WorldWideScience

Sample records for hybrid membrane process

  1. Attainability and minimum energy of single-stage membrane and membrane/distillation hybrid processes

    KAUST Repository

    Alshehri, Ali

    2014-12-01

    As an energy-efficient separation method, membrane technology has attracted more and more attentions in many challenging separation processes. The attainability and the energy consumption of a membrane process are the two basic fundamental questions that need to be answered. This report aims to use process simulations to find: (1) at what conditions a single-stage membrane process can meet the separation task that is defined by product purity and recovery ratio and (2) what are the most important parameters that determine the energy consumption. To perform a certain separation task, it was found that both membrane selectivity and pressure ratio exhibit a minimum value that is defined only by product purity and recovery ratio. The membrane/distillation hybrid system was used to study the energy consumption. A shortcut method was developed to calculate the minimum practical separation energy (MPSE) of the membrane process and the distillation process. It was found that the MPSE of the hybrid system is only determined by the membrane selectivity and the applied transmembrane pressure ratio in three stages. At the first stage when selectivity is low, the membrane process is not competitive to the distillation process. Adding a membrane unit to a distillation tower will not help in reducing energy. At the second medium selectivity stage, the membrane/distillation hybrid system can help reduce the energy consumption, and the higher the membrane selectivity, the lower is the energy. The energy conservation is further improved as pressure ratio increases. At the third stage when both selectivity and pressure ratio are high, the hybrid system will change to a single-stage membrane unit and this change will cause significant reduction in energy consumption. The energy at this stage keeps decreasing with selectivity at slow rate, but slightly increases with pressure ratio. Overall, the higher the membrane selectivity, the more the energy is saved. Therefore, the two

  2. Hybrid adsorptive membrane reactor

    Science.gov (United States)

    Tsotsis, Theodore T [Huntington Beach, CA; Sahimi, Muhammad [Altadena, CA; Fayyaz-Najafi, Babak [Richmond, CA; Harale, Aadesh [Los Angeles, CA; Park, Byoung-Gi [Yeosu, KR; Liu, Paul K. T. [Lafayette Hill, PA

    2011-03-01

    A hybrid adsorbent-membrane reactor in which the chemical reaction, membrane separation, and product adsorption are coupled. Also disclosed are a dual-reactor apparatus and a process using the reactor or the apparatus.

  3. Organic-inorganic hybrid membranes in separation processes: a 10-year review

    Directory of Open Access Journals (Sweden)

    V. C. Souza

    2013-12-01

    Full Text Available In relation to some inorganic membranes, polymeric membranes have relatively low separation performance. However, the processing flexibility and low cost of polymers still make them highly attractive for many industrial separation applications. Polymer-inorganic hybrid membranes constitute an emerging research field and have been recently developed to improve the separation properties of polymer membranes because they possess properties of both organic and inorganic membranes such as good hydrophilicity, selectivity, permeability, mechanical strength, and thermal and chemical stability. The structures and processing of polymer-inorganic nanocomposite hybrid membranes, as well as their use in the fields of ultrafiltration, nanofiltration, pervaporation, gas separation and separation mechanism are reviewed.

  4. Development and characterisation of hybrid polysaccharide membranes for dehydration processes.

    Science.gov (United States)

    Meireles, Inês T; Huertas, Rosa M; Torres, Cristiana A V; Coelhoso, Isabel M; Crespo, João G

    2018-07-01

    The purpose of this work is the development and characterisation of new hybrid polysaccharide (FucoPol) membranes. These membranes were prepared by incorporation of a SiO 2 network homogeneously dispersed by using a sol-gel method with GPTMS as a crosslinker silica precursor. They were further crosslinked with CaCl 2 for reinforcement of mechanical properties and improvement of their permeation performance. They were characterised in terms of their structural, mechanical and thermal properties. They presented a dense and homogeneous structure, resistant to deformation, with a Tg of 43 °C and a thermal decomposition between 240 and 251 °C. The hybrid FucoPol membranes were tested for ethanol dehydration by pervaporation and also for nitrogen dehydration. They exhibited high water selectivity values, similar to PERVAP ® 4101, however they lost their stability when exposed to solutions of 10.0 wt.% water in ethanol. In contrast, these membranes were stable when applied in N 2 dehydration, leading to reproducible performance and very high water selectivities. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Attainability and minimum energy of single-stage membrane and membrane/distillation hybrid processes

    KAUST Repository

    Alshehri, Ali; Lai, Zhiping

    2014-01-01

    As an energy-efficient separation method, membrane technology has attracted more and more attentions in many challenging separation processes. The attainability and the energy consumption of a membrane process are the two basic fundamental questions

  6. Application of volume-retarded osmosis and low-pressure membrane hybrid process for water reclamation

    KAUST Repository

    Im, Sung-Ju

    2017-11-15

    A new concept of volume-retarded osmosis and low-pressure membrane (VRO-LPM) hybrid process was developed and evaluated for the first time in this study. Commercially available forward osmosis (FO) and ultrafiltration (UF) membranes were employed in a VRO-LPM hybrid process to overcome energy limitations of draw solution (DS) regeneration and production of permeate in the FO process. To evaluate its feasibility as a water reclamation process, and to optimize the operational conditions, cross-flow FO and dead-end mode UF processes were individually evaluated. For the FO process, a DS concentration of 0.15 g mL−1 of polysulfonate styrene (PSS) was determined to be optimal, having a high flux with a low reverse salt flux. The UF membrane with a molecular weight cut-off of 1 kDa was chosen for its high PSS rejection in the LPM process. As a single process, UF (LPM) exhibited a higher flux than FO, but this could be controlled by adjusting the effective membrane area of the FO and UF membranes in the VRO-LPM system. The VRO-LPM hybrid process only required a circulation pump for the FO process. This led to a decrease in the specific energy consumption of the VRO-LPM process for potable water production, that was similar to the single FO process. Therefore, the newly developed VRO-LPM hybrid process, with an appropriate DS selection, can be used as an energy efficient water production method, and can outperform conventional water reclamation processes.

  7. Application of volume-retarded osmosis and low-pressure membrane hybrid process for water reclamation

    KAUST Repository

    Im, Sung-Ju; Choi, Jungwon; Lee, Jung Gil; Jeong, Sanghyun; Jang, Am

    2017-01-01

    A new concept of volume-retarded osmosis and low-pressure membrane (VRO-LPM) hybrid process was developed and evaluated for the first time in this study. Commercially available forward osmosis (FO) and ultrafiltration (UF) membranes were employed in a VRO-LPM hybrid process to overcome energy limitations of draw solution (DS) regeneration and production of permeate in the FO process. To evaluate its feasibility as a water reclamation process, and to optimize the operational conditions, cross-flow FO and dead-end mode UF processes were individually evaluated. For the FO process, a DS concentration of 0.15 g mL−1 of polysulfonate styrene (PSS) was determined to be optimal, having a high flux with a low reverse salt flux. The UF membrane with a molecular weight cut-off of 1 kDa was chosen for its high PSS rejection in the LPM process. As a single process, UF (LPM) exhibited a higher flux than FO, but this could be controlled by adjusting the effective membrane area of the FO and UF membranes in the VRO-LPM system. The VRO-LPM hybrid process only required a circulation pump for the FO process. This led to a decrease in the specific energy consumption of the VRO-LPM process for potable water production, that was similar to the single FO process. Therefore, the newly developed VRO-LPM hybrid process, with an appropriate DS selection, can be used as an energy efficient water production method, and can outperform conventional water reclamation processes.

  8. Application of volume-retarded osmosis and low-pressure membrane hybrid process for water reclamation.

    Science.gov (United States)

    Im, Sung-Ju; Choi, Jungwon; Lee, Jung-Gil; Jeong, Sanghyun; Jang, Am

    2018-03-01

    A new concept of volume-retarded osmosis and low-pressure membrane (VRO-LPM) hybrid process was developed and evaluated for the first time in this study. Commercially available forward osmosis (FO) and ultrafiltration (UF) membranes were employed in a VRO-LPM hybrid process to overcome energy limitations of draw solution (DS) regeneration and production of permeate in the FO process. To evaluate its feasibility as a water reclamation process, and to optimize the operational conditions, cross-flow FO and dead-end mode UF processes were individually evaluated. For the FO process, a DS concentration of 0.15 g mL -1 of polysulfonate styrene (PSS) was determined to be optimal, having a high flux with a low reverse salt flux. The UF membrane with a molecular weight cut-off of 1 kDa was chosen for its high PSS rejection in the LPM process. As a single process, UF (LPM) exhibited a higher flux than FO, but this could be controlled by adjusting the effective membrane area of the FO and UF membranes in the VRO-LPM system. The VRO-LPM hybrid process only required a circulation pump for the FO process. This led to a decrease in the specific energy consumption of the VRO-LPM process for potable water production, that was similar to the single FO process. Therefore, the newly developed VRO-LPM hybrid process, with an appropriate DS selection, can be used as an energy efficient water production method, and can outperform conventional water reclamation processes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Effect of ozone on the performance of a hybrid ceramic membrane-biological activated carbon process.

    Science.gov (United States)

    Guo, Jianning; Hu, Jiangyong; Tao, Yi; Zhu, Jia; Zhang, Xihui

    2014-04-01

    Two hybrid processes including ozonation-ceramic membrane-biological activated carbon (BAC) (Process A) and ceramic membrane-BAC (Process B) were compared to treat polluted raw water. The performance of hybrid processes was evaluated with the removal efficiencies of turbidity, ammonia and organic matter. The results indicated that more than 99% of particle count was removed by both hybrid processes and ozonation had no significant effect on its removal. BAC filtration greatly improved the removal of ammonia. Increasing the dissolved oxygen to 30.0 mg/L could lead to a removal of ammonia with concentrations as high as 7.80 mg/L and 8.69 mg/L for Processes A and B, respectively. The average removal efficiencies of total organic carbon and ultraviolet absorbance at 254 nm (UV254, a parameter indicating organic matter with aromatic structure) were 49% and 52% for Process A, 51% and 48% for Process B, respectively. Some organic matter was oxidized by ozone and this resulted in reduced membrane fouling and increased membrane flux by 25%-30%. However, pre-ozonation altered the components of the raw water and affected the microorganisms in the BAC, which may impact the removals of organic matter and nitrite negatively. Copyright © 2014 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  10. Hybrid MF and membrane bioreactor process applied towards water and indigo reuse from denim textile wastewater.

    Science.gov (United States)

    Couto, Carolina Fonseca; Marques, Larissa Silva; Balmant, Janine; de Oliveira Maia, Andreza Penido; Moravia, Wagner Guadagnin; Santos Amaral, Miriam Cristina

    2018-03-01

    This work investigates the application of a microfiltration (MF)-membrane bioreactor (MBR) hybrid process for textile dyeing process wastewater reclamation. The indigo blue dye was efficiently retained by the MF membrane (100%), which allows its recovery from the concentrate stream. MF promotes 100% of colour removal, and reduces the chemical oxygen demand (COD) and conductivity by about 65% and 25%, respectively, and improves the wastewater biodegradability. MF flux decline was mostly attributed to concentration polarization and the chemical cleaning was efficient enough to recover initial hydraulic resistance. The MBR provides to be a stable process maintaining its COD and ammonia removal efficiency (73% and 100%, respectively) mostly constant throughout and producing a permeate that meets the reuse criteria for some industry activities, such as washing-off and equipment washdown. The use of an MF or ultrafiltration (UF) membrane in the MBR does not impact the MBR performance in terms of COD removal. Although the membrane of MBR-UF shows permeability lower than MBR-MF membrane, the UF membrane contributes to a more stable operation in terms of permeability.

  11. Hybrid Pressure Retarded Osmosis−Membrane Distillation (PRO−MD) Process for Osmotic Power and Clean Water Generation

    KAUST Repository

    Han, Gang; Zuo, Jian; Wan, Chunfeng; Chung, Neal Tai-Shung

    2015-01-01

    unique advantages of high water recovery rate, huge osmotic power generation, well controlled membrane fouling, and minimal environmental impacts. Experimental results show that the PRO−MD hybrid process is promising that not only can harvest osmotic

  12. Hybrid flotation--membrane filtration process for the removal of heavy metal ions from wastewater.

    Science.gov (United States)

    Blöcher, C; Dorda, J; Mavrov, V; Chmiel, H; Lazaridis, N K; Matis, K A

    2003-09-01

    A promising process for the removal of heavy metal ions from aqueous solutions involves bonding the metals firstly to a special bonding agent and then separating the loaded bonding agents from the wastewater stream by separation processes. For the separation stage, a new hybrid process of flotation and membrane separation has been developed in this work by integrating specially designed submerged microfiltration modules directly into a flotation reactor. This made it possible to combine the advantages of both flotation and membrane separation while overcoming the limitations. The feasibility of this hybrid process was proven using powdered synthetic zeolites as bonding agents. Stable fluxes of up to 80l m(-2)h(-1) were achieved with the ceramic flat-sheet multi-channel membranes applied at low transmembrane pressure (copper, nickel and zinc, were reduced from initial concentrations of 474, 3.3 and 167mg x l(-1), respectively, to below 0.05 mg x l(-1), consistently meeting the discharge limits.

  13. Effect of membrane properties on the performance of a hybrid GAC and ultrafiltration process for water treatment.

    Science.gov (United States)

    Qiao, Tiejun; Wu, Guangxue; Zhang, Xihui; Au, Doris W T; Zhang, Jinsong

    2012-06-01

    The performance of a hybrid granular activated carbon (GAC) and ultrafiltration (UF) process for water treatment was investigated using five types of UF membranes. The removal percentages for chemical oxygen demand (COD(Mn)), particles (> or = 2 microm) and total bacteria by the hybrid process were 30-40%, 98-99% and 76-92%, respectively. No invertebrates were detected in the hybrid process effluent. Transmembrane pressure and specific permeate flux (SPF) of the five types of membranes varied. With decreasing membrane pore sizes, removal of COD(Mn) and particles increased, whereas SPF firstly decreased and then increased. Hydrophilic membranes had a relatively high COD(Mn) removal potential, but did not obviously affect particle removal or SPF.

  14. Membrane processes

    Science.gov (United States)

    Staszak, Katarzyna

    2017-11-01

    The membrane processes have played important role in the industrial separation process. These technologies can be found in all industrial areas such as food, beverages, metallurgy, pulp and paper, textile, pharmaceutical, automotive, biotechnology and chemical industry, as well as in water treatment for domestic and industrial application. Although these processes are known since twentieth century, there are still many studies that focus on the testing of new membranes' materials and determining of conditions for optimal selectivity, i. e. the optimum transmembrane pressure (TMP) or permeate flux to minimize fouling. Moreover the researchers proposed some calculation methods to predict the membrane processes properties. In this article, the laboratory scale experiments of membrane separation techniques, as well their validation by calculation methods are presented. Because membrane is the "heart" of the process, experimental and computational methods for its characterization are also described.

  15. Hybrid ion-exchange membranes for fuel cells and separation processes

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez-Carretero, F.J.; Compan, V. [Departamento de Termodinamica Aplicada, ETSII, Universidad Politecnica de Valencia, 46020 Valencia (Spain); Riande, E. [Instituto de Ciencia y Tecnologia de Polimeros (CSIC), 28006 Madrid (Spain)

    2007-11-08

    This work reports the preparation and characterization of hybrid membranes cast from dispersions of inorganic fillers in sulfonated polystyrene-block-poly(ethylene-ran-butylene)-block-polystyrene solutions. Silica gel, SBA-15 and sepiolite, all of them functionalized with phenylsulfonic acid groups, were used as fillers. For comparative purposes, the performance of composite membranes cast from dispersions of functionalized inorganic fillers in Nafion {sup registered} solutions was investigated. Inspection of the texture of the membranes by using SEM techniques shows that the fillers are better dispersed in sulfonated polystyrene-block-poly(ethylene-ran-butylene)-block-polystyrene than in Nafion {sup registered}. The value of the water uptake for the membranes prepared from the former polyelectrolyte is in most cases at least three times that measured for hybrid Nafion {sup registered} membranes. The conductivity of the membranes was measured at 80 C by impedance spectroscopy obtaining values of 3.44, 6.90 and 3.54 S m{sup -1} for the hybrid membranes based on the triblock copolymer containing functionalized silica gel, SBA-15 and sepiolite fillers, respectively. These results compare very favourably with those obtained at 80 C for Nafion {sup registered} hybrid membranes containing silica gel, SBA-15 and sepiolite, all of them fuctionalized with phenylsulfonic acid groups, whose conductivities are, 2.84, 6.75 and 3.31 S m{sup -1}, respectively. Resistance measurements carried out under controlled humidity conditions show that the conductivity of sulfonated triblock copolymer membranes containing functionalized SBA-15 filler undergoes a rather sharp increase when they are conditioned under an atmosphere of 75%, or larger, relative humidity. (author)

  16. Integrated pyrolucite fluidized bed-membrane hybrid process for improved iron and manganese control in drinking water.

    Science.gov (United States)

    Dashtban Kenari, Seyedeh Laleh; Barbeau, Benoit

    2017-04-15

    Newly developed ceramic membrane technologies offer numerous advantages over the conventional polymeric membranes. This work proposes a new configuration, an integrated pyrolucite fluidized bed (PFB)-ceramic MF/UF hybrid process, for improved iron and manganese control in drinking water. A pilot-scale study was undertaken to evaluate the performance of this process with respect to iron and manganese control as well as membrane fouling. In addition, the fouling of commercially available ceramic membranes in conventional preoxidation-MF/UF process was compared with the hybrid process configuration. In this regard, a series of experiments were conducted under different influent water quality and operating conditions. Fouling mechanisms and reversibility were analyzed using blocking law and resistance-in-series models. The results evidenced that the flux rate and the concentration of calcium and humic acids in the feed water have a substantial impact on the filtration behavior of both membranes. The model for constant flux compressible cake formation well described the rise in transmembrane pressure. The compressibility of the filter cake substantially increased in the presence of 2 mg/L humic acids. The presence of calcium ions caused significant aggregation of manganese dioxide and humic acid which severely impacted the extent of membrane fouling. The PFB pretreatment properly alleviated membrane fouling by removing more than 75% and 95% of iron and manganese, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Hybrid Filter Membrane

    Science.gov (United States)

    Laicer, Castro; Rasimick, Brian; Green, Zachary

    2012-01-01

    Cabin environmental control is an important issue for a successful Moon mission. Due to the unique environment of the Moon, lunar dust control is one of the main problems that significantly diminishes the air quality inside spacecraft cabins. Therefore, this innovation was motivated by NASA s need to minimize the negative health impact that air-suspended lunar dust particles have on astronauts in spacecraft cabins. It is based on fabrication of a hybrid filter comprising nanofiber nonwoven layers coated on porous polymer membranes with uniform cylindrical pores. This design results in a high-efficiency gas particulate filter with low pressure drop and the ability to be easily regenerated to restore filtration performance. A hybrid filter was developed consisting of a porous membrane with uniform, micron-sized, cylindrical pore channels coated with a thin nanofiber layer. Compared to conventional filter media such as a high-efficiency particulate air (HEPA) filter, this filter is designed to provide high particle efficiency, low pressure drop, and the ability to be regenerated. These membranes have well-defined micron-sized pores and can be used independently as air filters with discreet particle size cut-off, or coated with nanofiber layers for filtration of ultrafine nanoscale particles. The filter consists of a thin design intended to facilitate filter regeneration by localized air pulsing. The two main features of this invention are the concept of combining a micro-engineered straight-pore membrane with nanofibers. The micro-engineered straight pore membrane can be prepared with extremely high precision. Because the resulting membrane pores are straight and not tortuous like those found in conventional filters, the pressure drop across the filter is significantly reduced. The nanofiber layer is applied as a very thin coating to enhance filtration efficiency for fine nanoscale particles. Additionally, the thin nanofiber coating is designed to promote capture of

  18. Membrane/distillation hybrid process research and development. Final report, phase II

    Energy Technology Data Exchange (ETDEWEB)

    Mazanec, T.J.

    1997-07-01

    This report covers work conducted under the grant awarded to BP by DOE in late 1991 entitled {open_quotes}Membrane/Distillation Hybrid Process Research and Development.{close_quotes} The program was directed towards development and commercialization of the BP process for separation of vapor phase olefins from non-olefins via facilitated transport using an aqueous facilitator. The program has come to a very successful conclusion, with formation of a partnership between BP and Stone and Webster Engineering Corporation (SWEC) to market and commercialize the technology. The focus of this report is the final portion of the program, during which engineering re-design, facilitator optimization, economic analysis, and marketing have been the primary activities. At the end of Phase II BP was looking to partner with an engineering firm to advance the selective olefin recovery (SOR) technology from the lab/demo stage to full commercialization. In August 1995 BP and SWEC reached an agreement to advance the technology by completing additional Phase III work with DOE and beginning marketing activities.

  19. Olefins-selective asymmetric carbon molecular sieve hollow fiber membranes for hybrid membrane-distillation processes for olefin/paraffin separations

    KAUST Repository

    Xu, Liren

    2012-12-01

    In this paper, the development of asymmetric carbon molecular sieve (CMS) hollow fiber membranes and advanced processes for olefin/paraffin separations based on the CMS membranes are reported. Membrane-based olefin/paraffin separations have been pursued extensively over the past decades. CMS membranes are promising to exceed the performance upper bound of polymer materials and have demonstrated excellent stability for gas separations. Previously, a substructure collapse phenomenon was found in Matrimid ® precursor derived CMS fiber. To overcome the permeance loss due to the increased separation layer thickness, 6FDA-DAM and 6FDA/BPDA-DAM precursors were selected as potential new precursors for carbon membrane formation. Defect-free asymmetric 6FDA-DAM and 6FDA/BPDA-DAM hollow fibers were successfully fabricated from a dry-jet/wet-quench spinning process. Polymer rigidity, glass-rubber transition and asymmetric morphology were correlated. CMS hollow fiber membranes produced from 6FDA-polymer precursors showed significant improvement in permeance for ethylene/ethane and propylene/propane separations. Further studies revealed that the CMS membranes are olefins-selective, which means the membranes are able to effectively separate olefins (ethylene and propylene) from paraffins (ethane and propane). This unique feature of CMS materials enables advanced hybrid membrane-distillation process designs. By using the olefins-selective membranes, these new processes may provide advantages over previously proposed retrofitting concepts. Further applications of the membranes are explored for hydrocarbons processes. Significant energy savings and even reduced footprint may be achieved in olefins production units. © 2012 Elsevier B.V.

  20. Hybrid Processes Combining Photocatalysis and Ceramic Membrane Filtration for Degradation of Humic Acids in Saline Water

    Directory of Open Access Journals (Sweden)

    Lili Song

    2016-03-01

    Full Text Available This study explored the combined effects of photocatalysis with ceramic membrane filtration for the removal of humic acid in the presence of salt; to simulate saline wastewater conditions. The effects of operating parameters, such as salinity and TiO2 concentration on permeate fluxes, total organic carbon (TOC, and UV absorbance removal, were investigated. The interaction between the humic acids and TiO2 photocatalyst played an important role in the observed flux change during ceramic membrane filtration. The results for this hybrid system showed that the TOC removal was more than 70% for both without NaCl and with the 500 ppm NaCl concentration, and 62% and 66% for 1000 and 2000 ppm NaCl concentrations. The reduction in UV absorbance was more complete in the absence of NaCl compared to the presence of NaCl. The operation of the integrated photoreactor-ceramic membrane filter over five repeat cycles is described. It can be concluded that the overall removal performance of the hybrid system was influenced by the presence of salts, as salt leads to agglomeration of TiO2 particles by suppressing the stabilising effects of electrostatic repulsion and thereby reduces the effective surface contact between the pollutant and the photocatalyst.

  1. Hybrid Processes Combining Photocatalysis and Ceramic Membrane Filtration for Degradation of Humic Acids in Saline Water.

    Science.gov (United States)

    Song, Lili; Zhu, Bo; Gray, Stephen; Duke, Mikel; Muthukumaran, Shobha

    2016-03-01

    This study explored the combined effects of photocatalysis with ceramic membrane filtration for the removal of humic acid in the presence of salt; to simulate saline wastewater conditions. The effects of operating parameters, such as salinity and TiO₂ concentration on permeate fluxes, total organic carbon (TOC), and UV absorbance removal, were investigated. The interaction between the humic acids and TiO₂ photocatalyst played an important role in the observed flux change during ceramic membrane filtration. The results for this hybrid system showed that the TOC removal was more than 70% for both without NaCl and with the 500 ppm NaCl concentration, and 62% and 66% for 1000 and 2000 ppm NaCl concentrations. The reduction in UV absorbance was more complete in the absence of NaCl compared to the presence of NaCl. The operation of the integrated photoreactor-ceramic membrane filter over five repeat cycles is described. It can be concluded that the overall removal performance of the hybrid system was influenced by the presence of salts, as salt leads to agglomeration of TiO₂ particles by suppressing the stabilising effects of electrostatic repulsion and thereby reduces the effective surface contact between the pollutant and the photocatalyst.

  2. Hybrid Pressure Retarded Osmosis−Membrane Distillation (PRO−MD) Process for Osmotic Power and Clean Water Generation

    KAUST Repository

    Han, Gang

    2015-05-20

    A novel pressure retarded osmosis−membrane distillation (PRO−MD) hybrid process has been experimentally conceived for sustainable production of renewable osmotic power and clean water from various waters. The proposed PRO−MD system may possess unique advantages of high water recovery rate, huge osmotic power generation, well controlled membrane fouling, and minimal environmental impacts. Experimental results show that the PRO−MD hybrid process is promising that not only can harvest osmotic energy from freshwater but also from wastewater. When employing a 2 M NaCl MD concentrate as the draw solution, ultrahigh power densities of 31.0 W/m2 and 9.3 W/m2 have been demonstrated by the PRO subsystem using deionized water and real wastewater brine as the feeds, respectively. Simultaneously, high purity potable water with a flux of 32.5−63.1 L/(m2.h) can be produced by the MD subsystem at 40−60 °C without any detrimental effects of fouling. The energy consumption in the MD subsystem might be further reduced by applying a heat exchanger in the hybrid system and using low-grade heat or solar energy to heat up the feed solution. The newly developed PRO−MD hybrid process would provide insightful guidelines for the exploration of alternative green technologies for renewable osmotic energy and clean water production.

  3. Novel Water Treatment Processes Based on Hybrid Membrane-Ozonation Systems: A Novel Ceramic Membrane Contactor for Bubbleless Ozonation of Emerging Micropollutants

    Directory of Open Access Journals (Sweden)

    Stylianos K. Stylianou

    2015-01-01

    Full Text Available The aim of this study is the presentation of novel water treatment systems based on ozonation combined with ceramic membranes for the treatment of refractory organic compounds found in natural water sources such as groundwater. This includes, firstly, a short review of possible membrane based hybrid processes for water treatment from various sources. Several practical and theoretical aspects for the application of hybrid membrane-ozonation systems are discussed, along with theoretical background regarding the transformation of target organic pollutants by ozone. Next, a novel ceramic membrane contactor, bringing into contact the gas phase (ozone and water phase without the creation of bubbles (bubbleless ozonation, is presented. Experimental data showing the membrane contactor efficiency for oxidation of atrazine, endosulfan, and methyl tert-butyl ether (MTBE are shown and discussed. Almost complete endosulfan degradation was achieved with the use of the ceramic contactor, whereas atrazine degradation higher than 50% could not be achieved even after 60 min of reaction time. Single ozonation of water containing MTBE could not result in a significant MTBE degradation. MTBE mineralization by O3/H2O2 combination increased at higher pH values and O3/H2O2 molar ratio of 0.2 reaching a maximum of around 65%.

  4. Membrane flux dynamics in the submerged ultrafiltration hybrid treatment process during particle and natural organic matter removal

    Institute of Scientific and Technical Information of China (English)

    Wei Zhang; Xiaojian Zhang; Yonghong Li; Jun Wang; Chao Chen

    2011-01-01

    Particles and natural organic matter (NOM) are two major concerns in surface water,which greatly influence the membrane filtration process.The objective of this article is to investigate the effect of particles,NOM and their interaction on the submerged ultrafiltration (UF) membrane flux under conditions of solo UF and coagulation and PAC adsorption as the pretreatment of UF.Particles,NOM and their mixture were spiked in tap water to simulate raw water.Exponential relationship,(JP/JP0 =axexp{-k[t-(n- 1)T]}),was developed to quantify the normalized membrane flux dynamics during the filtration period and fitted the results well.In this equation,coefficient a was determined by the value of Jp/Jp0 at the beginning of a filtration cycle,reflecting the flux recovery after backwashing,that is,the irreversible fouling.The coefficient k reflected the trend of flux dynamics.Integrated total permeability (ΣJp) in one filtration period could be used as a quantified indicator for comparison of different hybrid membrane processes or under different scenarios.According to the results,there was an additive effect on membrane flux by NOM and particles during solo UF process.This additive fouling could be alleviated by coagulation pretreatment since particles helped the formation of flocs with coagulant,which further delayed the decrease of membrane flux and benefited flux recovery by backwashing.The addition of PAC also increased membrane flux by adsorbing NOM and improved flux recovery through backwashing.

  5. Hybrid Membrane/Absorption Process for Post-combustion CO2 Capture

    Energy Technology Data Exchange (ETDEWEB)

    Li, Shiguang; Shou, S.; Pyrzynski, Travis; Makkuni, Ajay; Meyer, Howard

    2013-12-31

    This report summarizes scientific/technical progress made for bench-scale membrane contactor technology for post-combustion CO2 capture from DOE Contract No. DE-FE-0004787. Budget Period 1 (BP1) membrane absorber, Budget Period 2 (BP2) membrane desorber and Budget Period 3 (BP3) integrated system and field testing studies have been completed successfully and met or exceeded the technical targets (≥ 90% CO2 removal and CO2 purity of 97% in one membrane stage). Significant breakthroughs are summarized below: BP1 research: The feasibility of utilizing the poly (ether ether ketone), PEEK, based hollow fiber contractor (HFC) in combination with chemical solvents to separate and capture at least 90% of the CO2 from simulated flue gases has been successfully established. Excellent progress has been made as we have achieved the BP1 goal: ≥ 1,000 membrane intrinsic CO2 permeance, ≥ 90% CO2 removal in one stage, ≤ 2 psi gas side pressure drop, and ≥ 1 (sec)-1 mass transfer coefficient. Initial test results also show that the CO2 capture performance, using activated Methyl Diethanol Amine (aMDEA) solvent, was not affected by flue gas contaminants O2 (~3%), NO2 (66 ppmv), and SO2 (145 ppmv). BP2 research: The feasibility of utilizing the PEEK HFC for CO2-loaded solvent regeneration has been successfully established High CO2 stripping flux, one order of magnitude higher than CO2 absorption flux, have been achieved. Refined economic evaluation based on BP1 membrane absorber and BP2 membrane desorber laboratory test data indicate that the CO2 capture costs are 36% lower than DOE’s benchmark amine absorption technology. BP3 research: A bench-scale system utilizing a membrane absorber and desorber was integrated into a continuous CO2 capture process using contactors containing 10 to 20 ft2 of membrane area. The integrated process operation was stable through a 100-hour laboratory test, utilizing a simulated flue gas stream. Greater than 90% CO2 capture combined with 97

  6. Performance and dye-degrading bacteria isolation of a hybrid membrane process

    Energy Technology Data Exchange (ETDEWEB)

    You, Sheng-Jie, E-mail: sjyou@cycu.edu.tw [Department of Bioenvironmental Engineering and R and D Center for Membrane Technology, Chung Yuan Christian University, No. 200, Rd. Chung-Pei, Chungli 320, Taiwan (China); Teng, Jun-Yu, E-mail: nickprometheus@yahoo.com.tw [Department of Civil Engineering, Chung Yuan Christian University, Chungli 320, Taiwan (China)

    2009-12-15

    Textile dyeing wastewater contains harmful compounds, which are toxic to both marine organisms and human beings if it discharged into an aquatic environmental without suitable treatment. In this study, the wastewater containing the azo dye, Reactive Black 5 (RB5), was partially treated in an anaerobic sequencing batch reactor which was further treated either in an aerobic membrane bioreactors (AOMBR) or in combined aerobic membrane bioreactor/reverse osmosis (AOMBR/RO) process. The results showed that in the anaerobic sequencing batch reactor the RB5 dye was degraded to form aromatic amine intermediate metabolites, which were further mineralized in the AOMBR. It was also observed that although all effluents from the AOMBR and AOMBR/RO processes met the Taiwan EPA's effluent criteria, irrespective of which membranes were used in the aerobic tank, the effluent from the AOMBR/RO process met the criteria for reuse for toilet flushing, landscaping, irrigation, and cooling water purposes, where as the AOMBR effluent only met the criteria for cooling water due to incomplete color removal. Five anaerobic high dye-degrading bacteria were isolated, which were identified to be the same species of Lactococcus lactis by 16S rRNA sequencing. The L. lactis showed complete degradation of RB5 and further studies showed that it can also able to degrade Reactive Red 120 and Reactive Yellow 84 efficiently within 6 h.

  7. Performance and dye-degrading bacteria isolation of a hybrid membrane process

    International Nuclear Information System (INIS)

    You, Sheng-Jie; Teng, Jun-Yu

    2009-01-01

    Textile dyeing wastewater contains harmful compounds, which are toxic to both marine organisms and human beings if it discharged into an aquatic environmental without suitable treatment. In this study, the wastewater containing the azo dye, Reactive Black 5 (RB5), was partially treated in an anaerobic sequencing batch reactor which was further treated either in an aerobic membrane bioreactors (AOMBR) or in combined aerobic membrane bioreactor/reverse osmosis (AOMBR/RO) process. The results showed that in the anaerobic sequencing batch reactor the RB5 dye was degraded to form aromatic amine intermediate metabolites, which were further mineralized in the AOMBR. It was also observed that although all effluents from the AOMBR and AOMBR/RO processes met the Taiwan EPA's effluent criteria, irrespective of which membranes were used in the aerobic tank, the effluent from the AOMBR/RO process met the criteria for reuse for toilet flushing, landscaping, irrigation, and cooling water purposes, where as the AOMBR effluent only met the criteria for cooling water due to incomplete color removal. Five anaerobic high dye-degrading bacteria were isolated, which were identified to be the same species of Lactococcus lactis by 16S rRNA sequencing. The L. lactis showed complete degradation of RB5 and further studies showed that it can also able to degrade Reactive Red 120 and Reactive Yellow 84 efficiently within 6 h.

  8. Innovative hybrid biological reactors using membranes

    International Nuclear Information System (INIS)

    Diez, R.; Esteban-Garcia, A. L.; Florio, L. de; Rodriguez-Hernandez, L.; Tejero, I.

    2011-01-01

    In this paper we present two lines of research on hybrid reactors including the use of membranes, although with different functions: RBPM, biofilm reactors and membranes filtration RBSOM, supported biofilm reactors and oxygen membranes. (Author) 14 refs.

  9. Hybrid Nano composite Membranes for PEMFC Applications

    International Nuclear Information System (INIS)

    Niepceron, F.

    2008-03-01

    This work aims at validating a new concept of hybrid materials for the realization of proton exchange membranes, an essential constituent of PEM fuel cells. The originality of this nano-composite hybrid concept corresponds to a separation of the membrane's properties. We investigated the preparation of composite materials based on an inert, relatively low cost, polymer matrix (PVDF-HFP) providing the mechanical stability embedding inorganic fillers providing the necessary properties o f proton-conduction and water retention. The first step of this work consisted in the modification of fumed silica to obtain a proton-conducting filler. An ionic exchange capacity (CEI) equal to 3 meq/g was obtained by the original grafting of sodium poly(styrene-sulfonate) chains from the surface of particles. Nano-composite hybrid membranes PVDF-HFP/functionalized silica were accomplished by a film casting process. The coupling of the morphological and physicochemical analyses validated the percolation of the inorganic phase for 30 wt.% of particles. Beyond 40 % of loading, measured protonic conductivity is higher than the reference membrane Nafion 112. Finally, these membranes presented high performances, above 0.8 W/cm 2 , in single-cell fuel cell tests. A compromise is necessary according to the rate of loading between performances in fuel cell and mechanical properties of the membrane. 50 % appeared as best choice with, until 90 C, a remarkable thermal stability of the performances. (author)

  10. Hydrothermal stability of silica, hybrid silica and Zr-doped hybrid silica membranes

    NARCIS (Netherlands)

    ten Hove, Marcel; Luiten-Olieman, Mieke W.J.; Huiskes, Cindy; Nijmeijer, Arian; Winnubst, Louis

    2017-01-01

    Hybrid silica membranes have demonstrated to possess a remarkable hydrothermal stability in pervaporation and gas separation processes allowing them to be used in industrial applications. In several publications the hydrothermal stability of pure silica or that of hybrid silica membranes are

  11. A natural driven membrane process for brackish and wastewater treatment: photovoltaic powered ED and FO hybrid system.

    Science.gov (United States)

    Zhang, Yang; Pinoy, Luc; Meesschaert, Boudewijn; Van der Bruggen, Bart

    2013-09-17

    In isolated locations, remote areas, or islands, potable water is precious because of the lack of drinking water treatment facilities and energy supply. Thus, a robust and reliable water treatment system based on natural energy is needed to reuse wastewater or to desalinate groundwater/seawater for provision of drinking water. In this work, a hybrid membrane system combining electrodialysis (ED) and forward osmosis (FO), driven by renewable energy (solar energy), denoted as EDFORD (ED-FO Renewable energy Desalination), is proposed to produce high-quality water (potable) from secondary wastewater effluent or brackish water. In this hybrid membrane system, feedwater (secondary wastewater effluent or synthetic brackish water) was drawn to the FO draw solution while the organic and inorganic substances (ions, compounds, colloids and particles) were rejected. The diluted draw solution was then pumped to the solar energy driven ED. In the ED unit, the diluted draw solution was desalted and high-quality water was produced; the concentrate was recycled to the FO unit and reused as the draw solution. Results show that the water produced from this system contains a low concentration of total organic carbon (TOC), carbonate, and cations derived from the feedwater; had a low conductivity; and meets potable water standards. The water production cost considering the investment for membranes and solar panel is 3.32 to 4.92 EUR m(-3) (for 300 days of production per year) for a small size potable water production system.

  12. Hybrid quantum information processing

    Energy Technology Data Exchange (ETDEWEB)

    Furusawa, Akira [Department of Applied Physics, School of Engineering, The University of Tokyo (Japan)

    2014-12-04

    I will briefly explain the definition and advantage of hybrid quantum information processing, which is hybridization of qubit and continuous-variable technologies. The final goal would be realization of universal gate sets both for qubit and continuous-variable quantum information processing with the hybrid technologies. For that purpose, qubit teleportation with a continuousvariable teleporter is one of the most important ingredients.

  13. Interactions of aqueous NOM with nanoscale TiO2: implications for ceramic membrane filtration-ozonation hybrid process.

    Science.gov (United States)

    Kim, Jeonghwan; Shan, Wenqian; Davies, Simon H R; Baumann, Melissa J; Masten, Susan J; Tarabara, Volodymyr V

    2009-07-15

    The combined effect of pH and calcium on the interactions of nonozonated and ozonated natural organic matter (NOM) with nanoscale TiO2 was investigated. The approach included characterization of TiO2 nanoparticles and NOM, extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) modeling of NOM-TiO2 and NOM-NOM interactions, batch study on the NOM adsorption onto TiO2 surface, and bench-scale study on the treatment of NOM-containing feed waters using a hybrid process that combines ozonation and ultrafiltration with a 5 kDa ceramic (TiO2 surface) membrane. It was demonstrated that depending on pH and TiO2 loading, the adsorption of NOM species is controlled by either the availability of divalent cations or by preozonation of NOM. XDLVO surface energy analysis predicts NOM adsorption onto TiO2 in the ozone-controlled regime but not in the calcium-controlled regime. In both regimes, short-range NOM-NOM and NOM-TiO2 interactions were governed by acid-base and van der Waals forces, whereas the role of electrostatic forces was relatively insignificant. Ozonation increased the surface energy of NOM, contributing to the hydrophilic repulsion component of the NOM-NOM and NOM-TiO2 interactions. In the calcium-controlled regime, neither NOM-TiO2 nor NOM-NOM interaction controlled adsorption. Non-XDLVO interactions such as intermolecular bridging by calcium were hypothesized to be responsible for the observed adsorption behavior. Adsorption data proved to be highly predictive of the permeate flux performance.

  14. Low-temperature bonding process for the fabrication of hybrid glass-membrane organ-on-a-chip devices

    Science.gov (United States)

    Pocock, Kyall J.; Gao, Xiaofang; Wang, Chenxi; Priest, Craig; Prestidge, Clive A.; Mawatari, Kazuma; Kitamori, Takehiko; Thierry, Benjamin

    2016-10-01

    The integration of microfluidics with living biological systems has paved the way to the exciting concept of "organs-on-a-chip," which aims at the development of advanced in vitro models that replicate the key features of human organs. Glass-based devices have long been utilized in the field of microfluidics but the integration of alternative functional elements within multilayered glass microdevices, such as polymeric membranes, remains a challenge. To this end, we have extended a previously reported approach for the low-temperature bonding of glass devices that enables the integration of a functional polycarbonate porous membrane. The process was initially developed and optimized on specialty low-temperature bonding equipment (μTAS2001, Bondtech, Japan) and subsequently adapted to more widely accessible hot embosser units (EVG520HE Hot Embosser, EVG, Austria). The key aspect of this method is the use of low temperatures compatible with polymeric membranes. Compared to borosilicate glass bonding (650°C) and quartz/fused silica bonding (1050°C) processes, this method maintains the integrity and functionality of the membrane (Tg 150°C for polycarbonate). Leak tests performed showed no damage or loss of integrity of the membrane for up to 150 h, indicating sufficient bond strength for long-term cell culture. A feasibility study confirmed the growth of dense and functional monolayers of Caco-2 cells within 5 days.

  15. Hybrid Membrane System for Industrial Water Reuse

    Energy Technology Data Exchange (ETDEWEB)

    None

    2016-08-01

    This factsheet describes a project that developed and demonstrated a new hybrid system for industrial wastewater treatment that synergistically combines a forward osmosis system with a membrane distillation technology and is powered by waste heat.

  16. The potential of hybrid forward osmosis membrane bioreactor (FOMBR) processes in achieving high throughput treatment of municipal wastewater with enhanced phosphorus recovery.

    Science.gov (United States)

    Qiu, Guanglei; Zhang, Sui; Srinivasa Raghavan, Divya Shankari; Das, Subhabrata; Ting, Yen-Peng

    2016-11-15

    Extensive research in recent years has explored numerous new features in the forward osmosis membrane bioreactor (FOMBR) process. However, there is an aspect, which is revolutionary but not yet been investigated. In FOMBR, FO membrane shows high rejection for a wide range of soluble contaminants. As a result, hydraulic retention time (HRT) does not correctly reflect the nominal retention of these dissolved contaminants in the bioreactor. This decoupling of contaminants retention time (CRT, i.e. the nominal retention of the dissolved contaminants) from HRT endows FOMBR a potential in significantly reducing the HRT for wastewater treatment. In this work, we report our results in this unexplored treatment potential. Using real municipal wastewater as feed, both a hybrid microfiltration-forward osmosis membrane bioreactor (MF-FOMBR) and a newly developed hybrid biofilm-forward osmosis membrane bioreactor (BF-FOMBR) achieved high removal of organic matter and nitrogen under HRT of down to 2.0 h, with significantly enhanced phosphorus recovery capacities. In the BF-FOMBR, the used of fixed bed biofilm not only obviated the need of additional solid/liquid separation (e.g. MF) to extract the side-stream for salt accumulation control and phosphorus recovery, but effectively quarantined the biomass from the FO membrane. The absence of MF in the side-stream further allowed suspended growth to be continuously removed from the system, which produced a selection pressure for the predominance of attached growth. As a result, a significant reduction in FO membrane fouling (by 24.7-54.5%) was achieved in the BF-FOMBR due to substantially reduced bacteria deposition and colonization. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Membrane bioreactor (MBR) sludge inoculation in a hybrid process scheme concept to assist overloaded conventional activated sludge (CAS) process operations.

    Science.gov (United States)

    Fenu, A; Roels, J; Van Damme, S; Wambecq, T; Weemaes, M; Thoeye, C; De Gueldre, G; Van De Steene, B

    2012-01-01

    This study analyzes the effect of inoculating membrane bioreactor (MBR) sludge in a parallel-operated overloaded conventional activated sludge (CAS) system. Modelling studies that showed the beneficial effect of this inoculation were confirmed though full scale tests. Total nitrogen (TN) removal in the CAS increased and higher nitrate formation rates were achieved. During MBR sludge inoculation, the TN removal in the CAS was proven to be dependent on MBR sludge loading. Special attention was given to the effect of inoculation on sludge quality. The MBR flocs, grown without selection pressure, were clearly distinct from the more compact flocs in the CAS system and also contained more filamentous bacteria. After inoculation the MBR flocs did not evolve into good-settling compact flocs, resulting in a decreasing sludge quality. During high flow conditions the effluent CAS contained more suspended solids. Sludge volume index, however, did not increase. Laboratory tests were held to determine the threshold volume of MBR sludge to be seeded into the CAS reactor. Above 16-30%, supernatant turbidity and scum formation increased markedly.

  18. A conceptual demonstration of freeze desalination-membrane distillation (FD-MD) hybrid desalination process utilizing liquefied natural gas (LNG) cold energy.

    Science.gov (United States)

    Wang, Peng; Chung, Tai-Shung

    2012-09-01

    The severe global water scarcity and record-high fossil oil price have greatly stimulated the research interests on new desalination technologies which can be driven by renewable energy or waste energy. In this study, a hybrid desalination process comprising freeze desalination and membrane distillation (FD-MD) processes was developed and explored in an attempt to utilize the waste cold energy released from re-gasification of liquefied natural gas (LNG). The concept of this technology was demonstrated using indirect-contact freeze desalination (ICFD) and direct-contact membrane distillation (DCMD) configurations. By optimizing the ICFD operation parameters, namely, the usage of nucleate seeds, operation duration and feed concentration, high quality drinkable water with a low salinity ∼0.144 g/L was produced in the ICFD process. At the same time, using the optimized hollow fiber module length and packing density in the DCMD process, ultra pure water with a low salinity of 0.062 g/L was attained at a condition of high energy efficiency (EE). Overall, by combining FD and MD processes and adopting the optimized operation parameters, the hybrid FD-MD system has been successfully demonstrated. A high total water recovery of 71.5% was achieved, and the water quality obtained met the standard for drinkable water. In addition, with results from specific energy calculation, it was proven that the hybrid process is an energy-saving process and utilization of LNG cold energy could greatly reduce the total energy consumption. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. A hybrid liquid-phase precipitation (LPP) process in conjunction with membrane distillation (MD) for the treatment of the INEEL sodium-bearing liquid waste.

    Science.gov (United States)

    Bader, M S H

    2005-05-20

    A novel hybrid system combining liquid-phase precipitation (LPP) and membrane distillation (MD) is integrated for the treatment of the INEEL sodium-bearing liquid waste. The integrated system provides a "full separation" approach that consists of three main processing stages. The first stage is focused on the separation and recovery of nitric acid from the bulk of the waste stream using vacuum membrane distillation (VMD). In the second stage, polyvalent cations (mainly TRU elements and their fission products except cesium along with aluminum and other toxic metals) are separated from the bulk of monovalent anions and cations (dominantly sodium nitrate) by a front-end LPP. In the third stage, MD is used first to concentrate sodium nitrate to near saturation followed by a rear-end LPP to precipitate and separate sodium nitrate along with the remaining minor species from the bulk of the aqueous phase. The LPP-MD hybrid system uses a small amount of an additive and energy to carry out the treatment, addresses multiple critical species, extracts an economic value from some of waste species, generates minimal waste with suitable disposal paths, and offers rapid deployment. As such, the LPP-MD could be a valuable tool for multiple needs across the DOE complex where no effective or economic alternatives are available.

  20. Membrane processes in nuclear technologies

    International Nuclear Information System (INIS)

    Zakrzewska-Trznadel, G.

    2006-01-01

    to the pressure-driven processes, e.g. ultrafiltration and reverse osmosis, which were studied on a laboratory and pilot scale. Verification of the potential application of reverse osmosis on an industrial scale for treatment of liquid low- and intermediate-level radioactive wastes has been carried out with the installation particularly designed and constructed for the Department of Radioactive Waste Processing, Institute of Atomic Energy at Swierk. The thin-layer composite membranes made from a cross-linked aromatic polyamide of high retention of NaCl (99,4-99,7%) were applied in this process. It has been proved that a three-stage installation enables the radioactive waste of specific radioactivity below 10 5 Bq/dm 3 to be cleaned down to 10 Bq/dm 3 in permeate, with simultaneous 7-15-fold reduction of the activity in the concentrate. The results of own studies concerning the removal of selected radionuclides from model aqueous solutions and radioactive wastes with ultra-filtration enhanced by complexation and sorption were also presented in this work. In these cases, the mineral (ceramic) porous membranes made from a-alumina, titanium and zirconium oxides were applied. These membranes exhibited a high resistance against ionizing radiation, aggressive chemical environment and high temperatures. The high effectiveness of removal of the main components of liquid radioactive waste like 134 Cs, 137 Cs, 60 Co, 124 Sb, 85 Sr, 152 Eu and 154 Eu with a hybrid ultrafiltration/complexation process has been experimentally proved. The effects of this type of complexing agent, its concentration and pH of the processed solution on the complexation effectiveness have been studied. Efficacy of the method was tested with real radioactive wastes. The monograph performs results of the studies on membrane distillation which has been proposed by the author for processing of liquid radioactive wastes, and the analysis of its applicability for nuclear desalination and the production of

  1. Sustainable process design & analysis of hybrid separations

    DEFF Research Database (Denmark)

    Kumar Tula, Anjan; Befort, Bridgette; Garg, Nipun

    2016-01-01

    Distillation is an energy intensive operation in chemical process industries. There are around 40,000 distillation columns in operation in the US, requiring approximately 40% of the total energy consumption in US chemical process industries. However, analysis of separations by distillation has...... shown that more than 50% of energy is spent in purifying the last 5-10% of the distillate product. Membrane modules on the other hand can achieve high purity separations at lower energy costs, but if the flux is high, it requires large membrane area. A hybrid scheme where distillation and membrane...... modules are combined such that each operates at its highest efficiency, has the potential for significant energy reduction without significant increase of capital costs. This paper presents a method for sustainable design of hybrid distillation-membrane schemes with guaranteed reduction of energy...

  2. Smart membranes for monitoring membrane based desalination processes

    KAUST Repository

    Laleg-Kirati, Taous-Meriem; Karam, Ayman M.

    2017-01-01

    Various examples are related to smart membranes for monitoring membrane based process such as, e.g., membrane distillation processes. In one example, a membrane, includes a porous surface and a plurality of sensors (e.g., temperature, flow and

  3. Designing CNC Knit for Hybrid Membrane And Bending Active Structures

    DEFF Research Database (Denmark)

    Tamke, Martin; Holden Deleuran, Anders; Gengnagel, Christoph

    2015-01-01

    specific properties and detailing. CNC knitting with high tenacity yarn enables this practice and offers an alternative to current woven membranes. The design and fabrication of an 8m high fabric tower through an interdisciplinary team of architects, structural and textile engineers, allowed to investigate...... means to design, specify, make and test CNC knit as material for hybrid structures in architectural scale. This paper shares the developed process, identifies challenges, potentials and future work...

  4. Hybrid polymer composite membrane for an electromagnetic (EM) valveless micropump

    Science.gov (United States)

    Said, Muzalifah Mohd; Yunas, Jumril; Bais, Badariah; Azlan Hamzah, Azrul; Yeop Majlis, Burhanuddin

    2017-07-01

    In this paper, we report on a hybrid membrane used as an actuator in an electromagnetically driven valveless micropump developed using MEMS processes. The membrane structure consists of the combination of a magnetic polymer composite membrane and an attached bulk permanent magnet which is expected to have a compact structure and a strong magnetic force with maintained membrane flexibility. A soft polymeric material made of polydimethylsiloxane (PDMS) is initially mixed with neodymium magnetic particles (NdFeB) to form a magnetic polymer composite membrane. The membrane is then bonded with the PDMS based microfluidic part, developed using soft lithography process. The developed micropump was tested in terms of the actuator membrane deflection capability and the fluidic flow of the injected fluid sample through the microfluidic channel. The experimental results show that the magnetic composite actuator membrane with an attached bulk permanent magnet is capable of producing a maximum membrane deflection of up to 106 µm. The functionality test of the electromagnetic (EM) actuator for fluid pumping purposes was done by supplying an AC voltage with various amplitudes, signal waves and frequencies. A wide range of sample injection rates from a few µl min-1 to tens of nl min-1 was achieved with a maximum flow rate of 6.6 µl min-1. The injection flow rate of the EM micropump can be controlled by adjusting the voltage amplitude and frequency supplied to the EM coil, to control the membrane deflection in the pump chamber. The designed valveless EM micropump has a very high potential to enhance the drug delivery system capability in biomedical applications.

  5. On the enhancement of pervaporation properties of plasma-deposited hybrid silica membranes

    Energy Technology Data Exchange (ETDEWEB)

    Ngamou, P.H.T.; Creatore, M. [Department of Applied Physics, Eindhoven University of Technology, 5600 MB Eindhoven (Netherlands); Overbeek, J.P.; Kreiter, R.; Van Veen, H.M.; Vente, J.F. [ECN, Energy research Centre of the Netherlands, Petten (Netherlands); Cuperus, P.F. [SolSep BV, Apeldoorn (Netherlands)

    2013-06-24

    The separation performance of a polymeric-supported hybrid silica membrane in the dehydration process of a butanol-water mixture at 95C has been enhanced by applying a bias to the substrate during the plasma deposition.

  6. Membranes for Enhanced Emulsification Processes

    NARCIS (Netherlands)

    Güell, Carme; Ferrando, Montse; Schroen, C.G.P.H.

    2016-01-01

    The use of membrane technology for the production of single and double emulsions has been proven feasible for a wide range of systems. The low energy requirements and mild process conditions (shear stress and temperature) of membrane emulsification (ME) compared to conventional processes makes it of

  7. Hyper-cross-linked, hybrid membranes via interfacial polymerization

    NARCIS (Netherlands)

    Raaijmakers, Michiel

    2015-01-01

    Hyper-cross-linked, hybrid membranes consist of covalent networks of alternating organic and inorganic, or biological groups. This thesis reports on the preparation of such hybrid networks via interfacial polymerization. The structure-property relationships of the hybrid networks depend strongly on

  8. Treatment of two different water resources in desalination and microbial fuel cell processes by poly sulfone/Sulfonated poly ether ether ketone hybrid membrane

    International Nuclear Information System (INIS)

    Ghasemi, Mostafa; Wan Daud, Wan Ramli; Alam, Javed; Ilbeygi, Hamid; Sedighi, Mehdi; Ismail, Ahmad Fauzi; Yazdi, Mohammad H.; Aljlil, Saad A.

    2016-01-01

    The PS (Polysulfone)/SPEEK (sulfonated poly ether ether ketone) hybrid membranes were fabricated and modified with low and high DS (degrees of sulfonation) for the desalination of brackish water and proton exchange membrane in microbial fuel cell. The results illustrated that SPEEK has changed the morphology of membranes and increase their hydrophilicity. PS/SPEEK with lower DS (29%) had the rejection percentage of 62% for NaCl and 68% for MgSO_4; while it was 67% and 81% for PS/SPEEK (76%) at 4 bars. Furthermore, the water flux for PS at 10 bar was 12.41 L m"−"2 h"−"1. It was four times higher for PS/SPEEK (29%) which means 49.5 L m"−"2 h"−"1 and 13 times higher for PS/SPEEK (76%) with means 157.76 L m"−"2 h"−"1. However, in MFC (microbial fuel cell), the highest power production was 97.47 mW/m"2 by PS/SPEEK (29%) followed by 41.42 mW/m"2 for PS/SPEEK (76%), and 9.4 mW/m"2 for PS. This revealed that the sulfonation of PEEK (poly ether ether ketone) made it a better additive for PS for desalination, because it created a membrane with higher hydrophilicity, better pore size and better for salt rejection. Although for the separator, the degree of sulfonation was limited; otherwise it made a membrane to transfer some of the unwanted ions. - Highlights: • Fabrication of a composite membrane for desalination and MFC. • PS/SPEEK (76%) had the lowest contact angle (48.8) and highest hydrophilicity than PS and PS/SPEEK (29%). • PS/SPEEK (29%) was the best separator for use in MFC. • PS/SPEEK (76%) had the highest flux (61.3 L m"−"2 h"−"1) for desalination.

  9. Influence of floc size and structure on membrane fouling in coagulation-ultrafiltration hybrid process-The role of Al{sub 13} species

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Weiying [Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Ji' nan 250100, Shandong (China); Gao, Baoyu, E-mail: baoyugao_sdu@yahoo.com.cn [Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Ji' nan 250100, Shandong (China); Mao, Ranran; Yue, Qinyan [Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Ji' nan 250100, Shandong (China)

    2011-10-15

    Highlights: {yields} The optimum dose of Al{sub 13} for improving the membrane permeability was 5 mg/L and for PACl was 7 mg/L. {yields} Effluent coagulated by Al{sub 13} species presented lower proportion of R{sub a} in the total resistance due to the high strength of Al{sub 13}-HA flocs. {yields} The high D{sub f} of flocs formed by Al{sub 13} was not favorable for the reduction of cake layer resistance. - Abstract: Coagulation application prior to ultrafiltration process was carried out to increase humic acid (HA) removal and membrane permeability. The [Al{sub 13}O{sub 4}(OH){sub 24}(H{sub 2}O){sub 12}]{sup 7+} polycation (Al{sub 13} species) was used in the coagulant process and polyaluminum chloride (PACl) was also used for comparison. Characteristics of aggregates pre-coagulated by Al{sub 13} species and PACl were investigated using a laser diffraction particle sizing device. Additionally, membrane fouling was investigated under different coagulation conditions. The various resistances caused by Al{sub 13} and PACl treatment effluents were determined using the membrane fouling index equation. The results indicated that at dose of 1 and 3 mg/L, Al{sub 13} produced larger flocs than PACl; while when dosage further increased, the PACl-HA flocs were much larger. The flocs formed by Al{sub 13} were strong and compact, and those formed by PACl were weak and loosely structured with the exception of the flocs generated at 1 mg/L. The investigation of membrane fouling demonstrated that Al{sub 13} contributed to the best effluent permeating at 5 mg/L and the corresponding dose for PACl was 7 mg/L. The adsorption resistance of effluent pre-treated by Al{sub 13} accounted for a smaller percentage of the total resistances compared with that by PACl.

  10. Efficient ethanol recovery from yeast fermentation broth with integrated distillation-membrane process

    Science.gov (United States)

    A hybrid process integrating vapor stripping with vapor compression and vapor permeation membrane separation, termed Membrane Assisted Vapor Stripping (MAVS), was evaluated for recovery and dehydration of ethanol from aqueous solution as an alternative to conventional distillatio...

  11. Graphene oxide – molybdenum disulfide hybrid membranes for hydrogen separation

    KAUST Repository

    Ostwal, Mayur

    2017-12-24

    Graphene oxide – molybdenum disulfide hybrid membranes were prepared using vacuum filtration technique. The thickness and the MoS2 content in the membranes were varied and their H2 permeance and H2/CO2 selectivity are reported. A 60nm hybrid membrane containing ~75% by weight of MoS2 exhibited the highest H2 permeance of 804×10−9mol/m2·s·Pa with corresponding H2/CO2 selectivity of 26.7; while a 150nm hybrid membrane with ~29% MoS2 showed the highest H2/CO2 selectivity of 44.2 with corresponding H2 permeance of 287×10−9mol/m2·s·Pa. The hybrid membranes exhibited much higher H2 permeance compared to graphene oxide membranes and higher selectivity compared to MoS2 membranes, which fully demonstrated the synergistic effect of both nanomaterials. The membranes also displayed excellent operational long-term stability.

  12. Graphene oxide – molybdenum disulfide hybrid membranes for hydrogen separation

    KAUST Repository

    Ostwal, Mayur; Shinde, Digambar B.; Wang, Xinbo; Gadwal, Ikhlas; Lai, Zhiping

    2017-01-01

    Graphene oxide – molybdenum disulfide hybrid membranes were prepared using vacuum filtration technique. The thickness and the MoS2 content in the membranes were varied and their H2 permeance and H2/CO2 selectivity are reported. A 60nm hybrid membrane containing ~75% by weight of MoS2 exhibited the highest H2 permeance of 804×10−9mol/m2·s·Pa with corresponding H2/CO2 selectivity of 26.7; while a 150nm hybrid membrane with ~29% MoS2 showed the highest H2/CO2 selectivity of 44.2 with corresponding H2 permeance of 287×10−9mol/m2·s·Pa. The hybrid membranes exhibited much higher H2 permeance compared to graphene oxide membranes and higher selectivity compared to MoS2 membranes, which fully demonstrated the synergistic effect of both nanomaterials. The membranes also displayed excellent operational long-term stability.

  13. Hybrid membranes of polyamide applied in treatment of waste water

    Energy Technology Data Exchange (ETDEWEB)

    Medeiros, Keila Machado de; Araujo, Edcleide Maria; Lira, Helio de Lucena, E-mail: keilamachadodemedeiros@gmail.com [Universidade Federal de Campina Grande (UFCG), PB (Brazil). Departamento de Engenharia de Materiais; Lima, Diego de Farias; Lima, Carlos Antonio Pereira de [Universidade Estadual da Paraiba (UEPB), Campina Grande, PB (Brazil). Departamento de Engenharia Sanitaria e Ambiental

    2017-03-15

    In this work, it was prepared hybrid membranes of polyamide6 (PA6) with montmorillonite (MMT) and porogenic agent (CaCl{sub 2} ). The hybrid membranes with CaCl{sub 2} were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), scanning electron microscopy (SEM), porosimetry by mercury intrusion (PMI), flux measurements and rejection. By means of X-ray diffraction, it was revealed that the hybrid membranes with CaCl{sub 2} have an exfoliated and/or partially exfoliated structure. For FTIR and DSC of hybrid membranes with CaCl{sub 2} , it was found that the spectra and the crystalline melting temperature remained virtually unchanged compared to PA6 membrane. From the SEM images, it was observed that the addition of the MMT and the CaCl{sub 2} in the membrane of PA6 caused an increase in the amount of pores the surface and cross section of these membranes. By PMI, it was observed that the presence of MMT and CaCl{sub 2} in the membrane caused an increase in the average diameters of pores. The water-oil separation tests, indicated a significant reduction of oil in the permeate, allowing treatment of wastewater contaminated with oil. (author)

  14. Hybrid membranes of polyamide applied in treatment of waste water

    International Nuclear Information System (INIS)

    Medeiros, Keila Machado de; Araujo, Edcleide Maria; Lira, Helio de Lucena; Lima, Diego de Farias; Lima, Carlos Antonio Pereira de

    2017-01-01

    In this work, it was prepared hybrid membranes of polyamide6 (PA6) with montmorillonite (MMT) and porogenic agent (CaCl 2 ). The hybrid membranes with CaCl 2 were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), scanning electron microscopy (SEM), porosimetry by mercury intrusion (PMI), flux measurements and rejection. By means of X-ray diffraction, it was revealed that the hybrid membranes with CaCl 2 have an exfoliated and/or partially exfoliated structure. For FTIR and DSC of hybrid membranes with CaCl 2 , it was found that the spectra and the crystalline melting temperature remained virtually unchanged compared to PA6 membrane. From the SEM images, it was observed that the addition of the MMT and the CaCl 2 in the membrane of PA6 caused an increase in the amount of pores the surface and cross section of these membranes. By PMI, it was observed that the presence of MMT and CaCl 2 in the membrane caused an increase in the average diameters of pores. The water-oil separation tests, indicated a significant reduction of oil in the permeate, allowing treatment of wastewater contaminated with oil. (author)

  15. Smart membranes for monitoring membrane based desalination processes

    KAUST Repository

    Laleg-Kirati, Taous-Meriem

    2017-10-12

    Various examples are related to smart membranes for monitoring membrane based process such as, e.g., membrane distillation processes. In one example, a membrane, includes a porous surface and a plurality of sensors (e.g., temperature, flow and/or impedance sensors) mounted on the porous surface. In another example, a membrane distillation (MD) process includes the membrane. Processing circuitry can be configured to monitor outputs of the plurality of sensors. The monitored outputs can be used to determine membrane degradation, membrane fouling, or to provide an indication of membrane replacement or cleaning. The sensors can also provide temperatures or temperature differentials across the porous surface, which can be used to improve modeling or control the MD process.

  16. Behavioural Hybrid Process Calculus

    NARCIS (Netherlands)

    Brinksma, Hendrik; Krilavicius, T.

    2005-01-01

    Process algebra is a theoretical framework for the modelling and analysis of the behaviour of concurrent discrete event systems that has been developed within computer science in past quarter century. It has generated a deeper nderstanding of the nature of concepts such as observable behaviour in

  17. Technical evaluation of hybrid membrane/DEA modeling. Topical report, January 1990-August 1990

    International Nuclear Information System (INIS)

    Changela, M.K.; McKee, R.L.; Reading, G.J.

    1991-08-01

    The report examines the potential for cost and/or performance advantages of a hybrid system, the integration of membranes and amines, over a single-stage membrane or amine system for producing pipeline quality gas on a small scale from high carbon dioxide subquality natural gas. The hybrid configuration evaluated is a membrane system in series with a conventional diethanolamine (DEA) system. Comparison of the established costs shows that each system has a region of operability. Membranes offer higher cost savings at low feed flow rates and high carbon dioxide feed contents. The hybrid system offers cost savings over moderate to high feed flow rates and for moderate to high carbon dioxide feed contents. The DEA system offers cost savings for moderate to high feed flow rates at low to moderate carbon dioxide feed contents. Membranes do not exhibit economies of scale which works to their advantage for removing carbon dioxide on a small scale. Processing costs for amine systems are more sensitive to economies of scale, and thus decrease more rapidly than for membranes at higher feed flow rates. The hybrid system offers cost savings in regions that have been perceived as exclusively amine treating applications, thus increasing the area of operability for membranes

  18. Surface modification of polyamide reverse osmosis membrane with organic-inorganic hybrid material for antifouling

    Science.gov (United States)

    Zhang, Yang; Wan, Ying; Pan, Guoyuan; Yan, Hao; Yao, Xuerong; Shi, Hongwei; Tang, Yujing; Wei, Xiangrong; Liu, Yiqun

    2018-03-01

    A series of thin-film composite reverse osmosis membranes based on polyamide have been modified by coating the polyvinyl alcohol and 3-mercaptopropyltriethoxysilane aqueous solution prepared by a sol-gel process on the membrane surface, followed by thermal crosslinking treatment. In order to improve the hydrophilicity of the modified TFC membranes, the membranes were then immersed into H2O2 aqueous solution to convert -SH into -SO3H. The resulting TFC membranes were characterized by SEM, AFM, ATR-FTIR, streaming potential, XPS as well as static contact angle. After surface modification with the organic-inorganic hybrid material, the TFC membranes show increased NaCl rejection and decreased water flux with increasing 3-mercaptopropyltrimethoxysilane content in coating solution. The optimal modification membrane (PA-SMPTES-0.8) exhibits a NaCl rejection of 99.29%, higher than that (97.20%) of the virgin PA membrane, and a comparable water flux to virgin PA membrane (41.7 L/m2 h vs 47.9 L/m2 h). More importantly, PA-SMPTES-0.8 membrane shows much more improved fouling resistance to BSA than virgin PA and PVA modified PA (PA-PVA-1.0) membranes. PA-SMPTES-0.8 membrane loses about 13% of the initial flux after BSA fouling for 12 h, which is lower than that of virgin PA and PA-PVA-1.0 membranes (42% and 18%). Furthermore, the flux recovery of PA-SMPTES-0.8 membrane reaches 94% after cleaning. Thus the TFC membranes modified by this organic-inorganic hybrid technology show potential applications as antifouling RO membrane for desalination and purification.

  19. Membrane processes in biotechnology: an overview.

    Science.gov (United States)

    Charcosset, Catherine

    2006-01-01

    Membrane processes are increasingly reported for various applications in both upstream and downstream technology, such as the established ultrafiltration and microfiltration, and emerging processes as membrane bioreactors, membrane chromatography, and membrane contactors for the preparation of emulsions and particles. Membrane systems exploit the inherent properties of high selectivity, high surface-area-per-unit-volume, and their potential for controlling the level of contact and/or mixing between two phases. This review presents these various membrane processes by focusing more precisely on membrane materials, module design, operating parameters and the large range of possible applications.

  20. Identification of DNA viruses by membrane filter hybridization.

    OpenAIRE

    Stålhandske, P; Pettersson, U

    1982-01-01

    The use of membrane filter hybridization for the identification of DNA viruses is described. We designed and used a procedure for identification of herpes simplex virus. This method can discriminate between herpes simplex virus types 1 and 2 in a simple way.

  1. PEMFC performance of MEAS based on Nafion{sup R} and sPSEBS hybrid membranes

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez-Carretero, F.J.; Compan, V. [Univ, Politecnica de Valencia, Valencia (Spain). Dept. Termodinamica Aplicada; Suarez, K.; Solorza, O. [Inst. Politecnico Nacional, Centro de Investigacion y de Estudios Avanzados, Mexico City (Mexico). Dept. de Quimica; Riande, E. [Inst. de Ciencia y Tecnologia de Polimeros, Madrid (Spain)

    2010-07-15

    Important scientific, technical and economic problems must be solved before widespread commercialization of polymer electrolyte membrane fuel cells (PEMFC). The main issues facing the development of commercial low temperature fuel cells are the synthesis of efficient solid electrolytes separating the anode from the cathode as well as the development of cheaper catalysts for fuel oxidation. This study involved the preparation of hybrid membranes based on Nafion 117 and sulfonated Calprene H6120 containing partially sulfonated inorganic fillers such as silica, SBA-15 and sepiolite. The feasibility of using the membranes as polyelectrolytes for low temperature fuel cells was then evaluated. The water uptake of Nafion hybrid membranes is 1/3 to 1/4 of that in composite membranes based on sulfonated Calprene H6120. The proton conductivity of Nafion 117 hybrid membranes-electrode assemblies is nearly 1/5 of the pristine Nafion membrane assembly. Sulfonated Calprene H6120 hybrid membranes typically have better proton conductivity than the Nafion 117 composites. The performance of fuel cells containing different MEAs was examined by measuring their polarization curves in different operating conditions. The kinetic parameters governing the voltage dependence on current density were also estimated. It was concluded that the superior performance of the fuel cells with MEAs of NAF-SEP, sPSEBS-SIL and sPSEBS-SBA is not due to the membranes themselves, but to the kinetic processes that occur at the electrodes, which in this study were less efficient for fuel cells with the Nafion MEA. 34 refs., 3 tabs., 9 figs.

  2. Characterization of bacterial communities in hybrid upflow anaerobic sludge blanket (UASB)-membrane bioreactor (MBR) process for berberine antibiotic wastewater treatment.

    Science.gov (United States)

    Qiu, Guanglei; Song, Yong-Hui; Zeng, Ping; Duan, Liang; Xiao, Shuhu

    2013-08-01

    Biodegradation of berberine antibiotic was investigated in upflow anaerobic sludge blanket (UASB)-membrane bioreactor (MBR) process. After 118days of operation, 99.0%, 98.0% and 98.0% overall removals of berberine, COD and NH4(+)-N were achieved, respectively. The detailed composition of the established bacterial communities was studied by using 16S rDNA clone library. Totally, 400 clones were retrieved and grouped into 186 operational taxonomic units (OTUs). UASB was dominated by Firmicutes and Bacteroidetes, while Proteobacteria, especially Alpha- and Beta-proteobacteria were prevalent in the MBRs. Clostridium, Eubacterium and Synergistes in the UASB, as well as Hydrogenophaga, Azoarcus, Sphingomonas, Stenotrophomonas, Shinella and Alcaligenes in the MBRs were identified as potential functional species in biodegradation of berberine and/or its metabolites. The bacterial community compositions in two MBRs were significantly discrepant. However, the identical functions of the functional species ensured the comparable pollutant removal performances in two bioreactors. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Magnetic properties of the magnetic hybrid membranes based on various polymer matrices and inorganic fillers

    International Nuclear Information System (INIS)

    Rybak, Aleksandra; Kaszuwara, Waldemar

    2015-01-01

    various magnetic powders. • Polymer hybrid membranes with the magnetic powder for air separation. • Experimental studies of transport processes through magnetic hybrid membranes. • Correlation between gas transport and magnetic properties with XRD characteristics. • Positive effect of the remanence growth on separation properties of membranes

  4. Magnetic properties of the magnetic hybrid membranes based on various polymer matrices and inorganic fillers

    Energy Technology Data Exchange (ETDEWEB)

    Rybak, Aleksandra, E-mail: Aleksandra.Rybak@polsl.pl [Department of Physical Chemistry and Technology of Polymers, Faculty of Chemistry, Silesian University of Technology, Strzody 9, 44-100 Gliwice (Poland); Kaszuwara, Waldemar [Faculty of Materials Science and Engineering, Warsaw University of Technology, Woloska 141, 02-507 Warszawa (Poland)

    2015-11-05

    polymers and various magnetic powders. • Polymer hybrid membranes with the magnetic powder for air separation. • Experimental studies of transport processes through magnetic hybrid membranes. • Correlation between gas transport and magnetic properties with XRD characteristics. • Positive effect of the remanence growth on separation properties of membranes.

  5. Hybrid Thermochemical/Biological Processing

    Science.gov (United States)

    Brown, Robert C.

    The conventional view of biorefineries is that lignocellulosic plant material will be fractionated into cellulose, hemicellulose, lignin, and terpenes before these components are biochemically converted into market products. Occasionally, these plants include a thermochemical step at the end of the process to convert recalcitrant plant components or mixed waste streams into heat to meet thermal energy demands elsewhere in the facility. However, another possibility for converting high-fiber plant materials is to start by thermochemically processing it into a uniform intermediate product that can be biologically converted into a bio-based product. This alternative route to bio-based products is known as hybrid thermochemical/biological processing. There are two distinct approaches to hybrid processing: (a) gasification followed by fermentation of the resulting gaseous mixture of carbon monoxide (CO), hydrogen (H2), and carbon dioxide (CO2) and (b) fast pyrolysis followed by hydrolysis and/or fermentation of the anhydrosugars found in the resulting bio-oil. This article explores this "cart before the horse" approach to biorefineries.

  6. Membranes for Environmentally Friendly Energy Processes

    Science.gov (United States)

    He, Xuezhong; Hägg, May-Britt

    2012-01-01

    Membrane separation systems require no or very little chemicals compared to standard unit operations. They are also easy to scale up, energy efficient, and already widely used in various gas and liquid separation processes. Different types of membranes such as common polymers, microporous organic polymers, fixed-site-carrier membranes, mixed matrix membranes, carbon membranes as well as inorganic membranes have been investigated for CO2 capture/removal and other energy processes in the last two decades. The aim of this work is to review the membrane systems applied in different energy processes, such as post-combustion, pre-combustion, oxyfuel combustion, natural gas sweetening, biogas upgrading, hydrogen production, volatile organic compounds (VOC) recovery and pressure retarded osmosis for power generation. Although different membranes could probably be used in a specific separation process, choosing a suitable membrane material will mainly depend on the membrane permeance and selectivity, process conditions (e.g., operating pressure, temperature) and the impurities in a gas stream (such as SO2, NOx, H2S, etc.). Moreover, process design and the challenges relevant to a membrane system are also being discussed to illustrate the membrane process feasibility for a specific application based on process simulation and economic cost estimation. PMID:24958426

  7. Membranes for Environmentally Friendly Energy Processes

    Directory of Open Access Journals (Sweden)

    Xuezhong He

    2012-10-01

    Full Text Available Membrane separation systems require no or very little chemicals compared to standard unit operations. They are also easy to scale up, energy efficient, and already widely used in various gas and liquid separation processes. Different types of membranes such as common polymers, microporous organic polymers, fixed-site-carrier membranes, mixed matrix membranes, carbon membranes as well as inorganic membranes have been investigated for CO2 capture/removal and other energy processes in the last two decades. The aim of this work is to review the membrane systems applied in different energy processes, such as post-combustion, pre-combustion, oxyfuel combustion, natural gas sweetening, biogas upgrading, hydrogen production, volatile organic compounds (VOC recovery and pressure retarded osmosis for power generation. Although different membranes could probably be used in a specific separation process, choosing a suitable membrane material will mainly depend on the membrane permeance and selectivity, process conditions (e.g., operating pressure, temperature and the impurities in a gas stream (such as SO2, NOx, H2S, etc.. Moreover, process design and the challenges relevant to a membrane system are also being discussed to illustrate the membrane process feasibility for a specific application based on process simulation and economic cost estimation.

  8. Innovative hybrid biological reactors using membranes; Reactores biologico hibrido innovadores utilizando membranas

    Energy Technology Data Exchange (ETDEWEB)

    Diez, R.; Esteban-Garcia, A. L.; Florio, L. de; Rodriguez-Hernandez, L.; Tejero, I.

    2011-07-01

    In this paper we present two lines of research on hybrid reactors including the use of membranes, although with different functions: RBPM, biofilm reactors and membranes filtration RBSOM, supported biofilm reactors and oxygen membranes. (Author) 14 refs.

  9. Nutrient utilization and oxygen production by Chlorella Vulgaris in a hybrid membrane bioreactor and algal membrane photobioreactor system

    KAUST Repository

    Najm, Yasmeen Hani Kamal

    2017-02-17

    This work studied oxygen production and nutrient utilization by Chlorella Vulgaris at different organic/inorganic carbon (OC/IC) and ammonium/nitrate (NH4+-N/NO3--N) ratios to design a hybrid aerobic membrane bioreactor (MBR) and membrane photobioreactor (MPBR) system. Specific oxygen production by C. vulgaris was enough to support the MBR if high growth is accomplished. Nearly 100% removal (or utilization) of PO43--P and IC was achieved under all conditions tested. Optimal growth was achieved at mixotrophic carbon conditions (0.353 d-1) and the highest NH4+-N concentration (0.357 d-1), with preferable NH4+-N utilization rather than NO3--N. The results indicate the potential of alternative process designs to treat domestic wastewater by coupling the hybrid MBR - MPBR systems.

  10. Nutrient utilization and oxygen production by Chlorella Vulgaris in a hybrid membrane bioreactor and algal membrane photobioreactor system

    KAUST Repository

    Najm, Yasmeen Hani Kamal; Jeong, Sanghyun; Leiknes, TorOve

    2017-01-01

    This work studied oxygen production and nutrient utilization by Chlorella Vulgaris at different organic/inorganic carbon (OC/IC) and ammonium/nitrate (NH4+-N/NO3--N) ratios to design a hybrid aerobic membrane bioreactor (MBR) and membrane photobioreactor (MPBR) system. Specific oxygen production by C. vulgaris was enough to support the MBR if high growth is accomplished. Nearly 100% removal (or utilization) of PO43--P and IC was achieved under all conditions tested. Optimal growth was achieved at mixotrophic carbon conditions (0.353 d-1) and the highest NH4+-N concentration (0.357 d-1), with preferable NH4+-N utilization rather than NO3--N. The results indicate the potential of alternative process designs to treat domestic wastewater by coupling the hybrid MBR - MPBR systems.

  11. DNA hybridization on membrane-modified carbon electrodes

    Czech Academy of Sciences Publication Activity Database

    Kouřilová, Alena; Babkina, S. S.; Cahová, Kateřina; Havran, Luděk; Jelen, František; Paleček, Emil; Fojta, Miroslav

    2005-01-01

    Roč. 38, - (2005), s. 2493-2507 ISSN 0003-2719 R&D Projects: GA MPO(CZ) 1H-PK/42; GA AV ČR(CZ) IAA4004402; GA AV ČR(CZ) IBS5004355 Institutional research plan: CEZ:AV0Z50040507 Keywords : DNA hybridization * electrochemical DNA sensor * nitrocellulose membrane Subject RIV: BO - Biophysics Impact factor: 1.036, year: 2005

  12. Hybrid Ventilation Air Flow Process

    DEFF Research Database (Denmark)

    Heiselberg, Per Kvols

    The scope of this annex is therefore to obtain better knowledge of the use of hybrid ventilation technologies. The annex focus on development of control strategies for hybrid ventilation, on development of methods to predict hybrid ventilation performance in office buildings and on implementation...

  13. Plasma-deposited hybrid silica membranes with a controlled retention of organic bridges

    Energy Technology Data Exchange (ETDEWEB)

    Ngamou, P.H.T.; Creatore, M. [Department of Applied Physics, Eindhoven University of Technology, 5600 MB Eindhoven (Netherlands); Overbeek, J.P.; Kreiter, R.; Van Veen, H.M.; Vente, J.F. [ECN, Energy research Centre of the Netherlands, Petten (Netherlands); Wienk, I.M.; Cuperus, P.F. [SolSep BV, Apeldoorn (Netherlands)

    2013-03-05

    Hybrid organically bridged silica membranes are suitable for energy-efficient molecular separations under harsh industrial conditions. Such membranes can be useful in organic solvent nanofiltration if they can be deposited on flexible, porous and large area supports. Here, we report the proof of concept for applying an expanding thermal plasma to the synthesis of perm-selective hybrid silica films from an organically bridged monomer, 1,2-bis(triethoxysilyl)ethane. This membrane is the first in its class to be produced by plasma enhanced chemical vapor deposition. By tuning the plasma and process parameters, the organic bridging groups could be retained in the separating layer. This way, a defect free film could be made with pervaporation performances of an n-butanol-water mixture comparable with those of conventional ceramic supported membranes made by sol-gel technology (i.e. a water flux of [similar]1.8 kg m'-{sup 2} h{sup -1}, a water concentration in the permeate higher than 98% and a separation factor of >1100). The obtained results show the suitability of expanding thermal plasma as a technology for the deposition of hybrid silica membranes for molecular separations.

  14. Engineering a self-driven PVDF/PDA hybrid membranes based on membrane micro-reactor effect to achieve super-hydrophilicity, excellent antifouling properties and hemocompatibility

    Science.gov (United States)

    Li, Jian-Hua; Ni, Xing-Xing; Zhang, De-Bin; Zheng, Hui; Wang, Jia-Bin; Zhang, Qi-Qing

    2018-06-01

    A facile and versatile approach for the preparation of super-hydrophilic, excellent antifouling and hemocompatibility membranes had been developed through the generation in situ of bio-inspired polydopamine (PDA) microspheres on PVDF membranes. SEM images showed that the PDA microspheres were uniformly dispersed on the upper surface and the lower surface of the modified membranes. And there were a great number of PDA microspheres immobilized on the cross-section, but the interconnected pores structure was not destroyed. These facts indicated the existence of membrane micro-reactor effect for the whole membrane structure. Considering the remarkable improvement of hydrophilicity, antifouling properties, and permeation fluxes, we also proposed the cluster phenolic hydroxyl effect for the PVDF/PDA hybrid membranes. And the cluster phenolic hydroxyl effect can be ascribed to the all directions distributed phenolic hydroxyl groups on the whole membrane structure. Besides, the self-driven filtration experiments showed the great wetting ability and permeability of the PVDF/PDA hybrid membranes in filtration process without any external pressure. This implied the existence of accelerating self-driven force after the water flow flowed into the internal of membranes, which contributed to the increase of water flow velocity. All the three aspects were in favor of the enhancement of hydrophilicity, antifouling properties and permeability of the modified membranes. Moreover, the conventional filtration tests, oil/water emulsion filtration tests and protein adsorption tests were also carried out to discuss the practical applications of PVDF/PDA hybrid membranes. And the hemocompatibility of the modified membranes was also proved to enhance greatly through the hemolysis tests and platelet adhesion tests, indicating that the membranes were greatly promising in biomedical applications. The strategy of material modification reported here is substrate-independent and can be extended

  15. Hybrid membranes PVA/silicon for use in fuel cells; Membranas hibridas de PVA/silica para aplicacao em celula a combustivel

    Energy Technology Data Exchange (ETDEWEB)

    Aguiar, Liz C.V. de; Almeida, Raquel D. de; Gomes, Ailton de S. [Universidade Federal do Rio de Janeiro - UFRJ, Instituto de Macromoleculas Professora Eloisa Mano - IMA, RJ (Brazil)], e-mail: lizcontino@ima.ufrj.br; Ramos Filho, Florencio G. de [Centro Universitario Estadual da Zona Oeste - UEZO, Rio de Janeiro, RJ (Brazil)

    2011-07-01

    Hybrids organic-inorganic membranes PVA-silica have been prepared using sol-gel process in situ with the objective of study the influence of inorganic particles incorporation on the water uptake, pervaporation and proton conductivity of PVA membranes. The silica was constituted of mercaptopropyltrimethoxysilane (MPTMS) with or without the mixture with the tetra ethoxysilane (TEOS). The hybrids membranes were oxidated to convert the -SH groups in -SO{sub 3}H groups, becoming them proton conducting. The hybrids membranes not oxidated showed lesser water uptake and pervaporated material, probably, due to the formation of crosslink that restricted the swell of the PVA membrane. The protonic conductivity of the hybrid membranes after the oxidation was up to 26 times bigger than of the membrane not oxidated. (author)

  16. Covalent Immobilization of Peroxidase onto Hybrid Membranes for the Construction of Optical Biosensor

    Directory of Open Access Journals (Sweden)

    Lyubov Yotova

    2015-06-01

    Full Text Available The aim of this study is to covalently immobilize horse radish peroxidase (HRP onto new hybrid membranes synthesized by the sol-gel method based on silica precursors, dendrimers and cellulose derivatives. This new system will be used for designing biosensor. For investigation of the properties of membranes, HRP was used as a modeling enzyme. Kinetic parameters, pH and temperature optimum were determined, and the structure of the membranes surface was examined. Results showed higher relative and residual activity of HRP immobilized onto membranes with cellulose acetate butyrate with high molecular weight CAB/H. This novel biosensor could offer a simple, cheap and rapid tool with enhanced sensing performance as well as having potentials to find application in medicine, pharmacy, food and process control and environmental monitoring.

  17. Advanced, Energy-Efficient Hybrid Membrane System for Industrial Water Reuse

    Energy Technology Data Exchange (ETDEWEB)

    Toy, Lora [RTI International, Research Triangle Park, NC (United States); Choi, Young Chul [RTI International, Research Triangle Park, NC (United States); Hendren, Zachary [RTI International, Research Triangle Park, NC (United States); Kim, Gyu Dong [RTI International, Research Triangle Park, NC (United States)

    2017-03-31

    In the U.S. manufacturing sector, current industrial water use practices are energy-intensive and utilize and discharge high volumes of waters, rendering them not sustainable especially in light of the growing scarcity of suitable water supplies. To help address this problem, the goal of this project was to develop an advanced, cost-effective, hybrid membrane-based water treatment system that can improve the energy efficiency of industrial wastewater treatment while allowing at least 50% water reuse efficiency. This hybrid process would combine emerging Forward Osmosis (FO) and Membrane Distillation (MD) technology components into an integrated FO-MD system that can beneficially utilize low-grade waste heat (i.e., T < 450 °F) in industrial facilities to produce distilled-quality product water for reuse. In this project, laboratory-, bench-, and pilot-scale experiments on the hybrid FO-MD system were conducted for industrial wastewater treatment. It was demonstrated at laboratory, bench, and pilot scales that FO-MD membrane technology can concentrate brine to very high total dissolved solids (TDS) levels (>200,000 ppm) that are at least 2.5 times higher than the TDS level to which RO can achieve. In laboratory testing, currently available FO and MD membranes were tested to select for high-performing membranes with high salt rejection and high water flux. Multiple FO membrane/draw-salt solution combinations that gave high water flux with higher than 98% salt rejection were also identified. Reverse draw-salt fluxes were observed to be much lower for divalent salts than for monovalent salts. MD membranes were identified that had 99.9+% salt rejection and water flux as high as 50-90 L/(m2·h) for flat-sheet membranes and >20 L/(m2·h) for hollow fibers. In bench-scale testing, a single unit of commercially available FO and MD membrane modules were evaluated for continuous, integrated operation. Using the laboratory- and bench-scale test data

  18. Hybrid and Mixed Matrix Membranes for Separations from Fermentations

    Directory of Open Access Journals (Sweden)

    Christopher John Davey

    2016-02-01

    Full Text Available Fermentations provide an alternative to fossil fuels for accessing a number of biofuel and chemical products from a variety of renewable and waste substrates. The recovery of these dilute fermentation products from the broth, however, can be incredibly energy intensive as a distillation process is generally involved and creates a barrier to commercialization. Membrane processes can provide a low energy aid/alternative for recovering these dilute fermentation products and reduce production costs. For these types of separations many current polymeric and inorganic membranes suffer from poor selectivity and high cost respectively. This paper reviews work in the production of novel mixed-matrix membranes (MMMs for fermentative separations and those applicable to these separations. These membranes combine a trade-off of low-cost and processability of polymer membranes with the high selectivity of inorganic membranes. Work within the fields of nanofiltration, reverse osmosis and pervaporation has been discussed. The review shows that MMMs are currently providing some of the most high-performing membranes for these separations, with three areas for improvement identified: Further characterization and optimization of inorganic phase(s, Greater understanding of the compatibility between the polymer and inorganic phase(s, Improved methods for homogeneously dispersing the inorganic phase.

  19. Hybrid and Mixed Matrix Membranes for Separations from Fermentations.

    Science.gov (United States)

    Davey, Christopher John; Leak, David; Patterson, Darrell Alec

    2016-02-29

    Fermentations provide an alternative to fossil fuels for accessing a number of biofuel and chemical products from a variety of renewable and waste substrates. The recovery of these dilute fermentation products from the broth, however, can be incredibly energy intensive as a distillation process is generally involved and creates a barrier to commercialization. Membrane processes can provide a low energy aid/alternative for recovering these dilute fermentation products and reduce production costs. For these types of separations many current polymeric and inorganic membranes suffer from poor selectivity and high cost respectively. This paper reviews work in the production of novel mixed-matrix membranes (MMMs) for fermentative separations and those applicable to these separations. These membranes combine a trade-off of low-cost and processability of polymer membranes with the high selectivity of inorganic membranes. Work within the fields of nanofiltration, reverse osmosis and pervaporation has been discussed. The review shows that MMMs are currently providing some of the most high-performing membranes for these separations, with three areas for improvement identified: Further characterization and optimization of inorganic phase(s), Greater understanding of the compatibility between the polymer and inorganic phase(s), Improved methods for homogeneously dispersing the inorganic phase.

  20. THE INFLUENCE OF MIEX® RESIN FOR WATER TREATMENT EFFICIENCYIN A HYBRID MEMBRANE REACTOR

    Directory of Open Access Journals (Sweden)

    Mariola Rajca

    2014-10-01

    Full Text Available The paper presents the results of studies related to the effectiveness of removal of natural organic matter (NOM from water using hybrid membrane reactor in which ion exchange and ultrafiltration processes were performed. MIEX® resin by Orica Watercare and immersed ultrafiltration polyvinylidene fluoride capillary module ZeeWeed 1 (ZW 1 by GE Power&Water operated at negative pressure were used. The application of multifunctional reactor had a positive effect on the removal of contaminants and enabled the production of high quality water. Additionally, in refer to single stage ultrafiltration it minimalized the occurrence of membrane fouling.

  1. The Tower: Modelling, Analysis and Construction of Bending Active Tensile Membrane Hybrid Structures

    DEFF Research Database (Denmark)

    Holden Deleuran, Anders; Schmeck, Michel; Charles Quinn, Gregory

    2015-01-01

    The project is the result of an interdisciplinary research collaboration between CITA, KET and Fibrenamics exploring the design of integrated hybrid structures employing bending active elements and tensile membranes with bespoke material properties and detailing. Hybrid structures are defined her...

  2. Fabrication of Well-Ordered, Anodic Aluminum Oxide Membrane Using Hybrid Anodization.

    Science.gov (United States)

    Kim, Jungyoon; Ganorkar, Shraddha; Choi, Jinnil; Kim, Young-Hwan; Kim, Seong-II

    2017-01-01

    Anodic Aluminum Oxide (AAO) is one of the most favorable candidates for fabrication of nano-meshed membrane for various applications due to its controllable pore size and self-ordered structure. The mechanism of AAO membrane is a simple and has been studied by many research groups, however the actual fabrication of membrane has several difficulties owing to its sensitivity of ordering, long anodizing time and unclearness of the pore. In this work, we have demonstrated enhanced process of fabrication symmetric AAO membrane by using “hybrid anodizing” (Hyb-A) method which include mild anodization (MA) followed by hard anodization (HA). This Hyb-A process can give highly ordered membrane with more vivid pore than two-step anodizing process. HA was implemented on the Al plate which has been already textured by MA for more ordered structure and HA plays a key role for formation of more obvious pore in Hyb-A. Our experimental results indicate that Hyb-A with proper process sequence would be one of the fast and useful fabrication methods for the AAO membrane.

  3. Optimal operation of batch membrane processes

    CERN Document Server

    Paulen, Radoslav

    2016-01-01

    This study concentrates on a general optimization of a particular class of membrane separation processes: those involving batch diafiltration. Existing practices are explained and operational improvements based on optimal control theory are suggested. The first part of the book introduces the theory of membrane processes, optimal control and dynamic optimization. Separation problems are defined and mathematical models of batch membrane processes derived. The control theory focuses on problems of dynamic optimization from a chemical-engineering point of view. Analytical and numerical methods that can be exploited to treat problems of optimal control for membrane processes are described. The second part of the text builds on this theoretical basis to establish solutions for membrane models of increasing complexity. Each chapter starts with a derivation of optimal operation and continues with case studies exemplifying various aspects of the control problems under consideration. The authors work their way from th...

  4. An investigation of desalination by nanofiltration, reverse osmosis and integrated (hybrid NF/RO) membranes employed in brackish water treatment.

    Science.gov (United States)

    Talaeipour, M; Nouri, J; Hassani, A H; Mahvi, A H

    2017-01-01

    As an appropriate tool, membrane process is used for desalination of brackish water, in the production of drinking water. The present study aims to investigate desalination processes of brackish water of Qom Province in Iran. This study was carried out at the central laboratory of Water and Wastewater Company of the studied area. To this aim, membrane processes, including nanofiltration (NF) and reverse osmosis (RO), separately and also their hybrid process were applied. Moreover, water physical and chemical parameters, including salinity, total dissolved solids (TDS), electric conductivity (EC), Na +1 and Cl -1 were also measured. Afterward, the rejection percent of each parameter was investigated and compared using nanofiltration and reverse osmosis separately and also by their hybrid process. The treatment process was performed by Luna domestic desalination device, which its membrane was replaced by two NF90 and TW30 membranes for nanofiltration and reverse osmosis processes, respectively. All collected brackish water samples were fed through membranes NF90-2540, TW30-1821-100(RO) and Hybrid (NF/RO) which were installed on desalination household scale pilot (Luna water 100GPD). Then, to study the effects of pressure on permeable quality of membranes, the simulation software model ROSA was applied. Results showed that percent of the salinity rejection was recorded as 50.21%; 72.82 and 78.56% in NF, RO and hybrid processes, respectively. During the study, in order to simulate the performance of nanofiltartion, reverse osmosis and hybrid by pressure drive, reverse osmosis system analysis (ROSA) model was applied. The experiments were conducted at performance three methods of desalination to remove physic-chemical parameters as percentage of rejections in the pilot plant are: in the NF system the salinity 50.21, TDS 43.41, EC 43.62, Cl 21.1, Na 36.15, and in the RO membrane the salinity 72.02, TDS 60.26, EC 60.33, Cl 43.08, Na 54.41. Also in case of the rejection in

  5. Recent Membrane Development for Pervaporation Processes

    KAUST Repository

    Ong, Yee Kang; Shi, Gui Min; Le, Ngoc Lieu; Tang, Yu Pan; Zuo, Jian; Nunes, Suzana Pereira; Chung, Neal Tai-Shung

    2016-01-01

    Pervaporation has been regarded as a promising separation technology in separating azeotropic mixtures, solutions with similar boiling points, thermally sensitive compounds, organic–organic mixtures as well as in removing dilute organics from aqueous solutions. As the pervaporation membrane is one of the crucial factors in determining the overall efficiency of the separation process, this article reviews the research and development (R&D) of polymeric pervaporation membranes from the perspective of membrane fabrication procedures and materials.

  6. Recent Membrane Development for Pervaporation Processes

    KAUST Repository

    Ong, Yee Kang

    2016-03-11

    Pervaporation has been regarded as a promising separation technology in separating azeotropic mixtures, solutions with similar boiling points, thermally sensitive compounds, organic–organic mixtures as well as in removing dilute organics from aqueous solutions. As the pervaporation membrane is one of the crucial factors in determining the overall efficiency of the separation process, this article reviews the research and development (R&D) of polymeric pervaporation membranes from the perspective of membrane fabrication procedures and materials.

  7. Hybrid inorganic-organic membranes: Tuning pore properties by sequential grafting

    NARCIS (Netherlands)

    Sripathi, V.G.P.

    2014-01-01

    In this thesis, the synthesis of inorganic - polymeric hybrid membranes by sequential grafting is discussed, for application in gas separation. At high pressures and temperatures, organic (olymer) membranes may suffer from swelling and plasticization. Generally, this causes a reduced molecular

  8. Fouling distribution in forward osmosis membrane process.

    Science.gov (United States)

    Lee, Junseok; Kim, Bongchul; Hong, Seungkwan

    2014-06-01

    Fouling behavior along the length of membrane module was systematically investigated by performing simple modeling and lab-scale experiments of forward osmosis (FO) membrane process. The flux distribution model developed in this study showed a good agreement with experimental results, validating the robustness of the model. This model demonstrated, as expected, that the permeate flux decreased along the membrane channel due to decreasing osmotic pressure differential across the FO membrane. A series of fouling experiments were conducted under the draw and feed solutions at various recoveries simulated by the model. The simulated fouling experiments revealed that higher organic (alginate) fouling and thus more flux decline were observed at the last section of a membrane channel, as foulants in feed solution became more concentrated. Furthermore, the water flux in FO process declined more severely as the recovery increased due to more foulants transported to membrane surface with elevated solute concentrations at higher recovery, which created favorable solution environments for organic adsorption. The fouling reversibility also decreased at the last section of the membrane channel, suggesting that fouling distribution on FO membrane along the module should be carefully examined to improve overall cleaning efficiency. Lastly, it was found that such fouling distribution observed with co-current flow operation became less pronounced in counter-current flow operation of FO membrane process. Copyright © 2014 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  9. Dehydration processes using membranes with hydrophobic coating

    Science.gov (United States)

    Huang, Yu; Baker, Richard W; Aldajani, Tiem; Ly, Jennifer

    2013-07-30

    Processes for removing water from organic compounds, especially polar compounds such as alcohols. The processes include a membrane-based dehydration step, using a membrane that has a dioxole-based polymer selective layer or the like and a hydrophilic selective layer, and can operate even when the stream to be treated has a high water content, such as 10 wt % or more. The processes are particularly useful for dehydrating ethanol.

  10. Renewable energy powered membrane technology. 2. The effect of energy fluctuations on performance of a photovoltaic hybrid membrane system

    OpenAIRE

    Richards, B.S.; Capão, D.P.S.; Schäfer, Andrea

    2008-01-01

    This paper reports on the performance fluctuations during the operation of a batteryless hybrid ultrafiltration-nanofiltration/reverse osmosis (UF-NF/RO) membrane desalination system powered by photovoltaics treating brackish groundwater in outback Australia. The renewable energy powered membrane (RE-membrane) system is designed to supply clean drinking water to a remote community of about 50 inhabitants. The performance of the RE-membrane system over four different solar days is summarized u...

  11. Enhanced Performance of Polyurethane Hybrid Membranes for CO2 Separation by Incorporating Graphene Oxide: The Relationship between Membrane Performance and Morphology of Graphene Oxide.

    Science.gov (United States)

    Wang, Ting; Zhao, Li; Shen, Jiang-nan; Wu, Li-guang; Van der Bruggen, Bart

    2015-07-07

    Polyurethane hybrid membranes containing graphene oxide (GO) with different morphologies were prepared by in situ polymerization. The separation of CO2/N2 gas mixtures was studied using these novel membranes. The results from the morphology characterization of GO samples indicated that the oxidation process in the improved Hummers method introduced oxygenated functional groups into graphite, making graphite powder exfoliate into GO nanosheets. The surface defects on the GO sheets increased when oxidation increased due to the introduction of more oxygenated functional groups. Both the increase in oxygenated functional groups on the GO surface and the decrease in the number of GO layers leads to a better distribution of GO in the polymer matrix, increasing thermal stability and gas separation performance of membranes. The addition of excess oxidant destroyed the structure of GO sheets and forms structural defects, which depressed the separation performance of membranes. The hybrid membranes containing well-distributed GO showed higher permeability and permeability selectivity for the CO2. The formation of GO aggregates in the hybrid membranes depressed the membrane performance at a high content of GO.

  12. Hybrid membrane-microfluidic components using a novel ceramic MEMS technology

    Science.gov (United States)

    Lutz, Brent J.; Polyakov, Oleg; Rinaldo, Chris

    2012-03-01

    A novel hybrid nano/microfabrication technology has been employed to produce unique MEMS and microfluidic components that integrate nanoporous membranes. The components are made by micromachining a self-organized nanostructured ceramic material that is biocompatible and amenable to surface chemistry modification. Microfluidic structures, such as channels and wells, can be made with a precision of membranes can be integrated into the bottom of these structures, featuring a wide range of possible thicknesses, from 100 micron to membranes may be non-porous or porous (with controllable pore sizes from 200 nm to technology is highly scaleable, and thus can yield low-cost, reliable, disposable microcomponents and devices. Specific applications that can benefit from this technology includes cell culturing and assays, imaging by cryo-electron tomography, environmental sample processing, as well as many others.

  13. PDMS/PVDF hybrid electrospun membrane with superhydrophobic property and drop impact dynamics for dyeing wastewater treatment using membrane distillation

    KAUST Repository

    An, Alicia Kyoungjin

    2016-10-21

    Fouling in membrane distillation (MD) results in an increase in operation costs and deterioration in a water quality. In this work, a poly(vinylidene fluoride-co-hexafluoropropene) (PVDF-HFP) electrospun (E-PH) membrane was fabricated by hybridizing polydimethylsiloxane (PDMS) polymeric microspheres with superhydrophobicity onto the E-PH membrane via electrospinning. The resulting hybrid PDMS with E-PH (E-PDMS) membrane showed a significant enhancement in surface hydrophobicity (contact angle, CA = 155.4°) and roughness (Ra = 1,285mm). The zeta potential of E-PDMS membrane surface showed a higher negative value than that of a commercial PVDF (C-PVDF) membrane. These properties of E-PDMS membrane provided an antifouling in treating of differently-charged dyes and generated a flake-like dye–dye (loosely bound foulant) structure on the membrane surface rather than in the membrane pores. This also led to a high productivity of E-PDMS membrane (34 Lm-2h-1, 50% higher than that of C-PVDF membrane) without fouling or wetting. In addition, complete color removal and pure water production were achieved during a long-term operation. An application of intermittent water flushing (WF) in direct contact MD (DCMD) operation led to a 99% CA recovery of E-PDMS membrane indicating its sustainability. Therefore, the E-PDMS membrane is a promising candidate for MD application in dyeing wastewater treatment.

  14. Hybrid membrane processes for water reuse

    OpenAIRE

    Pidou, Marc

    2006-01-01

    Water recycling is now widely accepted as a sustainable option to respond to the general increase of the fresh water demand, water shortages and for environment protection. Because greywater represents up to 70% of domestic wastewater volume but contains only 30% of the organic fraction and from 9 to 20% of the nutrients (Kujawa-Roeleveld and Zeeman, 2006), it is seen as one of the most appropriate sources to be treated and reuse. A broad range of technologies has been used for...

  15. Nafion-TiO{sub 2} hybrid membranes for medium temperature polymer electrolyte fuel cells (PEFCs)

    Energy Technology Data Exchange (ETDEWEB)

    Sacca, A.; Carbone, A.; Passalacqua, E. [CNR-ITAE, Via Salita S. Lucia Sopra Contesse, 98126 Messina (Italy); D' Epifanio, A.; Licoccia, S.; Traversa, E. [Department of Chemical Science and Technology, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome (Italy); Sala, E.; Traini, F.; Ornelas, R. [Nuvera Fuel Cells, Via Bistolfi 35, 20134 Milan (Italy)

    2005-12-01

    A nanocomposite re-cast Nafion hybrid membrane containing titanium oxide calcined at T=400{sup o}C as an inorganic filler was developed in order to work at medium temperature in polymer electrolyte fuel cells (PEFCs) maintaining a suitable membrane hydration under fuel cell operative critical conditions. Nanometre TiO{sub 2} powder was synthesized via a sol-gel procedure by a rapid hydrolysis of Ti(OiPr){sub 4}. The membrane was prepared by mixing a Nafion-dimethylacetammide (DMAc) dispersion with a 3wt% of TiO{sub 2} powder and casting the mixture by Doctor Blade technique. The resulting film was characterised in terms of water uptake and ion exchange capacity (IEC). The membrane was tested in a single cell from 80 to 130{sup o}C in humidified H{sub 2}/air. The obtained results were compared with the commercial Nafion115 and a home-made recast Nafion membrane. Power density values of 0.514 and 0.256Wcm{sup -2} at 0.56V were obtained at 110 and 130{sup o}C, respectively, for the composite Nafion-Titania membrane. Preliminary tests carried out using steam reforming (SR) synthetic fuel at about 110{sup o}C have highlighted the benefit of the inorganic filler introduction when PEFC operates at medium temperature and with processed hydrogen. (author)

  16. High-performance hybrid pervaporation membranes with superior hydrothermal and acid stability

    Energy Technology Data Exchange (ETDEWEB)

    Castricum, H.L. [Inorganic Materials Science, MESA Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede (Netherlands); Blank, D.H.A.; Ten Elshof, J.E. [Van ' t Hoff Institute for Molecular Sciences, University of Amsterdam, Nieuwe Achtergracht 166, 1018 WV Amsterdam (Netherlands); Kreiter, R.; Van Veen, H.M.; Vente, J.F. [ECN Efficiency and Infrastructure, Petten (Netherlands)

    2009-05-15

    A new organic-inorganic hybrid membrane has been prepared with exceptional performance in dewatering applications. The only precursor used in the sol-gel synthesis of the selective layer was organically linked 1,2-bis(triethoxysilyl)ethane (BTESE). The microporous structure of this layer enables selective molecular sieving of small molecules from larger ones. In the dehydration of n-butanol with 5% of water, the membrane shows a high separation factor of over 4000 and ultra-fast water transport at a rate of more than 20 kg m{sup -2} h{sup -1} at 150C. This can be related to the high adsorption capacity of the material and the sub-micron thickness of the selective layer. The selectivity has now remained constant over almost one and a half years under continuous process testing conditions. Apart from the hydrothermal stability, the membrane exhibits a high tolerance for acid contamination. A slow performance decline in flux and separation factor is only observed at a pH lower than 2. The high stability and effective separation indicate a broad industrial application potential of the hybrid membrane material.

  17. Network and neuronal membrane properties in hybrid networks reciprocally regulate selectivity to rapid thalamocortical inputs.

    Science.gov (United States)

    Pesavento, Michael J; Pinto, David J

    2012-11-01

    Rapidly changing environments require rapid processing from sensory inputs. Varying deflection velocities of a rodent's primary facial vibrissa cause varying temporal neuronal activity profiles within the ventral posteromedial thalamic nucleus. Local neuron populations in a single somatosensory layer 4 barrel transform sparsely coded input into a spike count based on the input's temporal profile. We investigate this transformation by creating a barrel-like hybrid network with whole cell recordings of in vitro neurons from a cortical slice preparation, embedding the biological neuron in the simulated network by presenting virtual synaptic conductances via a conductance clamp. Utilizing the hybrid network, we examine the reciprocal network properties (local excitatory and inhibitory synaptic convergence) and neuronal membrane properties (input resistance) by altering the barrel population response to diverse thalamic input. In the presence of local network input, neurons are more selective to thalamic input timing; this arises from strong feedforward inhibition. Strongly inhibitory (damping) network regimes are more selective to timing and less selective to the magnitude of input but require stronger initial input. Input selectivity relies heavily on the different membrane properties of excitatory and inhibitory neurons. When inhibitory and excitatory neurons had identical membrane properties, the sensitivity of in vitro neurons to temporal vs. magnitude features of input was substantially reduced. Increasing the mean leak conductance of the inhibitory cells decreased the network's temporal sensitivity, whereas increasing excitatory leak conductance enhanced magnitude sensitivity. Local network synapses are essential in shaping thalamic input, and differing membrane properties of functional classes reciprocally modulate this effect.

  18. Hybrid membrane contactor system for creating semi-breathing air

    Science.gov (United States)

    Timofeev, D. V.

    2012-02-01

    Typically, the equipment to create an artificial climate does not involve changing the composition of the respiratory air. In particular in medical institutions assumes the existence of plant of artificial climate and disinfection in operating rooms and intensive care wards. The use of a hybrid membrane-absorption systems for the generation of artificial atmospheres are improving the respiratory system, blood is enriched or depleted of various gases, resulting in increased stamina, there is a better, faster or slower metabolism, improves concentration and memory. Application of the system contributes to easy and rapid recovery after the operation. By adding a special component, with drug activity, air ionization, and adjust its composition, you can create a special, more favorable for patients with the atmosphere. These factors allow for the treatment and rehabilitation of patients and reduce mortality of heavy patients.

  19. Tubular membrane bioreactors for biotechnological processes.

    Science.gov (United States)

    Wolff, Christoph; Beutel, Sascha; Scheper, Thomas

    2013-02-01

    This article is an overview of bioreactors using tubular membranes such as hollow fibers or ceramic capillaries for cultivation processes. This diverse group of bioreactor is described here in regard to the membrane materials used, operational modes, and configurations. The typical advantages of this kind of system such as environments with low shear stress together with high cell densities and also disadvantages like poor oxygen supply are summed up. As the usage of tubular membrane bioreactors is not restricted to a certain organism, a brief overview of various applications covering nearly all types of cells from prokaryotic to eukaryotic cells is also given here.

  20. Hybrid capacitive deionization with anion-exchange membranes for lithium extraction

    OpenAIRE

    Siekierka Anna; Bryjak Marek

    2017-01-01

    Lithium is considered to be a critical material for various industrial fields. We present our studies on extraction lithium from diluted aqueous solution by novel hybrid system based on a membrane capacitive deionization and batteries desalination. Hybrid CDI is comprised by a lithium selective adsorbent, activated carbon electrode and anion-exchange membranes. Here, we demonstrated implication of various type of anion-exchange membranes and influence their properties on effective capacity an...

  1. Removal of trace organic chemicals and performance of a novel hybrid ultrafiltration-osmotic membrane bioreactor.

    Science.gov (United States)

    Holloway, Ryan W; Regnery, Julia; Nghiem, Long D; Cath, Tzahi Y

    2014-09-16

    A hybrid ultrafiltration-osmotic membrane bioreactor (UFO-MBR) was investigated for over 35 days for nutrient and trace organic chemical (TOrC) removal from municipal wastewater. The UFO-MBR system uses both ultrafiltration (UF) and forward osmosis (FO) membranes in parallel to simultaneously extract clean water from an activated sludge reactor for nonpotable (or environmental discharge) and potable reuse, respectively. In the FO stream, water is drawn by osmosis from activated sludge through an FO membrane into a draw solution (DS), which becomes diluted during the process. A reverse osmosis (RO) system is then used to reconcentrate the diluted DS and produce clean water suitable for direct potable reuse. The UF membrane extracts water, dissolved salts, and some nutrients from the system to prevent their accumulation in the activated sludge of the osmotic MBR. The UF permeate can be used for nonpotable reuse purposes (e.g., irrigation and toilet flushing). Results from UFO-MBR investigation illustrated that the chemical oxygen demand, total nitrogen, and total phosphorus removals were greater than 99%, 82%, and 99%, respectively. Twenty TOrCs were detected in the municipal wastewater that was used as feed to the UFO-MBR system. Among these 20 TOrCs, 15 were removed by the hybrid UFO-MBR system to below the detection limit. High FO membrane rejection was observed for all ionic and nonionic hydrophilic TOrCs and lower rejection was observed for nonionic hydrophobic TOrCs. With the exceptions of bisphenol A and DEET, all TOrCs that were detected in the DS were well rejected by the RO membrane. Overall, the UFO-MBR can operate sustainably and has the potential to be utilized for direct potable reuse applications.

  2. Mesoporous silica nanotubes hybrid membranes for functional nanofiltration

    International Nuclear Information System (INIS)

    El-Safty, Sherif A; Shahat, Ahmed; Mekawy, Moataz; Nguyen, Hoa; Warkocki, Wojciech; Ohnuma, Masato

    2010-01-01

    The development of nanofiltration systems would greatly assist in the production of well-defined particles and biomolecules with unique properties. We report a direct, simple synthesis of hexagonal silica nanotubes (NTs), which vertically aligned inside anodic alumina membranes (AAM) by means of a direct templating method of microemulsion phases with cationic surfactants. The direct approach was used as soft templates for predicting ordered assemblies of surfactant/silica composites through strong interactions within AAM pockets. Thus, densely packed NTs were successfully formed in the entirety of the AAM channels. These silica NTs were coated with layers of organic moieties to create a powerful technique for the ultrafine filtration. The resulting modified-silica NTs were chemically robust and showed affinity toward the transport of small molecular particles. The rigid silica NTs inside AAM channels had a pore diameter of ≤ 4 nm and were used as ultrafine filtration systems for noble metal nanoparticles (NM NPs) and semiconductor nanocrystals (SC NCs) fabricated with a wide range of sizes (1.0-50 nm) and spherical/pyramidal morphologies. Moreover, the silica NTs hybrid membranes were also found to be suitable for separation of biomolecules such as cytochrome c (CytC). Importantly, this nanofilter design retains high nanofiltration efficiency of NM NPs, SC NCs and biomolecules after a number of reuse cycles. Such retention is crucial in industrial applications.

  3. An Integrated Membrane Process for Butenes Production

    Directory of Open Access Journals (Sweden)

    Leonardo Melone

    2016-11-01

    Full Text Available Iso-butene is an important material for the production of chemicals and polymers. It can take part in various chemical reactions, such as hydrogenation, oxidation and other additions owing to the presence of a reactive double bond. It is usually obtained as a by-product of a petroleum refinery, by Fluidized Catalytic Cracking (FCC of naphtha or gas-oil. However, an interesting alternative to iso-butene production is n-butane dehydroisomerization, which allows the direct conversion of n-butane via dehydrogenation and successive isomerization. In this work, a simulation analysis of an integrated membrane system is proposed for the production and recovery of butenes. The dehydroisomerization of n-butane to iso-butene takes place in a membrane reactor where the hydrogen is removed from the reaction side with a Pd/Ag alloys membrane. Afterwards, the retentate and permeate post-processing is performed in membrane separation units for butenes concentration and recovery. Four different process schemes are developed. The performance of each membrane unit is analyzed by appropriately developed performance maps, to identify the operating conditions windows and the membrane permeation properties required to maximize the recovery of the iso-butene produced. An analysis of integrated systems showed a yield of butenes higher than the other reaction products with high butenes recovery in the gas separation section, with values of molar concentration between 75% and 80%.

  4. A hybrid microbial fuel cell membrane bioreactor with a conductive ultrafiltration membrane biocathode for wastewater treatment

    KAUST Repository

    Malaeb, Lilian; Katuri, Krishna; Logan, Bruce E.; Maab, Husnul; Nunes, Suzana Pereira; Saikaly, Pascal

    2013-01-01

    A new hybrid, air-biocathode microbial fuel cell-membrane bioreactor (MFC-MBR) system was developed to achieve simultaneous wastewater treatment and ultrafiltration to produce water for direct reclamation. The combined advantages of this system were achieved by using an electrically conductive ultrafiltration membrane as both the cathode and the membrane for wastewater filtration. The MFC-MBR used an air-biocathode, and it was shown to have good performance relative to an otherwise identical cathode containing a platinum catalyst. With 0.1 mm prefiltered domestic wastewater as the feed, the maximum power density was 0.38 W/m2 (6.8 W/m3) with the biocathode, compared to 0.82 W/m2 (14.5 W/m3) using the platinum cathode. The permeate quality from the biocathode reactor was comparable to that of a conventional MBR, with removals of 97% of the soluble chemical oxygen demand, 97% NH3-N, and 91% of total bacteria (based on flow cytometry). The permeate turbidity was <0.1 nephelometric turbidity units. These results show that a biocathode MFC-MBR system can achieve high levels of wastewater treatment with a low energy input due to the lack of a need for wastewater aeration. © 2013 American Chemical Society.

  5. A hybrid microbial fuel cell membrane bioreactor with a conductive ultrafiltration membrane biocathode for wastewater treatment

    KAUST Repository

    Malaeb, Lilian

    2013-10-15

    A new hybrid, air-biocathode microbial fuel cell-membrane bioreactor (MFC-MBR) system was developed to achieve simultaneous wastewater treatment and ultrafiltration to produce water for direct reclamation. The combined advantages of this system were achieved by using an electrically conductive ultrafiltration membrane as both the cathode and the membrane for wastewater filtration. The MFC-MBR used an air-biocathode, and it was shown to have good performance relative to an otherwise identical cathode containing a platinum catalyst. With 0.1 mm prefiltered domestic wastewater as the feed, the maximum power density was 0.38 W/m2 (6.8 W/m3) with the biocathode, compared to 0.82 W/m2 (14.5 W/m3) using the platinum cathode. The permeate quality from the biocathode reactor was comparable to that of a conventional MBR, with removals of 97% of the soluble chemical oxygen demand, 97% NH3-N, and 91% of total bacteria (based on flow cytometry). The permeate turbidity was <0.1 nephelometric turbidity units. These results show that a biocathode MFC-MBR system can achieve high levels of wastewater treatment with a low energy input due to the lack of a need for wastewater aeration. © 2013 American Chemical Society.

  6. Rapid One-Pot Microwave Synthesis of Mixed-Linker Hybrid Zeolitic-Imidazolate Framework Membranes for Tunable Gas Separations.

    Science.gov (United States)

    Hillman, Febrian; Brito, Jordan; Jeong, Hae-Kwon

    2018-02-14

    The relatively slow and complex fabrication processes of polycrystalline metal-organic framework (MOF) membranes often times restrict their way to commercialization, despite their potential for molecular separation applications. Herein, we report a rapid one-pot microwave synthesis of mixed-linker hybrid zeolitic-imidazolate framework (ZIF) membranes consisting of 2-methylimidazolate (ZIF-8 linker) and benzimidazolate (ZIF-7 linker) linkers, termed ZIF-7-8 membranes. The fast-volumetric microwave heating in conjunction with a unique counter diffusion of metal and linker solutions enabled unprecedented rapid synthesis of well-intergrown ZIF-7-8 membranes in ∼90 s, the fastest MOF membrane preparation up to date. Furthermore, we were able to tune the molecular sieving properties of the ZIF-7-8 membranes by varying the benzimidazole-to-2-methylimidazole (bIm-to-mIm) linker ratio in the hybrid frameworks. The tuning of their molecular sieving properties led to the systematic change in the permeance and selectivity of various small gases. The unprecedented rapid synthesis of well-intergrown ZIF-7-8 membranes with tunable molecular sieving properties is an important step forward for the commercial gas separation applications of ZIF membranes.

  7. Antioxidants, mechanisms, and recovery by membrane processes.

    Science.gov (United States)

    Bazinet, Laurent; Doyen, Alain

    2017-03-04

    Antioxidants molecules have a great interest for bio-food and nutraceutical industries since they play a vital role for their capacity to reduce oxidative processes. Consequently, these molecules, generally present in complex matrices, have to be fractionated and purified to characterize them and to test their antioxidant activity. However, as natural or synthetics antioxidant molecules differ in terms of structural composition and physico-chemical properties, appropriate separation technologies must be selected. Different fractionation technologies are available but the most commonly used are filtration processes. Indeed, these technologies allow fractionation according to molecular size (pressure-driven processes), charge, or both size and charge (electrically driven processes). In this context, and after summarizing the reaction mechanisms of the different classes and nature of antioxidants as well as membrane fractionation technologies, this manuscript presents the specific applications of these membranes processes for the recovery of antioxidant molecules.

  8. Process synthesis and intensification of hybrid separations

    DEFF Research Database (Denmark)

    Errico, Massimiliano

    2017-01-01

    Hybrid flowsheets are defined, in the context of process intensification, as alternatives suitable for replacing energy-intensive separation methods through the combination of more than one unit operation. Distillation is one of the first options considered for achieving a required separation...... and commented on. The corresponding distillation-based processes are considered for comparison. Synthesis of the possible hybrid flowsheets appears to be important, especially when multicomponent mixtures are considered. This aspect is discussed for the combination of liquid-liquid extraction and distillation...... as applied to the separation of biobutanol from its fermentation broth. The synthesis of alternative hybrid flowsheets is reported, showing that one configuration can realize a 43% reduction in the total annual cost. Bioalcohol production by fermentation perfectly represents the casewhere distillation alone...

  9. Recent Developments in Abrasive Hybrid Manufacturing Processes

    Directory of Open Access Journals (Sweden)

    Ruszaj Adam

    2017-06-01

    Full Text Available Recent dynamic development of abrasive hybrid manufacturing processes results from application of a new difficult for machining materials and improvement of technological indicators of manufacturing processes already applied in practice. This tendency also occurs in abrasive machining processes which are often supported by ultrasonic vibrations, electrochemical dissolution or by electrical discharges. In the paper we present the review of new results of investigations and new practical applications of Abrasive Electrodischarge (AEDM and Electrochemical (AECM Machining.

  10. Development of a membrane electrode assembly process for proton exchange membrane fuel cell (PEMFC)

    International Nuclear Information System (INIS)

    Baldo, Wilians Roberto

    2003-01-01

    In this work, a Membrane Electrode Assembly (MEA) producing process was developed, involving simple steps, aiming cost reduction and good reproducibility for Proton Exchange Membrane Fuel Cell (PEMFC) commercial applications. The electrodes were produced by spraying ink into both sides of the polymeric membrane, building the catalytic layers, followed by hot pressing of Gas Diffusion Layers (GDL), forming the MEA. This new producing method was called 'Spray and hot pressing hybrid method'. Concerning that all the parameters of spray and hot pressing methods are interdependent, a statistical procedure were used in order to study the mutual variables influences and to optimize the method. This study was earned out in two distinct steps: the first one, where seven variables were considered for the analysis and the second one, where only the variables that interfered in the process performance in the first step were considered for analysis. The results showed that the developed process was adequate, including only simple steps, reaching MEA's performance of 651 m A cm -2 at a potential of 600 mV for catalysts loading of 0,4 mg cm -2 Pt at the anode and 0,6 mg cm -2 Pt at the cathode. This result is compared to available commercial MEA's, with the same fuel cell operations conditions. (author)

  11. Corrugated Membrane Nonlinear Deformation Process Calculation

    Directory of Open Access Journals (Sweden)

    A. S. Nikolaeva

    2015-01-01

    Full Text Available Elastic elements are widely used in instrumentation. They are used to create a particular interference between the parts, for accumulating mechanical energy, as the motion transmission elements, elastic supports, and sensing elements of measuring devices. Device reliability and quality depend on the calculation accuracy of the elastic elements. A corrugated membrane is rather common embodiment of the elastic element.The corrugated membrane properties depend largely on its profile i.e. a generatrix of the meridian surface.Unlike other types of pressure elastic members (bellows, tube spring, the elastic characteristics of which are close to linear, an elastic characteristic of the corrugated membrane (typical movement versus external load is nonlinear. Therefore, the corrugated membranes can be used to measure quantities, nonlinearly related to the pressure (e.g., aircraft air speed, its altitude, pipeline fluid or gas flow rate. Another feature of the corrugated membrane is that significant movements are possible within the elastic material state. However, a significant non-linearity of membrane characteristics leads to severe complicated calculation.This article is aimed at calculating the corrugated membrane to obtain the elastic characteristics and the deformed shape of the membrane meridian, as well as at investigating the processes of buckling. As the calculation model, a thin-walled axisymmetric shell rotation is assumed. The material properties are linearly elastic. We consider a corrugated membrane of sinusoidal profile. The membrane load is a uniform pressure.The algorithm for calculating the mathematical model of an axisymmetric corrugated membrane of constant thickness, based on the Reissner’s theory of elastic thin shells, was realized as the author's program in C language. To solve the nonlinear problem were used a method of changing the subspace of control parameters, developed by S.S., Gavriushin, and a parameter marching method

  12. Application of membrane technologies for liquid radioactive waste processing

    International Nuclear Information System (INIS)

    2004-01-01

    Membrane separation processes have made impressive progress since the first synthesis of membranes almost 40 years ago. This progress was driven by strong technological needs and commercial expectations. As a result the range of successful applications of membranes and membrane processes is continuously broadening. In addition, increasing application of membrane processes and technologies lies in the increasing variations of the nature and characteristics of commercial membranes and membrane apparatus. The objective of the report is to review the information on application of membrane technologies in the processing of liquid radioactive waste. The report covers the various types of membranes, equipment design, range of applications, operational experience and the performance characteristics of different membrane processes. The report aims to provide Member States with basic information on the applicability and limitations of membrane separation technologies for processing liquid radioactive waste streams

  13. Separation of BSA through FAU-type zeolite ceramic composite membrane formed on tubular ceramic support: Optimization of process parameters by hybrid response surface methodology and biobjective genetic algorithm.

    Science.gov (United States)

    Vinoth Kumar, R; Ganesh Moorthy, I; Pugazhenthi, G

    2017-08-09

    In this study, Faujasite (FAU) zeolite was coated on low-cost tubular ceramic support as a separating layer through hydrothermal route. The mixture of silicate and aluminate solutions was used to create a zeolitic separation layer on the support. The prepared zeolite ceramic composite membrane was characterized using X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), particle size distribution (PSD), field emission scanning electron microscopy (FESEM), and zeta potential measurements. The porosity of ceramic support (53%) was reduced by the deposition of FAU (43%) zeolite layer. The pore size and water permeability of the membrane were evaluated as 0.179 µm and 1.62 × 10 -7  m 3 /m 2  s kPa, respectively, which are lower than that of the support (pore size of 0.309 µm and water permeability of 5.93 × 10 -7  m 3 /m 2  s kPa). The permeate flux and rejection potential of the prepared membrane were evaluated by microfiltration of bovine serum albumin (BSA). To study the influences of three independent variables such as operating pressure (68.94-275.79 kPa), concentration of BSA (100-500 ppm), and solution pH (2-4) on permeate flux and percentage of rejection, the response surface methodology (RSM) was used. The predicted models for permeate flux and rejection were further subjected to biobjective genetic algorithm (GA). The hybrid RSM-GA approach resulted in a maximum permeate flux of 2.66 × 10 -5  m 3 /m 2  s and BSA rejection of 88.02%, at which the optimum conditions were attained as 100 ppm BSA concentration, 2 pH solution, and 275.79 kPa applied pressure. In addition, the separation efficiency was compared with other membranes applied for BSA separation to know the potential of the fabricated FAU zeolite ceramic composite membrane.

  14. Co3O4 nanoneedle@electroactive nickel boride membrane core/shell arrays: A novel hybrid for enhanced capacity

    International Nuclear Information System (INIS)

    Li, Tingting; Zhu, Congxu; Yang, Xiaogang; Gao, Yuanhao; He, Weiwei; Yue, Hongwei; Zhao, Hongxiao

    2017-01-01

    Graphical abstract: Active nickel boride membrane anchored Co 3 O 4 nanoneedle arrays hybrid is synthesized via rapid interface reaction. The optimized core/shell nanostructure demonstrates greatly enhanced electrochemical properties. Display Omitted -- Highlights: •Active nickel boride membrane anchored Co 3 O 4 nanoneedle arrays core-shell hybrid architectures was fabricated via rapid interface reaction. •Specific capacity was improved by synergy between highly active components and optimized electron transfer microstructure. •The assembled asymmetric supercapacitor device exhibited excellent electrochemical performance. -- Abstract: Exploring novel hybrid materials with efficient microstructure using facile approaches is highly urgent in designing supercapacitor electrodes. Here, the Ni-B membrane was used for coating the porous Co 3 O 4 nanoneedle arrays which supported on the nickel foam (NF) frameworks through a rapid chemical reduction process (denoted as NF/Co 3 O 4 @NiB). The Ni-B membrane both provided sufficient active sites for redox reactions and inhibited the aggregation of formed hybrid architectures. Benefiting from the unique structural design and strongly coupled effects between porous Co 3 O 4 arrays and Ni-B membrane, the resulted NF/Co 3 O 4 @NiB electrode exhibited high areal capacitance of 3.47 F cm −2 (0.48 mAh cm −2 ) at a current density of 2.5 mA cm −2 , an excellent rate capability while maintaining 95.5% capacity retention after 2000 cycles. The asymmetric supercapacitor constructed with the NF/Co 3 O 4 @NiB as positive electrode and hierarchical porous carbon (HPC) as negative electrode also showed ideal capacitive behavior, and simultaneously delivered high energy and power densities. The easily decoration of Ni-B membrane on various active nanoarrays may arouse more novel design about hybrid architectures for large-scale applications.

  15. Hybrid processes in electrotechnology; Hybrid-Verfahren in der Elektroprozesstechnik

    Energy Technology Data Exchange (ETDEWEB)

    Neumeyer, Joerg; Schuelbe, Holger; Nacke, Bernard [Leibniz Univ. Hannover (Germany). Inst. fuer Elektroprozesstechnik

    2012-09-15

    Industrial process heat makes up the third largest sector of total German consumption of final energy, after mechanical energy in the field of transport and domestic space heating. An increasing percentage of the energy required to generate process heat is now supplied using electrothermal systems. The benefits of these methods over conventional fuel-based technology can be found in their universal usability, relatively simply handling and use, high transmissible output density, superior efficiency, and lower ecological impact. Electrical energy nowadays continues mainly to be generated in power-generating plants based on fuels such as coal and gas, but such large-scale facilities also include systems which keep pollutant emissions low, such as flue-gas desulphurisation and dedusting installations. This large bandwidth of benefits possessed by electrothermal systems can also be enlarged and adapted for other applications by means of rational and appropriate combination in the context of so-called hybrid processes. (orig.)

  16. Disease processes as hybrid dynamical systems

    Directory of Open Access Journals (Sweden)

    Pietro Liò

    2012-08-01

    Full Text Available We investigate the use of hybrid techniques in complex processes of infectious diseases. Since predictive disease models in biomedicine require a multiscale approach for understanding the molecule-cell-tissue-organ-body interactions, heterogeneous methodologies are often employed for describing the different biological scales. Hybrid models provide effective means for complex disease modelling where the action and dosage of a drug or a therapy could be meaningfully investigated: the infection dynamics can be classically described in a continuous fashion, while the scheduling of multiple treatment discretely. We define an algebraic language for specifying general disease processes and multiple treatments, from which a semantics in terms of hybrid dynamical system can be derived. Then, the application of control-theoretic tools is proposed in order to compute the optimal scheduling of multiple therapies. The potentialities of our approach are shown in the case study of the SIR epidemic model and we discuss its applicability on osteomyelitis, a bacterial infection affecting the bone remodelling system in a specific and multiscale manner. We report that formal languages are helpful in giving a general homogeneous formulation for the different scales involved in a multiscale disease process; and that the combination of hybrid modelling and control theory provides solid grounds for computational medicine.

  17. Continual Energy Management System of Proton Exchange Membrane Fuel Cell Hybrid Power Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Ren Yuan

    2016-01-01

    Full Text Available Current research status in energy management of Proton Exchange Membrane (PEM fuel cell hybrid power electric vehicles are first described in this paper, and then build the PEMFC/ lithium-ion battery/ ultra-capacitor hybrid system model. The paper analysis the key factors of the continuous power available in PEM fuel cell hybrid power electric vehicle and hybrid power system working status under different driving modes. In the end this paper gives the working flow chart of the hybrid power system and concludes the three items of the system performance analysis.

  18. Polymer-inorganic hybrid proton conductive membranes: Effect of the interfacial transfer pathways

    International Nuclear Information System (INIS)

    Chen, Pingping; Hao, Lie; Wu, Wenjia; Li, Yifan; Wang, Jingtao

    2016-01-01

    Highlights: • A series of hybrid membranes are prepared using fillers with different structures. • The fillers (0-D, 1-D, and 2-D) are sulfonated to ensure close surface component. • The effect of filler’s structure on microstructure of hydrid membrane is explored. • For single-kind filler series, 2-D filler has the strongest conduction promotion. • The synergy effect of different kinds of fillers is systematacially investigated. - Abstract: For hybrid membrane, the polymer-inorganic interface along filler surface can be facilely created to be distinctive and controllable pathway for mass transfer. Herein, three kinds of fillers are used as inorganic additives including zero-dimensional silica (0-D, SiO_2), one-dimensional halloysite nanotube (1-D, HNT), and two-dimensional graphene oxide (2-D, GO), which are functionalized by sulfonated polymer layer to ensure close surface component. Then the fillers are incorporated into two types of polymer matrixes (phase-separated sulfonated poly(ether ether ketone) and non-phase-separated chitosan) to prepare three series of hybrid membranes with single-kind filler, double-kinds fillers, or triple-kinds fillers, respectively. The microstructures, physicochemical properties, and proton conduction properties (under hydrated and anhydrous conditions) of the membranes are extensively investigated. It is found that (i) for the single-kind filler-filled membranes, 2-D filler has the strongest promotion ability for proton conductivity of membrane due to the constructed wide and long-range pathways for proton transfer; (ii) while for the hybrid membranes with double-kinds fillers, instead of synergistic promotion effect, the fillers cause more tortuous transfer pathways within membranes and then decrease proton conductivity; (iii) the hybrid membranes with triple-kinds fillers exhibit similar behavior but a little higher conductivity than the membranes with double-kinds fillers.

  19. A general model for membrane-based separation processes

    DEFF Research Database (Denmark)

    Soni, Vipasha; Abildskov, Jens; Jonsson, Gunnar Eigil

    2009-01-01

    behaviour will play an important role. In this paper, modelling of membrane-based processes for separation of gas and liquid mixtures are considered. Two general models, one for membrane-based liquid separation processes (with phase change) and another for membrane-based gas separation are presented....... The separation processes covered are: membrane-based gas separation processes, pervaporation and various types of membrane distillation processes. The specific model for each type of membrane-based process is generated from the two general models by applying the specific system descriptions and the corresponding...

  20. Liquid membrane process for uranium recovery

    International Nuclear Information System (INIS)

    Valint, P.L. Jr.

    1982-01-01

    An improved liquid membrane emulsion extraction process for recovering uranium from a WPPA feed solution containing uranyl cations wherein said feed is contacted with a water-in-oil emulsion which extracts and captures the uranium in the interior aqueous phase thereof, wherein the improvement comprises the presence of an alkane diphosphonic acid uranium complexing agent in the interior phase of the emulsion. This improvement results in greater extraction efficiency

  1. Novel Membranes and Processes for Oxygen Enrichment

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Haiqing

    2011-11-15

    The overall goal of this project is to develop a membrane process that produces air containing 25-35% oxygen, at a cost of $25-40/ton of equivalent pure oxygen (EPO2). Oxygen-enriched air at such a low cost will allow existing air-fueled furnaces to be converted economically to oxygen-enriched furnaces, which in turn will improve the economic and energy efficiency of combustion processes significantly, and reduce the cost of CO{sub 2} capture and sequestration from flue gases throughout the U.S. manufacturing industries. During the 12-month Concept Definition project: We identified a series of perfluoropolymers (PFPs) with promising oxygen/nitrogen separation properties, which were successfully made into thin film composite membranes. The membranes showed oxygen permeance as high as 1,200 gpu and oxygen/nitrogen selectivity of 3.0, and the permeance and selectivity were stable over the time period tested (60 days). We successfully scaled up the production of high-flux PFP-based membranes, using MTR's commercial coaters. Two bench-scale spiral-wound modules with countercurrent designs were made and parametric tests were performed to understand the effect of feed flow rate and pressure, permeate pressure and sweep flow rate on the membrane module separation properties. At various operating conditions that modeled potential industrial operating conditions, the module separation properties were similar to the pure-gas separation properties in the membrane stamps. We also identified and synthesized new polymers [including polymers of intrinsic microporosity (PIMs) and polyimides] with higher oxygen/nitrogen selectivity (3.5-5.0) than the PFPs, and made these polymers into thin film composite membranes. However, these membranes were susceptible to severe aging; pure-gas permeance decreased nearly six-fold within two weeks, making them impractical for industrial applications of oxygen enrichment. We tested the effect of oxygen-enriched air on NO{sub x} emissions

  2. Membranes for Food and Bioproduct Processing

    Science.gov (United States)

    Avram, Alexandru M.

    Modified membranes for process intensification in biomass hydrolysis: Production of biofuels and chemicals from lignocellulosic biomass is one of the leading candidates for replacement of petroleum based fuels and chemicals. However, conversion of lignocellulosic biomass into fuels and chemicals is not cost effective compared to the production of fuels and chemicals from crude oil reserves. Some novel and economically feasible approaches involve the use of ionic liquids as solvents or co-solvents, since these show improved solvation capability of cellulose over simple aqueous systems. Membranes offer unique opportunities for process intensification which involves fractionation of the resulting biomass hydrolysate leading to a more efficient and cheaper operation. This research attempts to develop membranes that would usher the economics of the biochemical conversion of lignocellulosic biomass into fuels and chemicals by recycling the expensive ionic liquid. The overall aim of this work is the development of novel membranes with unique surface properties that enable the selective separation of non-reacted cellulose and hydrolysis sugars from ionic liquids. Nanofiltration separation for application in food product engineering: With the advent of the modern, well-informed consumer who has high expectations from the nutritional value of consumed food products, novel approaches are being developed to produce nutrient-enhanced foods and drinks. As a response to the consumer needs, different techniques to recover, concentrate and retain as much as possible of bioactive compounds are being investigated. Membrane technology has the advantage of selective fractionation of food products (e.g. salt removal, removal of bitter-tasting compounds or removal of sugar for sweet taste adjustment), volume reduction, and product recovery at mild conditions. In this work, we use nanofiltration in dead-end and crossflow mode to concentrate polyphenols from blueberry pomace. Blueberry

  3. Ambipolar solution-processed hybrid perovskite phototransistors

    KAUST Repository

    Li, Feng

    2015-09-08

    Organolead halide perovskites have attracted substantial attention because of their excellent physical properties, which enable them to serve as the active material in emerging hybrid solid-state solar cells. Here we investigate the phototransistors based on hybrid perovskite films and provide direct evidence for their superior carrier transport property with ambipolar characteristics. The field-effect mobilities for triiodide perovskites at room temperature are measured as 0.18 (0.17) cm2 V−1 s−1 for holes (electrons), which increase to 1.24 (1.01) cm2 V−1 s−1 for mixed-halide perovskites. The photoresponsivity of our hybrid perovskite devices reaches 320 A W−1, which is among the largest values reported for phototransistors. Importantly, the phototransistors exhibit an ultrafast photoresponse speed of less than 10 μs. The solution-based process and excellent device performance strongly underscore hybrid perovskites as promising material candidates for photoelectronic applications.

  4. Composite materials with ionic conductivity: from inorganic composites to hybrid membranes

    Energy Technology Data Exchange (ETDEWEB)

    Yaroslavtsev, Andrei B [N.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow (Russian Federation)

    2009-11-30

    Information on composite materials with ionic conductivity including inorganic composites and hybrid polymeric ion exchange membranes containing inorganic or polymeric nanoparticles is generalized. The nature of the effect of increase in the ionic conductivity in this type of materials and the key approaches used for theoretical estimation of the conductivity are considered. Data on the ionic conductivity and some other important properties of composites and membrane materials are presented. Prospects for utilization of composite materials and hybrid membranes in hydrogen power engineering are briefly outlined.

  5. Natural Organic Matter Removal and Fouling in a Low Pressure Hybrid Membrane Systems

    Directory of Open Access Journals (Sweden)

    Vedat Uyak

    2014-01-01

    Full Text Available The objective of this study was to investigate powdered activated carbon (PAC contribution to natural organic matter (NOM removal by a submerged MF and UF hybrid systems. It was found that filtration of surface waters by a bare MF and UF membranes removed negligible TOC; by contrast, significant amounts of TOC were removed when daily added PAC particles were predeposited on the membrane surfaces. These results support the assumption that the membranes surface properties and PAC layer structure might have considerably influential factor on NOM removal. Moreover, it was concluded that the dominant removal mechanism of hybrid membrane system is adsorption of NOM within PAC layer rather than size exclusion of NOM by both of membrane pores. Transmembrane pressure (TMP increases with PAC membrane systems support the view that PAC adsorption pretreatment will not prevent the development of membrane pressure; on the contrary, PAC particles themselves caused membrane fouling by blocking the entrance of pores of MF and UF membranes. Although all three source waters have similar HPI content, it appears that the PAC interaction with the entrance of membrane pores was responsible for offsetting the NOM fractional effects on membrane fouling for these source waters.

  6. Drying of supercritical carbon dioxide with membrane processes

    NARCIS (Netherlands)

    Lohaus, Theresa; Scholz, Marco; Koziara, Beata; Benes, Nieck Edwin; Wessling, Matthias

    2015-01-01

    In supercritical extraction processes regenerating the supercritical fluid represents the main cost constraint. Membrane technology has potential for cost efficient regeneration of water-loaded supercritical carbon dioxide. In this study we have designed membrane-based processes to dehydrate

  7. Hybrid scatterometry measurement for BEOL process control

    Science.gov (United States)

    Timoney, Padraig; Vaid, Alok; Kang, Byeong Cheol; Liu, Haibo; Isbester, Paul; Cheng, Marjorie; Ng-Emans, Susan; Yellai, Naren; Sendelbach, Matt; Koret, Roy; Gedalia, Oram

    2017-03-01

    Scaling of interconnect design rules in advanced nodes has been accompanied by a reducing metrology budget for BEOL process control. Traditional inline optical metrology measurements of BEOL processes rely on 1-dimensional (1D) film pads to characterize film thickness. Such pads are designed on the assumption that solid copper blocks from previous metallization layers prevent any light from penetrating through the copper, thus simplifying the effective film stack for the 1D optical model. However, the reduction of the copper thickness in each metallization layer and CMP dishing effects within the pad, have introduced undesired noise in the measurement. To resolve this challenge and to measure structures that are more representative of product, scatterometry has been proposed as an alternative measurement. Scatterometry is a diffraction based optical measurement technique using Rigorous Coupled Wave Analysis (RCWA), where light diffracted from a periodic structure is used to characterize the profile. Scatterometry measurements on 3D structures have been shown to demonstrate strong correlation to electrical resistance parameters for BEOL Etch and CMP processes. However, there is significant modeling complexity in such 3D scatterometry models, in particlar due to complexity of front-end-of-line (FEOL) and middle-of-line (MOL) structures. The accompanying measurement noise associated with such structures can contribute significant measurement error. To address the measurement noise of the 3D structures and the impact of incoming process variation, a hybrid scatterometry technique is proposed that utilizes key information from the structure to significantly reduce the measurement uncertainty of the scatterometry measurement. Hybrid metrology combines measurements from two or more metrology techniques to enable or improve the measurement of a critical parameter. In this work, the hybrid scatterometry technique is evaluated for 7nm and 14nm node BEOL measurements of

  8. Hybrid Electrostatic/Flextensional Deformable Membrane Mirror for Lightweight, Large Aperture and Cryogenic Space Telescopes, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — TRS Technologies proposes innovative hybrid electrostatic/flextensional membrane deformable mirror capable of large amplitude aberration correction for large...

  9. Efficient ethanol recovery from fermentation broths with integrated distillation-vapor permeation hybrid process

    Science.gov (United States)

    The energy demand of distillation-molecular sieve systems for ethanol recovery/dehydration can be significant, particularly for dilute solutions. An alternative hybrid process integrating vapor stripping (like a beer still) with vapor compression and a vapor permeation membrane s...

  10. Uranium refining process using ion exchange membrane

    International Nuclear Information System (INIS)

    Yamaguchi, Akira

    1977-01-01

    As for the method of refining uranium ore being carried out in Europe and America at present, uranium ore is roughly refined at the mine sites to yellow cake, then this is transported to refineries and refined by dry method. This method has the following faults, namely the number of processes is large, it requires expensive corrosion-resistant materials because of high temperature treatment, and the impurities in uranium tend to increase. On the other hand, in case of EXCER method, treatment is carried out at low temperature, and high purity uranium can be obtained, but the efficiency of electrolytic reduction process is extremely low, and economically infeasible. In the wet refining method called PNC process, uranium tetrafluoride is produced from uranium ore without making yellow cake, therefore the process is rationalized largely, and highly economical. The electrolytic reduction process in this method was developed by Asahi Chemical Industry Co., Ltd. by constructing the pilot plant in Ningyotoge Mine. The ion exchange membrane, the electrodes, and the problems concerning the process and the engineering for commercial plants were investigated. The electrolytic reduction process, the pilot plant, the development of the elements of electrolytic cells, the establishment of analytical process, the measurement of the electrolytic characteristics, the demonstration operation, and the life time of the electrolytic diaphragm are reported. (Kako, I.)

  11. Nanoporous polymer--clay hybrid membranes for gas separation.

    Science.gov (United States)

    Defontaine, Guillaume; Barichard, Anne; Letaief, Sadok; Feng, Chaoyang; Matsuura, Takeshi; Detellier, Christian

    2010-03-15

    Nanohybrid organo-inorgano clay mineral-polydimethylsiloxane (PDMS) membranes were prepared by the reaction of pure and/or modified natural clay minerals (Sepiolite and montmorillonite) with PDMS in hexane, followed by evaporation of the solvent at 70 degrees C. The membranes were characterized by means of XRD, SEM, ATD-TG and solid state (29)Si magic angle spinning (MAS) and cross-polarization (CP) CP/MAS NMR. The morphology of the membranes depends on the content loading of clay mineral. For low content, the membrane composition is homogeneous, with well dispersed nanoparticles of clay into the polymer matrix, whereas for higher clay content, the membranes are constituted also of a mixture of well dispersed nanoparticles into the polymer, but in the presence of agglomerations of small clay particles. Quantitative (29)Si MAS NMR demonstrated a strong correlation between the clay content of the membrane and the average length of the PDMS chain, indicating that the nanohybrid material is made of clay particles covalently linked to the PDMS structure. This is particularly the case for Sepiolite with has a high density of Q(2) silanol sites. The separation performances of the prepared membranes were tested for CO(2)/CH(4) and O(2)/N(2) mixtures. The observed separation factors showed an increase of the selectivity in the case of CO(2)/CH(4) in comparison with membranes made from PDMS alone under the same conditions. 2009 Elsevier Inc. All rights reserved.

  12. Fabrication and Characterization of Polyimide-CNTs hybrid membrane to enhance high performance CO2 separation

    Directory of Open Access Journals (Sweden)

    Tutuk Djoko Kusworo

    2015-03-01

    Full Text Available This study investigates the CO2 separation performance of a hybrid membranes flat sheet based on polyimide incorporated with carbon nanotubes (CNTs particles. CNTs was selected and its loading were a 1 wt% in total solid. The hybrid composite membranes were fabricated in order to increase their separation performance for the gaseous mixture of CO2 and CH4. Hybrid Composite  membrane incorporated carbon nanotubes were mannufactured  by the dry-wet phase inversion technique using flat sheet membrane casting machine system,  in which the CNTs were embedded into the polyimide membrane and the resulting membranes were characterized. The results from the FESEM, DSC and FTIR analysis confirmed that chemical modification on carbon nanotubes surface had taken place. Sieve-in-a-cage’ morphology observed shows the poor adhesion between polymer and unmodified CNT. The results revealed that the good multi-wall carbon nanotubes dispersion leads to enhanced gas permeation properties. It is also concluded that addition of carbon nanotubes particles into the matrix of Polyimide polymer has significant effect on the membrane structure and properties.

  13. The Comparative Study on Vapor-Polymerization and Pressure-dependent Conductance Behavior in Polypyrrole-hybridized Membranes

    Energy Technology Data Exchange (ETDEWEB)

    Hanif, Zahid; Lee, Seyeong; Arsalani, Nasir; Geckeler, Kurt E.; Hong, Sukwon; Yoon, Myung-Han [Gwangju Institute of Science and Technology, Gwangju (Korea, Republic of)

    2016-02-15

    In this study, commercially available cellulose membranes were hybridized with conjugated polymer via vapor-phase polymerization using pyrrole and iron chloride as a monomer and oxidant, respectively. The iron (III) chloride layer dip-coated on the hydrophilic cell ulose surface oxidized the vaporized pyrrole monomer leading to the polypyrrole-cellulose hybrid membrane. The conductivity of hybrid membrane was optimized by varying the oxidant concentration and the monomer vapor exposure time. The various surface characterizations of polypyrrole-cellulose hybrid membrane show that the conductive polypyrrole layer was uniformly deposited onto the surface of cellulose fibrous networks unlike the polypyrrole-nylonhybrid membrane prepared in the similar way. The polypyrrole-incorporated cellulose networks exhibits steeper electrical conductance increase over the vertical pressure than its nylon counterpart. Our result suggests that the polypyrrole-cellulose hybrid membrane can be applicable for a disposable high-load pressure sensor.

  14. The Comparative Study on Vapor-Polymerization and Pressure-dependent Conductance Behavior in Polypyrrole-hybridized Membranes

    International Nuclear Information System (INIS)

    Hanif, Zahid; Lee, Seyeong; Arsalani, Nasir; Geckeler, Kurt E.; Hong, Sukwon; Yoon, Myung-Han

    2016-01-01

    In this study, commercially available cellulose membranes were hybridized with conjugated polymer via vapor-phase polymerization using pyrrole and iron chloride as a monomer and oxidant, respectively. The iron (III) chloride layer dip-coated on the hydrophilic cell ulose surface oxidized the vaporized pyrrole monomer leading to the polypyrrole-cellulose hybrid membrane. The conductivity of hybrid membrane was optimized by varying the oxidant concentration and the monomer vapor exposure time. The various surface characterizations of polypyrrole-cellulose hybrid membrane show that the conductive polypyrrole layer was uniformly deposited onto the surface of cellulose fibrous networks unlike the polypyrrole-nylonhybrid membrane prepared in the similar way. The polypyrrole-incorporated cellulose networks exhibits steeper electrical conductance increase over the vertical pressure than its nylon counterpart. Our result suggests that the polypyrrole-cellulose hybrid membrane can be applicable for a disposable high-load pressure sensor.

  15. Performance of Hybrid Photocatalytic-Ceramic Membrane System for the Treatment of Secondary Effluent.

    Science.gov (United States)

    Song, Lili; Zhu, Bo; Gray, Stephen; Duke, Mikel; Muthukumaran, Shobha

    2017-03-28

    Evaluation of an advanced wastewater treatment system that combines photocatalysis with ceramic membrane filtration for the treatment of secondary effluent was undertaken. The results showed that, after photocatalysis and ceramic membrane filtration, the removal of dissolved organic carbon and UV 254 was 60% and 54%, respectively, at a concentration of 4 g/L of TiO₂. Dissolved organic matter (DOM) present in the secondary effluent was characterised with a liquid chromatography-organic carbon detector (LC-OCD) technique. The results showed low removal of humics, building blocks, the other oxidation by-products and no removal of biopolymers after TiO₂/UV photocatalytic treatment. This suggested that the radical non-selective oxidation mechanisms of TiO₂/UV process resulted in secondary effluent in which all of the DOM fractions were present. However, the hybrid system was effective for removing biopolymers with the exception of low molecular weight (LMW) compounds acids, which accumulated from the beginning of the reaction. In addition, monitoring of the DOM fractions with LC-OCD analysis demonstrated that the reduction of the effluent aromaticity was not firmly correlated with the removal of humic substances for the combined processes.

  16. Counter-current membrane reactor for WGS process: Membrane design

    Energy Technology Data Exchange (ETDEWEB)

    Piemonte, Vincenzo; Favetta, Barbara [Department of Chemical Engineering Materials and Environment, University of Rome ' ' La Sapienza' ' , via Eudossiana 18, 00184 Rome (Italy); De Falco, Marcello [Faculty of Engineering, University Campus Bio-Medico of Rome, via Alvaro del Portillo 21, 00128 Rome (Italy); Basile, Angelo [CNR-ITM, c/o University of Calabria, Via Pietro Bucci, Cubo 17/C, 87030 Rende (CS) (Italy)

    2010-11-15

    Water gas shift (WGS) is a thermodynamically limited reaction which has to operate at low temperatures, reducing kinetics rate and increasing the amount of catalyst required to reach valuable CO conversions. It has been widely demonstrated that the integration of hydrogen selective membranes is a promising way to enhance WGS reactors performance: a Pd-based MR operated successfully overcoming the thermodynamic constraints of a traditional reactor thanks to the removal of hydrogen from reaction environment. In the first part of a MR, the H{sub 2} partial pressure starts from a minimum value since the reaction has not started. As a consequence, if the carrier gas in the permeation zone is sent in counter-current, which is the most efficient configuration, in the first reactor section the H{sub 2} partial pressure in reaction zone is low while in the permeation zone is high, potentially implying back permeation. This means a bad utilization of the first part of the membrane area and thus, a worsening of the MR performance with lower H{sub 2} recovery and lower CO conversion with respect to the case in which the whole selective surface is properly used. To avoid this problem different MR configurations were evaluated by a 1-D pseudo-homogeneous model, validated with WGS industrial data reported in scientific literature. It was demonstrated that the permeated H{sub 2} flow rate per membrane surface, i.e. the membrane flux, strongly improves if selective membrane is placed only in the second part of the reactor: in fact, if the membrane is placed at L{sub m}/L{sub tot} = 0.5, the membrane flux is 0.2 kmol/(m{sup 2}h) about, if it is placed along all reactor tube (L{sub m}/L{sub tot} = 1), flux is 0.05 kmol/(m{sup 2}h). The effect of the L/D reactor ratio and of the reactor wall temperature on the CO conversion were also assessed. (author)

  17. Chemically Stable Covalent Organic Framework (COF)-Polybenzimidazole Hybrid Membranes: Enhanced Gas Separation through Pore Modulation.

    Science.gov (United States)

    Biswal, Bishnu P; Chaudhari, Harshal D; Banerjee, Rahul; Kharul, Ulhas K

    2016-03-24

    Highly flexible, TpPa-1@PBI-BuI and TpBD@PBI-BuI hybrid membranes based on chemically stable covalent organic frameworks (COFs) could be obtained with the polymer. The loading obtained was substantially higher (50 %) than generally observed with MOFs. These hybrid membranes show an exciting enhancement in permeability (about sevenfold) with appreciable separation factors for CO2/N2 and CO2/CH4. Further, we found that with COF pore modulation, the gas permeability can be systematically enhanced. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Solving Problem of Graph Isomorphism by Membrane-Quantum Hybrid Model

    Directory of Open Access Journals (Sweden)

    Artiom Alhazov

    2015-10-01

    Full Text Available This work presents the application of new parallelization methods based on membrane-quantum hybrid computing to graph isomorphism problem solving. Applied membrane-quantum hybrid computational model was developed by authors. Massive parallelism of unconventional computing is used to implement classic brute force algorithm efficiently. This approach does not suppose any restrictions of considered graphs types. The estimated performance of the model is less then quadratic that makes a very good result for the problem of \\textbf{NP} complexity.

  19. Hybrid capacitive deionization with anion-exchange membranes for lithium extraction

    Directory of Open Access Journals (Sweden)

    Siekierka Anna

    2017-01-01

    Full Text Available Lithium is considered to be a critical material for various industrial fields. We present our studies on extraction lithium from diluted aqueous solution by novel hybrid system based on a membrane capacitive deionization and batteries desalination. Hybrid CDI is comprised by a lithium selective adsorbent, activated carbon electrode and anion-exchange membranes. Here, we demonstrated implication of various type of anion-exchange membranes and influence their properties on effective capacity and energy requirements in charge/discharge steps. We described a configuration with anion-exchange membrane characterized by adsorption capacity of 35 mg/g of Li+ with 0.08Wh/g and removal efficiency of 60 % of lithium ions, using novel selective desalination technique.

  20. Hybrid capacitive deionization with anion-exchange membranes for lithium extraction

    Science.gov (United States)

    Siekierka, Anna; Bryjak, Marek

    2017-11-01

    Lithium is considered to be a critical material for various industrial fields. We present our studies on extraction lithium from diluted aqueous solution by novel hybrid system based on a membrane capacitive deionization and batteries desalination. Hybrid CDI is comprised by a lithium selective adsorbent, activated carbon electrode and anion-exchange membranes. Here, we demonstrated implication of various type of anion-exchange membranes and influence their properties on effective capacity and energy requirements in charge/discharge steps. We described a configuration with anion-exchange membrane characterized by adsorption capacity of 35 mg/g of Li+ with 0.08Wh/g and removal efficiency of 60 % of lithium ions, using novel selective desalination technique.

  1. Ocean thermocline driven membrane distillation process

    KAUST Repository

    Francis, Lijo

    2017-07-20

    Systems and methods using membrane distillation are provided for desalinating water, for example for the production of potable water, to address freshwater requirements. In an aspect the systems and methods do not require applying an external heat source, or the energy cost of the heating source, to heat the feed stream to the membrane. In an aspect, the sensible heat present in surface seawater is used for the heat energy for the warm stream fed to the membrane, and deep seawater is used as the cold/coolant feed to the membrane to provide the needed temperature gradient or differential across the membrane.

  2. Hybrid machining processes perspectives on machining and finishing

    CERN Document Server

    Gupta, Kapil; Laubscher, R F

    2016-01-01

    This book describes various hybrid machining and finishing processes. It gives a critical review of the past work based on them as well as the current trends and research directions. For each hybrid machining process presented, the authors list the method of material removal, machining system, process variables and applications. This book provides a deep understanding of the need, application and mechanism of hybrid machining processes.

  3. Characterization of natural organic matter treated by iron oxide nanoparticle incorporated ceramic membrane-ozonation process.

    Science.gov (United States)

    Park, Hosik; Kim, Yohan; An, Byungryul; Choi, Heechul

    2012-11-15

    In this study, changes in the physical and structural properties of natural organic matter (NOM) were observed during hybrid ceramic membrane processes that combined ozonation with ultrafiltration ceramic membrane (CM) or with a reactive ceramic membrane (RM), namely, an iron oxide nanoparticles (IONs) incorporated-CM. NOM from feed water and NOM from permeate treated with hybrid ceramic membrane processes were analyzed by employing several NOM characterization techniques. Specific ultraviolet absorbance (SUVA), high-performance size exclusion chromatography (HPSEC) and fractionation analyses showed that the hybrid ceramic membrane process effectively removed and transformed relatively high contents of aromatic, high molecular weight and hydrophobic NOM fractions. Fourier transform infrared spectroscopy (FTIR) and 3-dimensional excitation-emission matrix (EEM) fluorescence spectroscopy revealed that this process caused a significant decrease of the aromaticity of humic-like structures and an increase in electron withdrawing groups. The highest removal efficiency (46%) of hydroxyl radical probe compound (i.e., para-Chlorobenzoic acid (pCBA)) in RM-ozonation process compared with that in CM without ozonation process (8%) revealed the hydroxyl radical formation by the surface-catalyzed reaction between ozone and IONs on the surface of RM. In addition, experimental results on flux decline showed that fouling of RM-ozonation process (15%) was reduced compared with that of CM without ozonation process (30%). These results indicated that the RM-ozonation process enhanced the destruction of NOM and reduced the fouling by generating hydroxyl radicals from the catalytic ozonation in the RM-ozonation process. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Proton Conductive Channel Optimization in Methanol Resistive Hybrid Hyperbranched Polyamide Proton Exchange Membrane

    Directory of Open Access Journals (Sweden)

    Liying Ma

    2017-12-01

    Full Text Available Based on a previously developed polyamide proton conductive macromolecule, the nano-scale structure of the self-assembled proton conductive channels (PCCs is adjusted via enlarging the nano-scale pore size within the macromolecules. Hyperbranched polyamide macromolecules with different size are synthesized from different monomers to tune the nano-scale pore size within the macromolecules, and a series of hybrid membranes are prepared from these two micromoles to optimize the PCC structure in the proton exchange membrane. The optimized membrane exhibits methanol permeability low to 2.2 × 10−7 cm2/s, while the proton conductivity of the hybrid membrane can reach 0.25 S/cm at 80 °C, which was much higher than the value of the Nafion 117 membrane (0.192 S/cm. By considering the mechanical, dimensional, and the thermal properties, the hybrid hyperbranched polyamide proton exchange membrane (PEM exhibits promising application potential in direct methanol fuel cells (DMFC.

  5. Renewable energy powered membrane technology. 2. The effect of energy fluctuations on performance of a photovoltaic hybrid membrane system.

    Science.gov (United States)

    Richards, B S; Capão, D P S; Schäfer, A I

    2008-06-15

    This paper reports on the performance fluctuations during the operation of a batteryless hybrid ultrafiltration--nanofiltration/reverse osmosis (UF-NF/RO) membrane desalination system powered by photovoltaics treating brackish groundwater in outback Australia. The renewable energy powered membrane (RE-membrane) system is designed to supply clean drinking water to a remote community of about 50 inhabitants. The performance of the RE-membrane system over four different solar days is summarized using four different NF membranes (BW30, NF90, ESPA4, TFC-S), and examined in more detail for the BW30 membrane. On an Australian spring day, the system produced 1.1 m3 of permeate with an average conductivity of 0.28 mS x cm(-1), recovering 28% of the brackish (8.29 mS x cm(-1) conductivity) feedwater with an average specific energy consumption of 2.3 kWh x m(-3). The RE-membrane system tolerated large fluctuations in solar irradiance (500--1200 W x m(-2)), resulting in only small increases in the permeate conductivity. When equipped with the NF90 (cloudy day) and ESPA4 (rainy day) membranes, the system was still able to produce 1.36 m(-3) and 0.85 m(-3) of good quality permeate, respectively. The TFC-S membrane was not able to produce adequate water quality from the bore water tested. It is concluded that batteryless operation is a simple and robust way to operate such systems under conditions ranging from clear skies to medium cloud cover.

  6. Process algebras for hybrid systems : comparison and development

    NARCIS (Netherlands)

    Khadim, U.

    2008-01-01

    Our research is about formal speci¯cation and analysis of hybrid systems. The formalism used is process algebra. Hybrid systems are systems that exhibit both discrete and continuous behaviour. An example of a hybrid system is a digital controller controlling a physical device such as present in

  7. Magnetite Dissolution Performance of HYBRID-II Decontamination Process

    International Nuclear Information System (INIS)

    Kim, Seonbyeong; Lee, Woosung; Won, Huijun; Moon, Jeikwon; Choi, Wangkyu

    2014-01-01

    In this study, we conducted the magnetite dissolution performance test of HYBRID-II (Hydrazine Based Reductive metal Ion Decontamination with sulfuric acid) as a part of decontamination process development. Decontamination performance of HYBRID process was successfully tested with the results of the acceptable decontamination factor (DF) in the previous study. While following-up studies such as the decomposition of the post-decontamination HYBRID solution and corrosion compatibility on the substrate metals of the target reactor coolant system have been continued, we also seek for an alternate version of HYBRID process suitable especially for decommissioning. Inspired by the relationship between the radius of reacting ion and the reactivity, we replaced the nitrate ion in HYBRID with bigger sulfate ion to accommodate the dissolution reaction and named HYBRID-II process. As a preliminary step for the decontamination performance, we tested the magnetite dissolution performance of developing HYBRID-II process and compared the results with those of HYBRID process. HYBRID process developed previously is known have the acceptable decontamination performance, but the relatively larger volume of secondary waste induced by anion exchange resin to treat nitrate ion is the one of the problems related in the development of HYBRID process to be applicable. Therefore we alternatively devised HYBRID-II process using sulfuric acid and tested its dissolution of magnetite in numerous conditions. From the results shown in this study, we can conclude that HYBRID-II process improves the decontamination performance and potentially reduces the volume of secondary waste. Rigorous tests with metal oxide coupons obtained from reactor coolant system will be followed to prove the robustness of HYBRID-II process in the future

  8. Processes And Apparatus For Inhibiting Membrane Bio-fouling

    KAUST Repository

    Missimer, Thomas M.

    2012-12-20

    Certain embodiments are directed to a process and apparatus for cleaning and/or regeneration of permeable or semipermeable membranes comprising modulating pressure of a feed stream feeding the permeable or semipermeable membrane and providing intermittent pressure pulses for cleaning and/or regeneration of the permeable or semipermeable membrane.

  9. Processes And Apparatus For Inhibiting Membrane Bio-fouling

    KAUST Repository

    Missimer, Thomas M.; Ng, Kim Choon; Amy, Gary

    2012-01-01

    Certain embodiments are directed to a process and apparatus for cleaning and/or regeneration of permeable or semipermeable membranes comprising modulating pressure of a feed stream feeding the permeable or semipermeable membrane and providing intermittent pressure pulses for cleaning and/or regeneration of the permeable or semipermeable membrane.

  10. Oxygen Transport Membranes: A Material Science and Process Engineering Approach

    NARCIS (Netherlands)

    Chen, Wei

    2014-01-01

    This thesis describes several fundamental aspects on the membrane-integrated oxy-fuel combustion process and can be divided in two parts: 1) The development and characterization of membrane materials; 2) The design, simulation and evaluation of a coal-fired power plant, coupled with a membrane

  11. Dehydration of an ethanol/water azeotrope by novel organic-inorganic hybrid membranes based on quaternized chitosan and tetraethoxysilane.

    Science.gov (United States)

    Uragami, Tadashi; Katayama, Takuya; Miyata, Takashi; Tamura, Hiroshi; Shiraiwa, Tadashi; Higuchi, Akon

    2004-01-01

    To control swelling of quaternized chitosan (q-Chito) membranes, mixtures of q-Chito as an organic component and tetraethoxysilane (TEOS) as an inorganic component were prepared using the sol-gel reaction, and novel q-Chito/TEOS hybrid membranes were formed. In the separation of an ethanol/water azeotrope by pervaporation, the effect of TEOS content on the water/ethanol selectivity of q-Chito/TEOS hybrid membranes was investigated. Hybrid membranes containing up to 45 mol % TEOS exhibited higher water/ethanol selectivity than the q-Chito membrane. This resulted from depressed swelling of the membranes by formation of a cross-linked structure. However, introduction of excess TEOS led to greater swelling of the hybrid membranes. Therefore, the water/ethanol selectivity of the hybrid membranes containing more than 45 mol % TEOS was lower than that of the q-Chito membrane. The relationship between the structure of q-Chito/TEOS hybrid membranes and their permeation and separation characteristics during pervaporation of an ethanol/water azeotrope is discussed in detail.

  12. Hybrid gas separation membranes containing star-shaped polystyrene with the fullerene (C60) core

    Czech Academy of Sciences Publication Activity Database

    Pulyalina, A. Y.; Rostovtseva, V. A.; Pientka, Zbyněk; Vinogradova, L. V.; Polotskaya, G. A.

    2018-01-01

    Roč. 58, č. 4 (2018), s. 296-303 ISSN 0965-5441 Institutional support: RVO:61389013 Keywords : gas separation * hybrid membranes * star-shaped macromolecules Subject RIV: CD - Macromolecular Chemistry OBOR OECD: Polymer science Impact factor: 0.493, year: 2016

  13. Hybridization of plant virus ssRNAs Transferred to Hybond N membrane

    International Nuclear Information System (INIS)

    Kudela, O.; Kudelova, K.; Plaschke-Jakubik, K.

    1998-01-01

    In this paper we present a protocol for the non-denaturating agarose gel electrophoresis of plant virus ssRNAs, their blotting onto Hybond N membrane, and hybridization with [alpha 32 P]dNTP-labelled cDNA probe. The protocol is not pretentious on technical equipment, omits denaturation and neutralization steps and some chemical required in other modifications. (authors)

  14. Breaking down barriers: construction of a hybrid heterochiral membrane

    NARCIS (Netherlands)

    Siliakus, Melvin

    2016-01-01

    Because of a chemical disparity between Archaeal and Bacterial membrane-lipids, these organisms thrive under distinct environmental conditions. Archaea are generally more resistant to extreme habitats like low pH, high temperature or presence of solvents. It has therefore long been hypothesized

  15. Reverse osmosis desalination of chitosan cross-linked graphene oxide/titania hybrid lamellar membranes.

    Science.gov (United States)

    Deng, Hui; Sun, Penzhan; Zhang, Yingjiu; Zhu, Hongwei

    2016-07-08

    With excellent mass transport properties, graphene oxide (GO)-based lamellar membranes are believed to have great potential in water desalination. In order to quantify whether GO-based membranes are indeed suitable for reverse osmosis (RO) desalination, three sub-micrometer thick GO-based lamellar membranes: GO-only, reduced GO (RGO)/titania (TO) nanosheets and RGO/TO/chitosan (CTS) are prepared, and their RO desalination performances are evaluated in a home-made RO test apparatus. The photoreduction of GO by TO improves the salt rejection, which increases slowly with the membrane thickness. The RGO/TO/CTS hybrid membranes exhibit higher rejection rates of only about 30% (greater than threefold improvement compared with a GO-only membrane) which is still inferior compared to other commercial RO membranes. The low rejection rates mainly arise from the pressure-induced weakening of the ion-GO interlayer interactions. Despite the advantages of simple, low-cost preparation, high permeability and selectivity of GO-based lamellar membranes, as the current desalination performances are not high enough to afford practical application, there still remains a great challenge to realize high performance separation membranes for water desalination applications.

  16. Ocean thermocline driven membrane distillation process

    KAUST Repository

    Francis, Lijo; Ghaffour, NorEddine; Alsaadi, Ahmad S.; Abraham, Raju

    2017-01-01

    source, or the energy cost of the heating source, to heat the feed stream to the membrane. In an aspect, the sensible heat present in surface seawater is used for the heat energy for the warm stream fed to the membrane, and deep seawater is used

  17. Transport processes of the legume symbiosome membrane

    Directory of Open Access Journals (Sweden)

    Victoria C Clarke

    2014-12-01

    Full Text Available The symbiosome membrane (SM is a physical barrier between the host plant and nitrogen-fixing bacteria in the legume-rhizobium symbiosis, and represents a regulated interface for the movement of solutes between the symbionts that is under plant control. The primary nutrient exchange across the SM is the transport of a carbon energy source from plant to bacteroid in exchange for fixed nitrogen. At a biochemical level two channels have been implicated in movement of fixed nitrogen across the SM and a uniporter that transports monovalent dicarboxylate ions has been characterized that would transport fixed carbon. The aquaporin NOD26 may provide a channel for ammonia, but the genes encoding the other transporters have not been identified. Transport of several other solutes, including calcium and potassium, have been demonstrated in isolated symbiosomes, and genes encoding transport systems for the movement of iron, nitrate, sulfate and zinc in nodules have been identified. However, definitively matching transport activities with these genes has proved difficult and many further transport processes are expected on the SM to facilitate the movement of nutrients between the symbionts. Recently, work detailing the SM proteome in soybean has been completed, contributing significantly to the database of known SM proteins. This represents a valuable resource for the identification of transporter protein candidates, some of which may correspond to transport processes previously described, or to novel transport systems in the symbiosis. Putative transporters identified from the proteome include homologues of transporters of sulfate, calcium, peptides and various metal ions. Here we review current knowledge of transport processes of the SM and discuss the requirements for additional transport routes of other nutrients exchanged in the symbiosis, with a focus on transport systems identified through the soybean SM proteome.

  18. Recovery of real dye bath wastewater using integrated membrane process: considering water recovery, membrane fouling and reuse potential of membranes.

    Science.gov (United States)

    Balcik-Canbolat, Cigdem; Sengezer, Cisel; Sakar, Hacer; Karagunduz, Ahmet; Keskinler, Bulent

    2017-11-01

    It has been recognized by the whole world that textile industry which produce large amounts of wastewater with strong color and toxic organic compounds is a major problematical industry requiring effective treatment solutions. In this study, reverse osmosis (RO) membranes were tested on biologically treated real dye bath wastewater with and without pretreatment by nanofiltration (NF) membrane to recovery. Also membrane fouling and reuse potential of membranes were investigated by multiple filtrations. Obtained results showed that only NF is not suitable to produce enough quality to reuse the wastewater in a textile industry as process water while RO provide successfully enough permeate quality. The results recommend that integrated NF/RO membrane process is able to reduce membrane fouling and allow long-term operation for real dye bath wastewater.

  19. Extrusion: An environmentally friendly process for PEMFC membrane elaboration

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, J.-Y.; Iojoiu, C.; Marechal, M. [LEPMI, UMR 5631 CNRS-INPG-UJF, ENSEEG, BP 75, F-38402, Saint Martin d' Heres (France); Chabert, F.; El Kissi, N. [Rheologie, UMR 5520 CNRS-INPG-UJF, ENSHMG, BP 53, F-38041, Grenoble (France); Salomon, J.; Mercier, R. [LMOPS UMR CNRS 5041, BP 24, F-69390 Vernaison (France); Piffard, Y. [CNRS Universite de Nantes, Institut des Materiaux Jean Rouxel, UMR 6502, BP 32229, F-44322, Nantes Cedex 3 (France); Galiano, H. [CEA, Le Ripault Research Center, BP 16, F-37260, Monts (France)

    2007-12-31

    The paper deals with the use of extrusion to process PEMFC filled and unfilled membranes. Several routes including the sulfonation of filled and unfilled extruded membranes and the extrusion of filled and unfilled ionomers are reported. Thanks to the use of selected water-soluble aid process plasticizers, acid and alkaline forms of sulfonated polyethersulfone were, for the first time, successfully extruded. The extrusion process did not lead to any degradation of the ionomer performances. Decreasing the membrane cost while using environmentally friendly elaboration conditions, it should be helpful to an industrial production. In addition, avoiding filler sedimentation it should allow homogeneous composite membranes to be obtained. (author)

  20. Technical and thermodynamic problems of medium-temperature membrane processes, illustrated by the example of water splitting

    International Nuclear Information System (INIS)

    Behr, F.

    1983-01-01

    The author discusses the economic, technical, and thermodynamic aspects of hydrogen production from water by means of nuclear process heat and then proceeds to describe membranes used in electrolysis cells and in systems in which thermochemical or hybrid processes take place. (GG) [de

  1. Corrugated Membrane Nonlinear Deformation Process Calculation

    OpenAIRE

    A. S. Nikolaeva; S. A. Podkopaev

    2015-01-01

    Elastic elements are widely used in instrumentation. They are used to create a particular interference between the parts, for accumulating mechanical energy, as the motion transmission elements, elastic supports, and sensing elements of measuring devices. Device reliability and quality depend on the calculation accuracy of the elastic elements. A corrugated membrane is rather common embodiment of the elastic element.The corrugated membrane properties depend largely on its profile i.e. a gener...

  2. Comparing pervaporation and vapor permeation hybrid distillation processes

    NARCIS (Netherlands)

    Fontalvo, J.; Cuellar, P.; Timmer, J.M.K.; Vorstman, M.A.G.; Wijers, J.G.; Keurentjes, J.T.F.

    2005-01-01

    Previous studies have shown that hybrid distillation processes using either pervaporation or vapor permeation can be very attractive for the separation of mixtures. In this paper, a comparison between these two hybrid processes has been made. A tool has been presented that can assist designers and

  3. Membrane contactors for CO2 capture processes - critical review

    Science.gov (United States)

    Nogalska, Adrianna; Trojanowska, Anna; Garcia-Valls, Ricard

    2017-07-01

    The use of membrane contactor in industrial processes is wide, and lately it started to be used in CO2 capture process mainly for gas purification or to reduce the emission. Use of the membrane contactor provides high contact surface area so the size of the absorber unit significantly decreases, which is an important factor for commercialization. The research has been caried out regarding the use of novel materials for the membrane production and absorbent solution improvements. The present review reveals the progress in membrane contactor systems for CO2 capture processes concerning solution for ceramic membrane wetting, comparison study of different polymers used for fabrication and methods of enzyme immobilization for biocomposite membrane. Also information about variety of absorbent solutions is described.

  4. Assay of hybrid ribonuclease using a membrane filter-immobilized synthetic hybrid: application to the human leukemic cell

    International Nuclear Information System (INIS)

    Papaphilis, A.D.; Kamper, E.F.

    1985-01-01

    A method for assaying hybrid ribonuclease has been devised which utilizes as substrate the synthetic hybrid [ 3 H]polyriboadenylic acid [poly(rA)]:polydeoxythymidylic acid [poly(dT)] immobilized on the solid matrix of nitrocellulose filters. The hybridization on filter of [ 3 H]poly(rA) to poly(dT) has been explored in terms of efficacy of the process and the response of the product to RNase H. A pulse of uv irradiation of poly(dT) while in dry state on the filter increased its firm binding to the filter in a concentration-dependent manner, resulting in a concomitant increase of the yield of hybrid formation. The filter-immobilized hybrid was 95% resistant to RNase A but sensitive to RNase H. When stored in toluene in the cold the hybrid maintained its stability for over 6 months, as judged by its resistance to RNase A. The method offers a number of advantages over assays that use solution hybrids as substrates and was readily applicable in the screening of leukemic patients, in the leukocytes of which it has demonstrated increased RNase H levels

  5. Analysis of hybrid membrane and chemical absorption systems for CO2 capture

    International Nuclear Information System (INIS)

    Binns, Michael; Oh, Se-Young; Kwak, Dong-Hun; Kim, Jin-Kuk

    2015-01-01

    Amine-based absorption of CO 2 is currently the industry standard technology for capturing CO 2 emitted from power plants, refineries and other large chemical plants. However, more recently there have been a number of competing technologies under consideration, including the use of membranes for CO 2 separation and purification. We constructed and analyzed two different hybrid configurations combining and connecting chemical absorption with membrane separation. For a particular flue gas which is currently treated with amine-based chemical absorption at a pilot plant we considered and tested how membranes could be integrated to improve the performance of the CO 2 capture. In particular we looked at the CO 2 removal efficiency and the energy requirements. Sensitivity analysis was performed varying the size of the membranes and the solvent flow rate

  6. Combination of electrochemical processes with membrane bioreactors for wastewater treatment and fouling control: A review

    Directory of Open Access Journals (Sweden)

    Benny Marie B. Ensano

    2016-08-01

    Full Text Available This paper provides a critical review about the integration of electrochemical processes into membrane bioreactors (MBR in order to understand the influence of these processes on wastewater treatment performance and membrane fouling control. The integration can be realized either in an internal or an external configuration. Electrically enhanced membrane bioreactors or electro membrane bioreactors (eMBRs combine biodegradation, electrochemical and membrane filtration processes into one system providing higher effluent quality as compared to conventional MBRs and activated sludge plants. Furthermore, electrochemical processes, such as electrocoagulation, electrophoresis and electroosmosis, help to mitigate deposition of foulants into the membrane and enhance sludge dewaterability by controlling the morphological properties and mobility of the colloidal particles and bulk liquid. Intermittent application of minute electric field has proven to reduce energy consumption and operational cost as well as minimize the negative effect of direct current field on microbial activity which are some of the main concerns in eMBR technology. The present review discusses important design considerations of eMBR, its advantages as well as its applications to different types of wastewater. It also presents several challenges that need to be addressed for future development of this hybrid technology which include treatment of high strength industrial wastewater and removal of emerging contaminants, optimization study, cost benefit analysis and the possible combination with microbial electrolysis cell for biohydrogen production.

  7. A novel integrated thermal-/membrane-based solar energy-driven hybrid desalination system: Concept description and simulation results.

    Science.gov (United States)

    Kim, Young-Deuk; Thu, Kyaw; Ng, Kim Choon; Amy, Gary L; Ghaffour, Noreddine

    2016-09-01

    In this paper, a hybrid desalination system consisting of vacuum membrane distillation (VMD) and adsorption desalination (AD) units, designated as VMD-AD cycle, is proposed. The synergetic integration of the VMD and AD is demonstrated where a useful effect of the AD cycle is channelled to boost the operation of the VMD process, namely the low vacuum environment to maintain the high pressure gradient across the microporous hydrophobic membrane. A solar-assisted multi-stage VMD-AD hybrid desalination system with temperature modulating unit is first designed, and its performance is then examined with a mathematical model of each component in the system and compared with the VMD-only system with temperature modulating and heat recovery units. The total water production and water recovery ratio of a solar-assisted 24-stage VMD-AD hybrid system are found to be about 21% and 23% higher, respectively, as compared to the VMD-only system. For the solar-assisted 24-stage VMD-AD desalination system having 150 m(2) of evacuated-tube collectors and 10 m(3) seawater storage tanks, both annual collector efficiency and solar fraction are close to 60%. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. A novel integrated thermal-/membrane-based solar energy-driven hybrid desalination system: Concept description and simulation results

    KAUST Repository

    Kim, Youngdeuk

    2016-05-03

    In this paper, a hybrid desalination system consisting of vacuum membrane distillation (VMD) and adsorption desalination (AD) units, designated as VMD-AD cycle, is proposed. The synergetic integration of the VMD and AD is demonstrated where a useful effect of the AD cycle is channelled to boost the operation of the VMD process, namely the low vacuum environment to maintain the high pressure gradient across the microporous hydrophobic membrane. A solar-assisted multi-stage VMD-AD hybrid desalination system with temperature modulating unit is first designed, and its performance is then examined with a mathematical model of each component in the system and compared with the VMD-only system with temperature modulating and heat recovery units. The total water production and water recovery ratio of a solar-assisted 24-stage VMD-AD hybrid system are found to be about 21% and 23% higher, respectively, as compared to the VMD-only system. For the solar-assisted 24-stage VMD-AD desalination system having 150 m2 of evacuated-tube collectors and 10 m3 seawater storage tanks, both annual collector efficiency and solar fraction are close to 60%.

  9. Hierarchically structured transparent hybrid membranes by in situ growth of mesostructured organosilica in host polymer

    Science.gov (United States)

    Vallé, Karine; Belleville, Philippe; Pereira, Franck; Sanchez, Clément

    2006-02-01

    The elaborate performances characterizing natural materials result from functional hierarchical constructions at scales ranging from nanometres to millimetres, each construction allowing the material to fit the physical or chemical demands occurring at these different levels. Hierarchically structured materials start to demonstrate a high input in numerous promising applied domains such as sensors, catalysis, optics, fuel cells, smart biologic and cosmetic vectors. In particular, hierarchical hybrid materials permit the accommodation of a maximum of elementary functions in a small volume, thereby optimizing complementary possibilities and properties between inorganic and organic components. The reported strategies combine sol-gel chemistry, self-assembly routes using templates that tune the material's architecture and texture with the use of larger inorganic, organic or biological templates such as latex, organogelator-derived fibres, nanolithographic techniques or controlled phase separation. We propose an approach to forming transparent hierarchical hybrid functionalized membranes using in situ generation of mesostructured hybrid phases inside a non-porogenic hydrophobic polymeric host matrix. We demonstrate that the control of the multiple affinities existing between organic and inorganic components allows us to design the length-scale partitioning of hybrid nanomaterials with tuned functionalities and desirable size organization from ångström to centimetre. After functionalization of the mesoporous hybrid silica component, the resulting membranes have good ionic conductivity offering interesting perspectives for the design of solid electrolytes, fuel cells and other ion-transport microdevices.

  10. Process for producing a porous diffusion membrane

    International Nuclear Information System (INIS)

    Kabayama, Shisho; Ikeda, Hirosaka.

    1969-01-01

    A diffusion membrane having a sandwich construction, the pore diameter of which is 1,000A or less, is provided for the separation and enrichment of, for example, U-235F from U-238F. Flexibility, corrosion resistance and separation efficiency of the barrier are improved by a process which comprises the steps of filling powders of metallic or inorganic materials into a mesh or grid-like support, superimposing onto the filled support a fluorine resin sheet consisting of a fluorine resin and a liquid foaming agent so that the outermost layers are the fluorine resin sheets, adhering them by applying a pressure of 30 to 30,000kg/cm 2 , and removing the foaming agent. Particle size of the powders may be 0.3 microns or less, but preferably 0.1 microns or less. Gold, silver, copper, platinum, nickel, monel metal, stainless steel, alumina and the like can be used with or without fluorine treatment. The powders are filled in the support by slip casting, rolling or electrophoresis. In one example, 100 parts by weight of polytetrafluoroethylene mixed with 50 parts of perfluoroalkane were compressed in a metallic die under a pressure of 25kg/cm 3 and were rolled to a thickness of 0.05m. A 250 mesh nickel wire filled with alumina particles having a diameter of 0.05 microns were compressed under 10 tons/cm 2 . The above sheets were laminated onto the nickel support on opposite surfaces, and thereafter pressed under a pressure of 100kg/cm 2 . The perfluoroalkane was removed. Argon isotope permeability of the product was 1.60 x 10 -5 mol/cm 2 .min.cmHg. The separation efficiency was 78%. (Iwakiri, K.)

  11. Glovebox atmosphere detritiation process using gas separation membranes

    International Nuclear Information System (INIS)

    Le Digabel, M.; Truan, P.A.; Ducret, D.; Laquerbe, C.; Perriat, P.; Niepce, J.C.; Pelletier, T.

    2003-01-01

    The use of gas separation membranes in atmospheric detritiation systems has been studied. The main advantage of this new process is to reduce the number and/or the size of the equipment in comparison to conventional tritium removal systems. Owing to the constraints linked to tritium handling, the separation performances of several commercial hollow fiber organic membranes have been analyzed, under various operating conditions, with hydrogen/nitrogen or deuterium/nitrogen mixtures. The experiments are performed with small quantities of hydrogen or deuterium (5000 ppm). The experimental results allow to evaluate the separation efficiency of these membranes and to determine the appropriate operating conditions to apply to a membrane detritiation process

  12. Hybrid membrane--PSA system for separating oxygen from air

    Science.gov (United States)

    Staiger, Chad L [Albuquerque, NM; Vaughn, Mark R [Albuquerque, NM; Miller, A Keith [Albuquerque, NM; Cornelius, Christopher J [Blackburg, VA

    2011-01-25

    A portable, non-cryogenic, oxygen generation system capable of delivering oxygen gas at purities greater than 98% and flow rates of 15 L/min or more is described. The system consists of two major components. The first component is a high efficiency membrane capable of separating argon and a portion of the nitrogen content from air, yielding an oxygen-enriched permeate flow. This is then fed to the second component, a pressure swing adsorption (PSA) unit utilizing a commercially available, but specifically formulated zeolite compound to remove the remainder of the nitrogen from the flow. The system is a unique gas separation system that can operate at ambient temperatures, for producing high purity oxygen for various applications (medical, refining, chemical production, enhanced combustion, fuel cells, etc . . . ) and represents a significant advance compared to current technologies.

  13. Two orders of magnitude reduction in silicon membrane thermal conductivity by resonance hybridizations

    Science.gov (United States)

    Honarvar, Hossein; Hussein, Mahmoud I.

    2018-05-01

    The thermal conductivity of a freestanding single-crystal silicon membrane may be reduced significantly by attaching nanoscale pillars on one or both surfaces. Atomic resonances of the nanopillars form vibrons that intrinsically couple with the base membrane phonons causing mode hybridization and flattening at each coupling location in the phonon band structure. This in turn causes group velocity reductions of existing phonons, in addition to introducing new modes that get excited but are localized and do not transport energy. The nanopillars also reduce the phonon lifetimes at and around the hybridization zones. These three effects, which in principle may be tuned to take place across silicon's full spectrum, lead to a lowering of the in-plane thermal conductivity in the base membrane. Using equilibrium molecular dynamics simulations, and utilizing the concept of vibrons compensation, we report a staggering two orders of magnitude reduction in the thermal conductivity at room temperature by this mechanism. Specifically, a reduction of a factor of 130 is demonstrated for a roughly 10-nm-thick pillared membrane compared to a corresponding unpillared membrane. This amounts to a record reduction of a factor of 481 compared to bulk crystalline silicon and nearly a factor of 2 compared to bulk amorphous silicon. These results are obtained while providing a path for preserving performance with upscaling.

  14. Synthesis and properties of imidazole-grafted hybrid inorganic-organic polymer membranes

    International Nuclear Information System (INIS)

    Li Siwen; Zhou Zhen; Liu Meilin; Li Wen; Ukai, Junzo; Hase, Kohei; Nakanishi, Masatsugu

    2006-01-01

    Imidazole rings were grafted on alkoxysilane with a simple nucleophilic substitute reaction to form hybrid inorganic-organic polymers with imidazole rings. Proton exchange membranes (PEM) based on these hybrid inorganic-organic polymers and H 3 PO 4 exhibit high proton conductivity and high thermal stability in an atmosphere of low relative humidity. The grafted imidazole rings improved the proton conductivity of the membranes in the high temperature range. It is found that the proton conductivities increase with H 3 PO 4 content and temperature, reaching 3.2 x 10 -3 S/cm at 110 deg. C in a dry atmosphere for a membrane with 1 mole of imidazole ring and 7 moles of H 3 PO 4 . The proton conductivity increases with relative humidity (RH) as well, reaching 4.3 x 10 -2 S/cm at 110 deg. C when the RH is increased to about 20%. Thermogravimetric analysis (TGA) indicates that these membranes are thermally stable up to 250 deg. C in dry air, implying that they have a good potential to be used as the membranes for high-temperature PEM fuel cells

  15. Ambipolar solution-processed hybrid perovskite phototransistors

    KAUST Repository

    Li, Feng; Ma, Chun; Wang, Hong; Hu, Weijin; Yu, Weili; Sheikh, Arif D.; Wu, Tao

    2015-01-01

    Organolead halide perovskites have attracted substantial attention because of their excellent physical properties, which enable them to serve as the active material in emerging hybrid solid-state solar cells. Here we investigate the phototransistors

  16. Assessing the removal of organic micropollutants by a novel baffled osmotic membrane bioreactor-microfiltration hybrid system

    KAUST Repository

    Pathak, Nirenkumar

    2018-04-14

    A novel approach was employed to study removal of organic micropollutants (OMPs) in a baffled osmotic membrane bioreactor-microfiltration (OMBR-MF) hybrid system under oxic–anoxic conditions. The performance of OMBR-MF system was examined employing three different draw solutes (DS), and three model OMPs. The highest forward osmosis (FO) membrane rejection was attained with atenolol (100 %) due to its higher molar mass and positive charge. With inorganic DS caffeine (94-100 %) revealed highest removal followed by atenolol (89-96 %) and atrazine (16-40 %) respectively. All three OMPs exhibited higher removal with organic DS as compared to inorganic DS. Significant anoxic removal was observed for atrazine under very different redox conditions with extended anoxic cycle time. This can be linked with possible development of different microbial consortia responsible for diverse enzymes secretion. Overall, the OMBR-MF process showed effective removal of total organic carbon (98%) and nutrients (phosphate 97% and total nitrogen 85%), respectively.

  17. Assessing the removal of organic micropollutants by a novel baffled osmotic membrane bioreactor-microfiltration hybrid system

    KAUST Repository

    Pathak, Nirenkumar; Li, Sheng; Kim, Youngjin; Chekli, Laura; Phuntsho, Sherub; Jang, Am; Ghaffour, NorEddine; Leiknes, TorOve; Shon, Ho Kyong

    2018-01-01

    A novel approach was employed to study removal of organic micropollutants (OMPs) in a baffled osmotic membrane bioreactor-microfiltration (OMBR-MF) hybrid system under oxic–anoxic conditions. The performance of OMBR-MF system was examined employing three different draw solutes (DS), and three model OMPs. The highest forward osmosis (FO) membrane rejection was attained with atenolol (100 %) due to its higher molar mass and positive charge. With inorganic DS caffeine (94-100 %) revealed highest removal followed by atenolol (89-96 %) and atrazine (16-40 %) respectively. All three OMPs exhibited higher removal with organic DS as compared to inorganic DS. Significant anoxic removal was observed for atrazine under very different redox conditions with extended anoxic cycle time. This can be linked with possible development of different microbial consortia responsible for diverse enzymes secretion. Overall, the OMBR-MF process showed effective removal of total organic carbon (98%) and nutrients (phosphate 97% and total nitrogen 85%), respectively.

  18. Removal of paraquat and linuron from water by continuous flow adsorption/ ultrafiltration membrane processes

    International Nuclear Information System (INIS)

    Zahoor, M.

    2013-01-01

    The magnetic activated carbon (MAC) was prepared, characterized and compared with powdered activated carbon (PAC) for its adsorptive parameters. Both adsorbents were then used in combination ultrafiltration (UF) membrane as pretreatment for the removal of paraquat and linuron from water. The comparison of membrane parameters like percent retention, permeate flux and backwash times for PAC/UF and MAC/UF hybrid processes showed that percent retention of paraquat and linuron was high for PAC due to its high surface area. However due to cake formation over membrane surface the decline permeate fluxes and long backwash times for PAC were observed. PAC also caused blackening of pipes and flow meter. MAC (an iron oxide and PAC composite) was removed from slurry through magnet thus no cake formation and secondary problems observed for PAC was not encountered. Also the backwash times were minimum for MAC/UF process. (author)

  19. Low CO2-emissions hybrid solar combined-cycle power system with methane membrane reforming

    International Nuclear Information System (INIS)

    Li, Yuanyuan; Zhang, Na; Cai, Ruixian

    2013-01-01

    Based on the principle of cascade utilization of multiple energy resources, a gas-steam combined cycle power system integrated with solar thermo-chemical fuel conversion and CO 2 capture has been proposed and analyzed. The collected solar heat at 550 °C drives the endothermic methane reforming and is converted to the produced syngas chemical exergy, and then released as high-temperature thermal energy via combustion for power generation, achieving its high-efficiency heat-power conversion. The reforming reaction is integrated with a hydrogen separation membrane, which continuously withdraws hydrogen from the reaction zone and enables nearly full methane conversion. The CO 2 enriched gas being concentrated in the retentate zone is collected and processed with pre-combustion decarbonization. The system is thermodynamically simulated using the ASPEN PLUS code. The results show that with 91% CO 2 captured, the specific CO 2 emission is 25 g/kWh. An exergy efficiency of 58% and thermal efficiency of 51.6% can be obtained. A fossil fuel saving ratio of 31.2% is achievable with a solar thermal share of 28.2%, and the net solar-to-electricity efficiency based on the gross solar heat incident on the collector is about 36.4% compared with the same gas-steam combined cycle system with an equal CO 2 removal ratio obtained by post-combustion decarbonization. - Highlights: ► A solar-assisted hybrid combined cycle power system has been proposed and analyzed. ► The system integrates power generation with solar-driven reforming and CO 2 capture. ► solar heat upgrading and high-efficiency heat-to-power conversion are achieved. ► membrane reforming enables high CH 4 conversion and pre-combustion CO 2 capture. ► The system thermodynamic performances have been investigated and compared

  20. Recent developments on ion-exchange membranes and electro-membrane processes.

    Science.gov (United States)

    Nagarale, R K; Gohil, G S; Shahi, Vinod K

    2006-02-28

    Rapid growth of chemical and biotechnology in diversified areas fuels the demand for the need of reliable green technologies for the down stream processes, which include separation, purification and isolation of the molecules. Ion-exchange membrane technologies are non-hazardous in nature and being widely used not only for separation and purification but their application also extended towards energy conversion devices, storage batteries and sensors etc. Now there is a quite demand for the ion-exchange membrane with better selectivities, less electrical resistance, high chemical, mechanical and thermal stability as well as good durability. A lot of work has been done for the development of these types of ion-exchange membranes during the past twenty-five years. Herein we have reviewed the preparation of various types of ion-exchange membranes, their characterization and applications for different electro-membrane processes. Primary attention has been given to the chemical route used for the membrane preparation. Several general reactions used for the preparation of ion-exchange membranes were described. Methodologies used for the characterization of these membranes and their applications were also reviewed for the benefit of readers, so that they can get all information about the ion-exchange membranes at one platform. Although there are large number of reports available regarding preparations and applications of ion-exchange membranes more emphasis were predicted for the usefulness of these membranes or processes for solving certain type of industrial or social problems. More efforts are needed to bring many products or processes to pilot scale and extent their applications.

  1. Membrane Separation Processes for Post-Combustion Carbon Dioxide Capture: State of the Art and Critical Overview

    Directory of Open Access Journals (Sweden)

    Belaissaoui Bouchra

    2014-11-01

    Full Text Available Membrane processes have been initially seldom considered within a post-combustion carbon dioxide capture framework. More traditional processes, particularly gas-liquid absorption in chemical solvents, are often considered as the most appropriate solution for the first generation of technologies. In this paper, a critical state of the art of gas separation membranes for CO2 capture is proposed. In a first step, the key performances (selectivity, permeability of different membrane materials such as polymers, inorganic membranes, hybrid matrices and liquid membranes, including recently reported results, are reviewed. In a second step, the process design characteristics of a single stage membrane unit are studied. Purity and energy constraints are analysed as a function of operating conditions and membrane materials performances. The interest of multistage and hybrid systems, two domains which have not sufficiently investigated up to now, are finally discussed. The importance of technico-economical analyses is highlighted in order to better estimate the optimal role of membranes for CCS applications.

  2. Optical Biosensor with Multienzyme System Immobilized onto Hybrid Membrane for Pesticides Determination

    Directory of Open Access Journals (Sweden)

    Lyubov Yotova

    2011-12-01

    Full Text Available A construction of optical biosensor based on simultaneous immobilization of acetylcholinesterase and choline oxidase enzymes for the detection of pesticides residues is described. Different kinds of novel SiO2 hybrid membranes were synthesized to be suitable for optical biosensors using sol-gel techniques. The bioactive component of the sensor consists of a multi-enzyme system including acetylcholinesterase and choline oxidase covalently immobilized on new hybrid membranes. The sensor exhibited a linear response to acetylcholine in a concentration range of 2.5 - 30 mM. Inhibition plots obtained from testing carbamate (carbofuran pesticides exhibited concentration dependent behaviour and showed linear profiles in concentration ranges between 5x10-8 - 5x10-7 M for carbofuran. The factors affecting the constructed optical biosensors were investigated.

  3. Increasing the operation temperature of polymer electrolyte membranes for fuel cells: From nanocomposites to hybrids

    Science.gov (United States)

    Licoccia, Silvia; Traversa, Enrico

    Among the possible systems investigated for energy production with low environmental impact, polymeric electrolyte membrane fuel cells (PEMFCs) are very promising as electrochemical power sources for application in portable technology and electric vehicles. For practical applications, operating FCs at temperatures above 100 °C is desired, both for hydrogen and methanol fuelled cells. When hydrogen is used as fuel, an increase of the cell temperature produces enhanced CO tolerance, faster reaction kinetics, easier water management and reduced heat exchanger requirement. The use of methanol instead of hydrogen as a fuel for vehicles has several practical benefits such as easy transport and storage, but the slow oxidation kinetics of methanol needs operating direct methanol fuel cells (DMFCs) at intermediate temperatures. For this reason, new membranes are required. Our strategy to achieve the goal of operating at temperatures above 120 °C is to develop organic/inorganic hybrid membranes. The first approach was the use of nanocomposite class I hybrids where nanocrystalline ceramic oxides were added to Nafion. Nanocomposite membranes showed enhanced characteristics, hence allowing their operation up to 130 °C when the cell was fuelled with hydrogen and up to 145 °C in DMFCs, reaching power densities of 350 mW cm -2. The second approach was to prepare Class II hybrids via the formation of covalent bonds between totally aromatic polymers and inorganic clusters. The properties of such covalent hybrids can be modulated by modifying the ratio between organic and inorganic groups and the nature of the chemical components allowing to reach high and stable conductivity values up to 6.4 × 10 -2 S cm -1 at 120 °C.

  4. A conceptual design of catalytic gasification fuel cell hybrid power plant with oxygen transfer membrane

    Science.gov (United States)

    Shi, Wangying; Han, Minfang

    2017-09-01

    A hybrid power generation system integrating catalytic gasification, solid oxide fuel cell (SOFC), oxygen transfer membrane (OTM) and gas turbine (GT) is established and system energy analysis is performed. In this work, the catalytic gasifier uses steam, recycled anode off-gas and pure oxygen from OTM system to gasify coal, and heated by hot cathode off-gas at the same time. A zero-dimension SOFC model is applied and verified by fitting experimental data. Thermodynamic analysis is performed to investigate the integrated system performance, and system sensitivities on anode off-gas back flow ratio, SOFC fuel utilization, temperature and pressure are discussed. Main conclusions are as follows: (1) System overall electricity efficiency reaches 60.7%(HHV) while the gasifier operates at 700 °C and SOFC at 850 °C with system pressure at 3.04 bar; (2) oxygen enriched combustion simplify the carbon-dioxide capture process, which derives CO2 of 99.2% purity, but results in a penalty of 6.7% on system electricity efficiency; (3) with SOFC fuel utilization or temperature increasing, the power output of SOFC increases while GT power output decreases, and increasing system pressure can improve both the performance of SOFC and GT.

  5. Hybrid imaging: Instrumentation and Data Processing

    Science.gov (United States)

    Cal-Gonzalez, Jacobo; Rausch, Ivo; Shiyam Sundar, Lalith K.; Lassen, Martin L.; Muzik, Otto; Moser, Ewald; Papp, Laszlo; Beyer, Thomas

    2018-05-01

    State-of-the-art patient management frequently requires the use of non-invasive imaging methods to assess the anatomy, function or molecular-biological conditions of patients or study subjects. Such imaging methods can be singular, providing either anatomical or molecular information, or they can be combined, thus, providing "anato-metabolic" information. Hybrid imaging denotes image acquisitions on systems that physically combine complementary imaging modalities for an improved diagnostic accuracy and confidence as well as for increased patient comfort. The physical combination of formerly independent imaging modalities was driven by leading innovators in the field of clinical research and benefited from technological advances that permitted the operation of PET and MR in close physical proximity, for example. This review covers milestones of the development of various hybrid imaging systems for use in clinical practice and small-animal research. Special attention is given to technological advances that helped the adoption of hybrid imaging, as well as to introducing methodological concepts that benefit from the availability of complementary anatomical and biological information, such as new types of image reconstruction and data correction schemes. The ultimate goal of hybrid imaging is to provide useful, complementary and quantitative information during patient work-up. Hybrid imaging also opens the door to multi-parametric assessment of diseases, which will help us better understand the causes of various diseases that currently contribute to a large fraction of healthcare costs.

  6. Hybrid Imaging: Instrumentation and Data Processing

    Directory of Open Access Journals (Sweden)

    Jacobo Cal-Gonzalez

    2018-05-01

    Full Text Available State-of-the-art patient management frequently requires the use of non-invasive imaging methods to assess the anatomy, function or molecular-biological conditions of patients or study subjects. Such imaging methods can be singular, providing either anatomical or molecular information, or they can be combined, thus, providing “anato-metabolic” information. Hybrid imaging denotes image acquisitions on systems that physically combine complementary imaging modalities for an improved diagnostic accuracy and confidence as well as for increased patient comfort. The physical combination of formerly independent imaging modalities was driven by leading innovators in the field of clinical research and benefited from technological advances that permitted the operation of PET and MR in close physical proximity, for example. This review covers milestones of the development of various hybrid imaging systems for use in clinical practice and small-animal research. Special attention is given to technological advances that helped the adoption of hybrid imaging, as well as to introducing methodological concepts that benefit from the availability of complementary anatomical and biological information, such as new types of image reconstruction and data correction schemes. The ultimate goal of hybrid imaging is to provide useful, complementary and quantitative information during patient work-up. Hybrid imaging also opens the door to multi-parametric assessment of diseases, which will help us better understand the causes of various diseases that currently contribute to a large fraction of healthcare costs.

  7. Processing radioactive wastes using membrane (UF/HF/RO) systems

    International Nuclear Information System (INIS)

    Doyle, R.D.

    1988-01-01

    Over the years many technologies have been utilized to process low level radioactive waste streams generated by the nuclear industry, including: demineralization, evaporation, reverse osmosis and filtration. In the early 1980's interest was generated in membrane technologies and their application to radioactive wastes. This interest was generated based on the capabilities shown by membrane systems in non-radioactive environments and the promise that reverse osmosis systems showed in early testing with radioactive wastes. Membrane technologies have developed from the early development of reverse osmosis system to also include specifically designed membranes for ultrafiltration and hyperfiltration applications

  8. A New Hybrid Proton-Exchange-Membrane Fuel Cells-Battery Power System with Efficiencies Considered

    Science.gov (United States)

    Chao, Chung-Hsing; Shieh, Jenn-Jong

    Hybrid systems, based on lead-acid or lithium-ion batteries and proton-exchange-membrane fuel cells (PEMFCs), give the possibility of combining the benefit of both technologies. The merits of high energy density and power density for different applications are discussed in this paper in recognition of the practical realization of such hybrid power systems. Furthermore, experimental data for such a hybrid system is described and the results are shown and discussed. The results show that the combination of lead-acid batteries or lithium-ion batteries and PEMFCs shows advantages in cases of applications with high peak power requirements, such as electric scooters and applications where the fuel cell (FC) is used as an auxiliary power-supply to recharge the battery. The high efficiency of FCs operating with a partial load results in a good fuel economy for the purpose of recharging batteries within a FC system.

  9. Processing of membranes for oxygenation using the Bellhouse-effect

    Directory of Open Access Journals (Sweden)

    Neußer C.

    2015-09-01

    Full Text Available State-of-the-art lung support systems are limited to short time application because of a lack of long term hemocompatibility and protein absorption on the membrane surfaces. In a highly interdisciplinary project at RWTH Aachen University a biohybrid lung assist system with endothelialised gas exchange flat membranes is developed to improve long term compatibility of oxygenators. To increase the gas exchange performance of flat membranes hollows are imprinted in the membrane surfaces. This approach is based on the research of B. J. Bell-house et al. [1], who discovered this effect, now known as Bellhouse-effect, around 1960. In this paper a processes to manufacture membrane assemblies for oxygenation with imprinted hollows on the flat membrane surfaces is reviewed.

  10. Recent achievements in facilitated transport membranes for separation processes

    Directory of Open Access Journals (Sweden)

    H. C. Ferraz

    2007-03-01

    Full Text Available Membrane separation processes have been extensively used for some important industrial separations, substituting traditional methods. However, some applications require the development of new membranes. In this work, we discuss recent progress achieved in this field, focusing on gas and liquid separation using facilitated transport membranes. The advantages of using a carrier species either in a liquid membrane or fixed in a polymer matrix to enhance both the flux and the selectivity of the transport are summarized. The most probable transport mechanisms in these membranes are presented and the improvements needed to spread this technology are also discussed. As examples, we discuss our very successful experiences in air fractioning, olefin/paraffin separation and sugar recovery using liquid and fixed carrier membranes.

  11. Towards Extrusion of Ionomers to Process Fuel Cell Membranes

    Directory of Open Access Journals (Sweden)

    Jean-Yves Sanchez

    2011-07-01

    Full Text Available While Proton Exchange Membrane Fuel Cell (PEMFC membranes are currently prepared by film casting, this paper demonstrates the feasibility of extrusion, a solvent-free alternative process. Thanks to water-soluble process-aid plasticizers, duly selected, it was possible to extrude acidic and alkaline polysulfone ionomers. Additionally, the feasibility to extrude composites was demonstrated. The impact of the plasticizers on the melt viscosity was investigated. Following the extrusion, the plasticizers were fully removed in water. The extrusion was found to impact neither on the ionomer chains, nor on the performances of the membrane. This environmentally friendly process was successfully validated for a variety of high performance ionomers.

  12. Modeling of Multicomponent Mixture Separation Processes Using Hollow fiber Membrane

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sin-Ah; Kim, Jin-Kuk; Lee, Young Moo; Yeo, Yeong-Koo [Hanyang University, Seoul (Korea, Republic of)

    2015-02-15

    So far, most of research activities on modeling of membrane separation processes have been focused on binary feed mixture. But, in actual separation operations, binary feed is hard to find and most separation processes involve multicomponent feed mixture. In this work models for membrane separation processes treating multicomponent feed mixture are developed. Various model types are investigated and validity of proposed models are analysed based on experimental data obtained using hollowfiber membranes. The proposed separation models show quick convergence and exhibit good tracking performance.

  13. A Short Review of Membrane Fouling in Forward Osmosis Processes

    Science.gov (United States)

    Chun, Youngpil; Mulcahy, Dennis; Zou, Linda; Kim, In S.

    2017-01-01

    Interest in forward osmosis (FO) research has rapidly increased in the last decade due to problems of water and energy scarcity. FO processes have been used in many applications, including wastewater reclamation, desalination, energy production, fertigation, and food and pharmaceutical processing. However, the inherent disadvantages of FO, such as lower permeate water flux compared to pressure driven membrane processes, concentration polarisation (CP), reverse salt diffusion, the energy consumption of draw solution recovery and issues of membrane fouling have restricted its industrial applications. This paper focuses on the fouling phenomena of FO processes in different areas, including organic, inorganic and biological categories, for better understanding of this long-standing issue in membrane processes. Furthermore, membrane fouling monitoring and mitigation strategies are reviewed. PMID:28604649

  14. Treatment of coal gasification wastewater by membrane bioreactor hybrid powdered activated carbon (MBR–PAC) system.

    Science.gov (United States)

    Jia, Shengyong; Han, Hongjun; Hou, Baolin; Zhuang, Haifeng; Fang, Fang; Zhao, Qian

    2014-12-01

    A laboratory-scale membrane bioreactor hybrid powdered activated carbon (MBR–PAC) system was developed to treat coal gasification wastewater to enhance the COD, total phenols (TPh), NH4+ removals and migrate the membrane fouling. Since the MBR–PAC system operated with PAC dosage of 4 g L−1, the maximum removal efficiencies of COD, TPh and NH4+ reached 93%, 99% and 63%, respectively with the corresponding influent concentrations of 2.27 g L−1, 497 mg L−1 and 164 mg N L−1; the PAC extraction efficiencies of COD, TPh and NH4+ were 6%, 3% and 13%, respectively; the transmembrane pressure decreased 34% with PAC after 50 d operation. The results demonstrate that PAC played a key role in the enhancement of biodegradability and mitigation of membrane fouling.

  15. Membrane Process to Capture CO{sub 2} from Coal-Fired Power Plant Flue Gas

    Energy Technology Data Exchange (ETDEWEB)

    Merkel, Tim; Wei, Xiaotong; Firat, Bilgen; He, Jenny; Amo, Karl; Pande, Saurabh; Baker, Richard; Wijmans, Hans; Bhown, Abhoyjit

    2012-03-31

    CO{sub 2} and 50 for CO{sub 2}/N{sub 2}), operating with no feed compression and low-cost CO{sub 2} compression equipment, an incremental LCOE of $33/MWh at 90% capture can be achieved (40% lower than the advanced MEA case). Even with lower cost compression, it appears unlikely that a membrane process using high feed compression (>5 bar) can be competitive with amine absorption, due to the capital cost and energy consumption of this equipment. Similarly, low vacuum pressure (<0.2 bar) cannot be used due to poor efficiency and high cost of this equipment. High membrane permeance is important to reduce the capital cost and footprint of the membrane unit. CO{sub 2}/N{sub 2} selectivity is less important because it is too costly to generate a pressure ratio where high selectivity can be useful. A potential cost ?sweet spot? exists for use of membrane-based technology, if 50-70% CO{sub 2} capture is acceptable. There is a minimum in the cost of CO{sub 2} avoided/ton that membranes can deliver at 60% CO{sub 2} capture, which is 20% lower than the cost at 90% capture. Membranes operating with no feed compression are best suited for lower capture rates. Currently, it appears that the biggest hurdle to use of membranes for post-combustion CO{sub 2} capture is compression equipment cost. An alternative approach is to use sweep membranes in parallel with another CO{sub 2} capture technology that does not require feed compression or vacuum equipment. Hybrid designs that utilize sweep membranes for selective CO{sub 2} recycle show potential to significantly reduce the minimum energy of CO{sub 2} separation.

  16. Integrated distillation-membrane process for bio-ethanol and bio-butanol recovery from actual fermentation broths: Separation energy efficiency and fate of secondary fermentation products

    Science.gov (United States)

    A hybrid process integrating vapor stripping with vapor compression and vapor permeation membrane separation, termed Membrane Assisted Vapor Stripping (MAVS), was evaluated for recovery and dehydration of ethanol and/or 1-butanol from aqueous solution as an alternative to convent...

  17. Membrane preparation and process development for radioactive waste treatment

    International Nuclear Information System (INIS)

    Lee, K. W.; Kim, G. W.; Kim, S. K.

    2012-01-01

    The membrane manufacturing technology with hydrophilic function that can minimize fouling when it applies to the radioactive liquid waste treatment process was developed. Thermodynamic and rheological analysis for polysulfone casting solution containing polyvinylpyrrolidone was performed. On the basis of the results of preparation of the hydrophilic polymer membrane solution, the hollow fiber membrane for radioactive liquid waste treatment was manufactured and its performance analysis was carried out. As a results, it turns out the hydrophilic hollow fiber membrane has more 90 % of flux increment effect and also more 2.5 times fouling reducing effect than one prepared with only polysulfone. In addition, as investigating the separation property of radioactive liquid waste for the electrofilteration membrane process, a proper range for application of radioactive liquid wastes was established through the thorough electrofiltration analysis of various wastes containing metal salt, surfactants and oil

  18. Membrane preparation and process development for radioactive waste treatment

    Energy Technology Data Exchange (ETDEWEB)

    Lee, K. W.; Kim, G. W.; Kim, S. K. [KAERI, Daejeon (Korea, Republic of); and others

    2012-01-15

    The membrane manufacturing technology with hydrophilic function that can minimize fouling when it applies to the radioactive liquid waste treatment process was developed. Thermodynamic and rheological analysis for polysulfone casting solution containing polyvinylpyrrolidone was performed. On the basis of the results of preparation of the hydrophilic polymer membrane solution, the hollow fiber membrane for radioactive liquid waste treatment was manufactured and its performance analysis was carried out. As a results, it turns out the hydrophilic hollow fiber membrane has more 90 % of flux increment effect and also more 2.5 times fouling reducing effect than one prepared with only polysulfone. In addition, as investigating the separation property of radioactive liquid waste for the electrofilteration membrane process, a proper range for application of radioactive liquid wastes was established through the thorough electrofiltration analysis of various wastes containing metal salt, surfactants and oil.

  19. Forward osmosis membrane modular configurations for osmotic dilution of seawater by forward osmosis and reverse osmosis hybrid system.

    Science.gov (United States)

    Kim, Jung Eun; Phuntsho, Sherub; Ali, Syed Muztuza; Choi, Joon Young; Shon, Ho Kyong

    2018-01-01

    This study evaluates various options for full-scale modular configuration of forward osmosis (FO) process for osmotic dilution of seawater using wastewater for simultaneous desalination and water reuse through FO-reverse osmosis (RO) hybrid system. Empirical relationship obtained from one FO membrane element operation was used to simulate the operational performances of different FO module configurations. The main limiting criteria for module operation is to always maintain the feed pressure higher than the draw pressure throughout the housing module for safe operation without affecting membrane integrity. Experimental studies under the conditions tested in this study show that a single membrane housing cannot accommodate more than four elements as the draw pressure exceeds the feed pressure. This then indicates that a single stage housing with eight elements is not likely to be practical for safe FO operation. Hence, six different FO modular configurations were proposed and simulated. A two-stage FO configuration with multiple housings (in parallel) in the second stage using same or larger spacer thickness reduces draw pressure build-up as the draw flow rates are reduced to half in the second stage thereby allowing more than four elements in the second stage housing. The loss of feed pressure (pressure drop) and osmotic driving force in the second stage are compensated by operating under the pressure assisted osmosis (PAO) mode, which helps enhance permeate flux and maintains positive pressure differences between the feed and draw chamber. The PAO energy penalty is compensated by enhanced permeate throughput, reduced membrane area, and plant footprint. The contribution of FO/PAO to total energy consumption was not significant compared to post RO desalination (90%) indicating that the proposed two-stage FO modular configuration is one way of making the FO full-scale operation practical for FO-RO hybrid system. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. High flux MWCNTs-interlinked GO hybrid membranes survived in cross-flow filtration for the treatment of strontium-containing wastewater

    International Nuclear Information System (INIS)

    Zhang, Lin; Lu, Ying; Liu, Ying-Ling; Li, Ming; Zhao, Hai-Yang; Hou, Li-An

    2016-01-01

    Graphene oxide (GO)-based membranes provide an encouraging opportunity to support high separation efficiency for wastewater treatment. However, due to the relatively weak interaction between GO nanosheets, it is difficult for bare GO-based membranes to survive in cross-flow filtration. In addition, the permeation flux of the bare GO membrane is not high sufficiently due to its narrow interlayer spacing. In this study, GO membranes interlinked with multi-walled carbon nanotubes (MWCNTs) via covalent bonds were fabricated on modified polyacrylonitrile (PAN) supports by vacuum filtration. Due to the strong bonds between GO, MWCNTs and the PAN membrane, the membranes could be used for the treatment of simulated nuclear wastewater containing strontium via a cross-flow process. The result showed a high flux of 210.7 L/(m"2 h) at 0.4 MPa, which was approximately 4 times higher than that of commercial nanofiltration membranes. The improved water permeation was attributed to the nanochannels created by the interlinked MWCNTs in the GO layers. In addition, the hybrid membrane exhibited a high rejection of 93.4% for EDTA-chelated Sr"2"+ in an alkaline solution, and could also be used to separate Na"+/Sr"2"+ mixtures. These results indicate that the MWCNTs-interlinked GO membrane has promising prospects for application in radioactive waste treatment.

  1. High flux MWCNTs-interlinked GO hybrid membranes survived in cross-flow filtration for the treatment of strontium-containing wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Lin; Lu, Ying [Key Laboratory of Biomass Chemical Engineering, Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027 (China); Liu, Ying-Ling [Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Li, Ming [Xi' an High-Tech Institute, Xi' an 710025 (China); Zhao, Hai-Yang [Key Laboratory of Biomass Chemical Engineering, Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027 (China); Hou, Li-An, E-mail: houla@cae.cn [Key Laboratory of Biomass Chemical Engineering, Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027 (China); Xi' an High-Tech Institute, Xi' an 710025 (China)

    2016-12-15

    Graphene oxide (GO)-based membranes provide an encouraging opportunity to support high separation efficiency for wastewater treatment. However, due to the relatively weak interaction between GO nanosheets, it is difficult for bare GO-based membranes to survive in cross-flow filtration. In addition, the permeation flux of the bare GO membrane is not high sufficiently due to its narrow interlayer spacing. In this study, GO membranes interlinked with multi-walled carbon nanotubes (MWCNTs) via covalent bonds were fabricated on modified polyacrylonitrile (PAN) supports by vacuum filtration. Due to the strong bonds between GO, MWCNTs and the PAN membrane, the membranes could be used for the treatment of simulated nuclear wastewater containing strontium via a cross-flow process. The result showed a high flux of 210.7 L/(m{sup 2} h) at 0.4 MPa, which was approximately 4 times higher than that of commercial nanofiltration membranes. The improved water permeation was attributed to the nanochannels created by the interlinked MWCNTs in the GO layers. In addition, the hybrid membrane exhibited a high rejection of 93.4% for EDTA-chelated Sr{sup 2+} in an alkaline solution, and could also be used to separate Na{sup +}/Sr{sup 2+} mixtures. These results indicate that the MWCNTs-interlinked GO membrane has promising prospects for application in radioactive waste treatment.

  2. Study of Aging ion exchange membranes used in separation processes

    International Nuclear Information System (INIS)

    Bellakhal, N.; Ghalloussi, R.; Dammak, L.

    2009-01-01

    Presently, the most important application of ion exchange membranes (IEM) is the electrodialysis. This technique consists of a membrane separation using a series of anion exchange membranes alternately and cations, often used for the desalination of brackish water. These membranes are confronted with problems of aging. Indeed, the more they are used more physical and chemical properties will change. A comparative study of the behavior of both EMI and new but the same treatment is carried out by measuring a magnitude transfer characteristic: ion permeability. Ionic permeability is a physical quantity can have an idea about the selectivity of the membrane towards the charged species and the p orosity o f the membrane. It is a transport of ions (cations + anions) through the membrane. Thus, determining the ion permeability is to determine the diffusion flux of a strong electrolyte through a membrane separating two compartments (one containing electrolytes and other water initially ultrapure who will gradually electrolyte through the membrane). The measurement technique used is that by conductimetric detection because of the ease of its implementation and its accuracy. Thus, the variation of the concentration of the electrolyte is continuously monitored by measuring the conductivity of the solution diluted with time. The curves s = f (t) MEA and MEC new and used varying concentration of the electrolyte membranes show that let in less waste of strong electrolyte (NaCl and HCl) than new ones. This can be explained by: - The functional sites are combined with polyvalent ions present even in trace amounts in the solution process and become inactive. The membrane loses its hydrophilic character and turns into a film almost hydrophobic. - The chemical attacks and electrodialysis operations have degraded and eliminated much of the fixed sites leading to the same effects on the hydrophilic membrane. - These two assumptions have been reinforced by the extent of exchange

  3. Strategic Co-Location in a Hybrid Process Involving Desalination and Pressure Retarded Osmosis (PRO)

    Science.gov (United States)

    Sim, Victor S.T.; She, Qianhong; Chong, Tzyy Haur; Tang, Chuyang Y.; Fane, Anthony G.; Krantz, William B.

    2013-01-01

    This paper focuses on a Hybrid Process that uses feed salinity dilution and osmotic power recovery from Pressure Retarded Osmosis (PRO) to achieve higher overall water recovery. This reduces the energy consumption and capital costs of conventional seawater desalination and water reuse processes. The Hybrid Process increases the amount of water recovered from the current 66.7% for conventional seawater desalination and water reuse processes to a potential 80% through the use of reclaimed water brine as an impaired water source. A reduction of up to 23% in energy consumption is projected via the Hybrid Process. The attractiveness is amplified by potential capital cost savings ranging from 8.7%–20% compared to conventional designs of seawater desalination plants. A decision matrix in the form of a customizable scorecard is introduced for evaluating a Hybrid Process based on the importance of land space, capital costs, energy consumption and membrane fouling. This study provides a new perspective, looking at processes not as individual systems but as a whole utilizing strategic co-location to unlock the synergies available in the water-energy nexus for more sustainable desalination. PMID:24956940

  4. Strategic Co-Location in a Hybrid Process Involving Desalination and Pressure Retarded Osmosis (PRO

    Directory of Open Access Journals (Sweden)

    William B. Krantz

    2013-07-01

    Full Text Available This paper focuses on a Hybrid Process that uses feed salinity dilution and osmotic power recovery from Pressure Retarded Osmosis (PRO to achieve higher overall water recovery. This reduces the energy consumption and capital costs of conventional seawater desalination and water reuse processes. The Hybrid Process increases the amount of water recovered from the current 66.7% for conventional seawater desalination and water reuse processes to a potential 80% through the use of reclaimed water brine as an impaired water source. A reduction of up to 23% in energy consumption is projected via the Hybrid Process. The attractiveness is amplified by potential capital cost savings ranging from 8.7%–20% compared to conventional designs of seawater desalination plants. A decision matrix in the form of a customizable scorecard is introduced for evaluating a Hybrid Process based on the importance of land space, capital costs, energy consumption and membrane fouling. This study provides a new perspective, looking at processes not as individual systems but as a whole utilizing strategic co-location to unlock the synergies available in the water-energy nexus for more sustainable desalination.

  5. Potential of membrane processes in management of radioactive liquid waste

    International Nuclear Information System (INIS)

    Kumar, Surender; Jain, Savita; Raj, Kanwar

    2010-01-01

    Various categories of radioactive liquid waste are generated during operations and maintenance of nuclear installations. The potential of membrane processes for the treatment of low-level radioactive liquids is discussed in this paper

  6. Effectiveness of Water Desalination by Membrane Distillation Process

    Directory of Open Access Journals (Sweden)

    Marek Gryta

    2012-07-01

    Full Text Available The membrane distillation process constitutes one of the possibilities for a new method for water desalination. Four kinds of polypropylene membranes with different diameters of capillaries and pores, as well as wall thicknesses were used in studied. The morphology of the membrane used and the operating parameters significantly influenced process efficiency. It was found that the membranes with lower wall thickness and a larger pore size resulted in the higher yields. Increasing both feed flow rate and temperature increases the permeate flux and simultaneously the process efficiency. However, the use of higher flow rates also enhanced heat losses by conduction, which decreases the thermal efficiency. This efficiency also decreases when the salt concentration in the feed was enhanced. The influence of fouling on the process efficiency was considered.

  7. Ozonation and/or Coagulation - Ceramic Membrane Hybrid for Filtration of Impaired-Quality Source Waters

    KAUST Repository

    Ha, Changwon

    2013-09-01

    When microfiltration (MF) and ultrafiltration (UF) membranes are applied for drinking water treatment/wastewater reuse, membrane fouling is an evitable problem, causing the loss of productivity over time. Polymeric membranes have been often reported to experience rapid and/or problematical fouling, restraining sustainable operation. Ceramic membranes can be effectively employed to treat impaired-quality source waters due to their inherent robustness in terms of physical and chemical stability. This research aimed to identify the effects of coagulation and/or ozonation on ceramic membrane filtration for seawater and wastewater (WW) effluent. Two different types of MF and UF ceramic membranes obtained by sintering (i.e., TAMI made of TiO2+ZrO2) and anodic oxidation process (i.e., AAO made of Al2O3) were employed for bench-scale tests. Precoagulation was shown to play an important role in both enhancing membrane filterability and natural organic matter (NOM) removal efficacy for treating a highorganic surface water. The most critical factors were found to be pH and coagulant dosage with the highest efficiency resulting under low pH and high coagulant dose. Due to the ozone-resistance nature of the ceramic membranes, preozonation allowed the ceramic membranes to be operated at higher flux, especially leading to significant flux improvement when treating seawater in the presence of calcium and magnesium. 4 Dissolved ozone in contact with the TAMI ceramic membrane surface accelerated the formation of hydroxyl (˙OH) radicals in WW effluent treatment. Flux restoration of both ceramic membranes, fouled with seawater and WW effluent, was efficiently achieved by high backwash (BW) pressure and ozone in chemically enhanced backwashing (CEB). Ceramic membranes exhibited a pH-dependent permeate flux while filtering WW effluent, showing reduced fouling with increased pH. On the other hand, for filtering seawater, differences in permeate flux between the two membranes was

  8. Performance modeling of direct contact membrane distillation (DCMD) seawater desalination process using a commercial composite membrane

    KAUST Repository

    Lee, Junggil

    2015-01-10

    This paper presents the development of a rigorous theoretical model to predict the transmembrane flux of a flat sheet hydrophobic composite membrane, comprising both an active layer of polytetrafluoroethylene and a scrim-backing support layer of polypropylene, in the direct contact membrane distillation (DCMD) process. An integrated model includes the mass, momentum, species and energy balances for both retentate and permeate flows, coupled with the mass transfer of water vapor through the composite membrane and the heat transfer across the membrane and through the boundary layers adjacent to the membrane surfaces. Experimental results and model predictions for permeate flux and performance ratio are compared and shown to be in good agreement. The permeate flux through the composite layer can be ignored in the consideration of mass transfer pathways at the composite membrane. The effect of the surface porosity and the thickness of active and support layers on the process performance of composite membrane has also been studied. Among these parameters, surface porosity is identified to be the main factor significantly influencing the permeate flux and performance ratio, while the relative influence of the surface porosity on the performance ratio is less than that on flux.

  9. Automated sampling and data processing derived from biomimetic membranes

    DEFF Research Database (Denmark)

    Perry, Mark; Vissing, Thomas; Boesen, P.

    2009-01-01

    data processing software to analyze and organize the large amounts of data generated. In this work, we developed an automated instrumental voltage clamp solution based on a custom-designed software controller application (the WaveManager), which enables automated on-line voltage clamp data acquisition...... applicable to long-time series experiments. We designed another software program for off-line data processing. The automation of the on-line voltage clamp data acquisition and off-line processing was furthermore integrated with a searchable database (DiscoverySheet (TM)) for efficient data management......Recent advances in biomimetic membrane systems have resulted in an increase in membrane lifetimes from hours to days and months. Long-lived membrane systems demand the development of both new automated monitoring equipment capable of measuring electrophysiological membrane characteristics and new...

  10. Membrane processes in production of functional whey components

    Directory of Open Access Journals (Sweden)

    Lutfiye Yilmaz-Ersan

    2009-12-01

    Full Text Available In recent years, whey has been recognised as a major source of nutritional and functional ingredients for the food industry. Commercial whey products include various powders, whey protein concentrates and isolates, and fractionated proteins, such as a-lactalbumin and b-lactoglobulin. The increased interest in separation and fractionation of whey proteins arises from the differences in their functional, biological and nutritional properties. In response to concerns about environmental aspects, research has been focused on membrane filtration technology, which provides exciting new opportunities for large-scale protein and lactose fractionation. Membrane separation is such technique in which particles are separated according to their molecular size. The types of membrane processing techniques are ultrafiltration, microfiltration, reverse osmosis, pervaporation, electrodialysis and nanofiltration. A higher purification of whey proteins is possible by combining membrane separation with ion-exchange. This paper provides an overview of types and applications of membrane separation techniques

  11. Process intensification on membrane-based process for blackcurrant juice concentration

    DEFF Research Database (Denmark)

    Fjerbæk Søtoft, Lene; Rong, Ben-Guang; Christensen, Knud Villy

    Juice concentrate production is a field where process intensification and novel concentration processes need to be implemented. The paper presents a systematic approach for process synthesis based on membrane processes for the concentration of blackcurrant juice, exemplified by the aroma recovery...... using combinations of vacuum membrane distillation and traditional distillation. Furthermore, the paper further suggests a novel method for the combination of nanofiltration, reverse osmosis and membrane distillation for the concentration of the dearomatized juice....

  12. Electro-membrane processes for flue gas cleaning

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, T. F.

    1997-12-31

    Various techniques for NO removal in Membrane Contactor were considered. However the NO absorption in a liquid adsorbent with chemical enhancement and its ease for regeneration, was selected as the most practicable choice. Various different compounds for chemical enhancement were studied and Fe(II)-chelate enhanced adsorbent was selected for further studies. The technical feasibility of Fe(II)-chelate enhanced adsorbent for obtaining greater than 80% NO removal have been successfully established. Even though the membrane area required for greater than 80% NO removal has been found to be about 500 m{sup 2}/MW{sub c} (compared to 50 - 150 m{sup 2}/MW{sub c}, for 95% SO{sub 2} removal, depending on the membrane characteristics), suitable Membrane Contactor design has been proposed for carrying out the process at an acceptable gas side pressure drop. The electro-membrane processes for the regeneration of adsorbents have been studied both theoretically and experimentally. The theoretical studies have concerned the study of basic functions of both the bipolar membranes and charge laden (anion/cation) membranes. Suitable experimental techniques have been devised for studying of these basic parameters (e.g. charge transport number, salt diffusion through membranes, current-voltage characteristics of bipolar membranes and electrical resistance of charge laden membranes). These parameters have further been utilized in the mechanistic model of combined membranes in an ED cell (electrodialysis). Based on these fundamental studies and analysis of process requirements, suitable configuration of ED cell has been developed and verified by experimental studies. The effect of both the stack design parameters (e.g. number of cells, membrane type and spacer design) and the operational parameters (e.g. temperature, electrolyte concentration, liquid velocity and current density) have been studied for optimization of energy consumption for regeneration of loaded adsorbents. As a result

  13. Startup of the Anammox Process in a Membrane Bioreactor (AnMBR) from Conventional Activated Sludge.

    Science.gov (United States)

    Gutwiński, P; Cema, G; Ziembińska-Buczyńska, A; Surmacz-Górska, J; Osadnik, M

    2016-12-01

      In this study, a laboratory-scale anammox process in a membrane bioreactor (AnMBR) was used to startup the anaerobic ammonium oxidation (anammox) process from conventional activated sludge. Stable operation was achieved after 125 days. From that time, nitrogen load was gradually increased. After six months, the average nitrogen removal efficiency exceeded 80%. The highest obtained special anammox activity (SAA) achieved was 0.17 g (-N + -N) (g VSS × d)-1. Fluorescent in situ hybridization also proved the presence of the anammox bacteria, typically a genus of Brocadia anammoxidans and Kuenenia stuttgartiensis.

  14. Studies on soy protein isolate/polyvinyl alcohol hybrid nanofiber membranes as multi-functional eco-friendly filtration materials

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Qun; Zhu, Ming; Yu, Siruo; Sui, Gang, E-mail: suigang@mail.buct.edu.cn; Yang, Xiaoping

    2016-12-15

    Highlights: • Biodegradable filtration membranes were prepared. • Polar groups in the membrane surface helped capture fine particles. • Loading filtration efficiency can reach 99.99% in the case of small pressure drop. • Filtration membrane showed antimicrobial activity to Escherichia coli. - Abstract: A biodegradable and multifunctional air filtration membrane was prepared by electrospinning of soy protein isolate (SPI)/polyvinyl alcohol (PVA) system in this paper. The optimized SPI/PVA proportion in the spinning solution was determined according to the analyses of microstructure, surface chemical characteristic and mechanical property of the hybrid nanofiber membranes. Under the preferred preparation condition, two kinds of polymer materials displayed a good compatibility in the hybrid nanofibers, and a large number of polar groups existed in the membrane surface. The loading filtration efficiency of the nanofiber membrane with optimal material ratio and areal density can reach 99.99% after test of 30 min for fine particles smaller than 2.5 μm in the case of small pressure drop. Besides, this kind of filtration membrane showed an antimicrobial activity to Escherichia coli in the study. The SPI/PVA hybrid nanofiber membrane with proper material composition and microstructure can be used as a new type of high performance eco-friendly filtration materials.

  15. Studies on soy protein isolate/polyvinyl alcohol hybrid nanofiber membranes as multi-functional eco-friendly filtration materials

    International Nuclear Information System (INIS)

    Fang, Qun; Zhu, Ming; Yu, Siruo; Sui, Gang; Yang, Xiaoping

    2016-01-01

    Highlights: • Biodegradable filtration membranes were prepared. • Polar groups in the membrane surface helped capture fine particles. • Loading filtration efficiency can reach 99.99% in the case of small pressure drop. • Filtration membrane showed antimicrobial activity to Escherichia coli. - Abstract: A biodegradable and multifunctional air filtration membrane was prepared by electrospinning of soy protein isolate (SPI)/polyvinyl alcohol (PVA) system in this paper. The optimized SPI/PVA proportion in the spinning solution was determined according to the analyses of microstructure, surface chemical characteristic and mechanical property of the hybrid nanofiber membranes. Under the preferred preparation condition, two kinds of polymer materials displayed a good compatibility in the hybrid nanofibers, and a large number of polar groups existed in the membrane surface. The loading filtration efficiency of the nanofiber membrane with optimal material ratio and areal density can reach 99.99% after test of 30 min for fine particles smaller than 2.5 μm in the case of small pressure drop. Besides, this kind of filtration membrane showed an antimicrobial activity to Escherichia coli in the study. The SPI/PVA hybrid nanofiber membrane with proper material composition and microstructure can be used as a new type of high performance eco-friendly filtration materials.

  16. CO₂ Capture Membrane Process for Power Plant Flue Gas

    Energy Technology Data Exchange (ETDEWEB)

    Toy, Lora [Research Triangle Inst. International, Research Triangle Park, NC (United States); Kataria, Atish [Research Triangle Inst. International, Research Triangle Park, NC (United States); Gupta, Raghubir [Research Triangle Inst. International, Research Triangle Park, NC (United States)

    2012-04-01

    Because the fleet of coal-fired power plants is of such importance to the nation's energy production while also being the single largest emitter of CO₂, the development of retrofit, post-combustion CO₂ capture technologies for existing and new, upcoming coal power plants will allow coal to remain a major component of the U.S. energy mix while mitigating global warming. Post-combustion carbon capture technologies are an attractive option for coal-fired power plants as they do not require modification of major power-plant infrastructures, such as fuel processing, boiler, and steam-turbine subsystems. In this project, the overall objective was to develop an advanced, hollow-fiber, polymeric membrane process that could be cost-effectively retrofitted into current pulverized coal-fired power plants to capture at least 90% of the CO₂ from plant flue gas with 95% captured CO₂ purity. The approach for this project tackled the technology development on three different fronts in parallel: membrane materials R&D, hollow-fiber membrane module development, and process development and engineering. The project team consisted of RTI (prime) and two industrial partners, Arkema, Inc. and Generon IGS, Inc. Two CO₂-selective membrane polymer platforms were targeted for development in this project. For the near term, a next-generation, high-flux polycarbonate membrane platform was spun into hollow-fiber membranes that were fabricated into both lab-scale and larger prototype (~2,200 ft²) membrane modules. For the long term, a new fluoropolymer membrane platform based on poly(vinylidene fluoride) [PVDF] chemistry was developed using a copolymer approach as improved capture membrane materials with superior chemical resistance to flue-gas contaminants (moisture, SO₂, NOx, etc.). Specific objectives were: - Development of new, highly chemically resistant, fluorinated polymers as membrane materials with minimum selectivity of 30 for CO₂ over N₂ and CO

  17. Nature-inspired multifunctional membrane fabricated by adaptive hybridization of PNIPAm and PPy

    Science.gov (United States)

    Kim, Hyejeong; Kim, Kiwoong; Lee, Sang Joon

    2017-11-01

    Specialized plant organs, such as guard cells of stomata, consist of soft materials with deformability and electrochemical properties in response to various environmental stimuli. Stimulus-responsive hydrogels with electrochemical properties are good candidates for imitating such functionalities having great potential in a wide range of applications. However, conductive hydrogels are usually mechanically rigid and the fabrication technology of structured hydrogels has low reproducibility. Here, inspired by stimulus-responsive functionalities of plants, a thermo-responsive multifunctional hybrid membrane (HM) is synthesized through the in situ hybridization of conductive poly(pyrrole)(PPy) on a photopolymerized poly(N-isopropylacrylamide)(PNIPAm) membrane. The various properties of the HM are investigated to characterize its multiple functions. In terms of morphology, the HM can be easily fabricated into various structures, and exhibits thermo-responsive deformability. In terms of functionality, it exhibits various electrical and charge responses to thermal stimuli. This simple and efficient fabrication method can be used as a promising platform for fabricating a variety of functional devices, such as actuators, biosensors, and filtration membranes. This work was supported by the National Research Foundation of Korea (NRF) Grant funded by the Korean government (MSIP) (No. 2017R1A2B3005415).

  18. Conceptual design of distillation-based hybrid separation processes.

    Science.gov (United States)

    Skiborowski, Mirko; Harwardt, Andreas; Marquardt, Wolfgang

    2013-01-01

    Hybrid separation processes combine different separation principles and constitute a promising design option for the separation of complex mixtures. Particularly, the integration of distillation with other unit operations can significantly improve the separation of close-boiling or azeotropic mixtures. Although the design of single-unit operations is well understood and supported by computational methods, the optimal design of flowsheets of hybrid separation processes is still a challenging task. The large number of operational and design degrees of freedom requires a systematic and optimization-based design approach. To this end, a structured approach, the so-called process synthesis framework, is proposed. This article reviews available computational methods for the conceptual design of distillation-based hybrid processes for the separation of liquid mixtures. Open problems are identified that must be addressed to finally establish a structured process synthesis framework for such processes.

  19. Hybrid systems with lead-acid battery and proton-exchange membrane fuel cell

    Science.gov (United States)

    Jossen, Andreas; Garche, Juergen; Doering, Harry; Goetz, Markus; Knaupp, Werner; Joerissen, Ludwig

    Hybrid systems, based on a lead-acid battery and a proton-exchange membrane fuel cell (PEMFC) give the possibility to combine the advantages of both technologies. The benefits for different applications are discussed and the practical realisation of such systems is shown. Furthermore a numerical model for such a hybrid system is described and results are shown and discussed. The results show that the combination of lead-acid batteries and PEMFC shows advantages in case of applications with high peak power requirements (i.e. electric scooter) and applications where the fuel cell is used as auxiliary power supply to recharge the battery. The high efficiency of fuel cells at partial load operation results in a good fuel economy for recharging of lead-acid batteries with a fuel cell system.

  20. Progress and challenges of carbon nanotube membrane in water treatment

    KAUST Repository

    Lee, Jieun; Jeong, Sanghyun; Liu, Zongwen

    2016-01-01

    review of the progress of CNT membranes addressing the current epidemic—whether (i) the CNT membranes could tackle current challenges in the pressure- or thermally driven membrane processes and (ii) CNT hybrid nanocomposite as a new generation

  1. Hybrid microcircuit technology handbook materials, processes, design, testing and production

    CERN Document Server

    Licari, James J

    1998-01-01

    The Hybrid Microcircuit Technology Handbook integrates the many diverse technologies used in the design, fabrication, assembly, and testing of hybrid segments crucial to the success of producing reliable circuits in high yields. Among these are: resistor trimming, wire bonding, die attachment, cleaning, hermetic sealing, and moisture analysis. In addition to thin films, thick films, and assembly processes, important chapters on substrate selections, handling (including electrostatic discharge), failure analysis, and documentation are included. A comprehensive chapter of design guidelines will

  2. Ceramic membranes for gas processing in coal gasification

    Energy Technology Data Exchange (ETDEWEB)

    Smart, S.; Lin, C.X.C.; Ding, L.; Thambimuthu, K.; da Costa, J.C.D. [University of Queensland, Brisbane, Qld. (Australia)

    2010-07-01

    Pre-combustion options via coal gasification, especially integrated gasification combined cycle (IGCC) processes, are attracting the attention of governments, industry and the research community as an attractive alternative to conventional power generation. It is possible to build an IGCC plant with CCS with conventional technologies however; these processes are energy intensive and likely to reduce power plant efficiencies. Novel ceramic membrane technologies, in particular molecular sieving silica (MSS) and pervoskite membranes, offer the opportunity to reduce efficiency losses by separating gases at high temperatures and pressures. MSS membranes can be made preferentially selective for H{sub 2}, enabling both enhanced production, via a water-gas shift membrane reactor, and recovery of H{sub 2} from the syngas stream at high temperatures. They also allow CO{sub 2} to be concentrated at high pressures, reducing the compression loads for transportation and enabling simple integration with CO{sub 2} storage or sequestration operations. Perovskite membranes provide a viable alternative to cryogenic distillation for air separation by delivering the tonnage of oxygen required for coal gasification at a reduced cost. In this review we examine ceramic membrane technologies for high temperature gas separation and discuss the operational, mechanical, design and process considerations necessary for their successful integration into IGCC with CCS systems.

  3. Studies on hydrogen separation membrane for IS process. Membrane preparation with porous α-alumina tube

    International Nuclear Information System (INIS)

    Hwang, Gab-Jin; Onuki, Kaoru; Shimizu, Saburo

    1998-01-01

    It was investigated the preparation technique of hydrogen separation membrane to enhance the decomposition ratio of hydrogen iodide in the thermochemical IS process. Hydrogen separation membranes based on porous α-alumina tubes having pore size of 100 nm and 10 nm were prepared by chemical vapor deposition using tetraethylorthosilicate (TEOS) as the Si source. In the hydrogen separation membrane, its pore was closed by the deposited silica and then the permeation of gas was affected by the hindrance diffusion. At 600degC, the selectivity ratios (H 2 /N 2 ) were 5.2 and 160 for the membranes based on porous α-alumina tube having pore size of 100 nm and 10 nm, respectively. (author)

  4. [Super sweet corn hybrids adaptability for industrial processing. I freezing].

    Science.gov (United States)

    Alfonzo, Braunnier; Camacho, Candelario; Ortiz de Bertorelli, Ligia; De Venanzi, Frank

    2002-09-01

    With the purpose of evaluating adaptability to the freezing process of super sweet corn sh2 hybrids Krispy King, Victor and 324, 100 cobs of each type were frozen at -18 degrees C. After 120 days of storage, their chemical, microbiological and sensorial characteristics were compared with a sweet corn su. Industrial quality of the process of freezing and length and number of rows in cobs were also determined. Results revealed yields above 60% in frozen corns. Length and number of rows in cobs were acceptable. Most of the chemical characteristics of super sweet hybrids were not different from the sweet corn assayed at the 5% significance level. Moisture content and soluble solids of hybrid Victor, as well as total sugars of hybrid 324 were statistically different. All sh2 corns had higher pH values. During freezing, soluble solids concentration, sugars and acids decreased whereas pH increased. Frozen cobs exhibited acceptable microbiological rank, with low activities of mesophiles and total coliforms, absence of psychrophiles and fecal coliforms, and an appreciable amount of molds. In conclusion, sh2 hybrids adapted with no problems to the freezing process, they had lower contents of soluble solids and higher contents of total sugars, which almost doubled the amount of su corn; flavor, texture, sweetness and appearance of kernels were also better. Hybrid Victor was preferred by the evaluating panel and had an outstanding performance due to its yield and sensorial characteristics.

  5. Bromate formation in a hybrid ozonation-ceramic membrane filtration system.

    Science.gov (United States)

    Moslemi, Mohammadreza; Davies, Simon H; Masten, Susan J

    2011-11-01

    The effect of pH, ozone mass injection rate, initial bromide concentration, and membrane molecular weight cut off (MWCO) on bromate formation in a hybrid membrane filtration-ozonation reactor was studied. Decreasing the pH, significantly reduced bromate formation. Bromate formation increased with increasing gaseous ozone mass injection rate, due to increase in dissolved ozone concentrations. Greater initial bromide concentrations resulted in higher bromate concentrations. An increase in the bromate concentration was observed by reducing MWCO, which resulted in a concomitant increase in the retention time in the system. A model to estimate the rate of bromate formation was developed. Good correlation between the model simulation and the experimental data was achieved. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. A hybrid system of a membrane oscillator coupled to ultracold atoms

    Science.gov (United States)

    Kampschulte, Tobias

    2015-05-01

    The control over micro- and nanomechanical oscillators has recently made impressive progress. First experiments demonstrated ground-state cooling and single-phonon control of high-frequency oscillators using cryogenic cooling and techniques of cavity optomechanics. Coupling engineered mechanical structures to microscopic quantum system with good coherence properties offers new possibilities for quantum control of mechanical vibrations, precision sensing and quantum-level signal transduction. Ultracold atoms are an attractive choice for such hybrid systems: Mechanical can either be coupled to the motional state of trapped atoms, which can routinely be ground-state cooled, or to the internal states, for which a toolbox of coherent manipulation and detection exists. Furthermore, atomic collective states with non-classical properties can be exploited to infer the mechanical motion with reduced quantum noise. Here we use trapped ultracold atoms to sympathetically cool the fundamental vibrational mode of a Si3N4 membrane. The coupling of membrane and atomic motion is mediated by laser light over a macroscopic distance and enhanced by an optical cavity around the membrane. The observed cooling of the membrane from room temperature to 650 +/- 230 mK shows that our hybrid mechanical-atomic system operates at a large cooperativity. Our scheme could provide ground-state cooling and quantum control of low-frequency oscillators such as levitated nanoparticles, in a regime where purely optomechanical techniques cannot reach the ground state. Furthermore, we will present a scheme where an optomechanical system is coupled to internal states of ultracold atoms. The mechanical motion is translated into a polarization rotation which drives Raman transitions between atomic ground states. Compared to the motional-state coupling, the new scheme enables to couple atoms to high-frequency structures such as optomechanical crystals.

  7. Sympathetic cooling of a membrane oscillator in a hybrid mechanical-atomic system

    Science.gov (United States)

    Jöckel, Andreas; Faber, Aline; Kampschulte, Tobias; Korppi, Maria; Rakher, Matthew T.; Treutlein, Philipp

    2015-01-01

    Sympathetic cooling with ultracold atoms and atomic ions enables ultralow temperatures in systems where direct laser or evaporative cooling is not possible. It has so far been limited to the cooling of other microscopic particles, with masses up to 90 times larger than that of the coolant atom. Here, we use ultracold atoms to sympathetically cool the vibrations of a Si3N4 nanomembrane, the mass of which exceeds that of the atomic ensemble by a factor of 1010. The coupling of atomic and membrane vibrations is mediated by laser light over a macroscopic distance and is enhanced by placing the membrane in an optical cavity. We observe cooling of the membrane vibrations from room temperature to 650 ± 230 mK, exploiting the large atom-membrane cooperativity of our hybrid optomechanical system. With technical improvements, our scheme could provide ground-state cooling and quantum control of low-frequency oscillators such as nanomembranes or levitated nanoparticles, in a regime where purely optomechanical techniques cannot reach the ground state.

  8. Experimental study of a hybrid electro-acoustic nonlinear membrane absorber

    Science.gov (United States)

    Bryk, P. Y.; Bellizzi, S.; Côte, R.

    2018-06-01

    A hybrid electro-acoustic nonlinear membrane absorber working as a nonlinear energy sink (here after named EA-NES) is described. The device is composed of a thin circular visco-elastic membrane working as an essentially cubic oscillator. One face of the membrane is coupled to the acoustic field to be reduced and the other face is enclosed. The enclosure includes a loudspeaker for the control of the acoustic pressure felt by the rear face of the membrane through proportional feedback control. An experimental set-up has been developed where the EA-NES is weakly coupled to a linear acoustic system. The linear acoustic system is an open-ended tube, coupled on one side to the EA-NES by a box, and on the other side to a source loudspeaker by another box. Only sinusoidal forcing is considered. It is shown that the EA-NES is able to perform resonance capture with the acoustic field, resulting in noise reduction by targeted energy transfer, and to operate in a large frequency band, tuning itself passively to any linear system. We demonstrate the ability of the feedback gain defining the active loop to modify the resonance frequency of the EA-NES, which is a key factor to tune the triggering threshold of energy pumping. The novelty of this work is to use active control combined to passive nonlinear transfer energy to improve it. In this paper, only experimental results are analyzed.

  9. Process, including membrane separation, for separating hydrogen from hydrocarbons

    Science.gov (United States)

    Baker, Richard W.; Lokhandwala, Kaaeid A.; He, Zhenjie; Pinnau, Ingo

    2001-01-01

    Processes for providing improved methane removal and hydrogen reuse in reactors, particularly in refineries and petrochemical plants. The improved methane removal is achieved by selective purging, by passing gases in the reactor recycle loop across membranes selective in favor of methane over hydrogen, and capable of exhibiting a methane/hydrogen selectivity of at least about 2.5 under the process conditions.

  10. Modelling and analysis of CVD processes for ceramic membrane preparation

    NARCIS (Netherlands)

    Brinkman, H.W.; Cao, G.Z.; Meijerink, J.; de Vries, Karel Jan; Burggraaf, Anthonie

    1993-01-01

    A mathematical model is presented that describes the modified chemical vapour deposition (CVD) process (which takes place in advance of the electrochemical vapour deposition (EVD) process) to deposit ZrO2 inside porous media for the preparation and modification of ceramic membranes. The isobaric

  11. Dynamic modeling of ultrafiltration membranes for whey separation processes

    NARCIS (Netherlands)

    Saltik, M.B.; Ozkan, L.; Jacobs, M.; van der Padt, A.

    2017-01-01

    In this paper, we present a control relevant rigorous dynamic model for an ultrafiltration membrane unit in a whey separation process. The model consists of a set of differential algebraic equations and is developed for online model based applications such as model based control and process

  12. Factors Influencing Membrane fouling in the MBR Process

    Directory of Open Access Journals (Sweden)

    Parvin Nahid

    2018-01-01

    Full Text Available Biological processes of wastewater treatmnent have found wide applications due to their lower costs and higher efficiency. Membrane bioreactors (MBR’s form one group of such processes in which membrane fouling is of great importance. Efficiency of critical flux (CF has been proved to be a parameter effective in fouling control (CF. CF is itself influenced by three main groups of variables that include sludge parameters, operating conditions, and membrane types. In this stidy, the effects of such factors as trans-membrane pressure, protein and carbohydrate concentrations in extracellular polymeric substances (EPS, and soluble microbial products (SMP on CF were investigated in a submerged MBR.  Moreover, the effects of such operating conditions as periodic and continuous suctions at two sludge concentrations were studied. It was found that increasing flux led to enhanced membrane fouling rates. Extracellular polymeric substances (EPS were found to have no relations with critical flux (CF, probably because EPS are mostly found as bigger flocks. Finally, a reverse relationship was established between CF and carbohydrate concentration of the SMP. Membrane fouling control was observed to be positively affected by the rest modes during periodic suctions.

  13. Morin-based nanofiltration membranes for organic solvent separation processes

    KAUST Repository

    Perez Manriquez, Liliana

    2018-02-26

    In this work we demonstrate the successful optimization of the interfacial polymerization reaction for the manufacture of organic solvent nanofiltration membranes by replacing the toxic amines commonly used for this method with the natural occurring bio-polyphenol morin. For the manufacture of this type of OSN membrane a crosslinked PAN support was coated by interfacial polymerization using morin as the monomer of the aqueous phase and terephtaloyl chloride as the monomer of the organic phase. These membranes showed an exceptional performance and resistance to NMP by having a a permeance of 0.3L/m2 h bar in NMP with a rejection of 96% of Brilliant Blue dye which has a molecular weight of 825.97g/mol, making these membranes attractive for harsh industrial separation processes due to their ease of manufacture, low cost, and excellent performance.

  14. Parametric analysis of an irreversible proton exchange membrane fuel cell/absorption refrigerator hybrid system

    International Nuclear Information System (INIS)

    Yang, Puqing; Zhang, Houcheng

    2015-01-01

    A hybrid system mainly consisting of a PEMFC (proton exchange membrane fuel cell) and an absorption refrigerator is proposed, where the PEMFC directly converts the chemical energy contained in the hydrogen into electrical and thermal energies, and the thermal energy is transferred to drive the bottoming absorption refrigerator for cooling purpose. By considering the existing irreversible losses in the hybrid system, the operating current density region of the PEMFC permits the absorption refrigerator to exert its function is determined and the analytical expressions for the equivalent power output and efficiency of the hybrid system under different operating conditions are specified. Numerical calculations show that the equivalent maximum power density and the corresponding efficiency of the hybrid system can be respectively increased by 5.3% and 6.8% compared to that of the stand-alone PEMFC. Comprehensive parametric analyses are conducted to reveal the effects of the internal irreversibility of the absorption refrigerator, operating current density, operating temperature and operating pressure of the PEMFC, and some integrated parameters related to the thermodynamic losses on the performance of the hybrid system. The model presented in the paper is more general than previous study, and the results for some special cases can be directly derived from this paper. - Highlights: • A CHP system composed of a PEMFC and an absorption refrigerator is proposed. • Current density region enables the absorption refrigerator to work is determined. • Multiple irreversible losses in the system are analytically characterized. • Maximum power density and corresponding efficiency can be increased by 5.3% and 6.8%. • Effects of some designing and operating parameters on the performance are discussed

  15. Extraction of uranium with emulsion membrane process use tributylphosphate extractant

    International Nuclear Information System (INIS)

    Basuki, K.T.; Sudibyo, R.; Bambang EHB; Muhadi, A.W.

    1996-01-01

    To increase the effectiveness of extraction process with so for to occur, it was tried the extraction with a couple of extraction and stripping process. This couple process was called liquid membrane emulsion. As membrane was used mix surfactant (Span-80), tributylphosphate in kerosene, natrium carbonate, while as a feeder was uranium solution with 500 concentration ppm in 0.5 - 3 M nitrate acid. In this experiment the variable investigated were % surfactant (1 - 5 %), rotary speed for membrane making (2,500 - 10.000 rpm). The optimal condition result of experiment were 5 % surfactant, 3 M nitrate acid, rotary speed 10.000 rpm and (Kd eksU ) 57 %, and (Kd strippU ) 87 %, Kd eksU at liquid-liquid extraction is 44 %. (author)

  16. Quantum-Classical Hybrid for Information Processing

    Science.gov (United States)

    Zak, Michail

    2011-01-01

    Based upon quantum-inspired entanglement in quantum-classical hybrids, a simple algorithm for instantaneous transmissions of non-intentional messages (chosen at random) to remote distances is proposed. The idea is to implement instantaneous transmission of conditional information on remote distances via a quantum-classical hybrid that preserves superposition of random solutions, while allowing one to measure its state variables using classical methods. Such a hybrid system reinforces the advantages, and minimizes the limitations, of both quantum and classical characteristics. Consider n observers, and assume that each of them gets a copy of the system and runs it separately. Although they run identical systems, the outcomes of even synchronized runs may be different because the solutions of these systems are random. However, the global constrain must be satisfied. Therefore, if the observer #1 (the sender) made a measurement of the acceleration v(sub 1) at t =T, then the receiver, by measuring the corresponding acceleration v(sub 1) at t =T, may get a wrong value because the accelerations are random, and only their ratios are deterministic. Obviously, the transmission of this knowledge is instantaneous as soon as the measurements have been performed. In addition to that, the distance between the observers is irrelevant because the x-coordinate does not enter the governing equations. However, the Shannon information transmitted is zero. None of the senders can control the outcomes of their measurements because they are random. The senders cannot transmit intentional messages. Nevertheless, based on the transmitted knowledge, they can coordinate their actions based on conditional information. If the observer #1 knows his own measurements, the measurements of the others can be fully determined. It is important to emphasize that the origin of entanglement of all the observers is the joint probability density that couples their actions. There is no centralized source

  17. Potential Applications of Zeolite Membranes in Reaction Coupling Separation Processes

    Directory of Open Access Journals (Sweden)

    Tunde V. Ojumu

    2012-10-01

    Full Text Available Future production of chemicals (e.g., fine and specialty chemicals in industry is faced with the challenge of limited material and energy resources. However, process intensification might play a significant role in alleviating this problem. A vision of process intensification through multifunctional reactors has stimulated research on membrane-based reactive separation processes, in which membrane separation and catalytic reaction occur simultaneously in one unit. These processes are rather attractive applications because they are potentially compact, less capital intensive, and have lower processing costs than traditional processes. Therefore this review discusses the progress and potential applications that have occurred in the field of zeolite membrane reactors during the last few years. The aim of this article is to update researchers in the field of process intensification and also provoke their thoughts on further research efforts to explore and exploit the potential applications of zeolite membrane reactors in industry. Further evaluation of this technology for industrial acceptability is essential in this regard. Therefore, studies such as techno-economical feasibility, optimization and scale-up are of the utmost importance.

  18. The Automated Discovery of Hybrid Processes

    DEFF Research Database (Denmark)

    Slaats, Tijs; Reijers, Hajo; Maggi, Fabrizio Maria

    2014-01-01

    The declarative-procedural dichotomy is highly relevant when choosing the most suitable process modeling language to represent a discovered process. Less-structured processes with a high level of variability can be described in a more compact way using a declarative language. By contrast, procedu...

  19. The automated discovery of hybrid processes

    NARCIS (Netherlands)

    Maggi, F.M.; Slaats, T.; Reijers, H.A.

    2014-01-01

    The declarative-procedural dichotomy is highly relevant when choosing the most suitable process modeling language to represent a discovered process. Less-structured processes with a high level of variability can be described in a more compact way using a declarative language. By contrast, procedural

  20. Drug loaded homogeneous electrospun PCL/gelatin hybrid nanofiber structures for anti-infective tissue regeneration membranes.

    Science.gov (United States)

    Xue, Jiajia; He, Min; Liu, Hao; Niu, Yuzhao; Crawford, Aileen; Coates, Phil D; Chen, Dafu; Shi, Rui; Zhang, Liqun

    2014-11-01

    Infection is the major reason for guided tissue regeneration/guided bone regeneration (GTR/GBR) membrane failure in clinical application. In this work, we developed GTR/GBR membranes with localized drug delivery function to prevent infection by electrospinning of poly(ε-caprolactone) (PCL) and gelatin blended with metronidazole (MNA). Acetic acid (HAc) was introduced to improve the miscibility of PCL and gelatin to fabricate homogeneous hybrid nanofiber membranes. The effects of the addition of HAc and the MNA content (0, 1, 5, 10, 20, 30, and 40 wt.% of polymer) on the properties of the membranes were investigated. The membranes showed good mechanical properties, appropriate biodegradation rate and barrier function. The controlled and sustained release of MNA from the membranes significantly prevented the colonization of anaerobic bacteria. Cells could adhere to and proliferate on the membranes without cytotoxicity until the MNA content reached 30%. Subcutaneous implantation in rabbits for 8 months demonstrated that MNA-loaded membranes evoked a less severe inflammatory response depending on the dose of MNA than bare membranes. The biodegradation time of the membranes was appropriate for tissue regeneration. These results indicated the potential for using MNA-loaded PCL/gelatin electrospun membranes as anti-infective GTR/GBR membranes to optimize clinical application of GTR/GBR strategies. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. A reconfigurable hybrid supervisory system for process control

    International Nuclear Information System (INIS)

    Garcia, H.E.; Ray, A.; Edwards, R.M.

    1994-01-01

    This paper presents a reconfigurable approach to decision and control systems for complex dynamic processes. The proposed supervisory control system is a reconfigurable hybrid architecture structured into three functional levels of hierarchy, namely, execution, supervision, and coordination. While the bottom execution level is constituted by either reconfigurable continuously varying or discrete event systems, the top two levels are necessarily governed by reconfigurable sets of discrete event decision and control systems. Based on the process status, the set of active control and supervisory algorithm is chosen. The reconfigurable hybrid system is briefly described along with a discussion on its implementation at the Experimental Breeder Reactor II of Argonne National Laboratory. A process control application of this hybrid system is presented and evaluated in an in-plant experiment

  2. A reconfigurable hybrid supervisory system for process control

    International Nuclear Information System (INIS)

    Garcia, H.E.; Ray, A.; Edwards, R.M.

    1994-01-01

    This paper presents a reconfigurable approach to decision and control systems for complex dynamic processes. The proposed supervisory control system is a reconfigurable hybrid architecture structured into three functional levels of hierarchy, namely, execution, supervision, and coordination. While, the bottom execution level is constituted by either reconfigurable continuously varying or discrete event systems, the top two levels are necessarily governed by reconfigurable sets of discrete event decision and control systems. Based on the process status, the set of active control and supervisory algorithm is chosen. The reconfigurable hybrid system is briefly described along with a discussion on its implementation at the Experimental Breeder Reactor 2 of Argonne National Laboratory. A process control application of this hybrid system is presented and evaluated in an in-plant experiment

  3. Molecular Probes: An Innovative Technology for Monitoring Membrane Processes

    Science.gov (United States)

    Santoro, Sergio

    The ultimate objective of this study is to use molecular probes as an innovative and alternative technology contributing to the advance of membrane science by monitoring membrane processes in-situ, on-line and at sub-micron scale. An optical sensor for oxygen sensing was developed by the immobilization of tris (1,10-phenanthroline) ruthenium (II) (Ru(phen)3) in a dense polymeric membrane made of polystyrene (PS) or Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV). The emission of the probe was quenched by both the temperature and by the oxygen. Moreover, the oxygen sensitivity was affected by the oxygen permeability of the membrane. The evaluation of the oxygen concentration is prone to errors since the emission of a single probe depends on several parameters (i.e. optical path, source intensity). The correction of these artefacts was obtained by the immobilization of a second luminescent molecule non-sensitive to the oxygen, Coumarin. The potential of the luminescent ratiometric sensor for the non-invasive monitoring of oxygen in food packaging using polymeric films with different oxygen permeability was evaluated. Emphasis was given to the efficiency of the optical sensor for the on-line, in-situ and non invasive monitoring of the oxygen by comparing the experimental data with a model which takes into account the oxygen permeability of the packaging materials evaluated independently. A nano-thermometer based on silica nano-particles doped with Ru(phen)3 was developed. A systematic study shows how it is possible to control the properties of the nano-particles as well as their temperature sensitivity. The nano-thermometer was immobilized on a membrane surface by dip-coating providing information about the temperature on the membrane surface. Hydrophobic porous membrane made of Poly(vinylidene fluoride) was prepared via electrospinning and employed in a direct contact membrane distillation process. Using a designed membrane module and a membrane doped with Ru

  4. Structure of hybrid organic-inorganic sols for the preparation of hydrothermally stable membranes

    Energy Technology Data Exchange (ETDEWEB)

    Castricum, H.L.; Sah, A; Blank, D.H.A.; Ten Elshof, J.E. [Inorganic Materials Science, MESA Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede (Netherlands); Geenevasen, J.A.J. [Van ' t Hoff Institute for Molecular Sciences, University of Amsterdam, Nieuwe Achtergracht 166, 1018 WV Amsterdam (Netherlands); Kreiter, R.; Vente, J.F. [ECN Energy Efficiency in the Industry, Petten (Netherlands)

    2008-06-15

    A procedure for the preparation of hybrid sols for the synthesis of organic-inorganic microporous materials and thin film membranes is reported. We describe silane reactivity and sol structure for acid-catalysed colloidal sols from mixtures of either tetraethylorthosilicate (TEOS) and methyltriethoxysilane (MTES), or bis(triethoxysilyl)ethane (BTESE) and MTES. Early-stage hydrolysis and condensation rates of the individual silane precursors were followed with 29Si liquid NMR and structural characteristics of more developed sols were studied with Dynamic Light Scattering. Condensation was found to proceed at more or less similar rates for the different precursors. Homogeneously mixed hybrid colloids can therefore be formed from precursor mixtures. The conditions of preparation under which clear sols with low viscosity could be formed from BTESE/MTES were determined. These sols were synthesised at moderate water/silane and acid/silane ratios and could be applied for the coating of defect-free microporous membranes for molecular separations under hydrothermal conditions.

  5. Hybrid configurations via percutaneous access for extracorporeal membrane oxygenation: a single-center experience.

    Science.gov (United States)

    Biscotti, Mauer; Lee, Alison; Basner, Robert C; Agerstrand, Cara; Abrams, Darryl; Brodie, Daniel; Bacchetta, Matthew

    2014-01-01

    Use of extracorporeal membrane oxygenation (ECMO) in adults has surged in recent years. Typical configurations are venovenous (VV), which provides respiratory support, or venoarterial (VA), which provides both respiratory and circulatory support. In patients supported with VV ECMO who develop hemodynamic compromise, an arterial limb can be added (venovenous-arterial ECMO) to provide additional circulatory support. For patients on VA ECMO who develop concomitant respiratory failure in the setting of some residual cardiac function, an oxygenated reinfusion limb can be added to the internal jugular vein (venoarterial-venous ECMO) to improve oxygen delivery to the cerebral and coronary circulation. Such hybrid configurations can provide differential support for various forms of cardiopulmonary failure. We describe 21 patients who ultimately received a hybrid configuration at our institution between 2012 and 2013. Eight patients (38.1%) died during ECMO support, four patients (19.0%) died after decannulation but before hospital discharge, and nine patients (42.9%) survived to hospital discharge. Our modest survival rate is likely related to the complexity and severity of illness of these patients, and this relative success suggests that hybrid configurations can be effective. It serves patients well to maintain a flexible and adaptable approach to ECMO configurations for their variable cardiopulmonary needs.

  6. Hybrid process technologies in the financial sector

    DEFF Research Database (Denmark)

    Debois, Søren; Hildebrandt, Thomas; Marquard, Morten

    2015-01-01

    Danish mortgage credit institutes deal with highly variable and knowledgeintensive processes. At the same time these processes are required to be strictly conformant to current regulations and laws. In addition different divisions of the business are interested in different views on the same...

  7. Pushing desalination recovery to the maximum limit: Membrane and thermal processes integration

    KAUST Repository

    Shahzad, Muhammad Wakil

    2017-05-05

    The economics of seawater desalination processes has been continuously improving as a result of desalination market expansion. Presently, reverse osmosis (RO) processes are leading in global desalination with 53% share followed by thermally driven technologies 33%, but in Gulf Cooperation Council (GCC) countries their shares are 42% and 56% respectively due to severe feed water quality. In RO processes, intake, pretreatment and brine disposal cost 25% of total desalination cost at 30–35% recovery. We proposed a tri-hybrid system to enhance overall recovery up to 81%. The conditioned brine leaving from RO processes supplied to proposed multi-evaporator adsorption cycle driven by low temperature industrial waste heat sources or solar energy. RO membrane simulation has been performed using WinFlow and IMSDesign commercial softwares developed by GE and Nitto. Detailed mathematical model of overall system is developed and simulation has been conducted in FORTRAN. The final brine reject concentration from tri-hybrid cycle can vary from 166,000ppm to 222,000ppm if RO retentate concentration varies from 45,000ppm to 60,000ppm. We also conducted economic analysis and showed that the proposed tri-hybrid cycle can achieve highest recovery, 81%, and lowest energy consumption, 1.76kWhelec/m3, for desalination reported in the literature up till now.

  8. Solute coupled diffusion in osmotically driven membrane processes.

    Science.gov (United States)

    Hancock, Nathan T; Cath, Tzahi Y

    2009-09-01

    Forward osmosis (FO) is an emerging water treatment technology with potential applications in desalination and wastewater reclamation. In FO, water is extracted from a feed solution using the high osmotic pressure of a hypertonic solution that flows on the opposite side of a semipermeable membrane; however, solutes diffuse simultaneously through the membrane in both directions and may jeopardize the process. In this study, we have comprehensively explored the effects of different operating conditions on the forward diffusion of solutes commonly found in brackish water and seawater, and reverse diffusion of common draw solution solutes. Results show that reverse transport of solutes through commercially available FO membranes range between 80 mg to nearly 3,000 mg per liter of water produced. Divalent feed solutes have low permeation rates (less than 1 mmol/m2-hr) while monovalent ions and uncharged solutes exhibit higher permeation. Findings have significant implications on the performance and sustainability of the FO process.

  9. A hybrid system using a regenerative electrochemical cycle to harvest waste heat from the proton exchange membrane fuel cell

    International Nuclear Information System (INIS)

    Long, Rui; Li, Baode; Liu, Zhichun; Liu, Wei

    2015-01-01

    A new hybrid system consisting of a PEMFC (proton exchange membrane fuel cell) subsystem and a TREC (thermally regenerative electrochemical cycle) subsystem is proposed to convert the waste heat produced by the PEMFC system into electricity. The performance of the hybrid system and its corresponding subsystems is analyzed. Results reveal that there exists optimal current densities of the PEMFC and TREC systems leading to the maximum power output of the hybrid system. With the maximum power output as the objective function, an optimization of the hybrid system based on genetic algorithm method is conducted under different operating temperatures of the PEMFC subsystem. The power output of the hybrid system is 6.85%–20.59% larger than that of the PEMFC subsystem. And the total electrical efficiency is improved by 2.74%–8.27%. The corresponding electrical efficiency of the TREC is 4.56%–13.81%. The hybrid system proposed in this paper could contribute to utilizing the fuel energy more efficiently and sufficiently. - Highlights: • A hybrid power system consisting of a PEMFC and a TREC subsystems is proposed. • Parameters' impacts on performance of the hybrid system have been analyzed. • The maximum power output of the hybrid system is investigated based on genetic algorithm. • Total power output of the hybrid system is 7.63%–18.84% larger than that of the PEMFC subsystem.

  10. Hybridization of natural systems with advanced treatment processes for organic micropollutant removals: New concepts in multi-barrier treatment

    KAUST Repository

    Sudhakaran, Sairam

    2013-07-01

    In the past, emphasis has been on individual treatment processes comprising conventional treatment (coagulation, sedimentation, and filtration) followed by advanced treatment processes (adsorption, ion-exchange, oxidation, and membrane separation). With the depletion of water resources and high demand for power and chemical usage, efforts need to be made to judiciously use advanced treatment processes. There is a new interest in multiple barriers with synergies in which two coupled processes can function as a hybrid process. Within the context of this paper, the hybrid processes include a natural treatment process coupled with an advanced process. Pilot/full-scale studies have shown efficient removal of OMPs by these hybrid processes. With this hybridization, the usage of resources such as power and chemicals can be reduced. In this study, coupling/hybridization of aquifer recharge and recovery (ARR) with oxidation (O3), advanced oxidation process which involves OH radicals (AOP), nanofiltration (NF), reverse osmosis (RO) and granular activated carbon (GAC) adsorption for OMP removal was studied. O3 or AOP as a pre-treatment and GAC, NF, RO, or UV/chlorination as a post-treatment to ARR was studied. NF can be replaced by RO for removal of OMPs since studies have shown similar performance of NF to RO for removal of many OMPs, thereby reducing costs and providing a more sustainable approach. © 2013 Elsevier Ltd.

  11. Process development and tooling design for intrinsic hybrid composites

    Science.gov (United States)

    Riemer, M.; Müller, R.; Drossel, W. G.; Landgrebe, D.

    2017-09-01

    Hybrid parts, which combine the advantages of different material classes, are moving into the focus of lightweight applications. This development is amplified by their high potential for usage in the field of crash relevant structures. By the current state of the art, hybrid parts are mainly made in separate, subsequent forming and joining processes. By using the concept of an intrinsic hybrid, the shaping of the part and the joining of the different materials are performed in a single process step for shortening the overall processing time and thereby the manufacturing costs. The investigated hybrid part is made from continuous fibre reinforced plastic (FRP), in which a metallic reinforcement structure is integrated. The connection between these layered components is realized by a combination of adhesive bonding and a geometrical form fit. The form fit elements are intrinsically generated during the forming process. This contribution regards the development of the forming process and the design of the forming tool for the single step production of a hybrid part. To this end a forming tool, which combines the thermo-forming and the metal forming process, is developed. The main challenge by designing the tool is the temperature management of the tool elements for the variothermal forming process. The process parameters are determined in basic tests and finite element (FE) simulation studies. On the basis of these investigations a control concept for the steering of the motion axes and the tool temperature is developed. Forming tests are carried out with the developed tool and the manufactured parts are analysed by computer assisted tomography (CT) scans.

  12. Selection processes in a citrus hybrid population using RAPD markers

    Directory of Open Access Journals (Sweden)

    Oliveira Roberto Pedroso de

    2003-01-01

    Full Text Available The objective of this work was to evaluate the processes of selection in a citrus hybrid population using segregation analysis of RAPD markers. The segregation of 123 RAPD markers between 'Cravo' mandarin (Citrus reticulata Blanco and 'Pêra' sweet orange (C. sinensis (L. Osbeck was analysed in a F1 progeny of 94 hybrids. Genetic composition, diversity, heterozygosity, differences in chromosomal structure and the presence of deleterious recessive genes are discussed based on the segregation ratios obtained. A high percentage of markers had a skeweness of the 1:1 expected segregation ratio in the F1 population. Many markers showed a 3:1 segregation ratio in both varieties and 1:3 in 'Pêra' sweet orange, probably due to directional selection processes. The distribution analysis of the frequencies of the segregant markers in a hybrid population is a simple method which allows a better understanding of the genetics of citrus group.

  13. Enhanced the performance of graphene oxide/polyimide hybrid membrane for CO2 separation by surface modification of graphene oxide using polyethylene glycol

    Science.gov (United States)

    Wu, Li-guang; Yang, Cai-hong; Wang, Ting; Zhang, Xue-yang

    2018-05-01

    Polyethylene glycol (PEG) with different molecular weights was first used to modify graphene oxide (GO) samples. Subsequently, polyimide (PI) hybrid membranes containing modified-GO were fabricated via in situ polymerization. The separation performance of these hybrid membranes was evaluated using permeation experiments for CO2 and N2 gases. The morphology characterization showed that PEG with suitable molecular weight could be successfully grafted on the GO surface. PEG modification altered the surface properties of GO and introduced defective structures onto GO surface. This caused strong surface polarity and high free volume of membranes containing PEG-modified GO, thereby improving the separation performance of membranes. The addition of PEG-GO with low molecular weight effectively increased gas diffusion through hybrid membranes. The hybrid membranes containing PEG-GO with large molecular weight had high solubility performance for CO2 gas due to the introduction of numerous polar groups into polymeric membranes. With the loading content of modified GO, the CO2 gas permeability of hybrid membranes initially increased but eventually decreased. The optimal content of modified GO in membranes reached 3.0 wt%. When too much PEG added (exceeding 30 g), some impurities formed on GO surface and some aggregates appeared in the resulting hybrid membrane, which depressed the membrane performance.

  14. Industrial applications of membrane processes in chemistry and energy generation; Applications industrielles des procedes membranaires en chimie et production d'energie

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    The French membranes club (CFM), with the sustain of the French institute of petroleum (IFP) has organized this meeting which aims to present the most recent industrial realizations in the domain of membrane processes in the chemistry and energy generation sectors. This document gathers the abstracts of the presentations: 1 - hydrogen purification and CO{sub 2} extraction: development of polymer matrix and metal nano-particulate hybrid membranes for selective membrane applications; study of silicone-based mixed matrix membranes for hydrogen purification via inverse selectivity principle; CO{sub 2} capture from gaseous effluents for its sequestration: role and limitations of membrane processes; membranes and processes for the abatement of the acid gas content of smokes; new structural model for Nafion{sup R} membranes, the benchmark polymer for low temperature fuel cells; 2 - molecular screen-based membranes: MFI-alumina nano-composite ceramic membranes: preparation and characterization, gaseous transport and separation; characterization and permeation properties of supported MFI membranes; in-situ measurement of butane isomers diffusion in MFI zeolite membranes through transient permeation tests; 3 - vapors separation: stability of silver particulates in PA12-PTMO/AgBF{sub 4} composite membranes and its effect on the easier ethylene transport inside these membranes; 4 - separation of liquid organic mixtures: isomers separation using cyclo-dextrins bearing membranes: application to the extraction and separation of xylene isomers; electrodialysis in organic environment: application to the electro-synthesis; study of polymer materials permeability; 5 - treatment of industrial waters: use of NanoFlux software in the modeling of nano-filtration membrane processes in the chemical industry: elimination of sulfate impurities from 'Chloralkali' brines; ultra-filtration of a wastewater containing partially emulsified oil; efficiency of a hybrid membrane separation

  15. Integrated forward osmosis-membrane distillation process for human urine treatment.

    Science.gov (United States)

    Liu, Qianliang; Liu, Caihong; Zhao, Lei; Ma, Weichao; Liu, Huiling; Ma, Jun

    2016-03-15

    This study demonstrated a forward osmosis-membrane distillation (FO-MD) hybrid system for real human urine treatment. A series of NaCl solutions at different concentrations were adopted for draw solutions in FO process, which were also the feed solutions of MD process. To establish a stable and continuous integrated FO-MD system, individual FO process with different NaCl concentrations and individual direct contact membrane distillation (DCMD) process with different feed temperatures were firstly investigated separately. Four stable equilibrium conditions were obtained from matching the water transfer rates of individual FO and MD processes. It was found that the integrated system is stable and sustainable when the water transfer rate of FO subsystem is equal to that of MD subsystem. The rejections to main contaminants in human urine were also investigated. Although individual FO process had relatively high rejection to Total Organic Carbon (TOC), Total Nitrogen (TN) and Ammonium Nitrogen (NH4(+)-N) in human urine, these contaminants could also accumulate in draw solution after long term performance. The MD process provided an effective rejection to contaminants in draw solution after FO process and the integrated system revealed nearly complete rejection to TOC, TN and NH4(+)-N. This work provided a potential treatment process for human urine in some fields such as water regeneration in space station and water or nutrient recovery from source-separated urine. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Membrane formation : diffusion induced demixing processes in ternary polymeric systems

    NARCIS (Netherlands)

    Reuvers, Albertus Johannes

    1987-01-01

    In this thesis the mechanism of membrane formation by means of immersion precipitation is studied. Immersion of a concentrated polymer solution film into a nonsolvent bath induces an exchange of solvent and nonsolvent in the film by means of diffusion. This process results in an asymmetric polymer

  17. Comparison of pressure-driven membrane processes and traditional ...

    African Journals Online (AJOL)

    In this article a comparison is made between drinking water production from surface water using pressure-driven membrane processes and using traditional surface water treatment systems. Three alternatives are considered: Traditional treatment using coagulation/flocculation, sand filtration, physicochemical softening, ...

  18. Separation Process by Porous Membranes: A Numerical Investigation

    Directory of Open Access Journals (Sweden)

    Acto de Lima Cunha

    2014-07-01

    Full Text Available A major problem associated with the membrane separation processes is the permeate flux drop, limiting the widespread of industrial application of this process. This occurs due to the accumulation of solute concentration near the membrane surface. An exact quantification of the concentration polarization as a function of process conditions is essential to estimate the system performance satisfactorily. In this sense, this work aims to predict the behavior of the concentration polarization boundary layer along the length of a permeable tubular membrane, over various operation conditions. The numerical solution of the Navier-Stokes equation, coupled to Darcy's and mass transfer equations, is obtained by the commercial software ANSYS CFX 12, considering a two-dimensional computational domain. The study evaluates the effects of axial Reynolds and Schmidt numbers on the concentration polarization boundary layer thickness during the cross-flow filtration process. Numerical results have shown that the mathematical model is able to predict the formation and growth of the concentration polarization boundary layer along the length of the tubular membrane.

  19. Automated sampling and data processing derived from biomimetic membranes

    International Nuclear Information System (INIS)

    Perry, M; Vissing, T; Hansen, J S; Nielsen, C H; Boesen, T P; Emneus, J

    2009-01-01

    Recent advances in biomimetic membrane systems have resulted in an increase in membrane lifetimes from hours to days and months. Long-lived membrane systems demand the development of both new automated monitoring equipment capable of measuring electrophysiological membrane characteristics and new data processing software to analyze and organize the large amounts of data generated. In this work, we developed an automated instrumental voltage clamp solution based on a custom-designed software controller application (the WaveManager), which enables automated on-line voltage clamp data acquisition applicable to long-time series experiments. We designed another software program for off-line data processing. The automation of the on-line voltage clamp data acquisition and off-line processing was furthermore integrated with a searchable database (DiscoverySheet(TM)) for efficient data management. The combined solution provides a cost efficient and fast way to acquire, process and administrate large amounts of voltage clamp data that may be too laborious and time consuming to handle manually. (communication)

  20. Automated sampling and data processing derived from biomimetic membranes

    Energy Technology Data Exchange (ETDEWEB)

    Perry, M; Vissing, T; Hansen, J S; Nielsen, C H [Aquaporin A/S, Diplomvej 377, DK-2800 Kgs. Lyngby (Denmark); Boesen, T P [Xefion ApS, Kildegaardsvej 8C, DK-2900 Hellerup (Denmark); Emneus, J, E-mail: Claus.Nielsen@fysik.dtu.d [DTU Nanotech, Technical University of Denmark, DK-2800 Kgs. Lyngby (Denmark)

    2009-12-15

    Recent advances in biomimetic membrane systems have resulted in an increase in membrane lifetimes from hours to days and months. Long-lived membrane systems demand the development of both new automated monitoring equipment capable of measuring electrophysiological membrane characteristics and new data processing software to analyze and organize the large amounts of data generated. In this work, we developed an automated instrumental voltage clamp solution based on a custom-designed software controller application (the WaveManager), which enables automated on-line voltage clamp data acquisition applicable to long-time series experiments. We designed another software program for off-line data processing. The automation of the on-line voltage clamp data acquisition and off-line processing was furthermore integrated with a searchable database (DiscoverySheet(TM)) for efficient data management. The combined solution provides a cost efficient and fast way to acquire, process and administrate large amounts of voltage clamp data that may be too laborious and time consuming to handle manually. (communication)

  1. Palladium alloy membrane process for the treatment of hydrogen isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Hongsuk; Paek, Seungwoo; Lee, Minsoo; Kim, Kwangrag; Yim, Sungpaal; Ahn, Dohee [KAERI, Daejeon (Korea, Republic of); Shim, Myunghwa [Univ. of Science and Technology, Daejeon (Korea, Republic of)

    2005-11-15

    Tritium is a radioactive isotope of hydrogen and it has a half-life of 12.3 years; it decays to He-3 by emitting a low energy beta radiation with an average energy of 5.7 keV and a maximum energy of 18.6 keV. Transfer of environmentally tritiated water to humans takes place via an inhalation, diffusion through the skin and ingestion. Radioactive waste containing tritium is continuously generated by the nuclear industry in, for example, nuclear reactor operations and a radioisotope production, as well as in medical research. Methods for removing tritium from liquid waste provide an alternative to the control of tritium emissions and a personnel exposure. A combined electrolysis and catalytic exchange process is a very effective method to remove small quantities of tritium from light or heavy waste water streams. The process consists of three main steps: (a) A front end step that exchanges the tritium to a less toxic hydrogen phase. This can be performed either through a chemical exchange in the presence of a platinum supported catalyst or through the decomposition of water. (b) A back end process that purifies the tritiated hydrogen gas which evolved from the electrolysis. This can be performed through a palladium alloy membrane separator. (c) A means of storing the concentrated gas safely. Uranium is used if the storage is temporary; titanium is usually employed for long term storage. To gain a better understanding of the tritiated hydrogen gas purification process, a mathematical model of the palladium alloy membrane has been used. This model is described herein, and the representative results of the model calculations are presented. The authors selected the palladium alloy membrane for the hydrogen purification process by considering the membrane properties, such as a chemical resistance, mechanical stability, thermal stability, high permeability, and a stable operation. The solution-diffusion model can be a useful tool for designing a membrane permeator. The

  2. Palladium alloy membrane process for the treatment of hydrogen isotopes

    International Nuclear Information System (INIS)

    Chung, Hongsuk; Paek, Seungwoo; Lee, Minsoo; Kim, Kwangrag; Yim, Sungpaal; Ahn, Dohee; Shim, Myunghwa

    2005-01-01

    Tritium is a radioactive isotope of hydrogen and it has a half-life of 12.3 years; it decays to He-3 by emitting a low energy beta radiation with an average energy of 5.7 keV and a maximum energy of 18.6 keV. Transfer of environmentally tritiated water to humans takes place via an inhalation, diffusion through the skin and ingestion. Radioactive waste containing tritium is continuously generated by the nuclear industry in, for example, nuclear reactor operations and a radioisotope production, as well as in medical research. Methods for removing tritium from liquid waste provide an alternative to the control of tritium emissions and a personnel exposure. A combined electrolysis and catalytic exchange process is a very effective method to remove small quantities of tritium from light or heavy waste water streams. The process consists of three main steps: (a) A front end step that exchanges the tritium to a less toxic hydrogen phase. This can be performed either through a chemical exchange in the presence of a platinum supported catalyst or through the decomposition of water. (b) A back end process that purifies the tritiated hydrogen gas which evolved from the electrolysis. This can be performed through a palladium alloy membrane separator. (c) A means of storing the concentrated gas safely. Uranium is used if the storage is temporary; titanium is usually employed for long term storage. To gain a better understanding of the tritiated hydrogen gas purification process, a mathematical model of the palladium alloy membrane has been used. This model is described herein, and the representative results of the model calculations are presented. The authors selected the palladium alloy membrane for the hydrogen purification process by considering the membrane properties, such as a chemical resistance, mechanical stability, thermal stability, high permeability, and a stable operation. The solution-diffusion model can be a useful tool for designing a membrane permeator. The

  3. The semantics of hybrid process models

    NARCIS (Netherlands)

    Slaats, T.; Schunselaar, D.M.M.; Maggi, F.M.; Reijers, H.A.; Debruyne, C.; Panetto, H.; Meersman, R.; Dillon, T.; Kuhn, E.; O'Sullivan, D.; Agostino Ardagna, C.

    2016-01-01

    In the area of business process modelling, declarative notations have been proposed as alternatives to notations that follow the dominant, imperative paradigm. Yet, the choice between an imperative or declarative style of modelling is not always easy to make. Instead, a mixture of these styles is

  4. Carbon capture by hybrid separation processes

    NARCIS (Netherlands)

    van Benthum, R.J.; van Kemenade, H.P.; Brouwers, J.J.H.

    2014-01-01

    Even though there is an increasing development of carbon capture technology over the last decade, large-scale implementation is still far from common practice, mainly caused by the energy intensiveness of carbon capture processes and the lack of regulation. In absence of strict regulation, less

  5. Porous membrane modifier as a new trend for deoiling process

    Directory of Open Access Journals (Sweden)

    Nermen H. Mohamed

    2017-09-01

    Full Text Available Porous membranes are prepared through micro phase separation of immiscible polymers consisting of hydrophobic polymer (polystyrene and hydrophilic polymer (poly(2-vinylpyridine. The greatest difficulties during petrolatum deoiling are related to the filtration stage for obtaining microcrystalline wax. The present study deals with the addition of porous membrane as modifier for the crystal structure of solid hydrocarbons, which will be the cornerstone in rearrangement and reformulation of new hard crystals in deoiling process. XRD and SEM photographs were used to evaluate the crystallinity and crystal sizes of the separated hard waxes.

  6. FERMENTATION PROCESS CHARACTERISTICS OF DIFFERENT MAIZE SILAGE HYBRIDS

    Directory of Open Access Journals (Sweden)

    Daniel Bíro

    2009-03-01

    Full Text Available The aim of this study was to detect the fermentation process differences in different hybrid maize silage. We conserved in laboratory conditions hybrids of whole maize plants with different length of the vegetative period (FAO number. Maize hybrids for silage were harvested in the vegetation stage of the milk-wax maturity of corn and the content of dry matter was from 377.7 to 422.8 g.kg-1. The highest content of dry matter was typical for silages made from the hybrids with FAO number 310 (400.0 g.kg-1 and FAO 300a (400.4 g.kg-1. The content of desirable lactic acid ranged from 23.7 g.kg-1 of dry matter (FAO 350 to 58.9 g.kg-1 of dry matter (FAO 420. We detected the occurrence of undesirable butyric acid in silages from hybrids FAO 250, 300b, 310 and 380. The highest content of total alcohols we found in silages made from hybrid with FAO number 240 (25.2 g.kg-1 of dry matter. Ammonia contents were in tested silages from 0.153 (FAO 270 to 0.223 g.kg-1 of dry matter (FAO 240. The lowest value of silage titration acidity we analyzed in silage made from hybrid FAO 420 (3.66. We observed in maize silages with different length of plant maturity tested in the experiment differences in content of lactic acid, total alcohols, titration acidity, pH and content of fermentation products.

  7. Optimized permeation and antifouling of PVDF hybrid ultrafiltration membranes: synergistic effect of dispersion and migration for fluorinated graphene oxide

    Science.gov (United States)

    Li, Mingming; Shi, Jie; Chen, Cheng; Li, Nan; Xu, Zhiwei; Li, Jing; Lv, Hanming; Qian, Xiaoming; Jiao, Xiaoning

    2017-03-01

    Nanoparticles may have suffered from low modification efficiency in hybrid membranes due to embedding and aggregating in polymer matrix. In order to analyze the modification mechanisms of nanoparticle migration and dispersion on the properties of hybrid membranes, we designed different F/ O ratios ( R F/ O ) of fluorinated graphene oxide (FGO, diameter = 1.5 17.5 μm) by carbon tetrafluoride (CF4) plasma treatment GO for 3, 5, 10, 15, and 20 min and successfully prepared novel PVDF hybrid membranes containing FGO via the phase inversion method. After a prolonged plasma treatment, the R F/ O of FGO was enhanced sharply, indicating an increasing compatibility of FGO with the matrix, especially FGO-20 (GO treated for 20 min). FGO contents in the top layer, sublayer, and the whole of membranes were probed by X-ray photoelectron spectroscopy, energy-dispersive spectrometer, and indirect computation, respectively. In the top layer of membranes, FGO contents declined from 13.14 wt% (PVDF/GO) to 4.00 wt% (PVDF/FGO-10) and 1.96 wt% (PVDF/FGO-20) due to the reduced migration ability of FGO. It is worth mentioning that PVDF/FGO-10 membranes exhibited an excellent water flux and flux recovery rate (up to 406.90 L m-2 h-1 and 88.9%), which were improved by 67.3% and 14.6% and 52.5% and 24.0% compared with those of PVDF/GO and PVDF/FGO-20 membranes, respectively, although the dispersion and migration ability of FGO-10 was maintained at a moderate level. It indicated that the migration and dispersion of FGO in membranes could result in dynamic equilibrium, which played a key role in making the best use of nanomaterials to optimize membrane performance.

  8. A Membrane Process for Recycling Die Lube from Wastewater Solutions

    Energy Technology Data Exchange (ETDEWEB)

    Eric S. Peterson; Jessica Trudeau; Bill Cleary; Michael Hackett; William A. Greene

    2003-04-01

    An active-surface membrane technology was used to separate a die lube manufacturing wastewater stream consisting of various oils, hydrocarbons, heavy metals, and silicones. The ultrafiltration membranes reduced organics from initial oil and grease contents by 20–25X, carbon oxygen demand (COD) by 1.5 to 2X, and total organic carbon (TOC) by 0.6, while the biological oxygen demand (BOD) remained constant. The active-surface membranes were not fouled as badly as non-active-surface systems and the active-surface membrane flux levels were consistently higher and more stable than those of the non-active-surface membranes tested. Field testing demonstrated that the rotary microfilter can concentrate the die lube, i.e. remove the glycerin component, and produce a die lube suitable for recycling. The recycling system operated for six weeks with only seven cleaning cycles and no mechanical or electrical failures. Test data and quality records indicate that the die casting scrap was reduced from 8.4 to 7.8%. There is no doubt that this test yielded tremendous results. This separation process presents significant opportunities that can be evaluated further.

  9. A Membrane Process for Recycling Die Lube from Wastewater Solutions

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, E. S. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Trudeau, J. [Metaldyne, Inc., Twinsburg, OH (United States); Cleary, B. [Metaldyne, Inc., Twinsburg, OH (United States); Hackett, M. [Metaldyne, Inc., Twinsburg, OH (United States); Greene, W. A. [SpinTek FIltrations, LLC, Los Alamitos, CA (United States)

    2003-04-30

    An active-surface membrane technology was used to separate a die lube manufacturing wastewater stream consisting of various oils, hydrocarbons, heavy metals, and silicones. The ultrafiltration membranes reduced organics from initial oil and grease contents by 20-25X, carbon oxygen demand (COD) by 1.5 to 2X, and total organic carbon (TOC) by 0.6, while the biological oxygen demand (BOD) remained constant. The active-surface membranes were not fouled as badly as non-active-surface systems and the active-surface membrane flux levels were consistently higher and more stable than those of the non-active-surface membranes tested. Field testing demonstrated that the rotary microfilter can concentrate the die lube, i.e. remove the glycerin component, and produce a die lube suitable for recycling. The recycling system operated for six weeks with only seven cleaning cycles and no mechanical or electrical failures. Test data and quality records indicate that the die casting scrap was reduced from 8.4 to 7.8%. There is no doubt that this test yielded tremendous results. This separation process presents significant opportunities that can be evaluated further.

  10. Treatment of sharp mandibular alveolar process with hybrid prosthesis

    OpenAIRE

    Sukaedi, Sukaedi; Djulaeha, Eha

    2010-01-01

    Background: Losing posterior teeth for a long time would occasionally lead to the sharpening of alveolar process. The removable partial denture usually have problems when used during mastication, because of the pressure on the mucosa under the alveolar ridge. Purpose: The purpose of this case report was to manage patients with sharp mandibular alveolar process by wearing hybrid prosthesis with extra coronal precision attachment retention and soft liner on the surface base beneath the removabl...

  11. Effect of addition of Proline, ionic liquid [Choline][Pro] on CO2 separation properties of poly(amidoamine) dendrimer / poly(ethylene glycol) hybrid membranes

    Science.gov (United States)

    Duan, S. H.; Kai, T.; Chowdhury, F. A.; Taniguchi, I.; Kazama, S.

    2018-01-01

    Poly(amidoamine) (PAMAM) dendrimers were incorporated into cross-linked poly(ethylene glycol) (PEGDMA) matrix to improve carbon dioxide (CO2) separation performance at elevated pressures. In our previous studies, PAMAM/PEGDMA hybrid membranes showed high CO2 separation properties from CO2/H2 mixed gases. In this study, proline, choline and ionic liquid [Choline][Pro] compounds were selected as rate promoters that were used to prepare PAMAM/PEGDMA hybrid membranes. The effect of addition of proline, choline, IL [Choline][Pro] on separation performance of PAMAM/PEGDMA) hybrid membranes for CO2/H2 separation was investigated. Amino acid proline, choline, and IL [Choline][Pro] were used to promote CO2 and amine reaction. With the addition of [Choline][Pro] into PAMAM/PEG membrane, CO2 permeance of PAMAM/PEG hybrid membranes are increased up to 46% without any change of selectivity of membrane for CO2.

  12. Hybrid method for determining the parameters of condenser microphones from measured membrane velocities and numerical calculations

    DEFF Research Database (Denmark)

    Barrera Figueroa, Salvador; Rasmussen, Knud; Jacobsen, Finn

    2009-01-01

    to this problem is to measure the velocity distribution of the membrane by means of a non-contact method, such as laser vibrometry. The measured velocity distribution can be used together with a numerical formulation such as the boundary element method for estimating the microphone response and other parameters......, e.g., the acoustic center. In this work, such a hybrid method is presented and examined. The velocity distributions of a number of condenser microphones have been determined using a laser vibrometer, and these measured velocity distributions have been used for estimating microphone responses......Typically, numerical calculations of the pressure, free-field, and random-incidence response of a condenser microphone are carried out on the basis of an assumed displacement distribution of the diaphragm of the microphone; the conventional assumption is that the displacement follows a Bessel...

  13. Flexible Hybrid Membranes with Ni(OH)2 Nanoplatelets Vertically Grown on Electrospun Carbon Nanofibers for High-Performance Supercapacitors.

    Science.gov (United States)

    Zhang, Longsheng; Ding, Qianwei; Huang, Yunpeng; Gu, Huahao; Miao, Yue-E; Liu, Tianxi

    2015-10-14

    The practical applications of transition metal oxides and hydroxides for supercapacitors are restricted by their intrinsic poor conductivity, large volumetric expansion, and rapid capacitance fading upon cycling, which can be solved by optimizing these materials to nanostructures and confining them within conductive carbonaceous frameworks. In this work, flexible hybrid membranes with ultrathin Ni(OH)2 nanoplatelets vertically and uniformly anchored on the electrospun carbon nanofibers (CNF) have been facilely prepared as electrode materials for supercapacitors. The Ni(OH)2/CNF hybrid membranes with three-dimensional macroporous architectures as well as hierarchical nanostructures can provide open and continuous channels for rapid diffusion of electrolyte to access the electrochemically active Ni(OH)2 nanoplatelets. Moreover, the carbon nanofiber can act both as a conductive core to provide efficient transport of electrons for fast Faradaic redox reactions of the Ni(OH)2 sheath, and as a buffering matrix to mitigate the local volumetric expansion/contraction upon long-term cycling. As a consequence, the optimized Ni(OH)2/CNF hybrid membrane exhibits a high specific capacitance of 2523 F g(-1) (based on the mass of Ni(OH)2, that is 701 F g(-1) based on the total mass) at a scan rate of 5 mV s(-1). The Ni(OH)2/CNF hybrid membranes with high mechanical flexibility, superior electrical conductivity, and remarkably improved electrochemical capacitance are condsidered as promising flexible electrode materials for high-performance supercapacitors.

  14. Hybrid process for nitrogen oxides reduction

    Energy Technology Data Exchange (ETDEWEB)

    Epperly, W.R.; Sprague, B.N.

    1991-09-10

    This patent describes a process for reducing the nitrogen oxide concentration in the effluent from the combustion of a carbonaceous fuel. It comprises introducing into the effluent a first treatment agent comprising a nitrogenous composition selected from the group consisting of urea, ammonia, hexamethylenetetramine, ammonium salts of organic acids, 5- or 6-membered heterocyclic hydrocarbons having at least one cyclic nitrogen, hydroxy amino hydrocarbons, NH{sub 4}-lignosulfonate, fur-furylamine, tetrahydrofurylamine, hexamethylenediamine, barbituric acid, guanidine, guanidine carbonate, biguanidine, guanylurea sulfate, melamine, dicyandiamide, biuret, 1.1{prime}-azobisformamide, methylol urea, methylol urea-urea condensation product, dimethylol urea, methyl urea, dimethyl urea, calcium cyanamide, and mixtures thereof under conditions effective to reduce the nitrogen oxides concentration and ensure the presence of ammonia in the effluent; introducing into the effluent a second treatment agent comprising an oxygenated hydrocarbon at an effluent temperature of about 500{degrees} F. to about 1600{degrees} F. under conditions effective to oxidize nitric oxide in the effluent to nitrogen dioxide and ensure the presence of ammonia at a weight ratio of ammonia to nitrogen dioxide of about 1:5 to about 5:1; and contacting the effluent with an aqueous scrubbing solution having a pH of 12 or lower under conditions effective to cause nitrogen dioxide to be absorbed therein.

  15. Synthesis and Gas Transport Properties of Hyperbranched Polyimide–Silica Hybrid/Composite Membranes

    Directory of Open Access Journals (Sweden)

    Masako Miki

    2013-12-01

    Full Text Available Hyperbranched polyimide–silica hybrids (HBPI–silica HBDs and hyperbranched polyimide–silica composites (HBPI–silica CPTs were prepared, and their general and gas transport properties were investigated to clarify the effect of silica sources and preparation methods. HBPI–silica HBDs and HBPI–silica CPTs were synthesized by two-step polymerization of A2 + B3 monomer system via polyamic acid as precursor, followed by hybridizing or blending silica sources. Silica components were incorporated by the sol-gel reaction with tetramethoxysilane (TMOS or the addition of colloidal silica. In HBPI-silica HBDs, the aggregation of silica components is controlled because of the high affinity of HBPI and silica caused by the formation of covalent bonds between HBPI and silica. Consequently, HBPI-silica HBDs had good film formability, transparency, and mechanical properties compared with HBPI-silica CPTs. HBPI-silica HBD and CPT membranes prepared via the sol-gel reaction with TMOS showed specific gas permeabilities and permselectivities for CO2/CH4 separation, that is, both CO2 permeability and CO2/CH4 selectivity increased with increasing silica content. This result suggests that gas transport can occur through a molecular sieving effect of the porous silica network derived from the sol-gel reaction and/or through the narrow interfacial region between the silica networks and the organic matrix.

  16. Preparation and properties of hybrid direct methanol fuel cell membranes by embedding organophosphorylated titania submicrospheres into a chitosan polymer matrix

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Hong [Key Laboratory for Green Chemical Technology, School of Chemical Engineering and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072 (China); Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300072 (China); Hou, Weiqiang; Wang, Jingtao; Xiao, Lulu; Jiang, Zhongyi [Key Laboratory for Green Chemical Technology, School of Chemical Engineering and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072 (China)

    2010-07-01

    Organophosphorylated titania submicrospheres (OPTi) are prepared and incorporated into a chitosan (CS) matrix to fabricate hybrid membranes with enhanced methanol resistance and proton conductivity for application in direct methanol fuel cells (DMFC). The pristine monodispersed titania submicrospheres (TiO{sub 2}) of controllable particle size are synthesized through a modified sol-gel method and then phosphorylated by amino trimethylene phosphonic acid (ATMP) via chemical adsorption, which is confirmed by XPS, FTIR and TGA. The morphology and thermal property of the hybrid membranes are explored by SEM and TGA. The ionic cross-linking between the -PO{sub 3}H{sub 2} groups on OPTi and the -NH{sub 2} groups on CS lead to better compatibility between the inorganic fillers and the polymer matrix, as well as a decreased fractional free volume (FFV), which is verified by positron annihilation lifetime spectroscopy (PALS). The effects of particle size and content on the methanol permeability, proton conductivity, swelling and FFV of the membranes are investigated. Compared to pure CS membrane, the hybrid membranes exhibit an increased proton conductivity to an acceptable level of 0.01 S cm{sup -1} for DMFC application and a reduced methanol permeability of 5 x 10{sup -7} cm{sup 2} s{sup -1} at a 2 M methanol feed. (author)

  17. Preparation and properties of hybrid direct methanol fuel cell membranes by embedding organophosphorylated titania submicrospheres into a chitosan polymer matrix

    Science.gov (United States)

    Wu, Hong; Hou, Weiqiang; Wang, Jingtao; Xiao, Lulu; Jiang, Zhongyi

    Organophosphorylated titania submicrospheres (OPTi) are prepared and incorporated into a chitosan (CS) matrix to fabricate hybrid membranes with enhanced methanol resistance and proton conductivity for application in direct methanol fuel cells (DMFC). The pristine monodispersed titania submicrospheres (TiO 2) of controllable particle size are synthesized through a modified sol-gel method and then phosphorylated by amino trimethylene phosphonic acid (ATMP) via chemical adsorption, which is confirmed by XPS, FTIR and TGA. The morphology and thermal property of the hybrid membranes are explored by SEM and TGA. The ionic cross-linking between the -PO 3H 2 groups on OPTi and the -NH 2 groups on CS lead to better compatibility between the inorganic fillers and the polymer matrix, as well as a decreased fractional free volume (FFV), which is verified by positron annihilation lifetime spectroscopy (PALS). The effects of particle size and content on the methanol permeability, proton conductivity, swelling and FFV of the membranes are investigated. Compared to pure CS membrane, the hybrid membranes exhibit an increased proton conductivity to an acceptable level of 0.01 S cm -1 for DMFC application and a reduced methanol permeability of 5 × 10 -7 cm 2 s -1 at a 2 M methanol feed.

  18. High mobility solution-processed hybrid light emitting transistors

    International Nuclear Information System (INIS)

    Walker, Bright; Kim, Jin Young; Ullah, Mujeeb; Burn, Paul L.; Namdas, Ebinazar B.; Chae, Gil Jo; Cho, Shinuk; Seo, Jung Hwa

    2014-01-01

    We report the design, fabrication, and characterization of high-performance, solution-processed hybrid (inorganic-organic) light emitting transistors (HLETs). The devices employ a high-mobility, solution-processed cadmium sulfide layer as the switching and transport layer, with a conjugated polymer Super Yellow as an emissive material in non-planar source/drain transistor geometry. We demonstrate HLETs with electron mobilities of up to 19.5 cm 2 /V s, current on/off ratios of >10 7 , and external quantum efficiency of 10 −2 % at 2100 cd/m 2 . These combined optical and electrical performance exceed those reported to date for HLETs. Furthermore, we provide full analysis of charge injection, charge transport, and recombination mechanism of the HLETs. The high brightness coupled with a high on/off ratio and low-cost solution processing makes this type of hybrid device attractive from a manufacturing perspective

  19. Wafer-Level Membrane-Transfer Process for Fabricating MEMS

    Science.gov (United States)

    Yang, Eui-Hyeok; Wiberg, Dean

    2003-01-01

    A process for transferring an entire wafer-level micromachined silicon structure for mating with and bonding to another such structure has been devised. This process is intended especially for use in wafer-level integration of microelectromechanical systems (MEMS) that have been fabricated on dissimilar substrates. Unlike in some older membrane-transfer processes, there is no use of wax or epoxy during transfer. In this process, the substrate of a wafer-level structure to be transferred serves as a carrier, and is etched away once the transfer has been completed. Another important feature of this process is that two electrodes constitutes an electrostatic actuator array. An SOI wafer and a silicon wafer (see Figure 1) are used as the carrier and electrode wafers, respectively. After oxidation, both wafers are patterned and etched to define a corrugation profile and electrode array, respectively. The polysilicon layer is deposited on the SOI wafer. The carrier wafer is bonded to the electrode wafer by using evaporated indium bumps. The piston pressure of 4 kPa is applied at 156 C in a vacuum chamber to provide hermetic sealing. The substrate of the SOI wafer is etched in a 25 weight percent TMAH bath at 80 C. The exposed buried oxide is then removed by using 49 percent HF droplets after an oxygen plasma ashing. The SOI top silicon layer is etched away by using an SF6 plasma to define the corrugation profile, followed by the HF droplet etching of the remaining oxide. The SF6 plasma with a shadow mask selectively etches the polysilicon membrane, if the transferred membrane structure needs to be patterned. Electrostatic actuators with various electrode gaps have been fabricated by this transfer technique. The gap between the transferred membrane and electrode substrate is very uniform ( 0.1 m across a wafer diameter of 100 mm, provided by optimizing the bonding control). Figure 2 depicts the finished product.

  20. Characterization of Selected Parameters of Organic-Inorganic Hybrid Membranes Based on Various Polymers and Nd-Fe-B Fillers

    Directory of Open Access Journals (Sweden)

    Rybak A.

    2016-12-01

    Full Text Available In this paper magnetic organic-inorganic hybrid membranes based on EC, PPO polymer matrices and various magnetic powder microparticles were synthesized and studied. Constant pressure permeation technique and the Time Lag method were used to obtain the gas transport coefficients. The mechanical, rheological and magnetic parameters of magnetic hybrid membranes were examined. It was found that their separation and gas transport properties (D, P, S and α were improved with the decrease in powder particle size and the increase of membrane’s remanence, saturation magnetization and magnetic particle filling. The increase of the magnetic powder addition and a decrease of its granulation improved also mechanical and rheological parameters of the tested membranes. This improvement also had a positive effect on their gas separation properties and their potential usage in the future.

  1. Superhydrophobic hybrid membranes by grafting arc-like macromolecular bridges on graphene sheets: Synthesis, characterization and properties

    Science.gov (United States)

    Mo, Zhao-Hua; Luo, Zheng; Huang, Qiang; Deng, Jian-Ping; Wu, Yi-Xian

    2018-05-01

    Grafting single end-tethered polymer chains on the surface of graphene is a conventional way to modify the surface properties of graphene oxide. However, grafting arc-like macromolecular bridges on graphene surfaces has been barely reported. Herein, a novel arc-like polydimethylsiloxane (PDMS) macromolecular bridges grafted graphene sheets (GO-g-Arc PDMS) was successfully synthesized via a confined interface reaction at 90 °C. Both the hydrophilic α- and ω-amino groups of linear hydrophobic NH2-PDMS-NH2 macromolecular chains rapidly reacted with epoxy and carboxyl groups on the surfaces of graphene oxide in water suspension to form arc-like PDMS macromolecular bridges on graphene sheets. The grafting density of arc-like PDMS bridges on graphene sheets can reach up to 0.80 mmol g-1 or 1.32 arc-like bridges per nm2 by this confined interface reaction. The water contact angle (WCA) of the hybrid membrane could be increased with increasing both the grafting density and content of covalent arc-like bridges architecture. The superhydrophobic hybrid membrane with a WCA of 153.4° was prepared by grinding of the above arc-like PDMS bridges grafted graphene hybrid, dispersing in ethanol and filtrating by organic filter membrane. This superhydrophobic hybrid membrane shows good self-cleaning and complete oil-water separation properties, which provides potential applications in anticontamination coating and oil-water separation. To the best of our knowledge, this is the first report on the synthesis of functional hybrid membranes by grafting arc-like PDMS macromolecular bridges on graphene sheets via a confined interface reaction.

  2. Removal of heavy-metal ions from dilute waste streams using membrane-based hybrid systems

    International Nuclear Information System (INIS)

    Friesen, D.T.; Edlund, D.J.

    1993-01-01

    At Bend research, the authors have developed hybrid systems that couple a process that removes solvent (water) and a process that removes solute (metal ions) such that toxic heavy-metal ions can be efficiently and selectively removed to very low levels while simultaneously concentrating the heavy-metal ions in relatively pure form. Although this technology is broadly applicable, the authors are focusing on the development of a system to treat groundwater that is contaminated with heavy-metal ions. The process utilizes coupled transport and reverse osmosis to reduce chromium and uranium concentration down to parts-per-billion levels

  3. Combination of Electrochemical Processes with Membrane Bioreactors for Wastewater Treatment and Fouling Control: A Review

    OpenAIRE

    Ensano, Benny M. B.; Borea, Laura; Naddeo, Vincenzo; Belgiorno, Vincenzo; de Luna, Mark D. G.; Ballesteros, Florencio C.

    2016-01-01

    This paper provides a critical review about the integration of electrochemical processes into membrane bioreactors (MBR) in order to understand the influence of these processes on wastewater treatment performance and membrane fouling control. The integration can be realized either in an internal or an external configuration. Electrically enhanced membrane bioreactors or electro membrane bioreactors (eMBRs) combine biodegradation, electrochemical and membrane filtration processes into one syst...

  4. Combination of electrochemical processes with membrane bioreactors for wastewater treatment and fouling control: A review

    OpenAIRE

    Benny Marie B. Ensano; Laura Borea; Vincenzo Naddeo; Vincenzo Belgiorno; Mark Daniel G. de Luna; Mark Daniel G. de Luna; Florencio C. Ballesteros, Jr.; Florencio C. Ballesteros, Jr.

    2016-01-01

    This paper provides a critical review about the integration of electrochemical processes into membrane bioreactors (MBR) in order to understand the influence of these processes on wastewater treatment performance and membrane fouling control. The integration can be realized either in an internal or an external configuration. Electrically enhanced membrane bioreactors or electro membrane bioreactors (eMBRs) combine biodegradation, electrochemical and membrane filtration processes into one syst...

  5. PDMS/PVDF hybrid electrospun membrane with superhydrophobic property and drop impact dynamics for dyeing wastewater treatment using membrane distillation

    KAUST Repository

    An, Alicia Kyoungjin; Guo, Jiaxin; Lee, Eui-Jong; Jeong, Sanghyun; Zhao, Yanhua; Wang, Zuankai; Leiknes, TorOve

    2016-01-01

    .4°) and roughness (Ra = 1,285mm). The zeta potential of E-PDMS membrane surface showed a higher negative value than that of a commercial PVDF (C-PVDF) membrane. These properties of E-PDMS membrane provided an antifouling in treating of differently-charged dyes

  6. Membrane-based processes for sustainable power generation using water

    KAUST Repository

    Logan, Bruce E.; Elimelech, Menachem

    2012-01-01

    Water has always been crucial to combustion and hydroelectric processes, but it could become the source of power in membrane-based systems that capture energy from natural and waste waters. Two processes are emerging as sustainable methods for capturing energy from sea water: pressure-retarded osmosis and reverse electrodialysis. These processes can also capture energy from waste heat by generating artificial salinity gradients using synthetic solutions, such as thermolytic salts. A further source of energy comes from organic matter in waste waters, which can be harnessed using microbial fuel-cell technology, allowing both wastewater treatment and power production. © 2012 Macmillan Publishers Limited. All rights reserved.

  7. Membrane-based processes for sustainable power generation using water

    KAUST Repository

    Logan, Bruce E.

    2012-08-15

    Water has always been crucial to combustion and hydroelectric processes, but it could become the source of power in membrane-based systems that capture energy from natural and waste waters. Two processes are emerging as sustainable methods for capturing energy from sea water: pressure-retarded osmosis and reverse electrodialysis. These processes can also capture energy from waste heat by generating artificial salinity gradients using synthetic solutions, such as thermolytic salts. A further source of energy comes from organic matter in waste waters, which can be harnessed using microbial fuel-cell technology, allowing both wastewater treatment and power production. © 2012 Macmillan Publishers Limited. All rights reserved.

  8. Membrane processes for the reuse of car washing wastewater

    Directory of Open Access Journals (Sweden)

    Deniz Uçar

    2018-04-01

    Full Text Available This study investigates alternative treatments of car wash effluents. The car wash wastewater was treated by settling, filtration, and membrane filtration processes. During settling, total solid concentration decreased rapidly within the first 2 hours and then remained constant. Chemical oxygen demand (COD and conductivity were decreased by 10% and 4%, respectively. After settling, wastewater was filtered throughout a 100 μm filter. It was found that filtration had a negligible effect on COD removal. Finally, wastewater was filtered by four ultrafiltration membranes of varying molecular weight cutoff (MWCO (1, 5, 10 and 50 kDa and one nanofiltration membrane (NF270, MWCO = 200–400 Da. The permeate COD concentrations varied between 64.5 ± 3.2 and 85.5 ± 4.3 mg L−1 depending on UF pore size. When the NF270 nanofiltration membrane was used, the permeate COD concentration was 8.1 ± 0.4 mg L−1 corresponding to 97% removal. FeCl3 precipitation and activated carbon adsorption techniques were also applied to the retentate and 60–76% COD removals were obtained for activated carbon adsorption and FeCl3 precipitation, respectively.

  9. Membrane processes for the reuse of car washing wastewater

    OpenAIRE

    Deniz Uçar

    2018-01-01

    This study investigates alternative treatments of car wash effluents. The car wash wastewater was treated by settling, filtration, and membrane filtration processes. During settling, total solid concentration decreased rapidly within the first 2 hours and then remained constant. Chemical oxygen demand (COD) and conductivity were decreased by 10% and 4%, respectively. After settling, wastewater was filtered throughout a 100 μm filter. It was found that filtration had a negligible effect on COD...

  10. Ethanol fermentation integrated with PDMS composite membrane: An effective process.

    Science.gov (United States)

    Fu, Chaohui; Cai, Di; Hu, Song; Miao, Qi; Wang, Yong; Qin, Peiyong; Wang, Zheng; Tan, Tianwei

    2016-01-01

    The polydimethylsiloxane (PDMS) membrane, prepared in water phase, was investigated in separation ethanol from model ethanol/water mixture and fermentation-pervaporation integrated process. Results showed that the PDMS membrane could effectively separate ethanol from model solution. When integrated with batch ethanol fermentation, the ethanol productivity was enhanced compared with conventional process. Fed-batch and continuous ethanol fermentation with pervaporation were also performed and studied. 396.2-663.7g/m(2)h and 332.4-548.1g/m(2)h of total flux with separation factor of 8.6-11.7 and 8-11.6, were generated in the fed-batch and continuous fermentation with pervaporation scenario, respectively. At the same time, high titre ethanol production of ∼417.2g/L and ∼446.3g/L were also achieved on the permeate side of membrane in the two scenarios, respectively. The integrated process was environmental friendly and energy saving, and has a promising perspective in long-terms operation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Molecular Surveillance of Viral Processes Using Silicon Nitride Membranes

    Directory of Open Access Journals (Sweden)

    Deborah F. Kelly

    2013-03-01

    Full Text Available Here we present new applications for silicon nitride (SiN membranes to evaluate biological processes. We determined that 50-nanometer thin films of SiN produced from silicon wafers were sufficiently durable to bind active rotavirus assemblies. A direct comparison of SiN microchips with conventional carbon support films indicated that SiN performs equivalent to the traditional substrate to prepare samples for Electron Microscopy (EM imaging. Likewise, SiN films coated with Ni-NTA affinity layers concentrated rotavirus particles similarly to affinity-coated carbon films. However, affinity-coated SiN membranes outperformed glow-discharged conventional carbon films 5-fold as indicated by the number of viral particles quantified in EM images. In addition, we were able to recapitulate viral uncoating and transcription mechanisms directed onto the microchip surfaces. EM images of these processes revealed the production of RNA transcripts emerging from active rotavirus complexes. These results were confirmed by the functional incorporation of radiolabeled nucleotides into the nascent RNA transcripts. Collectively, we demonstrate new uses for SiN membranes to perform molecular surveillance on life processes in real-time.

  12. Manufacturing process for the metal ceramic hybrid fuel cladding tube

    International Nuclear Information System (INIS)

    Jung, Yang Il; Kim, Sun Han; Park, Jeong Yong

    2012-01-01

    For application in LWRs with suppressed hydrogen release, a metal-ceramic hybrid cladding tube has been proposed. The cladding consists of an inner zirconium tube and outer SiC fiber matrix SiC ceramic composite. The inner zirconium allows the matrix to remain fully sealed even if the ceramic matrix cracks through. The outer SiC composite can increase the safety margin by taking the merits of the SiC itself. However, it is a challenging task to fabricate the metal-ceramic hybrid tube. Processes such as filament winding, matrix impregnation, and surface costing are additionally required for the existing Zr based fuel cladding tubes. In the current paper, the development of the manufacturing process will be introduced

  13. Manufacturing process for the metal ceramic hybrid fuel cladding tube

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Yang Il; Kim, Sun Han; Park, Jeong Yong [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-10-15

    For application in LWRs with suppressed hydrogen release, a metal-ceramic hybrid cladding tube has been proposed. The cladding consists of an inner zirconium tube and outer SiC fiber matrix SiC ceramic composite. The inner zirconium allows the matrix to remain fully sealed even if the ceramic matrix cracks through. The outer SiC composite can increase the safety margin by taking the merits of the SiC itself. However, it is a challenging task to fabricate the metal-ceramic hybrid tube. Processes such as filament winding, matrix impregnation, and surface costing are additionally required for the existing Zr based fuel cladding tubes. In the current paper, the development of the manufacturing process will be introduced.

  14. Performance modeling of direct contact membrane distillation (DCMD) seawater desalination process using a commercial composite membrane

    KAUST Repository

    Lee, Junggil; Kim, Youngdeuk; Kim, Wooseung; Francis, Lijo; Amy, Gary L.; Ghaffour, NorEddine

    2015-01-01

    membrane and the heat transfer across the membrane and through the boundary layers adjacent to the membrane surfaces. Experimental results and model predictions for permeate flux and performance ratio are compared and shown to be in good agreement

  15. Epoxy-silica hybrids by nonaqueous sol-gel process

    Czech Academy of Sciences Publication Activity Database

    Ponyrko, Sergii; Kobera, Libor; Brus, Jiří; Matějka, Libor

    2013-01-01

    Roč. 54, č. 23 (2013), s. 6271-6282 ISSN 0032-3861 R&D Projects: GA ČR GAP108/12/1459 Grant - others:AV ČR(CZ) M200500903 Institutional support: RVO:61389013 Keywords : epoxy-silica hybrid * nonaqueous sol-gel process * gelation Subject RIV: CD - Macromolecular Chemistry Impact factor: 3.766, year: 2013

  16. Hybrid Control and Verification of a Pulsed Welding Process

    DEFF Research Database (Denmark)

    Wisniewski, Rafal; Larsen, Jesper Abildgaard; Izadi-Zamanabadi, Roozbeh

    Currently systems, which are desired to control, are becoming more and more complex and classical control theory objectives, such as stability or sensitivity, are often not sufficient to cover the control objectives of the systems. In this paper it is shown how the dynamics of a pulsed welding...... process can be reformulated into a timed automaton hybrid setting and subsequently properties such as reachability and deadlock absence is verified by the simulation and verification tool UPPAAL....

  17. Hybrid 3D printing by bridging micro/nano processes

    International Nuclear Information System (INIS)

    Yoon, Hae-Sung; Jang, Ki-Hwan; Kim, Eunseob; Lee, Hyun-Taek; Ahn, Sung-Hoon

    2017-01-01

    A hybrid 3D printing process was developed for multiple-material/freeform nano-scale manufacturing. The process consisted of aerodynamically focused nanoparticle (AFN) printing, micro-machining, focused ion beam milling, and spin-coating. Theoretical and experimental investigations were carried out to improve the compatibility of each of the processes, enabling bridging of various different techniques. The resulting hybrid process could address the limitations of individual processes, enabling improved process scaling and dimensional degrees of freedom, without losing the advantages of the existing processes. The minimum structure width can be reduced to 50 nm using undercut structures. In addition, AFN printing employs particle impact for adhesion, and various inorganic materials are suitable for printing, including metals and functional ceramics. Using the developed system, we fabricated bi-material cantilevers for applications as a thermal actuator. The mechanical and thermal properties of the structure were investigated using an in situ measurement system, and irregular thermal phenomena due to the fabrication process were analyzed. We expect that this work will lead to improvements in the area of customized nano-scale manufacturing, as well as further improvements in manufacturing technology by combining different fabrication techniques. (paper)

  18. Hybrid 3D printing by bridging micro/nano processes

    Science.gov (United States)

    Yoon, Hae-Sung; Jang, Ki-Hwan; Kim, Eunseob; Lee, Hyun-Taek; Ahn, Sung-Hoon

    2017-06-01

    A hybrid 3D printing process was developed for multiple-material/freeform nano-scale manufacturing. The process consisted of aerodynamically focused nanoparticle (AFN) printing, micro-machining, focused ion beam milling, and spin-coating. Theoretical and experimental investigations were carried out to improve the compatibility of each of the processes, enabling bridging of various different techniques. The resulting hybrid process could address the limitations of individual processes, enabling improved process scaling and dimensional degrees of freedom, without losing the advantages of the existing processes. The minimum structure width can be reduced to 50 nm using undercut structures. In addition, AFN printing employs particle impact for adhesion, and various inorganic materials are suitable for printing, including metals and functional ceramics. Using the developed system, we fabricated bi-material cantilevers for applications as a thermal actuator. The mechanical and thermal properties of the structure were investigated using an in situ measurement system, and irregular thermal phenomena due to the fabrication process were analyzed. We expect that this work will lead to improvements in the area of customized nano-scale manufacturing, as well as further improvements in manufacturing technology by combining different fabrication techniques.

  19. HYBRID SULFUR RECOVERY PROCESS FOR NATURAL GAS UPGRADING

    International Nuclear Information System (INIS)

    Girish Srinivas; Steven C. Gebhard; David W. DeBerry

    2001-01-01

    This first quarter report of 2001 describes progress on a project funded by the U.S. Department of Energy (DOE) to test a hybrid sulfur recovery process for natural gas upgrading. The process concept represents a low cost option for direct treatment of natural gas streams to remove H(sub 2)S in quantities equivalent to 0.2-25 metric tons (LT) of sulfur per day. This process is projected to have lower capital and operating costs than the competing technologies, amine/aqueous iron liquid redox and amine/Claus/tail gas treating, and have a smaller plant footprint, making it well suited to both on-shore and offshore applications. CrystaSulf(trademark) (service mark of Gas Research Institute) is a new nonaqueous sulfur recovery process that removes hydrogen sulfide (H(sub 2)S) from gas streams and converts it into elemental sulfur. CrystaSulf features high sulfur recovery similar to aqueous-iron liquid redox sulfur recovery processes, but differs from the aqueous processes in that CrystaSulf controls the location where elemental sulfur particles are formed. In the hybrid process, approximately 1/3 of the total H(sub 2)S in the natural gas is first oxidized to SO(sub 2) at low temperatures over a heterogeneous catalyst. Low temperature oxidation is done so that the H(sub 2)S can be oxidized in the presence of methane and other hydrocarbons without oxidation of the hydrocarbons. The project involves the development of a catalyst using laboratory/bench-scale catalyst testing, and then demonstration of the catalyst at CrystaTech's pilot plant in west Texas. During this reporting periods new catalyst formulations were tested. The experiments showed that the newest catalyst has slightly better performance, but catalyst TDA No.2 is still superior overall for use with the hybrid CrystaSulf process due to lower costs. Plans for catalyst pelletization and continued testing are described

  20. Fabrication of Mesoporous Silica/Alumina Hybrid Membrane Film Nanocomposites using Template Sol-Gel Synthesis of Amphiphilic Triphenylene

    Science.gov (United States)

    Lintang, H. O.; Jalani, M. A.; Yuliati, L.; Salleh, M. M.

    2017-05-01

    Herein we reported that by introducing a one-dimensional (1D) substrate with a porous structure such as anodic aluminum oxide (AAO) membrane, mesoporous silica/alumina hybrid nanocomposites were successfully fabricated by using amphiphilic triphenylene (TPC10TEG) as a template in sol-gel synthesis (TPC10TEG/silicahex). For the optical study of the nanocomposites, TPC10TEG/silicahex showed absorption peak at 264 nm due to the ordered and long-range π-π stacking of the disc-like aromatic triphenylene core. Moreover, the hexagonal arrangement of TPC10TEG/silicahex was proven based on their diffraction peaks of d 100 and d 200 at 2θ = 2.52° and 5.04° and images of transmission electron microscopy (TEM), respectively. For fabrication of mesoporous silica/alumina hybrid membrane, TPC10TEG/silicahex was drop-casted onto AAO membrane for penetration into the porous structure via gravity. X-ray diffraction (XRD) analysis on the resulted hybrid nanocomposites showed that the diffraction peaks of d 100 and d 200 of TPC10TEG/silicahex were still preserved, indicating that the hexagonal arrangements of mesoporous silica were maintained even on AAO substrate. The morphology study on the hybrid nanocomposites using TEM, scanning electron microscope (SEM) and field emission scanning electron microscope (FE-SEM) showed the successful filling of most AAO channels with the TPC10TEG/silicahex nanocomposites.

  1. Treatment of sharp mandibular alveolar process with hybrid prosthesis

    Directory of Open Access Journals (Sweden)

    Sukaedi Sukaedi

    2010-09-01

    Full Text Available Background: Losing posterior teeth for a long time would occasionally lead to the sharpening of alveolar process. The removable partial denture usually have problems when used during mastication, because of the pressure on the mucosa under the alveolar ridge. Purpose: The purpose of this case report was to manage patients with sharp mandibular alveolar process by wearing hybrid prosthesis with extra coronal precision attachment retention and soft liner on the surface base beneath the removable partial denture. Case: A 76 years old woman visited the Prosthodontic Clinic Faculty of Dentistry Airlangga University. The patient had a long span bridge on the upper jaw and a free end acrylic removable partial denture on the lower jaw. She was having problems with mastication. The patient did not wear her lower denture because of the discomfort with it during mastication. Hence, she would like to replace it with a new removable partial denture. Case management: The patient was treated by wearing a hybrid prosthesis with extra coronal precision attachment on the lower jaw. Soft liner was applied on the surface of the removable partial denture. Hybrid prosthesis is a complex denture consisting of removable partial denture and fixed bridge. Conclusion: It concluded that after restoration, the patient had no problems with sharp alveolar process with her new denture, and she was able to masticate well.Latar belakang: Kehilangan geligi posterior dapat menimbulkan processus alveolaris tajam. Gigi tiruan sebagian lepasan mempunyai masalah selama pengunyahan karena adanya tekanan di mukosa di bawah alveolar ridge. Tujuan: Tujuan laporan kasus ini adalah untuk menjelaskan cara menangani pasien yang mempunyai prosesus alveolaris yang tajam di rahang bawah dengan dibuatkan protesis hybrid dengan daya tahan extra coronal precision attachment dan soft liner di permukaan bawah basis gigi tiruan sebagian lepasan. Kasus: Pasien wanita berumur 76 tahun datang di klinik

  2. Preconceptual design of a salt splitting process using ceramic membranes

    International Nuclear Information System (INIS)

    Kurath, D.E.; Brooks, K.P.; Hollenberg, G.W.; Clemmer, R.; Balagopal, S.; Landro, T.; Sutija, D.P.

    1997-01-01

    Inorganic ceramic membranes for salt splitting of radioactively contaminated sodium salt solutions are being developed for treating U. S. Department of Energy tank wastes. The process consists of electrochemical separation of sodium ions from the salt solution using sodium (Na) Super Ion Conductors (NaSICON) membranes. The primary NaSICON compositions being investigated are based on rare- earth ions (RE-NaSICON). Potential applications include: caustic recycling for sludge leaching, regenerating ion exchange resins, inhibiting corrosion in carbon-steel tanks, or retrieving tank wastes; reducing the volume of low-level wastes volume to be disposed of; adjusting pH and reducing competing cations to enhance cesium ion exchange processes; reducing sodium in high-level-waste sludges; and removing sodium from acidic wastes to facilitate calcining. These applications encompass wastes stored at the Hanford, Savannah River, and Idaho National Engineering Laboratory sites. The overall project objective is to supply a salt splitting process unit that impacts the waste treatment and disposal flowsheets and meets user requirements. The potential flowsheet impacts include improving the efficiency of the waste pretreatment processes, reducing volume, and increasing the quality of the final waste disposal forms. Meeting user requirements implies developing the technology to the point where it is available as standard equipment with predictable and reliable performance. This report presents two preconceptual designs for a full-scale salt splitting process based on the RE-NaSICON membranes to distinguish critical items for testing and to provide a vision that site users can evaluate

  3. Preconceptual design of a salt splitting process using ceramic membranes

    Energy Technology Data Exchange (ETDEWEB)

    Kurath, D.E.; Brooks, K.P.; Hollenberg, G.W.; Clemmer, R. [Pacific Northwest National Lab., Richland, WA (United States); Balagopal, S.; Landro, T.; Sutija, D.P. [Ceramatec, Inc., Salt Lake City, UT (United States)

    1997-01-01

    Inorganic ceramic membranes for salt splitting of radioactively contaminated sodium salt solutions are being developed for treating U. S. Department of Energy tank wastes. The process consists of electrochemical separation of sodium ions from the salt solution using sodium (Na) Super Ion Conductors (NaSICON) membranes. The primary NaSICON compositions being investigated are based on rare- earth ions (RE-NaSICON). Potential applications include: caustic recycling for sludge leaching, regenerating ion exchange resins, inhibiting corrosion in carbon-steel tanks, or retrieving tank wastes; reducing the volume of low-level wastes volume to be disposed of; adjusting pH and reducing competing cations to enhance cesium ion exchange processes; reducing sodium in high-level-waste sludges; and removing sodium from acidic wastes to facilitate calcining. These applications encompass wastes stored at the Hanford, Savannah River, and Idaho National Engineering Laboratory sites. The overall project objective is to supply a salt splitting process unit that impacts the waste treatment and disposal flowsheets and meets user requirements. The potential flowsheet impacts include improving the efficiency of the waste pretreatment processes, reducing volume, and increasing the quality of the final waste disposal forms. Meeting user requirements implies developing the technology to the point where it is available as standard equipment with predictable and reliable performance. This report presents two preconceptual designs for a full-scale salt splitting process based on the RE-NaSICON membranes to distinguish critical items for testing and to provide a vision that site users can evaluate.

  4. Mathematical Modelling of Nitrate Removal from Water Using a Submerged Membrane Adsorption Hybrid System with Four Adsorbents

    Directory of Open Access Journals (Sweden)

    Mahatheva Kalaruban

    2018-01-01

    Full Text Available Excessive concentrations of nitrate in ground water are known to cause human health hazards. A submerged membrane adsorption hybrid system that includes a microfilter membrane and four different adsorbents (Dowex 21K XLT ion exchange resin (Dowex, Fe-coated Dowex, amine-grafted (AG corn cob and AG coconut copra operated at four different fluxes was used to continuously remove nitrate. The experimental data obtained in this study was simulated mathematically with a homogeneous surface diffusion model that incorporated membrane packing density and membrane correlation coefficient, and applied the concept of continuous flow stirred tank reactor. The model fit with experimental data was good. The surface diffusion coefficient was constant for all adsorbents and for all fluxes. The mass transfer coefficient increased with flux for all adsorbents and generally increased with the adsorption capacity of the adsorbents.

  5. Effect of narcotics on membrane-bound mitochondrial processes in fish

    DEFF Research Database (Denmark)

    Vergauwen, Lucia; Nørgaard Schmidt, Stine; Michiels, Ellen

    and endoplasmic reticulum membrane are known to closely interact with the cell membrane, we hypothesize that narcotics can be further partitioned into these organelle membranes where they can disrupt essential membrane-bound processes. The electron transport chain (ETC) is an example of a crucial mitochondrial...

  6. Antimicrobial Membranes of Bio-Based PA 11 and HNTs Filled with Lysozyme Obtained by an Electrospinning Process

    Directory of Open Access Journals (Sweden)

    Valeria Bugatti

    2018-03-01

    Full Text Available Bio-based membranes were obtained using Polyamide 11 (PA11 from renewable sources and a nano-hybrid composed of halloysite nanotubes (HNTs filled with lysozyme (50 wt % of lysozyme, as a natural antimicrobial molecule. Composites were prepared using an electrospinning process, varying the nano-hybrid loading (i.e., 1.0, 2.5, 5.0 wt %. The morphology of the membranes was investigated through SEM analysis and there was found to be a narrow average fiber diameter (0.3–0.5 μm. The mechanical properties were analyzed and correlated to the nano-hybrid content. Controlled release of lysozyme was followed using UV spectrophotometry and the release kinetics were found to be dependent on HNTs–lysozyme loading. The experimental results were analyzed by a modified Gallagher–Corrigan model. The application of the produced membranes, as bio-based pads, for extending the shelf life of chicken slices has been tested and evaluated.

  7. Cleaning of liquid LLW from decontamination processes using semipermeable membranes

    International Nuclear Information System (INIS)

    Dulama, M.; Deneanu, N.; Pavelescu, M.

    2003-01-01

    Of the three processes, which have been used extensively for liquid radioactive waste purification, evaporation and ion exchange are costly and flocculation gives a low degree of purification. By comparison to that, reverse osmosis offers intermediate purification at reasonable cost. Present research is examining the potential of using a membrane filtration system for the removal of dissolved radionuclides, but chemical treatment showed as necessary to convert soluble radionuclides, organic traces and metals to insoluble, filterable species. Liquid wastes within a CANDU station are segregated into normal and low-activity waste streams. The normal-activity waste includes wastes from the laboratories, laundries, some service-building drains, upgrade drains, and decontamination center. The drains from the reactor building, the heavy-water area, the spent-fuel pool, and the resin storage area are also directed to this normal activity wastes from showers and building drains in areas of the service building that would not normally be contaminated. The aqueous liquid wastes from the decontamination center and the other collected wastes from the chemical drain system are currently treated by the membrane plant. Generally, the liquid waste streams are effectively volume-reduced by a combination of continuous crossflow microfiltration (MF), spiral wound reverse osmosis (SWRO) and tubular reverse osmosis membrane technologies. Backwash chemical cleaning wastes from the membrane plant are further volume-reduced by evaporation. The concentrate from the membrane plant is ultimately immobilized with bitumen. The ability of the MF/SWRO technology to remove impurities non-selectively makes it suitable for the treatment of radioactive effluents from operating nuclear plants, with proper membrane selection, feed characterization, system configuration and system chemistry control. The choice of polysulfonate material for membrane was based on the high flow rates achievable with this

  8. Development of an energy-saving anaerobic hybrid membrane bioreactors for 2-chlorophenol-contained wastewater treatment.

    Science.gov (United States)

    Wang, Yun-Kun; Pan, Xin-Rong; Sheng, Guo-Ping; Li, Wen-Wei; Shi, Bing-Jing; Yu, Han-Qing

    2015-12-01

    A novel energy-saving anaerobic hybrid membrane bioreactor (AnHMBR) with mesh filter, which takes advantage of anaerobic membrane bioreactor and fixed-bed biofilm reactor, is developed for low-strength 2-chlorophenol (2-CP)-contained wastewater treatment. In this system, the anaerobic membrane bioreactor is stuffed with granular activated carbon to construct an anaerobic hybrid fixed-bed biofilm membrane bioreactor. The effluent turbidity from the AnHMBR system was low during most of the operation period, and the chemical oxygen demand and 2-CP removal efficiencies averaged 82.3% and 92.6%, respectively. Furthermore, a low membrane fouling rate was achieved during the operation. During the AnHMBR operation, the only energy consumption was for feed pump. And a low energy demand of 0.0045-0.0063kWhm(-3) was estimated under the current operation conditions. All these results demonstrated that this novel AnHMBR is a sustainable technology for treating 2-CP-contained wastewater. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Concrete Crack Identification Using a UAV Incorporating Hybrid Image Processing.

    Science.gov (United States)

    Kim, Hyunjun; Lee, Junhwa; Ahn, Eunjong; Cho, Soojin; Shin, Myoungsu; Sim, Sung-Han

    2017-09-07

    Crack assessment is an essential process in the maintenance of concrete structures. In general, concrete cracks are inspected by manual visual observation of the surface, which is intrinsically subjective as it depends on the experience of inspectors. Further, it is time-consuming, expensive, and often unsafe when inaccessible structural members are to be assessed. Unmanned aerial vehicle (UAV) technologies combined with digital image processing have recently been applied to crack assessment to overcome the drawbacks of manual visual inspection. However, identification of crack information in terms of width and length has not been fully explored in the UAV-based applications, because of the absence of distance measurement and tailored image processing. This paper presents a crack identification strategy that combines hybrid image processing with UAV technology. Equipped with a camera, an ultrasonic displacement sensor, and a WiFi module, the system provides the image of cracks and the associated working distance from a target structure on demand. The obtained information is subsequently processed by hybrid image binarization to estimate the crack width accurately while minimizing the loss of the crack length information. The proposed system has shown to successfully measure cracks thicker than 0.1 mm with the maximum length estimation error of 7.3%.

  10. Flame Retardancy Effects of Graphene Nanoplatelet/Carbon Nanotube Hybrid Membranes on Carbon Fiber Reinforced Epoxy Composites

    Directory of Open Access Journals (Sweden)

    Dongxian Zhuo

    2013-01-01

    Full Text Available Carbon nanotube/graphene nanoplatelet (MWCNT/GNP hybrid membranes with lower liquid permeability and better barrier effect compared to MWCNT membranes were successfully synthesized by vacuum filtering. Their morphologies, water permeability, and pore structures were characterized by a scanning electron microscope (SEM and nitrogen adsorption isotherms. Furthermore, MWCNT/GNP membranes were used to improve the flame retardancy of carbon fiber reinforced polymer (CFRP composites, and the influence of weight percentage of GNPs on the permeability and flame retardancy of MWCNT/GNP membranes was systematically investigated. Results show that incorporation of MWCNT/GNP membranes on CFRP composite plates can remarkably improve the flame retardancy of CFRP composites. Specifically, the incorporation of hierarchical MWCNT/GNP membrane with 7.5 wt% of GNP displays a 35% reduction in the peak heat release rate (PHRR for a CFRP composite plate with the epoxy as matrix and a 11% reduction in PHRR compared with the incorporation of MWCNT membrane only. A synergistic flame retarding mechanism is suggested to be attributed to these results, which includes controlling the pore size and penetrative network structure.

  11. Enhancement Performance of Hybrid Membrane Zeolite/PES for Produced Water Treatment With Membrane Modification Using Combination of Ulta Violet Irradiation, Composition of Zeolite and Thermal Annealing

    Directory of Open Access Journals (Sweden)

    Djoko Kusworo Tutuk

    2018-01-01

    Full Text Available Produced water is a wastewater from oil production that must be treated well. Membrane is one alternative of water treatments technology based on filtration method. However, in the use of membrane, there’s no exact optimal variable that influences membrane performance.This underlying research to assess factors that influences membrane performance to obtain optimal condition. Therefore, the objectives of this study are determining the effect of variable process in membrane fabrication and several modification techniques on membrane performance. The membranes were fabricated via dry-wet phase inversion method. The process variables of this experiment are varying the Zeolite concentration by low level 1% weight and 3% weight, UV irradiation time low level 2 minutes and high level 6 minutes, thermal annealing temperature low level 160°C and high level 180°C. The experiment runs were designed using central composite design. From the research that has been perfromed, PES/Zeolit membrane has a higher permeability after being irradiated by UV light and denser pore after heating and the longer of annealing time.

  12. Large-scale membrane transfer process: its application to single-crystal-silicon continuous membrane deformable mirror

    International Nuclear Information System (INIS)

    Wu, Tong; Sasaki, Takashi; Hane, Kazuhiro; Akiyama, Masayuki

    2013-01-01

    This paper describes a large-scale membrane transfer process developed for the construction of large-scale membrane devices via the transfer of continuous single-crystal-silicon membranes from one substrate to another. This technique is applied for fabricating a large stroke deformable mirror. A bimorph spring array is used to generate a large air gap between the mirror membrane and the electrode. A 1.9 mm × 1.9 mm × 2 µm single-crystal-silicon membrane is successfully transferred to the electrode substrate by Au–Si eutectic bonding and the subsequent all-dry release process. This process provides an effective approach for transferring a free-standing large continuous single-crystal-silicon to a flexible suspension spring array with a large air gap. (paper)

  13. Effect of UV on De-NOx performance and microbial community of a hybrid catalytic membrane biofilm reactor

    Science.gov (United States)

    Chen, Zhouyang; Huang, Zhensha; He, Yiming; Xiao, Xiaoliang; Wei, Zaishan

    2018-02-01

    The hybrid membrane catalytic biofilm reactor provides a new way of flue gas denitration. However, the effects of UV on denitrification performance, microbial community and microbial nitrogen metabolism are still unknown. In this study, the effects of UV on deNO x performance, nitrification and denitrification, microbial community and microbial nitrogen metabolism of a bench scale N-TiO2/PSF hybrid catalytic membrane biofilm reactor (HCMBR) were evaluated. The change from nature light to UV in the HCMBR leads to the fall of NO removal efficiency of HCMBR from 92.8% to 81.8%. UV affected the microbial community structure, but did not change microbial nitrogen metabolism, as shown by metagenomics sequencing method. Some dominant phyla, such as Gammaproteobacteria, Bacteroidetes, Firmicutes, Actinobacteria, and Alphaproteobacteria, increased in abundance, whereas others, such as Proteobacteria and Betaproteobacteria, decreased. There were nitrification, denitrification, nitrogen fixation, and organic nitrogen metabolism in the HCMBR.

  14. Sum frequency generation (SFG) vibrational spectroscopy of planar phosphatidylethanolamine hybrid bilayer membranes under water.

    Science.gov (United States)

    Kett, Peter J N; Casford, Michael T L; Davies, Paul B

    2010-06-15

    Sum frequency generation (SFG) spectroscopy has been used to study the structure of phosphatidylethanolamine hybrid bilayer membranes (HBMs) under water at ambient temperatures. The HBMs were formed using a modified Langmuir-Schaefer technique and consisted of a layer of dipalmitoyl phosphatidylethanolamine (DPPE) physisorbed onto an octadecanethiol (ODT) self-assembled monolayer (SAM) at a series of surface pressures from 1 to 40 mN m(-1). The DPPE and ODT were selectively deuterated so that the contributions to the SFG spectra from the two layers could be determined separately. SFG spectra in both the C-H and C-D stretching regions confirmed that a monolayer of DPPE had been adsorbed to the ODT SAM and that there were gauche defects within the alkyl chains of the phospholipid. On adsorption of a layer of DPPE, methylene modes from the ODT SAM were detected, indicating that the phospholipid had partially disordered the alkanethiol monolayer. SFG spectra recorded in air indicated that removal of water from the surface of the HBM resulted in disruption of the DPPE layer and the formation of phospholipid bilayers.

  15. Proton Exchange Membrane Fuel Cell/Supercapasitor Hybrid Power Management System for a Golf Cart

    International Nuclear Information System (INIS)

    Siti Afiqah Abd Hamid; Ros Emilia Rosli; Edy Herianto Majlan; Wan Ramli Wan Daud; Ramizi Mohamed; Ramli Sitanggang

    2016-01-01

    This paper presented the transformation of a golf cart system powered lead acid battery into an environmental friendly hybrid vehicle. The design developed by using an advantage contributes by the uprising alternative power source candidate which is Proton Exchange Membrane Fuel Cell (PEMFC) and the maintenance free energy storage device, a supercapacitor (SC). The fuel cell (FC) stack was an in house manufactured with 450 W (36 V, 12.5 A) power, while the SC was from Maxwell Technologies (48 V, 165 F). This two power sources were controlled by the mechanical relay, meanwhile the reactant (hydrogen) are control by mass flow controller (MFC) both signaled by a National Instrument (NI) devices. The power management controller are programmed in the LabVIEW environment and then downloaded to the NI devices. The experimental result of the power trend was compared before and after the transformation with the same route to validate the effectiveness of the proposed power management strategy. The power management successfully controls the power sharing between power sources and satisfies the load transient. While the reactant control managed to vary the hydrogen mass flow rate feed according to the load demand in vehicular applications. (author)

  16. Optimized permeation and antifouling of PVDF hybrid ultrafiltration membranes: synergistic effect of dispersion and migration for fluorinated graphene oxide

    Energy Technology Data Exchange (ETDEWEB)

    Li, Mingming; Shi, Jie; Chen, Cheng; Li, Nan; Xu, Zhiwei, E-mail: xuzhiwei@tjpu.edu.cn; Li, Jing; Lv, Hanming; Qian, Xiaoming, E-mail: qianxiaoming@tjpu.edu.cn; Jiao, Xiaoning [Tianjin Polytechnic University, State Key Laboratory of Separation Membranes and Membrane Processes, School of Textiles (China)

    2017-03-15

    Nanoparticles may have suffered from low modification efficiency in hybrid membranes due to embedding and aggregating in polymer matrix. In order to analyze the modification mechanisms of nanoparticle migration and dispersion on the properties of hybrid membranes, we designed different F/O ratios (R{sub F/O}) of fluorinated graphene oxide (FGO, diameter = 1.5 ~ 17.5 μm) by carbon tetrafluoride (CF{sub 4}) plasma treatment GO for 3, 5, 10, 15, and 20 min and successfully prepared novel PVDF hybrid membranes containing FGO via the phase inversion method. After a prolonged plasma treatment, the R{sub F/O} of FGO was enhanced sharply, indicating an increasing compatibility of FGO with the matrix, especially FGO-20 (GO treated for 20 min). FGO contents in the top layer, sublayer, and the whole of membranes were probed by X-ray photoelectron spectroscopy, energy-dispersive spectrometer, and indirect computation, respectively. In the top layer of membranes, FGO contents declined from 13.14 wt% (PVDF/GO) to 4.00 wt% (PVDF/FGO-10) and 1.96 wt% (PVDF/FGO-20) due to the reduced migration ability of FGO. It is worth mentioning that PVDF/FGO-10 membranes exhibited an excellent water flux and flux recovery rate (up to 406.90 L m{sup −2} h{sup −1} and 88.9%), which were improved by 67.3% and 14.6% and 52.5% and 24.0% compared with those of PVDF/GO and PVDF/FGO-20 membranes, respectively, although the dispersion and migration ability of FGO-10 was maintained at a moderate level. It indicated that the migration and dispersion of FGO in membranes could result in dynamic equilibrium, which played a key role in making the best use of nanomaterials to optimize membrane performance.

  17. Pervaporation and sorption behavior of zeolite-filled polyethylene glycol hybrid membranes for the removal of thiophene species.

    Science.gov (United States)

    Lin, Ligang; Zhang, Yuzhong; Li, Hong

    2010-10-01

    Polyethylene glycol (PEG)-CuY zeolite hybrid membranes were prepared for sulfur removal from gasoline feed. The sorption and diffusion behavior of typical gasoline components through the hybrid membranes has been investigated by systematic studies of dynamic sorption curves. Influencing factors including feed temperature, permeate pressure, and zeolite content in the membranes on membrane performance have been evaluated. Immersion experiments results showed the preferential sorption of thiophene, which is key in fulfilling the separation of thiophene/hydrocarbon mixtures. The sorption, diffusion, and permeation coefficients of gasoline components in filled membranes are higher than those in unfilled membranes. Pervaporation (PV) and gas chromatography (GC) experiments results corresponded to the discussions on dynamic sorption curves. PV experiments showed that lower permeate pressure meant higher separation performance. The optimum temperature occurred at 383K, and an Arrhenius relationship existed between permeation flux and operating temperature. The CuY zeolite filling led to a significant increase of flux since the porous zeolite provides for more diffusion for small molecules in mixed matrix membranes. The sulfur enrichment factor increased first and then decreased with the increasing zeolite content, which was attributed to the combined influence of complexation force between CuY and thiophenes as well as the trade-off phenomenon between flux and selectivity. At 9 wt% CuY content, a higher permeation flux (3.19 kg/(m(2) h)) and sulfur enrichment factor (2.95) were obtained with 1190 microg/g sulfur content level in gasoline feed. Copyright 2010 Elsevier Inc. All rights reserved.

  18. An agar gel membrane-PDMS hybrid microfluidic device for long term single cell dynamic study.

    Science.gov (United States)

    Wong, Ieong; Atsumi, Shota; Huang, Wei-Chih; Wu, Tung-Yun; Hanai, Taizo; Lam, Miu-Ling; Tang, Ping; Yang, Jian; Liao, James C; Ho, Chih-Ming

    2010-10-21

    Significance of single cell measurements stems from the substantial temporal fluctuations and cell-cell variability possessed by individual cells. A major difficulty in monitoring surface non-adherent cells such as bacteria and yeast is that these cells tend to aggregate into clumps during growth, obstructing the tracking or identification of single-cells over long time periods. Here, we developed a microfluidic platform for long term single-cell tracking and cultivation with continuous media refreshing and dynamic chemical perturbation capability. The design highlights a simple device-assembly process between PDMS microchannel and agar membrane through conformal contact, and can be easily adapted by microbiologists for their routine laboratory use. The device confines cell growth in monolayer between an agar membrane and a glass surface. Efficient nutrient diffusion through the membrane and reliable temperature maintenance provide optimal growth condition for the cells, which exhibited fast exponential growth and constant distribution of cell sizes. More than 24 h of single-cell tracking was demonstrated on a transcription-metabolism integrated synthetic biological model, the gene-metabolic oscillator. Single cell morphology study under alcohol toxicity allowed us to discover and characterize cell filamentation exhibited by different E. coli isobutanol tolerant strains. We believe this novel device will bring new capabilities to quantitative microbiology, providing a versatile platform for single cell dynamic studies.

  19. Effect of Cross-Linking on the Mechanical and Thermal Properties of Poly(amidoamine Dendrimer/Poly(vinyl alcohol Hybrid Membranes for CO2 Separation

    Directory of Open Access Journals (Sweden)

    Shuhong Duan

    2014-04-01

    Full Text Available Poly(amidoamine (PAMAM dendrimers were incorporated into cross-linked poly(vinyl alcohol (PVA matrix to improve carbon dioxide (CO2 separation performance at elevated pressures. In our previous studies, PAMAM/PVA hybrid membranes showed high CO2 separation properties from CO2/H2 mixed gases. In this study, three types of organic Ti metal compounds were selected as PVA cross-linkers that were used to prepare PAMAM/cross-linked PVA hybrid membranes. Characterization of the PAMAM/cross-linked PVA hybrid membranes was conducted using nanoindentation and thermogravimetric analyses. The effects of the cross-linker and CO2 partial pressure in the feed gas on CO2 separation performance were discussed. H2O and CO2 sorption of the PAMAM/PVA hybrid membranes were investigated to explain the obtained CO2 separation efficiencies.

  20. Effect of Cross-Linking on the Mechanical and Thermal Properties of Poly(amidoamine) Dendrimer/Poly(vinyl alcohol) Hybrid Membranes for CO2 Separation.

    Science.gov (United States)

    Duan, Shuhong; Kai, Teruhiko; Saito, Takashi; Yamazaki, Kota; Ikeda, Kenichi

    2014-04-08

    Poly(amidoamine) (PAMAM) dendrimers were incorporated into cross-linked poly(vinyl alcohol) (PVA) matrix to improve carbon dioxide (CO2) separation performance at elevated pressures. In our previous studies, PAMAM/PVA hybrid membranes showed high CO2 separation properties from CO2/H2 mixed gases. In this study, three types of organic Ti metal compounds were selected as PVA cross-linkers that were used to prepare PAMAM/cross-linked PVA hybrid membranes. Characterization of the PAMAM/cross-linked PVA hybrid membranes was conducted using nanoindentation and thermogravimetric analyses. The effects of the cross-linker and CO2 partial pressure in the feed gas on CO2 separation performance were discussed. H2O and CO2 sorption of the PAMAM/PVA hybrid membranes were investigated to explain the obtained CO2 separation efficiencies.

  1. Biomimetic Hybridization of Kevlar into Silk Fibroin: Nanofibrous Strategy for Improved Mechanic Properties of Flexible Composites and Filtration Membranes.

    Science.gov (United States)

    Lv, Lili; Han, Xiangsheng; Zong, Lu; Li, Mingjie; You, Jun; Wu, Xiaochen; Li, Chaoxu

    2017-08-22

    Silk, one of the strongest natural biopolymers, was hybridized with Kevlar, one of the strongest synthetic polymers, through a biomimetic nanofibrous strategy. Regenerated silk materials have outstanding properties in transparency, biocompatibility, biodegradability and sustainability, and promising applications as diverse as in pharmaceutics, electronics, photonic devices and membranes. To compete with super mechanic properties of their natural counterpart, regenerated silk materials have been hybridized with inorganic fillers such as graphene and carbon nanotubes, but frequently lose essential mechanic flexibility. Inspired by the nanofibrous strategy of natural biomaterials (e.g., silk fibers, hemp and byssal threads of mussels) for fantastic mechanic properties, Kevlar was integrated in regenerated silk materials by combining nanometric fibrillation with proper hydrothermal treatments. The resultant hybrid films showed an ultimate stress and Young's modulus two times as high as those of pure regenerated SF films. This is not only because of the reinforcing effect of Kevlar nanofibrils, but also because of the increasing content of silk β-sheets. When introducing Kevlar nanofibrils into the membranes of silk nanofibrils assembled by regenerated silk fibroin, the improved mechanic properties further enabled potential applications as pressure-driven nanofiltration membranes and flexible substrates of electronic devices.

  2. Correlation Study of Magnetite Dissolution in Hybrid Decontamination Process

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seon-Byeong; Won, Hui-Jun; Park, Jung-Sun; Park, Sang-Yoon; Moon, Jei-Kwon; Choi, Wang-Kyu [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    In the operating plants, the localized corrosion on SG tubes which are transporters of thermal energy to the secondary side lowers the reduction heat transfer efficiency as well as degrades the lifetime of SG. Magnetite, Fe3O4, is a commonly found corrosion product on the inner surface of reactor coolant system. Simply magnetite can be reduced to hematite, Fe{sub 2}O{sub 3}, and further to iron when oxygen is limited or ample reducing agents are supplied. Along this line, number of decontamination processes has been developed since 1970s and most of them contain organic acid and additive chelating agents. However, many reports have pointed out the negative environmental effect of those chemicals, and currently there are new approaches to overcome the limited decontamination efficiency and large volume of secondary waste from other alternate processes without using such those organic chemicals. In present study, we investigated the magnetite dissolution in HyBRID solution as newly developing decontamination process. As a preliminary study for empirical modeling of decontamination by HyBRID solution, simply correlation study between variable and magnetite dissolution was introduced with studied mechanism and experimental results.

  3. Facile fabrication of ultrathin hybrid membrane for highly flexible supercapacitors via in-situ phase separation of polyethersulfone

    Science.gov (United States)

    Zhao, Xiaoning; Ran, Fen; Shen, Kuiwen; Yang, Yunlong; Wu, Jiayu; Niu, Xiaoqin; Kong, Lingbin; Kang, Long; Chen, Shaowei

    2016-10-01

    In this article, a facile method based on in-situ phase-separation was developed for the fabrication of ultrathin hybrid membranes for highly flexible supercapacitors. The structures and morphologies of the prepared electrodes were characterized by scanning electron microscopy (SEM), Fourier-transformed infrared spectroscopy (FTIR), and thermogravimetric analysis (TGA) measurements; and the electrochemical behaviors were examined in 2 M KOH solution. SEM and FTIR characterizations reveal that activated carbon was imbedded into the polymer membrane of polyethersulfone to form a uniform and flexible hybrid membrane. When the thin polymer-carbon membrane (PCM) was used as an electrode material for supercapacitor, a high specific capacitance of 169.4 Fg-1 was obtained at a current density of 0.5 Ag-1 along with good long-term cycle life of 94.6% capacity retention after 2000 charging-discharging cycles. Benefiting from these merits, the as-fabricated PCM//PCM cell shows an excellent electrochemical property. These results suggest a promising route towards the fabrication of highly flexible electrodes for high-performance supercapacitors.

  4. Atmospheric Pressure Plasma-Electrospin Hybrid Process for Protective Applications

    Science.gov (United States)

    Vitchuli Gangadharan, Narendiran

    2011-12-01

    Chemical and biological (C-B) warfare agents like sarin, sulfur mustard, anthrax are usually dispersed into atmosphere in the form of micro aerosols. They are considered to be dangerous weapon of mass destruction next to nuclear weapons. The airtight protective clothing materials currently available are able to stop the diffusion of threat agents but not good enough to detoxify them, which endangers the wearers. Extensive research efforts are being made to prepare advanced protective clothing materials that not only prevent the diffusion of C-B agents, but also detoxify them into harmless products thus ensuring the safety and comfort of the wearer. Electrospun nanofiber mats are considered to have effective filtration characteristics to stop the diffusion of submicron level particulates without sacrificing air permeability characteristics and could be used in protective application as barrier material. In addition, functional nanofibers could be potentially developed to detoxify the C-B warfare threats into harmless products. In this research, electrospun nanofibers were deposited on fabric surface to improve barrier efficiency without sacrificing comfort-related properties of the fabrics. Multi-functional nanofibers were fabricated through an electrospinning-electrospraying hybrid process and their ability to detoxify simulants of C-B agents was evaluated. Nanofibers were also deposited onto plasma-pretreated woven fabric substrate through a newly developed plasma-electrospinning hybrid process, to improve the adhesive properties of nanofibers on the fabric surface. The nanofiber adhesion and durability properties were evaluated by peel test, flex and abrasion resistance tests. In this research work, following tasks have been carried out: i) Controlled deposition of nanofiber mat onto woven fabric substrate Electrospun Nylon 6 fiber mats were deposited onto woven 50/50 Nylon/Cotton fabric with the motive of making them into protective material against submicron

  5. Flux Recovery of a Forward Osmosis Membrane After a Fouling Process

    Science.gov (United States)

    Romero-Mangado, Jaione; Parodi, Jurek; Gamboa-Vazquez, Sonia; Stefanson, Ofir; Diaz-Cartagena, Diana C.; Flynn, Michael

    2016-01-01

    Wastewater treatment through forward osmosis (FO) membranes is a process that has been evaluated in the past years as an innovative technology for the Next Generation Life Support Systems. FO technologies are cost effective, and require very low energy consumption, but are subject to membrane fouling. Membrane fouling occurs when unwanted materials accumulate on the active side of the membrane during the wastewater treatment process, which leads to a decrease in membrane flux rate. The aim of this study is to identify the materials that cause flux rate reduction due to membrane fouling, as well as to evaluate the flux rate recovery after membrane treatment using commercially available antifoulants. Fourier Transform Infrared (FTIR) spectrometry results identified possible compounds that cause membrane fouling and FO testing results demonstrated flux rate recovery after membrane treatment using antifoulants.

  6. Crude biodiesel refining using membrane ultra-filtration process: An environmentally benign process

    Directory of Open Access Journals (Sweden)

    I.M. Atadashi

    2015-12-01

    Full Text Available Ceramic membrane separation system was developed to simultaneously remove free glycerol and soap from crude biodiesel. Crude biodiesel produced was ultra-filtered by multi-channel tubular membrane of the pore size of 0.05 μm. The effects of process parameters: transmembrane pressure (TMP, bar, temperature (°C and flow rate (L/min on the membrane system were evaluated. The process parameters were then optimized using Central Composite Design (CCD coupled with Response Surface Methodology (RSM. The best retention coefficients (%R for free glycerol and soap were 97.5% and 96.6% respectively. Further, the physical properties measured were comparable to those obtained in ASTMD6751-03 and EN14214 standards.

  7. Application of reverse osmosis membrane technology for liquid radioactive waste processing

    International Nuclear Information System (INIS)

    Zhao Juan

    2010-01-01

    Liquid radioactive waste (LRW) processing should bear an acceptable level of residual radioactivity for discharge and meet the request of energy saving and waste minimization. Reverse osmosis (RO) membrane technology has been developed as a novel process for LRW processing. Five basic operating parameters of flux, recovery factor, rejection factor, concentration factor and decontamination factor were described, and the latter two parameters were the most important. Concentration factor and decontamination factor should be as high as possible and simultaneously the operating cost for membrane filtration should be low. Technical design considerations for membrane process were discussed and optimized from the aspects of pretreatment, membrane module choice and arrangement and membrane clear out. Application and investigation of RO membrane technology for LRW processing were introduced and it should be noted that the RO membrane technology has been introduced into overseas nuclear power plants for LRW processing and interiorly in the stage of investigation. (authors)

  8. A hybridized membrane-botanical biofilter for improving air quality in occupied spaces

    Science.gov (United States)

    Llewellyn, David; Darlington, Alan; van Ras, Niels; Kraakman, Bart; Dixon, Mike

    Botanical biofilters have been shown to be effective in improving indoor air quality through the removal of complex mixtures of gaseous contaminants typically found in human-occupied environments. Traditional, botanical biofilters have been comprised of plants rooted into a thin and highly porous synthetic medium that is hung on vertical surfaces. Water flows from the top of the biofilter and air is drawn horizontally through the rooting medium. These botanical biofilters have been successfully marketed in office and institutional settings. They operate efficiently, with adequate contaminant removal and little maintenance for many years. Depending on climate and outdoor air quality, botanical biofiltration can substantially reduce costs associated with ventilation of stale indoor air. However, there are several limitations that continue to inhibit widespread acceptance: 1. Current designs are architecturally limiting and inefficient at capturing ambient light 2. These biofilters can add significant amounts of humidity to an indoor space. This water loss also leads to a rapid accumulation of dissolved salts; reducing biofilter health and performance 3. There is the perception of potentially actively introducing harmful bioaerosols into the air stream 4. Design and practical limitations inhibit the entrance of this technology into the lucrative residential marketplace This paper describes the hybridization of membrane and botanical biofiltration technologies by incorporating a membrane array into the rootzone of a conventional interior planting. This technology has the potential for addressing all of the above limitations, expanding the range of indoor settings where botanical biofiltration can be applied. This technology was developed as the CSA-funded Canadian component an ESA-MAP project entitled: "Biological airfilter for air quality control of life support systems in manned space craft and other closed environments", A0-99-LSS-019. While the project addressed a

  9. Reducing the pollutant load of olive mill wastewater by photocatalytic membranes and monitoring the process using both tyrosinase biosensor and COD test

    Science.gov (United States)

    Martini, Elisabetta; Tomassetti, Mauro; Campanella, Luigi; Fortuna, Antonio

    2013-12-01

    Photocatalytic technique had already been employed in the treatment of olive mill wastewater (OMW) using the photocatalysis in suspension. The coupling of photocatalytic and membrane techniques should result in a very powerful process bringing great innovation to OMW depollution. Despite the potential advantages using these hybrid photoreactors, research on the combined use of photocatalysis and membranes has so far not been sufficiently developed. The present paper describes a study to assess the photocatalytic efficacy of a new ceramic membrane containing titanium dioxide, irradiated by UV light, used to abate the pollutant load of olive mill wastewater. Good results were obtained (more than 90% of the phenol content was removed and the COD decrease was of the order of 46-51 % in 24 h) particularly using the ceramic membrane compared with those offered by analogous catalytic membranes made of metallic or polymeric materials.

  10. Reducing the pollutant load of olive mill wastewater by photocatalytic membranes and monitoring the process using both tyrosinase biosensor and COD test

    Science.gov (United States)

    Martini, Elisabetta; Tomassetti, Mauro; Campanella, Luigi; Fortuna, Antonio

    2013-01-01

    Photocatalytic technique had already been employed in the treatment of olive mill wastewater (OMW) using the photocatalysis in suspension. The coupling of photocatalytic and membrane techniques should result in a very powerful process bringing great innovation to OMW depollution. Despite the potential advantages using these hybrid photoreactors, research on the combined use of photocatalysis and membranes has so far not been sufficiently developed. The present paper describes a study to assess the photocatalytic efficacy of a new ceramic membrane containing titanium dioxide, irradiated by UV light, used to abate the pollutant load of OMW. Good results were obtained (more than 90% of the phenol content was removed and the COD decrease was of the order of 46–51% in 24 h) particularly using the ceramic membrane compared with those offered by analogous catalytic membranes made of metallic or polymeric materials. PMID:24790964

  11. Reducing the pollutant load of olive mill wastewater by photocatalytic membranes and monitoring the process using both tyrosinase biosensor and COD test

    Directory of Open Access Journals (Sweden)

    Elisabetta eMartini

    2013-12-01

    Full Text Available Photocatalytic technique had already been employed in the treatment of olive mill wastewater (OMW using the photocatalysis in suspension. The coupling of photocatalytic and membrane techniques should result in a very powerful process bringing great innovation to OMW depollution. Despite the potential advantages using these hybrid photoreactors, research on the combined use of photocatalysis and membranes has so far not been sufficiently developed. The present paper describes a study to assess the photocatalytic efficacy of a new ceramic membrane containing titanium dioxide, irradiated by UV light, used to abate the pollutant load of olive mill wastewater. Good results were obtained (more than 90% of the phenol content was removed and the COD decrease was of the order of 46-51 % in 24 h particularly using the ceramic membrane compared with those offered by analogous catalytic membranes made of metallic or polymeric materials.

  12. Gas diffusion electrode based on electrospun Pani/CNF nanofibers hybrid for proton exchange membrane fuel cells (PEMFC) applications

    Energy Technology Data Exchange (ETDEWEB)

    Hezarjaribi, M.; Jahanshahi, M., E-mail: mjahan@nit.ac.ir; Rahimpour, A.; Yaldagard, M.

    2014-03-01

    A novel hybrid system has been investigated based on polyaniline/carbon nanofiber (Pani/CNF) electrospun nanofibers for modification of gas diffusion electrode (GDE) in proton exchange membrane fuel cells (PEMFC). Pani/CNF hybrid nanofibers were synthesized directly on carbon paper by electrospinning method. For preparation of catalyst ink, 20 wt.% Pt/C electrocatalyst with a platinum loading of 0.4 mg cm{sup −2} was prepared by polyol technique. SEM studies applied for morphological study of the modified GDE with hybrid nanofibers. This technique indicated that the electrospun nanofibers had a diameter of roughly 100 nm. XRD patterns also showed that the average size of Pt nanoparticles was about 2 nm. Subsequently, comparison of the hybrid electrode electrochemical behavior and 20 wt.% Pt/C commercial one was studied by cyclic voltammetry experiment. The electrochemical data indicated that the hybrid electrode exhibited higher current density (about 15 mA cm{sup −2}) and ESA (160 m{sup 2} gr{sup −1}) than commercial Pt/C with amount of about 10 mA cm{sup −2} and 114 m{sup 2} gr{sup −1}, respectively. The results herein demonstrate that Pani/CNF nanofibers can be used as a good alternative electrode material for PEMFCs.

  13. Transport Asymmetry of Novel Bi-Layer Hybrid Perfluorinated Membranes on the Base of MF-4SC Modified by Halloysite Nanotubes with Platinum

    Directory of Open Access Journals (Sweden)

    Anatoly Filippov

    2018-03-01

    Full Text Available Three types of bi-layer hybrid nanocomposites on the base of perfluorinated cation-exchange membrane MF-4SC (Russian analogue of Nafion®-117 were synthesized and characterized. It was found that two membranes possess the noticeable asymmetry of the current–voltage curve (CVC under changing their orientation towards the applied electric field, despite the absence of asymmetry of diffusion permeability. These phenomena were explained in the frame of the “fine-porous model” expanded for bi-layer membranes. A special procedure to calculate the real values of the diffusion layers thickness and the limiting current density was proposed. Due to asymmetry effects of the current voltage curves of bi-layer hybrid membranes on the base of MF-4SC, halloysite nanotubes and platinum nanoparticles, it is prospective to assemble membrane switches (membrane relays or diodes with predictable transport properties, founded upon the theory developed here.

  14. Hybrid process, electrocoagulation-biofiltration for landfill leachate treatment.

    Science.gov (United States)

    Dia, Oumar; Drogui, Patrick; Buelna, Gerardo; Dubé, Rino

    2018-05-01

    Landfill leachates are known for their high and complex composition of organic, inorganic and microbial pollutants. As a result, it is quite challenging to treat these effluents by using only one treatment process. A combining approach is generally required to treat efficiently these wastewaters and comply with the discharge standards. In this present study, electrocoagulation (EC) and biofiltration (BF) processes were sequentially used to treat landfill leachate. EC process has been able to remove 37 ± 2% of the initial total COD. A fractionation of organic compounds showed that EC was particularly efficient to remove insoluble COD and humic acids. In addition, other pollutants such as turbidity, true color, Zn and phosphorus were significantly reduced by EC with 82 ± 2.7%, 60 ± 13%, 95 ± 2.6% and 82 ± 5.5% of removal respectively. The subsequent treatment by BF process led to completely removal of ammonia pollution (>99% of NH 4 removal) and a partial removal of dissolved organic compounds (42 ± 7% of COD removal). The hybrid process EC/BF could form the basis of a process capable of removing organic and inorganic pollutants from many refractory wastewaters (mature landfill leachates, industrial and municipal wastewaters). Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Novel acid-base hybrid membrane based on amine-functionalized reduced graphene oxide and sulfonated polyimide for vanadium redox flow battery

    International Nuclear Information System (INIS)

    Cao, Li; Sun, Qingqing; Gao, Yahui; Liu, Luntao; Shi, Haifeng

    2015-01-01

    A series of novel acid-base hybrid membranes (SPI/PEI-rGO) based on sulfonated polyimide (SPI) with polyethyleneimine-functionalized reduced graphene oxide (PEI-rGO) are prepared by a solution-casting method for vanadium redox flow battery (VRB). FT-IR and XPS results prove the successful fabrication of PEI-rGO and SPI/PEI-rGO hybrid membranes, which show a dense and homogeneous structure observed by SEM. The physicochemical properties such as water uptake, swelling ratio, ion exchange capacity, proton conductivity and vanadium ion permeability are well controlled by the incorporated PEI-rGO fillers. The interfacial-formed acid-base pairs between PEI-rGO and SPI matrix effectively reduce the swelling ratio and vanadium ion permeability, increasing the stability performance of the hybrid membranes. SPI/PEI-rGO-2 hybrid membrane exhibits a higher coulombic efficiency (CE, 95%) and energy efficiency (EE, 75.6%) at 40 mA cm −2 , as compared with Nafion 117 membrane (CE, 91% and EE, 66.8%). The self-discharge time of the VRB with SPI/PEI-rGO-2 hybrid membrane (80 h) is longer than that of Nafion 117 membrane (26 h), demonstrating the excellent blocking ability for vanadium ion. After 100 charge-discharge cycles, SPI/PEI-rGO-2 membrane exhibits the good stability under strong oxidizing and acid condition, proving that SPI/PEI-rGO acid-base hybrid membranes could be used as the promising candidates for VRB applications

  16. Differential sensitivity of cellular membranes to peroxidative processes

    International Nuclear Information System (INIS)

    Huijbers, W.A.R.

    1976-01-01

    A description is given of a morphological and cytochemical investigation into the effects of both vitamin E deficiency and X-irradiation on the ultrastructure and enzyme activities of several cellular membranes, particularly the plasma membrane and the membranes of lysosomes, mitochondria and endoplasmic reticulum. In the vitamin E deficient situation, the radicals and peroxides only originate near mitochondria and endoplasmic reticulum, so that these membrane systems suffer from changes. After irradiation of the liver of both the control duckling and the deficient duckling, radicals originate in all parts of the cell. Due to their high content of lipids and cholesterols, peroxides will occur mainly in plasma membranes and lysosomal membranes. Moreover, in these membranes there is hardly any protection by vitamin E

  17. Hybrid Quantum Information Processing with Superconductors and Neutral Atoms

    Science.gov (United States)

    McDermott, Robert

    Hybrid approaches to quantum information processing (QIP) aim to capitalize on the strengths of disparate quantum technologies to realize a system whose capabilities exceed those of any single experimental platform. At the University of Wisconsin, we are working toward integration of a fast superconducting quantum processor with a stable, long-lived quantum memory based on trapped neutral atoms. Here we describe the development of a quantum interface between superconducting thin-film cavity circuits and trapped Rydberg atoms, the key technological obstacle to realization of superconductor-atom hybrid QIP. Specific accomplishments to date include development of a theoretical protocol for high-fidelity state transfer between the atom and the cavity; fabrication and characterization of high- Q superconducting cavities with integrated trapping electrodes to enhance zero-point microwave fields at a location remote from the chip surface; and trapping and Rydberg excitation of single atoms within 1 mm of the cavity. We discuss the status of experiments to probe the strong coherent coupling of single Rydberg atoms and the superconducting cavity. Supported by ARO under contract W911NF-16-1-0133.

  18. Development of Nano-hybrid Cellulose Acetate/TiO2 Membrane for Eugenol Purification from Crude Clove Leaf Oil

    Directory of Open Access Journals (Sweden)

    Kusworo Tutuk Djoko

    2018-01-01

    Full Text Available Chemical separation and purification are the important part of the chemical industry which consumes up to 70% energy cost. The separation technology such as distillation and absorption are well known in essential oil purification. The purification of clove leaf oil needs an attention because the current technology still consumes high energy and produces chemical wastes. The employment of membrane separation for clove leaf purification is a novel concept that needs many improvements. The main problem of polymeric membrane utilization is eugenol ability to dissolve the polymer membrane. Cellulose acetate is one of membrane polymers that is insoluble in eugenol. This paper reveals the performance of nanohybrid CA/TiO2 membrane for eugenol purification. The stability of produced membrane as an organic solvent nanofiltration (OSN is evaluated in this study. The SEM image result shows that fabricated membrane has an asymmetric structure of membrane sub-layer. The different nano-particles loading shows the variation of permeate fluxes, the increase of nano-particles in polymer blend tends to increase the permeability. Thus, this study provides an overview of the potential CA/TiO2 for OSN development by incorporating inorganic nano-particles in membrane polymers for eugenol purification that can be integrated in upstream separation process.

  19. HYBRID SULFUR RECOVERY PROCESS FOR NATURAL GAS UPGRADING

    International Nuclear Information System (INIS)

    Girish Srinivas; Steven C. Gebhard; David W. DeBerry

    2002-01-01

    This first quarter report of 2002 describes progress on a project funded by the U.S. Department of Energy (DOE) to test a hybrid sulfur recovery process for natural gas upgrading. The process concept represents a low cost option for direct treatment of natural gas streams to remove H(sub 2)S in quantities equivalent to 0.2-25 metric tons (LT) of sulfur per day. This process is projected to have lower capital and operating costs than the competing technologies, amine/aqueous iron liquid redox and amine/Claus/tail gas treating, and have a smaller plant footprint, making it well suited to both on-shore and offshore applications. CrystaSulf(sup SM) (service mark of CrystaTech, Inc.) is a new nonaqueous sulfur recovery process that removes hydrogen sulfide (H(sub 2)S) from gas streams and converts it into elemental sulfur. CrystaSulf features high sulfur recovery similar to aqueous-iron liquid redox sulfur recovery processes, but differs from the aqueous processes in that CrystaSulf controls the location where elemental sulfur particles are formed. In the hybrid process, approximately 1/3 of the total H(sub 2)S in the natural gas is first oxidized to SO(sub 2) at low temperatures over a heterogeneous catalyst. Low temperature oxidation is done so that the H(sub 2)S can be oxidized in the presence of methane and other hydrocarbons without oxidation of the hydrocarbons. The project involves the development of a catalyst using laboratory/bench-scale catalyst testing, and then demonstration of the catalyst at CrystaTech's pilot plant in west Texas. In a previous reporting period tests were done to determine the effect of hydrocarbons such as n-hexane on catalyst performance with and without H(sub 2)S present. The experiments showed that hexane oxidation is suppressed when H(sub 2)S is present. Hexane represents the most reactive of the C1 to C6 series of alkanes. Since hexane exhibits low reactivity under H(sub 2)S oxidation conditions, and more importantly, does not change

  20. Detection of Food Spoilage and Pathogenic Bacteria Based on Ligation Detection Reaction Coupled to Flow-Through Hybridization on Membranes

    Directory of Open Access Journals (Sweden)

    K. Böhme

    2014-01-01

    Full Text Available Traditional culturing methods are still commonly applied for bacterial identification in the food control sector, despite being time and labor intensive. Microarray technologies represent an interesting alternative. However, they require higher costs and technical expertise, making them still inappropriate for microbial routine analysis. The present study describes the development of an efficient method for bacterial identification based on flow-through reverse dot-blot (FT-RDB hybridization on membranes, coupled to the high specific ligation detection reaction (LDR. First, the methodology was optimized by testing different types of ligase enzymes, labeling, and membranes. Furthermore, specific oligonucleotide probes were designed based on the 16S rRNA gene, using the bioinformatic tool Oligonucleotide Retrieving for Molecular Applications (ORMA. Four probes were selected and synthesized, being specific for Aeromonas spp., Pseudomonas spp., Shewanella spp., and Morganella morganii, respectively. For the validation of the probes, 16 reference strains from type culture collections were tested by LDR and FT-RDB hybridization using universal arrays spotted onto membranes. In conclusion, the described methodology could be applied for the rapid, accurate, and cost-effective identification of bacterial species, exhibiting special relevance in food safety and quality.

  1. Hybrid Percolation Transition in Cluster Merging Processes: Continuously Varying Exponents

    Science.gov (United States)

    Cho, Y. S.; Lee, J. S.; Herrmann, H. J.; Kahng, B.

    2016-01-01

    Consider growing a network, in which every new connection is made between two disconnected nodes. At least one node is chosen randomly from a subset consisting of g fraction of the entire population in the smallest clusters. Here we show that this simple strategy for improving connection exhibits a more unusual phase transition, namely a hybrid percolation transition exhibiting the properties of both first-order and second-order phase transitions. The cluster size distribution of finite clusters at a transition point exhibits power-law behavior with a continuously varying exponent τ in the range 2 power-law behavior of the avalanche size distribution arising in models with link-deleting processes in interdependent networks.

  2. Study of cross-linking reactions induced by gamma rays in hybrid membranes of Bisphenol-A-Polysulfone and precipitated silica

    International Nuclear Information System (INIS)

    Furtado Filho, Acacio Antonio M.; Gomes, Ailton de S.; Lopes, Lea; Benzi, Marcia R.

    2011-01-01

    In this work the bisphenol-A-polysulfone (PSF) was sulfonated using trimethyl silyl chlorosulfonate [(CH 3 ) 3 SiSO 3 Cl] as a mild sulfonating agent in a homogeneous solution of dichloroethane. The sulfonation reaction was confirmed by acid-base titration and FTIR-spectroscopy analysis. The hybrid membranes were obtained by casting the sulfonated bisphenol-A-polysulfone (SPSF) and precipitated silica Tixosil R 333 solutions in N-N-dimethylacetamide. Cross-linking in the hybrid membranes was obtained by irradiation, with doses ranging from 5 to 30 kGy using gamma ray from a 60 Co source. The water uptake and the swelling of the membranes were estimated by measuring the change in weight between dry and wet conditions. The conductivity of the membranes in acid form was measured with the ac impedance technique using a PGSTAT30 frequency response analyzer. The hybrid cross-linked membranes have conductivity close to 10-1 S.cm -1 at 100% RH and 80 deg C. Electrochemical performances, thermo-mechanical stability and low cost make this cross-linked SPSF hybrid membrane an attractive material for fuel cells using a proton exchange membrane. (author)

  3. Reduced membrane fouling in a novel bio-entrapped membrane reactor for treatment of food and beverage processing wastewater.

    Science.gov (United States)

    Ng, Kok-Kwang; Lin, Cheng-Fang; Panchangam, Sri Chandana; Andy Hong, Pui-Kwan; Yang, Ping-Yi

    2011-08-01

    A novel Bio-Entrapped Membrane Reactor (BEMR) packed with bio-ball carriers was constructed and investigated for organics removal and membrane fouling by soluble microbial products (SMP). An objective was to evaluate the stability of the filtration process in membrane bioreactors through backwashing and chemical cleaning. The novel BEMR was compared to a conventional membrane bioreactor (CMBR) on performance, with both treating identical wastewater from a food and beverage processing plant. The new reactor has a longer sludge retention time (SRT) and lower mixed liquor suspended solids (MLSS) content than does the conventional. Three different hydraulic retention times (HRTs) of 6, 9, and 12 h were studied. The results show faster rise of the transmembrane pressure (TMP) with decreasing hydraulic retention time (HRT) in both reactors, where most significant membrane fouling was associated with high SMP (consisting of carbohydrate and protein) contents that were prevalent at the shortest HRT of 6 h. Membrane fouling was improved in the new reactor, which led to a longer membrane service period with the new reactor. Rapid membrane fouling was attributed to increased production of biomass and SMP, as in the conventional reactor. SMP of 10-100 kDa from both MBRs were predominant with more than 70% of the SMP <100 kDa. Protein was the major component of SMP rather than carbohydrate in both reactors. The new reactor sustained operation at constant permeate flux that required seven times less frequent chemical cleaning than did the conventional reactor. The new BEMR offers effective organics removal while reducing membrane fouling. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Enhanced Proton Conductivity of Sulfonated Hybrid Poly(arylene ether ketone) Membranes by Incorporating an Amino-Sulfo Bifunctionalized Metal-Organic Framework for Direct Methanol Fuel Cells.

    Science.gov (United States)

    Ru, Chunyu; Li, Zhenhua; Zhao, Chengji; Duan, Yuting; Zhuang, Zhuang; Bu, Fanzhe; Na, Hui

    2018-03-07

    Novel side-chain-type sulfonated poly(arylene ether ketone) (SNF-PAEK) containing naphthalene and fluorine moieties on the main chain was prepared in this work, and a new amino-sulfo-bifunctionalized metal-organic framework (MNS, short for MIL-101-NH 2 -SO 3 H) was synthesized via a hydrothermal technology and postmodification. Then, MNS was incorporated into a SNF-PAEK matrix as an inorganic nanofiller to prepare a series of organic-inorganic hybrid membranes (MNS@SNF-PAEK-XX). The mechanical property, methanol resistance, electrochemistry, and other properties of MNS@SNF-PAEK-XX hybrid membranes were characterized in detail. We found that the mechanical strength and methanol resistances of these hybrid membranes were improved by the formation of an ionic cross-linking structure between -NH 2 of MNS and -SO 3 H on the side chain of SNF-PAEK. Particularly, the proton conductivity of these hybrid membranes increased obviously after the addition of MNS. MNS@SNF-PAEK-3% exhibited the proton conductivity of 0.192 S·cm -1 , which was much higher than those of the pristine membrane (0.145 S·cm -1 ) and recast Nafion (0.134 S·cm -1 ) at 80 °C. This result indicated that bifunctionalized MNS rearranged the microstructure of hybrid membranes, which could accelerate the transfer of protons. The hybrid membrane (MNS@SNF-PAEK-3%) showed a better direct methanol fuel cell performance with a higher peak power density of 125.7 mW/cm 2 at 80 °C and a higher open-circuit voltage (0.839 V) than the pristine membrane.

  5. Treatment of offshore produced water - an effective membrane process

    International Nuclear Information System (INIS)

    Taylor, J.; Larson, R.; Scherer, B.

    1991-01-01

    The conference paper describes a new membrane technology being extremely effective in separating hydrocarbons from water streams. The membrane is composed of a completely natural cellulose and is resistant to all hydrocarbons and organic solvents, and preliminary tests have shown that it is resistant to fouling by oily molecules and calcium scaling. The membrane system being designed shows good potential for the treatment of offshore produced water with a hydrocarbon content well within present and emerging standards. 6 refs., 8 figs., 3 tabs

  6. Anaerobic electrochemical membrane bioreactor and process for wastewater treatment

    KAUST Repository

    Amy, Gary

    2015-07-09

    An anaerobic electrochemical membrane bioreactor (AnEMBR) can include a vessel into which wastewater can be introduced, an anode electrode in the vessel suitable for supporting electrochemically active microorganisms (EAB, also can be referred to as anode reducing bacteria, exoelectrogens, or electricigens) that oxidize organic compounds in the wastewater, and a cathode membrane electrode in the vessel, which is configured to pass a treated liquid through the membrane while retaining the electrochemically active microorganisms and the hydrogenotrophic methanogens (for example, the key functional microbial communities, including EAB, methanogens and possible synergistic fermenters) in the vessel. The cathode membrane electrode can be suitable for catalyzing the hydrogen evolution reaction to generate hydro en.

  7. Processing and characterization of α-elastin electrospun membranes

    Science.gov (United States)

    Araujo, J.; Padrão, J.; Silva, J. P.; Dourado, F.; Correia, D. M.; Botelho, G.; Gomez Ribelles, J. L.; Lanceros-Méndez, S.; Sencadas, V.

    2014-06-01

    Elastin isolated from fresh bovine ligaments was dissolved in a mixture of 1,1,1,3,3,3-Hexafluoro-2-propanol and water were electrospun into fiber membranes under different processing conditions. Fiber mats of randomly and aligned fibers were obtained with fixed and rotating ground collectors and fibrils were composed by thin ribbons whose width depends on electrospinning conditions; fibrils with 721 nm up to 2.12 μm width were achieved. After cross-linking with glutaraldehyde, α-elastin can uptake as much as 1700 % of PBS solution and a slight increase on fiber thickness was observed. The glass transition temperature of electrospun fiber mats was found to occur at ˜80 °C. Moreover, α-Elastin showed to be a perfect elastomeric material, and no mechanical hysteresis was found in cycle mechanical measurements. The elastic modulus obtained for random and aligned fibers mats in a PBS solution was 330±10 kPa and 732±165 kPa, respectively. Finally, the electrospinning and cross-linking process does not inhibit MC-3T3-E1 cell adhesion. Cell culture results showed good cell adhesion and proliferation in the cross-linked elastin fiber mats.

  8. Semi-interpenetrating hybrid membranes containing ADOGEN{sup ®} 364 for Cd(II) transport from HCl media

    Energy Technology Data Exchange (ETDEWEB)

    Mora-Tamez, Lucía; Rodríguez de San Miguel, Eduardo; Briones-Guerash, Ulrich; Munguía-Acevedo, Nadia M.; Gyves, Josefina de, E-mail: degyves@unam.mx

    2014-09-15

    Graphical abstract: - Highlights: • Semi-interpenetrating hybrid membranes are used for quantitative cadmium(II) recovery. • Optimization of membrane and solutions compositions is performed. • Membranes present increased stability respect to polymer inclusion membranes. • Models for cadmium (II) extraction and transport are proposed. • Excellent selectivity for Cd(II) over Ni(II), Cu(II) and Pb(II) was achieved. - Abstract: Cd(II) transport from 1 mol dm{sup −3} HCl media was investigated across semi-interpenetrating hybrid membranes (SIHMs) that were prepared by mixing an organic matrix composed of ADOGEN{sup ®} 364 as an extracting agent, cellulose triacetate as a polymeric support and nitrophenyloctyl ether as a plasticizer with an organic/inorganic network (silane phase, SP) composed of polydimethylsiloxane and a crosslinking agent. The stripping phase used was a 10{sup −2} mol dm{sup −3} ethanesulfonic acid solution. The effects of tetraorthoethoxysilane, phenyltrimethoxysilane and N′,N′-bis[3-tri(methoxysilyl)propyl]ethylendiamine as crosslinking agents on the transport were studied. H{sub 3}PO{sub 4} was used as an acid catalyst during the SP synthesis and optimized for transport performance. Solid–liquid extraction experiments were performed to determine the model that describe the transport of Cd(II) via ADOGEN{sup ®} 364. The transport was found to be chained-carrier controlled with a percolation threshold of 0.094 mmol g{sup −1}. The selective recovery of Cd(II) was studied with respect to Ni(II), Zn(II), Cu(II), and Pb(II) at a 1:1 molar ratio, and the optimized membrane system was applied for the recovery of Cd(II) from a real sample consisting of a Ni/Cd battery with satisfactory results. Finally, stability experiments were performed using the same membrane for 14 cycles. The results obtained showed that SIHMs had excellent stability and selectivity, with permeabilities comparable to those of PIMs.

  9. Development of hybrid fluid jet/float polishing process

    Science.gov (United States)

    Beaucamp, Anthony T. H.; Namba, Yoshiharu; Freeman, Richard R.

    2013-09-01

    On one hand, the "float polishing" process consists of a tin lap having many concentric grooves, cut from a flat by single point diamond turning. This lap is rotated above a hydrostatic bearing spindle of high rigidity, damping and rotational accuracy. The optical surface thus floats above a thin layer of abrasive particles. But whilst surface texture can be smoothed to ~0.1nm rms (as measured by atomic force microscopy), this process can only be used on flat surfaces. On the other hand, the CNC "fluid jet polishing" process consists of pumping a mixture of water and abrasive particles to a converging nozzle, thus generating a polishing spot that can be moved along a tool path with tight track spacing. But whilst tool path feed can be moderated to ultra-precisely correct form error on freeform optical surfaces, surface finish improvement is generally limited to ~1.5nm rms (with fine abrasives). This paper reports on the development of a novel finishing method, that combines the advantages of "fluid jet polishing" (i.e. freeform corrective capability) with "float polishing" (i.e. super-smooth surface finish of 0.1nm rms or less). To come up with this new "hybrid" method, computational fluid dynamic modeling of both processes in COMSOL is being used to characterize abrasion conditions and adapt the process parameters of experimental fluid jet polishing equipment, including: (1) geometrical shape of nozzle, (2) position relative to the surface, (3) control of inlet pressure. This new process is aimed at finishing of next generation X-Ray / Gamma Ray focusing optics.

  10. Enhancement of Hybrid SPEEK Based Polymer–Cyclodextrin-Silica Inorganic Membrane for Direct Methanol Fuel Cell Application

    Directory of Open Access Journals (Sweden)

    Tutuk Djoko Kusworo

    2017-06-01

      Keywords: Direct Methanol Fuel Cell, Poly(ether ether ketone, cyclodextrin-silica, sulfonation, ionic conductivity. Article History: Received January 18th 2017; Received in revised form April 21st 2017; Accepted June 22nd 2017; Available online How to Cite This Article: Kusworo, T.D., Hakim, M.F. and Hadiyanto, H. (2017 Enhancement of Hybrid SPEEK Based Polymer–Cyclodextrin-Silica Inorganic Membrane for Direct Methanol Fuel Cell Application. International Journal of Renewable Energy Development, 6(2, 165-170. https://doi.org/10.14710/ijred.6.2.165-170

  11. Process, including PSA and membrane separation, for separating hydrogen from hydrocarbons

    Science.gov (United States)

    Baker, Richard W.; Lokhandwala, Kaaeid A.; He, Zhenjie; Pinnau, Ingo

    2001-01-01

    An improved process for separating hydrogen from hydrocarbons. The process includes a pressure swing adsorption step, a compression/cooling step and a membrane separation step. The membrane step relies on achieving a methane/hydrogen selectivity of at least about 2.5 under the conditions of the process.

  12. The processing of used cooking oil (yellow grease) using combination of adsorption and ultrafiltration membrane processes

    Science.gov (United States)

    Rosnelly, C. M.; Sofyana; Amalia, D.; Sarah, S.

    2018-03-01

    Yellow grease is used cooking oil whose quality has degraded due to the oxidation, polymerization, or hydrolysis process. In previous studies, yellow grease refining had been conducted either by adsorption or by using membrane. In this study, adsorption process using adsorbent from bagasse activated with H3PO4 12.5%, and ultrafiltration using Polyethersulfone (PES) membrane were combined. In adsorption stage, several variation of bagasse mass was fed into 200 ml of yellow grease and stirred for 60 minutes at 60 rpm. Yellow grease produced from adsorption with best condition was then processed using ultrafiltration membran that is PES membran with concentration by 15 wt % with transmembrane pressure variation by 0.5; 1; 1.5; 2; and 2.5 Bar. Analysis of yellow grease characteristics before refined showed its acid number, peroxide number, iodine number, and water content respectively by 2.68 mgKOH/Kg; 5.97 Meq/Kg; 51,48; and 1.29%. Characteristics of yellow grease after adsorption at its best condition on the parameters of acid number, peroxide number, iodine number, and water content are respectively by 2.55 mgKOH/Kg; 4.19 Meq/Kg; 40,02; and 0.27%. Characteristics of yellow grease after ultrafiltration at its best condition on the parameters of acid number, peroxide number, iodine number, and water content are respectively by 1.12 mgKOH/Kg; 1.8 Meq/Kg; 41,36; and 0.02%. Combination of adsorption and ultrafiltration processes for yellow grease processing showed decreasing value on the parameters of acid number, peroxide number, and water content that conforms to the SNI quality standard, but has not been able to increase the iodine number.

  13. Separation of Process Water using Hydroxy Sodalite Membranes

    NARCIS (Netherlands)

    Khajavi, S.

    2010-01-01

    This thesis describes the synthesis, characterization, and application of Hydroxy Sodalite (H-SOD) membranes in selective separation of water from aqueous solutions and reaction media. The emphasis has been put on the development of a tight membrane film that could be primarily used for water

  14. Boundaries of the Realizability Region of Membrane Separation Processes

    Science.gov (United States)

    Tsirlin, A. M.; Akhrenemkov, A. A.

    2018-01-01

    The region of realizability of membrane separation systems having a constant total membrane area has been determined for a definite output of a final product at a definite composition of a mixture flow. The law of change in the pressure in the mixture, corresponding to the minimum energy required for its separation, was concretized for media close in properties to ideal gases and solutions.

  15. Experimental study of air evaporative cooling process using microporous membranes

    Directory of Open Access Journals (Sweden)

    Englart Sebastian

    2017-01-01

    Full Text Available This article describes the potential use of microporous membranes in evaporative cooling applications for air conditioning. The structure of membrane contractor and the measuring device are described. On the basis of the results of the measurements air cooling effectiveness coefficient has been determined.

  16. Applications of a Hybrid Manufacturing Process for Fabrication and Repair of Metallic Structures (Preprint)

    National Research Council Canada - National Science Library

    Liou, Frank; Slattery, Kevin; Kinsella, Mary; Newkirk, Joseph; Chou, Hsin-Nan; Landers, Robert

    2006-01-01

    .... Coupled between the additive and the subtractive processes into a single workstation, the integrated process, or hybrid process, can produce a metal part with machining accuracy and surface finish...

  17. Selectively gas-permeable composite membrane and process for production thereof

    International Nuclear Information System (INIS)

    Okita, K.; Asako, S.

    1984-01-01

    A selectively gas-permeable composite membrane and a process for producing said composite membrane are described. The composite membrane comprises a polymeric material support and a thin membrane deposited on the support, said thin membrane being obtained by glow discharge plasma polymerization of an organosilane compound containing at least one double bond or triple bond. Alternatively, the composite membrane comprises a polymeric material support having an average pore diameter of at least 0.1 micron, a hardened or cross-linked polyorganosiloxane layer on the support, and a thin membrane on the polyorganosiloxane layer, said thin membrane being obtained by plasma polymerization due to glow discharge of an organosilane compound containing at least one double bond or triple bond

  18. Retention of Silica Nanoparticles in a Lab-Scale Membrane Bioreactor: Implications for Process Performance and Membrane Fouling

    Directory of Open Access Journals (Sweden)

    Mark Larracas Sibag

    2016-07-01

    Full Text Available In conventional activated sludge (CAS involving aerobic biological processes, the retention of silica nanoparticles (SiO2 NPs has no detrimental effect on chemical oxygen demand (COD and ammonia nitrogen (NH3–N removal. However, for the membrane bioreactor (MBR system, which is also based on the activated sludge process in addition to the membrane separation process, it has implications not only on the process performance but also on membrane fouling. To investigate these two implications in lab-scale experiments, we continuously operated a control MBR and two experimental MBRs, in which the 28 nm SiO2 NPs and 144 nm SiO2 NPs were added separately to the influent at a final concentration of 100 mg/L. Although the retention of SiO2 NPs in the MBR, as confirmed by dynamic light scattering (DLS analysis, did not compromise the COD and NH3–N removal, it resulted in substantial increases in the transmembrane pressure (TMP suggesting the onset of membrane fouling. Analyses by batch-dead end filtration revealed the same fouling trend as observed during the continuous MBR experiments; membrane fouling is aggravated in the presence of SiO2 NPs. This was evident from permeate flux decline of between 30% and 74% at very low TMP (5 kPa and the further increases in the total resistance.

  19. Noncatalytic hydrogenation of decene-1 with hydrogen accumulated in a hybrid carbon nanostructure in nanosized membrane reactors

    Science.gov (United States)

    Soldatov, A. P.

    2014-08-01

    Studies on the creation of nanosized membrane reactors (NMRs) of a new generation with accumulated hydrogen and a regulated volume of reaction zone were continued at the next stage. Hydrogenation was performed in the pores of ceramic membranes with hydrogen preliminarily adsorbed in mono- and multilayered orientated carbon nanotubes with graphene walls (OCNTGs)—a new hybrid carbon nanostructure formed on the inner pore surface. Quantitative determination of hydrogen adsorption in OCNTGs was performed using TRUMEM ultrafiltration membranes with D av = 50 and 90 nm and showed that hydrogen adsorption was up to ˜1.5% of the mass of OCNTG. The instrumentation and procedure for noncatalytic hydrogenation of decene-1 at 250-350°C using hydrogen accumulated and stored in OCNTG were developed. The conversion of decene-1 into decane was ˜0.2-1.8% at hydrogenation temperatures of 250 and 350°C, respectively. The rate constants and activation energy of hydrogenation were determined. The latter was found to be 94.5 kJ/mol, which is much smaller than the values typical for noncatalytic hydrogenations and very close to the values characteristic for catalytic reactions. The quantitative distribution of the reacting compounds in each pore regarded as a nanosized membrane reactor was determined. The activity of hydrogen adsorbed in a 2D carbon nanostructure was evaluated. Possible mechanisms of noncatalytic hydrogenation were discussed.

  20. Hybrid Processing of Measurable and Subjective Data; TOPICAL

    International Nuclear Information System (INIS)

    COOPER, J. ARLIN; ROGINSKI, ROBERT J.

    2001-01-01

    Conventional systems surety analysis is basically restricted to measurable or physical-model-derived data. However, most analyses, including high-consequence system surety analysis, must also utilize subjective information. In order to address this need, there has been considerable effort on analytically incorporating engineering judgment. For example, Dempster-Shafer theory establishes a framework in which frequentist probability and Bayesian incorporation of new data are subsets. Although Bayesian and Dempster-Shafer methodology both allow judgment, neither derives results that can indicate the relative amounts of subjective judgment and measurable data in the results. The methodology described in this report addresses these problems through a hybrid-mathematics-based process that allows tracking of the degree of subjective information in the output, thereby providing more informative (as well as more appropriate) results. In addition, most high consequence systems offer difficult-to-analyze situations. For example, in the Sandia National Laboratories nuclear weapons program, the probability that a weapon responds safely when exposed to an abnormal environment (e.g., lightning, crush, metal-melting temperatures) must be assured to meet a specific requirement. There are also non-probabilistic DOE and DoD requirements (e.g., for determining the adequacy of positive measures). The type of processing required for these and similar situations transcends conventional probabilistic and human factors methodology. The results described herein address these situations by efficiently utilizing subjective and objective information in a hybrid mathematical structure in order to directly apply to the surety assessment of high consequence systems. The results can also improve the quality of the information currently provided to decision-makers. To this end, objective inputs are processed in a conventional manner; while subjective inputs are derived from the combined engineering

  1. Once-through hybrid sulfur process for nuclear hydrogen production

    International Nuclear Information System (INIS)

    Jeong, Y. H.

    2008-01-01

    Increasing concern about the global climate change spurs the development of low- or zero-carbon energy system. Nuclear hydrogen production by water electrolysis would be the one of the short-term solutions, but low efficiency and high production cost (high energy consumption) is the technical hurdle to be removed. In this paper the once-through sulfur process composed of the desulfurization and the water electrolysis systems is proposed. Electrode potential for the conventional water electrolysis (∼2.0 V) can be reduced significantly by the anode depolarization using sulfur dioxide: down to 0.6 V depending on the current density This depolarized electrolysis is the electrolysis step of the hybrid sulfur process originally proposed by the Westinghouse. However; recycling of sulfur dioxide requires a high temperature heat source and thus put another technical hurdle on the way to nuclear hydrogen production: the development of high temperature nuclear reactors and corresponding sulfuric acid decomposition system. By the once-through use of sulfur dioxide rather than the closed recycle, the hurdle can be removed. For the sulfur feed, the desulfurization system is integrated into the water electrolysis system. Fossil fuels include a few percent of sulfur by weight. During the refinement or energy conversion, most of the sulfur should be separated The separated sulfur can be fed to the water electrolysis system and the final product would be hydrogen and sulfuric acid, which is number one chemical in the world by volume. Lowered electrode potential and additional byproduct, the sulfuric acid, can provide economically affordable hydrogen. In this study, the once-through hybrid sulfur process for hydrogen production was proposed and the process was optimized considering energy consumption in electrolysis and sulfuric acid concentration. Economic feasibility of the proposed process was also discussed. Based on currently available experimental data for the electrode

  2. Aroma Stripping under various Forms of Membrane Distillation Processes: Experiments and modeling

    DEFF Research Database (Denmark)

    Jonsson, Gunnar Eigil

    Concentration of fruit juices by membrane distillation is an interesting process as it can be done at low temperature giving a gentle concentration process with little deterioration of the juices. Since the juices contains many different aroma compounds with a wide range of chemical properties...... such as volatility, activity coefficient and vapor pressure, it is important to know how these aroma compounds will eventually pass through the membrane. Experiments have been made on an aroma model solution and on black currant juice in a lab scale membrane distillation set up which can be operated in various types...... of MD configurations: Vacuum Membrane Distillation , Sweeping Gas Membrane Distillation , Direct Contact Membrane Distillation and Osmotic Membrane Distillation. The influence of feed temperature and feed flow rate on the permeate flux and concentration factor for different types of aroma compounds have...

  3. Frog: Asynchronous Graph Processing on GPU with Hybrid Coloring Model

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Xuanhua; Luo, Xuan; Liang, Junling; Zhao, Peng; Di, Sheng; He, Bingsheng; Jin, Hai

    2018-01-01

    GPUs have been increasingly used to accelerate graph processing for complicated computational problems regarding graph theory. Many parallel graph algorithms adopt the asynchronous computing model to accelerate the iterative convergence. Unfortunately, the consistent asynchronous computing requires locking or atomic operations, leading to significant penalties/overheads when implemented on GPUs. As such, coloring algorithm is adopted to separate the vertices with potential updating conflicts, guaranteeing the consistency/correctness of the parallel processing. Common coloring algorithms, however, may suffer from low parallelism because of a large number of colors generally required for processing a large-scale graph with billions of vertices. We propose a light-weight asynchronous processing framework called Frog with a preprocessing/hybrid coloring model. The fundamental idea is based on Pareto principle (or 80-20 rule) about coloring algorithms as we observed through masses of realworld graph coloring cases. We find that a majority of vertices (about 80%) are colored with only a few colors, such that they can be read and updated in a very high degree of parallelism without violating the sequential consistency. Accordingly, our solution separates the processing of the vertices based on the distribution of colors. In this work, we mainly answer three questions: (1) how to partition the vertices in a sparse graph with maximized parallelism, (2) how to process large-scale graphs that cannot fit into GPU memory, and (3) how to reduce the overhead of data transfers on PCIe while processing each partition. We conduct experiments on real-world data (Amazon, DBLP, YouTube, RoadNet-CA, WikiTalk and Twitter) to evaluate our approach and make comparisons with well-known non-preprocessed (such as Totem, Medusa, MapGraph and Gunrock) and preprocessed (Cusha) approaches, by testing four classical algorithms (BFS, PageRank, SSSP and CC). On all the tested applications and

  4. Development of advanced membrane process for treatment of radioactive liquid wastes

    International Nuclear Information System (INIS)

    Lee, Kune Woo; Choi, W. K.; Lee, J. W.; Jung, G. H.

    2002-01-01

    The followings were studied through the project entitled 'Development of advanced membrane process for treatment of radioactive liquid wastes'. 1. Surface modification technique of microfiltration membrane. Microporous hydrophobic polypropylene(PP) membrane were modified by radiation-induced grafting using hydrophilic monomers such as arylic acid(AAc), 2-hydroxyethyl methacrylate(HEMA) and styrenesulfonic acid(SSS). The effect of grafting conditions was investigated. Also, copolymeric condition of AAc and EGDMA for nylon membrane was studied. The structure of grafted PP membrane was examined by using FTIR-ATR spectroscopy, SEM and contact angle. The grafted membrane was characterized by measureing the water flux, the ion exchange capacity or the binding capacity of the metal ions. A study on the permeation behavior of simulated waste water containing oil emulsion and characterization of membrane fouling was carried out in the crossflow membrane filtration process using capillary type PP microfiltration membrane modified by radiation induced grafting of HEMA. The effects of various operating parameters were investigated. 2. Electrofiltration Technology. In this section, the process conditions for fouling prevention of membrane by evaluating the effects of operational parameters such as external electric field strength, crossflow velocity, transmembrane pressure, etc. on the permeate flux in electrofiltration were established and the process applicability for oil emulsion wastes containing surfactant using parallel plate type electrofiltration module was evaluated

  5. Development of advanced membrane process for treatment of radioactive liquid wastes

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kune Woo; Choi, W. K.; Lee, J. W.; Jung, G. H

    2002-01-01

    The followings were studied through the project entitled 'Development of advanced membrane process for treatment of radioactive liquid wastes'. 1. Surface modification technique of microfiltration membrane. Microporous hydrophobic polypropylene(PP) membrane were modified by radiation-induced grafting using hydrophilic monomers such as arylic acid(AAc), 2-hydroxyethyl methacrylate(HEMA) and styrenesulfonic acid(SSS). The effect of grafting conditions was investigated. Also, copolymeric condition of AAc and EGDMA for nylon membrane was studied. The structure of grafted PP membrane was examined by using FTIR-ATR spectroscopy, SEM and contact angle. The grafted membrane was characterized by measureing the water flux, the ion exchange capacity or the binding capacity of the metal ions. A study on the permeation behavior of simulated waste water containing oil emulsion and characterization of membrane fouling was carried out in the crossflow membrane filtration process using capillary type PP microfiltration membrane modified by radiation induced grafting of HEMA. The effects of various operating parameters were investigated. 2. Electrofiltration Technology. In this section, the process conditions for fouling prevention of membrane by evaluating the effects of operational parameters such as external electric field strength, crossflow velocity, transmembrane pressure, etc. on the permeate flux in electrofiltration were established and the process applicability for oil emulsion wastes containing surfactant using parallel plate type electrofiltration module was evaluated.

  6. Growth of hydroxyapatite on the cellular membrane of the bacterium Bacillus thuringiensis for the preparation of hybrid biomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Cervantes, Eric Reyes, E-mail: onomaeric@hotmail.com [Centro de Investigación en Ciencias Microbiológicas, Benemérita Universidad Autónoma de Puebla, Prolongación de la 24 Sur y Ave San Claudio, Ciudad Universitaria, Col San Manuel, C.P. 72570 Puebla, Pue (Mexico); Torres, Maykel González, E-mail: mikegcu@fata.unam.mx [Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Campus Juriquilla, Boulevard Juriquilla 3001, Santiago de Querétaro, Querétaro C.P. 76230 (Mexico); Muñoz, Susana Vargas, E-mail: vmsu@unam.mx [Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Campus Juriquilla, Boulevard Juriquilla 3001, Santiago de Querétaro, Querétaro C.P. 76230 (Mexico); Rosas, Efraín Rubio, E-mail: efrainrubio@yahoo.com [Centro de Investigación en Ciencias Microbiológicas, Benemérita Universidad Autónoma de Puebla, Prolongación de la 24 Sur y Ave San Claudio, Ciudad Universitaria, Col San Manuel, C.P. 72570 Puebla, Pue (Mexico); and others

    2016-01-01

    This study aimed to grow hydroxyapatite (HAp) crystals on the cellular wall of the Gram-positive bacterium Bacillus thuringiensis using a bio-mimetic method. Several strains were phenotypically and genotypically characterized using multilocus sequence typing (MLST) gene markers to differentiate the strains and confirm the identity of the isolated species to guarantee that the selected species was not harmful to human health or the environment. Three of the analyzed strains were selected because they exhibited the best nucleation and growth of HAp on the bacterial surface. This innovative method to grow HAp crystals on a cellular membrane helps to elucidate the mechanisms by which osseous tissue is formed in nature. The optimum concentration for the simulated physiological fluid (SPF) was 1.5 ×. The hybrid materials were characterized by optical microscopy, atomic force microscopy (AFM), scanning electron microscopy (SEM), X-ray powder diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). - Highlights: • HAp crystals are grown on the cellular wall of a GP bacteria Bacillus thuringiensis. • The growing was carried out by using a bio-mimetic method. • Hybrid materials were characterized with morphological and spectroscopic techniques. • The reported method allows understanding the mechanisms to produce osseous tissue. • The membrane of Bacillus thuringiensis can grow more HAp than Bacillus halodurans.

  7. Anaerobic electrochemical membrane bioreactor and process for wastewater treatment

    KAUST Repository

    Amy, Gary; Katuri, Krishna; Werner, Craig; Saikaly, Pascal; Sandoval, Rodrigo Jimenez; Lai, Zhiping; Chen, Wei; Jeon, Sungil

    2015-01-01

    the electrochemically active microorganisms and the hydrogenotrophic methanogens (for example, the key functional microbial communities, including EAB, methanogens and possible synergistic fermenters) in the vessel. The cathode membrane electrode can be suitable

  8. Morin-based nanofiltration membranes for organic solvent separation processes

    KAUST Repository

    Perez Manriquez, Liliana; Neelakanda, Pradeep; Peinemann, Klaus-Viktor

    2018-01-01

    In this work we demonstrate the successful optimization of the interfacial polymerization reaction for the manufacture of organic solvent nanofiltration membranes by replacing the toxic amines commonly used for this method with the natural occurring

  9. The actor set-up of TV advertising. A new process for hybrid formats

    OpenAIRE

    von Rimscha, M Bjørn; Rademacher, Patrick

    2008-01-01

    The paper introduces a basic description of the advertising process in TV advertising and discusses how this process might be altered when 30 second spots are replaced by hybrid advertising formats such as sponsoring and placements. For each actor in the process the potential benefit of hybrid advertising is identified and the respective interest in changing the process is deduced. A qualitative interview study with representatives from each actor in the process is used to illustrate that con...

  10. New insight of hybrid membrane to degrade Congo red and Reactive yellow under sunlight.

    Science.gov (United States)

    Rajeswari, A; Jackcina Stobel Christy, E; Pius, Anitha

    2018-02-01

    A study was carried out to investigate the degradation of organic contaminants (Congo red and Reactive yellow - 105) using cellulose acetate - polystyrene (CA-PS) membrane with and without ZnO impregnation. Scanning electron microscope (SEM), electron dispersive analysis of X-rays (EDAX), Fourier transform infrared spectrometer (FTIR), atomic force microscope (AFM) and thermogravimeric analysis (TG-DTA) analysis were carried out to characterize bare and ZnO impregnated CA-PS membranes. Membrane efficiency was also tested for pure water flux and antifouling performance. The modified membrane showed almost 85% water flux recovery. Blending of ZnO nanoparticles to CA-PS matrix could decrease membrane fouling and increase permeation quality of the membrane with above 90% of photocatalytic degradation efficiency for dyes. The rate of degradation of dyes was observed using UV-Vis spectrometer. Reusability of CA-PS-ZnO membrane was studied and no significant change was noted in the degradation efficiency until fourth cycle. Langmuir-Hinshelwood kinetic model well describes the photo degradation capacity and the degradation of dyes CR and RY - 105 exhibited pseudo-first order kinetics. The regression coefficient (R) of CR and RY - 105 found to be 0.99. The novelty of the prepared CA-PS-ZnO membrane is that it has better efficiency and high thermal stability than our previously reported material. Therefore, ZnO impregnated CA-PS membrane had proved to be an innovative alternative for the degradation of CR and RY - 105 dyes. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Hybrid numerical methods for multiscale simulations of subsurface biogeochemical processes

    International Nuclear Information System (INIS)

    Scheibe, T D; Tartakovsky, A M; Tartakovsky, D M; Redden, G D; Meakin, P

    2007-01-01

    Many subsurface flow and transport problems of importance today involve coupled non-linear flow, transport, and reaction in media exhibiting complex heterogeneity. In particular, problems involving biological mediation of reactions fall into this class of problems. Recent experimental research has revealed important details about the physical, chemical, and biological mechanisms involved in these processes at a variety of scales ranging from molecular to laboratory scales. However, it has not been practical or possible to translate detailed knowledge at small scales into reliable predictions of field-scale phenomena important for environmental management applications. A large assortment of numerical simulation tools have been developed, each with its own characteristic scale. Important examples include 1. molecular simulations (e.g., molecular dynamics); 2. simulation of microbial processes at the cell level (e.g., cellular automata or particle individual-based models); 3. pore-scale simulations (e.g., lattice-Boltzmann, pore network models, and discrete particle methods such as smoothed particle hydrodynamics); and 4. macroscopic continuum-scale simulations (e.g., traditional partial differential equations solved by finite difference or finite element methods). While many problems can be effectively addressed by one of these models at a single scale, some problems may require explicit integration of models across multiple scales. We are developing a hybrid multi-scale subsurface reactive transport modeling framework that integrates models with diverse representations of physics, chemistry and biology at different scales (sub-pore, pore and continuum). The modeling framework is being designed to take advantage of advanced computational technologies including parallel code components using the Common Component Architecture, parallel solvers, gridding, data and workflow management, and visualization. This paper describes the specific methods/codes being used at each

  12. Sieving of Hot Gases by Hyper-Cross-Linked Nanoscale-Hybrid Membranes

    NARCIS (Netherlands)

    Raaijmakers, Michiel; Hempenius, Mark A.; Schön, Peter Manfred; Vancso, Gyula J.; Nijmeijer, Arian; Wessling, Matthias; Benes, Nieck Edwin

    2014-01-01

    Macromolecular networks consisting of homogeneously distributed covalently bonded inorganic and organic precursors are anticipated to show remarkable characteristics, distinct from those of the individual constituents. A novel hypercross-linked ultrathin membrane is presented, consisting of a giant

  13. Asymmetric Hybrid Polymer-Lipid Giant Vesicles as Cell Membrane Mimics.

    Science.gov (United States)

    Peyret, Ariane; Ibarboure, Emmanuel; Le Meins, Jean-François; Lecommandoux, Sebastien

    2018-01-01

    Lipid membrane asymmetry plays an important role in cell function and activity, being for instance a relevant signal of its integrity. The development of artificial asymmetric membranes thus represents a key challenge. In this context, an emulsion-centrifugation method is developed to prepare giant vesicles with an asymmetric membrane composed of an inner monolayer of poly(butadiene)- b -poly(ethylene oxide) (PBut- b -PEO) and outer monolayer of 1-palmitoyl-2-oleoyl- sn -glycero-3-phosphocholine (POPC). The formation of a complete membrane asymmetry is demonstrated and its stability with time is followed by measuring lipid transverse diffusion. From fluorescence spectroscopy measurements, the lipid half-life is estimated to be 7.5 h. Using fluorescence recovery after photobleaching technique, the diffusion coefficient of 1,2-dioleoyl- sn -glycero-3-phosphoethanolamine- N -(lissamine rhodamine B sulfonyl) (DOPE-rhod, inserted into the POPC leaflet) is determined to be about D = 1.8 ± 0.50 μm 2 s -1 at 25 °C and D = 2.3 ± 0.7 μm 2 s -1 at 37 °C, between the characteristic values of pure POPC and pure polymer giant vesicles and in good agreement with the diffusion of lipids in a variety of biological membranes. These results demonstrate the ability to prepare a cell-like model system that displays an asymmetric membrane with transverse and translational diffusion properties similar to that of biological cells.

  14. Vibratory shear enhanced membrane process and its application in starch wastewater recycle

    Directory of Open Access Journals (Sweden)

    Kazi Sarwar Hasan

    2002-11-01

    Full Text Available Membrane application in wastewater is gaining significant popularity. Selecting the right membrane and filtration technique is an important consideration to ensure a successful system development and long term performance. A new type of membrane filtration technology known as ‘Vibratory Shear Enhanced Process’ (VSEP is introduced in this paper with some test results that has been conducted with VSEP pilot unit to recycle starch wastewater. Conventional cross flow membrane process used in wastewater application always led to rapid fouling. This loss in throughput capacity is primarily due to the formation of a layer that builds up naturally on the membranes surface during the filtration process. In addition to cutting down on the flux performance of the membrane, this boundary or gel layer acts as a secondary membrane reducing the native design selectivity of the membrane in use. This inability to handle the buildup of solids has also limited the use of membranes to low-solids feed streams. In a VSEP system, an additional shear wave produced by the membrane’s vibration cause solids and foulants to be lifted off the membrane surface and remixed with the bulk material flowing through the membrane stack. This high shear processing exposes the membrane pores for maximum throughput that is typically between 3 to10 times the throughput of conventional cross-flow systems. The short term results with raw starch wastewater shows very stable flux rate of 110 lmh using the VSEP system and selecting the PVDF ultrafiltration membrane with no pre-filtration.

  15. Combining reflectometry and fluorescence microscopy: an assay for the investigation of leakage processes across lipid membranes.

    Science.gov (United States)

    Stephan, Milena; Mey, Ingo; Steinem, Claudia; Janshoff, Andreas

    2014-02-04

    The passage of solutes across a lipid membrane plays a central role in many cellular processes. However, the investigation of transport processes remains a serious challenge in pharmaceutical research, particularly the transport of uncharged cargo. While translocation reactions of ions across cell membranes is commonly measured with the patch-clamp, an equally powerful screening method for the transport of uncharged compounds is still lacking. A combined setup for reflectometric interference spectroscopy (RIfS) and fluorescence microscopy measurements is presented that allows one to investigate the passive exchange of uncharged compounds across a free-standing membrane. Pore-spanning lipid membranes were prepared by spreading giant 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) vesicles on porous anodic aluminum oxide (AAO) membranes, creating sealed attoliter-sized compartments. The time-resolved leakage of different dye molecules (pyranine and crystal violet) as well as avidin through melittin induced membrane pores and defects was investigated.

  16. The Effect of UVC Irradiation on the Mechanical Properties of Chitosan Membrane in Sterilization Process

    Science.gov (United States)

    Rupiasih, N. N.; Sumadiyasa, M.; Putra, I. K.

    2018-04-01

    The present study, we report about the effect of UVC irradiation on the mechanical properties of chitosan membrane in the sterilization process. The membrane used was chitosan membrane 2% which prepared by a casting method using chitosan as matrix and acetic acid 1% as a solvent. The UVC source used was germicidal ultraviolet (UVG) which widely used for sterilization purposes. Variation doses were done by the varying time of irradiation, e.g. 5 min, 15 min, 30 min, and 60 min. Those samples are named as S1, S2, S3, and S4, respectively. Chitosan membrane before irradiation namely S0 also used for comparative study. The effect of UVC irradiation on the mechanical properties of membranes has been examined by different techniques including FTIR, DMA, and the water uptake capability. The results showed that ultimate tensile strength (UTS) and moduli of elasticity (E) were increased by increasing the irradiation time. From FTIR analysis obtained that no new molecules were formed in irradiated membranes. The water uptakes capability of the membranes after irradiation was smaller compared with before irradiation, and among the irradiated membranes, the water uptake capabilities were increased by increasing the exposure time. These observations suggested that more care should be taken during the sterilization process and outdoor used of the membrane. The other side, the UVC irradiation can improve the mechanical properties of the membranes.

  17. Effect of Processing Parameters on Pore Structure and Thickness of Anodic Aluminum Oxide (AAO) Tubular Membranes

    OpenAIRE

    Belwalkar, A.; Grasing, E.; Van Geertruyden, W.; Huang, Z.; Misiolek, W.Z.

    2008-01-01

    Nanoporous anodic aluminum oxide (AAO) tubular membranes were fabricated from aluminum alloy tubes in sulfuric and oxalic acid electrolytes using a two-step anodization process. The membranes were investigated for characteristics such as pore size, interpore distance and thickness by varying applied voltage and electrolyte concentration. Morphology of the membranes was examined using light optical and scanning electron microscopy and characterized using ImageJ software. Results showed that me...

  18. Application of electrochemical processes to membrane bioreactors for improving nutrient removal and fouling control.

    Science.gov (United States)

    Borea, Laura; Naddeo, Vincenzo; Belgiorno, Vincenzo

    2017-01-01

    Membrane bioreactor (MBR) technology is becoming increasingly popular as wastewater treatment due to the unique advantages it offers. However, membrane fouling is being given a great deal of attention so as to improve the performance of this type of technology. Recent studies have proven that the application of electrochemical processes to MBR represents a promising technological approach for membrane fouling control. In this work, two intermittent voltage gradients of 1 and 3 V/cm were applied between two cylindrical perforated electrodes, immersed around a membrane module, at laboratory scale with the aim of investigating the treatment performance and membrane fouling formation. For comparison purposes, the reactor also operated as a conventional MBR. Mechanisms of nutrient removal were studied and membrane fouling formation evaluated in terms of transmembrane pressure variation over time and sludge relative hydrophobicity. Furthermore, the impact of electrochemical processes on transparent exopolymeric particles (TEP), proposed as a new membrane fouling precursor, was investigated in addition to conventional fouling precursors such as bound extracellular polymeric substances (bEPS) and soluble microbial products (SMP). All the results indicate that the integration of electrochemical processes into a MBR has the advantage of improving the treatment performance especially in terms of nutrient removal, with an enhancement of orthophosphate (PO 4 -P) and ammonia nitrogen (NH 4 -N) removal efficiencies up to 96.06 and 69.34 %, respectively. A reduction of membrane fouling was also observed with an increase of floc hydrophobicity to 71.72 %, a decrease of membrane fouling precursor concentrations, and, thus, of membrane fouling rates up to 54.33 %. The relationship found between TEP concentration and membrane fouling rate after the application of electrochemical processes confirms the applicability of this parameter as a new membrane fouling indicator.

  19. Synergistic efficiency of the desilication of brackish underground water in Saudi Arabia by coupling γ-radiation and Fenton process: Membrane scaling prevention in reverse osmosis process

    Science.gov (United States)

    Aljohani, Mohammed S.

    2017-12-01

    One of the main water resources in arid Saudi Arabia is underground water. However, this brackish water has high silica content which can cause a recalcitrant deposit on the membrane in the reverse osmosis units during its desalination. In this study, we examined the synergistic efficiency of the removal of silica from the Buwaib water sample, when combining two advanced oxidation processes, γ-irradiation and the Fenton process, using hydrogen peroxide and zero valent metal iron as source of Fe3+. This latter adsorbs effectively on silica and co-precipitate. The influence of absorbed dose, iron dosage and pH effect were investigated. This preliminary study showed that these attractive and effective hybrid processes are very efficient in removing silica.

  20. Performance of Nafion-TiO2 hybrid membranes and PtSn/C electrocatalysts in PEM type fuel cells fed with ethanol and H2/CO at high temperature

    International Nuclear Information System (INIS)

    Isidoro, Roberta Alvarenga

    2010-01-01

    In this work, Nafion-TiO 2 hybrid electrolytes and PtSn/C electrocatalysts were synthesized for the application in direct ethanol fuel cell operating at high temperature (130 degree C). For this purpose, TiO 2 particles were incorporated in commercial Nafion membranes by an 'in situ' sol gel route. The resulting materials were characterized by gravimetric analysis, water uptake, DSC, XRD and EDX. Electrocatalysts based on carbon dispersed platinum-tin (PtSn/C), with different composition, were produced by alcohol-reduction method and were employed as anodic electrode. The electrocatalysts were characterized by XRD, EDX, XPS and transmission electronic spectroscopy. The electrochemical characterization was conducted by cyclic voltametry, carbon monoxide linear anodic voltammetry (CO stripping), and chronoamperometry. Membrane-electrodes assembly (MEAs) were formed with PtSn/C anodes, Pt/C cathodes and Nafion-TiO 2 hybrids. The performance of these MEA was evaluated in single-cell fed with H2/CO mixture or ethanol solution at the anode and oxygen at the cathode in the temperature range of 80-130 degree C. The analysis showed that the hybrid membranes improved the DEFC performance due to crossover suppression and that PtSn/C 70:30 electrocatalysts, prepared by an alcohol reduction process, showed better performance in ethanol oxidation. (author)

  1. Osmotically-driven membrane processes for water reuse and energy recovery

    Science.gov (United States)

    Achilli, Andrea

    Osmotically-driven membrane processes are an emerging class of membrane separation processes that utilize concentrated brines to separate liquid streams. Their versatility of application make them an attractive alternative for water reuse and energy production/recovery. This work focused on innovative applications of osmotically-driven membrane processes. The novel osmotic membrane bioreactor (OMBR) system for water reuse was presented. Experimental results demonstrated high sustainable flux and relatively low reverse diffusion of solutes from the draw solution into the mixed liquor. Membrane fouling was minimal and controlled with osmotic backwashing. The OMBR system was found to remove greater than 99% of organic carbon and ammonium-nitrogen. Forward osmosis (FO) can employ different draw solution in its process. More than 500 inorganic compounds were screened as draw solution candidates, the desktop screening process resulted in 14 draw solutions suitable for FO applications. The 14 draw solutions were then tested in the laboratory to evaluate water flux and reverse salt diffusion through the membrane. Results indicated a wide range of water flux and reverse salt diffusion depending on the draw solution utilized. Internal concentration polarization was found to lower both water flux and reverse salt diffusion by reducing the draw solution concentration at the interface between the support and dense layer of the membrane. A small group of draw solutions was found to be most suitable for FO processes with currently available FO membranes. Another application of osmotically-driven membrane processes is pressure retarded osmosis (PRO). PRO was investigated as a viable source of renewable energy. A PRO model was developed to predict water flux and power density under specific experimental conditions. The predictive model was tested using experimental results from a bench-scale PRO system. Previous investigations of PRO were unable to verify model predictions due to

  2. Mesenchymal stem cell-laden hybrid scaffold for regenerating subacute tympanic membrane perforation

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Chul Ho, E-mail: chulsavio@hanmail.net [Department of Otolaryngology, Chonnam National University Medical School, Gwangju (Korea, Republic of); Ahn, SeungHyun [Department of Biomechatronic Engineering, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon (Korea, Republic of); Lee, Jae Whi; Lee, Byeong Ha [School of Information and Communications, Gwangju Institute of Science and Technology, Gwangju (Korea, Republic of); Lee, Hyeongjin [Department of Biomechatronic Engineering, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon (Korea, Republic of); Kim, GeunHyung, E-mail: gkimbme@skku.edu [Department of Biomechatronic Engineering, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon (Korea, Republic of)

    2017-03-01

    Tympanic membrane (TM) perforation is one of the most common otology complications. To date, there has not been reported TM regeneration using bioprinted scaffold. The purpose of this study was to evaluate the efficacy and feasibility of bioprinted polycaprolactone/collagen/alginate-mesenchymal stem cell (PCAMSC) scaffolds for the regeneration of subacute TM perforation. Sprague-Dawley rats were used in an animal model of subacute TM perforation. In the experimental group (n = 7), bioprinted 3D PCAMSC scaffold was placed on the perforation. The control group (n = 7) were treated with polycaprolactone/collagen/alginate (PCA) scaffold. Healing time, acoustic-mechanical properties, and morphological analysis were performed by otoendoscopy, auditory brainstem response (ABR), single-point laser doppler vibrometer (LDV), optical coherence tomography (OCT), and light microscopic evaluation. The closure of the TM perforation was achieved in 100% of the experimental group vs. 72% of the control group, and this difference was statistically significant (p < 0.05). The ABR threshold at all frequencies of the experimental group was recovered to the normal level compared to the control group. TM vibration velocity in the experimental group recovered similar to the normal control level. The difference are very small and they are not statistically significant below 1 kHz (p = 0.074). By OCT and light microscopic examination, regenerated TM of the experimental group showed thickened fibrous and mucosal layer. In contrast, the control group showed well regenerated but less thickened than experimental group. From these results, the cell-laden PCAMSC scaffold offers a significant advantage in the TM regeneration in a rat subacute TM perforation model. It may offer attractive opportunities in the conservative clinical treatment. - Highlights: • MSCs-laden scaffold was fabricated using a centrifugal spinning and cell-printing process. • The cell-laden scaffold showed the outstanding

  3. Mesenchymal stem cell-laden hybrid scaffold for regenerating subacute tympanic membrane perforation

    International Nuclear Information System (INIS)

    Jang, Chul Ho; Ahn, SeungHyun; Lee, Jae Whi; Lee, Byeong Ha; Lee, Hyeongjin; Kim, GeunHyung

    2017-01-01

    Tympanic membrane (TM) perforation is one of the most common otology complications. To date, there has not been reported TM regeneration using bioprinted scaffold. The purpose of this study was to evaluate the efficacy and feasibility of bioprinted polycaprolactone/collagen/alginate-mesenchymal stem cell (PCAMSC) scaffolds for the regeneration of subacute TM perforation. Sprague-Dawley rats were used in an animal model of subacute TM perforation. In the experimental group (n = 7), bioprinted 3D PCAMSC scaffold was placed on the perforation. The control group (n = 7) were treated with polycaprolactone/collagen/alginate (PCA) scaffold. Healing time, acoustic-mechanical properties, and morphological analysis were performed by otoendoscopy, auditory brainstem response (ABR), single-point laser doppler vibrometer (LDV), optical coherence tomography (OCT), and light microscopic evaluation. The closure of the TM perforation was achieved in 100% of the experimental group vs. 72% of the control group, and this difference was statistically significant (p < 0.05). The ABR threshold at all frequencies of the experimental group was recovered to the normal level compared to the control group. TM vibration velocity in the experimental group recovered similar to the normal control level. The difference are very small and they are not statistically significant below 1 kHz (p = 0.074). By OCT and light microscopic examination, regenerated TM of the experimental group showed thickened fibrous and mucosal layer. In contrast, the control group showed well regenerated but less thickened than experimental group. From these results, the cell-laden PCAMSC scaffold offers a significant advantage in the TM regeneration in a rat subacute TM perforation model. It may offer attractive opportunities in the conservative clinical treatment. - Highlights: • MSCs-laden scaffold was fabricated using a centrifugal spinning and cell-printing process. • The cell-laden scaffold showed the outstanding

  4. Optimization of gravity-driven membrane (GDM) filtration process for seawater pretreatment.

    Science.gov (United States)

    Wu, Bing; Hochstrasser, Florian; Akhondi, Ebrahim; Ambauen, Noëmi; Tschirren, Lukas; Burkhardt, Michael; Fane, Anthony G; Pronk, Wouter

    2016-04-15

    Seawater pretreatment by gravity-driven membrane (GDM) filtration at 40 mbar has been investigated. In this system, a beneficial biofilm develops on the membrane that helps to stabilize flux. The effects of membrane type, prefiltration and system configuration on stable flux, biofilm layer properties and dissolved carbon removal were studied. The results show that the use of flat sheet PVDF membranes with pore sizes of 0.22 and 0.45 μm in GDM filtration achieved higher stabilized permeate fluxes (7.3-8.4 L/m(2)h) than that of flat sheet PES 100 kD membranes and hollow fibre PVDF 0.1 μm membranes. Pore constriction and cake filtration were identified as major membrane fouling mechanisms, but their relative contributions varied with filtration time for the various membranes. Compared to raw seawater, prefiltering of seawater with meshes at sizes of 10, 100 and 1000 μm decreased the permeate flux, which was attributed to removal of beneficial eukaryotic populations. Optical coherence tomography (OCT) showed that the porosity of the biofouling layer was more significantly related with permeate flux development rather than its thickness and roughness. To increase the contact time between the biofilm and the dissolved organics, a hybrid biofilm-submerged GDM reactor was evaluated, which displayed significantly higher permeate fluxes than the submerged GDM reactor. Although integrating the biofilm reactor with the membrane system displayed better permeate quality than the GDM filtration cells, it could not effectively reduce dissolved organic substances in the seawater. This may be attributed to the decomposition/degradation of solid organic substances in the feed and carbon fixation by the biofilm. Further studies of the dynamic carbon balance are required. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Fouling Characteristics of Dissolved Organic Matter in Papermaking Process Water on Polyethersulfone Ultrafiltration Membranes

    Directory of Open Access Journals (Sweden)

    Wenpeng Su

    2015-07-01

    Full Text Available In the papermaking industry, closure of process water (whitewater circuits has been used to reduce fresh water consumption. Membrane separation technology has potential for use in treating process water for recirculation. The purpose of this study was to reveal the fouling characteristics of a polyethersulfone (PES ultrafiltration membrane caused by dissolved organic matter (DOM in process water. Ultrafiltration membranes (UF and DAX ion exchange resins were applied to characterize the molecular weight (MW and hydrophilicity distribution of DOM. The interactions between various fractions of DOM and a PES ultrafiltration membrane were investigated. The membrane fouling characteristics were elucidated by examining the filtration resistances and linearized Herman’s blocking models. The results demonstrated that the membrane was fouled significantly by much of the MW distribution. The membrane was fouled more significantly by the low MW fraction rather than the high MW fraction. The filtration resistances and the fitted equation of Hermia’s laws indicated that hydrophilic organics were the main foulants. The hydrophilic organics partially block the membrane pores and form intermediate blocking, reducing the effective filtration area, while the hydrophobic organics form a gel layer or cake on the surface of the membrane.

  6. Metal membrane-type 25-kW methanol fuel processor for fuel-cell hybrid vehicle

    Science.gov (United States)

    Han, Jaesung; Lee, Seok-Min; Chang, Hyuksang

    A 25-kW on-board methanol fuel processor has been developed. It consists of a methanol steam reformer, which converts methanol to hydrogen-rich gas mixture, and two metal membrane modules, which clean-up the gas mixture to high-purity hydrogen. It produces hydrogen at rates up to 25 N m 3/h and the purity of the product hydrogen is over 99.9995% with a CO content of less than 1 ppm. In this fuel processor, the operating condition of the reformer and the metal membrane modules is nearly the same, so that operation is simple and the overall system construction is compact by eliminating the extensive temperature control of the intermediate gas streams. The recovery of hydrogen in the metal membrane units is maintained at 70-75% by the control of the pressure in the system, and the remaining 25-30% hydrogen is recycled to a catalytic combustion zone to supply heat for the methanol steam-reforming reaction. The thermal efficiency of the fuel processor is about 75% and the inlet air pressure is as low as 4 psi. The fuel processor is currently being integrated with 25-kW polymer electrolyte membrane fuel-cell (PEMFC) stack developed by the Hyundai Motor Company. The stack exhibits the same performance as those with pure hydrogen, which proves that the maximum power output as well as the minimum stack degradation is possible with this fuel processor. This fuel-cell 'engine' is to be installed in a hybrid passenger vehicle for road testing.

  7. Removal Natural Organic Matter (NOM in Peat Water from Wetland Area by Coagulation-Ultrafiltration Hybrid Process with Pretreatment Two-Stage Coagulation

    Directory of Open Access Journals (Sweden)

    Mahmud Mahmud

    2013-11-01

    Full Text Available The primary problem encountered in the application of membrane technology was membrane fouling. During this time, hybrid process by coagulation-ultrafiltration in drinking water treatment that has been conducted by some research, using by one-stage coagulation. The goal of this research was to investigate the effect of two-stage coagulation as a pretreatment towards performance of the coagulation-ultrafiltration hybrid process for removal NOM in the peat water. Coagulation process, either with the one-stage or two-stage coagulation was very good in removing charge hydrophilic fraction, i.e. more than 98%. NOM fractions of the peat water, from the most easily removed by the two-stage coagulation and one-stage coagulation process was charged hydrophilic>strongly hydrophobic>weakly hydrophobic>neutral hydrophilic. The two-stage coagulation process could removed UV254 and colors with a little better than the one-stage coagulation at the optimum coagulant dose. Neutral hydrophilic fraction of peat water NOM was the most influential fraction of UF membrane fouling. The two-stage coagulation process better in removing the neutral hidrophilic fraction, while removing of the charged hydrophilic, strongly hydrophobic and weakly hydrophobic similar to the one-stage coagulation. Hybrid process by pretreatment with two-stage coagulation, beside can increased removal efficiency of UV254 and color, also can reduced fouling rate of the ultrafiltration membraneIt must not exceed 250 words, contains a brief summary of the text, covering the whole manuscript without being too elaborate on every section. Avoid any abbreviation, unless it is a common knowledge or has been previously stated.

  8. Removal Natural Organic Matter (NOM in Peat Water from Wetland Area by Coagulation-Ultrafiltration Hybrid Process with Pretreatment Two-Stage Coagulation

    Directory of Open Access Journals (Sweden)

    Mahmud Mahmud

    2016-06-01

    Full Text Available The primary problem encountered in the application of membrane technology was membrane fouling. During this time, hybrid process by coagulation-ultrafiltration in drinking water treatment that has been conducted by some research, using by one-stage coagulation. The goal of this research was to investigate the effect of two-stage coagulation as a pretreatment towards performance of the coagulation-ultrafiltration hybrid process for removal NOM in the peat water. Coagulation process, either with the one-stage or two-stage coagulation was very good in removing charge hydrophilic fraction, i.e. more than 98%. NOM fractions of the peat water, from the most easily removed by the two-stage coagulation and one-stage coagulation process was charged hydrophilic>strongly hydrophobic>weakly hydrophobic>neutral hydrophilic. The two-stage coagulation process could removed UV254 and colors with a little better than the one-stage coagulation at the optimum coagulant dose. Neutral hydrophilic fraction of peat water NOM was the most influential fraction of UF membrane fouling. The two-stage coagulation process better in removing the neutral hidrophilic fraction, while removing of the charged hydrophilic, strongly hydrophobic and weakly hydrophobic similar to the one-stage coagulation. Hybrid process by pretreatment with two-stage coagulation, beside can increased removal efficiency of UV254 and color, also can reduced fouling rate of the ultrafiltration membraneIt must not exceed 250 words, contains a brief summary of the text, covering the whole manuscript without being too elaborate on every section. Avoid any abbreviation, unless it is a common knowledge or has been previously stated.

  9. Pedagogy and Process: A Case Study of Writing in a Hybrid Learning Model

    Science.gov (United States)

    Keiner, Jason F.

    2017-01-01

    This qualitative case study explored the perceived experiences and outcomes of writing in a hybrid model of instruction in a large suburban high school. In particular, the impact of a hybrid model on the writing process and on future writing performance were examined. In addition, teacher expectation and teacher attitude and their impact upon…

  10. Electrochemically Deposited Nickel Membranes; Process-Microstructure-Property Relationships

    DEFF Research Database (Denmark)

    Jensen, Jens Dahl; Pantleon, Karen; Somers, Marcel A.J.

    2003-01-01

    This paper reports on the manufacturing, surface morphology, internal structure and mechanical properties of Ni-foils used as membranes in reference-microphones. Two types of foils, referred to as S-type and 0-type foils, were electrochemically deposited from a Watts-type electrolyte, with (S...

  11. Scale-Up Design Analysis and Modelling of Cobalt Oxide Silica Membrane Module for Hydrogen Processing

    Directory of Open Access Journals (Sweden)

    Guozhao Ji

    2013-08-01

    Full Text Available This work shows the application of a validated mathematical model for gas permeation at high temperatures focusing on demonstrated scale-up design for H2 processing. The model considered the driving force variation with spatial coordinates and the mass transfer across the molecular sieve cobalt oxide silica membrane to predict the separation performance. The model was used to study the process of H2 separation at 500 °C in single and multi-tube membrane modules. Parameters of interest included the H2 purity in the permeate stream, H2 recovery and H2 yield as a function of the membrane length, number of tubes in a membrane module, space velocity and H2 feed molar fraction. For a single tubular membrane, increasing the length of a membrane tube led to higher H2 yield and H2 recovery, owing to the increase of the membrane area. However, the H2 purity decreased as H2 fraction was depleted, thus reducing the driving force for H2 permeation. By keeping the membrane length constant in a multi-tube arrangement, the H2 yield and H2 recovery increase was attributed to the higher membrane area, but the H2 purity was again compromised. Increasing the space velocity avoided the reduction of H2 purity and still delivered higher H2 yield and H2 recovery than in a single membrane arrangement. Essentially, if the membrane surface is too large, the driving force becomes lower at the expense of H2 purity. In this case, the membrane module is over designed. Hence, maintaining a driving force is of utmost importance to deliver the functionality of process separation.

  12. Protein permeation through polymer membranes for hybrid-type artificial pancreas

    Energy Technology Data Exchange (ETDEWEB)

    Burczak, K; Fujisato, Toshiya; Ikada, Yoshito [Kyoto Univ. (Japan); Hatada, Motoyoshi

    1991-05-01

    Hydrogel membranes were prepared by radiation crosslinking of poly (vinyl alcohol) (PVA) in aqueous solutions. Effects of PVA concentration, PVA molecular weight, and radiation dose on the permeation of insulin and immunoglobulin through the membranes were investigated. Glucose permeation was also studied. The crosslinking density affected the size of macromolecular mesh of hydrogel network as well as the water content of membrane responsible for the diffusion of the solutes. The diffusion coefficient linearly increased for all the solutes with the increasing water content in PVA hydrogels, indicating that diffusion occurs primarily through the water hydrating the polymer network. The increase in crosslinking density of hydrogels by changing PVA molecular weight brought about the decrease in mesh size of the hydrogels, which, in turn, had an influence on the diffusion of immunoglobulin, but not of insulin and glucose. (author).

  13. HYBRID SULFUR PROCESS REFERENCE DESIGN AND COST ANALYSIS

    Energy Technology Data Exchange (ETDEWEB)

    Gorensek, M.; Summers, W.; Boltrunis, C.; Lahoda, E.; Allen, D.; Greyvenstein, R.

    2009-05-12

    PBMR (Pty.) Ltd. in the RSA, with the Hybrid Sulfur (HyS) Process, under development by the Savannah River National Laboratory (SRNL) in the US as part of the NHI. This work was performed by SRNL, Westinghouse Electric Company, Shaw, PBMR (Pty) Ltd., and Technology Insights under a Technical Consulting Agreement (TCA). Westinghouse Electric, serving as the lead for the PBMR process heat application team, established a cost-shared TCA with SRNL to prepare an updated HyS thermochemical water-splitting process flowsheet, a nuclear hydrogen plant preconceptual design and a cost estimate, including the cost of hydrogen production. SRNL was funded by DOE under the NHI program, and the Westinghouse team was self-funded. The results of this work are presented in this Final Report. Appendices have been attached to provide a detailed source of information in order to document the work under the TCA contract.

  14. Advanced hybrid process with solvent extraction and pyro-chemical process of spent fuel reprocessing for LWR to FBR

    International Nuclear Information System (INIS)

    Fujita, Reiko; Mizuguchi, Koji; Fuse, Kouki; Saso, Michitaka; Utsunomiya, Kazuhiro; Arie, Kazuo

    2008-01-01

    Toshiba has been proposing a new fuel cycle concept of a transition from LWR to FBR. The new fuel cycle concept has better economical process of the LWR spent fuel reprocessing than the present Purex Process and the proliferation resistance for FBR cycle of plutonium with minor actinides after 2040. Toshiba has been developing a new Advanced Hybrid Process with Solvent Extraction and Pyrochemical process of spent fuel reprocessing for LWR to FBR. The Advanced Hybrid Process combines the solvent extraction process of the LWR spent fuel in nitric acid with the recovery of high pure uranium for LWR fuel and the pyro-chemical process in molten salts of impure plutonium recovery with minor actinides for metallic FBR fuel, which is the FBR spent fuel recycle system after FBR age based on the electrorefining process in molten salts since 1988. The new Advanced Hybrid Process enables the decrease of the high-level waste and the secondary waste from the spent fuel reprocessing plants. The R and D costs in the new Advanced Hybrid Process might be reduced because of the mutual Pyro-chemical process in molten salts. This paper describes the new fuel cycle concept of a transition from LWR to FBR and the feasibility of the new Advanced Hybrid Process by fundamental experiments. (author)

  15. Opportunities for membrane technologies in the treatment of mining and mineral process streams and effluents

    International Nuclear Information System (INIS)

    Awadalla, F.T.; Kumar, A.

    1994-01-01

    The membrane separation technologies of microfiltration, ultrafiltration, nanofiltration, and reverse osmosis are suitable for treating many dilute streams and effluents generated in mining and mineral processing. Membrane technologies are capable of treating these dilute streams in order to produce clean permeate water for recycle and a concentrate that can potentially be used for valuable metals recovery. Membrane technologies can be utilized alone, or in combination with other techniques as a polishing step, in these separation processes. A review of potential applications of membranes for the treatment of different process streams and effluents for water recycling and pollution control is given here. Although membranes may not be optimum in all applications, these technologies are recognized in the mining sector for the many potential advantages they can provide. 59 refs

  16. Fusion-Fission Hybrid for Fissile Fuel Production without Processing

    Energy Technology Data Exchange (ETDEWEB)

    Fratoni, M; Moir, R W; Kramer, K J; Latkowski, J F; Meier, W R; Powers, J J

    2012-01-02

    Two scenarios are typically envisioned for thorium fuel cycles: 'open' cycles based on irradiation of {sup 232}Th and fission of {sup 233}U in situ without reprocessing or 'closed' cycles based on irradiation of {sup 232}Th followed by reprocessing, and recycling of {sup 233}U either in situ or in critical fission reactors. This study evaluates a third option based on the possibility of breeding fissile material in a fusion-fission hybrid reactor and burning the same fuel in a critical reactor without any reprocessing or reconditioning. This fuel cycle requires the hybrid and the critical reactor to use the same fuel form. TRISO particles embedded in carbon pebbles were selected as the preferred form of fuel and an inertial laser fusion system featuring a subcritical blanket was combined with critical pebble bed reactors, either gas-cooled or liquid-salt-cooled. The hybrid reactor was modeled based on the earlier, hybrid version of the LLNL Laser Inertial Fusion Energy (LIFE1) system, whereas the critical reactors were modeled according to the Pebble Bed Modular Reactor (PBMR) and the Pebble Bed Advanced High Temperature Reactor (PB-AHTR) design. An extensive neutronic analysis was carried out for both the hybrid and the fission reactors in order to track the fuel composition at each stage of the fuel cycle and ultimately determine the plant support ratio, which has been defined as the ratio between the thermal power generated in fission reactors and the fusion power required to breed the fissile fuel burnt in these fission reactors. It was found that the maximum attainable plant support ratio for a thorium fuel cycle that employs neither enrichment nor reprocessing is about 2. This requires tuning the neutron energy towards high energy for breeding and towards thermal energy for burning. A high fuel loading in the pebbles allows a faster spectrum in the hybrid blanket; mixing dummy carbon pebbles with fuel pebbles enables a softer spectrum in

  17. An anaerobic membrane bioreactor - membrane distillation hybrid system for energy recovery and water reuse: Removal performance of organic carbon, nutrients, and trace organic contaminants.

    Science.gov (United States)

    Song, Xiaoye; Luo, Wenhai; McDonald, James; Khan, Stuart J; Hai, Faisal I; Price, William E; Nghiem, Long D

    2018-07-01

    In this study, a direct contact membrane distillation (MD) unit was integrated with an anaerobic membrane bioreactor (AnMBR) to simultaneously recover energy and produce high quality water for reuse from wastewater. Results show that AnMBR could produce 0.3-0.5L/g COD added biogas with a stable methane content of approximately 65%. By integrating MD with AnMBR, bulk organic matter and phosphate were almost completely removed. The removal of the 26 selected trace organic contaminants by AnMBR was compound specific, but the MD process could complement AnMBR removal, leading to an overall efficiency from 76% to complete removal by the integrated system. The results also show that, due to complete retention, organic matter (such as humic-like and protein-like substances) and inorganic salts accumulated in the MD feed solution and therefore resulted in significant fouling of the MD unit. As a result, the water flux of the MD process decreased continuously. Nevertheless, membrane pore wetting was not observed throughout the operation. Crown Copyright © 2018. Published by Elsevier B.V. All rights reserved.

  18. Uranium extraction process in a sulfuric medium by means of liquid emulsified membranes

    International Nuclear Information System (INIS)

    Monteillet, A.

    1985-02-01

    Uranium ore processing, after leaching by sulfuric acid, by liquid-liquid extraction is a rather heavy process, not suitable for small deposits. Extraction by emulsions was suggested. In this process the leachate is contacted with an oil in water type emulsion, a liquid organic membrane is formed by the continuous phase. Uranium complexes diffuse through the liquid membrane towards the dispersed aqueous phase of the emulsion (stripping solution). Uranium is recovered by breaking the emulsion. Are successively studied: development of stable emulsions, influence of emulsion composition on uranium transfer kinetics, transfer mechanisms through the membrane and modelling of kinetics data obtained in the experimental study [fr

  19. Preparation and characterization of silk/silica hybrid biomaterials by sol-gel crosslinking process

    Energy Technology Data Exchange (ETDEWEB)

    Hou Aiqin, E-mail: aiqinhou@dhu.edu.c [National Engineering Research Center for Dyeing and Finishing of Textiles, Donghua University, 3H, 2999 North Renmin Road, Songjiang, Shanghai 201620 (China); Chen Huawei [National Engineering Research Center for Dyeing and Finishing of Textiles, Donghua University, 3H, 2999 North Renmin Road, Songjiang, Shanghai 201620 (China)

    2010-03-15

    The silk/silica hybrid biomaterials are synthesized by sol-gel crosslinking process. The chemical and morphological structures of silk/silica hybrids are investigated with micro-FT-IR spectra, X-ray diffraction, SEM, AFM, and DSC. The results show that the crosslinking reactions among inorganic nano-particles, fibroin and 2,4,6-tri[(2-epihydrin-3-bimethyl-ammonium)propyl]-1,3,5-triazine chloride (Tri-EBAC) take place during sol-gel process. The silk/silica hybrids form new molecular structures containing not only organic fibroin but also inorganic nano-silica particles. The inorganic particles are bounded to the fibroin through covalent bonds. The silk/silica hybrids can form excellent film with very even nanometer particles. The thermal properties of organic/inorganic hybrid are improved.

  20. Preparation and characterization of silk/silica hybrid biomaterials by sol-gel crosslinking process

    International Nuclear Information System (INIS)

    Hou Aiqin; Chen Huawei

    2010-01-01

    The silk/silica hybrid biomaterials are synthesized by sol-gel crosslinking process. The chemical and morphological structures of silk/silica hybrids are investigated with micro-FT-IR spectra, X-ray diffraction, SEM, AFM, and DSC. The results show that the crosslinking reactions among inorganic nano-particles, fibroin and 2,4,6-tri[(2-epihydrin-3-bimethyl-ammonium)propyl]-1,3,5-triazine chloride (Tri-EBAC) take place during sol-gel process. The silk/silica hybrids form new molecular structures containing not only organic fibroin but also inorganic nano-silica particles. The inorganic particles are bounded to the fibroin through covalent bonds. The silk/silica hybrids can form excellent film with very even nanometer particles. The thermal properties of organic/inorganic hybrid are improved.

  1. Hybrid membrane system for desalination and wastewater treatment : Integrating forward osmosis and low pressure reverse osmosis

    NARCIS (Netherlands)

    Valladares Linares, R.

    2014-01-01

    Since more than 97% of the water in the world is seawater, desalination technologies have the potential to solve the fresh water crisis. The most used desalination technology nowadays is seawater reverse osmosis (SWRO), where a membrane is used as a physical barrier to separate the salts from the

  2. Direct Contact Membrane Distillation of Dairy Process Streams

    Directory of Open Access Journals (Sweden)

    Mike Weeks

    2011-01-01

    Full Text Available Membrane distillation (MD was applied for the concentration of a range of dairy streams, such as whole milk, skim milk and whey. MD of a pure lactose solution was also investigated. Direct contact MD (DCMD mode experiments were carried out in continuous concentration mode, keeping the warm feed/retentate and cold permeate stream temperatures at 54 °C and 5 °C respectively. Performance in terms of flux and retention was assessed. The flux was found to decrease with an increase of dry-matter concentration in the feed. Retention of dissolved solids was found to be close to 100% and independent of the dry-matter concentration in the feed. Fourier Transform Infrared Spectroscopy (FTIR of the fouled membranes confirms organics being present in the fouling layer.

  3. Studies on as separation behaviour of polymer blending PI/PES hybrid mixed membrane: Effect of polymer concentration and zeolite loading

    Directory of Open Access Journals (Sweden)

    Ahmad Fauzi Ismail

    2014-04-01

    Full Text Available This study is performed primarily to investigate the effect of polymer concentration of polyimide/polyethersulfone (PI/PES blending on the gas separation performance of hybrid mixed matrix membrane. In this study, PI/ (PES–zeolite 4A mixed matrix membranes were casted using dry/wet phase inversion technique. The efefct of PI/PES concentrations and zeolite loading on the dope solution were investigated for gas separation performance. The results from the Field Emission Scanning Electron Microscopy (FESEM analysis confirmed that polymer concentration and zeolite loading was affected the morphology of membrane and gas separation performance. ‘Sieve-in-a-cage’ morphology observed the poor adhesion between polymer and zeolite at higher zeolite loading. The gas separation performance of the mixed matrix membranes were relatively higher compared to that of the neat polymeric membrane.

  4. Evaluation of the Parameters and Conditions of Process in the Ethylbenzene Dehydrogenation with Application of Permselective Membranes to Enhance Styrene Yield.

    Science.gov (United States)

    Araújo, Paulo Jardel P; Leite, Manuela Souza; Ravagnani, Teresa M Kakuta

    2016-01-01

    Styrene is an important monomer in the manufacture of thermoplastic. Most of it is produced by the catalytic dehydrogenation of ethylbenzene. In this process that depends on reversible reactions, the yield is usually limited by the establishment of thermodynamic equilibrium in the reactor. The styrene yield can be increased by using a hybrid process, with reaction and separation simultaneously. It is proposed using permselective composite membrane to remove hydrogen and thus suppress the reverse and secondary reactions. This paper describes the simulation of a dehydrogenation process carried out in a tubular fixed-bed reactor wrapped in a permselective composite membrane. A mathematical model was developed, incorporating the various mass transport mechanisms found in each of the membrane layers and in the catalytic fixed bed. The effects of the reactor feed conditions (temperature, steam-to-oil ratio, and the weight hourly space velocity), the fixed-bed geometry (length, diameter, and volume), and the membrane geometry (thickness of the layers) on the styrene yield were analyzed. These variables were used to determine experimental conditions that favour the production of styrene. The simulation showed that an increase of 40.98% in the styrene yield, compared to a conventional fixed-bed process, could be obtained by wrapping the reactor in a permselective composite membrane.

  5. Evaluation of the Parameters and Conditions of Process in the Ethylbenzene Dehydrogenation with Application of Permselective Membranes to Enhance Styrene Yield

    Directory of Open Access Journals (Sweden)

    Paulo Jardel P. Araújo

    2016-01-01

    Full Text Available Styrene is an important monomer in the manufacture of thermoplastic. Most of it is produced by the catalytic dehydrogenation of ethylbenzene. In this process that depends on reversible reactions, the yield is usually limited by the establishment of thermodynamic equilibrium in the reactor. The styrene yield can be increased by using a hybrid process, with reaction and separation simultaneously. It is proposed using permselective composite membrane to remove hydrogen and thus suppress the reverse and secondary reactions. This paper describes the simulation of a dehydrogenation process carried out in a tubular fixed-bed reactor wrapped in a permselective composite membrane. A mathematical model was developed, incorporating the various mass transport mechanisms found in each of the membrane layers and in the catalytic fixed bed. The effects of the reactor feed conditions (temperature, steam-to-oil ratio, and the weight hourly space velocity, the fixed-bed geometry (length, diameter, and volume, and the membrane geometry (thickness of the layers on the styrene yield were analyzed. These variables were used to determine experimental conditions that favour the production of styrene. The simulation showed that an increase of 40.98% in the styrene yield, compared to a conventional fixed-bed process, could be obtained by wrapping the reactor in a permselective composite membrane.

  6. Optical properties of alumina membranes prepared by anodic oxidation process

    International Nuclear Information System (INIS)

    Li Zhaojian; Huang Kelong

    2007-01-01

    The luminescence property of anodic alumina membranes (AAMs) with ordered nanopore arrays prepared by electrochemically anodizing aluminum in oxalic acid solutions have been investigated. Photoluminescence emission (PL) measurement shows that a blue PL band occurs in the wavelength ranges of 300-600 nm. The PL intensity and peak position of AAMs depend markedly on the excitation wavelength. A new peak located at 518 nm can be observed under a monitoring wavelength at 429 nm in the photoluminescence excitation (PLE) spectra. Convincing evidences have been presented that the PLE would be associated with the residual aluminum ions in the membrane. The PLE and PL of AAMs, as a function of anodizing times, have been discussed. It is found that the oxalic impurities incorporated in the AAMs would have important influences on the optical properties of AAMs in the initial stage of anodization. The PL and PLE spectra obtained show that there are three optical centers, of which the first is originated from the F + centers in AAMs, the second is correlated with the oxalic impurities incorporated in the AAMs, and the third is associated with the excess aluminum ions in the membrane

  7. Optical properties of alumina membranes prepared by anodic oxidation process

    Energy Technology Data Exchange (ETDEWEB)

    Li Zhaojian [College of Chemistry and Chemical Engineering, Central South University, Changsha 410083 (China)], E-mail: lizhaojian_lzj@hotmail.com; Huang Kelong [College of Chemistry and Chemical Engineering, Central South University, Changsha 410083 (China)], E-mail: klhuang@mail.csu.edu.cn

    2007-12-15

    The luminescence property of anodic alumina membranes (AAMs) with ordered nanopore arrays prepared by electrochemically anodizing aluminum in oxalic acid solutions have been investigated. Photoluminescence emission (PL) measurement shows that a blue PL band occurs in the wavelength ranges of 300-600 nm. The PL intensity and peak position of AAMs depend markedly on the excitation wavelength. A new peak located at 518 nm can be observed under a monitoring wavelength at 429 nm in the photoluminescence excitation (PLE) spectra. Convincing evidences have been presented that the PLE would be associated with the residual aluminum ions in the membrane. The PLE and PL of AAMs, as a function of anodizing times, have been discussed. It is found that the oxalic impurities incorporated in the AAMs would have important influences on the optical properties of AAMs in the initial stage of anodization. The PL and PLE spectra obtained show that there are three optical centers, of which the first is originated from the F{sup +} centers in AAMs, the second is correlated with the oxalic impurities incorporated in the AAMs, and the third is associated with the excess aluminum ions in the membrane.

  8. Arsenic removal from contaminated groundwater by membrane-integrated hybrid plant: optimization and control using Visual Basic platform.

    Science.gov (United States)

    Chakrabortty, S; Sen, M; Pal, P

    2014-03-01

    A simulation software (ARRPA) has been developed in Microsoft Visual Basic platform for optimization and control of a novel membrane-integrated arsenic separation plant in the backdrop of absence of such software. The user-friendly, menu-driven software is based on a dynamic linearized mathematical model, developed for the hybrid treatment scheme. The model captures the chemical kinetics in the pre-treating chemical reactor and the separation and transport phenomena involved in nanofiltration. The software has been validated through extensive experimental investigations. The agreement between the outputs from computer simulation program and the experimental findings are excellent and consistent under varying operating conditions reflecting high degree of accuracy and reliability of the software. High values of the overall correlation coefficient (R (2) = 0.989) and Willmott d-index (0.989) are indicators of the capability of the software in analyzing performance of the plant. The software permits pre-analysis, manipulation of input data, helps in optimization and exhibits performance of an integrated plant visually on a graphical platform. Performance analysis of the whole system as well as the individual units is possible using the tool. The software first of its kind in its domain and in the well-known Microsoft Excel environment is likely to be very useful in successful design, optimization and operation of an advanced hybrid treatment plant for removal of arsenic from contaminated groundwater.

  9. Aroma Stripping under various Forms of Membrane Distillation Processes: Experiments and modeling

    DEFF Research Database (Denmark)

    Jonsson, Gunnar Eigil

    the large different in permeate flux and concentration factor that was observed for the different MD configurations. This is highly related to the heat and mass transfer resistances in the membrane as well as in the boundary layers adjacent to the membrane surface and how the driving force develops along......Concentration of fruit juices by membrane distillation is an interesting process as it can be done at low temperature giving a gentle concentration process with little deterioration of the juices. Since the juices contains many different aroma compounds with a wide range of chemical properties...... such as volatility, activity coefficient and vapor pressure, it is important to know how these aroma compounds will eventually pass through the membrane. Experiments have been made on an aroma model solution and on black currant juice in a lab scale membrane distillation set up which can be operated in various types...

  10. Dual-Channel, Molecular-Sieving Core/Shell ZIF@MOF Architectures as Engineered Fillers in Hybrid Membranes for Highly Selective CO2 Separation.

    Science.gov (United States)

    Song, Zhuonan; Qiu, Fen; Zaia, Edmond W; Wang, Zhongying; Kunz, Martin; Guo, Jinghua; Brady, Michael; Mi, Baoxia; Urban, Jeffrey J

    2017-11-08

    A novel core/shell porous crystalline structure was prepared using a large pore metal organic framework (MOF, UiO-66-NH 2 , pore size, ∼ 0.6 nm) as core surrounded by a small pore zeolitic imidazolate framework (ZIF, ZIF-8, pore size, ∼ 0.4 nm) through a layer-by-layer deposition method and subsequently used as an engineered filler to construct hybrid polysulfone (PSF) membranes for CO 2 capture. Compared to traditional fillers utilizing only one type of porous material with rigid channels (either large or small), our custom designed core/shell fillers possess clear advantages via pore engineering: the large internal channels of the UiO-66-NH 2 MOFs create molecular highways to accelerate molecular transport through the membrane, while the thin shells with small pores (ZIF-8) or even smaller pores generated at the interface by the imperfect registry between the overlapping pores of ZIF and MOF enhance molecular sieving thus serving to distinguish slightly larger N 2 molecules (kinetic diameter, 0.364 nm) from smaller CO 2 molecules (kinetic diameter, 0.33 nm). The resultant core/shell ZIF@MOF and as-prepared hybrid PSF membranes were characterized by transmission electron microscopy, X-ray diffraction, wide-angle X-ray scattering, scanning electron microscopy, Fourier transform infrared, thermogravimetric analysis, differential scanning calorimetry, and contact angle tests. The dependence of the separation performance of the membranes on the MOF/ZIF ratio was also studied by varying the number of layers of ZIF coatings. The integrated PSF-ZIF@MOF hybrid membrane (40 wt % loading) with optimized ZIF coating cycles showed improved hydrophobicity and excellent CO 2 separation performance by simultaneously increasing CO 2 permeability (CO 2 permeability of 45.2 barrer, 710% higher than PSF membrane) and CO 2 /N 2 selectivity (CO 2 /N 2 selectivity of 39, 50% higher than PSF membrane), which is superior to most reported hybrid PSF membranes. The strategy of using

  11. Development of Ultrafiltration Membrane-Separation Technology for Energy-Efficient Water Treatment and Desalination Process

    Energy Technology Data Exchange (ETDEWEB)

    Yim, Woosoon [Univ. of Nevada, Las Vegas, NV (United States); Bae, Chulsung [Rensselaer Polytechnic Inst., Troy, NY (United States)

    2016-10-28

    The growing scarcity of fresh water is a major political and economic challenge in the 21st century. Compared to thermal-based distillation technique of water production, pressure driven membrane-based water purification process, such as ultrafiltration (UF), nanofiltration (NF) and reverse osmosis (RO), can offer more energy-efficient and environmentally friendly solution to clean water production. Potential applications also include removal of hazardous chemicals (i.e., arsenic, pesticides, organics) from water. Although those membrane-separation technologies have been used to produce drinking water from seawater (desalination) and non-traditional water (i.e., municipal wastewater and brackish groundwater) over the last decades, they still have problems in order to be applied in large-scale operations. Currently, a major huddle of membrane-based water purification technology for large-scale commercialization is membrane fouling and its resulting increases in pressure and energy cost of filtration process. Membrane cleaning methods, which can restore the membrane properties to some degree, usually cause irreversible damage to the membranes. Considering that electricity for creating of pressure constitutes a majority of cost (~50%) in membrane-based water purification process, the development of new nano-porous membranes that are more resistant to degradation and less subject to fouling is highly desired. Styrene-ethylene/butylene-styrene (SEBS) block copolymer is one of the best known block copolymers that induces well defined morphologies. Due to the polarity difference of aromatic styrene unit and saturated ethylene/butylene unit, these two polymer chains self-assemble each other and form different phase-separated morphologies depending on the ratios of two polymer chain lengths. Because the surface of SEBS is hydrophobic which easily causes fouling of membrane, incorporation of ionic group (e,g, sulfonate) to the polymer is necessary to reduces fouling

  12. Techno-economic assessment of hybrid extraction and distillation processes for furfural production from lignocellulosic biomass.

    Science.gov (United States)

    Nhien, Le Cao; Long, Nguyen Van Duc; Kim, Sangyong; Lee, Moonyong

    2017-01-01

    Lignocellulosic biomass is one of the most promising alternatives for replacing mineral resources to overcome global warming, which has become the most important environmental issue in recent years. Furfural was listed by the National Renewable Energy Laboratory as one of the top 30 potential chemicals arising from biomass. However, the current production of furfural is energy intensive and uses inefficient technology. Thus, a hybrid purification process that combines extraction and distillation to produce furfural from lignocellulosic biomass was considered and investigated in detail to improve the process efficiency. This effective hybrid process depends on the extracting solvent, which was selected based on a comprehensive procedure that ranged from solvent screening to complete process design. Various solvents were first evaluated in terms of their extraction ability. Then, the most promising solvents were selected to study the separation feasibility. Eventually, processes that used the three best solvents (toluene, benzene, and butyl chloride) were designed and optimized in detail using Aspen Plus. Sustainability analysis was performed to evaluate these processes in terms of their energy requirements, total annual costs (TAC), and carbon dioxide (CO 2 ) emissions. The results showed that butyl chloride was the most suitable solvent for the hybrid furfural process because it could save 44.7% of the TAC while reducing the CO 2 emissions by 45.5% compared to the toluene process. In comparison with the traditional purification process using distillation, this suggested hybrid extraction/distillation process can save up to 19.2% of the TAC and reduce 58.3% total annual CO 2 emissions. Furthermore, a sensitivity analysis of the feed composition and its effect on the performance of the proposed hybrid system was conducted. Butyl chloride was found to be the most suitable solvent for the hybrid extraction/distillation process of furfural production. The proposed

  13. Efficient ethanol recovery from fermentation broths with integrated distillation-membrane process

    Science.gov (United States)

    The energy demand of distillation-molecular sieve systems for ethanol recovery/dehydration can be significant, particularly for dilute solutions. An alternative process integrating vapor stripping (like a beer still) with vapor compression and a vapor permeation membrane separati...

  14. Membrane-based processes for wastewater nutrient recovery: Technology, challenges, and future direction.

    Science.gov (United States)

    Xie, Ming; Shon, Ho Kyong; Gray, Stephen R; Elimelech, Menachem

    2016-02-01

    Wastewater nutrient recovery holds promise for more sustainable water and agricultural industries. We critically review three emerging membrane processes - forward osmosis (FO), membrane distillation (MD) and electrodialysis (ED) - that can advance wastewater nutrient recovery. Challenges associated with wastewater nutrient recovery were identified. The advantages and challenges of applying FO, MD, and ED technologies to wastewater nutrient recovery are discussed, and directions for future research and development are identified. Emphasis is given to exploration of the unique mass transfer properties of these membrane processes in the context of wastewater nutrient recovery. We highlight that hybridising these membrane processes with existing nutrient precipitation process will lead to better management of and more diverse pathways for near complete nutrient recovery in wastewater treatment facilities. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. The extraction of uranium from wet process phosphoric acid using a liquid surfactant membrane system

    International Nuclear Information System (INIS)

    Dickens, N.; Davies, G.A.

    1984-01-01

    A liquid membrane extraction process is examined for the extraction of uranium from wet process phosphoric acid. Uranium is present in the acid in concentrations up to 100 ppm which in principle makes it ideal for treatment with a membrane process. The membrane system studied is based on extraction using DEHPA-TOPO reagents which are contained within the organic phase of a water in oil emulsion. Formulations of the emulsion membrane system have been studied, the limitations of acid temperature, P 2 O 5 concentration and solid dispersed impurities in the acid have been studied in laboratory batch experiments and in a continuous pilot plant unit capable of treating 5l of concentrated acid per minute. Data from the pilot plant work has been used to develop a flowsheet for a commercial unit based on this process. (author)

  16. Asparaginase-associated concurrence of hyperlipidemia, hyperglobulinemia, and thrombocytosis was successfully treated by centrifuge/membrane hybrid double-filtration plasmapheresis.

    Science.gov (United States)

    Wang, Taina; Xu, Bin; Fan, Rong; Liu, Zhihong; Gong, Dehua

    2016-01-01

    Asparaginase-associated concurrence of hyperlipidemia, hyperglobulinemia, and thrombocytosis is a rare complication requiring aggressive lipoprotein apheresis, but no one of currently available lipoprotein apheresis methods can simultaneously resolve the 3 abnormalities. Herein, we reported a construction of double-filtration plasmapheresis (DFPP) using a combination of centrifugal/membranous plasma separation techniques to successfully treat a patient with hyperlipidemia, hyperglobulinemia, and thrombocytosis. A male presented with severe hyperlipidemia, hyperglobulinemia, and thrombocytosis during asparaginase treatment for NK/T-cell lymphoblastic lymphoma and was scheduled to receive lipoprotein apheresis. To simultaneously remove lipoproteins, immunoglobulin, and deplete platelets from blood, a centrifuge/membrane hybrid DFPP was constructed as following steps: plasma and part of platelets were separated first from whole blood by centrifugal technique and then divided by a fraction plasma separator into 2 parts: platelets and plasma components with large size, which were discarded; and those containing albumin, which were returned to blood with a supplement of extrinsic albumin solution. DFPP lasted 240 minutes uneventfully, processing 5450-mL plasma. The concentrations of plasma components before DFPP were as follows: triglycerides 38.22 mmol/L, total cholesterols 22.98 mmol/L, immunoglobulin A (IgA) 15.7 g/L, IgG 12.7 g/L, and IgM 14.3 g/L; whereas after treatment were 5.69 mmol/L, 2.38 mmol/L, 2.5 g/L, 7.7 g/L, and 0.4 g/L, respectively. The respective reduction ratio was 85.1%, 89.6%, 83.9%, 39.4%, and 96.9%. Platelet count decreased by 40.4% (from 612 × 10(9)/L to 365 × 10(9)/L). Centrifuge/membrane hybrid DFPP can simultaneously remove lipoproteins, immunoglobulin, and deplete platelets, with a success in treatment of asparaginase treatment-induced hyperlipidemia, hyperglobulinemia, and thrombocytosis, and may be useful for patients

  17. The Hybrid Treatment Process for treatment of mixed radioactive and hazardous wastes

    International Nuclear Information System (INIS)

    Ross, W.A.; Kindle, C.H.

    1992-04-01

    This paper describes a new process for treating mixed hazardous and radioactive waste, commonly called mixed waste. The process is called the Hybrid Treatment Process (HTP), so named because it is built on the 20 years of experience with vitrification of wastes in melters, and the 12 years of experience with treatment of wastes by the in situ vitrification (ISV) process

  18. Hybrid membrane system for desalination and wastewater treatment: Integrating forward osmosis and low pressure reverse osmosis

    OpenAIRE

    Valladares Linares, R.

    2014-01-01

    Since more than 97% of the water in the world is seawater, desalination technologies have the potential to solve the fresh water crisis. The most used desalination technology nowadays is seawater reverse osmosis (SWRO), where a membrane is used as a physical barrier to separate the salts from the water, using high hydraulic pressure as the driving force. However, the use of high hydraulic pressure imposes a high cost on operation of these systems, in addition to the known persistent fouling p...

  19. Forward osmosis - a novel membrane process for concentration of low level radioactive wastes

    International Nuclear Information System (INIS)

    Ghosh, A.K.; Bindal, R.C.; Tewari, P.K.

    2013-01-01

    Forward osmosis (FO) is an emerging membrane process in which osmotic pressure differential across a semi-permeable membrane between the solution to be concentrated (feed) and a concentrated solution of high osmotic pressure (draw solution) than the feed is used to effect separation of water from dissolved solutes. With time, feed stream gets concentrated with dilution of draw solution and this technology recently being used as more energy efficient alternative to reverse osmosis (RO) in some of the application areas, particularly for the concentration of low volume high value products. The use of pressure driven membrane processes like reverse osmosis (RO) and ultrafiltration (UF) are already demonstrated in the treatment of radioactive laundry, laboratory effluents and some other applications in nuclear industry. The application of FO membrane process to concentrate simulated inactive ammonium-diuranate (ADU) filtered effluent solution (by mixing uranyl nitrate and ammonium nitrate) using indigenously developed cellulose acetate (CA) and thin-film composite polyamide (TFCP) membranes has been published recently from our laboratory. In this presentation, we briefly discuss our views on possibility of using FO membrane process with proper selection of membrane for concentration of low level radioactive wastes generated in various steps of nuclear fuel cycle in most effective way. (author)

  20. Recent advances in liquid membranes and their applications in nuclear waste processing: an overview

    Energy Technology Data Exchange (ETDEWEB)

    Shukla, J P; Iyer, R H [Radiochemistry Division, Bhabha Atomic Research Centre, Mumbai (India)

    1994-06-01

    Membrane extraction, combining the processes of extraction, scrubbing and stripping in a single step, demonstrates the inherent capability of solvent extraction under non-equilibrium conditions. Permeant transport across various liquid membrane (LM) configurations, viz. bulk liquid, emulsion liquid and supported liquid membranes has great potential for applications in the nuclear field particularly in the decontamination of low and medium level radioactive wastes. Potential practical applications of such membranes have also been envisaged in the recovery of metals from hydrometallurgical leach solutions and in plutonium and americium removal from nitric acid waste streams generated by plutonium recovery operations in the PUREX process. Studies carried out have established that minor actinides like uranium, plutonium and americium from process effluents can easily be transported across polymeric and liquid type membranes through the use of specific ionophores dissolved in an appropriate liquid membrane phase. The possibility of the membrane extraction of fission palladium from acidic wastes has also been demonstrated by the use of some soft bases. An overview of these results and also some of the recent radiochemical applications of energy - efficient LM processes including directions for future research are outlined in this paper. (author). 19 refs., 1 fig., 2 tabs.

  1. Stabilization process in Saccharomyces intra and interspecific hybrids in fermentative conditions.

    Science.gov (United States)

    Pérez-Través, Laura; Lopes, Christian A; Barrio, Eladio; Querol, Amparo

    2014-12-01

    We evaluated the genetic stabilization of artificial intra- (Saccharomyces cerevisiae) and interspecific (S. cerevisiae × S. kudriavzevii) hybrids under wine fermentative conditions. Large-scale transitions in genome size and genome reorganizations were observed during this process. Interspecific hybrids seem to need fewer generations to reach genetic stability than intraspecific hybrids. The largest number of molecular patterns recovered among the derived clones was observed for intraspecific hybrids, particularly for those obtained by rare-mating. Molecular marker analyses revealed that unstable clones could change during the industrial process to obtain active dry yeast. When no changes in molecular markers and ploidy were observed after this process, no changes in genetic composition were confirmed by comparative genome hybridization, considering the clone as a stable hybrid. According to our results, under these conditions, fermentation steps 3 and 5 (30-50 generations) would suffice to obtain genetically stable interspecific and intraspecific hybrids, respectively. Copyright© by the Spanish Society for Microbiology and Institute for Catalan Studies.

  2. Optimization of Deacetylation Process for Regenerated Cellulose Hollow Fiber Membranes

    Directory of Open Access Journals (Sweden)

    Xuezhong He

    2017-01-01

    Full Text Available Cellulose acetate (CA hollow fibers were spun from a CA+ Polyvinylpyrrolidone (PVP/N-methyl-2-pyrrolidone (NMP/H2O dope solution and regenerated by deacetylation. The complete deacetylation time of 0.5 h was found at a high concentration (0.2 M NaOH ethanol (96% solution. The reaction rate of deacetylation with 0.5 M NaOH was faster in a 50% ethanol compared to a 96 vol.% ethanol. The hydrogen bond between CA and tertiary amide group of PVP was confirmed. The deacetylation parameters of NaOH concentration, reaction time, swelling time, and solution were investigated by orthogonal experimental design (OED method. The degree of cross-linking, the residual acetyl content, and the PVP content in the deacetylated membranes were determined by FTIR analysis. The conjoint analysis in the Statistical Product and Service Solutions (SPSS software was used to analyze the OED results, and the importance of the deacetylation parameters was sorted as Solution > Swelling time > Reaction time > Concentration. The optimal deacetylation condition of 96 vol.% ethanol solution, swelling time 24 h, the concentration of NaOH (0.075 M, and the reaction time (2 h were identified. The regenerated cellulose hollow fibers under the optimal deacetylation condition can be further used as precursors for preparation of hollow fiber carbon membranes.

  3. A Study on Anti – Fouling Behaviour and Mechanical Properties of PVA/Chitosan/TEOS Hybrid membrane in The Treatment of Copper Solution

    Science.gov (United States)

    Sulaiman, N. A.; Kassim Shaari, N. Z.; Rahman, N. Abdul

    2018-05-01

    In a wastewater treatment by using membrane filtration, fouling has been one of the major problems. In this study, the anti-fouling behaviour of the fabricated thin-film composite membrane were studied during the treatment of water containing copper ion. The membranes were prepared from a polymer blend of 2wt.% chitosan with 10 wt.% poly(vinyl alcohol) (PVA) and then it was cross – linked with tetraethylorthosilicate (TEOS) through sol-gel method. The membrane had been evaluated for its resistance against organic fouling where humic acid had been chosen as organic foulant model which represent the natural organic matter (NOM) in water or wastewater. The dead-end filtration experiments were carried out by using 50 ppm of copper solution with and without the presence of humic acid as feed solution, which was passed through two types of thin film composite membranes. The possible reversible fouling was evaluated by using relative flux decay (RFD) and relative flux recovery (RFR) calculations. The percentage of copper ion removal was evaluated by using Atomic Absorption Spectroscopy (AAS). Based on the results, with the presence of humic acid, the membrane incorporated with silica precursor (TEOS) showed lower flux decay (3%) and higher flux recovery (76%), which show that the formulated hybrid membrane possesses the anti fouling property. The same trend was observed in the mechanical properties of hybrid membrane, where the presence of TEOS has improved the tensile strength and flexibility of the membrane. Therefore, the fabricated thin film composite with the anti-fouling properties and good physical flexibility has potential to be used in the treatment of wastewater containing heavy metal as it could result in good saving in term of operational cost.

  4. Automated process flowsheet synthesis for membrane processes using genetic algorithm: role of crossover operators

    KAUST Repository

    Shafiee, Alireza

    2016-06-25

    In optimization-based process flowsheet synthesis, optimization methods, including genetic algorithms (GA), are used as advantageous tools to select a high performance flowsheet by ‘screening’ large numbers of possible flowsheets. In this study, we expand the role of GA to include flowsheet generation through proposing a modified Greedysub tour crossover operator. Performance of the proposed crossover operator is compared with four other commonly used operators. The proposed GA optimizationbased process synthesis method is applied to generate the optimum process flowsheet for a multicomponent membrane-based CO2 capture process. Within defined constraints and using the random-point crossover, CO2 purity of 0.827 (equivalent to 0.986 on dry basis) is achieved which results in improvement (3.4%) over the simplest crossover operator applied. In addition, the least variability in the converged flowsheet and CO2 purity is observed for random-point crossover operator, which approximately implies closeness of the solution to the global optimum, and hence the consistency of the algorithm. The proposed crossover operator is found to improve the convergence speed of the algorithm by 77.6%.

  5. In Silico understanding of the cyclodextrin–phenanthrene hybrid assemblies in both aqueous medium and bacterial membranes

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Baiping [College of Life Science and Biotechnology, Dalian University of Technology, No. 2 Linggong Road, Dalian 116024 (China); State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023 (China); Gao, Huipeng; Cao, Yafeng [College of Life Science and Biotechnology, Dalian University of Technology, No. 2 Linggong Road, Dalian 116024 (China); Jia, Lingyun, E-mail: lyj81@dlut.edu.cn [College of Life Science and Biotechnology, Dalian University of Technology, No. 2 Linggong Road, Dalian 116024 (China)

    2015-03-21

    Highlights: • Two hetero-assemblies, βCD{sub 1}–Phe{sub 1}, and βCD{sub 2}–Phe{sub 1} were observed in water solution. • Distinct membrane-binding patterns for βCD, Phe, and their complexes were found. • Minor Phe trans-membrane energy barrier confirmed its membrane penetration ability. • Huge energy barriers for βCD-involved assemblies denied their membrane penetration. • Phe separation from βCD{sub 1}–Phe{sub 1} was easier than that from βCD{sub 2}–Phe{sub 1}. - Abstract: The explicit-solvent molecular dynamic (MD) simulation and adaptive biased forces (ABF) methods were employed to systemically study the structural and thermodynamic nature of the β-cyclodextrin (βCD) monomer, phenanthrene (Phe) monomer, and their inclusion complexes in both the aqueous and membrane environments, aiming at clarifying the atomic-level mechanisms underlying in the CD-enhanced degradation of polycyclic aromatic hydrocarbons (PAHs) by bacteria. Simulations showed that βCD and Phe monomers could associate together to construct two distinctive assemblies, i.e, βCD{sub 1}–Phe{sub 1} and βCD{sub 2}–Phe{sub 1}, respectively. The membrane-involved equilibrium simulations and the data of potential of mean forces (PMFs) further confirmed that Phe monomer was capable of penetrating through the membranes without confronting any large energy barrier, whereas, the single βCD and βCD-involved assemblies were unable to pass across the membranes. These observations clearly suggested that βCD only served as the carrier to enhance the bioavailability of Phe rather than the co-substrate in the Phe biodegradation process. The Phe-separation PMF profiles indicated that the maximum of the Phe uptake by bacteria would be achieved by the “optimal” βCD:Phe molar ratio, which facilitated the maximal formation of βCD{sub 1}–Phe{sub 1} inclusion and the minimal construction of βCD{sub 2}–Phe{sub 1} complex.

  6. Folding and membrane insertion of the pore-forming peptide gramicidin occur as a concerted process.

    Science.gov (United States)

    Hicks, Matthew R; Damianoglou, Angeliki; Rodger, Alison; Dafforn, Timothy R

    2008-11-07

    Many antibiotic peptides function by binding and inserting into membranes. Understanding this process provides an insight into the fundamentals of both membrane protein folding and antibiotic peptide function. For the first time, in this work, flow-aligned linear dichroism (LD) is used to study the folding of the antibiotic peptide gramicidin. LD provides insight into the combined processes of peptide folding and insertion and has the advantage over other similar techniques of being insensitive to off-membrane aggregation events. By combining LD data with conventional measurements of protein fluorescence and circular dichroism, the mechanism of gramicidin insertion is elucidated. The mechanism consists of five separately assignable steps that include formation of a water-insoluble gramicidin aggregate, dissociation from the aggregate, partitioning of peptide to the membrane surface, oligomerisation on the surface and concerted insertion and folding of the peptide to the double-helical form of gramicidin. Measurement of the rates of each step shows that although changes in the fluorescence signal cease 10 s after the initiation of the process, the insertion of the peptide into the membrane is actually not complete for a further 60 min. This last membrane insertion phase is only apparent by measurement of LD and circular dichroism signal changes. In summary, this study demonstrates the importance of multi-technique approaches, including LD, in studies of membrane protein folding.

  7. On the use of supported ceria membranes for oxyfuel process/syngas production

    DEFF Research Database (Denmark)

    Lobera, M.P.; Serra, J.M.; Foghmoes, Søren Preben Vagn

    2011-01-01

    Ceramic oxygen transport membranes (OTMs) enable selective oxygen separation from air at high temperatures. Among several potential applications for OTMs, the use in (1) oxygen production for oxyfuel power plants and (2) the integration in high-temperature catalytic membrane reactors for alkane...... upgrading through selective oxidative reactions are of special interest. Nevertheless, these applications involve the direct contact of the membrane surface with carbon-rich atmospheres. Most state-of-the-art permeable membranes are based on perovskites, which are prone to carbonation under operation in CO2......-rich environments and/or decomposition in reducing gas environments. The oxygen flux through supported thin film membranes of Ce0.9Gd0.1O1.95−δ (CGO) with 2 mol.% of cobalt was measured for oxygen separation in oxyfuel processes and in syngas production and degradation was compared to perovskite...

  8. Oxygen transport membrane system and method for transferring heat to catalytic/process reactors

    Science.gov (United States)

    Kelly, Sean M.; Kromer, Brian R.; Litwin, Michael M.; Rosen, Lee J.; Christie, Gervase Maxwell; Wilson, Jamie R.; Kosowski, Lawrence W.; Robinson, Charles

    2016-01-19

    A method and apparatus for producing heat used in a synthesis gas production process is provided. The disclosed method and apparatus include a plurality of tubular oxygen transport membrane elements adapted to separate oxygen from an oxygen containing stream contacting the retentate side of the membrane elements. The permeated oxygen is combusted with a hydrogen containing synthesis gas stream contacting the permeate side of the tubular oxygen transport membrane elements thereby generating a reaction product stream and radiant heat. The present method and apparatus also includes at least one catalytic reactor containing a catalyst to promote the steam reforming reaction wherein the catalytic reactor is surrounded by the plurality of tubular oxygen transport membrane elements. The view factor between the catalytic reactor and the plurality of tubular oxygen transport membrane elements radiating heat to the catalytic reactor is greater than or equal to 0.5

  9. Deposition of polymeric perfluored thin films in proton ionic membranes by plasma processes

    International Nuclear Information System (INIS)

    Polak, Peter Lubomir; Mousinho, Ana Paula; Ordonez, Nelson; Silva Zambom, Luis da; Mansano, Ronaldo Domingues

    2007-01-01

    In this work the surfaces of polymeric membranes based on Nafion (proton conducting material), used in proton exchange membranes fuel cells (PEMFC) had been modified by plasma deposition of perfluored polymers, in order to improve its functioning in systems of energy generation (fuel cells). The deposition increases the chemical resistance of the proton ionic polymers without losing the electrical properties. The processing of the membranes also reduces the permeability of the membranes to the alcohols (methanol and ethanol), thus preventing poisoning of the fuel cell. The processing of the membranes of Nafion was carried through in a system of plasma deposition using a mixture of CF 4 and H 2 gases. The plasma processing was made mainly to increase the chemical resistance and result in hydrophobic surfaces. The Fourier transformed infrared (FTIR) technique supplies a spectrum with information about the CF n bond formation. Through the Rutherford back scattering (RBS) technique it was possible to verify the deposition rate of the polymeric layer. The plasma process with composition of 60% of CF 4 and 40% of H 2 presented the best deposition rate. By the spectrum analysis for the optimized configuration, it was possible to verify that the film deposition occurred with a thickness of 90 nm, and fluorine concentration was nearly 30%. Voltammetry made possible to verify that the fluorination increases the membranes chemical resistance, improving the stability of Nafion, becoming an attractive process for construction of fuel cells

  10. Liquid membranes and process for uranium recovery therewith

    International Nuclear Information System (INIS)

    Frankenfeld, J.W.; Li, N.N.T.; Bruncati, R.L.

    1981-01-01

    A liquid membrane system consisting of water-in-oil type emulsions dispersed in water, which is capable of extracting uranium-containing ions from an aqueous feed solution containing uranium ions at a temperature in the range of 25 0 C to 80 0 C, is described. The emulsion comprises an aqueous interior phase surrounded by a surfactant-containing exterior phase. The exterior phase is immiscible with the interior phase and comprises a transfer agent capable of transporting selectively the desired uranium-containing ions and a solvent for the transfer agent. The interior phase comprises a reactant capable of removing uranium-containing ions from the transfer agent and capable of changing the valency of the uranium in uranium-containing ions to a second valency state and converting the uranium-containing ions into a nonpermeable form. (U.K.)

  11. Colloidal processing of porous membranes for biogas lighting

    International Nuclear Information System (INIS)

    Santos, S.C.; Mello-Castanho, S.R.H.

    2011-01-01

    Nowadays the urban garbage is a great economic and environmental challenge in the whole world. Solid wastes stored in continuous form in landfills are subject of natural variables, transforming them (by bioconversion) in biogas which can be used as energy font in many applications as urban lighting. However, technology to produce it has not been stabilized in Brazil yet. So, in this work porous membranes of rare earth -yttria concentrate (Ctr-Y) with potential to be used as biogas mantles were produced by replica method. The effect of solids and binder concentration on rheological behavior of Ctr-Y suspensions were evaluated by flux curves. According to the results, suspensions with 25vol% and 0,2wt% of CMC showed adequated viscosity and rheological behavior (thixotropy) for replica method. Sintered samples presented the same morphology of template and good handle strength. (author)

  12. Recent Advances in the Fabrication of Membranes Containing “Ion Pairs” for Nanofiltration Processes

    Directory of Open Access Journals (Sweden)

    Yan-Li Ji

    2017-12-01

    Full Text Available In the face of serious environmental pollution and water scarcity problems, the membrane separation technique, especially high efficiency, low energy consumption, and environmental friendly nanofiltration, has been quickly developed. Separation membranes with high permeability, good selectivity, and strong antifouling properties are critical for water treatment and green chemical processing. In recent years, researchers have paid more and more attention to the development of high performance nanofiltration membranes containing “ion pairs”. In this review, the effects of “ion pairs” characteristics, such as the super-hydrophilicity, controllable charge character, and antifouling property, on nanofiltration performances are discussed. A systematic survey was carried out on the various approaches and multiple regulation factors in the fabrication of polyelectrolyte complex membranes, zwitterionic membranes, and charged mosaic membranes, respectively. The mass transport behavior and antifouling mechanism of the membranes with “ion pairs” are also discussed. Finally, we present a brief perspective on the future development of advanced nanofiltration membranes with “ion pairs”.

  13. Experimental Validation of Hybrid Distillation-Vapor Permeation Process for Energy Efficient Ethanol-Water Separation

    Science.gov (United States)

    The energy demand of distillation-based systems for ethanol recovery and dehydration can be significant, particularly for dilute solutions. An alternative separation process integrating vapor stripping with a vapor compression step and a vapor permeation membrane separation step,...

  14. Micro-Processes of Employees in a Hybrid Organization

    DEFF Research Database (Denmark)

    Svenningsen, Virginie; Boxenbaum, Eva; Ravasi, Davide

    actors engaged in the energy transition. We draw on the literature on institutional logics and hybrid organizations to examine how employees of this French energy corporation deal with this institutionally complex environment. Our findings point to three strategies that individuals use to cope......The present article examines how employees cope with an organizational setting that is institutionally complex. The empirical setting is a French energy corporation that simultaneously pursues a logic of science and a logic of market through multiple research partnerships with public and private...

  15. Ozone and membrane filtration based strategies for the treatment of cork processing wastewaters

    Energy Technology Data Exchange (ETDEWEB)

    Benitez, F. Javier [Departamento de Ingenieria Quimica, Universidad de Extremadura, 06071 Badajoz (Spain)], E-mail: javben@unex.es; Acero, Juan L.; Leal, Ana I.; Real, Francisco J. [Departamento de Ingenieria Quimica, Universidad de Extremadura, 06071 Badajoz (Spain)

    2008-03-21

    The degradation of the pollutant organic matter present in the cork processing wastewater was studied by combining chemical treatments, which used ozone and some Advanced Oxidation Processes, and membrane filtration procedures. Two schemes were conducted: firstly, a single ozonation stage followed by an UF stage; and secondly, a membrane filtration stage, using different MF and UF membranes, followed by a chemical oxidation stage, where ozone, UV radiation, and the AOPs constituted by ozone plus UV radiation and ozone plus hydrogen peroxide, were used. The membrane filtration stages were carried out in tangential filtration laboratory equipment, and the membranes used were two MF membranes with pores sizes of 0.65 and 0.1 {mu}m, and three UF membranes with molecular weights cut-off of 300, 10, and 5 kDa. The effectiveness of the different stages (conversions in the chemical procedures and rejection coefficients in the membrane processes) were evaluated in terms of several parameters which measure the global pollutant content of the wastewater: COD, absorbance at 254 nm, tannins content, color, and ellagic acid. In the ozonation/UF combined process the following removals were achieved: 100% for ellagic acid and color, 90% for absorbance at 254 nm, more than 80% for tannins, and 42-57% for COD reduction. In the filtration/chemical oxidation combined process, 100% elimination of ellagic acid, more than 90% elimination in color, absorbance at 254 nm and tannins, and removal higher than 80% in COD were reached, which indicates a greater purification power of this combination.

  16. Analysis the parameters of seed quality in ns sunflower hybrid after processing in gravity separator

    Directory of Open Access Journals (Sweden)

    Jokić Goran

    2016-01-01

    Full Text Available This paper analyzed the processed seed of five sunflower hybrid seed developed at the Institute of Field and Vegetable Crops in Novi Sad before and after processing in gravity separator. The cultivars were Pegaz, Duško, NS Fantazija, Sumo 1 PR and NS Oskar. The analysis was conducted on seed lots processed in 2015 and involved the following parameters: seed purity percentage, 1.000-seed weight, germination energy, germination, seed moisture, number of sclerotinia per 1.000. The results showed that all the parameters of seed quality of sunflower hybrids were better after processing seeds in the gravity separator.

  17. Synthesis and electrochemical characterization of hybrid membrane Nafion-SiO2 for application as polymer electrolyte in PEM fuel cell

    International Nuclear Information System (INIS)

    Dresch, Mauro Andre

    2009-01-01

    In this work, the effect of sol-gel synthesis parameters on the preparation and polarization response of Nafion-SiO 2 hybrids as electrolytes for proton exchange membrane fuel cells (PEMFC) operating at high temperatures (130 degree C) was evaluated. The inorganic phase was incorporated in a Nafion matrix with the following purposes: to improve the Nafion water uptake at high temperatures (> 100 degree C); to increase the mechanical strength of Nafion and; to accelerate the electrode reactions. The hybrids were prepared by an in-situ incorporation of silica into commercial Nafion membranes using an acid-catalyzed sol-gel route. The effects of synthesis parameters, such as catalyst concentration, sol-gel solvent, temperature and time of both hydrolysis and condensation reactions, and silicon precursor concentration (Tetraethyl orthosilicate - TEOS), were evaluated as a function on the incorporation degree and polarization response. Nafion-SiO 2 hybrids were characterized by gravimetry, thermogravimetric analysis (TGA), scanning electron microscopy and X-ray dispersive energy (SEM-EDS), electrochemical impedance spectroscopy (EIS), and X-ray small angle scattering (SAXS). The hybrids were tested as electrolyte in single H 2 /O 2 fuel cells in the temperature range of 80 - 130 degree C and at 130 degree C and reduced relative humidity (75% and 50%). Summarily, the hybrid performance showed to be strongly dependent on the synthesis parameters, mainly, the type of alcohol and the TEOS concentration. (author)

  18. Microfiltration Process by Inorganic Membranes for Clarification of TongBi Liquor

    Directory of Open Access Journals (Sweden)

    Minyan Huang

    2012-02-01

    Full Text Available Membrane separation is an alternative separation technology to the conventional method of filtration. Hence, it has attracted use in the purification and concentration of Chinese Herbal Medicine Extracts (CHMEs. The purpose of this work was to study the process of microfiltration of Tongbi liquor (TBL, a popular Chinese herbal drink, using ceramic membranes. Zirconium oxide and aluminum oxide membranes with pore mean sizes of 0.2 μm and 0.05 μm, respectively, are used for comparisons in terms of flux, transmittance of the ingredients, physical-chemical parameters, removal of macromolecular materials and fouling resistance. The results show that 0.2 μm zirconium oxide membrane is more suitable. The stable permeate flux reaches 135 L·h−1·m−2, the cumulative transmittance of the indicator is 65.53%. Macromolecular materials, such as starch, protein, tannin, pectin and total solids were largely eliminated in retentate after filtration using 0.2 μm ZrO2 ceramic membrane, resulting in clearer TBL. Moreover, this work also reveals that continuous ultrasound could strengthen membrane process that the permeate flux increases significantly. This work demonstrates that the purification of CHME with ceramic membranes is possible and yielded excellent results.

  19. Polymeric Nanocomposite Membranes for Next Generation Pervaporation Process: Strategies, Challenges and Future Prospects.

    Science.gov (United States)

    Roy, Sagar; Singha, Nayan Ranjan

    2017-09-08

    Pervaporation (PV) has been considered as one of the most active and promising areas in membrane technologies in separating close boiling or azeotropic liquid mixtures, heat sensitive biomaterials, water or organics from its mixtures that are indispensable constituents for various important chemical and bio-separations. In the PV process, the membrane plays the most pivotal role and is of paramount importance in governing the overall efficiency. This article evaluates and collaborates the current research towards the development of next generation nanomaterials (NMs) and embedded polymeric membranes with regard to its synthesis, fabrication and application strategies, challenges and future prospects.

  20. Polymeric Nanocomposite Membranes for Next Generation Pervaporation Process: Strategies, Challenges and Future Prospects

    Directory of Open Access Journals (Sweden)

    Sagar Roy

    2017-09-01

    Full Text Available Pervaporation (PV has been considered as one of the most active and promising areas in membrane technologies in separating close boiling or azeotropic liquid mixtures, heat sensitive biomaterials, water or organics from its mixtures that are indispensable constituents for various important chemical and bio-separations. In the PV process, the membrane plays the most pivotal role and is of paramount importance in governing the overall efficiency. This article evaluates and collaborates the current research towards the development of next generation nanomaterials (NMs and embedded polymeric membranes with regard to its synthesis, fabrication and application strategies, challenges and future prospects.

  1. On controllability of an integrated bioreactor and periodically operated membrane separation process

    DEFF Research Database (Denmark)

    Prado Rubio, Oscar Andres; Jørgensen, Sten Bay; Jonsson, Gunnar Eigil

    the influence of membrane fouling. Previously, the REED and fermentation processes have been modeled and investigated separately (Prado- Rubio et al., 2011a; Boonmee, 2003). Additionally, a simple quasi-sequential strategy for integrated process design and control structure development has been proposed (Prado...... to understand the controlled operation of the integrated process, it is convenient to use a model based approach supported by experimental evidence. Recently, an integrated bioreactor and electrically driven membrane separation process (Reverse Electro- Enhanced Dialysis - REED) has been proposed as a method...... at a certain lactate concentration level. Hence, productivity can be enhanced by the in situ lactate removal from the cultivation broth during pH controlled fermentation. This can be done by means of ion exchange membranes and electrical potential gradients. The novelty of the integrated process lies...

  2. Fatty acid composition of maize germ oil from high-oil hybrids wet-milling processing

    Directory of Open Access Journals (Sweden)

    Jovanović Petar Lj.

    2005-01-01

    Full Text Available Maize germ was obtained by wet-milling laboratory processing of domestic high-oil maize hybrids. After separation, the germ was subjected to extraction of maize oil. Fatty acid composition of maize germ oil was determined by gas chromatography. The results showed very high levels of unsaturated fatty acids and a constant sum of oleic and linoleic acids in oils of different maize hybrids.

  3. Novel Zeolitic Imidazolate Framework/Polymer Membranes for Hydrogen Separations in Coal Processing

    Energy Technology Data Exchange (ETDEWEB)

    Musselman, Inga H.

    2013-01-31

    Nanoparticles of zeolitic imidazolate frameworks and other related hybrid materials were prepared by modifying published synthesis procedures by introducing bases, changing stoichiometric ratios, or adjusting reaction conditions. These materials were stable at temperatures >300 °C and were compatible with the polymer matrices used to prepare mixed-matrix membranes (MMMs). MMMs tested at 300 °C exhibited a >30 fold increase in permeability, compared to those measured at 35 °C, while maintaining H{sub 2}/CO{sub 2} selectivity. Measurements at high pressure (up to 30 atm) and high temperature (up to 300 °C) resulted in an increase in gas flux across the membrane with retention of selectivity. No variations in permeability were observed at high pressures at either 35 or 300 °C. CO{sub 2}-induced plasticization was not observed for Matrimid®, VTEC, and PBI polymers or their MMMs at 30 atm and 300 °C. Membrane surface modification by cross-linking with ethylenediamine resulted in an increase in H{sub 2}/CO{sub 2} selectivity at 35 °C. Spectrometric analysis showed that the cross-linking was effective to temperatures <150 °C. At higher temperatures, the cross-linked membranes exhibit a H2/CO2 selectivity similar to the uncrosslinked polymer.

  4. A continuous membrane microbioreactor system for development of integrated pectin modification and separation processes

    DEFF Research Database (Denmark)

    Zainal Alam, Muhd Nazrul Hisham Bin; Pinelo, Manuel; Samanta, Kama

    2011-01-01

    present a continuous membrane microbioreactor prototype for development of enzyme catalyzed degradation of pectin. Membrane reactors are becoming increasingly important for the novel ‘biorefining’ type of processes that either require product removal to avoid product inhibition or rest on partial...... hydrolysis of the substrate to obtain e.g. value-added oligosaccharides from complex biopolymers. The microbioreactor prototype was fabricated from poly(methylmethacrylate) (PMMA) and poly(dimethylsiloxane) (PDMS) and designed as a loop reactor (working volume approximately 190μL) integrated...... with a regenerated cellulose membrane for separation of low molecular weight products. The main technical considerations and challenges related to establishing the continuous membrane microbioreactor are discussed. The workability of the prototype was validated by comparing the process data at microscale to those...

  5. Gamma radiation grafting process for preparing separator membranes for electrochemical cells

    International Nuclear Information System (INIS)

    Agostino, V.F. D'; Lee, J.Y.

    1982-01-01

    An irradiation grafting process for preparing separator membranes for use in electrochemical cells, comprises contacting a polymeric base film with an aqueous solution of a hydrophilic monomer and a polymerization retardant; and irradiating said contacted film to form a graft membrane having low electrical resistivity and having monomer molecules uniformly grafted thereon. In the examples (meth) acrylic acid is grafted on to polyethylene, polypropylene and polytetrafluoroethylene in the presence of ferrous sulphate or cupric sulphate as polymerization retardants. (author)

  6. Regulation of transport processes across the tonoplast membrane

    Directory of Open Access Journals (Sweden)

    Oliver eTrentmann

    2014-09-01

    Full Text Available In plants, the vacuole builds up the cellular turgor and represents an important component in cellular responses to diverse stress stimuli. Rapid volume changes of cells, particularly of motor cells, like guard cells, are caused by variation of osmolytes and consequently of the water contents in the vacuole. Moreover, directed solute uptake into or release out of the large central vacuole allows adaptation of cytosolic metabolite levels according to the current physiological requirements and specific cellular demands. Therefore, solute passage across the vacuolar membrane, the tonoplast, has to be tightly regulated. Important principles in vacuolar transport regulation are changes of tonoplast transport protein abundances by differential expression of genes or changes of their activities, e.g. due to post-translational modification or by interacting proteins. Because vacuolar transport is in most cases driven by an electro-chemical gradient altered activities of tonoplast proton pumps significantly influence vacuolar transport capacities. Intense studies on individual tonoplast proteins but also unbiased system biological approaches have provided important insights into the regulation of vacuolar transport. This short review refers to selected examples of tonoplast proteins and their regulation, with special focus on protein phosphorylation.

  7. The feasibility of nanofiltration membrane bioreactor (NF-MBR)+reverse osmosis (RO) process for water reclamation: Comparison with ultrafiltration membrane bioreactor (UF-MBR)+RO process.

    Science.gov (United States)

    Tay, Ming Feng; Liu, Chang; Cornelissen, Emile R; Wu, Bing; Chong, Tzyy Haur

    2018-02-01

    This study examines the feasibility of a novel nanofiltration membrane bioreactor (NF-MBR) followed by reverse osmosis (RO) process for water reclamation at 90% recovery and using an ultrafiltration MBR (UF-MBR)+RO as baseline for comparison. Both MBRs adopted the same external hollow fiber membrane configurations and operating conditions. The collected permeates of the MBRs were subsequently fed to the respective RO systems. The results showed that the NF-MBR (operated at a constant flux of 10 L/m 2 h) achieved superior MBR permeate quality due to enhanced biodegradation and high rejection capacity of the NF membrane, leading to lower RO fouling rates (∼3.3 times) as compared to the UF-MBR. Further analysis indicated that the cake layer fouling that caused the cake-enhanced osmotic pressure (CEOP) effect contributed predominantly to the transmembrane pressure (TMP) increase in the NF-MBR, while irreversible pore fouling was the major reason for UF membrane fouling. Furthermore, it was found that the biopolymers (i.e., organics with MW > 10 kDa) were the main components present in the foulants of the NF/UF membranes and RO membranes. The analysis indicated that the NF-MBR + RO system at recovery of 90% has comparable energy consumption as the UF-MBR + RO system at recovery of 75%. Our findings proved the feasibility of the NF-MBR + RO for water reclamation at a high recovery rate. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Modeling of air-gap membrane distillation process: A theoretical and experimental study

    KAUST Repository

    Alsaadi, Ahmad Salem

    2013-06-03

    A one dimensional (1-D) air gap membrane distillation (AGMD) model for flat sheet type modules has been developed. This model is based on mathematical equations that describe the heat and mass transfer mechanisms of a single-stage AGMD process. It can simulate AGMD modules in both co-current and counter-current flow regimes. The theoretical model was validated using AGMD experimental data obtained under different operating conditions and parameters. The predicted water vapor flux was compared to the flux measured at five different feed water temperatures, two different feed water salinities, three different air gap widths and two MD membranes with different average pore sizes. This comparison showed that the model flux predictions are strongly correlated with the experimental data, with model predictions being within +10% of the experimentally determined values. The model was then used to study and analyze the parameters that have significant effect on scaling-up the AGMD process such as the effect of increasing the membrane length, and feed and coolant flow rates. The model was also used to analyze the maximum thermal efficiency of the AGMD process by tracing changes in water production rate and the heat input to the process along the membrane length. This was used to understand the gain in both process production and thermal efficiency for different membrane surface areas and the resultant increases in process capital and water unit cost. © 2013 Elsevier B.V.

  9. Process design analyses of co/sub 2/ capture from natural gas by polymer membrane

    Energy Technology Data Exchange (ETDEWEB)

    Hussain, A.; Nasir, H.; Ahsan, M. [National Univ. of Science and Technology, Islamabad (Pakistan). Dept. of Chemical Engineering

    2014-06-15

    Membrane-based natural gas separation has become one of the promising technologies due to its compactness, energy efficiency, environment friendliness and economic advantages. In this work, a three stage membrane process for the separation of CO/sub 2//CH/sub 4/ is proposed based on a novel fixed site carrier membrane which has the potential to meet the CO/sub 2//CH/sub 4/ separation and durability requirement. A simulation analysis, which utilizes the Aspen Hysys capabilities to calculate and couple energy balances in the process model, has been conducted to investigate the effect of process parameters on the gas processing cost. Two different natural gas mixtures containing 9.5% and 2.9% CO/sub 2/ have been simulated for various process conditions. This fixed site carrier membrane performs well when wetted with water. Therefore, natural gas feed streams are saturated with water. It is evident from the analysis that it is possible to maintain 2% CO/sub 2/ in retentate and methane loss in permeate below 2% by optimizing the process conditions. The analysis shows that fixed site carrier membrane offers a viable solution for natural gas sweetening. (author)

  10. Process design analyses of co/sub 2/ capture from natural gas by polymer membrane

    International Nuclear Information System (INIS)

    Hussain, A.; Nasir, H.; Ahsan, M.

    2014-01-01

    Membrane-based natural gas separation has become one of the promising technologies due to its compactness, energy efficiency, environment friendliness and economic advantages. In this work, a three stage membrane process for the separation of CO/sub 2//CH/sub 4/ is proposed based on a novel fixed site carrier membrane which has the potential to meet the CO/sub 2//CH/sub 4/ separation and durability requirement. A simulation analysis, which utilizes the Aspen Hysys capabilities to calculate and couple energy balances in the process model, has been conducted to investigate the effect of process parameters on the gas processing cost. Two different natural gas mixtures containing 9.5% and 2.9% CO/sub 2/ have been simulated for various process conditions. This fixed site carrier membrane performs well when wetted with water. Therefore, natural gas feed streams are saturated with water. It is evident from the analysis that it is possible to maintain 2% CO/sub 2/ in retentate and methane loss in permeate below 2% by optimizing the process conditions. The analysis shows that fixed site carrier membrane offers a viable solution for natural gas sweetening. (author)

  11. Research on the experiment of reservoir water treatment applying ultrafiltration membrane technology of different processes.

    Science.gov (United States)

    Zhang, Liyong; Zhang, Penghui; Wang, Meng; Yang, Kai; Liu, Junliang

    2016-09-01

    The processes and effects of coagulation-ultrafiltration (C-UF) and coagulation sedimentation-ultrafiltration (CS-UF) process used in the treatment of Dalangdian Reservoir water were compared. The experiment data indicated that 99% of turbidity removal and basically 100% of microorganism and algae removal were achieved in both C-UF and CS-UF process. The organic removal effect of CS-UF? process was slightly better than C-UF process. However, the organic removal effect under different processes was not obvious due to limitation of ultrafiltration membrane aperture. Polyaluminium chloride was taken as a coagulant in water plant. The aluminum ion removal result revealed that coagulant dosage was effectively saved by using membrane technology during megathermal high algae laden period. Within the range of certain reagent concentration and soaking time, air-water backwashing of every filtration cycle of membrane was conducted to effectively reduce membrane pollution. Besides, maintenance cleaning was conducted every 60 min. whether or not restorative cleaning was conducted depends on the pollution extent. After cleaning, recovery of membrane filtration effect was obvious.

  12. Smart coating process of proton-exchange membrane for polymer electrolyte fuel cell

    International Nuclear Information System (INIS)

    Leu, Hoang-Jyh; Chiu, Kuo-Feng; Lin, Chiu-Yue

    2013-01-01

    Highlights: ► Using oxygen plasma and smart coating technique for membrane modification. ► Oxygen plasma treatment can increase the reaction area of the membrane. ► AFM, SEM, FT-IR, XPS, EIS spectra can prove the surface treatment process. ► Nafion membrane modification can reduce Rct and enhance current density. - Abstract: The interfaces of electrolyte|catalyst|electrode play an important role in the performance of proton-exchange membrane fuel cells (PEMFCs). Increasing the interface effective area and lowering the charge transfer resistance of the interface are significant issues to promote the cell performance. In this study, oxygen plasma treatment was used to increase the surface roughness of Nafion®117 membrane, and then a smart coating process was applied to fabricate the initial Pt/C catalyst layer, which served to reduce the charge transfer resistance of the interface. The morphology and surface characteristics of membranes have been qualified by scanning electron microscopy, atomic force microscopy and X-ray photoelectron spectroscopy. These results show that the plasma treatments and smart coating processes were effective in reducing the interface charge transfer resistance. At optimal condition, the interface charge transfer resistance was 0.45 Ω/cm 2 which was 1–2 order less than the untreated ones

  13. In-situ Non-destructive Studies on Biofouling Processes in Reverse Osmosis Membrane Systems

    KAUST Repository

    Farhat, Nadia

    2016-12-01

    Reverse osmosis (RO) and nanofiltration (NF) membrane systems are high-pressure membrane filtration processes that can produce high quality drinking water. Biofouling, biofilm formation that exceeds a certain threshold, is a major problem in spiral wound RO and NF membrane systems resulting in a decline in membrane performance, produced water quality, and quantity. In practice, detection of biofouling is typically done indirectly through measurements of performance decline. Existing direct biofouling detection methods are mainly destructive, such as membrane autopsies, where biofilm samples can be contaminated, damaged and resulting in biofilm structural changes. The objective of this study was to test whether transparent luminescent planar oxygen sensing optodes, in combination with a simple imaging system, can be used for in-situ, non-destructive biofouling characterization. Aspects of the study were early detection of biofouling, biofilm spatial patterning in spacer filled channels, and the effect of feed cross-flow velocity, and feed flow temperature. Oxygen sensing optode imaging was found suitable for studying biofilm processes and gave detailed spatial and quantitative biofilm development information enabling better understanding of the biofouling development process. The outcome of this study attests the importance of in-situ, non-destructive imaging in acquiring detailed knowledge on biofilm development in membrane systems contributing to the development of effective biofouling control strategies.

  14. Excellent electrochemical performance of graphene-silver nanoparticle hybrids prepared using a microwave spark assistance process

    International Nuclear Information System (INIS)

    Shanmugharaj, A.M.; Ryu, Sung Hun

    2012-01-01

    Highlights: ► A simple synthesis route is explored in preparing graphene-metal nanoparticle hybrids using cost effective microwave radiation process. ► Electrochemical performance of the synthesized graphene-silver nanoparticle hybrids have been compared with graphite and silver nanoparticle based anode materials. ► Graphene-silver nanoparticle hybrid exhibits stable charge/discharge characteristics of 714 mAh g −1 and it is significantly higher compared to natural graphite and silver based electrodes. - Abstract: A simple method is described for the synthesis of graphene-silver nanoparticle hybrids from graphite and silver precursors using microwave spark ignition process. Adding ecofriendly free radical initiators, in the presence of hydrogen peroxide solution leads to the expansion of graphite to graphene nanosheets. Simultaneously, silver ions intercalated between the graphene layers are reduced to silver nanocrystals leading to the development of graphene-silver nanoparticle hybrids. Transmission electron microscopic (TEM) studies reveal the successful formation of graphene-silver nanoparticle hybrids. X-ray diffraction (XRD) shows that the silver nanoparticles formed on the graphene surfaces are face centered cubic crystals. The surface composition and functional groups present on the graphene-silver nanoparticle hybrids are corroborated using X-ray photoelectron spectroscopy (XPS) and Fourier Transform Infrared Spectroscopy (FT-IR). The lithium storage capacity of the synthesized material, when used as an anode material for rechargeable lithium secondary batteries is investigated. Its first specific discharge capacity is observed to be 580 mAh g −1 and this has been increased to 827 mAh g −1 , by incorporating the silver nanoparticles between the graphene platelets. The reversible capacity of the graphene-silver nanoparticle hybrids is observed to be 714 mAh g −1 , which is significantly higher compared to that of graphene (420 mAh g −1

  15. Thermodynamic and chemical engineering problems arising with hybride processes

    International Nuclear Information System (INIS)

    Hunsaenger, K.

    1981-01-01

    Marginal parameters and definitions are set up for the NaK-NaKH cyclic process, the vapour-phase electrolysis on the basis of carbonates, high-temperature electrolysis using borax, the HCl/NaLiNO 3 cyclic process and the methane/methanol cyclic process. Such parameters and definitions are to create uniform conditions for the process design. (DG) [de

  16. Electrolytic process to produce sodium hypochlorite using sodium ion conductive ceramic membranes

    Science.gov (United States)

    Balagopal, Shekar; Malhotra, Vinod; Pendleton, Justin; Reid, Kathy Jo

    2012-09-18

    An electrochemical process for the production of sodium hypochlorite is disclosed. The process may potentially be used to produce sodium hypochlorite from seawater or low purity un-softened or NaCl-based salt solutions. The process utilizes a sodium ion conductive ceramic membrane, such as membranes based on NASICON-type materials, in an electrolytic cell. In the process, water is reduced at a cathode to form hydroxyl ions and hydrogen gas. Chloride ions from a sodium chloride solution are oxidized in the anolyte compartment to produce chlorine gas which reacts with water to produce hypochlorous and hydrochloric acid. Sodium ions are transported from the anolyte compartment to the catholyte compartment across the sodium ion conductive ceramic membrane. Sodium hydroxide is transported from the catholyte compartment to the anolyte compartment to produce sodium hypochlorite within the anolyte compartment.

  17. Hybrid Tooling: A Review of Process Chains for Tooling Microfabrication within 4M

    DEFF Research Database (Denmark)

    Azcarate, Sabino; Uriarte, Luis; Bigot, Samuel

    2006-01-01

    is introduced. Several examples of ‘hybrid tooling’ within 4M partners are presented. Considered materials are nickel for electroforming, stainless steel for ECF, and tool steel for the other processes. The paper results provide a global comparison between the previously mentioned processes, the current...... limitations of these technologies concerning feature sizes, surface finish, aspect ratios, etc. have been identified. The main conclusion drawn is the imperative requirement to combine individual processes (‘hybrid tooling’) to produce mould inserts required outside research laboratories....

  18. Active liquid treatment by a combination of precipitation and membrane processes

    International Nuclear Information System (INIS)

    Gutman, R.G.; Cumming, I.W.; Williams, G.H.

    1986-08-01

    New ultrafiltration processes developed for the treatment of low and medium active radioactive wastes, were applied successfully to a variety of simulated and real wastes, including magnesium alloy clad spent storage fuel pond waters, reprocessing plant solvent wash liquors, plutonium production effluents and mixed site effluents. After initial laboratory scale feasibility experiments the process was scaled up successfully, using a variety of different ultrafiltration modules. The information accumulated on membrane performance, membrane fouling and flux restoration techniques, and ancillary equipment performance was used to design a much larger demonstration pilot plant. This plant has been constructed and is now processing continuously each day over 1m 3 of a real radioactive effluent. (author)

  19. Impact of polymeric membrane filtration of oil sands process water on organic compounds quantification.

    Science.gov (United States)

    Moustafa, Ahmed M A; Kim, Eun-Sik; Alpatova, Alla; Sun, Nian; Smith, Scott; Kang, Seoktae; Gamal El-Din, Mohamed

    2014-01-01

    The interaction between organic fractions in oil sands process-affected water (OSPW) and three polymeric membranes with varying hydrophilicity (nylon, polyvinylidene fluoride and polytetrafluoroethylene) at different pHs was studied to evaluate the impact of filtration on the quantification of acid-extractable fraction (AEF) and naphthenic acids (NAs). Four functional groups predominated in OSPW (amine, phosphoryl, carboxyl and hydroxyl) as indicated by the linear programming method. The nylon membranes were the most hydrophilic and exhibited the lowest AEF removal at pH of 8.7. However, the adsorption of AEF on the membranes increased as the pH of OSPW decreased due to hydrophobic interactions between the membrane surfaces and the protonated molecules. The use of ultra pressure liquid chromatography-high resolution mass spectrometry (UPLC/HRMS) showed insignificant adsorption of NAs on the tested membranes at pH 8.7. However, 26±2.4% adsorption of NAs was observed at pH 5.3 following the protonation of NAs species. For the nylon membrane, excessive carboxylic acids in the commercial NAs caused the formation of negatively charged assisted hydrogen bonds, resulting in increased adsorption at pH 8.2 (25%) as compared to OSPW (0%). The use of membranes for filtration of soluble compounds from complex oily wastewaters before quantification analysis of AEF and NAs should be examined prior to application.

  20. Computational fluid dynamics simulations of membrane filtration process adapted for water treatment of aerated sewage lagoons.

    Science.gov (United States)

    Cano, Grégory; Mouahid, Adil; Carretier, Emilie; Guasp, Pascal; Dhaler, Didier; Castelas, Bernard; Moulin, Philippe

    2015-01-01

    The aim of this study is to apply the membrane bioreactor technology in an oxidation ditch in submerged conditions. This new wastewater filtration process will benefit rural areas (membranes developed without support are immersed in an aeration well and work in suction mode. The development of the membrane without support and more precisely the performance of spacers are approached by computational fluid dynamics in order to provide the best compromise between pressure drop/flow velocity and permeate flux. The numerical results on the layout and the membrane modules' geometry in the aeration well indicate that the optimal configuration is to install the membranes horizontally on three levels. Membranes should be connected to each other to a manifold providing a total membrane area of 18 m². Loss rate compared to the theoretical throughput is relatively low (less than 3%). Preliminary data obtained by modeling the lagoon provide access to its hydrodynamics, revealing that recirculation zones can be optimized by making changes in the operating conditions. The experimental validation of these results and taking into account the aeration in the numerical models are underway.

  1. Photostable bipolar fluorescent probe for video tracking plasma membranes related cellular processes.

    Science.gov (United States)

    Zhang, Xinfu; Wang, Chao; Jin, Liji; Han, Zhuo; Xiao, Yi

    2014-08-13

    Plasma membranes can sense the stimulations and transmit the signals from extracellular environment and then make further responses through changes in locations, shapes or morphologies. Common fluorescent membrane markers are not well suited for long time tracking due to their shorter retention time inside plasma membranes and/or their lower photostability. To this end, we develop a new bipolar marker, Mem-SQAC, which can stably insert into plasma membranes of different cells and exhibits a long retention time over 30 min. Mem-SQAC also inherits excellent photostability from the BODIPY dye family. Large two-photon absorption cross sections and long wavelength fluorescence emissions further enhance the competitiveness of Mem-SQAC as a membrane marker. By using Mem-SQAC, significant morphological changes of plasma membranes have been monitored during heavy metal poisoning and drug induced apoptosis of MCF-7 cells; the change tendencies are so distinctly different from each other that they can be used as indicators to distinguish different cell injuries. Further on, the complete processes of endocytosis toward Staphylococcus aureus and Escherichia coli by RAW 264.7 cells have been dynamically tracked. It is discovered that plasma membranes take quite different actions in response to the two bacteria, information unavailable in previous research reports.

  2. Experimental study of permeation and selectivity of zeolite membranes for tritium processes

    Energy Technology Data Exchange (ETDEWEB)

    Borisevich, Olga; Antunes, Rodrigo; Demange, David, E-mail: david.demange@kit.edu

    2015-10-15

    Highlights: • We report about new experimental results on advanced membranes for tritium processing especially for the DEMO breeding blanket. • High permeances are measured on different zeolite MFI membranes made by film deposition or pore plugging. • Selectivity for H{sub 2}/He is limited requiring a multi-stage membrane process. • Selectivity of H{sub 2}O/He seems high enough to operate one single module. - Abstract: Zeolites are known as tritium compatible inorganic materials widely used in packed beds as driers in detritiation systems and are also suggested for tritium removal from helium at cryogenic temperature. The Tritium Laboratory Karlsruhe (TLK) proposed a new fully continuous approach for tritium extraction from the solid breeding blanket of fusion machines that improves the overall tritium management and minimizes both the tritium inventory and processing time. It is based on membrane permeation as a pre-concentration stage upstream of a final tritium recovery stage using a catalytic Pd-based membrane reactor. Zeolite membranes were identified as the most promising candidates for the pre-concentration stage. In the present work the tubular zeolite MFI membrane provided by the Institute for Ceramic Technologies and Systems (IKTS, Hermsdorf, Germany) is studied to consolidate the proposed approach. The permeation measurements for single gases hydrogen (replacing radioactive tritium) and helium, for binary mixtures H{sub 2}/He and H{sub 2}O/He at different concentrations and temperatures are presented. The tested membrane demonstrates a high performance, almost independent from the inlet composition in the case of a gaseous mixture, while the transport in the presence of water vapour is strongly related to the temperature of the mixture and component concentrations.

  3. A sacrificial process for fabrication of biodegradable polymer membranes with submicron thickness.

    Science.gov (United States)

    Beardslee, Luke A; Stolwijk, Judith; Khaladj, Dimitrius A; Trebak, Mohamed; Halman, Justin; Torrejon, Karen Y; Niamsiri, Nuttawee; Bergkvist, Magnus

    2016-08-01

    A new sacrificial molding process using a single mask has been developed to fabricate ultrathin 2-dimensional membranes from several biocompatible polymeric materials. The fabrication process is similar to a sacrificial microelectromechanical systems (MEMS) process flow, where a mold is created from a material that can be coated with a biodegradable polymer and subsequently etched away, leaving behind a very thin polymer membrane. In this work, two different sacrificial mold materials, silicon dioxide (SiO2 ) and Liftoff Resist (LOR) were used. Three different biodegradable materials; polycaprolactone (PCL), poly(lactic-co-glycolic acid) (PLGA), and polyglycidyl methacrylate (PGMA), were chosen as model polymers. We demonstrate that this process is capable of fabricating 200-500 nm thin, through-hole polymer membranes with various geometries, pore-sizes and spatial features approaching 2.5 µm using a mold fabricated via a single contact photolithography exposure. In addition, the membranes can be mounted to support rings made from either SU8 or PCL for easy handling after release. Cell culture compatibility of the fabricated membranes was evaluated with human dermal microvascular endothelial cells (HDMECs) seeded onto the ultrathin porous membranes, where the cells grew and formed confluent layers with well-established cell-cell contacts. Furthermore, human trabecular meshwork cells (HTMCs) cultured on these scaffolds showed similar proliferation as on flat PCL substrates, further validating its compatibility. All together, these results demonstrated the feasibility of our sacrificial fabrication process to produce biocompatible, ultra-thin membranes with defined microstructures (i.e., pores) with the potential to be used as substrates for tissue engineering applications. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 1192-1201, 2016. © 2015 Wiley Periodicals, Inc.

  4. Sol-gel Process in Preparation of Organic-inorganic Hybrid Materials

    Directory of Open Access Journals (Sweden)

    Macan, J

    2008-07-01

    Full Text Available Organic-inorganic hybrid materials are a sort of nanostructured material in which the organic and inorganic phases are mixed at molecular level. The inorganic phase in hybrid materials is formed by the sol-gel process, which consists of reactions of hydrolysis and condensation of metal (usually silicon alkoxides. Flexibility of sol-gel process enables creation of hybrid materials with varying organic and inorganic phases in different ratios, and consequently fine-tuning of their properties. In order to obtain true hybrid materials, contact between the phases should be at molecular level, so phase separation between thermodynamically incompatible organic and inorganic phases has to be prevented. Phase interaction can be improved by formation of hydrogen or covalent bonds between them during preparation of hybrid materials. Covalent bond can be introduced by organically modified silicon alkoxides containing a reactive organic group (substituent capable of reacting with the organic phase. In order to obtain hybrid materials with desired structures, a detailed knowledge of hydrolysis and condensation mechanism is necessary. The choice of catalyst, whether acid or base, has the most significant influence on the structure of the inorganic phase. Other important parameters are alkoxide concentration, water: alkoxide ratio, type of alkoxide groups, solvent used, temperature, purity of chemicals used, etc. Hydrolysis and condensation of organically modified silicon alkoxides are additionally influenced by nature and size of the organic supstituent.

  5. Phosphate adsorption from wastewater using zirconium (IV) hydroxide: Kinetics, thermodynamics and membrane filtration adsorption hybrid system studies.

    Science.gov (United States)

    Johir, M A H; Pradhan, M; Loganathan, P; Kandasamy, J; Vigneswaran, S

    2016-02-01

    Excessive phosphate in wastewater should be removed to control eutrophication of water bodies. The potential of employing amorphous zirconium (Zr) hydroxide to remove phosphate from synthetic wastewater was studied in batch adsorption experiments and in a submerged membrane filtration adsorption hybrid (MFAH) reactor. The adsorption data satisfactorily fitted to Langmuir, pseudo-first order and pseudo-second order models. Langmuir adsorption maxima at 22 °C and pHs of 4.0, 7.1, and 10.0 were 30.40, 18.50, and 19.60 mg P/g, respectively. At pH 7.1 and temperatures of 40 °C and 60 °C, they were 43.80 and 54.60 mg P/g, respectively. The thermodynamic parameters, ΔG° and ΔS° were negative and ΔH° was positive. FTIR, zeta potential and competitive phosphate, sulphate and nitrate adsorption data showed that the mechanism of phosphate adsorption was inner-sphere complexation. In the submerged MFAH reactor experiment, when Zr hydroxide was added at doses of 1-5 g/L once only at the start of the experiment, the removal of phosphate from 3 L of wastewater containing 10 mg P/L declined after 5 h of operation. However, when Zr hydroxide was repeatedly added at 5 g/L dose every 24 h, satisfactory removal of phosphate was maintained for 3 days. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. A Hybrid FPGA/Coarse Parallel Processing Architecture for Multi-modal Visual Feature Descriptors

    DEFF Research Database (Denmark)

    Jensen, Lars Baunegaard With; Kjær-Nielsen, Anders; Alonso, Javier Díaz

    2008-01-01

    This paper describes the hybrid architecture developed for speeding up the processing of so-called multi-modal visual primitives which are sparse image descriptors extracted along contours. In the system, the first stages of visual processing are implemented on FPGAs due to their highly parallel...

  7. Long-term operation of oxygen-limiting membrane bioreactor (MBR) for the development of simultaneous partial nitrification, anammox and denitrification (SNAD) process.

    Science.gov (United States)

    Zhao, Chuanqi; Wang, Gang; Xu, Xiaochen; Yang, Yuesuo; Yang, Fenglin

    2017-07-18

    In this study, an oxygen-limiting membrane bioreactor (MBR) with recirculation of biogas for relieving membrane fouling was successfully operated to realize the simultaneous partial nitrification, anammox and denitrification (SNAD) process. The MBR operation was considered effective in the long-term test with total nitrogen (TN) and chemical oxygen demand (COD) removal efficiencies of 94.86% and 98.91%, respectively. Membrane fouling was significantly alleviated due to the recirculation of biogas and the membrane had been cleaned four times with a normal filtration period of 52 days. The co-existence of ammonia-oxidizing bacteria (AOB), anammox and denitrifying bacteria in MBR was confirmed by scanning electron microscopy (SEM) and fluorescence in situ hybridizations (FISH) analysis. Furthermore, AOB were found close to the granule surface, while denitrifying bacteria and anammox were in the deeper layer of granules. Potential in excellent TN and COD removal, operational stability and sustainability, as well as in alleviating membrane fouling is expected by using this oxygen-limiting MBR.

  8. Characteristics of Flux Decline in Forward Osmosis Process for Asymmetric Cellulose Membrane

    Energy Technology Data Exchange (ETDEWEB)

    Han, Myeong-Jin; Nam, Suk-Tae [Kyungil University, Gyeongsan (Korea, Republic of); Lee, Keun-Woo [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-06-15

    This study examined the effect of concentration polarization on permeate flux in forward osmosis (FO) membrane process for saline and sucrose solution. The reduction in permeate flux during the FO membrane process is largely due to the formation of concentration polarization on membrane surfaces. The flux reduction due to internal concentration polarization formed on the porous support layer was larger than that due to the external concentration polarization on the active membrane surface. Water permeate flux through the FO membrane increased nonlinearly with the increase in osmotic pressure. The water permeability coefficient was 1.8081x10{sup -7} m/s·atm for draw solution on active layer (DS-AL) mode and 1.0957-10{sup -7} m/s·atm for draw solution on support layer (DS-SL) mode in NaCl solution system. The corresponding membrane resistance was 5.5306x10{sup 6} and 9.1266x10{sup 6} s·atm/m, respectively. With respect to the sucrose solution, the permeate flux for DS-AL mode was 1.33-1.90 times higher than that for DS-SL mode. The corresponding variation in the permeation flux (J) due to osmotic pressure (π) would be expressed as J=-0.0177+0.4506π-0.0032π{sup 2} for the forward and J=0.0948+0.3292π-0.0037π{sup 2} for the latter.

  9. Recovery of Flavonoids from Orange Press Liquor by an Integrated Membrane Process

    Directory of Open Access Journals (Sweden)

    Alfredo Cassano

    2014-08-01

    Full Text Available Orange press liquor is a by-product generated by the citrus processing industry containing huge amounts of natural phenolic compounds with recognized antioxidant activity. In this work, an integrated membrane process for the recovery of flavonoids from orange press liquors was investigated on a laboratory scale. The liquor was previously clarified by ultrafiltration (UF in selected operating conditions by using hollow fiber polysulfone membranes. Then, the clarified liquor with a total soluble solids (TSS content of 10 g·100 g−1 was pre-concentrated by nanofiltration (NF up to 32 g TSS 100 g−1 by using a polyethersulfone spiral-wound membrane. A final concentration step, up to 47 g TSS 100 g−1, was performed by using an osmotic distillation (OD apparatus equipped with polypropylene hollow fiber membranes. Suspended solids were completely removed in the UF step producing a clarified liquor containing most part of the flavonoids of the original press liquor due to the low rejection of the UF membrane towards these compounds. Flavanones and anthocyanins were highly rejected by the NF membrane, producing a permeate stream with a TSS content of 4.5 g·100 g−1. An increasing of both the flavanones and anthocyanins concentration was observed in the NF retentate by increasing the volume reduction factor (VRF. The final concentration of flavonoids by OD produced a concentrated solution of interest for nutraceutical and pharmaceutical applications.

  10. Recovery of flavonoids from orange press liquor by an integrated membrane process.

    Science.gov (United States)

    Cassano, Alfredo; Conidi, Carmela; Ruby-Figueroa, René

    2014-08-11

    Orange press liquor is a by-product generated by the citrus processing industry containing huge amounts of natural phenolic compounds with recognized antioxidant activity. In this work, an integrated membrane process for the recovery of flavonoids from orange press liquors was investigated on a laboratory scale. The liquor was previously clarified by ultrafiltration (UF) in selected operating conditions by using hollow fiber polysulfone membranes. Then, the clarified liquor with a total soluble solids (TSS) content of 10 g·100 g-1 was pre-concentrated by nanofiltration (NF) up to 32 g TSS 100 g-1 by using a polyethersulfone spiral-wound membrane. A final concentration step, up to 47 g TSS 100 g-1, was performed by using an osmotic distillation (OD) apparatus equipped with polypropylene hollow fiber membranes. Suspended solids were completely removed in the UF step producing a clarified liquor containing most part of the flavonoids of the original press liquor due to the low rejection of the UF membrane towards these compounds. Flavanones and anthocyanins were highly rejected by the NF membrane, producing a permeate stream with a TSS content of 4.5 g·100 g-1. An increasing of both the flavanones and anthocyanins concentration was observed in the NF retentate by increasing the volume reduction factor (VRF). The final concentration of flavonoids by OD produced a concentrated solution of interest for nutraceutical and pharmaceutical applications.

  11. Possible evidence that dehydroepiandrosterone sulfate (DHA-S) stimulates cervical ripening by a membrane-mediated process: Specific binding-sites in plasma membrane from human uterine cervix

    International Nuclear Information System (INIS)

    Ohno, T.; Imai, A.; Tamaya, T.

    1991-01-01

    Fetal adrenal steroid, dehydroepiandrosterone sulfate (DHA-S) is well known to promote cervical ripening in late pregnancy. The presence of sites specifically binding the DHA-S in plasma membrane was studied in human cervical fibroblasts prepared from pregnant uterus. The fibroblasts were incubated with 3 H DHA-S and then fractionated into plasma membranes, cytosol, nuclei, and other organella debris. The specific activity of 3H-count in the plasma membrane fraction was enriched ∼ 7-fold compared with the whole homogenate. When the isolated plasma membrane preparations from the fibroblasts were exposed to 3 H DHA-S, the binding showed saturation kinetics; an apparent equilibrium dissociation constant (Kd) of 12 nM, and the binding capacity (Bmax) of 1.25 pmol/mg protein. The present results suggest that DHA is bound to and recognized by components in plasma membrane, and may exert its action on cervical ripening through the membrane-mediated processes

  12. An adaptive deep-coupled GNSS/INS navigation system with hybrid pre-filter processing

    Science.gov (United States)

    Wu, Mouyan; Ding, Jicheng; Zhao, Lin; Kang, Yingyao; Luo, Zhibin

    2018-02-01

    The deep-coupling of a global navigation satellite system (GNSS) with an inertial navigation system (INS) can provide accurate and reliable navigation information. There are several kinds of deeply-coupled structures. These can be divided mainly into coherent and non-coherent pre-filter based structures, which have their own strong advantages and disadvantages, especially in accuracy and robustness. In this paper, the existing pre-filters of the deeply-coupled structures are analyzed and modified to improve them firstly. Then, an adaptive GNSS/INS deeply-coupled algorithm with hybrid pre-filters processing is proposed to combine the advantages of coherent and non-coherent structures. An adaptive hysteresis controller is designed to implement the hybrid pre-filters processing strategy. The simulation and vehicle test results show that the adaptive deeply-coupled algorithm with hybrid pre-filters processing can effectively improve navigation accuracy and robustness, especially in a GNSS-challenged environment.

  13. A highly sensitive hydrogen sensor with gas selectivity using a PMMA membrane-coated Pd nanoparticle/single-layer graphene hybrid.

    Science.gov (United States)

    Hong, Juree; Lee, Sanggeun; Seo, Jungmok; Pyo, Soonjae; Kim, Jongbaeg; Lee, Taeyoon

    2015-02-18

    A polymer membrane-coated palladium (Pd) nanoparticle (NP)/single-layer graphene (SLG) hybrid sensor was fabricated for highly sensitive hydrogen gas (H2) sensing with gas selectivity. Pd NPs were deposited on SLG via the galvanic displacement reaction between graphene-buffered copper (Cu) and Pd ion. During the galvanic displacement reaction, graphene was used as a buffer layer, which transports electrons from Cu for Pd to nucleate on the SLG surface. The deposited Pd NPs on the SLG surface were well-distributed with high uniformity and low defects. The Pd NP/SLG hybrid was then coated with polymer membrane layer for the selective filtration of H2. Because of the selective H2 filtration effect of the polymer membrane layer, the sensor had no responses to methane, carbon monoxide, or nitrogen dioxide gas. On the contrary, the PMMA/Pd NP/SLG hybrid sensor exhibited a good response to exposure to 2% H2: on average, 66.37% response within 1.81 min and recovery within 5.52 min. In addition, reliable and repeatable sensing behaviors were obtained when the sensor was exposed to different H2 concentrations ranging from 0.025 to 2%.

  14. Hybrid GaN LED with capillary-bonded II–VI MQW color-converting membrane for visible light communications

    International Nuclear Information System (INIS)

    Santos, Joao M M; Jones, Brynmor E; Schlosser, Peter J; Herrnsdorf, Johannes; Guilhabert, Benoit; McKendry, Jonathan J D; Hastie, Jennifer E; Laurand, Nicolas; Dawson, Martin D; Watson, Scott; Kelly, Anthony E; De Jesus, Joel; Garcia, Thor A; Tamargo, Maria C

    2015-01-01

    The rapid emergence of gallium-nitride (GaN) light-emitting diodes (LEDs) for solid-state lighting has created a timely opportunity for optical communications using visible light. One important challenge to address this opportunity is to extend the wavelength coverage of GaN LEDs without compromising their modulation properties. Here, a hybrid source for emission at 540 nm consisting of a 450 nm GaN micro-sized LED (micro-LED) with a micron-thick ZnCdSe/ZnCdMgSe multi-quantum-well color-converting membrane is reported. The membrane is liquid-capillary-bonded directly onto the sapphire window of the micro-LED for full hybridization. At an injection current of 100 mA, the color-converted power was found to be 37 μW. At this same current, the −3 dB optical modulation bandwidth of the bare GaN and hybrid micro-LEDs were 79 and 51 MHz, respectively. The intrinsic bandwidth of the color-converting membrane was found to be power-density independent over the range of the micro-LED operation at 145 MHz, which corresponds to a mean carrier lifetime of 1.9 ns. (paper)

  15. Physical chemistry and process engineering of an emulsion - membrane bioreactor

    NARCIS (Netherlands)

    Schroe͏̈n, K.

    1995-01-01

    Fatty acids (and glycerol) are produced by hydrolysis of fats and oils in counter-current fat- splitting columns which operate at a temperature of 200-240 °C and a pressure of 50-60 bar. Undesired side-products are formed during the process. These have to be removed in order to obtain an

  16. Chemical Vapor Deposition of Photocatalyst Nanoparticles on PVDF Membranes for Advanced Oxidation Processes

    Directory of Open Access Journals (Sweden)

    Giovanni De Filpo

    2018-06-01

    Full Text Available The chemical binding of photocatalytic materials, such as TiO2 and ZnO nanoparticles, onto porous polymer membranes requires a series of chemical reactions and long purification processes, which often result in small amounts of trapped nanoparticles with reduced photocatalytic activity. In this work, a chemical vapor deposition technique was investigated in order to allow the nucleation and growth of ZnO and TiO2 nanoparticles onto polyvinylidene difluoride (PVDF porous membranes for application in advanced oxidation processes. The thickness of obtained surface coatings by sputtered nanoparticles was found to depend on process conditions. The photocatalytic efficiency of sputtered membranes was tested against both a model drug and a model organic pollutant in a small continuous flow reactor.

  17. Recent developments in membrane-based separations in biotechnology processes: review.

    Science.gov (United States)

    Rathore, A S; Shirke, A

    2011-01-01

    Membrane-based separations are the most ubiquitous unit operations in biotech processes. There are several key reasons for this. First, they can be used with a large variety of applications including clarification, concentration, buffer exchange, purification, and sterilization. Second, they are available in a variety of formats, such as depth filtration, ultrafiltration, diafiltration, nanofiltration, reverse osmosis, and microfiltration. Third, they are simple to operate and are generally robust toward normal variations in feed material and operating parameters. Fourth, membrane-based separations typically require lower capital cost when compared to other processing options. As a result of these advantages, a typical biotech process has anywhere from 10 to 20 membrane-based separation steps. In this article we review the major developments that have occurred on this topic with a focus on developments in the last 5 years.

  18. Experimental elucidation on rate-determining process of water transport in polymer electrolyte fuel cell membrane by magnetic resonance imaging

    International Nuclear Information System (INIS)

    Takita, Shinpei; Tsushima, Shohji; Hirai, Shuichiro; Kubo, Norio; Aotani, Koichiro

    2007-01-01

    We examined rate-determining process of water transport in polymer electrolyte membrane (PEM) used in fuel cells by using magnetic resonance imaging (MRI). We measured transversal water content distributions of the membrane by MRI and through-plane mass flux of water by hygrometers. Through place water flux has taken place in the membrane when relative humidify of supplied gas is not equal in both side of the membrane. MRI results revealed that diffusion coefficient of water in the membrane increases with water content of membrane, λ, whilst it shows intensive peak at λ=3-4. Diffusion resistance and mass transfer resistance involving evaporation and condensation on the interface are almost in the same order and thus water transport process in the membrane is determined by either concentration diffusion or mass transfer, depending on water content of membrane. (author)

  19. Development and testing of a hybrid system with a sub-kW open-cathode type PEM (proton exchange membrane) fuel cell stack

    International Nuclear Information System (INIS)

    Huang, Zhen-Ming; Su, Ay; Liu, Ying-Chieh

    2014-01-01

    In this study, the performance of a polymer electrolyte membrane fuel cell stack has been evaluated for a hybrid power system test platform. To simulate vehicle acceleration, the stack was operated under dynamic-loading, and to demonstrate the exchange of power flow between two power sources the hybrid power system was tested under three different modes. A unit cell was fabricated for high stack performance and the stack was constructed with 18 open-cathode type fuel cells. Air which acts as a coolant as well as an oxidant for electrochemical reactions is provided by a pair of fans. The capabilities of the stack for hybrid power system test platform were validated by successful dynamic-loading tests. The performance of the stack for various air fan voltage was evaluated and an optimal value was concluded. The conditions like inlet temperature of H 2 and the stack current were established for maximum power. It was also found that humidification of hydrogen at anode inlet degrades the stack performance and stability due to flooding. Evidence shows that for the higher overall performance, the fuel cell acts continuously on constant current output. The study contributes to the design of mobility hybrid system to get better performance and reliability. - Highlights: • An open-cathode type PEMFC (polymer electrolyte membrane fuel cell) stack (rated output 300 W) was fabricated. • The open-cathode configuration simplifies the design of a stack system. • Assess the feasibility of combining a fuel cell stack in a hybrid system. • The study contributes to the design of mobility hybrid system to get better performance and reliability

  20. Application of Hybrid Genetic Algorithm Routine in Optimizing Food and Bioengineering Processes

    Directory of Open Access Journals (Sweden)

    Jaya Shankar Tumuluru

    2016-11-01

    Full Text Available Optimization is a crucial step in the analysis of experimental results. Deterministic methods only converge on local optimums and require exponentially more time as dimensionality increases. Stochastic algorithms are capable of efficiently searching the domain space; however convergence is not guaranteed. This article demonstrates the novelty of the hybrid genetic algorithm (HGA, which combines both stochastic and deterministic routines for improved optimization results. The new hybrid genetic algorithm developed is applied to the Ackley benchmark function as well as case studies in food, biofuel, and biotechnology processes. For each case study, the hybrid genetic algorithm found a better optimum candidate than reported by the sources. In the case of food processing, the hybrid genetic algorithm improved the anthocyanin yield by 6.44%. Optimization of bio-oil production using HGA resulted in a 5.06% higher yield. In the enzyme production process, HGA predicted a 0.39% higher xylanase yield. Hybridization of the genetic algorithm with a deterministic algorithm resulted in an improved optimum compared to statistical methods.

  1. Development of novel biocompatible hybrid nanocomposites based on polyurethane-silica prepared by sol gel process

    Energy Technology Data Exchange (ETDEWEB)

    Rashti, Ali [Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Yahyaei, Hossein [Department of Polymer Engineering and Color Technology, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Firoozi, Saman [Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Ramezani, Sara [Department of Neuroscience, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Rahiminejad, Ali [Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Karimi, Roya [Department of Tissue Engineering and Applied Cell Science, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Farzaneh, Khadijeh [Tehran Heart Center, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Mohseni, Mohsen [Department of Polymer Engineering and Color Technology, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Ghanbari, Hossein, E-mail: hghanbari@tums.ac.ir [Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Tehran Heart Center, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Medical Biomaterials Research Center, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of)

    2016-12-01

    Due to high biocompatibility, polyurethane has found many applications, particularly in development of biomedical devices. A new nanocomposite based on thermoset polyurethane and silica nanoparticles was synthesized using sol-gel method. Sol-gel process was fulfilled in two acidic and basic conditions by using tetraethylorthosilicate (TEOS) and trimethoxyisocyanatesilane as precursors. The hybrid films characterized for mechanical and surface properties using tensile strength, contact angle, ATR-FTIR and scanning electron microscopy. Biocompatibility and cytotoxicity of the hybrids were assessed using standard MTT, LDH and TUNEL assays. The results revealed that incorporation of silica nanoparticles was significantly improved tensile strength and mechanical properties of the hybrids. Based on the contact angle results, silica nanoparticles increased hydrophilicity of the hybrids. Biocompatibility by using human lung epithelial cell line (MRC-5) demonstrated that the hybrids were significantly less cytotoxic compared to pristine polymer as tested by MTT and LDH assays. TUNEL assay revealed no signs of apoptosis in all tested samples. The results of this study demonstrated that incorporation of silica nanoparticles into polyurethane lead to the enhancement of biocompatibility, indicating that these hybrids could potentially be used in biomedical field in particular as a new coating for medical implants. - Highlights: • Nanocomposites based on polyurethane and nanosilica prepared by sol-gel method fabricated • Addition of inorganic phase improved mechanical properties. • Nanosilica prepared by sol-gel method increased hydrophilicity. • By adding nanosilica to polyurethane biocompatibility increased significantly.

  2. Application of forward osmosis membrane technology for oil sands process-affected water desalination.

    Science.gov (United States)

    Jiang, Yaxin; Liang, Jiaming; Liu, Yang

    2016-01-01

    The extraction process used to obtain bitumen from the oil sands produces large volumes of oil sands process-affected water (OSPW). As a newly emerging desalination technology, forward osmosis (FO) has shown great promise in saving electrical power requirements, increasing water recovery, and minimizing brine discharge. With the support of this funding, a FO system was constructed using a cellulose triacetate FO membrane to test the feasibility of OSPW desalination and contaminant removal. The FO systems were optimized using different types and concentrations of draw solution. The FO system using 4 M NH4HCO3 as a draw solution achieved 85% water recovery from OSPW, and 80 to 100% contaminant rejection for most metals and ions. A water backwash cleaning method was applied to clean the fouled membrane, and the cleaned membrane achieved 77% water recovery, a performance comparable to that of new FO membranes. This suggests that the membrane fouling was reversible. The FO system developed in this project provides a novel and energy efficient strategy to remediate the tailings waters generated by oil sands bitumen extraction and processing.

  3. Physical-chemical hydrodynamics of the processes of sorption-membrane technology of LRW treatment

    International Nuclear Information System (INIS)

    Alexander D Efanov; Pyotr N Martynov; Yuri D Boltoev; Ivan V Yagodkin; Nataliya G Bogdanovich; Sergey S Skvortsov; Alexander R Sokolovsky; Elena V Ignatova; Gennady V Grigoriev; Vitaly V Grigorov

    2005-01-01

    Full text of publication follows: Liquid radioactive NPP waste is generated, when radioactive water is collected and mixed from various routine and non-routine process measures being performed in accordance with the operating regulations of reactor units with water coolant. The main sources of LRW are the primary loop water coolant, deactivation, regeneration and rinse waters, waste laundry and showers water producing the initial averaged LRW as well as spent fuel element cooling pond water and water of biological protection tanks. LRW handling can be substantially advanced, in particular, through development and introduction of the non-conventional sorption-membrane technology of NPP LRW treatment, being developed at SSC RF IPPE. This technology makes use of natural inorganic sorbents (tripolite, zeolite, ion-exchange materials) and filtering nano-structured metallic and ceramic membranes (titanium, zirconium, chromium and other or their oxides, carbides and nitrides). The efficiency of the sorption membrane technology is associated just with the investigation of the physical-chemical processes of sorption, coagulation and sedimentation under the conditions of forced and free convection occurring in LRW. Besides, it is necessary to take into consideration that the hydrodynamics of the flows of LRW being decontaminated by membrane filtration depends on the structure and composition of the porous composition pare 'nano-structured membrane-substrate'. Neglecting these peculiarities can result in drastic reduction of the time of stable LRW filtration, reduction of the operability resource of filtration systems or in quick mechanical destruction of porous materials. The paper presents the investigation results on: -the effect of the convection flows being generated by air bubbling or LRW stirring by agitator on the static sorption conditions (sorption time, medium pH, sorbent dispersity, sorbent concentration in liquid medium) and on the efficiency of extraction by

  4. Molecular dynamics simulations of outer-membrane protease T from E. coli based on a hybrid coarse-grained/atomistic potential

    International Nuclear Information System (INIS)

    Neri, Marilisa; Anselmi, Claudio; Carnevale, Vincenzo; Vargiu, Attilio V; Carloni, Paolo

    2006-01-01

    Outer-membrane proteases T (OmpT) are membrane enzymes used for defense by Gram-negative bacteria. Here we use hybrid molecular mechanics/coarse-grained simulations to investigate the role of large-scale motions of OmpT from Escherichia coli for its function. In this approach, the enzyme active site is treated at the all-atom level, whilst the rest of the protein is described at the coarse-grained level. Our calculations agree well with previously reported all-atom molecular dynamics simulations, suggesting that this approach is well suitable to investigate membrane proteins. In addition, our findings suggest that OmpT large-scale conformational fluctuations might play a role for its biological function, as found for another protease class, the aspartyl proteases

  5. Changes in the Fatty Acid Profile and Phospholipid Molecular Species Composition of Human Erythrocyte Membranes after Hybrid Palm and Extra Virgin Olive Oil Supplementation.

    Science.gov (United States)

    Pacetti, D; Gagliardi, R; Balzano, M; Frega, N G; Ojeda, M L; Borrero, M; Ruiz, A; Lucci, P

    2016-07-13

    This work aims to evaluate and compare, for the first time, the effects of extra virgin olive oil (EVOO) and hybrid palm oil (HPO) supplementation on the fatty acid profile and phospholipid (PL) molecular species composition of human erythrocyte membranes. Results supported the effectiveness of both HPO and EVOO supplementation (3 months, 25 mL/day) in decreasing the lipophilic index of erythrocytes with no significant differences between HPO and EVOO groups at month 3. On the other hand, the novel and rapid ultraperformance liquid chromatography-tandem mass spectrometry method used for PL analysis reveals an increase in the levels of phosphatidylcholine and phosphatidylethanolamine species esterified with polyunsaturated fatty acids. This work demonstrates the ability of both EVOO and HPO to increase the degree of unsaturation of erythrocyte membrane lipids with an improvement in membrane fluidity that could be associated with a lower risk of developing cardiovascular diseases.

  6. The effect of silica toward polymer membrane for water separation process

    Science.gov (United States)

    Jamalludin, Mohd Riduan; Rosli, M. U.; Ishak, Muhammad Ikman; Khor, C. Y.; Shahrin, Suhaimi; Ismail, Ras Izzati; Lailina N., M.; Leng Y., L.; Jahidi, H.

    2017-09-01

    The aim of this present work was to investigate the effect of different percentage rice husk silica (RHS) particles composition towards polymer mixed matrix membrane microstructure and performance in water separation process. The polymer membranes were prepared by a phase inversion method using polysulfone (PSf), N-methyl-2-pyrrolidone (NMP) as solvent, distilled water as non-solvent and fixed RHS at 400°C as an additive. The microstructures of PSf/PEG/RHS sample were characterized by performing scanning electron microscope (SEM). The performance was measured by using pure water flux and humic acid for the rejection test. The analyzed result of SEM analysis revealed that the addition of RHS obviously improved the microstructure of the membrane especially at the top and sub layer at the range of 1 until 3 wt. %. This was proven by the pure water flux (PWF) value measured from 114.47 LMH to 154.04 LMH and rejection from value 83% to 96% at this specified range substantially higher than the mixed matrix membrane with synthetic silica. In fact, the presence of RHS particles not only improved the properties and performance of membrane but also possess biodegradable properties which can minimize the pollution and provide a membrane green technology system.

  7. Acyl transfer from membrane lipids to peptides is a generic process.

    Science.gov (United States)

    Dods, Robert H; Bechinger, Burkhard; Mosely, Jackie A; Sanderson, John M

    2013-11-15

    The generality of acyl transfer from phospholipids to membrane-active peptides has been probed using liquid chromatography-mass spectrometry analysis of peptide-lipid mixtures. The peptides examined include melittin, magainin II, PGLa, LAK1, LAK3 and penetratin. Peptides were added to liposomes with membrane lipid compositions ranging from pure phosphatidylcholine (PC) to mixtures of PC with phosphatidylethanolamine, phosphatidylserine or phosphatidylglycerol. Experiments were typically conducted at pH7.4 at modest salt concentrations (90 mM NaCl). In favorable cases, lipidated peptides were further characterized by tandem mass spectrometry methods to determine the sites of acylation. Melittin and magainin II were the most reactive peptides, with significant acyl transfer detected under all conditions and membrane compositions. Both peptides were lipidated at the N-terminus by transfer from PC, phosphatidylethanolamine, phosphatidylserine or phosphatidylglycerol, as well as at internal sites: lysine for melittin; serine and lysine for magainin II. Acyl transfer could be detected within 3h of melittin addition to negatively charged membranes. The other peptides were less reactive, but for each peptide, acylation was found to occur in at least one of the conditions examined. The data demonstrate that acyl transfer is a generic process for peptides bound to membranes composed of diacylglycerophospholipids. Phospholipid membranes cannot therefore be considered as chemically inert toward peptides and by extension proteins. © 2013. Published by Elsevier Ltd. All rights reserved.

  8. A process synthesis-intensification framework for the development of sustainable membrane-based operations

    DEFF Research Database (Denmark)

    Babi, Deenesh Kavi; Lutze, Philip; Woodley, John

    2014-01-01

    In this paper a multi-level, multi-scale framework for process synthesis-intensification that aims to make the process more sustainable than a base-case, which may represent a new process or an existing process, is presented. At the first level (operation-scale) a conceptual base case design...... of extension of the combined intensification-synthesis method and its application to generate membrane-based operations. Also, application of the framework is illustrated through a case study involving the production of methyl acetate where membrane-based intensified operations play a major role in determining...... is synthesized through the sequencing of unit operations and subsequently analyzed for identifying process hot-spots using economic, life cycle and sustainability metrics. These hot-spots are limitations/bottlenecks associated with tasks that may be targeted for overall process improvement. At the second level...

  9. Hybrid digital signal processing and neural networks applications in PWRs

    International Nuclear Information System (INIS)

    Eryurek, E.; Upadhyaya, B.R.; Kavaklioglu, K.

    1991-01-01

    Signal validation and plant subsystem tracking in power and process industries require the prediction of one or more state variables. Both heteroassociative and auotassociative neural networks were applied for characterizing relationships among sets of signals. A multi-layer neural network paradigm was applied for sensor and process monitoring in a Pressurized Water Reactor (PWR). This nonlinear interpolation technique was found to be very effective for these applications

  10. Coagulation-Adsorption Hybrid Process for the Treatment of Dyes and Pigments Wastewater

    Directory of Open Access Journals (Sweden)

    Abdul Karim Shah

    2013-10-01

    Full Text Available The study aimed to improve the effectiveness of dyes and pigments wastewater treatment. Hybrid system of adsorption and coagulation was applied for the reduction of COD, color, turbidity and TSS. Activated carbon adsorbent was prepared from a waste of sugar industry boiler. It was processed through physicochemical treatment with sulfuric acid following grinding, sieving, washing and drying unit operations. Combined wastewater of dyes and pigments manufacturing plant was treated with a hybrid process of coagulation and adsorption. FeCl 3, FeSO 4and Alum coagulants we