS technologies. A hybrid FOSS technique (HyFOSS) employs conventional continuous grating...

  8. Comparison of the stem-loop and linear probe-based electrochemical DNA sensors by alternating current voltammetry and cyclic voltammetry.

    Science.gov (United States)

    Yang, Weiwei; Lai, Rebecca Y

    2011-12-06

    Here we systematically characterized the sensor performance of the stem-loop probe (SLP) and linear probe (LP) electrochemical DNA sensors using alternating current voltammetry (ACV) and cyclic voltammetry (CV), with the goal of generating the set of operational criteria that best suits each sensor architecture, in addition to elucidating the signaling mechanism behind these sensors. Although the LP sensor shows slightly better % signal suppression (SS) upon hybridization with the perfect match target at 10 Hz, our frequency-dependent study suggests that it shows optimal % SS only in a very limited AC frequency range. Similar results are observed in CV studies in which the LP sensor, when compared to the SLP sensor, displays a narrower range of voltammetric scan rates where the optimal % SS can be achieved. More importantly, the difference between the two sensors' performance is particularly pronounced if the change in integrated charge (Q) upon target hybridization, rather than the peak current (I), is measured in CV. The temperature-dependent study further highlights the differences between the two sensors, where the LP sensor, owing to the flexible linear probe architecture, is more readily perturbed by temperature changes. Both SLP and LP sensors, however, show a loss of % SS when operated at elevated temperatures, despite the significant improvement in the hybridization kinetics. In conjunction with the ACV, CV, and temperature-dependent studies, the electron-transfer kinetics study provides further evidence in support of the proposed signaling mechanism of these two sensors, in which the SLP sensor's signaling efficiency and sensor performance is directly linked to the hybridization-induced conformational change in the redox-labeled probe, whereas the performance of the LP sensor relies on the hybridization-induced change in probe dynamics. © 2011 American Chemical Society

  9. Virtual Sensor Test Instrumentation

    Science.gov (United States)

    Wang, Roy

    2011-01-01

    Virtual Sensor Test Instrumentation is based on the concept of smart sensor technology for testing with intelligence needed to perform sell-diagnosis of health, and to participate in a hierarchy of health determination at sensor, process, and system levels. A virtual sensor test instrumentation consists of five elements: (1) a common sensor interface, (2) microprocessor, (3) wireless interface, (4) signal conditioning and ADC/DAC (analog-to-digital conversion/ digital-to-analog conversion), and (5) onboard EEPROM (electrically erasable programmable read-only memory) for metadata storage and executable software to create powerful, scalable, reconfigurable, and reliable embedded and distributed test instruments. In order to maximize the efficient data conversion through the smart sensor node, plug-and-play functionality is required to interface with traditional sensors to enhance their identity and capabilities for data processing and communications. Virtual sensor test instrumentation can be accessible wirelessly via a Network Capable Application Processor (NCAP) or a Smart Transducer Interlace Module (STIM) that may be managed under real-time rule engines for mission-critical applications. The transducer senses the physical quantity being measured and converts it into an electrical signal. The signal is fed to an A/D converter, and is ready for use by the processor to execute functional transformation based on the sensor characteristics stored in a Transducer Electronic Data Sheet (TEDS). Virtual sensor test instrumentation is built upon an open-system architecture with standardized protocol modules/stacks to interface with industry standards and commonly used software. One major benefit for deploying the virtual sensor test instrumentation is the ability, through a plug-and-play common interface, to convert raw sensor data in either analog or digital form, to an IEEE 1451 standard-based smart sensor, which has instructions to program sensors for a wide variety of

  10. Distributed thin film sensor array for damage detection and localization

    Science.gov (United States)

    Downey, Austin; Laflamme, Simon; Ubertini, Filippo

    2016-04-01

    The authors have developed a capacitive-based thin film sensor for monitoring strain on mesosurfaces. Arranged in a network configuration, the sensing system is analogous to a biological skin, where local strain can be monitored over a global area. The measurement principle is based on a measurable change in capacitance provoked by strain. In the case of bidirectional in-plane strain, the sensor output contains the additive measurement of both principal strain components. In this paper, we present an algorithm for retrieving unidirectional strain from the bidirectional measurements of the capacitive-based thin film sensor when place in a hybrid dense sensor network with state-of-the-art unidirectional strain sensors. The algorithm leverages the advantages of a hybrid dense network for application of the thin film sensor to reconstruct the surface strain maps. A bidirectional shape function is assumed, and it is differentiated to obtain expressions for planar strain. A least squares estimator (LSE) is used to reconstruct the planar strain map from the networks measurements, after the system's boundary conditions have been enforced in the model. The coefficients obtained by the LSE can be used to reconstruct the estimated strain map. Results from numerical simulations and experimental investigations show good performance of the algorithm.

  11. From hybrid swarms to swarms of hybrids

    Science.gov (United States)

    Stohlgren, Thomas J.; Szalanski, Allen L; Gaskin, John F.; Young, Nicholas E.; West, Amanda; Jarnevich, Catherine S.; Tripodi, Amber

    2015-01-01

    Science has shown that the introgression or hybridization of modern humans (Homo sapiens) with Neanderthals up to 40,000 YBP may have led to the swarm of modern humans on earth. However, there is little doubt that modern trade and transportation in support of the humans has continued to introduce additional species, genotypes, and hybrids to every country on the globe. We assessed the utility of species distributions modeling of genotypes to assess the risk of current and future invaders. We evaluated 93 locations of the genus Tamarix for which genetic data were available. Maxent models of habitat suitability showed that the hybrid, T. ramosissima x T. chinensis, was slightly greater than the parent taxa (AUCs > 0.83). General linear models of Africanized honey bees, a hybrid cross of Tanzanian Apis mellifera scutellata and a variety of European honey bee including A. m. ligustica, showed that the Africanized bees (AUC = 0.81) may be displacing European honey bees (AUC > 0.76) over large areas of the southwestern U.S. More important, Maxent modeling of sub-populations (A1 and A26 mitotypes based on mDNA) could be accurately modeled (AUC > 0.9), and they responded differently to environmental drivers. This suggests that rapid evolutionary change may be underway in the Africanized bees, allowing the bees to spread into new areas and extending their total range. Protecting native species and ecosystems may benefit from risk maps of harmful invasive species, hybrids, and genotypes.

  12. Multi-Sensor Architectures

    DEFF Research Database (Denmark)

    Hussain, Dil Muhammad Akbar; Ahmed, Zaki; Khan, M. Z.

    2012-01-01

    The use of multiple sensors typically requires the fusion of data from different type of sensors. The combined use of such a data has the potential to give an efficient, high quality and reliable estimation. Input data from different sensors allows the introduction of target attributes (target type......, size) into the association logic. This requires a more general association logic, in which both the physical position parameters and the target attributes can be used simultaneously. Although, the data fusion from a number of sensors could provide better and reliable estimation but abundance...... processing units for same type of multiple sensors, typically radar in our case....

  13. Multifuctional integrated sensors (MFISES).

    Energy Technology Data Exchange (ETDEWEB)

    Homeijer, Brian D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Roozeboom, Clifton [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-10-01

    Many emerging IoT applications require sensing of multiple physical and environmental parameters for: completeness of information, measurement validation, unexpected demands, improved performance. For example, a typical outdoor weather station measures temperature, humidity, barometric pressure, light intensity, rainfall, wind speed and direction. Existing sensor technologies do not directly address the demand for cost, size, and power reduction in multi-paramater sensing applications. Industry sensor manufacturers have developed integrated sensor systems for inertial measurements that combine accelerometers, gyroscopes, and magnetometers, but do not address environmental sensing functionality. In existing research literature, a technology gap exists between the functionality of MEMS sensors and the real world applications of the sensors systems.

  14. Sensor mount assemblies and sensor assemblies

    Science.gov (United States)

    Miller, David H [Redondo Beach, CA

    2012-04-10

    Sensor mount assemblies and sensor assemblies are provided. In an embodiment, by way of example only, a sensor mount assembly includes a busbar, a main body, a backing surface, and a first finger. The busbar has a first end and a second end. The main body is overmolded onto the busbar. The backing surface extends radially outwardly relative to the main body. The first finger extends axially from the backing surface, and the first finger has a first end, a second end, and a tooth. The first end of the first finger is disposed on the backing surface, and the tooth is formed on the second end of the first finger.

  15. Detection of influenza A virus using carbon nanotubes field effect transistor based DNA sensor

    Science.gov (United States)

    Tran, Thi Luyen; Nguyen, Thi Thuy; Huyen Tran, Thi Thu; Chu, Van Tuan; Thinh Tran, Quang; Tuan Mai, Anh

    2017-09-01

    The carbon nanotubes field effect transistor (CNTFET) based DNA sensor was developed, in this paper, for detection of influenza A virus DNA. Number of factors that influence the output signal and analytical results were investigated. The initial probe DNA, decides the available DNA strands on CNTs, was 10 μM. The hybridization time for defined single helix was 120 min. The hybridization temperature was set at 30 °C to get a net change in drain current of the DNA sensor without altering properties of any biological compounds. The response time of the DNA sensor was less than one minute with a high reproducibility. In addition, the DNA sensor has a wide linear detection range from 1 pM to 10 nM, and a very low detection limit of 1 pM. Finally, after 7-month storage in 7.4 pH buffer, the output signal of DNA sensor recovered 97%.

  16. Hybrid Atom Electrostatic System for Satellite Geodesy

    Science.gov (United States)

    Zahzam, Nassim; Bidel, Yannick; Bresson, Alexandre; Huynh, Phuong-Anh; Liorzou, Françoise; Lebat, Vincent; Foulon, Bernard; Christophe, Bruno

    2017-04-01

    The subject of this poster comes within the framework of new concepts identification and development for future satellite gravity missions, in continuation of previously launched space missions CHAMP, GRACE, GOCE and ongoing and prospective studies like NGGM, GRACE 2 or E-GRASP. We were here more focused on the inertial sensors that complete the payload of such satellites. The clearly identified instruments for space accelerometry are based on the electrostatic technology developed for many years by ONERA and that offer a high level of performance and a high degree of maturity for space applications. On the other hand, a new generation of sensors based on cold atom interferometry (AI) is emerging and seems very promising in this context. These atomic instruments have already demonstrated on ground impressive results, especially with the development of state-of-the-art gravimeters, and should reach their full potential only in space, where the microgravity environment allows long interaction times. Each of these two types of instruments presents their own advantages which are, for the electrostatic sensors (ES), their demonstrated short term sensitivity and their high TRL, and for AI, amongst others, the absolute nature of the measurement and therefore no need for calibration processes. These two technologies seem in some aspects very complementary and a hybrid sensor bringing together all their assets could be the opportunity to take a big step in this context of gravity space missions. We present here the first experimental association on ground of an electrostatic accelerometer and an atomic accelerometer and underline the interest of calibrating the ES instrument with the AI. Some technical methods using the ES proof-mass as the Raman Mirror seem very promising to remove rotation effects of the satellite on the AI signal. We propose a roadmap to explore further in details and more rigorously this attractive hybridization scheme in order to assess its potential

  17. Online Distributed Sensor Selection

    CERN Document Server

    Golovin, Daniel; Krause, Andreas

    2010-01-01

    A key problem in sensor networks is to decide which sensors to query when, in order to obtain the most useful information (e.g., for performing accurate prediction), subject to constraints (e.g., on power and bandwidth). In many applications the utility function is not known a priori, must be learned from data, and can even change over time. Furthermore for large sensor networks solving a centralized optimization problem to select sensors is not feasible, and thus we seek a fully distributed solution. In this paper, we present Distributed Online Greedy (DOG), an efficient, distributed algorithm for repeatedly selecting sensors online, only receiving feedback about the utility of the selected sensors. We prove very strong theoretical no-regret guarantees that apply whenever the (unknown) utility function satisfies a natural diminishing returns property called submodularity. Our algorithm has extremely low communication requirements, and scales well to large sensor deployments. We extend DOG to allow observatio...

  18. Silicon force sensor

    Science.gov (United States)

    Galambos, Paul C.; Crenshaw, Thomas B.; Nishida, Erik E.; Burnett, Damon J.; Lantz, Jeffrey W.

    2016-07-05

    The various technologies presented herein relate to a sensor for measurement of high forces and/or high load shock rate(s), whereby the sensor utilizes silicon as the sensing element. A plate of Si can have a thinned region formed therein on which can be formed a number of traces operating as a Wheatstone bridge. The brittle Si can be incorporated into a layered structure comprising ductile and/or compliant materials. The sensor can have a washer-like configuration which can be incorporated into a nut and bolt configuration, whereby tightening of the nut and bolt can facilitate application of a compressive preload upon the sensor. Upon application of an impact load on the bolt, the compressive load on the sensor can be reduced (e.g., moves towards zero-load), however the magnitude of the preload can be such that the load on the sensor does not translate to tensile stress being applied to the sensor.

  19. MEMS optical sensor

    DEFF Research Database (Denmark)

    2013-01-01

    The present invention relates to an all-optical sensor utilizing effective index modulation of a waveguide and detection of a wavelength shift of reflected light and a force sensing system accommodating said optical sensor. One embodiment of the invention relates to a sensor system comprising...... at least one multimode light source, one or more optical sensors comprising a multimode sensor optical waveguide accommodating a distributed Bragg reflector, at least one transmitting optical waveguide for guiding light from said at least one light source to said one or more multimode sensor optical...... waveguides, a detector for measuring light reflected from said Bragg reflector in said one or more multimode sensor optical waveguides, and a data processor adapted for analyzing variations in the Bragg wavelength of at least one higher order mode of the reflected light....

  20. Distributed Sensor Nodes Charged by Mobile Charger with Directional Antenna and by Energy Trading for Balancing

    Directory of Open Access Journals (Sweden)

    Celso Moraes

    2017-01-01

    Full Text Available Provision of energy to wireless sensor networks is crucial for their sustainable operation. Sensor nodes are typically equipped with batteries as their operating energy sources. However, when the sensor nodes are sited in almost inaccessible locations, replacing their batteries incurs high maintenance cost. Under such conditions, wireless charging of sensor nodes by a mobile charger with an antenna can be an efficient solution. When charging distributed sensor nodes, a directional antenna, rather than an omnidirectional antenna, is more energy-efficient because of smaller proportion of off-target radiation. In addition, for densely distributed sensor nodes, it can be more effective for some undercharged sensor nodes to harvest energy from neighboring overcharged sensor nodes than from the remote mobile charger, because this reduces the pathloss of charging signal due to smaller distances. In this paper, we propose a hybrid charging scheme that combines charging by a mobile charger with a directional antenna, and energy trading, e.g., transferring and harvesting, between neighboring sensor nodes. The proposed scheme is compared with other charging scheme. Simulations demonstrate that the hybrid charging scheme with a directional antenna achieves a significant reduction in the total charging time required for all sensor nodes to reach a target energy level.

  1. Distributed Sensor Nodes Charged by Mobile Charger with Directional Antenna and by Energy Trading for Balancing.

    Science.gov (United States)

    Moraes, Celso; Myung, Sunghee; Lee, Sangkeum; Har, Dongsoo

    2017-01-10

    Provision of energy to wireless sensor networks is crucial for their sustainable operation. Sensor nodes are typically equipped with batteries as their operating energy sources. However, when the sensor nodes are sited in almost inaccessible locations, replacing their batteries incurs high maintenance cost. Under such conditions, wireless charging of sensor nodes by a mobile charger with an antenna can be an efficient solution. When charging distributed sensor nodes, a directional antenna, rather than an omnidirectional antenna, is more energy-efficient because of smaller proportion of off-target radiation. In addition, for densely distributed sensor nodes, it can be more effective for some undercharged sensor nodes to harvest energy from neighboring overcharged sensor nodes than from the remote mobile charger, because this reduces the pathloss of charging signal due to smaller distances. In this paper, we propose a hybrid charging scheme that combines charging by a mobile charger with a directional antenna, and energy trading, e.g., transferring and harvesting, between neighboring sensor nodes. The proposed scheme is compared with other charging scheme. Simulations demonstrate that the hybrid charging scheme with a directional antenna achieves a significant reduction in the total charging time required for all sensor nodes to reach a target energy level.

  2. Digital Sensor Technology

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Ken D. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Quinn, Edward L. [Technology Resources, Dana Point, CA (United States); Mauck, Jerry L. [Technology Resources, Dana Point, CA (United States); Bockhorst, Richard M. [Technology Resources, Dana Point, CA (United States)

    2015-02-01

    The nuclear industry has been slow to incorporate digital sensor technology into nuclear plant designs due to concerns with digital qualification issues. However, the benefits of digital sensor technology for nuclear plant instrumentation are substantial in terms of accuracy and reliability. This paper, which refers to a final report issued in 2013, demonstrates these benefits in direct comparisons of digital and analog sensor applications. Improved accuracy results from the superior operating characteristics of digital sensors. These include improvements in sensor accuracy and drift and other related parameters which reduce total loop uncertainty and thereby increase safety and operating margins. An example instrument loop uncertainty calculation for a pressure sensor application is presented to illustrate these improvements. This is a side-by-side comparison of the instrument loop uncertainty for both an analog and a digital sensor in the same pressure measurement application. Similarly, improved sensor reliability is illustrated with a sample calculation for determining the probability of failure on demand, an industry standard reliability measure. This looks at equivalent analog and digital temperature sensors to draw the comparison. The results confirm substantial reliability improvement with the digital sensor, due in large part to ability to continuously monitor the health of a digital sensor such that problems can be immediately identified and corrected. This greatly reduces the likelihood of a latent failure condition of the sensor at the time of a design basis event. Notwithstanding the benefits of digital sensors, there are certain qualification issues that are inherent with digital technology and these are described in the report. One major qualification impediment for digital sensor implementation is software common cause failure (SCCF).

  3. Performance of Nano-Submicron-Stripe Pd Thin-Film Temperature Sensors

    Science.gov (United States)

    Huo, Xiaoye; Xu, Jingjing; Wang, Zhenhai; Yang, Fan; Xu, Shengyong

    2016-07-01

    Dozens of small dual-beam thin-film temperature sensors with a total width down to 430 nm were fabricated and tested. The sensors were all made from 90-nm-thick Pd thin films, where the width of the narrow stripes was 70-100 nm and that of the wide ones was 210-800 nm. Two different calibration methods showed consistent and repeatable sensitivities of 0.7-1.2 μV/K for the sensors, confirming that the sensitivity mainly depended on the width configuration of each sensor. By integrating arrays of such sensors on a practical testing platform using hybrid e-beam lithography and photolithography techniques, we demonstrated that these sensors were capable of detecting a weak surface temperature difference of 0.1-0.2 K at microscale, and they could be scaled up as built-in temperature sensors in many practical devices.

  4. Performance of Nano-Submicron-Stripe Pd Thin-Film Temperature Sensors.

    Science.gov (United States)

    Huo, Xiaoye; Xu, Jingjing; Wang, Zhenhai; Yang, Fan; Xu, Shengyong

    2016-12-01

    Dozens of small dual-beam thin-film temperature sensors with a total width down to 430 nm were fabricated and tested. The sensors were all made from 90-nm-thick Pd thin films, where the width of the narrow stripes was 70-100 nm and that of the wide ones was 210-800 nm. Two different calibration methods showed consistent and repeatable sensitivities of 0.7-1.2 μV/K for the sensors, confirming that the sensitivity mainly depended on the width configuration of each sensor. By integrating arrays of such sensors on a practical testing platform using hybrid e-beam lithography and photolithography techniques, we demonstrated that these sensors were capable of detecting a weak surface temperature difference of 0.1-0.2 K at microscale, and they could be scaled up as built-in temperature sensors in many practical devices.

  5. On-chip magnetic bead-based DNA melting curve analysis using a magnetoresistive sensor

    DEFF Research Database (Denmark)

    Rizzi, Giovanni; Østerberg, Frederik Westergaard; Henriksen, Anders Dahl

    2014-01-01

    of the differential sensor geometry. The sensor surfaces are functionalized with wild type (WT) and mutant type (MT) capture probes, differing by a single base insertion (a single nucleotide polymorphism, SNP). Complementary biotinylated targets in suspension couple streptavidin magnetic beads to the sensor surface......We present real-time measurements of DNA melting curves in a chip-based system that detects the amount of surface-bound magnetic beads using magnetoresistive magnetic field sensors. The sensors detect the difference between the amount of beads bound to the top and bottom sensor branches....... The beads are magnetized by the field arising from the bias current passed through the sensors. We demonstrate the first on-chip measurements of the melting of DNA hybrids upon a ramping of the temperature. This overcomes the limitation of using a single washing condition at constant temperature. Moreover...

  6. Cardiac hybrid imaging

    Energy Technology Data Exchange (ETDEWEB)

    Gaemperli, Oliver [University Hospital Zurich, Cardiac Imaging, Zurich (Switzerland); University Hospital Zurich, Nuclear Cardiology, Cardiovascular Center, Zurich (Switzerland); Kaufmann, Philipp A. [University Hospital Zurich, Cardiac Imaging, Zurich (Switzerland); Alkadhi, Hatem [University Hospital Zurich, Institute of Diagnostic and Interventional Radiology, Zurich (Switzerland)

    2014-05-15

    Hybrid cardiac single photon emission computed tomography (SPECT)/CT imaging allows combined assessment of anatomical and functional aspects of cardiac disease. In coronary artery disease (CAD), hybrid SPECT/CT imaging allows detection of coronary artery stenosis and myocardial perfusion abnormalities. The clinical value of hybrid imaging has been documented in several subsets of patients. In selected groups of patients, hybrid imaging improves the diagnostic accuracy to detect CAD compared to the single imaging techniques. Additionally, this approach facilitates functional interrogation of coronary stenoses and guidance with regard to revascularization procedures. Moreover, the anatomical information obtained from CT coronary angiography or coronary artery calcium scores (CACS) adds prognostic information over perfusion data from SPECT. The use of cardiac hybrid imaging has been favoured by the dissemination of dedicated hybrid systems and the release of dedicated image fusion software, which allow simple patient throughput for hybrid SPECT/CT studies. Further technological improvements such as more efficient detector technology to allow for low-radiation protocols, ultra-fast image acquisition and improved low-noise image reconstruction algorithms will be instrumental to further promote hybrid SPECT/CT in research and clinical practice. (orig.)

  7. Hybrid intelligent engineering systems

    CERN Document Server

    Jain, L C; Adelaide, Australia University of

    1997-01-01

    This book on hybrid intelligent engineering systems is unique, in the sense that it presents the integration of expert systems, neural networks, fuzzy systems, genetic algorithms, and chaos engineering. It shows that these new techniques enhance the capabilities of one another. A number of hybrid systems for solving engineering problems are presented.

  8. A Hybrid Imagination

    DEFF Research Database (Denmark)

    Jamison, Andrew; Christensen, Steen Hyldgaard; Botin, Lars

    contexts, or sites, for mixing scientific knowledge and technical skills from different fields and social domains into new combinations, thus fostering what the authors term a “hybrid imagination”. Such a hybrid imagination is especially important today, as a way to counter the competitive and commercial...

  9. Hybrid trajectory spaces

    NARCIS (Netherlands)

    Collins, P.J.

    2005-01-01

    In this paper, we present a general framework for describing and studying hybrid systems. We represent the trajectories of the system as functions on a hybrid time domain, and the system itself by its trajectory space, which is the set of all possible trajectories. The trajectory space is given a na

  10. Editorial: Hybrid Systems

    DEFF Research Database (Denmark)

    Olderog, Ernst-Rüdiger; Ravn, Anders Peter

    2007-01-01

    An introduction to three papers in a special issue on Hybrid Systems. These paper were first presented at an IFIP WG 2.2 meeting in Skagen 2005.......An introduction to three papers in a special issue on Hybrid Systems. These paper were first presented at an IFIP WG 2.2 meeting in Skagen 2005....

  11. Preparação e caracterização elétrica de sensores de metanol à base de nanocompósitos híbridos de polipirrol/nanopartículas metálicas Preparation and electrical characterization of gold nanoparticles-polypyrrole hybrid composites for application in methanol gas sensing

    Directory of Open Access Journals (Sweden)

    Helinando P. de Oliveira

    2010-01-01

    Full Text Available Neste trabalho, compósitos híbridos metal/polímero (nanopartículas de ouro/polipirrol foram sintetizados a partir da polimerização química do pirrol sobre a superfície de nanopartículas metálicas estabilizados por um agente surfactante (dodecil sulfato de sódio. A posterior solubilização do compósito em álcool polivinílico permitiu a obtenção de uma matriz orgânica auto-sustentável, flexível, com boa resistência mecânica e aplicável na detecção de compostos voláteis (com especial atenção ao metanol. Nessa direção, foram otimizadas as condições de preparação do compósito, no sentido de promover a detecção e quantificação do metanol em misturas com etanol, com o intuito de aplicar o dispositivo no reconhecimento de resquícios de metanol em bebidas alcoólicas. Dos sistemas analisados, a sensibilidade dos dispositivos se mostrou diretamente proporcional à constante dielétrica do volátil utilizado, indicando que interações físicas ocorrem na matriz na presença de voláteis.In this study, hybrid composites of gold nanoparticles and polypyrrole (AuNPs-PPy were manufactured by chemical polymerization of the pyrrole monomer on the surface of metal nanoparticles, which were then incorporated in a poly(vinyl alcohol (PVA matrix to be exploited in sensing technologies for detecting methanol. The preparation conditions were optimized to maximize sensitivity, allowing for the determination of relative concentrations of methanol molecules in binary mixtures of methanol/ethanol. This was carried out using the electrical response of the sensor, which depends on the dielectric constant of the volatile organic compounds.

  12. Hybrid reactors. [Fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    Moir, R.W.

    1980-09-09

    The rationale for hybrid fusion-fission reactors is the production of fissile fuel for fission reactors. A new class of reactor, the fission-suppressed hybrid promises unusually good safety features as well as the ability to support 25 light-water reactors of the same nuclear power rating, or even more high-conversion-ratio reactors such as the heavy-water type. One 4000-MW nuclear hybrid can produce 7200 kg of /sup 233/U per year. To obtain good economics, injector efficiency times plasma gain (eta/sub i/Q) should be greater than 2, the wall load should be greater than 1 MW.m/sup -2/, and the hybrid should cost less than 6 times the cost of a light-water reactor. Introduction rates for the fission-suppressed hybrid are usually rapid.

  13. Hybrid propulsion technology program

    Science.gov (United States)

    1990-01-01

    Technology was identified which will enable application of hybrid propulsion to manned and unmanned space launch vehicles. Two design concepts are proposed. The first is a hybrid propulsion system using the classical method of regression (classical hybrid) resulting from the flow of oxidizer across a fuel grain surface. The second system uses a self-sustaining gas generator (gas generator hybrid) to produce a fuel rich exhaust that was mixed with oxidizer in a separate combustor. Both systems offer cost and reliability improvement over the existing solid rocket booster and proposed liquid boosters. The designs were evaluated using life cycle cost and reliability. The program consisted of: (1) identification and evaluation of candidate oxidizers and fuels; (2) preliminary evaluation of booster design concepts; (3) preparation of a detailed point design including life cycle costs and reliability analyses; (4) identification of those hybrid specific technologies needing improvement; and (5) preperation of a technology acquisition plan and large scale demonstration plan.

  14. HEAT Sensor: Harsh Environment Adaptable Thermionic Sensor

    Energy Technology Data Exchange (ETDEWEB)

    Limb, Scott J. [Palo Alto Research Center, Palo Alto, CA (United States)

    2016-05-31

    This document is the final report for the “HARSH ENVIRONMENT ADAPTABLE THERMIONIC SENSOR” project under NETL’s Crosscutting contract DE-FE0013062. This report addresses sensors that can be made with thermionic thin films along with the required high temperature hermetic packaging process. These sensors can be placed in harsh high temperature environments and potentially be wireless and self-powered.

  15. Energy Efficient Hybrid Dual Axis Solar Tracking System

    Directory of Open Access Journals (Sweden)

    Rashid Ahammed Ferdaus

    2014-01-01

    Full Text Available This paper describes the design and implementation of an energy efficient solar tracking system from a normal mechanical single axis to a hybrid dual axis. For optimizing the solar tracking mechanism electromechanical systems were evolved through implementation of different evolutional algorithms and methodologies. To present the tracker, a hybrid dual-axis solar tracking system is designed, built, and tested based on both the solar map and light sensor based continuous tracking mechanism. These light sensors also compare the darkness and cloudy and sunny conditions assisting daily tracking. The designed tracker can track sun’s apparent position at different months and seasons; thereby the electrical controlling device requires a real time clock device for guiding the tracking system in seeking solar position for the seasonal motion. So the combination of both of these tracking mechanisms made the designed tracker a hybrid one. The power gain and system power consumption are compared with a static and continuous dual axis solar tracking system. It is found that power gain of hybrid dual axis solar tracking system is almost equal to continuous dual axis solar tracking system, whereas the power saved in system operation by the hybrid tracker is 44.44% compared to the continuous tracking system.

  16. Sensor Management for Tracking in Sensor Networks

    CERN Document Server

    Fuemmeler, Jason A; Veeravalli, Venugopal V

    2010-01-01

    We study the problem of tracking an object moving through a network of wireless sensors. In order to conserve energy, the sensors may be put into a sleep mode with a timer that determines their sleep duration. It is assumed that an asleep sensor cannot be communicated with or woken up, and hence the sleep duration needs to be determined at the time the sensor goes to sleep based on all the information available to the sensor. Having sleeping sensors in the network could result in degraded tracking performance, therefore, there is a tradeoff between energy usage and tracking performance. We design sleeping policies that attempt to optimize this tradeoff and characterize their performance. As an extension to our previous work in this area [1], we consider generalized models for object movement, object sensing, and tracking cost. For discrete state spaces and continuous Gaussian observations, we derive a lower bound on the optimal energy-tracking tradeoff. It is shown that in the low tracking error regime, the g...

  17. Graduate Automotive Technology Education (GATE) Program: Center of Automotive Technology Excellence in Advanced Hybrid Vehicle Technology at West Virginia University

    Energy Technology Data Exchange (ETDEWEB)

    Nigle N. Clark

    2006-12-31

    This report summarizes the technical and educational achievements of the Graduate Automotive Technology Education (GATE) Center at West Virginia University (WVU), which was created to emphasize Advanced Hybrid Vehicle Technology. The Center has supported the graduate studies of 17 students in the Department of Mechanical and Aerospace Engineering and the Lane Department of Computer Science and Electrical Engineering. These students have addressed topics such as hybrid modeling, construction of a hybrid sport utility vehicle (in conjunction with the FutureTruck program), a MEMS-based sensor, on-board data acquisition for hybrid design optimization, linear engine design and engine emissions. Courses have been developed in Hybrid Vehicle Design, Mobile Source Powerplants, Advanced Vehicle Propulsion, Power Electronics for Automotive Applications and Sensors for Automotive Applications, and have been responsible for 396 hours of graduate student coursework. The GATE program also enhanced the WVU participation in the U.S. Department of Energy Student Design Competitions, in particular FutureTruck and Challenge X. The GATE support for hybrid vehicle technology enhanced understanding of hybrid vehicle design and testing at WVU and encouraged the development of a research agenda in heavy-duty hybrid vehicles. As a result, WVU has now completed three programs in hybrid transit bus emissions characterization, and WVU faculty are leading the Transportation Research Board effort to define life cycle costs for hybrid transit buses. Research and enrollment records show that approximately 100 graduate students have benefited substantially from the hybrid vehicle GATE program at WVU.

  18. Shack-Hartmann and Interferometric Hybrid Wavefront Sensor

    Science.gov (United States)

    2011-03-24

    abstract.cfm?URI=josaa-11-7-2080. 171 24. Flatté, Stanley M. and James S. Gerber . “Irradiance-variance behavior by numerical simulation for plane-wave...www.opticsinfobase.org/abstract.cfm?URI=URI=FiO-2008-FMF2. 23. Flatté, Stanley M., Charles Bracher, and Guang-Yu Wang. “Probability- density functions of...josaa-17-6-1092. 25. Flatté, Stanley M., Guang-Yu Wang, and Jan Martin. “Irradiance variance of optical waves through atmospheric turbulence by

  19. Performance Evaluation of Page Migration Scheme for NVRAM-Based Wireless Sensor Nodes

    OpenAIRE

    Yeonseung Ryu

    2013-01-01

    A wireless sensor network consists of low-powered and multifunctional sensor nodes. Since each sensor node is operated by a battery, the energy management has become one of the critical design challenges in wireless sensor networks. Some recent studies have shown that DRAM-based main memory spends a significant portion of the total system power. In this paper, we studied a buffer management scheme for hybrid main memory that combines low-power nonvolatile RAM (NVRAM) and DRAM in order to redu...

  20. Sensor for metal detection

    KAUST Repository

    Kodzius, Rimantas

    2014-06-26

    NOVELTY - The sensor has a microfluidic flow channel that is provided with an inlet port, an outlet port, and a detection chamber. The detection chamber is provided with a group of sensing electrodes (4) having a working electrode (8), a counter electrode (9), and a reference electrode (10). A flow sensor is configured to measure flow in the channel. A temperature sensor (6) is configured to measure temperature in the channel (3). An electrical connection is configured to connect the sensor to a sensing device. USE - Sensor for detecting metal such as toxic metal in sample such as clinical sample such as stool, saliva, sputum, bronchial lavage, urine, vaginal swab, nasal swab, biopsy, tissue, tears, breath, blood, serum, plasma, cerebrospinal fluid, peritoneal fluid, pleural fluid, pericardial fluid, joint fluid, and amniotic fluid, water sample, food sample, air sample, and soil sample (all claimed). ADVANTAGE - The sensor for use with the portable analytical instrument is configured for detection of metalsin samples. The sensor can provide the excellent solution for on-site metal detection, including heavy metal detection. The sensors can provide significant advantages in higher throughput, lower cost, at the same time being less labor intensive and less dependent on individual skills. The disposable design of the sensor, the enhanced reliability and repeatability of measurements can be obtained. The sensors can be widely applied in various industries. DETAILED DESCRIPTION - INDEPENDENT CLAIMS are included for the following: (1) a system for detecting metal in sample; and (2) a method for using sensor for detecting metal in sample. DESCRIPTION OF DRAWING(S) - The drawing shows a schematic view of the sensor prototype. Channel (3) Sensing electrodes (4) Temperature sensor (6) Working electrode (8) Counter electrode (9) Reference electrode (10)

  1. Silicon sensors development for the CMS pixel system

    CERN Document Server

    Arndt, Kirk; Bortoletto, Daniela; Giolo, Kim; Horisberger, R P; Rohe, T; Roy, Amitava; Son Seung Hee

    2003-01-01

    The CMS experiment will operate at the Large Hadron Collider (LHC). A hybrid pixel detector located close to the interaction region of the colliding beams will provide high resolution tracking and vertex identification which will be crucial for b quark identification. Because of the radiation environment of the LHC, the performance of the sensors must be carefully evaluated up to a fluence of 6 multiplied by 10**1**4n//e//qcm **-**2. We expect that the sensors will be operated partially depleted during their operation at the LHC and we have implemented an n**+ on n sensor design. We have irradiated prototype sensors to a dose of 1 multiplied by 10 **1**5n //e//qcm**-**2. We present the results of our testing before and after irradiation.

  2. Passive Downhole Pressure Sensor Based on Surface Acoustic Wave Technology.

    Science.gov (United States)

    Quintero, Sully M M; Figueiredo, Sávio W O; Takahashi, Victor L; Llerena, Roberth A W; Braga, Arthur M B

    2017-07-15

    A passive surface acoustic wave (SAW) pressure sensor was developed for real-time pressure monitoring in downhole application. The passive pressure sensor consists of a SAW resonator, which is attached to a circular metal diaphragm used as a pressure transducer. While the membrane deflects as a function of pressure applied, the frequency response changes due to the variation of the SAW propagation parameters. The sensitivity and linearity of the SAW pressure sensor were measured to be 8.3 kHz/bar and 0.999, respectively. The experimental results were validated with a hybrid analytical-numerical analysis. The good results combined with the robust design and packaging for harsh environment demonstrated it to be a promising sensor for industrial applications.

  3. Hybrid plasmon photonic crystal resonance grating for integrated spectrometer biosensor.

    Science.gov (United States)

    Guo, Hong; Guo, Junpeng

    2015-01-15

    Using nanofabricated hybrid metal-dielectric nanohole array photonic crystal gratings, a hybrid plasmonic optical resonance spectrometer biosensor is demonstrated. The new spectrometer sensor technique measures plasmonic optical resonance from the first-order diffraction rather than via the traditional method of measuring optical resonance from transmission. The resonance spectra measured with the new spectrometer technique are compared with the spectra measured using a commercial optical spectrometer. It is shown that the new optical resonance spectrometer can be used to measure plasmonic optical resonance that otherwise cannot be measured with a regular optical spectrometer.

  4. Mechatronics and hybrid technologies

    DEFF Research Database (Denmark)

    2008-01-01

    R&D international contributions to control and design of novel intelligent mechatronic products and solutions with sensor- and actuator technology.......R&D international contributions to control and design of novel intelligent mechatronic products and solutions with sensor- and actuator technology....

  5. Sensor for Viscosity and Shear Strength Measurement

    Energy Technology Data Exchange (ETDEWEB)

    Dillon, J.; Moore, J.E. Jr.; Ebadian, M.A.; Jones, W.K.

    1998-10-20

    Measurement of the physical properties (viscosity and density) of waste slurries is critical in evaluating transport parameters to ensure turbulent flow through transport pipes. The environment for measurement and sensor exposure is extremely harsh; therefore, reliability and ruggedness are critical in the sensor design. The work for this project will be performed in three phases. The first phase, carried out in FY96, involved (1) an evaluation of acoustic and other methods for viscosity measurement; (2) measurement of the parameters of slurries over the range of percent solids found in tanks and transport systems; (3) a comparison of physical properties (e.g., viscosity and density) to percent solids found composition; and (4) the design of a prototype sensor. The second phase (FY97) will involve the fabrication of a prototype hybrid sensor to measure the viscosity and mechanical properties of slurries in remote, high-radiation environments. Two different viscometer designs are being investigated in this study: a magnetostrictive pulse wave guide viscometer; an oscillating cylinder viscometer. In FY97, the Hemispheric Center for Environmental Technology (HCET) at Florida International University (FIU), which has printed circuit, thick film, thin film, and co-fired ceramic fabrication capability, will fabricate five probes for demonstration after technology selection and evaluation.

  6. Carbon nanotube based NEMS actuators and sensors

    Science.gov (United States)

    Forney, Michael; Poler, Jordan

    2011-03-01

    Single-walled carbon nanotubes (SWNTs) have been widely studied due to superior mechanical and electrical properties. We have grown vertically aligned SWNTs (VA-SWNTs) onto microcantilever (MC) arrays, which provides an architecture for novel actuators and sensors. Raman spectroscopy confirms that the CVD-grown nanotubes are SWNTs and SEM confirms aligned growth. As an actuator, this hybrid MC/VA-SWNT system can be electrostatically modulated. SWNTs are excellent electron acceptors, so we can charge up the VA-SWNT array by applying a voltage. The electrostatic repulsion among the charged SWNTs provides a surface stress that induces MC deflection. Simulation results show that a few electrons per SWNT are needed for measureable deflections, and experimental actuators are being characterized by SEM, Raman, and an AFM optical lever system. The applied voltage is sinusoidally modulated, and deflection is measured with a lock-in amplifier. These actuators could be used for nano-manipulation, release of drugs from a capsule, or nano-valves. As a sensor, this MC/VA-SWNT system offers an improved sensitivity for chemical and bio-sensing compared to surface functionalized MC-based sensors. Those sensors only have a 2D sensing surface, but a MC/VA-SWNT system has significantly more sensing surface because the VA-SWNTs extend microns off the MC surface.

  7. MITRE sensor layer prototype

    Science.gov (United States)

    Duff, Francis; McGarry, Donald; Zasada, David; Foote, Scott

    2009-05-01

    The MITRE Sensor Layer Prototype is an initial design effort to enable every sensor to help create new capabilities through collaborative data sharing. By making both upstream (raw) and downstream (processed) sensor data visible, users can access the specific level, type, and quantities of data needed to create new data products that were never anticipated by the original designers of the individual sensors. The major characteristic that sets sensor data services apart from typical enterprise services is the volume (on the order of multiple terabytes) of raw data that can be generated by most sensors. Traditional tightly coupled processing approaches extract pre-determined information from the incoming raw sensor data, format it, and send it to predetermined users. The community is rapidly reaching the conclusion that tightly coupled sensor processing loses too much potentially critical information.1 Hence upstream (raw and partially processed) data must be extracted, rapidly archived, and advertised to the enterprise for unanticipated uses. The authors believe layered sensing net-centric integration can be achieved through a standardize-encapsulate-syndicateaggregate- manipulate-process paradigm. The Sensor Layer Prototype's technical approach focuses on implementing this proof of concept framework to make sensor data visible, accessible and useful to the enterprise. To achieve this, a "raw" data tap between physical transducers associated with sensor arrays and the embedded sensor signal processing hardware and software has been exploited. Second, we encapsulate and expose both raw and partially processed data to the enterprise within the context of a service-oriented architecture. Third, we advertise the presence of multiple types, and multiple layers of data through geographic-enabled Really Simple Syndication (GeoRSS) services. These GeoRSS feeds are aggregated, manipulated, and filtered by a feed aggregator. After filtering these feeds to bring just the type

  8. Clementine sensor suite

    Energy Technology Data Exchange (ETDEWEB)

    Ledebuhr, A.G. [Lawrence Livermore National Lab., CA (United States)

    1994-11-15

    LLNL designed and built the suite of six miniaturized light-weight space-qualified sensors utilized in the Clementine mission. A major goal of the Clementine program was to demonstrate technologies originally developed for Ballistic Missile Defense Organization Programs. These sensors were modified to gather data from the moon. This overview presents each of these sensors and some preliminary on-orbit performance estimates. The basic subsystems of these sensors include optical baffles to reject off-axis stray light, light-weight ruggedized optical systems, filter wheel assemblies, radiation tolerant focal plane arrays, radiation hardened control and readout electronics and low mass and power mechanical cryogenic coolers for the infrared sensors. Descriptions of each sensor type are given along with design specifications, photographs and on-orbit data collected.

  9. Sensor technology foresight

    DEFF Research Database (Denmark)

    Andersen, Per Dannemand; Jørgensen, Birte Holst; Rasmussen, Birgitte

    2001-01-01

    The Sensor Technology Center A/S (STC) in co-operation with Risoe National Laboratory has carried out a sensor technology foresight in order to strengthen a strategic outlook on sensor technology. The technology foresight (with a timeframe of 2000 to2015) has been performed in the period October...... 2000 - September 2001. The conclusions of the sensor technology report are based on 1) a scanning of existing forward looking literature on sensor technology, 2) a number of workshops with Danish andinternational participants and 3) an international survey with 174 respondents. Half of the respondents...... came from universities and other research institutes, and approximately one-third came from industry. The study has analysed six types of sensors(covering 13 sub-types) and, in addition, a number of systemic issues. All three sources of information indicate the same pattern regarding future...

  10. Medical Sensor Network Infrastructures

    DEFF Research Database (Denmark)

    Andersen, Jacob

    is required, such as taking a blood sample, mailing it to a lab, where it is analysed and the result returned by mail. Due to the continuing size and cost reduction of electronic equipment, future medical sensors will be much smaller, cheaper and often disposable. Furthermore, integration of these sensors...... with the electronic health record (EHR) IT-systems will save a lot of work (and human errors), as the sensor readings will be directly recorded in the patient’s records by the sensors themselves, rather than by a transcription performed by a busy clinician. Although this development has been going on for at least...... a decade, most sensors are still quite big, heavy and difficult to operate, and a lot of research is revolving around minimising the instruments and making them easier to use. Several research experiments have demonstrated the utility of such sensors, but few of these experiments consider security...

  11. Intelligent Sensors Security

    Directory of Open Access Journals (Sweden)

    Andrzej Bialas

    2010-01-01

    Full Text Available The paper is focused on the security issues of sensors provided with processors and software and used for high-risk applications. Common IT related threats may cause serious consequences for sensor system users. To improve their robustness, sensor systems should be developed in a restricted way that would provide them with assurance. One assurance creation methodology is Common Criteria (ISO/IEC 15408 used for IT products and systems. The paper begins with a primer on the Common Criteria, and then a general security model of the intelligent sensor as an IT product is discussed. The paper presents how the security problem of the intelligent sensor is defined and solved. The contribution of the paper is to provide Common Criteria (CC related security design patterns and to improve the effectiveness of the sensor development process.

  12. Capacitive chemical sensor

    Science.gov (United States)

    Manginell, Ronald P; Moorman, Matthew W; Wheeler, David R

    2014-05-27

    A microfabricated capacitive chemical sensor can be used as an autonomous chemical sensor or as an analyte-sensitive chemical preconcentrator in a larger microanalytical system. The capacitive chemical sensor detects changes in sensing film dielectric properties, such as the dielectric constant, conductivity, or dimensionality. These changes result from the interaction of a target analyte with the sensing film. This capability provides a low-power, self-heating chemical sensor suitable for remote and unattended sensing applications. The capacitive chemical sensor also enables a smart, analyte-sensitive chemical preconcentrator. After sorption of the sample by the sensing film, the film can be rapidly heated to release the sample for further analysis. Therefore, the capacitive chemical sensor can optimize the sample collection time prior to release to enable the rapid and accurate analysis of analytes by a microanalytical system.

  13. Flexible magnetoimpedance sensor

    KAUST Repository

    Li, Bodong

    2015-03-01

    Flexible magnetoimpedance (MI) sensors fabricated using a NiFe/Cu/NiFe tri-layer on Kapton substrate have been studied. A customized flexible microstrip transmission line was employed to investigate the MI sensors\\'s magnetic field and frequency responses and their dependence on the sensors\\'s deflection. For the first time, the impedance characteristic is obtained through reflection coefficient analysis over a wide range of frequencies from 0.1 MHz to 3 GHz and for deflections ranging from zero curvature to a radius of 7.2 cm. The sensor element maintains a high MI ratio of up to 90% and magnetic sensitivity of up to 9.2%/Oe over different bending curvatures. The relationship between the curvature and material composition is discussed based on the magnetostriction effect and stress simulations. The sensor\\'s large frequency range, simple fabrication process and high sensitivity provide a great potential for flexible electronics and wireless applications.

  14. Intelligent Sensors Security

    Science.gov (United States)

    Bialas, Andrzej

    2010-01-01

    The paper is focused on the security issues of sensors provided with processors and software and used for high-risk applications. Common IT related threats may cause serious consequences for sensor system users. To improve their robustness, sensor systems should be developed in a restricted way that would provide them with assurance. One assurance creation methodology is Common Criteria (ISO/IEC 15408) used for IT products and systems. The paper begins with a primer on the Common Criteria, and then a general security model of the intelligent sensor as an IT product is discussed. The paper presents how the security problem of the intelligent sensor is defined and solved. The contribution of the paper is to provide Common Criteria (CC) related security design patterns and to improve the effectiveness of the sensor development process. PMID:22315571

  15. Working Group Report: Sensors

    Energy Technology Data Exchange (ETDEWEB)

    Artuso, M.; et al.,

    2013-10-18

    Sensors play a key role in detecting both charged particles and photons for all three frontiers in Particle Physics. The signals from an individual sensor that can be used include ionization deposited, phonons created, or light emitted from excitations of the material. The individual sensors are then typically arrayed for detection of individual particles or groups of particles. Mounting of new, ever higher performance experiments, often depend on advances in sensors in a range of performance characteristics. These performance metrics can include position resolution for passing particles, time resolution on particles impacting the sensor, and overall rate capabilities. In addition the feasible detector area and cost frequently provides a limit to what can be built and therefore is often another area where improvements are important. Finally, radiation tolerance is becoming a requirement in a broad array of devices. We present a status report on a broad category of sensors, including challenges for the future and work in progress to solve those challenges.

  16. Magnetic current sensor

    Science.gov (United States)

    Black, Jr., William C. (Inventor); Hermann, Theodore M. (Inventor)

    1998-01-01

    A current determiner having an output at which representations of input currents are provided having an input conductor for the input current and a current sensor supported on a substrate electrically isolated from one another but with the sensor positioned in the magnetic fields arising about the input conductor due to any input currents. The sensor extends along the substrate in a direction primarily perpendicular to the extent of the input conductor and is formed of at least a pair of thin-film ferromagnetic layers separated by a non-magnetic conductive layer. The sensor can be electrically connected to a electronic circuitry formed in the substrate including a nonlinearity adaptation circuit to provide representations of the input currents of increased accuracy despite nonlinearities in the current sensor, and can include further current sensors in bridge circuits.

  17. The Ringcore Fluxgate Sensor

    DEFF Research Database (Denmark)

    Brauer, Peter

    1997-01-01

    A model describing the fundamental working principle of the "ringcore fluxgate sensor" is derived. The model is solely based on geometrical and measurable magnetic properties of the sensor and from this a number of fluxgate phenomenon can be described and estimated. The sensitivity of ringcore...... fluxgate sensors is measured for a large variety of geometries and is for all measurements found to fall between two limits obtained by the fluxgate model. The model is used to explain the zero field odd harmonic output of the fluxgate sensor, called the "feedthrough". By assuming a non ideal sensor...... with spatially distributed magnetization, the model predicts feedthrough signals which exactly reflects the measured signals. The non-linearities in a feedback compensated ringcore fluxgate sensors, called the "transverse field effect", can also be explained by the model. Measurements on stress annealed...

  18. Beam imaging sensor

    Energy Technology Data Exchange (ETDEWEB)

    McAninch, Michael D.; Root, Jeffrey J.

    2016-07-05

    The present invention relates generally to the field of sensors for beam imaging and, in particular, to a new and useful beam imaging sensor for use in determining, for example, the power density distribution of a beam including, but not limited to, an electron beam or an ion beam. In one embodiment, the beam imaging sensor of the present invention comprises, among other items, a circumferential slit that is either circular, elliptical or polygonal in nature.

  19. Contact stress sensor

    Science.gov (United States)

    Kotovsky, Jack [Oakland, CA

    2012-02-07

    A contact stress sensor includes one or more MEMS fabricated sensor elements, where each sensor element of includes a thin non-recessed portion, a recessed portion and a pressure sensitive element adjacent to the recessed portion. An electric circuit is connected to the pressure sensitive element. The circuit includes a thermal compensator and a pressure signal circuit element configured to provide a signal upon movement of the pressure sensitive element.

  20. Contact stress sensor

    Science.gov (United States)

    Kotovsky, Jack

    2014-02-11

    A method for producing a contact stress sensor that includes one or more MEMS fabricated sensor elements, where each sensor element of includes a thin non-recessed portion, a recessed portion and a pressure sensitive element adjacent to the recessed portion. An electric circuit is connected to the pressure sensitive element. The circuit includes a pressure signal circuit element configured to provide a signal upon movement of the pressure sensitive element.

  1. Air Conditioning Overflow Sensor

    Science.gov (United States)

    1996-01-01

    The Technology Transfer Office at Stennis Space Center helped a local inventor develop a prototype of an attachment for central air conditioners and heat pumps that helps monitor water levels to prevent condensation overflow. The sensor will indicate a need for drain line maintenance and prevent possible damage caused by drain pan water spillover. An engineer in the Stennis Space Center prototype Development Laboratory used SSC sensor technology in the development of the sensor.

  2. Transient multivariable sensor evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Vilim, Richard B.; Heifetz, Alexander

    2017-02-21

    A method and system for performing transient multivariable sensor evaluation. The method and system includes a computer system for identifying a model form, providing training measurement data, generating a basis vector, monitoring system data from sensor, loading the system data in a non-transient memory, performing an estimation to provide desired data and comparing the system data to the desired data and outputting an alarm for a defective sensor.

  3. Magnetic actuators and sensors

    CERN Document Server

    Brauer, John R

    2014-01-01

    An accessible, comprehensive guide on magnetic actuators and sensors, this fully updated second edition of Magnetic Actuators and Sensors includes the latest advances, numerous worked calculations, illustrations, and real-life applications. Covering magnetics, actuators, sensors, and systems, with updates of new technologies and techniques, this exemplary learning tool emphasizes computer-aided design techniques, especially magnetic finite element analysis, commonly used by today's engineers. Detailed calculations, numerous illustrations, and discussions of discrepancies make this text an inva

  4. Transient multivariable sensor evaluation

    Science.gov (United States)

    Vilim, Richard B.; Heifetz, Alexander

    2017-02-21

    A method and system for performing transient multivariable sensor evaluation. The method and system includes a computer system for identifying a model form, providing training measurement data, generating a basis vector, monitoring system data from sensor, loading the system data in a non-transient memory, performing an estimation to provide desired data and comparing the system data to the desired data and outputting an alarm for a defective sensor.

  5. Air Conditioning Overflow Sensor

    Science.gov (United States)

    1996-01-01

    The Technology Transfer Office at Stennis Space Center helped a local inventor develop a prototype of an attachment for central air conditioners and heat pumps that helps monitor water levels to prevent condensation overflow. The sensor will indicate a need for drain line maintenance and prevent possible damage caused by drain pan water spillover. An engineer in the Stennis Space Center prototype Development Laboratory used SSC sensor technology in the development of the sensor.

  6. Vehicle Based Vector Sensor

    Science.gov (United States)

    2015-09-28

    300001 1 of 16 VEHICLE-BASED VECTOR SENSOR STATEMENT OF GOVERNMENT INTEREST [0001] The invention described herein may be manufactured and...unmanned underwater vehicle that can function as an acoustic vector sensor . (2) Description of the Prior Art [0004] It is known that a propagating...mechanics. An acoustic vector sensor measures the particle motion via an accelerometer and combines Attorney Docket No. 300001 2 of 16 the

  7. MEMS optical sensor

    DEFF Research Database (Denmark)

    2013-01-01

    The present invention relates to an all-optical sensor utilizing effective index modulation of a waveguide and detection of a wavelength shift of reflected light and a force sensing system accommodating said optical sensor. One embodiment of the invention relates to a sensor system comprising...... waveguides, a detector for measuring light reflected from said Bragg reflector in said one or more multimode sensor optical waveguides, and a data processor adapted for analyzing variations in the Bragg wavelength of at least one higher order mode of the reflected light....

  8. Smart Sensor Demonstration Payload

    Science.gov (United States)

    Schmalzel, John; Bracey, Andrew; Rawls, Stephen; Morris, Jon; Turowski, Mark; Franzl, Richard; Figueroa, Fernando

    2010-01-01

    Sensors are a critical element to any monitoring, control, and evaluation processes such as those needed to support ground based testing for rocket engine test. Sensor applications involve tens to thousands of sensors; their reliable performance is critical to achieving overall system goals. Many figures of merit are used to describe and evaluate sensor characteristics; for example, sensitivity and linearity. In addition, sensor selection must satisfy many trade-offs among system engineering (SE) requirements to best integrate sensors into complex systems [1]. These SE trades include the familiar constraints of power, signal conditioning, cabling, reliability, and mass, and now include considerations such as spectrum allocation and interference for wireless sensors. Our group at NASA s John C. Stennis Space Center (SSC) works in the broad area of integrated systems health management (ISHM). Core ISHM technologies include smart and intelligent sensors, anomaly detection, root cause analysis, prognosis, and interfaces to operators and other system elements [2]. Sensor technologies are the base fabric that feed data and health information to higher layers. Cost-effective operation of the complement of test stands benefits from technologies and methodologies that contribute to reductions in labor costs, improvements in efficiency, reductions in turn-around times, improved reliability, and other measures. ISHM is an active area of development at SSC because it offers the potential to achieve many of those operational goals [3-5].

  9. Acondicionamiento de sensores capacitivos

    OpenAIRE

    Campos López, Pedro

    2010-01-01

    Los sensores son componentes de instrumentación cuyo objetivo principal es detectar una magnitud física del entorno y transforarla en una magnitud eléctrica. El posterior tratamiento de esta señal permite valorar la magnitud física en su unidad característica. Actualmente en el mercado se encuentra una gran variedad de sensores y la tendencia destaca su aumento año tras año. Un tipo de sensor es clasificado como sensor capacitivo, cuya característica eléctrica es el valor de...

  10. Smart sensors and systems

    CERN Document Server

    Kyung, Chong-Min; Yasuura, Hiroto; Liu, Yongpan

    2015-01-01

     This book describes for readers technology used for effective sensing of our physical world and intelligent processing techniques for sensed information, which are essential to the success of Internet of Things (IoTs).  The authors provide a multidisciplinary view of sensor technology from MEMS, biological, chemical, and electrical domains and showcase smart sensor systems in real applications including smart home, transportation, medical, environmental, agricultural, etc.  Unlike earlier books on sensors, this book will provide a “global” view on smart sensors covering abstraction levels from device, circuit, systems, and algorithms.  .

  11. Microfabricated Formaldehyde Gas Sensors

    Directory of Open Access Journals (Sweden)

    Karen C. Cheung

    2009-11-01

    Full Text Available Formaldehyde is a volatile organic compound that is widely used in textiles, paper, wood composites, and household materials. Formaldehyde will continuously outgas from manufactured wood products such as furniture, with adverse health effects resulting from prolonged low-level exposure. New, microfabricated sensors for formaldehyde have been developed to meet the need for portable, low-power gas detection. This paper reviews recent work including silicon microhotplates for metal oxide-based detection, enzyme-based electrochemical sensors, and nanowire-based sensors. This paper also investigates the promise of polymer-based sensors for low-temperature, low-power operation.

  12. Biomedical Sensors and Instruments

    CERN Document Server

    Tagawa, Tatsuo

    2011-01-01

    The living body is a difficult object to measure: accurate measurements of physiological signals require sensors and instruments capable of high specificity and selectivity that do not interfere with the systems under study. As a result, detailed knowledge of sensor and instrument properties is required to be able to select the "best" sensor from one of the many designed to meet these challenges. From the underlying principles to practical applications, this updated edition of Biomedical Sensors and Instruments provides an easy-to-understand introduction to the various kinds of biome

  13. Hybrid electric vehicles TOPTEC

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-06-21

    This one-day TOPTEC session began with an overview of hybrid electric vehicle technology. Updates were given on alternative types of energy storage, APU control for low emissions, simulation programs, and industry and government activities. The keynote speech was about battery technology, a key element to the success of hybrids. The TOPEC concluded with a panel discussion on the mission of hybrid electric vehicles, with a perspective from industry and government experts from United States and Canada on their view of the role of this technology.

  14. Hybrid systems with constraints

    CERN Document Server

    Daafouz, Jamal; Sigalotti, Mario

    2013-01-01

    Control theory is the main subject of this title, in particular analysis and control design for hybrid dynamic systems.The notion of hybrid systems offers a strong theoretical and unified framework to cope with the modeling, analysis and control design of systems where both continuous and discrete dynamics interact. The theory of hybrid systems has been the subject of intensive research over the last decade and a large number of diverse and challenging problems have been investigated. Nevertheless, many important mathematical problems remain open.This book is dedicated mainly to

  15. Hybrid Bloch Brane

    CERN Document Server

    Bazeia, D; Losano, L

    2016-01-01

    This work reports on models described by two real scalar fields coupled with gravity in the five-dimensional spacetime, with a warped geometry involving one infinite extra dimension. Through a mechanism that smoothly changes a thick brane into a hybrid brane, one investigates the appearance of hybrid branes hosting internal structure, characterized by the splitting on the energy density and the volcano potential, induced by the parameter which controls interactions between the two scalar fields. In particular, we investigate distinct symmetric and asymmetric hybrid brane scenarios.

  16. Hybrid Bloch brane

    Energy Technology Data Exchange (ETDEWEB)

    Bazeia, D.; Lima, Elisama E.M.; Losano, L. [Universidade Federal da Paraiba, Departamento de Fisica, Joao Pessoa, PB (Brazil)

    2017-02-15

    This work reports on models described by two real scalar fields coupled with gravity in the five-dimensional spacetime, with a warped geometry involving one infinite extra dimension. Through a mechanism that smoothly changes a thick brane into a hybrid brane, one investigates the appearance of hybrid branes hosting internal structure, characterized by the splitting on the energy density and the volcano potential, induced by the parameter which controls interactions between the two scalar fields. In particular, we investigate distinct symmetric and asymmetric hybrid brane scenarios. (orig.)

  17. Hybrid silicon evanescent devices

    Directory of Open Access Journals (Sweden)

    Alexander W. Fang

    2007-07-01

    Full Text Available Si photonics as an integration platform has recently been a focus of optoelectronics research because of the promise of low-cost manufacturing based on the ubiquitous electronics fabrication infrastructure. The key challenge for Si photonic systems is the realization of compact, electrically driven optical gain elements. We review our recent developments in hybrid Si evanescent devices. We have demonstrated electrically pumped lasers, amplifiers, and photodetectors that can provide a low-cost, scalable solution for hybrid integration on a Si platform by using a novel hybrid waveguide architecture, consisting of III-V quantum wells bonded to Si waveguides.

  18. Study on gene sensor based on primer extension

    Institute of Scientific and Technical Information of China (English)

    陈誉华; 宋今丹; 李大为

    1997-01-01

    Based on the fact that the resonant frequency of a piezoelectric crystal is the function of its surface deposit, and that the primer extends after it hybridizes with the template, the primer extension gene sensor technique was developed. The prominent feature of the technique is that fast and sensitive frequency signals are used as the monitoring system of gene hybridization and primer strand extension. Results show that this technique may be used in homologous analysis of nucleic acid, trace DNA detection, and determining the integration of DNA. It may also be used for isolation of target gene, gene mutation analysis, and predicting the location of a gene in its genome.

  19. Chaotic mixer improves microarray hybridization.

    Science.gov (United States)

    McQuain, Mark K; Seale, Kevin; Peek, Joel; Fisher, Timothy S; Levy, Shawn; Stremler, Mark A; Haselton, Frederick R

    2004-02-15

    Hybridization is an important aspect of microarray experimental design which influences array signal levels and the repeatability of data within an array and across different arrays. Current methods typically require 24h and use target inefficiently. In these studies, we compare hybridization signals obtained in conventional static hybridization, which depends on diffusional target delivery, with signals obtained in a dynamic hybridization chamber, which employs a fluid mixer based on chaotic advection theory to deliver targets across a conventional glass slide array. Microarrays were printed with a pattern of 102 identical probe spots containing a 65-mer oligonucleotide capture probe. Hybridization of a 725-bp fluorescently labeled target was used to measure average target hybridization levels, local signal-to-noise ratios, and array hybridization uniformity. Dynamic hybridization for 1h with 1 or 10ng of target DNA increased hybridization signal intensities approximately threefold over a 24-h static hybridization. Similarly, a 10- or 60-min dynamic hybridization of 10ng of target DNA increased hybridization signal intensities fourfold over a 24h static hybridization. In time course studies, static hybridization reached a maximum within 8 to 12h using either 1 or 10ng of target. In time course studies using the dynamic hybridization chamber, hybridization using 1ng of target increased to a maximum at 4h and that using 10ng of target did not vary over the time points tested. In comparison to static hybridization, dynamic hybridization reduced the signal-to-noise ratios threefold and reduced spot-to-spot variation twofold. Therefore, we conclude that dynamic hybridization based on a chaotic mixer design improves both the speed of hybridization and the maximum level of hybridization while increasing signal-to-noise ratios and reducing spot-to-spot variation.

  20. High resolution hybrid optical and acoustic sea floor maps (Invited)

    Science.gov (United States)

    Roman, C.; Inglis, G.

    2013-12-01

    This abstract presents a method for creating hybrid optical and acoustic sea floor reconstructions at centimeter scale grid resolutions with robotic vehicles. Multibeam sonar and stereo vision are two common sensing modalities with complementary strengths that are well suited for data fusion. We have recently developed an automated two stage pipeline to create such maps. The steps can be broken down as navigation refinement and map construction. During navigation refinement a graph-based optimization algorithm is used to align 3D point clouds created with both the multibeam sonar and stereo cameras. The process combats the typical growth in navigation error that has a detrimental affect on map fidelity and typically introduces artifacts at small grid sizes. During this process we are able to automatically register local point clouds created by each sensor to themselves and to each other where they overlap in a survey pattern. The process also estimates the sensor offsets, such as heading, pitch and roll, that describe how each sensor is mounted to the vehicle. The end results of the navigation step is a refined vehicle trajectory that ensures the points clouds from each sensor are consistently aligned, and the individual sensor offsets. In the mapping step, grid cells in the map are selectively populated by choosing data points from each sensor in an automated manner. The selection process is designed to pick points that preserve the best characteristics of each sensor and honor some specific map quality criteria to reduce outliers and ghosting. In general, the algorithm selects dense 3D stereo points in areas of high texture and point density. In areas where the stereo vision is poor, such as in a scene with low contrast or texture, multibeam sonar points are inserted in the map. This process is automated and results in a hybrid map populated with data from both sensors. Additional cross modality checks are made to reject outliers in a robust manner. The final

  1. Failure assessment of aluminum liner based filament-wound hybrid riser subjected to internal hydrostatic pressure

    Science.gov (United States)

    Dikshit, Vishwesh; Seng, Ong Lin; Maheshwari, Muneesh; Asundi, A.

    2015-03-01

    The present study describes the burst behavior of aluminum liner based prototype filament-wound hybrid riser under internal hydrostatic pressure. The main objective of present study is to developed an internal pressure test rig set-up for filament-wound hybrid riser and investigate the failure modes of filament-wound hybrid riser under internal hydrostatic burst pressure loading. The prototype filament-wound hybrid riser used for burst test consists of an internal aluminum liner and outer composite layer. The carbon-epoxy composites as part of the filament-wound hybrid risers were manufactured with [±55o] lay-up pattern with total composite layer thickness of 1.6 mm using a CNC filament-winding machine. The burst test was monitored by video camera which helps to analyze the failure mechanism of the fractured filament-wound hybrid riser. The Fiber Bragg Grating (FBG) sensor was used to monitor and record the strain changes during burst test of prototype filament-wound hybrid riser. This study shows good improvements in burst strength of filament-wound hybrid riser compared to the monolithic metallic riser. Since, strain measurement using FBG sensors has been testified as a reliable method, we aim to further understand in detail using this technique.

  2. Semantic Sensor Web

    Science.gov (United States)

    Sheth, A.; Henson, C.; Thirunarayan, K.

    2008-12-01

    Sensors are distributed across the globe leading to an avalanche of data about our environment. It is possible today to utilize networks of sensors to detect and identify a multitude of observations, from simple phenomena to complex events and situations. The lack of integration and communication between these networks, however, often isolates important data streams and intensifies the existing problem of too much data and not enough knowledge. With a view to addressing this problem, the Semantic Sensor Web (SSW) [1] proposes that sensor data be annotated with semantic metadata that will both increase interoperability and provide contextual information essential for situational knowledge. Kno.e.sis Center's approach to SSW is an evolutionary one. It adds semantic annotations to the existing standard sensor languages of the Sensor Web Enablement (SWE) defined by OGC. These annotations enhance primarily syntactic XML-based descriptions in OGC's SWE languages with microformats, and W3C's Semantic Web languages- RDF and OWL. In association with semantic annotation and semantic web capabilities including ontologies and rules, SSW supports interoperability, analysis and reasoning over heterogeneous multi-modal sensor data. In this presentation, we will also demonstrate a mashup with support for complex spatio-temporal-thematic queries [2] and semantic analysis that utilize semantic annotations, multiple ontologies and rules. It uses existing services (e.g., GoogleMap) and semantics enhanced SWE's Sensor Observation Service (SOS) over weather and road condition data from various sensors that are part of Ohio's transportation network. Our upcoming plans are to demonstrate end to end (heterogeneous sensor to application) semantics support and study scalability of SSW involving thousands of sensors to about a billion triples. Keywords: Semantic Sensor Web, Spatiotemporal thematic queries, Semantic Web Enablement, Sensor Observation Service [1] Amit Sheth, Cory Henson, Satya

  3. Distributed sensing of RC beams with HCFRP sensors

    Science.gov (United States)

    Yang, Caiqian; Wu, Zhishen; Ye, Lieping

    2005-05-01

    This paper addresses a novel type of hybrid carbon fiber-reinforced polymer (HCFRP) sensors suitable for the structural health monitoring (SHM) of civil engineering structures. The HCFRP sensors are composed of different types of carbon tows, which are active materials due to their electrical conductivity, piezoresistivity, excellent mechanical properties and resistance to corrosion. The HCFRP sensors are designed to comprise three types of carbon tows-high strength (HS), high modulus (HM) and middle modulus (MM), in order to realize a distributed and broad-based sensing function. Two types of HCFRP sensors, with and without pretreatment, are fabricated and investigated. The HCFRP sensors are bonded with epoxy resins on the bottom concrete surface of RC beam specimens to monitor the average strain, the initiation and propagation of cracks. The experimental results indicate that such kinds of sensors are characterized with broad-based and distributed sensing feasibilities. As a result, the structural health of the RC beams can be monitored and evaluated through characterizing the relationships between the change in electrical resistance of the HCFRP sensors, the average strain and the crack width of the RC beams. In addition, it is also revealed that the damages can also be located by properly adding the number of electrodes.

  4. Multi-hop routing mechanism for reliable sensor computing.

    Science.gov (United States)

    Chen, Jiann-Liang; Ma, Yi-Wei; Lai, Chia-Ping; Hu, Chia-Cheng; Huang, Yueh-Min

    2009-01-01

    Current research on routing in wireless sensor computing concentrates on increasing the service lifetime, enabling scalability for large number of sensors and supporting fault tolerance for battery exhaustion and broken nodes. A sensor node is naturally exposed to various sources of unreliable communication channels and node failures. Sensor nodes have many failure modes, and each failure degrades the network performance. This work develops a novel mechanism, called Reliable Routing Mechanism (RRM), based on a hybrid cluster-based routing protocol to specify the best reliable routing path for sensor computing. Table-driven intra-cluster routing and on-demand inter-cluster routing are combined by changing the relationship between clusters for sensor computing. Applying a reliable routing mechanism in sensor computing can improve routing reliability, maintain low packet loss, minimize management overhead and save energy consumption. Simulation results indicate that the reliability of the proposed RRM mechanism is around 25% higher than that of the Dynamic Source Routing (DSR) and ad hoc On-demand Distance Vector routing (AODV) mechanisms.

  5. Piezoelectric microelectromechanical resonant sensors for chemical and biological detection.

    Science.gov (United States)

    Pang, Wei; Zhao, Hongyuan; Kim, Eun Sok; Zhang, Hao; Yu, Hongyu; Hu, Xiaotang

    2012-01-07

    Piezoelectric microelectromechanical systems (MEMS) resonant sensors, known for their excellent mass resolution, have been studied for many applications, including DNA hybridization, protein-ligand interactions, and immunosensor development. They have also been explored for detecting antigens, organic gas, toxic ions, and explosives. Most piezoelectric MEMS resonant sensors are acoustic sensors (with specific coating layers) that enable selective and label-free detection of biological events in real time. These label-free technologies have recently garnered significant attention for their sensitive and quantitative multi-parameter analysis of biological systems. Since piezoelectric MEMS resonant sensors do more than transform analyte mass or thickness into an electrical signal (e.g., frequency and impedance), special attention must be paid to their potential beyond microweighing, such as measuring elastic and viscous properties, and several types of sensors currently under development operate at different resonant modes (i.e., thickness extensional mode, thickness shear mode, lateral extensional mode, flexural mode, etc.). In this review, we provide an overview of recent developments in micromachined resonant sensors and activities relating to biochemical interfaces for acoustic sensors.

  6. Optimization of the hybrid bilayer membrane method for immobilization of avidin on quartz crystal microbalance.

    Science.gov (United States)

    Mun, Saem; Choi, Suk-Jung

    2009-04-15

    Hybrid bilayer membrane (HBM), comprising a lipid monolayer fused to a hydrophobic self-assembled monolayer (SAM), has a potential capability to provide a convenient tool for the preparation of functionalized sensor surfaces. In this work, the HBM approach was optimized for the preparation of avidin-containing quartz crystal microbalance (QCM) sensor chip which would be available for immobilization of biotinylated molecules. Lipid layer of HBM was composed of background lipid such as egg phosphatidyl choline and biotinylated lipid to which avidin was attached. Highest performance was obtained at 1:1 ratio of the biotinylated lipid and the background lipid, and sensitivity and stability of the resulting sensor chip was comparable to a sensor chip prepared by the conventional carbodiimide reaction. By utilizing the HBM method, construction of a stable avidin sensor chip was achieved within 40 min without any chemical steps. Thus the HBM method was proven to be a convenient and efficient way to immobilize avidin on sensor surfaces.

  7. Soft metal constructs for large strain sensor membrane

    Science.gov (United States)

    Michaud, Hadrien O.; Teixidor, Joan; Lacour, Stéphanie P.

    2015-03-01

    Thin gold films on silicone display large reversible change in electrical resistance upon stretching. Eutectic liquid metal conductors maintain bulk metal conductivity, even upon extensive elongation. When integrated together, the soft metals enable multidirectional, large strain sensor skin. Their fabrication process combines thermal evaporation of thin gold film patterns through stencil mask with microplotting of eutectic gallium indium microwires, and packaging in silicone rubber. Using three-element rectangular rosettes, we demonstrate a sensor skin that can reliably and locally quantify the plane strain vector in surfaces subject to stretch (up to 50% strain) and indentation. This hybrid technology will find applications in soft robotics, prosthetics and wearable health monitoring systems.

  8. Hybrid polymer microspheres

    Science.gov (United States)

    Rembaum, A.

    1980-01-01

    Techniques have been successfully tested for bonding polymeric spheres, typically 0.1 micron in diameter, to spheres with diameter up to 100 microns. Hybrids are being developed as improved packing material for ion-exchange columns, filters, and separators.

  9. Hybrid adsorptive membrane reactor

    Science.gov (United States)

    Tsotsis, Theodore T. (Inventor); Sahimi, Muhammad (Inventor); Fayyaz-Najafi, Babak (Inventor); Harale, Aadesh (Inventor); Park, Byoung-Gi (Inventor); Liu, Paul K. T. (Inventor)

    2011-01-01

    A hybrid adsorbent-membrane reactor in which the chemical reaction, membrane separation, and product adsorption are coupled. Also disclosed are a dual-reactor apparatus and a process using the reactor or the apparatus.

  10. Hybrid photon detectors

    CERN Document Server

    D'Ambrosio, C

    2003-01-01

    Hybrid photon detectors detect light via vacuum photocathodes and accelerate the emitted photoelectrons by an electric field towards inversely polarized silicon anodes, where they are absorbed, thus producing electron-hole pairs. These, in turn, are collected and generate electronic signals on their ohmic contacts. This review first describes the characteristic properties of the main components of hybrid photon detectors: light entrance windows, photocathodes, and silicon anodes. Then, essential relations describing the trajectories of photoelectrons in electric and magnetic fields and their backscattering from the silicon anodes are derived. Depending on their anode configurations, three families of hybrid photon detectors are presented: hybrid photomultiplier tubes with single anodes for photon counting with high sensitivity and for gamma spectroscopy; multi-anode photon detector tubes with anodes subdivided into square or hexagonal pads for position-sensitive photon detection; imaging silicon pixel array t...

  11. Functional hybrid materials

    National Research Council Canada - National Science Library

    Fahmi, Amir; Pietsch, Torsten; Mendoza, Cesar; Cheval, Nicolas

    2009-01-01

    .... This paper describes our group's achievements towards the development of multifunctional nanostructures via self-assembly of hybrid systems based on the block copolymer PS-b-P4VP and inorganic nanoparticles (NPs...

  12. Hybrid Rocket Technology

    Directory of Open Access Journals (Sweden)

    Sankaran Venugopal

    2011-04-01

    Full Text Available With their unique operational characteristics, hybrid rockets can potentially provide safer, lower-cost avenues for spacecraft and missiles than the current solid propellant and liquid propellant systems. Classical hybrids can be throttled for thrust tailoring, perform in-flight motor shutdown and restart. In classical hybrids, the fuel is stored in the form of a solid grain, requiring only half the feed system hardware of liquid bipropellant engines. The commonly used fuels are benign, nontoxic, and not hazardous to store and transport. Solid fuel grains are not highly susceptible to cracks, imperfections, and environmental temperature and are therefore safer to manufacture, store, transport, and use for launch. The status of development based on the experience of the last few decades indicating the maturity of the hybrid rocket technology is given in brief.Defence Science Journal, 2011, 61(3, pp.193-200, DOI:http://dx.doi.org/10.14429/dsj.61.518

  13. Nitrous Paraffin Hybrid Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Nitrous Oxide Paraffin Hybrid engine (N2OP) is a proposed technology designed to provide small launch vehicles with high specific impulse, indefinitely storable...

  14. Hybrid adsorptive membrane reactor

    Science.gov (United States)

    Tsotsis, Theodore T.; Sahimi, Muhammad; Fayyaz-Najafi, Babak; Harale, Aadesh; Park, Byoung-Gi; Liu, Paul K. T.

    2011-03-01

    A hybrid adsorbent-membrane reactor in which the chemical reaction, membrane separation, and product adsorption are coupled. Also disclosed are a dual-reactor apparatus and a process using the reactor or the apparatus.

  15. Development of capacitance-based and impedance-based wireless sensors and sensor nodes for structural health monitoring applications

    Science.gov (United States)

    Mascarenas, David D. L.; Flynn, Eric B.; Todd, Michael D.; Overly, Timothy G.; Farinholt, Kevin M.; Park, Gyuhae; Farrar, Charles R.

    2010-06-01

    A field demonstration of a new and hybrid wireless sensing network paradigm for structural health monitoring (SHM) is presented. In this paradigm, both power and data interrogation commands are conveyed via a mobile agent that is sent to each sensor node to perform individual interrogations, which can alleviate several limitations of traditional sensing networks. This paper will discuss such prototype systems, which will be used to interrogate capacitive-based and impedance-based sensors for SHM applications. The capacitive-based wireless sensor node is specifically built to collect peak displacement measurements. In addition, a wireless sensor node for collecting electromechanical impedance data has also been developed. Both sensor nodes are specifically designed to accept various power sources and to be wirelessly triggered on an as-needed basis so that they can be used for the hybrid sensing network approach. The capabilities of these miniaturized and portable devices are demonstrated in the laboratory and the field, which was performed at the Alamosa Canyon Bridge in southern New Mexico.

  16. Hybridity in Disgrace

    Institute of Scientific and Technical Information of China (English)

    刘建平

    2015-01-01

    John Maxwell Coetzee's masterpiece-Disgrace is the representative work about post colonialism.The novel describes a series of disgraceful events happened between the white and the black in the post apartheid South Africa.The famous literature theory-hybridity of Homi K.Bhabha is the very key theory to analyze the work.In post apartheid South Africa,hybridity is the only way for the white and the black to coexist.

  17. Hybrid Baryon Signatures

    CERN Document Server

    Page, P R

    2000-01-01

    We discuss whether a low-lying hybrid baryon should be defined as a three quark - gluon bound state or as three quarks moving on an excited adiabatic potential. We show that the latter definition becomes exact, not only for very heavy quarks, but also for specific dynamics. We review the literature on the signatures of hybrid baryons, with specific reference to strong hadronic decays, electromagnetic couplings, diffractive production and production in psi decay.

  18. Hybrid vertical cavity laser

    DEFF Research Database (Denmark)

    Chung, Il-Sug; Mørk, Jesper

    2010-01-01

    A new hybrid vertical cavity laser structure for silicon photonics is suggested and numerically investigated. It incorporates a silicon subwavelength grating as a mirror and a lateral output coupler to a silicon ridge waveguide.......A new hybrid vertical cavity laser structure for silicon photonics is suggested and numerically investigated. It incorporates a silicon subwavelength grating as a mirror and a lateral output coupler to a silicon ridge waveguide....

  19. Requirements for Hybrid Cosimulation

    Science.gov (United States)

    2014-08-16

    hybrid cosimulation version of the Functional Mockup Interface (FMI) standard. A cosimulation standard de nes interfaces that enable diverse simulation...cosimulation standards, and specifically provides guidance for development of a hybrid cosimulation version of the Functional Mockup Interface (FMI) standard...V. Peetz, and S. Wolf. The functional mockup interface for tool independent exchange of simulation models. In Proc. of the 8-th International

  20. Hybrid photonic chip interferometer for embedded metrology

    Science.gov (United States)

    Kumar, P.; Martin, H.; Maxwell, G.; Jiang, X.

    2014-03-01

    Embedded metrology is the provision of metrology on the manufacturing platform, enabling measurement without the removal of the work piece. Providing closer integration of metrology upon the manufacturing platform can lead to the better control and increased throughput. In this work we present the development of a high precision hybrid optical chip interferometer metrology device. The complete metrology sensor system is structured into two parts; optical chip and optical probe. The hybrid optical chip interferometer is based on a silica-on-silicon etched integrated-optic motherboard containing waveguide structures and evanescent couplers. Upon the motherboard, electro-optic components such as photodiodes and a semiconductor gain block are mounted and bonded to provide the required functionality. The key structure in the device is a tunable laser module based upon an external-cavity diode laser (ECDL). Within the cavity is a multi-layer thin film filter which is rotated to select the longitudinal mode at which the laser operates. An optical probe, which uses a blazed diffracting grating and collimating objective lens, focuses light of different wavelengths laterally over the measurand. Incident laser light is then tuned in wavelength time to effectively sweep an `optical stylus' over the surface. Wavelength scanning and rapid phase shifting can then retrieve the path length change and thus the surface height. We give an overview of the overall design of the final hybrid photonic chip interferometer, constituent components, device integration and packaging as well as experimental test results from the current version now under evaluation.