Evaporator modeling - A hybrid approach
International Nuclear Information System (INIS)
Ding Xudong; Cai Wenjian; Jia Lei; Wen Changyun
2009-01-01
In this paper, a hybrid modeling approach is proposed to model two-phase flow evaporators. The main procedures for hybrid modeling includes: (1) Based on the energy and material balance, and thermodynamic principles to formulate the process fundamental governing equations; (2) Select input/output (I/O) variables responsible to the system performance which can be measured and controlled; (3) Represent those variables existing in the original equations but are not measurable as simple functions of selected I/Os or constants; (4) Obtaining a single equation which can correlate system inputs and outputs; and (5) Identify unknown parameters by linear or nonlinear least-squares methods. The method takes advantages of both physical and empirical modeling approaches and can accurately predict performance in wide operating range and in real-time, which can significantly reduce the computational burden and increase the prediction accuracy. The model is verified with the experimental data taken from a testing system. The testing results show that the proposed model can predict accurately the performance of the real-time operating evaporator with the maximum error of ±8%. The developed models will have wide applications in operational optimization, performance assessment, fault detection and diagnosis
A hybrid modeling approach for option pricing
Hajizadeh, Ehsan; Seifi, Abbas
2011-11-01
The complexity of option pricing has led many researchers to develop sophisticated models for such purposes. The commonly used Black-Scholes model suffers from a number of limitations. One of these limitations is the assumption that the underlying probability distribution is lognormal and this is so controversial. We propose a couple of hybrid models to reduce these limitations and enhance the ability of option pricing. The key input to option pricing model is volatility. In this paper, we use three popular GARCH type model for estimating volatility. Then, we develop two non-parametric models based on neural networks and neuro-fuzzy networks to price call options for S&P 500 index. We compare the results with those of Black-Scholes model and show that both neural network and neuro-fuzzy network models outperform Black-Scholes model. Furthermore, comparing the neural network and neuro-fuzzy approaches, we observe that for at-the-money options, neural network model performs better and for both in-the-money and an out-of-the money option, neuro-fuzzy model provides better results.
Infectious disease modeling a hybrid system approach
Liu, Xinzhi
2017-01-01
This volume presents infectious diseases modeled mathematically, taking seasonality and changes in population behavior into account, using a switched and hybrid systems framework. The scope of coverage includes background on mathematical epidemiology, including classical formulations and results; a motivation for seasonal effects and changes in population behavior, an investigation into term-time forced epidemic models with switching parameters, and a detailed account of several different control strategies. The main goal is to study these models theoretically and to establish conditions under which eradication or persistence of the disease is guaranteed. In doing so, the long-term behavior of the models is determined through mathematical techniques from switched systems theory. Numerical simulations are also given to augment and illustrate the theoretical results and to help study the efficacy of the control schemes.
A hybrid agent-based approach for modeling microbiological systems.
Guo, Zaiyi; Sloot, Peter M A; Tay, Joc Cing
2008-11-21
Models for systems biology commonly adopt Differential Equations or Agent-Based modeling approaches for simulating the processes as a whole. Models based on differential equations presuppose phenomenological intracellular behavioral mechanisms, while models based on Multi-Agent approach often use directly translated, and quantitatively less precise if-then logical rule constructs. We propose an extendible systems model based on a hybrid agent-based approach where biological cells are modeled as individuals (agents) while molecules are represented by quantities. This hybridization in entity representation entails a combined modeling strategy with agent-based behavioral rules and differential equations, thereby balancing the requirements of extendible model granularity with computational tractability. We demonstrate the efficacy of this approach with models of chemotaxis involving an assay of 10(3) cells and 1.2x10(6) molecules. The model produces cell migration patterns that are comparable to laboratory observations.
A novel Monte Carlo approach to hybrid local volatility models
A.W. van der Stoep (Anton); L.A. Grzelak (Lech Aleksander); C.W. Oosterlee (Cornelis)
2017-01-01
textabstractWe present in a Monte Carlo simulation framework, a novel approach for the evaluation of hybrid local volatility [Risk, 1994, 7, 18–20], [Int. J. Theor. Appl. Finance, 1998, 1, 61–110] models. In particular, we consider the stochastic local volatility model—see e.g. Lipton et al. [Quant.
Mobile phone use while driving: a hybrid modeling approach.
Márquez, Luis; Cantillo, Víctor; Arellana, Julián
2015-05-01
The analysis of the effects that mobile phone use produces while driving is a topic of great interest for the scientific community. There is consensus that using a mobile phone while driving increases the risk of exposure to traffic accidents. The purpose of this research is to evaluate the drivers' behavior when they decide whether or not to use a mobile phone while driving. For that, a hybrid modeling approach that integrates a choice model with the latent variable "risk perception" was used. It was found that workers and individuals with the highest education level are more prone to use a mobile phone while driving than others. Also, "risk perception" is higher among individuals who have been previously fined and people who have been in an accident or almost been in an accident. It was also found that the tendency to use mobile phones while driving increases when the traffic speed reduces, but it decreases when the fine increases. Even though the urgency of the phone call is the most important explanatory variable in the choice model, the cost of the fine is an important attribute in order to control mobile phone use while driving. Copyright © 2015 Elsevier Ltd. All rights reserved.
Active diagnosis of hybrid systems - A model predictive approach
DEFF Research Database (Denmark)
Tabatabaeipour, Seyed Mojtaba; Ravn, Anders P.; Izadi-Zamanabadi, Roozbeh
2009-01-01
A method for active diagnosis of hybrid systems is proposed. The main idea is to predict the future output of both normal and faulty model of the system; then at each time step an optimization problem is solved with the objective of maximizing the difference between the predicted normal and fault...... can be used as a test signal for sanity check at the commissioning or for detection of faults hidden by regulatory actions of the controller. The method is tested on the two tank benchmark example. ©2009 IEEE....
A new approach to flow simulation using hybrid models
Solgi, Abazar; Zarei, Heidar; Nourani, Vahid; Bahmani, Ramin
2017-11-01
The necessity of flow prediction in rivers, for proper management of water resource, and the need for determining the inflow to the dam reservoir, designing efficient flood warning systems and so forth, have always led water researchers to think about models with high-speed response and low error. In the recent years, the development of Artificial Neural Networks and Wavelet theory and using the combination of models help researchers to estimate the river flow better and better. In this study, daily and monthly scales were used for simulating the flow of Gamasiyab River, Nahavand, Iran. The first simulation was done using two types of ANN and ANFIS models. Then, using wavelet theory and decomposing input signals of the used parameters, sub-signals were obtained and were fed into the ANN and ANFIS to obtain hybrid models of WANN and WANFIS. In this study, in addition to the parameters of precipitation and flow, parameters of temperature and evaporation were used to analyze their effects on the simulation. The results showed that using wavelet transform improved the performance of the models in both monthly and daily scale. However, it had a better effect on the monthly scale and the WANFIS was the best model.
Multi-level and hybrid modelling approaches for systems biology.
Bardini, R; Politano, G; Benso, A; Di Carlo, S
2017-01-01
During the last decades, high-throughput techniques allowed for the extraction of a huge amount of data from biological systems, unveiling more of their underling complexity. Biological systems encompass a wide range of space and time scales, functioning according to flexible hierarchies of mechanisms making an intertwined and dynamic interplay of regulations. This becomes particularly evident in processes such as ontogenesis, where regulative assets change according to process context and timing, making structural phenotype and architectural complexities emerge from a single cell, through local interactions. The information collected from biological systems are naturally organized according to the functional levels composing the system itself. In systems biology, biological information often comes from overlapping but different scientific domains, each one having its own way of representing phenomena under study. That is, the different parts of the system to be modelled may be described with different formalisms. For a model to have improved accuracy and capability for making a good knowledge base, it is good to comprise different system levels, suitably handling the relative formalisms. Models which are both multi-level and hybrid satisfy both these requirements, making a very useful tool in computational systems biology. This paper reviews some of the main contributions in this field.
Hybrid empirical--theoretical approach to modeling uranium adsorption
International Nuclear Information System (INIS)
Hull, Larry C.; Grossman, Christopher; Fjeld, Robert A.; Coates, John T.; Elzerman, Alan W.
2004-01-01
An estimated 330 metric tons of U are buried in the radioactive waste Subsurface Disposal Area (SDA) at the Idaho National Engineering and Environmental Laboratory (INEEL). An assessment of U transport parameters is being performed to decrease the uncertainty in risk and dose predictions derived from computer simulations of U fate and transport to the underlying Snake River Plain Aquifer. Uranium adsorption isotherms were measured for 14 sediment samples collected from sedimentary interbeds underlying the SDA. The adsorption data were fit with a Freundlich isotherm. The Freundlich n parameter is statistically identical for all 14 sediment samples and the Freundlich K f parameter is correlated to sediment surface area (r 2 =0.80). These findings suggest an efficient approach to material characterization and implementation of a spatially variable reactive transport model that requires only the measurement of sediment surface area. To expand the potential applicability of the measured isotherms, a model is derived from the empirical observations by incorporating concepts from surface complexation theory to account for the effects of solution chemistry. The resulting model is then used to predict the range of adsorption conditions to be expected in the vadose zone at the SDA based on the range in measured pore water chemistry. Adsorption in the deep vadose zone is predicted to be stronger than in near-surface sediments because the total dissolved carbonate decreases with depth
Chiadamrong, N.; Piyathanavong, V.
2017-12-01
Models that aim to optimize the design of supply chain networks have gained more interest in the supply chain literature. Mixed-integer linear programming and discrete-event simulation are widely used for such an optimization problem. We present a hybrid approach to support decisions for supply chain network design using a combination of analytical and discrete-event simulation models. The proposed approach is based on iterative procedures until the difference between subsequent solutions satisfies the pre-determined termination criteria. The effectiveness of proposed approach is illustrated by an example, which shows closer to optimal results with much faster solving time than the results obtained from the conventional simulation-based optimization model. The efficacy of this proposed hybrid approach is promising and can be applied as a powerful tool in designing a real supply chain network. It also provides the possibility to model and solve more realistic problems, which incorporate dynamism and uncertainty.
A Generalized Hybrid Multiscale Modeling Approach for Flow and Reactive Transport in Porous Media
Yang, X.; Meng, X.; Tang, Y. H.; Guo, Z.; Karniadakis, G. E.
2017-12-01
Using emerging understanding of biological and environmental processes at fundamental scales to advance predictions of the larger system behavior requires the development of multiscale approaches, and there is strong interest in coupling models at different scales together in a hybrid multiscale simulation framework. A limited number of hybrid multiscale simulation methods have been developed for subsurface applications, mostly using application-specific approaches for model coupling. The proposed generalized hybrid multiscale approach is designed with minimal intrusiveness to the at-scale simulators (pre-selected) and provides a set of lightweight C++ scripts to manage a complex multiscale workflow utilizing a concurrent coupling approach. The workflow includes at-scale simulators (using the lattice-Boltzmann method, LBM, at the pore and Darcy scale, respectively), scripts for boundary treatment (coupling and kriging), and a multiscale universal interface (MUI) for data exchange. The current study aims to apply the generalized hybrid multiscale modeling approach to couple pore- and Darcy-scale models for flow and mixing-controlled reaction with precipitation/dissolution in heterogeneous porous media. The model domain is packed heterogeneously that the mixing front geometry is more complex and not known a priori. To address those challenges, the generalized hybrid multiscale modeling approach is further developed to 1) adaptively define the locations of pore-scale subdomains, 2) provide a suite of physical boundary coupling schemes and 3) consider the dynamic change of the pore structures due to mineral precipitation/dissolution. The results are validated and evaluated by comparing with single-scale simulations in terms of velocities, reactive concentrations and computing cost.
International Nuclear Information System (INIS)
Jeong, Hyojoon; Hwang, Wontae; Kim, Eunhan; Han, Moonhee
2012-01-01
Highlights: ► This study is to improve the reliability of air dispersion modeling. ► Tracer experiments assumed gaseous radionuclides were conducted at a nuclear site. ► The performance of a hybrid modeling combined ISC with ANFIS was investigated.. ► Hybrid modeling approach shows better performance rather than a single ISC model. - Abstract: Predicted air concentrations of radioactive materials are important for an environmental impact assessment for the public health. In this study, the performance of a hybrid modeling combined with the industrial source complex (ISC) model and an adaptive neuro-fuzzy inference system (ANFIS) for predicting tracer concentrations was investigated. Tracer dispersion experiments were performed to produce the field data assuming the accidental release of radioactive material. ANFIS was trained in order that the outputs of the ISC model are similar to the measured data. Judging from the higher correlation coefficients between the measured and the calculated ones, the hybrid modeling approach could be an appropriate technique for an improvement of the modeling capability to predict the air concentrations for radioactive materials.
Modelling biochemical networks with intrinsic time delays: a hybrid semi-parametric approach
Directory of Open Access Journals (Sweden)
Oliveira Rui
2010-09-01
Full Text Available Abstract Background This paper presents a method for modelling dynamical biochemical networks with intrinsic time delays. Since the fundamental mechanisms leading to such delays are many times unknown, non conventional modelling approaches become necessary. Herein, a hybrid semi-parametric identification methodology is proposed in which discrete time series are incorporated into fundamental material balance models. This integration results in hybrid delay differential equations which can be applied to identify unknown cellular dynamics. Results The proposed hybrid modelling methodology was evaluated using two case studies. The first of these deals with dynamic modelling of transcriptional factor A in mammalian cells. The protein transport from the cytosol to the nucleus introduced a delay that was accounted for by discrete time series formulation. The second case study focused on a simple network with distributed time delays that demonstrated that the discrete time delay formalism has broad applicability to both discrete and distributed delay problems. Conclusions Significantly better prediction qualities of the novel hybrid model were obtained when compared to dynamical structures without time delays, being the more distinctive the more significant the underlying system delay is. The identification of the system delays by studies of different discrete modelling delays was enabled by the proposed structure. Further, it was shown that the hybrid discrete delay methodology is not limited to discrete delay systems. The proposed method is a powerful tool to identify time delays in ill-defined biochemical networks.
A Hybrid Acoustic and Pronunciation Model Adaptation Approach for Non-native Speech Recognition
Oh, Yoo Rhee; Kim, Hong Kook
In this paper, we propose a hybrid model adaptation approach in which pronunciation and acoustic models are adapted by incorporating the pronunciation and acoustic variabilities of non-native speech in order to improve the performance of non-native automatic speech recognition (ASR). Specifically, the proposed hybrid model adaptation can be performed at either the state-tying or triphone-modeling level, depending at which acoustic model adaptation is performed. In both methods, we first analyze the pronunciation variant rules of non-native speakers and then classify each rule as either a pronunciation variant or an acoustic variant. The state-tying level hybrid method then adapts pronunciation models and acoustic models by accommodating the pronunciation variants in the pronunciation dictionary and by clustering the states of triphone acoustic models using the acoustic variants, respectively. On the other hand, the triphone-modeling level hybrid method initially adapts pronunciation models in the same way as in the state-tying level hybrid method; however, for the acoustic model adaptation, the triphone acoustic models are then re-estimated based on the adapted pronunciation models and the states of the re-estimated triphone acoustic models are clustered using the acoustic variants. From the Korean-spoken English speech recognition experiments, it is shown that ASR systems employing the state-tying and triphone-modeling level adaptation methods can relatively reduce the average word error rates (WERs) by 17.1% and 22.1% for non-native speech, respectively, when compared to a baseline ASR system.
A hybrid, coupled approach for modeling charged fluids from the nano to the mesoscale
Cheung, James; Frischknecht, Amalie L.; Perego, Mauro; Bochev, Pavel
2017-11-01
We develop and demonstrate a new, hybrid simulation approach for charged fluids, which combines the accuracy of the nonlocal, classical density functional theory (cDFT) with the efficiency of the Poisson-Nernst-Planck (PNP) equations. The approach is motivated by the fact that the more accurate description of the physics in the cDFT model is required only near the charged surfaces, while away from these regions the PNP equations provide an acceptable representation of the ionic system. We formulate the hybrid approach in two stages. The first stage defines a coupled hybrid model in which the PNP and cDFT equations act independently on two overlapping domains, subject to suitable interface coupling conditions. At the second stage we apply the principles of the alternating Schwarz method to the hybrid model by using the interface conditions to define the appropriate boundary conditions and volume constraints exchanged between the PNP and the cDFT subdomains. Numerical examples with two representative examples of ionic systems demonstrate the numerical properties of the method and its potential to reduce the computational cost of a full cDFT calculation, while retaining the accuracy of the latter near the charged surfaces.
A hybrid modelling approach to simulating foot-and-mouth disease outbreaks in Australian livestock
Directory of Open Access Journals (Sweden)
Richard A Bradhurst
2015-03-01
Full Text Available Foot-and-mouth disease (FMD is a highly contagious and economically important viral disease of cloven-hoofed animals. Australia's freedom from FMD underpins a valuable trade in live animals and animal products. An outbreak of FMD would result in the loss of export markets and cause severe disruption to domestic markets. The prevention of, and contingency planning for, FMD are of key importance to government, industry, producers and the community. The spread and control of FMD is complex and dynamic due to a highly contagious multi-host pathogen operating in a heterogeneous environment across multiple jurisdictions. Epidemiological modelling is increasingly being recognized as a valuable tool for investigating the spread of disease under different conditions and the effectiveness of control strategies. Models of infectious disease can be broadly classified as: population-based models that are formulated from the top-down and employ population-level relationships to describe individual-level behaviour, individual-based models that are formulated from the bottom-up and aggregate individual-level behaviour to reveal population-level relationships, or hybrid models which combine the two approaches into a single model.The Australian Animal Disease Spread (AADIS hybrid model employs a deterministic equation-based model (EBM to model within-herd spread of FMD, and a stochastic, spatially-explicit agent-based model (ABM to model between-herd spread and control. The EBM provides concise and computationally efficient predictions of herd prevalence and clinical signs over time. The ABM captures the complex, stochastic and heterogeneous environment in which an FMD epidemic operates. The AADIS event-driven hybrid EBM/ABM architecture is a flexible, efficient and extensible framework for modelling the spread and control of disease in livestock on a national scale. We present an overview of the AADIS hybrid approach and a description of the model
Lee, K. David; Wiesenfeld, Eric; Gelfand, Andrew
2007-04-01
One of the greatest challenges in modern combat is maintaining a high level of timely Situational Awareness (SA). In many situations, computational complexity and accuracy considerations make the development and deployment of real-time, high-level inference tools very difficult. An innovative hybrid framework that combines Bayesian inference, in the form of Bayesian Networks, and Possibility Theory, in the form of Fuzzy Logic systems, has recently been introduced to provide a rigorous framework for high-level inference. In previous research, the theoretical basis and benefits of the hybrid approach have been developed. However, lacking is a concrete experimental comparison of the hybrid framework with traditional fusion methods, to demonstrate and quantify this benefit. The goal of this research, therefore, is to provide a statistical analysis on the comparison of the accuracy and performance of hybrid network theory, with pure Bayesian and Fuzzy systems and an inexact Bayesian system approximated using Particle Filtering. To accomplish this task, domain specific models will be developed under these different theoretical approaches and then evaluated, via Monte Carlo Simulation, in comparison to situational ground truth to measure accuracy and fidelity. Following this, a rigorous statistical analysis of the performance results will be performed, to quantify the benefit of hybrid inference to other fusion tools.
Physical and JIT Model Based Hybrid Modeling Approach for Building Thermal Load Prediction
Iino, Yutaka; Murai, Masahiko; Murayama, Dai; Motoyama, Ichiro
Energy conservation in building fields is one of the key issues in environmental point of view as well as that of industrial, transportation and residential fields. The half of the total energy consumption in a building is occupied by HVAC (Heating, Ventilating and Air Conditioning) systems. In order to realize energy conservation of HVAC system, a thermal load prediction model for building is required. This paper propose a hybrid modeling approach with physical and Just-in-Time (JIT) model for building thermal load prediction. The proposed method has features and benefits such as, (1) it is applicable to the case in which past operation data for load prediction model learning is poor, (2) it has a self checking function, which always supervises if the data driven load prediction and the physical based one are consistent or not, so it can find if something is wrong in load prediction procedure, (3) it has ability to adjust load prediction in real-time against sudden change of model parameters and environmental conditions. The proposed method is evaluated with real operation data of an existing building, and the improvement of load prediction performance is illustrated.
Numerical schemes for the hybrid modeling approach of gas-particle turbulent flows
International Nuclear Information System (INIS)
Dorogan, K.
2012-01-01
Hybrid Moments/PDF methods have shown to be well suitable for the description of poly-dispersed turbulent two-phase flows in non-equilibrium which are encountered in some industrial situations involving chemical reactions, combustion or sprays. They allow to obtain a fine enough physical description of the poly-dispersity, non-linear source terms and convection phenomena. However, their approximations are noised with the statistical error, which in several situations may be a source of a bias. An alternative hybrid Moments-Moments/PDF approach examined in this work consists in coupling the Moments and the PDF descriptions, within the description of the dispersed phase itself. This hybrid method could reduce the statistical error and remove the bias. However, such a coupling is not straightforward in practice and requires the development of accurate and stable numerical schemes. The approaches introduced in this work rely on the combined use of the up-winding and relaxation-type techniques. They allow to obtain stable unsteady approximations for a system of partial differential equations containing non-smooth external data which are provided by the PDF part of the model. A comparison of the results obtained using the present method with those of the 'classical' hybrid approach is presented in terms of the numerical errors for a case of a co-current gas-particle wall jet. (author)
Formal verification of dynamic hybrid systems: a NuSMV-based model checking approach
Directory of Open Access Journals (Sweden)
Xu Zhi
2018-01-01
Full Text Available Software security is an important and challenging research topic in developing dynamic hybrid embedded software systems. Ensuring the correct behavior of these systems is particularly difficult due to the interactions between the continuous subsystem and the discrete subsystem. Currently available security analysis methods for system risks have been limited, as they rely on manual inspections of the individual subsystems under simplifying assumptions. To improve this situation, a new approach is proposed that is based on the symbolic model checking tool NuSMV. A dual PID system is used as an example system, for which the logical part and the computational part of the system are modeled in a unified manner. Constraints are constructed on the controlled object, and a counter-example path is ultimately generated, indicating that the hybrid system can be analyzed by the model checking tool.
Qualitative Fault Isolation of Hybrid Systems: A Structural Model Decomposition-Based Approach
Bregon, Anibal; Daigle, Matthew; Roychoudhury, Indranil
2016-01-01
Quick and robust fault diagnosis is critical to ensuring safe operation of complex engineering systems. A large number of techniques are available to provide fault diagnosis in systems with continuous dynamics. However, many systems in aerospace and industrial environments are best represented as hybrid systems that consist of discrete behavioral modes, each with its own continuous dynamics. These hybrid dynamics make the on-line fault diagnosis task computationally more complex due to the large number of possible system modes and the existence of autonomous mode transitions. This paper presents a qualitative fault isolation framework for hybrid systems based on structural model decomposition. The fault isolation is performed by analyzing the qualitative information of the residual deviations. However, in hybrid systems this process becomes complex due to possible existence of observation delays, which can cause observed deviations to be inconsistent with the expected deviations for the current mode in the system. The great advantage of structural model decomposition is that (i) it allows to design residuals that respond to only a subset of the faults, and (ii) every time a mode change occurs, only a subset of the residuals will need to be reconfigured, thus reducing the complexity of the reasoning process for isolation purposes. To demonstrate and test the validity of our approach, we use an electric circuit simulation as the case study.
浅野, 美代子; マーコ, ユー K.W.
2007-01-01
This paper introduces the hybrid approach of neural networks and linear regression model proposed by Asano and Tsubaki (2003). Neural networks are often credited with its superiority in data consistency whereas the linear regression model provides simple interpretation of the data enabling researchers to verify their hypotheses. The hybrid approach aims at combing the strengths of these two well-established statistical methods. A step-by-step procedure for performing the hybrid approach is pr...
Energy Technology Data Exchange (ETDEWEB)
Morton, April M [ORNL; Nagle, Nicholas N [ORNL; Piburn, Jesse O [ORNL; Stewart, Robert N [ORNL; McManamay, Ryan A [ORNL
2017-01-01
As urban areas continue to grow and evolve in a world of increasing environmental awareness, the need for detailed information regarding residential energy consumption patterns has become increasingly important. Though current modeling efforts mark significant progress in the effort to better understand the spatial distribution of energy consumption, the majority of techniques are highly dependent on region-specific data sources and often require building- or dwelling-level details that are not publicly available for many regions in the United States. Furthermore, many existing methods do not account for errors in input data sources and may not accurately reflect inherent uncertainties in model outputs. We propose an alternative and more general hybrid approach to high-resolution residential electricity consumption modeling by merging a dasymetric model with a complementary machine learning algorithm. The method s flexible data requirement and statistical framework ensure that the model both is applicable to a wide range of regions and considers errors in input data sources.
Hybrid Neural Network Approach Based Tool for the Modelling of Photovoltaic Panels
Directory of Open Access Journals (Sweden)
Antonino Laudani
2015-01-01
Full Text Available A hybrid neural network approach based tool for identifying the photovoltaic one-diode model is presented. The generalization capabilities of neural networks are used together with the robustness of the reduced form of one-diode model. Indeed, from the studies performed by the authors and the works present in the literature, it was found that a direct computation of the five parameters via multiple inputs and multiple outputs neural network is a very difficult task. The reduced form consists in a series of explicit formulae for the support to the neural network that, in our case, is aimed at predicting just two parameters among the five ones identifying the model: the other three parameters are computed by reduced form. The present hybrid approach is efficient from the computational cost point of view and accurate in the estimation of the five parameters. It constitutes a complete and extremely easy tool suitable to be implemented in a microcontroller based architecture. Validations are made on about 10000 PV panels belonging to the California Energy Commission database.
Novel approach for streamflow forecasting using a hybrid ANFIS-FFA model
Yaseen, Zaher Mundher; Ebtehaj, Isa; Bonakdari, Hossein; Deo, Ravinesh C.; Danandeh Mehr, Ali; Mohtar, Wan Hanna Melini Wan; Diop, Lamine; El-shafie, Ahmed; Singh, Vijay P.
2017-11-01
The present study proposes a new hybrid evolutionary Adaptive Neuro-Fuzzy Inference Systems (ANFIS) approach for monthly streamflow forecasting. The proposed method is a novel combination of the ANFIS model with the firefly algorithm as an optimizer tool to construct a hybrid ANFIS-FFA model. The results of the ANFIS-FFA model is compared with the classical ANFIS model, which utilizes the fuzzy c-means (FCM) clustering method in the Fuzzy Inference Systems (FIS) generation. The historical monthly streamflow data for Pahang River, which is a major river system in Malaysia that characterized by highly stochastic hydrological patterns, is used in the study. Sixteen different input combinations with one to five time-lagged input variables are incorporated into the ANFIS-FFA and ANFIS models to consider the antecedent seasonal variations in historical streamflow data. The mean absolute error (MAE), root mean square error (RMSE) and correlation coefficient (r) are used to evaluate the forecasting performance of ANFIS-FFA model. In conjunction with these metrics, the refined Willmott's Index (Drefined), Nash-Sutcliffe coefficient (ENS) and Legates and McCabes Index (ELM) are also utilized as the normalized goodness-of-fit metrics. Comparison of the results reveals that the FFA is able to improve the forecasting accuracy of the hybrid ANFIS-FFA model (r = 1; RMSE = 0.984; MAE = 0.364; ENS = 1; ELM = 0.988; Drefined = 0.994) applied for the monthly streamflow forecasting in comparison with the traditional ANFIS model (r = 0.998; RMSE = 3.276; MAE = 1.553; ENS = 0.995; ELM = 0.950; Drefined = 0.975). The results also show that the ANFIS-FFA is not only superior to the ANFIS model but also exhibits a parsimonious modelling framework for streamflow forecasting by incorporating a smaller number of input variables required to yield the comparatively better performance. It is construed that the FFA optimizer can thus surpass the accuracy of the traditional ANFIS model in general
The Importance of Being Hybrid for Spatial Epidemic Models:A Multi-Scale Approach
Directory of Open Access Journals (Sweden)
Arnaud Banos
2015-11-01
Full Text Available This work addresses the spread of a disease within an urban system, deﬁnedas a network of interconnected cities. The ﬁrst step consists of comparing two differentapproaches: a macroscopic one, based on a system of coupled Ordinary DifferentialEquations (ODE Susceptible-Infected-Recovered (SIR systems exploiting populations onnodes and ﬂows on edges (so-called metapopulational model, and a hybrid one, couplingODE SIR systems on nodes and agents traveling on edges. Under homogeneous conditions(mean ﬁeld approximation, this comparison leads to similar results on the outputs on whichwe focus (the maximum intensity of the epidemic, its duration and the time of the epidemicpeak. However, when it comes to setting up epidemic control strategies, results rapidlydiverge between the two approaches, and it appears that the full macroscopic model is notcompletely adapted to these questions. In this paper, we focus on some control strategies,which are quarantine, avoidance and risk culture, to explore the differences, advantages anddisadvantages of the two models and discuss the importance of being hybrid when modelingand simulating epidemic spread at the level of a whole urban system.
Modeling is a useful tool for quantifying ecosystem services and understanding their temporal dynamics. Here we describe a hybrid regional modeling approach for sub-basins of the Calapooia watershed that incorporates both a precipitation-runoff model and an indexed regression mo...
A hybrid modelling approach to develop scenarios for China's carbon dioxide emissions to 2050
International Nuclear Information System (INIS)
Gambhir, Ajay; Schulz, Niels; Napp, Tamaryn; Tong, Danlu; Munuera, Luis; Faist, Mark; Riahi, Keywan
2013-01-01
This paper describes a hybrid modelling approach to assess the future development of China's energy system, for both a “hypothetical counterfactual baseline” (HCB) scenario and low carbon (“abatement”) scenarios. The approach combines a technology-rich integrated assessment model (MESSAGE) of China's energy system with a set of sector-specific, bottom-up, energy demand models for the transport, buildings and industrial sectors developed by the Grantham Institute for Climate Change at Imperial College London. By exploring technology-specific solutions in all major sectors of the Chinese economy, we find that a combination of measures, underpinned by low-carbon power options based on a mix of renewables, nuclear and carbon capture and storage, would fundamentally transform the Chinese energy system, when combined with increasing electrification of demand-side sectors. Energy efficiency options in these demand sectors are also important. - Highlights: • Combining energy supply and demand models reveals low-carbon technology choices across China's economy. • China could reduce its CO 2 emissions to close to 3 Gt in 2050, costing around 2% of GDP. • Decarbonising the power sector underpins the energy system transformation. • Electrification of industrial processes, building heating and transport is required. • Energy efficiency across the demand side is also important
Directory of Open Access Journals (Sweden)
Tri-Vien Vu
2014-10-01
Full Text Available This study applied a model predictive control (MPC framework to solve the cruising control problem of a series hydraulic hybrid vehicle (SHHV. The controller not only regulates vehicle velocity, but also engine torque, engine speed, and accumulator pressure to their corresponding reference values. At each time step, a quadratic programming problem is solved within a predictive horizon to obtain the optimal control inputs. The objective is to minimize the output error. This approach ensures that the components operate at high efficiency thereby improving the total efficiency of the system. The proposed SHHV control system was evaluated under urban and highway driving conditions. By handling constraints and input-output interactions, the MPC-based control system ensures that the system operates safely and efficiently. The fuel economy of the proposed control scheme shows a noticeable improvement in comparison with the PID-based system, in which three Proportional-Integral-Derivative (PID controllers are used for cruising control.
The paper presents a hybrid air quality modeling approach and its application in NEXUS in order to provide spatial and temporally varying exposure estimates and identification of the mobile source contribution to the total pollutant exposure. Model-based exposure metrics, associa...
Fraldi, M.; Perrella, G.; Ciervo, M.; Bosia, F.; Pugno, N. M.
2017-09-01
Very recently, a Weibull-based probabilistic strategy has been successfully applied to bundles of wires to determine their overall stress-strain behaviour, also capturing previously unpredicted nonlinear and post-elastic features of hierarchical strands. This approach is based on the so-called "Equal Load Sharing (ELS)" hypothesis by virtue of which, when a wire breaks, the load acting on the strand is homogeneously redistributed among the surviving wires. Despite the overall effectiveness of the method, some discrepancies between theoretical predictions and in silico Finite Element-based simulations or experimental findings might arise when more complex structures are analysed, e.g. helically arranged bundles. To overcome these limitations, an enhanced hybrid approach is proposed in which the probability of rupture is combined with a deterministic mechanical model of a strand constituted by helically-arranged and hierarchically-organized wires. The analytical model is validated comparing its predictions with both Finite Element simulations and experimental tests. The results show that generalized stress-strain responses - incorporating tension/torsion coupling - are naturally found and, once one or more elements break, the competition between geometry and mechanics of the strand microstructure, i.e. the different cross sections and helical angles of the wires in the different hierarchical levels of the strand, determines the no longer homogeneous stress redistribution among the surviving wires whose fate is hence governed by a "Hierarchical Load Sharing" criterion.
A Hybrid Generalized Hidden Markov Model-Based Condition Monitoring Approach for Rolling Bearings.
Liu, Jie; Hu, Youmin; Wu, Bo; Wang, Yan; Xie, Fengyun
2017-05-18
The operating condition of rolling bearings affects productivity and quality in the rotating machine process. Developing an effective rolling bearing condition monitoring approach is critical to accurately identify the operating condition. In this paper, a hybrid generalized hidden Markov model-based condition monitoring approach for rolling bearings is proposed, where interval valued features are used to efficiently recognize and classify machine states in the machine process. In the proposed method, vibration signals are decomposed into multiple modes with variational mode decomposition (VMD). Parameters of the VMD, in the form of generalized intervals, provide a concise representation for aleatory and epistemic uncertainty and improve the robustness of identification. The multi-scale permutation entropy method is applied to extract state features from the decomposed signals in different operating conditions. Traditional principal component analysis is adopted to reduce feature size and computational cost. With the extracted features' information, the generalized hidden Markov model, based on generalized interval probability, is used to recognize and classify the fault types and fault severity levels. Finally, the experiment results show that the proposed method is effective at recognizing and classifying the fault types and fault severity levels of rolling bearings. This monitoring method is also efficient enough to quantify the two uncertainty components.
A Hybrid Generalized Hidden Markov Model-Based Condition Monitoring Approach for Rolling Bearings
Directory of Open Access Journals (Sweden)
Jie Liu
2017-05-01
Full Text Available The operating condition of rolling bearings affects productivity and quality in the rotating machine process. Developing an effective rolling bearing condition monitoring approach is critical to accurately identify the operating condition. In this paper, a hybrid generalized hidden Markov model-based condition monitoring approach for rolling bearings is proposed, where interval valued features are used to efficiently recognize and classify machine states in the machine process. In the proposed method, vibration signals are decomposed into multiple modes with variational mode decomposition (VMD. Parameters of the VMD, in the form of generalized intervals, provide a concise representation for aleatory and epistemic uncertainty and improve the robustness of identification. The multi-scale permutation entropy method is applied to extract state features from the decomposed signals in different operating conditions. Traditional principal component analysis is adopted to reduce feature size and computational cost. With the extracted features’ information, the generalized hidden Markov model, based on generalized interval probability, is used to recognize and classify the fault types and fault severity levels. Finally, the experiment results show that the proposed method is effective at recognizing and classifying the fault types and fault severity levels of rolling bearings. This monitoring method is also efficient enough to quantify the two uncertainty components.
Alternative policy impacts on US GHG emissions and energy security: A hybrid modeling approach
International Nuclear Information System (INIS)
Sarica, Kemal; Tyner, Wallace E.
2013-01-01
This study addresses the possible impacts of energy and climate policies, namely corporate average fleet efficiency (CAFE) standard, renewable fuel standard (RFS) and clean energy standard (CES), and an economy wide equivalent carbon tax on GHG emissions in the US to the year 2045. Bottom–up and top–down modeling approaches find widespread use in energy economic modeling and policy analysis, in which they differ mainly with respect to the emphasis placed on technology of the energy system and/or the comprehensiveness of endogenous market adjustments. For this study, we use a hybrid energy modeling approach, MARKAL–Macro, that combines the characteristics of two divergent approaches, in order to investigate and quantify the cost of climate policies for the US and an equivalent carbon tax. The approach incorporates Macro-economic feedbacks through a single sector neoclassical growth model while maintaining sectoral and technological detail of the bottom–up optimization framework with endogenous aggregated energy demand. Our analysis is done for two important objectives of the US energy policy: GHG reduction and increased energy security. Our results suggest that the emission tax achieves results quite similar to the CES policy but very different results in the transportation sector. The CAFE standard and RFS are more expensive than a carbon tax for emission reductions. However, the CAFE standard and RFS are much more efficient at achieving crude oil import reductions. The GDP losses are 2.0% and 1.2% relative to the base case for the policy case and carbon tax. That difference may be perceived as being small given the increased energy security gained from the CAFE and RFS policy measures and the uncertainty inherent in this type of analysis. - Highlights: • Evaluates US impacts of three energy/climate policies and a carbon tax (CT) • Analysis done with bottom–up MARKAL model coupled with a macro model • Electricity clean energy standard very close to
Directory of Open Access Journals (Sweden)
Claudio Maruccio
2018-01-01
Full Text Available An effective hybrid computational framework is described here in order to assess the nonlinear dynamic response of piezoelectric energy harvesting devices. The proposed strategy basically consists of two steps. First, fully coupled multiphysics finite element (FE analyses are performed to evaluate the nonlinear static response of the device. An enhanced reduced-order model is then derived, where the global dynamic response is formulated in the state-space using lumped coefficients enriched with the information derived from the FE simulations. The electromechanical response of piezoelectric beams under forced vibrations is studied by means of the proposed approach, which is also validated by comparing numerical predictions with some experimental results. Such numerical and experimental investigations have been carried out with the main aim of studying the influence of material and geometrical parameters on the global nonlinear response. The advantage of the presented approach is that the overall computational and experimental efforts are significantly reduced while preserving a satisfactory accuracy in the assessment of the global behavior.
Directory of Open Access Journals (Sweden)
Pietra Paola
2012-04-01
Full Text Available We propose a hybrid classical-quantum model to study the motion of electrons in ultra-scaled confined nanostructures. The transport of charged particles, considered as one dimensional, is described by a quantum effective mass model in the active zone coupled directly to a drift-diffusion problem in the rest of the device. We explain how this hybrid model takes into account the peculiarities due to the strong confinement and we present numerical simulations for a simplified carbon nanotube. Nous proposons un modèle hybride classique-quantique pour décrire le mouvement des électrons dans des nanostructures très fortement confinées. Le transport des particules, consideré unidimensionel, est décrit par un modèle quantique avec masse effective dans la zone active couplé à un problème de dérive-diffusion dans le reste du domaine. Nous expliquons comment ce modèle hybride prend en compte les spécificités de ce très fort confinement et nous présentons des résultats numériques pour un nanotube de carbone simplifié.
Model-based design approaches for plug-in hybrid vehicle design
Energy Technology Data Exchange (ETDEWEB)
Mendes, C.J. [CrossChasm Technologies, Cambridge, ON (Canada); Stevens, M.B.; Fowler, M.W. [Waterloo Univ., ON (Canada). Dept. of Chemical Engineering; Fraser, R.A. [Waterloo Univ., ON (Canada). Dept. of Mechanical Engineering; Wilhelm, E.J. [Paul Scherrer Inst., Villigen (Switzerland). Energy Systems Analysis
2007-07-01
A model-based design process for plug-in hybrid vehicles (PHEVs) was presented. The paper discussed steps between the initial design concept and a working vehicle prototype, and focused on an investigation of the software-in-the-loop (SIL), hardware-in-the-loop (HIL), and component-in-the-loop (CIL) design phases. The role and benefits of using simulation were also reviewed. A method for mapping and identifying components was provided along with a hybrid control strategy and component-level control optimization process. The role of simulation in component evaluation, architecture design, and de-bugging procedures was discussed, as well as the role simulation networks can play in speeding deployment times. The simulations focused on work performed on a 2005 Chevrolet Equinox converted to a fuel cell hybrid electric vehicle (FCHEV). Components were aggregated to create a complete virtual vehicle. A simplified vehicle model was implemented onto the on-board vehicle control hardware. Optimization metrics were estimated at 10 alpha values during each control loop iteration. The simulation was then used to tune the control system under a variety of drive cycles and conditions. A CIL technique was used to place a physical hybrid electric vehicle (HEV) component under the control of a real time HEV/PHEV simulation. It was concluded that controllers should have a standardized component description that supports integration into advanced testing procedures. 4 refs., 9 figs.
International Nuclear Information System (INIS)
Milano, Giuseppe; De Nicola, Antonio; Kawakatsu, Toshihiro
2013-01-01
This paper gives an overview of the coarse-grained models of phospholipids recently developed by the authors in the frame of a hybrid particle–field molecular dynamics technique. This technique employs a special class of coarse-grained models that are gaining popularity because they allow simulations of large scale systems and, at the same time, they provide sufficiently detailed chemistry for the mapping scheme adopted. The comparison of the computational costs of our approach with standard molecular dynamics simulations is a function of the system size and the number of processors employed in the parallel calculations. Due to the low amount of data exchange, the larger the number of processors, the better are the performances of the hybrid particle–field models. This feature makes these models very promising ones in the exploration of several problems in biophysics. (paper)
Modeling level change in Lake Urmia using hybrid artificial intelligence approaches
Esbati, M.; Ahmadieh Khanesar, M.; Shahzadi, Ali
2017-06-01
The investigation of water level fluctuations in lakes for protecting them regarding the importance of these water complexes in national and regional scales has found a special place among countries in recent years. The importance of the prediction of water level balance in Lake Urmia is necessary due to several-meter fluctuations in the last decade which help the prevention from possible future losses. For this purpose, in this paper, the performance of adaptive neuro-fuzzy inference system (ANFIS) for predicting the lake water level balance has been studied. In addition, for the training of the adaptive neuro-fuzzy inference system, particle swarm optimization (PSO) and hybrid backpropagation-recursive least square method algorithm have been used. Moreover, a hybrid method based on particle swarm optimization and recursive least square (PSO-RLS) training algorithm for the training of ANFIS structure is introduced. In order to have a more fare comparison, hybrid particle swarm optimization and gradient descent are also applied. The models have been trained, tested, and validated based on lake level data between 1991 and 2014. For performance evaluation, a comparison is made between these methods. Numerical results obtained show that the proposed methods with a reasonable error have a good performance in water level balance prediction. It is also clear that with continuing the current trend, Lake Urmia will experience more drop in the water level balance in the upcoming years.
A templated approach for multi-physics modeling of hybrid energy systems in Modelica
Energy Technology Data Exchange (ETDEWEB)
Greenwood, Michael Scott [ORNL; Cetiner, Sacit M. [ORNL; Harrison, Thomas J. [ORNL; Fugate, David [Oak Ridge National Laboratory (ORNL)
2018-01-01
A prototypical hybrid energy system (HES) couples a primary thermal power generator (i.e., nuclear power plant) with one or more additional subsystems beyond the traditional balance of plant electricity generation system. The definition and architecture of an HES can be adapted based on the needs and opportunities of a given local market. For example, locations in need of potable water may be best served by coupling a desalination plant to the HES. A location near an oil refinery may have a need for emission-free hydrogen production. The flexible, multidomain capabilities of Modelica are being used to investigate the dynamics (e.g., thermal hydraulics and electrical generation/consumption) of such a hybrid system. This paper examines the simulation infrastructure created to enable the coupling of multiphysics subsystem models for HES studies. A demonstration of a tightly coupled nuclear hybrid energy system implemented using the Modelica based infrastructure is presented for two representative cases. An appendix is also included providing a step-by-step procedure for using the template-based infrastructure.
Energy Technology Data Exchange (ETDEWEB)
Lo, Ch. K.; Lim, Y. S.; Tan, S. G.; Rahman, F. A. [Faculty of Engineering and Science, University Tunku Abdul Rahman, Jalan Genting Klang, 53300, Kuala Lumpur (Malaysia)
2010-12-15
A Luminescent Solar Concentrator (LSC) is a transparent plate containing luminescent material with photovoltaic (PV) cells attached to its edges. Sunlight entering the plate is absorbed by the luminescent material, which in turn emits light. The emitted light propagates through the plate and arrives at the PV cells through total internal reflection. The ratio of the area of the relatively cheap polymer plate to that of the expensive PV cells is increased, and the cost per unit of solar electricity can be reduced by 75%. To improve the emission performance of LSCs, simulation modeling of LSCs becomes essential. Ray-tracing modeling is a popular approach for simulating LSCs due to its great ability of modeling various LSC structures under direct and diffuse sunlight. However, this approach requires substantial amount of measurement input data. Also, the simulation time is enormous because it is a forward-ray tracing method that traces all the rays propagating from the light source to the concentrator. On the other hand, the thermodynamic approach requires substantially less input parameters and simulation time, but it can only be used to model simple LSC designs with direct sunlight. Therefore, a new hybrid model was developed to perform various simulation studies effectively without facing the issues arisen from the existing ray-tracing and thermodynamic models. The simulation results show that at least 60% of the total output irradiance of a LSC is contributed by the light trapped and channeled by the LSC. The novelty of this hybrid model is the concept of integrating the thermodynamic model with a well-developed Radiance ray-tracing model, hence making this model as a fast, powerful and cost-effective tool for the design of LSCs. (authors)
Hybrid approaches for multiple-species stochastic reaction–diffusion models
International Nuclear Information System (INIS)
Spill, Fabian; Guerrero, Pilar; Alarcon, Tomas; Maini, Philip K.; Byrne, Helen
2015-01-01
Reaction–diffusion models are used to describe systems in fields as diverse as physics, chemistry, ecology and biology. The fundamental quantities in such models are individual entities such as atoms and molecules, bacteria, cells or animals, which move and/or react in a stochastic manner. If the number of entities is large, accounting for each individual is inefficient, and often partial differential equation (PDE) models are used in which the stochastic behaviour of individuals is replaced by a description of the averaged, or mean behaviour of the system. In some situations the number of individuals is large in certain regions and small in others. In such cases, a stochastic model may be inefficient in one region, and a PDE model inaccurate in another. To overcome this problem, we develop a scheme which couples a stochastic reaction–diffusion system in one part of the domain with its mean field analogue, i.e. a discretised PDE model, in the other part of the domain. The interface in between the two domains occupies exactly one lattice site and is chosen such that the mean field description is still accurate there. In this way errors due to the flux between the domains are small. Our scheme can account for multiple dynamic interfaces separating multiple stochastic and deterministic domains, and the coupling between the domains conserves the total number of particles. The method preserves stochastic features such as extinction not observable in the mean field description, and is significantly faster to simulate on a computer than the pure stochastic model. - Highlights: • A novel hybrid stochastic/deterministic reaction–diffusion simulation method is given. • Can massively speed up stochastic simulations while preserving stochastic effects. • Can handle multiple reacting species. • Can handle moving boundaries
Hybrid approaches for multiple-species stochastic reaction–diffusion models
Energy Technology Data Exchange (ETDEWEB)
Spill, Fabian, E-mail: fspill@bu.edu [Department of Biomedical Engineering, Boston University, 44 Cummington Street, Boston, MA 02215 (United States); Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States); Guerrero, Pilar [Department of Mathematics, University College London, Gower Street, London WC1E 6BT (United Kingdom); Alarcon, Tomas [Centre de Recerca Matematica, Campus de Bellaterra, Edifici C, 08193 Bellaterra (Barcelona) (Spain); Departament de Matemàtiques, Universitat Atonòma de Barcelona, 08193 Bellaterra (Barcelona) (Spain); Maini, Philip K. [Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Oxford OX2 6GG (United Kingdom); Byrne, Helen [Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Oxford OX2 6GG (United Kingdom); Computational Biology Group, Department of Computer Science, University of Oxford, Oxford OX1 3QD (United Kingdom)
2015-10-15
Reaction–diffusion models are used to describe systems in fields as diverse as physics, chemistry, ecology and biology. The fundamental quantities in such models are individual entities such as atoms and molecules, bacteria, cells or animals, which move and/or react in a stochastic manner. If the number of entities is large, accounting for each individual is inefficient, and often partial differential equation (PDE) models are used in which the stochastic behaviour of individuals is replaced by a description of the averaged, or mean behaviour of the system. In some situations the number of individuals is large in certain regions and small in others. In such cases, a stochastic model may be inefficient in one region, and a PDE model inaccurate in another. To overcome this problem, we develop a scheme which couples a stochastic reaction–diffusion system in one part of the domain with its mean field analogue, i.e. a discretised PDE model, in the other part of the domain. The interface in between the two domains occupies exactly one lattice site and is chosen such that the mean field description is still accurate there. In this way errors due to the flux between the domains are small. Our scheme can account for multiple dynamic interfaces separating multiple stochastic and deterministic domains, and the coupling between the domains conserves the total number of particles. The method preserves stochastic features such as extinction not observable in the mean field description, and is significantly faster to simulate on a computer than the pure stochastic model. - Highlights: • A novel hybrid stochastic/deterministic reaction–diffusion simulation method is given. • Can massively speed up stochastic simulations while preserving stochastic effects. • Can handle multiple reacting species. • Can handle moving boundaries.
A hybrid finite element - statistical energy analysis approach to robust sound transmission modeling
Reynders, Edwin; Langley, Robin S.; Dijckmans, Arne; Vermeir, Gerrit
2014-09-01
When considering the sound transmission through a wall in between two rooms, in an important part of the audio frequency range, the local response of the rooms is highly sensitive to uncertainty in spatial variations in geometry, material properties and boundary conditions, which have a wave scattering effect, while the local response of the wall is rather insensitive to such uncertainty. For this mid-frequency range, a computationally efficient modeling strategy is adopted that accounts for this uncertainty. The partitioning wall is modeled deterministically, e.g. with finite elements. The rooms are modeled in a very efficient, nonparametric stochastic way, as in statistical energy analysis. All components are coupled by means of a rigorous power balance. This hybrid strategy is extended so that the mean and variance of the sound transmission loss can be computed as well as the transition frequency that loosely marks the boundary between low- and high-frequency behavior of a vibro-acoustic component. The method is first validated in a simulation study, and then applied for predicting the airborne sound insulation of a series of partition walls of increasing complexity: a thin plastic plate, a wall consisting of gypsum blocks, a thicker masonry wall and a double glazing. It is found that the uncertainty caused by random scattering is important except at very high frequencies, where the modal overlap of the rooms is very high. The results are compared with laboratory measurements, and both are found to agree within the prediction uncertainty in the considered frequency range.
Hybrid approach for the assessment of PSA models by means of binary decision diagrams
International Nuclear Information System (INIS)
Ibanez-Llano, Cristina; Rauzy, Antoine; Melendez, Enrique; Nieto, Francisco
2010-01-01
Binary decision diagrams are a well-known alternative to the minimal cutsets approach to assess the reliability Boolean models. They have been applied successfully to improve the fault trees models assessment. However, its application to solve large models, and in particular the event trees coming from the PSA studies of the nuclear industry, remains to date out of reach of an exact evaluation. For many real PSA models it may be not possible to compute the BDD within reasonable amount of time and memory without considering the truncation or simplification of the model. This paper presents a new approach to estimate the exact probabilistic quantification results (probability/frequency) based on combining the calculation of the MCS and the truncation limits, with the BDD approach, in order to have a better control on the reduction of the model and to properly account for the success branches. The added value of this methodology is that it is possible to ensure a real confidence interval of the exact value and therefore an explicit knowledge of the error bound. Moreover, it can be used to measure the acceptability of the results obtained with traditional techniques. The new method was applied to a real life PSA study and the results obtained confirm the applicability of the methodology and open a new viewpoint for further developments.
Hybrid approach for the assessment of PSA models by means of binary decision diagrams
Energy Technology Data Exchange (ETDEWEB)
Ibanez-Llano, Cristina, E-mail: cristina.ibanez@iit.upcomillas.e [Instituto de Investigacion Tecnologica (IIT), Escuela Tecnica Superior de Ingenieria ICAI, Universidad Pontificia Comillas, C/Santa Cruz de Marcenado 26, 28015 Madrid (Spain); Rauzy, Antoine, E-mail: Antoine.RAUZY@3ds.co [Dassault Systemes, 10 rue Marcel Dassault CS 40501, 78946 Velizy Villacoublay Cedex (France); Melendez, Enrique, E-mail: ema@csn.e [Consejo de Seguridad Nuclear (CSN), C/Justo Dorado 11, 28040 Madrid (Spain); Nieto, Francisco, E-mail: nieto@iit.upcomillas.e [Instituto de Investigacion Tecnologica (IIT), Escuela Tecnica Superior de Ingenieria ICAI, Universidad Pontificia Comillas, C/Santa Cruz de Marcenado 26, 28015 Madrid (Spain)
2010-10-15
Binary decision diagrams are a well-known alternative to the minimal cutsets approach to assess the reliability Boolean models. They have been applied successfully to improve the fault trees models assessment. However, its application to solve large models, and in particular the event trees coming from the PSA studies of the nuclear industry, remains to date out of reach of an exact evaluation. For many real PSA models it may be not possible to compute the BDD within reasonable amount of time and memory without considering the truncation or simplification of the model. This paper presents a new approach to estimate the exact probabilistic quantification results (probability/frequency) based on combining the calculation of the MCS and the truncation limits, with the BDD approach, in order to have a better control on the reduction of the model and to properly account for the success branches. The added value of this methodology is that it is possible to ensure a real confidence interval of the exact value and therefore an explicit knowledge of the error bound. Moreover, it can be used to measure the acceptability of the results obtained with traditional techniques. The new method was applied to a real life PSA study and the results obtained confirm the applicability of the methodology and open a new viewpoint for further developments.
Detection of cardiovascular anomalies: Hybrid systems approach
Ledezma, Fernando
2012-06-06
In this paper, we propose a hybrid interpretation of the cardiovascular system. Based on a model proposed by Simaan et al. (2009), we study the problem of detecting cardiovascular anomalies that can be caused by variations in some physiological parameters, using an observerbased approach. We present the first numerical results obtained. © 2012 IFAC.
A Model-Driven Approach for Hybrid Power Estimation in Embedded Systems Design
Directory of Open Access Journals (Sweden)
Ben Atitallah Rabie
2011-01-01
Full Text Available Abstract As technology scales for increased circuit density and performance, the management of power consumption in system-on-chip (SoC is becoming critical. Today, having the appropriate electronic system level (ESL tools for power estimation in the design flow is mandatory. The main challenge for the design of such dedicated tools is to achieve a better tradeoff between accuracy and speed. This paper presents a consumption estimation approach allowing taking the consumption criterion into account early in the design flow during the system cosimulation. The originality of this approach is that it allows the power estimation for both white-box intellectual properties (IPs using annotated power models and black-box IPs using standalone power estimators. In order to obtain accurate power estimates, our simulations were performed at the cycle-accurate bit-accurate (CABA level, using SystemC. To make our approach fast and not tedious for users, the simulated architectures, including standalone power estimators, were generated automatically using a model driven engineering (MDE approach. Both annotated power models and standalone power estimators can be used together to estimate the consumption of the same architecture, which makes them complementary. The simulation results showed that the power estimates given by both estimation techniques for a hardware component are very close, with a difference that does not exceed 0.3%. This proves that, even when the IP code is not accessible or not modifiable, our approach allows obtaining quite accurate power estimates that early in the design flow thanks to the automation offered by the MDE approach.
International Nuclear Information System (INIS)
Lee, S.
2009-01-01
As a provider of national energy security, the Korean Institute of Energy Research is seeking to establish a long term strategic technology roadmap for a hydrogen-based economy. This paper addressed 5 criteria regarding the strategy, notably economic impact, commercial potential, inner capacity, technical spinoff, and development cost. The fuzzy AHP and DEA hybrid model were used in a two-stage multi-criteria decision making approach to evaluate the relative efficiency of hydrogen technologies for the hydrogen economy. The fuzzy analytic hierarchy process reflects the uncertainty of human thoughts with interval values instead of clear-cut numbers. It therefore allocates the relative importance of 4 criteria, notably economic impact, commercial potential, inner capacity and technical spin-off. The relative efficiency of hydrogen technologies for the hydrogen economy can be measured via data envelopment analysis. It was concluded that the scientific decision making approach can be used effectively to allocate research and development resources and activities
Energy Technology Data Exchange (ETDEWEB)
Lee, S. [Korea Inst. of Energy Research, Daejeon (Korea, Republic of). Energy Policy Research Division; Mogi, G. [Tokyo Univ., (Japan). Dept. of Technology Management for Innovation, Graduate School of Engineering; Kim, J. [Korea Inst. of Energy Research, Daejeon (Korea, Republic of)
2009-07-01
As a provider of national energy security, the Korean Institute of Energy Research is seeking to establish a long term strategic technology roadmap for a hydrogen-based economy. This paper addressed 5 criteria regarding the strategy, notably economic impact, commercial potential, inner capacity, technical spinoff, and development cost. The fuzzy AHP and DEA hybrid model were used in a two-stage multi-criteria decision making approach to evaluate the relative efficiency of hydrogen technologies for the hydrogen economy. The fuzzy analytic hierarchy process reflects the uncertainty of human thoughts with interval values instead of clear-cut numbers. It therefore allocates the relative importance of 4 criteria, notably economic impact, commercial potential, inner capacity and technical spin-off. The relative efficiency of hydrogen technologies for the hydrogen economy can be measured via data envelopment analysis. It was concluded that the scientific decision making approach can be used effectively to allocate research and development resources and activities.
Directory of Open Access Journals (Sweden)
Jakub Jończyk
Full Text Available The crucial role of G-protein coupled receptors and the significant achievements associated with a better understanding of the spatial structure of known receptors in this family encouraged us to undertake a study on the histamine H3 receptor, whose crystal structure is still unresolved. The latest literature data and availability of different software enabled us to build homology models of higher accuracy than previously published ones. The new models are expected to be closer to crystal structures; and therefore, they are much more helpful in the design of potential ligands. In this article, we describe the generation of homology models with the use of diverse tools and a hybrid assessment. Our study incorporates a hybrid assessment connecting knowledge-based scoring algorithms with a two-step ligand-based docking procedure. Knowledge-based scoring employs probability theory for global energy minimum determination based on information about native amino acid conformation from a dataset of experimentally determined protein structures. For a two-step docking procedure two programs were applied: GOLD was used in the first step and Glide in the second. Hybrid approaches offer advantages by combining various theoretical methods in one modeling algorithm. The biggest advantage of hybrid methods is their intrinsic ability to self-update and self-refine when additional structural data are acquired. Moreover, the diversity of computational methods and structural data used in hybrid approaches for structure prediction limit inaccuracies resulting from theoretical approximations or fuzziness of experimental data. The results of docking to the new H3 receptor model allowed us to analyze ligand-receptor interactions for reference compounds.
Molina-Mora, J A; Kop-Montero, M; Quirós-Fernández, I; Quiros, S; Crespo-Mariño, J L; Mora-Rodríguez, R A
2018-04-13
Sphingolipid (SL) metabolism is a complex biological system that produces and transforms ceramides and other molecules able to modulate other cellular processes, including survival or death pathways key to cell fate decisions. This signaling pathway integrates several types of stress signals, including chemotherapy, into changes in the activity of its metabolic enzymes, altering thereby the cellular composition of bioactive SLs. Therefore, the SL pathway is a promising sensor of chemosensitivity in cancer and a target hub to overcome resistance. However, there is still a gap in our understanding of how chemotherapeutic drugs can disturb the SL pathway in order to control cellular fate. We propose to bridge this gap by a systems biology approach to integrate i) a dynamic model of SL analogue (BODIPY-FL fluorescent-sphingomyelin analogue, SM-BOD) metabolism, ii) a Gaussian mixture model (GMM) of the fluorescence features to identify how the SL pathway senses the effect of chemotherapy and iii) a fuzzy logic model (FLM) to associate SL composition with cell viability by semi-quantitative rules. Altogether, this hybrid model approach was able to predict the cell viability of double experimental perturbations with chemotherapy, indicating that the SL pathway is a promising sensor to design strategies to overcome drug resistance in cancer. Copyright © 2018 Elsevier Ltd. All rights reserved.
Energy Technology Data Exchange (ETDEWEB)
Du Shengzhi [Department of EAD, ICT Faculty, Tshwane University of Technology, Pretoria 0001 (South Africa); French South Africa Technical Institute of Electronics (F' SATIE), Tshwane University of Technology, Pretoria 0001 (South Africa)], E-mail: dushengzhi@gmail.com; Wyk, Barend J. van; Qi Guoyuan; Tu Chunling [French South Africa Technical Institute of Electronics (F' SATIE), Tshwane University of Technology, Pretoria 0001 (South Africa)
2009-11-15
In this paper, a hybrid method using active control and a High Order Differentiator (HOD) methodology is proposed to synchronize chaotic systems. Compared to some traditional active control methods, this new method can synchronize chaotic systems where only output states of the master system are available, i.e. the system is considered a black box. The HOD is used to estimate the derivative information of the master system followed by an active control methodology relying on HOD information. The Qi hyperchaotic system is used to verify the performance of this hybrid method. The proposed method is also compared to some traditional methods. Experimental results show that the proposed method has high synchronization precision and speed and is robust against uncertainties in the master system. The circus implements of the proposed synchronizing scheme are included in this paper. The simulation results show the feasibility of the proposed scheme.
Zhao, Xiuli; Asante Antwi, Henry; Yiranbon, Ethel
2014-01-01
The idea of aggregating information is clearly recognizable in the daily lives of all entities whether as individuals or as a group, since time immemorial corporate organizations, governments, and individuals as economic agents aggregate information to formulate decisions. Energy planning represents an investment-decision problem where information needs to be aggregated from credible sources to predict both demand and supply of energy. To do this there are varying methods ranging from the use of portfolio theory to managing risk and maximizing portfolio performance under a variety of unpredictable economic outcomes. The future demand for energy and need to use solar energy in order to avoid future energy crisis in Jiangsu province in China require energy planners in the province to abandon their reliance on traditional, "least-cost," and stand-alone technology cost estimates and instead evaluate conventional and renewable energy supply on the basis of a hybrid of optimization models in order to ensure effective and reliable supply. Our task in this research is to propose measures towards addressing optimal solar energy forecasting by employing a systematic optimization approach based on a hybrid of weather and energy forecast models. After giving an overview of the sustainable energy issues in China, we have reviewed and classified the various models that existing studies have used to predict the influences of the weather influences and the output of solar energy production units. Further, we evaluate the performance of an exemplary ensemble model which combines the forecast output of two popular statistical prediction methods using a dynamic weighting factor.
Directory of Open Access Journals (Sweden)
Xiuli Zhao
2014-01-01
Full Text Available The idea of aggregating information is clearly recognizable in the daily lives of all entities whether as individuals or as a group, since time immemorial corporate organizations, governments, and individuals as economic agents aggregate information to formulate decisions. Energy planning represents an investment-decision problem where information needs to be aggregated from credible sources to predict both demand and supply of energy. To do this there are varying methods ranging from the use of portfolio theory to managing risk and maximizing portfolio performance under a variety of unpredictable economic outcomes. The future demand for energy and need to use solar energy in order to avoid future energy crisis in Jiangsu province in China require energy planners in the province to abandon their reliance on traditional, “least-cost,” and stand-alone technology cost estimates and instead evaluate conventional and renewable energy supply on the basis of a hybrid of optimization models in order to ensure effective and reliable supply. Our task in this research is to propose measures towards addressing optimal solar energy forecasting by employing a systematic optimization approach based on a hybrid of weather and energy forecast models. After giving an overview of the sustainable energy issues in China, we have reviewed and classified the various models that existing studies have used to predict the influences of the weather influences and the output of solar energy production units. Further, we evaluate the performance of an exemplary ensemble model which combines the forecast output of two popular statistical prediction methods using a dynamic weighting factor.
Directory of Open Access Journals (Sweden)
Mohammad Mozumdar
2014-06-01
Full Text Available The Model Based Design (MBD approach is a popular trend to speed up application development of embedded systems, which uses high-level abstractions to capture functional requirements in an executable manner, and which automates implementation code generation. Wireless Sensor Networks (WSNs are an emerging very promising application area for embedded systems. However, there is a lack of tools in this area, which would allow an application developer to model a WSN application by using high level abstractions, simulate it mapped to a multi-node scenario for functional analysis, and finally use the refined model to automatically generate code for different WSN platforms. Motivated by this idea, in this paper we present a hybrid simulation framework that not only follows the MBD approach for WSN application development, but also interconnects a simulated sub-network with a physical sub-network and then allows one to co-simulate them, which is also known as Hardware-In-the-Loop (HIL simulation.
A hybrid approach for biobjective optimization
DEFF Research Database (Denmark)
Stidsen, Thomas Jacob Riis; Andersen, Kim Allan
2018-01-01
to singleobjective problems is that no standard multiobjective solvers exist and specialized algorithms need to be programmed from scratch.In this article we will present a hybrid approach, which operates both in decision space and in objective space. The approach enables massive efficient parallelization and can...... be used to a wide variety of biobjective Mixed Integer Programming models. We test the approach on the biobjective extension of the classic traveling salesman problem, on the standard datasets, and determine the full set of nondominated points. This has only been done once before (Florios and Mavrotas...
Hybrid biasing approaches for global variance reduction
International Nuclear Information System (INIS)
Wu, Zeyun; Abdel-Khalik, Hany S.
2013-01-01
A new variant of Monte Carlo—deterministic (DT) hybrid variance reduction approach based on Gaussian process theory is presented for accelerating convergence of Monte Carlo simulation and compared with Forward-Weighted Consistent Adjoint Driven Importance Sampling (FW-CADIS) approach implemented in the SCALE package from Oak Ridge National Laboratory. The new approach, denoted the Gaussian process approach, treats the responses of interest as normally distributed random processes. The Gaussian process approach improves the selection of the weight windows of simulated particles by identifying a subspace that captures the dominant sources of statistical response variations. Like the FW-CADIS approach, the Gaussian process approach utilizes particle importance maps obtained from deterministic adjoint models to derive weight window biasing. In contrast to the FW-CADIS approach, the Gaussian process approach identifies the response correlations (via a covariance matrix) and employs them to reduce the computational overhead required for global variance reduction (GVR) purpose. The effective rank of the covariance matrix identifies the minimum number of uncorrelated pseudo responses, which are employed to bias simulated particles. Numerical experiments, serving as a proof of principle, are presented to compare the Gaussian process and FW-CADIS approaches in terms of the global reduction in standard deviation of the estimated responses. - Highlights: ► Hybrid Monte Carlo Deterministic Method based on Gaussian Process Model is introduced. ► Method employs deterministic model to calculate responses correlations. ► Method employs correlations to bias Monte Carlo transport. ► Method compared to FW-CADIS methodology in SCALE code. ► An order of magnitude speed up is achieved for a PWR core model.
A Hybrid Approach to Teaching Managerial Economics
Metzgar, Matthew
2014-01-01
Many institutions in higher education are experimenting with hybrid teaching approaches to undergraduate courses. Online resources may provide a number of advantages to students as compared to in-class approaches. Research regarding the effectiveness of hybrid approaches is mixed and still accumulating. This paper discusses the use of a hybrid…
Sokkar, Pandian; Boulanger, Eliot; Thiel, Walter; Sanchez-Garcia, Elsa
2015-04-14
We present a hybrid quantum mechanics/molecular mechanics/coarse-grained (QM/MM/CG) multiresolution approach for solvated biomolecular systems. The chemically important active-site region is treated at the QM level. The biomolecular environment is described by an atomistic MM force field, and the solvent is modeled with the CG Martini force field using standard or polarizable (pol-CG) water. Interactions within the QM, MM, and CG regions, and between the QM and MM regions, are treated in the usual manner, whereas the CG-MM and CG-QM interactions are evaluated using the virtual sites approach. The accuracy and efficiency of our implementation is tested for two enzymes, chorismate mutase (CM) and p-hydroxybenzoate hydroxylase (PHBH). In CM, the QM/MM/CG potential energy scans along the reaction coordinate yield reaction energies that are too large, both for the standard and polarizable Martini CG water models, which can be attributed to adverse effects of using large CG water beads. The inclusion of an atomistic MM water layer (10 Å for uncharged CG water and 5 Å for polarizable CG water) around the QM region improves the energy profiles compared to the reference QM/MM calculations. In analogous QM/MM/CG calculations on PHBH, the use of the pol-CG description for the outer water does not affect the stabilization of the highly charged FADHOOH-pOHB transition state compared to the fully atomistic QM/MM calculations. Detailed performance analysis in a glycine-water model system indicates that computation times for QM energy and gradient evaluations at the density functional level are typically reduced by 40-70% for QM/MM/CG relative to fully atomistic QM/MM calculations.
National Aeronautics and Space Administration — Combustion instabilities pose a significant technical risk in the development of liquid and solid rocket motors. Much of the effort in modeling combustion...
Hybrid approaches for multiple-species stochastic reaction-diffusion models
Spill, Fabian; Guerrero, Pilar; Alarcon, Tomas; Maini, Philip K.; Byrne, Helen
2015-10-01
Reaction-diffusion models are used to describe systems in fields as diverse as physics, chemistry, ecology and biology. The fundamental quantities in such models are individual entities such as atoms and molecules, bacteria, cells or animals, which move and/or react in a stochastic manner. If the number of entities is large, accounting for each individual is inefficient, and often partial differential equation (PDE) models are used in which the stochastic behaviour of individuals is replaced by a description of the averaged, or mean behaviour of the system. In some situations the number of individuals is large in certain regions and small in others. In such cases, a stochastic model may be inefficient in one region, and a PDE model inaccurate in another. To overcome this problem, we develop a scheme which couples a stochastic reaction-diffusion system in one part of the domain with its mean field analogue, i.e. a discretised PDE model, in the other part of the domain. The interface in between the two domains occupies exactly one lattice site and is chosen such that the mean field description is still accurate there. In this way errors due to the flux between the domains are small. Our scheme can account for multiple dynamic interfaces separating multiple stochastic and deterministic domains, and the coupling between the domains conserves the total number of particles. The method preserves stochastic features such as extinction not observable in the mean field description, and is significantly faster to simulate on a computer than the pure stochastic model.
Hybrid approaches for multiple-species stochastic reaction-diffusion models.
Spill, Fabian
2015-10-01
Reaction-diffusion models are used to describe systems in fields as diverse as physics, chemistry, ecology and biology. The fundamental quantities in such models are individual entities such as atoms and molecules, bacteria, cells or animals, which move and/or react in a stochastic manner. If the number of entities is large, accounting for each individual is inefficient, and often partial differential equation (PDE) models are used in which the stochastic behaviour of individuals is replaced by a description of the averaged, or mean behaviour of the system. In some situations the number of individuals is large in certain regions and small in others. In such cases, a stochastic model may be inefficient in one region, and a PDE model inaccurate in another. To overcome this problem, we develop a scheme which couples a stochastic reaction-diffusion system in one part of the domain with its mean field analogue, i.e. a discretised PDE model, in the other part of the domain. The interface in between the two domains occupies exactly one lattice site and is chosen such that the mean field description is still accurate there. In this way errors due to the flux between the domains are small. Our scheme can account for multiple dynamic interfaces separating multiple stochastic and deterministic domains, and the coupling between the domains conserves the total number of particles. The method preserves stochastic features such as extinction not observable in the mean field description, and is significantly faster to simulate on a computer than the pure stochastic model.
Hybrid approaches for multiple-species stochastic reaction-diffusion models.
Spill, Fabian; Guerrero, Pilar; Alarcon, Tomas; Maini, Philip K; Byrne, Helen
2015-01-01
Reaction-diffusion models are used to describe systems in fields as diverse as physics, chemistry, ecology and biology. The fundamental quantities in such models are individual entities such as atoms and molecules, bacteria, cells or animals, which move and/or react in a stochastic manner. If the number of entities is large, accounting for each individual is inefficient, and often partial differential equation (PDE) models are used in which the stochastic behaviour of individuals is replaced by a description of the averaged, or mean behaviour of the system. In some situations the number of individuals is large in certain regions and small in others. In such cases, a stochastic model may be inefficient in one region, and a PDE model inaccurate in another. To overcome this problem, we develop a scheme which couples a stochastic reaction-diffusion system in one part of the domain with its mean field analogue, i.e. a discretised PDE model, in the other part of the domain. The interface in between the two domains occupies exactly one lattice site and is chosen such that the mean field description is still accurate there. In this way errors due to the flux between the domains are small. Our scheme can account for multiple dynamic interfaces separating multiple stochastic and deterministic domains, and the coupling between the domains conserves the total number of particles. The method preserves stochastic features such as extinction not observable in the mean field description, and is significantly faster to simulate on a computer than the pure stochastic model.
A novel modelling approach for condensing boilers based on hybrid dynamical systems
Satyavada, H.; Baldi, S.
2016-01-01
Condensing boilers use waste heat from flue gases to pre-heat cold water entering the boiler. Flue gases are condensed into liquid form, thus recovering their latent heat of vaporization, which results in as much as 10%–12% increase in efficiency. Modeling these heat transfer phenomena is crucial to
A Hybrid Approach on Tourism Demand Forecasting
Nor, M. E.; Nurul, A. I. M.; Rusiman, M. S.
2018-04-01
Tourism has become one of the important industries that contributes to the country’s economy. Tourism demand forecasting gives valuable information to policy makers, decision makers and organizations related to tourism industry in order to make crucial decision and planning. However, it is challenging to produce an accurate forecast since economic data such as the tourism data is affected by social, economic and environmental factors. In this study, an equally-weighted hybrid method, which is a combination of Box-Jenkins and Artificial Neural Networks, was applied to forecast Malaysia’s tourism demand. The forecasting performance was assessed by taking the each individual method as a benchmark. The results showed that this hybrid approach outperformed the other two models
Zhang, Wei; Jiang, Ling; Han, Lei
2018-04-01
Convective storm nowcasting refers to the prediction of the convective weather initiation, development, and decay in a very short term (typically 0 2 h) .Despite marked progress over the past years, severe convective storm nowcasting still remains a challenge. With the boom of machine learning, it has been well applied in various fields, especially convolutional neural network (CNN). In this paper, we build a servere convective weather nowcasting system based on CNN and hidden Markov model (HMM) using reanalysis meteorological data. The goal of convective storm nowcasting is to predict if there is a convective storm in 30min. In this paper, we compress the VDRAS reanalysis data to low-dimensional data by CNN as the observation vector of HMM, then obtain the development trend of strong convective weather in the form of time series. It shows that, our method can extract robust features without any artificial selection of features, and can capture the development trend of strong convective storm.
Directory of Open Access Journals (Sweden)
Ueno Kazuko
2009-04-01
Full Text Available Abstract Background Model checking approaches were applied to biological pathway validations around 2003. Recently, Fisher et al. have proved the importance of model checking approach by inferring new regulation of signaling crosstalk in C. elegans and confirming the regulation with biological experiments. They took a discrete and state-based approach to explore all possible states of the system underlying vulval precursor cell (VPC fate specification for desired properties. However, since both discrete and continuous features appear to be an indispensable part of biological processes, it is more appropriate to use quantitative models to capture the dynamics of biological systems. Our key motivation of this paper is to establish a quantitative methodology to model and analyze in silico models incorporating the use of model checking approach. Results A novel method of modeling and simulating biological systems with the use of model checking approach is proposed based on hybrid functional Petri net with extension (HFPNe as the framework dealing with both discrete and continuous events. Firstly, we construct a quantitative VPC fate model with 1761 components by using HFPNe. Secondly, we employ two major biological fate determination rules – Rule I and Rule II – to VPC fate model. We then conduct 10,000 simulations for each of 48 sets of different genotypes, investigate variations of cell fate patterns under each genotype, and validate the two rules by comparing three simulation targets consisting of fate patterns obtained from in silico and in vivo experiments. In particular, an evaluation was successfully done by using our VPC fate model to investigate one target derived from biological experiments involving hybrid lineage observations. However, the understandings of hybrid lineages are hard to make on a discrete model because the hybrid lineage occurs when the system comes close to certain thresholds as discussed by Sternberg and Horvitz in
Baydaroğlu, Özlem; Koçak, Kasım; Duran, Kemal
2018-06-01
Prediction of water amount that will enter the reservoirs in the following month is of vital importance especially for semi-arid countries like Turkey. Climate projections emphasize that water scarcity will be one of the serious problems in the future. This study presents a methodology for predicting river flow for the subsequent month based on the time series of observed monthly river flow with hybrid models of support vector regression (SVR). Monthly river flow over the period 1940-2012 observed for the Kızılırmak River in Turkey has been used for training the method, which then has been applied for predictions over a period of 3 years. SVR is a specific implementation of support vector machines (SVMs), which transforms the observed input data time series into a high-dimensional feature space (input matrix) by way of a kernel function and performs a linear regression in this space. SVR requires a special input matrix. The input matrix was produced by wavelet transforms (WT), singular spectrum analysis (SSA), and a chaotic approach (CA) applied to the input time series. WT convolutes the original time series into a series of wavelets, and SSA decomposes the time series into a trend, an oscillatory and a noise component by singular value decomposition. CA uses a phase space formed by trajectories, which represent the dynamics producing the time series. These three methods for producing the input matrix for the SVR proved successful, while the SVR-WT combination resulted in the highest coefficient of determination and the lowest mean absolute error.
Hybrid simulation models of production networks
Kouikoglou, Vassilis S
2001-01-01
This book is concerned with a most important area of industrial production, that of analysis and optimization of production lines and networks using discrete-event models and simulation. The book introduces a novel approach that combines analytic models and discrete-event simulation. Unlike conventional piece-by-piece simulation, this method observes a reduced number of events between which the evolution of the system is tracked analytically. Using this hybrid approach, several models are developed for the analysis of production lines and networks. The hybrid approach combines speed and accuracy for exceptional analysis of most practical situations. A number of optimization problems, involving buffer design, workforce planning, and production control, are solved through the use of hybrid models.
Hybrid soft computing approaches research and applications
Dutta, Paramartha; Chakraborty, Susanta
2016-01-01
The book provides a platform for dealing with the flaws and failings of the soft computing paradigm through different manifestations. The different chapters highlight the necessity of the hybrid soft computing methodology in general with emphasis on several application perspectives in particular. Typical examples include (a) Study of Economic Load Dispatch by Various Hybrid Optimization Techniques, (b) An Application of Color Magnetic Resonance Brain Image Segmentation by ParaOptiMUSIG activation Function, (c) Hybrid Rough-PSO Approach in Remote Sensing Imagery Analysis, (d) A Study and Analysis of Hybrid Intelligent Techniques for Breast Cancer Detection using Breast Thermograms, and (e) Hybridization of 2D-3D Images for Human Face Recognition. The elaborate findings of the chapters enhance the exhibition of the hybrid soft computing paradigm in the field of intelligent computing.
Directory of Open Access Journals (Sweden)
Edris Yousefi Rad
2017-08-01
Full Text Available In the present research, considering the importance of desirable steam turbine design, improvement of numerical modeling of steam two-phase flows in convergent and divergent channels and the blades of transonic steam turbines has been targeted. The first novelty of this research is the innovative use of combined Convective Upstream Pressure Splitting (CUSP and scalar methods to update the flow properties at each calculation point. In other words, each property (density, temperature, pressure and velocity at each calculation point can be computed from either the CUSP or scalar method, depending on the least deviation criterion. For this reason this innovative method is named “hybrid method”. The next novelty of this research is the use of an inverse method alongside the proposed hybrid method to find the amount of the important parameter z in the CUSP method, which is herein referred to as “CUSP’s convergence parameter”. Using a relatively simple computational grid, firstly, five cases with similar conditions to those of the main cases under study in this research with available experimental data were used to obtain the value of z by the Levenberg-Marquardt inverse method. With this innovation, first, an optimum value of z = 2.667 was obtained using the inverse method and then directly used for the main cases considered in the research. Given that the aim is to investigate the two-dimensional, steady state, inviscid and adiabatic modeling of steam nucleating flows in three different nozzle and turbine blade geometries, flow simulation was performed using a relatively simple mesh and the innovative proposed hybrid method (scalar + CUSP, with the desired value of z = 2.667 . A comparison between the results of the hybrid modeling of the three main cases with experimental data showed a very good agreement, even within shock zones, including the condensation shock region, revealing the efficiency of this numerical modeling method innovation
Travelling Waves in Hybrid Chemotaxis Models
Franz, Benjamin
2013-12-18
Hybrid models of chemotaxis combine agent-based models of cells with partial differential equation models of extracellular chemical signals. In this paper, travelling wave properties of hybrid models of bacterial chemotaxis are investigated. Bacteria are modelled using an agent-based (individual-based) approach with internal dynamics describing signal transduction. In addition to the chemotactic behaviour of the bacteria, the individual-based model also includes cell proliferation and death. Cells consume the extracellular nutrient field (chemoattractant), which is modelled using a partial differential equation. Mesoscopic and macroscopic equations representing the behaviour of the hybrid model are derived and the existence of travelling wave solutions for these models is established. It is shown that cell proliferation is necessary for the existence of non-transient (stationary) travelling waves in hybrid models. Additionally, a numerical comparison between the wave speeds of the continuum models and the hybrid models shows good agreement in the case of weak chemotaxis and qualitative agreement for the strong chemotaxis case. In the case of slow cell adaptation, we detect oscillating behaviour of the wave, which cannot be explained by mean-field approximations. © 2013 Society for Mathematical Biology.
A hybrid approach for global sensitivity analysis
International Nuclear Information System (INIS)
Chakraborty, Souvik; Chowdhury, Rajib
2017-01-01
Distribution based sensitivity analysis (DSA) computes sensitivity of the input random variables with respect to the change in distribution of output response. Although DSA is widely appreciated as the best tool for sensitivity analysis, the computational issue associated with this method prohibits its use for complex structures involving costly finite element analysis. For addressing this issue, this paper presents a method that couples polynomial correlated function expansion (PCFE) with DSA. PCFE is a fully equivalent operational model which integrates the concepts of analysis of variance decomposition, extended bases and homotopy algorithm. By integrating PCFE into DSA, it is possible to considerably alleviate the computational burden. Three examples are presented to demonstrate the performance of the proposed approach for sensitivity analysis. For all the problems, proposed approach yields excellent results with significantly reduced computational effort. The results obtained, to some extent, indicate that proposed approach can be utilized for sensitivity analysis of large scale structures. - Highlights: • A hybrid approach for global sensitivity analysis is proposed. • Proposed approach integrates PCFE within distribution based sensitivity analysis. • Proposed approach is highly efficient.
A Hybrid Approach to Protect Palmprint Templates
Directory of Open Access Journals (Sweden)
Hailun Liu
2014-01-01
Full Text Available Biometric template protection is indispensable to protect personal privacy in large-scale deployment of biometric systems. Accuracy, changeability, and security are three critical requirements for template protection algorithms. However, existing template protection algorithms cannot satisfy all these requirements well. In this paper, we propose a hybrid approach that combines random projection and fuzzy vault to improve the performances at these three points. Heterogeneous space is designed for combining random projection and fuzzy vault properly in the hybrid scheme. New chaff point generation method is also proposed to enhance the security of the heterogeneous vault. Theoretical analyses of proposed hybrid approach in terms of accuracy, changeability, and security are given in this paper. Palmprint database based experimental results well support the theoretical analyses and demonstrate the effectiveness of proposed hybrid approach.
Hybrid rocket engine, theoretical model and experiment
Chelaru, Teodor-Viorel; Mingireanu, Florin
2011-06-01
The purpose of this paper is to build a theoretical model for the hybrid rocket engine/motor and to validate it using experimental results. The work approaches the main problems of the hybrid motor: the scalability, the stability/controllability of the operating parameters and the increasing of the solid fuel regression rate. At first, we focus on theoretical models for hybrid rocket motor and compare the results with already available experimental data from various research groups. A primary computation model is presented together with results from a numerical algorithm based on a computational model. We present theoretical predictions for several commercial hybrid rocket motors, having different scales and compare them with experimental measurements of those hybrid rocket motors. Next the paper focuses on tribrid rocket motor concept, which by supplementary liquid fuel injection can improve the thrust controllability. A complementary computation model is also presented to estimate regression rate increase of solid fuel doped with oxidizer. Finally, the stability of the hybrid rocket motor is investigated using Liapunov theory. Stability coefficients obtained are dependent on burning parameters while the stability and command matrixes are identified. The paper presents thoroughly the input data of the model, which ensures the reproducibility of the numerical results by independent researchers.
Detection of cardiovascular anomalies: Hybrid systems approach
Ledezma, Fernando; Laleg-Kirati, Taous-Meriem
2012-01-01
In this paper, we propose a hybrid interpretation of the cardiovascular system. Based on a model proposed by Simaan et al. (2009), we study the problem of detecting cardiovascular anomalies that can be caused by variations in some physiological
Hybrid quantum teleportation: A theoretical model
Energy Technology Data Exchange (ETDEWEB)
Takeda, Shuntaro; Mizuta, Takahiro; Fuwa, Maria; Yoshikawa, Jun-ichi; Yonezawa, Hidehiro; Furusawa, Akira [Department of Applied Physics, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan)
2014-12-04
Hybrid quantum teleportation – continuous-variable teleportation of qubits – is a promising approach for deterministically teleporting photonic qubits. We propose how to implement it with current technology. Our theoretical model shows that faithful qubit transfer can be achieved for this teleportation by choosing an optimal gain for the teleporter’s classical channel.
A hybrid mammalian cell cycle model
Directory of Open Access Journals (Sweden)
Vincent Noël
2013-08-01
Full Text Available Hybrid modeling provides an effective solution to cope with multiple time scales dynamics in systems biology. Among the applications of this method, one of the most important is the cell cycle regulation. The machinery of the cell cycle, leading to cell division and proliferation, combines slow growth, spatio-temporal re-organisation of the cell, and rapid changes of regulatory proteins concentrations induced by post-translational modifications. The advancement through the cell cycle comprises a well defined sequence of stages, separated by checkpoint transitions. The combination of continuous and discrete changes justifies hybrid modelling approaches to cell cycle dynamics. We present a piecewise-smooth version of a mammalian cell cycle model, obtained by hybridization from a smooth biochemical model. The approximate hybridization scheme, leading to simplified reaction rates and binary event location functions, is based on learning from a training set of trajectories of the smooth model. We discuss several learning strategies for the parameters of the hybrid model.
A hybrid generative-discriminative approach to speaker diarization
Noulas, A.K.; van Kasteren, T.; Kröse, B.J.A.
2008-01-01
In this paper we present a sound probabilistic approach to speaker diarization. We use a hybrid framework where a distribution over the number of speakers at each point of a multimodal stream is estimated with a discriminative model. The output of this process is used as input in a generative model
International Nuclear Information System (INIS)
Mayyas, Abdel Ra'ouf; Kumar, Sushil; Pisu, Pierluigi; Rios, Jacqueline; Jethani, Puneet
2017-01-01
Highlights: •Vehicle hardware In-the-loop VHiL testing and validation is implemented in vehicle test bed. •Torque at the roller bench test is used to control the torque at wheels to reflect vehicle electrification symptoms. •Electrified powertrain with Equivalent Consumption Minimization Strategy is tested and validated using VHiL. •Fuel economy and power train performance is measured using high precision fuel measurement device. -- Abstract: Hybridization of automotive powertrains by using more than one type of energy converter is considered as an important step towards reducing fuel consumption and air pollutants. Specifically, the development of energy efficient, highly complex, alternative drive-train systems, in which the interactions of different energy converters play an important role, requires new design methods and processes. This paper discusses the inclusion of an alternative hybrid power train into an existing vehicle platform for maximum energy efficiency. The new proposed integrated Vehicle Hardware In-the-loop (VHiL) and Model Based Design (MBD) approach is utilized to evaluate the energy efficiency of electrified powertrain. In VHiL, a complete chassis system becomes an integrated part of the vehicle test bed. A complete conventional Internal Combustion Engine (ICE) powered vehicle is tested in roller bench test for the integration of energy efficient hybrid electric power train modules in closed-loop, real-time, feedback configuration. A model that is a replica of the test vehicle is executed – in real-time- where all hybrid power train modules are included. While the VHiL platform is controlling the signal exchange between the test bed automation software and the vehicle on-board controller, the road load exerted on the driving wheels is manipulated in closed –loop real-time manner in order to reflect all hybrid driving modes including: All Electric Range (AER), Electric Power Assist (EPA) and blended Modes (BM). Upon successful
Hybrid Models of Alternative Current Filter for Hvdc
Directory of Open Access Journals (Sweden)
Ufa Ruslan A.
2017-01-01
Full Text Available Based on a hybrid simulation concept of HVDC, the developed hybrid AC filter models, providing the sufficiently full and adequate modeling of all single continuous spectrum of quasi-steady-state and transient processes in the filter, are presented. The obtained results suggest that usage of the hybrid simulation approach is carried out a methodically accurate with guaranteed instrumental error solution of differential equation systems of mathematical models of HVDC.
Compositional Modelling of Stochastic Hybrid Systems
Strubbe, S.N.
2005-01-01
In this thesis we present a modelling framework for compositional modelling of stochastic hybrid systems. Hybrid systems consist of a combination of continuous and discrete dynamics. The state space of a hybrid system is hybrid in the sense that it consists of a continuous component and a discrete
Hybrid dynamics for currency modeling
Theodosopoulos, Ted; Trifunovic, Alex
2006-01-01
We present a simple hybrid dynamical model as a tool to investigate behavioral strategies based on trend following. The multiplicative symbolic dynamics are generated using a lognormal diffusion model for the at-the-money implied volatility term structure. Thus, are model exploits information from derivative markets to obtain qualititative properties of the return distribution for the underlier. We apply our model to the JPY-USD exchange rate and the corresponding 1mo., 3mo., 6mo. and 1yr. im...
Scalar field dark matter in hybrid approach
Friedrich, Pavel; Prokopec, Tomislav
2017-01-01
We develop a hybrid formalism suitable for modeling scalar field dark matter, in which the phase-space distribution associated to the real scalar field is modeled by statistical equal-time two-point functions and gravity is treated by two stochastic gravitational fields in the longitudinal gauge (in
Kim, Peter S; Lee, Peter P
2012-01-01
A next generation approach to cancer envisions developing preventative vaccinations to stimulate a person's immune cells, particularly cytotoxic T lymphocytes (CTLs), to eliminate incipient tumors before clinical detection. The purpose of our study is to quantitatively assess whether such an approach would be feasible, and if so, how many anti-cancer CTLs would have to be primed against tumor antigen to provide significant protection. To understand the relevant dynamics, we develop a two-compartment model of tumor-immune interactions at the tumor site and the draining lymph node. We model interactions at the tumor site using an agent-based model (ABM) and dynamics in the lymph node using a system of delay differential equations (DDEs). We combine the models into a hybrid ABM-DDE system and investigate dynamics over a wide range of parameters, including cell proliferation rates, tumor antigenicity, CTL recruitment times, and initial memory CTL populations. Our results indicate that an anti-cancer memory CTL pool of 3% or less can successfully eradicate a tumor population over a wide range of model parameters, implying that a vaccination approach is feasible. In addition, sensitivity analysis of our model reveals conditions that will result in rapid tumor destruction, oscillation, and polynomial rather than exponential decline in the tumor population due to tumor geometry.
Jurenko, Robert J.; Bush, T. Jason; Ottander, John A.
2014-01-01
A method for transitioning linear time invariant (LTI) models in time varying simulation is proposed that utilizes both quadratically constrained least squares (LSQI) and Direct Shape Mapping (DSM) algorithms to determine physical displacements. This approach is applicable to the simulation of the elastic behavior of launch vehicles and other structures that utilize multiple LTI finite element model (FEM) derived mode sets that are propagated throughout time. The time invariant nature of the elastic data for discrete segments of the launch vehicle trajectory presents a problem of how to properly transition between models while preserving motion across the transition. In addition, energy may vary between flex models when using a truncated mode set. The LSQI-DSM algorithm can accommodate significant changes in energy between FEM models and carries elastic motion across FEM model transitions. Compared with previous approaches, the LSQI-DSM algorithm shows improvements ranging from a significant reduction to a complete removal of transients across FEM model transitions as well as maintaining elastic motion from the prior state.
International Nuclear Information System (INIS)
Naqvi, S.A.A.; Ashfaq, M.
2014-01-01
High yielding crop like maize is very important for countries like Pakistan, which is third cereal crop after wheat and rice. Maize accounts for 4.8 percent of the total cropped area and 4.82 percent of the value of agricultural production. It is grown all over the country but major areas are Sahiwal, Okara and Faisalabad. Chiniot is one of the distinct agroecological domains of central Punjab for the maize cultivation, that's why this district was selected for the study and the technical efficiency of hybrid maize farmers was estimated. The primary data of 120 farmers, 40 farmers from each of the three tehsils of Chiniot were collected in the year 2011. Causes of low yields for various farmers than the others, while using the same input bundle were estimated. The managerial factors causing the inefficiency of production were also measured. The average technical efficiency was estimated to be 91 percent, while it was found to be 94.8, 92.7 and 90.8 for large, medium and small farmers, respectively. Stochastic frontier production model was used to measure technical efficiency. Statistical software Frontier 4.1 was used to analyse the data to generate inferences because the estimates of efficiency were produced as a direct output from package. It was concluded that the efficiency can be enhanced by covering the inefficiency from the environmental variables, farmers personal characteristics and farming conditions. (author)
Weather forecasting based on hybrid neural model
Saba, Tanzila; Rehman, Amjad; AlGhamdi, Jarallah S.
2017-11-01
Making deductions and expectations about climate has been a challenge all through mankind's history. Challenges with exact meteorological directions assist to foresee and handle problems well in time. Different strategies have been investigated using various machine learning techniques in reported forecasting systems. Current research investigates climate as a major challenge for machine information mining and deduction. Accordingly, this paper presents a hybrid neural model (MLP and RBF) to enhance the accuracy of weather forecasting. Proposed hybrid model ensure precise forecasting due to the specialty of climate anticipating frameworks. The study concentrates on the data representing Saudi Arabia weather forecasting. The main input features employed to train individual and hybrid neural networks that include average dew point, minimum temperature, maximum temperature, mean temperature, average relative moistness, precipitation, normal wind speed, high wind speed and average cloudiness. The output layer composed of two neurons to represent rainy and dry weathers. Moreover, trial and error approach is adopted to select an appropriate number of inputs to the hybrid neural network. Correlation coefficient, RMSE and scatter index are the standard yard sticks adopted for forecast accuracy measurement. On individual standing MLP forecasting results are better than RBF, however, the proposed simplified hybrid neural model comes out with better forecasting accuracy as compared to both individual networks. Additionally, results are better than reported in the state of art, using a simple neural structure that reduces training time and complexity.
Hybrid2 - The hybrid power system simulation model
Energy Technology Data Exchange (ETDEWEB)
Baring-Gould, E.I.; Green, H.J.; Dijk, V.A.P. van [National Renewable Energy Lab., Golden, CO (United States); Manwell, J.F. [Univ. of Massachusetts, Amherst, MA (United States)
1996-12-31
There is a large-scale need and desire for energy in remote communities, especially in the developing world; however the lack of a user friendly, flexible performance prediction model for hybrid power systems incorporating renewables hindered the analysis of hybrids as options to conventional solutions. A user friendly model was needed with the versatility to simulate the many system locations, widely varying hardware configurations, and differing control options for potential hybrid power systems. To meet these ends, researchers from the National Renewable Energy Laboratory (NREL) and the University of Massachusetts (UMass) developed the Hybrid2 software. This paper provides an overview of the capabilities, features, and functionality of the Hybrid2 code, discusses its validation and future plans. Model availability and technical support provided to Hybrid2 users are also discussed. 12 refs., 3 figs., 4 tabs.
Body Fat Percentage Prediction Using Intelligent Hybrid Approaches
Directory of Open Access Journals (Sweden)
Yuehjen E. Shao
2014-01-01
Full Text Available Excess of body fat often leads to obesity. Obesity is typically associated with serious medical diseases, such as cancer, heart disease, and diabetes. Accordingly, knowing the body fat is an extremely important issue since it affects everyone’s health. Although there are several ways to measure the body fat percentage (BFP, the accurate methods are often associated with hassle and/or high costs. Traditional single-stage approaches may use certain body measurements or explanatory variables to predict the BFP. Diverging from existing approaches, this study proposes new intelligent hybrid approaches to obtain fewer explanatory variables, and the proposed forecasting models are able to effectively predict the BFP. The proposed hybrid models consist of multiple regression (MR, artificial neural network (ANN, multivariate adaptive regression splines (MARS, and support vector regression (SVR techniques. The first stage of the modeling includes the use of MR and MARS to obtain fewer but more important sets of explanatory variables. In the second stage, the remaining important variables are served as inputs for the other forecasting methods. A real dataset was used to demonstrate the development of the proposed hybrid models. The prediction results revealed that the proposed hybrid schemes outperformed the typical, single-stage forecasting models.
A HYBRID APPROACH FOR RURAL FEEDER DESIGN
Directory of Open Access Journals (Sweden)
DAMANJEET KAUR
2012-08-01
Full Text Available In this paper, a population based approach for conductor size selection in rural radial distribution system is presented. The proposed hybrid approach implies a particle swarm optimization (PSO approach in combination with mutant property of differential evolution (DE for conductor size selection in radial distribution system. The conductor size for each feeder segment is selected such that the total cost of capital investment and capitalized cost of energy losses is minimized while constraints of voltage at each node and current carrying capacity of conductor is within the limits. The applicability and effectiveness of the proposed method is demonstrated with the help of 32-node test system.
A Hybrid Approach to the Optimization of Multiechelon Systems
Directory of Open Access Journals (Sweden)
Paweł Sitek
2015-01-01
Full Text Available In freight transportation there are two main distribution strategies: direct shipping and multiechelon distribution. In the direct shipping, vehicles, starting from a depot, bring their freight directly to the destination, while in the multiechelon systems, freight is delivered from the depot to the customers through an intermediate points. Multiechelon systems are particularly useful for logistic issues in a competitive environment. The paper presents a concept and application of a hybrid approach to modeling and optimization of the Multi-Echelon Capacitated Vehicle Routing Problem. Two ways of mathematical programming (MP and constraint logic programming (CLP are integrated in one environment. The strengths of MP and CLP in which constraints are treated in a different way and different methods are implemented and combined to use the strengths of both. The proposed approach is particularly important for the discrete decision models with an objective function and many discrete decision variables added up in multiple constraints. An implementation of hybrid approach in the ECLiPSe system using Eplex library is presented. The Two-Echelon Capacitated Vehicle Routing Problem (2E-CVRP and its variants are shown as an illustrative example of the hybrid approach. The presented hybrid approach will be compared with classical mathematical programming on the same benchmark data sets.
Directory of Open Access Journals (Sweden)
G. Sakthivel
2015-03-01
Full Text Available The ever increasing demand and depletion of fossil fuels had an adverse impact on environmental pollution. The selection of appropriate source of biodiesel and proper blending of biodiesel plays a major role in alternate energy production. This paper describes an application of hybrid Multi Criteria Decision Making (MCDM technique for the selection of optimum fuel blend in fish oil biodiesel for the IC engine. The proposed model, Analytical Network Process (ANP is integrated with Technique for Order Performance by Similarity to Ideal Solution (TOPSIS and VlseKriterijumska Optimizacija I Kompromisno Resenje (in Serbian (VIKOR to evaluate the optimum blend. Evaluation of suitable blend is based on the exploratory analysis of the performance, emission and combustion parameters of the single cylinder, constant speed direct injection diesel engine at different load conditions. Here the ANP is used to determine the relative weights of the criteria, whereas TOPSIS and VIKOR are used for obtaining the final ranking of alternative blends. An efficient pair-wise comparison process and ranking of alternatives can be achieved for optimum blend selection through the integration of ANP with TOPSIS and VIKOR. The obtained preference order of the blends for ANP-VIKOR and ANP-TOPSIS are B20 > Diesel > B40 > B60 > B80 > B100 and B20 > B40 > Diesel > B60 > B80 > B100 respectively. Hence by comparing both these methods, B20 is selected as the best blend to operate the internal combustion engines. This paper highlights a new insight into MCDM techniques to evaluate the best fuel blend for the decision makers such as engine manufactures and R& D engineers to meet the fuel economy and emission norms to empower the green revolution.
Balin, Riccardo; Spalart, Philippe R.; Jansen, Kenneth E.
2017-11-01
Hybrid RANS/LES modeling approaches used in the context of wall-modeled LES (WMLES) of channel flows and boundary layers often suffer from a mismatch in the RANS and LES log-layer intercepts of the mean velocity profile. In the vicinity of the interface between the RANS and LES regions, the mean velocity gradient is too steep causing a departure from the log-law, an over-prediction of the velocity in the outer layer and an under-prediction of the skin-friction. This steep gradient is attributed to inadequate modeled Reynolds stresses in the upper portion of the RANS layer and at the interface. Channel flow computations were carried out with the IDDES approach of Shur et al. in WMLES mode based on the Spalart-Allmaras RANS model. This talk investigates the robustness of this approach for unstructured grids and explores changes required for grids where insufficient elevation of the Reynolds stresses is observed. Awards of computer time were provided by Innovative and Novel Computational Impact on Theory and Experiment (INCITE) and Early Science programs. Resources of the Argonne Leadership Computing Facility, a DOE Office of Science User Facility, were used.
Directory of Open Access Journals (Sweden)
Ozge Cagcag Yolcu
2013-01-01
Full Text Available Particularly in recent years, artificial intelligence optimization techniques have been used to make fuzzy time series approaches more systematic and improve forecasting performance. Besides, some fuzzy clustering methods and artificial neural networks with different structures are used in the fuzzification of observations and determination of fuzzy relationships, respectively. In approaches considering the membership values, the membership values are determined subjectively or fuzzy outputs of the system are obtained by considering that there is a relation between membership values in identification of relation. This necessitates defuzzification step and increases the model error. In this study, membership values were obtained more systematically by using Gustafson-Kessel fuzzy clustering technique. The use of artificial neural network with single multiplicative neuron model in identification of fuzzy relation eliminated the architecture selection problem as well as the necessity for defuzzification step by constituting target values from real observations of time series. The training of artificial neural network with single multiplicative neuron model which is used for identification of fuzzy relation step is carried out with particle swarm optimization. The proposed method is implemented using various time series and the results are compared with those of previous studies to demonstrate the performance of the proposed method.
Model Reduction of Hybrid Systems
DEFF Research Database (Denmark)
Shaker, Hamid Reza
gramians. Generalized gramians are the solutions to the observability and controllability Lyapunov inequalities. In the first framework the projection matrices are found based on the common generalized gramians. This framework preserves the stability of the original switched system for all switching...... is guaranteed to be preserved for arbitrary switching signal. To compute the common generalized gramians linear matrix inequalities (LMI’s) need to be solved. These LMI’s are not always feasible. In order to solve the problem of conservatism, the second framework is presented. In this method the projection......High-Technological solutions of today are characterized by complex dynamical models. A lot of these models have inherent hybrid/switching structure. Hybrid/switched systems are powerful models for distributed embedded systems design where discrete controls are applied to continuous processes...
Mathematical Modeling of Hybrid Electrical Engineering Systems
Directory of Open Access Journals (Sweden)
A. A. Lobaty
2016-01-01
Full Text Available A large class of systems that have found application in various industries and households, electrified transportation facilities and energy sector has been classified as electrical engineering systems. Their characteristic feature is a combination of continuous and discontinuous modes of operation, which is reflected in the appearance of a relatively new term “hybrid systems”. A wide class of hybrid systems is pulsed DC converters operating in a pulse width modulation, which are non-linear systems with variable structure. Using various methods for linearization it is possible to obtain linear mathematical models that rather accurately simulate behavior of such systems. However, the presence in the mathematical models of exponential nonlinearities creates considerable difficulties in the implementation of digital hardware. The solution can be found while using an approximation of exponential functions by polynomials of the first order, that, however, violates the rigor accordance of the analytical model with characteristics of a real object. There are two practical approaches to synthesize algorithms for control of hybrid systems. The first approach is based on the representation of the whole system by a discrete model which is described by difference equations that makes it possible to synthesize discrete algorithms. The second approach is based on description of the system by differential equations. The equations describe synthesis of continuous algorithms and their further implementation in a digital computer included in the control loop system. The paper considers modeling of a hybrid electrical engineering system using differential equations. Neglecting the pulse duration, it has been proposed to describe behavior of vector components in phase coordinates of the hybrid system by stochastic differential equations containing generally non-linear differentiable random functions. A stochastic vector-matrix equation describing dynamics of the
Hybrid Model of Content Extraction
DEFF Research Database (Denmark)
Qureshi, Pir Abdul Rasool; Memon, Nasrullah
2012-01-01
We present a hybrid model for content extraction from HTML documents. The model operates on Document Object Model (DOM) tree of the corresponding HTML document. It evaluates each tree node and associated statistical features like link density and text distribution across the node to predict...... significance of the node towards overall content provided by the document. Once significance of the nodes is determined, the formatting characteristics like fonts, styles and the position of the nodes are evaluated to identify the nodes with similar formatting as compared to the significant nodes. The proposed...
Energy Technology Data Exchange (ETDEWEB)
Bellivier, A.
2004-05-15
For 3D modelling of thermo-aeraulics in building using field codes, it is necessary to reduce the computing time in order to model increasingly larger volumes. The solution suggested in this study is to couple two modelling: a zonal approach and a CFD approach. The first part of the work that was carried out is the setting of a simplified CFD modelling. We propose rules for use of coarse grids, a constant effective viscosity law and adapted coefficients for heat exchange in the framework of building thermo-aeraulics. The second part of this work concerns the creation of fluid Macro-Elements and their coupling with a calculation of CFD finite volume type. Depending on the boundary conditions of the problem, a local description of the driving flow is proposed via the installation and use of semi-empirical evolution laws. The Macro-Elements is then inserted in CFD computation: the values of velocity calculated by the evolution laws are imposed on the CFD cells corresponding to the Macro-Element. We use these two approaches on five cases representative of thermo-aeraulics in buildings. The results are compared with experimental data and with traditional RANS simulations. We highlight the significant gain of time that our approach allows while preserving a good quality of numerical results. (author)
International Nuclear Information System (INIS)
Rusinowski, Henryk; Stanek, Wojciech
2010-01-01
In the case of big energy boilers energy efficiency is usually determined with the application of the indirect method. Flue gas losses and unburnt combustible losses have a significant influence on the boiler's efficiency. To estimate these losses the knowledge of the operating parameters influence on the flue gases temperature and the content of combustible particles in the solid combustion products is necessary. A hybrid model of a boiler developed with the application of both analytical modelling and artificial intelligence is described. The analytical part of the model includes the balance equations. The empirical models express the dependence of the flue gas temperature and the mass fraction of the unburnt combustibles in solid combustion products on the operating parameters of a boiler. The empirical models have been worked out by means of neural and regression modelling.
DEFF Research Database (Denmark)
Kløjgaard, Mirja Elisabeth; Hess, S.
2014-01-01
A growing number of studies across different fields are making use of a new class of choice models, labelled variably as hybrid model structures or integrated choice and latent variable models, and incorporating the role of attitudes in decision making. To date, this technique has not been used...... in spring/summer 2012. We show how the hybrid model structure is able to make a link between attitudinal questions and treatment choices, and also explains variation of these attitudes across key socio-demographic groups. However, we also show how, in this case, only a small share of the overall...
Hybrid methodological approach to context-dependent speech recognition
Directory of Open Access Journals (Sweden)
Dragiša Mišković
2017-01-01
Full Text Available Although the importance of contextual information in speech recognition has been acknowledged for a long time now, it has remained clearly underutilized even in state-of-the-art speech recognition systems. This article introduces a novel, methodologically hybrid approach to the research question of context-dependent speech recognition in human–machine interaction. To the extent that it is hybrid, the approach integrates aspects of both statistical and representational paradigms. We extend the standard statistical pattern-matching approach with a cognitively inspired and analytically tractable model with explanatory power. This methodological extension allows for accounting for contextual information which is otherwise unavailable in speech recognition systems, and using it to improve post-processing of recognition hypotheses. The article introduces an algorithm for evaluation of recognition hypotheses, illustrates it for concrete interaction domains, and discusses its implementation within two prototype conversational agents.
Mota, J.P.B.; Esteves, I.A.A.C.; Rostam-Abadi, M.
2004-01-01
A computational fluid dynamics (CFD) software package has been coupled with the dynamic process simulator of an adsorption storage tank for methane fuelled vehicles. The two solvers run as independent processes and handle non-overlapping portions of the computational domain. The codes exchange data on the boundary interface of the two domains to ensure continuity of the solution and of its gradient. A software interface was developed to dynamically suspend and activate each process as necessary, and be responsible for data exchange and process synchronization. This hybrid computational tool has been successfully employed to accurately simulate the discharge of a new tank design and evaluate its performance. The case study presented here shows that CFD and process simulation are highly complementary computational tools, and that there are clear benefits to be gained from a close integration of the two. ?? 2004 Elsevier Ltd. All rights reserved.
Deriving simulators for hybrid Chi models
Beek, van D.A.; Man, K.L.; Reniers, M.A.; Rooda, J.E.; Schiffelers, R.R.H.
2006-01-01
The hybrid Chi language is formalism for modeling, simulation and verification of hybrid systems. The formal semantics of hybrid Chi allows the definition of provably correct implementations for simulation, verification and realtime control. This paper discusses the principles of deriving an
Hybrid discrete choice models: Gained insights versus increasing effort
International Nuclear Information System (INIS)
Mariel, Petr; Meyerhoff, Jürgen
2016-01-01
Hybrid choice models expand the standard models in discrete choice modelling by incorporating psychological factors as latent variables. They could therefore provide further insights into choice processes and underlying taste heterogeneity but the costs of estimating these models often significantly increase. This paper aims at comparing the results from a hybrid choice model and a classical random parameter logit. Point of departure for this analysis is whether researchers and practitioners should add hybrid choice models to their suite of models routinely estimated. Our comparison reveals, in line with the few prior studies, that hybrid models gain in efficiency by the inclusion of additional information. The use of one of the two proposed approaches, however, depends on the objective of the analysis. If disentangling preference heterogeneity is most important, hybrid model seems to be preferable. If the focus is on predictive power, a standard random parameter logit model might be the better choice. Finally, we give recommendations for an adequate use of hybrid choice models based on known principles of elementary scientific inference. - Highlights: • The paper compares performance of a Hybrid Choice Model (HCM) and a classical Random Parameter Logit (RPL) model. • The HCM indeed provides insights regarding preference heterogeneity not gained from the RPL. • The RPL has similar predictive power as the HCM in our data. • The costs of estimating HCM seem to be justified when learning more on taste heterogeneity is a major study objective.
Hybrid discrete choice models: Gained insights versus increasing effort
Energy Technology Data Exchange (ETDEWEB)
Mariel, Petr, E-mail: petr.mariel@ehu.es [UPV/EHU, Economía Aplicada III, Avda. Lehendakari Aguire, 83, 48015 Bilbao (Spain); Meyerhoff, Jürgen [Institute for Landscape Architecture and Environmental Planning, Technical University of Berlin, D-10623 Berlin, Germany and The Kiel Institute for the World Economy, Duesternbrooker Weg 120, 24105 Kiel (Germany)
2016-10-15
Hybrid choice models expand the standard models in discrete choice modelling by incorporating psychological factors as latent variables. They could therefore provide further insights into choice processes and underlying taste heterogeneity but the costs of estimating these models often significantly increase. This paper aims at comparing the results from a hybrid choice model and a classical random parameter logit. Point of departure for this analysis is whether researchers and practitioners should add hybrid choice models to their suite of models routinely estimated. Our comparison reveals, in line with the few prior studies, that hybrid models gain in efficiency by the inclusion of additional information. The use of one of the two proposed approaches, however, depends on the objective of the analysis. If disentangling preference heterogeneity is most important, hybrid model seems to be preferable. If the focus is on predictive power, a standard random parameter logit model might be the better choice. Finally, we give recommendations for an adequate use of hybrid choice models based on known principles of elementary scientific inference. - Highlights: • The paper compares performance of a Hybrid Choice Model (HCM) and a classical Random Parameter Logit (RPL) model. • The HCM indeed provides insights regarding preference heterogeneity not gained from the RPL. • The RPL has similar predictive power as the HCM in our data. • The costs of estimating HCM seem to be justified when learning more on taste heterogeneity is a major study objective.
A Hybrid Approach for Supporting Adaptivity in E-Learning Environments
Al-Omari, Mohammad; Carter, Jenny; Chiclana, Francisco
2016-01-01
Purpose: The purpose of this paper is to identify a framework to support adaptivity in e-learning environments. The framework reflects a novel hybrid approach incorporating the concept of the event-condition-action (ECA) model and intelligent agents. Moreover, a system prototype is developed reflecting the hybrid approach to supporting adaptivity…
International Nuclear Information System (INIS)
Zohdi-Fasaei, Hossein; Atashi, Hossein; Farshchi Tabrizi, Farshad; Mirzaei, Ali Akbar
2017-01-01
Operating conditions considerably affect the energy required for Fischer-Tropsch synthesis, depending on the catalyst composition and reactor type (catalyst system). This paper reports the use of cobalt-manganese-cerium supported on silica as a novel CO hydrogenation catalyst, to produce hydrocarbons in a fixed bed micro-reactor. Response surface methodology (RSM) was applied to study the effects of temperature, pressure, feed ratio and their interactions on CO consumption rate, and the selectivity of light olefins (light olefinity), methane and C_5_+ hydrocarbons. Quadratic mathematical models adequately described the responses in this catalyst system. According to Langmuir Hinshelwood Hougen Watson (LHHW) approach, kinetic mechanism of the reaction was found to be an associative adsorption of H_2 and CO. Statistical analysis demonstrated that pressure and feed ratio were the most important factors for the production of C_5_+ and light alkenes, respectively. Model graphs indicated that minimum methane selectivity was achieved at 523.15 k and 2 bar. The maximum amounts of light olefins and heavier hydrocarbons were obtained at H_2/CO = 1 and H_2/CO = 2, respectively. Characterization of precursor and calcined catalyst (before and after the reaction) was carried out using SEM and BET techniques. - Highlights: • The performance of a new catalytic system was studied using RSM as a research plan. • Interactions between significant factors were investigated using mathematical models. • Based on LHHW approach, kinetic mechanism was molecular adsorptions of H_2 and CO. • RSM rate expression was in consistent with the LHHW kinetic model. • Hybrid RSM/LHHW is promising for optimization, mechanism and selectivity studies.
Directory of Open Access Journals (Sweden)
Hadi Kalani
2016-04-01
Full Text Available Introduction we aimed to introduce a 6-universal-prismatic-spherical (UPS parallel mechanism for the human jaw motion and theoretically evaluate its kinematic problem. We proposed a strategy to provide a fast and accurate solution to the kinematic problem. The proposed strategy could accelerate the process of solution-finding for the direct kinematic problem by reducing the number of required iterations in order to reach the desired accuracy level. Materials and Methods To overcome the direct kinematic problem, an artificial neural network and third-order Newton-Raphson algorithm were combined to provide an improved hybrid method. In this method, approximate solution was presented for the direct kinematic problem by the neural network. This solution could be considered as the initial guess for the third-order Newton-Raphson algorithm to provide an answer with the desired level of accuracy. Results The results showed that the proposed combination could help find a approximate solution and reduce the execution time for the direct kinematic problem, The results showed that muscular actuations showed periodic behaviors, and the maximum length variation of temporalis muscle was larger than that of masseter and pterygoid muscles. By reducing the processing time for solving the direct kinematic problem, more time could be devoted to control calculations.. In this method, for relatively high levels of accuracy, the number of iterations and computational time decreased by 90% and 34%, respectively, compared to the conventional Newton method. Conclusion The present analysis could allow researchers to characterize and study the mastication process by specifying different chewing patterns (e.g., muscle displacements.
Zafar, Mohd; Van Vinh, N; Behera, Shishir Kumar; Park, Hung-Suck
2017-04-01
Organic matters (OMs) and their oxidization products often influence the fate and transport of heavy metals in the subsurface aqueous systems through interaction with the mineral surfaces. This study investigates the ethanol (EtOH)-mediated As(III) adsorption onto Zn-loaded pinecone (PC) biochar through batch experiments conducted under Box-Behnken design. The effect of EtOH on As(III) adsorption mechanism was quantitatively elucidated by fitting the experimental data using artificial neural network and quadratic modeling approaches. The quadratic model could describe the limiting nature of EtOH and pH on As(III) adsorption, whereas neural network revealed the stronger influence of EtOH (64.5%) followed by pH (20.75%) and As(III) concentration (14.75%) on the adsorption phenomena. Besides, the interaction among process variables indicated that EtOH enhances As(III) adsorption over a pH range of 2 to 7, possibly due to facilitation of ligand-metal(Zn) binding complexation mechanism. Eventually, hybrid response surface model-genetic algorithm (RSM-GA) approach predicted a better optimal solution than RSM, i.e., the adsorptive removal of As(III) (10.47μg/g) is facilitated at 30.22mg C/L of EtOH with initial As(III) concentration of 196.77μg/L at pH5.8. The implication of this investigation might help in understanding the application of biochar for removal of various As(III) species in the presence of OM. Copyright © 2016. Published by Elsevier B.V.
International Nuclear Information System (INIS)
Nojavan, Sayyad; Majidi, Majid; Najafi-Ghalelou, Afshin; Ghahramani, Mehrdad; Zare, Kazem
2017-01-01
Highlights: • Cost-emission performance of PV/battery/fuel cell hybrid energy system is studied. • Multi-objective optimization model for cost-emission performance is proposed. • ε-constraint method is proposed to produce Pareto solutions of multi-objective model. • Fuzzy satisfying approach selected the best optimal solution from Pareto solutions. • Demand response program is proposed to reduce both cost and emission. - Abstract: Optimal operation of hybrid energy systems is a big challenge in power systems. Nowadays, in addition to the optimum performance of energy systems, their pollution issue has been a hot topic between researchers. In this paper, a multi-objective model is proposed for economic and environmental operation of a battery/fuel cell/photovoltaic (PV) hybrid energy system in the presence of demand response program (DRP). In the proposed paper, the first objective function is minimization of total cost of hybrid energy system. The second objective function is minimization of total CO_2 emission which is in conflict with the first objective function. So, a multi-objective optimization model is presented to model the hybrid system’s optimal and environmental performance problem with considering DRP. The proposed multi-objective model is solved by ε-constraint method and then fuzzy satisfying technique is employed to select the best possible solution. Also, positive effects of DRP on the economic and environmental performance of hybrid system are analyzed. A mixed-integer linear program is used to simulate the proposed model and the obtained results are compared with weighted sum approach to show the effectiveness of proposed method.
Energy Technology Data Exchange (ETDEWEB)
Pitarka, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
2016-11-22
We analyzed the performance of the Irikura and Miyake (2011) (IM2011) asperity- based kinematic rupture model generator, as implemented in the hybrid broadband ground-motion simulation methodology of Graves and Pitarka (2010), for simulating ground motion from crustal earthquakes of intermediate size. The primary objective of our study is to investigate the transportability of IM2011 into the framework used by the Southern California Earthquake Center broadband simulation platform. In our analysis, we performed broadband (0 - 20Hz) ground motion simulations for a suite of M6.7 crustal scenario earthquakes in a hard rock seismic velocity structure using rupture models produced with both IM2011 and the rupture generation method of Graves and Pitarka (2016) (GP2016). The level of simulated ground motions for the two approaches compare favorably with median estimates obtained from the 2014 Next Generation Attenuation-West2 Project (NGA-West2) ground-motion prediction equations (GMPEs) over the frequency band 0.1–10 Hz and for distances out to 22 km from the fault. We also found that, compared to GP2016, IM2011 generates ground motion with larger variability, particularly at near-fault distances (<12km) and at long periods (>1s). For this specific scenario, the largest systematic difference in ground motion level for the two approaches occurs in the period band 1 – 3 sec where the IM2011 motions are about 20 – 30% lower than those for GP2016. We found that increasing the rupture speed by 20% on the asperities in IM2011 produced ground motions in the 1 – 3 second bandwidth that are in much closer agreement with the GMPE medians and similar to those obtained with GP2016. The potential implications of this modification for other rupture mechanisms and magnitudes are not yet fully understood, and this topic is the subject of ongoing study.
Stock selection using a hybrid MCDM approach
Directory of Open Access Journals (Sweden)
Tea Poklepović
2014-12-01
Full Text Available The problem of selecting the right stocks to invest in is of immense interest for investors on both emerging and developed capital markets. Moreover, an investor should take into account all available data regarding stocks on the particular market. This includes fundamental and stock market indicators. The decision making process includes several stocks to invest in and more than one criterion. Therefore, the task of selecting the stocks to invest in can be viewed as a multiple criteria decision making (MCDM problem. Using several MCDM methods often leads to divergent rankings. The goal of this paper is to resolve these possible divergent results obtained from different MCDM methods using a hybrid MCDM approach based on Spearman’s rank correlation coefficient. Five MCDM methods are selected: COPRAS, linear assignment, PROMETHEE, SAW and TOPSIS. The weights for all criteria are obtained by using the AHP method. Data for this study includes information on stock returns and traded volumes from March 2012 to March 2014 for 19 stocks on the Croatian capital market. It also includes the most important fundamental and stock market indicators for selected stocks. Rankings using five selected MCDM methods in the stock selection problem yield divergent results. However, after applying the proposed approach the final hybrid rankings are obtained. The results show that the worse stocks to invest in happen to be the same when the industry is taken into consideration or when not. However, when the industry is taken into account, the best stocks to invest in are slightly different, because some industries are more profitable than the others.
Varmazyar, Mohsen; Dehghanbaghi, Maryam; Afkhami, Mehdi
2016-10-01
Balanced Scorecard (BSC) is a strategic evaluation tool using both financial and non-financial indicators to determine the business performance of organizations or companies. In this paper, a new integrated approach based on the Balanced Scorecard (BSC) and multi-criteria decision making (MCDM) methods are proposed to evaluate the performance of research centers of research and technology organization (RTO) in Iran. Decision-Making Trial and Evaluation Laboratory (DEMATEL) are employed to reflect the interdependencies among BSC perspectives. Then, Analytic Network Process (ANP) is utilized to weight the indices influencing the considered problem. In the next step, we apply four MCDM methods including Additive Ratio Assessment (ARAS), Complex Proportional Assessment (COPRAS), Multi-Objective Optimization by Ratio Analysis (MOORA), and Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) for ranking of alternatives. Finally, the utility interval technique is applied to combine the ranking results of MCDM methods. Weighted utility intervals are computed by constructing a correlation matrix between the ranking methods. A real case is presented to show the efficacy of the proposed approach. Copyright © 2016 Elsevier Ltd. All rights reserved.
Zhang, Honghai; Abiose, Ademola K.; Campbell, Dwayne N.; Sonka, Milan; Martins, James B.; Wahle, Andreas
2010-03-01
Quantitative analysis of the left ventricular shape and motion patterns associated with left ventricular mechanical dyssynchrony (LVMD) is essential for diagnosis and treatment planning in congestive heart failure. Real-time 3D echocardiography (RT3DE) used for LVMD analysis is frequently limited by heavy speckle noise or partially incomplete data, thus a segmentation method utilizing learned global shape knowledge is beneficial. In this study, the endocardial surface of the left ventricle (LV) is segmented using a hybrid approach combining active shape model (ASM) with optimal graph search. The latter is used to achieve landmark refinement in the ASM framework. Optimal graph search translates the 3D segmentation into the detection of a minimum-cost closed set in a graph and can produce a globally optimal result. Various information-gradient, intensity distributions, and regional-property terms-are used to define the costs for the graph search. The developed method was tested on 44 RT3DE datasets acquired from 26 LVMD patients. The segmentation accuracy was assessed by surface positioning error and volume overlap measured for the whole LV as well as 16 standard LV regions. The segmentation produced very good results that were not achievable using ASM or graph search alone.
Oettl, Dietmar; Uhrner, Ulrich
2011-02-01
Based on two recent publications using Lagrangian dispersion models to simulate NO-NO 2-O 3 chemistry for industrial plumes, a similar modified approach was implemented using GRAL-C ( Graz Lagrangian Model with Chemistry) and tested on two urban applications. In the hybrid dispersion model GRAL-C, the transport and turbulent diffusion of primary species such as NO and NO 2 are treated in a Lagrangian framework while those of O 3 are treated in an Eulerian framework. GRAL-C was employed on a one year street canyon simulation in Berlin and on a four-day simulation during a winter season in Graz, the second biggest city in Austria. In contrast to Middleton D.R., Jones A.R., Redington A.L., Thomson D.J., Sokhi R.S., Luhana L., Fisher B.E.A. (2008. Lagrangian modelling of plume chemistry for secondary pollutants in large industrial plumes. Atmospheric Environment 42, 415-427) and Alessandrini S., Ferrero E. (2008. A Lagrangian model with chemical reactions: application in real atmosphere. Proceedings of the 12th Int. Conf. on Harmonization within atmospheric dispersion modelling for regulatory purposes. Croatian Meteorological Journal, 43, ISSN: 1330-0083, 235-239) the treatment of ozone was modified in order to facilitate urban scale simulations encompassing dense road networks. For the street canyon application, modelled daily mean NO x/NO 2 concentrations deviated by +0.4%/-15% from observations, while the correlations for NO x and NO 2 were 0.67 and 0.76 respectively. NO 2 concentrations were underestimated in summer, but were captured well for other seasons. In Graz a fair agreement for NO x and NO 2 was obtained between observed and modelled values for NO x and NO 2. Simulated diurnal cycles of NO 2 and O 3 matched observations reasonably well, although O 3 was underestimated during the day. A possible explanation here might lie in the non-consideration of volatile organic compounds (VOCs) chemistry.
Bond graph model-based fault diagnosis of hybrid systems
Borutzky, Wolfgang
2015-01-01
This book presents a bond graph model-based approach to fault diagnosis in mechatronic systems appropriately represented by a hybrid model. The book begins by giving a survey of the fundamentals of fault diagnosis and failure prognosis, then recalls state-of-art developments referring to latest publications, and goes on to discuss various bond graph representations of hybrid system models, equations formulation for switched systems, and simulation of their dynamic behavior. The structured text: • focuses on bond graph model-based fault detection and isolation in hybrid systems; • addresses isolation of multiple parametric faults in hybrid systems; • considers system mode identification; • provides a number of elaborated case studies that consider fault scenarios for switched power electronic systems commonly used in a variety of applications; and • indicates that bond graph modelling can also be used for failure prognosis. In order to facilitate the understanding of fault diagnosis and the presented...
Multilayer Approach for Advanced Hybrid Lithium Battery
Ming, Jun
2016-06-06
Conventional intercalated rechargeable batteries have shown their capacity limit, and the development of an alternative battery system with higher capacity is strongly needed for sustainable electrical vehicles and hand-held devices. Herein, we introduce a feasible and scalable multilayer approach to fabricate a promising hybrid lithium battery with superior capacity and multivoltage plateaus. A sulfur-rich electrode (90 wt % S) is covered by a dual layer of graphite/Li4Ti5O12, where the active materials S and Li4Ti5O12 can both take part in redox reactions and thus deliver a high capacity of 572 mAh gcathode -1 (vs the total mass of electrode) or 1866 mAh gs -1 (vs the mass of sulfur) at 0.1C (with the definition of 1C = 1675 mA gs -1). The battery shows unique voltage platforms at 2.35 and 2.1 V, contributed from S, and 1.55 V from Li4Ti5O12. A high rate capability of 566 mAh gcathode -1 at 0.25C and 376 mAh gcathode -1 at 1C with durable cycle ability over 100 cycles can be achieved. Operando Raman and electron microscope analysis confirm that the graphite/Li4Ti5O12 layer slows the dissolution/migration of polysulfides, thereby giving rise to a higher sulfur utilization and a slower capacity decay. This advanced hybrid battery with a multilayer concept for marrying different voltage plateaus from various electrode materials opens a way of providing tunable capacity and multiple voltage platforms for energy device applications. © 2016 American Chemical Society.
Hybrid Modelling of Individual Movement and Collective Behaviour
Franz, Benjamin
2013-01-01
Mathematical models of dispersal in biological systems are often written in terms of partial differential equations (PDEs) which describe the time evolution of population-level variables (concentrations, densities). A more detailed modelling approach is given by individual-based (agent-based) models which describe the behaviour of each organism. In recent years, an intermediate modelling methodology - hybrid modelling - has been applied to a number of biological systems. These hybrid models couple an individual-based description of cells/animals with a PDE-model of their environment. In this chapter, we overview hybrid models in the literature with the focus on the mathematical challenges of this modelling approach. The detailed analysis is presented using the example of chemotaxis, where cells move according to extracellular chemicals that can be altered by the cells themselves. In this case, individual-based models of cells are coupled with PDEs for extracellular chemical signals. Travelling waves in these hybrid models are investigated. In particular, we show that in contrary to the PDEs, hybrid chemotaxis models only develop a transient travelling wave. © 2013 Springer-Verlag Berlin Heidelberg.
Tien Bui, Dieu; Pradhan, Biswajeet; Nampak, Haleh; Bui, Quang-Thanh; Tran, Quynh-An; Nguyen, Quoc-Phi
2016-09-01
This paper proposes a new artificial intelligence approach based on neural fuzzy inference system and metaheuristic optimization for flood susceptibility modeling, namely MONF. In the new approach, the neural fuzzy inference system was used to create an initial flood susceptibility model and then the model was optimized using two metaheuristic algorithms, Evolutionary Genetic and Particle Swarm Optimization. A high-frequency tropical cyclone area of the Tuong Duong district in Central Vietnam was used as a case study. First, a GIS database for the study area was constructed. The database that includes 76 historical flood inundated areas and ten flood influencing factors was used to develop and validate the proposed model. Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Receiver Operating Characteristic (ROC) curve, and area under the ROC curve (AUC) were used to assess the model performance and its prediction capability. Experimental results showed that the proposed model has high performance on both the training (RMSE = 0.306, MAE = 0.094, AUC = 0.962) and validation dataset (RMSE = 0.362, MAE = 0.130, AUC = 0.911). The usability of the proposed model was evaluated by comparing with those obtained from state-of-the art benchmark soft computing techniques such as J48 Decision Tree, Random Forest, Multi-layer Perceptron Neural Network, Support Vector Machine, and Adaptive Neuro Fuzzy Inference System. The results show that the proposed MONF model outperforms the above benchmark models; we conclude that the MONF model is a new alternative tool that should be used in flood susceptibility mapping. The result in this study is useful for planners and decision makers for sustainable management of flood-prone areas.
Fluid and hybrid models for streamers
Bonaventura, Zdeněk
2016-09-01
Streamers are contracted ionizing waves with self-generated field enhancement that propagate into a low-ionized medium exposed to high electric field leaving filamentary trails of plasma behind. The widely used model to study streamer dynamics is based on drift-diffusion equations for electrons and ions, assuming local field approximation, coupled with Poisson's equation. For problems where presence of energetic electrons become important a fluid approach needs to be extended by a particle model, accompanied also with Monte Carlo Collision technique, that takes care of motion of these electrons. A combined fluid-particle approach is used to study an influence of surface emission processes on a fast-pulsed dielectric barrier discharge in air at atmospheric pressure. It is found that fluid-only model predicts substantially faster reignition dynamics compared to coupled fluid-particle model. Furthermore, a hybrid model can be created in which the population of electrons is divided in the energy space into two distinct groups: (1) low energy `bulk' electrons that are treated with fluid model, and (2) high energy `beam' electrons, followed as particles. The hybrid model is then capable not only to deal with streamer discharges in laboratory conditions, but also allows us to study electron acceleration in streamer zone of lighting leaders. There, the production of fast electrons from streamers is investigated, since these (runaway) electrons act as seeds for the relativistic runaway electron avalanche (RREA) mechanism, important for high-energy atmospheric physics phenomena. Results suggest that high energy electrons effect the streamer propagation, namely the velocity, the peak electric field, and thus also the production rate of runaway electrons. This work has been supported by the Czech Science Foundation research project 15-04023S.
Forecasting conditional climate-change using a hybrid approach
Esfahani, Akbar Akbari; Friedel, Michael J.
2014-01-01
A novel approach is proposed to forecast the likelihood of climate-change across spatial landscape gradients. This hybrid approach involves reconstructing past precipitation and temperature using the self-organizing map technique; determining quantile trends in the climate-change variables by quantile regression modeling; and computing conditional forecasts of climate-change variables based on self-similarity in quantile trends using the fractionally differenced auto-regressive integrated moving average technique. The proposed modeling approach is applied to states (Arizona, California, Colorado, Nevada, New Mexico, and Utah) in the southwestern U.S., where conditional forecasts of climate-change variables are evaluated against recent (2012) observations, evaluated at a future time period (2030), and evaluated as future trends (2009–2059). These results have broad economic, political, and social implications because they quantify uncertainty in climate-change forecasts affecting various sectors of society. Another benefit of the proposed hybrid approach is that it can be extended to any spatiotemporal scale providing self-similarity exists.
A Structural Model Decomposition Framework for Hybrid Systems Diagnosis
Daigle, Matthew; Bregon, Anibal; Roychoudhury, Indranil
2015-01-01
Nowadays, a large number of practical systems in aerospace and industrial environments are best represented as hybrid systems that consist of discrete modes of behavior, each defined by a set of continuous dynamics. These hybrid dynamics make the on-line fault diagnosis task very challenging. In this work, we present a new modeling and diagnosis framework for hybrid systems. Models are composed from sets of user-defined components using a compositional modeling approach. Submodels for residual generation are then generated for a given mode, and reconfigured efficiently when the mode changes. Efficient reconfiguration is established by exploiting causality information within the hybrid system models. The submodels can then be used for fault diagnosis based on residual generation and analysis. We demonstrate the efficient causality reassignment, submodel reconfiguration, and residual generation for fault diagnosis using an electrical circuit case study.
A hybrid personalized data recommendation approach for geoscience data sharing
WANG, M.; Wang, J.
2016-12-01
Recommender systems are effective tools helping Internet users overcome information overloading. The two most widely used recommendation algorithms are collaborating filtering (CF) and content-based filtering (CBF). A number of recommender systems based on those two algorithms were developed for multimedia, online sells, and other domains. Each of the two algorithms has its advantages and shortcomings. Hybrid approaches that combine these two algorithms are better choices in many cases. In geoscience data sharing domain, where the items (datasets) are more informative (in space and time) and domain-specific, no recommender system is specialized for data users. This paper reports a dynamic weighted hybrid recommendation algorithm that combines CF and CBF for geoscience data sharing portal. We first derive users' ratings on items with their historical visiting time by Jenks Natural Break. In the CBF part, we incorporate the space, time, and subject information of geoscience datasets to compute item similarity. Predicted ratings were computed with k-NN method separately using CBF and CF, and then combined with weights. With training dataset we attempted to find the best model describing ideal weights and users' co-rating numbers. A logarithmic function was confirmed to be the best model. The model was then used to tune the weights of CF and CBF on user-item basis with test dataset. Evaluation results show that the dynamic weighted approach outperforms either solo CF or CBF approach in terms of Precision and Recall.
Directory of Open Access Journals (Sweden)
Diana Stralberg
Full Text Available Tidal marshes will be threatened by increasing rates of sea-level rise (SLR over the next century. Managers seek guidance on whether existing and restored marshes will be resilient under a range of potential future conditions, and on prioritizing marsh restoration and conservation activities.Building upon established models, we developed a hybrid approach that involves a mechanistic treatment of marsh accretion dynamics and incorporates spatial variation at a scale relevant for conservation and restoration decision-making. We applied this model to San Francisco Bay, using best-available elevation data and estimates of sediment supply and organic matter accumulation developed for 15 Bay subregions. Accretion models were run over 100 years for 70 combinations of starting elevation, mineral sediment, organic matter, and SLR assumptions. Results were applied spatially to evaluate eight Bay-wide climate change scenarios.Model results indicated that under a high rate of SLR (1.65 m/century, short-term restoration of diked subtidal baylands to mid marsh elevations (-0.2 m MHHW could be achieved over the next century with sediment concentrations greater than 200 mg/L. However, suspended sediment concentrations greater than 300 mg/L would be required for 100-year mid marsh sustainability (i.e., no elevation loss. Organic matter accumulation had minimal impacts on this threshold. Bay-wide projections of marsh habitat area varied substantially, depending primarily on SLR and sediment assumptions. Across all scenarios, however, the model projected a shift in the mix of intertidal habitats, with a loss of high marsh and gains in low marsh and mudflats.Results suggest a bleak prognosis for long-term natural tidal marsh sustainability under a high-SLR scenario. To minimize marsh loss, we recommend conserving adjacent uplands for marsh migration, redistributing dredged sediment to raise elevations, and concentrating restoration efforts in sediment-rich areas
Hybrid Modeling Improves Health and Performance Monitoring
2007-01-01
Scientific Monitoring Inc. was awarded a Phase I Small Business Innovation Research (SBIR) project by NASA's Dryden Flight Research Center to create a new, simplified health-monitoring approach for flight vehicles and flight equipment. The project developed a hybrid physical model concept that provided a structured approach to simplifying complex design models for use in health monitoring, allowing the output or performance of the equipment to be compared to what the design models predicted, so that deterioration or impending failure could be detected before there would be an impact on the equipment's operational capability. Based on the original modeling technology, Scientific Monitoring released I-Trend, a commercial health- and performance-monitoring software product named for its intelligent trending, diagnostics, and prognostics capabilities, as part of the company's complete ICEMS (Intelligent Condition-based Equipment Management System) suite of monitoring and advanced alerting software. I-Trend uses the hybrid physical model to better characterize the nature of health or performance alarms that result in "no fault found" false alarms. Additionally, the use of physical principles helps I-Trend identify problems sooner. I-Trend technology is currently in use in several commercial aviation programs, and the U.S. Air Force recently tapped Scientific Monitoring to develop next-generation engine health-management software for monitoring its fleet of jet engines. Scientific Monitoring has continued the original NASA work, this time under a Phase III SBIR contract with a joint NASA-Pratt & Whitney aviation security program on propulsion-controlled aircraft under missile-damaged aircraft conditions.
Modelling the solar wind interaction with Mercury by a quasi-neutral hybrid model
Directory of Open Access Journals (Sweden)
E. Kallio
2003-11-01
Full Text Available Quasi-neutral hybrid model is a self-consistent modelling approach that includes positively charged particles and an electron fluid. The approach has received an increasing interest in space plasma physics research because it makes it possible to study several plasma physical processes that are difficult or impossible to model by self-consistent fluid models, such as the effects associated with the ions’ finite gyroradius, the velocity difference between different ion species, or the non-Maxwellian velocity distribution function. By now quasi-neutral hybrid models have been used to study the solar wind interaction with the non-magnetised Solar System bodies of Mars, Venus, Titan and comets. Localized, two-dimensional hybrid model runs have also been made to study terrestrial dayside magnetosheath. However, the Hermean plasma environment has not yet been analysed by a global quasi-neutral hybrid model. In this paper we present a new quasi-neutral hybrid model developed to study various processes associated with the Mercury-solar wind interaction. Emphasis is placed on addressing advantages and disadvantages of the approach to study different plasma physical processes near the planet. The basic assumptions of the approach and the algorithms used in the new model are thoroughly presented. Finally, some of the first three-dimensional hybrid model runs made for Mercury are presented. The resulting macroscopic plasma parameters and the morphology of the magnetic field demonstrate the applicability of the new approach to study the Mercury-solar wind interaction globally. In addition, the real advantage of the kinetic hybrid model approach is to study the property of individual ions, and the study clearly demonstrates the large potential of the approach to address these more detailed issues by a quasi-neutral hybrid model in the future.Key words. Magnetospheric physics (planetary magnetospheres; solar wind-magnetosphere interactions – Space plasma
International Nuclear Information System (INIS)
Jr, William I Gustafson; Berg, Larry K; Easter, Richard C; Ghan, Steven J
2008-01-01
All estimates of aerosol indirect effects on the global energy balance have either completely neglected the influence of aerosol on convective clouds or treated the influence in a highly parameterized manner. Embedding cloud-resolving models (CRMs) within each grid cell of a global model provides a multiscale modeling framework for treating both the influence of aerosols on convective as well as stratiform clouds and the influence of clouds on the aerosol, but treating the interactions explicitly by simulating all aerosol processes in the CRM is computationally prohibitive. An alternate approach is to use horizontal statistics (e.g., cloud mass flux, cloud fraction, and precipitation) from the CRM simulation to drive a single-column parameterization of cloud effects on the aerosol and then use the aerosol profile to simulate aerosol effects on clouds within the CRM. Here, we present results from the first component of the Explicit-Cloud Parameterized-Pollutant parameterization to be developed, which handles vertical transport of tracers by clouds. A CRM with explicit tracer transport serves as a benchmark. We show that this parameterization, driven by the CRM's cloud mass fluxes, reproduces the CRM tracer transport significantly better than a single-column model that uses a conventional convective cloud parameterization
Energy Technology Data Exchange (ETDEWEB)
Jr, William I Gustafson; Berg, Larry K; Easter, Richard C; Ghan, Steven J [Atmospheric Science and Global Change Division, Pacific Northwest National Laboratory, PO Box 999, MSIN K9-30, Richland, WA (United States)], E-mail: William.Gustafson@pnl.gov
2008-04-15
All estimates of aerosol indirect effects on the global energy balance have either completely neglected the influence of aerosol on convective clouds or treated the influence in a highly parameterized manner. Embedding cloud-resolving models (CRMs) within each grid cell of a global model provides a multiscale modeling framework for treating both the influence of aerosols on convective as well as stratiform clouds and the influence of clouds on the aerosol, but treating the interactions explicitly by simulating all aerosol processes in the CRM is computationally prohibitive. An alternate approach is to use horizontal statistics (e.g., cloud mass flux, cloud fraction, and precipitation) from the CRM simulation to drive a single-column parameterization of cloud effects on the aerosol and then use the aerosol profile to simulate aerosol effects on clouds within the CRM. Here, we present results from the first component of the Explicit-Cloud Parameterized-Pollutant parameterization to be developed, which handles vertical transport of tracers by clouds. A CRM with explicit tracer transport serves as a benchmark. We show that this parameterization, driven by the CRM's cloud mass fluxes, reproduces the CRM tracer transport significantly better than a single-column model that uses a conventional convective cloud parameterization.
HYbrid Coordinate Ocean Model (HYCOM): Global
National Oceanic and Atmospheric Administration, Department of Commerce — Global HYbrid Coordinate Ocean Model (HYCOM) and U.S. Navy Coupled Ocean Data Assimilation (NCODA) 3-day, daily forecast at approximately 9-km (1/12-degree)...
A new adaptive hybrid electromagnetic damper: modelling, optimization, and experiment
International Nuclear Information System (INIS)
Asadi, Ehsan; Ribeiro, Roberto; Behrad Khamesee, Mir; Khajepour, Amir
2015-01-01
This paper presents the development of a new electromagnetic hybrid damper which provides regenerative adaptive damping force for various applications. Recently, the introduction of electromagnetic technologies to the damping systems has provided researchers with new opportunities for the realization of adaptive semi-active damping systems with the added benefit of energy recovery. In this research, a hybrid electromagnetic damper is proposed. The hybrid damper is configured to operate with viscous and electromagnetic subsystems. The viscous medium provides a bias and fail-safe damping force while the electromagnetic component adds adaptability and the capacity for regeneration to the hybrid design. The electromagnetic component is modeled and analyzed using analytical (lumped equivalent magnetic circuit) and electromagnetic finite element method (FEM) (COMSOL ® software package) approaches. By implementing both modeling approaches, an optimization for the geometric aspects of the electromagnetic subsystem is obtained. Based on the proposed electromagnetic hybrid damping concept and the preliminary optimization solution, a prototype is designed and fabricated. A good agreement is observed between the experimental and FEM results for the magnetic field distribution and electromagnetic damping forces. These results validate the accuracy of the modeling approach and the preliminary optimization solution. An analytical model is also presented for viscous damping force, and is compared with experimental results The results show that the damper is able to produce damping coefficients of 1300 and 0–238 N s m −1 through the viscous and electromagnetic components, respectively. (paper)
An Adaptive and Hybrid Approach for Revisiting the Visibility Pipeline
Directory of Open Access Journals (Sweden)
Ícaro Lins Leitão da Cunha
2016-04-01
Full Text Available We revisit the visibility problem, which is traditionally known in Computer Graphics and Vision fields as the process of computing a (potentially visible set of primitives in the computational model of a scene. We propose a hybrid solution that uses a dry structure (in the sense of data reduction, a triangulation of the type J1a, to accelerate the task of searching for visible primitives. We came up with a solution that is useful for real-time, on-line, interactive applications as 3D visualization. In such applications the main goal is to load the minimum amount of primitives from the scene during the rendering stage, as possible. For this purpose, our algorithm executes the culling by using a hybrid paradigm based on viewing-frustum, back-face culling and occlusion models. Results have shown substantial improvement over these traditional approaches if applied separately. This novel approach can be used in devices with no dedicated processors or with low processing power, as cell phones or embedded displays, or to visualize data through the Internet, as in virtual museums applications.
A "Hybrid" Approach for Synthesizing Optimal Controllers of Hybrid Systems
DEFF Research Database (Denmark)
Zhao, Hengjun; Zhan, Naijun; Kapur, Deepak
2012-01-01
to discretization manageable and within bounds. A major advantage of our approach is not only that it avoids errors due to numerical computation, but it also gives a better optimal controller. In order to illustrate our approach, we use the real industrial example of an oil pump provided by the German company HYDAC...
A hybrid model for electricity spot prices
International Nuclear Information System (INIS)
Anderson, C.L.D.
2004-01-01
Electricity prices were highly regulated prior to the deregulation of the electric power industry. Prices were predictable, allowing generators and wholesalers to calculate their production costs and revenues. With deregulation, electricity has become the most volatile of all commodities. Electricity must be consumed as soon as it is generated due to the inability to store it in any sufficient quantity. Economic uncertainty exists because the supply of electricity cannot shift as quickly as the demand, which is highly variable. When demand increases quickly, the price must respond. Therefore, price spikes occur that are orders of magnitude higher than the base electricity price. This paper presents a robust and realistic model for spot market electricity prices used to manage risk in volatile markets. The model is a hybrid of a top down data driven method commonly used for financial applications, and a bottom up system driven method commonly used in regulated electricity markets. The advantage of the model is that it incorporates primary system drivers and demonstrates their effects on final prices. The 4 primary modules of the model are: (1) a model for forced outages, (2) a model for maintenance outages, (3) an electrical load model, and (4) a price model which combines the results of the previous 3 models. The performance of each model was tested. The forced outage model is the first of its kind to simulate the system on an aggregate basis using Weibull distributions. The overall spot price model was calibrated to, and tested with, data from the electricity market in Pennsylvania, New Jersey and Maryland. The model performed well in simulated market prices and adapted readily to changing system conditions and new electricity markets. This study examined the pricing of derivative contracts on electrical power. It also compared a range of portfolio scenarios using a Cash Flow at Risk approach
A hybrid model for electricity spot prices
Energy Technology Data Exchange (ETDEWEB)
Anderson, C.L.D.
2004-07-01
Electricity prices were highly regulated prior to the deregulation of the electric power industry. Prices were predictable, allowing generators and wholesalers to calculate their production costs and revenues. With deregulation, electricity has become the most volatile of all commodities. Electricity must be consumed as soon as it is generated due to the inability to store it in any sufficient quantity. Economic uncertainty exists because the supply of electricity cannot shift as quickly as the demand, which is highly variable. When demand increases quickly, the price must respond. Therefore, price spikes occur that are orders of magnitude higher than the base electricity price. This paper presents a robust and realistic model for spot market electricity prices used to manage risk in volatile markets. The model is a hybrid of a top down data driven method commonly used for financial applications, and a bottom up system driven method commonly used in regulated electricity markets. The advantage of the model is that it incorporates primary system drivers and demonstrates their effects on final prices. The 4 primary modules of the model are: (1) a model for forced outages, (2) a model for maintenance outages, (3) an electrical load model, and (4) a price model which combines the results of the previous 3 models. The performance of each model was tested. The forced outage model is the first of its kind to simulate the system on an aggregate basis using Weibull distributions. The overall spot price model was calibrated to, and tested with, data from the electricity market in Pennsylvania, New Jersey and Maryland. The model performed well in simulated market prices and adapted readily to changing system conditions and new electricity markets. This study examined the pricing of derivative contracts on electrical power. It also compared a range of portfolio scenarios using a Cash Flow at Risk approach.
Hybrid perovskites: Approaches towards light-emitting devices
Alias, Mohd Sharizal
2016-10-06
The high optical gain and absorption of organic-inorganic hybrid perovskites have attracted extensive research for photonic device applications. Using the bromide halide as an example, we present key approaches of our work towards realizing efficient perovskites based light-emitters. The approaches involved determination of optical constants for the hybrid perovskites thin films, fabrication of photonic nanostructures in the form of subwavelength grating reflector patterned directly on the hybrid perovskites as light manipulation layer, and enhancing the emission property of the hybrid perovskites by using microcavity structure. Our results provide a platform for realization of hybrid perovskites based light-emitting devices for solid-state lighting and display applications. © 2016 IEEE.
Hybrid perovskites: Approaches towards light-emitting devices
Alias, Mohd Sharizal; Dursun, Ibrahim; Priante, Davide; Saidaminov, Makhsud I.; Ng, Tien Khee; Bakr, Osman; Ooi, Boon S.
2016-01-01
The high optical gain and absorption of organic-inorganic hybrid perovskites have attracted extensive research for photonic device applications. Using the bromide halide as an example, we present key approaches of our work towards realizing efficient perovskites based light-emitters. The approaches involved determination of optical constants for the hybrid perovskites thin films, fabrication of photonic nanostructures in the form of subwavelength grating reflector patterned directly on the hybrid perovskites as light manipulation layer, and enhancing the emission property of the hybrid perovskites by using microcavity structure. Our results provide a platform for realization of hybrid perovskites based light-emitting devices for solid-state lighting and display applications. © 2016 IEEE.
Towards Modelling of Hybrid Systems
DEFF Research Database (Denmark)
Wisniewski, Rafal
2006-01-01
system consists of a number of dynamical systems that are glued together according to information encoded in the discrete part of the system. We develop a definition of a hybrid system as a functor from the category generated by a transition system to the category of directed topological spaces. Its...
Zhang, Jian; Yang, Jianyi; Jang, Richard; Zhang, Yang
2015-08-04
Experimental structure determination remains difficult for G protein-coupled receptors (GPCRs). We propose a new hybrid protocol to construct GPCR structure models that integrates experimental mutagenesis data with ab initio transmembrane (TM) helix assembly simulations. The method was tested on 24 known GPCRs where the ab initio TM-helix assembly procedure constructed the correct fold for 20 cases. When combined with weak homology and sparse mutagenesis restraints, the method generated correct folds for all the tested cases with an average Cα root-mean-square deviation 2.4 Å in the TM regions. The new hybrid protocol was applied to model all 1,026 GPCRs in the human genome, where 923 have a high confidence score and are expected to have correct folds; these contain many pharmaceutically important families with no previously solved structures, including Trace amine, Prostanoids, Releasing hormones, Melanocortins, Vasopressin, and Neuropeptide Y receptors. The results demonstrate new progress on genome-wide structure modeling of TM proteins. Copyright © 2015 Elsevier Ltd. All rights reserved.
Hybrid computer modelling in plasma physics
International Nuclear Information System (INIS)
Hromadka, J; Ibehej, T; Hrach, R
2016-01-01
Our contribution is devoted to development of hybrid modelling techniques. We investigate sheath structures in the vicinity of solids immersed in low temperature argon plasma of different pressures by means of particle and fluid computer models. We discuss the differences in results obtained by these methods and try to propose a way to improve the results of fluid models in the low pressure area. There is a possibility to employ Chapman-Enskog method to find appropriate closure relations of fluid equations in a case when particle distribution function is not Maxwellian. We try to follow this way to enhance fluid model and to use it in hybrid plasma model further. (paper)
A Hybrid Satellite-Terrestrial Approach to Aeronautical Communication Networks
Kerczewski, Robert J.; Chomos, Gerald J.; Griner, James H.; Mainger, Steven W.; Martzaklis, Konstantinos S.; Kachmar, Brian A.
2000-01-01
Rapid growth in air travel has been projected to continue for the foreseeable future. To maintain a safe and efficient national and global aviation system, significant advances in communications systems supporting aviation are required. Satellites will increasingly play a critical role in the aeronautical communications network. At the same time, current ground-based communications links, primarily very high frequency (VHF), will continue to be employed due to cost advantages and legacy issues. Hence a hybrid satellite-terrestrial network, or group of networks, will emerge. The increased complexity of future aeronautical communications networks dictates that system-level modeling be employed to obtain an optimal system fulfilling a majority of user needs. The NASA Glenn Research Center is investigating the current and potential future state of aeronautical communications, and is developing a simulation and modeling program to research future communications architectures for national and global aeronautical needs. This paper describes the primary requirements, the current infrastructure, and emerging trends of aeronautical communications, including a growing role for satellite communications. The need for a hybrid communications system architecture approach including both satellite and ground-based communications links is explained. Future aeronautical communication network topologies and key issues in simulation and modeling of future aeronautical communications systems are described.
A Hybrid Tsunami Risk Model for Japan
Haseemkunju, A. V.; Smith, D. F.; Khater, M.; Khemici, O.; Betov, B.; Scott, J.
2014-12-01
Around the margins of the Pacific Ocean, denser oceanic plates slipping under continental plates cause subduction earthquakes generating large tsunami waves. The subducting Pacific and Philippine Sea plates create damaging interplate earthquakes followed by huge tsunami waves. It was a rupture of the Japan Trench subduction zone (JTSZ) and the resultant M9.0 Tohoku-Oki earthquake that caused the unprecedented tsunami along the Pacific coast of Japan on March 11, 2011. EQECAT's Japan Earthquake model is a fully probabilistic model which includes a seismo-tectonic model describing the geometries, magnitudes, and frequencies of all potential earthquake events; a ground motion model; and a tsunami model. Within the much larger set of all modeled earthquake events, fault rupture parameters for about 24000 stochastic and 25 historical tsunamigenic earthquake events are defined to simulate tsunami footprints using the numerical tsunami model COMCOT. A hybrid approach using COMCOT simulated tsunami waves is used to generate inundation footprints, including the impact of tides and flood defenses. Modeled tsunami waves of major historical events are validated against observed data. Modeled tsunami flood depths on 30 m grids together with tsunami vulnerability and financial models are then used to estimate insured loss in Japan from the 2011 tsunami. The primary direct report of damage from the 2011 tsunami is in terms of the number of buildings damaged by municipality in the tsunami affected area. Modeled loss in Japan from the 2011 tsunami is proportional to the number of buildings damaged. A 1000-year return period map of tsunami waves shows high hazard along the west coast of southern Honshu, on the Pacific coast of Shikoku, and on the east coast of Kyushu, primarily associated with major earthquake events on the Nankai Trough subduction zone (NTSZ). The highest tsunami hazard of more than 20m is seen on the Sanriku coast in northern Honshu, associated with the JTSZ.
A muscle model for hybrid muscle activation
Directory of Open Access Journals (Sweden)
Klauer Christian
2015-09-01
Full Text Available To develop model-based control strategies for Functional Electrical Stimulation (FES in order to support weak voluntary muscle contractions, a hybrid model for describing joint motions induced by concurrent voluntary-and FES induced muscle activation is proposed. It is based on a Hammerstein model – as commonly used in feedback controlled FES – and exemplarily applied to describe the shoulder abduction joint angle. Main component of a Hammerstein muscle model is usually a static input nonlinearity depending on the stimulation intensity. To additionally incorporate voluntary contributions, we extended the static non-linearity by a second input describing the intensity of the voluntary contribution that is estimated by electromyography (EMG measurements – even during active FES. An Artificial Neural Network (ANN is used to describe the static input non-linearity. The output of the ANN drives a second-order linear dynamical system that describes the combined muscle activation and joint angle dynamics. The tunable parameters are adapted to the individual subject by a system identification approach using previously recorded I/O-data. The model has been validated in two healthy subjects yielding RMS values for the joint angle error of 3.56° and 3.44°, respectively.
A Hybrid Prognostic Approach for Remaining Useful Life Prediction of Lithium-Ion Batteries
Directory of Open Access Journals (Sweden)
Wen-An Yang
2016-01-01
Full Text Available Lithium-ion battery is a core component of many systems such as satellite, spacecraft, and electric vehicles and its failure can lead to reduced capability, downtime, and even catastrophic breakdowns. Remaining useful life (RUL prediction of lithium-ion batteries before the future failure event is extremely crucial for proactive maintenance/safety actions. This study proposes a hybrid prognostic approach that can predict the RUL of degraded lithium-ion batteries using physical laws and data-driven modeling simultaneously. In this hybrid prognostic approach, the relevant vectors obtained with the selective kernel ensemble-based relevance vector machine (RVM learning algorithm are fitted to the physical degradation model, which is then extrapolated to failure threshold for estimating the RUL of the lithium-ion battery of interest. The experimental results indicated that the proposed hybrid prognostic approach can accurately predict the RUL of degraded lithium-ion batteries. Empirical comparisons show that the proposed hybrid prognostic approach using the selective kernel ensemble-based RVM learning algorithm performs better than the hybrid prognostic approaches using the popular learning algorithms of feedforward artificial neural networks (ANNs like the conventional backpropagation (BP algorithm and support vector machines (SVMs. In addition, an investigation is also conducted to identify the effects of RVM learning algorithm on the proposed hybrid prognostic approach.
Reactor systems modeling for ICF hybrids
International Nuclear Information System (INIS)
Berwald, D.H.; Meier, W.R.
1980-10-01
The computational models of ICF reactor subsystems developed by LLNL and TRW are described and a computer program was incorporated for use in the EPRI-sponsored Feasibility Assessment of Fusion-Fission Hybrids. Representative parametric variations have been examined. Many of the ICF subsystem models are very preliminary and more quantitative models need to be developed and included in the code
A Hybrid Analysis Approach to Improve Financial Distress Forecasting: Empirical Evidence from Iran
Directory of Open Access Journals (Sweden)
Shakiba Khademolqorani
2015-01-01
Full Text Available Bankruptcy prediction is an important problem facing financial decision support for stakeholders of firms, including auditors, managers, shareholders, debt-holders, and potential investors, as well as academic researchers. Popular discourse on financial distress forecasting focuses on developing the discrete models to improve the prediction. The aim of this paper is to develop a novel hybrid financial distress model based on combining various statistical and machine learning methods. Then multiple attribute decision making method is exploited to choose the optimized model from the implemented ones. Proposed approaches have also been applied in Iranian companies that performed previous models and it can be consolidated with the help of the hybrid approach.
A Hybrid 3D Indoor Space Model
Directory of Open Access Journals (Sweden)
A. Jamali
2016-10-01
Full Text Available GIS integrates spatial information and spatial analysis. An important example of such integration is for emergency response which requires route planning inside and outside of a building. Route planning requires detailed information related to indoor and outdoor environment. Indoor navigation network models including Geometric Network Model (GNM, Navigable Space Model, sub-division model and regular-grid model lack indoor data sources and abstraction methods. In this paper, a hybrid indoor space model is proposed. In the proposed method, 3D modeling of indoor navigation network is based on surveying control points and it is less dependent on the 3D geometrical building model. This research proposes a method of indoor space modeling for the buildings which do not have proper 2D/3D geometrical models or they lack semantic or topological information. The proposed hybrid model consists of topological, geometrical and semantical space.
Directory of Open Access Journals (Sweden)
Yaojie Yue
2016-12-01
Full Text Available Crop frost, one kind of agro-meteorological disaster, often causes significant loss to agriculture. Thus, evaluating the risk of wheat frost aids scientific response to such disasters, which will ultimately promote food security. Therefore, this paper aims to propose an integrated risk assessment model of wheat frost, based on meteorological data and a hybrid fuzzy neural network model, taking China as an example. With the support of a geographic information system (GIS, a comprehensive method was put forward. Firstly, threshold temperatures of wheat frost at three growth stages were proposed, referring to phenology in different wheat growing areas and the meteorological standard of Degree of Crop Frost Damage (QX/T 88-2008. Secondly, a vulnerability curve illustrating the relationship between frost hazard intensity and wheat yield loss was worked out using hybrid fuzzy neural network model. Finally, the wheat frost risk was assessed in China. Results show that our proposed threshold temperatures are more suitable than using 0 °C in revealing the spatial pattern of frost occurrence, and hybrid fuzzy neural network model can further improve the accuracy of the vulnerability curve of wheat subject to frost with limited historical hazard records. Both these advantages ensure the precision of wheat frost risk assessment. In China, frost widely distributes in 85.00% of the total winter wheat planting area, but mainly to the north of 35°N; the southern boundary of wheat frost has moved northward, potentially because of the warming climate. There is a significant trend that suggests high risk areas will enlarge and gradually expand to the south, with the risk levels increasing from a return period of 2 years to 20 years. Among all wheat frost risk levels, the regions with loss rate ranges from 35.00% to 45.00% account for the largest area proportion, ranging from 58.60% to 63.27%. We argue that for wheat and other frost-affected crops, it is
Modelling dependable systems using hybrid Bayesian networks
International Nuclear Information System (INIS)
Neil, Martin; Tailor, Manesh; Marquez, David; Fenton, Norman; Hearty, Peter
2008-01-01
A hybrid Bayesian network (BN) is one that incorporates both discrete and continuous nodes. In our extensive applications of BNs for system dependability assessment, the models are invariably hybrid and the need for efficient and accurate computation is paramount. We apply a new iterative algorithm that efficiently combines dynamic discretisation with robust propagation algorithms on junction tree structures to perform inference in hybrid BNs. We illustrate its use in the field of dependability with two example of reliability estimation. Firstly we estimate the reliability of a simple single system and next we implement a hierarchical Bayesian model. In the hierarchical model we compute the reliability of two unknown subsystems from data collected on historically similar subsystems and then input the result into a reliability block model to compute system level reliability. We conclude that dynamic discretisation can be used as an alternative to analytical or Monte Carlo methods with high precision and can be applied to a wide range of dependability problems
Some hybrid models applicable to dose-response relationships
International Nuclear Information System (INIS)
Kumazawa, Shigeru
1992-01-01
A new type of models of dose-response relationships has been studied as an initial stage to explore a reliable extrapolation of the relationships decided by high dose data to the range of low dose covered by radiation protection. The approach is to use a 'hybrid scale' of linear and logarithmic scales; the first model is that the normalized surviving fraction (ρ S > 0) in a hybrid scale decreases linearly with dose in a linear scale, and the second is that the induction in a log scale increases linearly with the normalized dose (τ D > 0) in a hybrid scale. The hybrid scale may reflect an overall effectiveness of a complex system against adverse events caused by various agents. Some data of leukemia in the atomic bomb survivors and of rodent experiments were used to show the applicability of hybrid scale models. The results proved that proposed models fit these data not less than the popular linear-quadratic models, providing the possible interpretation of shapes of dose-response curves, e.g. shouldered survival curves varied by recovery time. (author)
Dry Port Location Problem: A Hybrid Multi-Criteria Approach
Directory of Open Access Journals (Sweden)
BENTALEB Fatimazahra
2016-03-01
Full Text Available Choosing a location for a dry port is a problem which becomes more essential and crucial. This study deals with the problem of locating dry ports. On this matter, a model combining multi-criteria (MACBETH and mono-criteria (BARYCENTER methods to find a solution to dry port location problem has been proposed. In the first phase, a systematic literature review was carried out on dry port location problem and then a methodological classification was presented for this research. In the second phase, a hybrid multi-criteria approach was developed in order to determine the best dry port location taking different criteria into account. A Computational practice and a qualitative analysis from a case study in the Moroccan context have been provided. The results show that the optimal location is very convenient with the geographical region and the government policies.
A Hybrid Soft Computing Approach for Subset Problems
Directory of Open Access Journals (Sweden)
Broderick Crawford
2013-01-01
Full Text Available Subset problems (set partitioning, packing, and covering are formal models for many practical optimization problems. A set partitioning problem determines how the items in one set (S can be partitioned into smaller subsets. All items in S must be contained in one and only one partition. Related problems are set packing (all items must be contained in zero or one partitions and set covering (all items must be contained in at least one partition. Here, we present a hybrid solver based on ant colony optimization (ACO combined with arc consistency for solving this kind of problems. ACO is a swarm intelligence metaheuristic inspired on ants behavior when they search for food. It allows to solve complex combinatorial problems for which traditional mathematical techniques may fail. By other side, in constraint programming, the solving process of Constraint Satisfaction Problems can dramatically reduce the search space by means of arc consistency enforcing constraint consistencies either prior to or during search. Our hybrid approach was tested with set covering and set partitioning dataset benchmarks. It was observed that the performance of ACO had been improved embedding this filtering technique in its constructive phase.
Hybrid simulation of reactor kinetics in CANDU reactors using a modal approach
International Nuclear Information System (INIS)
Monaghan, B.M.; McDonnell, F.N.; Hinds, H.W.T.; m.
1980-01-01
A hybrid computer model for simulating the behaviour of large CANDU (Canada Deuterium Uranium) reactor cores is presented. The main dynamic variables are expressed in terms of weighted sums of a base set of spatial natural-mode functions with time-varying co-efficients. This technique, known as the modal or synthesis approach, permits good three-dimensional representation of reactor dynamics and is well suited to hybrid simulation. The hybrid model provides improved man-machine interaction and real-time capability. The model was used in two applications. The first studies the transient that follows a loss of primary coolant and reactor shutdown; the second is a simulation of the dynamics of xenon, a fission product which has a high absorption cross-section for neutrons and thus has an important effect on reactor behaviour. Comparison of the results of the hybrid computer simulation with those of an all-digital one is good, within 1% to 2%
Bounded Model Checking and Inductive Verification of Hybrid Discrete-Continuous Systems
DEFF Research Database (Denmark)
Becker, Bernd; Behle, Markus; Eisenbrand, Fritz
2004-01-01
We present a concept to signicantly advance the state of the art for bounded model checking (BMC) and inductive verication (IV) of hybrid discrete-continuous systems. Our approach combines the expertise of partners coming from dierent domains, like hybrid systems modeling and digital circuit veri...
Hybrid attacks on model-based social recommender systems
Yu, Junliang; Gao, Min; Rong, Wenge; Li, Wentao; Xiong, Qingyu; Wen, Junhao
2017-10-01
With the growing popularity of the online social platform, the social network based approaches to recommendation emerged. However, because of the open nature of rating systems and social networks, the social recommender systems are susceptible to malicious attacks. In this paper, we present a certain novel attack, which inherits characteristics of the rating attack and the relation attack, and term it hybrid attack. Furtherly, we explore the impact of the hybrid attack on model-based social recommender systems in multiple aspects. The experimental results show that, the hybrid attack is more destructive than the rating attack in most cases. In addition, users and items with fewer ratings will be influenced more when attacked. Last but not the least, the findings suggest that spammers do not depend on the feedback links from normal users to become more powerful, the unilateral links can make the hybrid attack effective enough. Since unilateral links are much cheaper, the hybrid attack will be a great threat to model-based social recommender systems.
Using hybrid expert system approaches for engineering applications
Allen, R. H.; Boarnet, M. G.; Culbert, C. J.; Savely, R. T.
1987-01-01
In this paper, the use of hybrid expert system shells and hybrid (i.e., algorithmic and heuristic) approaches for solving engineering problems is reported. Aspects of various engineering problem domains are reviewed for a number of examples with specific applications made to recently developed prototype expert systems. Based on this prototyping experience, critical evaluations of and comparisons between commercially available tools, and some research tools, in the United States and Australia, and their underlying problem-solving paradigms are made. Characteristics of the implementation tool and the engineering domain are compared and practical software engineering issues are discussed with respect to hybrid tools and approaches. Finally, guidelines are offered with the hope that expert system development will be less time consuming, more effective, and more cost-effective than it has been in the past.
A Novel Hybrid Similarity Calculation Model
Directory of Open Access Journals (Sweden)
Xiaoping Fan
2017-01-01
Full Text Available This paper addresses the problems of similarity calculation in the traditional recommendation algorithms of nearest neighbor collaborative filtering, especially the failure in describing dynamic user preference. Proceeding from the perspective of solving the problem of user interest drift, a new hybrid similarity calculation model is proposed in this paper. This model consists of two parts, on the one hand the model uses the function fitting to describe users’ rating behaviors and their rating preferences, and on the other hand it employs the Random Forest algorithm to take user attribute features into account. Furthermore, the paper combines the two parts to build a new hybrid similarity calculation model for user recommendation. Experimental results show that, for data sets of different size, the model’s prediction precision is higher than the traditional recommendation algorithms.
Hybrid photovoltaic–thermal solar collectors dynamic modeling
International Nuclear Information System (INIS)
Amrizal, N.; Chemisana, D.; Rosell, J.I.
2013-01-01
Highlights: ► A hybrid photovoltaic/thermal dynamic model is presented. ► The model, once calibrated, can predict the power output for any set of climate data. ► The physical electrical model includes explicitly thermal and irradiance dependences. ► The results agree with those obtained through steady-state characterization. ► The model approaches the junction cell temperature through the system energy balance. -- Abstract: A hybrid photovoltaic/thermal transient model has been developed and validated experimentally. The methodology extends the quasi-dynamic thermal model stated in the EN 12975 in order to involve the electrical performance and consider the dynamic behavior minimizing constraints when characterizing the collector. A backward moving average filtering procedure has been applied to improve the model response for variable working conditions. Concerning the electrical part, the model includes the thermal and radiation dependences in its variables. The results revealed that the characteristic parameters included in the model agree reasonably well with the experimental values obtained from the standard steady-state and IV characteristic curve measurements. After a calibration process, the model is a suitable tool to predict the thermal and electrical performance of a hybrid solar collector, for a specific weather data set.
Agricultural Tractor Selection: A Hybrid and Multi-Attribute Approach
Directory of Open Access Journals (Sweden)
Jorge L. García-Alcaraz
2016-02-01
Full Text Available Usually, agricultural tractor investments are assessed using traditional economic techniques that only involve financial attributes, resulting in reductionist evaluations. However, tractors have qualitative and quantitative attributes that must be simultaneously integrated into the evaluation process. This article reports a hybrid and multi-attribute approach to assessing a set of agricultural tractors based on AHP-TOPSIS. To identify the attributes in the model, a survey including eighteen attributes was given to agricultural machinery salesmen and farmers for determining their importance. The list of attributes was presented to a decision group for a case of study, and their importance was estimated using AHP and integrated into the TOPSIS technique. In this case, one tractor was selected from a set of six alternatives, integrating six attributes in the model: initial cost, annual maintenance cost, liters of diesel per hour, safety of the operator, maintainability and after-sale customer service offered by the supplier. Based on the results obtained, the model can be considered easy to apply and to have good acceptance among farmers and salesmen, as there are no special software requirements for the application.
A hybrid approach to designing inbound-resupply strategies
Dullaert, Wout; Vernimmen, Bert; Raa, Birger; Witlox, Frank
A new hybrid approach was developed to determine the optimal inbound-resupply strategy when suppliers ship goods to receivers. The optimal reorder level was calculated on the basis of a simulation of the distribution of demand and the lead time of the various sourcing alternatives. An evolutionary
Modeling of Hybrid Growth Wastewater Bio-reactor
International Nuclear Information System (INIS)
EI Nashaei, S.; Garhyan, P.; Prasad, P.; Abdel Halim, H.S.; Ibrahim, G.
2004-01-01
The attached/suspended growth mixed reactors are considered one of the recently tried approaches to improve the performance of the biological treatment by increasing the volume of the accumulated biomass in terms of attached growth as well as suspended growth. Moreover, the domestic WW can be easily mixed with a high strength non-hazardous industrial wastewater and treated together in these bio-reactors if the need arises. Modeling of Hybrid hybrid growth wastewater reactor addresses the need of understanding the rational of such system in order to achieve better design and operation parameters. This paper aims at developing a heterogeneous mathematical model for hybrid growth system considering the effect of diffusion, external mass transfer, and power input to the system in a rational manner. The model will be based on distinguishing between liquid/solid phase (bio-film and bio-floc). This model would be a step ahead to the fine tuning the design of hybrid systems based on the experimental data of a pilot plant to be implemented in near future
Hybrid Energy System Modeling in Modelica
Energy Technology Data Exchange (ETDEWEB)
William R. Binder; Christiaan J. J. Paredis; Humberto E. Garcia
2014-03-01
In this paper, a Hybrid Energy System (HES) configuration is modeled in Modelica. Hybrid Energy Systems (HES) have as their defining characteristic the use of one or more energy inputs, combined with the potential for multiple energy outputs. Compared to traditional energy systems, HES provide additional operational flexibility so that high variability in both energy production and consumption levels can be absorbed more effectively. This is particularly important when including renewable energy sources, whose output levels are inherently variable, determined by nature. The specific HES configuration modeled in this paper include two energy inputs: a nuclear plant, and a series of wind turbines. In addition, the system produces two energy outputs: electricity and synthetic fuel. The models are verified through simulations of the individual components, and the system as a whole. The simulations are performed for a range of component sizes, operating conditions, and control schemes.
Modelling the solar wind interaction with Mercury by a quasi-neutral hybrid model
Directory of Open Access Journals (Sweden)
E. Kallio
Full Text Available Quasi-neutral hybrid model is a self-consistent modelling approach that includes positively charged particles and an electron fluid. The approach has received an increasing interest in space plasma physics research because it makes it possible to study several plasma physical processes that are difficult or impossible to model by self-consistent fluid models, such as the effects associated with the ions’ finite gyroradius, the velocity difference between different ion species, or the non-Maxwellian velocity distribution function. By now quasi-neutral hybrid models have been used to study the solar wind interaction with the non-magnetised Solar System bodies of Mars, Venus, Titan and comets. Localized, two-dimensional hybrid model runs have also been made to study terrestrial dayside magnetosheath. However, the Hermean plasma environment has not yet been analysed by a global quasi-neutral hybrid model.
In this paper we present a new quasi-neutral hybrid model developed to study various processes associated with the Mercury-solar wind interaction. Emphasis is placed on addressing advantages and disadvantages of the approach to study different plasma physical processes near the planet. The basic assumptions of the approach and the algorithms used in the new model are thoroughly presented. Finally, some of the first three-dimensional hybrid model runs made for Mercury are presented.
The resulting macroscopic plasma parameters and the morphology of the magnetic field demonstrate the applicability of the new approach to study the Mercury-solar wind interaction globally. In addition, the real advantage of the kinetic hybrid model approach is to study the property of individual ions, and the study clearly demonstrates the large potential of the approach to address these more detailed issues by a quasi-neutral hybrid model in the future.
Key words. Magnetospheric physics
HAMDA: Hybrid Approach for MiRNA-Disease Association prediction.
Chen, Xing; Niu, Ya-Wei; Wang, Guang-Hui; Yan, Gui-Ying
2017-12-01
For decades, enormous experimental researches have collectively indicated that microRNA (miRNA) could play indispensable roles in many critical biological processes and thus also the pathogenesis of human complex diseases. Whereas the resource and time cost required in traditional biology experiments are expensive, more and more attentions have been paid to the development of effective and feasible computational methods for predicting potential associations between disease and miRNA. In this study, we developed a computational model of Hybrid Approach for MiRNA-Disease Association prediction (HAMDA), which involved the hybrid graph-based recommendation algorithm, to reveal novel miRNA-disease associations by integrating experimentally verified miRNA-disease associations, disease semantic similarity, miRNA functional similarity, and Gaussian interaction profile kernel similarity into a recommendation algorithm. HAMDA took not only network structure and information propagation but also node attribution into consideration, resulting in a satisfactory prediction performance. Specifically, HAMDA obtained AUCs of 0.9035 and 0.8395 in the frameworks of global and local leave-one-out cross validation, respectively. Meanwhile, HAMDA also achieved good performance with AUC of 0.8965 ± 0.0012 in 5-fold cross validation. Additionally, we conducted case studies about three important human cancers for performance evaluation of HAMDA. As a result, 90% (Lymphoma), 86% (Prostate Cancer) and 92% (Kidney Cancer) of top 50 predicted miRNAs were confirmed by recent experiment literature, which showed the reliable prediction ability of HAMDA. Copyright © 2017 Elsevier Inc. All rights reserved.
Modelling of a Hybrid Energy System for Autonomous Application
Directory of Open Access Journals (Sweden)
Yang He
2013-10-01
Full Text Available A hybrid energy system (HES is a trending power supply solution for autonomous devices. With the help of an accurate system model, the HES development will be efficient and oriented. In spite of various precise unit models, a HES system is hardly developed. This paper proposes a system modelling approach, which applies the power flux conservation as the governing equation and adapts and modifies unit models of solar cells, piezoelectric generators, a Li-ion battery and a super-capacitor. A generalized power harvest, storage and management strategy is also suggested to adapt to various application scenarios.
Optimization of hybrid model on hajj travel
Cahyandari, R.; Ariany, R. L.; Sukono
2018-03-01
Hajj travel insurance is an insurance product offered by the insurance company in preparing funds to perform the pilgrimage. This insurance product helps would-be pilgrims to set aside a fund of saving hajj with regularly, but also provides funds of profit sharing (mudharabah) and insurance protection. Scheme of insurance product fund management is largely using the hybrid model, which is the fund from would-be pilgrims will be divided into three account management, that is personal account, tabarru’, and ujrah. Scheme of hybrid model on hajj travel insurance was already discussed at the earlier paper with titled “The Hybrid Model Algorithm on Sharia Insurance”, taking the example case of Mitra Mabrur Plus product from Bumiputera company. On these advanced paper, will be made the previous optimization model design, with partition of benefit the tabarru’ account. Benefits such as compensation for 40 critical illness which initially only for participants of insurance only, on optimization is intended for participants of the insurance and his heir, also to benefit the hospital bills. Meanwhile, the benefits of death benefit is given if the participant is fixed die.
Directory of Open Access Journals (Sweden)
Cesar Pichardo-Almarza
2017-09-01
Full Text Available Background and Objective: Statins are one of the most prescribed drugs to treat atherosclerosis. They inhibit the hepatic HMG-CoA reductase, causing a reduction of circulating cholesterol and LDL levels. Statins have had undeniable success; however, the benefits of statin therapy crystallize only if patients adhere to the prescribed treatment, which is far away from reality since adherence decreases with time with around half of patients discontinue statin therapy within the first year. The objective of this work is to; firstly, demonstrate a formal in-silico methodology based on a hybrid, multiscale mathematical model used to study the effect of statin treatment on atherosclerosis under different patient scenarios, including cases where the influence of medication adherence is examined and secondly, to propose a flexible simulation framework that allows extensions or simplifications, allowing the possibility to design other complex simulation strategies, both interesting features for software development.Methods: Different mathematical modeling paradigms are used to present the relevant dynamic behavior observed in biological/physiological data and clinical trials. A combination of continuous and discrete event models are coupled to simulate the pharmacokinetics (PK of statins, their pharmacodynamic (PD effect on lipoproteins levels (e.g., LDL and relevant inflammatory pathways whilst simultaneously studying the dynamic effect of flow-related variables on atherosclerosis progression.Results: Different scenarios were tested showing the impact of: (1 patient variability: a virtual population shows differences in plaque growth for different individuals could be as high as 100%; (2 statin effect on atherosclerosis: it is shown how a patient with a 1-year statin treatment will reduce his plaque growth by 2–3% in a 2-year period; (3 medical adherence: we show that a patient missing 10% of the total number of doses could increase the plaque growth
Solving University Scheduling Problem Using Hybrid Approach
Directory of Open Access Journals (Sweden)
Aftab Ahmed Shaikh
2011-10-01
Full Text Available In universities scheduling curriculum activity is an essential job. Primarily, scheduling is a distribution of limited resources under interrelated constraints. The set of hard constraints demand the highest priority and should not to be violated at any cost, while the maximum soft constraints satisfaction mounts the quality scale of solution. In this research paper, a novel bisected approach is introduced that is comprisesd of GA (Genetic Algorithm as well as Backtracking Recursive Search. The employed technique deals with both hard and soft constraints successively. The first phase decisively is focused over elimination of all the hard constraints bounded violations and eventually produces partial solution for subsequent step. The second phase is supposed to draw the best possible solution on the search space. Promising results are obtained by implementation on the real dataset. The key points of the research approach are to get assurance of hard constraints removal from the dataset and minimizing computational time for GA by initializing pre-processed set of chromosomes.
A hybrid parallel framework for the cellular Potts model simulations
Energy Technology Data Exchange (ETDEWEB)
Jiang, Yi [Los Alamos National Laboratory; He, Kejing [SOUTH CHINA UNIV; Dong, Shoubin [SOUTH CHINA UNIV
2009-01-01
The Cellular Potts Model (CPM) has been widely used for biological simulations. However, most current implementations are either sequential or approximated, which can't be used for large scale complex 3D simulation. In this paper we present a hybrid parallel framework for CPM simulations. The time-consuming POE solving, cell division, and cell reaction operation are distributed to clusters using the Message Passing Interface (MPI). The Monte Carlo lattice update is parallelized on shared-memory SMP system using OpenMP. Because the Monte Carlo lattice update is much faster than the POE solving and SMP systems are more and more common, this hybrid approach achieves good performance and high accuracy at the same time. Based on the parallel Cellular Potts Model, we studied the avascular tumor growth using a multiscale model. The application and performance analysis show that the hybrid parallel framework is quite efficient. The hybrid parallel CPM can be used for the large scale simulation ({approx}10{sup 8} sites) of complex collective behavior of numerous cells ({approx}10{sup 6}).
Modelling and analysis of real-time and hybrid systems
Energy Technology Data Exchange (ETDEWEB)
Olivero, A
1994-09-29
This work deals with the modelling and analysis of real-time and hybrid systems. We first present the timed-graphs as model for the real-time systems and we recall the basic notions of the analysis of real-time systems. We describe the temporal properties on the timed-graphs using TCTL formulas. We consider two methods for property verification: in one hand we study the symbolic model-checking (based on backward analysis) and in the other hand we propose a verification method derived of the construction of the simulation graph (based on forward analysis). Both methods have been implemented within the KRONOS verification tool. Their application for the automatic verification on several real-time systems confirms the practical interest of our approach. In a second part we study the hybrid systems, systems combining discrete components with continuous ones. As in the general case the analysis of this king of systems is not decidable, we identify two sub-classes of hybrid systems and we give a construction based method for the generation of a timed-graph from an element into the sub-classes. We prove that in one case the timed-graph obtained is bi-similar with the considered system and that there exists a simulation in the other case. These relationships allow the application of the described technics on the hybrid systems into the defined sub-classes. (authors). 60 refs., 43 figs., 8 tabs., 2 annexes.
International Nuclear Information System (INIS)
Monjoly, Stéphanie; André, Maïna; Calif, Rudy; Soubdhan, Ted
2017-01-01
This paper introduces a new approach for the forecasting of solar radiation series at 1 h ahead. We investigated on several techniques of multiscale decomposition of clear sky index K_c data such as Empirical Mode Decomposition (EMD), Ensemble Empirical Mode Decomposition (EEMD) and Wavelet Decomposition. From these differents methods, we built 11 decomposition components and 1 residu signal presenting different time scales. We performed classic forecasting models based on linear method (Autoregressive process AR) and a non linear method (Neural Network model). The choice of forecasting method is adaptative on the characteristic of each component. Hence, we proposed a modeling process which is built from a hybrid structure according to the defined flowchart. An analysis of predictive performances for solar forecasting from the different multiscale decompositions and forecast models is presented. From multiscale decomposition, the solar forecast accuracy is significantly improved, particularly using the wavelet decomposition method. Moreover, multistep forecasting with the proposed hybrid method resulted in additional improvement. For example, in terms of RMSE error, the obtained forecasting with the classical NN model is about 25.86%, this error decrease to 16.91% with the EMD-Hybrid Model, 14.06% with the EEMD-Hybid model and to 7.86% with the WD-Hybrid Model. - Highlights: • Hourly forecasting of GHI in tropical climate with many cloud formation processes. • Clear sky Index decomposition using three multiscale decomposition methods. • Combination of multiscale decomposition methods with AR-NN models to predict GHI. • Comparison of the proposed hybrid model with the classical models (AR, NN). • Best results using Wavelet-Hybrid model in comparison with classical models.
A hybrid approach to decision making and information fusion: Combining humans and artificial agents
Groen, Frans C.A.; Pavlin, Gregor; Winterboer, Andi; Evers, Vanessa
This paper argues that hybrid human–agent systems can support powerful solutions to relevant problems such as Environmental Crisis management. However, it shows that such solutions require comprehensive approaches covering different aspects of data processing, model construction and the usage. In
A hybrid least squares support vector machines and GMDH approach for river flow forecasting
Samsudin, R.; Saad, P.; Shabri, A.
2010-06-01
This paper proposes a novel hybrid forecasting model, which combines the group method of data handling (GMDH) and the least squares support vector machine (LSSVM), known as GLSSVM. The GMDH is used to determine the useful input variables for LSSVM model and the LSSVM model which works as time series forecasting. In this study the application of GLSSVM for monthly river flow forecasting of Selangor and Bernam River are investigated. The results of the proposed GLSSVM approach are compared with the conventional artificial neural network (ANN) models, Autoregressive Integrated Moving Average (ARIMA) model, GMDH and LSSVM models using the long term observations of monthly river flow discharge. The standard statistical, the root mean square error (RMSE) and coefficient of correlation (R) are employed to evaluate the performance of various models developed. Experiment result indicates that the hybrid model was powerful tools to model discharge time series and can be applied successfully in complex hydrological modeling.
Gravitational waves in hybrid quintessential inflationary models
Energy Technology Data Exchange (ETDEWEB)
Sa, Paulo M [Departamento de Fisica, Faculdade de Ciencias e Tecnologia, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro (Portugal); Henriques, Alfredo B, E-mail: pmsa@ualg.pt, E-mail: alfredo.henriques@ist.utl.pt [Centro Multidisciplinar de Astrofisica - CENTRA and Departamento de Fisica, Instituto Superior Tecnico, UTL, Av. Rovisco Pais, 1049-001 Lisboa (Portugal)
2011-09-22
The generation of primordial gravitational waves is investigated within the hybrid quintessential inflationary model. Using the method of continuous Bogoliubov coefficients, we calculate the full gravitational-wave energy spectrum. The post-inflationary kination period, characteristic of quintessential inflationary models, leaves a clear signature on the spectrum, namely, a sharp rise of the gravitational-wave spectral energy density {Omega}{sub GW} at high frequencies. For appropriate values of the parameters of the model, {Omega}{sub GW} can be as high as 10{sup -12} in the MHz-GHz range of frequencies.
Gravitational waves in hybrid quintessential inflationary models
International Nuclear Information System (INIS)
Sa, Paulo M; Henriques, Alfredo B
2011-01-01
The generation of primordial gravitational waves is investigated within the hybrid quintessential inflationary model. Using the method of continuous Bogoliubov coefficients, we calculate the full gravitational-wave energy spectrum. The post-inflationary kination period, characteristic of quintessential inflationary models, leaves a clear signature on the spectrum, namely, a sharp rise of the gravitational-wave spectral energy density Ω GW at high frequencies. For appropriate values of the parameters of the model, Ω GW can be as high as 10 -12 in the MHz-GHz range of frequencies.
Directory of Open Access Journals (Sweden)
Dehua Zheng
2017-12-01
Full Text Available The power generated by wind generators is usually associated with uncertainties, due to the intermittency of wind speed and other weather variables. This creates a big challenge for transmission system operators (TSOs and distribution system operators (DSOs in terms of connecting, controlling and managing power networks with high-penetration wind energy. Hence, in these power networks, accurate wind power forecasts are essential for their reliable and efficient operation. They support TSOs and DSOs in enhancing the control and management of the power network. In this paper, a novel two-stage hybrid approach based on the combination of the Hilbert-Huang transform (HHT, genetic algorithm (GA and artificial neural network (ANN is proposed for day-ahead wind power forecasting. The approach is composed of two stages. The first stage utilizes numerical weather prediction (NWP meteorological information to predict wind speed at the exact site of the wind farm. The second stage maps actual wind speed vs. power characteristics recorded by SCADA. Then, the wind speed forecast in the first stage for the future day is fed to the second stage to predict the future day’s wind power. Comparative selection of input-data parameter sets for the forecasting model and impact analysis of input-data dependency on forecasting accuracy have also been studied. The proposed approach achieves significant forecasting accuracy improvement compared with three other artificial intelligence-based forecasting approaches and a benchmark model using the smart persistence method.
Modelling Chemical Preservation of Plantain Hybrid Fruits
Directory of Open Access Journals (Sweden)
Ogueri Nwaiwu
2017-08-01
Full Text Available New plantain hybrids plants have been developed but not much has been done on the post-harvest keeping quality of the fruits and how they are affected by microbial colonization. Hence fruits from a tetraploid hybrid PITA 2 (TMPx 548-9 obtained by crossing plantain varieties Obino l’Ewai and Calcutta 4 (AA and two local triploid (AAB plantain landraces Agbagba and Obino l’Ewai were subjected to various concentrations of acetic, sorbic and propionic acid to determine the impact of chemical concentration, chemical type and plantain variety on ripening and weight loss of plantain fruits. Analysis of titratable acidity, moisture content and total soluble solids showed that there were no significant differences between fruits of hybrid and local varieties. The longest time to ripening from harvest (24 days was achieved with fruits of Agbagba treated with 3% propionic acid. However, fruits of PITA 2 hybrid treated with propionic and sorbic acid at 3% showed the longest green life which indicated that the chemicals may work better at higher concentrations. The Obino l’Ewai cultivar had the highest weight loss for all chemical types used. Modelling data obtained showed that plantain variety had the most significant effect on ripening and indicates that ripening of the fruits may depend on the plantain variety. It appears that weight loss of fruits from the plantain hybrid and local cultivars was not affected by the plantain variety, chemical type. The chemicals at higher concentrations may have an effect on ripening of the fruits and will need further investigation.
Numerical modeling of hybrid fiber-reinforced concrete (hyfrc)
International Nuclear Information System (INIS)
Hameed, R.; Turatsinze, A.
2015-01-01
A model for numerical simulation of mechanical response of concrete reinforced with slipping and non slipping metallic fibers in hybrid form is presented in this paper. Constitutive law used to model plain concrete behaviour is based on plasticity and damage theories, and is capable to determine localized crack opening in three dimensional (3-D) systems. Behaviour law used for slipping metallic fibers is formulated based on effective stress carried by these fibers after when concrete matrix is cracked. A continuous approach is proposed to model the effect of addition of non-slipping metallic fibers in plain concrete. This approach considers the constitutive law of concrete matrix with increased fracture energy in tension obtained experimentally in direct tension tests on Fiber Reinforced Concrete (FRC). To simulate the mechanical behaviour of hybrid fiber-reinforced concrete (HyFRC), proposed approaches to model non-slipping metallic fibers and constitutive law of plain concrete and slipping fibers are used simultaneously without any additive equation. All the parameters used by the proposed model have physical meanings and are determined through experiments or drawn from literature. The model was implemented in Finite Element (FE) Code CASTEM and tested on FRC prismatic notched specimens in flexure. Model prediction showed good agreement with experimental results. (author)
Directory of Open Access Journals (Sweden)
Pengdong Zhang
2018-01-01
Full Text Available Benefiting from recent advantages in location-aware technologies, movement data are becoming ubiquitous. Hence, numerous research topics with respect to movement data have been undertaken. Yet, the research of dynamic interactions in movement data is still in its infancy. In this paper, we propose a hybrid approach combining the multi-temporal scale spatio-temporal network (MTSSTN and the continuous triangular model (CTM for exploring dynamic interactions in movement data. The approach mainly includes four steps: first, the relative trajectory calculus (RTC is used to derive three types of interaction patterns; second, for each interaction pattern, a corresponding MTSSTN is generated; third, for each MTSSTN, the interaction intensity measures and three centrality measures (i.e., degree, betweenness and closeness are calculated; finally, the results are visualized at multiple temporal scales using the CTM and analyzed based on the generated CTM diagrams. Based on the proposed approach, three distinctive aims can be achieved for each interaction pattern at multiple temporal scales: (1 exploring the interaction intensities between any two individuals; (2 exploring the interaction intensities among multiple individuals, and (3 exploring the importance of each individual and identifying the most important individuals. The movement data obtained from a real football match are used as a case study to validate the effectiveness of the proposed approach. The results demonstrate that the proposed approach is useful in exploring dynamic interactions in football movement data and discovering insightful information.
Parametric Linear Hybrid Automata for Complex Environmental Systems Modeling
Directory of Open Access Journals (Sweden)
Samar Hayat Khan Tareen
2015-07-01
Full Text Available Environmental systems, whether they be weather patterns or predator-prey relationships, are dependent on a number of different variables, each directly or indirectly affecting the system at large. Since not all of these factors are known, these systems take on non-linear dynamics, making it difficult to accurately predict meaningful behavioral trends far into the future. However, such dynamics do not warrant complete ignorance of different efforts to understand and model close approximations of these systems. Towards this end, we have applied a logical modeling approach to model and analyze the behavioral trends and systematic trajectories that these systems exhibit without delving into their quantification. This approach, formalized by René Thomas for discrete logical modeling of Biological Regulatory Networks (BRNs and further extended in our previous studies as parametric biological linear hybrid automata (Bio-LHA, has been previously employed for the analyses of different molecular regulatory interactions occurring across various cells and microbial species. As relationships between different interacting components of a system can be simplified as positive or negative influences, we can employ the Bio-LHA framework to represent different components of the environmental system as positive or negative feedbacks. In the present study, we highlight the benefits of hybrid (discrete/continuous modeling which lead to refinements among the fore-casted behaviors in order to find out which ones are actually possible. We have taken two case studies: an interaction of three microbial species in a freshwater pond, and a more complex atmospheric system, to show the applications of the Bio-LHA methodology for the timed hybrid modeling of environmental systems. Results show that the approach using the Bio-LHA is a viable method for behavioral modeling of complex environmental systems by finding timing constraints while keeping the complexity of the model
Comments On Clock Models In Hybrid Automata And Hybrid Control Systems
Directory of Open Access Journals (Sweden)
Virginia Ecaterina OLTEAN
2001-12-01
Full Text Available Hybrid systems have received a lot of attention in the past decade and a number of different models have been proposed in order to establish mathematical framework that is able to handle both continuous and discrete aspects. This contribution is focused on two models: hybrid automata and hybrid control systems with continuous-discrete interface and the importance of clock models is emphasized. Simple and relevant examples, some taken from the literature, accompany the presentation.
Fahimi, Farzad; Yaseen, Zaher Mundher; El-shafie, Ahmed
2017-05-01
Since the middle of the twentieth century, artificial intelligence (AI) models have been used widely in engineering and science problems. Water resource variable modeling and prediction are the most challenging issues in water engineering. Artificial neural network (ANN) is a common approach used to tackle this problem by using viable and efficient models. Numerous ANN models have been successfully developed to achieve more accurate results. In the current review, different ANN models in water resource applications and hydrological variable predictions are reviewed and outlined. In addition, recent hybrid models and their structures, input preprocessing, and optimization techniques are discussed and the results are compared with similar previous studies. Moreover, to achieve a comprehensive view of the literature, many articles that applied ANN models together with other techniques are included. Consequently, coupling procedure, model evaluation, and performance comparison of hybrid models with conventional ANN models are assessed, as well as, taxonomy and hybrid ANN models structures. Finally, current challenges and recommendations for future researches are indicated and new hybrid approaches are proposed.
HYBRID EDUCATION: THE ESTIMATION IN THE CATEGORIES OF INFORMATION-AXIOLOGICAL APPROACH
Directory of Open Access Journals (Sweden)
A. S. Kizilova
2018-01-01
Full Text Available Introduction: a hybrid assessment of reality is a new information-axiological level of communication between people. The term "hybrid (hybrid training" has been used as a result of the integration of digital and communication technologies in the form of online courses.Materials and methods: the main Russian forms of education are analyzed. The evaluation of the forms of education in the categories of the information-axiological approach is made on the basis of the following idea: everything is interchangeable, since everything has value. The mixing principles and models used in the process of hybrid formation are considered. Due to the fact that any mixed training requires planning, the analysis of the project and the target group, content analysis and financial analysis in this process is carried out.Results: specific educational methods are studied at the Bauman MSTU, subject to a hybrid assessment in the categories of the information-axiological approach. The analysis showed that the above explanation of the term "hybrid formation" is extremely narrow and one-sided. In particular, the search for information on volunteer education and the search for a socially-based education was conducted not only in the Bauman MSTU, but in Russia as a whole. However, the result was the portals of international student organizations with their own projects. Another example of a different interpretation of the "hybrid education" may be the assumption of quite axiologically new duties.Discussion and Conclusions: hybrid education is not limited to any temporal and territorial framework. It can manifest itself not only in the Internet-sphere, but also in the most diverse spheres of everyday life, with the interaction of various people and entire societies.
Interactive Digital Storytelling: Towards a Hybrid Conceptual Approach
Spierling, Ulrike
2005-01-01
1 Introduction In this contribution, Interactive Digital Storytelling is viewed as a hybrid form of game design and cinematic storytelling for the understanding and making of future learning and entertainment applications. The paper shall present formal design models that provide a conceptual bridge between both traditional linear narrative techniques as well as agent-based emergent conversations with virtual characters. In summary, a theoretical classification of thinking models for authors ...
Design of Xen Hybrid Multiple Police Model
Sun, Lei; Lin, Renhao; Zhu, Xianwei
2017-10-01
Virtualization Technology has attracted more and more attention. As a popular open-source virtualization tools, XEN is used more and more frequently. Xsm, XEN security model, has also been widespread concern. The safety status classification has not been established in the XSM, and it uses the virtual machine as a managed object to make Dom0 a unique administrative domain that does not meet the minimum privilege. According to these questions, we design a Hybrid multiple police model named SV_HMPMD that organically integrates multiple single security policy models include DTE,RBAC,BLP. It can fullfill the requirement of confidentiality and integrity for security model and use different particle size to different domain. In order to improve BLP’s practicability, the model introduce multi-level security labels. In order to divide the privilege in detail, we combine DTE with RBAC. In order to oversize privilege, we limit the privilege of domain0.
Solving Unconstrained Global Optimization Problems via Hybrid Swarm Intelligence Approaches
Directory of Open Access Journals (Sweden)
Jui-Yu Wu
2013-01-01
Full Text Available Stochastic global optimization (SGO algorithms such as the particle swarm optimization (PSO approach have become popular for solving unconstrained global optimization (UGO problems. The PSO approach, which belongs to the swarm intelligence domain, does not require gradient information, enabling it to overcome this limitation of traditional nonlinear programming methods. Unfortunately, PSO algorithm implementation and performance depend on several parameters, such as cognitive parameter, social parameter, and constriction coefficient. These parameters are tuned by using trial and error. To reduce the parametrization of a PSO method, this work presents two efficient hybrid SGO approaches, namely, a real-coded genetic algorithm-based PSO (RGA-PSO method and an artificial immune algorithm-based PSO (AIA-PSO method. The specific parameters of the internal PSO algorithm are optimized using the external RGA and AIA approaches, and then the internal PSO algorithm is applied to solve UGO problems. The performances of the proposed RGA-PSO and AIA-PSO algorithms are then evaluated using a set of benchmark UGO problems. Numerical results indicate that, besides their ability to converge to a global minimum for each test UGO problem, the proposed RGA-PSO and AIA-PSO algorithms outperform many hybrid SGO algorithms. Thus, the RGA-PSO and AIA-PSO approaches can be considered alternative SGO approaches for solving standard-dimensional UGO problems.
A promising hybrid approach to SPECT attenuation correction
International Nuclear Information System (INIS)
Lewis, N.H.; Faber, T.L.; Corbett, J.R.; Stokely, E.M.
1984-01-01
Most methods for attenuation compensation in SPECT either rely on the assumption of uniform attenuation, or use slow iteration to achieve accuracy. However, hybrid methods that combine iteration with simple multiplicative correction can accommodate nonuniform attenuation, and such methods converge faster than other iterative techniques. The authors evaluated two such methods, which differ in use of a damping factor to control convergence. Both uniform and nonuniform attenuation were modeled, using simulated and phantom data for a rotating gamma camera. For simulations done with 360 0 data and the correct attenuation map, activity levels were reconstructed to within 5% of the correct values after one iteration. Using 180 0 data, reconstructed levels in regions representing lesion and background were within 5% of the correct values in three iterations; however, further iterations were needed to eliminate the characteristic streak artifacts. The damping factor had little effect on 360 0 reconstruction, but was needed for convergence with 180 0 data. For both cold- and hot-lesion models, image contrast was better from the hybrid methods than from the simpler geometric-mean corrector. Results from the hybrid methods were comparable to those obtained using the conjugate-gradient iterative method, but required 50-100% less reconstruction time. The relative speed of the hybrid methods, and their accuracy in reconstructing photon activity in the presence of nonuniform attenuation, make them promising tools for quantitative SPECT reconstruction
A hybrid approach to simulate multiple photon scattering in X-ray imaging
International Nuclear Information System (INIS)
Freud, N.; Letang, J.-M.; Babot, D.
2005-01-01
A hybrid simulation approach is proposed to compute the contribution of scattered radiation in X- or γ-ray imaging. This approach takes advantage of the complementarity between the deterministic and probabilistic simulation methods. The proposed hybrid method consists of two stages. Firstly, a set of scattering events occurring in the inspected object is determined by means of classical Monte Carlo simulation. Secondly, this set of scattering events is used as a starting point to compute the energy imparted to the detector, with a deterministic algorithm based on a 'forced detection' scheme. For each scattering event, the probability for the scattered photon to reach each pixel of the detector is calculated using well-known physical models (form factor and incoherent scattering function approximations, in the case of Rayleigh and Compton scattering respectively). The results of the proposed hybrid approach are compared to those obtained with the Monte Carlo method alone (Geant4 code) and found to be in excellent agreement. The convergence of the results when the number of scattering events increases is studied. The proposed hybrid approach makes it possible to simulate the contribution of each type (Compton or Rayleigh) and order of scattering, separately or together, with a single PC, within reasonable computation times (from minutes to hours, depending on the number of pixels of the detector). This constitutes a substantial benefit, compared to classical simulation methods (Monte Carlo or deterministic approaches), which usually requires a parallel computing architecture to obtain comparable results
A hybrid approach to simulate multiple photon scattering in X-ray imaging
Energy Technology Data Exchange (ETDEWEB)
Freud, N. [CNDRI, Laboratory of Nondestructive Testing using Ionizing Radiations, INSA-Lyon Scientific and Technical University, Bat. Antoine de Saint-Exupery, 20, avenue Albert Einstein, 69621 Villeurbanne Cedex (France)]. E-mail: nicolas.freud@insa-lyon.fr; Letang, J.-M. [CNDRI, Laboratory of Nondestructive Testing using Ionizing Radiations, INSA-Lyon Scientific and Technical University, Bat. Antoine de Saint-Exupery, 20, avenue Albert Einstein, 69621 Villeurbanne Cedex (France); Babot, D. [CNDRI, Laboratory of Nondestructive Testing using Ionizing Radiations, INSA-Lyon Scientific and Technical University, Bat. Antoine de Saint-Exupery, 20, avenue Albert Einstein, 69621 Villeurbanne Cedex (France)
2005-01-01
A hybrid simulation approach is proposed to compute the contribution of scattered radiation in X- or {gamma}-ray imaging. This approach takes advantage of the complementarity between the deterministic and probabilistic simulation methods. The proposed hybrid method consists of two stages. Firstly, a set of scattering events occurring in the inspected object is determined by means of classical Monte Carlo simulation. Secondly, this set of scattering events is used as a starting point to compute the energy imparted to the detector, with a deterministic algorithm based on a 'forced detection' scheme. For each scattering event, the probability for the scattered photon to reach each pixel of the detector is calculated using well-known physical models (form factor and incoherent scattering function approximations, in the case of Rayleigh and Compton scattering respectively). The results of the proposed hybrid approach are compared to those obtained with the Monte Carlo method alone (Geant4 code) and found to be in excellent agreement. The convergence of the results when the number of scattering events increases is studied. The proposed hybrid approach makes it possible to simulate the contribution of each type (Compton or Rayleigh) and order of scattering, separately or together, with a single PC, within reasonable computation times (from minutes to hours, depending on the number of pixels of the detector). This constitutes a substantial benefit, compared to classical simulation methods (Monte Carlo or deterministic approaches), which usually requires a parallel computing architecture to obtain comparable results.
Directory of Open Access Journals (Sweden)
Araceli Sanchis
2013-04-01
Full Text Available Activities of daily living are good indicators of elderly health status, and activity recognition in smart environments is a well-known problem that has been previously addressed by several studies. In this paper, we describe the use of two powerful machine learning schemes, ANN (Artificial Neural Network and SVM (Support Vector Machines, within the framework of HMM (Hidden Markov Model in order to tackle the task of activity recognition in a home setting. The output scores of the discriminative models, after processing, are used as observation probabilities of the hybrid approach. We evaluate our approach by comparing these hybrid models with other classical activity recognition methods using five real datasets. We show how the hybrid models achieve significantly better recognition performance, with significance level p < 0:05, proving that the hybrid approach is better suited for the addressed domain.
Travelling Waves in Hybrid Chemotaxis Models
Franz, Benjamin; Xue, Chuan; Painter, Kevin J.; Erban, Radek
2013-01-01
. Bacteria are modelled using an agent-based (individual-based) approach with internal dynamics describing signal transduction. In addition to the chemotactic behaviour of the bacteria, the individual-based model also includes cell proliferation and death
Warren, Kerryn A; Ritzman, Terrence B; Humphreys, Robyn A; Percival, Christopher J; Hallgrímsson, Benedikt; Ackermann, Rebecca Rogers
2018-03-01
Hybridization occurs in a number of mammalian lineages, including among primate taxa. Analyses of ancient genomes have shown that hybridization between our lineage and other archaic hominins in Eurasia occurred numerous times in the past. However, we still have limited empirical data on what a hybrid skeleton looks like, or how to spot patterns of hybridization among fossils for which there are no genetic data. Here we use experimental mouse models to supplement previous studies of primates. We characterize size and shape variation in the cranium and mandible of three wild-derived inbred mouse strains and their first generation (F 1 ) hybrids. The three parent taxa in our analysis represent lineages that diverged over approximately the same period as the human/Neanderthal/Denisovan lineages and their hybrids are variably successful in the wild. Comparisons of body size, as quantified by long bone measurements, are also presented to determine whether the identified phenotypic effects of hybridization are localized to the cranium or represent overall body size changes. The results indicate that hybrid cranial and mandibular sizes, as well as limb length, exceed that of the parent taxa in all cases. All three F 1 hybrid crosses display similar patterns of size and form variation. These results are generally consistent with earlier studies on primates and other mammals, suggesting that the effects of hybridization may be similar across very different scenarios of hybridization, including different levels of hybrid fitness. This paper serves to supplement previous studies aimed at identifying F 1 hybrids in the fossil record and to introduce further research that will explore hybrid morphologies using mice as a proxy for better understanding hybridization in the hominin fossil record. Copyright © 2017 Elsevier Ltd. All rights reserved.
A novel hybridization approach for detection of citrus viroids.
Murcia, N; Serra, P; Olmos, A; Duran-Vila, N
2009-04-01
Citrus plants are natural hosts of several viroid species all belonging to the family Pospiviroidae. Previous attempts to detect viroids from field-grown species and cultivars yielded erratic results unless analyses were performed using Etrog citron a secondary bio-amplification host. To overcome the use of Etrog citron a number of RT-PCR approaches have been proposed with different degrees of success. Here we report the suitability of an easy to handle northern hybridization protocol for viroid detection of samples collected from field-grown citrus species and cultivars. The protocol involves: (i) Nucleic acid preparations from bark tissue samples collected from field-grown trees regardless of the growing season and storage conditions; (ii) Separation in 5% PAGE or 1% agarose, blotting to membrane and fixing; (iii) Hybridization with viroid-specific DIG-labelled probes and detection with anti-DIG-alkaline phosphatase conjugate and autoradiography with the CSPD substrate. The method has been tested with viroid-infected trees of sweet orange, lemon, mandarin, grapefruit, sour orange, Swingle citrumello, Tahiti lime and Mexican lime. This novel hybridization approach is extremely sensitive, easy to handle and shortens the time needed for reliable viroid indexing tests. The suitability of PCR generated DIG-labelled probes and the sensitivity achieved when the samples are separated and blotted from non-denaturing gels are discussed.
Hybrid quantum-classical modeling of quantum dot devices
Kantner, Markus; Mittnenzweig, Markus; Koprucki, Thomas
2017-11-01
The design of electrically driven quantum dot devices for quantum optical applications asks for modeling approaches combining classical device physics with quantum mechanics. We connect the well-established fields of semiclassical semiconductor transport theory and the theory of open quantum systems to meet this requirement. By coupling the van Roosbroeck system with a quantum master equation in Lindblad form, we introduce a new hybrid quantum-classical modeling approach, which provides a comprehensive description of quantum dot devices on multiple scales: it enables the calculation of quantum optical figures of merit and the spatially resolved simulation of the current flow in realistic semiconductor device geometries in a unified way. We construct the interface between both theories in such a way, that the resulting hybrid system obeys the fundamental axioms of (non)equilibrium thermodynamics. We show that our approach guarantees the conservation of charge, consistency with the thermodynamic equilibrium and the second law of thermodynamics. The feasibility of the approach is demonstrated by numerical simulations of an electrically driven single-photon source based on a single quantum dot in the stationary and transient operation regime.
Modeling of renewable hybrid energy sources
Directory of Open Access Journals (Sweden)
Dumitru Cristian Dragos
2009-12-01
Full Text Available Recent developments and trends in the electric power consumption indicate an increasing use of renewable energy. Renewable energy technologies offer the promise of clean, abundant energy gathered from self-renewing resources such as the sun, wind, earth and plants. Virtually all regions of the world have renewable resources of one type or another. By this point of view studies on renewable energies focuses more and more attention. The present paper intends to present different mathematical models related to different types of renewable energy sources such as: solar energy and wind energy. It is also presented the validation and adaptation of such models to hybrid systems working in geographical and meteorological conditions specific to central part of Transylvania region. The conclusions based on validation of such models are also shown.
Does the acceptance of hybrid learning affect learning approaches in France?
Marco, Lionel Di; Venot, Alain; Gillois, Pierre
2017-01-01
Acceptance of a learning technology affects students' intention to use that technology, but the influence of the acceptance of a learning technology on learning approaches has not been investigated in the literature. A deep learning approach is important in the field of health, where links must be created between skills, knowledge, and habits. Our hypothesis was that acceptance of a hybrid learning model would affect students' way of learning. We analysed these concepts, and their correlations, in the context of a flipped classroom method using a local learning management system. In a sample of all students within a single year of study in the midwifery program (n= 38), we used 3 validated scales to evaluate these concepts (the Study Process Questionnaire, My Intellectual Work Tools, and the Hybrid E-Learning Acceptance Model: Learner Perceptions). Our sample had a positive acceptance of the learning model, but a neutral intention to use it. Students reported that they were distractible during distance learning. They presented a better mean score for the deep approach than for the superficial approach (Paffected by acceptance of a hybrid learning model, due to the flexibility of the tool. However, we identified problems in the students' time utilization, which explains their neutral intention to use the system.
Causality in Psychiatry: A Hybrid Symptom Network Construct Model
Directory of Open Access Journals (Sweden)
Gerald eYoung
2015-11-01
Full Text Available Causality or etiology in psychiatry is marked by standard biomedical, reductionistic models (symptoms reflect the construct involved that inform approaches to nosology, or classification, such as in the DSM-5 (Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition; American Psychiatric Association, 2013. However, network approaches to symptom interaction (i.e., symptoms are formative of the construct; e.g., McNally, Robinaugh, Wu, Wang, Deserno, & Borsboom, 2014, for PTSD (posttraumatic stress disorder are being developed that speak to bottom-up processes in mental disorder, in contrast to the typical top-down psychological construct approach. The present article presents a hybrid top-down, bottom-up model of the relationship between symptoms and mental disorder, viewing symptom expression and their causal complex as a reciprocally dynamic system with multiple levels, from lower-order symptoms in interaction to higher-order constructs affecting them. The hybrid model hinges on good understanding of systems theory in which it is embedded, so that the article reviews in depth nonlinear dynamical systems theory (NLDST. The article applies the concept of emergent circular causality (Young, 2011 to symptom development, as well. Conclusions consider that symptoms vary over several dimensions, including: subjectivity; objectivity; conscious motivation effort; and unconscious influences, and the degree to which individual (e.g., meaning and universal (e.g., causal processes are involved. The opposition between science and skepticism is a complex one that the article addresses in final comments.
Hybrid CFD/CAA Modeling for Liftoff Acoustic Predictions
Strutzenberg, Louise L.; Liever, Peter A.
2011-01-01
This paper presents development efforts at the NASA Marshall Space flight Center to establish a hybrid Computational Fluid Dynamics and Computational Aero-Acoustics (CFD/CAA) simulation system for launch vehicle liftoff acoustics environment analysis. Acoustic prediction engineering tools based on empirical jet acoustic strength and directivity models or scaled historical measurements are of limited value in efforts to proactively design and optimize launch vehicles and launch facility configurations for liftoff acoustics. CFD based modeling approaches are now able to capture the important details of vehicle specific plume flow environment, identifY the noise generation sources, and allow assessment of the influence of launch pad geometric details and sound mitigation measures such as water injection. However, CFD methodologies are numerically too dissipative to accurately capture the propagation of the acoustic waves in the large CFD models. The hybrid CFD/CAA approach combines the high-fidelity CFD analysis capable of identifYing the acoustic sources with a fast and efficient Boundary Element Method (BEM) that accurately propagates the acoustic field from the source locations. The BEM approach was chosen for its ability to properly account for reflections and scattering of acoustic waves from launch pad structures. The paper will present an overview of the technology components of the CFD/CAA framework and discuss plans for demonstration and validation against test data.
Directory of Open Access Journals (Sweden)
Andrea A. F. Mourão
Full Text Available ABSTRACT The hybridization is a widely-discussed issue in several studies with fish species. For some authors, hybridization may be related with diversification and speciation of several groups, or also with the extinction of populations or species. Difficulties to differentiate species and hybrids may be a problem to correctly apply a management of wild species, because hybrid lineages, especially the advanced ones, may resemble the parental species. The genus Cichla Bloch & Schneider, 1801 constitutes an interesting experimental model, considering that hybridization and taxonomic uncertainties hinder a correct identification. Considering these problems, in this study, we developed genetic methodologies and applied meristic and morphometric approaches in wild samples in order to identify species and for test a possible hybridization between Cichla kelberi Kullander & Ferreira, 2006 and Cichla piquiti Kullander & Ferreira, 2006. For this, C. kelberi, C. piquiti and potential hybrid ( carijó individuals were collected in Paraná and Tietê rivers (SP, Brazil. For meristic and morphometric methods, the individuals were analyzed using the statistical software Pcord 5:31, while for molecular methods, primers for PCR-multiplex were designed and enzyme for PCR-RFLP were selected, under the species-specific nucleotide. All results indicated that the carijó is not an interspecific hybrid, because it presented identical genetic pattern and morphology closed to C. piquiti. Thus, we propose that carijó is a C. piquiti morphotype. In addition, this study promotes a new molecular tool that could be used in future research, monitoring and management programs of the genus Cichla.
Hybrid Modeling Method for a DEP Based Particle Manipulation
Directory of Open Access Journals (Sweden)
Mohamad Sawan
2013-01-01
Full Text Available In this paper, a new modeling approach for Dielectrophoresis (DEP based particle manipulation is presented. The proposed method fulfills missing links in finite element modeling between the multiphysic simulation and the biological behavior. This technique is amongst the first steps to develop a more complex platform covering several types of manipulations such as magnetophoresis and optics. The modeling approach is based on a hybrid interface using both ANSYS and MATLAB to link the propagation of the electrical field in the micro-channel to the particle motion. ANSYS is used to simulate the electrical propagation while MATLAB interprets the results to calculate cell displacement and send the new information to ANSYS for another turn. The beta version of the proposed technique takes into account particle shape, weight and its electrical properties. First obtained results are coherent with experimental results.
Analysis of chromosome aberration data by hybrid-scale models
International Nuclear Information System (INIS)
Indrawati, Iwiq; Kumazawa, Shigeru
2000-02-01
This paper presents a new methodology for analyzing data of chromosome aberrations, which is useful to understand the characteristics of dose-response relationships and to construct the calibration curves for the biological dosimetry. The hybrid scale of linear and logarithmic scales brings a particular plotting paper, where the normal section paper, two types of semi-log papers and the log-log paper are continuously connected. The hybrid-hybrid plotting paper may contain nine kinds of linear relationships, and these are conveniently called hybrid scale models. One can systematically select the best-fit model among the nine models by among the conditions for a straight line of data points. A biological interpretation is possible with some hybrid-scale models. In this report, the hybrid scale models were applied to separately reported data on chromosome aberrations in human lymphocytes as well as on chromosome breaks in Tradescantia. The results proved that the proposed models fit the data better than the linear-quadratic model, despite the demerit of the increased number of model parameters. We showed that the hybrid-hybrid model (both variables of dose and response using the hybrid scale) provides the best-fit straight lines to be used as the reliable and readable calibration curves of chromosome aberrations. (author)
A Gaussian process regression based hybrid approach for short-term wind speed prediction
International Nuclear Information System (INIS)
Zhang, Chi; Wei, Haikun; Zhao, Xin; Liu, Tianhong; Zhang, Kanjian
2016-01-01
Highlights: • A novel hybrid approach is proposed for short-term wind speed prediction. • This method combines the parametric AR model with the non-parametric GPR model. • The relative importance of different inputs is considered. • Different types of covariance functions are considered and combined. • It can provide both accurate point forecasts and satisfactory prediction intervals. - Abstract: This paper proposes a hybrid model based on autoregressive (AR) model and Gaussian process regression (GPR) for probabilistic wind speed forecasting. In the proposed approach, the AR model is employed to capture the overall structure from wind speed series, and the GPR is adopted to extract the local structure. Additionally, automatic relevance determination (ARD) is used to take into account the relative importance of different inputs, and different types of covariance functions are combined to capture the characteristics of the data. The proposed hybrid model is compared with the persistence model, artificial neural network (ANN), and support vector machine (SVM) for one-step ahead forecasting, using wind speed data collected from three wind farms in China. The forecasting results indicate that the proposed method can not only improve point forecasts compared with other methods, but also generate satisfactory prediction intervals.
A Hybrid Teaching and Learning Model
Juhary, Jowati Binti
This paper aims at analysing the needs for a specific teaching and learning model for the National Defence University of Malaysia (NDUM). The main argument is that whether there are differences between teaching and learning for academic component versus military component at the university. It is further argued that in order to achieve excellence, there should be one teaching and learning culture. Data were collected through interviews with military cadets. It is found that there are variations of teaching and learning strategies for academic courses, in comparison to a dominant teaching and learning style for military courses. Thus, in the interest of delivering quality education and training for students at the university, the paper argues that possibly a hybrid model for teaching and learning is fundamental in order to generate a one culture of academic and military excellence for the NDUM.
Modelling supervisory controller for hybrid power systems
Energy Technology Data Exchange (ETDEWEB)
Pereira, A; Bindner, H; Lundsager, P [Risoe National Lab., Roskilde (Denmark); Jannerup, O [Technical Univ. of Denmark, Dept. of Automation, Lyngby (Denmark)
1999-03-01
Supervisory controllers are important to achieve optimal operation of hybrid power systems. The performance and economics of such systems depend mainly on the control strategy for switching on/off components. The modular concept described in this paper is an attempt to design standard supervisory controllers that could be used in different applications, such as village power and telecommunication applications. This paper presents some basic aspects of modelling and design of modular supervisory controllers using the object-oriented modelling technique. The functional abstraction hierarchy technique is used to formulate the control requirements and identify the functions of the control system. The modular algorithm is generic and flexible enough to be used with any system configuration and several goals (different applications). The modularity includes accepting modification of system configuration and goals during operation with minor or no changes in the supervisory controller. (au)
Three hybridization models based on local search scheme for job shop scheduling problem
Balbi Fraga, Tatiana
2015-05-01
This work presents three different hybridization models based on the general schema of Local Search Heuristics, named Hybrid Successive Application, Hybrid Neighborhood, and Hybrid Improved Neighborhood. Despite similar approaches might have already been presented in the literature in other contexts, in this work these models are applied to analyzes the solution of the job shop scheduling problem, with the heuristics Taboo Search and Particle Swarm Optimization. Besides, we investigate some aspects that must be considered in order to achieve better solutions than those obtained by the original heuristics. The results demonstrate that the algorithms derived from these three hybrid models are more robust than the original algorithms and able to get better results than those found by the single Taboo Search.
A hybrid approach for efficient anomaly detection using metaheuristic methods
Directory of Open Access Journals (Sweden)
Tamer F. Ghanem
2015-07-01
Full Text Available Network intrusion detection based on anomaly detection techniques has a significant role in protecting networks and systems against harmful activities. Different metaheuristic techniques have been used for anomaly detector generation. Yet, reported literature has not studied the use of the multi-start metaheuristic method for detector generation. This paper proposes a hybrid approach for anomaly detection in large scale datasets using detectors generated based on multi-start metaheuristic method and genetic algorithms. The proposed approach has taken some inspiration of negative selection-based detector generation. The evaluation of this approach is performed using NSL-KDD dataset which is a modified version of the widely used KDD CUP 99 dataset. The results show its effectiveness in generating a suitable number of detectors with an accuracy of 96.1% compared to other competitors of machine learning algorithms.
Approaches to Low Fuel Regression Rate in Hybrid Rocket Engines
Directory of Open Access Journals (Sweden)
Dario Pastrone
2012-01-01
Full Text Available Hybrid rocket engines are promising propulsion systems which present appealing features such as safety, low cost, and environmental friendliness. On the other hand, certain issues hamper the development hoped for. The present paper discusses approaches addressing improvements to one of the most important among these issues: low fuel regression rate. To highlight the consequence of such an issue and to better understand the concepts proposed, fundamentals are summarized. Two approaches are presented (multiport grain and high mixture ratio which aim at reducing negative effects without enhancing regression rate. Furthermore, fuel material changes and nonconventional geometries of grain and/or injector are presented as methods to increase fuel regression rate. Although most of these approaches are still at the laboratory or concept scale, many of them are promising.
A hybrid approach for minimizing makespan in permutation flowshop scheduling
DEFF Research Database (Denmark)
Govindan, Kannan; Balasundaram, R.; Baskar, N.
2017-01-01
This work proposes a hybrid approach for solving traditional flowshop scheduling problems to reduce the makespan (total completion time). To solve scheduling problems, a combination of Decision Tree (DT) and Scatter Search (SS) algorithms are used. Initially, the DT is used to generate a seed...... solution which is then given input to the SS to obtain optimal / near optimal solutions of makespan. The DT used the entropy function to convert the given problem into a tree structured format / set of rules. The SS provides an extensive investigation of the search space through diversification...
Hybrid closure of atrial septal defect: A modified approach
Directory of Open Access Journals (Sweden)
Kshitij Sheth
2015-01-01
Full Text Available A 3.5-year-old girl underwent transcatheter closure of patent ductus arteriosus in early infancy during which time her secundum atrial septal defect (ASD was left alone. When she came for elective closure of ASD, she was found to have bilaterally blocked femoral veins. The defect was successfully closed with an Amplatzer septal occluder (ASO; St. Jude Medical, Plymouth, MN, USA using a hybrid approach via a sub-mammary mini-thoracotomy incision without using cardiopulmonary bypass. At the end of 1-year follow-up, the child is asymptomatic with device in a stable position without any residual shunt.
A 'simple' hybrid model for power derivatives
International Nuclear Information System (INIS)
Lyle, Matthew R.; Elliott, Robert J.
2009-01-01
This paper presents a method for valuing power derivatives using a supply-demand approach. Our method extends work in the field by incorporating randomness into the base load portion of the supply stack function and equating it with a noisy demand process. We obtain closed form solutions for European option prices written on average spot prices considering two different supply models: a mean-reverting model and a Markov chain model. The results are extensions of the classic Black-Scholes equation. The model provides a relatively simple approach to describe the complicated price behaviour observed in electricity spot markets and also allows for computationally efficient derivatives pricing. (author)
Energy Technology Data Exchange (ETDEWEB)
Qiu, Yuefeng, E-mail: yuefeng.qiu@kit.edu; Lu, Lei; Fischer, Ulrich
2015-10-15
Highlights: • Integrated approach for neutronics, thermal and structural analyses was developed. • MCNP5/6, TRIPOLI-4 were coupled with CFX, Fluent and ANSYS Workbench. • A novel meshing approach has been proposed for describing MC geometry. - Abstract: Coupled multi-physics analyses on fusion reactor devices require high-fidelity neutronic models, and flexible, accurate data exchanging between various calculation codes. An integrated coupling approach has been developed to enable the conversion of CAD, mesh, or hybrid geometries for Monte Carlo (MC) codes MCNP5/6, TRIPOLI-4, and translation of nuclear heating data for CFD codes Fluent, CFX and structural mechanical software ANSYS Workbench. The coupling approach has been implemented based on SALOME platform with CAD modeling, mesh generation and data visualization capabilities. A novel meshing approach has been developed for generating suitable meshes for MC geometry descriptions. The coupling approach has been concluded to be reliable and efficient after verification calculations of several application cases.
Advanced control approach for hybrid systems based on solid oxide fuel cells
International Nuclear Information System (INIS)
Ferrari, Mario L.
2015-01-01
Highlights: • Advanced new control system for SOFC based hybrid plants. • Proportional–Integral approach with feed-forward technology. • Good control of fuel cell temperature. • All critical properties maintained inside safe conditions. - Abstract: This paper shows a new advanced control approach for operations in hybrid systems equipped with solid oxide fuel cell technology. This new tool, which combines feed-forward and standard proportional–integral techniques, controls the system during load changes avoiding failures and stress conditions detrimental to component life. This approach was selected to combine simplicity and good control performance. Moreover, the new approach presented in this paper eliminates the need for mass flow rate meters and other expensive probes, as usually required for a commercial plant. Compared to previous works, better performance is achieved in controlling fuel cell temperature (maximum gradient significantly lower than 3 K/min), reducing the pressure gap between cathode and anode sides (at least a 30% decrease during transient operations), and generating a higher safe margin (at least a 10% increase) for the Steam-to-Carbon Ratio. This new control system was developed and optimized using a hybrid system transient model implemented, validated and tested within previous works. The plant, comprising the coupling of a tubular solid oxide fuel cell stack with a microturbine, is equipped with a bypass valve able to connect the compressor outlet with the turbine inlet duct for rotational speed control. Following model development and tuning activities, several operative conditions were considered to show the new control system increased performance compared to previous tools (the same hybrid system model was used with the new control approach). Special attention was devoted to electrical load steps and ramps considering significant changes in ambient conditions
Scalability of Sustainable Business Models in Hybrid Organizations
Directory of Open Access Journals (Sweden)
Adam Jabłoński
2016-02-01
Full Text Available The dynamics of change in modern business create new mechanisms for company management to determine their pursuit and the achievement of their high performance. This performance maintained over a long period of time becomes a source of ensuring business continuity by companies. An ontological being enabling the adoption of such assumptions is such a business model that has the ability to generate results in every possible market situation and, moreover, it has the features of permanent adaptability. A feature that describes the adaptability of the business model is its scalability. Being a factor ensuring more work and more efficient work with an increasing number of components, scalability can be applied to the concept of business models as the company’s ability to maintain similar or higher performance through it. Ensuring the company’s performance in the long term helps to build the so-called sustainable business model that often balances the objectives of stakeholders and shareholders, and that is created by the implemented principles of value-based management and corporate social responsibility. This perception of business paves the way for building hybrid organizations that integrate business activities with pro-social ones. The combination of an approach typical of hybrid organizations in designing and implementing sustainable business models pursuant to the scalability criterion seems interesting from the cognitive point of view. Today, hybrid organizations are great spaces for building effective and efficient mechanisms for dialogue between business and society. This requires the appropriate business model. The purpose of the paper is to present the conceptualization and operationalization of scalability of sustainable business models that determine the performance of a hybrid organization in the network environment. The paper presents the original concept of applying scalability in sustainable business models with detailed
Feature Selection using Multi-objective Genetic Algorith m: A Hybrid Approach
Ahuja, Jyoti; GJUST - Guru Jambheshwar University of Sciecne and Technology; Ratnoo, Saroj Dahiya; GJUST - Guru Jambheshwar University of Sciecne and Technology
2015-01-01
Feature selection is an important pre-processing task for building accurate and comprehensible classification models. Several researchers have applied filter, wrapper or hybrid approaches using genetic algorithms which are good candidates for optimization problems that involve large search spaces like in the case of feature selection. Moreover, feature selection is an inherently multi-objective problem with many competing objectives involving size, predictive power and redundancy of the featu...
Hybrid ATDL-gamma distribution model for predicting area source acid gas concentrations
Energy Technology Data Exchange (ETDEWEB)
Jakeman, A J; Taylor, J A
1985-01-01
An air quality model is developed to predict the distribution of concentrations of acid gas in an urban airshed. The model is hybrid in character, combining reliable features of a deterministic ATDL-based model with statistical distributional approaches. The gamma distribution was identified from a range of distributional models as the best model. The paper shows that the assumptions of a previous hybrid model may be relaxed and presents a methodology for characterizing the uncertainty associated with model predictions. Results are demonstrated for the 98-percentile predictions of 24-h average data over annual periods at six monitoring sites. This percentile relates to the World Health Organization goal for acid gas concentrations.
New MPPT algorithm for PV applications based on hybrid dynamical approach
Elmetennani, Shahrazed
2016-10-24
This paper proposes a new Maximum Power Point Tracking (MPPT) algorithm for photovoltaic applications using the multicellular converter as a stage of power adaptation. The proposed MPPT technique has been designed using a hybrid dynamical approach to model the photovoltaic generator. The hybrid dynamical theory has been applied taking advantage of the particular topology of the multicellular converter. Then, a hybrid automata has been established to optimize the power production. The maximization of the produced solar energy is achieved by switching between the different operative modes of the hybrid automata, which is conditioned by some invariance and transition conditions. These conditions have been validated by simulation tests under different conditions of temperature and irradiance. Moreover, the performance of the proposed algorithm has been then evaluated by comparison with standard MPPT techniques numerically and by experimental tests under varying external working conditions. The results have shown the interesting features that the hybrid MPPT technique presents in terms of performance and simplicity for real time implementation.
New MPPT algorithm for PV applications based on hybrid dynamical approach
Elmetennani, Shahrazed; Laleg-Kirati, Taous-Meriem; Djemai, M.; Tadjine, M.
2016-01-01
This paper proposes a new Maximum Power Point Tracking (MPPT) algorithm for photovoltaic applications using the multicellular converter as a stage of power adaptation. The proposed MPPT technique has been designed using a hybrid dynamical approach to model the photovoltaic generator. The hybrid dynamical theory has been applied taking advantage of the particular topology of the multicellular converter. Then, a hybrid automata has been established to optimize the power production. The maximization of the produced solar energy is achieved by switching between the different operative modes of the hybrid automata, which is conditioned by some invariance and transition conditions. These conditions have been validated by simulation tests under different conditions of temperature and irradiance. Moreover, the performance of the proposed algorithm has been then evaluated by comparison with standard MPPT techniques numerically and by experimental tests under varying external working conditions. The results have shown the interesting features that the hybrid MPPT technique presents in terms of performance and simplicity for real time implementation.
HyLTL: a temporal logic for model checking hybrid systems
Directory of Open Access Journals (Sweden)
Davide Bresolin
2013-08-01
Full Text Available The model-checking problem for hybrid systems is a well known challenge in the scientific community. Most of the existing approaches and tools are limited to safety properties only, or operates by transforming the hybrid system to be verified into a discrete one, thus loosing information on the continuous dynamics of the system. In this paper we present a logic for specifying complex properties of hybrid systems called HyLTL, and we show how it is possible to solve the model checking problem by translating the formula into an equivalent hybrid automaton. In this way the problem is reduced to a reachability problem on hybrid automata that can be solved by using existing tools.
A Hybrid Genetic Algorithm Approach for Optimal Power Flow
Directory of Open Access Journals (Sweden)
Sydulu Maheswarapu
2011-08-01
Full Text Available This paper puts forward a reformed hybrid genetic algorithm (GA based approach to the optimal power flow. In the approach followed here, continuous variables are designed using real-coded GA and discrete variables are processed as binary strings. The outcomes are compared with many other methods like simple genetic algorithm (GA, adaptive genetic algorithm (AGA, differential evolution (DE, particle swarm optimization (PSO and music based harmony search (MBHS on a IEEE30 bus test bed, with a total load of 283.4 MW. Its found that the proposed algorithm is found to offer lowest fuel cost. The proposed method is found to be computationally faster, robust, superior and promising form its convergence characteristics.
A Low Cost, Hybrid Approach to Data Mining, Phase I
National Aeronautics and Space Administration — The proposed effort will combine a low cost physical modeling approach with inductive, data-centered modeling in an aerosopace relevant context to demonstrate...
Exploratory Topology Modelling of Form-Active Hybrid Structures
DEFF Research Database (Denmark)
Holden Deleuran, Anders; Pauly, Mark; Tamke, Martin
2016-01-01
The development of novel form-active hybrid structures (FAHS) is impeded by a lack of modelling tools that allow for exploratory topology modelling of shaped assemblies. We present a flexible and real-time computational design modelling pipeline developed for the exploratory modelling of FAHS...... that enables designers and engineers to iteratively construct and manipulate form-active hybrid assembly topology on the fly. The pipeline implements Kangaroo2's projection-based methods for modelling hybrid structures consisting of slender beams and cable networks. A selection of design modelling sketches...
Directory of Open Access Journals (Sweden)
Dmitriev Aleksandr
2016-01-01
Full Text Available Discussed model of quality of identification has improved mathematical tools and allows you to use a variety of additional information. The proposed robust method is a matrix MTQFD (Matrix Technique Quality Function Deployment allows you to determine not only the priorities but also the assessment of the target values of the product characteristics and process parameters, with the possible use of the information on the negative relationship. Designed ontological model, method and model of expert system versatile and can be used to identify the quality of services.
2017-03-21
Monitoring and Verification Protocol LCDR Lieutenant Commander ME Mechanical Engineering MPC Model Predictive Control: a model-based system...Activity PE Professional Engineer PG&E Pacific Gas & Electric : a California utility company PI Proportional + Integral: a common software element...INTRODUCTION The Department of Defense (DoD) spends approximately $4 billion per year on facility energy consumption to power and fuel over 500
Bayesian inference for hybrid discrete-continuous stochastic kinetic models
International Nuclear Information System (INIS)
Sherlock, Chris; Golightly, Andrew; Gillespie, Colin S
2014-01-01
We consider the problem of efficiently performing simulation and inference for stochastic kinetic models. Whilst it is possible to work directly with the resulting Markov jump process (MJP), computational cost can be prohibitive for networks of realistic size and complexity. In this paper, we consider an inference scheme based on a novel hybrid simulator that classifies reactions as either ‘fast’ or ‘slow’ with fast reactions evolving as a continuous Markov process whilst the remaining slow reaction occurrences are modelled through a MJP with time-dependent hazards. A linear noise approximation (LNA) of fast reaction dynamics is employed and slow reaction events are captured by exploiting the ability to solve the stochastic differential equation driving the LNA. This simulation procedure is used as a proposal mechanism inside a particle MCMC scheme, thus allowing Bayesian inference for the model parameters. We apply the scheme to a simple application and compare the output with an existing hybrid approach and also a scheme for performing inference for the underlying discrete stochastic model. (paper)
Current approaches to gene regulatory network modelling
Directory of Open Access Journals (Sweden)
Brazma Alvis
2007-09-01
Full Text Available Abstract Many different approaches have been developed to model and simulate gene regulatory networks. We proposed the following categories for gene regulatory network models: network parts lists, network topology models, network control logic models, and dynamic models. Here we will describe some examples for each of these categories. We will study the topology of gene regulatory networks in yeast in more detail, comparing a direct network derived from transcription factor binding data and an indirect network derived from genome-wide expression data in mutants. Regarding the network dynamics we briefly describe discrete and continuous approaches to network modelling, then describe a hybrid model called Finite State Linear Model and demonstrate that some simple network dynamics can be simulated in this model.
Genetic algorithm and neural network hybrid approach for job-shop scheduling
Zhao, Kai; Yang, Shengxiang; Wang, Dingwei
1998-01-01
Copyright @ 1998 ACTA Press This paper proposes a genetic algorithm (GA) and constraint satisfaction adaptive neural network (CSANN) hybrid approach for job-shop scheduling problems. In the hybrid approach, GA is used to iterate for searching optimal solutions, CSANN is used to obtain feasible solutions during the iteration of genetic algorithm. Simulations have shown the valid performance of the proposed hybrid approach for job-shop scheduling with respect to the quality of solutions and ...
Design, test and model of a hybrid magnetostrictive hydraulic actuator
International Nuclear Information System (INIS)
Chaudhuri, Anirban; Yoo, Jin-Hyeong; Wereley, Norman M
2009-01-01
The basic operation of hybrid hydraulic actuators involves high frequency bi-directional operation of an active material that is converted to uni-directional motion of hydraulic fluid using valves. A hybrid actuator was developed using magnetostrictive material Terfenol-D as the driving element and hydraulic oil as the working fluid. Two different lengths of Terfenol-D rod, 51 and 102 mm, with the same diameter, 12.7 mm, were used. Tests with no load and with load were carried out to measure the performance for uni-directional motion of the output piston at different pumping frequencies. The maximum no-load flow rates were 24.8 cm 3 s −1 and 22.7 cm 3 s −1 with the 51 mm and 102 mm long rods respectively, and the peaks were noted around 325 Hz pumping frequency. The blocked force of the actuator was close to 89 N in both cases. A key observation was that, at these high pumping frequencies, the inertial effects of the fluid mass dominate over the viscous effects and the problem becomes unsteady in nature. In this study, we also develop a mathematical model of the hydraulic hybrid actuator in the time domain to show the basic operational principle under varying conditions and to capture phenomena affecting system performance. Governing equations for the pumping piston and output shaft were obtained from force equilibrium considerations, while compressibility of the working fluid was taken into account by incorporating the bulk modulus. Fluid inertia was represented by a lumped parameter approach to the transmission line model, giving rise to strongly coupled ordinary differential equations. The model was then used to calculate the no-load velocities of the actuator at different pumping frequencies and simulation results were compared with experimental data for model validation
A diagnostic expert system for NPP based on hybrid knowledge approach
International Nuclear Information System (INIS)
Yang, Joon On; Chang, Soon Heung
1989-01-01
This paper describes a diagnostic expert system, HYPOSS (Hybrid Knowledge Based Plant Operation Supporting System), which has been developed to support operators' decision making during the transients of nuclear power plant. HYPOSS adopts the hybrid knowledge approach which combines shallow and deep knowledge to couple the merits of both approaches. In HYPOSS, four types of knowledge are used according to the steps of diagnosis procedure: structural, functional, behavioral and heuristic knowledge. The structural and functional knowledge is represented by three fundamental primitives and five types of functions respectively. The behavioral knowledge is represented using constraints. The inference procedure is based on the human problem solving behavior modeled in HYPOSS. For the validation of HYPOSS, several tests have been performed based on the data produced by a plant simulator. The results of validation studies showed a good applicability of HYPOSS to the anomaly diagnosis of nuclear power plant
A Study on a Hybrid Approach for Diagnosing Faults in Nuclear Power Plant
International Nuclear Information System (INIS)
Yang, M.; Zhang, Z.J.; Peng, M.J.; Yan, S.Y.; Wang, H.; Ouyang, J.
2006-01-01
Proper and rapid identification of malfunctions is of premier importance for the safe operation of Nuclear Power Plants (NPP). Many monitoring or/and diagnosis methodologies based on artificial and computational intelligence have been proposed to aid operator to understand system problems, perform trouble-shooting action and reduce human error under serious pressure. However, because no single method is adequate to handle all requirements for diagnostic system, hybrid approaches where different methods work in conjunction to solve parts of the problem interest researchers greatly. In this study, Multilevel Flow Models (MFM) and Artificial Neural Network (ANN) are proposed and employed to develop a fault diagnosis system with the intention of improving the success rate of recognition on the one hand, and improving the understandability of diagnostic process and results on the other hand. Several simulation cases were conducted for evaluating the performance of the proposed diagnosis system. The simulation results validated the effectiveness of the proposed hybrid approach. (authors)
Kim, J.; Rasouli, S.; Timmermans, H.J.P.
2017-01-01
People's daily decision to use car-sharing rather than other transport modes for conducting a specific activity has been investigated recently in assessing the market potential of car-sharing systems. Most studies have estimated transport mode choice models with an extended choice set using
Nandola, Naresh N.; Rivera, Daniel E.
2011-01-01
This paper presents a data-centric modeling and predictive control approach for nonlinear hybrid systems. System identification of hybrid systems represents a challenging problem because model parameters depend on the mode or operating point of the system. The proposed algorithm applies Model-on-Demand (MoD) estimation to generate a local linear approximation of the nonlinear hybrid system at each time step, using a small subset of data selected by an adaptive bandwidth selector. The appeal of the MoD approach lies in the fact that model parameters are estimated based on a current operating point; hence estimation of locations or modes governed by autonomous discrete events is achieved automatically. The local MoD model is then converted into a mixed logical dynamical (MLD) system representation which can be used directly in a model predictive control (MPC) law for hybrid systems using multiple-degree-of-freedom tuning. The effectiveness of the proposed MoD predictive control algorithm for nonlinear hybrid systems is demonstrated on a hypothetical adaptive behavioral intervention problem inspired by Fast Track, a real-life preventive intervention for improving parental function and reducing conduct disorder in at-risk children. Simulation results demonstrate that the proposed algorithm can be useful for adaptive intervention problems exhibiting both nonlinear and hybrid character. PMID:21874087
A hybrid data compression approach for online backup service
Wang, Hua; Zhou, Ke; Qin, MingKang
2009-08-01
With the popularity of Saas (Software as a service), backup service has becoming a hot topic of storage application. Due to the numerous backup users, how to reduce the massive data load is a key problem for system designer. Data compression provides a good solution. Traditional data compression application used to adopt a single method, which has limitations in some respects. For example data stream compression can only realize intra-file compression, de-duplication is used to eliminate inter-file redundant data, compression efficiency cannot meet the need of backup service software. This paper proposes a novel hybrid compression approach, which includes two levels: global compression and block compression. The former can eliminate redundant inter-file copies across different users, the latter adopts data stream compression technology to realize intra-file de-duplication. Several compressing algorithms were adopted to measure the compression ratio and CPU time. Adaptability using different algorithm in certain situation is also analyzed. The performance analysis shows that great improvement is made through the hybrid compression policy.
Hybrid continuum-coarse-grained modeling of erythrocytes
Lyu, Jinming; Chen, Paul G.; Boedec, Gwenn; Leonetti, Marc; Jaeger, Marc
2018-06-01
The red blood cell (RBC) membrane is a composite structure, consisting of a phospholipid bilayer and an underlying membrane-associated cytoskeleton. Both continuum and particle-based coarse-grained RBC models make use of a set of vertices connected by edges to represent the RBC membrane, which can be seen as a triangular surface mesh for the former and a spring network for the latter. Here, we present a modeling approach combining an existing continuum vesicle model with a coarse-grained model for the cytoskeleton. Compared to other two-component approaches, our method relies on only one mesh, representing the cytoskeleton, whose velocity in the tangential direction of the membrane may be different from that of the lipid bilayer. The finitely extensible nonlinear elastic (FENE) spring force law in combination with a repulsive force defined as a power function (POW), called FENE-POW, is used to describe the elastic properties of the RBC membrane. The mechanical interaction between the lipid bilayer and the cytoskeleton is explicitly computed and incorporated into the vesicle model. Our model includes the fundamental mechanical properties of the RBC membrane, namely fluidity and bending rigidity of the lipid bilayer, and shear elasticity of the cytoskeleton while maintaining surface-area and volume conservation constraint. We present three simulation examples to demonstrate the effectiveness of this hybrid continuum-coarse-grained model for the study of RBCs in fluid flows.
Modelling of data uncertainties on hybrid computers
Energy Technology Data Exchange (ETDEWEB)
Schneider, Anke (ed.)
2016-06-15
The codes d{sup 3}f and r{sup 3}t are well established for modelling density-driven flow and nuclide transport in the far field of repositories for hazardous material in deep geological formations. They are applicable in porous media as well as in fractured rock or mudstone, for modelling salt- and heat transport as well as a free groundwater surface. Development of the basic framework of d{sup 3}f and r{sup 3}t had begun more than 20 years ago. Since that time significant advancements took place in the requirements for safety assessment as well as for computer hardware development. The period of safety assessment for a repository of high-level radioactive waste was extended to 1 million years, and the complexity of the models is steadily growing. Concurrently, the demands on accuracy increase. Additionally, model and parameter uncertainties become more and more important for an increased understanding of prediction reliability. All this leads to a growing demand for computational power that requires a considerable software speed-up. An effective way to achieve this is the use of modern, hybrid computer architectures which requires basically the set-up of new data structures and a corresponding code revision but offers a potential speed-up by several orders of magnitude. The original codes d{sup 3}f and r{sup 3}t were applications of the software platform UG /BAS 94/ whose development had begun in the early nineteennineties. However, UG had recently been advanced to the C++ based, substantially revised version UG4 /VOG 13/. To benefit also in the future from state-of-the-art numerical algorithms and to use hybrid computer architectures, the codes d{sup 3}f and r{sup 3}t were transferred to this new code platform. Making use of the fact that coupling between different sets of equations is natively supported in UG4, d{sup 3}f and r{sup 3}t were combined to one conjoint code d{sup 3}f++. A direct estimation of uncertainties for complex groundwater flow models with the
Neuro-genetic hybrid approach for the solution of non-convex economic dispatch problem
International Nuclear Information System (INIS)
Malik, T.N.; Asar, A.U.
2009-01-01
ED (Economic Dispatch) is non-convex constrained optimization problem, and is used for both on line and offline studies in power system operation. Conventionally, it is solved as convex problem using optimization techniques by approximating generator input/output characteristic. Curves of monotonically increasing nature thus resulting in an inaccurate dispatch. The GA (Genetic Algorithm) has been used for the solution of this problem owing to its inherent ability to address the convex and non-convex problems equally. This approach brings the solution to the global minimum region of search space in a short time and then takes longer time to converge to near optimal results. GA based hybrid approaches are used to fine tune the near optimal results produced by GA. This paper proposes NGH (Neuro Genetic Hybrid) approach to solve the economic dispatch with valve point effect. The proposed approach combines the GA with the ANN (Artificial Neural Network) using SI (Swarm Intelligence) learning rule. The GA acts as a global optimizer and the neural network fine tunes the GA results to the desired targets. Three machines standard test system has been tested for validation of the approach. Comparing the results with GA and NGH model based on back-propagation learning, the proposed approach gives contrast improvements showing the promise of the approach. (author)
Attention-level transitory response: a novel hybrid BCI approach
Diez, Pablo F.; Garcés Correa, Agustina; Orosco, Lorena; Laciar, Eric; Mut, Vicente
2015-10-01
Objective. People with disabilities may control devices such as a computer or a wheelchair by means of a brain-computer interface (BCI). BCI based on steady-state visual evoked potentials (SSVEP) requires visual stimulation of the user. However, this SSVEP-based BCI suffers from the ‘Midas touch effect’, i.e., the BCI can detect an SSVEP even when the user is not gazing at the stimulus. Then, these incorrect detections deteriorate the performance of the system, especially in asynchronous BCI because ongoing EEG is classified. In this paper, a novel transitory response of the attention-level of the user is reported. It was used to develop a hybrid BCI (hBCI). Approach. Three methods are proposed to detect the attention-level of the user. They are based on the alpha rhythm and theta/beta rate. The proposed hBCI scheme is presented along with these methods. Hence, the hBCI sends a command only when the user is at a high-level of attention, or in other words, when the user is really focused on the task being performed. The hBCI was tested over two different EEG datasets. Main results. The performance of the hybrid approach is superior to the standard one. Improvements of 20% in accuracy and 10 bits min-1 are reported. Moreover, the attention-level is extracted from the same EEG channels used in SSVEP detection and this way, no extra hardware is needed. Significance. A transitory response of EEG signal is used to develop the attention-SSVEP hBCI which is capable of reducing the Midas touch effect.
Model predictive control of hybrid systems : stability and robustness
Lazar, M.
2006-01-01
This thesis considers the stabilization and the robust stabilization of certain classes of hybrid systems using model predictive control. Hybrid systems represent a broad class of dynamical systems in which discrete behavior (usually described by a finite state machine) and continuous behavior
Transient Model of Hybrid Concentrated Photovoltaic with Thermoelectric Generator
DEFF Research Database (Denmark)
Mahmoudi Nezhad, Sajjad; Qing, Shaowei; Rezaniakolaei, Alireza
2017-01-01
Transient performance of a concentrated photovoltaic thermoelectric (CPV-TEG) hybrid system is modeled and investigated. A heat sink with water, as the working fluid has been implemented as the cold reservoir of the hybrid system to harvest the heat loss from CPV cell and to increase the efficiency...
International Nuclear Information System (INIS)
Shipler, D.B.; Napier, B.A.
1992-07-01
This report details the conceptual approaches to be used in calculating radiation doses to individuals throughout the various periods of operations at the Hanford Site. The report considers the major environmental transport pathways--atmospheric, surface water, and ground water--and projects and appropriate modeling technique for each. The modeling sequence chosen for each pathway depends on the available data on doses, the degree of confidence justified by such existing data, and the level of sophistication deemed appropriate for the particular pathway and time period being considered
Hybrid x-space: a new approach for MPI reconstruction.
Tateo, A; Iurino, A; Settanni, G; Andrisani, A; Stifanelli, P F; Larizza, P; Mazzia, F; Mininni, R M; Tangaro, S; Bellotti, R
2016-06-07
Magnetic particle imaging (MPI) is a new medical imaging technique capable of recovering the distribution of superparamagnetic particles from their measured induced signals. In literature there are two main MPI reconstruction techniques: measurement-based (MB) and x-space (XS). The MB method is expensive because it requires a long calibration procedure as well as a reconstruction phase that can be numerically costly. On the other side, the XS method is simpler than MB but the exact knowledge of the field free point (FFP) motion is essential for its implementation. Our simulation work focuses on the implementation of a new approach for MPI reconstruction: it is called hybrid x-space (HXS), representing a combination of the previous methods. Specifically, our approach is based on XS reconstruction because it requires the knowledge of the FFP position and velocity at each time instant. The difference with respect to the original XS formulation is how the FFP velocity is computed: we estimate it from the experimental measurements of the calibration scans, typical of the MB approach. Moreover, a compressive sensing technique is applied in order to reduce the calibration time, setting a fewer number of sampling positions. Simulations highlight that HXS and XS methods give similar results. Furthermore, an appropriate use of compressive sensing is crucial for obtaining a good balance between time reduction and reconstructed image quality. Our proposal is suitable for open geometry configurations of human size devices, where incidental factors could make the currents, the fields and the FFP trajectory irregular.
Synthesis of a hybrid model of the VSC FACTS devices and HVDC technologies
Borovikov, Yu S.; Gusev, A. S.; Sulaymanov, A. O.; Ufa, R. A.
2014-10-01
The motivation of the presented research is based on the need for development of new methods and tools for adequate simulation of FACTS devices and HVDC systems as part of real electric power systems (EPS). The Research object: An alternative hybrid approach for synthesizing VSC-FACTS and -HVDC hybrid model is proposed. The results: the VSC- FACTS and -HVDC hybrid model is designed in accordance with the presented concepts of hybrid simulation. The developed model allows us to carry out adequate simulation in real time of all the processes in HVDC, FACTS devices and EPS as a whole without any decomposition and limitation on their duration, and also use the developed tool for effective solution of a design, operational and research tasks of EPS containing such devices.
Synthesis of a hybrid model of the VSC FACTS devices and HVDC technologies
International Nuclear Information System (INIS)
Borovikov, Yu S; Gusev, A S; Sulaymanov, A O; Ufa, R A
2014-01-01
The motivation of the presented research is based on the need for development of new methods and tools for adequate simulation of FACTS devices and HVDC systems as part of real electric power systems (EPS). The Research object: An alternative hybrid approach for synthesizing VSC-FACTS and -HVDC hybrid model is proposed. The results: the VSC- FACTS and -HVDC hybrid model is designed in accordance with the presented concepts of hybrid simulation. The developed model allows us to carry out adequate simulation in real time of all the processes in HVDC, FACTS devices and EPS as a whole without any decomposition and limitation on their duration, and also use the developed tool for effective solution of a design, operational and research tasks of EPS containing such devices
A new hybrid model optimized by an intelligent optimization algorithm for wind speed forecasting
International Nuclear Information System (INIS)
Su, Zhongyue; Wang, Jianzhou; Lu, Haiyan; Zhao, Ge
2014-01-01
Highlights: • A new hybrid model is developed for wind speed forecasting. • The model is based on the Kalman filter and the ARIMA. • An intelligent optimization method is employed in the hybrid model. • The new hybrid model has good performance in western China. - Abstract: Forecasting the wind speed is indispensable in wind-related engineering studies and is important in the management of wind farms. As a technique essential for the future of clean energy systems, reducing the forecasting errors related to wind speed has always been an important research subject. In this paper, an optimized hybrid method based on the Autoregressive Integrated Moving Average (ARIMA) and Kalman filter is proposed to forecast the daily mean wind speed in western China. This approach employs Particle Swarm Optimization (PSO) as an intelligent optimization algorithm to optimize the parameters of the ARIMA model, which develops a hybrid model that is best adapted to the data set, increasing the fitting accuracy and avoiding over-fitting. The proposed method is subsequently examined on the wind farms of western China, where the proposed hybrid model is shown to perform effectively and steadily
Wu, Guang; Dong, Zuomin
2017-09-01
Hybrid electric vehicles are widely accepted as a promising short to mid-term technical solution due to noticeably improved efficiency and lower emissions at competitive costs. In recent years, various hybrid powertrain systems were proposed and implemented based on different types of conventional transmission. Power-split system, including Toyota Hybrid System and Ford Hybrid System, are well-known examples. However, their relatively low torque capacity, and the drive of alternative and more advanced designs encouraged other innovative hybrid system designs. In this work, a new type of hybrid powertrain system based hybridized automated manual transmission (HAMT) is proposed. By using the concept of torque gap filler (TGF), this new hybrid powertrain type has the potential to overcome issue of torque gap during gearshift. The HAMT design (patent pending) is described in details, from gear layout and design of gear ratios (EV mode and HEV mode) to torque paths at different gears. As an analytical tool, mutli-body model of vehicle equipped with this HAMT was built to analyze powertrain dynamics at various steady and transient modes. A gearshift was decomposed and analyzed based basic modes. Furthermore, a Simulink-SimDriveline hybrid vehicle model was built for the new transmission, driveline and vehicle modular. Control strategy has also been built to harmonically coordinate different powertrain components to realize TGF function. A vehicle launch simulation test has been completed under 30% of accelerator pedal position to reveal details during gearshift. Simulation results showed that this HAMT can eliminate most torque gap that has been persistent issue of traditional AMT, improving both drivability and performance. This work demonstrated a new type of transmission that features high torque capacity, high efficiency and improved drivability.
Probabilistic modelling and analysis of stand-alone hybrid power systems
International Nuclear Information System (INIS)
Lujano-Rojas, Juan M.; Dufo-López, Rodolfo; Bernal-Agustín, José L.
2013-01-01
As a part of the Hybrid Intelligent Algorithm, a model based on an ANN (artificial neural network) has been proposed in this paper to represent hybrid system behaviour considering the uncertainty related to wind speed and solar radiation, battery bank lifetime, and fuel prices. The Hybrid Intelligent Algorithm suggests a combination of probabilistic analysis based on a Monte Carlo simulation approach and artificial neural network training embedded in a genetic algorithm optimisation model. The installation of a typical hybrid system was analysed. Probabilistic analysis was used to generate an input–output dataset of 519 samples that was later used to train the ANNs to reduce the computational effort required. The generalisation ability of the ANNs was measured in terms of RMSE (Root Mean Square Error), MBE (Mean Bias Error), MAE (Mean Absolute Error), and R-squared estimators using another data group of 200 samples. The results obtained from the estimation of the expected energy not supplied, the probability of a determined reliability level, and the estimation of expected value of net present cost show that the presented model is able to represent the main characteristics of a typical hybrid power system under uncertain operating conditions. - Highlights: • This paper presents a probabilistic model for stand-alone hybrid power system. • The model considers the main sources of uncertainty related to renewable resources. • The Hybrid Intelligent Algorithm has been applied to represent hybrid system behaviour. • The installation of a typical hybrid system was analysed. • The results obtained from the study case validate the presented model
An SVM model with hybrid kernels for hydrological time series
Wang, C.; Wang, H.; Zhao, X.; Xie, Q.
2017-12-01
Support Vector Machine (SVM) models have been widely applied to the forecast of climate/weather and its impact on other environmental variables such as hydrologic response to climate/weather. When using SVM, the choice of the kernel function plays the key role. Conventional SVM models mostly use one single type of kernel function, e.g., radial basis kernel function. Provided that there are several featured kernel functions available, each having its own advantages and drawbacks, a combination of these kernel functions may give more flexibility and robustness to SVM approach, making it suitable for a wide range of application scenarios. This paper presents such a linear combination of radial basis kernel and polynomial kernel for the forecast of monthly flowrate in two gaging stations using SVM approach. The results indicate significant improvement in the accuracy of predicted series compared to the approach with either individual kernel function, thus demonstrating the feasibility and advantages of such hybrid kernel approach for SVM applications.
Hadden, C. M.; Klimek-McDonald, D. R.; Pineda, E. J.; King, J. A.; Reichanadter, A. M.; Miskioglu, I.; Gowtham, S.; Odegard, G. M.
2015-01-01
Because of the relatively high specific mechanical properties of carbon fiber/epoxy composite materials, they are often used as structural components in aerospace applications. Graphene nanoplatelets (GNPs) can be added to the epoxy matrix to improve the overall mechanical properties of the composite. The resulting GNP/carbon fiber/epoxy hybrid composites have been studied using multiscale modeling to determine the influence of GNP volume fraction, epoxy crosslink density, and GNP dispersion on the mechanical performance. The hierarchical multiscale modeling approach developed herein includes Molecular Dynamics (MD) and micromechanical modeling, and it is validated with experimental testing of the same hybrid composite material system. The results indicate that the multiscale modeling approach is accurate and provides physical insight into the composite mechanical behavior. Also, the results quantify the substantial impact of GNP volume fraction and dispersion on the transverse mechanical properties of the hybrid composite, while the effect on the axial properties is shown to be insignificant.
Hadden, Cameron M.; Klimek-McDonald, Danielle R.; Pineda, Evan J.; King, Julie A.; Reichanadter, Alex M.; Miskioglu, Ibrahim; Gowtham, S.; Odegard, Gregory M.
2015-01-01
Because of the relatively high specific mechanical properties of carbon fiber/epoxy composite materials, they are often used as structural components in aerospace applications. Graphene nanoplatelets (GNPs) can be added to the epoxy matrix to improve the overall mechanical properties of the composite. The resulting GNP/carbon fiber/epoxy hybrid composites have been studied using multiscale modeling to determine the influence of GNP volume fraction, epoxy crosslink density, and GNP dispersion on the mechanical performance. The hierarchical multiscale modeling approach developed herein includes Molecular Dynamics (MD) and micromechanical modeling, and it is validated with experimental testing of the same hybrid composite material system. The results indicate that the multiscale modeling approach is accurate and provides physical insight into the composite mechanical behavior. Also, the results quantify the substantial impact of GNP volume fraction and dispersion on the transverse mechanical properties of the hybrid composite, while the effect on the axial properties is shown to be insignificant.
Directory of Open Access Journals (Sweden)
Kristen Feher
Full Text Available Heterosis, the greater vigor of hybrids compared to their parents, has been exploited in maize breeding for more than 100 years to produce ever better performing elite hybrids of increased yield. Despite extensive research, the underlying mechanisms shaping the extent of heterosis are not well understood, rendering the process of selecting an optimal set of parental lines tedious. This study is based on a dataset consisting of 112 metabolite levels in young roots of four parental maize inbred lines and their corresponding twelve hybrids, along with the roots' biomass as a heterotic trait. Because the parental biomass is a poor predictor for hybrid biomass, we established a model framework to deduce the biomass of the hybrid from metabolite profiles of its parental lines. In the proposed framework, the hybrid metabolite levels are expressed relative to the parental levels by incorporating the standard concept of additivity/dominance, which we name the Combined Relative Level (CRL. Our modeling strategy includes a feature selection step on the parental levels which are demonstrated to be predictive of CRL across many hybrid metabolites. We demonstrate that these selected parental metabolites are further predictive of hybrid biomass. Our approach directly employs the diallel structure in a multivariate fashion, whereby we attempt to not only predict macroscopic phenotype (biomass, but also molecular phenotype (metabolite profiles. Therefore, our study provides the first steps for further investigations of the genetic determinants to metabolism and, ultimately, growth. Finally, our success on the small-scale experiments implies a valid strategy for large-scale experiments, where parental metabolite profiles may be used together with profiles of selected hybrids as a training set to predict biomass of all possible hybrids.
Hybrid model for simulation of plasma jet injection in tokamak
Galkin, Sergei A.; Bogatu, I. N.
2016-10-01
Hybrid kinetic model of plasma treats the ions as kinetic particles and the electrons as charge neutralizing massless fluid. The model is essentially applicable when most of the energy is concentrated in the ions rather than in the electrons, i.e. it is well suited for the high-density hyper-velocity C60 plasma jet. The hybrid model separates the slower ion time scale from the faster electron time scale, which becomes disregardable. That is why hybrid codes consistently outperform the traditional PIC codes in computational efficiency, still resolving kinetic ions effects. We discuss 2D hybrid model and code with exact energy conservation numerical algorithm and present some results of its application to simulation of C60 plasma jet penetration through tokamak-like magnetic barrier. We also examine the 3D model/code extension and its possible applications to tokamak and ionospheric plasmas. The work is supported in part by US DOE DE-SC0015776 Grant.
Directory of Open Access Journals (Sweden)
Desmaison Olivier
2013-11-01
Full Text Available Le procédé de soudage hybride Arc/Laser est une solution aux assemblages difficiles de tôles de fortes épaisseurs. Ce procédé innovant associe deux sources de chaleur : un arc électrique produit par une torche MIG et une source laser placée en amont. Ce couplage améliore le rendement du procédé, la qualité du cordon et les déformations finales. La modélisation de ce procédé par une approche Level Set permet une prédiction du développement du cordon et du champ de température associé. La simulation du soudage multi-passes d'une nuance d'acier 18MnNiMo5 est présentée ici et les résultats sont comparés aux observations expérimentales. The hybrid arc/laser welding process has been developed in order to overcome the difficulties encountered for joining high thickness steel sheets. This innovative process gathers two heat sources: an arc source developed by a MIG torch and a pre-located laser source. This coupling improves the efficiency of the process, the weld bead quality and the final deformations. The Level-Set approach for the modelling of this process enables the prediction of the weld bead development and the temperature field evolution. The simulation of the multi-passes welding of a 18MnNiMo5 steel grade is detailed and the results are compared to the experimental observations.
Energy Technology Data Exchange (ETDEWEB)
Wichapa, Narong; Khokhajaikiat, Porntep
2017-07-01
Disposal of infectious waste remains one of the most serious problems in the social and environmental domains of almost every nation. Selection of new suitable locations and finding the optimal set of transport routes to transport infectious waste, namely location routing problem for infectious waste disposal, is one of the major problems in hazardous waste management. Design/methodology/approach: Due to the complexity of this problem, location routing problem for a case study, forty hospitals and three candidate municipalities in sub-Northeastern Thailand, was divided into two phases. The first phase is to choose suitable municipalities using hybrid fuzzy goal programming model which hybridizes the fuzzy analytic hierarchy process and fuzzy goal programming. The second phase is to find the optimal routes for each selected municipality using hybrid genetic algorithm which hybridizes the genetic algorithm and local searches including 2-Opt-move, Insertion-move and ?-interchange-move. Findings: The results indicate that the hybrid fuzzy goal programming model can guide the selection of new suitable municipalities, and the hybrid genetic algorithm can provide the optimal routes for a fleet of vehicles effectively. Originality/value: The novelty of the proposed methodologies, hybrid fuzzy goal programming model, is the simultaneous combination of both intangible and tangible factors in order to choose new suitable locations, and the hybrid genetic algorithm can be used to determine the optimal routes which provide a minimum number of vehicles and minimum transportation cost under the actual situation, efficiently.
International Nuclear Information System (INIS)
Wichapa, Narong; Khokhajaikiat, Porntep
2017-01-01
Disposal of infectious waste remains one of the most serious problems in the social and environmental domains of almost every nation. Selection of new suitable locations and finding the optimal set of transport routes to transport infectious waste, namely location routing problem for infectious waste disposal, is one of the major problems in hazardous waste management. Design/methodology/approach: Due to the complexity of this problem, location routing problem for a case study, forty hospitals and three candidate municipalities in sub-Northeastern Thailand, was divided into two phases. The first phase is to choose suitable municipalities using hybrid fuzzy goal programming model which hybridizes the fuzzy analytic hierarchy process and fuzzy goal programming. The second phase is to find the optimal routes for each selected municipality using hybrid genetic algorithm which hybridizes the genetic algorithm and local searches including 2-Opt-move, Insertion-move and ?-interchange-move. Findings: The results indicate that the hybrid fuzzy goal programming model can guide the selection of new suitable municipalities, and the hybrid genetic algorithm can provide the optimal routes for a fleet of vehicles effectively. Originality/value: The novelty of the proposed methodologies, hybrid fuzzy goal programming model, is the simultaneous combination of both intangible and tangible factors in order to choose new suitable locations, and the hybrid genetic algorithm can be used to determine the optimal routes which provide a minimum number of vehicles and minimum transportation cost under the actual situation, efficiently.
A Hybrid ACO Approach to the Matrix Bandwidth Minimization Problem
Pintea, Camelia-M.; Crişan, Gloria-Cerasela; Chira, Camelia
The evolution of the human society raises more and more difficult endeavors. For some of the real-life problems, the computing time-restriction enhances their complexity. The Matrix Bandwidth Minimization Problem (MBMP) seeks for a simultaneous permutation of the rows and the columns of a square matrix in order to keep its nonzero entries close to the main diagonal. The MBMP is a highly investigated {NP}-complete problem, as it has broad applications in industry, logistics, artificial intelligence or information recovery. This paper describes a new attempt to use the Ant Colony Optimization framework in tackling MBMP. The introduced model is based on the hybridization of the Ant Colony System technique with new local search mechanisms. Computational experiments confirm a good performance of the proposed algorithm for the considered set of MBMP instances.
A hybrid computational approach to estimate solar global radiation: An empirical evidence from Iran
International Nuclear Information System (INIS)
Mostafavi, Elham Sadat; Ramiyani, Sara Saeidi; Sarvar, Rahim; Moud, Hashem Izadi; Mousavi, Seyyed Mohammad
2013-01-01
This paper presents an innovative hybrid approach for the estimation of the solar global radiation. New prediction equations were developed for the global radiation using an integrated search method of genetic programming (GP) and simulated annealing (SA), called GP/SA. The solar radiation was formulated in terms of several climatological and meteorological parameters. Comprehensive databases containing monthly data collected for 6 years in two cities of Iran were used to develop GP/SA-based models. Separate models were established for each city. The generalization of the models was verified using a separate testing database. A sensitivity analysis was conducted to investigate the contribution of the parameters affecting the solar radiation. The derived models make accurate predictions of the solar global radiation and notably outperform the existing models. -- Highlights: ► A hybrid approach is presented for the estimation of the solar global radiation. ► The proposed method integrates the capabilities of GP and SA. ► Several climatological and meteorological parameters are included in the analysis. ► The GP/SA models make accurate predictions of the solar global radiation.
An energy management approach of hybrid vehicles using traffic preview information for energy saving
International Nuclear Information System (INIS)
Zheng, Chunhua; Xu, Guoqing; Xu, Kun; Pan, Zhongming; Liang, Quan
2015-01-01
Highlights: • Energy management approach of hybrid vehicles using traffic preview information. • Vehicle velocity profile and fuel consumption are optimized at the same time. • It is proved that a further energy saving is achieved by the proposed approach. • The proposed approach is useful especially for autonomous hybrid vehicles. - Abstract: The traffic preview information is very helpful for hybrid vehicles when distributing the power requirement of the vehicle to power sources and when determining the next driving route of the vehicle. In this research, an energy management approach for hybrid vehicles is proposed, which optimizes the vehicle velocity profile while minimizing the fuel consumption with the help of the traffic preview information, so that a further energy saving for hybrid vehicles can be achieved. The Pontryagin’s Minimum Principle (PMP) is adopted on the proposed approach. A fuel cell hybrid vehicle (FCHV) is selected as an example, and the proposed energy management approach is applied to the FCHV in a computer simulation environment for the offline and online cases respectively. Simulation results show that the fuel economy of the FCHV is improved by the proposed energy management approach compared to a benchmark case where the driving cycle is fixed and only the hybrid power split (allocation) ratio is optimized. The proposed energy management approach is useful especially for the autonomous hybrid vehicles.
Dickman, Christopher T D; Moehring, Amanda J
2013-01-01
When species interbreed, the hybrid offspring that are produced are often sterile. If only one hybrid sex is sterile, it is almost always the heterogametic (XY or ZW) sex. Taking this trend into account, the predominant model used to explain the genetic basis of F1 sterility involves a deleterious interaction between recessive sex-linked loci from one species and dominant autosomal loci from the other species. This model is difficult to evaluate, however, as only a handful of loci influencing interspecies hybrid sterility have been identified, and their autosomal genetic interactors have remained elusive. One hindrance to their identification has been the overwhelming effect of the sex chromosome in mapping studies, which could 'mask' the ability to accurately map autosomal factors. Here, we use a novel approach employing attached-X chromosomes to create reciprocal backcross interspecies hybrid males that have a non-recombinant sex chromosome and recombinant autosomes. The heritable variation in phenotype is thus solely caused by differences in the autosomes, thereby allowing us to accurately identify the number and location of autosomal sterility loci. In one direction of backcross, all males were sterile, indicating that sterility could be entirely induced by the sex chromosome complement in these males. In the other direction, we identified nine quantitative trait loci that account for a surprisingly large amount (56%) of the autosome-induced phenotypic variance in sterility, with a large contribution of autosome-autosome epistatic interactions. These loci are capable of acting dominantly, and thus could contribute to F1 hybrid sterility.
Directory of Open Access Journals (Sweden)
Christopher T D Dickman
Full Text Available When species interbreed, the hybrid offspring that are produced are often sterile. If only one hybrid sex is sterile, it is almost always the heterogametic (XY or ZW sex. Taking this trend into account, the predominant model used to explain the genetic basis of F1 sterility involves a deleterious interaction between recessive sex-linked loci from one species and dominant autosomal loci from the other species. This model is difficult to evaluate, however, as only a handful of loci influencing interspecies hybrid sterility have been identified, and their autosomal genetic interactors have remained elusive. One hindrance to their identification has been the overwhelming effect of the sex chromosome in mapping studies, which could 'mask' the ability to accurately map autosomal factors. Here, we use a novel approach employing attached-X chromosomes to create reciprocal backcross interspecies hybrid males that have a non-recombinant sex chromosome and recombinant autosomes. The heritable variation in phenotype is thus solely caused by differences in the autosomes, thereby allowing us to accurately identify the number and location of autosomal sterility loci. In one direction of backcross, all males were sterile, indicating that sterility could be entirely induced by the sex chromosome complement in these males. In the other direction, we identified nine quantitative trait loci that account for a surprisingly large amount (56% of the autosome-induced phenotypic variance in sterility, with a large contribution of autosome-autosome epistatic interactions. These loci are capable of acting dominantly, and thus could contribute to F1 hybrid sterility.
The hybrid thermography approach applied to architectural structures
Sfarra, S.; Ambrosini, D.; Paoletti, D.; Nardi, I.; Pasqualoni, G.
2017-07-01
This work contains an overview of infrared thermography (IRT) method and its applications relating to the investigation of architectural structures. In this method, the passive approach is usually used in civil engineering, since it provides a panoramic view of the thermal anomalies to be interpreted also thanks to the use of photographs focused on the region of interest (ROI). The active approach, is more suitable for laboratory or indoor inspections, as well as for objects having a small size. The external stress to be applied is thermal, coming from non-natural apparatus such as lamps or hot / cold air jets. In addition, the latter permits to obtain quantitative information related to defects not detectable to the naked eyes. Very recently, the hybrid thermography (HIRT) approach has been introduced to the attention of the scientific panorama. It can be applied when the radiation coming from the sun, directly arrives (i.e., possibly without the shadow cast effect) on a surface exposed to the air. A large number of thermograms must be collected and a post-processing analysis is subsequently applied via advanced algorithms. Therefore, an appraisal of the defect depth can be obtained passing through the calculation of the combined thermal diffusivity of the materials above the defect. The approach is validated herein by working, in a first stage, on a mosaic sample having known defects while, in a second stage, on a Church built in L'Aquila (Italy) and covered with a particular masonry structure called apparecchio aquilano. The results obtained appear promising.
Winkelmann, Stefanie; Schütte, Christof
2017-09-01
Well-mixed stochastic chemical kinetics are properly modeled by the chemical master equation (CME) and associated Markov jump processes in molecule number space. If the reactants are present in large amounts, however, corresponding simulations of the stochastic dynamics become computationally expensive and model reductions are demanded. The classical model reduction approach uniformly rescales the overall dynamics to obtain deterministic systems characterized by ordinary differential equations, the well-known mass action reaction rate equations. For systems with multiple scales, there exist hybrid approaches that keep parts of the system discrete while another part is approximated either using Langevin dynamics or deterministically. This paper aims at giving a coherent overview of the different hybrid approaches, focusing on their basic concepts and the relation between them. We derive a novel general description of such hybrid models that allows expressing various forms by one type of equation. We also check in how far the approaches apply to model extensions of the CME for dynamics which do not comply with the central well-mixed condition and require some spatial resolution. A simple but meaningful gene expression system with negative self-regulation is analysed to illustrate the different approximation qualities of some of the hybrid approaches discussed. Especially, we reveal the cause of error in the case of small volume approximations.
Winkelmann, Stefanie; Schütte, Christof
2017-09-21
Well-mixed stochastic chemical kinetics are properly modeled by the chemical master equation (CME) and associated Markov jump processes in molecule number space. If the reactants are present in large amounts, however, corresponding simulations of the stochastic dynamics become computationally expensive and model reductions are demanded. The classical model reduction approach uniformly rescales the overall dynamics to obtain deterministic systems characterized by ordinary differential equations, the well-known mass action reaction rate equations. For systems with multiple scales, there exist hybrid approaches that keep parts of the system discrete while another part is approximated either using Langevin dynamics or deterministically. This paper aims at giving a coherent overview of the different hybrid approaches, focusing on their basic concepts and the relation between them. We derive a novel general description of such hybrid models that allows expressing various forms by one type of equation. We also check in how far the approaches apply to model extensions of the CME for dynamics which do not comply with the central well-mixed condition and require some spatial resolution. A simple but meaningful gene expression system with negative self-regulation is analysed to illustrate the different approximation qualities of some of the hybrid approaches discussed. Especially, we reveal the cause of error in the case of small volume approximations.
Model for optimum design of standalone hybrid renewable energy ...
African Journals Online (AJOL)
An optimization model for the design of a hybrid renewable energy microgrid ... and increasing the rated power of the wind energy conversion system (WECS) or solar ... a 70% reduction in gas emissions and an 80% reduction in energy costs.
Nuclear Hybrid Energy System Modeling: RELAP5 Dynamic Coupling Capabilities
Energy Technology Data Exchange (ETDEWEB)
Piyush Sabharwall; Nolan Anderson; Haihua Zhao; Shannon Bragg-Sitton; George Mesina
2012-09-01
The nuclear hybrid energy systems (NHES) research team is currently developing a dynamic simulation of an integrated hybrid energy system. A detailed simulation of proposed NHES architectures will allow initial computational demonstration of a tightly coupled NHES to identify key reactor subsystem requirements, identify candidate reactor technologies for a hybrid system, and identify key challenges to operation of the coupled system. This work will provide a baseline for later coupling of design-specific reactor models through industry collaboration. The modeling capability addressed in this report focuses on the reactor subsystem simulation.
Recent developments on the UrQMD hybrid model
Energy Technology Data Exchange (ETDEWEB)
Steinheimer, J., E-mail: steinheimer@th.physik.uni-frankfurt.de; Nahrgang, M., E-mail: nahrgang@th.physik.uni-frankfurt.de; Gerhard, J., E-mail: jochen.gerhard@compeng.uni-frankfurt.de; Schramm, S., E-mail: schramm@fias.uni-frankfurt.de; Bleicher, M., E-mail: bleicher@fias.uni-frankfurt.de [Frankfurt Institute for Advanced Studies (FIAS) (Germany)
2012-06-15
We present recent results from the UrQMD hybrid approach investigating the influence of a deconfinement phase transition on the dynamics of hot and dense nuclear matter. In the hydrodynamic stage an equation of state that incorporates a critical end-point (CEP) in line with lattice data is used. The equation of state describes chiral restoration as well as the deconfinement phase transition. We compare the results from this new equation of state to results obtained by applying a hadron resonance gas equation of state, focusing on bulk observables. Furthermore we will discuss future improvements of the hydrodynamic model. This includes the formulation of chiral fluid dynamics to be able to study the effects of a chiral critical point as well as considerable improvements in terms of computational time which would open up possibilities for observables that require high statistics.
Modelling and Investigation of a Hybrid Thermal Energy Harvester
Directory of Open Access Journals (Sweden)
Todorov Todor
2018-01-01
Full Text Available The presented paper deals with dynamical and experimental investigations of a hybrid energy harvester containing shape memory alloy (SMA wire and elastic cantilever with piezoelectric layer. The SMA wire periodically changes its temperature under the influence of a heated plate that approaches and moves away from the SMA wire. The change of SMA wire length causes rotation of the hot plate. The plate is heated by a heater with constant temperature. The repeated SMA wire extensions and contractions bend the piezoelectric cantilever which generates electric charges. The shape memory effect is presented as a temperature approximation of the Young’s modulus. A dynamical model of the energy harvester is created and some analytical investigations are presented. With the help of an experimental setup the acceleration, the force, the temperature, and the output voltage have been measured. The theoretical results are validated experimentally. Some conclusions are made about the best performance of the energy harvester.
Directory of Open Access Journals (Sweden)
Kaisheng Zhang
2016-12-01
Full Text Available Recently, population density has grown quickly with the increasing acceleration of urbanization. At the same time, overcrowded situations are more likely to occur in populous urban areas, increasing the risk of accidents. This paper proposes a synthetic approach to recognize and identify the large pedestrian flow. In particular, a hybrid pedestrian flow detection model was constructed by analyzing real data from major mobile phone operators in China, including information from smartphones and base stations (BS. With the hybrid model, the Log Distance Path Loss (LDPL model was used to estimate the pedestrian density from raw network data, and retrieve information with the Gaussian Progress (GP through supervised learning. Temporal-spatial prediction of the pedestrian data was carried out with Machine Learning (ML approaches. Finally, a case study of a real Central Business District (CBD scenario in Shanghai, China using records of millions of cell phone users was conducted. The results showed that the new approach significantly increases the utility and capacity of the mobile network. A more reasonable overcrowding detection and alert system can be developed to improve safety in subway lines and other hotspot landmark areas, such as the Bundle, People’s Square or Disneyland, where a large passenger flow generally exists.
Directory of Open Access Journals (Sweden)
Paweł Sitek
2016-01-01
Full Text Available This paper presents a hybrid method for modeling and solving supply chain optimization problems with soft, hard, and logical constraints. Ability to implement soft and logical constraints is a very important functionality for supply chain optimization models. Such constraints are particularly useful for modeling problems resulting from commercial agreements, contracts, competition, technology, safety, and environmental conditions. Two programming and solving environments, mathematical programming (MP and constraint logic programming (CLP, were combined in the hybrid method. This integration, hybridization, and the adequate multidimensional transformation of the problem (as a presolving method helped to substantially reduce the search space of combinatorial models for supply chain optimization problems. The operation research MP and declarative CLP, where constraints are modeled in different ways and different solving procedures are implemented, were linked together to use the strengths of both. This approach is particularly important for the decision and combinatorial optimization models with the objective function and constraints, there are many decision variables, and these are summed (common in manufacturing, supply chain management, project management, and logistic problems. The ECLiPSe system with Eplex library was proposed to implement a hybrid method. Additionally, the proposed hybrid transformed model is compared with the MILP-Mixed Integer Linear Programming model on the same data instances. For illustrative models, its use allowed finding optimal solutions eight to one hundred times faster and reducing the size of the combinatorial problem to a significant extent.
A hybrid Scatter/Transform cloaking model
Directory of Open Access Journals (Sweden)
Gad Licht
2015-01-01
Full Text Available A new Scatter/Transform cloak is developed that combines the light bending of refraction characteristic of a Transform cloak with the scatter cancellation characteristic of a Scatter cloak. The hybrid cloak incorporates both Transform’s variable index of refraction with modified linear intrusions to maximize the Scatter cloak effect. Scatter/Transform improved the scattering cross-section of cloaking in a 2-dimensional space to 51.7% compared to only 39.6% or 45.1% respectively with either Scatter or Transform alone. Metamaterials developed with characteristics based on the new ST hybrid cloak will exhibit superior cloaking capabilities.
Hybrid Speaker Recognition Using Universal Acoustic Model
Nishimura, Jun; Kuroda, Tadahiro
We propose a novel speaker recognition approach using a speaker-independent universal acoustic model (UAM) for sensornet applications. In sensornet applications such as “Business Microscope”, interactions among knowledge workers in an organization can be visualized by sensing face-to-face communication using wearable sensor nodes. In conventional studies, speakers are detected by comparing energy of input speech signals among the nodes. However, there are often synchronization errors among the nodes which degrade the speaker recognition performance. By focusing on property of the speaker's acoustic channel, UAM can provide robustness against the synchronization error. The overall speaker recognition accuracy is improved by combining UAM with the energy-based approach. For 0.1s speech inputs and 4 subjects, speaker recognition accuracy of 94% is achieved at the synchronization error less than 100ms.
Adaptive control using a hybrid-neural model: application to a polymerisation reactor
Directory of Open Access Journals (Sweden)
Cubillos F.
2001-01-01
Full Text Available This work presents the use of a hybrid-neural model for predictive control of a plug flow polymerisation reactor. The hybrid-neural model (HNM is based on fundamental conservation laws associated with a neural network (NN used to model the uncertain parameters. By simulations, the performance of this approach was studied for a peroxide-initiated styrene tubular reactor. The HNM was synthesised for a CSTR reactor with a radial basis function neural net (RBFN used to estimate the reaction rates recursively. The adaptive HNM was incorporated in two model predictive control strategies, a direct synthesis scheme and an optimum steady state scheme. Tests for servo and regulator control showed excellent behaviour following different setpoint variations, and rejecting perturbations. The good generalisation and training capacities of hybrid models, associated with the simplicity and robustness characteristics of the MPC formulations, make an attractive combination for the control of a polymerisation reactor.
Optimization of ultrasonic array inspections using an efficient hybrid model and real crack shapes
Energy Technology Data Exchange (ETDEWEB)
Felice, Maria V., E-mail: maria.felice@bristol.ac.uk [Department of Mechanical Engineering, University of Bristol, Bristol, U.K. and NDE Laboratory, Rolls-Royce plc., Bristol (United Kingdom); Velichko, Alexander, E-mail: p.wilcox@bristol.ac.uk; Wilcox, Paul D., E-mail: p.wilcox@bristol.ac.uk [Department of Mechanical Engineering, University of Bristol, Bristol (United Kingdom); Barden, Tim; Dunhill, Tony [NDE Laboratory, Rolls-Royce plc., Bristol (United Kingdom)
2015-03-31
Models which simulate the interaction of ultrasound with cracks can be used to optimize ultrasonic array inspections, but this approach can be time-consuming. To overcome this issue an efficient hybrid model is implemented which includes a finite element method that requires only a single layer of elements around the crack shape. Scattering Matrices are used to capture the scattering behavior of the individual cracks and a discussion on the angular degrees of freedom of elastodynamic scatterers is included. Real crack shapes are obtained from X-ray Computed Tomography images of cracked parts and these shapes are inputted into the hybrid model. The effect of using real crack shapes instead of straight notch shapes is demonstrated. An array optimization methodology which incorporates the hybrid model, an approximate single-scattering relative noise model and the real crack shapes is then described.
A hybrid ensemble learning approach to star-galaxy classification
Kim, Edward J.; Brunner, Robert J.; Carrasco Kind, Matias
2015-10-01
There exist a variety of star-galaxy classification techniques, each with their own strengths and weaknesses. In this paper, we present a novel meta-classification framework that combines and fully exploits different techniques to produce a more robust star-galaxy classification. To demonstrate this hybrid, ensemble approach, we combine a purely morphological classifier, a supervised machine learning method based on random forest, an unsupervised machine learning method based on self-organizing maps, and a hierarchical Bayesian template-fitting method. Using data from the CFHTLenS survey (Canada-France-Hawaii Telescope Lensing Survey), we consider different scenarios: when a high-quality training set is available with spectroscopic labels from DEEP2 (Deep Extragalactic Evolutionary Probe Phase 2 ), SDSS (Sloan Digital Sky Survey), VIPERS (VIMOS Public Extragalactic Redshift Survey), and VVDS (VIMOS VLT Deep Survey), and when the demographics of sources in a low-quality training set do not match the demographics of objects in the test data set. We demonstrate that our Bayesian combination technique improves the overall performance over any individual classification method in these scenarios. Thus, strategies that combine the predictions of different classifiers may prove to be optimal in currently ongoing and forthcoming photometric surveys, such as the Dark Energy Survey and the Large Synoptic Survey Telescope.
Rezvani, Alireza; Khalili, Abbas; Mazareie, Alireza; Gandomkar, Majid
2016-07-01
Nowadays, photovoltaic (PV) generation is growing increasingly fast as a renewable energy source. Nevertheless, the drawback of the PV system is its dependence on weather conditions. Therefore, battery energy storage (BES) can be considered to assist for a stable and reliable output from PV generation system for loads and improve the dynamic performance of the whole generation system in grid connected mode. In this paper, a novel topology of intelligent hybrid generation systems with PV and BES in a DC-coupled structure is presented. Each photovoltaic cell has a specific point named maximum power point on its operational curve (i.e. current-voltage or power-voltage curve) in which it can generate maximum power. Irradiance and temperature changes affect these operational curves. Therefore, the nonlinear characteristic of maximum power point to environment has caused to development of different maximum power point tracking techniques. In order to capture the maximum power point (MPP), a hybrid fuzzy-neural maximum power point tracking (MPPT) method is applied in the PV system. Obtained results represent the effectiveness and superiority of the proposed method, and the average tracking efficiency of the hybrid fuzzy-neural is incremented by approximately two percentage points in comparison to the conventional methods. It has the advantages of robustness, fast response and good performance. A detailed mathematical model and a control approach of a three-phase grid-connected intelligent hybrid system have been proposed using Matlab/Simulink. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
Fuzzy hybrid MCDM approach for selection of wind turbine service technicians
Directory of Open Access Journals (Sweden)
Goutam Kumar Bose
2016-01-01
Full Text Available This research paper is aimed to present a fuzzy Hybrid Multi-criteria decision making (MCDM methodology for selecting employees. The present study aspires to present the hybrid approach of Fuzzy multiple MCDM techniques with tactical viewpoint to support the recruitment process of wind turbine service technicians. The methodology is based on the application of Fuzzy ARAS (Additive Ratio Assessment and Fuzzy MOORA (Multi-Objective Optimization on basis of Ratio Analysis which are integrated through group decision making (GDM method in the model for selection of wind turbine service technicians’ ranking. Here a group of experts from different fields of expertise are engaged to finalize the decision. Series of tests are conducted regarding physical fitness, technical written test, practical test along with general interview and medical examination to facilitate the final selection using the above techniques. In contrast to single decision making approaches, the proposed group decision making model efficiently supports the wind turbine service technicians ranking process. The effectiveness of the proposed approach manifest from the case study of service technicians required for the maintenance department of wind power plant using Fuzzy ARAS and Fuzzy MOORA. This set of potential technicians is evaluated based on five main criteria.
Superconductivity in the periodic Anderson model with anisotropic hybridization
International Nuclear Information System (INIS)
Sarasua, L.G.; Continentino, Mucio A.
2003-01-01
In this work we study superconductivity in the periodic Anderson model with both on-site and intersite hybridization, including the interband Coulomb repulsion. We show that the presence of the intersite hybridization together with the on-site hybridization significantly affects the superconducting properties of the system. The symmetry of the hybridization has a strong influence in the symmetry of the superconducting order parameter of the ground state. The interband Coulomb repulsion may increase or decrease the superconducting critical temperature at small values of this interaction, while is detrimental to superconductivity for strong values. We show that the present model can give rise to positive or negative values of dT c /dP, depending on the values of the system parameters
Modelling and Verifying Communication Failure of Hybrid Systems in HCSP
DEFF Research Database (Denmark)
Wang, Shuling; Nielson, Flemming; Nielson, Hanne Riis
2016-01-01
Hybrid systems are dynamic systems with interacting discrete computation and continuous physical processes. They have become ubiquitous in our daily life, e.g. automotive, aerospace and medical systems, and in particular, many of them are safety-critical. For a safety-critical hybrid system......, in the presence of communication failure, the expected control from the controller will get lost and as a consequence the physical process cannot behave as expected. In this paper, we mainly consider the communication failure caused by the non-engagement of one party in communication action, i.......e. the communication itself fails to occur. To address this issue, this paper proposes a formal framework by extending HCSP, a formal modeling language for hybrid systems, for modeling and verifying hybrid systems in the absence of receiving messages due to communication failure. We present two inference systems...
Modeling and simulation using the compositional interchange format for hybrid systems
Sonntag, C.L.W.; Schiffelers, R.R.H.; Beek, van D.A.; Rooda, J.E.; Engell, S.; Troch, I.; Breitenecker, F.
2009-01-01
One of the major challenges towards a broad industrial acceptance of hybrid systems techniques and tools is the large number of distinct modeling formalisms and the resulting manual effort for the tool-based solution of many complex design or analysis tasks. A promising approach to achieve
Non-adaptive and adaptive hybrid approaches for enhancing water quality management
Kalwij, Ineke M.; Peralta, Richard C.
2008-09-01
parameter values for a new optimization problem can be time consuming. For comparison, AGA, AGCT, and GC are applied to optimize pumping rates for assumed well locations of a complex large-scale contaminant transport and remediation optimization problem at Blaine Naval Ammunition Depot (NAD). Both hybrid approaches converged more closely to the optimal solution than the non-hybrid AGA. GC averaged 18.79% better convergence than AGCT, and 31.9% than AGA, within the same computation time (12.5 days). AGCT averaged 13.1% better convergence than AGA. The GC can significantly reduce the burden of employing computationally intensive hydrologic simulation models within a limited time period and for real-world optimization problems. Although demonstrated for a groundwater quality problem, it is also applicable to other arenas, such as managing salt water intrusion and surface water contaminant loading.
Fluid Survival Tool: A Model Checker for Hybrid Petri Nets
Postema, Björn Frits; Remke, Anne Katharina Ingrid; Haverkort, Boudewijn R.H.M.; Ghasemieh, Hamed
2014-01-01
Recently, algorithms for model checking Stochastic Time Logic (STL) on Hybrid Petri nets with a single general one-shot transition (HPNG) have been introduced. This paper presents a tool for model checking HPNG models against STL formulas. A graphical user interface (GUI) not only helps to
Nuclear Hybrid Energy System Model Stability Testing
Energy Technology Data Exchange (ETDEWEB)
Greenwood, Michael Scott [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Cetiner, Sacit M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Fugate, David W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
2017-04-01
A Nuclear Hybrid Energy System (NHES) uses a nuclear reactor as the basic power generation unit, and the power generated is used by multiple customers as combinations of thermal power or electrical power. The definition and architecture of a particular NHES can be adapted based on the needs and opportunities of different localities and markets. For example, locations in need of potable water may be best served by coupling a desalination plant to the NHES. Similarly, a location near oil refineries may have a need for emission-free hydrogen production. Using the flexible, multi-domain capabilities of Modelica, Argonne National Laboratory, Idaho National Laboratory, and Oak Ridge National Laboratory are investigating the dynamics (e.g., thermal hydraulics and electrical generation/consumption) and cost of a hybrid system. This paper examines the NHES work underway, emphasizing the control system developed for individual subsystems and the overall supervisory control system.
Hybrid Modeling and Optimization of Yogurt Starter Culture Continuous Fermentation
Directory of Open Access Journals (Sweden)
Silviya Popova
2009-10-01
Full Text Available The present paper presents a hybrid model of yogurt starter mixed culture fermentation. The main nonlinearities within a classical structure of continuous process model are replaced by neural networks. The new hybrid model accounts for the dependence of the two microorganisms' kinetics from the on-line measured characteristics of the culture medium - pH. Then the model was used further for calculation of the optimal time profile of pH. The obtained results are with agreement with the experimental once.
Directory of Open Access Journals (Sweden)
José F. Herbert-Acero
2014-01-01
Full Text Available This work presents a novel framework for the aerodynamic design and optimization of blades for small horizontal axis wind turbines (WT. The framework is based on a state-of-the-art blade element momentum model, which is complemented with the XFOIL 6.96 software in order to provide an estimate of the sectional blade aerodynamics. The framework considers an innovative nested-hybrid solution procedure based on two metaheuristics, the virtual gene genetic algorithm and the simulated annealing algorithm, to provide a near-optimal solution to the problem. The objective of the study is to maximize the aerodynamic efficiency of small WT (SWT rotors for a wide range of operational conditions. The design variables are (1 the airfoil shape at the different blade span positions and the radial variation of the geometrical variables of (2 chord length, (3 twist angle, and (4 thickness along the blade span. A wind tunnel validation study of optimized rotors based on the NACA 4-digit airfoil series is presented. Based on the experimental data, improvements in terms of the aerodynamic efficiency, the cut-in wind speed, and the amount of material used during the manufacturing process were achieved. Recommendations for the aerodynamic design of SWT rotors are provided based on field experience.
Mechanisms Underlying Mammalian Hybrid Sterility in Two Feline Interspecies Models.
Davis, Brian W; Seabury, Christopher M; Brashear, Wesley A; Li, Gang; Roelke-Parker, Melody; Murphy, William J
2015-10-01
The phenomenon of male sterility in interspecies hybrids has been observed for over a century, however, few genes influencing this recurrent phenotype have been identified. Genetic investigations have been primarily limited to a small number of model organisms, thus limiting our understanding of the underlying molecular basis of this well-documented "rule of speciation." We utilized two interspecies hybrid cat breeds in a genome-wide association study employing the Illumina 63 K single-nucleotide polymorphism array. Collectively, we identified eight autosomal genes/gene regions underlying associations with hybrid male sterility (HMS) involved in the function of the blood-testis barrier, gamete structural development, and transcriptional regulation. We also identified several candidate hybrid sterility regions on the X chromosome, with most residing in close proximity to complex duplicated regions. Differential gene expression analyses revealed significant chromosome-wide upregulation of X chromosome transcripts in testes of sterile hybrids, which were enriched for genes involved in chromatin regulation of gene expression. Our expression results parallel those reported in Mus hybrids, supporting the "Large X-Effect" in mammalian HMS and the potential epigenetic basis for this phenomenon. These results support the value of the interspecies feline model as a powerful tool for comparison to rodent models of HMS, demonstrating unique aspects and potential commonalities that underpin mammalian reproductive isolation. © The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Hybrid Metaheuristic Approach for Nonlocal Optimization of Molecular Systems.
Dresselhaus, Thomas; Yang, Jack; Kumbhar, Sadhana; Waller, Mark P
2013-04-09
Accurate modeling of molecular systems requires a good knowledge of the structure; therefore, conformation searching/optimization is a routine necessity in computational chemistry. Here we present a hybrid metaheuristic optimization (HMO) algorithm, which combines ant colony optimization (ACO) and particle swarm optimization (PSO) for the optimization of molecular systems. The HMO implementation meta-optimizes the parameters of the ACO algorithm on-the-fly by the coupled PSO algorithm. The ACO parameters were optimized on a set of small difluorinated polyenes where the parameters exhibited small variance as the size of the molecule increased. The HMO algorithm was validated by searching for the closed form of around 100 molecular balances. Compared to the gradient-based optimized molecular balance structures, the HMO algorithm was able to find low-energy conformations with a 87% success rate. Finally, the computational effort for generating low-energy conformation(s) for the phenylalanyl-glycyl-glycine tripeptide was approximately 60 CPU hours with the ACO algorithm, in comparison to 4 CPU years required for an exhaustive brute-force calculation.
A hybrid modeling with data assimilation to evaluate human exposure level
Koo, Y. S.; Cheong, H. K.; Choi, D.; Kim, A. L.; Yun, H. Y.
2015-12-01
Exposure models are designed to better represent human contact with PM (Particulate Matter) and other air pollutants such as CO, SO2, O3, and NO2. The exposure concentrations of the air pollutants to human are determined by global and regional long range transport of global and regional scales from Europe and China as well as local emissions from urban and road vehicle sources. To assess the exposure level in detail, the multiple scale influence from background to local sources should be considered. A hybrid air quality modeling methodology combing a grid-based chemical transport model with a local plume dispersion model was used to provide spatially and temporally resolved air quality concentration for human exposure levels in Korea. In the hybrid modeling approach, concentrations from a grid-based chemical transport model and a local plume dispersion model are added to provide contributions from photochemical interactions, long-range (regional) transport and local-scale dispersion. The CAMx (Comprehensive Air quality Model with Extensions was used for the background concentrations from anthropogenic and natural emissions in East Asia including Korea while the road dispersion by vehicle emission was calculated by CALPUFF model. The total exposure level of the pollutants was finally assessed by summing the background and road contributions. In the hybrid modeling, the data assimilation method based on the optimal interpolation was applied to overcome the discrepancies between the model predicted concentrations and observations. The air quality data from the air quality monitoring stations in Korea. The spatial resolution of the hybrid model was 50m for the Seoul Metropolitan Ares. This example clearly demonstrates that the exposure level could be estimated to the fine scale for the exposure assessment by using the hybrid modeling approach with data assimilation.
Mass Optimization of Battery/Supercapacitors Hybrid Systems Based on a Linear Programming Approach
Fleury, Benoit; Labbe, Julien
2014-08-01
The objective of this paper is to show that, on a specific launcher-type mission profile, a 40% gain of mass is expected using a battery/supercapacitors active hybridization instead of a single battery solution. This result is based on the use of a linear programming optimization approach to perform the mass optimization of the hybrid power supply solution.
Solving Problem of Graph Isomorphism by Membrane-Quantum Hybrid Model
Directory of Open Access Journals (Sweden)
Artiom Alhazov
2015-10-01
Full Text Available This work presents the application of new parallelization methods based on membrane-quantum hybrid computing to graph isomorphism problem solving. Applied membrane-quantum hybrid computational model was developed by authors. Massive parallelism of unconventional computing is used to implement classic brute force algorithm efficiently. This approach does not suppose any restrictions of considered graphs types. The estimated performance of the model is less then quadratic that makes a very good result for the problem of \\textbf{NP} complexity.
Hybrid Reduced Order Modeling Algorithms for Reactor Physics Calculations
Bang, Youngsuk
hybrid ROM algorithms which can be readily integrated into existing methods and offer higher computational efficiency and defendable accuracy of the reduced models. For example, the snapshots ROM algorithm is hybridized with the range finding algorithm to render reduction in the state space, e.g. the flux in reactor calculations. In another implementation, the perturbation theory used to calculate first order derivatives of responses with respect to parameters is hybridized with a forward sensitivity analysis approach to render reduction in the parameter space. Reduction at the state and parameter spaces can be combined to render further reduction at the interface between different physics codes in a multi-physics model with the accuracy quantified in a similar manner to the single physics case. Although the proposed algorithms are generic in nature, we focus here on radiation transport models used in support of the design and analysis of nuclear reactor cores. In particular, we focus on replacing the traditional assembly calculations by ROM models to facilitate the generation of homogenized cross-sections for downstream core calculations. The implication is that assembly calculations could be done instantaneously therefore precluding the need for the expensive evaluation of the few-group cross-sections for all possible core conditions. Given the generic natures of the algorithms, we make an effort to introduce the material in a general form to allow non-nuclear engineers to benefit from this work.
Energy level alignment at hybridized organic-metal interfaces from a GW projection approach
Chen, Yifeng; Tamblyn, Isaac; Quek, Su Ying
Energy level alignments at organic-metal interfaces are of profound importance in numerous (opto)electronic applications. Standard density functional theory (DFT) calculations generally give incorrect energy level alignments and missing long-range polarization effects. Previous efforts to address this problem using the many-electron GW method have focused on physisorbed systems where hybridization effects are insignificant. Here, we use state-of-the-art GW methods to predict the level alignment at the amine-Au interface, where molecular levels do hybridize with metallic states. This non-trivial hybridization implies that DFT result is a poor approximation to the quasiparticle states. However, we find that the self-energy operator is approximately diagonal in the molecular basis, allowing us to use a projection approach to predict the level alignments. Our results indicate that the metallic substrate reduces the HOMO-LUMO gap by 3.5 4.0 eV, depending on the molecular coverage/presence of Au adatoms. Our GW results are further compared with those of a simple image charge model that describes the level alignment in physisorbed systems. Syq and YC acknowledge Grant NRF-NRFF2013-07 and the medium-sized centre program from the National Research Foundation, Singapore.
Solving Problems in Various Domains by Hybrid Models of High Performance Computations
Directory of Open Access Journals (Sweden)
Yurii Rogozhin
2014-03-01
Full Text Available This work presents a hybrid model of high performance computations. The model is based on membrane system (P~system where some membranes may contain quantum device that is triggered by the data entering the membrane. This model is supposed to take advantages of both biomolecular and quantum paradigms and to overcome some of their inherent limitations. The proposed approach is demonstrated through two selected problems: SAT, and image retrieving.
Directory of Open Access Journals (Sweden)
JingRui Zhang
2015-03-01
Full Text Available In this article, we focus on safe and effective completion of a rendezvous and docking task by looking at planning approaches and control with fuel-optimal rendezvous for a target spacecraft running on a near-circular reference orbit. A variety of existent practical path constraints are considered, including the constraints of field of view, impulses, and passive safety. A rendezvous approach is calculated by using a hybrid genetic algorithm with those constraints. Furthermore, a control method of trajectory tracking is adopted to overcome the external disturbances. Based on Clohessy–Wiltshire equations, we first construct the mathematical model of optimal planning approaches of multiple impulses with path constraints. Second, we introduce the principle of hybrid genetic algorithm with both stronger global searching ability and local searching ability. We additionally explain the application of this algorithm in the problem of trajectory planning. Then, we give three-impulse simulation examples to acquire an optimal rendezvous trajectory with the path constraints presented in this article. The effectiveness and applicability of the tracking control method are verified with the optimal trajectory above as control objective through the numerical simulation.
Hybrid generative-discriminative approach to age-invariant face recognition
Sajid, Muhammad; Shafique, Tamoor
2018-03-01
Age-invariant face recognition is still a challenging research problem due to the complex aging process involving types of facial tissues, skin, fat, muscles, and bones. Most of the related studies that have addressed the aging problem are focused on generative representation (aging simulation) or discriminative representation (feature-based approaches). Designing an appropriate hybrid approach taking into account both the generative and discriminative representations for age-invariant face recognition remains an open problem. We perform a hybrid matching to achieve robustness to aging variations. This approach automatically segments the eyes, nose-bridge, and mouth regions, which are relatively less sensitive to aging variations compared with the rest of the facial regions that are age-sensitive. The aging variations of age-sensitive facial parts are compensated using a demographic-aware generative model based on a bridged denoising autoencoder. The age-insensitive facial parts are represented by pixel average vector-based local binary patterns. Deep convolutional neural networks are used to extract relative features of age-sensitive and age-insensitive facial parts. Finally, the feature vectors of age-sensitive and age-insensitive facial parts are fused to achieve the recognition results. Extensive experimental results on morphological face database II (MORPH II), face and gesture recognition network (FG-NET), and Verification Subset of cross-age celebrity dataset (CACD-VS) demonstrate the effectiveness of the proposed method for age-invariant face recognition well.
Unilateral robotic hybrid mini-maze: a novel experimental approach.
Moslemi, Mohammad; Rawashdeh, Badi; Meyer, Mark; Nguyen, Duy; Poston, Robert; Gharagozloo, Farid
2016-03-01
A complete Cox maze IV procedure is difficult to accomplish using current endoscopic and minimally invasive techniques. These techniques are hampered by inability to adequately dissect the posterior structures of the heart and place all necessary lesions. We present a novel approach, using robotic technology, that achieves placement of all the lesions of the complete maze procedure. In three cadaveric human models, the technical feasibility of using robotic instruments through the right chest to dissect the posterior structures of the heart and place all Cox maze lesions was performed. The entire posterior aspect of the heart was dissected in the cadaveric model facilitating successful placement of all Cox maze IV lesions with robotic assistance through minimally invasive incisions. The robotic Cox maze IV procedure through the novel right thoracic approach is feasible. This obviates the need for sternotomy and avoids the associated morbidity of the conventional Cox-maze procedure. Copyright © 2015 John Wiley & Sons, Ltd.
Application of a New Hybrid RANS/LES Modeling Paradigm to Compressible Flow
Oliver, Todd; Pederson, Clark; Haering, Sigfried; Moser, Robert
2017-11-01
It is well-known that traditional hybrid RANS/LES modeling approaches suffer from a number of deficiencies. These deficiencies often stem from overly simplistic blending strategies based on scalar measures of turbulence length scale and grid resolution and from use of isotropic subgrid models in LES regions. A recently developed hybrid modeling approach has shown promise in overcoming these deficiencies in incompressible flows [Haering, 2015]. In the approach, RANS/LES blending is accomplished using a hybridization parameter that is governed by an additional model transport equation and is driven to achieve equilibrium between the resolved and unresolved turbulence for the given grid. Further, the model uses an tensor eddy viscosity that is formulated to represent the effects of anisotropic grid resolution on subgrid quantities. In this work, this modeling approach is extended to compressible flows and implemented in the compressible flow solver SU2 (http://su2.stanford.edu/). We discuss both modeling and implementation challenges and show preliminary results for compressible flow test cases with smooth wall separation.
Fluid Petri Nets and hybrid model-checking: a comparative case study
International Nuclear Information System (INIS)
Gribaudo, M.; Horvath, A.; Bobbio, A.; Tronci, E.; Ciancamerla, E.; Minichino, M.
2003-01-01
The modeling and analysis of hybrid systems is a recent and challenging research area which is actually dominated by two main lines: a functional analysis based on the description of the system in terms of discrete state (hybrid) automata (whose goal is to ascertain conformity and reachability properties), and a stochastic analysis (whose aim is to provide performance and dependability measures). This paper investigates a unifying view between formal methods and stochastic methods by proposing an analysis methodology of hybrid systems based on Fluid Petri Nets (FPNs). FPNs can be analyzed directly using appropriate tools. Our paper shows that the same FPN model can be fed to different functional analyzers for model checking. In order to extensively explore the capability of the technique, we have converted the original FPN into languages for discrete as well as hybrid as well as stochastic model checkers. In this way, a first comparison among the modeling power of well known tools can be carried out. Our approach is illustrated by means of a 'real world' hybrid system: the temperature control system of a co-generative plant
A Hybrid Method for the Modelling and Optimisation of Constrained Search Problems
Directory of Open Access Journals (Sweden)
Sitek Pawel
2014-08-01
Full Text Available The paper presents a concept and the outline of the implementation of a hybrid approach to modelling and solving constrained problems. Two environments of mathematical programming (in particular, integer programming and declarative programming (in particular, constraint logic programming were integrated. The strengths of integer programming and constraint logic programming, in which constraints are treated in a different way and different methods are implemented, were combined to use the strengths of both. The hybrid method is not worse than either of its components used independently. The proposed approach is particularly important for the decision models with an objective function and many discrete decision variables added up in multiple constraints. To validate the proposed approach, two illustrative examples are presented and solved. The first example is the authors’ original model of cost optimisation in the supply chain with multimodal transportation. The second one is the two-echelon variant of the well-known capacitated vehicle routing problem.
An integrated optimization approach for a hybrid energy system in electric vehicles
International Nuclear Information System (INIS)
Hung, Yi-Hsuan; Wu, Chien-Hsun
2012-01-01
Highlights: ► Second-order control-oriented dynamics for a battery/supercapacitor EV is modeled. ► Multiple for-loop programming and global searchwith constraints are main design principles of integrated optimization algorithm (IOA). ► Optimal hybridization is derived based on maximizing energy storage capacity. ► Optimal energy management in three EV operation modes is searched based on minimizing total consumed power. ► Simulation results prove that 6+% of total energy is saved by the IOA method. -- Abstract: This paper develops a simple but innovative integrated optimization approach (IOA) for deriving the best solutions of component sizing and control strategies of a hybrid energy system (HES) which consists of a lithium battery and a supercapacitor module. To implement IOA, a multiple for-loop structure with a preset cost function is needed to globally calculate the best hybridization and energy management of the HES. For system hybridization, the optimal size ratio is evaluated by maximizing the HES energy stored capacity at various costs. For energy management, the optimal power distribution combined with a three-mode rule-based strategy is searched to minimize the total consumed energy. Combining above two for-loop structures and giving a time-dependent test scenario, the IOA is derived by minimizing the accumulated HES power. Simulation results show that 6% of the total HES energy can be saved in the IOA case compared with the original system in two driving cycles: ECE and UDDS, and two vehicle weights, respectively. It proves that the IOA effectively derives the maximum energy storage capacity and the minimum energy consumption of the HES at the same time. Experimental verification will be carried out in the near future.
Liu, Xiao; Liu, An; Zhang, Xiangliang; Li, Zhixu; Liu, Guanfeng; Zhao, Lei; Zhou, Xiaofang
2017-01-01
result. However, none is designed for both hiding users’ private data and preventing privacy inference. To achieve this goal, we propose in this paper a hybrid approach for privacy-preserving recommender systems by combining differential privacy (DP
Hybrid programming model for implicit PDE simulations on multicore architectures
Kaushik, Dinesh; Keyes, David E.; Balay, Satish; Smith, Barry F.
2011-01-01
The complexity of programming modern multicore processor based clusters is rapidly rising, with GPUs adding further demand for fine-grained parallelism. This paper analyzes the performance of the hybrid (MPI+OpenMP) programming model in the context of an implicit unstructured mesh CFD code. At the implementation level, the effects of cache locality, update management, work division, and synchronization frequency are studied. The hybrid model presents interesting algorithmic opportunities as well: the convergence of linear system solver is quicker than the pure MPI case since the parallel preconditioner stays stronger when hybrid model is used. This implies significant savings in the cost of communication and synchronization (explicit and implicit). Even though OpenMP based parallelism is easier to implement (with in a subdomain assigned to one MPI process for simplicity), getting good performance needs attention to data partitioning issues similar to those in the message-passing case. © 2011 Springer-Verlag.
A Hybrid PCA-CART-MARS-Based Prognostic Approach of the Remaining Useful Life for Aircraft Engines
Directory of Open Access Journals (Sweden)
Fernando Sánchez Lasheras
2015-03-01
Full Text Available Prognostics is an engineering discipline that predicts the future health of a system. In this research work, a data-driven approach for prognostics is proposed. Indeed, the present paper describes a data-driven hybrid model for the successful prediction of the remaining useful life of aircraft engines. The approach combines the multivariate adaptive regression splines (MARS technique with the principal component analysis (PCA, dendrograms and classification and regression trees (CARTs. Elements extracted from sensor signals are used to train this hybrid model, representing different levels of health for aircraft engines. In this way, this hybrid algorithm is used to predict the trends of these elements. Based on this fitting, one can determine the future health state of a system and estimate its remaining useful life (RUL with accuracy. To evaluate the proposed approach, a test was carried out using aircraft engine signals collected from physical sensors (temperature, pressure, speed, fuel flow, etc.. Simulation results show that the PCA-CART-MARS-based approach can forecast faults long before they occur and can predict the RUL. The proposed hybrid model presents as its main advantage the fact that it does not require information about the previous operation states of the input variables of the engine. The performance of this model was compared with those obtained by other benchmark models (multivariate linear regression and artificial neural networks also applied in recent years for the modeling of remaining useful life. Therefore, the PCA-CART-MARS-based approach is very promising in the field of prognostics of the RUL for aircraft engines.
Short-term electricity prices forecasting in a competitive market by a hybrid intelligent approach
Energy Technology Data Exchange (ETDEWEB)
Catalao, J.P.S. [Department of Electromechanical Engineering, University of Beira Interior, R. Fonte do Lameiro, 6201-001 Covilha (Portugal); Center for Innovation in Electrical and Energy Engineering, Instituto Superior Tecnico, Technical University of Lisbon, Av. Rovisco Pais, 1049-001 Lisbon (Portugal); Pousinho, H.M.I. [Department of Electromechanical Engineering, University of Beira Interior, R. Fonte do Lameiro, 6201-001 Covilha (Portugal); Mendes, V.M.F. [Department of Electrical Engineering and Automation, Instituto Superior de Engenharia de Lisboa, R. Conselheiro Emidio Navarro, 1950-062 Lisbon (Portugal)
2011-02-15
In this paper, a hybrid intelligent approach is proposed for short-term electricity prices forecasting in a competitive market. The proposed approach is based on the wavelet transform and a hybrid of neural networks and fuzzy logic. Results from a case study based on the electricity market of mainland Spain are presented. A thorough comparison is carried out, taking into account the results of previous publications. Conclusions are duly drawn. (author)
Short-term electricity prices forecasting in a competitive market by a hybrid intelligent approach
International Nuclear Information System (INIS)
Catalao, J.P.S.; Pousinho, H.M.I.; Mendes, V.M.F.
2011-01-01
In this paper, a hybrid intelligent approach is proposed for short-term electricity prices forecasting in a competitive market. The proposed approach is based on the wavelet transform and a hybrid of neural networks and fuzzy logic. Results from a case study based on the electricity market of mainland Spain are presented. A thorough comparison is carried out, taking into account the results of previous publications. Conclusions are duly drawn. (author)
Nuclear Hybrid Energy Systems FY16 Modeling Efforts at ORNL
Energy Technology Data Exchange (ETDEWEB)
Cetiner, Sacit M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Greenwood, Michael Scott [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Harrison, Thomas J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Qualls, A. L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Guler Yigitoglu, Askin [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Fugate, David W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
2016-09-01
A nuclear hybrid system uses a nuclear reactor as the basic power generation unit. The power generated by the nuclear reactor is utilized by one or more power customers as either thermal power, electrical power, or both. In general, a nuclear hybrid system will couple the nuclear reactor to at least one thermal power user in addition to the power conversion system. The definition and architecture of a particular nuclear hybrid system is flexible depending on local markets needs and opportunities. For example, locations in need of potable water may be best served by coupling a desalination plant to the nuclear system. Similarly, an area near oil refineries may have a need for emission-free hydrogen production. A nuclear hybrid system expands the nuclear power plant from its more familiar central power station role by diversifying its immediately and directly connected customer base. The definition, design, analysis, and optimization work currently performed with respect to the nuclear hybrid systems represents the work of three national laboratories. Idaho National Laboratory (INL) is the lead lab working with Argonne National Laboratory (ANL) and Oak Ridge National Laboratory. Each laboratory is providing modeling and simulation expertise for the integration of the hybrid system.
Thermal modeling of a hydraulic hybrid vehicle transmission based on thermodynamic analysis
International Nuclear Information System (INIS)
Kwon, Hyukjoon; Sprengel, Michael; Ivantysynova, Monika
2016-01-01
Hybrid vehicles have become a popular alternative to conventional powertrain architectures by offering improved fuel efficiency along with a range of environmental benefits. Hydraulic Hybrid Vehicles (HHV) offer one approach to hybridization with many benefits over competing technologies. Among these benefits are lower component costs, more environmentally friendly construction materials, and the ability to recover a greater quantity of energy during regenerative braking which make HHVs partially well suited to urban environments. In order to further the knowledge base regarding HHVs, this paper explores the thermodynamic characteristics of such a system. A system model is detailed for both the hydraulic and thermal components of a closed circuit hydraulic hybrid transmission following the FTP-72 driving cycle. Among the new techniques proposed in this paper is a novel method for capturing rapid thermal transients. This paper concludes by comparing the results of this model with experimental data gathered on a Hardware-in-the-Loop (HIL) transmission dynamometer possessing the same architecture, components, and driving cycle used within the simulation model. This approach can be used for several applications such as thermal stability analysis of HHVs, optimal thermal management, and analysis of the system's thermodynamic efficiency. - Highlights: • Thermal modeling for HHVs is introduced. • A model for the hydraulic and thermal system is developed for HHVs. • A novel method for capturing rapid thermal transients is proposed. • The thermodynamic system diagram of a series HHV is predicted.
Hybrid modelling framework by using mathematics-based and information-based methods
International Nuclear Information System (INIS)
Ghaboussi, J; Kim, J; Elnashai, A
2010-01-01
Mathematics-based computational mechanics involves idealization in going from the observed behaviour of a system into mathematical equations representing the underlying mechanics of that behaviour. Idealization may lead mathematical models that exclude certain aspects of the complex behaviour that may be significant. An alternative approach is data-centric modelling that constitutes a fundamental shift from mathematical equations to data that contain the required information about the underlying mechanics. However, purely data-centric methods often fail for infrequent events and large state changes. In this article, a new hybrid modelling framework is proposed to improve accuracy in simulation of real-world systems. In the hybrid framework, a mathematical model is complemented by information-based components. The role of informational components is to model aspects which the mathematical model leaves out. The missing aspects are extracted and identified through Autoprogressive Algorithms. The proposed hybrid modelling framework has a wide range of potential applications for natural and engineered systems. The potential of the hybrid methodology is illustrated through modelling highly pinched hysteretic behaviour of beam-to-column connections in steel frames.
Static stiffness modeling of a novel hybrid redundant robot machine
International Nuclear Information System (INIS)
Li Ming; Wu Huapeng; Handroos, Heikki
2011-01-01
This paper presents a modeling method to study the stiffness of a hybrid serial-parallel robot IWR (Intersector Welding Robot) for the assembly of ITER vacuum vessel. The stiffness matrix of the basic element in the robot is evaluated using matrix structural analysis (MSA); the stiffness of the parallel mechanism is investigated by taking account of the deformations of both hydraulic limbs and joints; the stiffness of the whole integrated robot is evaluated by employing the virtual joint method and the principle of virtual work. The obtained stiffness model of the hybrid robot is analytical and the deformation results of the robot workspace under certain external load are presented.
Simulation of Mercury's magnetosheath with a combined hybrid-paraboloid model
Parunakian, David; Dyadechkin, Sergey; Alexeev, Igor; Belenkaya, Elena; Khodachenko, Maxim; Kallio, Esa; Alho, Markku
2017-08-01
In this paper we introduce a novel approach for modeling planetary magnetospheres that involves a combination of the hybrid model and the paraboloid magnetosphere model (PMM); we further refer to it as the combined hybrid model. While both of these individual models have been successfully applied in the past, their combination enables us both to overcome the traditional difficulties of hybrid models to develop a self-consistent magnetic field and to compensate the lack of plasma simulation in the PMM. We then use this combined model to simulate Mercury's magnetosphere and investigate the geometry and configuration of Mercury's magnetosheath controlled by various conditions in the interplanetary medium. The developed approach provides a unique comprehensive view of Mercury's magnetospheric environment for the first time. Using this setup, we compare the locations of the bow shock and the magnetopause as determined by simulations with the locations predicted by stand-alone PMM runs and also verify the magnetic and dynamic pressure balance at the magnetopause. We also compare the results produced by these simulations with observational data obtained by the magnetometer on board the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft along a dusk-dawn orbit and discuss the signatures of the magnetospheric features that appear in these simulations. Overall, our analysis suggests that combining the semiempirical PMM with a self-consistent global kinetic model creates new modeling possibilities which individual models cannot provide on their own.
A Hybrid Fuzzy Model for Lean Product Development Performance Measurement
Osezua Aikhuele, Daniel; Mohd Turan, Faiz
2016-02-01
In the effort for manufacturing companies to meet up with the emerging consumer demands for mass customized products, many are turning to the application of lean in their product development process, and this is gradually moving from being a competitive advantage to a necessity. However, due to lack of clear understanding of the lean performance measurements, many of these companies are unable to implement and fully integrated the lean principle into their product development process. Extensive literature shows that only few studies have focus systematically on the lean product development performance (LPDP) evaluation. In order to fill this gap, the study therefore proposed a novel hybrid model based on Fuzzy Reasoning Approach (FRA), and the extension of Fuzzy-AHP and Fuzzy-TOPSIS methods for the assessment of the LPDP. Unlike the existing methods, the model considers the importance weight of each of the decision makers (Experts) since the performance criteria/attributes are required to be rated, and these experts have different level of expertise. The rating is done using a new fuzzy Likert rating scale (membership-scale) which is designed such that it can address problems resulting from information lost/distortion due to closed-form scaling and the ordinal nature of the existing Likert scale.
Hybrid network defense model based on fuzzy evaluation.
Cho, Ying-Chiang; Pan, Jen-Yi
2014-01-01
With sustained and rapid developments in the field of information technology, the issue of network security has become increasingly prominent. The theme of this study is network data security, with the test subject being a classified and sensitive network laboratory that belongs to the academic network. The analysis is based on the deficiencies and potential risks of the network's existing defense technology, characteristics of cyber attacks, and network security technologies. Subsequently, a distributed network security architecture using the technology of an intrusion prevention system is designed and implemented. In this paper, first, the overall design approach is presented. This design is used as the basis to establish a network defense model, an improvement over the traditional single-technology model that addresses the latter's inadequacies. Next, a distributed network security architecture is implemented, comprising a hybrid firewall, intrusion detection, virtual honeynet projects, and connectivity and interactivity between these three components. Finally, the proposed security system is tested. A statistical analysis of the test results verifies the feasibility and reliability of the proposed architecture. The findings of this study will potentially provide new ideas and stimuli for future designs of network security architecture.
Modeling of hybrid vehicle fuel economy and fuel engine efficiency
Wu, Wei
"Near-CV" (i.e., near-conventional vehicle) hybrid vehicles, with an internal combustion engine, and a supplementary storage with low-weight, low-energy but high-power capacity, are analyzed. This design avoids the shortcoming of the "near-EV" and the "dual-mode" hybrid vehicles that need a large energy storage system (in terms of energy capacity and weight). The small storage is used to optimize engine energy management and can provide power when needed. The energy advantage of the "near-CV" design is to reduce reliance on the engine at low power, to enable regenerative braking, and to provide good performance with a small engine. The fuel consumption of internal combustion engines, which might be applied to hybrid vehicles, is analyzed by building simple analytical models that reflect the engines' energy loss characteristics. Both diesel and gasoline engines are modeled. The simple analytical models describe engine fuel consumption at any speed and load point by describing the engine's indicated efficiency and friction. The engine's indicated efficiency and heat loss are described in terms of several easy-to-obtain engine parameters, e.g., compression ratio, displacement, bore and stroke. Engine friction is described in terms of parameters obtained by fitting available fuel measurements on several diesel and spark-ignition engines. The engine models developed are shown to conform closely to experimental fuel consumption and motored friction data. A model of the energy use of "near-CV" hybrid vehicles with different storage mechanism is created, based on simple algebraic description of the components. With powertrain downsizing and hybridization, a "near-CV" hybrid vehicle can obtain a factor of approximately two in overall fuel efficiency (mpg) improvement, without considering reductions in the vehicle load.
Hybrid Analytical and Data-Driven Modeling for Feed-Forward Robot Control †
Directory of Open Access Journals (Sweden)
René Felix Reinhart
2017-02-01
Full Text Available Feed-forward model-based control relies on models of the controlled plant, e.g., in robotics on accurate knowledge of manipulator kinematics or dynamics. However, mechanical and analytical models do not capture all aspects of a plant’s intrinsic properties and there remain unmodeled dynamics due to varying parameters, unmodeled friction or soft materials. In this context, machine learning is an alternative suitable technique to extract non-linear plant models from data. However, fully data-based models suffer from inaccuracies as well and are inefficient if they include learning of well known analytical models. This paper thus argues that feed-forward control based on hybrid models comprising an analytical model and a learned error model can significantly improve modeling accuracy. Hybrid modeling here serves the purpose to combine the best of the two modeling worlds. The hybrid modeling methodology is described and the approach is demonstrated for two typical problems in robotics, i.e., inverse kinematics control and computed torque control. The former is performed for a redundant soft robot and the latter for a rigid industrial robot with redundant degrees of freedom, where a complete analytical model is not available for any of the platforms.
Hybrid Analytical and Data-Driven Modeling for Feed-Forward Robot Control.
Reinhart, René Felix; Shareef, Zeeshan; Steil, Jochen Jakob
2017-02-08
Feed-forward model-based control relies on models of the controlled plant, e.g., in robotics on accurate knowledge of manipulator kinematics or dynamics. However, mechanical and analytical models do not capture all aspects of a plant's intrinsic properties and there remain unmodeled dynamics due to varying parameters, unmodeled friction or soft materials. In this context, machine learning is an alternative suitable technique to extract non-linear plant models from data. However, fully data-based models suffer from inaccuracies as well and are inefficient if they include learning of well known analytical models. This paper thus argues that feed-forward control based on hybrid models comprising an analytical model and a learned error model can significantly improve modeling accuracy. Hybrid modeling here serves the purpose to combine the best of the two modeling worlds. The hybrid modeling methodology is described and the approach is demonstrated for two typical problems in robotics, i.e., inverse kinematics control and computed torque control. The former is performed for a redundant soft robot and the latter for a rigid industrial robot with redundant degrees of freedom, where a complete analytical model is not available for any of the platforms.
Hybrid Analytical and Data-Driven Modeling for Feed-Forward Robot Control †
Reinhart, René Felix; Shareef, Zeeshan; Steil, Jochen Jakob
2017-01-01
Feed-forward model-based control relies on models of the controlled plant, e.g., in robotics on accurate knowledge of manipulator kinematics or dynamics. However, mechanical and analytical models do not capture all aspects of a plant’s intrinsic properties and there remain unmodeled dynamics due to varying parameters, unmodeled friction or soft materials. In this context, machine learning is an alternative suitable technique to extract non-linear plant models from data. However, fully data-based models suffer from inaccuracies as well and are inefficient if they include learning of well known analytical models. This paper thus argues that feed-forward control based on hybrid models comprising an analytical model and a learned error model can significantly improve modeling accuracy. Hybrid modeling here serves the purpose to combine the best of the two modeling worlds. The hybrid modeling methodology is described and the approach is demonstrated for two typical problems in robotics, i.e., inverse kinematics control and computed torque control. The former is performed for a redundant soft robot and the latter for a rigid industrial robot with redundant degrees of freedom, where a complete analytical model is not available for any of the platforms. PMID:28208697
Pathak, Jaideep; Wikner, Alexander; Fussell, Rebeckah; Chandra, Sarthak; Hunt, Brian R.; Girvan, Michelle; Ott, Edward
2018-04-01
A model-based approach to forecasting chaotic dynamical systems utilizes knowledge of the mechanistic processes governing the dynamics to build an approximate mathematical model of the system. In contrast, machine learning techniques have demonstrated promising results for forecasting chaotic systems purely from past time series measurements of system state variables (training data), without prior knowledge of the system dynamics. The motivation for this paper is the potential of machine learning for filling in the gaps in our underlying mechanistic knowledge that cause widely-used knowledge-based models to be inaccurate. Thus, we here propose a general method that leverages the advantages of these two approaches by combining a knowledge-based model and a machine learning technique to build a hybrid forecasting scheme. Potential applications for such an approach are numerous (e.g., improving weather forecasting). We demonstrate and test the utility of this approach using a particular illustrative version of a machine learning known as reservoir computing, and we apply the resulting hybrid forecaster to a low-dimensional chaotic system, as well as to a high-dimensional spatiotemporal chaotic system. These tests yield extremely promising results in that our hybrid technique is able to accurately predict for a much longer period of time than either its machine-learning component or its model-based component alone.
Hybridization success is largely limited to homoploid Prunus hybrids: a multidisciplinary approach
Czech Academy of Sciences Publication Activity Database
Macková, L.; Vít, Petr; Ďurišová, Ľ.; Eliáš, P. Jr.; Urfus, T.
2017-01-01
Roč. 303, č. 4 (2017), s. 481-495 ISSN 0378-2697 Institutional support: RVO:67985939 Keywords : absolute genome size * interspecific hybridization * embryology Subject RIV: EF - Botanics OBOR OECD: Plant sciences, botany Impact factor: 1.239, year: 2016
DEFF Research Database (Denmark)
Herbert-Acero, José F.; Martínez-Lauranchet, Jaime; Probst, Oliver
2014-01-01
of the sectional blade aerodynamics. The framework considers an innovative nested-hybrid solution procedure based on two metaheuristics, the virtual gene genetic algorithm and the simulated annealing algorithm, to provide a near-optimal solution to the problem. The objective of the study is to maximize...
Hybrid Engine Powered City Car: Fuzzy Controlled Approach
Rahman, Ataur; Mohiuddin, AKM; Hawlader, MNA; Ihsan, Sany
2017-03-01
This study describes a fuzzy controlled hybrid engine powered car. The car is powered by the lithium ion battery capacity of 1000 Wh is charged by the 50 cc hybrid engine and power regenerative mode. The engine is operated with lean mixture at 3000 rpm to charge the battery. The regenerative mode that connects with the engine generates electrical power of 500-600 W for the deceleration of car from 90 km/h to 20 km/h. The regenerated electrical power has been used to power the air-conditioning system and to meet the other electrical power. The battery power only used to propel the car. The regenerative power also found charging the battery for longer operation about 40 minutes and more. The design flexibility of this vehicle starts with whole-vehicle integration based on radical light weighting, drag reduction, and accessory efficiency. The energy efficient hybrid engine cut carbon dioxide (CO2) and nitrogen oxides (N2O) emission about 70-80% as the loads on the crankshaft such as cam-follower and its associated rotating components are replaced by electromagnetic systems, and the flywheel, alternator and starter motor are replaced by a motor generator. The vehicle was tested and found that it was able to travel 70 km/litre with the power of hybrid engine.
Using a Hybrid Approach for a Leadership Cohort Program
Norman, Maxine A.
2013-01-01
Because information technology continues to change rapidly, Extension is challenged with learning and using technology appropriately. We assert Extension cannot shy away from the challenges but must embrace technology because audiences and external forces demand it. A hybrid, or blended, format of a leadership cohort program was offered to public…
An Odometry-free Approach for Simultaneous Localization and Online Hybrid Map Building
Directory of Open Access Journals (Sweden)
Wei Hong Chin
2016-11-01
Full Text Available In this paper, a new approach is proposed for mobile robot localization and hybrid map building simultaneously without using any odometry hardware system. The proposed method termed as Genetic Bayesian ARAM which comprises two main components: 1 Steady state genetic algorithm (SSGA for self-localization and occupancy grid map building; 2 Bayesian Adaptive Resonance Associative Memory (ARAM for online topological map building. The model of the explored environment is formed as a hybrid representation, both topological and grid-based, and it is incrementally constructed during the exploration process. During occupancy map building, robot estimated self-position is updated by SSGA. At the same time, robot estimated self position is transmit to Bayesian ARAM for topological map building and localization. The effectiveness of our proposed approach is validated by a number of standardized benchmark datasets and real experimental results carried on mobile robot. Benchmark datasets are used to verify the proposed method capable of generating topological map in different environment conditions. Real robot experiment is to verify the proposed method can be implemented in real world.
A diagnostic expert system for the nuclear power plant b ased on the hybrid knowledge approach
International Nuclear Information System (INIS)
Yang, J.O.; Chang, S.H.
1989-01-01
A diagnostic expert system, the hybrid knowledge based plant operation supporting system (HYPOSS), which has been developed to support operators' decisionmaking during the transients of the nuclear power plant, is described. HYPOSS adopts the hybrid knowledge approach, which combines both shallow and deep knowledge to take advantage of the merits of both approaches. In HYPOSS, four types of knowledge are used according to the steps of diagnosis procedure. They are structural, functional, behavioral, and heuristic knowledge. The structural and functional knowledge is represented by three fundamental primitives and five types of functions, respectively. The behavioral knowledge is represented using constraints. The inference procedure is based on the human problem-solving behavior modeled in HYPOSS. The event-based operational guidelines are provided to the operator according to the diagnosed results. If the exact anomalies cannot be identified while some of the critical safety functions are challenged, the function-based operational guidelines are provided to the operator. For the validation of HYPOSS, several tests have been performed based on the data produced by a plant simulator. The results of validation studies show good applicability of HYPOSS to the anomaly diagnosis of nuclear power plant
Directory of Open Access Journals (Sweden)
Yuliang Su
2015-04-01
Full Text Available A turning machine tool is a kind of new type of machine tool that is equipped with more than one spindle and turret. The distinctive simultaneous and parallel processing abilities of turning machine tool increase the complexity of process planning. The operations would not only be sequenced and satisfy precedence constraints, but also should be scheduled with multiple objectives such as minimizing machining cost, maximizing utilization of turning machine tool, and so on. To solve this problem, a hybrid genetic algorithm was proposed to generate optimal process plans based on a mixed 0-1 integer programming model. An operation precedence graph is used to represent precedence constraints and help generate a feasible initial population of hybrid genetic algorithm. Encoding strategy based on data structure was developed to represent process plans digitally in order to form the solution space. In addition, a local search approach for optimizing the assignments of available turrets would be added to incorporate scheduling with process planning. A real-world case is used to prove that the proposed approach could avoid infeasible solutions and effectively generate a global optimal process plan.
Susanti, Ana; Suhartono; Jati Setyadi, Hario; Taruk, Medi; Haviluddin; Pamilih Widagdo, Putut
2018-03-01
Money currency availability in Bank Indonesia can be examined by inflow and outflow of money currency. The objective of this research is to forecast the inflow and outflow of money currency in each Representative Office (RO) of BI in East Java by using a hybrid exponential smoothing based on state space approach and calendar variation model. Hybrid model is expected to generate more accurate forecast. There are two studies that will be discussed in this research. The first studies about hybrid model using simulation data that contain pattern of trends, seasonal and calendar variation. The second studies about the application of a hybrid model for forecasting the inflow and outflow of money currency in each RO of BI in East Java. The first of results indicate that exponential smoothing model can not capture the pattern calendar variation. It results RMSE values 10 times standard deviation of error. The second of results indicate that hybrid model can capture the pattern of trends, seasonal and calendar variation. It results RMSE values approaching the standard deviation of error. In the applied study, the hybrid model give more accurate forecast for five variables : the inflow of money currency in Surabaya, Malang, Jember and outflow of money currency in Surabaya and Kediri. Otherwise, the time series regression model yields better for three variables : outflow of money currency in Malang, Jember and inflow of money currency in Kediri.
Modeling and control of a hybrid-electric vehicle for drivability and fuel economy improvements
Koprubasi, Kerem
The gradual decline of oil reserves and the increasing demand for energy over the past decades has resulted in automotive manufacturers seeking alternative solutions to reduce the dependency on fossil-based fuels for transportation. A viable technology that enables significant improvements in the overall tank-to-wheel vehicle energy conversion efficiencies is the hybridization of electrical and conventional drive systems. Sophisticated hybrid powertrain configurations require careful coordination of the actuators and the onboard energy sources for optimum use of the energy saving benefits. The term optimality is often associated with fuel economy, although other measures such as drivability and exhaust emissions are also equally important. This dissertation focuses on the design of hybrid-electric vehicle (HEV) control strategies that aim to minimize fuel consumption while maintaining good vehicle drivability. In order to facilitate the design of controllers based on mathematical models of the HEV system, a dynamic model that is capable of predicting longitudinal vehicle responses in the low-to-mid frequency region (up to 10 Hz) is developed for a parallel HEV configuration. The model is validated using experimental data from various driving modes including electric only, engine only and hybrid. The high fidelity of the model makes it possible to accurately identify critical drivability issues such as time lags, shunt, shuffle, torque holes and hesitation. Using the information derived from the vehicle model, an energy management strategy is developed and implemented on a test vehicle. The resulting control strategy has a hybrid structure in the sense that the main mode of operation (the hybrid mode) is occasionally interrupted by event-based rules to enable the use of the engine start-stop function. The changes in the driveline dynamics during this transition further contribute to the hybrid nature of the system. To address the unique characteristics of the HEV
Aeroacoustic analysis of the human phonation process based on a hybrid acoustic PIV approach
Lodermeyer, Alexander; Tautz, Matthias; Becker, Stefan; Döllinger, Michael; Birk, Veronika; Kniesburges, Stefan
2018-01-01
The detailed analysis of sound generation in human phonation is severely limited as the accessibility to the laryngeal flow region is highly restricted. Consequently, the physical basis of the underlying fluid-structure-acoustic interaction that describes the primary mechanism of sound production is not yet fully understood. Therefore, we propose the implementation of a hybrid acoustic PIV procedure to evaluate aeroacoustic sound generation during voice production within a synthetic larynx model. Focusing on the flow field downstream of synthetic, aerodynamically driven vocal folds, we calculated acoustic source terms based on the velocity fields obtained by time-resolved high-speed PIV applied to the mid-coronal plane. The radiation of these sources into the acoustic far field was numerically simulated and the resulting acoustic pressure was finally compared with experimental microphone measurements. We identified the tonal sound to be generated downstream in a small region close to the vocal folds. The simulation of the sound propagation underestimated the tonal components, whereas the broadband sound was well reproduced. Our results demonstrate the feasibility to locate aeroacoustic sound sources inside a synthetic larynx using a hybrid acoustic PIV approach. Although the technique employs a 2D-limited flow field, it accurately reproduces the basic characteristics of the aeroacoustic field in our larynx model. In future studies, not only the aeroacoustic mechanisms of normal phonation will be assessable, but also the sound generation of voice disorders can be investigated more profoundly.
Facile approach to prepare Pt decorated SWNT/graphene hybrid catalytic ink
Energy Technology Data Exchange (ETDEWEB)
Mayavan, Sundar, E-mail: sundarmayavan@cecri.res.in [Centre for Innovation in Energy Research, CSIR–Central Electrochemical Research Institute, Karaikudi 630006, Tamil Nadu (India); Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 305-701 (Korea, Republic of); Mandalam, Aditya; Balasubramanian, M. [Centre for Innovation in Energy Research, CSIR–Central Electrochemical Research Institute, Karaikudi 630006, Tamil Nadu (India); Sim, Jun-Bo [Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 305-701 (Korea, Republic of); Choi, Sung-Min, E-mail: sungmin@kaist.ac.kr [Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 305-701 (Korea, Republic of)
2015-07-15
Highlights: • Pt NPs were in situ synthesized onto CNT–graphene support in aqueous solution. • The as-prepared material was used directly as a catalyst ink without further treatment. • Catalyst ink is active toward methanol oxidation. • This approach realizes both scalable and greener production of hybrid catalysts. - Abstract: Platinum nanoparticles were in situ synthesized onto hybrid support involving graphene and single walled carbon nanotube in aqueous solution. We investigate the reduction of graphene oxide, and platinum nanoparticle functionalization on hybrid support by X-ray photoelectron spectroscopy, Raman spectroscopy, X-ray diffraction, scanning electron microscopy and transmission electron microscopy. The as-prepared platinum on hybrid support was used directly as a catalyst ink without further treatment and is active toward methanol oxidation. This work realizes both scalable and greener production of highly efficient hybrid catalysts, and would be valuable for practical applications of graphene based fuel cell catalysts.
Directory of Open Access Journals (Sweden)
Chao-Chih Lin
2017-10-01
Full Text Available A new transient-based hybrid heuristic approach is developed to optimize a transient generation process and to detect leaks in pipe networks. The approach couples the ordinal optimization approach (OOA and the symbiotic organism search (SOS to solve the optimization problem by means of iterations. A pipe network analysis model (PNSOS is first used to determine steady-state head distribution and pipe flow rates. The best transient generation point and its relevant valve operation parameters are optimized by maximizing the objective function of transient energy. The transient event is created at the chosen point, and the method of characteristics (MOC is used to analyze the transient flow. The OOA is applied to sift through the candidate pipes and the initial organisms with leak information. The SOS is employed to determine the leaks by minimizing the sum of differences between simulated and computed head at the observation points. Two synthetic leaking scenarios, a simple pipe network and a water distribution network (WDN, are chosen to test the performance of leak detection ordinal symbiotic organism search (LDOSOS. Leak information can be accurately identified by the proposed approach for both of the scenarios. The presented technique makes a remarkable contribution to the success of leak detection in the pipe networks.
A New Model for Baryogenesis through Hybrid Inflation
International Nuclear Information System (INIS)
Delepine, D.; Prieto, C. Martinez; Lopez, L. A. Urena
2009-01-01
We propose a hybrid inflation model with a complex waterfall field which contains an interaction term that breaks the U(1) global symmetry associated to the waterfall field charge. The asymmetric evolution of the real and imaginary parts of the complex field during the phase transition at the end of inflation translates into a charge asymmetry.
Model Predictive Control of the Hybrid Ventilation for Livestock
DEFF Research Database (Denmark)
Wu, Zhuang; Stoustrup, Jakob; Trangbæk, Klaus
2006-01-01
In this paper, design and simulation results of Model Predictive Control (MPC) strategy for livestock hybrid ventilation systems and associated indoor climate through variable valve openings and exhaust fans are presented. The design is based on thermal comfort parameters for poultry in barns...
Evaluation of models generated via hybrid evolutionary algorithms ...
African Journals Online (AJOL)
2016-04-02
Apr 2, 2016 ... Evaluation of models generated via hybrid evolutionary algorithms for the prediction of Microcystis ... evolutionary algorithms (HEA) proved to be highly applica- ble to the hypertrophic reservoirs of South Africa. .... discovered and optimised using a large-scale parallel computational device and relevant soft-.
New Models of Hybrid Leadership in Global Higher Education
Tonini, Donna C.; Burbules, Nicholas C.; Gunsalus, C. K.
2016-01-01
This manuscript highlights the development of a leadership preparation program known as the Nanyang Technological University Leadership Academy (NTULA), exploring the leadership challenges unique to a university undergoing rapid growth in a highly multicultural context, and the hybrid model of leadership it developed in response to globalization.…
Hybrid time/frequency domain modeling of nonlinear components
DEFF Research Database (Denmark)
Wiechowski, Wojciech Tomasz; Lykkegaard, Jan; Bak, Claus Leth
2007-01-01
This paper presents a novel, three-phase hybrid time/frequency methodology for modelling of nonlinear components. The algorithm has been implemented in the DIgSILENT PowerFactory software using the DIgSILENT Programming Language (DPL), as a part of the work described in [1]. Modified HVDC benchmark...
Efficient Proof Engines for Bounded Model Checking of Hybrid Systems
DEFF Research Database (Denmark)
Fränzle, Martin; Herde, Christian
2005-01-01
In this paper we present HySat, a new bounded model checker for linear hybrid systems, incorporating a tight integration of a DPLL-based pseudo-Boolean SAT solver and a linear programming routine as core engine. In contrast to related tools like MathSAT, ICS, or CVC, our tool exploits all...
Directory of Open Access Journals (Sweden)
Vasily Novozhilov
2011-10-01
Full Text Available Hybrid Propulsion is an attractive alternative to conventional liquid and solid rocket motors. This is an active area of research and technological developments. Potential wide application of Hybrid Engines opens the possibility for safer and more flexible space vehicle launching and manoeuvring. The present paper discusses fundamental combustion issues related to further development of Hybrid Rockets. The emphasis is made on the two aspects: (1 properties of potential polymeric fuels, and their modification, and (2 implementation of comprehensive CFD models for combustion in Hybrid Engines. Fundamentals of polymeric fuel combustion are discussed. Further, steps necessary to accurately describe their burning behaviour by means of CFD models are investigated. Final part of the paper presents results of preliminary CFD simulations of fuel burning process in Hybrid Engine using a simplified set-up.
Hybrid modelling of soil-structure interaction for embedded structures
International Nuclear Information System (INIS)
Gupta, S.; Penzien, J.
1981-01-01
The basic methods currently being used for the analysis of soil-structure interaction fail to properly model three-dimensional embedded structures with flexible foundations. A hybrid model for the analysis of soil-structure interaction is developed in this investigation which takes advantage of the desirable features of both the finite element and substructure methods and which minimizes their undesirable features. The hybrid model is obtained by partitioning the total soil-structure system into a nearfield and a far-field with a smooth hemispherical interface. The near-field consists of the structure and a finite region of soil immediately surrounding its base. The entire near-field may be modelled in three-dimensional form using the finite element method; thus, taking advantage of its ability to model irregular geometries, and the non-linear soil behavior in the immediate vicinity of the structure. (orig./WL)
A Hybrid Approach for Thread Recommendation in MOOC Forums
Ahmad. A. Kardan; Amir Narimani; Foozhan Ataiefard
2017-01-01
Recommender Systems have been developed to provide contents and services compatible to users based on their behaviors and interests. Due to information overload in online discussion forums and users diverse interests, recommending relative topics and threads is considered to be helpful for improving the ease of forum usage. In order to lead learners to find relevant information in educational forums, recommendations are even more needed. We present a hybrid thread recommender system for MOOC ...
A HYBRID GENETIC ALGORITHM-NEURAL NETWORK APPROACH FOR PRICING CORES AND REMANUFACTURED CORES
Directory of Open Access Journals (Sweden)
M. Seidi
2012-01-01
Full Text Available
ENGLISH ABSTRACT:Sustainability has become a major issue in most economies, causing many leading companies to focus on product recovery and reverse logistics. Remanufacturing is an industrial process that makes used products reusable. One of the important aspects in both reverse logistics and remanufacturing is the pricing of returned and remanufactured products (called cores. In this paper, we focus on pricing the cores and remanufactured cores. First we present a mathematical model for this purpose. Since this model does not satisfy our requirements, we propose a simulation optimisation approach. This approach consists of a hybrid genetic algorithm based on a neural network employed as the fitness function. We use automata learning theory to obtain the learning rate required for training the neural network. Numerical results demonstrate that the optimal value of the acquisition price of cores and price of remanufactured cores is obtained by this approach.
AFRIKAANSE OPSOMMING: Volhoubaarheid het ‘n belangrike saak geword in die meeste ekonomieë, wat verskeie maatskappye genoop het om produkherwinning en omgekeerde logistiek te onder oë te neem. Hervervaardiging is ‘n industriële proses wat gebruikte produkte weer bruikbaar maak. Een van die belangrike aspekte in beide omgekeerde logistiek en hervervaardiging is die prysbepaling van herwinne en hervervaardigde produkte. Hierdie artikel fokus op die prysbepalingsaspekte by wyse van ‘n wiskundige model.
A Hybrid Physical and Maximum-Entropy Landslide Susceptibility Model
Directory of Open Access Journals (Sweden)
Jerry Davis
2015-06-01
Full Text Available The clear need for accurate landslide susceptibility mapping has led to multiple approaches. Physical models are easily interpreted and have high predictive capabilities but rely on spatially explicit and accurate parameterization, which is commonly not possible. Statistical methods can include other factors influencing slope stability such as distance to roads, but rely on good landslide inventories. The maximum entropy (MaxEnt model has been widely and successfully used in species distribution mapping, because data on absence are often uncertain. Similarly, knowledge about the absence of landslides is often limited due to mapping scale or methodology. In this paper a hybrid approach is described that combines the physically-based landslide susceptibility model “Stability INdex MAPping” (SINMAP with MaxEnt. This method is tested in a coastal watershed in Pacifica, CA, USA, with a well-documented landslide history including 3 inventories of 154 scars on 1941 imagery, 142 in 1975, and 253 in 1983. Results indicate that SINMAP alone overestimated susceptibility due to insufficient data on root cohesion. Models were compared using SINMAP stability index (SI or slope alone, and SI or slope in combination with other environmental factors: curvature, a 50-m trail buffer, vegetation, and geology. For 1941 and 1975, using slope alone was similar to using SI alone; however in 1983 SI alone creates an Areas Under the receiver operator Curve (AUC of 0.785, compared with 0.749 for slope alone. In maximum-entropy models created using all environmental factors, the stability index (SI from SINMAP represented the greatest contributions in all three years (1941: 48.1%; 1975: 35.3; and 1983: 48%, with AUC of 0.795, 0822, and 0.859, respectively; however; using slope instead of SI created similar overall AUC values, likely due to the combined effect with plan curvature indicating focused hydrologic inputs and vegetation identifying the effect of root cohesion
Modeling, hybridization, and optimal charging of electrical energy storage systems
Parvini, Yasha
The rising rate of global energy demand alongside the dwindling fossil fuel resources has motivated research for alternative and sustainable solutions. Within this area of research, electrical energy storage systems are pivotal in applications including electrified vehicles, renewable power generation, and electronic devices. The approach of this dissertation is to elucidate the bottlenecks of integrating supercapacitors and batteries in energy systems and propose solutions by the means of modeling, control, and experimental techniques. In the first step, the supercapacitor cell is modeled in order to gain fundamental understanding of its electrical and thermal dynamics. The dependence of electrical parameters on state of charge (SOC), current direction and magnitude (20-200 A), and temperatures ranging from -40°C to 60°C was embedded in this computationally efficient model. The coupled electro-thermal model was parameterized using specifically designed temporal experiments and then validated by the application of real world duty cycles. Driving range is one of the major challenges of electric vehicles compared to combustion vehicles. In order to shed light on the benefits of hybridizing a lead-acid driven electric vehicle via supercapacitors, a model was parameterized for the lead-acid battery and combined with the model already developed for the supercapacitor, to build the hybrid battery-supercapacitor model. A hardware in the loop (HIL) setup consisting of a custom built DC/DC converter, micro-controller (muC) to implement the power management strategy, 12V lead-acid battery, and a 16.2V supercapacitor module was built to perform the validation experiments. Charging electrical energy storage systems in an efficient and quick manner, motivated to solve an optimal control problem with the objective of maximizing the charging efficiency for supercapacitors, lead-acid, and lithium ion batteries. Pontryagins minimum principle was used to solve the problems
International Nuclear Information System (INIS)
Horne, M.; Jaccard, M.; Tiedemann, K.
2005-01-01
Hybrid energy-economy models combine top-down and bottom-up approaches to explore behaviorally realistic responses to technology-focused policies. This research uses empirically derived discrete choice models to inform key behavioral parameters in CIMS, a hybrid model. The discrete choice models are estimated for vehicle and commuting decisions from a survey of 1150 Canadians. With the choice models integrated into CIMS, we simulate carbon taxes, gasoline vehicle disincentives, and single occupancy vehicle disincentives to show how different policy levers can motivate technological change. We also use the empirical basis for the choice models to portray uncertainty in technological change, costs, and emissions. (author)
Directory of Open Access Journals (Sweden)
Yuehjen E. Shao
2013-01-01
Full Text Available Because the volume of currency issued by a country always affects its interest rate, price index, income levels, and many other important macroeconomic variables, the prediction of currency volume issued has attracted considerable attention in recent years. In contrast to the typical single-stage forecast model, this study proposes a hybrid forecasting approach to predict the volume of currency issued in Taiwan. The proposed hybrid models consist of artificial neural network (ANN and multiple regression (MR components. The MR component of the hybrid models is established for a selection of fewer explanatory variables, wherein the selected variables are of higher importance. The ANN component is then designed to generate forecasts based on those important explanatory variables. Subsequently, the model is used to analyze a real dataset of Taiwan's currency from 1996 to 2011 and twenty associated explanatory variables. The prediction results reveal that the proposed hybrid scheme exhibits superior forecasting performance for predicting the volume of currency issued in Taiwan.
On the Likely Utility of Hybrid Weights Optimized for Variances in Hybrid Error Covariance Models
Satterfield, E.; Hodyss, D.; Kuhl, D.; Bishop, C. H.
2017-12-01
Because of imperfections in ensemble data assimilation schemes, one cannot assume that the ensemble covariance is equal to the true error covariance of a forecast. Previous work demonstrated how information about the distribution of true error variances given an ensemble sample variance can be revealed from an archive of (observation-minus-forecast, ensemble-variance) data pairs. Here, we derive a simple and intuitively compelling formula to obtain the mean of this distribution of true error variances given an ensemble sample variance from (observation-minus-forecast, ensemble-variance) data pairs produced by a single run of a data assimilation system. This formula takes the form of a Hybrid weighted average of the climatological forecast error variance and the ensemble sample variance. Here, we test the extent to which these readily obtainable weights can be used to rapidly optimize the covariance weights used in Hybrid data assimilation systems that employ weighted averages of static covariance models and flow-dependent ensemble based covariance models. Univariate data assimilation and multi-variate cycling ensemble data assimilation are considered. In both cases, it is found that our computationally efficient formula gives Hybrid weights that closely approximate the optimal weights found through the simple but computationally expensive process of testing every plausible combination of weights.
Benzineb, Omar
2013-01-01
In this article, the diagnosis of a three cell converter is developed. The hybrid nature of the system represented by the presence of continuous and discrete dynamics is taken into account in the control design. The idea is based on using a hybrid control and an observer-type sliding mode to generate residuals from the observation errors of the system. The simulation results are presented at the end to illustrate the performance of the proposed approach. © 2013 FEI STU.
A hybrid society model for simulating residential electricity consumption
Energy Technology Data Exchange (ETDEWEB)
Xu, Minjie [School of Electrical Engineering, Beijing Jiaotong University, Beijing (China); State Power Economic Research Institute, Beijing (China); Hu, Zhaoguang [State Power Economic Research Institute, Beijing (China); Wu, Junyong; Zhou, Yuhui [School of Electrical Engineering, Beijing Jiaotong University, Beijing (China)
2008-12-15
In this paper, a hybrid social model of econometric model and social influence model is proposed for evaluating the influence of pricing policy and public education policy on residential habit of electricity using in power resources management. And, a hybrid society simulation platform based on the proposed model, called residential electricity consumption multi-agent systems (RECMAS), is designed for simulating residential electricity consumption by multi-agent system. RECMAS is composed of consumer agent, power supplier agent, and policy maker agent. It provides the policy makers with a useful tool to evaluate power price policies and public education campaigns in different scenarios. According to an influenced diffusion mechanism, RECMAS can simulate the residential electricity demand-supply chain and analyze impacts of the factors on residential electricity consumption. Finally, the proposed method is used to simulate urban residential electricity consumption in China. (author)
A hybrid society model for simulating residential electricity consumption
International Nuclear Information System (INIS)
Xu, Minjie; Hu, Zhaoguang; Wu, Junyong; Zhou, Yuhui
2008-01-01
In this paper, a hybrid social model of econometric model and social influence model is proposed for evaluating the influence of pricing policy and public education policy on residential habit of electricity using in power resources management. And, a hybrid society simulation platform based on the proposed model, called residential electricity consumption multi-agent systems (RECMAS), is designed for simulating residential electricity consumption by multi-agent system. RECMAS is composed of consumer agent, power supplier agent, and policy maker agent. It provides the policy makers with a useful tool to evaluate power price policies and public education campaigns in different scenarios. According to an influenced diffusion mechanism, RECMAS can simulate the residential electricity demand-supply chain and analyze impacts of the factors on residential electricity consumption. Finally, the proposed method is used to simulate urban residential electricity consumption in China. (author)
Elsheikh, Ahmed H.; Wheeler, Mary Fanett; Hoteit, Ibrahim
2014-01-01
A Hybrid Nested Sampling (HNS) algorithm is proposed for efficient Bayesian model calibration and prior model selection. The proposed algorithm combines, Nested Sampling (NS) algorithm, Hybrid Monte Carlo (HMC) sampling and gradient estimation using
The semantics of hybrid process models
Slaats, T.; Schunselaar, D.M.M.; Maggi, F.M.; Reijers, H.A.; Debruyne, C.; Panetto, H.; Meersman, R.; Dillon, T.; Kuhn, E.; O'Sullivan, D.; Agostino Ardagna, C.
2016-01-01
In the area of business process modelling, declarative notations have been proposed as alternatives to notations that follow the dominant, imperative paradigm. Yet, the choice between an imperative or declarative style of modelling is not always easy to make. Instead, a mixture of these styles is
Directory of Open Access Journals (Sweden)
Zahra Pourabdollahi
2017-12-01
Full Text Available Supplier evaluation and selection problem is among the most important of logistics decisions that have been addressed extensively in supply chain management. The same logistics decision is also important in freight transportation since it identifies trade relationships between business establishments and determines commodity flows between production and consumption points. The commodity flows are then used as input to freight transportation models to determine cargo movements and their characteristics including mode choice and shipment size. Various approaches have been proposed to explore this latter problem in previous studies. Traditionally, potential suppliers are evaluated and selected using only price/cost as the influential criteria and the state-of-practice methods. This paper introduces a hybrid agent-based computational economics and optimization approach for supplier selection. The proposed model combines an agent-based multi-criteria supplier evaluation approach with a multi-objective optimization model to capture both behavioral and economical aspects of the supplier selection process. The model uses a system of ordered response models to determine importance weights of the different criteria in supplier evaluation from a buyers’ point of view. The estimated weights are then used to calculate a utility for each potential supplier in the market and rank them. The calculated utilities are then entered into a mathematical programming model in which best suppliers are selected by maximizing the total accrued utility for all buyers and minimizing total shipping costs while balancing the capacity of potential suppliers to ensure market clearing mechanisms. The proposed model, herein, was implemented under an operational agent-based supply chain and freight transportation framework for the Chicago Metropolitan Area.
A computational model for lower hybrid current drive
International Nuclear Information System (INIS)
Englade, R.C.; Bonoli, P.T.; Porkolab, M.
1983-01-01
A detailed simulation model for lower hybrid (LH) current drive in toroidal devices is discussed. This model accounts reasonably well for the magnitude of radio frequency (RF) current observed in the PLT and Alcator C devices. It also reproduces the experimental dependencies of RF current generation on toroidal magnetic field and has provided insights about mechanisms which may underlie the observed density limit of current drive. (author)
A Hybrid Model for Forecasting Sales in Turkish Paint Industry
Alp Ustundag
2009-01-01
Sales forecasting is important for facilitating effective and efficient allocation of scarce resources. However, how to best model and forecast sales has been a long-standing issue. There is no best forecasting method that is applicable in all circumstances. Therefore, confidence in the accuracy of sales forecasts is achieved by corroborating the results using two or more methods. This paper proposes a hybrid forecasting model that uses an artificial intelligence method (AI) w...
Hybrid Neuro-Fuzzy Classifier Based On Nefclass Model
Directory of Open Access Journals (Sweden)
Bogdan Gliwa
2011-01-01
Full Text Available The paper presents hybrid neuro-fuzzy classifier, based on NEFCLASS model, which wasmodified. The presented classifier was compared to popular classifiers – neural networks andk-nearest neighbours. Efficiency of modifications in classifier was compared with methodsused in original model NEFCLASS (learning methods. Accuracy of classifier was testedusing 3 datasets from UCI Machine Learning Repository: iris, wine and breast cancer wisconsin.Moreover, influence of ensemble classification methods on classification accuracy waspresented.
Apricot - An Object-Oriented Modeling Language for Hybrid Systems
Fang, Huixing; Zhu, Huibiao; Shi, Jianqi
2013-01-01
We propose Apricot as an object-oriented language for modeling hybrid systems. The language combines the features in domain specific language and object-oriented language, that fills the gap between design and implementation, as a result, we put forward the modeling language with simple and distinct syntax, structure and semantics. In addition, we introduce the concept of design by convention into Apricot.As the characteristic of object-oriented and the component architecture in Apricot, we c...
Hierarchical models and iterative optimization of hybrid systems
Energy Technology Data Exchange (ETDEWEB)
Rasina, Irina V. [Ailamazyan Program Systems Institute, Russian Academy of Sciences, Peter One str. 4a, Pereslavl-Zalessky, 152021 (Russian Federation); Baturina, Olga V. [Trapeznikov Control Sciences Institute, Russian Academy of Sciences, Profsoyuznaya str. 65, 117997, Moscow (Russian Federation); Nasatueva, Soelma N. [Buryat State University, Smolina str.24a, Ulan-Ude, 670000 (Russian Federation)
2016-06-08
A class of hybrid control systems on the base of two-level discrete-continuous model is considered. The concept of this model was proposed and developed in preceding works as a concretization of the general multi-step system with related optimality conditions. A new iterative optimization procedure for such systems is developed on the base of localization of the global optimality conditions via contraction the control set.
Material Modelling - Composite Approach
DEFF Research Database (Denmark)
Nielsen, Lauge Fuglsang
1997-01-01
is successfully justified comparing predicted results with experimental data obtained in the HETEK-project on creep, relaxation, and shrinkage of very young concretes cured at a temperature of T = 20^o C and a relative humidity of RH = 100%. The model is also justified comparing predicted creep, shrinkage......, and internal stresses caused by drying shrinkage with experimental results reported in the literature on the mechanical behavior of mature concretes. It is then concluded that the model presented applied in general with respect to age at loading.From a stress analysis point of view the most important finding...... in this report is that cement paste and concrete behave practically as linear-viscoelastic materials from an age of approximately 10 hours. This is a significant age extension relative to earlier studies in the literature where linear-viscoelastic behavior is only demonstrated from ages of a few days. Thus...
International Nuclear Information System (INIS)
Gritli, Hassène; Belghith, Safya
2015-01-01
Highlights: • A numerical calculation method of the Lyapunov exponents in the compass-gait model under OGY control is proposed. • A new linearization method of the impulsive hybrid dynamics around a one-periodic hybrid limit cycle is achieved. • We develop a simple analytical expression of a controlled hybrid Poincaré map. • A dimension reduction of the hybrid Poincaré map is realized. • We describe the numerical computation procedure of the Lyapunov exponents via the designed hybrid Poincaré map. - Abstract: This paper aims at providing a numerical calculation method of the spectrum of Lyapunov exponents in a four-dimensional impulsive hybrid nonlinear dynamics of a passive compass-gait model under the OGY control approach by means of a controlled hybrid Poincaré map. We present a four-dimensional simplified analytical expression of such hybrid map obtained by linearizing the uncontrolled impulsive hybrid nonlinear dynamics around a desired one-periodic passive hybrid limit cycle. In order to compute the spectrum of Lyapunov exponents, a dimension reduction of the controlled hybrid Poincaré map is realized. The numerical calculation of the spectrum of Lyapunov exponents using the reduced-dimension controlled hybrid Poincaré map is given in detail. In order to show the effectiveness of the developed method, the spectrum of Lyapunov exponents is calculated as the slope (bifurcation) parameter varies and hence used to predict the walking dynamics behavior of the compass-gait model under the OGY control.
Numerical Prediction of Combustion-induced Noise using a hybrid LES/CAA approach
Ihme, Matthias; Pitsch, Heinz; Kaltenbacher, Manfred
2006-11-01
Noise generation in technical devices is an increasingly important problem. Jet engines in particular produce sound levels that not only are a nuisance but may also impair hearing. The noise emitted by such engines is generated by different sources such as jet exhaust, fans or turbines, and combustion. Whereas the former acoustic mechanisms are reasonably well understood, combustion-generated noise is not. A methodology for the prediction of combustion-generated noise is developed. In this hybrid approach unsteady acoustic source terms are obtained from an LES and the propagation of pressure perturbations are obtained using acoustic analogies. Lighthill's acoustic analogy and a non-linear wave equation, accounting for variable speed of sound, have been employed. Both models are applied to an open diffusion flame. The effects on the far field pressure and directivity due to the variation of speed of sound are analyzed. Results for the sound pressure level will be compared with experimental data.
Modular approach for conversion to the ion-hybrid wave and α gyroresonance
International Nuclear Information System (INIS)
Kaufman, A.N.; Morehead, J.J.; Brizard, A.J.; Tracy, E.R.
1997-01-01
Linear conversion of an incoming magnetosonic wave (a.k.a. fast or compressional wave) to an ion-hybrid wave can be considered as a 3-step process in ray phase space. This is demonstrated by casting the cold-fluid model into the Friedland-Kaufman normal form for linear mode conversion. First, the incoming magnetosonic ray (MSR) converts a fraction of its action to an intermediate ion-hybrid ray (IHR), with the transmitted ray proceeding through the conversion layer. The IHR propagates in k-space to a second conversion point, where it converts in turn a fraction of its action into a reflected MSR, with the remainder of the its action constituting the converted IHR. The modular approach gives exact agreement with the more standard Budden formulation for the transmission, reflection and conversion coefficients, but has the important advantage of exposing the intermediate IHR. The existence of the intermediate IHR has important physical consequences as it can resonate with α particles. We estimate the time-integrated damping coefficient between the two conversions and show that ∫γdt is of order -100, thus the IH wave is completely annihilated between conversions and transfers its energy to the α close-quote s. This suggests that proposals to use the IH mode for current drive or DT heating are likely to fail in the presence of fusion α close-quote s. copyright 1997 American Institute of Physics
An hybrid and non-modern approach to urban studies
Directory of Open Access Journals (Sweden)
Marc Grau i Solés
2012-03-01
Full Text Available This article draws upon the so-called Forat de la Vergonya urban controversy and the urban transformation process of a neighborhood in Barcelona: el Casc Antic. Drawing on inputs from Actor-Network Theory (ANT, the city is explored as a multiple urban assemblage. Besides, we analyze the dichotomous nature of the modern notion of politics. Especially, the role of object-subject dichotomy is explored. Through the analysis of citizen participation opportunities we propose a new hybrid notion of citizen participation and urban policy.
Hajarolasvadi, Setare; Elbanna, Ahmed E.
2017-11-01
The finite difference (FD) and the spectral boundary integral (SBI) methods have been used extensively to model spontaneously-propagating shear cracks in a variety of engineering and geophysical applications. In this paper, we propose a new modelling approach in which these two methods are combined through consistent exchange of boundary tractions and displacements. Benefiting from the flexibility of FD and the efficiency of SBI methods, the proposed hybrid scheme will solve a wide range of problems in a computationally efficient way. We demonstrate the validity of the approach using two examples for dynamic rupture propagation: one in the presence of a low-velocity layer and the other in which off-fault plasticity is permitted. We discuss possible potential uses of the hybrid scheme in earthquake cycle simulations as well as an exact absorbing boundary condition.
A model for particle acceleration in lower hybrid collapse
International Nuclear Information System (INIS)
Retterer, J.M.
1997-01-01
A model for particle acceleration during the nonlinear collapse of lower hybrid waves is described. Using the Musher-Sturman wave equation to describe the effects of nonlinear processes and a velocity diffusion equation for the particle velocity distribution, the model self-consistently describes the exchange of energy between the fields and the particles in the local plasma. Two-dimensional solutions are presented for the modulational instability of a plane wave and the collapse of a cylindrical wave packet. These calculations were motivated by sounding rocket observations in the vicinity of auroral arcs in the Earth close-quote s ionosphere, which have revealed the existence of large-amplitude lower-hybrid wave packets associated with ions accelerated to energies of 100 eV. The scaling of the sizes of these wave packets is consistent with the theory of lower-hybrid collapse and the observed lower-hybrid field amplitudes are adequate to accelerate the ionospheric ions to the observed energies
Hybrid reduced order modeling for assembly calculations
International Nuclear Information System (INIS)
Bang, Youngsuk; Abdel-Khalik, Hany S.; Jessee, Matthew A.; Mertyurek, Ugur
2015-01-01
Highlights: • Reducing computational cost in engineering calculations. • Reduced order modeling algorithm for multi-physics problem like assembly calculation. • Non-intrusive algorithm with random sampling. • Pattern recognition in the components with high sensitive and large variation. - Abstract: While the accuracy of assembly calculations has considerably improved due to the increase in computer power enabling more refined description of the phase space and use of more sophisticated numerical algorithms, the computational cost continues to increase which limits the full utilization of their effectiveness for routine engineering analysis. Reduced order modeling is a mathematical vehicle that scales down the dimensionality of large-scale numerical problems to enable their repeated executions on small computing environment, often available to end users. This is done by capturing the most dominant underlying relationships between the model's inputs and outputs. Previous works demonstrated the use of the reduced order modeling for a single physics code, such as a radiation transport calculation. This manuscript extends those works to coupled code systems as currently employed in assembly calculations. Numerical tests are conducted using realistic SCALE assembly models with resonance self-shielding, neutron transport, and nuclides transmutation/depletion models representing the components of the coupled code system.
Hybrid reduced order modeling for assembly calculations
Energy Technology Data Exchange (ETDEWEB)
Bang, Youngsuk, E-mail: ysbang00@fnctech.com [FNC Technology, Co. Ltd., Yongin-si (Korea, Republic of); Abdel-Khalik, Hany S., E-mail: abdelkhalik@purdue.edu [Purdue University, West Lafayette, IN (United States); Jessee, Matthew A., E-mail: jesseema@ornl.gov [Oak Ridge National Laboratory, Oak Ridge, TN (United States); Mertyurek, Ugur, E-mail: mertyurek@ornl.gov [Oak Ridge National Laboratory, Oak Ridge, TN (United States)
2015-12-15
Highlights: • Reducing computational cost in engineering calculations. • Reduced order modeling algorithm for multi-physics problem like assembly calculation. • Non-intrusive algorithm with random sampling. • Pattern recognition in the components with high sensitive and large variation. - Abstract: While the accuracy of assembly calculations has considerably improved due to the increase in computer power enabling more refined description of the phase space and use of more sophisticated numerical algorithms, the computational cost continues to increase which limits the full utilization of their effectiveness for routine engineering analysis. Reduced order modeling is a mathematical vehicle that scales down the dimensionality of large-scale numerical problems to enable their repeated executions on small computing environment, often available to end users. This is done by capturing the most dominant underlying relationships between the model's inputs and outputs. Previous works demonstrated the use of the reduced order modeling for a single physics code, such as a radiation transport calculation. This manuscript extends those works to coupled code systems as currently employed in assembly calculations. Numerical tests are conducted using realistic SCALE assembly models with resonance self-shielding, neutron transport, and nuclides transmutation/depletion models representing the components of the coupled code system.
Modeling, design and analysis of a stand-alone hybrid power generation system using solar/urine
International Nuclear Information System (INIS)
Wu, Wei; Zhou, Ya-Yan; Lin, Mu-Hsuan; Hwang, Jenn-Jiang
2013-01-01
Highlights: • The stand-alone hybrid power system is presented. • The urine-to-hydrogen processor is proposed. • Scenario analysis of the hybrid power dispatching and the urine/solar demands is investigated. • The design, modeling and optimization of the hybrid power system is addressed by Aspen Plus and Matlab. - Abstract: The urine turned to hydrogen as an energy conversion process is integrated into a stand-alone hybrid (PV/FC/battery) power generation system. The optimization and simulation of a new urine-to-hydrogen processor is evaluated in Aspen Plus environment. In our approach, the PV generator aims to reduce urine consumption and the lithium-ion battery can compensate the power gap due to the fuel processing delay. Based on prescribed patterns of solar irradiation and the daily load demand of a 30-persons classroom, scenario analyses of the hybrid power dispatching and operational feasibility is addressed
Modelling and Optimising the Value of a Hybrid Solar-Wind System
Nair, Arjun; Murali, Kartik; Anbuudayasankar, S. P.; Arjunan, C. V.
2017-05-01
In this paper, a net present value (NPV) approach for a solar hybrid system has been presented. The system, in question aims at supporting an investor by assessing an investment in solar-wind hybrid system in a given area. The approach follow a combined process of modelling the system, with optimization of major investment-related variables to maximize the financial yield of the investment. The consideration of solar wind hybrid supply presents significant potential for cost reduction. The investment variables concern the location of solar wind plant, and its sizing. The system demand driven, meaning that its primary aim is to fully satisfy the energy demand of the customers. Therefore, the model is a practical tool in the hands of investor to assess and optimize in financial terms an investment aiming at covering real energy demand. Optimization is performed by taking various technical, logical constraints. The relation between the maximum power obtained between individual system and the hybrid system as a whole in par with the net present value of the system has been highlighted.
Predictive simulation of bidirectional Glenn shunt using a hybrid blood vessel model.
Li, Hao; Leow, Wee Kheng; Chiu, Ing-Sh
2009-01-01
This paper proposes a method for performing predictive simulation of cardiac surgery. It applies a hybrid approach to model the deformation of blood vessels. The hybrid blood vessel model consists of a reference Cosserat rod and a surface mesh. The reference Cosserat rod models the blood vessel's global bending, stretching, twisting and shearing in a physically correct manner, and the surface mesh models the surface details of the blood vessel. In this way, the deformation of blood vessels can be computed efficiently and accurately. Our predictive simulation system can produce complex surgical results given a small amount of user inputs. It allows the surgeon to easily explore various surgical options and evaluate them. Tests of the system using bidirectional Glenn shunt (BDG) as an application example show that the results produc by the system are similar to real surgical results.
Directory of Open Access Journals (Sweden)
Mohammad Taghi Ameli
2012-01-01
Full Text Available Transmission Network Expansion Planning (TNEP is a basic part of power network planning that determines where, when and how many new transmission lines should be added to the network. So, the TNEP is an optimization problem in which the expansion purposes are optimized. Artificial Intelligence (AI tools such as Genetic Algorithm (GA, Simulated Annealing (SA, Tabu Search (TS and Artificial Neural Networks (ANNs are methods used for solving the TNEP problem. Today, by using the hybridization models of AI tools, we can solve the TNEP problem for large-scale systems, which shows the effectiveness of utilizing such models. In this paper, a new approach to the hybridization model of Probabilistic Neural Networks (PNNs and Harmony Search Algorithm (HSA was used to solve the TNEP problem. Finally, by considering the uncertain role of the load based on a scenario technique, this proposed model was tested on the Garver’s 6-bus network.
Directory of Open Access Journals (Sweden)
S. Caponi
2016-11-01
Full Text Available A living bio-hybrid system has been successfully implemented. It is constituted by neuroblastic cells, the SH-SY5Y human neuroblastoma cells, adhering to a poly-anyline (PANI a semiconductor polymer with memristive properties. By a multidisciplinary approach, the biocompatibility of the substrate has been analyzed and the functionality of the adhering cells has been investigated. We found that the PANI films can support the cell adhesion. Moreover, the SH-SY5Y cells were successfully differentiated into neuron-like cells for in vitro applications demonstrating that PANI can also promote cell differentiation. In order to deeply characterize the modifications of the bio-functionality induced by the cell-substrate interaction, the functional properties of the cells have been characterized by electrophysiology and Raman spectroscopy. Our results confirm that the PANI films do not strongly affect the general properties of the cells, ensuring their viability without toxic effects on their physiology. Ascribed to the adhesion process, however, a slight increase of the markers of the cell suffering has been evidenced by Raman spectroscopy and accordingly the electrophysiology shows a reduction at positive stimulations in the cells excitability.
A Hybrid Model for Forecasting Sales in Turkish Paint Industry
Directory of Open Access Journals (Sweden)
Alp Ustundag
2009-12-01
Full Text Available Sales forecasting is important for facilitating effective and efficient allocation of scarce resources. However, how to best model and forecast sales has been a long-standing issue. There is no best forecasting method that is applicable in all circumstances. Therefore, confidence in the accuracy of sales forecasts is achieved by corroborating the results using two or more methods. This paper proposes a hybrid forecasting model that uses an artificial intelligence method (AI with multiple linear regression (MLR to predict product sales for the largest Turkish paint producer. In the hybrid model, three different AI methods, fuzzy rule-based system (FRBS, artificial neural network (ANN and adaptive neuro fuzzy network (ANFIS, are used and compared to each other. The results indicate that FRBS yields better forecasting accuracy in terms of root mean squared error (RMSE and mean absolute percentage error (MAPE.
Hybrid reduced order modeling for assembly calculations
Energy Technology Data Exchange (ETDEWEB)
Bang, Y.; Abdel-Khalik, H. S. [North Carolina State University, Raleigh, NC (United States); Jessee, M. A.; Mertyurek, U. [Oak Ridge National Laboratory, Oak Ridge, TN (United States)
2013-07-01
While the accuracy of assembly calculations has considerably improved due to the increase in computer power enabling more refined description of the phase space and use of more sophisticated numerical algorithms, the computational cost continues to increase which limits the full utilization of their effectiveness for routine engineering analysis. Reduced order modeling is a mathematical vehicle that scales down the dimensionality of large-scale numerical problems to enable their repeated executions on small computing environment, often available to end users. This is done by capturing the most dominant underlying relationships between the model's inputs and outputs. Previous works demonstrated the use of the reduced order modeling for a single physics code, such as a radiation transport calculation. This manuscript extends those works to coupled code systems as currently employed in assembly calculations. Numerical tests are conducted using realistic SCALE assembly models with resonance self-shielding, neutron transport, and nuclides transmutation/depletion models representing the components of the coupled code system. (authors)
Hybrid neural network bushing model for vehicle dynamics simulation
International Nuclear Information System (INIS)
Sohn, Jeong Hyun; Lee, Seung Kyu; Yoo, Wan Suk
2008-01-01
Although the linear model was widely used for the bushing model in vehicle suspension systems, it could not express the nonlinear characteristics of bushing in terms of the amplitude and the frequency. An artificial neural network model was suggested to consider the hysteretic responses of bushings. This model, however, often diverges due to the uncertainties of the neural network under the unexpected excitation inputs. In this paper, a hybrid neural network bushing model combining linear and neural network is suggested. A linear model was employed to represent linear stiffness and damping effects, and the artificial neural network algorithm was adopted to take into account the hysteretic responses. A rubber test was performed to capture bushing characteristics, where sine excitation with different frequencies and amplitudes is applied. Random test results were used to update the weighting factors of the neural network model. It is proven that the proposed model has more robust characteristics than a simple neural network model under step excitation input. A full car simulation was carried out to verify the proposed bushing models. It was shown that the hybrid model results are almost identical to the linear model under several maneuvers
Hybrid modelling of bed-discordant river confluences
Franca, M. J.; Guillén-Ludeña, S.; Cheng, Z.; Cardoso, A. H.; Constantinescu, G.
2016-12-01
In fluvial networks, tributaries are the main providers of sediment and water to the main rivers. Furthermore, confluences are environmental hotspots since they provide ecological connectivity and flow and morphology diversity. Mountain confluences, in particular, are characterized by narrow and steep tributaries that provide important sediment load to the confluence, whereas the main channel supplies the dominant flow discharge. This results in a marked bed discordance between the tributary and main channel. This discordance has been observed to be a key feature that alters the dynamics of the confluence, when compared to concordant confluences. The processes of initiation and maintenance of the morphology of confluences is still unknown, and research linking morphodynamics and hydrodynamics of river confluences is required to understand this. Here, a hybrid approach combining laboratory experiments made in a live-bed model of a river confluence, with 3D numerical simulations using advanced turbulence models is presented. We use the laboratory experiments performed by Guillén-Ludeña et al. (2016) for a 70o channel confluence, which focused on sediment transport and morphology changes rather than on the structure of the flow. Highly eddy resolving simulations were performed for two extreme bathymetric conditions, at the start of the experiment and at equilibrium scour conditions. The first allows to understand the initiation mechanisms which will condition later the equilibrium morphology. The second allows to understand the hydrodynamics actions which keep the equilibrium morphology. The patterns of the mean flow, turbulence and dynamics of the large-scale coherent structures, show how the main sediment-entrainment mechanisms evolve during the scour process. The present results contribute to a better understanding of the interaction between bed morphology and flow dynamics at discordant mountain river confluences.
Design, Operation and Control Modelling of SOFC/GT Hybrid Systems
Stiller, Christoph
2006-01-01
This thesis focuses on modelling-based design, operation and control of solid oxide fuel cell (SOFC) and gas turbine (GT) hybrid systems. Fuel cells are a promising approach to high-efficiency power generation, as they directly convert chemical energy to electric work. High-temperature fuel cells such as the SOFC can be integrated in gas turbine processes, which further increases the electrical efficiency to values up to 70%. However, there are a number of obstacles for safe operation of such...
A hybrid solution approach for a multi-objective closed-loop logistics network under uncertainty
Mehrbod, Mehrdad; Tu, Nan; Miao, Lixin
2015-06-01
The design of closed-loop logistics (forward and reverse logistics) has attracted growing attention with the stringent pressures of customer expectations, environmental concerns and economic factors. This paper considers a multi-product, multi-period and multi-objective closed-loop logistics network model with regard to facility expansion as a facility location-allocation problem, which more closely approximates real-world conditions. A multi-objective mixed integer nonlinear programming formulation is linearized by defining new variables and adding new constraints to the model. By considering the aforementioned model under uncertainty, this paper develops a hybrid solution approach by combining an interactive fuzzy goal programming approach and robust counterpart optimization based on three well-known robust counterpart optimization formulations. Finally, this paper compares the results of the three formulations using different test scenarios and parameter-sensitive analysis in terms of the quality of the final solution, CPU time, the level of conservatism, the degree of closeness to the ideal solution, the degree of balance involved in developing a compromise solution, and satisfaction degree.
The Cheshire Cat principle for hybrid bag models
International Nuclear Information System (INIS)
Nielsen, H.B.
1987-05-01
The Cheshire Cat point of view where the bag in the chiral bag model has no physical significance, but only a notational one is argued for. It is explained how a fermion - in, say, a 1+1 dimensional exact Cheshire Cat model - escapes the bag by means of an anomaly. The possibility to construct sophisticated hybrid bag models is suggested which use the lack of physical significance of the bag to fix the many parameters so as to anyway give hope of a phenomenologically sensible model. (orig.)
HYBRID WAYS OF DOING: A MODEL FOR TEACHING PUBLIC SPACE
Directory of Open Access Journals (Sweden)
Gabrielle Bendiner-Viani
2010-07-01
Full Text Available This paper addresses an exploratory practice undertaken by the authors in a co-taught class to hybridize theory, research and practice. This experiment in critical transdisciplinary design education took the form of a “critical studio + practice-based seminar on public space”, two interlinked classes co-taught by landscape architect Elliott Maltby and environmental psychologist Gabrielle Bendiner-Viani at the Parsons, The New School for Design. This design process was grounded in the political and social context of the contested East River waterfront of New York City and valued both intensive study (using a range of social science and design methods and a partnership with a local community organization, engaging with the politics, issues and human needs of a complex site. The paper considers how we encouraged interdisciplinary collaboration and dialogue between teachers as well as between liberal arts and design students and developed strategies to overcome preconceived notions of traditional “studio” and “seminar” work. By exploring the challenges and adjustments made during the semester and the process of teaching this class, this paper addresses how we moved from a model of intertwining theory, research and practice, to a hybrid model of multiple ways of doing, a model particularly apt for teaching public space. Through examples developed for and during our course, the paper suggests practical ways of supporting this transdisciplinary hybrid model.
A hybrid approach for probabilistic forecasting of electricity price
DEFF Research Database (Denmark)
Wan, Can; Xu, Zhao; Wang, Yelei
2014-01-01
to the nonstationarities involved in market clearing prices (MCPs), it is rather difficult to accurately predict MCPs in advance. The challenge is getting intensified as more and more renewable energy and other new technologies emerged in smart grids. Therefore transformation from traditional point forecasts...... electricity price forecasting is proposed in this paper. The effectiveness of the proposed hybrid method has been validated through comprehensive tests using real price data from Australian electricity market.......The electricity market plays a key role in realizing the economic prophecy of smart grids. Accurate and reliable electricity market price forecasting is essential to facilitate various decision making activities of market participants in the future smart grid environment. However, due...
Hybrid Quantum-Classical Approach to Quantum Optimal Control.
Li, Jun; Yang, Xiaodong; Peng, Xinhua; Sun, Chang-Pu
2017-04-14
A central challenge in quantum computing is to identify more computational problems for which utilization of quantum resources can offer significant speedup. Here, we propose a hybrid quantum-classical scheme to tackle the quantum optimal control problem. We show that the most computationally demanding part of gradient-based algorithms, namely, computing the fitness function and its gradient for a control input, can be accomplished by the process of evolution and measurement on a quantum simulator. By posing queries to and receiving answers from the quantum simulator, classical computing devices update the control parameters until an optimal control solution is found. To demonstrate the quantum-classical scheme in experiment, we use a seven-qubit nuclear magnetic resonance system, on which we have succeeded in optimizing state preparation without involving classical computation of the large Hilbert space evolution.
Deep Belief Network Based Hybrid Model for Building Energy Consumption Prediction
Directory of Open Access Journals (Sweden)
Chengdong Li
2018-01-01
Full Text Available To enhance the prediction performance for building energy consumption, this paper presents a modified deep belief network (DBN based hybrid model. The proposed hybrid model combines the outputs from the DBN model with the energy-consuming pattern to yield the final prediction results. The energy-consuming pattern in this study represents the periodicity property of building energy consumption and can be extracted from the observed historical energy consumption data. The residual data generated by removing the energy-consuming pattern from the original data are utilized to train the modified DBN model. The training of the modified DBN includes two steps, the first one of which adopts the contrastive divergence (CD algorithm to optimize the hidden parameters in a pre-train way, while the second one determines the output weighting vector by the least squares method. The proposed hybrid model is applied to two kinds of building energy consumption data sets that have different energy-consuming patterns (daily-periodicity and weekly-periodicity. In order to examine the advantages of the proposed model, four popular artificial intelligence methods—the backward propagation neural network (BPNN, the generalized radial basis function neural network (GRBFNN, the extreme learning machine (ELM, and the support vector regressor (SVR are chosen as the comparative approaches. Experimental results demonstrate that the proposed DBN based hybrid model has the best performance compared with the comparative techniques. Another thing to be mentioned is that all the predictors constructed by utilizing the energy-consuming patterns perform better than those designed only by the original data. This verifies the usefulness of the incorporation of the energy-consuming patterns. The proposed approach can also be extended and applied to some other similar prediction problems that have periodicity patterns, e.g., the traffic flow forecasting and the electricity consumption
Baurle, R. A.
2015-01-01
Steady-state and scale-resolving simulations have been performed for flow in and around a model scramjet combustor flameholder. The cases simulated corresponded to those used to examine this flowfield experimentally using particle image velocimetry. A variety of turbulence models were used for the steady-state Reynolds-averaged simulations which included both linear and non-linear eddy viscosity models. The scale-resolving simulations used a hybrid Reynolds-averaged / large eddy simulation strategy that is designed to be a large eddy simulation everywhere except in the inner portion (log layer and below) of the boundary layer. Hence, this formulation can be regarded as a wall-modeled large eddy simulation. This effort was undertaken to formally assess the performance of the hybrid Reynolds-averaged / large eddy simulation modeling approach in a flowfield of interest to the scramjet research community. The numerical errors were quantified for both the steady-state and scale-resolving simulations prior to making any claims of predictive accuracy relative to the measurements. The steady-state Reynolds-averaged results showed a high degree of variability when comparing the predictions obtained from each turbulence model, with the non-linear eddy viscosity model (an explicit algebraic stress model) providing the most accurate prediction of the measured values. The hybrid Reynolds-averaged/large eddy simulation results were carefully scrutinized to ensure that even the coarsest grid had an acceptable level of resolution for large eddy simulation, and that the time-averaged statistics were acceptably accurate. The autocorrelation and its Fourier transform were the primary tools used for this assessment. The statistics extracted from the hybrid simulation strategy proved to be more accurate than the Reynolds-averaged results obtained using the linear eddy viscosity models. However, there was no predictive improvement noted over the results obtained from the explicit
Properties of hybrid stars in an extended MIT bag model
International Nuclear Information System (INIS)
Bao Tmurbagan; Liu Guangzhou; Zhu Mingfeng
2009-01-01
The properties of hybrid stars are investigated in the framework of the relativistic mean field theory (RMFT) and an MIT bag model with density-dependent bag constant to describe the hadron phase (HP) and quark phase (QP), respectively. We find that the density-dependent B(ρ) decreases with baryon density ρ; this decrement makes the strange quark matter become more energetically favorable than ever; which makes the threshold densities of the hadron-quark phase transition lower than those of the original bag constant case. In this case, the hyperon degrees of freedom can not be considered. As a result, the equations of state of a star in the mixed phase (MP) become softer whereas those in the QP become stiffer, and the radii of the star obviously decrease. This indicates that the extended MIT bag model is more suitable to describe hybrid stars with small radii. (authors)
Strategy and gaps for modeling, simulation, and control of hybrid systems
Energy Technology Data Exchange (ETDEWEB)
Rabiti, Cristian [Idaho National Lab. (INL), Idaho Falls, ID (United States); Garcia, Humberto E. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Hovsapian, Rob [Idaho National Lab. (INL), Idaho Falls, ID (United States); Kinoshita, Robert [Idaho National Lab. (INL), Idaho Falls, ID (United States); Mesina, George L. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bragg-Sitton, Shannon M. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Boardman, Richard D. [Idaho National Lab. (INL), Idaho Falls, ID (United States)
2015-04-01
The purpose of this report is to establish a strategy for modeling and simulation of candidate hybrid energy systems. Modeling and simulation is necessary to design, evaluate, and optimize the system technical and economic performance. Accordingly, this report first establishes the simulation requirements to analysis candidate hybrid systems. Simulation fidelity levels are established based on the temporal scale, real and synthetic data availability or needs, solution accuracy, and output parameters needed to evaluate case-specific figures of merit. Accordingly, the associated computational and co-simulation resources needed are established; including physical models when needed, code assembly and integrated solutions platforms, mathematical solvers, and data processing. This report first attempts to describe the figures of merit, systems requirements, and constraints that are necessary and sufficient to characterize the grid and hybrid systems behavior and market interactions. Loss of Load Probability (LOLP) and effective cost of Effective Cost of Energy (ECE), as opposed to the standard Levelized Cost of Electricty (LCOE), are introduced as technical and economical indices for integrated energy system evaluations. Financial assessment methods are subsequently introduced for evaluation of non-traditional, hybrid energy systems. Algorithms for coupled and iterative evaluation of the technical and economic performance are subsequently discussed. This report further defines modeling objectives, computational tools, solution approaches, and real-time data collection and processing (in some cases using real test units) that will be required to model, co-simulate, and optimize; (a) an energy system components (e.g., power generation unit, chemical process, electricity management unit), (b) system domains (e.g., thermal, electrical or chemical energy generation, conversion, and transport), and (c) systems control modules. Co-simulation of complex, tightly coupled
Preliminary analysis on hybrid Box-Jenkins - GARCH modeling in forecasting gold price
Yaziz, Siti Roslindar; Azizan, Noor Azlinna; Ahmad, Maizah Hura; Zakaria, Roslinazairimah; Agrawal, Manju; Boland, John
2015-02-01
Gold has been regarded as a valuable precious metal and the most popular commodity as a healthy return investment. Hence, the analysis and prediction of gold price become very significant to investors. This study is a preliminary analysis on gold price and its volatility that focuses on the performance of hybrid Box-Jenkins models together with GARCH in analyzing and forecasting gold price. The Box-Cox formula is used as the data transformation method due to its potential best practice in normalizing data, stabilizing variance and reduces heteroscedasticity using 41-year daily gold price data series starting 2nd January 1973. Our study indicates that the proposed hybrid model ARIMA-GARCH with t-innovation can be a new potential approach in forecasting gold price. This finding proves the strength of GARCH in handling volatility in the gold price as well as overcomes the non-linear limitation in the Box-Jenkins modeling.
A light neutralino in hybrid models of supersymmetry breaking
Dudas, Emilian; Parmentier, Jeanne; 10.1016
2008-01-01
We show that in gauge mediation models where heavy messenger masses are provided by the adjoint Higgs field of an underlying SU(5) theory, a generalized gauge mediation spectrum arises with the characteristic feature of having a neutralino much lighter than in the standard gauge or gravity mediation schemes. This naturally fits in a hybrid scenario where gravity mediation, while subdominant with respect to gauge mediation, provides mu and B mu parameters in the TeV range.
A Novel of Hybrid Maintenance Management Models for Industrial Applications
Tahir, Zulkifli
2010-01-01
It is observed through empirical studies that the effectiveness of industrial process have been increased by a well organized of machines maintenance structure. In current research, a novel of maintenance concept has been designed by hybrid several maintenance management models with Decision Making Grid (DMG), Analytic Hierarchy Process (AHP) and Fuzzy Logic. The concept is designed for maintenance personnel to evaluate and benchmark the maintenance operations and to reveal important maintena...
A light neutralino in hybrid models of supersymmetry breaking
International Nuclear Information System (INIS)
Dudas, Emilian; Lavignac, Stephane; Parmentier, Jeanne
2009-01-01
We show that in gauge mediation models where heavy messenger masses are provided by the adjoint Higgs field of an underlying SU(5) theory, a generalized gauge mediation spectrum arises with the characteristic feature of having a neutralino LSP much lighter than in the standard gauge or gravity mediation schemes. This naturally fits in a hybrid scenario where gravity mediation, while subdominant with respect to gauge mediation, provides μ and Bμ parameters of the appropriate size for electroweak symmetry breaking
Hybrid Model for e-Learning Quality Evaluation
Directory of Open Access Journals (Sweden)
Suzana M. Savic
2012-02-01
Full Text Available E-learning is becoming increasingly important for the competitive advantage of economic organizations and higher education institutions. Therefore, it is becoming a significant aspect of quality which has to be integrated into the management system of every organization or institution. The paper examines e-learning quality characteristics, standards, criteria and indicators and presents a multi-criteria hybrid model for e-learning quality evaluation based on the method of Analytic Hierarchy Process, trend analysis, and data comparison.
A hybrid wavelet transform based short-term wind speed forecasting approach.
Wang, Jujie
2014-01-01
It is important to improve the accuracy of wind speed forecasting for wind parks management and wind power utilization. In this paper, a novel hybrid approach known as WTT-TNN is proposed for wind speed forecasting. In the first step of the approach, a wavelet transform technique (WTT) is used to decompose wind speed into an approximate scale and several detailed scales. In the second step, a two-hidden-layer neural network (TNN) is used to predict both approximated scale and detailed scales, respectively. In order to find the optimal network architecture, the partial autocorrelation function is adopted to determine the number of neurons in the input layer, and an experimental simulation is made to determine the number of neurons within each hidden layer in the modeling process of TNN. Afterwards, the final prediction value can be obtained by the sum of these prediction results. In this study, a WTT is employed to extract these different patterns of the wind speed and make it easier for forecasting. To evaluate the performance of the proposed approach, it is applied to forecast Hexi Corridor of China's wind speed. Simulation results in four different cases show that the proposed method increases wind speed forecasting accuracy.
Stochastic linear hybrid systems: Modeling, estimation, and application
Seah, Chze Eng
Hybrid systems are dynamical systems which have interacting continuous state and discrete state (or mode). Accurate modeling and state estimation of hybrid systems are important in many applications. We propose a hybrid system model, known as the Stochastic Linear Hybrid System (SLHS), to describe hybrid systems with stochastic linear system dynamics in each mode and stochastic continuous-state-dependent mode transitions. We then develop a hybrid estimation algorithm, called the State-Dependent-Transition Hybrid Estimation (SDTHE) algorithm, to estimate the continuous state and discrete state of the SLHS from noisy measurements. It is shown that the SDTHE algorithm is more accurate or more computationally efficient than existing hybrid estimation algorithms. Next, we develop a performance analysis algorithm to evaluate the performance of the SDTHE algorithm in a given operating scenario. We also investigate sufficient conditions for the stability of the SDTHE algorithm. The proposed SLHS model and SDTHE algorithm are illustrated to be useful in several applications. In Air Traffic Control (ATC), to facilitate implementations of new efficient operational concepts, accurate modeling and estimation of aircraft trajectories are needed. In ATC, an aircraft's trajectory can be divided into a number of flight modes. Furthermore, as the aircraft is required to follow a given flight plan or clearance, its flight mode transitions are dependent of its continuous state. However, the flight mode transitions are also stochastic due to navigation uncertainties or unknown pilot intents. Thus, we develop an aircraft dynamics model in ATC based on the SLHS. The SDTHE algorithm is then used in aircraft tracking applications to estimate the positions/velocities of aircraft and their flight modes accurately. Next, we develop an aircraft conformance monitoring algorithm to detect any deviations of aircraft trajectories in ATC that might compromise safety. In this application, the SLHS
Pereira, Carla Sofia Alves, 1983-
2013-01-01
Tese de doutoramento, Biologia (Biologia Evolutiva), Universidade de Lisboa, Faculdade de Ciências, 2013 Hybridization is currently a well-recognized process amongst animals responsible for biodiversity, evolution and speciation processes while defying most species concepts. Hybridization is prevalent among fishes, particularly cyprinids, which therefore constitute good models of study (1) to access general patterns of genomic variation, (2) to identify the genetic basis and the evolutiona...
The Cheshire Cat principle applied to hybrid bag models
International Nuclear Information System (INIS)
Nielsen, H.B.; Wirzba, A.
1987-05-01
Here is argued for the Cheshire Cat point of view according to which the bag (itself) has only notational, but no physical significance. It is explained in a 1+1 dimensional exact Cheshire Cat model how a fermion can escape from the bag by means of an anomaly. We also suggest that suitably constructed hybrid bag models may be used to fix such parameters of effective Lagrangians that can otherwise be obtained from experiments only. This idea is illustrated in a calculation of the mass of the pseudoscalar η' meson in 1+1 dimension. Thus there is hope to find a construction principle for a phenomenologically sensible model. (orig.)
Hybrid model for the decay of nuclear giant resonances
International Nuclear Information System (INIS)
Hussein, M.S.
1986-12-01
The decay properties of nuclear giant multipole resonances are discussed within a hybrid model that incorporates, in a unitary consistent way, both the coherent and statistical features. It is suggested that the 'direct' decay of the GR is described with continuum first RPA and the statistical decay calculated with a modified Hauser-Feshbach model. Application is made to the decay of the giant monopole resonance in 208 Pb. Suggestions are made concerning the calculation of the mixing parameter using the statistical properties of the shell model eigenstates at high excitation energies. (Author) [pt
Model Predictive Control for Connected Hybrid Electric Vehicles
Directory of Open Access Journals (Sweden)
Kaijiang Yu
2015-01-01
Full Text Available This paper presents a new model predictive control system for connected hybrid electric vehicles to improve fuel economy. The new features of this study are as follows. First, the battery charge and discharge profile and the driving velocity profile are simultaneously optimized. One is energy management for HEV for Pbatt; the other is for the energy consumption minimizing problem of acc control of two vehicles. Second, a system for connected hybrid electric vehicles has been developed considering varying drag coefficients and the road gradients. Third, the fuel model of a typical hybrid electric vehicle is developed using the maps of the engine efficiency characteristics. Fourth, simulations and analysis (under different parameters, i.e., road conditions, vehicle state of charge, etc. are conducted to verify the effectiveness of the method to achieve higher fuel efficiency. The model predictive control problem is solved using numerical computation method: continuation and generalized minimum residual method. Computer simulation results reveal improvements in fuel economy using the proposed control method.
Frog: Asynchronous Graph Processing on GPU with Hybrid Coloring Model
Energy Technology Data Exchange (ETDEWEB)
Shi, Xuanhua; Luo, Xuan; Liang, Junling; Zhao, Peng; Di, Sheng; He, Bingsheng; Jin, Hai
2018-01-01
GPUs have been increasingly used to accelerate graph processing for complicated computational problems regarding graph theory. Many parallel graph algorithms adopt the asynchronous computing model to accelerate the iterative convergence. Unfortunately, the consistent asynchronous computing requires locking or atomic operations, leading to significant penalties/overheads when implemented on GPUs. As such, coloring algorithm is adopted to separate the vertices with potential updating conflicts, guaranteeing the consistency/correctness of the parallel processing. Common coloring algorithms, however, may suffer from low parallelism because of a large number of colors generally required for processing a large-scale graph with billions of vertices. We propose a light-weight asynchronous processing framework called Frog with a preprocessing/hybrid coloring model. The fundamental idea is based on Pareto principle (or 80-20 rule) about coloring algorithms as we observed through masses of realworld graph coloring cases. We find that a majority of vertices (about 80%) are colored with only a few colors, such that they can be read and updated in a very high degree of parallelism without violating the sequential consistency. Accordingly, our solution separates the processing of the vertices based on the distribution of colors. In this work, we mainly answer three questions: (1) how to partition the vertices in a sparse graph with maximized parallelism, (2) how to process large-scale graphs that cannot fit into GPU memory, and (3) how to reduce the overhead of data transfers on PCIe while processing each partition. We conduct experiments on real-world data (Amazon, DBLP, YouTube, RoadNet-CA, WikiTalk and Twitter) to evaluate our approach and make comparisons with well-known non-preprocessed (such as Totem, Medusa, MapGraph and Gunrock) and preprocessed (Cusha) approaches, by testing four classical algorithms (BFS, PageRank, SSSP and CC). On all the tested applications and
A hybrid model for the computationally-efficient simulation of the cerebellar granular layer
Directory of Open Access Journals (Sweden)
Anna eCattani
2016-04-01
Full Text Available The aim of the present paper is to efficiently describe the membrane potential dynamics of neural populations formed by species having a high density difference in specific brain areas. We propose a hybrid model whose main ingredients are a conductance-based model (ODE system and its continuous counterpart (PDE system obtained through a limit process in which the number of neurons confined in a bounded region of the brain tissue is sent to infinity. Specifically, in the discrete model, each cell is described by a set of time-dependent variables, whereas in the continuum model, cells are grouped into populations that are described by a set of continuous variables.Communications between populations, which translate into interactions among the discrete and the continuous models, are the essence of the hybrid model we present here. The cerebellum and cerebellum-like structures show in their granular layer a large difference in the relative density of neuronal species making them a natural testing ground for our hybrid model. By reconstructing the ensemble activity of the cerebellar granular layer network and by comparing our results to a more realistic computational network, we demonstrate that our description of the network activity, even though it is not biophysically detailed, is still capable of reproducing salient features of neural network dynamics. Our modeling approach yields a significant computational cost reduction by increasing the simulation speed at least $270$ times. The hybrid model reproduces interesting dynamics such as local microcircuit synchronization, traveling waves, center-surround and time-windowing.
A Hybrid Approach to Spatial Multiplexing in Multiuser MIMO Downlinks
Directory of Open Access Journals (Sweden)
Spencer Quentin H
2004-01-01
Full Text Available In the downlink of a multiuser multiple-input multiple-output (MIMO communication system, simultaneous transmission to several users requires joint optimization of the transmitted signals. Allowing all users to have multiple antennas adds an additional degree of complexity to the problem. In this paper, we examine the case where a single base station transmits to multiple users using linear processing (beamforming at each of the antenna arrays. We propose generalizations of several previous iterative algorithms for multiuser transmit beamforming that allow multiple antennas and multiple data streams for each user, and that take into account imperfect channel estimates at the transmitter. We then present a new hybrid algorithm that is based on coordinated transmit-receive beamforming, and combines the strengths of nonorthogonal iterative solutions with zero-forcing solutions. The problem of distributing power among the subchannels is solved by using standard bit-loading algorithms combined with the subchannel gains resulting from the zero-forcing solution. The result is a significant performance improvement over equal power distribution. At the same time, the number of iterations required to compute the final solution is reduced.
Hybrid Enhanced Epidermal SpaceSuit Design Approaches
Jessup, Joseph M.
A Space suit that does not rely on gas pressurization is a multi-faceted problem that requires major stability controls to be incorporated during design and construction. The concept of Hybrid Epidermal Enhancement space suit integrates evolved human anthropomorphic and physiological adaptations into its functionality, using commercially available bio-medical technologies to address shortcomings of conventional gas pressure suits, and the impracticalities of MCP suits. The prototype HEE Space Suit explored integumentary homeostasis, thermal control and mobility using advanced bio-medical materials technology and construction concepts. The goal was a space suit that functions as an enhanced, multi-functional bio-mimic of the human epidermal layer that works in attunement with the wearer rather than as a separate system. In addressing human physiological requirements for design and construction of the HEE suit, testing regimes were devised and integrated into the prototype which was then subject to a series of detailed tests using both anatomical reproduction methods and human subject.
A hybrid model for dissolved oxygen prediction in aquaculture based on multi-scale features
Directory of Open Access Journals (Sweden)
Chen Li
2018-03-01
Full Text Available To increase prediction accuracy of dissolved oxygen (DO in aquaculture, a hybrid model based on multi-scale features using ensemble empirical mode decomposition (EEMD is proposed. Firstly, original DO datasets are decomposed by EEMD and we get several components. Secondly, these components are used to reconstruct four terms including high frequency term, intermediate frequency term, low frequency term and trend term. Thirdly, according to the characteristics of high and intermediate frequency terms, which fluctuate violently, the least squares support vector machine (LSSVR is used to predict the two terms. The fluctuation of low frequency term is gentle and periodic, so it can be modeled by BP neural network with an optimal mind evolutionary computation (MEC-BP. Then, the trend term is predicted using grey model (GM because it is nearly linear. Finally, the prediction values of DO datasets are calculated by the sum of the forecasting values of all terms. The experimental results demonstrate that our hybrid model outperforms EEMD-ELM (extreme learning machine based on EEMD, EEMD-BP and MEC-BP models based on the mean absolute error (MAE, mean absolute percentage error (MAPE, mean square error (MSE and root mean square error (RMSE. Our hybrid model is proven to be an effective approach to predict aquaculture DO.
DyHAP: Dynamic Hybrid ANFIS-PSO Approach for Predicting Mobile Malware.
Afifi, Firdaus; Anuar, Nor Badrul; Shamshirband, Shahaboddin; Choo, Kim-Kwang Raymond
2016-01-01
To deal with the large number of malicious mobile applications (e.g. mobile malware), a number of malware detection systems have been proposed in the literature. In this paper, we propose a hybrid method to find the optimum parameters that can be used to facilitate mobile malware identification. We also present a multi agent system architecture comprising three system agents (i.e. sniffer, extraction and selection agent) to capture and manage the pcap file for data preparation phase. In our hybrid approach, we combine an adaptive neuro fuzzy inference system (ANFIS) and particle swarm optimization (PSO). Evaluations using data captured on a real-world Android device and the MalGenome dataset demonstrate the effectiveness of our approach, in comparison to two hybrid optimization methods which are differential evolution (ANFIS-DE) and ant colony optimization (ANFIS-ACO).
DyHAP: Dynamic Hybrid ANFIS-PSO Approach for Predicting Mobile Malware.
Directory of Open Access Journals (Sweden)
Firdaus Afifi
Full Text Available To deal with the large number of malicious mobile applications (e.g. mobile malware, a number of malware detection systems have been proposed in the literature. In this paper, we propose a hybrid method to find the optimum parameters that can be used to facilitate mobile malware identification. We also present a multi agent system architecture comprising three system agents (i.e. sniffer, extraction and selection agent to capture and manage the pcap file for data preparation phase. In our hybrid approach, we combine an adaptive neuro fuzzy inference system (ANFIS and particle swarm optimization (PSO. Evaluations using data captured on a real-world Android device and the MalGenome dataset demonstrate the effectiveness of our approach, in comparison to two hybrid optimization methods which are differential evolution (ANFIS-DE and ant colony optimization (ANFIS-ACO.
DyHAP: Dynamic Hybrid ANFIS-PSO Approach for Predicting Mobile Malware
Afifi, Firdaus; Anuar, Nor Badrul; Shamshirband, Shahaboddin
2016-01-01
To deal with the large number of malicious mobile applications (e.g. mobile malware), a number of malware detection systems have been proposed in the literature. In this paper, we propose a hybrid method to find the optimum parameters that can be used to facilitate mobile malware identification. We also present a multi agent system architecture comprising three system agents (i.e. sniffer, extraction and selection agent) to capture and manage the pcap file for data preparation phase. In our hybrid approach, we combine an adaptive neuro fuzzy inference system (ANFIS) and particle swarm optimization (PSO). Evaluations using data captured on a real-world Android device and the MalGenome dataset demonstrate the effectiveness of our approach, in comparison to two hybrid optimization methods which are differential evolution (ANFIS-DE) and ant colony optimization (ANFIS-ACO). PMID:27611312
Modelling and control of a light-duty hybrid electric truck
Park, Jong-Kyu
2006-01-01
This study is concentrated on modelling and developing the controller for the light-duty hybrid electric truck. The hybrid electric vehicle has advantages in fuel economy. However, there have been relatively few studies on commercial HEVs, whilst a considerable number of studies on the hybrid electric system have been conducted in the field of passenger cars. So the current status and the methodologies to develop the LD hybrid electric truck model have been studied through the ...
Maximum Mass of Hybrid Stars in the Quark Bag Model
Alaverdyan, G. B.; Vartanyan, Yu. L.
2017-12-01
The effect of model parameters in the equation of state for quark matter on the magnitude of the maximum mass of hybrid stars is examined. Quark matter is described in terms of the extended MIT bag model including corrections for one-gluon exchange. For nucleon matter in the range of densities corresponding to the phase transition, a relativistic equation of state is used that is calculated with two-particle correlations taken into account based on using the Bonn meson-exchange potential. The Maxwell construction is used to calculate the characteristics of the first order phase transition and it is shown that for a fixed value of the strong interaction constant αs, the baryon concentrations of the coexisting phases grow monotonically as the bag constant B increases. It is shown that for a fixed value of the strong interaction constant αs, the maximum mass of a hybrid star increases as the bag constant B decreases. For a given value of the bag parameter B, the maximum mass rises as the strong interaction constant αs increases. It is shown that the configurations of hybrid stars with maximum masses equal to or exceeding the mass of the currently known most massive pulsar are possible for values of the strong interaction constant αs > 0.6 and sufficiently low values of the bag constant.
A hybrid clustering approach to recognition of protein families in 114 microbial genomes
Directory of Open Access Journals (Sweden)
Gogarten J Peter
2004-04-01
Full Text Available Abstract Background Grouping proteins into sequence-based clusters is a fundamental step in many bioinformatic analyses (e.g., homology-based prediction of structure or function. Standard clustering methods such as single-linkage clustering capture a history of cluster topologies as a function of threshold, but in practice their usefulness is limited because unrelated sequences join clusters before biologically meaningful families are fully constituted, e.g. as the result of matches to so-called promiscuous domains. Use of the Markov Cluster algorithm avoids this non-specificity, but does not preserve topological or threshold information about protein families. Results We describe a hybrid approach to sequence-based clustering of proteins that combines the advantages of standard and Markov clustering. We have implemented this hybrid approach over a relational database environment, and describe its application to clustering a large subset of PDB, and to 328577 proteins from 114 fully sequenced microbial genomes. To demonstrate utility with difficult problems, we show that hybrid clustering allows us to constitute the paralogous family of ATP synthase F1 rotary motor subunits into a single, biologically interpretable hierarchical grouping that was not accessible using either single-linkage or Markov clustering alone. We describe validation of this method by hybrid clustering of PDB and mapping SCOP families and domains onto the resulting clusters. Conclusion Hybrid (Markov followed by single-linkage clustering combines the advantages of the Markov Cluster algorithm (avoidance of non-specific clusters resulting from matches to promiscuous domains and single-linkage clustering (preservation of topological information as a function of threshold. Within the individual Markov clusters, single-linkage clustering is a more-precise instrument, discerning sub-clusters of biological relevance. Our hybrid approach thus provides a computationally efficient
Hybrid energy system evaluation in water supply system energy production: neural network approach
Energy Technology Data Exchange (ETDEWEB)
Goncalves, Fabio V.; Ramos, Helena M. [Civil Engineering Department, Instituto Superior Tecnico, Technical University of Lisbon, Av. Rovisco Pais, 1049-001, Lisbon (Portugal); Reis, Luisa Fernanda R. [Universidade de Sao Paulo, EESC/USP, Departamento de Hidraulica e Saneamento., Avenida do Trabalhador Saocarlense, 400, Sao Carlos-SP (Brazil)
2010-07-01
Water supply systems are large consumers of energy and the use of hybrid systems for green energy production is this new proposal. This work presents a computational model based on neural networks to determine the best configuration of a hybrid system to generate energy in water supply systems. In this study the energy sources to make this hybrid system can be the national power grid, micro-hydro and wind turbines. The artificial neural network is composed of six layers, trained to use data generated by a model of hybrid configuration and an economic simulator - CES. The reason for the development of an advanced model of forecasting based on neural networks is to allow rapid simulation and proper interaction with hydraulic and power model simulator - HPS. The results show that this computational model is useful as advanced decision support system in the design of configurations of hybrid power systems applied to water supply systems, improving the solutions in the development of its global energy efficiency.
MODEL APLIKASI FIKIH MUAMALAH PADA FORMULASI HYBRID CONTRACT
Directory of Open Access Journals (Sweden)
Ali Murtadho
2013-10-01
Full Text Available Modern literatures of fiqh mu’āmalah talk alot about various contract formulation with capability of maximizing profit in shariah finance industry. This new contract modification is the synthesis among existing contracts which is formulated in such a way to be an integrated contract. This formulation is known as a hybrid contract or multicontract (al-'uqūd al-murakkabah. Some of them are, bay' bi thaman 'ājil, Ijārah muntahiyah bi ’l-tamlīk dan mushārakah mutanāqiṣah. This study intends to further describe models of hybrid contract, and explore the shari'ah principles in modern financial institutions. This study found a potential shift from the ideal values of the spirit of shari'ah into the spirit of competition based shari'ah formally.
A Game-Theoretic approach to Fault Diagnosis of Hybrid Systems
Directory of Open Access Journals (Sweden)
Davide Bresolin
2011-06-01
Full Text Available Physical systems can fail. For this reason the problem of identifying and reacting to faults has received a large attention in the control and computer science communities. In this paper we study the fault diagnosis problem for hybrid systems from a game-theoretical point of view. A hybrid system is a system mixing continuous and discrete behaviours that cannot be faithfully modeled neither by using a formalism with continuous dynamics only nor by a formalism including only discrete dynamics. We use the well known framework of hybrid automata for modeling hybrid systems, and we define a Fault Diagnosis Game on them, using two players: the environment and the diagnoser. The environment controls the evolution of the system and chooses whether and when a fault occurs. The diagnoser observes the external behaviour of the system and announces whether a fault has occurred or not. Existence of a winning strategy for the diagnoser implies that faults can be detected correctly, while computing such a winning strategy corresponds to implement a diagnoser for the system. We will show how to determine the existence of a winning strategy, and how to compute it, for some decidable classes of hybrid automata like o-minimal hybrid automata.
Modeling and Density Estimation of an Urban Freeway Network Based on Dynamic Graph Hybrid Automata.
Chen, Yangzhou; Guo, Yuqi; Wang, Ying
2017-03-29
In this paper, in order to describe complex network systems, we firstly propose a general modeling framework by combining a dynamic graph with hybrid automata and thus name it Dynamic Graph Hybrid Automata (DGHA). Then we apply this framework to model traffic flow over an urban freeway network by embedding the Cell Transmission Model (CTM) into the DGHA. With a modeling procedure, we adopt a dual digraph of road network structure to describe the road topology, use linear hybrid automata to describe multi-modes of dynamic densities in road segments and transform the nonlinear expressions of the transmitted traffic flow between two road segments into piecewise linear functions in terms of multi-mode switchings. This modeling procedure is modularized and rule-based, and thus is easily-extensible with the help of a combination algorithm for the dynamics of traffic flow. It can describe the dynamics of traffic flow over an urban freeway network with arbitrary topology structures and sizes. Next we analyze mode types and number in the model of the whole freeway network, and deduce a Piecewise Affine Linear System (PWALS) model. Furthermore, based on the PWALS model, a multi-mode switched state observer is designed to estimate the traffic densities of the freeway network, where a set of observer gain matrices are computed by using the Lyapunov function approach. As an example, we utilize the PWALS model and the corresponding switched state observer to traffic flow over Beijing third ring road. In order to clearly interpret the principle of the proposed method and avoid computational complexity, we adopt a simplified version of Beijing third ring road. Practical application for a large-scale road network will be implemented by decentralized modeling approach and distributed observer designing in the future research.
Bioenergy II. Biomass Valorisation by a Hybrid Thermochemical Fractionation Approach
Energy Technology Data Exchange (ETDEWEB)
De Wild, P.J.; Den Uil, H.; Reith, J.H. [ECN Biomass, Coal and Environmental Research, Petten (Netherlands); Lunshof, A.; Hendriks, C.; Van Eck, E. [Radboud University, Nijmegen (Netherlands); Heeres, E. [University of Groningen, Groningen (Netherlands)
2009-11-15
The need for green renewable sources is adamant because of the adverse effects of the increasing use of fossil fuels on our society. Biomass has been considered as a very attractive candidate for green energy carriers, chemicals and materials. The development of cheap and efficient fractionation technology to separate biomass into its main constituents is highly desirable. It enables treatment of each constituent separately, using dedicated conversion technologies to get specific target chemicals. The synergistic combination of aquathermolysis (hot pressurised water treatment) and pyrolysis (thermal degradation in the absence of oxygen) is a promising thermolysis option, integrating fractionation of biomass with production of valuable chemicals. Batch aquathermolysis in an autoclave and subsequent pyrolysis using bubbling fluidised bed reactor technology with beech, poplar, spruce and straw indicate the potential of this hybrid concept to valorise lignocellulosic biomass. Hemicellulose-derived furfural was obtained in yields that ranged from 2 wt% for spruce to 8 wt% for straw. Hydroxymethylfurfural from hemicellulose was obtained in yields from 0.3 wt% for poplar to 3 wt% for spruce. Pyrolysis of the aquathermolised biomass types resulted in 8 wt% (straw) to 11 wt% (spruce) of cellulose-derived levoglucosan. Next to the furfurals and levoglucosan, appreciable amounts of acetic acid were obtained as well from the aquathermolysis step, ranging from 1 wt% for spruce to 5 wt% for straw. To elucidate relations between the chemical changes occurring in the biomass during the integrated process and type and amount of the chemical products formed, a 13C-solid state NMR study has been conducted. Main conclusions are that aquathermolysis results in hemicellulose degradation to lower molecular weight components. Lignin ether bonds are broken, but apart from that, lignin is hardly affected by the aquathermolysis. Cellulose is also retained, although it seems to become more
A Simple Hybrid Model for Short-Term Load Forecasting
Directory of Open Access Journals (Sweden)
Suseelatha Annamareddi
2013-01-01
Full Text Available The paper proposes a simple hybrid model to forecast the electrical load data based on the wavelet transform technique and double exponential smoothing. The historical noisy load series data is decomposed into deterministic and fluctuation components using suitable wavelet coefficient thresholds and wavelet reconstruction method. The variation characteristics of the resulting series are analyzed to arrive at reasonable thresholds that yield good denoising results. The constitutive series are then forecasted using appropriate exponential adaptive smoothing models. A case study performed on California energy market data demonstrates that the proposed method can offer high forecasting precision for very short-term forecasts, considering a time horizon of two weeks.
Calibrated and Interactive Modelling of Form-Active Hybrid Structures
DEFF Research Database (Denmark)
Quinn, Gregory; Holden Deleuran, Anders; Piker, Daniel
2016-01-01
Form-active hybrid structures (FAHS) couple two or more different structural elements of low self weight and low or negligible bending flexural stiffness (such as slender beams, cables and membranes) into one structural assembly of high global stiffness. They offer high load-bearing capacity...... software packages which introduce interruptions and data exchange issues in the modelling pipeline. The mechanical precision, stability and open software architecture of Kangaroo has facilitated the development of proof-of-concept modelling pipelines which tackle this challenge and enable powerful...... materially-informed sketching. Making use of a projection-based dynamic relaxation solver for structural analysis, explorative design has proven to be highly effective....
An event driven hybrid identity management approach to privacy enhanced e-health.
Sánchez-Guerrero, Rosa; Almenárez, Florina; Díaz-Sánchez, Daniel; Marín, Andrés; Arias, Patricia; Sanvido, Fabio
2012-01-01
Credential-based authorization offers interesting advantages for ubiquitous scenarios involving limited devices such as sensors and personal mobile equipment: the verification can be done locally; it offers a more reduced computational cost than its competitors for issuing, storing, and verification; and it naturally supports rights delegation. The main drawback is the revocation of rights. Revocation requires handling potentially large revocation lists, or using protocols to check the revocation status, bringing extra communication costs not acceptable for sensors and other limited devices. Moreover, the effective revocation consent--considered as a privacy rule in sensitive scenarios--has not been fully addressed. This paper proposes an event-based mechanism empowering a new concept, the sleepyhead credentials, which allows to substitute time constraints and explicit revocation by activating and deactivating authorization rights according to events. Our approach is to integrate this concept in IdM systems in a hybrid model supporting delegation, which can be an interesting alternative for scenarios where revocation of consent and user privacy are critical. The delegation includes a SAML compliant protocol, which we have validated through a proof-of-concept implementation. This article also explains the mathematical model describing the event-based model and offers estimations of the overhead introduced by the system. The paper focus on health care scenarios, where we show the flexibility of the proposed event-based user consent revocation mechanism.
The business case for condition-based maintenance: a hybrid (non-) financial approach
Tiddens, W.W.; Tinga, T.; Braaksma, A.J.J.; Brouwer, O.; Cepin, Marko; Bris, Radim
2017-01-01
Although developing business cases is key for evaluating project success, the costs and benefits of condition-based maintenance (CBM) implementations are often not explicitly defined and evaluated. Using the design science methodology, we developed a hybrid business case approach to help managers
DEFF Research Database (Denmark)
Tsakonas, Athanasios; Dounias, Georgios; Jantzen, Jan
2001-01-01
The paper suggests the combined use of different computational intelligence (CI) techniques in a hybrid scheme, as an effective approach to medical diagnosis. Getting to know the advantages and disadvantages of each computational intelligence technique in the recent years, the time has come...
Araújo, Rui; Mesquita, Isabel; Hastie, Peter; Pereira, Cristiana
2016-01-01
The purpose of this study was to examine a hybrid combination of sport education and the step-game-approach (SGA) on students' gameplay performance in volleyball, taking into account their sex and skill-level. Seventeen seventh-grade students (seven girls, 10 boys, average age 11.8) participated in a 25-lesson volleyball season, in which the…
TwitterNEED: a hybrid approach for named entity extraction and disambiguation for tweets
Habib, Mena Badieh; van Keulen, Maurice
Twitter is a rich source of continuously and instantly updated information. Shortness and informality of tweets are challenges for Natural Language Processing tasks. In this paper, we present TwitterNEED, a hybrid approach for Named Entity Extraction and Named Entity Disambiguation for tweets. We
Shaqura, Mohammad; Claudel, Christian
2015-01-01
, low power autopilots in real-time. The computational method is based on a hybrid decomposition of the modes of operation of the UAV. A Bayesian approach is considered for estimation, in which the estimated airspeed, angle of attack and sideslip
A Hybrid Approach to Processing Big Data Graphs on Memory-Restricted Systems
Harshvardhan,; West, Brandon; Fidel, Adam; Amato, Nancy M.; Rauchwerger, Lawrence
2015-01-01
that sacrifice performance. In this work, we propose a novel RAM-Disk hybrid approach to graph processing that can scale well from a single shared-memory node to large distributed-memory systems. It works by partitioning the graph into sub graphs that fit in RAM
International Nuclear Information System (INIS)
Bonoli, P.T.; Barbato, E.; Imbeaux, F.
2003-01-01
This paper reviews the status of lower hybrid current drive (LHCD) simulation and modeling. We first discuss modules used for wave propagation, absorption, and current drive with particular emphasis placed on comparing exact numerical solutions of the Fokker Planck equation in 2-dimension with solution methods that employ 1-dimensional and adjoint approaches. We also survey model predictions for LHCD in past and present experiments showing detailed comparisons between simulated and observed current drive efficiencies and hard X-ray profiles. Finally we discuss several model predictions for lower hybrid current profile control in proposed next step reactor options. (authors)
International Nuclear Information System (INIS)
Gan, Leong Kit; Shek, Jonathan K.H.; Mueller, Markus A.
2015-01-01
Highlights: • Methods of sizing a hybrid wind–photovoltaic–diesel–battery system is described. • The hybrid system components are modelled using empirical data. • Twenty years lifecycle cost of the hybrid system is considered. • The trade-offs between battery storage capacity and diesel fuel usage is studied. • A hybrid system sizing tool has been developed as a graphical user interface (GUI). - Abstract: The concept of off-grid hybrid wind energy system is financially attractive and more reliable than stand-alone power systems since it is based on more than one electricity generation source. One of the most expensive components in a stand-alone wind-power system is the energy storage system as very often it is oversized to increase system autonomy. In this work, we consider a hybrid system which consists of wind turbines, photovoltaic panels, diesel generator and battery storage. One of the main challenges experienced by project managers is the sizing of components for different sites. This challenge is due to the variability of the renewable energy resource and the load demand for different sites. This paper introduces a sizing model that has been developed and implemented as a graphical user interface, which predicts the optimum configuration of a hybrid system. In particular, this paper focuses on seeking the optimal size of the batteries and the diesel generator usage. Both of these components are seen to be trade-offs from each other. The model simulates real time operation of the hybrid system, using the annual measured hourly wind speed and solar irradiation. The benefit of using time series approach is that it reflects a more realistic situation; here, the peaks and troughs of the renewable energy resource are a central part of the sizing model. Finally, load sensitivity and hybrid system performance analysis are demonstrated.
A hybrid linked data approach to support asset management
Luiten, G.T.; Bohms, H.M.; O'Keeffe, A.; Nederveen, S. van; Bakker, J.; Wikstrom, L.
2016-01-01
This paper evaluates experiences with applying a linked data approach for coping with the many challenges for information management in asset management from the perspective of National Road Authorities (NRAs). As influential players, NRAs are often the initiators of innovation in the civil
Restraining approach for the spurious kinematic modes in hybrid equilibrium element
Parrinello, F.
2013-10-01
The present paper proposes a rigorous approach for the elimination of spurious kinematic modes in hybrid equilibrium elements, for three well known mesh patches. The approach is based on the identification of the dependent equations in the set of inter-element and boundary equilibrium equations of the sides involved in the spurious kinematic mode. Then the kinematic variables related to the dependent equations are reciprocally constrained and, by application of master slave elimination method, the set of inter-element equilibrium equations is reduced to full rank. The elastic solutions produced by means of the proposed approach verify the homogeneous, the inter-element and the boundary equilibrium equations. Hybrid stress formulation is developed in a rigorous mathematical setting. The results of linear elastic analysis obtained by the proposed approach and by classical displacement based method are compared for some structural examples.
A hybrid partial least squares and random forest approach to ...
African Journals Online (AJOL)
Nicole Reddy
GLCM describes the texture features by the stochastic ... The linear regression model is then fit to the latent variables known as the PLS factors in an .... The hyper-parameter optimization results for all the E. grandis and E.dunnii models ...
Developing hybrid approaches to predict pKa values of ionizable groups
Witham, Shawn; Talley, Kemper; Wang, Lin; Zhang, Zhe; Sarkar, Subhra; Gao, Daquan; Yang, Wei
2011-01-01
Accurate predictions of pKa values of titratable groups require taking into account all relevant processes associated with the ionization/deionization. Frequently, however, the ionization does not involve significant structural changes and the dominating effects are purely electrostatic in origin allowing accurate predictions to be made based on the electrostatic energy difference between ionized and neutral forms alone using a static structure. On another hand, if the change of the charge state is accompanied by a structural reorganization of the target protein, then the relevant conformational changes have to be taken into account in the pKa calculations. Here we report a hybrid approach that first predicts the titratable groups, which ionization is expected to cause conformational changes, termed “problematic” residues, then applies a special protocol on them, while the rest of the pKa’s are predicted with rigid backbone approach as implemented in multi-conformation continuum electrostatics (MCCE) method. The backbone representative conformations for “problematic” groups are generated with either molecular dynamics simulations with charged and uncharged amino acid or with ab-initio local segment modeling. The corresponding ensembles are then used to calculate the pKa of the “problematic” residues and then the results are averaged. PMID:21744395
A hybrid stochastic approach for self-location of wireless sensors in indoor environments.
Lloret, Jaime; Tomas, Jesus; Garcia, Miguel; Canovas, Alejandro
2009-01-01
Indoor location systems, especially those using wireless sensor networks, are used in many application areas. While the need for these systems is widely proven, there is a clear lack of accuracy. Many of the implemented applications have high errors in their location estimation because of the issues arising in the indoor environment. Two different approaches had been proposed using WLAN location systems: on the one hand, the so-called deductive methods take into account the physical properties of signal propagation. These systems require a propagation model, an environment map, and the position of the radio-stations. On the other hand, the so-called inductive methods require a previous training phase where the system learns the received signal strength (RSS) in each location. This phase can be very time consuming. This paper proposes a new stochastic approach which is based on a combination of deductive and inductive methods whereby wireless sensors could determine their positions using WLAN technology inside a floor of a building. Our goal is to reduce the training phase in an indoor environment, but, without an loss of precision. Finally, we compare the measurements taken using our proposed method in a real environment with the measurements taken by other developed systems. Comparisons between the proposed system and other hybrid methods are also provided.
A Hybrid Stochastic Approach for Self-Location of Wireless Sensors in Indoor Environments
Directory of Open Access Journals (Sweden)
Alejandro Canovas
2009-05-01
Full Text Available Indoor location systems, especially those using wireless sensor networks, are used in many application areas. While the need for these systems is widely proven, there is a clear lack of accuracy. Many of the implemented applications have high errors in their location estimation because of the issues arising in the indoor environment. Two different approaches had been proposed using WLAN location systems: on the one hand, the so-called deductive methods take into account the physical properties of signal propagation. These systems require a propagation model, an environment map, and the position of the radio-stations. On the other hand, the so-called inductive methods require a previous training phase where the system learns the received signal strength (RSS in each location. This phase can be very time consuming. This paper proposes a new stochastic approach which is based on a combination of deductive and inductive methods whereby wireless sensors could determine their positions using WLAN technology inside a floor of a building. Our goal is to reduce the training phase in an indoor environment, but, without an loss of precision. Finally, we compare the measurements taken using our proposed method in a real environment with the measurements taken by other developed systems. Comparisons between the proposed system and other hybrid methods are also provided.
Hybrid Adaptive Flight Control with Model Inversion Adaptation
Nguyen, Nhan
2011-01-01
This study investigates a hybrid adaptive flight control method as a design possibility for a flight control system that can enable an effective adaptation strategy to deal with off-nominal flight conditions. The hybrid adaptive control blends both direct and indirect adaptive control in a model inversion flight control architecture. The blending of both direct and indirect adaptive control provides a much more flexible and effective adaptive flight control architecture than that with either direct or indirect adaptive control alone. The indirect adaptive control is used to update the model inversion controller by an on-line parameter estimation of uncertain plant dynamics based on two methods. The first parameter estimation method is an indirect adaptive law based on the Lyapunov theory, and the second method is a recursive least-squares indirect adaptive law. The model inversion controller is therefore made to adapt to changes in the plant dynamics due to uncertainty. As a result, the modeling error is reduced that directly leads to a decrease in the tracking error. In conjunction with the indirect adaptive control that updates the model inversion controller, a direct adaptive control is implemented as an augmented command to further reduce any residual tracking error that is not entirely eliminated by the indirect adaptive control.
Andalam, Sidharta; Ramanna, Harshavardhan; Malik, Avinash; Roop, Parthasarathi; Patel, Nitish; Trew, Mark L
2016-08-01
Virtual heart models have been proposed for closed loop validation of safety-critical embedded medical devices, such as pacemakers. These models must react in real-time to off-the-shelf medical devices. Real-time performance can be obtained by implementing models in computer hardware, and methods of compiling classes of Hybrid Automata (HA) onto FPGA have been developed. Models of ventricular cardiac cell electrophysiology have been described using HA which capture the complex nonlinear behavior of biological systems. However, many models that have been used for closed-loop validation of pacemakers are highly abstract and do not capture important characteristics of the dynamic rate response. We developed a new HA model of cardiac cells which captures dynamic behavior and we implemented the model in hardware. This potentially enables modeling the heart with over 1 million dynamic cells, making the approach ideal for closed loop testing of medical devices.
A Hybrid approach for aeroacoustic analysis of the engine exhaust system
Sathyanarayana, Y; Munjal, ML
2000-01-01
This paper presents a new hybrid approach for prediction of noise radiation from engine exhaust systems. It couples the time domain analysis of the engine and the frequency domain analysis of the muffler, and has the advantages of both. In this approach, cylinder/cavity is analyzed in the time domain to calculate the exhaust mass flux history at the exhaust valve by means of the method of characteristics, avoiding the tedious procedure of interpolation at every mesh point and solving a number...
The evolution of green jobs in Scotland: A hybrid approach
International Nuclear Information System (INIS)
Connolly, Kevin; Allan, Grant J; McIntyre, Stuart G
2016-01-01
In support of its ambitious target to reduce CO_2 emissions the Scottish Government is aiming to have the equivalent of 100% of Scottish electricity consumption generated from renewable sources by 2020. This is, at least in part, motivated by an expectation of subsequent employment growth in low carbon and renewable energy technologies; however there is no official data source to track employment in these areas. This has led to a variety of definitions, methodologies and alternative estimates being produced. Building on a recent study (Bishop and Brand, 2013) we develop a “hybrid” approach which combines the detail of “bottom-up” surveys with “top-down” trend data to produce estimates on employment in Low Carbon Environmental Goods and Services (LCEGS). We demonstrate this methodology to produce estimates for such employment in Scotland between 2004 and 2012. Our approach shows how survey and official sources can combine to produce a more timely measure of employment in LCEGS activities, assisting policymakers in tracking, consistently, developments. Applying our approach, we find that over this period employment in LCEGS in Scotland grew, but that this was more volatile than aggregate employment, and in particular that employment in this sector was particularly badly hit during the great recession. - Highlights: • A “hybrid” approach estimates green jobs from bottom-up detail and top-down data. • Illustrative results show the evolution of such jobs in Scotland from 2004 to 2012. • Method provides policymakers a timely measure of the jobs success of energy policy.
Hybrid approaches to nanometer-scale patterning: Exploiting tailored intermolecular interactions
International Nuclear Information System (INIS)
Mullen, Thomas J.; Srinivasan, Charan; Shuster, Mitchell J.; Horn, Mark W.; Andrews, Anne M.; Weiss, Paul S.
2008-01-01
In this perspective, we explore hybrid approaches to nanometer-scale patterning, where the precision of molecular self-assembly is combined with the sophistication and fidelity of lithography. Two areas - improving existing lithographic techniques through self-assembly and fabricating chemically patterned surfaces - will be discussed in terms of their advantages, limitations, applications, and future outlook. The creation of such chemical patterns enables new capabilities, including the assembly of biospecific surfaces to be recognized by, and to capture analytes from, complex mixtures. Finally, we speculate on the potential impact and upcoming challenges of these hybrid strategies.
Xu, Yingjie; Gao, Tian
2016-01-01
Carbon fiber-reinforced multi-layered pyrocarbon–silicon carbide matrix (C/C–SiC) composites are widely used in aerospace structures. The complicated spatial architecture and material heterogeneity of C/C–SiC composites constitute the challenge for tailoring their properties. Thus, discovering the intrinsic relations between the properties and the microstructures and sequentially optimizing the microstructures to obtain composites with the best performances becomes the key for practical applications. The objective of this work is to optimize the thermal-elastic properties of unidirectional C/C–SiC composites by controlling the multi-layered matrix thicknesses. A hybrid approach based on micromechanical modeling and back propagation (BP) neural network is proposed to predict the thermal-elastic properties of composites. Then, a particle swarm optimization (PSO) algorithm is interfaced with this hybrid model to achieve the optimal design for minimizing the coefficient of thermal expansion (CTE) of composites with the constraint of elastic modulus. Numerical examples demonstrate the effectiveness of the proposed hybrid model and optimization method. PMID:28773343
International Nuclear Information System (INIS)
Kıran, Mustafa Servet; Özceylan, Eren; Gündüz, Mesut; Paksoy, Turan
2012-01-01
Highlights: ► PSO and ACO algorithms are hybridized for forecasting energy demands of Turkey. ► Linear and quadratic forms are developed to meet the fluctuations of indicators. ► GDP, population, export and import have significant impacts on energy demand. ► Quadratic form provides better fit solution than linear form. ► Proposed approach gives lower estimation error than ACO and PSO, separately. - Abstract: This paper proposes a new hybrid method (HAP) for estimating energy demand of Turkey using Particle Swarm Optimization (PSO) and Ant Colony Optimization (ACO). Proposed energy demand model (HAPE) is the first model which integrates two mentioned meta-heuristic techniques. While, PSO, developed for solving continuous optimization problems, is a population based stochastic technique; ACO, simulating behaviors between nest and food source of real ants, is generally used for discrete optimizations. Hybrid method based PSO and ACO is developed to estimate energy demand using gross domestic product (GDP), population, import and export. HAPE is developed in two forms which are linear (HAPEL) and quadratic (HAPEQ). The future energy demand is estimated under different scenarios. In order to show the accuracy of the algorithm, a comparison is made with ACO and PSO which are developed for the same problem. According to obtained results, relative estimation errors of the HAPE model are the lowest of them and quadratic form (HAPEQ) provides better-fit solutions due to fluctuations of the socio-economic indicators.
Directory of Open Access Journals (Sweden)
Lili Lei
2012-05-01
Full Text Available A hybrid data assimilation approach combining nudging and the ensemble Kalman filter (EnKF for dynamic analysis and numerical weather prediction is explored here using the non-linear Lorenz three-variable model system with the goal of a smooth, continuous and accurate data assimilation. The hybrid nudging-EnKF (HNEnKF computes the hybrid nudging coefficients from the flow-dependent, time-varying error covariance matrix from the EnKF's ensemble forecasts. It extends the standard diagonal nudging terms to additional off-diagonal statistical correlation terms for greater inter-variable influence of the innovations in the model's predictive equations to assist in the data assimilation process. The HNEnKF promotes a better fit of an analysis to data compared to that achieved by either nudging or incremental analysis update (IAU. When model error is introduced, it produces similar or better root mean square errors compared to the EnKF while minimising the error spikes/discontinuities created by the intermittent EnKF. It provides a continuous data assimilation with better inter-variable consistency and improved temporal smoothness than that of the EnKF. Data assimilation experiments are also compared to the ensemble Kalman smoother (EnKS. The HNEnKF has similar or better temporal smoothness than that of the EnKS, and with much smaller central processing unit (CPU time and data storage requirements.
Liu, Yuefeng; Duan, Zhuoyi; Chen, Song
2017-10-01
Aerodynamic shape optimization design aiming at improving the efficiency of an aircraft has always been a challenging task, especially when the configuration is complex. In this paper, a hybrid FFD-RBF surface parameterization approach has been proposed for designing a civil transport wing-body configuration. This approach is simple and efficient, with the FFD technique used for parameterizing the wing shape and the RBF interpolation approach used for handling the wing body junction part updating. Furthermore, combined with Cuckoo Search algorithm and Kriging surrogate model with expected improvement adaptive sampling criterion, an aerodynamic shape optimization design system has been established. Finally, the aerodynamic shape optimization design on DLR F4 wing-body configuration has been carried out as a study case, and the result has shown that the approach proposed in this paper is of good effectiveness.
Hybrid perturbation methods based on statistical time series models
San-Juan, Juan Félix; San-Martín, Montserrat; Pérez, Iván; López, Rosario
2016-04-01
In this work we present a new methodology for orbit propagation, the hybrid perturbation theory, based on the combination of an integration method and a prediction technique. The former, which can be a numerical, analytical or semianalytical theory, generates an initial approximation that contains some inaccuracies derived from the fact that, in order to simplify the expressions and subsequent computations, not all the involved forces are taken into account and only low-order terms are considered, not to mention the fact that mathematical models of perturbations not always reproduce physical phenomena with absolute precision. The prediction technique, which can be based on either statistical time series models or computational intelligence methods, is aimed at modelling and reproducing missing dynamics in the previously integrated approximation. This combination results in the precision improvement of conventional numerical, analytical and semianalytical theories for determining the position and velocity of any artificial satellite or space debris object. In order to validate this methodology, we present a family of three hybrid orbit propagators formed by the combination of three different orders of approximation of an analytical theory and a statistical time series model, and analyse their capability to process the effect produced by the flattening of the Earth. The three considered analytical components are the integration of the Kepler problem, a first-order and a second-order analytical theories, whereas the prediction technique is the same in the three cases, namely an additive Holt-Winters method.
WANG, D.; Wang, Y.; Zeng, X.
2017-12-01
Accurate, fast forecasting of hydro-meteorological time series is presently a major challenge in drought and flood mitigation. This paper proposes a hybrid approach, Wavelet De-noising (WD) and Rank-Set Pair Analysis (RSPA), that takes full advantage of a combination of the two approaches to improve forecasts of hydro-meteorological time series. WD allows decomposition and reconstruction of a time series by the wavelet transform, and hence separation of the noise from the original series. RSPA, a more reliable and efficient version of Set Pair Analysis, is integrated with WD to form the hybrid WD-RSPA approach. Two types of hydro-meteorological data sets with different characteristics and different levels of human influences at some representative stations are used to illustrate the WD-RSPA approach. The approach is also compared to three other generic methods: the conventional Auto Regressive Integrated Moving Average (ARIMA) method, Artificial Neural Networks (ANNs) (BP-error Back Propagation, MLP-Multilayer Perceptron and RBF-Radial Basis Function), and RSPA alone. Nine error metrics are used to evaluate the model performance. The results show that WD-RSPA is accurate, feasible, and effective. In particular, WD-RSPA is found to be the best among the various generic methods compared in this paper, even when the extreme events are included within a time series.
Little, Matthew; Cordero, Eugene
2014-01-01
Purpose: This paper aims to investigate the relationship between hybrid classes (where a per cent of the class meetings are online) and transportation-related CO[subscript 2] emissions at a commuter campus similar to San José State University (SJSU). Design/methodology/approach: A computer model was developed to calculate the number of trips to…
Entity recognition in the biomedical domain using a hybrid approach.
Basaldella, Marco; Furrer, Lenz; Tasso, Carlo; Rinaldi, Fabio
2017-11-09
This article describes a high-recall, high-precision approach for the extraction of biomedical entities from scientific articles. The approach uses a two-stage pipeline, combining a dictionary-based entity recognizer with a machine-learning classifier. First, the OGER entity recognizer, which has a bias towards high recall, annotates the terms that appear in selected domain ontologies. Subsequently, the Distiller framework uses this information as a feature for a machine learning algorithm to select the relevant entities only. For this step, we compare two different supervised machine-learning algorithms: Conditional Random Fields and Neural Networks. In an in-domain evaluation using the CRAFT corpus, we test the performance of the combined systems when recognizing chemicals, cell types, cellular components, biological processes, molecular functions, organisms, proteins, and biological sequences. Our best system combines dictionary-based candidate generation with Neural-Network-based filtering. It achieves an overall precision of 86% at a recall of 60% on the named entity recognition task, and a precision of 51% at a recall of 49% on the concept recognition task. These results are to our knowledge the best reported so far in this particular task.
A viable D-term hybrid inflation model
Kadota, Kenji; Kobayashi, Tatsuo; Sumita, Keigo
2017-11-01
We propose a new model of the D-term hybrid inflation in the framework of supergravity. Although our model introduces, analogously to the conventional D-term inflation, the inflaton and a pair of scalar fields charged under a U(1) gauge symmetry, we study the logarithmic and exponential dependence on the inflaton field, respectively, for the Kähler and superpotential. This results in a characteristic one-loop scalar potential consisting of linear and exponential terms, which realizes the small-field inflation dominated by the Fayet-Iliopoulos term. With the reasonable values for the coupling coefficients and, in particular, with the U(1) gauge coupling constant comparable to that of the Standard Model, our D-term inflation model can solve the notorious problems in the conventional D-term inflation, namely, the CMB constraints on the spectral index and the generation of cosmic strings.
Ionocovalency and Applications 1. Ionocovalency Model and Orbital Hybrid Scales
Directory of Open Access Journals (Sweden)
Yonghe Zhang
2010-11-01
Full Text Available Ionocovalency (IC, a quantitative dual nature of the atom, is defined and correlated with quantum-mechanical potential to describe quantitatively the dual properties of the bond. Orbiotal hybrid IC model scale, IC, and IC electronegativity scale, XIC, are proposed, wherein the ionicity and the covalent radius are determined by spectroscopy. Being composed of the ionic function I and the covalent function C, the model describes quantitatively the dual properties of bond strengths, charge density and ionic potential. Based on the atomic electron configuration and the various quantum-mechanical built-up dual parameters, the model formed a Dual Method of the multiple-functional prediction, which has much more versatile and exceptional applications than traditional electronegativity scales and molecular properties. Hydrogen has unconventional values of IC and XIC, lower than that of boron. The IC model can agree fairly well with the data of bond properties and satisfactorily explain chemical observations of elements throughout the Periodic Table.
A hybrid spatiotemporal drought forecasting model for operational use
Vasiliades, L.; Loukas, A.
2010-09-01
Drought forecasting plays an important role in the planning and management of natural resources and water resource systems in a river basin. Early and timelines forecasting of a drought event can help to take proactive measures and set out drought mitigation strategies to alleviate the impacts of drought. Spatiotemporal data mining is the extraction of unknown and implicit knowledge, structures, spatiotemporal relationships, or patterns not explicitly stored in spatiotemporal databases. As one of data mining techniques, forecasting is widely used to predict the unknown future based upon the patterns hidden in the current and past data. This study develops a hybrid spatiotemporal scheme for integrated spatial and temporal forecasting. Temporal forecasting is achieved using feed-forward neural networks and the temporal forecasts are extended to the spatial dimension using a spatial recurrent neural network model. The methodology is demonstrated for an operational meteorological drought index the Standardized Precipitation Index (SPI) calculated at multiple timescales. 48 precipitation stations and 18 independent precipitation stations, located at Pinios river basin in Thessaly region, Greece, were used for the development and spatiotemporal validation of the hybrid spatiotemporal scheme. Several quantitative temporal and spatial statistical indices were considered for the performance evaluation of the models. Furthermore, qualitative statistical criteria based on contingency tables between observed and forecasted drought episodes were calculated. The results show that the lead time of forecasting for operational use depends on the SPI timescale. The hybrid spatiotemporal drought forecasting model could be operationally used for forecasting up to three months ahead for SPI short timescales (e.g. 3-6 months) up to six months ahead for large SPI timescales (e.g. 24 months). The above findings could be useful in developing a drought preparedness plan in the region.
A hybrid approach on the management of crop pests | Onuodu ...
African Journals Online (AJOL)
This algorithm has been implemented using JAVA and MATLAB. The new method has been applied on agro-based datasets of soybean and yeast for forming clusters that could help farmers in the management of crop pests. The model developed could be beneficial to Nigerian farmers and the Agro-based industries, ...
A hybrid multi-objective evolutionary algorithm approach for ...
Indian Academy of Sciences (India)
This paper addresses a fuzzy mixed-integer non-linear programming (FMINLP) model by considering machine-dependent and job-sequence-dependent set-up times that minimize the total completion time,the number of tardy jobs, the total flow time and the machine load variation in the context of unrelated parallel machine ...
On The Modelling Of Hybrid Aerostatic - Gas Journal Bearings
DEFF Research Database (Denmark)
Morosi, Stefano; Santos, Ilmar
2011-01-01
modeling for hybrid lubrication of a compressible fluid film journal bearing. Additional forces are generated by injecting pressurized air into the bearing gap through orifices located on the bearing walls. A modified form of the compressible Reynolds equation for active lubrication is derived. By solving......Gas journal bearing have been increasingly adopted in modern turbo-machinery applications, as they meet the demands of operation at higher rotational speeds, in clean environment and great efficiency. Due to the fact that gaseous lubricants, typically air, have much lower viscosity than more...
Software development infrastructure for the HYBRID modeling and simulation project
International Nuclear Information System (INIS)
Epiney, Aaron S.; Kinoshita, Robert A.; Kim, Jong Suk; Rabiti, Cristian; Greenwood, M. Scott
2016-01-01
One of the goals of the HYBRID modeling and simulation project is to assess the economic viability of hybrid systems in a market that contains renewable energy sources like wind. The idea is that it is possible for the nuclear plant to sell non-electric energy cushions, which absorb (at least partially) the volatility introduced by the renewable energy sources. This system is currently modeled in the Modelica programming language. To assess the economics of the system, an optimization procedure is trying to find the minimal cost of electricity production. The RAVEN code is used as a driver for the whole problem. It is assumed that at this stage, the HYBRID modeling and simulation framework can be classified as non-safety “research and development” software. The associated quality level is Quality Level 3 software. This imposes low requirements on quality control, testing and documentation. The quality level could change as the application development continues.Despite the low quality requirement level, a workflow for the HYBRID developers has been defined that include a coding standard and some documentation and testing requirements. The repository performs automated unit testing of contributed models. The automated testing is achieved via an open-source python script called BuildingsP from Lawrence Berkeley National Lab. BuildingsPy runs Modelica simulation tests using Dymola in an automated manner and generates and runs unit tests from Modelica scripts written by developers. In order to assure effective communication between the different national laboratories a biweekly videoconference has been set-up, where developers can report their progress and issues. In addition, periodic face-face meetings are organized intended to discuss high-level strategy decisions with management. A second means of communication is the developer email list. This is a list to which everybody can send emails that will be received by the collective of the developers and managers
The Hybrid Airline Model. Generating Quality for Passengers
Directory of Open Access Journals (Sweden)
Bogdan AVRAM
2017-12-01
Full Text Available This research aims to investigate the different strategies adopted by the airline companies in adapting to the ongoing changes while developing products and services for passengers in order to increase their yield, load factor and passenger satisfaction. Finding a balance between costs and services quality in the airline industry is a crucial task for every airline wanting to gain a competitive advantage on the market. Also, the rise of the hybrid business operating model has brought up many challenges for airlines as the line between legacy carriers and low-cost carriers is getting thinner in terms of costs and innovative ideas to create a superior product for the passengers.
Software development infrastructure for the HYBRID modeling and simulation project
Energy Technology Data Exchange (ETDEWEB)
Epiney, Aaron S. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Kinoshita, Robert A. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Kim, Jong Suk [Idaho National Lab. (INL), Idaho Falls, ID (United States); Rabiti, Cristian [Idaho National Lab. (INL), Idaho Falls, ID (United States); Greenwood, M. Scott [Idaho National Lab. (INL), Idaho Falls, ID (United States)
2016-09-01
One of the goals of the HYBRID modeling and simulation project is to assess the economic viability of hybrid systems in a market that contains renewable energy sources like wind. The idea is that it is possible for the nuclear plant to sell non-electric energy cushions, which absorb (at least partially) the volatility introduced by the renewable energy sources. This system is currently modeled in the Modelica programming language. To assess the economics of the system, an optimization procedure is trying to find the minimal cost of electricity production. The RAVEN code is used as a driver for the whole problem. It is assumed that at this stage, the HYBRID modeling and simulation framework can be classified as non-safety “research and development” software. The associated quality level is Quality Level 3 software. This imposes low requirements on quality control, testing and documentation. The quality level could change as the application development continues.Despite the low quality requirement level, a workflow for the HYBRID developers has been defined that include a coding standard and some documentation and testing requirements. The repository performs automated unit testing of contributed models. The automated testing is achieved via an open-source python script called BuildingsP from Lawrence Berkeley National Lab. BuildingsPy runs Modelica simulation tests using Dymola in an automated manner and generates and runs unit tests from Modelica scripts written by developers. In order to assure effective communication between the different national laboratories a biweekly videoconference has been set-up, where developers can report their progress and issues. In addition, periodic face-face meetings are organized intended to discuss high-level strategy decisions with management. A second means of communication is the developer email list. This is a list to which everybody can send emails that will be received by the collective of the developers and managers
International Nuclear Information System (INIS)
Mohammadi, Kasra; Shamshirband, Shahaboddin; Tong, Chong Wen; Arif, Muhammad; Petković, Dalibor; Ch, Sudheer
2015-01-01
Highlights: • Horizontal global solar radiation (HGSR) is predicted based on a new hybrid approach. • Support Vector Machines and Wavelet Transform algorithm (SVM–WT) are combined. • Different sets of meteorological elements are used to predict HGSR. • The precision of SVM–WT is assessed thoroughly against ANN, GP and ARMA. • SVM–WT would be an appealing approach to predict HGSR and outperforms others. - Abstract: In this paper, a new hybrid approach by combining the Support Vector Machine (SVM) with Wavelet Transform (WT) algorithm is developed to predict horizontal global solar radiation. The predictions are conducted on both daily and monthly mean scales for an Iranian coastal city. The proposed SVM–WT method is compared against other existing techniques to demonstrate its efficiency and viability. Three different sets of parameters are served as inputs to establish three models. The results indicate that the model using relative sunshine duration, difference between air temperatures, relative humidity, average temperature and extraterrestrial solar radiation as inputs shows higher performance than other models. The statistical analysis demonstrates that SVM–WT approach enjoys very good performance and outperforms other approaches. For the best SVM–WT model, the obtained statistical indicators of mean absolute percentage error, mean absolute bias error, root mean square error, relative root mean square error and coefficient of determination for daily estimation are 6.9996%, 0.8405 MJ/m 2 , 1.4245 MJ/m 2 , 7.9467% and 0.9086, respectively. Also, for monthly mean estimation the values are 3.2601%, 0.5104 MJ/m 2 , 0.6618 MJ/m 2 , 3.6935% and 0.9742, respectively. Based upon relative percentage error, for the best SVM–WT model, 88.70% of daily predictions fall within the acceptable range of −10% to +10%
A bottom-up approach for the synthesis of highly ordered fullerene-intercalated graphene hybrids
Directory of Open Access Journals (Sweden)
Dimitrios eGournis
2015-02-01
Full Text Available Much of the research effort on graphene focuses on its use as a building block for the development of new hybrid nanostructures with well-defined dimensions and properties suitable for applications such as gas storage, heterogeneous catalysis, gas/liquid separations, nanosensing and biomedicine. Towards this aim, here we describe a new bottom-up approach, which combines self-assembly with the Langmuir Schaefer deposition technique to synthesize graphene-based layered hybrid materials hosting fullerene molecules within the interlayer space. Our film preparation consists in a bottom-up layer-by-layer process that proceeds via the formation of a hybrid organo-graphene oxide Langmuir film. The structure and composition of these hybrid fullerene-containing thin multilayers deposited on hydrophobic substrates were characterized by a combination of X-ray diffraction, Raman and X-ray photoelectron spectroscopies, atomic force microscopy and conductivity measurements. The latter revealed that the presence of C60 within the interlayer spacing leads to an increase in electrical conductivity of the hybrid material as compared to the organo-graphene matrix alone.
A hybrid approach to device integration on a genetic analysis platform
International Nuclear Information System (INIS)
Brennan, Des; Justice, John; Aherne, Margaret; Galvin, Paul; Jary, Dorothee; Kurg, Ants; Berik, Evgeny; Macek, Milan
2012-01-01
Point-of-care (POC) systems require significant component integration to implement biochemical protocols associated with molecular diagnostic assays. Hybrid platforms where discrete components are combined in a single platform are a suitable approach to integration, where combining multiple device fabrication steps on a single substrate is not possible due to incompatible or costly fabrication steps. We integrate three devices each with a specific system functionality: (i) a silicon electro-wetting-on-dielectric (EWOD) device to move and mix sample and reagent droplets in an oil phase, (ii) a polymer microfluidic chip containing channels and reservoirs and (iii) an aqueous phase glass microarray for fluorescence microarray hybridization detection. The EWOD device offers the possibility of fully integrating on-chip sample preparation using nanolitre sample and reagent volumes. A key challenge is sample transfer from the oil phase EWOD device to the aqueous phase microarray for hybridization detection. The EWOD device, waveguide performance and functionality are maintained during the integration process. An on-chip biochemical protocol for arrayed primer extension (APEX) was implemented for single nucleotide polymorphism (SNiP) analysis. The prepared sample is aspirated from the EWOD oil phase to the aqueous phase microarray for hybridization. A bench-top instrumentation system was also developed around the integrated platform to drive the EWOD electrodes, implement APEX sample heating and image the microarray after hybridization. (paper)
Mixed H∞ and passive control for linear switched systems via hybrid control approach
Zheng, Qunxian; Ling, Youzhu; Wei, Lisheng; Zhang, Hongbin
2018-03-01
This paper investigates the mixed H∞ and passive control problem for linear switched systems based on a hybrid control strategy. To solve this problem, first, a new performance index is proposed. This performance index can be viewed as the mixed weighted H∞ and passivity performance. Then, the hybrid controllers are used to stabilise the switched systems. The hybrid controllers consist of dynamic output-feedback controllers for every subsystem and state updating controllers at the switching instant. The design of state updating controllers not only depends on the pre-switching subsystem and the post-switching subsystem, but also depends on the measurable output signal. The hybrid controllers proposed in this paper can include some existing ones as special cases. Combine the multiple Lyapunov functions approach with the average dwell time technique, new sufficient conditions are obtained. Under the new conditions, the closed-loop linear switched systems are globally uniformly asymptotically stable with a mixed H∞ and passivity performance index. Moreover, the desired hybrid controllers can be constructed by solving a set of linear matrix inequalities. Finally, a numerical example and a practical example are given.
A Hybrid Harmony Search Algorithm Approach for Optimal Power Flow
Directory of Open Access Journals (Sweden)
Mimoun YOUNES
2012-08-01
Full Text Available Optimal Power Flow (OPF is one of the main functions of Power system operation. It determines the optimal settings of generating units, bus voltage, transformer tap and shunt elements in Power System with the objective of minimizing total production costs or losses while the system is operating within its security limits. The aim of this paper is to propose a novel methodology (BCGAs-HSA that solves OPF including both active and reactive power dispatch It is based on combining the binary-coded genetic algorithm (BCGAs and the harmony search algorithm (HSA to determine the optimal global solution. This method was tested on the modified IEEE 30 bus test system. The results obtained by this method are compared with those obtained with BCGAs or HSA separately. The results show that the BCGAs-HSA approach can converge to the optimum solution with accuracy compared to those reported recently in the literature.
A Lookahead Behavior Model for Multi-Agent Hybrid Simulation
Directory of Open Access Journals (Sweden)
Mei Yang
2017-10-01
Full Text Available In the military field, multi-agent simulation (MAS plays an important role in studying wars statistically. For a military simulation system, which involves large-scale entities and generates a very large number of interactions during the runtime, the issue of how to improve the running efficiency is of great concern for researchers. Current solutions mainly use hybrid simulation to gain fewer updates and synchronizations, where some important continuous models are maintained implicitly to keep the system dynamics, and partial resynchronization (PR is chosen as the preferable state update mechanism. However, problems, such as resynchronization interval selection and cyclic dependency, remain unsolved in PR, which easily lead to low update efficiency and infinite looping of the state update process. To address these problems, this paper proposes a lookahead behavior model (LBM to implement a PR-based hybrid simulation. In LBM, a minimal safe time window is used to predict the interactions between implicit models, upon which the resynchronization interval can be efficiently determined. Moreover, the LBM gives an estimated state value in the lookahead process so as to break the state-dependent cycle. The simulation results show that, compared with traditional mechanisms, LBM requires fewer updates and synchronizations.
Johnson, Erik A.; Elhaddad, Wael M.; Wojtkiewicz, Steven F.
2016-04-01
A variety of strategies have been developed over the past few decades to determine controllable damping device forces to mitigate the response of structures and mechanical systems to natural hazards and other excitations. These "smart" damping devices produce forces through passive means but have properties that can be controlled in real time, based on sensor measurements of response across the structure, to dramatically reduce structural motion by exploiting more than the local "information" that is available to purely passive devices. A common strategy is to design optimal damping forces using active control approaches and then try to reproduce those forces with the smart damper. However, these design forces, for some structures and performance objectives, may achieve high performance by selectively adding energy, which cannot be replicated by a controllable damping device, causing the smart damper performance to fall far short of what an active system would provide. The authors have recently demonstrated that a model predictive control strategy using hybrid system models, which utilize both continuous and binary states (the latter to capture the switching behavior between dissipative and non-dissipative forces), can provide reductions in structural response on the order of 50% relative to the conventional clipped-optimal design strategy. This paper explores the robustness of this newly proposed control strategy through evaluating controllable damper performance when the structure model differs from the nominal one used to design the damping strategy. Results from the application to a two-degree-of-freedom structure model confirms the robustness of the proposed strategy.
Directory of Open Access Journals (Sweden)
Jalalifar Mehran
2007-01-01
Full Text Available In this paper using adaptive backstepping approach an adaptive rotor flux observer which provides stator and rotor resistances estimation simultaneously for induction motor used in series hybrid electric vehicle is proposed. The controller of induction motor (IM is designed based on input-output feedback linearization technique. Combining this controller with adaptive backstepping observer the system is robust against rotor and stator resistances uncertainties. In additional, mechanical components of a hybrid electric vehicle are called from the Advanced Vehicle Simulator Software Library and then linked with the electric motor. Finally, a typical series hybrid electric vehicle is modeled and investigated. Various tests, such as acceleration traversing ramp, and fuel consumption and emission are performed on the proposed model of a series hybrid vehicle. Computer simulation results obtained, confirm the validity and performance of the proposed IM control approach using for series hybrid electric vehicle.
Monthly reservoir inflow forecasting using a new hybrid SARIMA genetic programming approach
Moeeni, Hamid; Bonakdari, Hossein; Ebtehaj, Isa
2017-03-01
Forecasting reservoir inflow is one of the most important components of water resources and hydroelectric systems operation management. Seasonal autoregressive integrated moving average (SARIMA) models have been frequently used for predicting river flow. SARIMA models are linear and do not consider the random component of statistical data. To overcome this shortcoming, monthly inflow is predicted in this study based on a combination of seasonal autoregressive integrated moving average (SARIMA) and gene expression programming (GEP) models, which is a new hybrid method (SARIMA-GEP). To this end, a four-step process is employed. First, the monthly inflow datasets are pre-processed. Second, the datasets are modelled linearly with SARIMA and in the third stage, the non-linearity of residual series caused by linear modelling is evaluated. After confirming the non-linearity, the residuals are modelled in the fourth step using a gene expression programming (GEP) method. The proposed hybrid model is employed to predict the monthly inflow to the Jamishan Dam in west Iran. Thirty years' worth of site measurements of monthly reservoir dam inflow with extreme seasonal variations are used. The results of this hybrid model (SARIMA-GEP) are compared with SARIMA, GEP, artificial neural network (ANN) and SARIMA-ANN models. The results indicate that the SARIMA-GEP model ( R 2=78.8, VAF =78.8, RMSE =0.89, MAPE =43.4, CRM =0.053) outperforms SARIMA and GEP and SARIMA-ANN ( R 2=68.3, VAF =66.4, RMSE =1.12, MAPE =56.6, CRM =0.032) displays better performance than the SARIMA and ANN models. A comparison of the two hybrid models indicates the superiority of SARIMA-GEP over the SARIMA-ANN model.
Efficient Vaccine Distribution Based on a Hybrid Compartmental Model.
Directory of Open Access Journals (Sweden)
Zhiwen Yu
Full Text Available To effectively and efficiently reduce the morbidity and mortality that may be caused by outbreaks of emerging infectious diseases, it is very important for public health agencies to make informed decisions for controlling the spread of the disease. Such decisions must incorporate various kinds of intervention strategies, such as vaccinations, school closures and border restrictions. Recently, researchers have paid increased attention to searching for effective vaccine distribution strategies for reducing the effects of pandemic outbreaks when resources are limited. Most of the existing research work has been focused on how to design an effective age-structured epidemic model and to select a suitable vaccine distribution strategy to prevent the propagation of an infectious virus. Models that evaluate age structure effects are common, but models that additionally evaluate geographical effects are less common. In this paper, we propose a new SEIR (susceptible-exposed-infectious šC recovered model, named the hybrid SEIR-V model (HSEIR-V, which considers not only the dynamics of infection prevalence in several age-specific host populations, but also seeks to characterize the dynamics by which a virus spreads in various geographic districts. Several vaccination strategies such as different kinds of vaccine coverage, different vaccine releasing times and different vaccine deployment methods are incorporated into the HSEIR-V compartmental model. We also design four hybrid vaccination distribution strategies (based on population size, contact pattern matrix, infection rate and infectious risk for controlling the spread of viral infections. Based on data from the 2009-2010 H1N1 influenza epidemic, we evaluate the effectiveness of our proposed HSEIR-V model and study the effects of different types of human behaviour in responding to epidemics.
NBI - plasma vaporization hybrid approach in bladder cancer endoscopic management.
Stănescu, F; Geavlete, B; Georgescu, D; Jecu, M; Moldoveanu, C; Adou, L; Bulai, C; Ene, C; Geavlete, P
2014-06-15
A prospective study was performed aiming to evaluate the surgical efficacy, perioperative safety profile, diagnostic accuracy and medium term results of a multi-modal approach consisting in narrow band imaging (NBI) cystoscopy and bipolar plasma vaporization (BPV) when compared to the standard protocol represented by white light cystoscopy (WLC) and transurethral resection of bladder tumors (TURBT). A total of 260 patients with apparently at least one bladder tumor over 3 cm were included in the trial. In the first group, 130 patients underwent conventional and NBI cystoscopy followed by BPV, while in a similar number of cases of the second arm, classical WLC and TURBT were applied. In all non-muscle invasive bladder tumors' (NMIBT) pathologically confirmed cases, standard monopolar Re-TUR was performed at 4-6 weeks after the initial intervention, followed by one year' BCG immunotherapy. The follow-up protocol included abdominal ultrasound, urinary cytology and WLC, performed every 3 months for a period of 2 years. The obturator nerve stimulation, bladder wall perforation, mean hemoglobin level drop, postoperative bleeding, catheterization period and hospital stay were significantly reduced for the plasma vaporization technique by comparison to conventional resection. Concerning tumoral detection, the present data confirmed the NBI superiority when compared to standard WLC regardless of tumor stage (95.3% vs. 65.1% for CIS, 93.3% vs. 82.2% for pTa, 97.4% vs. 94% for pT1, 95% vs. 84.2% overall). During standard Re-TUR the overall (6.3% versus 17.4%) and primary site (3.6% versus 12.8%) residual tumors' rates were significantly lower for the NBI-BPV group. The 1 (7.2% versus 18.3%) and 2 (11.5% versus 25.8%) years' recurrence rates were substantially lower for the combined approach. NBI cystoscopy significantly improved diagnostic accuracy, while bipolar technology showed a higher surgical efficiency, lower morbidity and faster postoperative recovery. The combined
Simplified Model for the Hybrid Method to Design Stabilising Piles Placed at the Toe of Slopes
Directory of Open Access Journals (Sweden)
Dib M.
2018-01-01
Full Text Available Stabilizing precarious slopes by installing piles has become a widespread technique for landslides prevention. The design of slope-stabilizing piles by the finite element method is more accurate comparing to the conventional methods. This accuracy is because of the ability of this method to simulate complex configurations, and to analyze the soil-pile interaction effect. However, engineers prefer to use the simplified analytical techniques to design slope stabilizing piles, this is due to the high computational resources required by the finite element method. Aiming to combine the accuracy of the finite element method with simplicity of the analytical approaches, a hybrid methodology to design slope stabilizing piles was proposed in 2012. It consists of two steps; (1: an analytical estimation of the resisting force needed to stabilize the precarious slope, and (2: a numerical analysis to define the adequate pile configuration that offers the required resisting force. The hybrid method is applicable only for the analysis and the design of stabilizing piles placed in the middle of the slope, however, in certain cases like road constructions, piles are needed to be placed at the toe of the slope. Therefore, in this paper a simplified model for the hybrid method is dimensioned to analyze and design stabilizing piles placed at the toe of a precarious slope. The validation of the simplified model is presented by a comparative analysis with the full coupled finite element model.
Energy Technology Data Exchange (ETDEWEB)
Jiang, Huaiguang [National Renewable Energy Laboratory (NREL), Golden, CO (United States)
2017-08-25
This work proposes an approach for distribution system load forecasting, which aims to provide highly accurate short-term load forecasting with high resolution utilizing a support vector regression (SVR) based forecaster and a two-step hybrid parameters optimization method. Specifically, because the load profiles in distribution systems contain abrupt deviations, a data normalization is designed as the pretreatment for the collected historical load data. Then an SVR model is trained by the load data to forecast the future load. For better performance of SVR, a two-step hybrid optimization algorithm is proposed to determine the best parameters. In the first step of the hybrid optimization algorithm, a designed grid traverse algorithm (GTA) is used to narrow the parameters searching area from a global to local space. In the second step, based on the result of the GTA, particle swarm optimization (PSO) is used to determine the best parameters in the local parameter space. After the best parameters are determined, the SVR model is used to forecast the short-term load deviation in the distribution system.
A novel approach for fire recognition using hybrid features and manifold learning-based classifier
Zhu, Rong; Hu, Xueying; Tang, Jiajun; Hu, Sheng
2018-03-01
Although image/video based fire recognition has received growing attention, an efficient and robust fire detection strategy is rarely explored. In this paper, we propose a novel approach to automatically identify the flame or smoke regions in an image. It is composed to three stages: (1) a block processing is applied to divide an image into several nonoverlapping image blocks, and these image blocks are identified as suspicious fire regions or not by using two color models and a color histogram-based similarity matching method in the HSV color space, (2) considering that compared to other information, the flame and smoke regions have significant visual characteristics, so that two kinds of image features are extracted for fire recognition, where local features are obtained based on the Scale Invariant Feature Transform (SIFT) descriptor and the Bags of Keypoints (BOK) technique, and texture features are extracted based on the Gray Level Co-occurrence Matrices (GLCM) and the Wavelet-based Analysis (WA) methods, and (3) a manifold learning-based classifier is constructed based on two image manifolds, which is designed via an improve Globular Neighborhood Locally Linear Embedding (GNLLE) algorithm, and the extracted hybrid features are used as input feature vectors to train the classifier, which is used to make decision for fire images or non fire images. Experiments and comparative analyses with four approaches are conducted on the collected image sets. The results show that the proposed approach is superior to the other ones in detecting fire and achieving a high recognition accuracy and a low error rate.
Energy Technology Data Exchange (ETDEWEB)
Hammond, Glenn Edward; Yang, Xiaofan; Song, Xuehang; Song, Hyun-Seob; Hou, Zhangshuan; Chen, Xingyuan; Liu, Yuanyuan; Scheibe, Tim
2017-03-01
The groundwater-surface water interaction zone (GSIZ) plays an important role in riverine and watershed ecosystems as the exchange of waters of variable composition and temperature (hydrologic exchange flows) stimulate microbial activity and associated biogeochemical reactions. Variable temporal and spatial scales of hydrologic exchange flows, heterogeneity of the subsurface environment, and complexity of biogeochemical reaction networks in the GSIZ present challenges to incorporation of fundamental process representations and model parameterization across a range of spatial scales (e.g. from pore-scale to field scale). This paper presents a novel hybrid multiscale simulation approach that couples hydrologic-biogeochemical (HBGC) processes between two distinct length scales of interest.
Investigating actinide compounds within a hybrid MCSCF-DFT model
International Nuclear Information System (INIS)
Fromager, E.; Jensen, H.J.A.; Wahlin, P.; Real, F.; Wahlgren, U.
2007-01-01
Complete text of publication follows: Investigations of actinide chemistry with quantum chemical methods still remain a complicated task since it requires an accurate and efficient treatment of the environment (crystal or solvent) as well as relativistic and electron correlation effects. Concerning the latter, the current correlated methods, based on either Density-Functional Theory (DFT) or Wave-Function Theory (WFT), have their advantages and drawbacks. On the one hand, Kohn-Sham DFT (KS-DFT) calculates the dynamic correlation quite accurately and at a fairly low computational cost. However, it does not treat adequately the static correlation, which is significant in some actinide compounds because of the near-degeneracy of the 5f orbitals: a first example is the bent geometry obtained in KS-DFT(B3LYP) for the neptunyl ion NpO 2 3+ , which is found to be linear within a Multi-Configurational Self-Consistent Field (MCSCF) model [1]. A second one is the stable and bent geometry obtained in KS-DFT(B3LYP) for the plutonyl ion PuO 2 4+ , which disintegrates at the MCSCF level [1]. On the other hand, WFT can describe the static correlation, using for example a MCSCF model, but then an important part of the dynamic correlation has to be neglected. This can be recovered with perturbation-theory based methods like for example CASPT2 or NEVPT2, but their computational complexity prevents large scale calculations. It is therefore of great interest to develop a hybrid MCSCF-DFT model which combines the best of both WFT and DFT approaches. The merge of WFT and DFT can be achieved by splitting the two-electron interaction into long-range and short-range parts [2]. The long-range part is then treated by WFT and the short-range part by DFT. We use the so-called 'erf' long-range interaction erf(μr 12 )/r 12 , which is based on the standard error function, and where μ is a free parameter which controls the long/short-range decomposition. The newly proposed recipe for the
The influence of nonlocal hybridization on ground-state properties of the Falicov-Kimball model
International Nuclear Information System (INIS)
Farkasovsky, Pavol
2005-01-01
The density matrix renormalization group is used to examine effects of nonlocal hybridization on ground-state properties of the Falicov-Kimball model (FKM) in one dimension. Special attention is devoted to the problem of hybridization-induced insulator-metal transition. It is shown that the picture of insulator-metal transitions found for the FKM with nonlocal hybridization strongly differs from one found for the FKM without hybridization (as well as with local hybridization). The effect of nonlocal hybridization is so strong that it can induce the insulator-metal transition, even in the half-filled band case where the ground states of the FKM without hybridization are insulating for all finite Coulomb interactions. Outside the half-filled band case the metal-insulator transition driven by pressure is found for finite values of nonlocal hybridization
Wang, Dong; Borthwick, Alistair G; He, Handan; Wang, Yuankun; Zhu, Jieyu; Lu, Yuan; Xu, Pengcheng; Zeng, Xiankui; Wu, Jichun; Wang, Lachun; Zou, Xinqing; Liu, Jiufu; Zou, Ying; He, Ruimin
2018-01-01
Accurate, fast forecasting of hydro-meteorological time series is presently a major challenge in drought and flood mitigation. This paper proposes a hybrid approach, wavelet de-noising (WD) and Rank-Set Pair Analysis (RSPA), that takes full advantage of a combination of the two approaches to improve forecasts of hydro-meteorological time series. WD allows decomposition and reconstruction of a time series by the wavelet transform, and hence separation of the noise from the original series. RSPA, a more reliable and efficient version of Set Pair Analysis, is integrated with WD to form the hybrid WD-RSPA approach. Two types of hydro-meteorological data sets with different characteristics and different levels of human influences at some representative stations are used to illustrate the WD-RSPA approach. The approach is also compared to three other generic methods: the conventional Auto Regressive Integrated Moving Average (ARIMA) method, Artificial Neural Networks (ANNs) (BP-error Back Propagation, MLP-Multilayer Perceptron and RBF-Radial Basis Function), and RSPA alone. Nine error metrics are used to evaluate the model performance. Compared to three other generic methods, the results generated by WD-REPA model presented invariably smaller error measures which means the forecasting capability of the WD-REPA model is better than other models. The results show that WD-RSPA is accurate, feasible, and effective. In particular, WD-RSPA is found to be the best among the various generic methods compared in this paper, even when the extreme events are included within a time series. Copyright © 2017 Elsevier Inc. All rights reserved.
MeMo: a hybrid SQL/XML approach to metabolomic data management for functional genomics
Directory of Open Access Journals (Sweden)
Hardy Nigel
2006-06-01
Full Text Available Abstract Background The genome sequencing projects have shown our limited knowledge regarding gene function, e.g. S. cerevisiae has 5–6,000 genes of which nearly 1,000 have an uncertain function. Their gross influence on the behaviour of the cell can be observed using large-scale metabolomic studies. The metabolomic data produced need to be structured and annotated in a machine-usable form to facilitate the exploration of the hidden links between the genes and their functions. Description MeMo is a formal model for representing metabolomic data and the associated metadata. Two predominant platforms (SQL and XML are used to encode the model. MeMo has been implemented as a relational database using a hybrid approach combining the advantages of the two technologies. It represents a practical solution for handling the sheer volume and complexity of the metabolomic data effectively and efficiently. The MeMo model and the associated software are available at http://dbkgroup.org/memo/. Conclusion The maturity of relational database technology is used to support efficient data processing. The scalability and self-descriptiveness of XML are used to simplify the relational schema and facilitate the extensibility of the model necessitated by the creation of new experimental techniques. Special consideration is given to data integration issues as part of the systems biology agenda. MeMo has been physically integrated and cross-linked to related metabolomic and genomic databases. Semantic integration with other relevant databases has been supported through ontological annotation. Compatibility with other data formats is supported by automatic conversion.
Directory of Open Access Journals (Sweden)
Huiling Wei
2015-12-01
Full Text Available This paper focuses on studying the effect of cable tensions and stiffness on the stability of cable-based parallel camera robots. For this purpose, the tension factor and the stiffness factor are defined, and the expression of stability is deduced. A new approach is proposed to calculate the hybrid-stability index with the minimum cable tension and the minimum singular value. Firstly, the kinematic model of a cable-based parallel camera robot is established. Based on the model, the tensions are solved and a tension factor is defined. In order to obtain the tension factor, an optimization of the cable tensions is carried out. Then, an expression of the system's stiffness is deduced and a stiffness factor is defined. Furthermore, an approach to evaluate the stability of the cable-based camera robots with hybrid tension-stiffness properties is presented. Finally, a typical three-degree-of-freedom cable-based parallel camera robot with four cables is studied as a numerical example. The simulation results show that the approach is both reasonable and effective.
A hybrid fuzzy MCDM approach to maintenance Quality Function Deployment
Directory of Open Access Journals (Sweden)
Davy George Valavi
2015-01-01
Full Text Available Maintenance Quality Function Deployment (MQFD is a model, which enhances the synergic power of Quality Function Deployment (QFD and Total Productive Maintenance (TPM. One of the crucial and important steps during the implementation of MQFD is the determination of the importance or weightages of the critical factors (CF and sub factors (SF. The CFs and SFs have to be compared precisely for the successful implementation of MQFD. The crisp pair-wise comparison in the conventional Analytical Hierarchy Process (AHP may be insufficient to determine the degree of weightage of CFs and SFs where vagueness and uncetainties are associated. In this paper, a modification of AHP based MQFD by incorporating fuzzy operations is proposed, which can improve the accuracy of determination of the weightages. A case study showing the applicability of this method is illustrated in this paper.
A hybrid PSO-ANFIS approach for short-term wind power prediction in Portugal
International Nuclear Information System (INIS)
Pousinho, H.M.I.; Mendes, V.M.F.; Catalao, J.P.S.
2011-01-01
The increased integration of wind power into the electric grid, as nowadays occurs in Portugal, poses new challenges due to its intermittency and volatility. Wind power prediction plays a key role in tackling these challenges. The contribution of this paper is to propose a new hybrid approach, combining particle swarm optimization and adaptive-network-based fuzzy inference system, for short-term wind power prediction in Portugal. Significant improvements regarding forecasting accuracy are attainable using the proposed approach, in comparison with the results obtained with five other approaches.
A hybrid PSO-ANFIS approach for short-term wind power prediction in Portugal
Energy Technology Data Exchange (ETDEWEB)
Pousinho, H.M.I. [Department of Electromechanical Engineering, University of Beira Interior, R. Fonte do Lameiro, 6201-001 Covilha (Portugal); Mendes, V.M.F. [Department of Electrical Engineering and Automation, Instituto Superior de Engenharia de Lisboa, R. Conselheiro Emidio Navarro, 1950-062 Lisbon (Portugal); Catalao, J.P.S. [Department of Electromechanical Engineering, University of Beira Interior, R. Fonte do Lameiro, 6201-001 Covilha (Portugal); Center for Innovation in Electrical and Energy Engineering, Instituto Superior Tecnico, Technical University of Lisbon, Av. Rovisco Pais, 1049-001 Lisbon (Portugal)
2011-01-15
The increased integration of wind power into the electric grid, as nowadays occurs in Portugal, poses new challenges due to its intermittency and volatility. Wind power prediction plays a key role in tackling these challenges. The contribution of this paper is to propose a new hybrid approach, combining particle swarm optimization and adaptive-network-based fuzzy inference system, for short-term wind power prediction in Portugal. Significant improvements regarding forecasting accuracy are attainable using the proposed approach, in comparison with the results obtained with five other approaches. (author)
Directory of Open Access Journals (Sweden)
S. Matilda
2011-03-01
Full Text Available Video streaming is gaining importance, with the wide popularity of multimedia rich applications in the Internet. Video streams are delay sensitive and require seamless flow for continuous visualization. Properly designed buffers offer a solution to queuing delay. The diagonally opposite QoS metrics associated with video traffic poses an optimization problem, in the design of buffers. This paper is a continuation of our previous work [1] and deals with the design of buffers. It aims at finding the optimum buffer size for enhancing QoS offered to video traffic. Network-centric QoS provisioning approach, along with hybrid transport layer protocol approach is adopted, to arrive at an optimum size which is independent of RTT. In this combinational approach, buffers of routers and end devices are designed to satisfy the various QoS parameters at the transport layer. OPNET Modeler is used to simulate environments for testing the design. Based on the results of simulation it is evident that the hybrid transport layer protocol approach is best suited for transmitting video traffic as it supports the economical design.
Hybrid Approach of Aortic Diseases: Zone 1 Delivery and Volumetric Analysis on the Descending Aorta
Directory of Open Access Journals (Sweden)
José Augusto Duncan
Full Text Available Abstract Introduction: Conventional techniques of surgical correction of arch and descending aortic diseases remains as high-risk procedures. Endovascular treatments of abdominal and descending thoracic aorta have lower surgical risk. Evolution of both techniques - open debranching of the arch and endovascular approach of the descending aorta - may extend a less invasive endovascular treatment for a more extensive disease with necessity of proximal landing zone in the arch. Objective: To evaluate descending thoracic aortic remodeling by means of volumetric analysis after hybrid approach of aortic arch debranching and stenting the descending aorta. Methods: Retrospective review of seven consecutive patients treated between September 2014 and August 2016 for diseases of proximal descending aorta (aneurysms and dissections by hybrid approach to deliver the endograft at zone 1. Computed tomography angiography were analyzed using a specific software to calculate descending thoracic aorta volumes pre- and postoperatively. Results: Follow-up was done in 100% of patients with a median time of 321 days (range, 41-625 days. No deaths or permanent neurological complications were observed. There were no endoleaks or stent migrations. Freedom from reintervention was 100% at 300 days and 66% at 600 days. Median volume reduction was of 45.5 cm3, representing a median volume shrinkage by 9.3%. Conclusion: Hybrid approach of arch and descending thoracic aorta diseases is feasible and leads to a favorable aortic remodeling with significant volume reduction.
Dynamic Modeling and Simulation of a Switched Reluctance Motor in a Series Hybrid Electric Vehicle
Siavash Sadeghi; Mojtaba Mirsalim; Arash Hassanpour Isfahani
2010-01-01
Dynamic behavior analysis of electric motors is required in order to accuratelyevaluate the performance, energy consumption and pollution level of hybrid electricvehicles. Simulation tools for hybrid electric vehicles are divided into steady state anddynamic models. Tools with steady-state models are useful for system-level analysiswhereas tools that utilize dynamic models give in-depth information about the behavior ofsublevel components. For the accurate prediction of hybrid electric vehicl...
An Interactive Personalized Recommendation System Using the Hybrid Algorithm Model
Directory of Open Access Journals (Sweden)
Yan Guo
2017-10-01
Full Text Available With the rapid development of e-commerce, the contradiction between the disorder of business information and customer demand is increasingly prominent. This study aims to make e-commerce shopping more convenient, and avoid information overload, by an interactive personalized recommendation system using the hybrid algorithm model. The proposed model first uses various recommendation algorithms to get a list of original recommendation results. Combined with the customer’s feedback in an interactive manner, it then establishes the weights of corresponding recommendation algorithms. Finally, the synthetic formula of evidence theory is used to fuse the original results to obtain the final recommendation products. The recommendation performance of the proposed method is compared with that of traditional methods. The results of the experimental study through a Taobao online dress shop clearly show that the proposed method increases the efficiency of data mining in the consumer coverage, the consumer discovery accuracy and the recommendation recall. The hybrid recommendation algorithm complements the advantages of the existing recommendation algorithms in data mining. The interactive assigned-weight method meets consumer demand better and solves the problem of information overload. Meanwhile, our study offers important implications for e-commerce platform providers regarding the design of product recommendation systems.
A Probability-Based Hybrid User Model for Recommendation System
Directory of Open Access Journals (Sweden)
Jia Hao
2016-01-01
Full Text Available With the rapid development of information communication technology, the available information or knowledge is exponentially increased, and this causes the well-known information overload phenomenon. This problem is more serious in product design corporations because over half of the valuable design time is consumed in knowledge acquisition, which highly extends the design cycle and weakens the competitiveness. Therefore, the recommender systems become very important in the domain of product domain. This research presents a probability-based hybrid user model, which is a combination of collaborative filtering and content-based filtering. This hybrid model utilizes user ratings and item topics or classes, which are available in the domain of product design, to predict the knowledge requirement. The comprehensive analysis of the experimental results shows that the proposed method gains better performance in most of the parameter settings. This work contributes a probability-based method to the community for implement recommender system when only user ratings and item topics are available.
Axelrod Model of Social Influence with Cultural Hybridization
Radillo-Díaz, Alejandro; Pérez, Luis A.; Del Castillo-Mussot, Marcelo
2012-10-01
Since cultural interactions between a pair of social agents involve changes in both individuals, we present simulations of a new model based on Axelrod's homogenization mechanism that includes hybridization or mixture of the agents' features. In this new hybridization model, once a cultural feature of a pair of agents has been chosen for the interaction, the average of the values for this feature is reassigned as the new value for both agents after interaction. Moreover, a parameter representing social tolerance is implemented in order to quantify whether agents are similar enough to engage in interaction, as well as to determine whether they belong to the same cluster of similar agents after the system has reached the frozen state. The transitions from a homogeneous state to a fragmented one decrease in abruptness as tolerance is increased. Additionally, the entropy associated to the system presents a maximum within the transition, the width of which increases as tolerance does. Moreover, a plateau was found inside the transition for a low-tolerance system of agents with only two cultural features.
A hybrid approach for short-term forecasting of wind speed.
Tatinati, Sivanagaraja; Veluvolu, Kalyana C
2013-01-01
We propose a hybrid method for forecasting the wind speed. The wind speed data is first decomposed into intrinsic mode functions (IMFs) with empirical mode decomposition. Based on the partial autocorrelation factor of the individual IMFs, adaptive methods are then employed for the prediction of IMFs. Least squares-support vector machines are employed for IMFs with weak correlation factor, and autoregressive model with Kalman filter is employed for IMFs with high correlation factor. Multistep prediction with the proposed hybrid method resulted in improved forecasting. Results with wind speed data show that the proposed method provides better forecasting compared to the existing methods.
DEFF Research Database (Denmark)
Hu, C.M.; Nitta, J.; Jensen, Ane
2002-01-01
Spin injection across a hybrid ferromagnet/semiconductor junction has proven to be difficult, unlike in an all-metal junction used in giant magnetoresistance devices. The difference responsible is highlighted in a simple model. We perform spin-injection-detection experiments on devices with two...... ferromagnetic contacts on a two-dimensional electron gas confined in an InAs quantum well. We demonstrate that spin injection allows the hybrid device to combine both the advantage of the ferromagnet as well as that of the semiconductor....
A fuzzy hybrid approach for project manager selection
Directory of Open Access Journals (Sweden)
Ahmad Jafarnejad Chaghooshi
2016-09-01
Full Text Available Suitable project manager has a significant impact on successful accomplishment of the project. Managers should possess such skills in order to effectively cope with the competition. In this respect, selecting managers based on their skills can lead to a competitive advantage towards the achievement of organizational goals. selection of the suitable project manager can be viewed as a multi-criteria decision making (MCDM problem and an extensive evaluation of criteria, such as Technical skills, experience skills, Personal qualities and the related criteria must be considered in the selection process of project manager. The fuzzy set theory and MCDM methods appears as an essential tools to provide a decision framework that incorporates imprecise judgments and multi criteria nature of project manager selection process inherent in this process. This paper proposes the joint use of the Fuzzy DEMATEL (FDEMATEL and Fuzzy VIKOR methods for the decision-making process of selecting the most suitable managers for projects. First, with the opinions of the senior managers based on project management competency model (ICB-IPMA, all the criteria required for the selection are gathered. Then the FDEMATEL method is used to prioritize the importance of various criteria and FVIKOR used to rank the alternatives in a preferred order to select the best project managers from a number of alternatives. Next, a real case study used to illustrate the process of the proposed method. Finally, some conclusions are discussed at the end of this study.
Hybrid 3D printing and electrodeposition approach for controllable 3D alginate hydrogel formation.
Shang, Wanfeng; Liu, Yanting; Wan, Wenfeng; Hu, Chengzhi; Liu, Zeyang; Wong, Chin To; Fukuda, Toshio; Shen, Yajing
2017-06-07
Calcium alginate hydrogels are widely used as biocompatible materials in a substantial number of biomedical applications. This paper reports on a hybrid 3D printing and electrodeposition approach for forming 3D calcium alginate hydrogels in a controllable manner. Firstly, a specific 3D hydrogel printing system is developed by integrating a customized ejection syringe with a conventional 3D printer. Then, a mixed solution of sodium alginate and CaCO 3 nanoparticles is filled into the syringe and can be continuously ejected out of the syringe nozzle onto a conductive substrate. When applying a DC voltage (∼5 V) between the substrate (anode) and the nozzle (cathode), the Ca 2+ released from the CaCO 3 particles can crosslink the alginate to form calcium alginate hydrogel on the substrate. To elucidate the gel formation mechanism and better control the gel growth, we can further establish and verify a gel growth model by considering several key parameters, i.e., applied voltage and deposition time. The experimental results indicate that the alginate hydrogel of various 3D structures can be formed by controlling the movement of the 3D printer. A cell viability test is conducted and shows that the encapsulated cells in the gel can maintain a high survival rate (∼99% right after gel formation). This research establishes a reliable method for the controllable formation of 3D calcium alginate hydrogel, exhibiting great potential for use in basic biology and applied biomedical engineering.
Numerical modeling of lower hybrid heating and current drive
International Nuclear Information System (INIS)
Valeo, E.J.; Eder, D.C.
1986-03-01
The generation of currents in toroidal plasma by application of waves in the lower hybrid frequency range involves the interplay of several physical phenomena which include: wave propagation in toroidal geometry, absorption via wave-particle resonances, the quasilinear generation of strongly nonequilibrium electron and ion distribution functions, and the self-consistent evolution of the current density in such a nonequilibrium plasma. We describe a code, LHMOD, which we have developed to treat these aspects of current drive and heating in tokamaks. We present results obtained by applying the code to a computation of current ramp-up and to an investigation of the possible importance of minority hydrogen absorption in a deuterium plasma as the ''density limit'' to current drive is approached
Kinetics and hybrid kinetic-fluid models for nonequilibrium gas and plasmas
International Nuclear Information System (INIS)
Crouseilles, N.
2004-12-01
For a few decades, the application of the physics of plasmas has appeared in different fields like laser-matter interaction, astrophysics or thermonuclear fusion. In this thesis, we are interested in the modeling and the numerical study of nonequilibrium gas and plasmas. To describe such systems, two ways are usually used: the fluid description and the kinetic description. When we study a nonequilibrium system, fluid models are not sufficient and a kinetic description have to be used. However, solving a kinetic model requires the discretization of a large number of variables, which is quite expensive from a numerical point of view. The aim of this work is to propose a hybrid kinetic-fluid model thanks to a domain decomposition method in the velocity space. The derivation of the hybrid model is done in two different contexts: the rarefied gas context and the more complicated plasmas context. The derivation partly relies on Levermore's entropy minimization approach. The so-obtained model is then discretized and validated on various numerical test cases. In a second stage, a numerical study of a fully kinetic model is presented. A collisional plasma constituted of electrons and ions is considered through the Vlasov-Poisson-Fokker-Planck-Landau equation. Then, a numerical scheme which preserves total mass and total energy is presented. This discretization permits in particular a numerical study of the Landau damping. (author)
A decision support system based on hybrid knowledge approach for nuclear power plant operation
International Nuclear Information System (INIS)
Yang, J.O.; Chang, S.H.
1991-01-01
This paper describes a diagnostic expert system, HYPOSS (Hybrid Knowledge Based Plant Operation Supporting System), which has been developed to support operators' decision making during the transients of nuclear power plant. HYPOSS adopts the hybrid knowledge approach which combines shallow and deep knowledge to couple the merits of both approaches. In HYPOSS, four types of knowledge are used according to the steps of diagnosis procedure: structural, functional, behavioral and heuristic knowledge. Frames and rules are adopted to represent the various knowledge types. Rule-based deduction and abduction are used for shallow and deep knowledge based reasoning respectively. The event-based operational guidelines are provided to the operator according to the diagnosed results
Wallace, Byron C; Noel-Storr, Anna; Marshall, Iain J; Cohen, Aaron M; Smalheiser, Neil R; Thomas, James
2017-11-01
Identifying all published reports of randomized controlled trials (RCTs) is an important aim, but it requires extensive manual effort to separate RCTs from non-RCTs, even using current machine learning (ML) approaches. We aimed to make this process more efficient via a hybrid approach using both crowdsourcing and ML. We trained a classifier to discriminate between citations that describe RCTs and those that do not. We then adopted a simple strategy of automatically excluding citations deemed very unlikely to be RCTs by the classifier and deferring to crowdworkers otherwise. Combining ML and crowdsourcing provides a highly sensitive RCT identification strategy (our estimates suggest 95%-99% recall) with substantially less effort (we observed a reduction of around 60%-80%) than relying on manual screening alone. Hybrid crowd-ML strategies warrant further exploration for biomedical curation/annotation tasks. © The Author 2017. Published by Oxford University Press on behalf of the American Medical Informatics Association.
Marzban, Hamid Reza
2018-05-01
In this paper, we are concerned with the parameter identification of linear time-invariant systems containing multiple delays. The approach is based upon a hybrid of block-pulse functions and Legendre's polynomials. The convergence of the proposed procedure is established and an upper error bound with respect to the L2-norm associated with the hybrid functions is derived. The problem under consideration is first transformed into a system of algebraic equations. The least squares technique is then employed for identification of the desired parameters. Several multi-delay systems of varying complexity are investigated to evaluate the performance and capability of the proposed approximation method. It is shown that the proposed approach is also applicable to a class of nonlinear multi-delay systems. It is demonstrated that the suggested procedure provides accurate results for the desired parameters.
Hybrid 3D model for the interaction of plasma thruster plumes with nearby objects
Cichocki, Filippo; Domínguez-Vázquez, Adrián; Merino, Mario; Ahedo, Eduardo
2017-12-01
This paper presents a hybrid particle-in-cell (PIC) fluid approach to model the interaction of a plasma plume with a spacecraft and/or any nearby object. Ions and neutrals are modeled with a PIC approach, while electrons are treated as a fluid. After a first iteration of the code, the domain is split into quasineutral and non-neutral regions, based on non-neutrality criteria, such as the relative charge density and the Debye length-to-cell size ratio. At the material boundaries of the former quasineutral region, a dedicated algorithm ensures that the Bohm condition is met. In the latter non-neutral regions, the electron density and electric potential are obtained by solving the coupled electron momentum balance and Poisson equations. Boundary conditions for both the electric current and potential are finally obtained with a plasma sheath sub-code and an equivalent circuit model. The hybrid code is validated by applying it to a typical plasma plume-spacecraft interaction scenario, and the physics and capabilities of the model are finally discussed.
Electromagnetic moments of hadrons and quarks in a hybrid model
International Nuclear Information System (INIS)
Gerasimov, S.B.
1989-01-01
Magnetic moments of baryons are analyzed on the basis of general sum rules following from the theory of broken symmetries and quark models including the relativistic effects and hadronic corrections due to the meson exchange currents. A new sum rule is proposed for the hyperon magnetic moments, which is in accord with the most precise new data and also with a theory of the electromagnetic ΛΣ 0 mixing. The numerical values of the quark electromagnetic moments are obtained within a hybrid model treating the pion cloud effects through the local coupling of the pion field with the constituent massive quarks. Possible sensitivity of the weak neutral current magnetic moments to violation of the Okubo-Zweig-Izuki rule is emphasized nand discussed. 39 refs.; 1 fig
A Hybrid Multiple Criteria Decision Making Model for Supplier Selection
Directory of Open Access Journals (Sweden)
Chung-Min Wu
2013-01-01
Full Text Available The sustainable supplier selection would be the vital part in the management of a sustainable supply chain. In this study, a hybrid multiple criteria decision making (MCDM model is applied to select optimal supplier. The fuzzy Delphi method, which can lead to better criteria selection, is used to modify criteria. Considering the interdependence among the selection criteria, analytic network process (ANP is then used to obtain their weights. To avoid calculation and additional pairwise comparisons of ANP, a technique for order preference by similarity to ideal solution (TOPSIS is used to rank the alternatives. The use of a combination of the fuzzy Delphi method, ANP, and TOPSIS, proposing an MCDM model for supplier selection, and applying these to a real case are the unique features of this study.
A hybrid MCDM approach for ranking suppliers by considering ethical factors
Azadfallah, Mohammad
2016-01-01
One of the negative effects of cooperating with un-ethically behaving suppliers is that it may devastate the companies' credibility among employees, customers and the public. In this paper, a hybrid Multiple Criteria Decision Making (MCDM) approach (Disjunctive-WPM method) is proposed to resolve this limitation. The proposed methods consist of the following steps: 1. drop unethical solutions and 2. rank the remaining solutions. Therefore, the aim of t...
A Hybrid Supervised/Unsupervised Machine Learning Approach to Solar Flare Prediction
Benvenuto, Federico; Piana, Michele; Campi, Cristina; Massone, Anna Maria
2018-01-01
This paper introduces a novel method for flare forecasting, combining prediction accuracy with the ability to identify the most relevant predictive variables. This result is obtained by means of a two-step approach: first, a supervised regularization method for regression, namely, LASSO is applied, where a sparsity-enhancing penalty term allows the identification of the significance with which each data feature contributes to the prediction; then, an unsupervised fuzzy clustering technique for classification, namely, Fuzzy C-Means, is applied, where the regression outcome is partitioned through the minimization of a cost function and without focusing on the optimization of a specific skill score. This approach is therefore hybrid, since it combines supervised and unsupervised learning; realizes classification in an automatic, skill-score-independent way; and provides effective prediction performances even in the case of imbalanced data sets. Its prediction power is verified against NOAA Space Weather Prediction Center data, using as a test set, data in the range between 1996 August and 2010 December and as training set, data in the range between 1988 December and 1996 June. To validate the method, we computed several skill scores typically utilized in flare prediction and compared the values provided by the hybrid approach with the ones provided by several standard (non-hybrid) machine learning methods. The results showed that the hybrid approach performs classification better than all other supervised methods and with an effectiveness comparable to the one of clustering methods; but, in addition, it provides a reliable ranking of the weights with which the data properties contribute to the forecast.
A hybrid absorbing boundary condition for frequency-domain finite-difference modelling
International Nuclear Information System (INIS)
Ren, Zhiming; Liu, Yang
2013-01-01
Liu and Sen (2010 Geophysics 75 A1–6; 2012 Geophys. Prospect. 60 1114–32) proposed an efficient hybrid scheme to significantly absorb boundary reflections for acoustic and elastic wave modelling in the time domain. In this paper, we extend the hybrid absorbing boundary condition (ABC) into the frequency domain and develop specific strategies for regular-grid and staggered-grid modelling, respectively. Numerical modelling tests of acoustic, visco-acoustic, elastic and vertically transversely isotropic (VTI) equations show significant absorptions for frequency-domain modelling. The modelling results of the Marmousi model and the salt model also demonstrate the effectiveness of the hybrid ABC. For elastic modelling, the hybrid Higdon ABC and the hybrid Clayton and Engquist (CE) ABC are implemented, respectively. Numerical simulations show that the hybrid Higdon ABC gets better absorption than the hybrid CE ABC, especially for S-waves. We further compare the hybrid ABC with the classical perfectly matched layer (PML). Results show that the two ABCs cost the same computation time and memory space for the same absorption width. However, the hybrid ABC is more effective than the PML for the same small absorption width and the absorption effects of the two ABCs gradually become similar when the absorption width is increased. (paper)
arXiv Hybrid Fluid Models from Mutual Effective Metric Couplings
Kurkela, Aleksi; Preis, Florian; Rebhan, Anton; Soloviev, Alexander
Motivated by a semi-holographic approach to the dynamics of quark-gluon plasma which combines holographic and perturbative descriptions of a strongly coupled infrared and a more weakly coupled ultraviolet sector, we construct a hybrid two-fluid model where interactions between its two sectors are encoded by their effective metric backgrounds, which are determined mutually by their energy-momentum tensors. We derive the most general consistent ultralocal interactions such that the full system has a total conserved energy-momentum tensor in flat Minkowski space and study its consequences in and near thermal equilibrium by working out its phase structure and its hydrodynamic modes.
Smith, Andrew M.; LaVerde, Bruce; Teague, David W.
2010-01-01
In the lower frequency range, where particular boundary conditions can make a significant difference to panel response characteristics Statistical Energy Analysis (SEA) has never been the analytical tool of choice. In addition to boundary condition effects, SEA is not well suited in frequency bands where no modes or less than a few modes exist. The advent of the Hybrid Module has enabled integration of Finite Element Analysis to expand and enhance the capability for response calculations within VA One into the lower frequency range. Exploration of several additional modeling approaches was completed for the cylindrical orthogrid panel test article that was examined in Reference 1. Comparison of the new analytical response predictions with the measured response data from ground test and the pure SEA results from the reference will be presented. One approach that is considered promising is the periodic subsystem capability. Initially, a detailed FEM of just one region of the test article is defined. After evaluating this small region using symmetric boundary conditions, the FEM may be expanded to determine the properties of the entire system using similar connected regions that map over the entire test article. Another approach is the direct use of a very detailed finite element model of the entire panel, explicitly modeling pocket and rib details of the structure. A third approach is to approximate localized structure geometry details with a smeared property generalization using a PCOMP (NASTRAN card used to define layered composite structures) to define skin layer and ribbed layer for the orthogrid panel. The authors expect to demonstrate that the integrated Hybrid/FEM approach increases confidence in response prediction in the lower frequency range (for example from 20-300 Hz for the test article under consideration). In addition the strength and weakness of each additional approach will be highlighted and compared to those reported with those reported in an
Directory of Open Access Journals (Sweden)
C.N. Sabbagh
Full Text Available : Introduction: This case highlights the complexity of upper limb revascularization after a subclavian artery traumatic injury and strengthens the role of a hybrid/multi-disciplinary approach to such injuries. Report: A 45-year-old male patient presented with an acute right upper limb followin