WorldWideScience

Sample records for hybrid magnet consisting

  1. A Magnetic Consistency Relation

    CERN Document Server

    Jain, Rajeev Kumar

    2012-01-01

    If cosmic magnetic fields are indeed produced during inflation, they are likely to be correlated with the scalar metric perturbations that are responsible for the Cosmic Microwave Background anisotropies and Large Scale Structure. Within an archetypical model of inflationary magnetogenesis, we show that there exists a new simple consistency relation for the non-Gaussian cross correlation function of the scalar metric perturbation with two powers of the magnetic field in the squeezed limit where the momentum of the metric perturbation vanishes. We emphasize that such a consistency relation turns out to be extremely useful to test some recent calculations in the literature. Apart from primordial non-Gaussianity induced by the curvature perturbations, such a cross correlation might provide a new observational probe of inflation and can in principle reveal the primordial nature of cosmic magnetic fields.

  2. 32 tesla hybrid magnet system

    Energy Technology Data Exchange (ETDEWEB)

    Leupold, M.J.; Iwasa, Y.; Weggel, R.J. (MIT Cambridge (U.S.A.))

    1984-01-01

    The paper describes the design and construction of a hybrid magnet system to generate 32T with 9MW of electrical power. The system consist of an 11T niobium-titanium superconducting magnet, a 1.8K/4.2K cryostat, and a high-performance, water-cooled Bitter magnet, all of which are discussed in the paper.

  3. Cryogenic Hybrid Magnetic Bearing

    Science.gov (United States)

    Meeks, Crawford R.; Dirusso, Eliseo; Brown, Gerald V.

    1994-01-01

    Cryogenic hybrid magnetic bearing is example of class of magnetic bearings in which permanent magnets and electromagnets used to suspend shafts. Electromagnets provide active control of position of shaft. Bearing operates at temperatures from -320 degrees F (-196 degrees C) to 650 degrees F (343 degrees C); designed for possible use in rocket-engine turbopumps, where effects of cryogenic environment and fluid severely limit lubrication of conventional ball bearings. This and similar bearings also suitable for terrestrial rotating machinery; for example, gas-turbine engines, high-vacuum pumps, canned pumps, precise gimbals that suspend sensors, and pumps that handle corrosive or gritty fluids.

  4. Hybrid Magnetics and Power Applications

    DEFF Research Database (Denmark)

    Mo, Wai Keung; Paasch, Kasper

    A hybrid magnetic approach, merging two different magnetic core properites such as ferrite and iron powder cores, is an effective solution for power converter applications. It can offer similar magnetic properties to that of magnetic powder cores but showing less copper loss than powder cores...

  5. Hybrid superconductor magnet bearings

    Science.gov (United States)

    Chu, Wei-Kan

    1995-01-01

    Hybrid superconductor magnet bearings (HSMB's) utilize high temperature superconductors (HTS's) together with permanent magnets to form a frictionless interface between relatively rotating parts. They are low mass, stable, and do not incur expenditure of energy during normal operation. There is no direct physical contact between rotor and stator, and hence there is no wear and tear. However, just as any other applications of HTS's, it requires a very cold temperature to function. Whereas this might be perceived as a disadvantage on earth, it is of no great concern in space or on the moon. To astronomers, the moon is an excellent site for an observatory, but the cold and dusty vacuum environment on the moon precludes the use of mechanical bearings on the telescope mounts. Furthermore, drive mechanisms with very fine steps, and hence bearings with extremely low friction are needed to track a star from the moon, because the moon rotates very slowly. All aspects considered, the HSMB is about the only candidate that fits in naturally. Here, we present a design for one such bearing, capable of supporting a telescope that weighs about 3 lbs on Earth.

  6. Hybrid Magnetics and Power Applications

    DEFF Research Database (Denmark)

    Mo, Wai Keung; Paasch, Kasper

    2017-01-01

    . In order to prevent ferrite core saturation, placing an effective air gap within the ferrite core is a key method to obtain optimum hybrid magnetic performance. Furthermore, a relatively large inductance at low loading current is an excellent way to minimze power loss in order to achieve high efficiency...

  7. Magnetic Properties and Intergranular Action in Bonded Hybrid Magnets

    Institute of Scientific and Technical Information of China (English)

    Hua Zhenghe; Li Shandong; Han Zhida; Wang Dunhui; Zhong Wei; Gu Benxi; Lu Mu; Zhang Jianrong; Du Youwei

    2007-01-01

    Magnetic properties and intergranular action in bonded hybrid magnets, based on NdFeB and strontium ferrite powders were investigated. The long-range magnetostatic interaction and short-range exchange coupling interaction existed simultaneously in bonded hybrid magnets, and neither of them could be neglected. Some magnetic property parameters of hybrid magnets could be approximately obtained by adding the hysteresis loops of two magnets pro rata.

  8. A hybrid transducer to magnetically and ultrasonically evaluate magnetic fluids.

    Science.gov (United States)

    Bruno, Alexandre Colello; Pavan, Théo Z; Baffa, Oswaldo; Carneiro, Antonio Adilton Oliveira

    2013-09-01

    Ultrasound, magnetic fields, and optical techniques have been explored for clinical diagnosis and therapy. However, these techniques have limitations. In this study, we constructed and characterized a transducer to magnetically and ultrasonically investigate samples labeled with magnetic particles. The transducer is a hybrid system consisting of an ac biosusceptometer (ACB) and an ultrasonic transducer. The basic operation principle consisted of measuring the magnetization and microvibrations of ferromagnetic particles (37 and 70 μm) mixed in yogurt and excited by an external alternating magnetic field generated by the ACB's excitation coils. The vibration of the ferromagnetic particles was measured in phantoms using a Doppler ultrasonic transducer; we verified the sensitivity to detecting the vibrations at low concentrations of ferromagnetic material (~1%). The responses of the susceptometer and Doppler ultrasound linearly depended on the voltage level applied to the magnetizing coils at low ferromagnetic particle concentrations (⩽ 5%). We also conducted a repeatability test on the prototype, which indicated a deviation of 0.94% and 0.25% in the Doppler and susceptometric measurements, respectively. We can conclude that the hybrid transducer technique has potential clinical applications.

  9. Consistency relation for cosmic magnetic fields

    DEFF Research Database (Denmark)

    Jain, R. K.; Sloth, M. S.

    2012-01-01

    to be extremely useful to test some recent calculations in the literature. Apart from primordial non-Gaussianity induced by the curvature perturbations, such a cross correlation might provide a new observational probe of inflation and can in principle reveal the primordial nature of cosmic magnetic fields. DOI...

  10. Hybrid Superconducting Magnetic Bearing (HSMB) for high load devices

    Science.gov (United States)

    McMichael, C. K.; Ma, K. B.; Lamb, M. A.; Lin, M. W.; Chow, L.; Meng, R. L.; Hor, P. H.; Chu, W. K.

    1992-05-01

    Lifting capacities greater than 41 N/cm(exp 2) (60 psi) at 77 K have been achieved with a new type of levitation (hybrid) using a combination of permanent magnets and high quality melt-mixtured YBa2Cu3O(7-delta) (YBCO). The key concept of the hybrid superconducting magnetic bearing (HSMB) is the use of strong magnetic repulsion and attraction from permanent magnets for high levitation or suspension forces in conjunction with a superconductor's flux pinning characteristics to counteract the inherent instabilities in a system consisting of magnets only. To illustrate this concept, radial and axial forces between magnet/superconductor, magnet/magnet, and magnet/superconductor/magnet, were measured and compared for the thrust bearing configuration

  11. A hybrid attitude controller consisting of electromagnetic torque rods and an active fluid ring

    Science.gov (United States)

    Nobari, Nona A.; Misra, Arun K.

    2014-01-01

    In this paper, a novel hybrid actuation system for satellite attitude stabilization is proposed along with its feasibility analysis. The system considered consists of two magnetic torque rods and one fluid ring to produce the control torque required in the direction in which magnetic torque rods cannot produce torque. A mathematical model of the system dynamics is derived first. Then a controller is developed to stabilize the attitude angles of a satellite equipped with the abovementioned set of actuators. The effect of failure of the fluid ring or a magnetic torque rod is examined as well. It is noted that the case of failure of the magnetic torque rod whose torque is along the pitch axis is the most critical, since the coupling between the roll or yaw motion and the pitch motion is quite weak. The simulation results show that the control system proposed is quite fault tolerant.

  12. Hybrid Shielding for Magnetic Fields

    Science.gov (United States)

    Mullins, David; Royal, Kevin

    2017-01-01

    Precision symmetry measurements such as the search for the electric dipole moment of the neutron require magnetic shielding rooms to reduce the ambient field to the pT scale. The massive mu-metal sheets and large separation between layers make these shield rooms bulky and expensive. Active field cancellation systems used to reduce the surrounding field are limited in uniformity of cancellation. A novel approach to reducing the space between shield layers and increasing the effectiveness of active cancellation is to combine the two systems into a hybrid system, with active and passive layers interspersed. We demonstrate this idea in a prototype with an active layer sandwiched between two passive layers of shielding.

  13. Hybride magnetic nanostructure based on amino acids functionalized polypyrrole

    Science.gov (United States)

    Nan, Alexandrina; Bunge, Alexander; Turcu, Rodica

    2015-12-01

    Conducting polypyrrole is especially promising for many commercial applications because of its unique optical, electric, thermal and mechanical properties. We report the synthesis and characterization of novel pyrrole functionalized monomers and core-shell hybrid nanostructures, consisting of a conjugated polymer layer (amino acids functionalized pyrrole copolymers) and a magnetic nanoparticle core. For functionalization of the pyrrole monomer we used several amino acids: tryptophan, leucine, phenylalanine, serine and tyrosine. These amino acids were linked via different types of hydrophobic linkers to the nitrogen atom of the pyrrole monomer. The magnetic core-shell hybrid nanostructures are characterized by various methods such as FTIR spectroscopy, transmission electron microscopy (TEM) and magnetic measurements.

  14. Hybride magnetic nanostructure based on amino acids functionalized polypyrrole

    Energy Technology Data Exchange (ETDEWEB)

    Nan, Alexandrina, E-mail: alexandrina.nan@itim-cj.ro; Bunge, Alexander; Turcu, Rodica [National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293 Cluj-Napoca (Romania)

    2015-12-23

    Conducting polypyrrole is especially promising for many commercial applications because of its unique optical, electric, thermal and mechanical properties. We report the synthesis and characterization of novel pyrrole functionalized monomers and core-shell hybrid nanostructures, consisting of a conjugated polymer layer (amino acids functionalized pyrrole copolymers) and a magnetic nanoparticle core. For functionalization of the pyrrole monomer we used several amino acids: tryptophan, leucine, phenylalanine, serine and tyrosine. These amino acids were linked via different types of hydrophobic linkers to the nitrogen atom of the pyrrole monomer. The magnetic core-shell hybrid nanostructures are characterized by various methods such as FTIR spectroscopy, transmission electron microscopy (TEM) and magnetic measurements.

  15. Development of a 40 T compact hybrid magnet

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, K.; Awaji, S.; Kobayashi, N. [Tohoku Univ., Sendai (Japan). Inst. for Materials Research] [and others

    1996-07-01

    A 40 T compact hybrid magnet consisting of a 16 T outer superconducting magnet and a 24 T inner resistive magnet is conceptually designed. A highly strengthened superconducting magnet with a 360 mm room temperature bore can be made using newly developed (Nb,Ti){sub 3}Sn wires with Cu-Nb or Cu-Al{sub 2}O{sub 3} reinforcing stabilizer, and as a result the coil weight is outstandingly reduced by about 70%. A poly-Bitter resistive magnet which generates 24 T in a 14 mm room temperature bore is realized consuming 8 MW power.

  16. Hybrid magnet project at Tohoku University

    Energy Technology Data Exchange (ETDEWEB)

    Nakagawa, Y.; Noto, K.; Hoshi, A.; Miura, S.; Watanabe, K.; Muto, Y. (Tohoku University (Japan))

    1984-01-01

    The construction of three hybrid magnets has been conceived in this project. The smallest one now in operation is composed of a non-cryostable NbTi coil weighing 270 kg and a Bitter coil with a power of 3.1 MW, producing 20 T field in a 32 mm diameter bore. The second one, 20 T in 52 mm at present, will produce 23 T when the power supply will be enlarged to 8 MW. The largest one, 31 T in 32 mm or 29 T in 52 mm, has been designed to consist of a multifilamentary Nb/sub 3/Sn + NbTi coil and a polyhelix-type water-cooled coil.

  17. Properties of Magnetized Quark-Hybrid Stars

    CERN Document Server

    Orsaria, M; Vucetich, H; Weber, F

    2011-01-01

    The structure of a magnetized quark-hybrid stars (QHS) is modeled using a standard relativistic mean-field equation of state (EoS) for the description of hadronic matter. For quark matter we consider a bag model EoS which is modified perturbatively to account for the presence of a uniform magnetic field. The mass-radius (M-R) relationship, gravitational redshift and rotational Kepler periods of such stars are compared with those of standard neutron stars (NS).

  18. A Practical Permanent Magnetic Motor Drive for Hybrid Motorcycle

    Institute of Scientific and Technical Information of China (English)

    崔巍; 江建中; 邵定国; 杨斌

    2003-01-01

    A novel embedded-type permanent magnetic motor for hybrid motorcycle, which employs asymmetric design of eccentric air-gap, is proposed in the paper. This special design of air-gap well conforms to the mono-directional operation characteristic of motorcycle and effectively suppresses the distortion of air-gap magnetic field caused by armature reaction. Hence the torque ripple is reduced. A drive system consisting of the newly-designed Nd-Fe-B permanent magnet synchronous motor and parallel-MOSFET threephase inverter for hybrid motorcycle propulsion is established. Wide-range speed operation is realized through a simple and novel control strategy. Computer simulation is described and experimental results given to verify the practicality of the proposed motor design and control strategy.

  19. Superconducting and hybrid systems for magnetic field shielding

    Science.gov (United States)

    Gozzelino, L.; Gerbaldo, R.; Ghigo, G.; Laviano, F.; Truccato, M.; Agostino, A.

    2016-03-01

    In this paper we investigate and compare the shielding properties of superconducting and hybrid superconducting/ferromagnetic systems, consisting of cylindrical cups with an aspect ratio of height/radius close to unity. First, we reproduced, by finite-element calculations, the induction magnetic field values measured along the symmetry axis in a superconducting (MgB2) and in a hybrid configuration (MgB2/Fe) as a function of the applied magnetic field and of the position. The calculations are carried out using the vector potential formalism, taking into account simultaneously the non-linear properties of both the superconducting and the ferromagnetic material. On the basis of the good agreement between the experimental and the computed data we apply the same model to study the influence of the geometric parameters of the ferromagnetic cup as well as of the thickness of the lateral gap between the two cups on the shielding properties of the superconducting cup. The results show that in the considered non-ideal geometry, where the edge effect in the flux penetration cannot be disregarded, the superconducting shield is always the most efficient solution at low magnetic fields. However, a partial recovery of the shielding capability of the hybrid configuration occurs if a mismatch in the open edges of the two cups is considered. In contrast, at high magnetic fields the hybrid configurations are always the most effective. In particular, the highest shielding factor was found for solutions with the ferromagnetic cup protruding over the superconducting one.

  20. Consistent chiral kinetic theory in Weyl materials: chiral magnetic plasmons

    CERN Document Server

    Gorbar, E V; Shovkovy, I A; Sukhachov, P O

    2016-01-01

    We argue that the correct definition of the electric current in the chiral kinetic theory for Weyl materials should include the Chern--Simons contribution that makes the theory consistent with the local conservation of the electric charge in electromagnetic and strain-induced pseudoelectromagnetic fields. By making use of such a kinetic theory, we study the plasma frequencies of collective modes in Weyl materials in constant magnetic and pseudomagnetic fields taking into account the effects of dynamical electromagnetism. We show that the collective modes are chiral plasmons. While the plasma frequency of the longitudinal collective mode coincides with the Langmuir one, this mode is unusual because it is characterized not only by oscillations of the electric current density, but also oscillations of the chiral current density. The latter are triggered by a dynamical version of the chiral electric separation effect. We also find that the plasma frequencies of the transverse modes split up in a magnetic field. T...

  1. High performance hybrid magnetic structure for biotechnology applications

    Science.gov (United States)

    Humphries, David E [El Cerrito, CA; Pollard, Martin J [El Cerrito, CA; Elkin, Christopher J [San Ramon, CA

    2009-02-03

    The present disclosure provides a high performance hybrid magnetic structure made from a combination of permanent magnets and ferromagnetic pole materials which are assembled in a predetermined array. The hybrid magnetic structure provides means for separation and other biotechnology applications involving holding, manipulation, or separation of magnetic or magnetizable molecular structures and targets. Also disclosed are further improvements to aspects of the hybrid magnetic structure, including additional elements and for adapting the use of the hybrid magnetic structure for use in biotechnology and high throughput processes.

  2. Self-organization of a hybrid nanostructure consisting of a nanoneedle and nanodot.

    Science.gov (United States)

    Liu, Hai; Wu, Junsheng; Wang, Ying; Chow, Chee Lap; Liu, Qing; Gan, Chee Lip; Tang, Xiaohong; Rawat, Rajdeep Singh; Tan, Ooi Kiang; Ma, Jan; Huang, Yizhong

    2012-09-24

    A special materials system that allows the self-organization of a unique hybrid nanonipple structure is developed. The system consists of a nanoneedle with a small nanodot sitting on top. Such hybrid nanonipples provide building blocks to assemble functional devices with significantly improved performance. The application of the system to high-sensitivity gas sensors is also demonstrated.

  3. Conceptual Design of the 45 T Hybrid Magnet at the Nijmegen High Field Magnet Laboratory

    CERN Document Server

    Wiegers, SAJ; Bird, M D; Rook, J; Perenboom, J A A J; Wiegers, S A J; Bonito-Oliva, A; den Ouden, A

    2010-01-01

    A 45 T Hybrid Magnet System is being developed at the Nijmegen High Field Magnet Laboratory as part of the Nijmegen Center for Advanced Spectroscopy. The 45 T Hybrid Magnet System will be used in combination with far-infra-red light produced by a Free Electron Laser under construction directly adjacent to the High Field Magnet Laboratory. The superconducting outsert magnet will consist of three CICC coils wound on a single coil form, using Nb3Sn strands. A test program for strand and cable qualification is underway. The CICC will carry 13 kA and the coils will produce 12 T on axis field in a 600 mm warm bore. The nominal operating temperature will be 4.5 K maintained with forced-flow supercritical helium. The insert magnet will produce 33 T at 40 kA in a 32 mm bore consuming 20 MW, and will consist of four coils. The insert magnet will be galvanically and mechanically isolated from the outsert magnet. Complete system availability for users is expected in 2014. In this paper we will report on the conceptual de...

  4. Consistent Chiral Kinetic Theory in Weyl Materials: Chiral Magnetic Plasmons

    Science.gov (United States)

    Gorbar, E. V.; Miransky, V. A.; Shovkovy, I. A.; Sukhachov, P. O.

    2017-03-01

    We argue that the correct definition of the electric current in the chiral kinetic theory for Weyl materials should include the Chern-Simons contribution that makes the theory consistent with the local conservation of the electric charge in electromagnetic and strain-induced pseudoelectromagnetic fields. By making use of such a kinetic theory, we study the plasma frequencies of collective modes in Weyl materials in constant magnetic and pseudomagnetic fields, taking into account the effects of dynamical electromagnetism. We show that the collective modes are chiral plasmons. While the plasma frequency of the longitudinal collective mode coincides with the Langmuir one, this mode is unusual because it is characterized not only by oscillations of the electric current density, but also by oscillations of the chiral current density. The latter are triggered by a dynamical version of the chiral electric separation effect. We also find that the plasma frequencies of the transverse modes split up in a magnetic field. This finding suggests an efficient means of extracting the chiral shift parameter from the measurement of the plasma frequencies in Weyl materials.

  5. Magnetic properties of the magnetic hybrid membranes based on various polymer matrices and inorganic fillers

    Energy Technology Data Exchange (ETDEWEB)

    Rybak, Aleksandra, E-mail: Aleksandra.Rybak@polsl.pl [Department of Physical Chemistry and Technology of Polymers, Faculty of Chemistry, Silesian University of Technology, Strzody 9, 44-100 Gliwice (Poland); Kaszuwara, Waldemar [Faculty of Materials Science and Engineering, Warsaw University of Technology, Woloska 141, 02-507 Warszawa (Poland)

    2015-11-05

    Magnetic hybrid membranes based on ethylcellulose (EC), poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) and various magnetic praseodymium and neodymium powder microparticles as fillers were obtained. Permeability, diffusion and sorption coefficients of O{sub 2}, N{sub 2} and synthetic air components were estimated for homogeneous and heterogeneous membranes using the Time Lag method based on constant pressure permeation technique. The microstructure studies and the phase analysis of magnetic membranes were also performed using SEM and XRD. The influence of magnetic parameters, like coercivity, remanence and saturation magnetization of created membranes on the gas transport properties was studied. The results showed that their coercivity depended on composition and microstructure of the magnetic powder. On the other hand, remanence and saturation magnetization increased with the increase of the powder addition in the membrane. It was found that the magnetic membrane's gas transport properties were improved with the increase of membrane's remanence, saturation magnetization and magnetic particle filling. The decrease in powder particle size and associated increase of the membrane's coercivity also positively influenced the gas transport and separation properties of investigated membranes. It was observed that the magnetic ethylcellulose and poly(2,6-dimethyl-1,4-phenylene oxide) membranes had higher gas permeability, while their permselectivity and solubility coefficient values were rather maintained or slightly increased. The results also showed that the magnetic powder content enhanced significantly gas diffusivity in EC and PPO membranes. It was also analyzed the dependence of the drift coefficient w on the magnetic parameters of investigated membranes. The correlation between the membrane selectivity, permeability and magnetic properties with their XRD characteristics was stated. - Highlights: • Membrane's production consisting of EC or PPO

  6. A hybrid data acquisition system for magnetic measurements of accelerator magnets

    Energy Technology Data Exchange (ETDEWEB)

    Wang, X.; Hafalia, R.; Joseph, J.; Lizarazo, J.; Martchevsky, M.; Sabbi, G. L.

    2011-06-03

    A hybrid data acquisition system was developed for magnetic measurement of superconducting accelerator magnets at LBNL. It consists of a National Instruments dynamic signal acquisition (DSA) card and two Metrolab fast digital integrator (FDI) cards. The DSA card records the induced voltage signals from the rotating probe while the FDI cards records the flux increment integrated over a certain angular step. This allows the comparison of the measurements performed with two cards. In this note, the setup and test of the system is summarized. With a probe rotating at a speed of 0.5 Hz, the multipole coefficients of two magnets were measured with the hybrid system. The coefficients from the DSA and FDI cards agree with each other, indicating that the numerical integration of the raw voltage acquired by the DSA card is comparable to the performance of the FDI card in the current measurement setup.

  7. Optically induced interaction of magnetic moments in hybrid metamaterials.

    Science.gov (United States)

    Miroshnichenko, Andrey E; Luk'yanchuk, Boris; Maier, Stefan A; Kivshar, Yuri S

    2012-01-24

    We propose a novel type of hybrid metal-dielectric structures composed of silicon nanoparticles and split-ring resonators for advanced control of optically induced magnetic response. We reveal that a hybrid "metamolecule" may exhibit a strong distance-dependent magnetic interaction that may flip the magnetization orientation and support "antiferromagnetic" ordering in a hybrid metamaterial created by a periodic lattice of such metamolecules. The propagation of magnetization waves in the hybrid structures opens new ways for manipulating artificial "antiferromagnetic" ordering at high frequencies. © 2011 American Chemical Society

  8. Analysis and design of permanent magnet biased magnetic bearing based on hybrid factor

    Directory of Open Access Journals (Sweden)

    Jinji Sun

    2016-03-01

    Full Text Available In this article, hybrid factor is proposed for hybrid magnetic bearing. The hybrid factor is defined as the ratio of the force produced by the permanent magnet and the forces produced by the permanent magnet and current in hybrid magnetic bearing. It is deduced from a certain radial hybrid magnetic bearing using its important parameters such as the current stiffness and displacement stiffness at first and then the dynamic model of magnetically suspended rotor system is established. The relationship between structural parameters and control system parameters is analyzed based on the hybrid factor. Some influencing factors of hybrid factor in hybrid magnetic bearing, such as the size of the permanent magnet, length of air gap, and area of the stator poles, are analyzed in this article. It can be concluded that larger hybrid factor can be caused by the smaller power loss according to the definition of hybrid factor mentioned above. Meanwhile, the hybrid factor has a maximum value, which is related to control system parameters such as proportional factor expect for structural parameters. Finally, the design steps of parameters of hybrid magnetic bearing can be concluded.

  9. Axisymmetric Magnetic Mirror Fusion-Fission Hybrid

    Energy Technology Data Exchange (ETDEWEB)

    Moir, R. W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Martovetsky, N. N. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Molvik, A. W. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Ryutov, D. D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Simonen, T. C. [Univ. of California, Berkeley, CA (United States)

    2011-05-13

    The achieved performance of the gas dynamic trap version of magnetic mirrors and today’s technology we believe are sufficient with modest further efforts for a neutron source for material testing (Q=Pfusion/Pinput~0.1). The performance needed for commercial power production requires considerable further advances to achieve the necessary high Q>>10. An early application of the mirror, requiring intermediate performance and intermediate values of Q~1 are the hybrid applications. The Axisymmetric Mirror has a number of attractive features as a driver for a fusion-fission hybrid system: geometrical simplicity, inherently steady-state operation, and the presence of the natural divertors in the form of end tanks. This level of physics performance has the virtue of low risk and only modest R&D needed and its simplicity promises economy advantages. Operation at Q~1 allows for relatively low electron temperatures, in the range of 4 keV, for the DT injection energy ~ 80 keV. A simple mirror with the plasma diameter of 1 m and mirror-to-mirror length of 35 m is discussed. Simple circular superconducting coils are based on today’s technology. The positive ion neutral beams are similar to existing units but designed for steady state. A brief qualitative discussion of three groups of physics issues is presented: axial heat loss, MHD stability in the axisymmetric geometry, microstability of sloshing ions. Burning fission reactor wastes by fissioning actinides (transuranics: Pu, Np, Am, Cm, .. or just minor actinides: Np, Am, Cm, …) in the hybrid will multiply fusion’s energy by a factor of ~10 or more and diminish the Q needed to less than 1 to overcome the cost of recirculating power for good economics. The economic value of destroying actinides by fissioning is rather low based on either the cost of long-term storage or even deep geologic disposal so most of the revenues of hybrids will come from electrical power. Hybrids that obtain revenues from

  10. Mechanism of hybrid-magnetic-circuit multi-couple motor

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Discusses the interval between laminations in a permanent-magnet inductor motor which makes the air-gap magnetic field produced by the permanent magnet very uneven in the axial direction, and limits the performance of a motor. Proposes a hybrid-magnetic-circuit multi-couple motor to compensate for the uneven air-gap magnetic field, thereby improving the performance of a motor.

  11. Electret Characteristics of Hybrid Films Consisting of Porous Polytetrafluoroethylene and Teflon Fluoroethylenepropylene with Corona Charging

    Institute of Scientific and Technical Information of China (English)

    陈钢进; 韩高荣; Rudi Danz; Burkhard Elling

    2002-01-01

    We have prepared hybrid films consisting of porous polytetrafluoroethylene (PTFE) and Teflon fluoroethylene-propylene (FEP) and we have investigated their charge dynamics of injection, transport and trapping using corona charging, isothermal and thermally stimulated surface-potential decay measurements. The results indicate that the hybrid film samples show different electret characteristics when charged through side PTFE or side FEP. The samples charged negatively through side porous PTFE show the best charge stability. Their charge dynamics differs very much from a single film. The effect of corona polarity on the electret behaviour in the hybrid film is very large. The experimental results are explained with the three structure level model of charge storage in electrets.

  12. Design of Magnetic Flux Feedback Controller in Hybrid Suspension System

    Directory of Open Access Journals (Sweden)

    Wenqing Zhang

    2013-01-01

    Full Text Available Hybrid suspension system with permanent magnet and electromagnet consumes little power consumption and can realize larger suspension gap. But realizing stable suspension of hybrid magnet is a tricky problem in the suspension control sphere. Considering from this point, we take magnetic flux signal as a state variable and put this signal back to suspension control system. So we can get the hybrid suspension mathematical model based on magnetic flux signal feedback. By application of MIMO feedback linearization theory, we can further realize linearization of the hybrid suspension system. And then proportion, integral, differentiation, magnetic flux density B (PIDB controller is designed. Some hybrid suspension experiments have been done on CMS04 magnetic suspension bogie of National University of Defense Technology (NUDT in China. The experiments denote that the new hybrid suspension control algorithm based on magnetic flux signal feedback designed in this paper has more advantages than traditional position-current double cascade control algorithm. Obviously, the robustness and stability of hybrid suspension system have been enhanced.

  13. Research on consistency measurement and weight estimation approach of hybrid uncertain comparison matrix

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The consistency measurement and weight estimation approach of the hybrid uncertain comparison matrix in the analytic hierarchy process (AHP) are studied. First, the decision-making satisfaction membership function is defined based on the decision making's allowable error. Then, the weight model based on the maximal satisfactory consistency idea is suggested, and the consistency index is put forward. Moreover, the weight distributing value model is developed to solve the decision making misleading problem since the multioptimization solutions in the former model. Finally, the weights are ranked based on the possibility degree approach to obtain the ultimate order.

  14. Organic-inorganic hybrid polymer-encapsulated magnetic nanobead catalysts.

    Science.gov (United States)

    Arai, Takayoshi; Sato, Toru; Kanoh, Hirofumi; Kaneko, Katsumi; Oguma, Koichi; Yanagisawa, Akira

    2008-01-01

    A new strategy for the encapsulation of magnetic nanobeads was developed by using the in situ self-assembly of an organic-inorganic hybrid polymer. The hybrid polymer of {[Cu(bpy)(BF(4))(2)(H(2)O)(2)](bpy)}(n) (bpy=4,4'-bipyridine) was constructed on the surface of amino-functionalized magnetic beads and the resulting hybrid-polymer-encapsulated beads were utilized as catalysts for the oxidation of silyl enolates to provide the corresponding alpha-hydroxy carbonyl compounds in high yield. After the completion of the reaction, the catalyst was readily recovered by magnetic separation and the recovered catalyst could be reused several times. Because the current method did not require complicated procedures for incorporating the catalyst onto the magnetic beads, the preparation and the application of various other types of organic-inorganic hybrid-polymer-coated magnetic beads could be possible.

  15. Consistent energy barrier distributions in magnetic particle chains

    Energy Technology Data Exchange (ETDEWEB)

    Laslett, O., E-mail: O.Laslett@soton.ac.uk [Engineering and the Environment, University of Southampton, Southampton, SO16 7QF (United Kingdom); Ruta, S.; Chantrell, R.W. [Department of Physics, University of York, York YO10 5DD (United Kingdom); Barker, J. [Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); Friedman, G. [Electrical and Computer Engineering Department, Drexel University, Philadelphia, PA 19104 (United States); Hovorka, O. [Engineering and the Environment, University of Southampton, Southampton, SO16 7QF (United Kingdom)

    2016-04-01

    We investigate long-time thermal activation behaviour in magnetic particle chains of variable length. Chains are modelled as Stoner–Wohlfarth particles coupled by dipolar interactions. Thermal activation is described as a hopping process over a multidimensional energy landscape using the discrete orientation model limit of the Landau–Lifshitz–Gilbert dynamics. The underlying master equation is solved by diagonalising the associated transition matrix, which allows the evaluation of distributions of time scales of intrinsic thermal activation modes and their energy representation. It is shown that as a result of the interaction dependence of these distributions, increasing the particle chain length can lead to acceleration or deceleration of the overall relaxation process depending on the initialisation procedure.

  16. Preparation and characterization of functional silica hybrid magnetic nanoparticles

    Science.gov (United States)

    Digigow, Reinaldo G.; Dechézelles, Jean-François; Dietsch, Hervé; Geissbühler, Isabelle; Vanhecke, Dimitri; Geers, Christoph; Hirt, Ann M.; Rothen-Rutishauser, Barbara; Petri-Fink, Alke

    2014-08-01

    We report on the synthesis and characterization of functional silica hybrid magnetic nanoparticles (SHMNPs). The co-condensation of 3-aminopropyltriethoxysilane (APTES) and tetraethyl orthosilicate (TEOS) in presence of superparamagnetic iron oxide nanoparticles (SPIONs) leads to hybrid magnetic silica particles that are surface-functionalized with primary amino groups. In this work, a comprehensive synthetic study is carried out and completed by a detailed characterization of hybrid particles' size and morphology, surface properties, and magnetic responses using different techniques. Depending on the mass ratio of SPIONs and the two silanes (TEOS and APTES), we were able to adjust the number of surface amino groups and tune the magnetic properties of the superparamagnetic hybrid particles.

  17. Hybrid composites of xanthan and magnetic nanoparticles for cellular uptake.

    Science.gov (United States)

    Bueno, Vânia Blasques; Silva, Anielle Martins; Barbosa, Leandro Ramos Souza; Catalani, Luiz Henrique; Teixeira-Neto, Erico; Cornejo, Daniel Reinaldo; Petri, Denise Freitas Siqueira

    2013-11-04

    We describe a fast and simple method to prepare composite films of magnetite nanoparticles and xanthan networks. The particles are distributed close to hybrid film surface, generating a coercivity of 27 ± 2 Oe at 300 K. The proliferation of fibroblast cells on the hybrid composites was successful, particularly when an external magnetic field was applied.

  18. A Paradoxical Consistency Between Dynamic and Conventional Derivatives on Hybrid Grids

    Institute of Scientific and Technical Information of China (English)

    Qin Sheng

    2008-01-01

    It has been evident that the theory and methods of dynamic derivatives are playing an increasingly important role in hybrid modeling and computations. Being constructed on various kinds of hybrid grids, that is, time scales, dynamic derivatives offer superior accuracy and flexibility in approximating mathematically important nat-ural processes with hard-to-predict singularities, such as the epidemic growth with un-predictable jump sizes and option market changes with high uncertainties, as com-pared with conventional derivatives. In this article, we shall review the novel new concepts, explore delicate relations between the most frequently used second-order dy-namic derivatives and conventional derivatives. We shall investigate necessary condi-tions for guaranteeing the consistency between the two derivatives. We will show that such a consistency may never exist in general. This implies that the dynamic derivatives provide entirely different new tools for sensitive modeling and approximations on hy-brid grids. Rigorous error analysis will be given via asymptotic expansions for further modeling and computational applications. Numerical experiments will also be given.

  19. Rotational characteristics in the resonance state of the HTSC-permanent magnet hybrid magnetic bearing

    Energy Technology Data Exchange (ETDEWEB)

    Morii, Y.; Sukedai, M. [Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680 (Japan); Ohashi, S., E-mail: ohashi@kansai-u.ac.jp [Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680 (Japan)

    2011-11-15

    The hybrid magnetic bearing has been developed. In the hybrid system, effect of the pinning force becomes smaller. Influence of the vibration and the gradient angle in the resonance state is large. The resonance frequency becomes small in the hybrid bearing system. The hybrid magnetic bearing using permanent magnets and the high-Tc bulk superconductor (HTSC) has been developed. Repulsive force of the permanent magnet is introduced to increase the load weight of the magnetic bearing. Effect of the hybrid system has been shown. In this paper, influence of the hybrid system on the dynamic characteristics of the rotor is studied. The rotational characteristics in the mechanical resonance state are studied, and the equivalent magnetic spring coefficient is estimated from the experimental results of the load weight. The resonance frequency is measured by the rotation experiments. The rotor achieves stable levitation even in the resonance state. In the hybrid system, effect of the pinning force becomes smaller than that of the lateral force generated by the repulsive force between the two permanent magnets at the smaller air gap. Thus influence of the lateral vibration and the gradient angle in the resonance state becomes larger at a smaller air gap. The equivalent magnetic spring coefficient becomes also small, and the resonance frequency becomes small in the hybrid bearing system.

  20. Effects of Dzyaloshinsky–Moriya interaction on magnetism in nanodisks from a self-consistent approach

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Zhaosen, E-mail: liuzhsnj@yahoo.com [Nanjing University of Information Science and Technology, Department of Applied Physics (China); Ian, Hou, E-mail: houian@umac.mo [University of Macau, Institute of Applied Physics and Materials Engineering, FST (China)

    2016-01-15

    We give a theoretical study on the magnetic properties of monolayer nanodisks with both Heisenberg exchange and Dzyaloshinsky–Moriya (DM) interactions. In particular, we survey the magnetic effects caused by anisotropy, external magnetic field, and disk size when DM interaction is present by means of a new quantum simulation method facilitated by a self-consistent algorithm based on mean field theory. This computational approach finds that uniaxial anisotropy and transversal magnetic field enhance the net magnetization as well as increase the transition temperature of the vortical phase while preserving the chiralities of the swirly magnetic structures, whereas when the strength of DM interaction is sufficiently strong for a given disk size, magnetic domains appear within the circularly bounded region, which vanish and give in to a single vortex when a transversal magnetic field is applied. The latter confirms the magnetic skyrmions induced by the magnetic field as observed in the experiments.

  1. Hybrid Spintronic Structures With Magnetic Oxides and Heusler Alloys

    DEFF Research Database (Denmark)

    Xu, Y. B.; Hassan, S. S. A.; Wong, P. K. J.;

    2008-01-01

    Hybrid spintronic structures, integrating half-metallic magnetic oxides and Heusler alloys with their predicted high spin polarization, are important for the development of second-generation spintronics with high-efficient spin injection. We have synthesized epitaxial magnetic oxide Fe3O4 on GaAs...

  2. Two-dimensional magnetic modeling of ferromagnetic materials by using a neural networks based hybrid approach

    Energy Technology Data Exchange (ETDEWEB)

    Cardelli, E.; Faba, A. [Department of Engineering, University of Perugia, Via G. Duranti 93, 06125 Perugia (Italy); Laudani, A.; Lozito, G.M.; Riganti Fulginei, F.; Salvini, A. [Department of Engineering, Roma Tre University, Via V. Volterra 62, 00146 Rome (Italy)

    2016-04-01

    This paper presents a hybrid neural network approach to model magnetic hysteresis at macro-magnetic scale. That approach aims to be coupled together with numerical treatments of magnetic hysteresis such as FEM numerical solvers of the Maxwell's equations in time domain, as in case of the non-linear dynamic analysis of electrical machines, and other similar devices, allowing a complete computer simulation with acceptable run times. The proposed Hybrid Neural System consists of four inputs representing the magnetic induction and magnetic field components at each time step and it is trained by 2D and scalar measurements performed on the magnetic material to be modeled. The magnetic induction B is assumed as entry point and the output of the Hybrid Neural System returns the predicted value of the field H at the same time step. Within the Hybrid Neural System, a suitably trained neural network is used for predicting the hysteretic behavior of the material to be modeled. Validations with experimental tests and simulations for symmetric, non-symmetric and minor loops are presented.

  3. Nonvolatile, reversible electric-field controlled switching of remanent magnetization in multifunctional ferromagnetic/ferroelectric hybrids

    Science.gov (United States)

    Brandlmaier, A.; Geprägs, S.; Woltersdorf, G.; Gross, R.; Goennenwein, S. T. B.

    2011-08-01

    In spin-mechanics, the magnetoelastic coupling in ferromagnetic/ferroelectric hybrid devices is exploited in order to realize an electric-voltage control of magnetization orientation. To this end, different voltage-induced elastic strain states are used to generate different magnetization orientations. In our approach, we take advantage of the hysteretic expansion and contraction of a commercial piezoelectric actuator as a function of electrical voltage to deterministically select one of two electro-remanent elastic strain states. We investigate the resulting magnetic response in a nickel thin film/piezoelectric actuator hybrid device at room temperature, using simultaneous magneto-optical Kerr effect and magnetotransport measurements. The magnetic properties of the hybrid can be consistently described in a macrospin model, i.e., in terms of a single magnetic domain. At zero external magnetic field, the magnetization orientation in the two electro-remanent strain states differs by 15°, which corresponds to a magnetoresistance change of 0.5%. These results demonstrate that the spin-mechanics scheme indeed enables a nonvolatile electrically read- and writable memory bit where the information is encoded in a magnetic property.

  4. Assessing the performance of self-consistent hybrid functional for band gap calculation in oxide semiconductors.

    Science.gov (United States)

    He, Jiangang; Franchini, Cesare

    2017-08-16

    In this paper we assess the predictive power of the self-consistent hybrid functional scPBE0 in calculating the band gap of oxide semiconductors. The computational procedure is based on the self-consistent evaluation of the mixing parameter α by means of an iterative calculation of the static dielectric constant using the perturbation expansion after discretization (PEAD) method and making use of the relation α = 1/ε. Our materials dataset is formed by 30 compounds covering a wide range of band gaps and dielectric properties, and includes materials with a wide spectrum of application as thermoelectrics, photocatalysis, photovoltaics, transparent conducting oxides, and refractory materials. Our results show that the scPBE0 functional provides better band gaps than the non self-consistent hybrids PBE0 and HSE06, but scPBE0 does not show significant improvement on the description of the static dielectric constants. Overall, the scPBE0 data exhibit a mean absolute percentage error of 14 % (band gaps) and 10 % (α = 1/ε). For materials with weak dielectric screening and large excitonic biding energies scPBE0, unlike PBE0 and HSE06, overestimates the band gaps, but the value of the gap become very close to the experimental value when excitonic effects are included (e.g. for SiO2). However, special caution must be given to the compounds with small band gaps due to the tendency of scPBE0 to overestimate the dielectric constant in proximity of the metallic limit. © 2017 IOP Publishing Ltd.

  5. Self-consistent hybrid neoclassical-magnetohydrodynamic simulations of axisymmetric plasmas

    Science.gov (United States)

    Lyons, Brendan Carrick

    Neoclassical effects (e.g., conductivity reduction and bootstrap currents) have a profound impact on many magnetohydrodynamic (MHD) instabilities in toroidally-confined plasmas, including tearing modes, edge-localized modes, and resistive wall modes. High-fidelity simulations of such phenomena require a multiphysics code that self-consistently couples the kinetic and fluid models. We review a hybrid formulation from the recent literatureAB that is appropriate for such studies. In particular, the formulation uses a set of time-dependent drift-kinetic equations (DKEs) to advance the non-Maxwellian part of the electron and ion distribution functions (fNM) with linearized Fokker-Planck-Landau collision operators. The form of the DKEs used were derived in a Chapman-Enskog-like fashion, ensuring that fNM carries no density, momentum, or temperature. Rather, these quantities are contained within the background Maxwellian and are evolved by a set of MHD equations which are closed by moments of fNM . We then present two DKE solvers based upon this formulation in axisymmetric toroidal geometries. The Neoclassical Ion-Electron Solver (NIES) solves the steady-state DKEs in the low-collisionality limit. Convergence and benchmark studies are discussed, providing a proof-of-principle that this new formulation can accurately reproduce results from the literature in the limit considered. We then present the DK4D code which evolves the finite-collisionality DKEs time-dependently. Computational methods used and successful benchmarks to other neoclassical models and codes are discussed. Furthermore, we couple DK4D to a reduced, transport-timescale MHD code. The resulting hybrid code is used to simulate the evolution of the current density in a large-aspect-ratio plasma in the presence of several different time-dependent pressure profiles. These simulations demonstrate the self-consistent, dynamic formation of the ohmic and bootstrap currents. In the slowly-evolving plasmas considered

  6. CSEM-Steel hybrid wiggler/undulator magnetic field studies

    Energy Technology Data Exchange (ETDEWEB)

    Halbach, K.; Hoyer, E.; Marks, S.; Plate, D.; Shuman, D.

    1985-06-01

    Current design of permanent magnet wiggler/undulators use either pure charge sheet equivalent material (CSEM) or the CSEM-Steel hybrid configuration. Hybrid configurations offer higher field strength at small gaps, field distributions dominated by the pole surfaces and pole tuning. Nominal performance of the hybrid is generally predicted using a 2-D magnetic design code neglecting transverse geometry. Magnetic measurements are presented showing transverse configuration influence on performance, from a combination of models using CSEMs, REC (H/sub c/ = 9.2 KOe) and NdFe (H/sub c/ = 10.7 kOe), different pole widths and end configurations. Results show peak field improvement using NdFe in place of REC in identical models, gap peak field decrease with pole width decrease (all results less than computed 2-D fields), transverse gap field distributions, and importance of CSEM material overhanging the poles in the transverse direction for highest gap fields. 3 refs., 6 figs.

  7. A Magnetic Flux Leakage and Magnetostrictive Guided Wave Hybrid Transducer for Detecting Bridge Cables

    Directory of Open Access Journals (Sweden)

    Jiang Xu

    2012-01-01

    Full Text Available Condition assessment of cables has gained considerable attention for the bridge safety. A magnetic flux leakage and magnetostrictive guided wave hybrid transducer is provided to inspect bridge cables. The similarities and differences between the two methods are investigated. The hybrid transducer for bridge cables consists of an aluminum framework, climbing modules, embedded magnetizers and a ribbon coil. The static axial magnetic field provided by the magnetizers meets the needs of the magnetic flux leakage testing and the magnetostrictive guided wave testing. The magnetizers also provide the attraction for the climbing modules. In the magnetic flux leakage testing for the free length of cable, the coil induces the axial leakage magnetic field. In the magnetostrictive guided wave testing for the anchorage zone, the coil provides a pulse high power variational magnetic field for generating guided waves; the coil induces the magnetic field variation for receiving guided waves. The experimental results show that the transducer with the corresponding inspection system could be applied to detect the broken wires in the free length and in the anchorage zone of bridge cables.

  8. A new self-consistent hybrid chemistry model for Mars and cometary environments

    Science.gov (United States)

    Wedlund, Cyril Simon; Kallio, Esa; Jarvinen, Riku; Dyadechkin, Sergey; Alho, Markku

    2014-05-01

    Over the last 15 years, a 3-D hybrid-PIC planetary plasma interaction modelling platform, named HYB, has been developed, which was applied to several planetary environment such as those of Mars, Venus, Mercury, and more recently, the Moon. We present here another evolution of HYB including a fully consistent ionospheric-chemistry package designed to reproduce the main ions in the lower boundary of the model. This evolution, also permitted by the increase in computing power and the switch to spherical coordinates for higher spatial resolution (Dyadechkin et al., 2013), is motivated by the imminent arrival of the Rosetta spacecraft in the vicinity of comet 67P/Churyumov-Gerasimenko. In this presentation we show the application of the new HYB-ionosphere model to 1D and 2D hybrid simulations at Mars above 100 km altitude and demonstrate that with a limited number of chemical reactions, good agreement with 1D kinetic models may be found. This is a first validation step before applying the model to the 67P/CG comet environment, which, like Mars, is expected be rich in carbon oxide compounds.

  9. Design and resistive inserts for NHMFL 45-T hybrid magnet

    Energy Technology Data Exchange (ETDEWEB)

    Bird, M.D.; Bole, S.; Eyssa, Y.M.; Gao, B.J.; Zhang, H.; Schneider-Muntau, H.J. [National High Magnetic Field Lab., Tallahassee, FL (United States)

    1994-07-01

    The authors present conceptual designs for 24--27 MW hybrid magnet inserts generating more than 31 T in a warm bore of 32 mm to be installed at the new National High Magnetic Field Laboratory (NHMFL). The insert housing is designed to accommodate both axially and radially cooled magnets although here they only present axially cooled designs. The magnet coils are radially partitioned (poly-Bitter) to provide high fields at moderate stress and cooling levels. GlidCop, Cu-Be and Cu-Ag conductors are considered providing resistive fields at high as 34 T in a background field of 14 T.

  10. Thermal properties of a large-bore cryocooled 10 T superconducting magnet for a hybrid magnet

    Energy Technology Data Exchange (ETDEWEB)

    Ishizuka, M., E-mail: Mas_Ishizuka@shi.co.j [Graduate School of Engineering, Tohoku University, 6-6 Aramaki Aza Aoba, Aoba-ku, Sendai 980-8579 (Japan); Research and Development Center, Sumitomo Heavy Industries, Ltd., 19 Natsushima-chou, Yokosuka, Kanagawa 237-8555 (Japan); Hamajima, T. [Graduate School of Engineering, Tohoku University, 6-6 Aramaki Aza Aoba, Aoba-ku, Sendai 980-8579 (Japan); Itou, T. [Ehime Works, Sumitomo Heavy Industries, Ltd., 5-2 Soubiraki-cho, Niihama, Ehime 792-8588 (Japan); Sakuraba, J. [Research and Development Center, Sumitomo Heavy Industries, Ltd., 19 Natsushima-chou, Yokosuka, Kanagawa 237-8555 (Japan); Nishijima, G.; Awaji, S.; Watanabe, K. [Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan)

    2010-11-01

    A cryocooled 10 T superconducting magnet with a 360 mm room temperature bore has been developed for a hybrid magnet. The superconducting magnet cooled by four Gifford-McMahon cryocoolers has been designed to generate a magnetic field of 10 T. Since superconducting wires composed of coils were subjected to large hoop stress over 150 MPa and Nb{sub 3}Sn superconducting wires particularly showed a low mechanical strength due to those brittle property, Nb{sub 3}Sn wires strengthened by NbTi-filaments were developed for the cryocooled superconducting magnet. We have already reported that the hybrid magnet could generate the resultant magnetic field of 27.5 T by adding 8.5 T from the superconducting magnet and 19 T from a water-cooled Bitter resistive magnet, after the water-cooled resistive magnet was inserted into the 360 mm room temperature bore of the cryocooled superconducting magnet. When the hybrid magnet generated the field of 27.5 T, it achieved the high magnetic-force field (B x {partial_derivative}Bz/{partial_derivative}z) of 4500 T{sup 2}/m, which was useful for magneto-science in high fields such as materials levitation research. In this paper, we particularly focus on the cause that the cryocooled superconducting magnet was limited to generate the designed magnetic field of 10 T in the hybrid magnet operation. As a result, it was found that there existed mainly two causes as the limitation of the magnetic field generation. One was a decrease of thermal conductive passes due to exfoliation from the coil bobbin of the cooling flange. The other was large AC loss due to both a thick Nb{sub 3}Sn layer and its large diameter formed on Nb-barrier component in Nb{sub 3}Sn wires.

  11. Self-consistent magnetic properties of magnetite tracers optimized for magnetic particle imaging measured by ac susceptometry, magnetorelaxometry and magnetic particle spectroscopy

    Science.gov (United States)

    Ludwig, Frank; Remmer, Hilke; Kuhlmann, Christian; Wawrzik, Thilo; Arami, Hamed; Ferguson, R. Mathew; Krishnan, Kannan M.

    2014-06-01

    Sensitivity and spatial resolution in magnetic particle imaging are affected by magnetic properties of the nanoparticle tracers used during imaging. Here, we have carried out a comprehensive magnetic characterization of single-core iron oxide nanoparticles that were designed for MPI. We used ac susceptometry, fluxgate magnetorelaxometry, and magnetic particle spectroscopy to evaluate the tracer's magnetic core size, hydrodynamic size, and magnetic anisotropy. Our results present a self-consistent set of magnetic and structural parameters for the tracers that is consistent with direct measurements of size using transmission electron microscopy and dynamic light scattering and that can be used to better understand their MPI performance.

  12. Self-consistent magnetic properties of magnetite tracers optimized for magnetic particle imaging measured by ac susceptometry, magnetorelaxometry and magnetic particle spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ludwig, Frank; Remmer, Hilke; Kuhlmann, Christian; Wawrzik, Thilo [Institute of Electrical Measurement and Fundamental Electrical Engineering, TU Braunschweig, Hans-Sommer-Str. 66, D-38106 Braunschweig (Germany); Arami, Hamed; Ferguson, R. Mathew [Department of Materials Science and Engineering Box 352120, University of Washington, Seattle, WA 98195 (United States); Krishnan, Kannan M., E-mail: kannanmk@uw.edu [Department of Materials Science and Engineering Box 352120, University of Washington, Seattle, WA 98195 (United States)

    2014-06-01

    Sensitivity and spatial resolution in magnetic particle imaging are affected by magnetic properties of the nanoparticle tracers used during imaging. Here, we have carried out a comprehensive magnetic characterization of single-core iron oxide nanoparticles that were designed for MPI. We used ac susceptometry, fluxgate magnetorelaxometry, and magnetic particle spectroscopy to evaluate the tracer's magnetic core size, hydrodynamic size, and magnetic anisotropy. Our results present a self-consistent set of magnetic and structural parameters for the tracers that is consistent with direct measurements of size using transmission electron microscopy and dynamic light scattering and that can be used to better understand their MPI performance.

  13. Single axis controlled hybrid magnetic bearing for left ventricular assist device: hybrid core and closed magnetic circuit.

    Science.gov (United States)

    da Silva, Isaias; Horikawa, Oswaldo; Cardoso, Jose R; Camargo, Fernando A; Andrade, Aron J P; Bock, Eduardo G P

    2011-05-01

    In previous studies, we presented main strategies for suspending the rotor of a mixed-flow type (centrifugal and axial) ventricular assist device (VAD), originally presented by the Institute Dante Pazzanese of Cardiology (IDPC), Brazil. Magnetic suspension is achieved by the use of a magnetic bearing architecture in which the active control is executed in only one degree of freedom, in the axial direction of the rotor. Remaining degrees of freedom, excepting the rotation, are restricted only by the attraction force between pairs of permanent magnets. This study is part of a joint project in development by IDPC and Escola Politecnica of São Paulo University, Brazil. This article shows advances in that project, presenting two promising solutions for magnetic bearings. One solution uses hybrid cores as electromagnetic actuators, that is, cores that combine iron and permanent magnets. The other solution uses actuators, also of hybrid type, but with the magnetic circuit closed by an iron core. After preliminary analysis, a pump prototype has been developed for each solution and has been tested. For each prototype, a brushless DC motor has been developed as the rotor driver. Each solution was evaluated by in vitro experiments and guidelines are extracted for future improvements. Tests have shown good results and demonstrated that one solution is not isolated from the other. One complements the other for the development of a single-axis-controlled, hybrid-type magnetic bearing for a mixed-flow type VAD.

  14. Hot-injection synthesis of Ni-ZnO hybrid nanocrystals with tunable magnetic properties and enhanced photocatalytic activity

    Science.gov (United States)

    Zeng, Deqian; Qiu, Yulong; Chen, Yuanzhi; Zhang, Qinfu; Liu, Xiang; Peng, Dong-Liang

    2017-04-01

    Magnetic metal-semiconductor hybrid nanocrystals containing ferromagnetic Ni and semiconductor ZnO have been prepared via a hot-injection route. The Ni-ZnO hybrid nanocrystals have a flower-like morphology that consists of Ni inner cores and ZnO petal shells. In spite of their large lattice mismatch, ZnO nanocrystals can still grow on faceted Ni nanocrystals to form stable interfaces. The composition of Ni-ZnO hybrid nanocrystals is readily controlled, and the average size of Ni core is tunable from 25 to 50 nm. Room temperature ferromagnetic properties are observed in these hybrid nanocrystals, and tunable magnetic properties also can be achieved by varying the size of Ni core. The as-prepared Ni-ZnO hybrid nanocrystals exhibit enhanced photocatalytic performance under ultraviolet light illumination as compared to pure ZnO nanocrystals. Furthermore, the superior reusability of hybrid nanocrystals for photocatalytic application is achieved by virtue of their magnetic properties. The facile and efficient seed-mediate strategy is particularly attractive to construct hybrid magnetic-semiconducting heterostructures. The as-obtained Ni-ZnO hybrid nanocrystals offer great potential for various applications due to their combined magnetic and semiconducting properties and low-cost earth-abundant availability.

  15. Hybrid high gradient permanent magnet quadrupole

    Science.gov (United States)

    N'gotta, P.; Le Bec, G.; Chavanne, J.

    2016-12-01

    This paper presents an innovative compact permanent magnet quadrupole with a strong gradient for potential use in future light source lattices. Its magnetic structure includes simple mechanical parts, rectangular permanent magnet blocks and soft iron poles. It has a wide aperture in the horizontal plane to accommodate an x-ray beam port, a common constraint in storage ring-based light sources. This specificity introduces field quality deterioration because of the resulting truncation of the poles; a suitable field quality can be restored with an optimized pole shape. A 82 T /m prototype with a bore radius of 12 mm and a 10 mm vertical gap between poles has been constructed and magnetically characterized. Gradient inhomogeneities better than 10-3 in the good field region were obtained after the installation of special shims.

  16. Rotational characteristics in the resonance state of the HTSC-permanent magnet hybrid magnetic bearing

    Science.gov (United States)

    Morii, Y.; Sukedai, M.; Ohashi, S.

    2011-11-01

    The hybrid magnetic bearing using permanent magnets and the high-Tc bulk superconductor (HTSC) has been developed. Repulsive force of the permanent magnet is introduced to increase the load weight of the magnetic bearing. Effect of the hybrid system has been shown. In this paper, influence of the hybrid system on the dynamic characteristics of the rotor is studied. The rotational characteristics in the mechanical resonance state are studied, and the equivalent magnetic spring coefficient is estimated from the experimental results of the load weight. The resonance frequency is measured by the rotation experiments. The rotor achieves stable levitation even in the resonance state. In the hybrid system, effect of the pinning force becomes smaller than that of the lateral force generated by the repulsive force between the two permanent magnets at the smaller air gap. Thus influence of the lateral vibration and the gradient angle in the resonance state becomes larger at a smaller air gap. The equivalent magnetic spring coefficient becomes also small, and the resonance frequency becomes small in the hybrid bearing system.

  17. Magnetic properties of hybrid elastomers with magnetically hard fillers: rotation of particles

    Science.gov (United States)

    Stepanov, G. V.; Borin, D. Yu; Bakhtiiarov, A. V.; Storozhenko, P. A.

    2017-03-01

    Hybrid magnetic elastomers belonging to the family of magnetorheological elastomers contain magnetically hard components and are of the utmost interest for the development of semiactive and active damping devices as well as actuators and sensors. The processes of magnetizing of such elastomers are accompanied by structural rearrangements inside the material. When magnetized, the elastomer gains its own magnetic moment resulting in changes of its magneto-mechanical properties, which remain permanent, even in the absence of external magnetic fields. Influenced by the magnetic field, magnetized particles move inside the matrix forming chain-like structures. In addition, the magnetically hard particles can rotate to align their magnetic moments with the new direction of the external field. Such an elastomer cannot be demagnetized by the application of a reverse field.

  18. Possible magnetic minerals constituents in the Martian crust and microstructures consistent with large remanent magnetizations

    Science.gov (United States)

    Diaz-Michelena, M.; Laughlin, D.; McHenry, M. E.

    2012-04-01

    Please fill in your abstract text. Mars Global Surveyor (MGS) mission has played a unique role in the mapping of the Martian magnetic field. Thanks to the results and later data analysis of this mission it is known that Mars does not have a global bipolar magnetic field but that the crust presents areas of great magnetization. This fact is only compatible with a large concentration of highly magnetic minerals (magnetite) with a pinned monodomain magnetization [1, 2]. The next MetNet precursor mission (MMPM) aims to place a net of meteorological stations on the surface of Mars. In the first of them (est. 2014), among other payloads, the Spanish Institute of Aerospace Technology (INTA) has developed a miniaturized vector magnetometer with the goal of measuring the thermomagnetic response of the Martian soil around the lander. The work presented here discusses possible microstructures for the magnetic minerals in the Martian crust. The results presented will be focused on the titanomagnetites series [3] solid solution with compositions of: x (Fe2TiO4) - (1-x) (Fe3O4) with 0.30 Wasilewski, and P. Cloutier; Global Distribution of Crustal Magnetism Discovered by the Mars Global Surveyor MAG/ER Experiment. Science 284, 790-793, 1999. 2. G. Kletetschka, P. J. Wasilewski, and P. T. Taylor, "Mineralogy of the sources for magnetic anomalies on mars," Meteor. Plan. Sci., vol. 35, pp. 895-899, 2000. 3. O'Reilly, Rock and Mineral Magnetism, Black& Son Limited, Glasgow, 1984. 4. Adam Wise, Maryanna Saenko, Amanda M. Velázquez, David E. Laughlin, Marina Díaz-Michelena and Michael E. McHenry, Phase Evolution in the Fe3O4-Fe2TiO4 Pseudo-binary System and its Implications for Remanent Magnetization in Martian Minerals, IEEE TRANSACTIONS ON MAGNETICS, VOL. 47, NO. 10, OCTOBER 2011 5. R. Sanz, M. F. Cerdán, A. Wise, M. E. McHenry, and M. Díaz-Michelena, Phase Evolution in the Fe3O4-Fe2TiO4 Pseudo-binary System and its Implications for Remanent Magnetization in Martian Minerals

  19. Statics of levitated vehicle model with hybrid magnets

    Institute of Scientific and Technical Information of China (English)

    Desheng LI; Zhiyuan LU; Tianwu DONG

    2009-01-01

    By studying the special characteristics of permanent and electronic magnets, a levitated vehicle model with hybrid magnets is established. The mathematical model of the vehicle is built based on its dynamics equation by studying its machine structure and working principle. Based on the model, the basic characteristics and the effect between the excluding forces from permanent magnets in three different spatial directions are analyzed, statics characteristics of the interference forces in three different spatial directions are studied, and self-adjusting equilibrium characteristics and stabilization are analyzed. Based on the structure above, the vehicle can levitate steadily by control system adjustment.

  20. Self-consistent model of a solid for the description of lattice and magnetic properties

    Science.gov (United States)

    Balcerzak, T.; Szałowski, K.; Jaščur, M.

    2017-03-01

    In the paper a self-consistent theoretical description of the lattice and magnetic properties of a model system with magnetoelastic interaction is presented. The dependence of magnetic exchange integrals on the distance between interacting spins is assumed, which couples the magnetic and the lattice subsystem. The framework is based on summation of the Gibbs free energies for the lattice subsystem and magnetic subsystem. On the basis of minimization principle for the Gibbs energy, a set of equations of state for the system is derived. These equations of state combine the parameters describing the elastic properties (relative volume deformation) and the magnetic properties (magnetization changes). The formalism is extensively illustrated with the numerical calculations performed for a system of ferromagnetically coupled spins S=1/2 localized at the sites of simple cubic lattice. In particular, the significant influence of the magnetic subsystem on the elastic properties is demonstrated. It manifests itself in significant modification of such quantities as the relative volume deformation, thermal expansion coefficient or isothermal compressibility, in particular, in the vicinity of the magnetic phase transition. On the other hand, the influence of lattice subsystem on the magnetic one is also evident. It takes, for example, the form of dependence of the critical (Curie) temperature and magnetization itself on the external pressure, which is thoroughly investigated.

  1. Magnetic equivalent circuit model for unipolar hybrid excitation synchronous machine

    Directory of Open Access Journals (Sweden)

    Kupiec Emil

    2015-03-01

    Full Text Available Lately, there has been increased interest in hybrid excitation electrical machines. Hybrid excitation is a construction that combines permanent magnet excitation with wound field excitation. Within the general classification, these machines can be classified as modified synchronous machines or inductor machines. These machines may be applied as motors and generators. The complexity of electromagnetic phenomena which occur as a result of coupling of magnetic fluxes of separate excitation systems with perpendicular magnetic axis is a motivation to formulate various mathematical models of these machines. The presented paper discusses the construction of a unipolar hybrid excitation synchronous machine. The magnetic equivalent circuit model including nonlinear magnetization curves is presented. Based on this model, it is possible to determine the multi-parameter relationships between the induced voltage and magnetomotive force in the excitation winding. Particular attention has been paid to the analysis of the impact of additional stator and rotor yokes on above relationship. Induced voltage determines the remaining operating parameters of the machine, both in the motor and generator mode of operation. The analysis of chosen correlations results in an identification of the effective control range of electromotive force of the machine.

  2. Magnetic field generation from Self-Consistent collective neutrino-plasma interactions

    Energy Technology Data Exchange (ETDEWEB)

    Brizard, A.J.; Murayama H.; Wurtele, J.S.

    1999-11-24

    A new Lagrangian formalism for self-consistent collective neutrino-plasma interactions is presented in which each neutrino species is described as a classical ideal fluid. The neutrino-plasma fluid equations are derived from a covariant relativistic variational principle in which finite-temperature effects are retained. This new formalism is then used to investigate the generation of magnetic fields and the production of magnetic helicity as a result of collective neutrino-plasma interactions.

  3. Modeling of Hybrid Permanent Magnetic-Gas Bearings

    DEFF Research Database (Denmark)

    Morosi, Stefano; Santos, Ilmar

    2009-01-01

    Modern turbomachinery applications require nowadays ever-growing rotational speeds and high degree of reliability. It then becomes natural to focus the attention of the research to contact-free bearings elements. The present alternatives focus on gas lubricated journal bearings or magnetic bearings....... In the present paper both the technologies are combined with the aim of developing a new kind of hybrid permanent magnetic - gas bearing. This new kind of machine is intended to exploit the benefits of the two technologies while minimizing their drawbacks. The poor start-up and low speed operation performance...... of the gas bearing is balanced by the properties of the passive magnetic one. At high speeds the dynamic characteristics of the gas bearing are improved by offsetting the stator ring of the permanent magnetic bearing. Furthermore this design shows a kind of redundancy, which offers soft failure properties...

  4. Modeling of Hybrid Permanent Magnetic-Gas Bearings

    DEFF Research Database (Denmark)

    Morosi, Stefano; Santos, Ilmar

    2009-01-01

    Modern turbomachinery applications require nowadays ever-growing rotational speeds and high degree of reliability. It then becomes natural to focus the attention of the research to contact-free bearings elements. The present alternatives focus on gas lubricated journal bearings or magnetic bearings...... concentric rings with radial magnetic orientation - analytical expressions for the calculation of the magnetic flux density and forces are employed, opposed to the main literature trend where finite element software is utilized at least for the calculation of the B-field. Numerical analysis shows how...... the rotor equilibrium position can be made independent on the rotational speed and applied load; it becomes function of the passive magnetic bearing offset. By adjusting the offset it is possible to significantly influence the dynamic coefficients of the hybrid bearing....

  5. Self-consistent kinetic simulations of lower hybrid drift instability resulting in electron current driven by fusion products in tokamak plasmas

    CERN Document Server

    Cook, J W S; Dendy, R O

    2010-01-01

    We present particle-in-cell (PIC) simulations of minority energetic protons in deuterium plasmas, which demonstrate a collective instability responsible for emission near the lower hybrid frequency and its harmonics. The simulations capture the lower hybrid drift instability in a regime relevant to tokamak fusion plasmas, and show further that the excited electromagnetic fields collectively and collisionlessly couple free energy from the protons to directed electron motion. This results in an asymmetric tail antiparallel to the magnetic field. We focus on obliquely propagating modes under conditions approximating the outer mid-plane edge in a large tokamak, through which there pass confined centrally born fusion products on banana orbits that have large radial excursions. A fully self-consistent electromagnetic relativistic PIC code representing all vector field quantities and particle velocities in three dimensions as functions of a single spatial dimension is used to model this situation, by evolving the in...

  6. Photovoltaic-wind hybrid system for permanent magnet DC motor

    Science.gov (United States)

    Nasir, M. N. M.; Lada, M. Y.; Baharom, M. F.; Jaafar, H. I.; Ramani, A. N.; Sulaima, M. F.

    2015-05-01

    Hybrid system of Photovoltaic (PV) - Wind turbine (WT) generation has more advantages and reliable compared to PV or wind turbine system alone. The aim of this paper is to model and design hybrid system of PV-WT supplying 100W permanent-magnet dc motor. To achieve the objective, both of PV and WT are connected to converter in order to get the same source of DC supply. Then both sources were combined and straightly connected to 100W permanent magnet dc motor. All the works in this paper is only applied in circuit simulator by using Matlab Simulink. The output produced from each converter is expected to be suit to the motor specification. The output produced from each renewable energy system is as expected to be high as it can support the motor if one of them is breakdown

  7. Analysis and Design of Hybrid Excitation Permanent Magnet Synchronous Generators

    Institute of Scientific and Technical Information of China (English)

    JIN Wan-bing; ZHANG Dong; AN Zhong-liang; TAN Ren-yuan

    2006-01-01

    On the basis of a conventional permanent magnet (PM) synchronous generator's construction,a novel kind of Hybrid Excitation Permanent Magnet Synchronous Generator (HEPMSG) is introduced by inserting exciting winding in the stator or rotor.Firstly,the construction of HEPMSG is improved with the addition of PM excitation on the ferromagnetic pole,and its working principle and design method are studied in detail.Then,an appropriate exciting current control system is presented considering the characteristics of HEPMSG.Finally,a prototype is made,and test results confirm the analysis and design.

  8. Ring current Atmosphere interactions Model with Self-Consistent Magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    2016-09-09

    The Ring current Atmosphere interactions Model with Self-Consistent magnetic field (B) is a unique code that combines a kinetic model of ring current plasma with a three dimensional force-balanced model of the terrestrial magnetic field. The kinetic portion, RAM, solves the kinetic equation to yield the bounce-averaged distribution function as a function of azimuth, radial distance, energy and pitch angle for three ion species (H+, He+, and O+) and, optionally, electrons. The domain is a circle in the Solar-Magnetic (SM) equatorial plane with a radial span of 2 to 6.5 RE. It has an energy range of approximately 100 eV to 500 KeV. The 3-D force balanced magnetic field model, SCB, balances the JxB force with the divergence of the general pressure tensor to calculate the magnetic field configuration within its domain. The domain ranges from near the Earth’s surface, where the field is assumed dipolar, to the shell created by field lines passing through the SM equatorial plane at a radial distance of 6.5 RE. The two codes work in tandem, with RAM providing anisotropic pressure to SCB and SCB returning the self-consistent magnetic field through which RAM plasma is advected.

  9. Hybrid material as contrast agent in magnetic resonance images

    OpenAIRE

    Botella Asunción, Pablo; Cabrera García, Alejandro

    2015-01-01

    [EN] The invention relates to a contrast agent of magnetic resonance based on a hybrid material formed by an organo-metallic core derived from Prussian blue and a silica cover, and optionally, molecules of a poly(ethylene glycol), a fluorescent agent, a radio nucleus and/or a substance that directs to specific receptors, cells or tissues, joined by covalent bonding to the surface of the inorganic cover.

  10. Hybrid material as contrast agent in magnetic resonance images

    OpenAIRE

    Botella Asunción, Pablo; Cabrera García, Alejandro

    2015-01-01

    [EN] The invention relates to a contrast agent of magnetic resonance based on a hybrid material formed by an organo-metallic core derived from Prussian blue and a silica cover, and optionally, molecules of a poly(ethylene glycol), a fluorescent agent, a radio nucleus and/or a substance that directs to specific receptors, cells or tissues, joined by covalent bonding to the surface of the inorganic cover.

  11. Improvement of the Levitation Characteristics in the Magnetic Bearing System Using HTSC-Permanent Magnet Hybrid Structure

    Science.gov (United States)

    Ohashi, Shunsuke

    Magnetic bearing using pining force of a permanent magnet and a high-temperature superconductor has been developed. Additional permanent magnet is introduced to increase the levitation force of the magnetic bearing. In this hybrid magnetic bearing system, levitation force is mainly given by the repulsive force of the permanent magnets, and stability for the lateral direction is given by pining force of the superconductor. The experimental device is developed. A ring type superconductor and a bulk one are examined. Levitation characteristics of the hybrid magnetic bearing are measured. A bulk superconductor shows better characteristics both levitation and lateral stability than ring one. Levitation force of the hybrid system becomes about twice as large as that of the no-hybrid one. Although repulsive force of the permanent magnet decreases lateral stability of the system, its influence becomes small by choosing adequate position of the permanent magnets and the superconductor.

  12. Magnetic Hybrid Nanosorbents for the Uptake of Paraquat from Water.

    Science.gov (United States)

    Fernandes, Tiago; Soares, Sofia F; Trindade, Tito; Daniel-da-Silva, Ana L

    2017-03-18

    Although paraquat has been banned in European countries, this herbicide is still used all over the world, thanks to its low-cost, high-efficiency, and fast action. Because paraquat is highly toxic to humans and animals, there is interest in mitigating the consequences of its use, namely by implementing removal procedures capable of curbing its environmental and health risks. This research describes new magnetic nanosorbents composed of magnetite cores functionalized with bio-hybrid siliceous shells, that can be used to uptake paraquat from water using magnetically-assisted procedures. The biopolymers κ-carrageenan and starch were introduced into the siliceous shells, resulting in two hybrid materials, Fe₃O₄@SiO₂/SiCRG and Fe₃O₄@SiO₂/SiStarch, respectively, that exhibit a distinct surface chemistry. The Fe₃O₄@SiO₂/SiCRG biosorbents displayed a superior paraquat removal performance, with a good fitting to the Langmuir and Toth isotherm models. The maximum adsorption capacity of paraquat for Fe₃O₄@SiO₂/SiCRG biosorbents was 257 mg·g(-1), which places this sorbent among the best systems for the removal of this herbicide from water. The interesting performance of the κ-carrageenan hybrid, along with its magnetic properties and good regeneration capacity, presents a very efficient way for the remediation of water contaminated with paraquat.

  13. Magnetic Hybrid Nanosorbents for the Uptake of Paraquat from Water

    Directory of Open Access Journals (Sweden)

    Tiago Fernandes

    2017-03-01

    Full Text Available Although paraquat has been banned in European countries, this herbicide is still used all over the world, thanks to its low-cost, high-efficiency, and fast action. Because paraquat is highly toxic to humans and animals, there is interest in mitigating the consequences of its use, namely by implementing removal procedures capable of curbing its environmental and health risks. This research describes new magnetic nanosorbents composed of magnetite cores functionalized with bio-hybrid siliceous shells, that can be used to uptake paraquat from water using magnetically-assisted procedures. The biopolymers κ-carrageenan and starch were introduced into the siliceous shells, resulting in two hybrid materials, Fe3O4@SiO2/SiCRG and Fe3O4@SiO2/SiStarch, respectively, that exhibit a distinct surface chemistry. The Fe3O4@SiO2/SiCRG biosorbents displayed a superior paraquat removal performance, with a good fitting to the Langmuir and Toth isotherm models. The maximum adsorption capacity of paraquat for Fe3O4@SiO2/SiCRG biosorbents was 257 mg·g−1, which places this sorbent among the best systems for the removal of this herbicide from water. The interesting performance of the κ-carrageenan hybrid, along with its magnetic properties and good regeneration capacity, presents a very efficient way for the remediation of water contaminated with paraquat.

  14. A Self-Consistent Scheme for Optical Response of large Hybrid Networks of Semiconductor Quantum Dots and Plasmonic Metal Nanoparticles

    Science.gov (United States)

    Barbiellini, Bernardo; Hayati, L.; Lane, C.; Bansil, A.; Mosallaei, H.

    We discuss a self-consistent scheme for treating the optical response of large, hybrid networks of semiconducting quantum dots (SQDs) and plasmonic metallic nanoparticles (MNPs). Our method is efficient and scalable and becomes exact in the limiting case of weakly interacting SQDs. The self-consistent equations obtained for the steady state are analogous to the Heisenberg equations of motion for the density matrix of a SQD placed in an effective electric field computed within the discrete dipole approximation (DDA). Illustrative applications of the theory to square and honeycomb SQD, MNP and hybrid SDQ/MNP lattices as well as SQD-MNP dimers are presented. Our results demonstrate that hybrid SQD-MNP lattices can provide flexible platforms for light manipulation with tunable resonant characteristics.

  15. Self-consistent scheme for optical response of large hybrid networks of semiconductor quantum dots and plasmonic metal nanoparticles

    Science.gov (United States)

    Hayati, L.; Lane, C.; Barbiellini, B.; Bansil, A.; Mosallaei, H.

    2016-06-01

    We discuss a self-consistent scheme for treating the optical response of large, hybrid networks of semiconducting quantum dots (SQDs) and plasmonic metallic nanoparticles (MNPs). Our method is efficient and scalable and becomes exact in the limiting case of weakly interacting SQDs. The self-consistent equations obtained for the steady state are analogous to the von Neumann equations of motion for the density matrix of a SQD placed in an effective electric field computed within the discrete dipole approximation. Illustrative applications of the theory to square and honeycomb SQD, MNP, and hybrid SDQ-MNP lattices as well as SQD-MNP dimers are presented. Our results demonstrate that hybrid SQD-MNP lattices can provide flexible platforms for light manipulation with tunable resonant characteristics.

  16. Study on the Levitation and Restoring Force Characteristics of the Improved HTS-permanent Magnet Hybrid Magnetic Bearing

    Science.gov (United States)

    Sugiyama, R.; Oguni, K.; Ohashi, S.

    We have developed the hybrid magnetic bearing using permanent magnets and high temperature bulk super conductor (HTS). In this system, the permanent magnet has ring type structure so that the permanent magnet and the HTS can be set to the stator. The pinning force of the HTS is used for the levitation and the guidance. Repulsive force of the permanent magnets was used in the conventional hybrid system. However the restoring force in the guidance direction of the conventional hybrid system decreases by the side slip force of the permanent magnets. In this research, attractive force of permanent magnets is used for increasing the load weight in the guidance direction. In this paper, influence of the hybrid system on the static characteristics of the rotor is studied. Three-dimensional numerical analysis of the linkage flux (in the levitation and the guidance direction) in the HTS is undertaken. The stator side permanent magnet increases the linkage flux of the levitation direction. Therefore in the hybrid system the linkage flux of the levitation direction increases. The levitation and restoring force of the rotor is measured. The levitation force of the hybrid system becomes smaller than that of the non-hybrid one by attractive force. The rotor in the hybrid system is supported by the pinning force and attractive force. The restoring force of the hybrid system becomes larger than that of the non-hybrid one because of increasing the linkage flux of the levitation direction.

  17. Screening of resonant magnetic perturbations taking into account a self-consistent electric field

    Science.gov (United States)

    Kaveeva, E.; Rozhansky, V.

    2012-05-01

    Steady-state screening of resonant magnetic perturbations (RMPs) in a tokamak is analysed taking into account a self-consistent electric field. On the one hand, the self-consistent radial electric field is determined by the balance of the electron radial conductivity in a stochastic magnetic field screened by the plasma and by the neoclassical ion conductivity. On the other hand, the parallel current of electrons, the radial projection of which is balanced by the ion current, determines the screening of RMPs. In this work, the self-consistent electric field and RMP screening are calculated. Two different regimes of screening are found: the ‘ion’ branch which corresponds to the negative radial electric field and the ‘electron’ branch for which the electric field is positive. Predictions of the model are compared with the experimental data and results of the simulation with various codes. The corresponding toroidal rotation and pump-out effect are discussed.

  18. A review of the hybrid techniques for the fabrication of hard magnetic microactuators based on bonded magnetic powders

    Science.gov (United States)

    Pallapa, M.; Yeow, J. T. W.

    2015-02-01

    Polymer composites based on permanent magnetic bonded powders exhibit immense potential for applications in microactuators and sensors with magnetic performances comparable to their fully dense counterparts. While fabrication and integration of magnetic devices based on bonded magnetic powders is challenging via conventional deposition and electrochemical growth techniques, hybrid fabrication offers a promising alternative. This paper presents the evolution of permanent magnetic materials into bonded magnetic powders, the magnetic performance figures of merit of permanent magnetic materials significant for the design and manufacture of polymer based sensors and actuators. A review of the hybrid fabrication techniques such as replica molding, squeegee coating, spin casting etc are reported. Critical factors affecting the fabrication of polymer magnetic composites such as filler particle size and effect of magnetic field during fabrication are discussed. Prior art based on polymer magnetic composites for the fabrication of hard magnetic films and hard magnetic actuators are presented.

  19. Strong static magnetic fields elicit swimming behaviors consistent with direct vestibular stimulation in adult zebrafish.

    Directory of Open Access Journals (Sweden)

    Bryan K Ward

    Full Text Available Zebrafish (Danio rerio offer advantages as model animals for studies of inner ear development, genetics and ototoxicity. However, traditional assessment of vestibular function in this species using the vestibulo-ocular reflex requires agar-immobilization of individual fish and specialized video, which are difficult and labor-intensive. We report that using a static magnetic field to directly stimulate the zebrafish labyrinth results in an efficient, quantitative behavioral assay in free-swimming fish. We recently observed that humans have sustained nystagmus in high strength magnetic fields, and we attributed this observation to magnetohydrodynamic forces acting on the labyrinths. Here, fish were individually introduced into the center of a vertical 11.7T magnetic field bore for 2-minute intervals, and their movements were tracked. To assess for heading preference relative to a magnetic field, fish were also placed in a horizontally oriented 4.7T magnet in infrared (IR light. A sub-population was tested again in the magnet after gentamicin bath to ablate lateral line hair cell function. Free-swimming adult zebrafish exhibited markedly altered swimming behavior while in strong static magnetic fields, independent of vision or lateral line function. Two-thirds of fish showed increased swimming velocity or consistent looping/rolling behavior throughout exposure to a strong, vertically oriented magnetic field. Fish also demonstrated altered swimming behavior in a strong horizontally oriented field, demonstrating in most cases preferred swimming direction with respect to the field. These findings could be adapted for 'high-throughput' investigations of the effects of environmental manipulations as well as for changes that occur during development on vestibular function in zebrafish.

  20. Consistent neutron star models with magnetic field dependent equations of state

    CERN Document Server

    Chatterjee, Debarati; Novak, Jerome; Oertel, Micaela

    2014-01-01

    We present a self-consistent model for the study of the structure of a neutron star in strong magnetic fields. Starting from a microscopic Lagrangian, this model includes the effect of the magnetic field on the equation of state, the interaction of the electromagnetic field with matter (magnetisation), and anisotropies in the energy-momentum tensor, as well as general relativistic aspects. We build numerical axisymmetric stationary models and show the applicability of the approach with one example quark matter equation of state (EoS) often employed in the recent literature for studies of strongly magnetised neutron stars. For this EoS, the effect of inclusion of magnetic field dependence or the magnetisation do not increase the maximum mass significantly in contrast to what has been claimed by previous studies.

  1. Model-based optimal control of a hybrid power generation system consisting of photovoltaic arrays and fuel cells

    Science.gov (United States)

    Zervas, P. L.; Sarimveis, H.; Palyvos, J. A.; Markatos, N. C. G.

    Hybrid renewable energy systems are expected to become competitive to conventional power generation systems in the near future and, thus, optimization of their operation is of particular interest. In this work, a hybrid power generation system is studied consisting of the following main components: photovoltaic array (PV), electrolyser, metal hydride tanks, and proton exchange membrane fuel cells (PEMFC). The key advantage of the hybrid system compared to stand-alone photovoltaic systems is that it can store efficiently solar energy by transforming it to hydrogen, which is the fuel supplied to the fuel cell. However, decision making regarding the operation of this system is a rather complicated task. A complete framework is proposed for managing such systems that is based on a rolling time horizon philosophy.

  2. Improvement of the rotational characteristics in the HTSC-permanent magnet hybrid bearing using ring shaped magnet

    Energy Technology Data Exchange (ETDEWEB)

    Emoto, Kozo; Sugiyama, Ryo; Takagi, Shogo; Ohashi, Shunsuke, E-mail: k145676@kansai-u.ac.jp

    2013-11-15

    Highlights: •We have developed the HTS-permanent magnet hybrid bearing system. •Three dimensional numerical analysis is undertaken to get the effective hybrid configuration. •Repulsive force and pinning force are combined effectively. •The hybrid system shows better levitation characteristics than the non-hybrid one. •In the mechanical resonance state, vibration of the rotor in the hybrid system is small. -- Abstract: We have developed the hybrid magnetic bearing using permanent magnets and the high-T{sub c} bulk superconductor (HTSC). Pinning force of the HTSC is used for the levitation and the guidance. Repulsive force of the permanent magnets is introduced to increase the load weight of the magnetic bearing. In this system, the stator side permanent magnet has the ring type structure so that both pinning force and repulsive force are used effectively. In this paper, influence of the hybrid system on dynamic characteristics of the rotor is studied. The rotor which is supported by the hybrid magnetic bearing is rotated. Then, vibration and the gradient angle of the rotor are measured until the rotor reaches to the end of the resonance state. Three dimensional numerical analysis of the flux which penetrates on the surface of the HTSC is undertaken. The relation between the dynamic characteristics and the flux is considered, and that of the hybrid system is compared with the non-hybrid one. In the hybrid system, the flux is changed by the influences of the stator side permanent magnet. Vibration and the gradient angle of the hybrid system are shown to be smaller than that of the non-hybrid one.

  3. 33. 6 T dc magnetic field produced in a hybrid magnet with Ho pole pieces

    Energy Technology Data Exchange (ETDEWEB)

    Rubin, L.G.; Brandt, B.L.; Weggel, R.J.; Foner, S.; McNiff E.J. Jr.

    1986-07-07

    A dc magnetic field of 33.6 +- 0.3 T was produced in a hybrid magnet whose central field was enhanced by a 3.5 T contribution from holmium pole pieces. The working (sample) volume was a 2-mm gap between the 19-mm-diam x 32-mm-long pole pieces tapered to 12-mm-diam faces. The magnetic field was measured with high-field/low-temperature Hall-effect sensors whose reproducibility and linearity made practical an extrapolation technique for fields above 30 T. Three superconducting samples with previously measured upper critical fields were used as calibration check points.

  4. Consistency evaluation between EGSnrc and Geant4 charged particle transport in an equilibrium magnetic field

    Science.gov (United States)

    Yang, Y. M.; Bednarz, B.

    2013-02-01

    Following the proposal by several groups to integrate magnetic resonance imaging (MRI) with radiation therapy, much attention has been afforded to examining the impact of strong (on the order of a Tesla) transverse magnetic fields on photon dose distributions. The effect of the magnetic field on dose distributions must be considered in order to take full advantage of the benefits of real-time intra-fraction imaging. In this investigation, we compared the handling of particle transport in magnetic fields between two Monte Carlo codes, EGSnrc and Geant4, to analyze various aspects of their electromagnetic transport algorithms; both codes are well-benchmarked for medical physics applications in the absence of magnetic fields. A water-air-water slab phantom and a water-lung-water slab phantom were used to highlight dose perturbations near high- and low-density interfaces. We have implemented a method of calculating the Lorentz force in EGSnrc based on theoretical models in literature, and show very good consistency between the two Monte Carlo codes. This investigation further demonstrates the importance of accurate dosimetry for MRI-guided radiation therapy (MRIgRT), and facilitates the integration of a ViewRay MRIgRT system in the University of Wisconsin-Madison's Radiation Oncology Department.

  5. Pixel hybrid photon detector magnetic distortions characterization and compensation

    CERN Document Server

    Aglieri-Rinella, G; D'Ambrosio, Carmelo; Forty, Roger W; Gys, Thierry; Patel, Mitesh; Piedigrossi, Didier; Van Lysebetten, Ann

    2004-01-01

    The LHCb experiment requires positive kaon identification in the momentum range 2-100 GeV/c. This is provided by two ring imaging Cherenkov detectors. The stringent requirements on the photon detectors are fully satisfied by the novel pixel hybrid photon detector, HPD. The HPD is a vacuum tube with a quartz window, S20 photo-cathode, cross-focusing electron optics and a silicon anode encapsulated within the tube. The anode is a 32*256 pixels hybrid detector, with a silicon sensor bump-bonded onto a readout chip containing 8192 channels with analogue front-end and digital read-out circuitry. An external magnetic field influences the trajectory of the photoelectrons and could thereby degrade the inherent excellent space resolution of the HPD. The HPDs must be operational in the fringe magnetic field of the LHCb magnet. This paper reports on an extensive experimental characterization of the distortion effects. The characterization has allowed the development of parameterisations and of a compensation algorithm. ...

  6. Hybrid Method for 3D Segmentation of Magnetic Resonance Images

    Institute of Scientific and Technical Information of China (English)

    ZHANGXiang; ZHANGDazhi; TIANJinwen; LIUJian

    2003-01-01

    Segmentation of some complex images, especially in magnetic resonance brain images, is often difficult to perform satisfactory results using only single approach of image segmentation. An approach towards the integration of several techniques seems to be the best solution. In this paper a new hybrid method for 3-dimension segmentation of the whole brain is introduced, based on fuzzy region growing, edge detection and mathematical morphology, The gray-level threshold, controlling the process of region growing, is determined by fuzzy technique. The image gradient feature is obtained by the 3-dimension sobel operator considering a 3×3×3 data block with the voxel to be evaluated at the center, while the gradient magnitude threshold is defined by the gradient magnitude histogram of brain magnetic resonance volume. By the combined methods of edge detection and region growing, the white matter volume of human brain is segmented perfectly. By the post-processing using mathematical morphological techniques, the whole brain region is obtained. In order to investigate the validity of the hybrid method, two comparative experiments, the region growing method using only gray-level feature and the thresholding method by combining gray-level and gradient features, are carried out. Experimental results indicate that the proposed method provides much better results than the traditional method using a single technique in the 3-dimension segmentation of human brain magnetic resonance data sets.

  7. Decentralized Method for Load Sharing and Power Management in a Hybrid Single/Three-Phase Islanded Microgrid Consisting of Hybrid Source PV/Battery Units

    DEFF Research Database (Denmark)

    Karimi, Yaser; Oraee, Hashem; Guerrero, Josep M.

    2017-01-01

    This paper proposes a new decentralized power management and load sharing method for a photovoltaic based, hybrid single/three-phase islanded microgrid consisting of various PV units, battery units and hybrid PV/battery units. The proposed method is not limited to the systems with separate PV...... and battery units, and power flow among different phases is performed automatically through three-phase units. The proposed method takes into account the available PV power and battery conditions of the units to share the load among them. To cover all possible conditions of the microgrid, the operation...... in different load, PV generation and battery conditions is validated experimentally in a microgrid lab prototype consisted of one three-phase unit and two single-phase units....

  8. Magneto-rheological response of elastomer composites with hybrid-magnetic fillers

    Science.gov (United States)

    Aloui, Sahbi; Klüppel, Manfred

    2015-02-01

    We study the magneto-rheological response of hybrid-magnetic elastomer composites consisting of two different magnetic filler particles at fixed overall concentration. Thereby, we focus on an optimization of mechanical and magnetic properties by combining highly reinforcing magnetic nano-particles (MagSilica) with micro-sized carbonyl-iron particles (CIP), which exhibit high switch ability in a magnetic field. We observe a symbiotic interaction of both filler types, especially in the case when an orientation of the magnetic filler particles is achieved due to curing in an external magnetic field. The orientation effect is significant only for the micro-sized CIP particles with high saturation magnetization, indicating that the induced magnetic moment for the nano-sized particles is too small for delivering sufficient attraction between the particles in an external magnetic field. A pronounced switching behavior is observed for the non-cross-linked melts with 15 and 20 vol.% CIP, whereby the small strain modulus increases by more than 50%. For the sample without the coupling agent silane, one even observes a relative modulus increase of about 140%, which can be related to the combined effect of a higher mobility of the particles without a silane layer and the ability of the particles to come in close contact when they are arranged in strings along the field lines. For the cross-linked samples, a maximum switching effect of about 30% is achieved for the system with pure CIP. This magneto-sensitivity decreases successively if CIP is replaced by MagSilica, while the tensile strength of the systems increases significantly. The use of silane reduces the switching effect, but it is necessary for a good mechanical performance by delivering strong chemical bonding of the magnetic filler particles to the polymer matrix.

  9. Improvement of the rotational characteristics in the HTSC-permanent magnet hybrid bearing using ring shaped magnet

    Science.gov (United States)

    Emoto, Kozo; Sugiyama, Ryo; Takagi, Shogo; Ohashi, Shunsuke

    2013-11-01

    We have developed the hybrid magnetic bearing using permanent magnets and the high-Tc bulk superconductor (HTSC). Pinning force of the HTSC is used for the levitation and the guidance. Repulsive force of the permanent magnets is introduced to increase the load weight of the magnetic bearing. In this system, the stator side permanent magnet has the ring type structure so that both pinning force and repulsive force are used effectively. In this paper, influence of the hybrid system on dynamic characteristics of the rotor is studied. The rotor which is supported by the hybrid magnetic bearing is rotated. Then, vibration and the gradient angle of the rotor are measured until the rotor reaches to the end of the resonance state. Three dimensional numerical analysis of the flux which penetrates on the surface of the HTSC is undertaken. The relation between the dynamic characteristics and the flux is considered, and that of the hybrid system is compared with the non-hybrid one. In the hybrid system, the flux is changed by the influences of the stator side permanent magnet. Vibration and the gradient angle of the hybrid system are shown to be smaller than that of the non-hybrid one.

  10. A Hybrid EAV-Relational Model for Consistent and Scalable Capture of Clinical Research Data.

    Science.gov (United States)

    Khan, Omar; Lim Choi Keung, Sarah N; Zhao, Lei; Arvanitis, Theodoros N

    2014-01-01

    Many clinical research databases are built for specific purposes and their design is often guided by the requirements of their particular setting. Not only does this lead to issues of interoperability and reusability between research groups in the wider community but, within the project itself, changes and additions to the system could be implemented using an ad hoc approach, which may make the system difficult to maintain and even more difficult to share. In this paper, we outline a hybrid Entity-Attribute-Value and relational model approach for modelling data, in light of frequently changing requirements, which enables the back-end database schema to remain static, improving the extensibility and scalability of an application. The model also facilitates data reuse. The methods used build on the modular architecture previously introduced in the CURe project.

  11. Improvement in field uniformity of the hybrid insert magnet

    Energy Technology Data Exchange (ETDEWEB)

    Asano, T; Yoshioka, H; Matsumoto, S; Kiyoshi, T [Tsukuba Magnet Laboratory, National Institute for Materials Science, Sakura 3-13, Tsukuba, Ibaraki 305-0003 (Japan)

    2006-11-15

    The hybrid magnet (HM) at the Tsukuba Magnet Laboratory (TML) generates 35 T in a 52-mm warm bore with a field uniformity of about 6500 ppm in a 10 mm diameter sphere volume (DSV). A new resistive insert magnet with the same bore was designed to provide the higher field uniformity in the HM operation and the construction was started. This e-magnet is composed of three concentric Bitter coils. The height of the outer coil is almost equal to that of present insert, . Tand the middle coil is made of a split-paired winding; . Tthe split gap is 53 mm. The A uniformity better than 10 ppm in a 10 mm DSV will be achieved at a themagnetic field of 34.0 T in a backup field of 14 T. This eimprovement in uniformity, in conjuncllaboration with the improvements of the DC power supply already in progress at the TML, will make it possible to expand the application fields of the HM of the TML.

  12. A Mn₁₅ single-molecule magnet consisting of a supertetrahedron incorporated in a loop.

    Science.gov (United States)

    Moushi, Eleni E; Masello, Antonio; Wernsdorfer, Wolfgang; Nastopoulos, Vassilios; Christou, George; Tasiopoulos, Anastasios J

    2010-05-28

    Two new Mn(15) clusters consisting of a supertetrahedron which is incorporated in a loop are reported. The reactions of [Mn(O(2)CEt)(2)]·2H(2)O with the diols 1,3-propanediol (H(2)pd) or 2-methyl-1,3-propanediol (H(2)mpd) in the presence of KX (X = CN(-), Cl(-), Br(-), NO(3)(-), ClO(4)(-), OCN(-), SCN(-)) afforded compounds [Mn(15)K(mu(4)-O)(4)(O(2)CEt)(11)(pd)(12)(py)(2)] (1) and [Mn(15)K(mu(4)-O)(4)(O(2)CEt)(11)(mpd)(12)(py)(2)] (2). The structural core of 1 and 2 consists of a Mn(11) loop and a Mn(9)K supertetrahedron sharing a Mn(5) triangle. To the best of our knowledge, the structural motif of a supertetrahedron incorporated in a loop appears for the first time in metal cluster chemistry. Variable-temperature, solid-state direct current (dc) magnetic susceptibility studies in the 300-5 K range showed that the chi(M)T value increases with decreasing T suggesting the existence of predominant ferromagnetic exchange interactions and a relatively large ground state spin. This was confirmed by field-variable temperature magnetization measurements which were fitted using a matrix diagonalization method to give S approximately 23/2, g = 1.92(1) and D = -0.071(2) cm(-1). In addition, compound 1 displays frequency-dependent alternating current (ac) signals suggesting single-molecule magnetism (SMM) behaviour. This was proven by magnetization vs. dc field sweeps on single-crystals of 1·0.7py·1.3MeCN, which displayed sweep rate- and temperature-dependent hysteresis loops.

  13. Preparation of Magnetic Hybrid Microspheres with Well-Defined Yolk-Shell Structure

    Directory of Open Access Journals (Sweden)

    Yuan Zhao

    2016-01-01

    Full Text Available A facile and efficient route was reported to prepare a kind of yolk-shell magnetic hybrid microspheres by suspension polymerization and calcinations method. The morphology, structure, and composition of the magnetic microspheres were characterized by FTIR, XRD, TEM, SEM, and TGA analysis. The vibrating-sample magnetometry (VSM results clearly showed that the magnetic particles were superparamagnetic with saturation magnetization of 32.82 emu/g which makes the microcomposites easily controlled by an external magnetic field. The results revealed that the magnetic hybrid microspheres might have important applications in magnetic bioseparation and drug delivery.

  14. Synchronous motor with hybrid permanent magnets on the rotor.

    Science.gov (United States)

    Slusarek, Barbara; Kapelski, Dariusz; Antal, Ludwik; Zalas, Pawel; Gwoździewicz, Maciej

    2014-07-10

    Powder metallurgy allows designers of electric motors to implement new magnetic circuit structures. A relatively new concept is the use of a magnet system consisting of various types of magnets on one rotor, for example sintered and bonded magnets. This concept has been applied to the design and manufacture of the four-pole rotor of a synchronous motor with 400 W power and a rotational speed of 1500 rpm. In this motor, the stator of an asynchronous motor type Sh 71-4B is applied. The application of the new construction of the rotor resulted in an increase in motor efficiency and power factor compared to an asynchronous motor with the same volume.

  15. A family of rare earth molybdenum bronzes: Oxides consisting of periodic arrays of interacting magnetic units

    Energy Technology Data Exchange (ETDEWEB)

    Schneemeyer, L.F. [Department of Chemistry, Montclair State University, Montclair, NJ 07043 (United States); Siegrist, T., E-mail: tsiegrist@fsu.edu [Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, FL 32310 (United States); National High Magnetic Field Laboratory, Tallahassee, FL 32310 (United States); Besara, T. [National High Magnetic Field Laboratory, Tallahassee, FL 32310 (United States); Lundberg, M. [Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, FL 32310 (United States); National High Magnetic Field Laboratory, Tallahassee, FL 32310 (United States); Sun, J. [Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, FL 32310 (United States); Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6056 (United States); Singh, D.J. [Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6056 (United States)

    2015-07-15

    The family of rare earth molybdenum bronzes, reduced ternary molybdates of composition LnMo{sub 16}O{sub 44,} was synthesized and a detailed structural study carried out. Bond valence sum (BVS) calculations clearly show that the molybdenum ions in tetrahedral coordination are hexavalent while the electron count in the primitive unit cell is odd. Yet, measurements show that the phases are semiconductors. The temperature dependence of the magnetic susceptibility of samples containing several different rare earth elements was measured. These measurements verified the presence of a 6.5 K magnetic phase transition not arising from the rare earth constituent, but likely associated with the unique isolated ReO{sub 3}-type Mo{sub 8}O{sub 36} structural subunits in this phase. To better understand the behavior of these materials, electronic structure calculations were performed within density functional theory. Results suggest a magnetic state in which these structural moieties have an internal ferromagnetic arrangement, with small ~1/8 μ{sub B} moments on each Mo. We suggest that the Mo{sub 8}O{sub 36} units behave like pseudoatoms with spin 1/2 derived from a single hole distributed over the eight Mo atoms that are strongly hybridized with the O atoms of the subunit. Interestingly, while the compound is antiferromagnetic, our calculations suggest that a field-stabilized ferromagnetic state, if achievable, will be a narrow band half-metal. - Graphical abstract: LnMo{sub 16}O{sub 44} phases comprise corner sharing tetrahedral and octahedral molybdenum ions. The MoO{sub 6} octahedra form Mo{sub 8}O{sub 36} units that are well separated and act like pseudo-atoms, accommodating 11 electrons each. - Highlights: • Single crystal X-ray diffraction refinements of LnMo{sub 16}O{sub 44} single crystals for Ln=Ce, Pr, Nd, Tb, Dy and Ho. • DFT calculations based on LaMo{sub 16}O{sub 44}. • [Mo{sub 8}O{sub 36}] units behaving as superatoms with a net magnetic moment of 1 µ

  16. Soft magnetic polymer-metal composites consisting of nanostructural Fe-basic powders

    Directory of Open Access Journals (Sweden)

    R. Nowosielski

    2007-09-01

    Full Text Available Purpose: The paper presents and reviews the research results of soft magnetic composites consisting nanocrystalline powders obtained by soaking and high energetic milling of amorphous ribbons of metallic glasses Fe78Si9B13 and Fe73.5Cu1Nb3Si13.5B9.Design/methodology/approach: Amorphous Fe78Si9B13 and Fe73.5Cu1Nb3Si13.5B9 ribbons were milled in a high energy ball mill (8000 SPEX CertiPrep Mixer/Mill with a ball-to-sample weight ratio of 5:1. The obtained metallic powders were sieved to a particle mean diameter 200÷500 µm, 75÷200 µm and 25÷75 µm, and then annealed in an argon atmosphere to generate the nanocrystalline state. The powders particles were mixed and consolidated with polymer to obtain composites in the form toroidal cores. Observations of the structure of powders and composites were made on the Opton DSM-940 scanning electron microscope and electron transmitting microscope JEOL JEM 200CX and X-ray analysis. The X-ray tests were realized with the use of the XRD 7 SEIFERT-FPM diffractometer.Findings: The analysis of the magnetic properties test results of the powders obtained in the high-energy ball of milling process, and the composites manufactured from these powders proved that the process causes significant decrease in the magnetic properties in relation to ribbons. The structure and magnetic properties of this material may be improved by means of a proper choice of parameters of this process as well as the final thermal treatment and first of all by decrease of demagnetization effect.Research limitations/implications: For the powders, further magnetic, structure and composition examinations are planed.Practical implications: The amorphous and nanocrystalline Fe78Si9B13 and. Fe73.5Cu1Nb3Si13.5B9 powders obtained by high-energy ball milling of metallic glasses feature an alternative to solid alloys and make it possible to obtain the ferromagnetic nanocomposites, whose shape, dimensions and magnetic properties can be freely

  17. Optimization of autonomous magnetic field sensor consisting of giant magnetoimpedance sensor and surface acoustic wave transducer

    KAUST Repository

    Li, Bodong

    2012-11-01

    This paper presents a novel autonomous thin film magnetic field sensor consisting of a tri-layer giant magnetoimpedance sensor and a surface acoustic wave transponder. Double and single electrode interdigital transducer (IDT) designs are employed and compared. The integrated sensor is fabricated using standard microfabrication technology. The results show the double electrode IDT has an advantage in terms of the sensitivity. In order to optimize the matching component, a simulation based on P-matrix is carried out. A maximum change of 2.4 dB of the reflection amplitude and a sensitivity of 0.34 dB/Oe are obtained experimentally. © 2012 IEEE.

  18. Effects of the consistency of the fringing magnetic field on direct numerical simulations of liquid-metal flow

    Energy Technology Data Exchange (ETDEWEB)

    Albets-Chico, X., E-mail: xalbets@ucy.ac.c [Computational Science Laboratory - UCY-CompSci, Department of Mechanical and Manufacturing Engineering, University of Cyprus, 75 Kallipoleos, Nicosia 1678 (Cyprus); Votyakov, E.V.; Radhakrishnan, H. [Computational Science Laboratory - UCY-CompSci, Department of Mechanical and Manufacturing Engineering, University of Cyprus, 75 Kallipoleos, Nicosia 1678 (Cyprus); Kassinos, S., E-mail: kassinos@ucy.ac.c [Computational Science Laboratory - UCY-CompSci, Department of Mechanical and Manufacturing Engineering, University of Cyprus, 75 Kallipoleos, Nicosia 1678 (Cyprus)

    2011-01-15

    We investigate the effects of the consistency of strong fringing decreasing magnetic fields on numerical simulations of classical experimental data. Studies about fringing magnetic fields have attracted the attention of the fusion community in relation to the design of the liquid-metal flow blankets for fusion nuclear reactors. One-dimensional fitting functions neglecting magnetic field consistency have been adopted in previous numerical studies. Thanks to complete three-dimensional numerical simulations, the effect of the physical consistency of the magnetic field on fluid flow can now be assessed. We present a technique for generating discretely consistent magnetic fields based on classical one-dimensional fittings. With this method, key magnetic field features, such as the bending of the magnetic lines, are accurately reproduced and, therefore, the validity of the technique is established. Consistent and inconsistent magnetic fields have been tested under very strong decreasing magnetic fields with insulating and conducting walls using direct numerical simulations. The results show a moderate, but systematic, improvement of the predictions with respect to the experiments. As an example, the repeated under-prediction of the peak transverse pressure gradient, observed in the results of asymptotic methods and of direct numerical simulations, is explained by the historically neglected consistency of the fringing magnetic field.

  19. A tubular hybrid Halbach/axially-magnetized permanent-magnet linear machine

    Directory of Open Access Journals (Sweden)

    Yi Sui

    2017-05-01

    Full Text Available A single-phase tubular permanent-magnet linear machine (PMLM with hybrid Halbach/axially-magnetized PM arrays is proposed for free-piston Stirling power generation system. Machine topology and operating principle are elaborately illustrated. With the sinusoidal speed characteristic of the free-piston Stirling engine considered, the proposed machine is designed and calculated by finite-element analysis (FEA. The main structural parameters, such as outer radius of the mover, radial length of both the axially-magnetized PMs and ferromagnetic poles, axial length of both the middle and end radially-magnetized PMs, etc., are optimized to improve both the force capability and power density. Compared with the conventional PMLMs, the proposed machine features high mass and volume power density, and has the advantages of simple control and low converter cost. The proposed machine topology is applicable to tubular PMLMs with any phases.

  20. A tubular hybrid Halbach/axially-magnetized permanent-magnet linear machine

    Science.gov (United States)

    Sui, Yi; Liu, Yong; Cheng, Luming; Liu, Jiaqi; Zheng, Ping

    2017-05-01

    A single-phase tubular permanent-magnet linear machine (PMLM) with hybrid Halbach/axially-magnetized PM arrays is proposed for free-piston Stirling power generation system. Machine topology and operating principle are elaborately illustrated. With the sinusoidal speed characteristic of the free-piston Stirling engine considered, the proposed machine is designed and calculated by finite-element analysis (FEA). The main structural parameters, such as outer radius of the mover, radial length of both the axially-magnetized PMs and ferromagnetic poles, axial length of both the middle and end radially-magnetized PMs, etc., are optimized to improve both the force capability and power density. Compared with the conventional PMLMs, the proposed machine features high mass and volume power density, and has the advantages of simple control and low converter cost. The proposed machine topology is applicable to tubular PMLMs with any phases.

  1. Traffic flow characteristics in a mixed traffic system consisting of ACC vehicles and manual vehicles: A hybrid modelling approach

    Science.gov (United States)

    Yuan, Yao-Ming; Jiang, Rui; Hu, Mao-Bin; Wu, Qing-Song; Wang, Ruili

    2009-06-01

    In this paper, we have investigated traffic flow characteristics in a traffic system consisting of a mixture of adaptive cruise control (ACC) vehicles and manual-controlled (manual) vehicles, by using a hybrid modelling approach. In the hybrid approach, (i) the manual vehicles are described by a cellular automaton (CA) model, which can reproduce different traffic states (i.e., free flow, synchronised flow, and jam) as well as probabilistic traffic breakdown phenomena; (ii) the ACC vehicles are simulated by using a car-following model, which removes artificial velocity fluctuations due to intrinsic randomisation in the CA model. We have studied the traffic breakdown probability from free flow to congested flow, the phase transition probability from synchronised flow to jam in the mixed traffic system. The results are compared with that, where both ACC vehicles and manual vehicles are simulated by CA models. The qualitative and quantitative differences are indicated.

  2. Design analysis and performance assessment of hybrid magnetic bearings for a rotary centrifugal blood pump.

    Science.gov (United States)

    Ren, Zhaohui; Jahanmir, Said; Heshmat, Hooshang; Hunsberger, Andrew Z; Walton, James F

    2009-01-01

    A hybrid magnetic bearing system was designed for a rotary centrifugal blood pump being developed to provide long-term circulatory support for heart failure patients. This design consists of two compact bearings to suspend the rotor in five degrees-of-freedom with single axis active control. Permanent magnets are used to provide passive radial support and electromagnets to maintain axial stability of the rotor. Characteristics of the passive radial and active thrust magnetic bearing system were evaluated by the electromagnetic finite element analysis. A proportional-integral-derivative controller with force balance algorithm was implemented for closed loop control of the magnetic thrust bearing. The control position is continuously adjusted based on the electrical energy in the bearing coils, and thus passive magnetic forces carry static thrust loads to minimize the bearing current. Performance of the magnetic bearing system with associated control algorithm was evaluated at different operating conditions. The bearing current was significantly reduced with the force balance control method and the power consumption was below 0.5 W under various thrust loads. The bearing parameters predicted by the analysis were validated by the experimental data.

  3. Hybrid magnetic – Semiconductor nanocomposites: optical, magnetic and nanosecond dynamical properties

    Energy Technology Data Exchange (ETDEWEB)

    Emam, A.N.; Girgis, E.; Mostafa, A.A. [National Research Center, Dokki, Giza (Egypt); Guirguis, O.W. [Biophysics Department, Faculty of Science, Cairo University, Giza (Egypt); Mohamed, M.B., E-mail: monabmohamed@gmail.com [National Institute of Laser Enhanced Science, Cairo University, Giza (Egypt); NanoTech Egypt for Photoelectronics, Dreamland, Giza (Egypt)

    2015-07-15

    A series of colloidal CdSe quantum dots doped with different concentration of cobalt ions has been prepared via organometallic pyrolysis of a mixture of cadmium stearate and cobalt dithiocarbazate. The conditions required for successful doping depend on the source of cobalt ions and the dopant concentration. The structure and morphology of the prepared nanocrystals have been characterized using X-Ray Diffraction (XRD), and Transmission Electron Microscope (TEM). Slight shift in the interplaner space was observed in the XRD pattern of the doped nanocrystals. Formation of separate cobalt nanoclusters has been observed in the TEM images upon increasing the cobalt concentration more than 2% of the original cadmium concentration. This was confirmed by magnetic measurements of the prepared samples. Room-temperature ferromagnetism has been observed, in which the switching field increases as the cobalt ratio increases. Increasing the cobalt ratio more than 5% increases the coercivity due to formation of Co{sup 0} nanoclusters. Moreover, the presence of localized magnetic ions in semiconductor QDs leads to strong exchange interactions between sp band electrons and the magnetic ions d electrons. This would influence the optical properties such as absorption, emission, as well as nanosecond relaxation dynamics. - Graphical abstract: Display Omitted - Highlights: • Hybrid semiconductor-magnetic nanostructure was prepared via chemical method. • Room-temperature ferromagnetism for hybrid CdSe–Co quantum dots has been observed. • Co{sup +2} ions induces slight shift in the interplaner space distance of the doped QDs. • Hybrid CdSe–Co QDs have better quantum yield than pure CdSe QDs. • Hybrid CdSe–Co nanocrystals have faster electron-hole dynamics than pure CdSe QDs.

  4. A Novel Integral 5-DOFs Hybrid Magnetic Bearing with One Permanent Magnet Ring Used for Turboexpander

    Directory of Open Access Journals (Sweden)

    Bangcheng Han

    2014-01-01

    Full Text Available We propose a novel combined five-degrees-of-freedom (5-DOFs hybrid magnetic bearing (HMB with only one permanent magnet ring (PMR used for turboexpanders. It has two radial magnetic bearing (RMB units; each has four poles and one thrust magnetic bearing (TMB to control 5-DOFs. Based on one PMR, the bias flux of the two radial magnetic bearing units and the one thrust magnetic bearing unit is constructed. As a result, ultra-high-speed, lower power loss, small size, and low cost can be achieved. Furthermore, the equivalent magnetic circuit method and 3D finite element method (FEM are used to model and analyze the combined 5-DOFs HMB. The force-current, force-position, torque-coil currents, the torque-angle position, and the stiffness models of the combined 5-DOFs HMB are given. Moreover, its coupling problems between the RMB units and the AMB unit are also proposed in this paper. An example is given to clarify the mathematical models and the coupling problems, and the linearized models are proposed for the follow-up controller design.

  5. Basic Characteristics of the Propulsion System in the Permanent Magnet-HTSC Hybrid Magnetic Conveyance System

    Science.gov (United States)

    Ohashi, Shunsuke; Kumano, Daiki; Goto, Yasuyuki

    The Hybrid magnetically levitated transportation system has been developed. The magnetic rail is set on the ground, and the carrier with permanent magnets and high-Tc superconductors (HTSC) levitates on the rail. Repulsive force of permanent magnet is introduced to support load weight. Pinning force of the HTSC is used to support weight of the frame of the carrier and to achieve lateral stability of the carrier. In this paper, propulsion system of the conveyance system is studied. Propulsion function is installed on the carrier body. Magnetic gradient is used to get propulsion force. Propulsion force of the system is little. So propulsion rail system is introduced. Air core copper coils are installed on the magnetic rail. Interaction between current of these coils and permanent magnets on the carrier generates propulsion force. Enough propulsion force is given. Influence of the propulsion system on the levitation and guidance system is measured. Stability of levitation and guidance system is enough even when propulsion system is operated.

  6. Flywheel Energy Storage System Suspended by Hybrid Magnetic Bearing

    Science.gov (United States)

    Owusu-Ansah, Prince; Hu, Yefa; Misbawu, Adam

    This work presents a prototype flywheel energy storage system (FESS) suspended by hybrid magnetic bearing (HMB) rotating at a speed of 20000rpm with a maximum storage power capacity of 30W with a maximum tip speed of 300m/s. The design presented is an improvement of most existing FESS, as the design incorporates a unique feature in that the upper and the lower rotor and stator core are tapered which enhances larger thrust and much lower radial force to be exerted on the system. Without any adverse effect being experienced by the model. The work also focuses on the description of developing a prototype FESS suspended by HMB using solid works as a basis of developing in the nearer future a more improved FESS suspended by HMB capable of injecting the ever increasing high energy demand situation in the 21st century and beyond.

  7. Cryogenic Design of the 43 T LNCMI Grenoble Hybrid Magnet

    Science.gov (United States)

    Hervieu, B.; Berriaud, Ch.; Berthier, R.; Debray, F.; Fazilleau, Ph.; Manil, P.; Massinger, M.; Pfister, R.; Pugnat, P.; Ronayette, L.; Trophime, C.

    The association of two inner resistive coils (Polyhelix and Bitter) producing 34.5 T with an outer NbTi superconducting coil producing 8.5 T to obtain a 43 T hybrid magnet is a technical challenge. Accidental failure modes leading to complex electromagnetic behaviors and large transient dynamical forces should be anticipated. These considerations lead to a reinforced design and a thermo-hydraulic strategy to limit the overpressure. The cryostat has been designed with innovative thermo-mechanical supports sustaining the coil at 1.8 K-1200 hPa and the eddy current shield at 30 K, both being possibly overloaded by high dynamic forces in the worst accidental failure case.

  8. Audiovisual Biofeedback Improves Cine-Magnetic Resonance Imaging Measured Lung Tumor Motion Consistency.

    Science.gov (United States)

    Lee, Danny; Greer, Peter B; Ludbrook, Joanna; Arm, Jameen; Hunter, Perry; Pollock, Sean; Makhija, Kuldeep; O'brien, Ricky T; Kim, Taeho; Keall, Paul

    2016-03-01

    To assess the impact of an audiovisual (AV) biofeedback on intra- and interfraction tumor motion for lung cancer patients. Lung tumor motion was investigated in 9 lung cancer patients who underwent a breathing training session with AV biofeedback before 2 3T magnetic resonance imaging (MRI) sessions. The breathing training session was performed to allow patients to become familiar with AV biofeedback, which uses a guiding wave customized for each patient according to a reference breathing pattern. In the first MRI session (pretreatment), 2-dimensional cine-MR images with (1) free breathing (FB) and (2) AV biofeedback were obtained, and the second MRI session was repeated within 3-6 weeks (mid-treatment). Lung tumors were directly measured from cine-MR images using an auto-segmentation technique; the centroid and outlier motions of the lung tumors were measured from the segmented tumors. Free breathing and AV biofeedback were compared using several metrics: intra- and interfraction tumor motion consistency in displacement and period, and the outlier motion ratio. Compared with FB, AV biofeedback improved intrafraction tumor motion consistency by 34% in displacement (P=.019) and by 73% in period (P<.001). Compared with FB, AV biofeedback improved interfraction tumor motion consistency by 42% in displacement (P<.046) and by 74% in period (P=.005). Compared with FB, AV biofeedback reduced the outlier motion ratio by 21% (P<.001). These results demonstrated that AV biofeedback significantly improved intra- and interfraction lung tumor motion consistency for lung cancer patients. These results demonstrate that AV biofeedback can facilitate consistent tumor motion, which is advantageous toward achieving more accurate medical imaging and radiation therapy procedures. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Hybrid Magnetic Core-Shell Nanophotocatalysts for Environmental Applications

    Energy Technology Data Exchange (ETDEWEB)

    Gaulden, Patrick [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Murph, Simona Hunyadi [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Univ. of Georgia, Athens, GA (United States). Dept. of Physics and Astronomy

    2016-07-29

    This research study describes a facile sol-gel method to creating hybrid iron (III) oxide/silica/titania nanomaterials decorated with gold nanoparticles for use in environmental applications. The multi-functional composition of the nanomaterials allows for photocatalyzed reactions to occur in both the visible and the UV range. The morphologies, elemental composition, and surface charge of the nanoparticles were determined by Scanning Electron Microscopy (SEM), Energy Dispersive X-ray Spectroscopy (EDS), and Phase Analysis Light Scattering (PALS), respectively. The photocatalytic activity of the synthesized hybrid nanoparticles for breaking down a model analyte, methyl orange (MO), was then evaluated using UV-Vis Spectroscopy. The efficiency of the photocatalyst under UV light irradiation was measured and compared to other well-studied nanophotocatalysts, namely titanium oxide and iron oxide nanoparticles. The concentration dependence of both the photocatalyst and the analyte was also investigated. By utilizing the known UV-active properties of TiO2, the magnetic properties of Fe2O3, the optical properties of gold in the visible range of the spectrum, and the high stability of silica, a novel, highly efficient photocatalyst that is active on a broad range of the spectrum (UV-Vis) can be created to destroy organic pollutants in wastewater streams.

  10. Photospheric and coronal magnetic fields in six magnetographs. I. Consistent evolution of the bashful ballerina

    Science.gov (United States)

    Virtanen, Ilpo; Mursula, Kalevi

    2016-06-01

    Aims: We study the long-term evolution of photospheric and coronal magnetic fields and the heliospheric current sheet (HCS), especially its north-south asymmetry. Special attention is paid to the reliability of the six data sets used in this study and to the consistency of the results based on these data sets. Methods: We use synoptic maps constructed from Wilcox Solar Observatory (WSO), Mount Wilson Observatory (MWO), Kitt Peak (KP), SOLIS, SOHO/MDI, and SDO/HMI measurements of the photospheric field and the potential field source surface (PFSS) model. Results: The six data sets depict a fairly similar long-term evolution of magnetic fields and the heliospheric current sheet, including polarity reversals and hemispheric asymmetry. However, there are time intervals of several years long, when first KP measurements in the 1970s and 1980s, and later WSO measurements in the 1990s and early 2000s, significantly deviate from the other simultaneous data sets, reflecting likely errors at these times. All of the six magnetographs agree on the southward shift of the heliospheric current sheet (the so-called bashful ballerina phenomenon) in the declining to minimum phase of the solar cycle during a few years of the five included cycles. We show that during solar cycles 20-22, the southward shift of the HCS is mainly due to the axial quadrupole term, reflecting the stronger magnetic field intensity at the southern pole during these times. During cycle 23 the asymmetry is less persistent and mainly due to higher harmonics than the quadrupole term. Currently, in the early declining phase of cycle 24, the HCS is also shifted southward and is mainly due to the axial quadrupole as for most earlier cycles. This further emphasizes the special character of the global solar field during cycle 23.

  11. Classification of magnetic inhomogeneities and 0 -π transitions in superconducting-magnetic hybrid structures

    Science.gov (United States)

    Baker, Thomas E.; Richie-Halford, Adam; Bill, Andreas

    2016-09-01

    We present a comparative study of pair correlations and currents through superconducting-magnetic hybrid systems with a particular emphasis on the tunable Bloch domain wall of an exchange spring. This study of the Gor'kov functions contrasts magnetic systems with domain walls that change at discrete points in the magnetic region with those that change continuously throughout. We present results for misaligned homogeneous magnetic multilayers, including spin valves, for discrete domain walls, as well as exchange springs and helical domain walls—such as Holmium—for the continuous case. Introducing a rotating basis to disentangle the role of singlet and triplet correlations, we demonstrate that substantial amounts of (so-called short-range) singlet correlations are generated throughout the magnetic system in a continuous domain wall via the cascade effect. We propose a classification of 0 -π transitions of the Josephson current into three types, according to the predominant pair correlations symmetries involved in the current. Properties of exchange springs for an experimental study of the proposed effects are discussed. The interplay between components of the Gor'kov function that are parallel and perpendicular to the local magnetization lead to a novel prediction about their role in a proximity system with a progressively twisting helix that is experimentally measurable.

  12. Recent Advances of Graphene-based Hybrids with Magnetic Nanoparticles for Biomedical Applications.

    Science.gov (United States)

    Alegret, Nuria; Criado, Alejandro; Prato, Maurizio

    2017-01-01

    The utilization of graphene-based nanomaterials combined with magnetic nanoparticles offers key benefits in the modern biomedicine. In this minireview, we focus on the most recent advances in hybrids of magnetic graphene derivatives for biomedical applications. We initially analyze the several methodologies employed for the preparation of graphene-based composites with magnetic nanoparticles, more specifically the kind of linkage between the two components. In the last section, we focus on the biomedical applications where these magnetic-graphene hybrids are essential and pay special attention on how the addition of graphene improves the resulting devices in magnetic resonance imaging, controlled drug delivery, magnetic photothermal therapy and cellular separation and isolation. Finally, we highlight the use of these magnetic hybrids as multifunctional material that will lead to a next generation of theranostics. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  13. Temporal filtering of longitudinal brain magnetic resonance images for consistent segmentation

    Directory of Open Access Journals (Sweden)

    Snehashis Roy

    2016-01-01

    Full Text Available Longitudinal analysis of magnetic resonance images of the human brain provides knowledge of brain changes during both normal aging as well as the progression of many diseases. Previous longitudinal segmentation methods have either ignored temporal information or have incorporated temporal consistency constraints within the algorithm. In this work, we assume that some anatomical brain changes can be explained by temporal transitions in image intensities. Once the images are aligned in the same space, the intensities of each scan at the same voxel constitute a temporal (or 4D intensity trend at that voxel. Temporal intensity variations due to noise or other artifacts are corrected by a 4D intensity-based filter that smooths the intensity values where appropriate, while preserving real anatomical changes such as atrophy. Here smoothing refers to removal of sudden changes or discontinuities in intensities. Images processed with the 4D filter can be used as a pre-processing step to any segmentation method. We show that such a longitudinal pre-processing step produces robust and consistent longitudinal segmentation results, even when applying 3D segmentation algorithms. We compare with state-of-the-art 4D segmentation algorithms. Specifically, we experimented on three longitudinal datasets containing 4–12 time-points, and showed that the 4D temporal filter is more robust and has more power in distinguishing between healthy subjects and those with dementia, mild cognitive impairment, as well as different phenotypes of multiple sclerosis.

  14. Self-consistent double-hybrid density-functional theory using the optimized-effective-potential method

    CERN Document Server

    Smiga, Szymon; Mussard, Bastien; Buksztel, Adam; Grabowski, Ireneusz; Luppi, Eleonora; Toulouse, Julien

    2016-01-01

    We introduce an orbital-optimized double-hybrid (DH) scheme using the optimized-effective-potential (OEP) method. The orbitals are optimized using a local potential corresponding to the complete exchange-correlation energy expression including the second-order M{{\\o}}ller-Plesset (MP2) correlation contribution. We have implemented a one-parameter version of this OEP-based self-consistent DH scheme using the BLYP density-functional approximation and compared it to the corresponding non-self-consistent DH scheme for calculations on a few closed-shell atoms and molecules. While the OEP-based self-consistency does not provide any improvement for the calculations of ground-state total energies and ionization potentials, it does improve the accuracy of electron affinities and restores the meaning of the LUMO orbital energy as being connected to a neutral excitation energy. Moreover, the OEP-based self-consistent DH scheme provides reasonably accurate exchange-correlation potentials and correlated densities.

  15. Levitation and Guidance Characteristics of the Permanent magnet-HTSC Hybrid Magnetic Conveyance System

    Science.gov (United States)

    Ohashi, Shunsuke; Dodo, Daiki

    Hybrid magnetically levitated transportation system has been developed. The magnetic rail is set on the ground, and the carrier with permanent magnets and high-Tc superconductors (HTSC) levitates on the rail. In this system, pinning force of HTSC and repulsive force of permanent magnet is combined. Repulsive force of permanent magnet is introduced to support weight. Pinning force is used to support weight of the frame of the carrier and to achieve lateral stability of the carrier. To decrease influence of weight on the levitation gap of the carrier, the weight stage is fixed to the carrier frame by linear sliders, and moves freely for vertical direction. As a result, there is little influence on levitation gap of the carrier. Basic levitation and guidance characteristics of the system are shown. Repulsive force generates very large levitation force. It also generates unstable lateral force. Weight added to the carrier has some influence on lateral stability. Although lateral position recovery force by pinning effect decreases at a heavier weight, the carrier shows enough force to keep lateral stability.

  16. Anisotropic Thermal Properties of Nanostructured Magnetic, Carbon and Hybrid Magnetic - Carbon Materials

    Science.gov (United States)

    Ramirez, Sylvester

    In this dissertation research we investigated thermal properties of three groups of nanostructured materials: (i) magnetic; (ii) reduced graphene oxide films; and (iii) hybrid magnetic -- graphite -- graphene composites. The thermal measurements were conducted using the transient "hot disk" and "laser flash" techniques. The rare-earth free nanostructured SrFe12O19 permanent magnets were produced by the current activated pressure assisted densification technique. The thermal conductivity of the nanostructured bulk magnets was found to range from 3.8 to 5.6 W/mK for the in-plane and 2.36 W/mk to 2.65 W/mK for the cross-plane directions, respectively. The heat conduction was dominated by phonons near the room temperature. The anisotropy of heat conduction was explained by the brick-like alignment of crystalline grains with the longer grain size in-plane direction. The thermal conductivity scales up with the average grain size and mass density of the material revealing weak temperature dependence. Using the nanostructured ferromagnetic Fe3O4 composites as an example system, we incorporated graphene and graphite fillers into magnetic material without changing their morphology. It was demonstrated that addition of 5 wt. % of equal mixture of graphene and graphite flakes to the composite results in a factor of x2.6 enhancement of the thermal conductivity without significant degradation of the saturation magnetization. We investigated thermal conductivity of free-standing reduced graphene oxide films subjected to a high-temperature treatment of up to 1000°C. It was found that the high-temperature annealing dramatically increased the in-plane thermal conductivity, K, of the films from ˜3 W/mK to ˜61 W/mK at room temperature. The cross-plane thermal conductivity, K⊥, revealed an interesting opposite trend of decreasing to a very small value of ˜0.09 W/mK in the reduced graphene oxide films annealed at 1000°C. The obtained films demonstrated an exceptionally strong

  17. Structure and magnetic properties of SiO{sub 2}/PCL novel sol–gel organic–inorganic hybrid materials

    Energy Technology Data Exchange (ETDEWEB)

    Catauro, Michelina, E-mail: michelina.catauro@unina2.it [Department of Industrial and Information Engineering, Second University of Naples, Via Roma 29, 81031 Aversa (Italy); Bollino, Flavia [Department of Industrial and Information Engineering, Second University of Naples, Via Roma 29, 81031 Aversa (Italy); Cristina Mozzati, Maria [Department of Physics, CNISM and INSTM, University of Pavia, Via Bassi 6, 27100 Pavia (Italy); Ferrara, Chiara; Mustarelli, Piercarlo [Department of Chemistry, Section of Physical Chemistry, University of Pavia and INSTM, Via Taramelli 16, 27100 Pavia (Italy)

    2013-07-15

    Organic–inorganic nanocomposite materials have been synthesized via sol–gel. They consist of an inorganic SiO{sub 2} matrix, in which different percentages of poly(ε-caprolactone) (PCL) have been incorporated. The formation of H-bonds among the carbonyl groups of the polymer chains and Si–OH group of the inorganic matrix has been proved by means of Fourier transform infrared spectroscopy (FT-IR) analysis and has been confirmed by solid-state nuclear magnetic resonance (NMR). X-Ray diffraction (XRD) analysis highlighted the amorphous nature of the synthesized materials. Scanning electron microscope (SEM) micrograph and atomic force microscope (AFM) topography showed their homogeneous morphology and nanostructure nature. Considering the opportunity to synthesize these hybrid materials under microgravity conditions by means of magnetic levitation, superconducting quantum interference device (SQUID) magnetometry has been used to quantify their magnetic susceptibility. This measure has shown that the SiO{sub 2}/PCL hybrid materials are diamagnetic and that their diamagnetic susceptibility is independent of temperature and increases with the PCL amount. - Graphical abstract: Characterization and magnetic properties of SiO{sub 2}/PCL organic–inorganic hybrid materials synthesized via sol–gel. FT-IR, Fourier transform infrared spectroscopy; solid-state NMR: solid-state nuclear magnetic resonance; SQUID: superconducting quantum interference device. - Highlights: • Sol–gel synthesis of SiO{sub 2}/PCL amorphous class I organic–inorganic hybrid materials. • FT-IR and NMR analyses show the hydrogen bonds formation between SiO{sub 2} and PCL. • AFM and SEM analyses confirm that the SiO{sub 2}/PCL are homogenous hybrid materials. • The SQUID measures show that the simples are diamagnetic. • Diamagnetic susceptibility of SiO{sub 2}/PCL materials increases with the PCL amount.

  18. Hybrid magnet devices for molecule manipulation and small scale high gradient-field applications

    Science.gov (United States)

    Humphries, David E.; Hong, Seok-Cheol; Cozzarelli, legal representative, Linda A.; Pollard, Martin J.; Cozzarelli, Nicholas R.

    2009-01-06

    The present disclosure provides a high performance hybrid magnetic structure made from a combination of permanent magnets and ferromagnetic pole materials which are assembled in a predetermined array. The hybrid magnetic structure provides means for separation and other biotechnology applications involving holding, manipulation, or separation of magnetizable molecular structures and targets. Also disclosed are hybrid magnetic tweezers able to exert approximately 1 nN of force to 4.5 .mu.m magnetic bead. The maximum force was experimentally measured to be .about.900 pN which is in good agreement with theoretical estimations and other measurements. In addition, a new analysis scheme that permits fast real-time position measurement in typical geometry of magnetic tweezers has been developed and described in detail.

  19. Structural modifications of graphyne layers consisting of carbon atoms in the sp- and sp{sup 2}-hybridized states

    Energy Technology Data Exchange (ETDEWEB)

    Belenkov, E. A., E-mail: belenkov@csu.ru [Chelyabinsk State University (Russian Federation); Mavrinskii, V. V. [Nosov Magnitogorsk State Technical University (Russian Federation); Belenkova, T. E.; Chernov, V. M. [Chelyabinsk State University (Russian Federation)

    2015-05-15

    A model scheme is proposed for obtaining layered compounds consisting of carbon atoms in the sp- and (vnsp){sup 2}-hybridized states. This model is used to find the possibility of existing the following seven basic structural modifications of graphyne: α-, β1-, β2-, β3-, γ1-, γ2-, and γ3-graphyne. Polymorphic modifications β3 graphyne and γ3 graphyne are described. The basic structural modifications of graphyne contain diatomic polyyne chains and consist only of carbon atoms in two different crystallographically equivalent states. Other nonbasic structural modifications of graphyne can be formed via the elongation of the carbyne chains that connect three-coordinated carbon atoms and via the formation of graphyne layers with a mixed structure consisting of basic layer fragments, such as α-β-graphyne, α-γ-graphyne, and β-γ-graphyne. The semiempirical quantum-mechanical MNDO, AM1, and PM3 methods and ab initio STO6-31G basis calculations are used to find geometrically optimized structures of the basic graphyne layers, their structural parameters, and energies of their sublimation. The energy of sublimation is found to be maximal for γ2-graphyne, which should be the most stable structural modification of graphyne.

  20. Magnetic properties of 3D nanocomposites consisting of an opal matrix with embedded spinel ferrite particles

    Science.gov (United States)

    Rinkevich, A. B.; Korolev, A. V.; Samoylovich, M. I.; Kleshcheva, S. M.; Perov, D. V.

    2016-02-01

    The magnetic properties of 3D nanocomposites representing Mn-Zn, Ni-Zn, Co-Zn, La-Co-Zn, and Nd-Co-Zn spinel ferrite particles embedded in the interspherical spaces of opal matrices are studied. Experimental data are obtained in the temperature interval 2-300 K by measuring the magnetization at a static magnetic field strength of up to 50 kOe and the ac magnetic susceptibility at an alternating magnetic field amplitude of 4 kOe and a frequency of 80 Hz.

  1. New adders using hybrid circuit consisting of three-gate single-electron transistors (TG-SETs) and MOSFETs.

    Science.gov (United States)

    Yu, YunSeop; Choi, JungBum

    2007-11-01

    A half-adder (HA) and a full-adder (FA) using hybrid circuits combining three-gate single-electron transistors (TG-SETs) with metal-oxide-semiconductor field-effect-transistors (MOSFETs) are proposed. The proposed HA consists of three TG-SETs, two enhanced-mode NMOSFETs, and two depletion-mode NMOSFETs, and the proposed FA consists of eight TG-SETs, two enhanced-mode NMOSFETs, and two depletion-mode NMOSFETs. The complexities in the HA and the FA are 7 and 12, respectively, and the worst-case delays in the HA and the FA are 1.48 ns and 2.25 ns, respectively. Compared with the conventional CMOS FA with 0.35 microm technology, the proposed FA can be constructed with 0.43 of devices, and can operate with 3.5 of worst-case delay, 1/534 of average power consumption, and 1/152 of power-delay-product (PDP). The proposed HA and FA can be operated as a half-subtractor (HS) and a full-subtractor (FS) in the case when the levels of the control gates in the HA and the FA are fitly determined. The basic operations of the proposed HA and the proposed FA have been successfully confirmed through SPICE circuit simulation based on the physical device model of TG-SETs.

  2. Green synthetic, multifunctional hybrid micelles with shell embedded magnetic nanoparticles for theranostic applications.

    Science.gov (United States)

    Li, Yongyong; Ma, Junping; Zhu, Haiyan; Gao, Xiaolong; Dong, Haiqing; Shi, Donglu

    2013-08-14

    The objective of this study is to design and develop a green-synthetic, multifunctional hybrid micelles with shell embedded magnetic nanoparticles for theranostic applications. The hybrid micelles were engineered based on complex micelles self-assembled from amphiphilic block copolymers Pluronic F127 and peptide-amphiphile (PA) pal-AAAAHHHD. The reason to choose PA is due to its amphiphilic character and the coordination capability for Fe(3+) and Fe(2+). The PA incorporation allows the in situ growth of the magnetic iron oxide nanoparticles onto the complex micelles, to yield the nanostructures with shell embedded magnetic nanoparticles at an ambient condition without any organic solvents. The anticancer drug doxorubicin (DOX) can be efficiently loaded into the hybrid micelles. Interestingly, the magnetic nanoparticles anchored on the shell were found to significantly retard the DOX release behavior of the drug loaded hybrid micelles. It was proposed that a cross-linking effect of the shell by magnetic nanoparticles is a key to underlie the above intriguing phenomenon, which could enhance the stability and control the drug diffusion of the hybrid micelles. Importantly, in vitro and in vivo magnetic resonance imaging (MRI) revealed the potential of these hybrid micelles to be served as a T2-weighted MR imaging contrast enhancer for clinical diagnosis.

  3. Material and cooling requirements for poly-Bitter resistive magnets and hybrid inserts generating continuous fields up to 50 T

    Energy Technology Data Exchange (ETDEWEB)

    Gao, B.J.; Bird, M.D.; Eyssa, Y.M.; Schneider-Muntau, H.J. [National High Magnetic Field Lab., Tallahassee, FL (United States)

    1994-07-01

    The new National High Magnetic Field Laboratory (NHMFL), equipped with a 40 MW DC power supply, will design and construct the next generation of high field resistive magnets and hybrid inserts generating DC fields up to 50 T. The authors present a study on the required materials and the necessary cooling characteristics, these magnets need. The configuration selected for this study consists of a combination of thin poly-Bitter and thick Bitter coils optimized in dimensions and power under constraint of maximum design stress and heat removal to obtain maximum field. The study shows that each design requires a different optimum ratio of conductor strength to electrical conductivity and that efficient cooling is only advantageous if strong copper alloys are used. For efficient use of the available power the development of new high strength, high conductivity materials will be necessary. Equally important are improvements in the heat transfer characteristics of these high power density magnets.

  4. Shape-controlled fabrication of magnetite silver hybrid nanoparticles with high performance magnetic hyperthermia.

    Science.gov (United States)

    Ding, Qi; Liu, Dongfang; Guo, Dawei; Yang, Fang; Pang, Xingyun; Che, Renchao; Zhou, Naizhen; Xie, Jun; Sun, Jianfei; Huang, Zhihai; Gu, Ning

    2017-04-01

    Superparamagnetic Fe3O4 nanoparticles (NPs)-based hyperthermia is a promising non-invasive approach for cancer therapy. However, the heat transfer efficiency of Fe3O4 NPs is relative low, which hinders their practical clinical applications. Therefore, it is promising to improve the magnetic hyperthermia efficiency by exploring the higher performance magnetic NPs-based hybrid nanostructures. In the current study, it presents a straightforward in situ reduction method for the shape-controlled preparation of magnetite (Fe3O4) silver (Ag) hybrid NPs designed as magnetic hyperthermia heat mediators. The magnetite silver hybrid NPs with core-shell (Fe3O4@Ag) or heteromer (Fe3O4-Ag) structures exhibited a higher biocompatibility with SMMC-7721 cells and L02 cells than the individual Ag NPs. Importantly, in the magnetic hyperthermia, with the exposure to alternating current magnetic field, the Fe3O4@Ag and Fe3O4-Ag hybrid NPs indicated much better tumor suppression effect against SMMC-7721 cells than the individual Fe3O4 NPs in vitro and in vivo. These results demonstrate that the hybridisation of Fe3O4 and Ag NPs could greatly enhance the magnetic hyperthermia efficiency of Fe3O4 NPs. Therefore, the Fe3O4@Ag and Fe3O4-Ag hybrid NPs can be used to be as high performance magnetic hyperthermia mediators based on a simple and effective preparation approach.

  5. Effect of the repulsive force in the HTSC-permanent magnet hybrid bearing system

    Energy Technology Data Exchange (ETDEWEB)

    Ohashi, S., E-mail: ohashi@ipcku.kansai-u.ac.j [Kansai University, 3-3-35, Yamate-cho, Suita, Osaka 564-8680 (Japan); Kobayashi, S. [Kansai University, 3-3-35, Yamate-cho, Suita, Osaka 564-8680 (Japan)

    2009-10-15

    Magnetic levitation using the pinning force of the YBaCuO high-T{sub c} bulk superconductor (HTSC) materials has an advantage to achieve stable levitation without control. To increase levitation force, the HTSC-permanent magnet hybrid magnetic bearing system is introduced. A circular shaped three phase Nd-Fe-B permanent magnet is installed on the rotor, and HTSC bulk superconductor is set on the stator. The additional permanent magnet is installed under the HTSC. Repulsive force of the permanent magnet is used for levitation, and pinning force between the HTSC and permanent magnet is used for guidance force of the bearing. In this system, relationship between permanent magnet and the HTSC is important. When repulsive force of the permanent magnet is large, pinning force of superconductor is used to keep the rotor position. As a result, stability for the lateral direction is decreased with hybrid system. For levitation force, effect of the hybrid system is not observed with column HTSC. Compared with the ring HTSC results, the following thing is considered. Because there is no space that flux of one permanent magnet acts on the other one with the column HTSC configuration, interaction between two permanent magnets becomes small.

  6. Effect of the repulsive force in the HTSC-permanent magnet hybrid bearing system

    Science.gov (United States)

    Ohashi, S.; Kobayashi, S.

    2009-10-01

    Magnetic levitation using the pinning force of the YBaCuO high- Tc bulk superconductor (HTSC) materials has an advantage to achieve stable levitation without control. To increase levitation force, the HTSC-permanent magnet hybrid magnetic bearing system is introduced. A circular shaped three phase Nd-Fe-B permanent magnet is installed on the rotor, and HTSC bulk superconductor is set on the stator. The additional permanent magnet is installed under the HTSC. Repulsive force of the permanent magnet is used for levitation, and pinning force between the HTSC and permanent magnet is used for guidance force of the bearing. In this system, relationship between permanent magnet and the HTSC is important. When repulsive force of the permanent magnet is large, pinning force of superconductor is used to keep the rotor position. As a result, stability for the lateral direction is decreased with hybrid system. For levitation force, effect of the hybrid system is not observed with column HTSC. Compared with the ring HTSC results, the following thing is considered. Because there is no space that flux of one permanent magnet acts on the other one with the column HTSC configuration, interaction between two permanent magnets becomes small.

  7. Magnetically controllable circulator based on photonic crystal unidirectional waveguide consisting of metamaterials

    Science.gov (United States)

    Liang, Wenyao

    2016-09-01

    Unidirectional edge modes are achieved in gyromagnetic photonic crystals. The physical reason is attributed to magnetic resonance and broken time-reversal symmetry under external magnetic fields. These edge modes propagate only along a single direction, while the backward modes are completely suppressed. The unidirectional transmittance is nearly 100% and hardly affected by perfect electric conductor (PEC) defect. However, a PEC defect has sensitive influence on both the phase delay and pattern distribution of unidirectional edge modes. These properties hold promise in designing various unidirectional devices. Here we design a three port circulator with high transmission contrast and magnetic controllability simultaneously.

  8. An efficient and stable hybrid extended Lagrangian/self-consistent field scheme for solving classical mutual induction

    Energy Technology Data Exchange (ETDEWEB)

    Albaugh, Alex [Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720 (United States); Demerdash, Omar [Department of Chemistry, University of California, Berkeley, California 94720 (United States); Head-Gordon, Teresa, E-mail: thg@berkeley.edu [Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720 (United States); Department of Chemistry, University of California, Berkeley, California 94720 (United States); Department of Bioengineering, University of California, Berkeley, California 94720 (United States); Chemical Sciences Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, California 94720 (United States)

    2015-11-07

    We have adapted a hybrid extended Lagrangian self-consistent field (EL/SCF) approach, developed for time reversible Born Oppenheimer molecular dynamics for quantum electronic degrees of freedom, to the problem of classical polarization. In this context, the initial guess for the mutual induction calculation is treated by auxiliary induced dipole variables evolved via a time-reversible velocity Verlet scheme. However, we find numerical instability, which is manifested as an accumulation in the auxiliary velocity variables, that in turn results in an unacceptable increase in the number of SCF cycles to meet even loose convergence tolerances for the real induced dipoles over the course of a 1 ns trajectory of the AMOEBA14 water model. By diagnosing the numerical instability as a problem of resonances that corrupt the dynamics, we introduce a simple thermostating scheme, illustrated using Berendsen weak coupling and Nose-Hoover chain thermostats, applied to the auxiliary dipole velocities. We find that the inertial EL/SCF (iEL/SCF) method provides superior energy conservation with less stringent convergence thresholds and a correspondingly small number of SCF cycles, to reproduce all properties of the polarization model in the NVT and NVE ensembles accurately. Our iEL/SCF approach is a clear improvement over standard SCF approaches to classical mutual induction calculations and would be worth investigating for application to ab initio molecular dynamics as well.

  9. Accurate energy bands calculated by the hybrid quasiparticle self-consistent GW method implemented in the ecalj package

    Science.gov (United States)

    Deguchi, Daiki; Sato, Kazunori; Kino, Hiori; Kotani, Takao

    2016-05-01

    We have recently implemented a new version of the quasiparticle self-consistent GW (QSGW) method in the ecalj package released at http://github.com/tkotani/ecalj. Since the new version of the ecalj package is numerically stable and more accurate than the previous versions, we can perform calculations easily without being bothered with tuning input parameters. Here we examine its ability to describe energy band properties, e.g., band-gap energy, eigenvalues at special points, and effective mass, for a variety of semiconductors and insulators. We treat C, Si, Ge, Sn, SiC (in 2H, 3C, and 4H structures), (Al, Ga, In) × (N, P, As, Sb), (Zn, Cd, Mg) × (O, S, Se, Te), SiO2, HfO2, ZrO2, SrTiO3, PbS, PbTe, MnO, NiO, and HgO. We propose that a hybrid QSGW method, where we mix 80% of QSGW and 20% of LDA, gives universally good agreement with experiments for these materials.

  10. Design of a cryocooler-cooled magnet for a compact hybrid magnet; Konpakuto haiburiddo magunetto yo reitoki reikyaku chodendo magunetto no gainen sekkei

    Energy Technology Data Exchange (ETDEWEB)

    Asano, T. [National Research Inst. for Metals, Tokyo (Japan); Koyanagi, K.; Matsumoto, S.; Kiyoshi, T.; Wada, H. [National Research Inst. for Metals, Tokyo (Japan); Japan Science and Technology Corpration, Saitama (Japan)

    1999-11-10

    In Natl. Res. Inst. for Metals, we examine the possibility of the operation of the hybrid magnet which combined refrigerating machine conduction cooling style superconducting magnet of the large diameter with the water-cooling copper magnet. The examination of the stability considering the electromagnetic interaction with the water-cooling copper magnet is required so that the conduction-cooling magnet may be made to run as a superconducting magnet for the hybrid magnet. In this report, the result of making on the magnet considering thermal load and coil protection to refrigerating machine conceptual design is described. (NEDO)

  11. Multi-responsive hybrid particles: thermo-, pH-, photo-, and magneto-responsive magnetic hydrogel cores with gold nanorod optical triggers

    Science.gov (United States)

    Rittikulsittichai, Supparesk; Kolhatkar, Arati G.; Sarangi, Subhasis; Vorontsova, Maria A.; Vekilov, Peter G.; Brazdeikis, Audrius; Randall Lee, T.

    2016-06-01

    The research strategy described in this manuscript harnesses the attractive properties of hydrogels, gold nanorods (Aurods), and magnetic nanoparticles (MNPs) by synthesizing one unique multi-responsive nanostructure. This novel hybrid structure consists of silica-coated magnetic particles encapsulated within a thermo-responsive P(NIPAM-co-AA) hydrogel network on which Aurods are assembled. Furthermore, this research demonstrates that these composite particles respond to several forms of external stimuli (temperature, pH, light, and/or applied magnetic field) owing to their specific architecture. Exposure of the hybrid particles to external stimuli led to a systematic and reversible variation in the hydrodynamic diameter (swelling-deswelling) and thus in the optical properties of the hybrid particles (red-shifting of the plasmon band). Such stimuli-responsive volume changes can be effectively exploited in drug-delivery applications.The research strategy described in this manuscript harnesses the attractive properties of hydrogels, gold nanorods (Aurods), and magnetic nanoparticles (MNPs) by synthesizing one unique multi-responsive nanostructure. This novel hybrid structure consists of silica-coated magnetic particles encapsulated within a thermo-responsive P(NIPAM-co-AA) hydrogel network on which Aurods are assembled. Furthermore, this research demonstrates that these composite particles respond to several forms of external stimuli (temperature, pH, light, and/or applied magnetic field) owing to their specific architecture. Exposure of the hybrid particles to external stimuli led to a systematic and reversible variation in the hydrodynamic diameter (swelling-deswelling) and thus in the optical properties of the hybrid particles (red-shifting of the plasmon band). Such stimuli-responsive volume changes can be effectively exploited in drug-delivery applications. Electronic supplementary information (ESI) available: Contains detailed information about the synthesis of

  12. Wide Variety of Experiments Using a Cryogen-Free 27.5 T Hybrid Magnet and a Cryogen-Free 18.1 T Superconducting Magnet

    Science.gov (United States)

    Watanabe, K.; Awaji, S.; Oguro, H.

    2013-03-01

    A cryogen-free hybrid magnet without liquid helium for operation, generating 27.5 T in a 32 mm room temperature bore of an 8 MW water-cooled resistive insert magnet in an 8.5 T background field of a cryogen-free superconducting outsert magnet, is being operated for basic research at low temperatures down to 17 mK in combination with a dilution refrigerator. In addition, we are developing functional materials using a differential thermal analysis DTA at high temperatures up to 1473 K in high fields up to 27 T. This cryogen-free hybrid magnet will be upgraded to generate 29 T by improving the outer superconducting magnet. A cryogen-free 18.1 T superconducting magnet with a 52 mm room temperature experimental bore, consisting of a Bi2Sr2Ca2Cu3O10 (Bi2223) insert coil, has been developed using a GM-JT cryocooler. Recently, bronze-tape-laminated Bi2223 has revealed excellent irreversible stress tolerance of 250 MPa at 77 K. In addition, the critical current properties for recent Bi2223 tapes are largely improved from 200 to 400 A/cm-width at 77 K in a self-field. Therefore, the stainless steel reinforcement tape incorporated for the previous Bi2223 insert coil is no longer needed for a new Bi2223 one. A new Bi2223 insert coil with almost the same size as the existing insert coil can generate two times higher fields at the elevated operation current from 162 to 191 A. An upgraded cryogen-free superconducting magnet can offer a long-term experiment at the constant magnetic field of 20 T for an in-field heat-treatment investigation.

  13. Electromagnetic Forces in a Hybrid Magnetic-Bearing Switched-Reluctance Motor

    Science.gov (United States)

    Morrison, Carlos R.; Siebert, Mark W.; Ho, Eric J.

    2008-01-01

    Analysis and experimental measurement of the electromagnetic force loads on the hybrid rotor in a novel hybrid magnetic-bearing switched-reluctance motor (MBSRM) have been performed. A MBSRM has the combined characteristics of a switched-reluctance motor and a magnetic bearing. The MBSRM discussed in this report has an eight-pole stator and a six-pole hybrid rotor, which is composed of circular and scalloped lamination segments. The hybrid rotor is levitated using only one set of four stator poles, while a second set of four stator poles imparts torque to the scalloped portion of the rotor, which is driven in a traditional switched reluctance manner by a processor. Static torque and radial force analysis were done for rotor poles that were oriented to achieve maximum and minimum radial force loads on the rotor. The objective is to assess whether simple one-dimensional magnetic circuit analysis is sufficient for preliminary evaluation of this machine, which may exhibit strong three-dimensional electromagnetic field behavior. Two magnetic circuit geometries, approximating the complex topology of the magnetic fields in and around the hybrid rotor, were employed in formulating the electromagnetic radial force equations. Reasonable agreement between the experimental and the theoretical radial force loads predictions was obtained with typical magnetic bearing derating factors applied to the predictions.

  14. Magnetic-field-mediated coupling and control in hybrid atomic-nanomechanical systems

    CERN Document Server

    Tretiakov, A

    2016-01-01

    Magnetically coupled hybrid quantum systems enable robust quantum state control through Landau-Zener transitions. Here, we show that an ultracold atomic sample coupled to a nanomechanical resonator via oscillating magnetic fields can be used to cool the resonator's mechanical motion, to measure the mechanical temperature, and to enable entanglement of these mesoscopic objects. We calculate the expected coupling for both permanent-magnet and current-conducting nanostring resonators and describe how this hybridization is attainable using recently developed fabrication techniques, including SiN nanostrings and atom chips.

  15. Predicting Grade Point Average from the Hybrid Model of Learning in Personality: Consistent Findings from Ugandan and Australian Students

    Science.gov (United States)

    Jackson, Chris; Baguma, Peter; Furnham, Adrian

    2009-01-01

    Jackson developed a hybrid model of learning in personality, known as the Learning Styles Profiler (LSP), which seeks to explain personality in terms of biological, socio-cognitive and experiential processes. The hybrid model argues that functional learning outcomes can be understood in terms of how cognitions and experiences re-express sensation…

  16. Hybrid R-Fe-B/R-Co Magnets with Improved Thermal Stability

    Science.gov (United States)

    2009-12-23

    known that Nd2Fe14B -based magnets display excellent room temperature magnetic performance with (BH)max up to 50 MGOe. However, their low Curie... Nd2Fe14B - and Sm2Co17-based permanent magnets. This temperature range covers the exact temperatures that are very critical for many important...make a hybrid Nd2Fe14B /Sm2(Co,Fe,Cu,Zr)17 magnet that may combine the high magnetic performance of Nd2Fe14B and excellent high temperature stability

  17. Multi-responsive hybrid particles: thermo-, pH-, photo-, and magneto-responsive magnetic hydrogel cores with gold nanorod optical triggers.

    Science.gov (United States)

    Rittikulsittichai, Supparesk; Kolhatkar, Arati G; Sarangi, Subhasis; Vorontsova, Maria A; Vekilov, Peter G; Brazdeikis, Audrius; Randall Lee, T

    2016-06-01

    The research strategy described in this manuscript harnesses the attractive properties of hydrogels, gold nanorods (Aurods), and magnetic nanoparticles (MNPs) by synthesizing one unique multi-responsive nanostructure. This novel hybrid structure consists of silica-coated magnetic particles encapsulated within a thermo-responsive P(NIPAM-co-AA) hydrogel network on which Aurods are assembled. Furthermore, this research demonstrates that these composite particles respond to several forms of external stimuli (temperature, pH, light, and/or applied magnetic field) owing to their specific architecture. Exposure of the hybrid particles to external stimuli led to a systematic and reversible variation in the hydrodynamic diameter (swelling-deswelling) and thus in the optical properties of the hybrid particles (red-shifting of the plasmon band). Such stimuli-responsive volume changes can be effectively exploited in drug-delivery applications.

  18. Magnetic excitations and c-f hybridization effect in PrTi2Al20 and PrV2Al20

    Science.gov (United States)

    Tokunaga, Yo; Sakai, Hironori; Kambe, Shinsaku; Sakai, Akito; Nakatsuji, Satoru; Harima, Hisatomo

    2013-08-01

    By means of 27Al NMR studies, we have investigated magnetic excitations and the hybridization effect between Pr 4f and conduction electrons in a pair of cubic compounds PrTr2Al20 (Tr=Ti, V). From Knight shift measurements we have evaluated comparative strengths for the c-f hybridization effect in these compounds and confirm a definite increase of hybridization on replacing Ti with V. Analysis of the spin-lattice relaxation rate 1/T1 reveals that the spectral width of magnetic fluctuations in crystalline electric field excited states is strongly temperature dependent. This result indicates that magnetic fluctuations are dominated by strong c-f exchange coupling at high temperatures and thus is nicely consistent with the Kondo picture that features lnT dependence of resistivity over the same temperature region.

  19. Antimagnets: controlling magnetic fields with superconductor-metamaterial hybrids

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, Alvaro; Navau, Carles; Prat-Camps, Jordi; Chen Duxing, E-mail: alvar.sanchez@uab.cat [Grup d' Electromagnetisme, Departament de Fisica, Universitat Autonoma de Barcelona, 08193 Bellaterra, Barcelona, Catalonia (Spain)

    2011-09-15

    Magnetism is very important in various areas of science and technology, ranging from magnetic recording through energy generation to trapping cold atoms. Physicists have managed to master magnetism-to create and manipulate magnetic fields-almost at will. Surprisingly, there is at least one property that has been elusive until now: how to 'switch off' the magnetic interaction of a magnetic material with existing magnetic fields without modifying them. Here we introduce the antimagnet, a design that conceals the magnetic response of a given volume from its exterior, without altering the external magnetic fields, in some respects analogous to recent theoretical proposals for cloaking electromagnetic waves with metamaterials. However, unlike these devices, which require extreme material properties, our device is feasible and needs only two kinds of available materials: superconductors and isotropic magnetic materials. Antimagnets may have applications in magnetic-based medical techniques such as magnetic resonance imaging or in reducing the magnetic signature of vessels or planes.

  20. A modified Rogowski coil for measurements of hybrid permanent magnets

    Energy Technology Data Exchange (ETDEWEB)

    Bertsche, K.

    1996-08-01

    For large permanent magnets, as proposed for the Fermilab Recycler Ring, it may be important to quickly verify that the magnet`s strength is correct. This may be important, for example, if a magnet is suspected of having changed due to some sort of accident. The field strength of a pure dipole can be readily measured with a Hall probe, but for indexed dipoles and for quadrupoles a Hall probe will not give very accurate results without precise positioning. We have investigated a different approach, the use of a modified Rogowski coil to measure the magnetic potential of each pole. As long as magnet geometry is fixed and known, measurement of the magnetic potential at each pole gives a good measurement of field strength even for magnets with large quadrupole components. The construction and use of such a coil and the precision of measurements made with it will be discussed. 4 refs., 5 figs.

  1. Magnetic order in hybrid frustrated magnets Gd2-xTbxTi2O7 (x = 0.2 and 0.5)

    Science.gov (United States)

    Orendáč, M.; Vrábel, P.; Orendáčová, A.; Prokleška, J.; Sechovský, V.; Singh, S.; Suryanarayanan, R.; Revcolevschi, A.

    2012-05-01

    We report on the specific heat, magnetization and ac susceptibility measurements of single crystals of hybrid frustrated magnets Gd1.8Tb0.2Ti2O7 and Gd1.5Tb0.5Ti2O7. The analysis of experimental data revealed that, although partial replacing of the Gd3+ ions by the Tb3+ ions in the Gd2Ti2O7 host lattice slightly enhances antiferromagnetic coupling, as inferred from the evolution of the paramagnetic Curie-Weiss temperature, the ordering temperature gradually decreases. Paramagnetic correlations introduced by the Tb3+ ions cause this perturbation, altering the effective further neighbor interactions and destabilizing the ground state in Gd2Ti2O7. In addition, the low-energy states of Gd2-xTbxTi2O7 are suggested to possess a nature different from those in parent members Tb2Ti2O7 and Gd2Ti2O7. Finally, the frequency-dependent magnetic susceptibility behavior in Gd1.5Tb0.5Ti2O7 is consistent with the formation of a spin-glass-like state indicating a pronounced slowing down of the dynamical response of the studied hybrid magnets.

  2. Using NV centers to probe magnetization dynamics in normal metal/magnetic insulator hybrid system at the nanoscale

    Science.gov (United States)

    Zhang, Huiliang; Ku, Mark J. H.; Han, Minyong; Casola, Francesco; van der Sar, Toeno; Yacoby, Amir; Walsworth, Ronald L.

    2016-05-01

    Understanding magnetization dynamics induced by electric current is of great interest for both fundamental and practical reasons. Great endeavor has been dedicated to spin-orbit torques (SOT) in metallic structures, while quantitative study of analogous phenomena in magnetic insulators remains challenging where transport measurements are not feasible. Recently we have developed techniques using nitrogen vacancy (NV) centers in diamond to probe few-nanometre-scale correlated-electron magnetic excitations (i.e., spin waves). Here we demonstrate how this powerful tool can be implemented to study magnetization dynamics inside ferromagnetic insulator, Yttrium iron garnet (YIG) with spin injection from electrical current through normal metal (Platinum in our case). Particularly our work will focus on NV magnetic detection, imaging, and spectroscopy of coherent auto-oscillations in Pt/YIG microdisc. Magnetic fluctuations and local temperature measurements, both with nearby NV centers, will also be interesting topics relevant to SOT physics in Pt/YIG hybrid system.

  3. Low eddy loss axial hybrid magnetic bearing with gimballing control ability for momentum flywheel

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Jiqiang, E-mail: tjq_72@163.com [School of Instrument Science and Opto-electronics Engineering, Beihang University, Beijing 100191 (China); Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576 (Singapore); Sun, Jinji; Fang, Jiancheng [School of Instrument Science and Opto-electronics Engineering, Beihang University, Beijing 100191 (China); Shuzhi Sam, Ge [Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576 (Singapore)

    2013-03-15

    For a magnetically suspended momentum flywheel (MSMF), the spinning rotor can be tilted by a pair of the presented axial hybrid magnetic bearing (AHMB) with eight poles and rotates around the radial axes to generate a large torque to maneuver the spacecraft. To improve the control performance and gimballing control ability of the AHMB, characteristics such as magnetic suspension force, angular stiffness and tilting momentum are researched. These segmented stator poles cause the magnetic density in the thrust rotor plate to be uneven unavoidably and the rotational loss is large at high speed, but we optimized the stator poles configuration and caused the thrust rotor plate formed by bulk DT4C and laminated material to make the magnetic density in the thrust rotor plate change less and be smoother. Laminated material such as 1J50 film with a thickness of 0.1 mm can make the variation of the magnetic density in DT4C become very small and the eddy loss of it be negligible, but the stress produced in the 'O' shape stacks by reeling has a bad effect on its power loss. Nanocrystalline can reduce eddy losses and is not affected by the reeling process. Based on the AHBM consisting of the stator with eight improved poles and the presented thrust rotor plate with DT4 and nanocrystalline, the rotational loss of 5-DOF magnetically suspended momentum flywheel with angular momentum of 15 N m s at 5000 rpm has reduced from 23.4 W to 3.2 W, which proved that this AHMB has low eddy loss for the gimballing control ability. - Highlights: Black-Right-Pointing-Pointer Control methods of rotor driven by AHMBs and their characteristics are researched. Black-Right-Pointing-Pointer Optimized stator and rotor of AHMB reduce its eddy losses greatly. Black-Right-Pointing-Pointer Presented the factors affecting the eddy losses of AHMBs. Black-Right-Pointing-Pointer The good performances of AHMB with low eddy loss are proved by experiments.

  4. 混合场景中光照一致性研究%Research of illumination consistency in hybrid scene

    Institute of Scientific and Technical Information of China (English)

    叶东文; 陈国栋

    2015-01-01

    在基于本地与远程绘制的混合场景中,为了实现本地绘制场景与远程绘制场景的无缝融合,光照一致性是必须解决的问题。在服务器端绘制所需的复杂背景,在移动终端绘制交互对象,并在场景中使用相同的光照模型。在融合阶段利用服务器端所传递的光照参数对本地移动终端的光照模型进行光照重计算。利用时间插值的方法来模拟一天中环境光的变化情况,并对本地移动终端中的光照模型进行二次重计算。实验结果表明,通过上述方法,在移动终端上实现了不同场景的无缝融合。该方法用于移动终端的场景融合时具有较高的绘制效率与可行性。%Illumination consistency is a problem that must be addressed to reach the seamless integration of local rendering scene and remote rendering scene in a hybrid scene of local and remote rendering.This paper was aim to address the illumina-tion consistency problem.Firstly,it drawn the complex background on the server and drawn the interactive objects on the mo-bile terminal.While drawing the same illumination model was used.Secondly,it used the illumination parameters transmitted by the server to recalculate the illumination parameters for the illumination model on the local mobile terminal in the integration phase.Lastly,used the time interpolation method to simulate the changes of the ambient light during the day and recalculate the illumination model on the local mobile terminal.The experimental results show that,through the above method,the seamless in-tegration of scene can be realized on the mobile terminal.The mothed used for the integration of scene has the high rendering efficiency and feasibility.

  5. A Novel Degradation Estimation Method for a Hybrid Energy Storage System Consisting of Battery and Double-Layer Capacitor

    OpenAIRE

    Yuanbin Yu; Dongdong Zhang; Haitao Min; Yi Tang; Tao Zhu(GCAP-CASPER, Physics Department, Baylor University, One Bear Place, # 97316, Waco, TX 76798-7316, U.S.A.)

    2016-01-01

    This paper presents a new method for battery degradation estimation using a power-energy (PE) function in a battery/ultracapacitor hybrid energy storage system (HESS), and the integrated optimization which concerns both parameters matching and control for HESS has been done as well. A semiactive topology of HESS with double-layer capacitor (EDLC) coupled directly with DC-link is adopted for a hybrid electric city bus (HECB). In the purpose of presenting the quantitative relationship between s...

  6. Numerical investigation of magnetic sensor for DNA hybridization detection using planar transformer

    Directory of Open Access Journals (Sweden)

    Sayyed M. Azimi

    2007-12-01

    Full Text Available This paper introduces a sensor for detection of DNA hybridization and investigates its performance by means of computer simulation. A planar transformer with spiral windings is proposed for hybridization detection. In order to detect the occurrence of hybridization, single strand target DNA’s are tagged with magnetic beads. Target DNA’s are then exposed to known single strand probe DNA’s which are immobilized on the surface of a functionalized layer in the proximity of the sensor. The primary winding of the transformer is driven by an AC current source. The voltage at the secondary winding is used for detection. Once the hybridization is occurred, a layer of magnetic material is formed and the coupling between the windings is varied. These variations are reflected into the detecting output voltage. The magnitude of the output voltage is numerically calculated in terms of geometrical and physical parameters and the parameter values resulting in maximum response are derived.

  7. Study of Lower Hybrid Frequency Turbulence in the Magnetic Reconnection Experiment (MRX)

    Science.gov (United States)

    Dorfman, S. E.; Ji, H.; Roytershteyn, V.; Yamada, M.; Daughton, W. S.; Yoo, J.; Oz, E.; Tharp, T.; Lawrence, E. E.; Myers, C.

    2010-12-01

    One of the key open questions in magnetic reconnection is the nature of the mechanism that governs the reconnection rate in real astrophysical and laboratory systems. Comparisons between fully kinetic 2-D simulations of the Magnetic Reconnection Experiment (MRX) and experimental data indicate that three-dimensional dynamics, such as current layer disruptions recently observed in MRX, may play a key role in resolving an important discrepancy in the reconnection rate and layer width [1,2,3]. These disruptions are often associated with fluctuations in the lower hybrid frequency range and a rapid local reconnection rate. Fluctuations are observed not only in MRX [4], but also in space [5] and 3-D kinetic simulations. Comparison of fluctuation characteristics between the three domains may shed light on the underlying physics. In both the simulation and the experiments, the fluctuations are related to density gradients across the layer. The frequency range is similarly broadband up to the lower hybrid range, and the phase velocities are comparable in appropriately normalized units. However, while the electron drift speed is comparable to the phase velocity at the layer center in the experiment (consistent with previous MRX results [4]), the drift speed in the simulations is considerably larger. Furthermore, the fluctuations observed in the experiment are fully turbulent with correlation lengths the same order as the wavelength while those observed in the simulations and in space are more coherent. Some discharges also display "O-point" signatures consistent with magnetic island like structures. The present research explores the relationship between the disruptions and fluctuations in the context of the reconnection rate problem. Experiments are ongoing to determine what physics is responsible for the broader current layers (and correspondingly smaller drift speeds) observed in the experiment. [1] Y. Ren, et al., Phys. Plasmas 15, 082113 (2008). [2] S. Dorfman, et al

  8. Design, manufacture and performance evaluation of HTS electromagnets for the hybrid magnetic levitation system

    Energy Technology Data Exchange (ETDEWEB)

    Chu, S.Y.; Hwang, Y.J.; Choi, S.; Na, J.B.; Kim, Y.J.; Chang, K.S. [School of Electrical and Electronic Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of); Bae, D.K. [Chungju National University, Chungju 380-702 (Korea, Republic of); Lee, C.Y. [Ultra High-Speed Train Research Department, Korea Railroad Research Institute, Uiwang-Si 437-757 (Korea, Republic of); Ko, T.K., E-mail: tkko@yonsei.ac.kr [School of Electrical and Electronic Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of)

    2011-11-15

    A high speed electromagnetic suspension (EMS) maglev has emerged as the solution to speed limit problem that conventional high-speed railroad has. In the EMS maglev, small levitation gap needs uniform guide-way which leads to increase the construction cost. The large levitation gap can reduce the construction cost. However it is hard for normal conducting electromagnet to produce larger magneto-motive force (MMF) for generating levitation force as increased levitation gap. This is because normal conductors have limited rating current to their specific volume. Therefore, the superconducting electromagnet can be one of the solutions for producing both large levitation gap and sufficient MMF. The superconducting electromagnets have incomparably high allowable current density than what normal conductors have. In this paper, the prototype of high temperature superconducting (HTS) electromagnets were designed and manufactured applicable to hybrid electromagnetic suspension system (H-EMS). The H-EMS consists of control coils for levitation control and superconducting coils for producing MMF for levitation. The required MMF for generating given levitation force was calculated by both equations of ideal U-core magnet and magnetic field analysis using the finite element method (FEM). The HTS electromagnets were designed as double pancakes with Bi-2223/Ag tapes. Experiments to confirm its operating performance were performed in liquid nitrogen (LN{sub 2}).

  9. Magnetic field detector consisting of magnetic and semiconducting nanoparticles co-assembled in a liquid crystalline matrix

    Science.gov (United States)

    Amaral, Jose; Rodarte, Andrea; Wan, Jacky; Ferri, Christopher; Quint, Makiko; Pandolfi, Ron; Scheibner, Michael; Hirst, Linda; Ghosh, Sayantani

    2015-03-01

    An exciting area of research is using nano-constituents to create artificial materials that are multifunctional and allow for modification post-fabrication and in situ. We are investigating the ensemble behavior of iron-oxide magnetic nanoparticles (MNPs) and CdSe/ZnS quantum dots (QDs) when dispersed in an electro-optically active liquid crystalline (LC) matrix. The directed assembly of NPs in the matrix is driven by the temperature-induced transition of the LC from the isotropic to the nematic phase as the NPs are mostly expelled into the isotropic regions, finally ending up clustered around LC defect points when the transition is complete. Our results show a two-fold intensity increase of QD photoluminescence intensity with low magnetic fields (less than 100 mT). We speculate this increase is due to MNP rearrangement which produces a compaction of the clusters, resulting in the detection of increased QD emission. The individual components work together to act as a magnetic field detector and since they are direct assembled in a LC medium, they could potentially be used in a wide range of fluid-based applications. This work was funded by NSF grants DMR-1056860 and ECC-1227034. This work was funded by NSF Grants DMR-1056860 and ECC-1227034.

  10. Study on control method of running velocity for the permanent magnet-HTSC hybrid magnetically levitated conveyance system

    Energy Technology Data Exchange (ETDEWEB)

    Nishio, R.; Ikeda, M.; Sasaki, R. [Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680 (Japan); Ohashi, S., E-mail: ohashi@kansai-u.ac.jp [Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680 (Japan)

    2011-11-15

    The hybrid magnetically levitated carrying system is developed. Control method of running velocity of the carrier is studied. Running velocity is controlled by current of the propulsion coils. Propulsion characteristcs are improved. We have developed the magnetically levitated carrying system. In this system, pinning force of high temperature bulk super conductor (HTSC) is used for the levitation and guidance. Four HTSCs are installed on the carrier. The magnetic rail is set on the ground, and flux from the magnetic rail is pinned by HTSCs. To increase levitation force, repulsive force of the permanent magnet is used. The hybrid levitation system is composed. The permanent magnet is installed under the load stage of the carrier. Repulsive force by the permanent magnet between the load stage on the carrier and the magnetic rail on the ground is used to support the load weight. Levitation and guidance one by pinning effect of the YBaCuO HTSC in the carrier is used to levitate the carrier body. The load stage is separated from the carrier flame and can move freely for vertical direction levitation. For the propulsion system, electromagnet is installed on the surface of the magnetic rail. In this paper, control method of running velocity of the carrier is studied. Propulsion force is given as follows; Air core copper coils are installed on the magnetic rail. Interaction between current of these coils and permanent magnets on the carrier generates propulsion force. Running velocity is controlled by current of the propulsion coils. It is also changed by position of the carrier and the load weight. From the results, stability of the propulsion system is given, and propulsion characteristics are improved.

  11. Hybrid nanomaterials: anchoring magnetic molecules on naked gold nanocrystals.

    Science.gov (United States)

    Holmberg, Rebecca J; Hutchings, Amy-Jayne; Habib, Fatemah; Korobkov, Ilia; Scaiano, Juan C; Murugesu, Muralee

    2013-12-16

    The pairing of molecular magnets and nanomaterials couples top-down and bottom-up approaches to nanotechnology; facilitating a unique methodology to the controlled study of interfacial magnetic properties. Attaching Single-Molecule Magnets (SMMs) to "naked" gold nanoparticles is a novel method of exploring various avenues of magnetic nanotechnology, such as drug delivery, information storage, catalysis, and assembly of magnetic-nanostructural motifs. Herein we report the successful capping of laser ablation synthesized "naked" gold nanoparticles with a dinuclear dysprosium complex, while introducing new information regarding the changes in molecular magnetic properties upon surface attachment. We anticipate that this methodology in producing these magneto-plasmonic nanostructures not only provides answers to fundamental questions but also has the potential to provide new avenues to applications including information storage, multimodal imaging, biomedicine, and optoelectronics.

  12. Adsorption mechanism of magnetically separable Fe{sub 3}O{sub 4}/graphene oxide hybrids

    Energy Technology Data Exchange (ETDEWEB)

    Ouyang, Ke [Department of Chemical and Environment Engineering, Wuyi University, Jiangmen, Guangdong 529020 (China); Zhu, Chuanhe [Department of Civil, Construction and Environmental Engineering, Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011 (United States); Zhao, Ya; Wang, Leichao [Department of Chemical and Environment Engineering, Wuyi University, Jiangmen, Guangdong 529020 (China); Xie, Shan, E-mail: wyuchemxs@126.com [Department of Chemical and Environment Engineering, Wuyi University, Jiangmen, Guangdong 529020 (China); Wang, Qun, E-mail: qunwang@iastate.edu [Department of Civil, Construction and Environmental Engineering, Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011 (United States)

    2015-11-15

    Graphical abstract: A recyclable Fe{sub 3}O{sub 4}/graphene oxide (GO) magnetic hybrid was successfully synthesized via a facile one-pot polylol approach and exhibited an effective adsorption of BPA in aqueous solution. - Highlights: • Magnetically separable Fe{sub 3}O{sub 4}/GO hybrids were synthesized via a facile one-pot polylol approach. • The Fe{sub 3}O{sub 4}/GO hybrid could be easily recovered and met the need of magnetic separation, exhibiting excellent reproducibility and reusability. • The hybrids showed excellent adsorption ability for bisphenol A in aqueous solution. • The effect of pH value, temperature and coexisting ions on the adsorption was studied. • π–π interactions were postulated to be the primary mechanisms of adsorption of BPA on Fe{sub 3}O{sub 4}/GO hybrids. - Abstract: A reclaimable Fe{sub 3}O{sub 4}/graphene oxide (GO) magnetic hybrid was successfully synthesized via a facile one-pot polyol approach and employed as a recyclable adsorbent for Bisphenol A (BPA) in aqueous solutions. The maximum adsorption capacity (q{sub m}) of the Fe{sub 3}O{sub 4}/GO hybrid for BPA was 72.80 mg/g at 273 K. The kinetics of the adsorption process and the adsorption isotherm data were fitted using the Freundlich equation and a pseudo-second-order kinetic model. The results of the thermodynamic parameters ΔH°, ΔS° and ΔG° showed that the adsorption process was exothermic and spontaneous. Furthermore, the reusability of the samples was investigated, and the results indicated that the samples exhibited high stability. The magnetic characterization demonstrated that hybrids were superparamagnetic and could be recovered conveniently by magnetic separation. The strong π–π interaction was determined to be the predominant driving force behind the adsorption of BPA onto the Fe{sub 3}O{sub 4}/GO hybrid. Therefore, the Fe{sub 3}O{sub 4}/GO hybrid could be regarded as a potential adsorbent for wastewater treatment and purification processes.

  13. Synthesis of Ni-Au-ZnO ternary magnetic hybrid nanocrystals with enhanced photocatalytic activity.

    Science.gov (United States)

    Zeng, Deqian; Chen, Yuanzhi; Wang, Zhichao; Wang, Junbao; Xie, Qingshui; Peng, Dong-Liang

    2015-07-14

    The functional synergy between the metal and the semiconductor in metal-semiconductor hybrid nanocrystals with specific structures and morphologies makes them suitable candidates for a wide range of applications. To date, the synthesis and the corresponding properties of ternary metal-semiconductor hetero-nanostructures, especially for hybrid nanocrystals containing magnetic metals, are seldom discussed and thus worthy of extensive research. In this study, we report a nonaqueous approach for the synthesis of Ni-Au-ZnO ternary hybrid nanocrystals with three morphologies, including nanomultipods, matchstick-like nanorods and nanopyramids. In the synthetic strategy, the Ni precursor dissolved in oleylamine was injected into a hot solution containing preformed Au-ZnO nanocrystals with specific morphologies. Then Ni prefers to grow on the unoccupied surfaces of Au, thus forming a hybrid hetero-nanostructure which retains the main morphologies of Au-ZnO nanocrystals. The ultraviolet-visible spectra not only show the band gap absorption of ZnO but also exhibit a broadened and weakened surface plasmon resonance (SPR) band of Au. The Ni-Au-ZnO nanocrystals exhibit much higher photocatalytic efficiency than pure ZnO in the degradation of Rhodamine B. Meanwhile, these hybrid nanocrystals are superparamagnetic at room temperature and can be readily recycled by a magnetic field for reuse. The as-prepared ternary Ni-Au-ZnO hybrid nanocrystals possess plasmonic, magnetic and enhanced photocatalytic properties, and thus are expected to find wide applications in the future.

  14. Design and Analysis of the AlNiCo Hybrid Magnet in EMS Maglev Vehicles

    Directory of Open Access Journals (Sweden)

    Lv Chao

    2017-01-01

    Full Text Available In order to solve the problem of hybrid electromagnet lock orbit, we design a new type of AlNiCo-NdFeB hybrid levitation electromagnet. The theoretical analysis has be carried on and mathematical model is established for AlNiCo-NdFeB hybrid levitation electromagnet. Through two dimensional simulation, the electromagnetic characteristics of the suspended electromagnet are analyzed in the 3 typical operating conditions , which are in heavy load at gap 8mm, in full load at gap 16mm and in no-load at gap 3mm. And it’s compared with the traditional electromagnetic magnet and NdFeB hybrid electromagnet. Calculation and analysis show that the new hybrid levitation electromagnet can effectively solve the problems of the electromagnet lock orbit, at the same time, have a good dynamic performance and suspension regulation performance.

  15. Inducing transparency with large magnetic response and group indices by hybrid dielectric metamaterials.

    Science.gov (United States)

    Chen, Cheng-Kuang; Lai, Yueh-Chun; Yang, Yu-Hang; Chen, Chia-Yun; Yen, Ta-Jen

    2012-03-26

    We present metamaterial-induced transparency (MIT) phenomena with enhanced magnetic fields in hybrid dielectric metamaterials. Using two hybrid structures of identical-dielectric-constant resonators (IDRs) and distinct-dielectric-constant resonators (DDRs), we demonstrate a larger group index (ng~354), better bandwidth-delay product (BDP~0.9) than metallic-type metamaterials. The keys to enable these properties are to excite either the trapped mode or the suppressed mode resonances, which can be managed by controlling the contrast of dielectric constants between the dielectric resonators in the hybrid metamaterials.

  16. Selective Synthesis of Gasoline-Ranged Hydrocarbons from Syngas over Hybrid Catalyst Consisting of Metal-Loaded ZSM-5 Coupled with Copper-Zinc Oxide

    National Research Council Canada - National Science Library

    Ting Ma; Hiroyuki Imai; Manami Yamawaki; Kazusa Terasaka; Xiaohong Li

    2014-01-01

      The conversion of syngas (CO + H2) to gasoline-ranged hydrocarbons was carried out using a hybrid catalyst consisting of metal-loaded ZSM-5 coupled with Cu-ZnO in a near-critical n-hexane solvent...

  17. Influence of a magnetic field on the viscosity of a dilute gas consisting of linear molecules.

    Science.gov (United States)

    Hellmann, Robert; Vesovic, Velisa

    2015-12-07

    The viscomagnetic effect for two linear molecules, N2 and CO2, has been calculated in the dilute-gas limit directly from the most accurate ab initio intermolecular potential energy surfaces presently available. The calculations were performed by means of the classical trajectory method in the temperature range from 70 K to 3000 K for N2 and 100 K to 2000 K for CO2, and agreement with the available experimental data is exceptionally good. Above room temperature, where no experimental data are available, the calculations provide the first quantitative information on the magnitude and the behavior of the viscomagnetic effect for these gases. In the presence of a magnetic field, the viscosities of nitrogen and carbon dioxide decrease by at most 0.3% and 0.7%, respectively. The results demonstrate that the viscomagnetic effect is dominated by the contribution of the jj¯ polarization at all temperatures, which shows that the alignment of the rotational axes of the molecules in the presence of a magnetic field is primarily responsible for the viscomagnetic effect.

  18. Stationary self-consistent distributions for a charged particle beam in the longitudinal magnetic field

    Science.gov (United States)

    Drivotin, O. I.; Ovsyannikov, D. A.

    2016-09-01

    A review of analytical solutions of the Vlasov equation for a beam of charged particles is given. These results are analyzed on the basis of a unified approach developed by the authors. In the context of this method, a space of integrals of motion is introduced in which the integrals of motion of particles are considered as coordinates. In this case, specifying a self-consistent distribution is reduced to defining a distribution density in this space. This approach allows us to simplify the construction and analysis of different self-consistent distributions. In particular, it is possible, in some cases, to derive new solutions by considering linear combinations of well-known solutions. This approach also makes it possible in many cases to give a visual geometric representation of self-consistent distributions in the space of integrals of motion.

  19. Study on control method of running velocity for the permanent magnet-HTSC hybrid magnetically levitated conveyance system

    Science.gov (United States)

    Nishio, R.; Ikeda, M.; Sasaki, R.; Ohashi, S.

    2011-11-01

    We have developed the magnetically levitated carrying system. In this system, pinning force of high temperature bulk super conductor (HTSC) is used for the levitation and guidance. Four HTSCs are installed on the carrier. The magnetic rail is set on the ground, and flux from the magnetic rail is pinned by HTSCs. To increase levitation force, repulsive force of the permanent magnet is used. The hybrid levitation system is composed. The permanent magnet is installed under the load stage of the carrier. Repulsive force by the permanent magnet between the load stage on the carrier and the magnetic rail on the ground is used to support the load weight. Levitation and guidance one by pinning effect of the YBaCuO HTSC in the carrier is used to levitate the carrier body. The load stage is separated from the carrier flame and can move freely for vertical direction levitation. For the propulsion system, electromagnet is installed on the surface of the magnetic rail. In this paper, control method of running velocity of the carrier is studied. Propulsion force is given as follows; Air core copper coils are installed on the magnetic rail. Interaction between current of these coils and permanent magnets on the carrier generates propulsion force. Running velocity is controlled by current of the propulsion coils. It is also changed by position of the carrier and the load weight. From the results, stability of the propulsion system is given, and propulsion characteristics are improved.

  20. Properties of an almost localized Fermi liquid in an applied magnetic field revisited: a statistically consistent Gutzwiller approach.

    Science.gov (United States)

    Wysokiński, Marcin M; Spałek, Jozef

    2014-02-01

    We discuss the Hubbard model in an applied magnetic field and analyze the properties of neutral spin-[Formula: see text] fermions within the so-called statistically consistent Gutzwiller approximation. The magnetization curve reproduces in a semiquantitative manner the experimental data for liquid (3)He in the regime of moderate correlations and in the presence of a small number of vacant cells, modeled by a non-half-filled band situation, when a small number of vacancies (∼5%) is introduced in the virtual fcc lattice. We also present the results for the magnetic susceptibility and the specific heat, in which a metamagnetic-like behavior is also singled out in a non-half-filled band case.

  1. Design of magnetic akaganeite-cyanobacteria hybrid biofilms

    Energy Technology Data Exchange (ETDEWEB)

    Dahoumane, Si Amar [Universite Paris Diderot (Paris 7), CNRS, UMR 7086, Interfaces, Traitements, Organisation et Dynamique des Systemes (ITODYS), 15 rue Jean de Baif, F-75205 Paris Cedex 13 (France); Djediat, Chakib; Yepremian, Claude; Coute, Alain [Museum National d' Histoire Naturelle (MNHN), Departement RDDM, USM 505, 57 rue Cuvier, F-75005 Paris (France); Fievet, Fernand [Universite Paris Diderot (Paris 7), CNRS, UMR 7086, Interfaces, Traitements, Organisation et Dynamique des Systemes (ITODYS), 15 rue Jean de Baif, F-75205 Paris Cedex 13 (France); Brayner, Roberta, E-mail: roberta.brayner@univ-paris-diderot.f [Universite Paris Diderot (Paris 7), CNRS, UMR 7086, Interfaces, Traitements, Organisation et Dynamique des Systemes (ITODYS), 15 rue Jean de Baif, F-75205 Paris Cedex 13 (France)

    2010-07-30

    Common Anabaena cyanobacteria are shown to form intra-cellularly akaganeite {beta}-FeOOH nanorods of well-controlled size and unusual morphology at room temperature. High-resolution transmission electron microscopy showed that these nanorods present a complex arrangement of pores forming a spongelike structure. These hybrid akaganeite-cyanobacteria were used to form 'one-pot' hybrid biofilms. The hybrid biofilm presents higher coercivity (H{sub c} = 44.6 kA m{sup -1} (560 Oe)) when compared to lyophilized akaganeite-cyanobacteria powder (H{sub c} = 0.8 kA m{sup -1} (10 Oe)) due to the quasi-assembly of the cells on the glass substrate compared to the lyophilized randomly akaganeite-cyanobacteria powder.

  2. Development of an extraction type magnetometer under low temperature and high magnetic fields over 20 T by the hybrid magnet

    Energy Technology Data Exchange (ETDEWEB)

    Koyama, K; Sakakura, R; Watanabe, K [High Field Laboratory for Superconducting materials, Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan)], E-mail: kkoyama@imr.tohoku.ac.jp

    2009-03-01

    An extraction-type magnetometer has been developed, which is performed under the low temperature of 0.5-0.6 K using a {sup 3}He-refrigerator and high magnetic fields up to 18 T using a superconducting magnet (SM) and 27 T using a hybrid magnet (HM). Magnetization curves can be measured with the absolute value over 0.0005 emu using SM and 0.005 emu using HM. We confirmed that the resolution is 0.001 emu for SM and 0.005 emu for HM. For demonstrating the ability of the magnetometer, high field magnetization curves of NdO{sub 4}Ag in 0.6-4.2 K are presented.

  3. Fabrication of Magnetic-Antimicrobial-Fluorescent Multifunctional Hybrid Microspheres and Their Properties

    Directory of Open Access Journals (Sweden)

    Ling-Han Xiao

    2013-04-01

    Full Text Available Novel magnetic-antimicrobial-fluorescent multifunctional hybrid microspheres with well-defined nanostructure were synthesized by the aid of a poly(glycidyl methacrylate (PGMA template. The hybrid microspheres were fully characterized by scanning electron microscopy (SEM, transmission electron microscopy (TEM, Fourier transform infrared (FTIR, X-ray diffraction (XRD and digital fluorescence microscope. The as-synthesized microspheres PGMA, amino-modified PGMA (NH2-PGMA and magnetic PGMA (M-PGMA have a spherical shape with a smooth surface and fine monodispersity. M-PGMA microspheres are super-paramagnetic, and their saturated magnetic field is 4.608 emu·g−1, which made M-PGMA efficiently separable from aqueous solution by an external magnetic field. After poly(haxemethylene guanidine hydrochloride (PHGH functionalization, the resultant microspheres exhibit excellent antibacterial performance against both Gram-positive and Gram-negative bacteria. The fluorescence feature originating from the quantum dot CdTe endowed the hybrid microspheres with biological functions, such as targeted localization and biological monitoring functions. Combination of magnetism, antibiosis and fluorescence into one single hybrid microsphere opens up the possibility of the extensive study of multifunctional materials and widens the potential applications.

  4. Exchange coupling in hybrid anisotropy magnetic multilayers quantified by vector magnetometry

    Energy Technology Data Exchange (ETDEWEB)

    Morrison, C., E-mail: C.Morrison.2@warwick.ac.uk; Miles, J. J.; Thomson, T. [School of Computer Science, University of Manchester, Manchester M13 9PL (United Kingdom); Anh Nguyen, T. N. [Materials Physics, School of ICT, KTH Royal Institute of Technology, Electrum 229, 164 40 Kista (Sweden); Spintronics Research Group, Laboratory for Nanotechnology (LNT), VNU-HCM, Ho Chi Minh City (Viet Nam); Fang, Y.; Dumas, R. K. [Department of Physics, University of Gothenburg, 412 96 Gothenburg (Sweden); Åkerman, J. [Materials Physics, School of ICT, KTH Royal Institute of Technology, Electrum 229, 164 40 Kista (Sweden); Department of Physics, University of Gothenburg, 412 96 Gothenburg (Sweden)

    2015-05-07

    Hybrid anisotropy thin film heterostructures, where layers with perpendicular and in-plane anisotropy are separated by a thin spacer, are novel materials for zero/low field spin torque oscillators and bit patterned media. Here, we report on magnetization reversal and exchange coupling in a archetypal Co/Pd (perpendicular)-NiFe (in-plane) hybrid anisotropy system studied using vector vibrating sample magnetometry. This technique allows us to quantify the magnetization reversal in each individual magnetic layer, and measure of the interlayer exchange as a function of non-magnetic spacer thickness. At large (>1 nm) spacer thicknesses Ruderman-Kittel-Kasuya-Yosida-like exchange dominates, with orange-peel coupling providing a significant contribution only for sub-nm spacer thickness.

  5. Hybrid bronchoscope tracking using a magnetic tracking sensor and image registration.

    Science.gov (United States)

    Mori, Kensaku; Deguchi, Daisuke; Akiyama, Kenta; Kitasaka, Takayuki; Maurer, Calvin R; Suenaga, Yasuhito; Takabatake, Hirotsugu; Mori, Masaki; Natori, Hiroshi

    2005-01-01

    In this paper, we propose a hybrid method for tracking a bronchoscope that uses a combination of magnetic sensor tracking and image registration. The position of a magnetic sensor placed in the working channel of the bronchoscope is provided by a magnetic tracking system. Because of respiratory motion, the magnetic sensor provides only the approximate position and orientation of the bronchoscope in the coordinate system of a CT image acquired before the examination. The sensor position and orientation is used as the starting point for an intensity-based registration between real bronchoscopic video images and virtual bronchoscopic images generated from the CT image. The output transformation of the image registration process is the position and orientation of the bronchoscope in the CT image. We tested the proposed method using a bronchial phantom model. Virtual breathing motion was generated to simulate respiratory motion. The proposed hybrid method successfully tracked the bronchoscope at a rate of approximately 1 Hz.

  6. Two-way self-consistent simulation of the inner magnetosphere driven by realistic electric and magnetic fields

    Science.gov (United States)

    Ilie, Raluca; Liemohn, Michael; Toth, Gabor

    2014-05-01

    The geomagnetic storm of August 6, 2011 is examined using the two-way self consistent coupling between the kinetic Hot Electron and Ion Drift Integrator (HEIDI) model, the Block Adaptive Tree Solar Wind Roes-Type Scheme (BATS-R-US) MHD model and the Ridley Ionospheric Model (RIM) through the Space Weather Modeling Framework (SWMF). HEIDI solves the time dependent, gyration and bounce-averaged kinetic equation for the phase space density of different ring current species and computes full pitch angle distributions for all local times and radial distances. This model was generalized to accommodate arbitrary magnetic fields and through the coupling with the SWMF it obtains magnetic field description along with plasma distribution at the model boundaries from the BATS-R-US model within the SWMF. Electric field self-consistency is assured by the passing of convection potentials from the Ridley Ionosphere Model (RIM) within SWMF. Our study tests the various levels of coupling between the three models, highlighting the role the magnetic field, plasma sheet conditions and the cross polar cap potential play in the formation and evolution of the ring current. We use the results of the coupled HEIDI, BATSRUS and RIM models during disturbed conditions to study the importance of a kinetic self-consistent approach to the description of geospace.

  7. Improvement of the levitation stability of the HTSC-permanent magnet hybrid bearing by using the new arrangement of the permanent magnet

    Science.gov (United States)

    Sukedaia, M.; Emoto, K.; Sugiyama, R.; Ohashi, S.

    The hybrid magnetic bearing using permanent magnets and the high temperature superconductor (HTSC) has been developed. Repulsive force of the permanent magnet is introduced to increase the load weight of the magnetic bearing. Effect of the hybrid system has been shown. Although the previous configuration improves the load weight of the rotor, levitation and guidance stability has been decreased because of the repulsive force of the permanent magnet. Three-dimensional numerical analysis of the system has been undertaken to reduce lateral force which decreases lateral stability of the rotor. From the results, effective arrangement of the hybrid system is given. Increment of the load weight is confirmed. Influence of the hybrid system on the pinning force between the HTSC and the permanent magnet is shown to be smaller than previous one.

  8. A Hybrid Nonlinear Control Scheme for Active Magnetic Bearings

    Science.gov (United States)

    Xia, F.; Albritton, N. G.; Hung, J. Y.; Nelms, R. M.

    1996-01-01

    A nonlinear control scheme for active magnetic bearings is presented in this work. Magnet winding currents are chosen as control inputs for the electromechanical dynamics, which are linearized using feedback linearization. Then, the desired magnet currents are enforced by sliding mode control design of the electromagnetic dynamics. The overall control scheme is described by a multiple loop block diagram; the approach also falls in the class of nonlinear controls that are collectively known as the 'integrator backstepping' method. Control system hardware and new switching power electronics for implementing the controller are described. Various experiments and simulation results are presented to demonstrate the concepts' potentials.

  9. Adsorption mechanism of magnetically separable Fe3O4/graphene oxide hybrids

    Science.gov (United States)

    Ouyang, Ke; Zhu, Chuanhe; Zhao, Ya; Wang, Leichao; Xie, Shan; Wang, Qun

    2015-11-01

    A reclaimable Fe3O4/graphene oxide (GO) magnetic hybrid was successfully synthesized via a facile one-pot polyol approach and employed as a recyclable adsorbent for Bisphenol A (BPA) in aqueous solutions. The maximum adsorption capacity (qm) of the Fe3O4/GO hybrid for BPA was 72.80 mg/g at 273 K. The kinetics of the adsorption process and the adsorption isotherm data were fitted using the Freundlich equation and a pseudo-second-order kinetic model. The results of the thermodynamic parameters ΔH°, ΔS° and ΔG° showed that the adsorption process was exothermic and spontaneous. Furthermore, the reusability of the samples was investigated, and the results indicated that the samples exhibited high stability. The magnetic characterization demonstrated that hybrids were superparamagnetic and could be recovered conveniently by magnetic separation. The strong π-π interaction was determined to be the predominant driving force behind the adsorption of BPA onto the Fe3O4/GO hybrid. Therefore, the Fe3O4/GO hybrid could be regarded as a potential adsorbent for wastewater treatment and purification processes.

  10. Hybrid Molecular and Spin Dynamics Simulations for Ensembles of Magnetic Nanoparticles for Magnetoresistive Systems.

    Science.gov (United States)

    Teich, Lisa; Schröder, Christian

    2015-11-13

    The development of magnetoresistive sensors based on magnetic nanoparticles which are immersed in conductive gel matrices requires detailed information about the corresponding magnetoresistive properties in order to obtain optimal sensor sensitivities. Here, crucial parameters are the particle concentration, the viscosity of the gel matrix and the particle structure. Experimentally, it is not possible to obtain detailed information about the magnetic microstructure, i.e., orientations of the magnetic moments of the particles that define the magnetoresistive properties, however, by using numerical simulations one can study the magnetic microstructure theoretically, although this requires performing classical spin dynamics and molecular dynamics simulations simultaneously. Here, we present such an approach which allows us to calculate the orientation and the trajectory of every single magnetic nanoparticle. This enables us to study not only the static magnetic microstructure, but also the dynamics of the structuring process in the gel matrix itself. With our hybrid approach, arbitrary sensor configurations can be investigated and their magnetoresistive properties can be optimized.

  11. Hybrid magnetic mechanism for active locomotion based on inchworm motion

    Science.gov (United States)

    Kim, Sung Hoon; Hashi, Shuichiro; Ishiyama, Kazushi

    2013-02-01

    Magnetic robots have been studied in the past. Insect-type micro-robots are used in various biomedical applications; researchers have developed inchworm micro-robots for endoscopic use. A biological inchworm has a looping locomotion gait. However, most inchworm micro-robots depend on a general bending, or bellows, motion. In this paper, we introduce a new robotic mechanism using magnetic force and torque control in a rotating magnetic field for a looping gait. The proposed robot is controlled by the magnetic torque, attractive force, and body mechanisms (two stoppers, flexible body, and different frictional legs). The magnetic torque generates a general bending motion. In addition, the attractive force and body mechanisms produce the robot’s looping motion within a rotating magnetic field and without the use of an algorithm for field control. We verified the device’s performance and analyzed the motion through simulations and various experiments. The robot mechanism can be applied to active locomotion for various medical robots, such as wireless endoscopes.

  12. Electronic and magnetic properties of modified silicene/graphene hybrid: Ab initio study

    Energy Technology Data Exchange (ETDEWEB)

    Chowdhury, Suman; Jana, Debnarayan, E-mail: cujanad@yahoo.com

    2016-11-01

    Among other two-dimensional (2D) novel materials, graphene and silicene both have drawn intense research interest among the researchers because they possess some unique intriguing properties which can change the scenario of the current electronic industry. In this work we have studied the electronic and the magnetic properties of a new kind of materials which is the hybrid of these two materials. Density functional theory (DFT) has been employed to calculate the relevant electronic and magnetic properties of this hybrid material. The pristine structure is modified by substitutional doping or by creating vacancy (Y-X, where one Y atom (Si or C) has been replaced by one X atom (B, N, Al, P or void)). The calculations have revealed that void systems are unstable while Si-B and Si-N are most stable ones. It has been noticed that some of these doped structures are magnetic in nature having induced mid-gap states in the system. In particular, Si-void structure is unstable yet it possess the highest magnetic moment of the order of 4 μ{sub B} (μ{sub B} being the Bohr magneton). The estimated band gaps of modified silicene/graphene hybrid from spin polarized partial density of states (PDOS) vary between 1.43–2.38 eV and 1.58–2.50 eV for spin-up and spin-down channel respectively. The implication of midgap states has been critically analysed in the light of magnetic nature. This study may be useful to build hybrid spintronic devices with controllable gap for spin up and spin down states. - Graphical abstract: We have studied the electronic and magnetic properties of silicene/graphene hybrid by employing density functional theory (DFT). - Highlights: • Electronic and magnetic properties of two dimensional graphene/silicene hybrid have been explored. • There is no magnetism in the system for a single carbon atom vacancy. • A net magnetic moment of 4.0 Bohr magneton is observed for a single silicon atom vacancy. • Unpaired electrons introduce mid-gap states which

  13. Self-consistent modeling of induced magnetic field in Titan's atmosphere accounting for the generation of Schumann resonance

    Science.gov (United States)

    Béghin, Christian

    2015-02-01

    This model is worked out in the frame of physical mechanisms proposed in previous studies accounting for the generation and the observation of an atypical Schumann Resonance (SR) during the descent of the Huygens Probe in the Titan's atmosphere on 14 January 2005. While Titan is staying inside the subsonic co-rotating magnetosphere of Saturn, a secondary magnetic field carrying an Extremely Low Frequency (ELF) modulation is shown to be generated through ion-acoustic instabilities of the Pedersen current sheets induced at the interface region between the impacting magnetospheric plasma and Titan's ionosphere. The stronger induced magnetic field components are focused within field-aligned arcs-like structures hanging down the current sheets, with minimum amplitude of about 0.3 nT throughout the ramside hemisphere from the ionopause down to the Moon surface, including the icy crust and its interface with a conductive water ocean. The deep penetration of the modulated magnetic field in the atmosphere is thought to be allowed thanks to the force balance between the average temporal variations of thermal and magnetic pressures within the field-aligned arcs. However, there is a first cause of diffusion of the ELF magnetic components, probably due to feeding one, or eventually several SR eigenmodes. A second leakage source is ascribed to a system of eddy-Foucault currents assumed to be induced through the buried water ocean. The amplitude spectrum distribution of the induced ELF magnetic field components inside the SR cavity is found fully consistent with the measurements of the Huygens wave-field strength. Waiting for expected future in-situ exploration of Titan's lower atmosphere and the surface, the Huygens data are the only experimental means available to date for constraining the proposed model.

  14. Growth Mechanism of a Hybrid Structure Consisting of a Graphite Layer on Top of Vertical Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Nicolo' Chiodarelli

    2012-01-01

    Full Text Available Graphene and carbon nanotubes (CNTs are both carbon-based materials with remarkable optical and electronic properties which, among others, may find applications as transparent electrodes or as interconnects in microchips, respectively. This work reports on the formation of a hybrid structure composed of a graphitic carbon layer on top of vertical CNT in a single deposition process. The mechanism of deposition is explained according to the thickness of catalyst used and the atypical growth conditions. Key factors dictating the hybrid growth are the film thickness and the time dynamic through which the catalyst film dewets and transforms into nanoparticles. The results support the similarities between chemical vapor deposition processes for graphene, graphite, and CNT.

  15. CURRENT VECTOR CONTROL OF PERMANENT-MAGNET SYNCHRONOUS MOTOR OF HYBRID VEHICLE ENGINE

    Directory of Open Access Journals (Sweden)

    S. Serikov

    2009-01-01

    Full Text Available Characteristics of traction permanent-magnet synchronous motor under current vector optimum control in the possible traction-speed mode area which are relevant for hybrid vehicle engine have been investigated. As a criterion of optimality a maximum of electromagnetic moment per unit of current have been taken.

  16. Helicity-dependent all-optical switching in hybrid metal-ferromagnet structures for ultrafast magnetic data storage

    Science.gov (United States)

    Cheng, Feng

    The emerging Big Data era demands the rapidly increasing need for speed and capacity of storing and processing information. Standalone magnetic recording devices, such as hard disk drives (HDDs), have always been playing a central role in modern data storage and continuously advancing. Recognizing the growing capacity gap between the demand and production, industry has pushed the bit areal density in HDDs to 900 Giga-bit/square-inch, a remarkable 450-million-fold increase since the invention of the first hard disk drive in 1956. However, the further development of HDD capacity is facing a pressing challenge, the so-called superparamagnetic effect, that leads to the loss of information when a single bit becomes too small to preserve the magnetization. This requires new magnetic recording technologies that can write more stable magnetic bits into hard magnetic materials. Recent research has shown that it is possible to use ultrafast laser pulses to switch the magnetization in certain types of magnetic thin films. Surprisingly, such a process does not require an externally applied magnetic field that always exists in conventional HDDs. Furthermore, the optically induced magnetization switching is extremely fast, up to sub-picosecond (10 -12 s) level, while with traditional recording method the deterministic switching does not take place shorter than 20 ps. It's worth noting that the direction of magnetization is related to the helicity of the incident laser pulses. Namely, the right-handed polarized laser pulses will generate magnetization pointing in one direction while left-handed polarized laser pulses generate magnetization pointing in the other direction. This so-called helicity-dependent all-optical switching (HD-AOS) phenomenon can be potentially used in the next-generation of magnetic storage systems. In this thesis, I explore the HD-AOS phenomenon in hybrid metal-ferromagnet structures, which consist of gold and Co/Pt multilayers. The experiment results show

  17. Selective Synthesis of Gasoline-Ranged Hydrocarbons from Syngas over Hybrid Catalyst Consisting of Metal-Loaded ZSM-5 Coupled with Copper-Zinc Oxide

    Directory of Open Access Journals (Sweden)

    Ting Ma

    2014-04-01

    Full Text Available The conversion of syngas (CO + H2 to gasoline-ranged hydrocarbons was carried out using a hybrid catalyst consisting of metal-loaded ZSM-5 coupled with Cu-ZnO in a near-critical n-hexane solvent. Methanol was synthesized from syngas over Cu-ZnO; subsequently, was converted to hydrocarbons through the formation of dimethyl ether (DME over the metal-loaded ZSM-5. When 0.5 wt% Pd/ZSM-5 and 5 wt% Cu/ZSM-5 among the metal-loaded ZSM-5 catalysts with Pd, Co, Fe or Cu were employed as a portion of the hybrid catalyst, the gasoline-ranged hydrocarbons were selectively produced (the gasoline-ranged hydrocarbons in all hydrocarbons: 59% for the hybrid catalyst with Pd/ZSM-5 and 64% for that with Cu/ZSM-5 with a similar CO conversion during the reaction. An increase in the Cu loading on ZSM-5 resulted in increasing the yield of the gasoline-ranged hydrocarbons, and in decreasing the yield of DME. Furthermore, the hybrid catalyst with Cu/ZSM-5 exhibited no deactivation for 30 h of the reaction. It was revealed that a hybrid catalyst containing Cu/ZSM-5 was efficient in the selective synthesis of gasoline-ranged hydrocarbons from syngas via methanol in the near-critical n-hexane fluid.

  18. The solvothermal synthesis of magnetic iron oxide nanocrystals and the preparation of hybrid poly(L-lactide)-polyethyleneimine magnetic particles.

    Science.gov (United States)

    Stojanović, Zoran; Otoničar, Mojca; Lee, Jongwook; Stevanović, Magdalena M; Hwang, Mintai P; Lee, Kwan Hyi; Choi, Jonghoon; Uskoković, Dragan

    2013-09-01

    We report a simple and green procedure for the preparation of magnetic iron oxide nanocrystals via solvothermal synthesis. The nanocrystal synthesis was carried out under mild conditions in the water-ethanol-oleic acid solvent system with the use of the oleate anion as a surface modifier of nanocrystals and glucose as a reducing agent. Specific conditions for homogenous precipitation achieved in such a reaction system lead to the formation of uniform high-quality nanocrystals down to 5 nm in diameter. The obtained hydrophobic nanocrystals can easily be converted to hydrophilic magnetic nanoparticles by being immobilized in a poly(L-lactide)-polyethyleneimine polymeric matrix. These hybrid nano-constructs may find various biomedical applications, such as magnetic separation, gene transfection and/or magnetic resonance imaging. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Magnetic ripple and the modeling of lower-hybrid current drive in tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Peysson, Y.; Arslanbekov, R.; Basiuk, V.; Carrasco, J.; Litaudon, X.; Moreau, D. [Association Euratom-CEA, Centre d`Etudes de Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. de Recherches sur la Fusion Controlee; Bizarro, J.P. [Instituto Superior Tecnico, Lisbon (Portugal). Lab. de Quimica Organica

    1996-01-01

    Using ray-tracing, a detailed investigation of the lower hybrid (LH) wave propagation in presence of toroidal magnetic field ripple is presented. By coupling ray tracing with a one-dimensional relativistic Fokker-Planck code, simulations of LH experiments have been performed for the Tore Supra tokamak. Taking into account magnetic ripple in LH simulations, a better agreement is found between numerical predictions and experimental observations, such as non-thermal Bremsstrahlung emission, current profile, ripple-induced power losses in local magnetic mirrors, when plasma conditions correspond to the ` `few passes` regime. (author). 47 refs.

  20. Tunnel magnetoresistance in full-epitaxial magnetic tunnel junctions with a top electrode consisting of a perpendicularly magnetized D022-Mn3Ge film

    Science.gov (United States)

    Sugihara, Atsushi; Suzuki, Kazuya; Miyazaki, Terunobu; Mizukami, Shigemi

    2015-07-01

    We grew a magnetic tunnel junction (MTJ) with a top electrode consisting of a Mn3Ge film using a thin Co-Fe alloy film as a seed layer. X-ray diffraction showed that the Mn3Ge had (001)-oriented D022 structure epitaxially grown on an MgO(001) substrate. Magnetic hysteresis loops suggested that the D022-Mn3Ge film possessed perpendicular magnetic anisotropy. A magnetoresistance (MR) ratio of 11.3% was observed in the microfabricated MTJ at room temperature. The resistance-field curve suggested that the top-Co-Fe and D022-Mn3Ge layer are weakly coupled antiferromagnetically. The optimization of top-Co-Fe composition would improve MR ratio.

  1. Self-consistent mean field theory studies of the thermodynamics and quantum spin dynamics of magnetic Skyrmions.

    Science.gov (United States)

    Wieser, R

    2017-05-04

    A self-consistent mean field theory is introduced and used to investigate the thermodynamics and spin dynamics of an S  =  1 quantum spin system with a magnetic Skyrmion. The temperature dependence of the Skyrmion profile as well as the phase diagram are calculated. In addition, the spin dynamics of a magnetic Skyrmion is described by solving the time dependent Schrödinger equation with additional damping term. The Skyrmion annihilation process driven by an electric field is used to compare the trajectories of the quantum mechanical simulation with a semi-classical description for the spin expectation values using a differential equation similar to the classical Landau-Lifshitz-Gilbert equation.

  2. Study on Torque Calculation for Hybrid Magnetic Coupling and Influencing Factor Analysis

    Science.gov (United States)

    Wang, Shuang; Guo, Yong-cun; Wang, Peng-yu; Li, De-yong

    2017-03-01

    Specific to a problem that the present transmission of magnetic coupling torque was subjected to restrictions of its own structure, a hybrid magnetic coupling was proposed. Then, finite element method was adopted to carry out numerical calculations for its three-dimensional magnetic field to obtain three-dimensional magnetic field distribution of radial and axial configurations. Major influencing factors of its torque, such as lengths of axial and radial air gaps, thicknesses of axial and radial permanent magnets, the number of slots in axial copper rotor, thickness of axial and radial copper rotor, etc., were analyzed. The relevant results indicated that in certain conditions of shapes, ten magnetic poles of the axial permanent magnet rotor, nine of the radial permanent magnet rotor and nine slots from the axial copper rotor were used. Correspondingly, the axial copper rotor had a thickness of 20 mm and it was 5 mm for the radial copper rotor. Moreover, the maximum torque could reach 190 N.m approximately. If lengths of axial and radial air gaps increased, the torque may go down otherwise. Within a certain scope, the torque rose in the first place and then fell with increases in the permanent magnet thickness of axial permanent magnetic rotor, the number of axial and radial magnetic poles, the number of slots in axial copper rotor, and the thickness of axial copper rotor. Additionally, the number of slots in the axial copper rotor could not be equivalent to that of magnetic poles in axial permanent magnetic rotor. However, as the permanent magnet thickness of radial permanent magnetic rotor rose, the torque went up as well.

  3. Reduction hybrid artifacts of EMG-EOG in electroencephalography evoked by prefrontal transcranial magnetic stimulation

    Science.gov (United States)

    Bai, Yang; Wan, Xiaohong; Zeng, Ke; Ni, Yinmei; Qiu, Lirong; Li, Xiaoli

    2016-12-01

    Objective. When prefrontal-transcranial magnetic stimulation (p-TMS) performed, it may evoke hybrid artifact mixed with muscle activity and blink activity in EEG recordings. Reducing this kind of hybrid artifact challenges the traditional preprocessing methods. We aim to explore method for the p-TMS evoked hybrid artifact removal. Approach. We propose a novel method used as independent component analysis (ICA) post processing to reduce the p-TMS evoked hybrid artifact. Ensemble empirical mode decomposition (EEMD) was used to decompose signal into multi-components, then the components were separated with artifact reduced by blind source separation (BSS) method. Three standard BSS methods, ICA, independent vector analysis, and canonical correlation analysis (CCA) were tested. Main results. Synthetic results showed that EEMD-CCA outperformed others as ICA post processing step in hybrid artifacts reduction. Its superiority was clearer when signal to noise ratio (SNR) was lower. In application to real experiment, SNR can be significantly increased and the p-TMS evoked potential could be recovered from hybrid artifact contaminated signal. Our proposed method can effectively reduce the p-TMS evoked hybrid artifacts. Significance. Our proposed method may facilitate future prefrontal TMS-EEG researches.

  4. Initial position estimation strategy for a surface permanent magnet synchronous motor used in hybrid electric vehicles

    Institute of Scientific and Technical Information of China (English)

    Bing TIAN; Qun-tao AN; Li SUN‡; Dong-yang SUN; Jian-dong DUAN

    2016-01-01

    A novel nonlinear model for surface permanent magnet synchronous motors (SPMSMs) is adopted to estimate the initial rotor position for hybrid electric vehicles (HEVs). Usually, the accuracy of initial rotor position estimation for SPMSMs relies on magnetic saturation. To verify the saturation effect, the transient finite element analysis (FEA) model is presented first. Hybrid injection of a static voltage vector (SVV) superimposed with a high-frequency rotating voltage is proposed. The magnetic polarity is roughly identified with the aid of the saturation evaluation function, based on which an estimation of the position is performed. During this procedure, a special demodulation is suggested to extract signals of iron core saturation and rotor position. A Simulink/MATLAB platform for SPMSMs at standstill is constituted, and the effectiveness of the proposed strategy is verified. The proposed method is also validated by experimental results of an SPMSM drive.

  5. Design of smart oligo(ethylene glycol)-based biocompatible hybrid microgels loaded with magnetic nanoparticles.

    Science.gov (United States)

    Boularas, Mohamed; Gombart, Emilie; Tranchant, Jean-François; Billon, Laurent; Save, Maud

    2015-01-01

    This article reports a rational strategy for preparing smart oligo(ethylene glycol)-based hybrid microgels loaded with high content of homogeneously distributed preformed magnetic nanoparticles (NPs) (up to 33 wt%). The strategy is based on the synthesis of biocompatible multiresponsive microgels by precipitation copolymerization of di(ethylene glycol) methyl ether methacrylate, oligo(ethylene glycol) methyl ether methacrylate, methacrylic acid, and oligo(ethylene glycol)diac-rylate. An aqueous dispersion of preformed magnetic NPs is straightforwardly loaded into the microgels. Robust monodisperse thermoresponsive magnetic microgels are produced, exhibiting a constant value of the volume phase transition temperature whatever the NPs content. The homogeneous microstructure of the initial stimuli-responsive biocompatible microgels plays a crucial role for the design of unique well-defined ethylene glycol-based thermoresponsive hybrid microgels. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Facile method to synthesize magnetic iron oxides/TiO2 hybrid nanoparticles and their photodegradation application of methylene blue

    Directory of Open Access Journals (Sweden)

    Wu Wei

    2011-01-01

    Full Text Available Abstract Many methods have been reported to improving the photocatalytic efficiency of organic pollutant and their reliable applications. In this work, we propose a facile pathway to prepare three different types of magnetic iron oxides/TiO2 hybrid nanoparticles (NPs by seed-mediated method. The hybrid NPs are composed of spindle, hollow, and ultrafine iron oxide NPs as seeds and 3-aminopropyltriethyloxysilane as linker between the magnetic cores and TiO2 layers, respectively. The composite structure and the presence of the iron oxide and titania phase have been confirmed by transmission electron microscopy, X-ray diffraction, and X-ray photoelectron spectra. The hybrid NPs show good magnetic response, which can get together under an external applied magnetic field and hence they should become promising magnetic recovery catalysts (MRCs. Photocatalytic ability examination of the magnetic hybrid NPs was carried out in methylene blue (MB solutions illuminated under Hg light in a photochemical reactor. About 50% to 60% of MB was decomposed in 90 min in the presence of magnetic hybrid NPs. The synthesized magnetic hybrid NPs display high photocatalytic efficiency and will find recoverable potential applications in cleaning polluted water with the help of magnetic separation.

  7. Design and Manufacture of 20 kA HTS Current Leads for a Hybrid Magnet System

    Science.gov (United States)

    Wesche, R.; Bruzzone, P.; March, S.; Vogel, M.; Ehmler, H.; Smeibidl, P.

    A new series connected 25 T hybrid magnet system is being developed by the Helmholtz Zentrum Berlin (HZB) for neutron scattering experiments. In collaboration with CRPP, high temperature superconducting (HTS) current leads have been developed for the powering of the outer superconducting coil. These HTS current leads, with a nominal current rating of 20 kA, have been designed and are being manufactured by CRPP, based on the design of the 18 kA EDIPO leads. Each of the two current leads consists of an HTS module cooled only by heat conduction from the cold end and a copper part actively cooled by helium gas of 44 K inlet temperature. To reach a temperature of 53.7 K at the warm end of the HTS a helium mass flow rate of 1.37 g/s per lead is required at a current of 20 kA. The estimated heat leak at the 4.5 K level caused only by heat conduction is as low as 1.4 W. The evolution of the temperatures in the case of a loss of flow has been calculated. In addition to the design, the main fabrication steps are described.

  8. Dressed topological insulators. Rashba impurity, Kondo effect, magnetic impurities, proximity-induced superconductivity, hybrid systems

    Energy Technology Data Exchange (ETDEWEB)

    Posske, Thore Hagen

    2016-02-26

    Topological insulators are electronic phases that insulate in the bulk and accommodate a peculiar, metallic edge liquid with a spin-dependent dispersion. They are regarded to be of considerable future use in spintronics and for quantum computation. Besides determining the intrinsic properties of this rather novel electronic phase, considering its combination with well-known physical systems can generate genuinely new physics. In this thesis, we report on such combinations including topological insulators. Specifically, we analyze an attached Rashba impurity, a Kondo dot in the two channel setup, magnetic impurities on the surface of a strong three-dimensional topological insulator, the proximity coupling of the latter system to a superconductor, and hybrid systems consisting of a topological insulator and a semimetal. Let us summarize our primary results. Firstly, we determine an analytical formula for the Kondo cloud and describe its possible detection in current correlations far away from the Kondo region. We thereby rely on and extend the method of refermionizable points. Furthermore, we find a class of gapless topological superconductors and semimetals, which accommodate edge states that behave similarly to the ones of globally gapped topological phases. Unexpectedly, we also find edge states that change their chirality when affected by sufficiently strong disorder. We regard the presented research helpful in future classifications and applications of systems containing topological insulators, of which we propose some examples.

  9. Nanoscale switch for vortex polarization mediated by Bloch core formation in magnetic hybrid systems

    Science.gov (United States)

    Wohlhüter, Phillip; Bryan, Matthew Thomas; Warnicke, Peter; Gliga, Sebastian; Stevenson, Stephanie Elizabeth; Heldt, Georg; Saharan, Lalita; Suszka, Anna Kinga; Moutafis, Christoforos; Chopdekar, Rajesh Vilas; Raabe, Jörg; Thomson, Thomas; Hrkac, Gino; Heyderman, Laura Jane

    2015-08-01

    Vortices are fundamental magnetic topological structures characterized by a curling magnetization around a highly stable nanometric core. The control of the polarization of this core and its gyration is key to the utilization of vortices in technological applications. So far polarization control has been achieved in single-material structures using magnetic fields, spin-polarized currents or spin waves. Here we demonstrate local control of the vortex core orientation in hybrid structures where the vortex in an in-plane Permalloy film coexists with out-of-plane maze domains in a Co/Pd multilayer. The vortex core reverses its polarization on crossing a maze domain boundary. This reversal is mediated by a pair of magnetic singularities, known as Bloch points, and leads to the transient formation of a three-dimensional magnetization structure: a Bloch core. The interaction between vortex and domain wall thus acts as a nanoscale switch for the vortex core polarization.

  10. A Novel Degradation Estimation Method for a Hybrid Energy Storage System Consisting of Battery and Double-Layer Capacitor

    Directory of Open Access Journals (Sweden)

    Yuanbin Yu

    2016-01-01

    Full Text Available This paper presents a new method for battery degradation estimation using a power-energy (PE function in a battery/ultracapacitor hybrid energy storage system (HESS, and the integrated optimization which concerns both parameters matching and control for HESS has been done as well. A semiactive topology of HESS with double-layer capacitor (EDLC coupled directly with DC-link is adopted for a hybrid electric city bus (HECB. In the purpose of presenting the quantitative relationship between system parameters and battery serving life, the data during a 37-minute driving cycle has been collected and decomposed into discharging/charging fragments firstly, and then the optimal control strategy which is supposed to maximally use the available EDLC energy is presented to decompose the power between battery and EDLC. Furthermore, based on a battery degradation model, the conversion of power demand by PE function and PE matrix is applied to evaluate the relationship between the available energy stored in HESS and the serving life of battery pack. Therefore, according to the approach which could decouple parameters matching and optimal control of the HESS, the process of battery degradation and its serving life estimation for HESS has been summed up.

  11. Electromagnetic self-consistent field initialization and fluid advance techniques for hybrid-kinetic PWFA code Architect

    Science.gov (United States)

    Massimo, F.; Marocchino, A.; Rossi, A. R.

    2016-09-01

    The realization of Plasma Wakefield Acceleration experiments with high quality of the accelerated bunches requires an increasing number of numerical simulations to perform first-order assessments for the experimental design and online-analysis of the experimental results. Particle in Cell codes are the state-of-the-art tools to study the beam-plasma interaction mechanism, but due to their requirements in terms of number of cores and computational time makes them unsuitable for quick parametric scans. Considerable interest has been shown thus in methods which reduce the computational time needed for the simulation of plasma acceleration. Such methods include the use of hybrid kinetic-fluid models, which treat the relativistic bunches as in a PIC code and the background plasma electrons as a fluid. A technique to properly initialize the bunch electromagnetic fields in the time explicit hybrid kinetic-fluid code Architect is presented, as well the implementation of the Flux Corrected Transport scheme for the fluid equations integrated in the code.

  12. Hybrid materials: Magnetite-Polyethylenimine-Montmorillonite, as magnetic adsorbents for Cr(VI) water treatment.

    Science.gov (United States)

    Larraza, Iñigo; López-Gónzalez, Mar; Corrales, Teresa; Marcelo, Gema

    2012-11-01

    Hybrid materials formed by the combination of a sodium rich Montmorillonite (MMT), with magnetite nanoparticles (40 nm, Fe(3)O(4) NPs) coated with Polyethylenimine polymer (PEI 800 g/mol or PEI 25000 g/mol) were prepared. The intercalation of the magnetite nanoparticles coated with PEI among MMT platelets was achieved by cationic exchange. The resulting materials presented a high degree of exfoliation of the MMT sheets and a good dispersion of Fe(3)O(4) NPs on both the surface and among the layers of MMT. The presence of amine groups in the PEI structure not only aids the exfoliation of the MMT layers, but also gives to the hybrid material the necessary functionality to interact with heavy metals. These hybrid materials were used as magnetic sorbent for the removal of hexavalent chromium from water. The effect that pH, Cr(VI) concentration, and adsorbent material composition have on the Cr(VI) removal efficiency was studied. A complete characterization of the materials was performed. The hybrid materials showed a slight dependence of the removal efficiency with the pH in a wide range (1-9). A maximum amount of adsorption capacity of 8.8 mg/g was determined by the Langmuir isotherm. Results show that these hybrid materials can be considered as potential magnetic adsorbent for the Cr(VI) removal from water in a wide range of pH.

  13. Hybrid model predictive control for speed control of permanent magnet synchronous motor with saturation

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    A discrete-time hybrid model of a permanent magnet synchronous motor (PMSM) with saturation in voltage and current is formulated.The controller design with incorporated constraints is achieved in a systematic way from modeling to control synthesis and implementation.The Hybrid System Description Language is used to obtain a mixed-logical dynamical (MLD) model.Based on the MLD model,a model predictive controller is designed for an optimal speed regulation of the motor.For reducing computation complexity and ...

  14. Basic Characteristics and Design of a Novel Hybrid Magnetic Bearing for Wind Turbines

    Directory of Open Access Journals (Sweden)

    Yanjun Yu

    2016-11-01

    Full Text Available This paper proposes a five-degree-of-freedom (5-DOF hybrid magnetic bearing (HMB for direct-drive wind turbines, which can realize suspension in the 4-DOF radial and 1-DOF axial directions. Only two sets of radial control windings are employed in the proposed HMB because only one set of radial control windings can achieve the 2-DOF suspension in the radial direction. Unlike the traditional active thrust magnetic bearings, this paper uses a cylindrical rotor core without a large thrust disc in the novel HMB. The numbers of the controller, power amplifier and system volume can be reduced in the magnetic suspension system. This paper also presents the structure and basic characteristics of the proposed magnetic bearing. A precision equivalent magnetic circuit analysis of the permanent magnet ring and control magnetic field is conducted in this study, in consideration of the non-uniform distribution of magnetic density. Accordingly, the mathematical models, including the suspension force expression, are derived based on the accurate equivalent magnetic circuit. The basic principle of the structure parameter design is presented, based on the given key parameters. The accuracy of the analytical method is further validated by 3D finite element analysis.

  15. A hybrid magnetic/complementary metal oxide semiconductor process design kit for the design of low-power non-volatile logic circuits

    Science.gov (United States)

    Di Pendina, G.; Prenat, G.; Dieny, B.; Torki, K.

    2012-04-01

    Since the advent of the MOS transistor, the performance of microelectronic circuits has followed Moore's law, stating that their speed and density would double every 18 months. Today, this trend tends to get out of breath: the continuously decreasing size of devices and increasing operation frequency result in power consumption and heating issues. Among the solutions investigated to circumvent these limitations, the use of non-volatile devices appears particularly promising. It allows easing, for example, the power gating technique, which consists in cutting-off the power supply of inactive blocks without losing information, drastically reducing the standby power consumption. In this approach, the advantages of magnetic tunnel junctions (MTJs) compared with other non-volatile devices allow one to design hybrid CMOS/magnetic circuits with high performance and new functionalities. Designing such circuits requires integrating MTJs in standard microelectronics design suites. This is performed by means of a process design kit (PDK) for the hybrid CMOS/magnetic technology. We present here a full magnetic PDK, which contains a compact model of the MTJ for electrical simulation, technology files for layout and physical verifications, and standard cells for the design of complex logic circuits and which is compatible with standard design suites. This PDK allows designers to accurately and comfortably design high-performance hybrid CMOS/magnetic logic circuits in the same way as standard CMOS circuits.

  16. Structure distribution and turbulence in self-consistently supernova-driven ISM of multiphase magnetized galactic discs

    Science.gov (United States)

    Iffrig, Olivier; Hennebelle, Patrick

    2017-08-01

    and velocity fields and we conclude that they tend to be well aligned particularly at high magnetization and lower feedback. Finally, the dense structures present scaling relations that are reminiscent of the observational ones. The virial parameter is typically larger than 10 and shows a large spread of masses below 1000 M⊙. For masses larger than 104M⊙, its value tends to a few. Conclusions: Using a relatively simple scheme for the supernova feedback, which is self-consistently proportional to the SFR and spatially correlated to the star formation process, we reproduce a stratified galactic disc that presents reasonable scale height, SFR as well as a cloud distribution with characteristics close to the observed ones.

  17. Hands-Off and Hands-On Casting Consistency of Amputee below Knee Sockets Using Magnetic Resonance Imaging

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Safari

    2013-01-01

    Full Text Available Residual limb shape capturing (Casting consistency has a great influence on the quality of socket fit. Magnetic Resonance Imaging was used to establish a reliable reference grid for intercast and intracast shape and volume consistency of two common casting methods, Hands-off and Hands-on. Residual limbs were cast for twelve people with a unilateral below knee amputation and scanned twice for each casting concept. Subsequently, all four volume images of each amputee were semiautomatically segmented and registered to a common coordinate system using the tibia and then the shape and volume differences were calculated. The results show that both casting methods have intra cast volume consistency and there is no significant volume difference between the two methods. Inter- and intracast mean volume differences were not clinically significant based on the volume of one sock criteria. Neither the Hands-off nor the Hands-on method resulted in a consistent residual limb shape as the coefficient of variation of shape differences was high. The resultant shape of the residual limb in the Hands-off casting was variable but the differences were not clinically significant. For the Hands-on casting, shape differences were equal to the maximum acceptable limit for a poor socket fit.

  18. Hands-Off and Hands-On Casting Consistency of Amputee below Knee Sockets Using Magnetic Resonance Imaging

    Science.gov (United States)

    Rowe, Philip

    2013-01-01

    Residual limb shape capturing (Casting) consistency has a great influence on the quality of socket fit. Magnetic Resonance Imaging was used to establish a reliable reference grid for intercast and intracast shape and volume consistency of two common casting methods, Hands-off and Hands-on. Residual limbs were cast for twelve people with a unilateral below knee amputation and scanned twice for each casting concept. Subsequently, all four volume images of each amputee were semiautomatically segmented and registered to a common coordinate system using the tibia and then the shape and volume differences were calculated. The results show that both casting methods have intra cast volume consistency and there is no significant volume difference between the two methods. Inter- and intracast mean volume differences were not clinically significant based on the volume of one sock criteria. Neither the Hands-off nor the Hands-on method resulted in a consistent residual limb shape as the coefficient of variation of shape differences was high. The resultant shape of the residual limb in the Hands-off casting was variable but the differences were not clinically significant. For the Hands-on casting, shape differences were equal to the maximum acceptable limit for a poor socket fit. PMID:24348164

  19. Structural and magnetic properties of TlTF{sub 3} (T=Fe, Co and Ni) by hybrid functional theory

    Energy Technology Data Exchange (ETDEWEB)

    Zeb, Raham [Center for Computational Materials Science, University of Malakand, Chakdara, Dir (Lower) (Pakistan); Department of Physics, University of Malakand, Chakdara, Dir (Lower) (Pakistan); Ali, Zahid, E-mail: zahidf82@gmail.com [Center for Computational Materials Science, University of Malakand, Chakdara, Dir (Lower) (Pakistan); Department of Physics, University of Malakand, Chakdara, Dir (Lower) (Pakistan); Ahmad, Iftikhar; Khan, Imad [Center for Computational Materials Science, University of Malakand, Chakdara, Dir (Lower) (Pakistan); Department of Physics, University of Malakand, Chakdara, Dir (Lower) (Pakistan)

    2015-08-15

    DFT studies are performed to investigate the structural, mechanical and magneto-electronic properties of the TlTF{sub 3} (T=Fe, Co and Ni) perovskites for the first time using GGA, GGA+U and hybrid density functional theory (HF). Our calculations show that HF give better results than GGA and GGA+U and more consistent with the experiments. The comparison of the lattice constants calculated by HF with experiments shows a maximum underestimation less than 0.2%. The chemical bonding between different ions in these compounds is explained on the bases of electronic clouds, which reveals that in TlFeF{sub 3}, Fe has more ionic character with F than the rest. The mechanical properties explain the hardness of these compounds and show that TlFeF{sub 3} is more ductile. Spin-dependent electronic band profiles show that TlFeF{sub 3} and TlCoF{sub 3} are metallic, whereas TlNiF{sub 3} is pseudo direct wide bandgap semiconductor. The stable magnetic phase optimizations and the calculated magnetic susceptibility confirm that TlFeF{sub 3} and TlNiF{sub 3} are ferromagnetic whereas TlCoF{sub 3} is anti-ferromagnetic material. - Highlights: • TlTF{sub 3} (T=Fe, Co and Ni) perovskites are investigated theoretically by hybrid density functional theory. • Mechanical properties explain the hardness of these compounds and show that TlFeF{sub 3} is more ductile. • The bandgap calculations show that TlFeF{sub 3} and TlCoF{sub 3} are metallic, whereas TlNiF{sub 3} is a wide bandgap semiconductor. • Magnetic optimizations and magnetic susceptibility confirm that TlFeF{sub 3} and TlNiF{sub 3} are ferromagnetic whereas TlCoF{sub 3} is anti-ferromagnetic material.

  20. Self-consistent (DFT + U) study of electronic, structural and magnetic properties in A2NiMoO6 (A = Ba, Sr) compounds

    Science.gov (United States)

    Aharbil, Y.; Labrim, H.; Benmokhtar, S.; Ait Haddouch, M.; Bahmad, L.; Laanab, L.

    2016-08-01

    This work aims to study the double perovskites A2NiMoO6 (A = Ba, Sr) by using the first principle calculation, within the framework of the self-consistent Hubbard correction. The value of this correction, for Ni and Mo depends strongly on the type of the studied compounds. Such values are determinate as 7.35 eV for Ni and 5.42 eV for Mo in the compound Ba2NiMoO6, whereas in the case of Sr2NiMoO6 the calculated values are 8.71 eV and 5.48 eV for Ni and Mo compound respectively. Based on the densities of state calculation we show that both the compounds are semiconductors with gap energies of 2.20 eV and 2.10 eV for Ba2NiMoO6 for Sr2NiMoO6, respectively. The total energies comparison shows clearly that the ground state is G-type anti-ferromagnetic order in agreement with experimental results, the magnetic interactions are due to the super-exchange mechanism acting in long range via hybridization throw Ni-O-Mo-O-Ni path.

  1. Isolation and Characterization of a Hybrid Respiratory Supercomplex Consisting of Mycobacterium tuberculosis Cytochrome bcc and Mycobacterium smegmatis Cytochrome aa3.

    Science.gov (United States)

    Kim, Mi-Sun; Jang, Jichan; Ab Rahman, Nurlilah Binte; Pethe, Kevin; Berry, Edward A; Huang, Li-Shar

    2015-06-05

    Recently, energy production pathways have been shown to be viable antitubercular drug targets to combat multidrug-resistant tuberculosis and eliminate pathogen in the dormant state. One family of drugs currently under development, the imidazo[1,2-a]pyridine derivatives, is believed to target the pathogen's homolog of the mitochondrial bc1 complex. This complex, denoted cytochrome bcc, is highly divergent from mitochondrial Complex III both in subunit structure and inhibitor sensitivity, making it a good target for drug development. There is no soluble cytochrome c in mycobacteria to transport electrons from the bcc complex to cytochrome oxidase. Instead, the bcc complex exists in a "supercomplex" with a cytochrome aa3-type cytochrome oxidase, presumably allowing direct electron transfer. We describe here purification and initial characterization of the mycobacterial cytochrome bcc-aa3 supercomplex using a strain of M. smegmatis that has been engineered to express the M. tuberculosis cytochrome bcc. The resulting hybrid supercomplex is stable during extraction and purification in the presence of dodecyl maltoside detergent. It is hoped that this purification procedure will potentiate functional studies of the complex as well as crystallographic studies of drug binding and provide structural insight into a third class of the bc complex superfamily.

  2. Optimum Design and Analysis of Axial Hybrid Magnetic Bearings Using Multi-Objective Genetic Algorithms

    Science.gov (United States)

    Rao, J. S.; Tiwari, R.

    2012-01-01

    Design optimization of axial hybrid magnetic thrust bearings (with bias magnets) was carried out using multi-objective evolutionary algorithms (MOEAs) and compared with the case of electromagnetic bearings (without bias magnets). Mathematical models of objective functions and associated constraints are presented and discussed. The different aspects of implemented MOEA are discussed. It is observed that the size of the bearing with bias magnets is considerably reduced as compared to the case of those without bias magnets, with the objective function as the minimization of weight for the same operating conditions. Similarly, current densities aret reduced drastically with biased magnets when the objective function is chosen as the minimization of the power loss. For illustration of various performances of the bearing, a typical design has been chosen from the final optimized population by an "a posteriori" approach. Sensitivities for both the objective functions with respect to the outer radius, the inner radius, and the height of coil are observed to be approximately in the ratio 2.5:1.6:1. Analysis of final optimized population has been carried out and is compared with the case without bias magnets and some salient points are observed in the case of using bias magnets.

  3. Polystyrene-Core-Silica-Shell Hybrid Particles Containing Gold and Magnetic Nanoparticles.

    Science.gov (United States)

    Tian, Jia; Vana, Philipp

    2016-02-18

    Polystyrene-core-silica-shell hybrid particles were synthesized by combining the self-assembly of nanoparticles and the polymer with a silica coating strategy. The core-shell hybrid particles are composed of gold-nanoparticle-decorated polystyrene (PS-AuNP) colloids as the core and silica particles as the shell. PS-AuNP colloids were generated by the self-assembly of the PS-grafted AuNPs. The silica coating improved the thermal stability and dispersibility of the AuNPs. By removing the "free" PS of the core, hollow particles with a hydrophobic cage having a AuNP corona and an inert silica shell were obtained. Also, Fe3O4 nanoparticles were encapsulated in the core, which resulted in magnetic core-shell hybrid particles by the same strategy. These particles have potential applications in biomolecular separation and high-temperature catalysis and as nanoreactors.

  4. A Hybrid Extended Kalman Filter as an Observer for a Pot-Electro-Magnetic Actuator

    Science.gov (United States)

    Schmidt, Simon; Mercorelli, Paolo

    2017-01-01

    This paper deals with an application in which a hybrid extended Kalman Filter (HEKF) is used to estimate state variables in a U-shaped electro-magnetic actuator to be used in mechanical systems. In this context a hybrid Kalman Filter is the one which switches between different models. The paper proposes a hybrid model for an extended Kalman Filter to be used as an observer to estimate the state and to control the force of the actuator. Applications include position, velocity and force control in automotive, engine and manufacturing systems. This work is focused on the estimation of state variables of the actuator. Simulated results show the effectiveness of the proposed approach.

  5. MODELLING AND TORQUE TRACKING CONTROL OF PERMANENT MAGNET SYNCHRONOUS MOTOR FOR HYBRID ELECTRIC VEHICLES

    Directory of Open Access Journals (Sweden)

    Mohd Sabirin Rahmat

    2013-06-01

    Full Text Available This paper presents a detailed derivation of a permanent magnet synchronous motor, which may be used as the electric power train for the simulation of a hybrid electric vehicle. A torque tracking control of the permanent magnet synchronous motor is developed by using an adaptive proportional-integral-derivative controller. Several tests such as step function, saw tooth function, sine wave function and square wave function were used in order to examine the performance of the proposed control structure. The effectiveness of the proposed controller was verified and compared with the same system under a PID controller and the desired control. The result of the observations shows that the proposed control structure proves to be effective in tracking the desired torque with a good response. The findings of this study will be considered in the design, optimisation and experimentation of series hybrid electric vehicle.

  6. Relativistic Adiabatic Time-Dependent Density Functional Theory Using Hybrid Functionals and Noncollinear Spin Magnetization

    DEFF Research Database (Denmark)

    Bast, Radovan; Jensen, Hans Jørgen Aagaard; Saue, Trond

    2009-01-01

    We report an implementation of adiabatic time-dependent density functional theory based on the 4-component relativistic Dirac-Coulomb Hamiltonian and a closed-shell reference. The implementation includes noncollinear spin magnetization and full derivatives of functionals, including hybrid...... and time reversal symmetry on trial vectors to obtain even better reductions in terms of memory and run time, and without invoking approximations. Further reductions are obtained by exploiting point group symmetries for D2h and subgroups in a symmetry scheme where symmetry reductions translate...... into reduction of algebra from quaternion to complex or real. For hybrid GGAs with noncollinear spin magnetization we derive a new computationally advantageous equation for the full second variational derivatives of such exchange-correlation functionals. We apply our implementation to calculations on the ns2...

  7. Dust-cyclotron and dust-lower-hybrid modes in self-gravitating magnetized dusty plasmas

    Indian Academy of Sciences (India)

    A K Banerjee; M N Alam; A A Mamun

    2003-07-01

    Theoretical investigation has been made on two different ultra-low-frequency electrostatic modes, namely, dust-cyclotron mode and dust-lower-hybrid mode, propagating perpendicular to the external magnetic field, in a self-gravitating magnetized two-fluid dusty plasma system. It has been shown that the effect of the self-gravitational force, acting on both dust grains and ions, significantly modifies the dispersion properties of these two electrostatic modes. The implications of these results to some space and astrophysical dusty plasma systems, especially to planetary ring-systems and cometary tails, are briefly mentioned.

  8. An integrated hybrid system for genetic analysis combining EWOD sample preparation and magnetic detection

    Energy Technology Data Exchange (ETDEWEB)

    Brennan, Des; Dinca, Mihai; Aherne, Margaret; Galvin, Paul [Tyndall National Institute, University College, Cork, Lee Maltings, Prospect Row, Cork (Ireland); Jary, Dorothee; Peponnet, Christine [CEA-LETI, Department of Technology for Biology and Health, 17 Avenue Des Martyrs, 38054 Grenoble (France); Cardosa, Filipe; Freitas, Paolo, E-mail: des.brennan@tyndall.ie [INESC-MN, Rua Alves Redol, 9, 1000-029 Lisbon (Portugal)

    2011-08-17

    Over the last decade microelectronic technologies have delivered significant advances in devices for point of care diagnostics. Complex microfluidic systems integrate components such as valves, pumps etc. to manipulate liquids. In recent years, the drive is to combine biochemical protocols in a single system, delivering 'sample in answer out'. An Electrowetting on Dielectric (EWOD) device offers the possibility to move and manipulate 64nl volumes implementing biochemical processes, while the magnetic sensor facilitates hybridisation detection. We outline an injection molding approach where EWOD and magnetic devices are integrated into a hybrid microfluidic system with the potential to implement 'sample in answer out' biological protocols.

  9. An integrated hybrid system for genetic analysis combining EWOD sample preparation and magnetic detection

    Science.gov (United States)

    Brennan, Des; Jary, Dorothee; Peponnet, Christine; Cardosa, Filipe; Freitas, Paolo; Dinca, Mihai; Aherne, Margaret; Galvin, Paul

    2011-08-01

    Over the last decade microelectronic technologies have delivered significant advances in devices for point of care diagnostics. Complex microfluidic systems integrate components such as valves, pumps etc. to manipulate liquids. In recent years, the drive is to combine biochemical protocols in a single system, delivering "sample in answer out". An Electrowetting on Dielectric (EWOD) device offers the possibility to move and manipulate 64nl volumes implementing biochemical processes, while the magnetic sensor facilitates hybridisation detection. We outline an injection molding approach where EWOD and magnetic devices are integrated into a hybrid microfluidic system with the potential to implement "sample in answer out" biological protocols.

  10. Plasma environment of magnetized asteroids: a 3-D hybrid simulation study

    Directory of Open Access Journals (Sweden)

    S. Simon

    2006-03-01

    Full Text Available The interaction of a magnetized asteroid with the solar wind is studied by using a three-dimensional hybrid simulation code (fluid electrons, kinetic ions. When the obstacle's intrinsic magnetic moment is sufficiently strong, the interaction region develops signs of magnetospheric structures. On the one hand, an area from which the solar wind is excluded forms downstream of the obstacle. On the other hand, the interaction region is surrounded by a boundary layer which indicates the presence of a bow shock. By analyzing the trajectories of individual ions, it is demonstrated that kinetic effects have global consequences for the structure of the interaction region.

  11. Torque Analysis of Permanent Magnet Hybrid Stepper Motor using Finite Element Method for Different Design Topologies

    Directory of Open Access Journals (Sweden)

    E.V.C Sekhara Rao

    2012-01-01

    Full Text Available This paper discusses about permanent magnet hybrid stepper motor magnetic circuit using finite element model for different geometric designs like uniform air-gap, non uniform air-gap, for different air-gap lengths, different tooth pitches and extra teeth on stator using PDE toolbox of Matlab at different current densities. Implementing these results in equivalent circuit model (permeance model, motor performance is analyzed for an existing motor for steady state conditions. These results suggest modifications for better performance of the PMH stepper motor like reduction of cogging torque and improvement in steady state torque with minimum THD.

  12. Research on Operation Principle and Control of Novel Hybrid Excitation Bearingless Permanent Magnet Generator

    Directory of Open Access Journals (Sweden)

    Huangqiu Zhu

    2016-08-01

    Full Text Available Under the condition of load changing, the magnetic field of traditional permanent magnet generators (PMG is hard to be adjusted, and the mechanical bearings are significantly worn. To overcome the drawbacks above, a novel hybrid excitation bearingless permanent magnet generator (HEBPMG is proposed in this paper, which has integrated the merits of hybrid excitation permanent magnet generators and magnetic bearings. Firstly, the structure and winding configuration of the HEBPMG are introduced, and then the principles of radial suspension and power generation are presented. The suspension principle as well as power generation principle is analyzed in this paper. Then, the flux linkage and induced voltage equations are derived, and the accurate mathematical model of radial suspension force is built based on the Maxwell tensor method. Subsequently, by means of the finite element analysis software-ANSYS Maxwell, the corresponding electromagnetic characteristics are analyzed to verify the correctness of the mentioned models. In addition, a compensation control strategy based on flux-linkage observation is proposed to solve the problems of unstable suspension force and generating voltage under variable load condition in this paper. Meanwhile, the corresponding control system is constructed and its feasibility is validated by simulation results. Finally, an experimental prototype of a 2.2 kW HEBPMG is tested. Experimental researches show that the HEBPMG can operate steadily under variable load condition and possess good suspension performance and power generation quality.

  13. Bio-bar-code functionalized magnetic nanoparticle label for ultrasensitive flow injection chemiluminescence detection of DNA hybridization.

    Science.gov (United States)

    Bi, Sai; Zhou, Hong; Zhang, Shusheng

    2009-10-07

    A signal amplification strategy based on bio-bar-code functionalized magnetic nanoparticles as labels holds promise to improve the sensitivity and detection limit of the detection of DNA hybridization and single-nucleotide polymorphisms by flow injection chemiluminescence assays.

  14. Controllable synthesis, magnetism and solubility enhancement of graphene nanosheets/magnetite hybrid material by covalent bonding.

    Science.gov (United States)

    Zhan, Yingqing; Yang, Xulin; Meng, Fanbin; Wei, Junji; Zhao, Rui; Liu, Xiaobo

    2011-11-01

    Hybrids of Fe(3)O(4) nanoparticles and surface-modified graphene nanosheets (GNs) were synthesized by a two-step process. First, graphene nanosheets were modified by SOCl(2) and 4-aminophenoxyphthalonitrile to introduce nitrile groups on their surface. Second, the nitrile groups of surface-modified graphene nanosheets were reacted with ferric ions on the surface of Fe(3)O(4) with the help of relatively high boiling point solvent ethylene glycol to form a GNs/Fe(3)O(4) hybrid. The covalent attachment of Fe(3)O(4) nanoparticles on the graphene nanosheet surface was confirmed by Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), energy-dispersive X-ray spectrometer (EDS) and scanning electron microscopy (SEM). TEM and HRTEM observations indicated that the sizes of the nanoparticles and their coverage density on GNs could be easily controlled by changing the concentration of the precursor and the weight ratio to GNs. Magnetic measurements showed that magnetization of the hybrid materials is strongly influenced by the reaction conditions. Chemically bonded by phthalocyanine, the solubility of as-synthesized GNs/Fe(3)O(4) hybrid materials was greatly enhanced, which was believed to have potential for applications in the fields of composites, wastewater treatment and biomaterials.

  15. The topological structure of the integral quantum Hall effect in magnetic semiconductor-superconductor hybrids

    Institute of Scientific and Technical Information of China (English)

    Ren Ji-Rong; Zhu Hui

    2009-01-01

    An unconventional integer quantum Hall regime was found in magnetic semiconductor-superconductor hybrids.By making use of the decomposition of the gauge potential on a U(1) principal fibre bundle over k-space, we study the topological structure of the integral Hall conductance. It is labeled by the Hopf index β and the Brouwer degree η. The Hall conductance topological current and its evolution is discussed.

  16. PRINCIPLES AND PARAMETER DESIGN FOR AC-DC THREE-DEGREE FREEDOM HYBRID MAGNETIC BEARINGS

    Institute of Scientific and Technical Information of China (English)

    ZHU Huangqiu; XIE Zhiyi; ZHU Dehong

    2006-01-01

    To simplify the mechanical structure, decrease the overall system size of the 3-degree freedom axial-radial magnetic bearings and reduce the manufacturing costs as well as operating costs,an innovated AC-DC 3-degree freedom hybrid magnetic bearing is proposed, which is driven by a DC amplifier in axial direction and a 3-phase power converter in radial directions respectively, and the axial and radial bias magnetic fluxes are provided with a common radial polarized permanent magnet ring. The principle producing magnetic suspension forces is introduced. By using equivalent magnetic circuit method, the calculation formulas of magnetic suspension forces and the mathematics models of the system are deduced. Nonlinearities of suspension forces and cross coupling between different degree freedoms are studied further by calculating the suspension forces at different displacements and control currents to validate the feasibility of the mathematics model. Then based on the mathematics models of the bearing, a control method of this novel bearing is designed. Lastly, the methods on parameter design and calculations of the bearing are presented, and an applicable prototype is simulated to analyze the magnetic path by using finite element analysis. The theory analysis and simulation results have shown that this magnetic bearing incorporates the merits of 3-phase AC drive, permanent magnet flux biased and axial-radial combined control, and reduces overall system size and has higher efficiency and lower cost. This innovated magnetic bearing has a wide application in super-speed and super-precision numerical control machine tools, bearingless motors, high-speed flywheels, satellites, etc.

  17. Magnetic fluctuations can contribute to plasma transport, ''self-consistency constraints'' notwithstanding

    Energy Technology Data Exchange (ETDEWEB)

    Krommes, J.A.; Kim, Chang-Bae

    1987-09-01

    The recent conclusion that in a turbulent, collisionless plasma ''magnetic transport including quasilinear magnetic flutter transport ... does not contribute to the relaxation of (f), and thus is not responsible for electron energy or momentum transport'' is shown to be incorrect for a variety of situations of physical interest, including saturation by quasilinear plateau formation, induced scattering, and, most importantly, conventional mode coupling. The well-established theory of the mean infinitesimal response function and the spectral balance equation provides a unifying framework for understanding the above conclusion. In particular, the cancellations which lead to their conclusion are special cases of well-known relationships between the response function, particle propagator, and dielectric function. A more general, concise, and manifestly gauge-invariant algebraic derivation of the cancellations is given. Though the cancellations occur in a certain limit, these conclusions do not follow in general: The picture of steady-state turbulence as consisting of small-scale ''incoherent'' ballistic ''clumps'' shielded by long-wavelength ''coherent'' dielectric response is physically misleading and mathematically incomplete, as it ignores or mistreates the often dominant process of renormalized n-wave coupling. Thus, when ion nonlinearities are considered, formulas for the magnetic contribution to transport emerge which are quite similar to the quasilinear one. Furthermore, limits are possible in which all or part of the noise can be negligible, yet in which the total fluctuation spectrum remains finite. 56 refs.

  18. Effect of c-f hybridization on electric and magnetic properties of some Heavy Fermion (HF) systems

    Energy Technology Data Exchange (ETDEWEB)

    Sahoo, J., E-mail: jitendrasahoo2008@gmail.com [Regional Office of Vocational Education, Sambalpur, Odisha -768 004 (India); Nayak, P. [School of Physics, Sambalpur University, Sambalpur, Odisha - 768 019 (India)

    2017-02-01

    Representing the heavy fermion systems by the Periodic Anderson Model (PAM), we have used Zubarev technique to see the effect of c-f hybridization on the temperature dependence of resistivity and magnetic susceptibility. The calculated resistivity and magnetic susceptibility show the general features observed in these materials experimentally. Further, we have shown how the strength of hybridization as well as the position of the f-level affects both the properties and the Kondo temperature of these systems.

  19. Effect of c-f hybridization on electric and magnetic properties of some Heavy Fermion (HF) systems

    Science.gov (United States)

    Sahoo, J.; Nayak, P.

    2017-02-01

    Representing the heavy fermion systems by the Periodic Anderson Model (PAM), we have used Zubarev technique to see the effect of c-f hybridization on the temperature dependence of resistivity and magnetic susceptibility. The calculated resistivity and magnetic susceptibility show the general features observed in these materials experimentally. Further, we have shown how the strength of hybridization as well as the position of the f-level affects both the properties and the Kondo temperature of these systems.

  20. Development of a Hybrid Piezo Natural Rubber Piezoelectricity and Piezoresistivity Sensor with Magnetic Clusters Made by Electric and Magnetic Field Assistance and Filling with Magnetic Compound Fluid

    Directory of Open Access Journals (Sweden)

    Kunio Shimada

    2017-02-01

    Full Text Available Piezoelements used in robotics require large elasticity and extensibility to be installed in an artificial robot skin. However, the piezoelements used until recently are vulnerable to large forces because of the thin solid materials employed. To resolve this issue, we utilized a natural rubber and applied our proposed new method of aiding with magnetic and electric fields as well as filling with magnetic compound fluid (MCF and doping. We have verified the piezoproperties of the resulting MCF rubber. The effect of the created magnetic clusters is featured in a new two types of multilayered structures of the piezoelement. By measuring the piezoelectricity response to pressure, the synergetic effects of the magnetic clusters, the doping and the electric polymerization on the piezoelectric effect were clarified. In addition, by examining the relation between the piezoelectricity and the piezoresistivity created in the MCF piezo element, we propose a hybrid piezoelement.

  1. Development of a Hybrid Piezo Natural Rubber Piezoelectricity and Piezoresistivity Sensor with Magnetic Clusters Made by Electric and Magnetic Field Assistance and Filling with Magnetic Compound Fluid.

    Science.gov (United States)

    Shimada, Kunio; Saga, Norihiko

    2017-02-10

    Piezoelements used in robotics require large elasticity and extensibility to be installed in an artificial robot skin. However, the piezoelements used until recently are vulnerable to large forces because of the thin solid materials employed. To resolve this issue, we utilized a natural rubber and applied our proposed new method of aiding with magnetic and electric fields as well as filling with magnetic compound fluid (MCF) and doping. We have verified the piezoproperties of the resulting MCF rubber. The effect of the created magnetic clusters is featured in a new two types of multilayered structures of the piezoelement. By measuring the piezoelectricity response to pressure, the synergetic effects of the magnetic clusters, the doping and the electric polymerization on the piezoelectric effect were clarified. In addition, by examining the relation between the piezoelectricity and the piezoresistivity created in the MCF piezo element, we propose a hybrid piezoelement.

  2. Development of a Hybrid Piezo Natural Rubber Piezoelectricity and Piezoresistivity Sensor with Magnetic Clusters Made by Electric and Magnetic Field Assistance and Filling with Magnetic Compound Fluid

    Science.gov (United States)

    Shimada, Kunio; Saga, Norihiko

    2017-01-01

    Piezoelements used in robotics require large elasticity and extensibility to be installed in an artificial robot skin. However, the piezoelements used until recently are vulnerable to large forces because of the thin solid materials employed. To resolve this issue, we utilized a natural rubber and applied our proposed new method of aiding with magnetic and electric fields as well as filling with magnetic compound fluid (MCF) and doping. We have verified the piezoproperties of the resulting MCF rubber. The effect of the created magnetic clusters is featured in a new two types of multilayered structures of the piezoelement. By measuring the piezoelectricity response to pressure, the synergetic effects of the magnetic clusters, the doping and the electric polymerization on the piezoelectric effect were clarified. In addition, by examining the relation between the piezoelectricity and the piezoresistivity created in the MCF piezo element, we propose a hybrid piezoelement. PMID:28208625

  3. Development of a Hybrid Magnetic Resonance and Ultrasound Imaging System

    Directory of Open Access Journals (Sweden)

    Victoria Sherwood

    2014-01-01

    Full Text Available A system which allows magnetic resonance (MR and ultrasound (US image data to be acquired simultaneously has been developed. B-mode and Doppler US were performed inside the bore of a clinical 1.5 T MRI scanner using a clinical 1–4 MHz US transducer with an 8-metre cable. Susceptibility artefacts and RF noise were introduced into MR images by the US imaging system. RF noise was minimised by using aluminium foil to shield the transducer. A study of MR and B-mode US image signal-to-noise ratio (SNR as a function of transducer-phantom separation was performed using a gel phantom. This revealed that a 4 cm separation between the phantom surface and the transducer was sufficient to minimise the effect of the susceptibility artefact in MR images. MR-US imaging was demonstrated in vivo with the aid of a 2 mm VeroWhite 3D-printed spherical target placed over the thigh muscle of a rat. The target allowed single-point registration of MR and US images in the axial plane to be performed. The system was subsequently demonstrated as a tool for the targeting and visualisation of high intensity focused ultrasound exposure in the rat thigh muscle.

  4. Hybrid Materials Based on Magnetic Layered Double Hydroxides: A Molecular Perspective.

    Science.gov (United States)

    Abellán, Gonzalo; Martí-Gastaldo, Carlos; Ribera, Antonio; Coronado, Eugenio

    2015-06-16

    Design of functional hybrids lies at the very core of synthetic chemistry as it has enabled the development of an unlimited number of solids displaying unprecedented or even improved properties built upon the association at the molecular level of quite disparate components by chemical design. Multifunctional hybrids are a particularly appealing case among hybrid organic/inorganic materials. Here, chemical knowledge is used to deploy molecular components bearing different functionalities within a single solid so that these properties can coexist or event interact leading to unprecedented phenomena. From a molecular perspective, this can be done either by controlled assembly of organic/inorganic molecular tectons into an extended architecture of hybrid nature or by intercalation of organic moieties within the empty channels or interlamellar space offered by inorganic solids with three-dimensional (MOFs, zeolites, and mesoporous hosts) or layered structures (phosphates, silicates, metal dichalcogenides, or anionic clays). This Account specifically illustrates the use of layered double hydroxides (LDHs) in the preparation of magnetic hybrids, in line with the development of soft inorganic chemistry processes (also called "Chimie Douce"), which has significantly contributed to boost the preparation hybrid materials based on solid-state hosts and subsequent development of applications. Several features sustain the importance of LDHs in this context. Their magnetism can be manipulated at a molecular level by adequate choice of constituting metals and interlayer separation for tuning the nature and extent of magnetic interactions across and between planes. They display unparalleled versatility in accommodating a broad range of anionic species in their interlamellar space that encompasses not only simple anions but chemical systems of increasing dimensionality and functionalities. Their swelling characteristics allow for their exfoliation in organic solvents with high

  5. A dual-channel flux-switching permanent magnet motor for hybrid electric vehicles

    Science.gov (United States)

    Hua, Wei; Wu, Zhongze; Cheng, Ming; Wang, Baoan; Zhang, Jianzhong; Zhou, Shigui

    2012-04-01

    The flux-switching permanent magnet (FSPM) motor is a relatively novel brushless machine having both magnets and concentrated windings in the stator, which exhibits inherently sinusoidal PM flux-linkage, back-EMF waveforms, and high torque capability. However, in the application of hybrid electric vehicles, it is essential to prevent magnets and armature windings moving in radial direction due to the possible vibration during operation, and to ensure fault-tolerant capability. Hence, in this paper based on an original FSPM motor, a dual-channel FSPM (DC-FSPM) motor with modified structure to fix both armature windings and magnets and improved reliability is proposed for a practical 10 kW integral starter/generator (ISG) in hybrid electric vehicles. The influences of different solutions and the end-effect on the static characteristics, are evaluated based on the 2D and 3D finite element analysis, respectively. Finally, both the predicted and experimental results, compared with a prototype DC-FSPM motor and an interior PM motor used in Honda Civic, confirm that the more sinusoidal back-EMF waveform and lower torque ripple can be achieved in the DC-FSPM motor, whereas the torque is smaller under the same coil current.

  6. Optimization design of an interior permanent-magnet synchronous machine for a hybrid hydraulic excavator

    Institute of Scientific and Technical Information of China (English)

    Qi-huai CHEN; Qing-feng WANG; Tao WANG

    2015-01-01

    A hybrid power transmission system (HPTS) is a promising way to save energy in a hydraulic excavator and the electric machine is one of the key components of the system. In this paper, a design process for permanent-magnet synchronous machines (PMSMs) in a hybrid hydraulic excavator (HHE) is presented based on the analysis of the working conditions and requirements of an HHE. A parameterized design approach, which combines the analytical model and the 2D finite element method (FEM), is applied to the electric machine to improve the design efficiency and accuracy. The analytical model is employed to optimize the electric machine efficiency and obtain the stator dimension and flux density distribution. The rotor is designed with the FEM to satisfy the flux requirements obtained in stator design. The rotor configuration of the PMSM employs an interior magnet structure, thus resulting in some inverse saliency, which allows for much higher values in magnetic flux density. To reduce the rotor leakage, a disconnected type silicon steel block structure is adopted. To improve the air gap flux density distribution, the trapezoid permanent magnet (PM) and centrifugal rotor structure are applied to PMSM. Demagnetization and armature reactions are also taken into consideration and calculated by the FEM. A prototype of the newly designed electric machine has been fabri-cated and tested on the experimental platform. The analytical design results are validated by measurements.

  7. Detection of a magnetic bead by hybrid nanodevices using scanning gate microscopy

    Directory of Open Access Journals (Sweden)

    H. Corte-León

    2016-05-01

    Full Text Available Hybrid ferromagnetic(Py/non-magnetic metal(Au junctions with a width of 400 nm are studied by magnetotransport measurements, magnetic scanning gate microscopy (SGM with a magnetic bead (MB attached to the probe, and micromagnetic simulations. In the transverse geometry, the devices demonstrate a characteristic magnetoresistive behavior that depends on the direction of the in plane magnetic field, with minimum/maximum variation when the field is applied parallel/perpendicular to the Py wire. The SGM is performed with a NdFeB bead of 1.6 μm diameter attached to the scanning probe. Our results demonstrate that the hybrid junction can be used to detect this type of MB. A rough approximation of the sensing volume of the junction has the shape of elliptical cylinder with the volume of ∼1.51 μm3. Micromagnetic simulations coupled to a magnetotransport model including anisotropic magnetoresistance and planar Hall effects are in good agreement with the experimental findings, enabling the interpretation of the SGM images.

  8. Detection of a magnetic bead by hybrid nanodevices using scanning gate microscopy

    Science.gov (United States)

    Corte-León, H.; Krzysteczko, P.; Marchi, F.; Motte, J.-F.; Manzin, A.; Schumacher, H. W.; Antonov, V.; Kazakova, O.

    2016-05-01

    Hybrid ferromagnetic(Py)/non-magnetic metal(Au) junctions with a width of 400 nm are studied by magnetotransport measurements, magnetic scanning gate microscopy (SGM) with a magnetic bead (MB) attached to the probe, and micromagnetic simulations. In the transverse geometry, the devices demonstrate a characteristic magnetoresistive behavior that depends on the direction of the in plane magnetic field, with minimum/maximum variation when the field is applied parallel/perpendicular to the Py wire. The SGM is performed with a NdFeB bead of 1.6 μm diameter attached to the scanning probe. Our results demonstrate that the hybrid junction can be used to detect this type of MB. A rough approximation of the sensing volume of the junction has the shape of elliptical cylinder with the volume of ˜1.51 μm3. Micromagnetic simulations coupled to a magnetotransport model including anisotropic magnetoresistance and planar Hall effects are in good agreement with the experimental findings, enabling the interpretation of the SGM images.

  9. Characterization of Extremely Low Frequency Magnetic Fields from Diesel, Gasoline and Hybrid Cars under Controlled Conditions

    Directory of Open Access Journals (Sweden)

    Ronen Hareuveny

    2015-01-01

    Full Text Available This study characterizes extremely low frequency (ELF magnetic field (MF levels in 10 car models. Extensive measurements were conducted in three diesel, four gasoline, and three hybrid cars, under similar controlled conditions and negligible background fields. Averaged over all four seats under various driving scenarios the fields were lowest in diesel cars (0.02 μT, higher for gasoline (0.04–0.05 μT and highest in hybrids (0.06–0.09 μT, but all were in-line with daily exposures from other sources. Hybrid cars had the highest mean and 95th percentile MF levels, and an especially large percentage of measurements above 0.2 μT. These parameters were also higher for moving conditions compared to standing while idling or revving at 2500 RPM and higher still at 80 km/h compared to 40 km/h. Fields in non-hybrid cars were higher at the front seats, while in hybrid cars they were higher at the back seats, particularly the back right seat where 16%–69% of measurements were greater than 0.2 μT. As our results do not include low frequency fields (below 30 Hz that might be generated by tire rotation, we suggest that net currents flowing through the cars’ metallic chassis may be a possible source of MF. Larger surveys in standardized and well-described settings should be conducted with different types of vehicles and with spectral analysis of fields including lower frequencies due to magnetization of tires.

  10. Existence of Global Weak Solutions to a Hybrid Vlasov-MHD Model for Magnetized Plasmas

    CERN Document Server

    Cheng, Bin; Tronci, Cesare

    2016-01-01

    We prove the global-in-time existence of large-data finite-energy weak solutions to an incompressible hybrid Vlasov-magnetohydrodynamic model in three space dimensions. The model couples three essential ingredients of magnetized plasmas: a transport equation for the probability density function, which models energetic rarefied particles of one species; the incompressible Navier--Stokes system for the bulk fluid; and a parabolic evolution equation, involving magnetic diffusivity, for the magnetic field. The physical derivation of our model is given. It is also shown that the weak solution, whose existence is established, has nonincreasing total energy, and that it satisfies a number of physically relevant properties, including conservation of the total momentum, conservation of the total mass, and nonnegativity of the probability density function for the energetic particles. The proof is based on a one-level approximation scheme, which is carefully devised to avoid increase of the total energy for the sequence...

  11. Zero Power Levitation Control of Hybrid Electro-Magnetic Levitation System by Load Observer

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Youn Hyun; Lee, Ju [Hanyang University, Seoul (Korea)

    2001-06-01

    This paper introduces the scheme that improve the control performance of electromagnetic levitation system with zero power controller. Magnetic levitation is used widely, but the electromagnetic force has nonlinear characteristics because it is proportioned to a square of the magnetic flux density and it is in inverse proportion to a square of the air gap. So, it is complicate and difficult to control the electromagnetic force. Besides, it is more difficult to control if the equivalent gap is unknown in case of zero power control. Therefore, this paper proposed the hybrid electro-magnetic levitation control method in which the variable load is estimated by using a load observer and its system is controlled at a new zero power equilibrium air gap position. Also it is confirmed that the proposed control method improve the control performance through simulation and experiment. (author). 10 refs., 17 figs., 1 tab.

  12. Strain-controlled magnetic domain wall propagation in hybrid piezoelectric/ferromagnetic structures

    Science.gov (United States)

    Lei, Na; Devolder, Thibaut; Agnus, Guillaume; Aubert, Pascal; Daniel, Laurent; Kim, Joo-Von; Zhao, Weisheng; Trypiniotis, Theodossis; Cowburn, Russell P.; Chappert, Claude; Ravelosona, Dafiné; Lecoeur, Philippe

    2013-01-01

    The control of magnetic order in nanoscale devices underpins many proposals for integrating spintronics concepts into conventional electronics. A key challenge lies in finding an energy-efficient means of control, as power dissipation remains an important factor limiting future miniaturization of integrated circuits. One promising approach involves magnetoelectric coupling in magnetostrictive/piezoelectric systems, where induced strains can bear directly on the magnetic anisotropy. While such processes have been demonstrated in several multiferroic heterostructures, the incorporation of such complex materials into practical geometries has been lacking. Here we demonstrate the possibility of generating sizeable anisotropy changes, through induced strains driven by applied electric fields, in hybrid piezoelectric/spin-valve nanowires. By combining magneto-optical Kerr effect and magnetoresistance measurements, we show that domain wall propagation fields can be doubled under locally applied strains. These results highlight the prospect of constructing low-power domain wall gates for magnetic logic devices.

  13. Magnetic amphiphilic hybrid carbon nanotubes containing N-doped and undoped sections: powerful tensioactive nanostructures

    Science.gov (United States)

    Purceno, Aluir D.; Machado, Bruno F.; Teixeira, Ana Paula C.; Medeiros, Tayline V.; Benyounes, Anas; Beausoleil, Julien; Menezes, Helvecio C.; Cardeal, Zenilda L.; Lago, Rochel M.; Serp, Philippe

    2014-11-01

    In this work, unique amphiphilic magnetic hybrid carbon nanotubes (CNTs) are synthesized and used as tensioactive nanostructures in different applications. These CNTs interact very well with aqueous media due to the hydrophilic N-doped section, whereas the undoped hydrophobic one has strong affinity for organic molecules. The amphiphilic character combined with the magnetic properties of these CNTs opens the door to completely new and exciting applications in adsorption science and catalysis. These amphiphilic N-doped CNTs can also be used as powerful tensioactive emulsification structures. They can emulsify water/organic mixtures and by a simple magnetic separation the emulsion can be easily broken. We demonstrate the application of these CNTs in the efficient adsorption of various molecules, in addition to promoting biphasic processes in three different reactions, i.e. transesterification of soybean oil, quinoline extractive oxidation with H2O2 and a metal-catalyzed aqueous oxidation of heptanol with molecular oxygen.In this work, unique amphiphilic magnetic hybrid carbon nanotubes (CNTs) are synthesized and used as tensioactive nanostructures in different applications. These CNTs interact very well with aqueous media due to the hydrophilic N-doped section, whereas the undoped hydrophobic one has strong affinity for organic molecules. The amphiphilic character combined with the magnetic properties of these CNTs opens the door to completely new and exciting applications in adsorption science and catalysis. These amphiphilic N-doped CNTs can also be used as powerful tensioactive emulsification structures. They can emulsify water/organic mixtures and by a simple magnetic separation the emulsion can be easily broken. We demonstrate the application of these CNTs in the efficient adsorption of various molecules, in addition to promoting biphasic processes in three different reactions, i.e. transesterification of soybean oil, quinoline extractive oxidation with H2O2 and

  14. Hybrid Molecular and Spin Dynamics Simulations for Ensembles of Magnetic Nanoparticles for Magnetoresistive Systems

    Directory of Open Access Journals (Sweden)

    Lisa Teich

    2015-11-01

    Full Text Available The development of magnetoresistive sensors based on magnetic nanoparticles which are immersed in conductive gel matrices requires detailed information about the corresponding magnetoresistive properties in order to obtain optimal sensor sensitivities. Here, crucial parameters are the particle concentration, the viscosity of the gel matrix and the particle structure. Experimentally, it is not possible to obtain detailed information about the magnetic microstructure, i.e., orientations of the magnetic moments of the particles that define the magnetoresistive properties, however, by using numerical simulations one can study the magnetic microstructure theoretically, although this requires performing classical spin dynamics and molecular dynamics simulations simultaneously. Here, we present such an approach which allows us to calculate the orientation and the trajectory of every single magnetic nanoparticle. This enables us to study not only the static magnetic microstructure, but also the dynamics of the structuring process in the gel matrix itself. With our hybrid approach, arbitrary sensor configurations can be investigated and their magnetoresistive properties can be optimized.

  15. Experiments, modeling and simulation of the magnetic behavior of inhomogeneously coated nickel/aluminum hybrid foams

    Energy Technology Data Exchange (ETDEWEB)

    Jung, A., E-mail: anne.jung@mx.uni-saarland.de [Universität des Saarlandes, Institute of Applied Mechanics, Campus A4 2, 66123 Saarbrücken (Germany); Klis, D., E-mail: d.klis@lte.uni-saarland.de [Universität des Saarlandes, Laboratory for Electromagnetic Theory, Campus C6 3, 66123 Saarbrücken (Germany); Goldschmidt, F., E-mail: f.goldschmidt@mx.uni-saarland.de [Universität des Saarlandes, Institute of Applied Mechanics, Campus A4 2, 66123 Saarbrücken (Germany)

    2015-03-15

    Open-cell metal foams are used as lightweight construction elements, energy absorbers or as support for catalytic coatings. Coating of open-cell metal foams is not only used for catalytic applications, but it leads also to tremendous increase in stiffness and energy absorption capacity. A non-line of sight coating technique for complex 3D structures is electrodeposition. Unfortunately, due to the 3D porosity and the related problems in mass transport limitation during the deposition, it is not possible to produce homogeneously coated foams. In the present contribution, we present a semi-non-destructive technique applicable to determine the coating thickness distribution of magnetic coatings by measuring the remanent magnetic field of coated foams. In order to have a closer look at the mass transport mechanism, a numerical model was developed to predict the field scans for different coating thickness distributions in the foams. For long deposition times the deposition reaches a steady state whereas a Helmholtz equation is sufficient to predict the coating thickness distribution. The applied current density could be identified as the main influencing parameter. Based on the developed model, it is possible to improve the electrodeposition process and hence the homogeneity in the coating thickness of coated metal foams. This leads to enhanced mechanical properties of the hybrid foams and contributes to better and resource-efficient energy absorbers and lightweight materials. - Highlights: • Production of hybrid foams by electrodeposition of nickel on open-cell metal foams. • Magnetic field scans for visualization of spatial coating thickness distribution. • Modeling of magnetic fields of inhomogeneously coated hybrid foams. • Investigation of mass transport limitation during coating by a Helmholtz equation. • Increasing coating homogeneity by use of low current densities and deposition rates.

  16. Magnetic field activated lipid-polymer hybrid nanoparticles for stimuli-responsive drug release.

    Science.gov (United States)

    Kong, Seong Deok; Sartor, Marta; Hu, Che-Ming Jack; Zhang, Weizhou; Zhang, Liangfang; Jin, Sungho

    2013-03-01

    Stimuli-responsive nanoparticles (SRNPs) offer the potential of enhancing the therapeutic efficacy and minimizing the side-effects of chemotherapeutics by controllably releasing the encapsulated drug at the target site. Currently controlled drug release through external activation remains a major challenge during the delivery of therapeutic agents. Here we report a lipid-polymer hybrid nanoparticle system containing magnetic beads for stimuli-responsive drug release using a remote radio frequency (RF) magnetic field. These hybrid nanoparticles show long-term stability in terms of particle size and polydispersity index in phosphate-buffered saline (PBS). Controllable loading of camptothecin (CPT) and Fe(3)O(4) in the hybrid nanoparticles was demonstrated. RF-controlled drug release from these nanoparticles was observed. In addition, cellular uptake of the SRNPs into MT2 mouse breast cancer cells was examined. Using CPT as a model anticancer drug the nanoparticles showed a significant reduction in MT2 mouse breast cancer cell growth in vitro in the presence of a remote RF field. The ease of preparation, stability, and controllable drug release are the strengths of the platform and provide the opportunity to improve cancer chemotherapy.

  17. Magnetically separable and recyclable Fe3O4-polydopamine hybrid hollow microsphere for highly efficient peroxidase mimetic catalysts.

    Science.gov (United States)

    Liu, Shujun; Fu, Jianwei; Wang, Minghuan; Yan, Ya; Xin, Qianqian; Cai, Lu; Xu, Qun

    2016-05-01

    Magnetic Fe3O4-polydopamine (PDA) hybrid hollow microspheres, in which Fe3O4 nanoparticles were firmly incorporated in the cross-linked PDA shell, have been prepared through the formation of core/shell PS/Fe3O4-PDA composites based on template-induced covalent assembly method, followed by core removal in a tetrahydrofuran solution. The morphology, composition, thermal property and magnetic property of the magnetic hybrid hollow microspheres were characterized by SEM, TEM, FT-IR, XRD, TGA, and vibrating sample magnetometer, respectively. Results revealed that the magnetic hybrid hollow microspheres had about 380 nm of inner diameter and about 30 nm of shell thickness, and 13.6 emu g(-1) of magnetization saturation. More importantly, the Fe3O4-PDA hybrid hollow microspheres exhibited intrinsic peroxidase-like activity, as they could quickly catalyze the oxidation of typical substrates 3,3',5,5'-tetramethylbenzidine (TMB) in the presence of hydrogen peroxide. Compared with PDA/Fe3O4 composites where Fe3O4 nanoparticles were loaded on the surface of PDA microspheres, the stability of Fe3O4-PDA hybrid hollow microspheres was greatly improved. As-prepared magnetic hollow microspheres might open up a new application field in biodetection, biocatalysis, and environmental monitoring. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Analysis of the magnetically induced current density of molecules consisting of annelated aromatic and antiaromatic hydrocarbon rings.

    Science.gov (United States)

    Sundholm, Dage; Berger, Raphael J F; Fliegl, Heike

    2016-06-21

    Magnetically induced current susceptibilities and current pathways have been calculated for molecules consisting of two pentalene groups annelated with a benzene (1) or naphthalene (2) moiety. Current strength susceptibilities have been obtained by numerically integrating separately the diatropic and paratropic contributions to the current flow passing planes through chosen bonds of the molecules. The current density calculations provide novel and unambiguous current pathways for the unusual molecules with annelated aromatic and antiaromatic hydrocarbon moieties. The calculations show that the benzene and naphthalene moieties annelated with two pentalene units as in molecules 1 and 2, respectively, are unexpectedly antiaromatic sustaining only a local paratropic ring current around the ring, whereas a weak diatropic current flows around the C-H moiety of the benzene ring. For 1 and 2, the individual five-membered rings of the pentalenes are antiaromatic and a slightly weaker semilocal paratropic current flows around the two pentalene rings. Molecules 1 and 2 do not sustain any net global ring current. The naphthalene moiety of the molecule consisting of a naphthalene annelated with two pentalene units (3) does not sustain any strong ring current that is typical for naphthalene. Instead, half of the diatropic current passing the naphthalene moiety forms a zig-zag pattern along the C-C bonds of the naphthalene moiety that are not shared with the pentalene moieties and one third of the current continues around the whole molecule partially cancelling the very strong paratropic semilocal ring current of the pentalenes. For molecule 3, the pentalene moieties and the individual five-membered rings of the pentalenes are more antiaromatic than for 1 and 2. The calculated current patterns elucidate why the compounds with formally [4n + 2] π-electrons have unusual aromatic properties violating the Hückel π-electron count rule. The current density calculations also provide

  19. A hybrid analytical model for open-circuit field calculation of multilayer interior permanent magnet machines

    Science.gov (United States)

    Zhang, Zhen; Xia, Changliang; Yan, Yan; Geng, Qiang; Shi, Tingna

    2017-08-01

    Due to the complicated rotor structure and nonlinear saturation of rotor bridges, it is difficult to build a fast and accurate analytical field calculation model for multilayer interior permanent magnet (IPM) machines. In this paper, a hybrid analytical model suitable for the open-circuit field calculation of multilayer IPM machines is proposed by coupling the magnetic equivalent circuit (MEC) method and the subdomain technique. In the proposed analytical model, the rotor magnetic field is calculated by the MEC method based on the Kirchhoff's law, while the field in the stator slot, slot opening and air-gap is calculated by subdomain technique based on the Maxwell's equation. To solve the whole field distribution of the multilayer IPM machines, the coupled boundary conditions on the rotor surface are deduced for the coupling of the rotor MEC and the analytical field distribution of the stator slot, slot opening and air-gap. The hybrid analytical model can be used to calculate the open-circuit air-gap field distribution, back electromotive force (EMF) and cogging torque of multilayer IPM machines. Compared with finite element analysis (FEA), it has the advantages of faster modeling, less computation source occupying and shorter time consuming, and meanwhile achieves the approximate accuracy. The analytical model is helpful and applicable for the open-circuit field calculation of multilayer IPM machines with any size and pole/slot number combination.

  20. Stationary magnetic shear reversal during Lower Hybrid experiments in Tore Supra

    Energy Technology Data Exchange (ETDEWEB)

    Litaudon, X.; Arslanbekov, R.; Hoang, G.T.; Joffrin, E.; Kazarian-Vibert, F.; Moreau, D.; Peysson, Y.; Bibet, P. [Association Euratom-CEA, Centre d`Etudes de Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. de Recherches sur la Fusion Controlee; Ferron, J.; Kupfer, K. [General Atomics, San Diego, CA (United States)] [and others

    1996-01-01

    Stable and stationary states with hollow current density profiles have been achieved with Lower Hybrid Current Drive (LHCD) during Lower Hybrid (LH) wave accessibility experiments. By analysing the bounded propagation domain in phase space which naturally limits the central penetration and absorption of the waves, off-axis LH power deposition has been realized in a reproducible manner. The resulting current density profile modifications have led to a global confinement enhancement attributed to the formation of an internal `transport barrier` in the central reversed shear region where the electron thermal diffusivity is reduced to its neoclassical collisional level. The multiple-pass LH wave propagation in the weak Landau damping and reversed magnetic shear regime is also investigated in the framework of a statistical theory and the experimental validation of this theory is discussed. (author). 37 refs.

  1. Magnetic properties of Langmuir-Blodgett (LB) films: a theoretical study. III. LB films consisting of different types of stable π-monoradicals.

    Science.gov (United States)

    Drebov, Nedko; Tyutyulkov, Nikolai; Dietz, Fritz

    2013-01-22

    We present theoretical results for the magnetic properties of modeled two-dimensional (2-D) Langmuir-Blodgett films consisting of different types of stable organic π-monoradicals. Their energy spectra and magnetic characteristics are investigated using the many-body band theory of magnetism in π-electron approximation. The main factors which determine the magnitude and character of the magnetic interaction in the 2-D molecular arrangements are thoroughly studied. Semiempirical electronic structure calculations have been also carried out for molecular clusters to gain further insight into their magnetic properties. The proposed models for LB films are potential candidates for new 2-D ferromagnetic materials which are characterized by a substantial increase of the critical temperatures up to 250 K in comparison to only about 5 K for the now existing magnetic LB films based on organometallic systems.

  2. Magnetic loading of graphene-nickel nanoparticle hybrid for electrochemical sensing of carbohydrates.

    Science.gov (United States)

    Qu, Weidong; Zhang, Luyan; Chen, Gang

    2013-04-15

    Graphene-nickel nanoparticle hybrid was prepared by the one-step far infrared-assisted reduction of graphene oxide and nickel (II) ions using hydrazine. It was loaded on the surface of a magnetic electrode for electrochemical sensing. The feasibility and performance of the novel electrode were demonstrated by measuring carbohydrates using cyclic voltammetry and amperometry. It demonstrated that nickel nanoparticles decorated on graphene sheets exhibited higher electrocatalytic activity toward the oxidation of carbohydrates while graphene improved the electron transduction. The synergistic effect significantly enhanced the current response of carbohydrates.

  3. Influence of the lower-hybrid drift instability on magnetic reconnection in asymmetric configurations.

    Science.gov (United States)

    Roytershteyn, V; Daughton, W; Karimabadi, H; Mozer, F S

    2012-05-04

    Using fully kinetic 3D simulations of magnetic reconnection in asymmetric antiparallel configurations, we demonstrate that an electromagnetic lower-hybrid drift instability (LHDI) localized near the X line can substantially modify the reconnection mechanism in the regimes with large asymmetry, a moderate ratio of electron to ion temperature, and low plasma β. However, the mode saturates at a small amplitude in the regimes typical of Earth's magnetopause. In these cases, LHDI-driven turbulence is predominantly localized along the separatrices on the low-β side of the current sheet, in agreement with spacecraft observations.

  4. Planar Integrated Magnetics (PIM) Module in Hybrid Bidirectional DC-DC Converter for Fuel Cell Application

    DEFF Research Database (Denmark)

    Ouyang, Ziwei; Zhang, Zhe; Thomsen, Ole Cornelius

    2011-01-01

    , hereby increasing the power density of converters. In this paper, a new planar integrated magnetics (PIM) module for a phase-shift plus duty cycle controlled hybrid bi-directional dc-dc converter is proposed, which assembles one boost inductor and two transformers into an E-I-E core geometry, reducing...... and theoretical analysis, a lab prototype employing the PIM module is implemented for a fuel cell application with 20~40 V input voltage and 400 V output voltage. Detailed results from the experimental comparisons demonstrate that the PIM module is fully functional and electromagnetically equivalent...

  5. Upper-hybrid wave driven Alfvenic turbulence in magnetized dusty plasmas

    CERN Document Server

    Misra, A P

    2010-01-01

    The nonlinear dynamics of coupled electrostatic upper-hybrid (UH) and Alfven waves (AWs) is revisited in a magnetized electron-ion plasma with charged dust impurities. A pair of nonlinear equations [J.Plasma Phys. 73, 3 (2006)] that describe the interaction of UH wave envelopes (including the relativistic electron mass increase) and the density as well as the compressional magnetic field perturbations associated with the AWs is solved numerically to show that many coherent solitary patterns can be excited and saturated due to modulational instability of unstable UH waves. The evolution of these solitary patterns is also shown to appear in the states of spatiotemporal coherence, temporal as well as spatiotemporal chaos due to collision and fusion among the patterns in stochastic motion. Furthermore, these spatiotemporal features are demonstrated by the analysis of wavelet power spectra. It is found that a redistribution of wave energy takes place to higher harmonic modes with small wavelengths which, in turn, ...

  6. Feedforward-feedback hybrid control for magnetic shape memory alloy actuators based on the Krasnosel'skii-Pokrovskii model.

    Directory of Open Access Journals (Sweden)

    Miaolei Zhou

    Full Text Available As a new type of smart material, magnetic shape memory alloy has the advantages of a fast response frequency and outstanding strain capability in the field of microdrive and microposition actuators. The hysteresis nonlinearity in magnetic shape memory alloy actuators, however, limits system performance and further application. Here we propose a feedforward-feedback hybrid control method to improve control precision and mitigate the effects of the hysteresis nonlinearity of magnetic shape memory alloy actuators. First, hysteresis nonlinearity compensation for the magnetic shape memory alloy actuator is implemented by establishing a feedforward controller which is an inverse hysteresis model based on Krasnosel'skii-Pokrovskii operator. Secondly, the paper employs the classical Proportion Integration Differentiation feedback control with feedforward control to comprise the hybrid control system, and for further enhancing the adaptive performance of the system and improving the control accuracy, the Radial Basis Function neural network self-tuning Proportion Integration Differentiation feedback control replaces the classical Proportion Integration Differentiation feedback control. Utilizing self-learning ability of the Radial Basis Function neural network obtains Jacobian information of magnetic shape memory alloy actuator for the on-line adjustment of parameters in Proportion Integration Differentiation controller. Finally, simulation results show that the hybrid control method proposed in this paper can greatly improve the control precision of magnetic shape memory alloy actuator and the maximum tracking error is reduced from 1.1% in the open-loop system to 0.43% in the hybrid control system.

  7. Feedforward-feedback hybrid control for magnetic shape memory alloy actuators based on the Krasnosel'skii-Pokrovskii model.

    Science.gov (United States)

    Zhou, Miaolei; Zhang, Qi; Wang, Jingyuan

    2014-01-01

    As a new type of smart material, magnetic shape memory alloy has the advantages of a fast response frequency and outstanding strain capability in the field of microdrive and microposition actuators. The hysteresis nonlinearity in magnetic shape memory alloy actuators, however, limits system performance and further application. Here we propose a feedforward-feedback hybrid control method to improve control precision and mitigate the effects of the hysteresis nonlinearity of magnetic shape memory alloy actuators. First, hysteresis nonlinearity compensation for the magnetic shape memory alloy actuator is implemented by establishing a feedforward controller which is an inverse hysteresis model based on Krasnosel'skii-Pokrovskii operator. Secondly, the paper employs the classical Proportion Integration Differentiation feedback control with feedforward control to comprise the hybrid control system, and for further enhancing the adaptive performance of the system and improving the control accuracy, the Radial Basis Function neural network self-tuning Proportion Integration Differentiation feedback control replaces the classical Proportion Integration Differentiation feedback control. Utilizing self-learning ability of the Radial Basis Function neural network obtains Jacobian information of magnetic shape memory alloy actuator for the on-line adjustment of parameters in Proportion Integration Differentiation controller. Finally, simulation results show that the hybrid control method proposed in this paper can greatly improve the control precision of magnetic shape memory alloy actuator and the maximum tracking error is reduced from 1.1% in the open-loop system to 0.43% in the hybrid control system.

  8. Magnetic mesoporous organic-inorganic NiCo2O4 hybrid nanomaterials for electrochemical immunosensors.

    Science.gov (United States)

    Li, Qunfang; Zeng, Lingxing; Wang, Jinchao; Tang, Dianping; Liu, Bingqian; Chen, Guonan; Wei, Mingdeng

    2011-04-01

    This study demonstrates a facile and feasible strategy toward the development of advanced electrochemical immunosensors based on chemically functionalized magnetic mesoporous organic-inorganic hybrid nanomaterials, and the preparation, characterization, and measurement of relevant properties of the immunosensor for detection of carcinoembryonic antigen (CEA, as a model analyte) in clinical immunoassays. The as-prepared nanomaterials composed of a magnetic mesoporous NiCo(2)O(4) nanosheet, an interlayer of Nafion/thionine organic molecules and a nanogold layer show good adsorption properties for the attachment of horseradish peroxidase-labeled secondary anti-CEA antibody (HRP-anti-CEA). With a sandwich-type immunoassay format, the functional bionanomaterials present good analytical properties to facilitate and modulate the way it was integrated onto the electrochemical immunosensors, and allows the detection of CEA at a concentration as low as 0.5 pg/mL. Significantly, the immunosensor could be easily regenerated by only using an external magnet without the need of any dissociated reagents. Importantly, the as-synthesized magnetic mesoporous NiCo(2)O(4) nanomaterials could be further extended for detection of other biomarkers or biocompounds.

  9. Higgs mass and muon anomalous magnetic moment in the MSSM with gauge-gravity hybrid mediation

    Science.gov (United States)

    Zhu, Bin; Ding, Ran; Li, Tianjun

    2017-08-01

    In general, we can propose the hybrid supersymmetry breakings and hybrid mediations in the supersymmetric standard models. In this paper, we study the hybrid mediation for supersymmetry (SUSY) breaking. In particular, we study how to keep the good properties of gravity mediation, gauge mediation, and anomaly mediation, while solving their problems simultaneously. As an example, we consider the gauge-gravity mediation, where all the supersymmetric particles (sparticles) obtain the SUSY breaking soft terms from the traditional gravity mediation while gauge mediation gives dominant contributions to the soft terms in the colored sector due to the splitted messengers. Thus, we can realize the electroweak supersymmetry naturally where the sleptons, sneutrinos, and electroweakinos are light within one TeV while the squarks and gluino are heavy around a few TeVs. Then we can explain 125 GeV Higgs mass, satisfy the LHC SUSY search bounds, and explain the anomalous magnetic moment of muon, etc. Moreover, the gluino and squarks are well beyond the current LHC run II searches.

  10. Trapped magnetic-field properties of prototype for Gd-Ba-Cu-O/MgB2 hybrid-type superconducting bulk magnet

    Science.gov (United States)

    Naito, Tomoyuki; Mochizuki, Hidehiko; Fujishiro, Hiroyuki; Teshima, Hidekazu

    2016-03-01

    We have studied experimentally and numerically the trapped magnetic-field properties of a hybrid-type superconducting bulk magnet, which comprised an inner Gd-Ba-Cu-O (GdBCO) disk-bulk and an outer MgB2 ring-bulk, under field-cooled magnetization (FCM) and pulsed-field magnetization (PFM). The trapped field by FCM at the center of the hybrid bulk was 4.5 T at 20 K, which was 0.2 T higher than that of the inner GdBCO disk-bulk without MgB2 ring-bulk. The experimental results by FCM were quantitatively reproduced by the numerical estimations for a model, which makes it possible to understand the trapped field properties of the hybrid bulk. The total magnetic flux by FCM, which was estimated numerically, was enhanced by about 1.7 times from 0.91 mWb of the single GdBCO bulk to 1.53 mWb of the hybrid bulk. We also succeeded in magnetizing the whole hybrid bulk by applying multi-pulsed-fields. The central trapped field of 1.88 T was not enhanced, but the total magnetic flux, which was obtained experimentally, was evidently increased by 2.5 times (0.25 \\to 0.62 mWb) for the hybrid bulk. The obtained results suggest that the hybridization is effective to enhance the total magnetic flux. To confirm the reinforcing effect of the MgB2 ring to the GdBCO disk during the cooling and magnetization processes, we have measured the thermal dilatation, {\\text{}}{dL}({\\text{}}T)/{\\text{}}L(300 K), of the GdBCO, MgB2 and stainless steel. As a result, the thermal dilatation of MgB2 was smaller than that of GdBCO. MgB2 ring-bulk shows no compression effect to resist the hoop stress of the GdBCO disk-bulk during the FCM process. The reinforcing material such as the stainless steel ring must be set outside the GdBCO disk-bulk.

  11. Unidirectional Spin-Dependent Molecule-Ferromagnet Hybridized States Anisotropy in Cobalt Phthalocyanine Based Magnetic Tunnel Junctions

    Science.gov (United States)

    Barraud, Clément; Bouzehouane, Karim; Deranlot, Cyrile; Fusil, Stéphane; Jabbar, Hashim; Arabski, Jacek; Rakshit, Rajib; Kim, Dong-Jik; Kieber, Christophe; Boukari, Samy; Bowen, Martin; Beaurepaire, Eric; Seneor, Pierre; Mattana, Richard; Petroff, Frédéric

    2015-05-01

    Organic or molecular spintronics is a rising field of research at the frontier between condensed matter physics and chemistry. It aims to mix spin physics and the richness of chemistry towards designing new properties for spin electronics devices through engineering at the molecular scale. Beyond the expectation of a long spin lifetime, molecules can be also used to tailor the spin polarization of the injected current through the spin-dependent hybridization between molecules and ferromagnetic electrodes. In this Letter, we provide direct evidence of a hybrid interface spin polarization reversal due to the differing hybridization between phthalocyanine molecules and each cobalt electrode in Co /CoPc /Co magnetic tunnel junctions. Tunnel magnetoresistance and anisotropic tunnel magnetoresistance experiments show that interfacial hybridized electronic states have a unidirectional anisotropy that can be controlled by an electric field and that spin hybridization at the bottom and top interfaces differ, leading to an inverse tunnel magnetoresistance.

  12. A Novel Hybrid-Flux Magnetic Gear and Its Performance Analysis Using the 3-D Finite Element Method

    Directory of Open Access Journals (Sweden)

    Yiduan Chen

    2015-04-01

    Full Text Available This paper presents a novel hybrid-flux magnetic gear, which integrates a transverse-flux magnetic gear and an axial-flux magnetic gear into a single unit. Compared to its conventional counterparts, the proposed magnetic gear transmits a relatively high torque density. When compared to the transverse-flux magnetic gear, this new structure employs an extra iron segment between the low-speed rotor and high-speed rotor to modulate the magnetic field and contribute to the transmission of additional torque. A three-dimensional (3-D finite element method (FEM is used for the analysis of the magnetic field. In the paper a variables-decoupling method based on the sensitivity analysis of the design parameters is also presented to accelerate the optimization process of the proposed machine.

  13. Passive temperature compensation in hybrid magnets with application to the Fermilab stacker and recycler ring dipole design

    Energy Technology Data Exchange (ETDEWEB)

    Schlueter, R.D.; Marks, S.; Loper, C.; Halbach, K.

    1995-06-01

    Design theory of hybrid (permanent magnet plus iron) accelerator magnets with application to the proposed permanent magnet recycler and stacker rings at the Fermi National Laboratory is presented. Field stability in such devices requires that changes in the strength of the permanent magnet material with temperature be compensated. Field tuning techniques, including those employing variable capacitance between energized pole and magnet yoke and those employing variable energization of magnet pole pieces, are described. Mechanical configurations capable of achieving temperature compensation passively, including use of expanding liquids/gases and bimetallic springs are outlined. Active configurations, relying on a actuator, in addition to temperature compensation, have the additional benefit of enabling magnet tuning about a nominal operating field level.

  14. Magnetically sensitive light-induced reactions in cryptochrome are consistent with its proposed role as a magnetoreceptor

    OpenAIRE

    Maeda, Kiminori; Robinson, Alexander J.; Henbest, Kevin B.; Hogben, Hannah J.; Biskup, Till; Ahmad, Margaret; Schleicher, Erik; Weber, Stefan; Timmel, Christiane R.; Hore, P. J.

    2012-01-01

    Among the biological phenomena that fall within the emerging field of “quantum biology” is the suggestion that magnetically sensitive chemical reactions are responsible for the magnetic compass of migratory birds. It has been proposed that transient radical pairs are formed by photo-induced electron transfer reactions in cryptochrome proteins and that their coherent spin dynamics are influenced by the geomagnetic field leading to changes in the quantum yield of the signaling state of the prot...

  15. A hybrid magnetic/complementary metal oxide semiconductor three-context memory bit cell for non-volatile circuit design

    Science.gov (United States)

    Jovanović, B.; Brum, R. M.; Torres, L.

    2014-04-01

    After decades of continued scaling to the beat of Moore's law, it now appears that conventional silicon based devices are approaching their physical limits. In today's deep-submicron nodes, a number of short-channel and quantum effects are emerging that affect the manufacturing process, as well as, the functionality of the microelectronic systems-on-chip. Spintronics devices that exploit both the intrinsic spin of the electron and its associated magnetic moment, in addition to its fundamental electronic charge, are promising solutions to circumvent these scaling threats. Being compatible with the CMOS technology, such devices offer a promising synergy of radiation immunity, infinite endurance, non-volatility, increased density, etc. In this paper, we present a hybrid (magnetic/CMOS) cell that is able to store and process data both electrically and magnetically. The cell is based on perpendicular spin-transfer torque magnetic tunnel junctions (STT-MTJs) and is suitable for use in magnetic random access memories and reprogrammable computing (non-volatile registers, processor cache memories, magnetic field-programmable gate arrays, etc). To demonstrate the potential our hybrid cell, we physically implemented a small hybrid memory block using 45 nm × 45 nm round MTJs for the magnetic part and 28 nm fully depleted silicon on insulator (FD-SOI) technology for the CMOS part. We also report the cells measured performances in terms of area, robustness, read/write speed and energy consumption.

  16. Magnetically sensitive light-induced reactions in cryptochrome are consistent with its proposed role as a magnetoreceptor

    Science.gov (United States)

    Maeda, Kiminori; Robinson, Alexander J.; Henbest, Kevin B.; Hogben, Hannah J.; Biskup, Till; Ahmad, Margaret; Schleicher, Erik; Weber, Stefan; Timmel, Christiane R.; Hore, P. J.

    2012-01-01

    Among the biological phenomena that fall within the emerging field of “quantum biology” is the suggestion that magnetically sensitive chemical reactions are responsible for the magnetic compass of migratory birds. It has been proposed that transient radical pairs are formed by photo-induced electron transfer reactions in cryptochrome proteins and that their coherent spin dynamics are influenced by the geomagnetic field leading to changes in the quantum yield of the signaling state of the protein. Despite a variety of supporting evidence, it is still not clear whether cryptochromes have the properties required to respond to magnetic interactions orders of magnitude weaker than the thermal energy, kBT. Here we demonstrate that the kinetics and quantum yields of photo-induced flavin—tryptophan radical pairs in cryptochrome are indeed magnetically sensitive. The mechanistic origin of the magnetic field effect is clarified, its dependence on the strength of the magnetic field measured, and the rates of relevant spin-dependent, spin-independent, and spin-decoherence processes determined. We argue that cryptochrome is fit for purpose as a chemical magnetoreceptor. PMID:22421133

  17. Magnetically sensitive light-induced reactions in cryptochrome are consistent with its proposed role as a magnetoreceptor.

    Science.gov (United States)

    Maeda, Kiminori; Robinson, Alexander J; Henbest, Kevin B; Hogben, Hannah J; Biskup, Till; Ahmad, Margaret; Schleicher, Erik; Weber, Stefan; Timmel, Christiane R; Hore, P J

    2012-03-27

    Among the biological phenomena that fall within the emerging field of "quantum biology" is the suggestion that magnetically sensitive chemical reactions are responsible for the magnetic compass of migratory birds. It has been proposed that transient radical pairs are formed by photo-induced electron transfer reactions in cryptochrome proteins and that their coherent spin dynamics are influenced by the geomagnetic field leading to changes in the quantum yield of the signaling state of the protein. Despite a variety of supporting evidence, it is still not clear whether cryptochromes have the properties required to respond to magnetic interactions orders of magnitude weaker than the thermal energy, k(B)T. Here we demonstrate that the kinetics and quantum yields of photo-induced flavin-tryptophan radical pairs in cryptochrome are indeed magnetically sensitive. The mechanistic origin of the magnetic field effect is clarified, its dependence on the strength of the magnetic field measured, and the rates of relevant spin-dependent, spin-independent, and spin-decoherence processes determined. We argue that cryptochrome is fit for purpose as a chemical magnetoreceptor.

  18. Magnetic-responsive hybrids of Fe3O4 nanoparticles with β-lactoglobulin amyloid fibrils and nanoclusters.

    Science.gov (United States)

    Bolisetty, Sreenath; Vallooran, Jijo J; Adamcik, Jozef; Mezzenga, Raffaele

    2013-07-23

    We report on the synthesis and magnetic-responsive behavior of hybrids formed by dispersing negatively charged iron oxide (Fe3O4) magnetic nanoparticles in positively charged β-lactoglobulin protein solutions at acidic pH, followed by heating at high temperatures. Depending on the pH used, different hybrid aggregates can be obtained, such as nanoparticle-modified amyloid fibrils (pH 3) and spherical nanoclusters (pH 4.5). We investigate the effect of magnetic fields of varying strengths (0-5 T) on the alignment of these Fe3O4-modified amyloid fibrils and spherical nanoclusters using a combination of scattering, birefringence and microscopic techniques and we find a strong alignment of the hybrids upon increasing the intensity of the magnetic field, which we quantify via 2D and 3D order parameters. We also demonstrate the possibility of controlling magnetically the sol-gel behavior of these hybrids: addition of salt (NaCl, 150 mM) to a solution containing nanoparticles modified with β-lactoglobulin amyloid fibrils (2 wt % fibrils modified with 0.6 wt % Fe3O4 nanoparticles) induces first the formation of a reversible gel, which can then be converted back to solution upon application of a moderate magnetic field of 1.1 T. These hybrids offer a new appealing functional colloidal system in which the aggregation, orientational order and rheological behavior can be efficiently controlled in a purely noninvasive way by external magnetic fields of weak intensity.

  19. Presentation and Performance Evaluation of a Novel Stator-Permanent-Magnet Hybrid Stepping Motor

    Directory of Open Access Journals (Sweden)

    Binglin Lu

    2017-05-01

    Full Text Available In this paper, a new type of hybrid stepping motor (HSM with permanent magnets (PMs embedded in the stator, namely the stator-permanent-magnet hybrid stepping motor (SHSM, is presented. It has the same operation principles as the traditional HSM, with a 2-D distributed magnetic field nature and superiorities such as simpler rotor structure, easier PM cooling, higher torque and power density, and higher power grade. Its structural topology and operation principles are initially presented. Then an investigation on the performance comparison between the HSM and the SHSM, in terms of PM flux density, PM torque, detent torque, positional holding accuracy, stator core saturation issue, PM flux leakage, and PM utilization rate is carried out theoretically to make an assessment of the performance superiorities of the SHSM. A prototype of a 2-phase 8-pole 50-rotor-tooth SHSM is fabricated and experimentally compared with the HSM by using finite element analysis (FEA to verify the motor’s operational feasibility and the theoretical analysis. The FEA and experimental results show that the proposed SHSM has performance advantages such as higher torque density, higher power grade, and higher pull-out torque, holding torque, and torque-speed property, although it has performance defects such as higher torque ripple and relatively lower positional holding accuracy in the open-loop operation than the conventional HSM. Consequently, this novel SHSM is more suitable for electromechanical energy conversion applications rather than positioning mechanisms, especially taking into account the open-loop control advantage.

  20. Magnetism in Sc-doped ZnO with zinc vacancies: A hybrid density functional and GGA + U approaches

    KAUST Repository

    Kanoun, Mohammed

    2012-04-01

    We investigate the zinc vacancy effects on the electronic structures and magnetic properties of Sc-doped ZnO, by performing first-principles calculations within both GGA + U and Heyd-Scuseria-Ernzerhof hybrid functional methods. We find that Sc impurities stabilize considerably Zn vacancies. The electronic and magnetic analysis shows a half metallic ferromagnetic character with a total magnetic moment of 2.01 μ B. The magnetism mainly stems from the O 2p states around the Zn vacancies. Calculations with the hybrid density functional agree with the GGA + U results but give an accurate description of the electronic structure for pure ZnO and Sc-doped ZnO with Zn vacancies. © 2012 Elsevier B.V. All rights reserved.

  1. Design,analysis and control of hybrid excited doubly salient stator-permanent-magnet motor

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    In this paper,a new hybrid excited doubly salient stator-permanent-magnet motor is proposed,where both permanent magnets and DC field windings are located in the stator.In theory,the mathematical model and design method of the motor are developed.The corresponding output power equation and the relationship between the flux control capability and the extended speed range are deduced in details.By using an efficient "one-step" three-dimensional(3D) finite element method,the electromagnetic performances are analyzed,in which the leakage flux outside the stator circumference and end-effect are taken into account.Based on the operation principle of the motor,the control strategy and scheme are developed and implemented experimentally.Both experimental results and finite element analysis show that the proposed motor not only maintains the advantages of doubly salient permanent magnet motors,but also offers high energy efficiency over a wide speed range,which makes the motor an interesting candidate for electric vehicles.

  2. Discrimination of clostridium species using a magnetic bead based hybridization assay

    Science.gov (United States)

    Pahlow, Susanne; Seise, Barbara; Pollok, Sibyll; Seyboldt, Christian; Weber, Karina; Popp, Jürgen

    2014-05-01

    Clostridium chauvoei is the causative agent of blackleg, which is an endogenous bacterial infection. Mainly cattle and other ruminants are affected. The symptoms of blackleg are very similar to those of malignant edema, an infection caused by Clostridium septicum. [1, 2] Therefore a reliable differentiation of Clostridium chauvoei from other Clostridium species is required. Traditional microbiological detection methods are time consuming and laborious. Additionally, the unique identification is hindered by the overgrowing tendency of swarming Clostridium septicum colonies when both species are present. [1, 3, 4] Thus, there is a crucial need to improve and simplify the specific detection of Clostridium chauvoei and Clostridium septicum. Here we present an easy and fast Clostridium species discrimination method combining magnetic beads and fluorescence spectroscopy. Functionalized magnetic particles exhibit plentiful advantages, like their simple manipulation in combination with a large binding capacity of biomolecules. A specific region of the pathogenic DNA is amplified and labelled with biotin by polymerase chain reaction (PCR). These PCR products were then immobilized on magnetic beads exploiting the strong biotin-streptavidin interaction. The specific detection of different Clostridium species is achieved by using fluorescence dye labeled probe DNA for the hybridization with the immobilized PCR products. Finally, the samples were investigated by fluorescence spectroscopy. [5

  3. A novel integrated 4-DOF radial hybrid magnetic bearing for MSCMG

    Science.gov (United States)

    Jinji, Sun; Ziyan, Ju; Weitao, Han; Gang, Liu

    2017-01-01

    This paper proposes a novel integrated radial hybrid magnetic bearing (RHMB) for application with the small-sized magnetically suspended control moment gyroscope (MSCMG), which can control four degrees of freedom (4-DOFs), including two radial translational DOFs and two radial tilting DOFs, and provide the axial passive resilience. The configuration and working principle of the RHMB are introduced. Mathematical models of radial force, axial resilience and moment are established by using equivalent magnetic circuit method (EMCM), from which the radial force-radial displacement, radial force-current relationships are derived, as well as axial resilience-axial displacement, moment-tilting angle and moment-current. Finite element method (FEM) is also applied to analyze the performance and characteristics of the RHMB. The analysis results are in good agreement with that calculated by the EMCM, which is helpful in designing, optimizing and controlling the RHMB. The comparisons between the performances of the integrated 4-DOF RHMB and the traditional 4-DOF RHMB are made. The contrast results indicate that the proposed integrated 4-DOF RHMB possesses better performance compared to the traditional structure, such as copper loss, current stiffness, and tilting current stiffness.

  4. Studies of a hybrid avalanche photo-detector in magnetic field

    Science.gov (United States)

    Šantelj, L.; Adachi, I.; Hataya, K.; Iori, S.; Iwata, S.; Kakuno, H.; Kataura, R.; Kawai, H.; Kindo, H.; Korpar, S.; Križan, P.; Mrvar, M.; Nath, K.; Nishida, S.; Ogawa, S.; Pestotnik, R.; Stanovnik, A.; Seljak, A.; Sumiyoshi, T.; Tabata, M.; Tahirovič, E.; Yusa, Y.

    2017-02-01

    For the Belle II spectrometer a proximity focusing RICH counter with an aerogel radiator (ARICH) will be employed as a PID system in the forward endcap region of the spectrometer. The main challenge was the development of a reliable multichannel sensor for single photons that operates in the high magnetic field of the spectrometer (1.5 T) and withstands the radiation levels expected at the experiment. A 144-channel Hybrid Avalanche Photo-Detector (HAPD) was developed with Hamamatsu Photonics K.K. and the mass production of ∼480 HAPDs was completed recently. While our first tests of HAPD performance in the magnetic field (before mass production) showed no issues, we lately observed a presence of very large signal pulses (∼5000× single photon signal), generated internally within about 20% of HAPDs, while operating in the magnetic field. The rate of these pulses varies from sample to sample. These pulses impact the HAPD performance in two ways: they introduce periods of dead time and, in some cases, damage to the front-end electronics was observed. Here we present conditions under which such large pulses are generated, their properties and impact on HAPD performance, and discuss possible mechanism of their origin.

  5. Hybrid Adaptive Filter development for the minimisation of transient fluctuations superimposed on electrotelluric field recordings mainly by magnetic storms

    Directory of Open Access Journals (Sweden)

    A. Konstantaras

    2006-01-01

    Full Text Available The method of Hybrid Adaptive Filtering (HAF aims to recover the recorded electric field signals from anomalies of magnetotelluric origin induced mainly by magnetic storms. An adaptive filter incorporating neuro-fuzzy technology has been developed to remove any significant distortions from the equivalent magnetic field signal, as retrieved from the original electric field signal by reversing the magnetotelluric method. Testing with further unseen data verifies the reliability of the model and demonstrates the effectiveness of the HAF method.

  6. Hybrid Integration of Magnetoresistive Sensors with MEMS as a Strategy to Detect Ultra-Low Magnetic Fields

    Directory of Open Access Journals (Sweden)

    João Valadeiro

    2016-05-01

    Full Text Available In this paper, we describe how magnetoresistive sensors can be integrated with microelectromechanical systems (MEMS devices enabling the mechanical modulation of DC or low frequency external magnetic fields to high frequencies using MEMS structures incorporating magnetic flux guides. In such a hybrid architecture, lower detectivities are expected when compared with those obtained for individual sensors. This particularity results from the change of sensor’s operating point to frequencies above the 1/f noise knee.

  7. Progress in the manufacture of the cable-in-conduit Nb{sub 3}Sn outsert coils for the 45 Tesla Hybrid Magnet

    Energy Technology Data Exchange (ETDEWEB)

    Painter, T.A.; Miller, J.R.; Summers, L.T. [Florida State Univ., Tallahassee, FL (United States). National High Magnetic Field Lab.] [and others

    1994-07-01

    The 45 Tesla Hybrid Magnet is being built in a collaborative effort between the National High Magnetic Field Laboratory at Florida State University and the Francis Bitter National Magnet Laboratory at the Massachusetts Institute of Technology. The Hybrid Magnet combines a resistive insert magnet with two Nb3Sn and one NbTi superconducting cable-in-conduit outsert coil to produce the required field on axis. The Nb3Sn outsert coils are being built at Intermagnetics General Corporation under contract with FSU. A design summary for the entire 100 MJ outsert magnet is presented. The design criteria and manufacturing status for the two Nb3Sn outsert coils are described.

  8. Perpendicular magnetic anisotropy in the Heusler alloy Co2TiSi/GaAs(001 hybrid structure

    Directory of Open Access Journals (Sweden)

    M. T. Dau

    2015-05-01

    Full Text Available Investigation of the thickness dependence of the magnetic anisotropy in B2-type Co2TiSi films on GaAs(001, shows a pronounced perpendicular magnetic anisotropy at 10 K for thicknesses up to 13.5 nm. We have evidenced that the interfacial anisotropy induced by interface clusters has a strong influence on the perpendicular magnetic anisotropy of this hybrid structure, especially at temperatures lower than the blocking temperature of the clusters (28 K. However, as this influence can be ruled out at higher temperatures, the perpendicular magnetic anisotropy which is found to persist up to room-temperature can be ascribed to the magnetic properties of the Co2TiSi films. For thicknesses larger than 15.0 nm, we observe an alignment of the magnetic easy axis parallel to the sample surface, which is most likely due to the shape anisotropy and the film structure.

  9. New Magnetic Thin Film Hybrid Materials Built by the Incorporation of Octanickel(II)-oxamato Clusters Between Clay Mineral Platelets

    NARCIS (Netherlands)

    Toma, Luminita M.; Gengler, Regis Y. N.; Cangussu, Danielle; Pardo, Emilio; Lloret, Francesc; Rudolf, Petra

    2011-01-01

    We report on a new method based on the combination of Langmuir-Schaefer deposition with self-assembly to insert highly anisotropic Ni(8) molecules in a hybrid organic-inorganic nanostructure. Spectroscopic, crystallographic, and magnetic data prove the successful insertion of the guest cationic mole

  10. Whole-body magnetic resonance angiography at 3 tesla using a hybrid protocol in patients with peripheral arterial disease

    DEFF Research Database (Denmark)

    Nielsen, Yousef W; Eiberg, Jonas P; Logager, Vibeke B

    2009-01-01

    The purpose of this study was to determine the diagnostic performance of 3T whole-body magnetic resonance angiography (WB-MRA) using a hybrid protocol in comparison with a standard protocol in patients with peripheral arterial disease (PAD). In 26 consecutive patients with PAD two different proto...

  11. Application of Nuclear Magnetic Resonance and Hybrid Methods to Structure Determination of Complex Systems.

    Science.gov (United States)

    Prischi, Filippo; Pastore, Annalisa

    2016-01-01

    The current main challenge of Structural Biology is to undertake the structure determination of increasingly complex systems in the attempt to better understand their biological function. As systems become more challenging, however, there is an increasing demand for the parallel use of more than one independent technique to allow pushing the frontiers of structure determination and, at the same time, obtaining independent structural validation. The combination of different Structural Biology methods has been named hybrid approaches. The aim of this review is to critically discuss the most recent examples and new developments that have allowed structure determination or experimentally-based modelling of various molecular complexes selecting them among those that combine the use of nuclear magnetic resonance and small angle scattering techniques. We provide a selective but focused account of some of the most exciting recent approaches and discuss their possible further developments.

  12. Using multimedia learning modules in a hybrid-online course in electricity and magnetism

    Science.gov (United States)

    Sadaghiani, Homeyra R.

    2011-06-01

    We have been piloting web-based multimedia learning modules (MLMs), developed by the Physics Education Research Group at the University of Illinois at Urbana Champaign (UIUC), as a “prelecture assignment” in several introductory physics courses at California State Polytechnic University at Pomona. In this study, we report the results from a controlled study utilizing modules on electricity and magnetism as a part of a blended hybrid-online course. We asked students in the experimental section to view the MLMs prior to attending the face-to-face class, and to make sure this would not result in additional instructional time, we reduced the weekly class time by one-third. We found that despite reduced class time, student-learning outcomes were not hindered; in fact, the implementation of the UIUC MLMs resulted in a positive effect on student performance on conceptual tests and classroom discussion questions.

  13. Magnetic composites based on hybrid spheres of aluminum oxide and superparamagnetic nanoparticles of iron oxides

    Energy Technology Data Exchange (ETDEWEB)

    Braga, Tiago P. [Langmuir - Laboratorio de Adsorcao e Catalise, Departamento de Quimica Analitica e Fisico-Quimica, Universidade Federal do Ceara, CP 6021, CEP 60455-970 Campus do Pici, Fortaleza (Brazil); Vasconcelos, Igor F. [Departamento de Engenharia Metalurgica e de Materiais, Universidade Federal do Ceara, Fortaleza (Brazil); Sasaki, Jose M. [Laboratorio de Raios X, Departamento de Fisica, Universidade Federal do Ceara, Campus do Pici, Fortaleza, CE (Brazil); Fabris, J.D.; Oliveira, Diana Q.L. de [Departamento de Quimica, Universidade Federal de Minas Gerais, Belo Horizonte (Brazil); Valentini, Antoninho, E-mail: valent@ufc.b [Langmuir - Laboratorio de Adsorcao e Catalise, Departamento de Quimica Analitica e Fisico-Quimica, Universidade Federal do Ceara, CP 6021, CEP 60455-970 Campus do Pici, Fortaleza (Brazil)

    2010-03-15

    Materials containing hybrid spheres of aluminum oxide and superparamagnetic nanoparticles of iron oxides were obtained from a chemical precursor prepared by admixing chitosan and iron and aluminum hydroxides. The oxides were first characterized with scanning electron microscopy, X-ray diffraction, and Moessbauer spectroscopy. Scanning electron microscopy micrographs showed the size distribution of the resulting spheres to be highly homogeneous. The occurrence of nano-composites containing aluminum oxides and iron oxides was confirmed from powder X-ray diffraction patterns; except for the sample with no aluminum, the superparamagnetic relaxation due to iron oxide particles were observed from Moessbauer spectra obtained at 298 and 110 K; the onset six line-spectrum collected at 20 K indicates a magnetic ordering related to the blocking relaxation effect for significant portion of small spheres in the sample with a molar ratio Al:Fe of 2:1.

  14. Using multimedia learning modules in a hybrid-online course in electricity and magnetism

    Directory of Open Access Journals (Sweden)

    Homeyra R. Sadaghiani

    2011-03-01

    Full Text Available We have been piloting web-based multimedia learning modules (MLMs, developed by the Physics Education Research Group at the University of Illinois at Urbana Champaign (UIUC, as a “prelecture assignment” in several introductory physics courses at California State Polytechnic University at Pomona. In this study, we report the results from a controlled study utilizing modules on electricity and magnetism as a part of a blended hybrid-online course. We asked students in the experimental section to view the MLMs prior to attending the face-to-face class, and to make sure this would not result in additional instructional time, we reduced the weekly class time by one-third. We found that despite reduced class time, student-learning outcomes were not hindered; in fact, the implementation of the UIUC MLMs resulted in a positive effect on student performance on conceptual tests and classroom discussion questions.

  15. General and hybrid correlation nuclear magnetic resonance analysis of phosphorus in Phytophthora palmivora.

    Science.gov (United States)

    Kirwan, Gemma M; Fernandez, David I; Niere, Julie O; Adams, Michael J

    2012-10-01

    Generalized two-dimensional (Gen2D) correlation analysis and hybrid correlation analysis have been applied to a series of dynamic (31)P nuclear magnetic resonance (NMR) spectra to monitor the in vivo metabolic changes of the plant pathogen Phytophthora palmivora in the presence and absence of phosphonate over an 18-h period. Results indicate that phosphonate exposure causes cleavage in organism polyphosphate chains as well as an increase in total sugar phosphates. In the presence of phosphonate, the NMR resonances attributed to terminal polyphosphate phosphorus reduced at a lower rate than those of middle polyphosphate phosphorus, indicating a change in average chain length and suggesting cleavage in the middle of the chain as well as at the ends. The correlation analysis techniques serve to identify and confirm spectral regions undergoing major change in the time-series data and facilitate the analysis of these dynamic changes.

  16. Magnetic silica hybrids modified with guanidine containing co-polymers for drug delivery applications

    Energy Technology Data Exchange (ETDEWEB)

    Timin, Alexander S., E-mail: a_timin@mail.ru [Inorganic Chemistry Department, Ivanovo State University of Chemistry and Technology (ISUCT), 7, Sheremetevsky prosp., 153000 Ivanovo (Russian Federation); RASA Center in Tomsk, Tomsk Polytechnic University, 30, Lenin Avenue, 634500 Tomsk (Russian Federation); Khashirova, Svetlana Yu. [Kabardino-Balkar State University, ul. Chernyshevskogo 173, Nal' chik, 360004 Kabardino-Balkaria (Russian Federation); Rumyantsev, Evgeniy V.; Goncharenko, Alexander A. [Inorganic Chemistry Department, Ivanovo State University of Chemistry and Technology (ISUCT), 7, Sheremetevsky prosp., 153000 Ivanovo (Russian Federation)

    2016-07-01

    Guanidine containing co-polymers grafted onto silica nanoparticles to form core-shell structure were prepared by sol-gel method in the presence of γ-Fe{sub 2}O{sub 3} nanoparticles. The morphological features for uncoated and coated silica particles have been characterized with scanning electron microscopy. The results show that the polymer coated silicas exhibit spherical morphology with rough polymeric surface covered by γ-Fe{sub 2}O{sub 3} nanoparticles. The grafting amount of guanidine containing co-polymers evaluated by thermogravimetric analysis was in the range from 17 to 30%. Then, the drug loading properties and cumulative release of silica hybrids modified with guanidine containing co-polymers were evaluated using molsidomine as a model drug. It was shown that after polymer grafting the loading content of molsidomine could reach up to 3.42 ± 0.21 and 2.34 ± 0.14 mg/g respectively. The maximum drug release of molsidomine is achieved at pH 1.6 (approximately 71–75% release at 37 °C), whereas at pH 7.4 drug release is lower (50.4–59.6% release at 37 °C). These results have an important implication that our magneto-controlled silica hybrids modified with guanidine containing co-polymers are promising as drug carriers with controlled behaviour under influence of magnetic field. - Highlights: • Polymer coated silica hybrids containing γ-Fe{sub 2}O{sub 3} were prepared via sol–gel method. • Polymer grafting influences pH-response and surface properties of final products. • Molsidomine as a model drug was effectively loaded into polymer coated silicas. • The drug loading depends on the nature of grafted polymer and its content.

  17. The right circular polarized waves in the three-dimensional anisotropic dispersive photonic crystals consisting of the magnetized plasma and uniaxial material as the Faraday effects considered

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hai-Feng, E-mail: hanlor@163.com, E-mail: lsb@nuaa.edu.cn [Key Laboratory of Radar Imaging and Microwave Photonics (Nanjing Univ. Aeronaut. Astronaut.), Ministry of Education, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); Nanjing Artillery Academy, Nanjing 211132 (China); Liu, Shao-Bin, E-mail: hanlor@163.com, E-mail: lsb@nuaa.edu.cn; Tang, Yi-Jun [Key Laboratory of Radar Imaging and Microwave Photonics (Nanjing Univ. Aeronaut. Astronaut.), Ministry of Education, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); Zhen, Jian-Ping [Nanjing Artillery Academy, Nanjing 211132 (China)

    2014-03-15

    In this paper, the properties of the right circular polarized (RCP) waves in the three-dimensional (3D) dispersive photonic crystals (PCs) consisting of the magnetized plasma and uniaxial material with face-centered-cubic (fcc) lattices are theoretically investigated by the plane wave expansion method, which the homogeneous anisotropic dielectric spheres (the uniaxial material) immersed in the magnetized plasma background, as the Faraday effects of magnetized plasma are considered (the incidence electromagnetic wave vector is parallel to the external magnetic field at any time). The equations for calculating the anisotropic photonic band gaps (PBGs) for the RCP waves in the first irreducible Brillouin zone are theoretically deduced. The anisotropic PBGs and a flatbands region can be obtained. The effects of the ordinary-refractive index, extraordinary-refractive index, anisotropic dielectric filling factor, plasma frequency, and plasma cyclotron frequency (the external magnetic field) on the properties of first two anisotropic PBGs for the RCP waves are investigated in detail, respectively. The numerical results show that the anisotropy can open partial band gaps in fcc lattices at U and W points, and the complete PBGs for the RCP waves can be achieved compared to the conventional 3D dispersive PCs composed of the magnetized plasma and isotropic material. It is also shown that the first two anisotropic PBGs can be tuned by those parameters as mentioned above. Those PBGs can be enlarged by introducing the uniaxial material into such 3D PCs as the Faraday effects are considered.

  18. Design and parameter estimation of hybrid magnetic bearings for blood pump applications

    Science.gov (United States)

    Lim, Tau Meng; Zhang, Dongsheng; Yang, Juanjuan; Cheng, Shanbao; Low, Sze Hsien; Chua, Leok Poh; Wu, Xiaowei

    2009-10-01

    This paper discusses the design and parameter estimation of the dynamics characteristics of a high-speed hybrid magnetic bearings (HMBs) system for axial flow blood pump applications. The rotor/impeller of the pump is driven by a three-phase permanent magnet (PM) brushless and sensorless DC motor. It is levitated by two HMBs at both ends in five-degree-of-freedom with proportional-integral-derivative (PID) controllers; among which four radial directions are actively controlled and one axial direction is passively controlled. Test results show that the rotor can be stably supported to speeds of 14,000 rpm. The frequency domain parameter estimation technique with statistical analysis is adopted to validate the stiffness and damping coefficients of the HMBs system. A specially designed test rig facilitated the estimation of the bearing's coefficients in air—in both the radial and axial directions. The radial stiffness of the HMBs is compared to the Ansoft's Maxwell 2D/3D finite element magnetostatic results. Experimental estimation showed that the dynamics characteristics of the HMBs system are dominated by the frequency-dependent stiffness coefficients. The actuator gain was also successfully calibrated and may potentially extend the parameter estimation technique developed in the study of identification and monitoring of the pump's dynamics properties under normal operating conditions with fluid.

  19. Semiconductor/Piezoelectrics Hybrid Heterostructures with Highly Effective Gate-Tunable Electrotransport and Magnetic Behaviors.

    Science.gov (United States)

    Chen, Lei; Zhao, Wei-Yao; Wang, Jing; Gao, Guan-Yin; Zhang, Jin-Xing; Wang, Yu; Li, Xiao-Min; Cao, Shi-Xun; Li, Xiao-Guang; Luo, Hao-Su; Zheng, Ren-Kui

    2016-10-12

    We report the epitaxial growth of oxygen deficient titanium dioxide thin films on 0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3 (PMN-PT) single crystals and realized highly effective in situ electrostatic manipulation of electrotransport and magnetism of TiO2-δ films via gate voltages. Upon the polarization switching in the PMN-PT, the carrier density of the TiO2-δ film could be reversibly modified, resulting in a large nonvolatile resistivity modulation by ∼51% at T = 300 K, approximately 4-12 times larger than that of other transition-metal oxide film/PMN-PT structures. By taking advantage of in situ manipulation of the carrier density via gate voltages, we found that competition between the trap of electrons by the Ti(3+)-VO pairs and that by the positive polarization charges at the interface results in a significant resistivity relaxation upon the polarization switching, and revealed that magnetization is inversely correlated with the carrier density of the TiO2-δ film. Such hybrid structures combining materials with dissimilar functionalities may have potential applications in multifunctional devices which can take advantage of the useful and unique properties of both materials.

  20. Magnetic inhibition of convection and the fundamental properties of low-mass stars. III. A consistent 10 Myr age for the Upper Scorpius OB association

    Science.gov (United States)

    Feiden, Gregory A.

    2016-09-01

    When determining absolute ages of identifiably young stellar populations, results strongly depend on which stars are studied. Cooler (K, M) stars typically yield ages that are systematically younger than warmer (A, F, G) stars by a factor of two. I explore the possibility that these age discrepancies are the result of magnetic inhibition of convection in cool young stars by using magnetic stellar evolution isochrones to determine the median age of the Upper Scorpius subgroup of the Scorpius-Centaurus OB association. A median age of 10 Myr consistent across spectral types A through M is found, except for a subset of F-type stars that appear significantly older. Agreement is shown for ages derived from the Hertzsprung-Russell (HR) diagram and from the empirical mass-radius relationship defined by eclipsing multiple-star systems. Surface magnetic field strengths required to produce agreement are approximately 2.5 kG and are predicted from a priori estimates of thermal equipartition values. A region in the HR diagram is identified that plausibly connects stars whose structures are weakly influenced by the presence of magnetic fields with those whose structures are strongly influenced by magnetic fields. The models suggest that this region is characterized by stars with rapidly thinning outer convective envelopes where the radiative core mass is greater than 75% of the total stellar mass. Furthermore, depletion of lithium predicted from magnetic models appears in better agreement with observed lithium equivalent widths than predictions from non-magnetic models. These results suggest that magnetic inhibition of convection plays an important role in the early evolution of low-mass stars and that it may be responsible for noted age discrepancies in young stellar populations.

  1. Search For a Consistent Mean-Field Treatment of Magnetic Properties of Yittrium-Cobalt-5 Under Moderate Hydrostatic Stress

    Energy Technology Data Exchange (ETDEWEB)

    Benedict, Lorin X. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Aberg, Daniel [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Soderlind, Per [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Sadigh, Babak [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Daene, Markus [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-10-26

    We explore the use of particular variants of DFT + U and DFT + orbital polarization (OP) to calculate the electronic structure and magnetic properties of YCo5 under hydrostatic pressures up to 600 kbar. While the speci c DFT + U (with U= 0.75 eV) and DFT + OP schemes we employ produce magneto-crystalline anisotropy energies for YCo5 in good agreement with experiments performed in ambient conditions, our DFT + U results are shown to greatly overestimate the pressure at which a high-spin to low-spin (HS-LS) transition is known to occur. In contrast, our DFT + OP results predict the HS-LS transition to occur at the same stress as DFT, and in better agreement with experiment. This sensitivity suggests that care should be taken when attempting to model magnetic properties with self-interaction and/or correlation corrections to DFT for this and related materials, and highlights the usefulness of moderate pressure as an additional parameter to vary when discriminating between candidate theoretical schemes.

  2. PHOTOSPHERE EMISSION FROM A HYBRID RELATIVISTIC OUTFLOW WITH ARBITRARY DIMENSIONLESS ENTROPY AND MAGNETIZATION IN GRBs

    Energy Technology Data Exchange (ETDEWEB)

    Gao, He [Current address: Department of Astronomy and Astrophysics, Department of Physics, Center for Particle Astrophysics, Pennsylvania State University, University Park, PA 16802 (United States); Zhang, Bing, E-mail: gaohe@physics.unlv.edu, E-mail: zhang@physics.unlv.edu, E-mail: hug18@psu.edu [Department of Physics and Astronomy, University of Nevada, Las Vegas, NV 89154 (United States)

    2015-03-10

    In view of the recent Fermi observations of gamma-ray burst (GRB) prompt emission spectra, we develop a theory of photosphere emission of a hybrid relativistic outflow with a hot fireball component (defined by dimensionless entropy η) and a cold Poynting-flux component (defined by magnetization σ{sub 0} at the central engine). We consider the scenarios both without and with sub-photospheric magnetic dissipations. Based on a simplified toy model of jet dynamics, we develop two approaches: a 'bottom-up' approach to predict the temperature (for a non-dissipative photosphere) and luminosity of the photosphere emission and its relative brightness for a given pair of (η, σ{sub 0}); and a 'top-down' approach to diagnose central engine parameters (η and σ{sub 0}) based on the observed quasi-thermal photosphere emission properties. We show that a variety of observed GRB prompt emission spectra with different degrees of photosphere thermal emission can be reproduced by varying η and σ{sub 0} within the non-dissipative photosphere scenario. In order to reproduce the observed spectra, the outflows of most GRBs need to have a significant σ, both at the central engine and at the photosphere. The σ value at 10{sup 15} cm from the central engine (a possible non-thermal emission site) is usually also greater than unity, so that internal-collision-induced magnetic reconnection and turbulence (ICMART) may be the mechanism to power the non-thermal emission. We apply our top-down approach to GRB 110721A and find that the temporal evolution behavior of its blackbody component can be well interpreted with a time-varying (η, σ{sub 0}) at the central engine, instead of invoking a varying engine base size r {sub 0} as proposed by previous authors.

  3. Self-Assembly of 1D/2D Hybrid Nanostructures Consisting of a Cd(II Coordination Polymer and NiAl-Layered Double Hydroxides

    Directory of Open Access Journals (Sweden)

    Gonzalo Abellán

    2015-12-01

    Full Text Available The preparation and characterization of a novel hybrid material based on the combination of a 2D-layered double hydroxide (LDH nanosheets and a 1D-coordination polymer (1D-CP has been achieved through a simple mixture of suspensions of both building blocks via an exfoliation/restacking approach. The hybrid material has been thoroughly characterized demonstrating that the 1D-CP moieties are intercalated as well as adsorbed on the surface of the LDH, giving rise to a layered assembly with the coexistence of the functionalities of their initial constituents. This hybrid represents the first example of the assembly of 1D/2D nanomaterials combining LDH with CP and opens the door for a plethora of different functional hybrid systems.

  4. Heat transfer and entropy generation analysis of hybrid graphene/Fe3O4 ferro-nanofluid flow under the influence of a magnetic field

    DEFF Research Database (Denmark)

    Mehrali, Mohammad; Sadeghinezhad, Emad; Akhiani, Amir Reza

    2017-01-01

    The heat transfer characteristics and entropy generation rate of hybrid graphene-magnetite nanofluids under forced laminar flow that subjected to the permanent magnetic fields were investigated. For this purpose, a nanoscale reduced graphene oxide-Fe3O4 hybrid was synthesized by using graphene...... oxide, iron salts and tannic acid as the reductant and stabilizer. The thermophysical and magnetic properties of the hybrid nanofluid have been widely characterized and thermal conductivity has shown an enhancement of 11%. The experimental results indicated that the heat transfer enhancement of hybrid...

  5. A self-consistent two-dimensional resistive fluid theory of field-aligned potential structures including charge separation and magnetic and velocity shear

    Science.gov (United States)

    Hesse, Michael; Birn, Joachim; Schindler, Karl

    1990-01-01

    A self-consistent two-fluid theory that includes the magnetic field and shear patterns is developed to model stationary electrostatic structures with field-aligned potential drops. Shear flow is also included in the theory since this seems to be a prominent feature of the structures of interest. In addition, Ohmic dissipation, a Hall term, and pressure gradients in a generalized Ohm's law, modified for cases without quasi-neutrality, are included. In the analytic theory, the electrostatic force is balanced by field-aligned pressure gradients (i.e., thermal effects in the direction of the magnetic field) and by pressure gradients and magnetic stresses in the perpendicular direction. Within this theory, simple examples of applications are presented to demonstrate the kind of solutions resulting from the model. The results show how the effects of charge separation and shear in the magnetic field and the velocity can be combined to form self-consistent structures such as are found to exist above the aurora, suggested also in association with solar flares.

  6. Exact solution of the problem about an electron in a magnetic field consisting of uniform field and arbitrarily disposed magnetic strings parallel to it

    CERN Document Server

    Dubrovskij, I M

    2002-01-01

    It is shown that the requirements of finiteness, uniqueness, and definiteness of the wave function and the density of probability flux necessitate that as a string is approached the wave function of an electron should decrease module faster than the square root of the distance to the string (the infinitely thin sole noid with a finite magnetic flux is named a magnetic string). An energy spectrum of an electron is obtained. In the general case it coincides with that in the absence of strings. A general view of the eigenfunctions of the ground state is found. The eigen functions of the upper states can be obtained by acting on these functions with the operator that is derived too. In the case where there is only one string with a magnetic flux not multiple of the doubled quantum one, the energy spectrum displays yet another equidistant sequence of the eigenvalues. It is displaced from the common one by a fraction of the interval that equals the positive fractional part of the quotient of the magnetic flux by th...

  7. THREE-DIMENSIONAL ATMOSPHERIC CIRCULATION MODELS OF HD 189733b AND HD 209458b WITH CONSISTENT MAGNETIC DRAG AND OHMIC DISSIPATION

    Energy Technology Data Exchange (ETDEWEB)

    Rauscher, Emily [Lunar and Planetary Laboratory, University of Arizona, 1629 East University Blvd., Tucson, AZ 85721 (United States); Menou, Kristen [Department of Astronomy, Columbia University, 550 West 120th St., New York, NY 10027 (United States)

    2013-02-10

    We present the first three-dimensional circulation models for extrasolar gas giant atmospheres with geometrically and energetically consistent treatments of magnetic drag and ohmic dissipation. Atmospheric resistivities are continuously updated and calculated directly from the flow structure, strongly coupling the magnetic effects with the circulation pattern. We model the hot Jupiters HD 189733b (T {sub eq} Almost-Equal-To 1200 K) and HD 209458b (T {sub eq} Almost-Equal-To 1500 K) and test planetary magnetic field strengths from 0 to 30 G. We find that even at B = 3 G the atmospheric structure and circulation of HD 209458b are strongly influenced by magnetic effects, while the cooler HD 189733b remains largely unaffected, even in the case of B = 30 G and super-solar metallicities. Our models of HD 209458b indicate that magnetic effects can substantially slow down atmospheric winds, change circulation and temperature patterns, and alter observable properties. These models establish that longitudinal and latitudinal hot spot offsets, day-night flux contrasts, and planetary radius inflation are interrelated diagnostics of the magnetic induction process occurring in the atmospheres of hot Jupiters and other similarly forced exoplanets. Most of the ohmic heating occurs high in the atmosphere and on the dayside of the planet, while the heating at depth is strongly dependent on the internal heat flux assumed for the planet, with more heating when the deep atmosphere is hot. We compare the ohmic power at depth in our models, and estimates of the ohmic dissipation in the bulk interior (from general scaling laws), to evolutionary models that constrain the amount of heating necessary to explain the inflated radius of HD 209458b. Our results suggest that deep ohmic heating can successfully inflate the radius of HD 209458b for planetary magnetic field strengths of B {>=} 3-10 G.

  8. Efficient boron abstraction using honeycomb-like porous magnetic hybrids: Assessment of techno-economic recovery of boric acid.

    Science.gov (United States)

    Oladipo, Akeem Adeyemi; Gazi, Mustafa

    2016-12-01

    Porous magnetic hybrids were synthesized and functionalized with glycidol to produce boron-selective adsorbent. The magnetic hybrid (MH) comparatively out-performed the existing expensive adsorbents. MH had a saturation magnetisation of 63.48 emu/g and average pore diameter ranging from meso to macropores. The magnetic hybrids showed excellent selectivity towards boron and resulted in 79-93% boron removal even in the presence of competing metal ions (Na(+) and Cr(2+)). Experiments were performed in a column system, and breakthrough time was observed to increase with bed depths and decreased with flow rates. The batch experiments revealed that 60 min was enough to achieve equilibrium, and the level of boron sorption was 108.5 mg/g from a synthetic solution. Several adsorption-desorption cycles were performed using a simple acid-water treatment and evaluated using various kinetic models. The spent adsorbents could be separated easily from the mixture by an external magnetic field. The cost-benefit analysis was performed for the treatment of 72 m(3)/year boron effluent, including five years straight line depreciation charges of equipment. The net profit and standard percentage confirmed that the recovery process is economically feasible.

  9. Consistency between magnetic resonance diffusion-weighted images and pathological findings in a hyperacute cerebral infarction rabbit model

    Institute of Scientific and Technical Information of China (English)

    Mingwu Lou; Zengyan Li; Weidong Hu; Yi Fan; Xiurong Wang; Guangfu Yang

    2009-01-01

    BACKGROUND:Because magnetic resonance diffusion-weighted imaging is sensitive to water molecule movement,it has particular advantages for early diagnosis of cerebral infarction.However,the relationship between apparent diffusion coefficient changes with ischemia time,particularly relative apparent diffusion coefficient and tissue pathological changes remains controversial.OBJECTIVE:To explore the correlation between apparent diffusion coefficient changes and pathologic changes in hyperacute cerebral infarction.DESIGN,TIME AND SETTING:A randomized,controlled,animal experiment of neuroimaging.The study was performed at the Laboratory of Radiology Department,Longgang Central Hospital of Shenzhen from October 2007 to October 2008.MATERIALS:Magnetic resonance scanner was purchased from Philips Medical Systems,Best,the Netherlands.METHODS:A total of 42 healthy,adult,New Zealand rabbits were randomly assigned into sham-operation,ischemia 0.5-,1-,2-,3-,4-,and 6-hour groups,with six animals in each group.Local cerebral ischemia model was established by right middle cerebral artery occlusion,and cranial MRI scanning and pathologic observation were performed,respectively,at 0.5,1,2,3,4,and 6 hours following ischemia.The middle cerebral artery of sham-operation group was only exposed,but not occluded.Images at the above-mentioned time points were also collected.MAIN OUTCOME MEASURES:Apparent diffusion coefficient and relative apparent diffusion coefficient values of abnormal signal on diffusion-weighted imaging were calculated and compared with pathological changes in the ischemic region.RESULTS:No abnormal diffusion-weighted imaging signals or pathological changes were observed in the sham-operation group.Abnormal signal intensity on diffusion-weighted imaging was first observed in the 0.5-hour group.Apparent diffusion coefficient and relative apparent diffusion coefficient values decreased in all middle cerebral artery occlusion rabbits and reached lowest levels at 3 hours

  10. Electric quadrupole and magnetic dipole moments of odd nuclei near the magic ones in a self-consistent approach

    CERN Document Server

    Co', G; Anguiano, M; Bernard, R N; Lallena, A M

    2015-01-01

    We present a model which describes the properties of odd-even nuclei with one nucleon more, or less, with respect to the magic number. In addition to the effects related to the unpaired nucleon, we consider those produced by the excitation of the closed shell core. By using a single particle basis generated with Hartree-Fock calculations, we describe the polarization of the doubly magic-core with Random Phase Approximation collective wave functions. In every step of the calculation, and for all the nuclei considered, we use the same finite-range nucleon-nucleon interaction. We apply our model to the evaluation of electric quadrupole and magnetic dipole moments of odd-even nuclei around oxygen, calcium, zirconium, tin and lead isotopes. Our Random Phase Approximation description of the polarization of the core improves the agreement with experimental data with respect to the predictions of the independent particle model. We compare our results with those obtained in first-order perturbation theory, with those ...

  11. A Smart Polymer Composite Based on a NiTi Ribbon and a Magnetic Hybrid Material for Actuators with Multiphysic Transduction

    Directory of Open Access Journals (Sweden)

    Beatriz López-Walle

    2015-12-01

    Full Text Available A smart composite material constituted of a magnetic hybrid film and a NiTi shape memory alloy (SMA ribbon was obtained and characterized. The magnetic hybrid film was joined to the NiTi ribbon in order to combine the properties of both materials. This new composite material combines magnetic properties of the hybrid film, (Fe2O3-CMC/(polyvinyl butyral, and the shape memory properties of the NiTi ribbon, which has a chemical composition of Ti-50.13 at. % Ni. This smart composite material has a mass of 18.3% NiTi ribbon and 81.7% magnetic hybrid film. Results obtained by DSC show that the smart composite material presents a small delay of transformation during warming and cooling because the magnetic hybrid film acts like a thermal insulator. Thermomechanical results indicate that the hybrid material also acts as a mechanical reinforcement, since it is observed that the Stress-Assisted Two-Way Memory Effect (SATWME of the smart composite is lower than the SATWME of the SMA ribbon. The density current values of phase transformations were clearly identified with a thermomechanical apparatus developed in our laboratory. Finally, displacements of the smart composite material in cantilever configuration are obtained by applying an external magnetic field. All these results demonstrate that the smart composite material can be activated by temperature, electrical current, stress, and/or magnetic field, offering good expectations for actuating applications with multiphysic transduction.

  12. Shimming with permanent magnets for the x-ray detector in a hybrid x-ray/ MR system.

    Science.gov (United States)

    Wen, Zhifei; Fahrig, Rebecca; Williams, Scott T; Pelc, Norbert J

    2008-09-01

    In this x-ray/MR hybrid system an x-ray flat panel detector is placed under the patient cradle, close to the MR volume of interest (VOI), where the magnetic field strength is approximately 0.5 T. Immersed in this strong field, several electronic components inside the detector become magnetized and create an additional magnetic field that is superimposed on the original field of the MR scanner. Even after linear shimming, the field homogeneity of the MR scanner remains disrupted by the detector. The authors characterize the field due to the detector with the field of two magnetic dipoles and further show that two sets of permanent magnets (NdFeB) can withstand the main magnetic field and compensate for the nonlinear components of the additional field. The ideal number of magnets and their locations are calculated based on a field map measured with the detector in place. Experimental results demonstrate great promise for this technique, which may be useful in many settings where devices with magnetic components need to be placed inside or close to an MR scanner.

  13. Design and Mathematical Analysis of a Novel Reluctance Force-Type Hybrid Magnetic Bearing for Flywheel with Gimballing Capability

    Directory of Open Access Journals (Sweden)

    Chun'e Wang

    2013-01-01

    Full Text Available Magnetically suspended flywheel (MSFW with gimballing capability fulfills requirements of precision and maneuvers for space applications. A novel reluctance force-type hybrid magnetic bearing (RFHMB is presented based on analysis of demerits of Lorentz force-type magnetic bearing and common RFHMB. It features that radial and axial magnetic bearing units are integrated into a compact assembly with four separate biased permanent magnets and two conical stators; four radial poles with shoes and rotor made of iron-based amorphousness can reduce eddy loss. Equivalent magnetic circuits of permanent magnets and their control currents are presented. Simulation results indicate flux density fluctuates from 0.272 T to 0.41 T; rotor tilting does not affect the suspension force when rotor only tilts around X-axis or Y-axis. When rotor drifts in X, Y, or Z direction and tilts around X-axis or Y-axis simultaneously, force in corresponding directions slightly increases with tilting angle’s enlargement, but the maximum change does not exceed 14%. Additional tilting torque mainly determined by uniformity of flux density in conical air gaps is 0.05 Nm which is far smaller than 11 Nm in common RFHMB; magnetic suspension force is effectively decoupled among X, Y, and Z directions; results prove that MSFW with gimballing capability theoretically meets maneuvering requirement of spacecraft.

  14. Parameter estimation and actuator characteristics of hybrid magnetic bearings for axial flow blood pump applications.

    Science.gov (United States)

    Lim, Tau Meng; Cheng, Shanbao; Chua, Leok Poh

    2009-07-01

    Axial flow blood pumps are generally smaller as compared to centrifugal pumps. This is very beneficial because they can provide better anatomical fit in the chest cavity, as well as lower the risk of infection. This article discusses the design, levitated responses, and parameter estimation of the dynamic characteristics of a compact hybrid magnetic bearing (HMB) system for axial flow blood pump applications. The rotor/impeller of the pump is driven by a three-phase permanent magnet brushless and sensorless motor. It is levitated by two HMBs at both ends in five degree of freedom with proportional-integral-derivative controllers, among which four radial directions are actively controlled and one axial direction is passively controlled. The frequency domain parameter estimation technique with statistical analysis is adopted to validate the stiffness and damping coefficients of the HMB system. A specially designed test rig facilitated the estimation of the bearing's coefficients in air-in both the radial and axial directions. Experimental estimation showed that the dynamic characteristics of the HMB system are dominated by the frequency-dependent stiffness coefficients. By injecting a multifrequency excitation force signal onto the rotor through the HMBs, it is noticed in the experimental results the maximum displacement linear operating range is 20% of the static eccentricity with respect to the rotor and stator gap clearance. The actuator gain was also successfully calibrated and may potentially extend the parameter estimation technique developed in the study of identification and monitoring of the pump's dynamic properties under normal operating conditions with fluid.

  15. Testing of a centrifugal blood pump with a high efficiency hybrid magnetic bearing.

    Science.gov (United States)

    Locke, Dennis H; Swanson, Erik S; Walton, James F; Willis, John P; Heshmat, Hooshang

    2003-01-01

    The purpose of this article is to present test results for a second generation, high efficiency, nonpulsatile centrifugal blood pump that is being developed for use as a left ventricular assist device (LVAD). The LVAD pump uses a hybrid passive-active magnetic bearing support system that exhibits extremely low power loss, low vibration, and high reliability under transient conditions and varying pump orientations. A unique feature of the second generation design configuration is the very simple and direct flow path for both main and washing blood flows. The pump was tested in both vertical and horizontal orientations using a standard flow loop to demonstrate the performance and durability of the second generation LVAD. Steady state and transient orientation pump operating characteristics including pressure, flow, speed, temperatures, vibration, and rotor orientation were measured. During the tests, pump performance was mapped at several operating conditions including points above and below the nominal design of 5 L/min at 100 mm Hg pressure rise. Flow rates from 2 to 7 L/min and pressure rises from 50 to 150 mm Hg were measured. Pump speeds were varied during these tests from 2,500 to 3,500 rpm. The nominal design flow of 5 L/min at 100 mm Hg pressure rise was successfully achieved at the design speed of 3,000 rpm. After LVAD performance testing, both 28 day continuous duty and 5 day transient orientation durability tests were completed without incident. A hydrodynamic backup bearing design feasibility study was also conducted. Results from this design study indicate that an integral hydrodynamic backup bearing may be readily incorporated into the second generation LVAD and other magnetically levitated pump rotors.

  16. Self-assembled organic–inorganic magnetic hybrid adsorbent ferrite based on cyclodextrin nanoparticles

    Directory of Open Access Journals (Sweden)

    Ângelo M. L. Denadai

    2012-11-01

    Full Text Available Organic–inorganic magnetic hybrid materials (MHMs combine a nonmagnetic and a magnetic component by means of electrostatic interactions or covalent bonds, and notable features can be achieved. Herein, we describe an application of a self-assembled material based on ferrite associated with β-cyclodextrin (Fe-Ni/Zn/βCD at the nanoscale level. This MHM and pure ferrite (Fe-Ni/Zn were used as an adsorbent system for Cr3+ and Cr2O72− ions in aqueous solutions. Prior to the adsorption studies, both ferrites were characterized in order to determine the particle size distribution, morphology and available binding sites on the surface of the materials. Microscopy analysis demonstrated that both ferrites present two different size domains, at the micro- and nanoscale level, with the latter being able to self-assemble into larger particles. Fe-Ni/Zn/βCD presented smaller particles and a more homogeneous particle size distribution. Higher porosity for this MHM compared to Fe-Ni/Zn was observed by Brunauer–Emmett–Teller isotherms and positron-annihilation-lifetime spectroscopy. Based on the pKa values, potentiometric titrations demonstrated the presence of βCD in the inorganic matrix, indicating that the lamellar structures verified by transmission electronic microscopy can be associated with βCD assembled structures. Colloidal stability was inferred as a function of time at different pH values, indicating the sedimentation rate as a function of pH. Zeta potential measurements identified an amphoteric behavior for the Fe-Ni/Zn/βCD, suggesting its better capability to remove ions (cations and anions from aqueous solutions compared to that of Fe-Ni/Zn.

  17. Jovian plasma torus interaction with Europa. Plasma wake structure and effect of inductive magnetic field: 3D Hybrid kinetic simulation

    CERN Document Server

    Lipatov, A S; Paterson, W R; Sittler, E C; Hartle, R E; Simpson, D G

    2012-01-01

    The hybrid kinetic model supports comprehensive simulation of the interaction between different spatial and energetic elements of the Europa moon-magnetosphere system with respect a to variable upstream magnetic field and flux or density distributions of plasma and energetic ions, electrons, and neutral atoms. This capability is critical for improving the interpretation of the existing Europa flyby measurements from the Galileo Orbiter mission, and for planning flyby and orbital measurements (including the surface and atmospheric compositions) for future missions. The simulations are based on recent models of the atmosphere of Europa (Cassidy et al., 2007; Shematovich et al., 2005). In contrast to previous approaches with MHD simulations, the hybrid model allows us to fully take into account the finite gyroradius effect and electron pressure, and to correctly estimate the ion velocity distribution and the fluxes along the magnetic field (assuming an initial Maxwellian velocity distribution for upstream backgr...

  18. Spin Seebeck effect and thermoelectric phenomena in superconducting hybrids with magnetic textures or spin-orbit coupling

    Science.gov (United States)

    Bathen, Marianne Etzelmüller; Linder, Jacob

    2017-01-01

    We theoretically consider the spin Seebeck effect, the charge Seebeck coefficient, and the thermoelectric figure of merit in superconducting hybrid structures including either magnetic textures or intrinsic spin-orbit coupling. We demonstrate that large magnitudes for all these quantities are obtainable in Josephson-based systems with either zero or a small externally applied magnetic field. This provides an alternative to the thermoelectric effects generated in high-field (~1 T) superconducting hybrid systems, which were recently experimentally demonstrated. The systems studied contain either conical ferromagnets, spin-active interfaces, or spin-orbit coupling. We present a framework for calculating the linear thermoelectric response for both spin and charge of a system upon applying temperature and voltage gradients based on quasiclassical theory which allows for arbitrary spin-dependent textures and fields to be conveniently incorporated.

  19. Magnetic characterisation of large grain, bulk Y-Ba-Cu-O superconductor-soft ferromagnetic alloy hybrid structures

    Science.gov (United States)

    Philippe, M. P.; Fagnard, J.-F.; Kirsch, S.; Xu, Z.; Dennis, A. R.; Shi, Y.-H.; Cardwell, D. A.; Vanderheyden, B.; Vanderbemden, P.

    2014-07-01

    Large grain, bulk Y-Ba-Cu-O (YBCO) high temperature superconductors (HTS) have significant potential for use in a variety of practical applications that incorporate powerful quasi-permanent magnets. In the present work, we investigate how the trapped field of such magnets can be improved by combining bulk YBCO with a soft FeNi, ferromagnetic alloy. This involves machining the alloy into components of various shapes, such as cylinders and rings, which are attached subsequently to the top surface of a solid, bulk HTS cylinder. The effect of these modifications on the magnetic hysteresis curve and trapped field of the bulk superconductor at 77 K are then studied using pick-up coil and Hall probe measurements. The experimental data are compared to finite element modelling of the magnetic flux distribution using Campbell’s algorithm. Initially we establish the validity of the technique involving pick-up coils wrapped around the bulk superconductor to obtain its magnetic hysteresis curve in a non-destructive way and highlight the difference between the measured signal and the true magnetization of the sample. We then consider the properties of hybrid ferromagnet/superconductor (F/S) structures. Hall probe measurements, together with the results of the model, establish that flux lines curve outwards through the ferromagnet, which acts, effectively, like a magnetic short circuit. Magnetic hysteresis curves show that the effects of the superconductor and the ferromagnet simply add when the ferromagnet is saturated fully by the applied field. The trapped field of the hybrid structure is always larger than that of the superconductor alone below this saturation level, and especially when the applied field is removed. The results of the study show further that the beneficial effects on the trapped field are enhanced when the ferromagnet covers the entire surface of the superconductor for different ferromagnetic components of various shapes and fixed volume.

  20. Nuclear magnetic shielding constants of liquid water: Insights from hybrid quantum mechanics/molecular mechanics models

    Science.gov (United States)

    Kongsted, Jacob; Nielsen, Christian B.; Mikkelsen, Kurt V.; Christiansen, Ove; Ruud, Kenneth

    2007-01-01

    We present a gauge-origin independent method for the calculation of nuclear magnetic shielding tensors of molecules in a structured and polarizable environment. The method is based on a combination of density functional theory (DFT) or Hartree-Fock wave functions with molecular mechanics. The method is unique in the sense that it includes three important properties that need to be fulfilled in accurate calculations of nuclear magnetic shielding constants: (i) the model includes electron correlation effects, (ii) the model uses gauge-including atomic orbitals to give gauge-origin independent results, and (iii) the effect of the environment is treated self-consistently using a discrete reaction-field methodology. The authors present sample calculations of the isotropic nuclear magnetic shielding constants of liquid water based on a large number of solute-solvent configurations derived from molecular dynamics simulations employing potentials which treat solvent polarization either explicitly or implicitly. For both the O17 and H1 isotropic shielding constants the best predicted results compare fairly well with the experimental data, i.e., they reproduce the experimental solvent shifts to within 4ppm for the O17 shielding and 1ppm for the H1 shielding.

  1. Nuclear magnetic shielding constants of liquid water: insights from hybrid quantum mechanics/molecular mechanics models.

    Science.gov (United States)

    Kongsted, Jacob; Nielsen, Christian B; Mikkelsen, Kurt V; Christiansen, Ove; Ruud, Kenneth

    2007-01-21

    We present a gauge-origin independent method for the calculation of nuclear magnetic shielding tensors of molecules in a structured and polarizable environment. The method is based on a combination of density functional theory (DFT) or Hartree-Fock wave functions with molecular mechanics. The method is unique in the sense that it includes three important properties that need to be fulfilled in accurate calculations of nuclear magnetic shielding constants: (i) the model includes electron correlation effects, (ii) the model uses gauge-including atomic orbitals to give gauge-origin independent results, and (iii) the effect of the environment is treated self-consistently using a discrete reaction-field methodology. The authors present sample calculations of the isotropic nuclear magnetic shielding constants of liquid water based on a large number of solute-solvent configurations derived from molecular dynamics simulations employing potentials which treat solvent polarization either explicitly or implicitly. For both the (17)O and (1)H isotropic shielding constants the best predicted results compare fairly well with the experimental data, i.e., they reproduce the experimental solvent shifts to within 4 ppm for the (17)O shielding and 1 ppm for the (1)H shielding.

  2. Construction, expression and characterization of a plasmid-encoded Na(+)-specific ATPase hybrid consisting of Propionigenium modestum F0-ATPase and Escherichia coli F1-ATPase.

    Science.gov (United States)

    Kaim, G; Dimroth, P

    1994-06-01

    The Escherichia coli strain DK8, a deletion mutant lacking the complete unc operon, was transformed with a plasmid containing the genes encoding the a, b, c, delta and part of the alpha subunit of the Na(+)-dependent ATPase of Propionigenium modestum and the genes encoding the alpha, gamma, beta and epsilon subunits of the H(+)-dependent E. coli ATPase. The transformants showed Na(+)-dependent growth on succinate as non-fermentable carbon source. The functionally expressed hybrid ATPase was activated 13-fold at pH 7.5 by the addition of Na+ and inhibited by 1,3-dicyclohexylcarbodiimide, azide and tributyltin chloride. At pH 7.5 and pH 9.0, the hybrid enzyme was protected from inhibition by 1,3-dicyclohexylcarbodiimide in the presence of 50 mM NaCl and 5 mM NaCl, respectively. The hybrid ATPase was reconstituted into proteoliposomes and catalyzed the transport of Na+ upon ATP addition. ATP-dependent fluorescence quenching of 9-amino-6-chloro-2-methoxyacridine proved that the ATPase hybrid was able to pump protons in the absence of Na+. Furthermore, ATP synthesis could be measured under conditions where a valinomycin-mediated K+ diffusion potential (delta psi) and a Na+ concentration gradient (delta p Na+) were imposed.

  3. A hypoallergenic hybrid molecule with increased immunogenicity consisting of derivatives of the major grass pollen allergens, Phl p 2 and Phl p 6.

    Science.gov (United States)

    Linhart, Birgit; Mothes-Luksch, Nadine; Vrtala, Susanne; Kneidinger, Michael; Valent, Peter; Valenta, Rudolf

    2008-07-01

    Allergen-specific immunotherapy is currently based on the administration of allergen extracts containing natural allergens. However, its broad application is limited by the poor quality of these extracts. Based on recombinant allergens, well-defined allergy vaccines for allergen-specific immunotherapy can be produced. Furthermore, they can be modified to reduce their allergenic activity and to avoid IgE-mediated side effects. Here, we demonstrate that the immunogenicity of two grass pollen-derived hypoallergenic allergen derivatives could be increased by engineering them as a single hybrid molecule. We used a hypoallergenic Phl p 2 mosaic, generated by fragmentation of the Phl p 2 sequence and reassembly of the resulting peptides in an altered order, and a truncated Phl p 6 allergen, to produce a hybrid protein. The hybrid retained the reduction of IgE reactivity and allergenic activity of its components as shown by ELISA and basophil activation assays. Immunization with the hybrid molecule demonstrated the increased immunogenicity of this molecule, leading to higher levels of allergen-specific IgG antibodies compared to the single components. These antibodies could inhibit patients' IgE binding to the wild-type allergens. Thus, the described strategy allows the development of safer and more efficacious vaccines for the treatment of grass pollen allergy.

  4. Superconductivity-induced magnetization depletion in a ferromagnet through an insulator in a ferromagnet-insulator-superconductor hybrid oxide heterostructure.

    Science.gov (United States)

    Prajapat, C L; Singh, Surendra; Paul, Amitesh; Bhattacharya, D; Singh, M R; Mattauch, S; Ravikumar, G; Basu, S

    2016-05-21

    Coupling between superconducting and ferromagnetic states in hybrid oxide heterostructures is presently a topic of intense research. Such a coupling is due to the leakage of the Cooper pairs into the ferromagnet. However, tunneling of the Cooper pairs though an insulator was never considered plausible. Using depth sensitive polarized neutron reflectivity we demonstrate the coupling between superconductor and magnetic layers in epitaxial La2/3Ca1/3MnO3 (LCMO)/SrTiO3/YBa2Cu3O7-δ (YBCO) hybrid heterostructures, with SrTiO3 as an intervening oxide insulator layer between the ferromagnet and the superconductor. Measurements above and below the superconducting transition temperature (TSC) of YBCO demonstrate a large modulation of magnetization in the ferromagnetic layer below the TSC of YBCO in these heterostructures. This work highlights a unique tunneling phenomenon between the epitaxial layers of an oxide superconductor (YBCO) and a magnetic layer (LCMO) through an insulating layer. Our work would inspire further investigations on the fundamental aspect of a long range order of the triplet spin-pairing in hybrid structures.

  5. Resonant photoluminescence and dynamics of a hybrid Mn hole spin in a positively charged magnetic quantum dot

    Science.gov (United States)

    Lafuente-Sampietro, A.; Boukari, H.; Besombes, L.

    2017-06-01

    We analyze, through resonant photoluminescence, the spin dynamics of an individual magnetic atom (Mn) coupled to a hole in a semiconductor quantum dot. The hybrid Mn hole spin and the positively charged exciton in a CdTe/ZnTe quantum dot form an ensemble of Λ systems which can be addressed optically. Autocorrelation of the resonant photoluminescence and resonant optical pumping experiments are used to study the spin relaxation channels in this multilevel spin system. We identified for the hybrid Mn hole spin an efficient relaxation channel driven by the interplay of the Mn hole exchange interaction and the coupling to acoustic phonons. We also show that the optical Λ systems are connected through inefficient spin flips than can be enhanced under weak transverse magnetic field. The dynamics of the resonant photoluminescence in a p -doped magnetic quantum dot is well described by a complete rate equation model. Our results suggest that long-lived hybrid Mn hole spin could be obtained in quantum dot systems with large heavy-hole/light-hole splitting.

  6. Superconductivity-induced magnetization depletion in a ferromagnet through an insulator in a ferromagnet-insulator-superconductor hybrid oxide heterostructure

    Science.gov (United States)

    Prajapat, C. L.; Singh, Surendra; Paul, Amitesh; Bhattacharya, D.; Singh, M. R.; Mattauch, S.; Ravikumar, G.; Basu, S.

    2016-05-01

    Coupling between superconducting and ferromagnetic states in hybrid oxide heterostructures is presently a topic of intense research. Such a coupling is due to the leakage of the Cooper pairs into the ferromagnet. However, tunneling of the Cooper pairs though an insulator was never considered plausible. Using depth sensitive polarized neutron reflectivity we demonstrate the coupling between superconductor and magnetic layers in epitaxial La2/3Ca1/3MnO3 (LCMO)/SrTiO3/YBa2Cu3O7-δ (YBCO) hybrid heterostructures, with SrTiO3 as an intervening oxide insulator layer between the ferromagnet and the superconductor. Measurements above and below the superconducting transition temperature (TSC) of YBCO demonstrate a large modulation of magnetization in the ferromagnetic layer below the TSC of YBCO in these heterostructures. This work highlights a unique tunneling phenomenon between the epitaxial layers of an oxide superconductor (YBCO) and a magnetic layer (LCMO) through an insulating layer. Our work would inspire further investigations on the fundamental aspect of a long range order of the triplet spin-pairing in hybrid structures.

  7. Cyto/hemocompatible magnetic hybrid nanoparticles (Ag2S-Fe3O4) with luminescence in the near-infrared region as promising theranostic materials.

    Science.gov (United States)

    Hocaoglu, Ibrahim; Asik, Didar; Ulusoy, Gulen; Grandfils, Christian; Ojea-Jimenez, Isaac; Rossi, François; Kiraz, Alper; Doğan, Nurcan; Acar, Havva Yagci

    2015-09-01

    Small hybrid nanoparticles composed of highly biocompatible Ag2S quantum dots (QD) emitting in the near-infrared region and superparamagnetic iron oxide (SPION) are produced in a simple extraction method utilizing ligand exchange mechanism. Hybrid nanoparticles luminesce at the same wavelength as the parent QD, therefore an array of hybrid nanoparticles with emission between 840 and 912nm were easily produced. Such hybrid structures have (1) strong luminescence in the medical imaging window eliminating the autofluoresence of cells as effective optical probes, (2) strong magnetic response for magnetic targeting and (3) good cyto/hemocompatibility. An interesting size dependent cytotoxicity behavior was observed in HeLa and NIH/3T3 cell lines: smallest particles are internalized significantly more by both of the cell lines, yet showed almost no significant cytotoxicity in HeLa between 10 and 25μg/mL Ag concentration but were most toxic in NIH/3T3 cells. Cell internalization and hence the cytotoxicity enhanced when cells were incubated with the hybrid nanoparticles under magnetic field, especially with the hybrid nanoparticles containing larger amounts of SPION in the hybrid composition. These results prove them as effective optical imaging agents and magnetic delivery vehicles. Combined with the known advantages of SPIONs as a contrast agent in MRI, these particles are a step forward for new theranostics for multimode imaging and magnetic targeting.

  8. Self-consistent Bogoliubov-de Gennes theory of the vortex lattice state in a two-dimensional strongly type-II superconductor at high magnetic fields

    Science.gov (United States)

    Zhuravlev, Vladimir; Duan, Wenye; Maniv, Tsofar

    2017-01-01

    A self-consistent Bogoliubov-de Gennes theory of the vortex lattice state in a 2D strong type-II superconductor at high magnetic fields reveals a novel quantum mixed state around the semiclassical Hc 2, characterized by a well-defined Landau-Bloch band structure in the quasiparticle spectrum and suppressed order-parameter amplitude, which sharply crossover into the well-known semiclassical (Helfand-Werthamer) results upon decreasing magnetic field. Application to the 2D superconducting state observed recently on the surface of the topological insulator Sb2Te3 accounts well for the experimental data, revealing a strong type-II superconductor, with unusually low carrier density and very small cyclotron mass, which can be realized only in the strong coupling superconductor limit.

  9. 交流混合型磁轴承磁场及悬浮力特性分析%Magnetic Field and Characteristic Analysis of Suspension Forces for Radial AC Hybrid Magnetic Bearing

    Institute of Scientific and Technical Information of China (English)

    张松; 张维煜; 朱熀秋

    2012-01-01

    对交流混合型磁轴承的组成结构和基本工作原理进行了介绍,并针对该交流混合型磁轴承的悬浮力进行了数学模型的建立,而且通过泰勒公式近似获得其线性模型.文中创建了该磁轴承的实体模型,利用Ansoft 软件仿真并分析了该交流磁轴承的磁通分布状况(气隙及磁极内部);采用Ansoft分析软件与MATLAB软件对交流磁轴承悬浮力的非线性变化规律进行了计算分析.仿真结果表明:磁通密度的分布在磁轴承中,其仿真值和理论设计值几乎吻合,说明该磁轴承计算设计的参数有效;基于数学模型和有限元实体模型的交流混合型磁轴承特性分析结果一致,表明该磁轴承的数学模型建立正确,逼近磁轴承实际工作情况下的模型.%Configuration and operation principle of the radial AC hybrid magnetic bearing ( AC HMB) were introduced , the mathematical models of suspension forces were deduced with the method of equivalent magnetic circuits, and the linearity models about the equilibrium position were obtained by using their Taylor expansions. Based on the establishment of finite element solid models of the magnetic bearing in Ansoft finite element analysis software, the magnetic field distributions in air gap and magnetic pole of the AC HMB were calculated. The nonlinear variation of suspension forces of the magnetic bearing was calculated with Ansoft finite element and MATLAB software respectively. The simulation results show that the magnetic field distribution in magnetic bearing is consistent with the theoretical design, and the designing of structural parameters is reasonable. Results also show that the characteristic analysis results based on the mathematical models and finite element solid models of the AC HMB are consistent, and the mathematical model is proved correct, which is close to the model of the magnetic bearing under actual conditions.

  10. Immunization with the hybrid protein vaccine, consisting of Leishmania major cysteine proteinases Type I (CPB) and Type II (CPA), partially protects against leishmaniasis.

    Science.gov (United States)

    Zadeh-Vakili, Azita; Taheri, Tahere; Taslimi, Yasaman; Doustdari, Fatemeh; Salmanian, Ali-Hatef; Rafati, Sima

    2004-05-07

    Cysteine proteinases (CPs) are enzymes that belong to the papain superfamily, which are found in a number of organisms from prokaryotes to mammals. On the parasitic protozoan Leishmania, extensive studies have shown that CPs are involved in parasite survival, replication and the onset of disease, and have, therefore, been considered as attractive drugs and/or vaccine targets for the control of leishmaniasis. We have previously shown that cysteine proteinases, Type I (CPB) and Type II (CPA), in Leishmania major (L. major), delivered as recombinant proteins or in plasmid DNA, induce partial protection against infection with the parasite in BALB/c mice. We had shown that the level of protection was greater if a cocktail of cpa and cpb containing DNA constructs was used. Therefore, to reduce the costs associated with the production of these vaccine candidates, a construct was developed, whereby the cpa and cpb genes were fused together to give rise to a single hybrid protein. The genes were fused in tandem where the C-terminal extension (CTE), encoding region of CPB, was located at the 3' of the fused genes, and ultimately expressed in the bacterial expression construct pET-23a. The expression of the CPA/B hybrid protein (60 kDa) was verified using rabbit anti-CPA and anti-CPB antibodies by SDS-PAGE and immunoblotting. The protective potential of the CPA/B hybrid protein against the infection with Leishmania was then assessed in BALB/c mice. The animals were vaccinated with CPA/B, challenged with live L. major promastigotes, and the degree of protection was examined by measuring footpad lesion sizes. It was found that there was a delay in the expansion of lesions size compared to control groups. Furthermore, an immunological analysis of antibody isotypes, before and after infection, showed high levels of IgG2a compared to IgG1 (more than five-fold) in the CPA/B hybrid protein vaccinated group. In addition, a predominant Th1 immune response characterized by in vitro IFN

  11. Preparation and Characterization of a Hybrid Solid Polymer Electrolyte Consisting of Poly(Ethyleneoxide) and Poly(Acrylonitrile) for Polymer-Battery Application

    OpenAIRE

    Nookala, Munichandraiah; Scanlon, Lawrence G; Marsh, Richard A

    1997-01-01

    For application in an ambient temperature solid state lithium battery a highly dimensionally-stable polymer electrolyte based on polyethyleneoxide (PEO) suffers from low ionic conductivity, whereas a highly conducting gel electrolyte based on polyacrylonitrile (PAN) suffers from low dimensional stability. In order to overcome these problems, a hybrid solid polymer electrolyte (HSPE) was prepared using PEO, PAN, propylene carbonate (PC), ethylene carbonate (EC) and lithium perchlorate. The HSP...

  12. First- and second-order transitions for a superconducting cylinder in a magnetic field obtained from a self-consistent solution of the Ginzburg-Landau equations

    Energy Technology Data Exchange (ETDEWEB)

    Zharkov, G. F.

    2001-06-01

    Based on self-consistent solution of nonlinear GL equations, the phase boundary is found, which divides the regions of first- and second-order phase transitions to normal state of a superconducting cylinder of radius R, placed in magnetic field and remaining in the state of fixed vorticity m. This boundary is a complicated function of the parameters (m,R,{kappa}) ({kappa} is the GL parameter), which does not coincide with the simple phase boundary {kappa}=1/{radical}2, dividing the regions of first- and second-order phase transitions in infinite (open) superconducting systems.

  13. Hybrid magnetic amphiphilic composites based on carbon nanotube/nanofibers and layered silicates fragments as efficient adsorbent for ethynilestradiol.

    Science.gov (United States)

    Purceno, Aluir D; Teixeira, Ana Paula C; de Souza, Nubia Janaína; Fernandez-Outon, Luis E; Ardisson, José D; Lago, Rochel M

    2012-08-01

    In this work, hybrid magnetic amphiphilic composites were prepared by the catalytic growth of carbon nanotubes (CNTs) and nanofibers CNF on layered silicates fragments. SEM, TEM, Raman, XRD, Mössbauer, TG/DTA showed that CVD with CH(4) at 800°C produced CNF and magnetic Fe cores fixed on the surface of microfragments of silicates layers. Due to the amphiphilic character, the composites can be easily dispersed in water and efficiently adsorb hydrophobic contaminant molecules. For example, the composites showed remarkable adsorption capacities for the hormone ethinylestradiol, e.g. 2-4 mg m(-2), compared to ca. 0.1 mg m(-2) obtained for high surface area activated carbon and multiwall CNT. These results are discussed in terms of a high hydrophobic exposed surface area of the CNT and CNF fixed on the layered silicates fragments surface. Moreover, the composites can be easily removed from water by a simple magnetic separation process.

  14. The Earth's magnetosphere is 165 R(sub E) long: Self-consistent currents, convection, magnetospheric structure, and processes for northward interplanetary magnetic field

    Science.gov (United States)

    Fedder, J. A.; Lyon, J. G.

    1995-01-01

    The subject of this paper is a self-consistent, magnetohydrodynamic numerical realization for the Earth's magnetosphere which is in a quasi-steady dynamic equilibrium for a due northward interplanetary magnetic field (IMF). Although a few hours of steady northward IMF are required for this asymptotic state to be set up, it should still be of considerable theoretical interest because it constitutes a 'ground state' for the solar wind-magnetosphere interaction. Moreover, particular features of this ground state magnetosphere should be observable even under less extreme solar wind conditions. Certain characteristics of this magnetosphere, namely, NBZ Birkeland currents, four-cell ionospheric convection, a relatively weak cross-polar potential, and a prominent flow boundary layer, are widely expected. Other characteristics, such as no open tail lobes, no Earth-connected magnetic flux beyond 155 R(sub E) downstream, magnetic merging in a closed topology at the cusps, and a 'tadpole' shaped magnetospheric boundary, might not be expected. In this paper, we will present the evidence for this unusual but interesting magnetospheric equilibrium. We will also discuss our present understanding of this singular state.

  15. Magnetic Inhibition of Convection and the Fundamental Properties of Low-Mass Stars. III. A Consistent 10 Myr Age for the Upper Scorpius OB Association

    CERN Document Server

    Feiden, Gregory A

    2016-01-01

    When determining absolute ages of identifiably young stellar populations, results strongly depend on which stars are studied. Cooler (K, M) stars typically yield ages that are systematically younger than warmer (A, F, G) stars by a factor of two. I explore the possibility that these age discrepancies are the result of magnetic inhibition of convection in young cool stars by using magnetic stellar evolution isochrones to determine the age of the Upper Scorpius subgroup of the Scorpius-Centaurus OB Association. A median age of 10 Myr consistent across spectral types A through M is found, except for a subset of F-type stars that appear significantly older. Agreement is shown for ages derived from the Hertzsprung-Russell diagram and from the empirical mass-radius relationship defined by eclipsing multiple-star systems. Surface magnetic field strengths required to produce agreement are of order 2.5 kG and are predicted from a priori estimates of equipartition values. A region in the HR diagram is identified that p...

  16. A self-consistent determination of the temperature profile and the magnetic field geometry in winds of late-type stars

    CERN Document Server

    Vidotto, A A

    2006-01-01

    Cool giant and supergiant stars generally present low velocity winds with high mass loss rates. Several models have been proposed to explain the acceleration process of these winds. Although dust is known to be present in these objects, the radiation pressure on these particles is uneffective in reproducing the observed physical parameters of the wind. The most promising acceleration mechanism cited in the literature is the transference of momentum and energy from Alfven waves to the gas. Usually, these models consider the wind to be isothermal. We present a stellar wind model in which the Alfven waves are used as the main acceleration mechanism, and determine the temperature profile by solving the energy equation taking into account both the radiative losses and the wave heating. We also determine self-consistently the magnetic field geometry as the result of the competition between the magnetic field and the thermal pressures gradient. As main result, we show that the magnetic geometry present a super-radia...

  17. Sol-gel-derived Hybrid Conductive Films for Electro magnetic Interference (EMI) Shielding

    Institute of Scientific and Technical Information of China (English)

    XIE Jiyuan; GUO Wenfeng; WANG Jianzhong

    2011-01-01

    The conductive nano-sized zinc particles were embedded in an insulating amorphous silica matrix, and the hybrid films were obtained by a sol-gel method. The stable hybrid sol solution was prepared by hydrolysis and condensation of Methyltrimethoxysilane (MTMS) with a one-step acidic catalyst process. Hybrid films were dip-coated on silicon wafer and cured at 120 ℃ for 60minutes. The structural characterization of hybrid films were investigated by means of attenuated total reflection infrared (ATR-IR) spectroscopy and X-ray diffraetion (XRD). The electrical properties of the films were examined with four-point probe. Hybrid films showed to be relatively dense, uniform and defect free. The conductivity of hybrid films was varied with the different contents of zinc nanoparticles and the thickness of the film. It was observed that there was the percolation threshold for the film's electrical properties.

  18. Jovian Plasmas Torus Interaction with Europa. Plasma Wake Structure and Effect of Inductive Magnetic Field: 3D Hybrid Kinetic Simulation

    Science.gov (United States)

    Lipatov, A. S.; Cooper, J F.; Paterson, W. R.; Sittler, E. C., Jr.; Hartle, R. E.; Simpson, David G.

    2013-01-01

    The hybrid kinetic model supports comprehensive simulation of the interaction between different spatial and energetic elements of the Europa moon-magnetosphere system with respect to a variable upstream magnetic field and flux or density distributions of plasma and energetic ions, electrons, and neutral atoms. This capability is critical for improving the interpretation of the existing Europa flyby measurements from the Galileo Orbiter mission, and for planning flyby and orbital measurements (including the surface and atmospheric compositions) for future missions. The simulations are based on recent models of the atmosphere of Europa (Cassidy et al., 2007; Shematovich et al., 2005). In contrast to previous approaches with MHD simulations, the hybrid model allows us to fully take into account the finite gyroradius effect and electron pressure, and to correctly estimate the ion velocity distribution and the fluxes along the magnetic field (assuming an initial Maxwellian velocity distribution for upstream background ions). Photoionization, electron-impact ionization, charge exchange and collisions between the ions and neutrals are also included in our model. We consider the models with Oþ þ and Sþ þ background plasma, and various betas for background ions and electrons, and pickup electrons. The majority of O2 atmosphere is thermal with an extended non-thermal population (Cassidy et al., 2007). In this paper, we discuss two tasks: (1) the plasma wake structure dependence on the parameters of the upstream plasma and Europa's atmosphere (model I, cases (a) and (b) with a homogeneous Jovian magnetosphere field, an inductive magnetic dipole and high oceanic shell conductivity); and (2) estimation of the possible effect of an induced magnetic field arising from oceanic shell conductivity. This effect was estimated based on the difference between the observed and modeled magnetic fields (model II, case (c) with an inhomogeneous Jovian magnetosphere field, an inductive

  19. A Novel Integrated Magnetic Structure Based DC/DC Converter for Hybrid Battery/Ultracapacitor Energy Storage Systems

    Energy Technology Data Exchange (ETDEWEB)

    Onar, Omer C [ORNL

    2012-01-01

    This manuscript focuses on a novel actively controlled hybrid magnetic battery/ultracapacitor based energy storage system (ESS) for vehicular propulsion systems. A stand-alone battery system might not be sufficient to satisfy peak power demand and transient load variations in hybrid and plug-in hybrid electric vehicles (HEV, PHEV). Active battery/ultracapacitor hybrid ESS provides a better solution in terms of efficient power management and control flexibility. Moreover, the voltage of the battery pack can be selected to be different than that of the ultracapacitor, which will result in flexibility of design as well as cost and size reduction of the battery pack. In addition, the ultracapacitor bank can supply or recapture a large burst of power and it can be used with high C-rates. Hence, the battery is not subjected to supply peak and sharp power variations, and the stress on the battery will be reduced and the battery lifetime would be increased. Utilizing ultracapacitor results in effective capturing of the braking energy, especially in sudden braking conditions.

  20. Hybrid metal-dielectric ring resonators for homogenizable optical metamaterials with strong magnetic response at short wavelengths down to the ultraviolet range.

    Science.gov (United States)

    Tang, Jianwei; He, Sailing

    2013-10-07

    We derive an analytical LC model from Maxwell's equations for the magnetic resonance of subwavelength ring resonators. Using the LC model, we revisit the scaling of split-ring resonators. Inspired by the LC model, we propose a hybrid metal-dielectric ring resonator mainly composed of high index dielectric material (e.g., TiO₂) with some gaps filled with metal (e.g., Ag). The saturation frequency of magnetic response for the hybrid metal-dielectric ring resonator is much higher (up to the ultraviolet range) than that for split-ring resonators, and can be controlled by the metal fraction in the ring. The hybrid metal-dielectric ring resonator can also overcome the homogenization problem of all-dielectric magnetic resonators, and therefore can form homogenizable magnetic metamaterials at short wavelengths down to the ultraviolet range.

  1. Parametric decay instability near the upper hybrid resonance in magnetically confined fusion plasmas

    DEFF Research Database (Denmark)

    Hansen, Søren Kjer; Nielsen, Stefan Kragh; Salewski, Mirko

    2017-01-01

    In this paper we investigate parametric decay of an electromagnetic pump wave into two electrostatic daughter waves, particularly an X-mode pump wave decaying into a warm upper hybrid wave (a limit of an electron Bernstein wave) and a warm lower hybrid wave. We describe the general theory...

  2. Magnetic particle-based sandwich sensor with DNA-modified carbon nanotubes as recognition elements for detection of DNA hybridization.

    Science.gov (United States)

    Hu, Po; Huang, Cheng Zhi; Li, Yuan Fang; Ling, Jian; Liu, Yu Ling; Fei, Liang Run; Xie, Jian Ping

    2008-03-01

    In this contribution, we design a visual sensor for DNA hybridization with DNA probe-modified magnetic particles (MPs) and multiwalled carbon nanotubes (MWNTs) without involving a visual recognition element such as fluorescent/chemiluminescent reagents. It was found that DNA probe-modified MWNTs, which could be dispersed in aqueous medium and have strong light scattering signals under the excitation of a light beam in the UV-vis region, could connect with DNA probe-modified MPs together in the presence of perfectly complementary target DNA and form a sandwich structure. In a magnetic field, the formed MP-MWNT species can easily be removed from the solution, resulting in a decrease of light scattering signals. Thus, a magnetic particle-based sandwich sensor could be developed to detect DNA hybridization by measuring the light scattering signals with DNA-modified MWNTs as recognition elements. Experiments showed that the DNA-modified MPs sensor could be reused at least 17 times and was stable for more than 6 months.

  3. Hybrid spacecraft attitude control system

    Directory of Open Access Journals (Sweden)

    Renuganth Varatharajoo

    2016-02-01

    Full Text Available The hybrid subsystem design could be an attractive approach for futurespacecraft to cope with their demands. The idea of combining theconventional Attitude Control System and the Electrical Power System ispresented in this article. The Combined Energy and Attitude ControlSystem (CEACS consisting of a double counter rotating flywheel assemblyis investigated for small satellites in this article. Another hybrid systemincorporating the conventional Attitude Control System into the ThermalControl System forming the Combined Attitude and Thermal ControlSystem (CATCS consisting of a "fluid wheel" and permanent magnets isalso investigated for small satellites herein. The governing equationsdescribing both these novel hybrid subsystems are presented and theironboard architectures are numerically tested. Both the investigated novelhybrid spacecraft subsystems comply with the reference missionrequirements.The hybrid subsystem design could be an attractive approach for futurespacecraft to cope with their demands. The idea of combining theconventional Attitude Control System and the Electrical Power System ispresented in this article. The Combined Energy and Attitude ControlSystem (CEACS consisting of a double counter rotating flywheel assemblyis investigated for small satellites in this article. Another hybrid systemincorporating the conventional Attitude Control System into the ThermalControl System forming the Combined Attitude and Thermal ControlSystem (CATCS consisting of a "fluid wheel" and permanent magnets isalso investigated for small satellites herein. The governing equationsdescribing both these novel hybrid subsystems are presented and theironboard architectures are numerically tested. Both the investigated novelhybrid spacecraft subsystems comply with the reference missionrequirements.

  4. Research on the filtering characteristic of single phase series hybrid active power filter based on fundamental magnetic flux compensation

    Science.gov (United States)

    Tian, Jun; Chen, Qiaofu; Zhang, Yuqi

    2012-12-01

    In this article, the PWM inverter works as a controlled fundamental current source in the single phase series hybrid active power filter (APF) based on fundamental magnetic flux compensation (FMFC). The series transformer can exhibit the self-impedance of primary winding to harmonic current, which forces harmonic current to flow into passive power filter. With the influence of harmonic current, the voltage of primary winding of transformer is a harmonic voltage, which makes the inverter output currents have a certain harmonic component, and it degrades the filtering characteristics. On the basis of PWM inverter, the mathematical model of series hybrid APF is established, and the filtering characteristics of single phase APF are analysed in detail. Three methods are gained to improve filtering characteristics: reasonably designing the inverter output filter inductance, increasing series transformer ratio and adopting voltage feed-forward control. Experimental results show that the proposed APF has greater validity.

  5. Composition and doping control for metal-organic chemical vapor deposition of InP-based double heterojunction bipolar transistor with hybrid base structure consisting of GaAsSb contact and InGaAsSb graded layers

    Science.gov (United States)

    Hoshi, Takuya; Kashio, Norihide; Sugiyama, Hiroki; Yokoyama, Haruki; Kurishima, Kenji; Ida, Minoru; Matsuzaki, Hideaki

    2017-07-01

    We report on a method for composition and doping control for metalorganic chemical vapor deposition of a double heterojunction bipolar transistor (DHBT) with a hybrid base structure consisting of a compositionally graded InGaAsSb for boosting an average electron velocity and a heavily doped thin GaAsSb for lowering the base contact resistivity. The GaAsSb contact layer can be formed by simply turning off the supply of In precursor tetramethylindium (TMIn) after the growth of the composition and doping graded InGaAsSb base. Consequently, the solid composition and hole concentration of hybrid base can be properly controlled by just modulating the supply of only TMIn and carbon tetrabromide. Secondary ion mass spectroscopy for the DHBT wafer reveals that the contents of In, Ga, and C inside the base are actually modulated from the collector side to the emitter side as expected. Transmission-line-model measurements were performed for the compositionally graded-InGaAsSb/GaAsSb hybrid base. The contact resistivity is estimated to be 5.3 Ω µm2, which is lower than half the value of a compositionally graded InGaAsSb base without the GaAsSb contact layer. The results indicate that the compositionally-graded-InGaAsSb/GaAsSb-contact hybrid base structure grown by this simple method is very advantageous for obtaining DHBTs with a very high maximum oscillation frequency.

  6. Estimation of Curie temperature of manganite-based materials for magnetic refrigeration application using hybrid gravitational based support vector regression

    Science.gov (United States)

    Owolabi, Taoreed O.; Akande, Kabiru O.; Olatunji, Sunday O.; Alqahtani, Abdullah; Aldhafferi, Nahier

    2016-10-01

    Magnetic refrigeration (MR) technology stands a good chance of replacing the conventional gas compression system (CGCS) of refrigeration due to its unique features such as high efficiency, low cost as well as being environmental friendly. Its operation involves the use of magnetocaloric effect (MCE) of a magnetic material caused by application of magnetic field. Manganite-based material demonstrates maximum MCE at its magnetic ordering temperature known as Curie temperature (TC). Consequently, manganite-based material with TC around room temperature is essentially desired for effective utilization of this technology. The TC of manganite-based materials can be adequately altered to a desired value through doping with appropriate foreign materials. In order to determine a manganite with TC around room temperature and to circumvent experimental challenges therein, this work proposes a model that can effectively estimates the TC of manganite-based material doped with different materials with the aid of support vector regression (SVR) hybridized with gravitational search algorithm (GSA). Implementation of GSA algorithm ensures optimum selection of SVR hyper-parameters for improved performance of the developed model using lattice distortions as the descriptors. The result of the developed model is promising and agrees excellently with the experimental results. The outstanding estimates of the proposed model suggest its potential in promoting room temperature magnetic refrigeration through quick estimation of the effect of dopants on TC so as to obtain manganite that works well around the room temperature.

  7. Estimation of Curie temperature of manganite-based materials for magnetic refrigeration application using hybrid gravitational based support vector regression

    Directory of Open Access Journals (Sweden)

    Taoreed O. Owolabi

    2016-10-01

    Full Text Available Magnetic refrigeration (MR technology stands a good chance of replacing the conventional gas compression system (CGCS of refrigeration due to its unique features such as high efficiency, low cost as well as being environmental friendly. Its operation involves the use of magnetocaloric effect (MCE of a magnetic material caused by application of magnetic field. Manganite-based material demonstrates maximum MCE at its magnetic ordering temperature known as Curie temperature (TC. Consequently, manganite-based material with TC around room temperature is essentially desired for effective utilization of this technology. The TC of manganite-based materials can be adequately altered to a desired value through doping with appropriate foreign materials. In order to determine a manganite with TC around room temperature and to circumvent experimental challenges therein, this work proposes a model that can effectively estimates the TC of manganite-based material doped with different materials with the aid of support vector regression (SVR hybridized with gravitational search algorithm (GSA. Implementation of GSA algorithm ensures optimum selection of SVR hyper-parameters for improved performance of the developed model using lattice distortions as the descriptors. The result of the developed model is promising and agrees excellently with the experimental results. The outstanding estimates of the proposed model suggest its potential in promoting room temperature magnetic refrigeration through quick estimation of the effect of dopants on TC so as to obtain manganite that works well around the room temperature.

  8. Preparation of Core-Shell Hybrid Materials by Producing a Protein Corona Around Magnetic Nanoparticles

    Science.gov (United States)

    Weidner, A.; Gräfe, C.; von der Lühe, M.; Remmer, H.; Clement, J. H.; Eberbeck, D.; Ludwig, F.; Müller, R.; Schacher, F. H.; Dutz, S.

    2015-07-01

    Nanoparticles experience increasing interest for a variety of medical and pharmaceutical applications. When exposing nanomaterials, e.g., magnetic iron oxide nanoparticles (MNP), to human blood, a protein corona consisting of various components is formed immediately. The composition of the corona as well as its amount bound to the particle surface is dependent on different factors, e.g., particle size and surface charge. The actual composition of the formed protein corona might be of major importance for cellular uptake of magnetic nanoparticles. The aim of the present study was to analyze the formation of the protein corona during in vitro serum incubation in dependency of incubation time and temperature. For this, MNP with different shells were incubated in fetal calf serum (FCS, serving as protein source) within a water bath for a defined time and at a defined temperature. Before and after incubation the particles were characterized by a variety of methods. It was found that immediately (seconds) after contact of MNP and FCS, a protein corona is formed on the surface of MNP. This formation led to an increase of particle size and a slight agglomeration of the particles, which was relatively constant during the first minutes of incubation. A longer incubation (from hours to days) resulted in a stronger agglomeration of the FCS incubated MNP. Quantitative analysis (gel electrophoresis) of serum-incubated particles revealed a relatively constant amount of bound proteins during the first minutes of serum incubation. After a longer incubation (>20 min), a considerably higher amount of surface proteins was determined for incubation temperatures below 40 °C. For incubation temperatures above 50 °C, the influence of time was less significant which might be attributed to denaturation of proteins during incubation. Overall, analysis of the molecular weight distribution of proteins found in the corona revealed a clear influence of incubation time and temperature on corona

  9. Preparation of Core-Shell Hybrid Materials by Producing a Protein Corona Around Magnetic Nanoparticles.

    Science.gov (United States)

    Weidner, A; Gräfe, C; von der Lühe, M; Remmer, H; Clement, J H; Eberbeck, D; Ludwig, F; Müller, R; Schacher, F H; Dutz, S

    2015-12-01

    Nanoparticles experience increasing interest for a variety of medical and pharmaceutical applications. When exposing nanomaterials, e.g., magnetic iron oxide nanoparticles (MNP), to human blood, a protein corona consisting of various components is formed immediately. The composition of the corona as well as its amount bound to the particle surface is dependent on different factors, e.g., particle size and surface charge. The actual composition of the formed protein corona might be of major importance for cellular uptake of magnetic nanoparticles. The aim of the present study was to analyze the formation of the protein corona during in vitro serum incubation in dependency of incubation time and temperature. For this, MNP with different shells were incubated in fetal calf serum (FCS, serving as protein source) within a water bath for a defined time and at a defined temperature. Before and after incubation the particles were characterized by a variety of methods. It was found that immediately (seconds) after contact of MNP and FCS, a protein corona is formed on the surface of MNP. This formation led to an increase of particle size and a slight agglomeration of the particles, which was relatively constant during the first minutes of incubation. A longer incubation (from hours to days) resulted in a stronger agglomeration of the FCS incubated MNP. Quantitative analysis (gel electrophoresis) of serum-incubated particles revealed a relatively constant amount of bound proteins during the first minutes of serum incubation. After a longer incubation (>20 min), a considerably higher amount of surface proteins was determined for incubation temperatures below 40 °C. For incubation temperatures above 50 °C, the influence of time was less significant which might be attributed to denaturation of proteins during incubation. Overall, analysis of the molecular weight distribution of proteins found in the corona revealed a clear influence of incubation time and temperature on

  10. Magnetic characterisation of large grain, bulk Y–Ba–Cu–O superconductor–soft ferromagnetic alloy hybrid structures

    Energy Technology Data Exchange (ETDEWEB)

    Philippe, M.P., E-mail: M.Philippe@ulg.ac.be [SUPRATECS and Department of Electrical Engineering and Computer Science (B28), University of Liège, 4000 Liège (Belgium); Fagnard, J.-F.; Kirsch, S. [SUPRATECS and Department of Electrical Engineering and Computer Science (B28), University of Liège, 4000 Liège (Belgium); Xu, Z.; Dennis, A.R.; Shi, Y.-H.; Cardwell, D.A. [Bulk Superconductivity Group, Engineering Department, University of Cambridge, Cambridge CB2 1PZ (United Kingdom); Vanderheyden, B.; Vanderbemden, P. [SUPRATECS and Department of Electrical Engineering and Computer Science (B28), University of Liège, 4000 Liège (Belgium)

    2014-07-15

    Highlights: • Large grain, bulk YBaCuO superconductor (SC) combined with ferromagnetic elements. • The flux lines curve outwards through the ferromagnet in the remanent state. • The trapped field in the SC is enhanced by the presence of the ferromagnet. • The effects of the SC and the ferromagnet add when the ferromagnet is saturated. - Abstract: Large grain, bulk Y–Ba–Cu–O (YBCO) high temperature superconductors (HTS) have significant potential for use in a variety of practical applications that incorporate powerful quasi-permanent magnets. In the present work, we investigate how the trapped field of such magnets can be improved by combining bulk YBCO with a soft FeNi, ferromagnetic alloy. This involves machining the alloy into components of various shapes, such as cylinders and rings, which are attached subsequently to the top surface of a solid, bulk HTS cylinder. The effect of these modifications on the magnetic hysteresis curve and trapped field of the bulk superconductor at 77 K are then studied using pick-up coil and Hall probe measurements. The experimental data are compared to finite element modelling of the magnetic flux distribution using Campbell’s algorithm. Initially we establish the validity of the technique involving pick-up coils wrapped around the bulk superconductor to obtain its magnetic hysteresis curve in a non-destructive way and highlight the difference between the measured signal and the true magnetization of the sample. We then consider the properties of hybrid ferromagnet/superconductor (F/S) structures. Hall probe measurements, together with the results of the model, establish that flux lines curve outwards through the ferromagnet, which acts, effectively, like a magnetic short circuit. Magnetic hysteresis curves show that the effects of the superconductor and the ferromagnet simply add when the ferromagnet is saturated fully by the applied field. The trapped field of the hybrid structure is always larger than that of the

  11. Two Contemporary Problems in Magnetized Plasmas: the ion-ion hybrid resonator and MHD stability in a snowflake divertor

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, William Anthony [Univ. of California, Los Angeles, CA (United States)

    2014-01-01

    The rst part of the dissertation investigates the e ects of multiple-ions on the propagation of shear Alfv en waves. It is shown that the presence of a second ion-species allows for the formation of an ion-ion hybrid resonator in the presence of a magnetic well. A fullwave description is shown to explain the measured eigenfrequencies and spatial form of the resonator modes identi ed in experiments in the Large Plasma Device (LAPD) at UCLA. However, it is determined that neither electron collisions or radial convection of the mode due to coupling to either the compressional or ion-Bernstein wave can explain the observed dissipation.

  12. Redox-active organometallics: magnetic and electronic couplings through carbon-silicon hybrid molecular connectors.

    Science.gov (United States)

    Hamon, Paul; Justaud, Frederic; Cador, Olivier; Hapiot, Philippe; Rigaut, Stéphane; Toupet, Loïc; Ouahab, Lahcène; Stueger, Harald; Hamon, Jean-René; Lapinte, Claude

    2008-12-24

    Treatment of the triflate complex Cp*(dppe)FeOTf [12; Cp* = eta(5)-C(5)(CH(3))(5), dppe = 1,2-bis(diphenylphosphino)ethane, OTf = CF(3)SO(3)] with an excess of HC[triple bond]C-(Si(CH(3))(2))(x)-C[triple bond]CH (x = 2-4) in diethyl ether provides the binuclear bis(vinylidene) derivatives [Cp*(dppe)Fe=C=CH(Si(CH(3))(2))(x)CH=C=Fe(dppe)Cp*][OTf](2) (x = 2, 13; x = 3, 14; x = 4, 15), which were isolated as ochre solids and rapidly characterized by FT-IR, (1)H, (31)P, and (13)C NMR spectroscopies. The complexes 13-15 were reacted with potassium tert-butoxide to afford the bis(alkynediyl) complexes [Cp*(dppe)Fe-C[triple bond]C(Si(CH(3))(2))(x)C[triple bond]C-Fe(dppe)Cp*] (x = 2, 1; x = 3, 2; x = 4, 3), which were isolated as orange powders in yields ranging from 76 to 91%. The IR, cyclic voltammetry, and UV-vis data obtained for 1-3 and the X-ray crystal structures determined for 1 and 3 reveal the importance of the sigma-pi conjugation (hyperconjugation) between the Si-Si sigma bond and the adjacent C[triple bond]C pi-symmetric orbitals in the description of the electronic structure of the ground state of these complexes. When reacted at low temperature with 2 equiv of [(C(5)H(5))(2)Fe]X or AgX [X = BPh(4), B(3,5-(CF(3))(2)C(6)H(3))(4))], compounds 1-3 provide 1[X](2), 2[X](2), and 3[X](2), which can be isolated and stored below -20 degrees C. EPR spectroscopy and magnetization measurements established that the superexchange interaction propagates through the Si-Si bonds (J = -0.97(2) cm(-1) for 3[X](2)). UV-vis-near-IR spectra were obtained with an optically transparent thin-layer electrosynthetic (OTTLE) cell for 1-3[OTf](n) (n = 0-2). A band with a maximum that increases from 6400 cm(-1) (1[OTf]) to 8500 cm(-1) (3[OTf]) observed for the mixed-valence species was ascribed to intervalence charge transfer evidencing photodriven electron transfer through the carbon-silicon hybrid connectors with H(ab) parameters ranging from 64 to 285 cm(-1).

  13. Interface Consistency

    DEFF Research Database (Denmark)

    Staunstrup, Jørgen

    1998-01-01

    This paper proposes that Interface Consistency is an important issue for the development of modular designs. Byproviding a precise specification of component interfaces it becomes possible to check that separately developedcomponents use a common interface in a coherent matter thus avoiding a very...... significant source of design errors. Awide range of interface specifications are possible, the simplest form is a syntactical check of parameter types.However, today it is possible to do more sophisticated forms involving semantic checks....

  14. 新型混合径向磁轴承结构及其磁力特性%Structure and magnetic characteristics of novel hybrid radial magnetic bearing

    Institute of Scientific and Technical Information of China (English)

    陈君辉; 杨逢瑜; 聂朝瑞; 李正贵; 杨军; 王鹏雁

    2012-01-01

    Aimed at some problems in the permanent magnetic circuit of available magnetic radial bearings with permanent magnet bias such as small magnetic force, low magnetic flux density, and lack of self-stabilization. A new hybrid radial magnetic bearing structure for vertical axial flow pump was proposed. The nonlinear model and linearization equation of the bearing capacity of the new hybrid radial magnetic bearing were established by using current molecular method and virtual displacement theorem. It was found by a-nalysis that with this permanent magnetic suspension bearing, its self-stabilization would exhibit in some radial degrees of freedom and the total displacement negative stiffness of the system could be reduced. The investigation result showed that the air gap flux density was greatly improved with the new hybrid magnetic bearing when Halbach array structure was used. Current stiffness and displacement rigidity were closely related to initial current and initial gap at the equilibrium position. Around the equilibrium position, the variation of current stiffness and displacement rigidity was linear. With the increase of air gap, its linearity was well kept. With the decrease of air gap, however, a certain nonlinear characteristics exhibited.%针对当前永磁偏置径向磁轴承的永磁磁路的磁通密度低,磁力小,缺乏自稳定的问题,提出一种应用于立式轴流泵的新型混合径向磁轴承结构.应用分子电流法及虚位移定理建立新型混合径向磁轴承承载力的非线性模型及其线性化方程,分析得出新型径向混合磁悬浮轴承在径向某个自由度上具有自稳定的特点,且水磁轴承可以减小系统总的位移负刚度.研究结果表明,采用Halbach阵列结构后,混合磁轴承气隙的磁通密得到很大提高.电流刚度和位移刚度与平衡点的初始电流及初始间隙密切相关,在平衡位置附近电流刚度和位移刚度呈线性变化,当气隙增大时仍保

  15. Efficient Synthesis of a Maghemite/Gold Hybrid Nanoparticle System as a Magnetic Carrier for the Transport of Platinum-Based Metallotherapeutics

    Directory of Open Access Journals (Sweden)

    Pavel Štarha

    2015-01-01

    Full Text Available The preparation and thorough characterization of a hybrid magnetic carrier system for the possible transport of activated platinum-based anticancer drugs, as demonstrated for cisplatin (cis-[Pt(NH32Cl2], CDDP, are described. The final functionalized mag/Au–LA–CDDP* system consists of maghemite/gold nanoparticles (mag/Au coated by lipoic acid (HLA; LA stands for deprotonated form of lipoic acid and functionalized by activated cisplatin in the form of cis-[Pt(NH32(H2O2]2+ (CDDP*. The relevant techniques (XPS, EDS, ICP-MS proved the incorporation of the platinum-containing species on the surface of the studied hybrid system. HRTEM, TEM and SEM images showed the nanoparticles as spherical with an average size of 12 nm, while their superparamagnetic feature was proven by 57Fe Mössbauer spectroscopy. In the case of mag/Au, mag/Au–HLA and mag/Au–LA–CDDP*, weaker magnetic interactions among the Fe3+ centers of maghemite, as compared to maghemite nanoparticles (mag, were detected, which can be associated with the non-covalent coating of the maghemite surface by gold. The pH and time-dependent stability of the mag/Au–LA–CDDP* system in different media, represented by acetate (pH 5.0, phosphate (pH 7.0 and carbonate (pH 9.0 buffers and connected with the release of the platinum-containing species, showed the ability of CDDP* to be released from the functionalized nanosystem.

  16. A highly optimized code for calculating atomic data at neutron star magnetic field strengths using a doubly self-consistent Hartree-Fock-Roothaan method

    Science.gov (United States)

    Schimeczek, C.; Engel, D.; Wunner, G.

    2014-05-01

    Our previously published code for calculating energies and bound-bound transitions of medium-Z elements at neutron star magnetic field strengths [D. Engel, M. Klews, G. Wunner, Comp. Phys. Comm. 180, 3-2-311 (2009)] was based on the adiabatic approximation. It assumes a complete decoupling of the (fast) gyration of the electrons under the action of the magnetic field and the (slow) bound motion along the field under the action of the Coulomb forces. For the single-particle orbitals this implied that each is a product of a Landau state and an (unknown) longitudinal wave function whose B-spline coefficients were determined self-consistently by solving the Hartree-Fock equations for the many-electron problem on a finite-element grid. In the present code we go beyond the adiabatic approximation, by allowing the transverse part of each orbital to be a superposition of Landau states, while assuming that the longitudinal part can be approximated by the same wave function in each Landau level. Inserting this ansatz into the energy variational principle leads to a system of coupled equations in which the B-spline coefficients depend on the weights of the individual Landau states, and vice versa, and which therefore has to be solved in a doubly self-consistent manner. The extended ansatz takes into account the back-reaction of the Coulomb motion of the electrons along the field direction on their motion in the plane perpendicular to the field, an effect which cannot be captured by the adiabatic approximation. The new code allows for the inclusion of up to 8 Landau levels. This reduces the relative error of energy values as compared to the adiabatic approximation results by typically a factor of three (1/3 of the original error) and yields accurate results also in regions of lower neutron star magnetic field strengths where the adiabatic approximation fails. Further improvements in the code are a more sophisticated choice of the initial wave functions, which takes into

  17. Solid consistency

    Science.gov (United States)

    Bordin, Lorenzo; Creminelli, Paolo; Mirbabayi, Mehrdad; Noreña, Jorge

    2017-03-01

    We argue that isotropic scalar fluctuations in solid inflation are adiabatic in the super-horizon limit. During the solid phase this adiabatic mode has peculiar features: constant energy-density slices and comoving slices do not coincide, and their curvatures, parameterized respectively by ζ and Script R, both evolve in time. The existence of this adiabatic mode implies that Maldacena's squeezed limit consistency relation holds after angular average over the long mode. The correlation functions of a long-wavelength spherical scalar mode with several short scalar or tensor modes is fixed by the scaling behavior of the correlators of short modes, independently of the solid inflation action or dynamics of reheating.

  18. Crystal structure, thermochromic and magnetic properties of organic-inorganic hybrid compound: (C7H7N2S)2CuCl4

    Science.gov (United States)

    Vishwakarma, Ashok K.; Kumari, Reema; Ghalsasi, Prasanna S.; Arulsamy, Navamoney

    2017-08-01

    The synthesis, thermal analysis, crystal structure and magnetic properties of (2-aminobenzothiazolium)2CuCl4, organic-inorganic hybrid compound, have been described. The compound crystallizes in the monoclinic space group P21/c with two formula units in a unit cell of dimensions a = 6.9522(4) Å, b = 9.6979(4) Å, c = 13.9633(6) Å, β = 97.849(3)° and volume 930.83(8) Å3 at 150(2) K. The structure consists of isolated nearly square planer [CuC14]2- units, with somewhat longer than normal Cusbnd Cl bond lengths [Cusbnd Cl (average) = 2.2711 Å]. The magnetic measurements of (2-aminobenzothiazolium)2CuCl4 using SQUID magnetometer show paramagnetic nature of the compound. Thermal measurements (TG-DTA and DSC) on this compound showed reversible phase transition at 83 °C. This transition is accompanied by the reversible change in colour of the prismatic crystal from green to dark brown, thermochromic behaviour. Temperature dependent EPR measurements on powdered sample ascertain change in coordination sphere around Cu(II) with shift in g|| = 2.150 and g⊥ = 2.071 at room temperature, typical of square planar, to g|| = 2.201 and g⊥ = 2.182 at 170 °C, typical of distorted tetrahedral geometry.

  19. Discovery of a magnetic field in the CoRoT hybrid B-type pulsator HD 43317

    CERN Document Server

    Briquet, M; Leroy, B; Pápics, P I

    2013-01-01

    A promising way of testing the impact of a magnetic field on internal mixing (core overshooting, internal rotation) in main-sequence B-type stars is to perform asteroseismic studies of a sample of magnetic pulsators. The CoRoT satellite revealed that the B3IV star HD 43317 is a hybrid SPB/beta Cep-type pulsator that has a wealth of pulsational constraints on which one can perform a seismic modelling, in particular, probing the extent of its convective core and mixing processes. Moreover, indirect indicators of a magnetic field in the star were observed: rotational modulation due to chemical or temperature spots and X-ray emission. Our goal was to directly investigate the field in HD 43317 and, if it is magnetic, to characterise it. We collected data with the Narval spectropolarimeter installed at TBL (T\\'elescope Bernard Lyot, Pic du Midi, France) and applied the least-squares deconvolution technique to measure the circular polarisation of the light emitted from HD 43317. We modelled the longitudinal field me...

  20. Hybrid nanoparticle architecture for cellular uptake and bioimaging: direct crystallization of a polymer immobilized with magnetic nanoparticles on carbon nanotubes.

    Science.gov (United States)

    Depan, D; Misra, R D K

    2012-10-21

    We describe here the success of an innovative approach of direct immobilization of magnetic nanoparticles (MNPs) onto carbon nanotubes (CNTs). The approach involved functionalization of magnetic nanoparticles and consequent covalent linkage to a copolymer (PE-b-PEG). Next, the immobilized magnetic nanoparticles on the copolymer were directly crystallized on the long axis of CNTs, where the interfacial adhesion comes from electrostatic and van der Waals interaction. The intracellular trafficking of a hybrid nanoparticle system [(PE-b-PEG)-MNP-CNT-FITC] in HeLa cells was monitored using a fluorescent marker, FITC, conjugated to the nanoparticle system. The distribution of the nanoparticle system inside cells was studied by fluorescence microscopy in a time and dose dependent manner, and it was observed that the nanoparticles are located in the cytoplasm and no apparent cell death was observed at the concentration studied. Also, the effect of an externally applied magnetic field on actin cytoskeleton, cell morphology and intracellular uptake of iron was studied. The approach described here is promising for simultaneous imaging and monitoring intracellular uptake.

  1. Hybrid plasmonic magnetic nanoparticles as molecular specific agents for MRI/optical imaging and photothermal therapy of cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Larson, Timothy A [Department of Biomedical Engineering, University of Texas at Austin, Austin, TX 78712 (United States); Bankson, James [Department of Imaging Physics, University of Texas MD Anderson Cancer Center, Houston, TX 77030 (United States); Aaron, Jesse [Department of Biomedical Engineering, University of Texas at Austin, Austin, TX 78712 (United States); Sokolov, Konstantin [Department of Biomedical Engineering, University of Texas at Austin, Austin, TX 78712 (United States)

    2007-08-15

    Nanoparticles which consist of a plasmonic layer and an iron oxide moiety could provide a promising platform for development of multimodal imaging and therapy approaches in future medicine. However, the feasibility of this platform has yet to be fully explored. In this study we demonstrated the use of gold-coated iron oxide hybrid nanoparticles for combined molecular specific MRI/optical imaging and photothermal therapy of cancer cells. The gold layer exhibits a surface plasmon resonance that provides optical contrast due to light scattering in the visible region and also presents a convenient surface for conjugating targeting moieties, while the iron oxide cores give strong T{sub 2} (spin-spin relaxation time) contrast. The strong optical absorption of the plasmonic gold layer also makes these nanoparticles a promising agent for photothermal therapy. We synthesized hybrid nanoparticles which specifically target epidermal growth factor receptor (EGFR), a common biomarker for many epithelial cancers. We demonstrated molecular specific MRI and optical imaging in MDA-MB-468 breast cancer cells. Furthermore, we showed that receptor-mediated aggregation of anti-EGFR hybrid nanoparticles allows selective destruction of highly proliferative cancer cells using a nanosecond pulsed laser at 700 nm wavelength, a significant shift from the peak absorbance of isolated hybrid nanoparticles at 532 nm.

  2. Magnetically Separable Fe3O4/AgBr Hybrid Materials: Highly Efficient Photocatalytic Activity and Good Stability

    Science.gov (United States)

    Cao, Yuhui; Li, Chen; Li, Junli; Li, Qiuye; Yang, Jianjun

    2015-06-01

    Magnetically separable Fe3O4/AgBr hybrid materials with highly efficient photocatalytic activity were prepared by the precipitation method. All of them exhibited much higher photocatalytic activity than the pure AgBr in photodegradation of methyl orange (MO) under visible light irradiation. When the loading amount of Fe3O4 was 0.5 %, the hybrid materials displayed the highest photocatalytic activity, and the degradation yield of MO reached 85 % within 12 min. Silver halide often suffers serious photo-corrosion, while the stability of the Fe3O4/AgBr hybrid materials improved apparently than the pure AgBr. Furthermore, depositing Fe3O4 onto the surface of AgBr could facilitate the electron transfer and thereby leading to the elevated photocatalytic activity. The morphology, phase structure, and optical properties of the composites were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), UV-visible diffuse reflectance spectra (UV-vis DRS), and photoluminescence (PL) techniques.

  3. A hybrid consisting of coordination polymer and noncovalent organic networks: a highly ordered 2-D phenol network assembled by edge-to-face pi-pi interactions.

    Science.gov (United States)

    Ko, Jung Woo; Min, Kil Sik; Suh, Myunghyun Paik

    2002-04-22

    A 2-D metal-organic open framework having 1-D channels, [Cu(C(10)H(26)N(6))](3)[C(6)H(3)(COO)(3)](2).18H(2)O (1), was constructed by the self-assembly of the Cu(II) complex of hexaazamacrocycle A (A = C(10)H(26)N(6)) with sodium 1,3,5-benzenetricarboxylate (BTC(3)(-)) in DMSO-H(2)O solution. 1 crystallizes in the trigonal space group P with a = b = 17.705(1) A, c = 6.940(1) A, alpha = beta = 90 degrees, gamma = 120 degrees, V = 1884.0(3) A(3), Z = 1, and rho(calcd) = 1.428 g cm(-3). The X-ray crystal structure of 1 indicates that each Cu(II) macrocyclic unit binds two BTC(3-) ions in a trans position and each BTC(3-) ion coordinates three Cu(II) macrocyclic complexes to form 2-D coordination polymer layers with honeycomb cavities (effective size 8.1 A), and the layers are packed to generate 1-D channels perpendicularly to the 2-D layers. Solid 1 binds guest molecules such as MeOH, EtOH, and PhOH with different binding constant and capacity. By the treatment of 1 with aqueous solution of phenol, a hybrid solid [Cu(C(10)H(26)N(6))](3)[C(6)H(3)(COO)(3)](2).9PhOH.6H(2)O (2) was assembled. 2 crystallizes in the trigonal R3 space group with a = b = 20.461(1) A, c = 24.159(1) A, alpha = beta = 90 degrees, gamma = 120 degrees, V = 8759.2(7) A(3), Z = 3, and rho(calcd) = 1.280 g cm(-3). In 2, highly ordered 2-D noncovalent phenol layers are formed by the edge-to-face pi-pi interactions between the phenol molecules and are alternately packed with the coordination polymer layers in the crystal lattice.

  4. GW quasiparticle band gap of the hybrid organic-inorganic perovskite CH$_3$NH$_3$PbI$_3$: Effect of spin-orbit interaction, semicore electrons, and self-consistency

    OpenAIRE

    Filip, Marina R.; Giustino, Feliciano

    2014-01-01

    We study the quasiparticle band gap of the hybrid organic-inorganic lead halide perovskite CH$_3$NH$_3$PbI$_3$, using many-body perturbation theory based on the $GW$ approximation. We perform a systematic analysis of the band gap sensitivity to relativistic spin-orbit effects, to the description of semicore Pb-5$d$ and I-4$d$ electrons, and to the starting Kohn-Sham eigenvalues. We find that the inclusion of semicore states increases the calculated band gap by 0.2 eV, and self-consistency on ...

  5. Informal uncertainty analysis (GLUE) of continuous flow simulation in a hybrid sewer system with infiltration inflow - Consistency of containment ratios in calibration and validation?

    DEFF Research Database (Denmark)

    Breinholt, Anders; Grum, Morten; Madsen, Henrik

    2013-01-01

    to spatiooral rain variability during heavy convective rain events, flow measurement errors, possible model deficiencies as well as epistemic uncertainties, it was not possible to obtain an overall CR of more than 80%. However, the GLUE generated prediction limits still proved rather consistent, since......, the relative size of paved area vs. the size of infiltrating area. We should therefore try to learn from the significant discrepancies between model and observations from this study, possibly by using some form of non-stationary error correction procedure, but it seems crucial to obtain more representative...

  6. Magnetic characteristics measurements of ethanol-water mixtures using a hybrid-type high-temperature superconducting quantum-interference device magnetometer

    Science.gov (United States)

    Tsukada, Keiji; Matsunaga, Yasuaki; Isshiki, Ryota; Nakamura, Yuta; Sakai, Kenji; Kiwa, Toshihiko

    2017-05-01

    The magnetic characteristics of ethanol-water mixtures were investigated using our newly developed hybrid-type magnetometer based on a high-temperature superconducting quantum-interference device. The magnetization (M-H) curves of ethanol-water mixtures show good diamagnetic characteristics. The magnetic moments of the mixture show ethanol concentration dependence. However, the variation in magnetic moment differs from the characteristics expected by considering the magnetic moment ratio between water and ethanol, and volume-reduction rate. It showed two decrement regions separated at approximately 50-60% concentration values. It is also observed that the concentration dependence of the magnetic moment measured using the sample vibration method under a uniform magnetic field and that by the sample rotation method showed slightly different characteristics. These anomalies are attributed to the formation of clustered structures in the mixture.

  7. Novel multifunctional NiFe{sub 2}O{sub 4}/ZnO hybrids for dye removal by adsorption, photocatalysis and magnetic separation

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Hua-Yue [Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, Zhejiang 318000 (China); Department of Environmental Engineering, Taizhou University, Taizhou, Zhejiang 318000 (China); Jiang, Ru, E-mail: jiangru0576@163.com [Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, Zhejiang 318000 (China); Department of Environmental Engineering, Taizhou University, Taizhou, Zhejiang 318000 (China); Fu, Yong-Qian [Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, Zhejiang 318000 (China); Li, Rong-Rong [College of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou, Zhejiang 318000 (China); Yao, Jun; Jiang, Sheng-Tao [Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, Zhejiang 318000 (China); Department of Environmental Engineering, Taizhou University, Taizhou, Zhejiang 318000 (China)

    2016-04-30

    Graphical abstract: - Highlights: • The NiFe{sub 2}O{sub 4} was decorated on ZnO surface by a hydrothermal method. • NiFe{sub 2}O{sub 4}/ZnO hybrids show high adsorption capacity and excellent photostability. • The main active species in dye decolorization by NiFe{sub 2}O{sub 4}/ZnO hybrids are ·OH and h{sup +}. • NiFe{sub 2}O{sub 4}/ZnO hybrids can be easily separated by an external magnet. - Abstract: Novel multifunctional NiFe{sub 2}O{sub 4}/ZnO hybrids were prepared by a hydrothermal method and their physicochemical properties were characterized by XRD, SEM, TEM, TGA, VSM, BET and UV–vis DRS. The adsorption and photocatalytic performance of NiFe{sub 2}O{sub 4}/ZnO hybrids were systematically investigated using congo red as a model contaminant. With the introduction of NiFe{sub 2}O{sub 4}, NiFe{sub 2}O{sub 4}/ZnO hybrids can absorb the whole light from 300 nm to 700 nm. The adsorption capacity (221.73 mg g{sup −1}) of NiFe{sub 2}O{sub 4}/ZnO hybrids is higher than those of NiFe{sub 2}O{sub 4}, ZnO and mechanically mixed NiFe{sub 2}O{sub 4}/ZnO hybrids. The removal of congo red solution (20 mg L{sup −1}) by NiFe{sub 2}O{sub 4}/ZnO hybrids was about 94.55% under simulated solar light irradiation for 10 min. ·OH and h{sup +} play important roles in the decolorization of congo red solution by NiFe{sub 2}O{sub 4}/ZnO hybrids under simulated solar light irradiation. The decolorization efficiency of congo red solution is 97.23% for the fifth time by NiFe{sub 2}O{sub 4}/ZnO hybrids under simulate solar light irradiation, indicating the high photostability and durability. NO{sub 3}{sup −} and Cl{sup −} anions which are ubiquitous components in dye-containing wastewater have negligible influence on the effectiveness of NiFe{sub 2}O{sub 4}/ZnO hybrids. Moreover, the magnetic NiFe{sub 2}O{sub 4}/ZnO hybrids can be easily separated from the reacted solution by an external magnet.

  8. Noninvasive prenatal diagnosis. Use of density gradient centrifugation, magnetically activated cell sorting and in situ hybridization

    DEFF Research Database (Denmark)

    Campagnoli, C; Multhaupt, H A; Ludomirski, A;

    1997-01-01

    cells recovered did not differ. Seven of seven male pregnancies were correctly identified. One case of trisomy 21 was detected. CONCLUSION: The in situ hybridization analysis of fetal nucleated erythrocytes isolated from maternal blood using single density gradient centrifugation, anti-CD71/anti...... of the isolated cells were subjected to in situ hybridization with specific DNA probes for the Y chromosome and chromosome 21 to confirm the fetal origin. RESULTS: After MiniMACS the enrichment factors for the CD71/GPA- and CD36/GPA-positive cells from maternal blood were similar, and the percentages of fetal...

  9. Characteristic Analysis and Experimental Study of a Hybrid Permanent Magnet Variable Flux Memory Motor

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Variable flux permanent magnet (PM) memory motors (VFMM), which combine the advantages of PM machines with high power density and electrically excited machines with controllable air-gap magnetic flux, have been widely concerned and researched in recent years.

  10. A hybrid two-component Bose–Einstein condensate interferometer for measuring magnetic field gradients

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Fei [Key Laboratory of Fiber Optic Sensing Technology and Information Processing, Ministry of Education, Wuhan University of Technology, Wuhan 430070 (China); Huang, Jiahao, E-mail: hjiahao@mail2.sysu.edu.cn [TianQin Research Center & School of Physics and Astronomy, Sun Yat-Sen University, SYSU Zhuhai Campus, Zhuhai 519082 (China); Liu, Quan [Key Laboratory of Fiber Optic Sensing Technology and Information Processing, Ministry of Education, Wuhan University of Technology, Wuhan 430070 (China)

    2017-03-03

    Highlights: • A scheme for detecting magnetic field gradients via a double-well two-component Bose–Einstein condensate interferometer. • The magnetic field gradient can be extracted by either the spin population or the external state. • Our proposal is potentially sensitive to weak magnetic field inhomogeneity due to its small sensor size. - Abstract: We have proposed a scheme to detect magnetic field gradients via an interferometer based on a double-well two-component Bose–Einstein condensate (BEC). Utilizing a sequence of quantum control operations on both external and internal degree of the BEC, one can extract the magnetic field gradients by measuring either the population in one component or the fidelity between the final external state and the initial ground state. Our scheme can be implemented by current experimental techniques of manipulating ultracold atoms.

  11. A highly optimized code for calculating atomic data at neutron star magnetic field strengths using a doubly self-consistent Hartree-Fock-Roothaan method

    Science.gov (United States)

    Schimeczek, C.; Engel, D.; Wunner, G.

    2012-07-01

    Our previously published code for calculating energies and bound-bound transitions of medium-Z elements at neutron star magnetic field strengths [D. Engel, M. Klews, G. Wunner, Comput. Phys. Comm. 180 (2009) 302-311] was based on the adiabatic approximation. It assumes a complete decoupling of the (fast) gyration of the electrons under the action of the magnetic field and the (slow) bound motion along the field under the action of the Coulomb forces. For the single-particle orbitals this implied that each is a product of a Landau state and an (unknown) longitudinal wave function whose B-spline coefficients were determined self-consistently by solving the Hartree-Fock equations for the many-electron problem on a finite-element grid. In the present code we go beyond the adiabatic approximation, by allowing the transverse part of each orbital to be a superposition of Landau states, while assuming that the longitudinal part can be approximated by the same wave function in each Landau level. Inserting this ansatz into the energy variational principle leads to a system of coupled equations in which the B-spline coefficients depend on the weights of the individual Landau states, and vice versa, and which therefore has to be solved in a doubly self-consistent manner. The extended ansatz takes into account the back-reaction of the Coulomb motion of the electrons along the field direction on their motion in the plane perpendicular to the field, an effect which cannot be captured by the adiabatic approximation. The new code allows for the inclusion of up to 8 Landau levels. This reduces the relative error of energy values as compared to the adiabatic approximation results by typically a factor of three (1/3 of the original error), and yields accurate results also in regions of lower neutron star magnetic field strengths where the adiabatic approximation fails. Further improvements in the code are a more sophisticated choice of the initial wave functions, which takes into

  12. Magnetic isotope effect and theory of atomic orbital hybridization to predict a mechanism of chemical exchange reactions.

    Science.gov (United States)

    Epov, Vladimir N

    2011-08-07

    A novel approach is suggested to investigate the mechanisms of chemical complexation reactions based on the results of Fujii with co-workers; they have experimentally observed that several metals and metalloids demonstrate mass-independent isotope fractionation during the reactions with the DC18C6 crown ether using solvent-solvent extraction. In this manuscript, the isotope fractionation caused by the magnetic isotope effect is used to understand the mechanisms of chemical exchange reactions. Due to the rule that reactions are allowed for certain electron spin states, and forbidden for others, magnetic isotopes show chemical anomalies during these reactions. Mass-independent fractionation is suggested to take place due to the hyperfine interaction of the nuclear spin with the electron spin of the intermediate product. Moreover, the sign of the mass-independent fractionation is found to be dependent on the element and its species, which is also explained by the magnetic isotope effect. For example, highly negative mass-independent isotope fractionation of magnetic isotopes was observed for reactions of DC18C6 with SnCl(2) species and with several Ru(III) chloro-species, and highly positive for reactions of this ether with TeCl(6)(2-), and with several Cd(II) and Pd(II) species. The atomic radius of an element is also a critical parameter for the reaction with crown ether, particularly the element ions with [Kr]4d(n)5s(m) electron shell fits the best with the DC18C6 crown ring. It is demonstrated that the magnetic isotope effect in combination with the theory of orbital hybridization can help to understand the mechanism of complexation reactions. The suggested approach is also applied to explain previously published mass-independent fractionation of Hg isotopes in other types of chemical exchange reactions.

  13. Hybridization between microstructure and magnetization improvement in lead and RE co-doped BiFeO3

    Institute of Scientific and Technical Information of China (English)

    MA Ahmed; SF Mansour; SI El-Dek; MM Karamany

    2016-01-01

    The crystal structure, magnetic and electrical properties of Bi0.96Pb0.04FeO3 and Bi0.92Pb0.04RE0.04FeO3 (RE=La, Sm, Dy and Yb) polycrystalline samples were prepared by the flash autocombustion technique. X-ray diffraction (XRD) measurements show that the rare-earth doped compositions crystallized in rhombohedral symmetry of space groupR3c. The undoped sample consisted needle shape particles while rare earth substitution preferred platelet like particles as clarified from high resolution transmission elec-tron microscopy (HRTEM). Morphological features were examined using field emission scanning electron microscopy (FESEM). Magnetization measurements showed that Yb3+ samples possessed the highest room temperature saturation magnetization while when Bi3+ ions were substituted by La3+ ions, a smallerMS (0.28 emu/g) was obtained. The coexistence of ferroelectric and magnetic transi-tions was detected using DSC andχM, indicating the multiferroic characteristics of Bi0.92Pb0.04RE0.04FeO3 crystallites. The Néel tem-perature shifted upwards with decreasing the ionic radius of rare earth ion. Nice correlation was established between microstructure, morphology and magnetic properties in view of the contribution of magnetocrystalline and shape anisotropy in the magnetic parame-ters values.

  14. High-Energy Permanent Magnets for Hybrid Vehicles and Alternative Energy Uses

    Energy Technology Data Exchange (ETDEWEB)

    Hadjipanayis, George C. [University of Delaware; McCallum, William R. [Ames Laboratory; Sellmyer, David J. [University of Nebraska, Lincoln; Harris, Vincent [Northeastern University; Carpenter, Everett E. [Virginia Commonwealth University; Liu, Jinfang [Electron Energy Corporation

    2013-12-17

    The report summarizes research undertaken by a multidisciplinary team aimed at the development of the next generation high-energy permanent magnets. The principal approach was relied on bottom-up fabrication of anisotropic nanocomposite magnets. Our efforts resulted in further development of the theoretical concept and fabrication principles for the nanocomposites and in synthesis of a range of rare-earth-based hard magnetic nanoparticles. Even though we did not make a breakthrough in the assembly of these hard magnetic particles with separately prepared Fe(Co) nanoparticles and did not obtain a compact nanocomposite magnet, our performed research will help to direct the future efforts, in particular, towards nano-assembly via coating, when the two phases which made the nanocomposite are first organized in core-shell-structured particles. Two other approaches were to synthesize (discover) new materials for the traditional singe-material magnets and the nanocomposite magnets. Integrated theoretical and experimental efforts lead to a significant advance in nanocluster synthesis technique and yielded novel rare-earth-free nanostructured and nanocomposite materials. Examination of fifteen R-Fe-X alloy systems (R = rare earth), which have not been explored earlier due to various synthesis difficulties reveal several new ferromagnetic compounds. The research has made major progress in bottom-up manufacturing of rare-earth-containing nanocomposite magnets with superior energy density and open new directions in development of higher-energy-density magnets that do not contain rare earths. The advance in the scientific knowledge and technology made in the course of the project has been reported in 50 peer-reviewed journal articles and numerous presentations at scientific meetings.

  15. Exchange-coupled nanoscale SmCo/NdFeB hybrid magnets

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Dapeng; Poudyal, Narayan; Rong, Chuanbing; Zhang, Ying; Kramer, Matthew J.; Liu, J. Ping

    2012-05-11

    Nanoscalehybridmagnets containing SmCo5 and Nd2Fe14B hard magnetic phases have been produced via a novel “in-one-pot” processing route. The grain size of the processed bulk composite materials is controlled below 20 nm. The refinement of the nanoscale morphology leads to effective inter-phase exchange coupling that results in single-phase like magnetic properties. Energy product of 14 MGOe was obtained in the isotropic nanocomposite magnets at room temperature. At elevated temperatures, the hybridmagnets have greatly improved thermal stability compared to the Nd2Fe14B single-phase counterpart and have substantially increased magnetization and energy products compared to the single-phase SmCo5 counterpart.

  16. Irreversible magnetization switching at the onset of superconductivity in a superconductor ferromagnet hybrid

    Energy Technology Data Exchange (ETDEWEB)

    Curran, P. J.; Bending, S. J. [Department of Physics, University of Bath, Claverton Down, Bath BA2 7AY (United Kingdom); Kim, J.; Satchell, N.; Witt, J. D. S.; Burnell, G. [School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT (United Kingdom); Flokstra, M. G.; Lee, S. L. [School of Physics and Astronomy, SUPA, University of St. Andrews, St. Andrews KY16 9SS (United Kingdom); Cooper, J. F. K.; Kinane, C. J.; Langridge, S. [ISIS, Rutherford Appleton Laboratory, Oxfordshire OX11 0QX (United Kingdom); Isidori, A.; Eschrig, M. [Department of Physics, Royal Holloway, University of London, Egham, Surrey TW20 0EX (United Kingdom); Pugach, N. [Department of Physics, Royal Holloway, University of London, Egham, Surrey TW20 0EX (United Kingdom); Skobeltsyn Institute of Nuclear Physics, M.V. Lomonosov Moscow State University (SYNP MSU), Leninskie Gory, Moscow 119991 (Russian Federation)

    2015-12-28

    We demonstrate that the magnetic state of a superconducting spin valve, that is normally controlled with an external magnetic field, can also be manipulated by varying the temperature which increases the functionality and flexibility of such structures as switching elements. In this case, switching is driven by changes in the magnetostatic energy due to spontaneous Meissner screening currents forming in the superconductor below the critical temperature. Our scanning Hall probe measurements also reveal vortex-mediated pinning of the ferromagnetic domain structure due to the pinning of quantized stray fields in the adjacent superconductor. The ability to use temperature as well as magnetic field to control the local magnetisation structure raises the prospect of potential applications in magnetic memory devices.

  17. Magnetic-field-induced change of magnetoelectric coupling in the hybrid multiferroic (ND4)2[FeC l5.D2O

    Science.gov (United States)

    Rodríguez-Velamazán, J. Alberto; Fabelo, Oscar; Campo, Javier; Millán, Ángel; Rodríguez-Carvajal, Juan; Chapon, Laurent C.

    2017-05-01

    In this paper, we elucidate the changes of magnetoelectric coupling mechanism in different zones of the rich magnetic field-temperature (B -T ) phase diagram of the molecular multiferroic (NH4) 2[FeC l5.H2O ] , which represents one of the rare cases where improper ferroelectricity has been observed in a hybrid material. We have recently proposed a mechanism of multiferroicity in zero magnetic field in the deuterated form of this material from a detailed determination of its crystal and magnetic structures. The proposed magnetic structure at zero magnetic field corresponds to a cycloidal spin arrangement that gives rise to a ferroelectric polarization through the spin current mechanism induced via the inverse Dzyaloshinskii-Moriya interaction. In this paper, we present a single-crystal neutron diffraction study under external magnetic field, aimed at elucidating the evolution of the magnetic structure under applied magnetic field, and determine the mechanism of magnetoelectric coupling, which allows us to describe an unprecedented change from spin current to spin-dependent p -d hybridization mechanism.

  18. Parametric decay instability near the upper hybrid resonance in magnetically confined fusion plasmas

    Science.gov (United States)

    Hansen, S. K.; Nielsen, S. K.; Salewski, M.; Stejner, M.; Stober, J.; the ASDEX Upgrade Team

    2017-10-01

    In this paper we investigate parametric decay of an electromagnetic pump wave into two electrostatic daughter waves, particularly an X-mode pump wave decaying into a warm upper hybrid wave (a limit of an electron Bernstein wave) and a warm lower hybrid wave. We describe the general theory of the above parametric decay instability (PDI), unifying earlier treatments, and show that it may occur in underdense and weakly overdense plasmas. The PDI theory is used to explain anomalous sidebands observed in collective Thomson scattering (CTS) spectra at the ASDEX Upgrade tokamak. The theory may also account for similar observations during CTS experiments in stellarators, as well as in some 1st harmonic electron cyclotron resonance and O-X-B heating experiments.

  19. Influence of hybridization in the magnetic circular X-ray dichroism at the Ce-M(4,5) absorption edges of Ce-Fe systems

    NARCIS (Netherlands)

    Finazzi, M; deGroot, FMF; Dias, AM; Kappler, JP; Schulte, O; Felsch, W; Krill, G

    We have performed a Magnetic Circular X-ray Dichroism (XMCD) study at the Ce-M(4,5) absorption edges on some Ce-Fe systems. We find that the dichroism signal in these systems is very sensitive to the degree of hybridization of the 4f electrons with the valence band. XMCD is able to demonstrate that

  20. Influence of hybridization in the Magnetic Circular X-ray Dichroism at the Ce-M4,5 absorption edges of Ce-Fe systems

    NARCIS (Netherlands)

    Finazzi, M.; de Groot, F.M.F.; Dias, A.-M.; Kappler, J.-P.; Schulte, O.; Felsch, W.; Krill, G.

    2013-01-01

    We have performed a Magnetic Circular X-ray Dichroism (XMCD) study at the Ce-M*,s absorption edges on some Ce-Fe systems. We find that the dichroism signal in these systems is very sensitive to the degree of hybridization of the 4f electrons with the valence band. XMCD is able to demonstrate that th

  1. Influence of hybridization in the magnetic circular X-ray dichroism at the Ce-M(4,5) absorption edges of Ce-Fe systems

    NARCIS (Netherlands)

    Finazzi, M; deGroot, FMF; Dias, AM; Kappler, JP; Schulte, O; Felsch, W; Krill, G

    1996-01-01

    We have performed a Magnetic Circular X-ray Dichroism (XMCD) study at the Ce-M(4,5) absorption edges on some Ce-Fe systems. We find that the dichroism signal in these systems is very sensitive to the degree of hybridization of the 4f electrons with the valence band. XMCD is able to demonstrate that

  2. Design of a Permanent Magnet Synchronous Machine for a Flywheel Energy Storage System within a Hybrid Electric Vehicle

    Science.gov (United States)

    Jiang, Ming

    As an energy storage device, the flywheel has significant advantages over conventional chemical batteries, including higher energy density, higher efficiency, longer life time, and less pollution to the environment. An effective flywheel system can be attributed to its good motor/generator (M/G) design. This thesis describes the research work on the design of a permanent magnet synchronous machine (PMSM) as an M/G suitable for integration in a flywheel energy storage system within a large hybrid electric vehicle (HEV). The operating requirements of the application include wide power and speed ranges combined with high total system efficiency. Along with presenting the design, essential issues related to PMSM design including cogging torque, iron losses and total harmonic distortion (THD) are investigated. An iterative approach combining lumped parameter analysis with 2D Finite Element Analysis (FEA) was used, and the final design is presented showing excellent performance.

  3. Synthesis and Characterization of Hybrid-Magnetic Nanoparticles and Their Application for Removal of Arsenic from Groundwater

    Directory of Open Access Journals (Sweden)

    Marta A. Bavio

    2013-01-01

    Full Text Available Multiwall carbon nanotubes (MWCNTs were oxidized with different agents and a characterization study was carried out. Then, hybrid-magnetic nanoparticles (HMNPs were synthesized as iron oxide supported on the selected multiwalled carbon nanotubes (MWCNTs-Fe3O4 obtained from MWCNTs oxidized with HNO3. The HMNPs characterization revealed the presence of iron oxide as magnetite onto the MWCNTs surfaces. These HMNPs were used for arsenic removal from groundwater. The adsorption process variables were optimized (concentration of NPs, contact time, and pH, and these systems could remove 39.93 mg As/g adsorbent. Therefore, these nanoparticles appear as a good alternative for removing arsenic from water samples.

  4. Hybrid magnetic materials based on layered double hydroxides: from the chemistry towards the applications

    OpenAIRE

    ABELLÁN SÁEZ, GONZALO

    2014-01-01

    Layered double hydroxides (LDHs) are the leitmotiv of this dissertation. Contradicting the assertion that “any past was better”, LDHs have been continuously revisited from the middle of the twentieth century, and represent an excellent example of the never-ending beauty of Chemistry. New synthetic perspectives are giving a new impetus to LDH chemistry, which among hybrid materials, are finding their heyday. This is resulting in novel materials and also paving the way for new fundamental and p...

  5. Performance Analysis of a Hybrid One-Sided Magnetic Exciter Mounted on a Piezoelectric Stack

    OpenAIRE

    Nandi, A.; Neogy, S.

    2010-01-01

    The present work proposes a non-contact hybrid exciter especially useful for harmonic excitation of lightly damped structures/rotors. In the proposed exciter an electromagnet is placed on a piezoelectric stack and the extension of the piezoelectric stack is made almost equal to the displacement of the structure using a simple tracking control. This largely eliminates stiffness coupling between the structure/rotor and the exciter and non-linearity in the excitation force due to the vibration o...

  6. Quantification of mRNA in Salmonella sp. seeded soil and chicken manure using magnetic capture hybridization RT-PCR.

    Science.gov (United States)

    Jacobsen, Carsten Suhr; Holben, William E

    2007-05-01

    Direct quantification of mRNA from Salmonella sp. seeded for 1 h to soil and chicken manure was accomplished using magnetic capture hybridization as a purification technique. This detection strategy targeted the invA gene present in Salmonella sp. After cell lysis, phenol/chloroform purification and isopropanol precipitation, the RNA extract was combined with the hybridization probe conjugated to paramagnetic beads. After hybridization, the captured nucleic acids were released by denaturation and purified of contaminating DNA using DNase. The resulting RNA was of high purity and there was no need for dilution of the samples prior to RT-PCR. The developed procedure was reproducibly used to quantify Salmonella sp. in high organic agricultural soil. The detection limit for mRNA using ordinary quantitative PCR (employing SYBRgreen-based detection) was 5 x 10(4)Salmonella sp. cells per gram of soil. Chicken manure amended into soil (1:4 w/w) did not reduce the ability to quantify Salmonella sp. mRNA in soil. Pasteurization (65 degrees C, 30 min) of chicken manure containing Salmonella sp. dramatically reduced the detection of invA mRNA (requiring 42 qPCR cycles for detection versus 26 cycles in unpasteurized manure), presumably due to degradation of the invA mRNA in Salmonella sp. cells killed by pasteurization. By contrast, DNA-based qPCR still detected Salmonella sp. in the pasteurized manure. Thus, in this case using samples seeded with fresh Salmonella sp. the mRNA-based detection appears to be superior to minimizing false-positive detection which was prevalent with DNA-based qPCR.

  7. Hybrid Positron Emission Tomography/Magnetic Resonance Imaging: Challenges, Methods, and State of the Art of Hardware Component Attenuation Correction.

    Science.gov (United States)

    Paulus, Daniel H; Quick, Harald H

    2016-10-01

    Attenuation correction (AC) is an essential step in the positron emission tomography (PET) data reconstruction process to provide accurate and quantitative PET images. The introduction of PET/magnetic resonance (MR) hybrid systems has raised new challenges but also possibilities regarding PET AC. While in PET/computed tomography (CT) imaging, CT images can be converted to attenuation maps, MR images in PET/MR do not provide a direct relation to attenuation. For the AC of patient tissues, new methods have been suggested, for example, based on image segmentation, atlas registration, or ultrashort echo time MR sequences. Another challenge in PET/MR hybrid imaging is AC of hardware components that are placed in the PET/MR field of view, such as the patient table or various radiofrequency (RF) coils covering the body of the patient for MR signal detection. Hardware components can be categorized into 4 different groups: (1) patient table, (2) RF receiver coils, (3) radiation therapy equipment, and (4) PET and MR imaging phantoms. For rigid and stationary objects, such as the patient table and some RF coils like the head/neck coil, predefined CT-based attenuation maps stored on the system can be used for automatic AC. Flexible RF coils are not included into the AC process till now because they can vary in position as well as in shape and are not accurately detectable with the PET/MR system.This work summarizes challenges, established methods, new concepts, and the state of art in hardware component AC in the context of PET/MR hybrid imaging. The work also gives an overview of PET/MR hardware devices, their attenuation properties, and their effect on PET quantification.

  8. Sensitive electrochemical determination of miRNAs based on a sandwich assay onto magnetic microcarriers and hybridization chain reaction amplification.

    Science.gov (United States)

    Torrente-Rodríguez, R M; Campuzano, S; Montiel, V Ruiz-Valdepeñas; Montoya, J J; Pingarrón, J M

    2016-12-15

    A novel electrochemical approach for determination of miRNAs involving a sandwich hybridization assay onto streptavidin-magnetic beads (Strep-MBs), hybridization chain reaction (HCR) amplification and amperometric detection at disposable screen-printed carbon electrodes is reported. Using miRNA-21 as the target analyte, a dynamic linear range from 0.2 to 5.0nM with a 60pM (1.5fmol in 25μL) detection limit was obtained. The achieved sensitivity is 24-fold higher than a non-HCR amplification approach involving conventional sandwich type assay onto MBs. Moreover, the whole assay time lasted 1h 45min which is remarkably shorter than other reported methodologies. The methodology exhibited full selectivity against other non-complementary miRNAs as well as an acceptable discrimination between homologous miRNA family members. The applicability of this novel approach was demonstrated by determining mature miRNA-21 in total RNA (RNAt) extracted from tumor cells and human tissues.

  9. Soft Magnetic Properties of Fe-based Amorphous/Nanocrystalline Hybrid Materials

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yeonjoo; Jeon, Jonggyu; Lee, Mijung; Choi, Hyunjoo [Kookmin University, Seoul (Korea, Republic of); Jang, Teasuk; Lee, Minwoo [Sunmoon University, Asan (Korea, Republic of); Kim, Yongjin; Yang, Dongyeol [Korea Institute of Materials Science, Changwon (Korea, Republic of)

    2017-05-15

    In this study, the effect of the crystalline structure on the magnetic properties of Fe-based amorphous powder is investigated. The Fe-B-P-C-Nb-Hf amorphous powder with excellent soft magnetic properties is prepared via gas-atomization, and the atomized amorphous powder is annealed in order to generate a small amount of nanosized crystallites in the amorphous matrix. For the powder annealed at 375 ℃, the coercivity is decreased by 96.15%from 3632.68 to 139.89 A/m, and the magnetization is increased 19.04% from 0.192 to 0.229 Wbm/g. For the powder annealed at 425 ℃, the coercivity is decreased 95.14%to 176.72 A/m and the magnetization is increased 0.71%to 0.193 Wbm/g. The simultaneous enhancement of the coercivity and magnetization can be attributed to the generation of a small amount of nanosized crystallites and the release of the residual stresses.

  10. 3-D Hybrid Kinetic Modeling of the Interaction Between the Solar Wind and Lunar-like Exospheric Pickup Ions in Case of Oblique/ Quasi-Parallel/Parallel Upstream Magnetic Field

    Science.gov (United States)

    Lipatov, A. S.; Farrell, W. M.; Cooper, J. F.; Sittler, E. C., Jr.; Hartle, R. E.

    2015-01-01

    The interactions between the solar wind and Moon-sized objects are determined by a set of the solar wind parameters and plasma environment of the space objects. The orientation of upstream magnetic field is one of the key factors which determines the formation and structure of bow shock wave/Mach cone or Alfven wing near the obstacle. The study of effects of the direction of the upstream magnetic field on lunar-like plasma environment is the main subject of our investigation in this paper. Photoionization, electron-impact ionization and charge exchange are included in our hybrid model. The computational model includes the self-consistent dynamics of the light (hydrogen (+), helium (+)) and heavy (sodium (+)) pickup ions. The lunar interior is considered as a weakly conducting body. Our previous 2013 lunar work, as reported in this journal, found formation of a triple structure of the Mach cone near the Moon in the case of perpendicular upstream magnetic field. Further advances in modeling now reveal the presence of strong wave activity in the upstream solar wind and plasma wake in the cases of quasiparallel and parallel upstream magnetic fields. However, little wave activity is found for the opposite case with a perpendicular upstream magnetic field. The modeling does not show a formation of the Mach cone in the case of theta(Sub B,U) approximately equal to 0 degrees.

  11. Synthesis of biocompatible hybrid magnetic hollow spheres based on encapsulation strategy.

    Science.gov (United States)

    Ha, Wei; Wu, Hao; Ma, Yuan; Fan, Min-Min; Peng, Shu-Lin; Ding, Li-Sheng; Zhang, Sheng; Li, Bang-Jing

    2013-01-30

    A kind of novel magnetic hollow spheres was prepared by encapsulating magnetofluid into polymeric hollow spheres. Polymeric hollow nanospheres were constructed by self-assembly of rod-coil complexes, in which the rod-like segments were formed by inclusion of α-cyclodextrins (α-CD) and grafting poly(ethylene glycol) (PEG) chains of chitosan-graft-PEG (CS-g-PEG). Structural characteristics of CS-g-PEG/α-CD hollow spheres were investigated in detail by NMR, XRD, TEM, etc. Furthermore, those hollow spheres showed a pH responsive property which induced a considerable change of their radius. Magnetofluid was physically entrapped into the empty domain while hollow spheres were formed, it was found that the hollow spheres can encapsulate large quantities of magnetofluid and the encapsulated magnetofluid still possess magnetic responsiveness properties. We expect that this strategy may be served as a novel and more straightforward approach to obtain magnetic hollow spheres for biomedical application.

  12. A hybrid two-component Bose-Einstein condensate interferometer for measuring magnetic field gradients

    Science.gov (United States)

    Xu, Fei; Huang, Jiahao; Liu, Quan

    2017-03-01

    We have proposed a scheme to detect magnetic field gradients via an interferometer based on a double-well two-component Bose-Einstein condensate (BEC). Utilizing a sequence of quantum control operations on both external and internal degree of the BEC, one can extract the magnetic field gradients by measuring either the population in one component or the fidelity between the final external state and the initial ground state. Our scheme can be implemented by current experimental techniques of manipulating ultracold atoms.

  13. Adsorption of environmental pollutants using magnetic hybrid nanoparticles modified with β-cyclodextrin

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Niejun [Key Lab of Organic Optoelectronic and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084 (China); Beijing Key Laboratory of Microanalytical Method and Instrumentation, Department of Chemistry, Tsinghua University, Beijing, 100084 (China); Zhou, Lilin; Guo, Jun; Ye, Qiquan [Key Lab of Organic Optoelectronic and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084 (China); Lin, Jin-Ming [Beijing Key Laboratory of Microanalytical Method and Instrumentation, Department of Chemistry, Tsinghua University, Beijing, 100084 (China); Yuan, Jinying, E-mail: yuanjy@mail.tsinghua.edu.cn [Key Lab of Organic Optoelectronic and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084 (China)

    2014-06-01

    Graft through strategy was utilized to coat magnetic Fe{sub 3}O{sub 4} nanoparticles with poly(glycidyl methacrylate) using ordinary radical polymerization and then β-cyclodextrin was linked onto the surface of nanoparticles. With these nanoparticles modified with cyclodextrin groups, adsorption of two model environmental pollutants, bisphenol A and copper ions, was studied. Host–guest interactions between cyclodextrin and aromatic molecules had a great contribution to the adsorption of bisphenol A, while multiple hydroxyls of cyclodextrin also helped the adsorption of copper ions. These magnetic nanoparticles could be applied in the elimination, enrichment and detection of some environmental pollutants.

  14. Adsorption of environmental pollutants using magnetic hybrid nanoparticles modified with β-cyclodextrin

    Science.gov (United States)

    Wang, Niejun; Zhou, Lilin; Guo, Jun; Ye, Qiquan; Lin, Jin-Ming; Yuan, Jinying

    2014-06-01

    Graft through strategy was utilized to coat magnetic Fe3O4 nanoparticles with poly(glycidyl methacrylate) using ordinary radical polymerization and then β-cyclodextrin was linked onto the surface of nanoparticles. With these nanoparticles modified with cyclodextrin groups, adsorption of two model environmental pollutants, bisphenol A and copper ions, was studied. Host-guest interactions between cyclodextrin and aromatic molecules had a great contribution to the adsorption of bisphenol A, while multiple hydroxyls of cyclodextrin also helped the adsorption of copper ions. These magnetic nanoparticles could be applied in the elimination, enrichment and detection of some environmental pollutants.

  15. Nearest-neighbor sp3s* tight-binding parameters based on the hybrid quasi-particle self-consistent GW method verified by modeling of type-II superlattices

    Science.gov (United States)

    Sawamura, Akitaka; Otsuka, Jun; Kato, Takashi; Kotani, Takao

    2017-06-01

    We report the determination of parameters for the nearest-neighbor sp3s* tight-binding (TB) model for GaP, GaAs, GaSb, InP, InAs, and InSb at 0, 77, and 300 K based on the hybrid quasi-particle self-consistent GW (QSGW) calculation and their application to a type II (InAs)/(GaSb) superlattice. The effects of finite temperature have been incorporated empirically by adjusting the parameter for blending the exchange-correlation terms of the pure QSGW method and local density approximation, in addition to the usage of experimental lattice parameters. As expected, the TB band gap shrinks with temperature and asymptotically with superlattice period when it is large. In addition, a bell curve in the band gap in the case of small superlattice period and slight and remarkable anisotropy in effective masses of electron and hole, both predicted by the hybrid QSGW method, respectively, are reproduced.

  16. Light-dependent and -independent behavioral effects of extremely low frequency magnetic fields in a land snail are consistent with a parametric resonance mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Prato, F.S.; Thomas, A.W. [Univ. of Western Ontario, London, Ontario (Canada)]|[St. Joseph`s Health Centre, London, Ontario (Canada); Kavaliers, M. [Univ. of Western Ontario, London, Ontario (Canada); Cullen, A.P. [Univ. of Waterloo, Ontario (Canada). School of Optometry

    1997-05-01

    Exposure to extremely low frequency (ELF) magnetic fields has been shown to attenuate endogenous opioid peptide mediated antinociception or analgesia in the terrestrial pulmonate snail, Cepaea nemoralis. Here the authors examine the roles of light in determining this effect and address the mechanisms associated with mediating the effects of the ELF magnetic fields in both the presence and absence of light. Specifically, they consider whether the magnetic field effects involve an indirect induced electric current mechanism or a direct effect such as a parametric resonance mechanism (PRM). They exposed snails in both the presence and absence of light at three different frequencies (30, 60, and 120 Hz) with static field values (B{sub DC}) and ELF magnetic field amplitude (peak) and direction (B{sub AC}) set according to the predictions of the PRM for Ca{sup 2+}. Analgesia was induced in snails by injecting them with an enkephalinase inhibitor, which augments endogenous opioid (enkephalin) activity. They found that the magnetic field exposure reduced this opioid-induced analgesia significantly more if the exposure occurred in the presence rather than the absence of light. However, the percentage reduction in analgesia in both the presence and absence of light was not dependent on the ELF frequency. This finding suggests that in both the presence and the absence of light the effect of the ELF magnetic field was mediated by a direct magnetic field detection mechanism such as the PRM rather than an induced current mechanism.

  17. Study of electric and magnetic field fluctuations from lower hybrid drift instability waves in the terrestrial magnetotail with the fully kinetic, semi-implicit, adaptive multi level multi domain method

    Science.gov (United States)

    Innocenti, M. E.; Norgren, C.; Newman, D.; Goldman, M.; Markidis, S.; Lapenta, G.

    2016-05-01

    The newly developed fully kinetic, semi-implicit, adaptive multi-level multi-domain (MLMD) method is used to simulate, at realistic mass ratio, the development of the lower hybrid drift instability (LHDI) in the terrestrial magnetotail over a large wavenumber range and at a low computational cost. The power spectra of the perpendicular electric field and of the fluctuations of the parallel magnetic field are studied at wavenumbers and times that allow to appreciate the onset of the electrostatic and electromagnetic LHDI branches and of the kink instability. The coupling between electric and magnetic field fluctuations observed by Norgren et al. ["Lower hybrid drift waves: Space observations," Phys. Rev. Lett. 109, 055001 (2012)] for high wavenumber LHDI waves in the terrestrial magnetotail is verified. In the MLMD simulations presented, a domain ("coarse grid") is simulated with low resolution. A small fraction of the entire domain is then simulated with higher resolution also ("refined grid") to capture smaller scale, higher frequency processes. Initially, the MLMD method is validated for LHDI simulations. MLMD simulations with different levels of grid refinement are validated against the standard semi-implicit particle in cell simulations of domains corresponding to both the coarse and the refined grid. Precious information regarding the applicability of the MLMD method to turbulence simulations is derived. The power spectra of MLMD simulations done with different levels of refinements are then compared. They consistently show a break in the magnetic field spectra at k⊥di˜30 , with di the ion skin depth and k⊥ the perpendicular wavenumber. The break is observed at early simulated times, Ωcit <6 , with Ωci the ion cyclotron frequency. It is due to the initial decoupling of electric and magnetic field fluctuations at intermediate and low wavenumbers, before the development of the electromagnetic LHDI branch. Evidence of coupling between electric and magnetic

  18. Modeling and Control of a Flux-Modulated Compound-Structure Permanent-Magnet Synchronous Machine for Hybrid Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Zhiyi Song

    2012-01-01

    Full Text Available The compound-structure permanent-magnet synchronous machine (CS-PMSM, comprising a double rotor machine (DRM and a permanent-magnet (PM motor, is a promising electronic-continuously variable transmission (e-CVT concept for hybrid electric vehicles (HEVs. By CS-PMSM, independent speed and torque control of the vehicle engine is realized without a planetary gear unit. However, the slip rings and brushes of the conventional CS-PMSM are considered a major drawback for vehicle application. In this paper, a brushless flux-modulated CS-PMSM is investigated. The operating principle and basic working modes of the CS-PMSM are discussed. Mathematical models of the CS-PMSM system are given, and joint control of the two integrated machines is proposed. As one rotor of the DRM is mechanically connected with the rotor of the PM motor, special rotor position detection and torque allocation methods are required. Simulation is carried out by Matlab/Simulink, and the feasibility of the control system is proven. Considering the complexity of the controller, a single digital signal processor (DSP is used to perform the interconnected control of dual machines instead of two separate ones, and a typical hardware implementation is proposed.

  19. Preparation of hydrazine functionalized polymer brushes hybrid magnetic nanoparticles for highly specific enrichment of glycopeptides.

    Science.gov (United States)

    Huang, Guang; Sun, Zhen; Qin, Hongqiang; Zhao, Liang; Xiong, Zhichao; Peng, Xiaojun; Ou, Junjie; Zou, Hanfa

    2014-05-07

    Hydrazide chemistry is a powerful technique in glycopeptides enrichment. However, the low density of the monolayer hydrazine groups on the conventional hydrazine-functionalized magnetic nanoparticles limits the efficiency of glycopeptides enrichment. Herein, a novel magnetic nanoparticle grafted with poly(glycidyl methacrylate) (GMA) brushes was fabricated via reversible addition-fragmentation chain transfer (RAFT) polymerization, and a large amount of hydrazine groups were further introduced to the GMA brushes by ring-opening the epoxy groups with hydrazine hydrate. The resulting magnetic nanoparticles (denoted as Fe3O4@SiO2@GMA-NHNH2) demonstrated the high specificity of capturing glycopeptides from a tryptic digest of the sample comprising a standard non-glycosylated protein bovine serum albumin (BSA) and four standard glycoproteins with a weight ratio of 50 : 1, and the detection limit was as low as 130 fmol. In the analysis of a real complex biological sample, the tryptic digest of hepatocellular carcinoma, 179 glycosites were identified by the Fe3O4@SiO2@GMA-NHNH2 nanoparticles, surpassing that of 68 glycosites by Fe3O4@SiO2-single-NHNH2 (with monolayer hydrazine groups on the surface). It can be expected that the magnetic nanoparticles modified with hydrazine functionalized polymer brushes via RAFT technique will improve the specificity and the binding capacity of glycopeptides from complex samples, and show great potential in the analysis of protein glycosylation in biological samples.

  20. Self-commissioning of permanent magnet synchronous machine drives using hybrid approach

    DEFF Research Database (Denmark)

    Basar, M. Sertug; Bech, Michael Møller; Andersen, Torben Ole

    2014-01-01

    Self-commissioning of permanent-magnet (PM) synchronous machines (PMSMs) is of prime importance in an industrial drive system because control performance and system stability depend heavily on the accurate machine parameter information. This article focuses on a combination of offline and online ...

  1. Performance-oriented Analysis of a Hybrid magnetic Assembly for a Heat-pump Magnetocaloric Device

    DEFF Research Database (Denmark)

    Insinga, Andrea Roberto; Smith, Anders; Bahl, Christian R.H.

    2014-01-01

    Conventional active-regenerator magnetocaloric devices include moving parts, with the purpose of generating an oscillating magnetic field in the magneto-caloric material, placed inside the regenerator. In this work a different design is analyzed, for application in a magnetocaloric heat pump...

  2. Development of carbon nanotubes/CoFe{sub 2}O{sub 4} magnetic hybrid material for removal of tetrabromobisphenol A and Pb(II)

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Lincheng, E-mail: zhoulc@lzu.edu.cn [State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Institute of Biochemical Engineering and Environmental Technology, Lanzhou University, Lanzhou 730000 (China); Ji, Liqin [State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Institute of Biochemical Engineering and Environmental Technology, Lanzhou University, Lanzhou 730000 (China); Ma, Peng-Cheng [The Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011 (China); Shao, Yanming; Zhang, He; Gao, Weijie; Li, Yanfeng [State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Institute of Biochemical Engineering and Environmental Technology, Lanzhou University, Lanzhou 730000 (China)

    2014-01-30

    Highlights: • Amino-functionalized CoFe{sub 2}O{sub 4} nanoparticles were deposited on MWCNTs in one-pot. • Novel chitosan modified MWCNTs/CoFe{sub 2}O{sub 4} hybrid material were successfully synthesized. • The hybrid material had high specific surface area and abundant functional groups. • The hybrid material exhibited high adsorption properties for TBBPA and Pb(II). • The hybrid material was an efficient, eco-friendly and reusable adsorbent. -- Abstract: Multi-walled carbon nanotubes (MWCNTs) coated with magnetic amino-modified CoFe{sub 2}O{sub 4} (CoFe{sub 2}O{sub 4}–NH{sub 2}) nanoparticles (denoted as MNP) were prepared via a simple one-pot polyol method. The MNP composite was further modified with chitosan (CTS) to obtain a chitosan-functionalized MWCNT/CoFe{sub 2}O{sub 4}–NH{sub 2} hybrid material (MNP–CTS). The obtained hybrid materials were characterized by Transmission Electron Microscopy (TEM), Fourier Transform Infrared Spectrogram (FT-IR) Analysis and X-ray Photoelectron Spectroscopy (XPS) Analysis, Vibrating Sample Magnetometer (VSM) Analysis and the Brunauer–Emmett–Teller (BET) surface area method, respectively. The composites were tested as adsorbents for tetrabromobisphenol A (TBBPA) and Pb(II), and were investigated using a pseudo-second-order model. The adsorption of TBBPA was well represented by the Freundlich isotherm; the Langmuir model better described Pb(II) absorption. MNP–CTS adsorbed both TBBPA and Pb(II) (maximum adsorption capacities of 42.48 and 140.1 mg g{sup −1}, respectively) better than did MNP without CTS. Magnetic composite particles with adsorbed TBBPA and Pb(II) could be regenerated using 0.2 M NaOH solution and were separable from liquid media using a magnetic field.

  3. Lack of multiferroic behavior in BaCuSi2O6 is consistent with the frustrated magnetic scenario for this material

    Energy Technology Data Exchange (ETDEWEB)

    Zapf, Vivien [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Jaime, Marcelo [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Chikara, Shalinee [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Fisher, Ian [Stanford Univ., CA (United States); Batista, C. D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Univ. of Tennessee, Knoxville, TN (United States)

    2017-03-01

    BaCuSi2O6 is a well-known quantum magnet that exhibits a Bose-Einstein Condensation quantum phase transition in applied magnetic fields. It contains Cu dimers that form singlets in zero magnetic field, and in applied fields as the singlet-triplet gap is suppressed a quantum phase transition occurs to canted XY antiferromagnetism between critical fields Hc1 = 23 T and Hc2 = 59 T. In addition, as the temperature is lowered, a rare frustrationinduced dimensional reduction has been proposed from three to two dimensions. Recently, however, a controversy has arisen about the details of the magnetic ordering due to the discovery of a tetragonal to orthorhombic structural transition at 100 K with an incommensurate modulation along the b-axis. Multiple magnon modes were observed in neutron diffraction studies, while NMR found modulation of the spin structure along both the ab plane and the c-axis. In this scenario the material is still a Bose-Einstein condensate system but the frustration is not perfect, calling into question the dimension reduction scenario. A recent study of BaCuSi2O6 combining inelastic neutron diffraction and density functional theory suggest that the material isn’t even frustrated at all and that the spins are ordered ferromagnetically in the a-b plane and antiferromagnetically along the c-axis. After a detailed symmetry analysis we have concluded that the magnetic scenario postulated by this most recent unfrustrated theory6 will render BaCuSi2O6 a multiferroic between Hc1 and Hc2, with electric polarization in easy axis of the a-b plane for magnetic fields along the c-axis via an inverse Dzyaloshinskii-Moriya mechanism. Electric polarization is a sensitive symmetry probe of magnetic order, since magnetic systems that break spatial inversion symmetry can induce an overall ferroelectricity in the crystalline lattice. In pulsed magnetic fields

  4. Magnetic fields in long-range alignment of functional hybrid soft materials

    Science.gov (United States)

    Majewski, Pawel; Gopinadhan, Manesh; Pelligra, Candice; Zhang, Shanju; Pfefferle, Lisa; Osuji, Chinedum

    2012-02-01

    We present a magnetic field-based method to impose long range order in self-assembled soft materials including polymer-nanowire composites, block copolymers and surfactant mesophases. We discuss the broad utility of this approach, indicating its advantages and limitations. Our method yields highly anisotropic materials with quality of alignment in many cases comparable to that of single crystals as assessed by X-ray scattering techniques. We take advantage of the high fidelity of alignment to systematically explore and characterize the anisotropic properties of these materials. We present a perspective for improving electron and hole transport, as well as exciton utilization in magnetically doped ZnO nanowire-polythiophene composites for photovoltaic applications by global alignment of the nanowires. For block copolymers, we focus on enhancing Li-ion transport in membranes with self-assembled cylindrical and lamellar morphology by alignment of the Li-conducting PEO domains.

  5. Pharmaceutical formulation of HSA hybrid coated iron oxide nanoparticles for magnetic drug targeting.

    Science.gov (United States)

    Zaloga, Jan; Pöttler, Marina; Leitinger, Gerd; Friedrich, Ralf P; Almer, Gunter; Lyer, Stefan; Baum, Eva; Tietze, Rainer; Heimke-Brinck, Ralph; Mangge, Harald; Dörje, Frank; Lee, Geoffrey; Alexiou, Christoph

    2016-04-01

    In this work we present a new formulation of superparamagnetic iron oxide nanoparticles (SPIONs) for magnetic drug targeting. The particles were reproducibly synthesized from current good manufacturing practice (cGMP) - grade substances. They were surface coated using fatty acids as anchoring molecules for human serum albumin. We comprehensively characterized the physicochemical core-shell structure of the particles using sophisticated methods. We investigated biocompatibility and cellular uptake of the particles using an established flow cytometric method in combination with microwave-plasma assisted atomic emission spectroscopy (MP-AES). The cytotoxic drug mitoxantrone was adsorbed on the protein shell and we showed that even in complex media it is slowly released with a close to zero order kinetics. We also describe an in vitro proof-of-concept assay in which we clearly showed that local enrichment of this SPION-drug conjugate with a magnet allows site-specific therapeutic effects.

  6. Room-Temperature Spin-Mediated Coupling in Hybrid Magnetic, Organic, and Oxide Structures and Devices

    Science.gov (United States)

    2015-12-07

    Spin-orbit interaction from low-symmetry localized defects in semiconductors, EPL ( Europhysics Letters ), (04 2012): 0. doi: 10.1209/0295-5075/98...nanostructures, EPL ( Europhysics Letters ), (09 2013): 57001. doi: 10.1209/0295-5075/103/57001 D. Backes, F. Macià, S. Bonetti, R. Kukreja, H. Ohldag...nanostructures, Europhysics Letters (04 2013) P. Warnicke, D. Bedau, M.-Y. Im, F. Macia, P. Fischer, D. A. Arena, A. D. Kent. Perpendicular magnetic

  7. New hybrid magnetic nanoparticles based on chitosan-maltose derivative for antitumor drug delivery.

    Science.gov (United States)

    Alupei, Liana; Peptu, Catalina Anisoara; Lungan, Andreea-Maria; Desbrieres, Jacques; Chiscan, Ovidiu; Radji, Sadia; Popa, Marcel

    2016-11-01

    The aim of the present study is to obtain, for the first time, polymer magnetic nanoparticles based on the chitosan-maltose derivative and magnetite. By chemically modifying the chitosan, its solubility in aqueous media was improved, which in turn facilitates the nanoparticles' preparation. Resulting polymers exhibit enhanced hydrophilia, which is an important factor in increasing the retention time of nanoparticles in the blood flow. The preparation of nanoparticles relied on the double crosslinking technique (ionic and covalent) in reverse emulsion which ensures the mechanical stability of the polymer carrier. The characterization of both the chitosan derivative and nanoparticles was accomplished by Fourier Transform Infrared Spectroscopy, Nuclear Magnetic Resonance Spectroscopy, Scanning Electron Microscopy, Transmission Electron Microscopy, Atomic Force Microscopy, Vibrating Sample Magnetometry, and Thermogravimetric Analysis. The evaluation of morphological, dimensional, structural, and magnetical properties, as well as thermal stability and swelling behavior of nanoparticles was made from the point of view of the polymer/magnetite ratio. The study of 5-Fluorouracil loading and release kinetics as well as evaluating the cytotoxicity and hemocompatibility of nanoparticles justify their adequate behavior in their potential use as devices for targeted transport of antitumor drugs.

  8. Scanning a DNA molecule for bound proteins using hybrid magnetic and optical tweezers.

    Directory of Open Access Journals (Sweden)

    Marijn T J van Loenhout

    Full Text Available The functional state of the genome is determined by its interactions with proteins that bind, modify, and move along the DNA. To determine the positions and binding strength of proteins localized on DNA we have developed a combined magnetic and optical tweezers apparatus that allows for both sensitive and label-free detection. A DNA loop, that acts as a scanning probe, is created by looping an optically trapped DNA tether around a DNA molecule that is held with magnetic tweezers. Upon scanning the loop along the λ-DNA molecule, EcoRI proteins were detected with ~17 nm spatial resolution. An offset of 33 ± 5 nm for the detected protein positions was found between back and forwards scans, corresponding to the size of the DNA loop and in agreement with theoretical estimates. At higher applied stretching forces, the scanning loop was able to remove bound proteins from the DNA, showing that the method is in principle also capable of measuring the binding strength of proteins to DNA with a force resolution of 0.1 pN/[Formula: see text]. The use of magnetic tweezers in this assay allows the facile preparation of many single-molecule tethers, which can be scanned one after the other, while it also allows for direct control of the supercoiling state of the DNA molecule, making it uniquely suitable to address the effects of torque on protein-DNA interactions.

  9. Flexible Riser Monitoring Using Hybrid Magnetic/Optical Strain Gage Techniques through RLS Adaptive Filtering

    Directory of Open Access Journals (Sweden)

    Pipa Daniel

    2010-01-01

    Full Text Available Flexible riser is a class of flexible pipes which is used to connect subsea pipelines to floating offshore installations, such as FPSOs (floating production/storage/off-loading unit and SS (semisubmersible platforms, in oil and gas production. Flexible risers are multilayered pipes typically comprising an inner flexible metal carcass surrounded by polymer layers and spiral wound steel ligaments, also referred to as armor wires. Since these armor wires are made of steel, their magnetic properties are sensitive to the stress they are subjected to. By measuring their magnetic properties in a nonintrusive manner, it is possible to compare the stress in the armor wires, thus allowing the identification of damaged ones. However, one encounters several sources of noise when measuring electromagnetic properties contactlessly, such as movement between specimen and probe, and magnetic noise. This paper describes the development of a new technique for automatic monitoring of armor layers of flexible risers. The proposed approach aims to minimize these current uncertainties by combining electromagnetic measurements with optical strain gage data through a recursive least squares (RLSs adaptive filter.

  10. Scanning a DNA molecule for bound proteins using hybrid magnetic and optical tweezers.

    Science.gov (United States)

    van Loenhout, Marijn T J; De Vlaminck, Iwijn; Flebus, Benedetta; den Blanken, Johan F; Zweifel, Ludovit P; Hooning, Koen M; Kerssemakers, Jacob W J; Dekker, Cees

    2013-01-01

    The functional state of the genome is determined by its interactions with proteins that bind, modify, and move along the DNA. To determine the positions and binding strength of proteins localized on DNA we have developed a combined magnetic and optical tweezers apparatus that allows for both sensitive and label-free detection. A DNA loop, that acts as a scanning probe, is created by looping an optically trapped DNA tether around a DNA molecule that is held with magnetic tweezers. Upon scanning the loop along the λ-DNA molecule, EcoRI proteins were detected with ~17 nm spatial resolution. An offset of 33 ± 5 nm for the detected protein positions was found between back and forwards scans, corresponding to the size of the DNA loop and in agreement with theoretical estimates. At higher applied stretching forces, the scanning loop was able to remove bound proteins from the DNA, showing that the method is in principle also capable of measuring the binding strength of proteins to DNA with a force resolution of 0.1 pN/[Formula: see text]. The use of magnetic tweezers in this assay allows the facile preparation of many single-molecule tethers, which can be scanned one after the other, while it also allows for direct control of the supercoiling state of the DNA molecule, making it uniquely suitable to address the effects of torque on protein-DNA interactions.

  11. Performance Analysis of a Hybrid One-Sided Magnetic Exciter Mounted on a Piezoelectric Stack

    Directory of Open Access Journals (Sweden)

    A. Nandi

    2010-01-01

    Full Text Available The present work proposes a non-contact hybrid exciter especially useful for harmonic excitation of lightly damped structures/rotors. In the proposed exciter an electromagnet is placed on a piezoelectric stack and the extension of the piezoelectric stack is made almost equal to the displacement of the structure using a simple tracking control. This largely eliminates stiffness coupling between the structure/rotor and the exciter and non-linearity in the excitation force due to the vibration of the structure/rotor. The stiffness and inertia of the piezoelectric stack is considered in the analysis. A SIMULINK model of the combined structure and the exciter is developed for a full time-domain simulation of the excitation system.

  12. Hybrid metal-dielectric, slow wave structure with magnetic coupling and compensation

    Energy Technology Data Exchange (ETDEWEB)

    Smirnov, A.V., E-mail: asmirnov@radiabeam.com [RadiaBeam Systems LLC, 1713 Stewart St., Santa Monica, CA 90404 (United States); Savin, E. [RadiaBeam Systems LLC, 1713 Stewart St., Santa Monica, CA 90404 (United States); National Research Nuclear University “MEPhI”, Moscow 115409 (Russian Federation)

    2016-06-01

    A number of electron beam vacuum devices such as small radiofrequency (RF) linear accelerators (linacs) and microwave traveling wave tubes (TWTs) utilize slow wave structures which are usually rather complicated in production and may require multi-step brazing and time consuming tuning. Fabrication of these devices becomes challenging at centimeter wavelengths, at large number of cells, and when a series or mass production of such structures is required. A hybrid, metal-dielectric, periodic structure for low gradient, low beam current applications is introduced here as a modification of Andreev’s disk-and-washer (DaW) structure. Compensated type of coupling between even and odd TE01 modes in the novel structure results in negative group velocity with absolute values as high as 0.1c–0.2c demonstrated in simulations. Sensitivity to material imperfections and electrodynamic parameters of the disk-and-ring (DaR) structure are considered numerically using a single cell model.

  13. Hybridization and Magnetic Ground States in Heavy Fermion Compound CeRhIn5

    Institute of Scientific and Technical Information of China (English)

    XU Ying; WANG Jiang-Long; ZENG Zhi

    2005-01-01

    @@ The magnetic properties of CeRhIn5 are studied by first-principles calculation. Spin-orbit coupling is considered as well as different corrections including local density approximation plus on-site Coulomb interaction U (U = 1,1.5, 3 eV) and orbital polarization. The results show the existence of only moderate correlation in CeRhIn5 and Ce-4f electrons are on the border of localization and itinerancy. The effect of pressure by changing the volume of the unit cell is also studied.

  14. Electrical Control of Magnetic Dynamics in Hybrid Metal-Semiconductor Systems

    Science.gov (United States)

    2014-07-25

    substrate boundary conditions in ultra-thin BiFeO3 on SrTiO3, APL Materials, ( 2013): 0. doi: 10.1063/1.4827596 M. H. Fischer , A. Vaezi, A...boundary angles and types, Applied Physics Letters, ( 2011): 0. doi: 10.1063/1.3643155 Michael B. Katz, George W. Graham, Yingwen Duan, Hong Liu...Meeting, Dresden, Germany , Invited, March 33 – April 4, 2014. 26. D. C. Ralph, “Manipulating Magnetic Devices Using Spin Transfer Torque from the

  15. DFT studies of CNT-functionalized uracil-acetate hybrids

    Science.gov (United States)

    Mirzaei, Mahmoud; Gulseren, Oguz

    2015-09-01

    Calculations based on density functional theory (DFT) have been performed to investigate the stabilities and properties of hybrid structures consisting of a molecular carbon nanotube (CNT) and uracil acetate (UA) counterparts. The investigated models have been relaxed to minimum energy structures and then various physical properties and nuclear magnetic resonance (NMR) properties have been evaluated. The results indicated the effects of functionalized CNT on the properties of hybrids through comparing the results of hybrids and individual structures. The oxygen atoms of uracil counterparts have been seen as the detection points of properties for the CNT-UA hybrids.

  16. Investigation of a Co-Axial Dual-Mechanical Ports Flux-Switching Permanent Magnet Machine for Hybrid Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Wei Hua

    2015-12-01

    Full Text Available In this paper, a co-axial dual-mechanical ports flux-switching permanent magnet (CADMP-FSPM machine for hybrid electric vehicles (HEVs is proposed and investigated, which is comprised of two conventional co-axial FSPM machines, namely one high-speed inner rotor machine and one low-speed outer rotor machine and a non-magnetic ring sandwiched in between. Firstly, the topology and operation principle of the CADMP-FSPM machine are introduced; secondly, the control system of the proposed electronically-controlled continuously-variable transmission (E-CVT system is given; thirdly, the key design specifications of the CADMP-FSPM machine are determined based on a conventional dual-mechanical ports (DMP machine with a wound inner rotor. Fourthly, the performances of the CADMP-FSPM machine and the normal DMP machine under the same overall volume are compared, and the results indicate that the CADMP-FSPM machine has advantages over the conventional DMP machine in the elimination of brushes and slip rings, improved thermal dissipation conditions for the inner rotor, direct-driven operation, more flexible modes, lower cogging torque and torque ripple, lower total harmonic distortion (THD values of phase PM flux linkage and phase electro-motive force (EMF, higher torque output capability and is suitable for the E-CVT systems. Finally, the pros and cons of the CADMP-FSPM machine are highlighted. This paper lays a theoretical foundation for further research on CADMP-FSPM machines used for HEVs.

  17. Enhancement of DFT-calculations at petascale: Nuclear Magnetic Resonance, Hybrid Density Functional Theory and Car-Parrinello calculations

    Science.gov (United States)

    Varini, Nicola; Ceresoli, Davide; Martin-Samos, Layla; Girotto, Ivan; Cavazzoni, Carlo

    2013-08-01

    One of the most promising techniques used for studying the electronic properties of materials is based on Density Functional Theory (DFT) approach and its extensions. DFT has been widely applied in traditional solid state physics problems where periodicity and symmetry play a crucial role in reducing the computational workload. With growing compute power capability and the development of improved DFT methods, the range of potential applications is now including other scientific areas such as Chemistry and Biology. However, cross disciplinary combinations of traditional Solid-State Physics, Chemistry and Biology drastically improve the system complexity while reducing the degree of periodicity and symmetry. Large simulation cells containing of hundreds or even thousands of atoms are needed to model these kind of physical systems. The treatment of those systems still remains a computational challenge even with modern supercomputers. In this paper we describe our work to improve the scalability of Quantum ESPRESSO (Giannozzi et al., 2009 [3]) for treating very large cells and huge numbers of electrons. To this end we have introduced an extra level of parallelism, over electronic bands, in three kernels for solving computationally expensive problems: the Sternheimer equation solver (Nuclear Magnetic Resonance, package QE-GIPAW), the Fock operator builder (electronic ground-state, package PWscf) and most of the Car-Parrinello routines (Car-Parrinello dynamics, package CP). Final benchmarks show our success in computing the Nuclear Magnetic Response (NMR) chemical shift of a large biological assembly, the electronic structure of defected amorphous silica with hybrid exchange-correlation functionals and the equilibrium atomic structure of height Porphyrins anchored to a Carbon Nanotube, on many thousands of CPU cores.

  18. Magnetism by interfacial hybridization and p-type doping of MoS(2) in Fe(4)N/MoS(2) superlattices: a first-principles study.

    Science.gov (United States)

    Feng, Nan; Mi, Wenbo; Cheng, Yingchun; Guo, Zaibing; Schwingenschlögl, Udo; Bai, Haili

    2014-03-26

    Magnetic and electronic properties of Fe4N(111)/MoS2(√3 × √3) superlattices are investigated by first-principles calculations, considering two models: (I) Fe(I)Fe(II)-S and (II) N-S interfaces, each with six stacking configurations. In model I, strong interfacial hybridization between Fe(I)/Fe(II) and S results in magnetism of monolayer MoS2, with a magnetic moment of 0.33 μB for Mo located on top of Fe(I). For model II, no magnetism is induced due to weak N-S interfacial bonding, and the semiconducting nature of monolayer MoS2 is preserved. Charge transfer between MoS2 and N results in p-type MoS2 with Schottky barrier heights of 0.5-0.6 eV. Our results demonstrate that the interfacial geometry and hybridization can be used to tune the magnetism and doping in Fe4N(111)/MoS2(√3 × √3) superlattices.

  19. Magnetism by interfacial hybridization and p-type doping of MoS2 in Fe4N/MoS2 superlattices: A first-principles study

    KAUST Repository

    Feng, Nan

    2014-03-26

    Magnetic and electronic properties of Fe4N(111)/MoS 2(√3 × √3) superlattices are investigated by first-principles calculations, considering two models: (I) FeIFe II-S and (II) N-S interfaces, each with six stacking configurations. In model I, strong interfacial hybridization between FeI/Fe II and S results in magnetism of monolayer MoS2, with a magnetic moment of 0.33 μB for Mo located on top of Fe I. For model II, no magnetism is induced due to weak N-S interfacial bonding, and the semiconducting nature of monolayer MoS2 is preserved. Charge transfer between MoS2 and N results in p-type MoS2 with Schottky barrier heights of 0.5-0.6 eV. Our results demonstrate that the interfacial geometry and hybridization can be used to tune the magnetism and doping in Fe4N(111)/MoS2(√3 × √3) superlattices. © 2014 American Chemical Society.

  20. Injectable In Situ Forming Hybrid Iron Oxide-Hyaluronic Acid Hydrogel for Magnetic Resonance Imaging and Drug Delivery

    NARCIS (Netherlands)

    Zhang, Y; Sun, Y.; Yang, X.; Hilborn, J.; Heerschap, A.; Ossipov, D.A.

    2014-01-01

    The development of multimodal in situ cross-linkable hyaluronic acid nanogels hybridized with iron oxide nanoparticles is reported. Utilizing a chemoselective hydrazone coupling reaction, the nanogels are converted to a macroscopic hybrid hydrogel without any additional reagent. Hydrophobic cargos

  1. Imaging Atherosclerosis with Hybrid Positron Emission Tomography/Magnetic Resonance Imaging

    DEFF Research Database (Denmark)

    Ripa, Rasmus Sejersten; Kjær, Andreas

    2015-01-01

    Noninvasive imaging of atherosclerosis could potentially move patient management towards individualized triage, treatment, and followup. The newly introduced combined positron emission tomography (PET) and magnetic resonance imaging (MRI) system could emerge as a key player in this context. Both...... PET and MRI have previously been used for imaging plaque morphology and function: however, the combination of the two methods may offer new synergistic opportunities. Here, we will give a short summary of current relevant clinical applications of PET and MRI in the setting of atherosclerosis....... Additionally, our initial experiences with simultaneous PET/MRI for atherosclerosis imaging are presented. Finally, future potential vascular applications exploiting the unique combination of PET and MRI will be discussed....

  2. Synthesis of Photoswitchable Magnetic Au–Fullerosome Hybrid Nanomaterials for Permittivity Enhancement Applications

    Directory of Open Access Journals (Sweden)

    Min Wang

    2015-08-01

    Full Text Available We designed and synthesized several nanomaterials 3 of three-layered core-shell (γ-FeOx@AuNP@[C60(>DPAF-C91or2]n nanoparticles (NPs. These NPs having e−-polarizable fullerosome structures located at the outer layer were fabricated from highly magnetic core-shell γ-FeOx@AuNPs. Fullerosomic polarization of 3 was found to be capable of causing a large amplification of material permittivity that is also associated with the photoswitching effect in the frequency range of 0.5‒4.0 GHz. Multilayered synthetic construction allows Förster resonance energy transfer (FRET of photoinduced accumulative surface plasmon resonance (SPR energy in the gold layer to the partially bilayered C60(>DPAF-C91or2-derived fullerosome membrane shell layer in a near-field of direct contact without producing radiation heat, which is commonly associated with SPR.

  3. Self-commissioning of permanent magnet synchronous machine drives using hybrid approach

    DEFF Research Database (Denmark)

    Basar, Mehmet Sertug

    2014-01-01

    Self-commissioning of permanent-magnet (PM) synchronous machines (PMSMs) is of prime importance in an industrial drive system because control performance and system stability depend heavily on the accurate machine parameter information. This article focuses on a combination of offline and online...... parameter estimation for a non-salient pole PMSM which eliminates the need for any prior knowledge on machine parameters. Stator resistance and inductance are first identified at standstill utilising fundamental and high-frequency excitation signals, respectively. A novel method has been developed...... and employed for inductance estimation. Then, stator resistance, inductance and PM flux are updated online using a recursive least-squares (RLS) algorithm. The proposed controllers are designed using MATLAB/Simulink® and implemented on d-Space® real-time system incorporating a commercially available PMSM drive....

  4. Preparation and Characterization of Ferrofluid Stabilized with Biocompatible Chitosan and Dextran Sulfate Hybrid Biopolymer as a Potential Magnetic Resonance Imaging (MRI T2 Contrast Agent

    Directory of Open Access Journals (Sweden)

    Tzu-Chen Yen

    2012-10-01

    Full Text Available Chitosan is the deacetylated form of chitin and used in numerous applications. Because it is a good dispersant for metal and/or oxide nanoparticle synthesis, chitosan and its derivatives have been utilized as coating agents for magnetic nanoparticles synthesis, including superparamagnetic iron oxide nanoparticles (SPIONs. Herein, we demonstrate the water-soluble SPIONs encapsulated with a hybrid polymer composed of polyelectrolyte complexes (PECs from chitosan, the positively charged polymer, and dextran sulfate, the negatively charged polymer. The as-prepared hybrid ferrofluid, in which iron chloride salts (Fe3+ and Fe2+ were directly coprecipitated inside the hybrid polymeric matrices, was physic-chemically characterized. Its features include the z-average diameter of 114.3 nm, polydispersity index of 0.174, zeta potential of −41.5 mV and iron concentration of 8.44 mg Fe/mL. Moreover, based on the polymer chain persistence lengths, the anionic surface of the nanoparticles as well as the high R2/R1 ratio of 13.5, we depict the morphology of SPIONs as a cluster because chitosan chains are chemisorbed onto the anionic magnetite surfaces by tangling of the dextran sulfate. Finally, the cellular uptake and biocompatibility assays indicate that the hybrid polymer encapsulating the SPIONs exhibited great potential as a magnetic resonance imaging T2 contrast agent for cell tracking.

  5. Facile synthesis of magnetic ZnFe2O4-reduced graphene oxide hybrid and its photo-Fenton-like behavior under visible iradiation.

    Science.gov (United States)

    Yao, Yunjin; Qin, Jiacheng; Cai, Yunmu; Wei, Fengyu; Lu, Fang; Wang, Shaobin

    2014-06-01

    A magnetic ZnFe2O4-reduced graphene oxide (rGO) hybrid was successfully developed as a heterogeneous catalyst for photo-Fenton-like decolorization of various dyes using peroxymonosulfate (PMS) as an oxidant under visible light irradiation. Through an in situ chemical deposition and reduction, ZnFe2O4 nanoparticles (NPs) with an average size of 23.7 nm were anchored uniformly on rGO sheets to form a ZnFe2O4-rGO hybrid. The catalytic activities in oxidative decomposition of organic dyes were evaluated. The reaction kinetics, effect of ion species and strength, catalytic stability, degradation mechanism, as well as the roles of ZnFe2O4 and graphene were also studied. ZnFe2O4-rGO showed to be a promising photocatalyst with magnetism for the oxidative degradation of aqueous organic pollutants and simple separation. The combination of ZnFe2O4 NPs with graphene sheets leads to a much higher catalytic activity than pure ZnFe2O4. Graphene acted as not only a support and stabilizer for ZnFe2O4 to prevent them from aggregation, largely improving the charge separation in the hybrid material, but also a catalyst for activating PMS to produce sulfate radicals at the same time. The ZnFe2O4-rGO hybrid exhibited stable performance without losing activity after five successive runs.

  6. Yolk-shell hybrid nanoparticles with magnetic and pH-sensitive properties for controlled anticancer drug delivery

    Science.gov (United States)

    Li, Shunxing; Zheng, Jianzhong; Chen, Dejian; Wu, Yijin; Zhang, Wuxiang; Zheng, Fengying; Cao, Jing; Ma, Heran; Liu, Yaling

    2013-11-01

    A facile and effective way for the preparation of nano-sized Fe3O4@graphene yolk-shell nanoparticles via a hydrothermal method is developed. Moreover, the targeting properties of the materials for anticancer drug (doxorubicin hydrochloride) delivery are investigated. Excitingly, these hybrid materials possess favorable dispersibility, good superparamagnetism (the magnetic saturation value is 45.740 emu g-1), high saturated loading capacity (2.65 mg mg-1), and effective loading (88.3%). More importantly, the composites exhibit strong pH-triggered drug release response (at the pH value of 5.6 and 7.4, the release rate was 24.86% and 10.28%, respectively) and good biocompatibility over a broad concentration range of 0.25-100 μg mL-1 (the cell viability was 98.52% even at a high concentration of 100 μg mL-1) which sheds light on their potentially bright future for bio-related applications.

  7. Consistent behaviour of AC susceptibility and transport properties in magnetic superconductor RuSr 2GdCu 2O 8

    Science.gov (United States)

    Očko, M.; Živkovic, I.; Prester, M.; Drobac, Dj.; Ariosa, D.; Berger, H.; Pavuna, D.

    2004-02-01

    We report on AC susceptibility, resistivity, thermopower and measurements of sintered magnetic superconductor RuSr 2GdCu 2O 8. The antiferromagnetic phase transition at 133 K is seen clearly in the AC susceptibility as well as in the derivative of resistivity and thermopower. Above the antiferromagnetic transition, we have found some new evidences of the similarity between HTC compounds and the magnetic superconductor. The onset of superconductivity is observed by both transport methods at 46 K, and an explanation why it is not seen in the AC susceptibility data is given. The end of the SC transition occurs at about 24 K in all measured properties. We discuss the steps of broad SC transition, especially the maximum in susceptibility at 34 K, and compare our results with related studies reported in the literature.

  8. Consistent behaviour of AC susceptibility and transport properties in magnetic superconductor RuSr{sub 2}GdCu{sub 2}O{sub 8}

    Energy Technology Data Exchange (ETDEWEB)

    Ocko, M. E-mail: ocko@ifs.hr; Zivkovic, I.; Prester, M.; Drobac, Dj.; Ariosa, D.; Berger, H.; Pavuna, D

    2004-02-01

    We report on AC susceptibility, resistivity, thermopower and measurements of sintered magnetic superconductor RuSr{sub 2}GdCu{sub 2}O{sub 8}. The antiferromagnetic phase transition at 133 K is seen clearly in the AC susceptibility as well as in the derivative of resistivity and thermopower. Above the antiferromagnetic transition, we have found some new evidences of the similarity between HTC compounds and the magnetic superconductor. The onset of superconductivity is observed by both transport methods at 46 K, and an explanation why it is not seen in the AC susceptibility data is given. The end of the SC transition occurs at about 24 K in all measured properties. We discuss the steps of broad SC transition, especially the maximum in susceptibility at 34 K, and compare our results with related studies reported in the literature.

  9. Cryocooled superconducting magnets for high magnetic fields at the HFLSM and future collaboration with the TML

    Science.gov (United States)

    Watanabe, K.; Nishijima, G.; Awaji, S.; Koyama, K.; Takahashi, K.; Kobayashi, N.; Kiyoshi, T.

    2006-11-01

    A hybrid magnet needs a large amount of liquid helium for operation. In order to make an easy-to-operate hybrid magnet system, we constructed a cryocooled 28 T hybrid magnet, consisting of an outer cryocooled 10 T superconducting magnet and an inner traditional water-cooled 19 T resistive magnet. As a performance test, the cryocooled hybrid magnet generated 27.5 T in a 32 mm room temperature experimental bore. As long as Nb3Sn superconducting wires are employed, the expected maximum high field generation in the cryocooled superconducting magnet will be 17 T at 5 K. We adopted the high temperature superconducting insert coil, employing Ag-sheathed Bi2Sr2Ca2Cu3O10superconducting tape. In combination with the low temperature 16.5 T back-up coil with a 174 mm cold bore, the cryocooled high temperature superconducting magnet successfully generated the total central field of 18.1 T in a 52 mm room temperature bore. As a next step, we start the collaboration with the National Institute for Materials Science for the new developmental works of a 30 T high temperature superconducting magnet and a 50 T-class hybrid magnet.

  10. Hybrids of Iron-Filled Multiwall Carbon Nanotubes and Anticancer Agents as Potential Magnetic Drug Delivery Systems: In Vitro Studies against Human Melanoma, Colon Carcinoma, and Colon Adenocarcinoma

    Directory of Open Access Journals (Sweden)

    Sławomir Boncel

    2017-01-01

    Full Text Available Cell type, morphology, and functioning are key variables in the construction of efficient “drug-vehicle” hybrids in magnetic drug delivery. Iron-encapsulated multiwall carbon nanotubes (Fe@MWCNTs appear as promising candidates for theranostics due to in situ chemical catalytic vapor deposition (c-CVD synthesis, straightforward organic functionalization, and nanoneedle (1D behavior. Here, model hybrids were synthesized by exploring C-sp2 chemistry ((1+2-cycloaddition of nitrenes and amidation of the outer MWCNT walls combined with anticancer agents, that is, 5-fluorouracil (5FU, purpurin (Purp, and 1,8-naphthalimide DNA intercalators (NIDIs, via linkers. Analyses of the Fe@MWCNT vehicles by SEM, TEM, and Raman spectroscopy revealed their morphology while Mössbauer spectroscopy confirmed the presence of encapsulated ferromagnetic iron-based nanodomains. Cytotoxicity of the hybrids was studied using a 24 h MTS assay combined with the apoptosis and life cycle assays against human melanoma (Me45, colon carcinoma (HCT116+, and colon adenocarcinoma (Caco-2. The cells had different sensitivity to the vehicles themselves as well as to the hybrids. MWCNT-based covalent hybrids of 5FU and Purp emerged as the most promising systems against Me45 and HCT116+ cell lines with the highest in vitro cytotoxicity and proapoptotic activity. Furthermore, nanotubes bearing 4-nitro- and 4-(N-morpholinyl-1,8-naphthalimide DNA intercalators appear as a promising candidate for the treatment of Caco-2.

  11. Triazolyl-based copper-molybdate hybrids: from composition space diagram to magnetism and catalytic performance.

    Science.gov (United States)

    Senchyk, Ganna A; Lysenko, Andrey B; Babaryk, Artem A; Rusanov, Eduard B; Krautscheid, Harald; Neves, Patrícia; Valente, Anabela A; Gonçalves, Isabel S; Krämer, Karl W; Liu, Shi-Xia; Decurtins, Silvio; Domasevitch, Konstantin V

    2014-10-06

    The multicomponent mixed-metal Cu(II)/Mo(VI) oxides/1,3-bis(1,2,4-triazol-4-yl)adamantane (tr2ad) system was thoroughly studied employing a compositional diagram approach. The concept allowed us to prepare three layered copper-molybdate hybrid solids [Cu(II)2(tr2ad)4](Mo8O26) (1), [Cu4(II)(μ4-O)(tr2ad)2(MoO4)3]·7.5H2O (2), and [Cu(I)2(tr2ad)2](Mo2O7)·H2O (3), and to elucidate the relationship between initial reagent concentration/stoichiometry and the stability of the resultant structural motifs. Compounds 1 and 2 were found to dominate throughout a wide crystallization range of the concentration triangle, whereas compound 3 was formed by redox processes in the narrow crystallization area having a high excess of Cu(OAc)2·H2O. Independent experiments carried out with Cu(OAc)2 and (NH4)6Mo7O24 in the absence of tr2ad, under the same conditions, revealed the formation of low-valent and bimetallic oxides, including Cu2O, MoO2, Cu(Mo3O10)·H2O, and Cu3(MoO4)2(OH)2. Compounds 1 and 2 show high thermal and chemical stability as examined as catalysts in the epoxidation of cis-cyclooctene and the oxidation of benzyl alcohol (BzOH) with different types of oxidants. The oxidation reaction of BzOH using tert-butyl hydroperoxide (TBHP) as the oxidant, in the presence of 1 or 2, led to benzaldehyde and benzoic acid (PhCO2H), with the latter being formed in up to 90% yield at 24 h. The results suggest that 1 and 2 may be favorable heterogeneous catalysts for the synthesis of PhCO2H. Whereas compound 1 only reveals a weak ferromagnetic coupling between neighboring Cu(II) centers (J = 0.41 cm(-1)), compound 2 shows distinct intracluster antiferromagnetic exchange interactions (J = -29.9 cm(-1), J' = -25.7 cm(-1)), which consequently results in a diamagnetic ground state.

  12. Nonlinear Dynamics of Magnons observed by AC Spin Pumping in Magnetic Hybrid Structures

    Science.gov (United States)

    Vilela-Leao, L. H.; Cunha, R. O.; Azevedo, A.; Rodriguez-Suarez, R. L.; Rezende, S. M.

    2015-03-01

    The electron spin degree of freedom constitutes the basic means to carry and store information in the field of spintronics. In the spin pumping process, the microwave driven magnetization dynamics in a ferromagnetic film generates a spin current in an attached metallic layer that can be converted into a charge current by means of the inverse spin Hall effect and detected by a voltage signal. While the time independent component (DC) of the spin current has been widely investigated in a variety of material structures, recently it has been recognized that the alternating current (AC) component is much larger, though more difficult to detect, and has many attractive features. We report experiments with microwave driven DC and AC spin pumping in bilayers made of the insulating ferrimagnet yttrium iron garnet (YIG) and platinum that reveal the nonlinear dynamics involving the driven mode and a pair of magnon modes with half frequency. This process occurs when the frequency is lowered below a critical value so that a three-magnon splitting process with energy conservation is made possible. The results are explained by a model with coupled nonlinear equations describing the time evolution of the magnon modes.

  13. A hybrid framework of first principles molecular orbital calculations and a three-dimensional integral equation theory for molecular liquids: Multi-center molecular Ornstein–Zernike self-consistent field approach

    Energy Technology Data Exchange (ETDEWEB)

    Kido, Kentaro, E-mail: kido.kentaro@jaea.go.jp [Nuclear Safety Research Center, Japan Atomic Energy Agency, 2-4 Shirane, Shirakata, Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan); Kasahara, Kento [Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510 (Japan); Yokogawa, Daisuke [Department of Chemistry, Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602 (Japan); Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya 464-8062 (Japan); Sato, Hirofumi [Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510 (Japan); Elements Strategy Institute for Catalysts and Batteries (ESICB), Kyoto University, Katsura, Kyoto 615-8520 (Japan)

    2015-07-07

    In this study, we reported the development of a new quantum mechanics/molecular mechanics (QM/MM)-type framework to describe chemical processes in solution by combining standard molecular-orbital calculations with a three-dimensional formalism of integral equation theory for molecular liquids (multi-center molecular Ornstein–Zernike (MC-MOZ) method). The theoretical procedure is very similar to the 3D-reference interaction site model self-consistent field (RISM-SCF) approach. Since the MC-MOZ method is highly parallelized for computation, the present approach has the potential to be one of the most efficient procedures to treat chemical processes in solution. Benchmark tests to check the validity of this approach were performed for two solute (solute water and formaldehyde) systems and a simple S{sub N}2 reaction (Cl{sup −} + CH{sub 3}Cl → ClCH{sub 3} + Cl{sup −}) in aqueous solution. The results for solute molecular properties and solvation structures obtained by the present approach were in reasonable agreement with those obtained by other hybrid frameworks and experiments. In particular, the results of the proposed approach are in excellent agreements with those of 3D-RISM-SCF.

  14. Tuning the magnetic interactions in GaAs:Mn/MnAs hybrid structures by controlling shape and position of MnAs nanoclusters

    Energy Technology Data Exchange (ETDEWEB)

    Elm, Matthias Thomas

    2010-07-01

    In this work the magnetic properties of hexagonal MnAs nanoclusters and their influence on the transport properties of GaAs:Mn /MnAs hybrid structures were studied. Various arrangements of isolated nanoclusters and cluster chains were grown on (111)B-GaAs substrates by SA-MOVPE. The first part of this work deals with the manufacturing process of the different cluster arrangements investigated. By a suitable pre-structuring of the substrate it was possible to influence the cluster size, cluster shape and cluster position systematically. Preparing various arrangements it could be shown that the hexagonal nanoclusters prefer to grow along their a-axes. In the second part, the magnetic properties of the nanoclusters were studied. Ferromagnetic resonance (FMR) measurements show a hard magnetic axis perpendicular to the sample plane, i.e. parallel to the c-axis. By measurements, where the magnetic field was rotated in the sample plane, it could be demonstrated that the orientation of the magnetization can be forced into a certain direction by controlling the cluster shape. These results are confirmed by measurements using magnetic force microscopy. The third part deals with the influence of the nanoclusters and their arrangement on the transport properties of the GaAs:Mn matrix. For temperatures above 30 K the structures investigated show positive as well as negative magnetoresistance effects, which are typical for granular GaAs:Mn/MnAs hybrid structures. This behaviour can be explained in the context of transport in extended band states. The size of the magnetoresistance effects correlates strongly with the respective cluster arrangement of the sample. This behaviour has been predicted theoretically and could be confirmed experimentally in the context of this work. Below 30 K large positive magnetoresistance effects show up for the regular cluster arrangements, which cannot be observed for hybrid structures with random cluster distributions. These large positive

  15. A Multi-Level Grid Interactive Bi-directional AC/DC-DC/AC Converter and a Hybrid Battery/Ultra-capacitor Energy Storage System with Integrated Magnetics for Plug-in Hybrid Electric Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Onar, Omer C [ORNL

    2011-01-01

    This study presents a bi-directional multi-level power electronic interface for the grid interactions of plug-in hybrid electric vehicles (PHEVs) as well as a novel bi-directional power electronic converter for the combined operation of battery/ultracapacitor hybrid energy storage systems (ESS). The grid interface converter enables beneficial vehicle-to-grid (V2G) interactions in a high power quality and grid friendly manner; i.e, the grid interface converter ensures that all power delivered to/from grid has unity power factor and almost zero current harmonics. The power electronic converter that provides the combined operation of battery/ultra-capacitor system reduces the size and cost of the conventional ESS hybridization topologies while reducing the stress on the battery, prolonging the battery lifetime, and increasing the overall vehicle performance and efficiency. The combination of hybrid ESS is provided through an integrated magnetic structure that reduces the size and cost of the inductors of the ESS converters. Simulation and experimental results are included as prove of the concept presenting the different operation modes of the proposed converters.

  16. A non-axial superconducting magnet design for optimized patient access and minimal SAD for use in a Linac-MR hybrid: proof of concept

    Science.gov (United States)

    Yaghoobpour Tari, Shima; Wachowicz, Keith; Fallone, B. Gino

    2017-04-01

    A prototype rotating hybrid magnetic resonance imaging system and linac has been developed to allow for simultaneous imaging and radiation delivery parallel to B 0. However, the design of a compact magnet capable of rotation in a small vault with sufficient patient access and a typical clinical source-to-axis distance (SAD) is challenging. This work presents a novel superconducting magnet design as a proof of concept that allows for a reduced SAD and ample patient access by moving the superconducting coils to the side of the yoke. The yoke and pole-plate structures are shaped to direct the magnetic flux appropriately. The outer surface of the pole plate is optimized subject to the minimization of a cost function, which evaluates the uniformity of the magnetic field over an ellipsoid. The magnetic field calculations required in this work are performed with the 3D finite element method software package Opera-3D. Each tentative design strategy is virtually modeled in this software package, which is externally controlled by MATLAB, with its key geometries defined as variables. The optimization variables are the thickness of the pole plate at control points distributed over the pole plate surface. A novel design concept as a superconducting non-axial magnet is introduced, which could create a large uniform B 0 magnetic field with fewer geometric restriction. This non-axial 0.5 T superconducting magnet has a moderately reduced SAD of 123 cm and a vertical patient opening of 68 cm. This work is presented as a proof of principle to investigate the feasibility of a non-axial magnet with the coils located around the yoke, and the results encourage future design optimizations to maximize the benefits of this non-axial design.

  17. A non-axial superconducting magnet design for optimized patient access and minimal SAD for use in a Linac-MR hybrid: proof of concept.

    Science.gov (United States)

    Yaghoobpour Tari, Shima; Wachowicz, Keith; Gino Fallone, B

    2017-04-21

    A prototype rotating hybrid magnetic resonance imaging system and linac has been developed to allow for simultaneous imaging and radiation delivery parallel to B 0. However, the design of a compact magnet capable of rotation in a small vault with sufficient patient access and a typical clinical source-to-axis distance (SAD) is challenging. This work presents a novel superconducting magnet design as a proof of concept that allows for a reduced SAD and ample patient access by moving the superconducting coils to the side of the yoke. The yoke and pole-plate structures are shaped to direct the magnetic flux appropriately. The outer surface of the pole plate is optimized subject to the minimization of a cost function, which evaluates the uniformity of the magnetic field over an ellipsoid. The magnetic field calculations required in this work are performed with the 3D finite element method software package Opera-3D. Each tentative design strategy is virtually modeled in this software package, which is externally controlled by MATLAB, with its key geometries defined as variables. The optimization variables are the thickness of the pole plate at control points distributed over the pole plate surface. A novel design concept as a superconducting non-axial magnet is introduced, which could create a large uniform B 0 magnetic field with fewer geometric restriction. This non-axial 0.5 T superconducting magnet has a moderately reduced SAD of 123 cm and a vertical patient opening of 68 cm. This work is presented as a proof of principle to investigate the feasibility of a non-axial magnet with the coils located around the yoke, and the results encourage future design optimizations to maximize the benefits of this non-axial design.

  18. Research on Hybrid Vehicle Drivetrain

    Science.gov (United States)

    Xie, Zhongzhi

    Hybrid cars as a solution to energy saving, emission reduction measures, have received widespread attention. Motor drive system as an important part of the hybrid vehicles as an important object of study. Based on the hybrid electric vehicle powertrain control system for permanent magnet synchronous motor as the object of study. Can be applied to hybrid car compares the characteristics of traction motors, chose permanent magnet synchronous Motors as drive motors for hybrid vehicles. Building applications in hybrid cars in MATLAB/Simulink simulation model of permanent-magnet synchronous motor speed control system and analysis of simulation results.

  19. Magnetic, optical and relaxometric properties of organically coated gold-magnetite (Au-Fe{sub 3}O{sub 4}) hybrid nanoparticles for potential use in biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Umut, E., E-mail: eumut@hacettepe.edu.tr [Hacettepe University Physics Engineering Department, 06800 Beytepe-Ankara (Turkey); Pineider, F. [INSTM and Universita degli Studi di Firenze, Department of Chemistry, Via della Lastruccia 3, 50019 Sesto Fiorentino (Italy); CNR-ISTM Padova, 35131 Padova (Italy); Arosio, P. [INSTM and Universita degli Studi di Milano, Department of Molecular Sciences Applied to Biosystems (DISMAB), I-20134 Milano (Italy); Sangregorio, C. [INSTM and Universita degli Studi di Firenze, Department of Chemistry, Via della Lastruccia 3, 50019 Sesto Fiorentino (Italy); CNR-ISTM Milano, 50123 via C.Golgi 19, 20133 Milano (Italy); Corti, M. [INSTM, CNISM and Dipartimento di Fisica ' A.Volta' , Univ. di Pavia, Via Bassi 6, I-27100 Pavia (Italy); Tabak, F. [Hacettepe University Physics Engineering Department, 06800 Beytepe-Ankara (Turkey); Lascialfari, A. [INSTM and Universita degli Studi di Milano, Department of Molecular Sciences Applied to Biosystems (DISMAB), I-20134 Milano (Italy); INSTM, CNISM and Dipartimento di Fisica ' A.Volta' , Univ. di Pavia, Via Bassi 6, I-27100 Pavia (Italy); Ghigna, P. [INSTM and Dipartimento di Chimica Univ. di Pavia, v.le Taramelli 13, I-27100 Pavia (Italy)

    2012-08-15

    We present the magnetic, optical and relaxometric properties of multifunctional Au-Fe{sub 3}O{sub 4} hybrid nanoparticles (HNPs), as possible novel contrast agents (CAs) for magnetic resonance imaging (MRI). The HNPs have been synthesized by wet chemical methods in heterodimer and core-shell geometries and capped with oleylamine. Structural characterization of the samples have been made by X-ray diffraction and transmission electron microscopy, while magnetic properties have been investigated by means of Superconducting Quantum Interference Device-SQUID magnetometry experiments. As required for MRI applications using negative CAs, the samples resulted superparamagnetic at room temperature and well above their blocking temperatures. Optical properties have been investigated by analyzing the optical absorbtion spectra collected in UV-visible region. Relaxometric measurements have been performed on organic suspensions of HNPs and Nuclear Magnetic Resonance (NMR) dispersion curves have been obtained by measuring the longitudinal 1/T{sub 1} and transverse 1/T{sub 2} relaxation rates of solvent protons in the range 10 kHz/300 MHz at room temperature. NMR relaxivities r{sub 1} and r{sub 2} have been compared with ENDOREM{sup Registered-Sign }, one of the commercial superparamagnetic iron oxide based MRI contrast agents. MRI contrast enhancement efficiencies have been investigated also by examining T{sub 2}-weighted MR images of suspensions. The experimental results suggest that the nanoparticles' suspensions are good candidates as negative CAs. - Highlights: Black-Right-Pointing-Pointer Au-Fe{sub 3}O{sub 4} superparamagnetic Hybrid NanoPrticles (HNPs) enhance contrast in MRI. Black-Right-Pointing-Pointer HNPs are expected to have optical activities through observed SPR phenomena. Black-Right-Pointing-Pointer HNPs have relatively high magnetic anisotropy originating from Au/Fe{sub 3}O{sub 4} interface. Black-Right-Pointing-Pointer Magnetic dipolar interactions have

  20. Automated segmentation of the quadratus lumborum muscle from magnetic resonance images using a hybrid atlas based - geodesic active contour scheme.

    Science.gov (United States)

    Jurcak, V; Fripp, J; Engstrom, C; Walker, D; Salvado, O; Ourselin, S; Crozier, S

    2008-01-01

    This study presents a novel method for the automatic segmentation of the quadratus lumborum (QL) muscle from axial magnetic resonance (MR) images using a hybrid scheme incorporating the use of non-rigid registration with probabilistic atlases (PAs) and geodesic active contours (GACs). The scheme was evaluated on an MR database of 7mm axial images of the lumbar spine from 20 subjects (fast bowlers and athletic controls). This scheme involved several steps, including (i) image pre-processing, (ii) generation of PAs for the QL, psoas (PS) and erector spinae+multifidus (ES+MT) muscles and (iii) segmentation, using 3D GACs initialized and constrained by the propagation of the PAs using non-rigid registration. Pre-processing of the images involved bias field correction based on local entropy minimization with a bicubic spline model and a reverse diffusion interpolation algorithm to increase the slice resolution to 0.98 x 0.98 x 1.75mm. The processed images were then registered (affine and non-rigid) and used to generate an average atlas. The PAs for the QL, PS and ES+MT were then generated by propagation of manual segmentations. These atlases were further analysed with specialised filtering to constrain the QL segmentation from adjacent non-muscle tissues (kidney, fat). This information was then used in 3D GACs to obtain the final segmentation of the QL. The automatic segmentation results were compared with the manual segmentations using the Dice similarity metric (DSC), with a median DSC for the right and left QL muscles of 0.78 (mean = 0.77, sd=0.07) and 0.75 (mean =0.74, sd=0.07), respectively.

  1. Magnetic recoverable MnFe₂O₄ and MnFe₂O₄-graphene hybrid as heterogeneous catalysts of peroxymonosulfate activation for efficient degradation of aqueous organic pollutants.

    Science.gov (United States)

    Yao, Yunjin; Cai, Yunmu; Lu, Fang; Wei, Fengyu; Wang, Xiaoyao; Wang, Shaobin

    2014-04-15

    Magnetic iron based materials are generally effective for many catalytic reactions and can be magnetically recovered after application, showing advantages than other metal oxides. In the present work, magnetic MnFe2O4 nanoparticle and MnFe2O4-reduced graphene oxide (rGO) hybrid were prepared and used as catalysts to activate peroxymonosulfate (PMS) to oxidatively degrade various organic pollutants in water. From a process of chemical deposition and reduction, MnFe2O4-rGO hybrids were produced with nanosized MnFe2O4 particles (ca. 13.2 nm). It was found that MnFe2O4 or MnFe2O4-rGO presented high activity in activating PMS to produce sulfate radicals for degradation of organic dyes (Methyl violet, Methyl orange, Methylene blue, Orange II and Rhodamine B) and could be separated with a magnet without any loss. The reaction kinetics, effect of different ion species CL(-),HCO3(-),CH3COO(-)and NO3(-) and Cl(-) strength, reaction temperature (25-65°C), catalytic stability, as well as degradation mechanism were comprehensively studied. The lower activation energy on MnFe2O4-rGO (25.7 kJ/mol) justify the higher chemical performance than that of MnFe2O4 (31.7 kJ/mol), suggesting that graphene plays a significant role in the enhanced degradation of dyes. More importantly, the as-prepared MnFe2O4 and MnFe2O4-rGO hybrid exhibited stable performance to remove the organic pollutants in wastewater with easy recycling and good stability by successive degradation experiments.

  2. Magnetic Fe3O4/Ag Hybrid Nanoparticles as Surface-Enhanced Raman Scattering Substrate for Trace Analysis of Furazolidone in Fish Feeds

    Directory of Open Access Journals (Sweden)

    Wansong Yu

    2014-01-01

    Full Text Available Nanoparticles (NPs composed of ferromagnetic and noble metal materials show dual functions of magnetic activity and local surface plasmon response and have great potential as substrates for surface-enhanced Raman scattering (SERS in trace analysis. Easy-to-prepare superparamagnetic Fe3O4/Ag hybrid NPs were synthesized and optimized by adjusting the ratio of silver particles aggregated with APTMS-modified Fe3O4 NPs. The hybrid NPs were assembled under an external magnetic field before being used as substrate for SERS analysis. The SERS spectral features of furazolidone standard solution were clearly identified at concentrations as low as 40 ng mL−1, and furazolidone in fish feeds could be detected at 500 ng g−1. The results indicated that the Fe3O4/Ag hybrid NPs as SERS substrates had a great potential for detection of trace amount of furazolidone and other prohibited or restricted antibiotics in the animal and fish feeds.

  3. Injectable In Situ Forming Hybrid Iron Oxide-Hyaluronic Acid Hydrogel for Magnetic Resonance Imaging and Drug Delivery

    NARCIS (Netherlands)

    Zhang, Y; Sun, Y.; Yang, X.; Hilborn, J.; Heerschap, A.; Ossipov, D.A.

    2014-01-01

    The development of multimodal in situ cross-linkable hyaluronic acid nanogels hybridized with iron oxide nanoparticles is reported. Utilizing a chemoselective hydrazone coupling reaction, the nanogels are converted to a macroscopic hybrid hydrogel without any additional reagent. Hydrophobic cargos r

  4. Charge transfer in Li/CFx-silver vanadium oxide hybrid cathode batteries revealed by solid state 7Li and 19F nuclear magnetic resonance spectroscopy

    Science.gov (United States)

    Sideris, Paul J.; Yew, Rowena; Nieves, Ian; Chen, Kaimin; Jain, Gaurav; Schmidt, Craig L.; Greenbaum, Steve G.

    2014-05-01

    Solid state 7Li and 19F magic angle spinning nuclear magnetic resonance (MAS NMR) experiments are conducted on several cathodes containing CFx-Silver vanadium oxide (CFx-Ag2V4O11) hybrid cathodes discharged to 50% depth of discharge (DoD) and stored at their open-circuit voltage for a period of one and three months. Three carbonaceous sources for the CFx phase are investigated: petroleum coke-based, fibrous, and mixed fibrous. For each hybrid cathode, a measurable increase in the relative amount of lithium fluoride is observed after a three month resting period in both the 7Li and 19F NMR spectra. These changes are attributed to lithium ion migration from the silver vanadium oxide to the CFx phase during the resting period, and help clarify the mechanism behind high power handling capability of this cathode.

  5. Two novel POM-based inorganic-organic hybrid compounds: synthesis, structures, magnetic properties, photodegradation and selective absorption of organic dyes.

    Science.gov (United States)

    Dui, Xue-Jing; Yang, Wen-Bin; Wu, Xiao-Yuan; Kuang, Xiaofei; Liao, Jian-Zhen; Yu, Rongmin; Lu, Can-Zhong

    2015-05-28

    The hydrothermal reactions of a mixture of (NH4)6Mo7O24·4H2O, Cu(Ac)2·H2O and 3-bpo ligands at different temperatures result in the isolation of two novel inorganic-organic hybrid materials containing different but related isopolymolybdate units, [Cu(3-bpo)(H2O)(Mo4O13)]·3H2O () and [Cu2(3-bpo)2(Mo6O20)] (). The {Mo4O13}n chains in and unprecedented [Mo6O20](4-) isopolyhexamolybdate anions in are linked by octahedral Cu(2+) ions into two-dimensional hybrid layers. Interestingly, 3-bpo ligands in both and are located on either side of these hybrid layers and serve as arched footbridges to link Cu(ii) ions in the layer via pyridyl N-donors, and at the same time connect these hybrid layers into 3D supramolecular frameworks via weak MoNoxadiazole bonds. Another important point for is that water clusters are filled in the 1D channels surrounded by isopolytetramolybdate units. In addition, dye adsorption and photocatalytic properties of and magnetic properties of have been investigated. The results indicated that complex is not only a good heterogeneous photocatalyst in the degradation of methyl orange (MO) and methylene blue (MB), but also has high absorption capacity of MB at room temperature and can selectively capture MB molecules from binary mixtures of MB/MO or MB/RhB. All MB molecules absorbed on can be completely released and photodegraded in the presence of adequate peroxide. The temperature dependence of magnetic susceptibility revealed that complex exhibits antiferromagnetic ordering at about 5 K, and a spin-flop transition was observed at about 5.8 T at 2 K, indicating metamagnetic-like behaviour from antiferromagnetic to ferromagnetic phases.

  6. A contribution on the investigation of the dynamic behavior of rotating shafts with a Hybrid Magnetic Bearing Concept (HMBC) for blower application

    Energy Technology Data Exchange (ETDEWEB)

    Gronek, Martin, E-mail: MGronek@hs-zigr.d [HOCHSCHULE ZITTAU/GOERLITZ-University of Applied Sciences, Institute of Process Technology, Process Automation and Measuring Technology (IPM), Department Mechatronical Systems, Theodor-Koerner-Allee 16, 02763 Zittau (Germany); Rottenbach, Torsten; Worlitz, Frank [HOCHSCHULE ZITTAU/GOERLITZ-University of Applied Sciences, Institute of Process Technology, Process Automation and Measuring Technology (IPM), Department Mechatronical Systems, Theodor-Koerner-Allee 16, 02763 Zittau (Germany)

    2010-10-15

    Within a subproject of the RAPHAEL-Program, which was part of the 6th EURATOM Framework Program supervised by the European Commission, it was investigated whether the use of a Hybrid Magnetic Bearing Concept (HMBC) will be beneficial for a blower application. Within the RAPHAEL program, the subproject 'Component Development' is dealing with R and D of components of High Temperature Reactor Technology (HTR), where a major focus is on safety- and reliability-related issues. That implies special requirements for the support of high speed rotating shafts in HTR-Applications that only can be satisfied by using Active Magnetic Bearings (AMB). Regarding safety and competitiveness, AMBs are considered to be key components for the support of rotating HTR-components due to their technical features. AMBs are characterized by an electromagnetic actuator that is generating the bearing force depending on the clearance between stator and rotor, in which the rotor is levitated. Therefore an active control of the coil current is necessary. Furthermore, Touch Down Bearings (TDB) are needed to avoid damages in case of an emergency shut down or in case of energy supply losses. This contribution provides an internal insight on the advantages of a Hybrid Magnetic Bearing Concept that is characterized by a completely Active Magnetic Bearing-supported vertical arranged rotor and an additional permanent magnetic radial orientated bearing. One benefit of the HMBC is an additional radial guidance of the shaft that may reduce the loads while dropping into the Touch Down Bearings e.g. in case of energy supply losses of the AMBs. Reduced loads on the TDBs will increase their life cycle and the availability of the AMB supported component. The scope of this R and D-Project, which will be described more detailed in this contribution, includes: the analytical modeling and simulation of the dynamic behavior of the Hybrid Magnetic Bearing System; the modification of the completely AMB

  7. Hybrid functional study of structural, electronic and magnetic properties of S-doped ZnO with and without neutral vacancy

    Energy Technology Data Exchange (ETDEWEB)

    Debbichi, M., E-mail: mourad_fsm@yahoo.fr [Laboratoire de la matière condensée et nanosciences, Département de Physique, Faculté des Sciences de Monastir, 5019 Monastir (Tunisia); Sakhraoui, T. [Laboratoire de la matière condensée et nanosciences, Département de Physique, Faculté des Sciences de Monastir, 5019 Monastir (Tunisia); Debbichi, L. [Institut Carnot de Bourgogne, UMR 6303, Université de Bourgogne-CNRS, 21078 Dijon (France); Said, M. [Laboratoire de la matière condensée et nanosciences, Département de Physique, Faculté des Sciences de Monastir, 5019 Monastir (Tunisia)

    2013-11-25

    Highlights: •S-doped ZnO have been investigated by DFT and EPM. •Good agreement with the experimental data is obtained by HSE (α = 0.28) functional on lattice parameters and band gap energy. •Zn vacancy introduced in S doped ZnO is studied by HSE to determine its electronic and magnetic properties. -- Abstract: The structural and electronic properties of S-doped ZnO are investigated by density functional theory (DFT) and empirical pseudopotential method (EPM). Using the Heyd–Scuseria–Ernzerhof (HSE) hybrid functional with an adjusted mixing coefficient α, we obtain a good agreement on lattice parameters and band gap energy with the available experimental data. We have also investigate the Zn-vacancy effects on the electronic and magnetic properties of S-doped ZnO. Our calculations demonstrate that S impurity prefers to be close to the cation vacancy in the apical position. The magnetic analysis with the HSE functional shows a triplet state character with a total magnetic moment of 1.81 μ{sub B}, which is mainly arises from the p-orbitals of the atoms around the Zn-vacancy (15% from S, 12% from Zn and 73% from O-atoms). The substitution of S by an isovalent atom decreases the total magnetic moments of the system and weakens the local triplet state without destroying it.

  8. Self-consistent tight-binding method for the prediction of magnetic spin structures in solids: Application to MnF{sub 2} and MnO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Zhuang, M.; Halley, J. W.

    2001-07-01

    We introduce a self-consistent tight-binding approach to the modeling and prediction of magnetic structure in solids. The method is similar to a charge self-consistent tight-binding method which we introduced earlier, but here we add information concerning the dependence of the ion energy on the total ion spin in the on-site matrix elements of the tight-binding Hamiltonian. We self-consistently determine both spins and charges of the ions during calculation. We illustrate with studies of MnF{sub 2} and the rutile form of MnO{sub 2}. In the first case we find without adjustment that the well-known two sublattice spin structure is predicted. In the second case we find that a disordered spin phase is predicted, contrary to experimental evidence, but a small adjustment of the parametrization yields the spiral spin structure suggested by experiments.

  9. Induced superconductivity in Nb/InAs-hybrid structures in parallel and perpendicular magnetic fields; Induzierte Supraleitung in Nb/InAs-Hybridstrukturen in parallelen und senkrechten Magnetfeldern

    Energy Technology Data Exchange (ETDEWEB)

    Rohlfing, Franziska

    2007-07-15

    The thesis in hand investigates experimentally Josephson contacts based on Nb/InAs-hybrid structures. The experiments discussed here were done on samples of different width of the Josephson contacts (between 500 nm and 2000 nm). They were realized by means of different methods of the semiconductor technology. The length of the Josephson contacts was about 600 nm and, as superconducting material, niobium was used. Both critical current and characteristics in the resistive regime (excess-current and multiple Andreev reflection) are studied as a function of temperature and external magnetic fields. Measurements in perpendicular and parallel magnetic fields with respect to the plain of the two-dimensional electron gas, are presented. The Andreev reflection amplitude determining the supercurrent is calculated by means of the Greens functions of the two-dimensional electron gas beneath the superconductors which is modified by the proximity effect. From the fit to the data with this model, the transparency of the boundary between the superconductor and the two-dimensional electron gas can be estimated to be about 0.1. The transparency of the point contacts in the two-dimensional electrons gas can be determined independently from the Josephson junction width dependence of the normal resistance (T=10 K). This transparency amounts to about 0.8 in the examined samples. The measurements of the critical current in a magnetic field perpendicular to the two-dimensional electron gas show a Fraunhofer pattern. In order to study the transition from perpendicular orientation into parallel orientation, measurements of the critical current as a function of the magnetic field were done for different angles. In the resistive regime, the excess current measurements in the magnetic field show a very interesting behaviour: In parallel magnetic fields, the excess current becomes zero at about 2.5 T. In perpendicular magnetic field however, the excess current is strongly suppressed below 30 m

  10. First studies in the 45 T hybrid magnet at the NHMFL-Tallahassee: the high-field phases of organic and Kondo systems

    Science.gov (United States)

    Brooks, J. S.; Balicas, L.; Tokumoto, M.; Terashima, T.; Echizen, Y.; Takabatake, T.

    2001-01-01

    We have performed magnetoresistance measurements on an organic conductor, α-(BEDT-TTF) 2KHg(SCN) 4, and on a Kondo semiconductor, CeNiSn, at low temperatures and for fields up to 45 T in the hybrid magnet at the National High Magnetic Field Laboratory. We will discuss some new insight into a very controversial high-field phase of α-(BEDT-TTF) 2KHg(SCN) 4 gained from measurements of the anomalous temperature dependence of the quantum oscillations in the range 25-45 T. New information will also be presented on the temperature dependence of resistivity in the high-field state of CeNiSn, where questions of metallic versus semiconducting ground states arise. To acquaint researchers who anticipate using the facility in the near future, practical details concerning use of this new high-field resource are included.

  11. Design Features of a Planar Hybrid/Permanent Magnet Strong Focusing Undulator for Free Electron Laser (FEL) And Synchrotron Radiation (SR) Applications

    Energy Technology Data Exchange (ETDEWEB)

    Tatchyn, Roman; /SLAC

    2011-09-09

    Insertion devices for Angstrom-wavelength Free Electron Laser (FEL) amplifiers driven by multi-GeV electron beams generally require distributed focusing substantially stronger than their own natural focusing fields. Over the last several years a wide variety of focusing schemes and configurations have been proposed for undulators of this class, ranging from conventional current-driven quadrupoles external to the undulator magnets to permanent magnet (PM) lattices inserted into the insertion device gap. In this paper we present design studies of a flexible high-field hybrid/PM undulator with strong superimposed planar PM focusing proposed for a 1.5 Angstrom Linac Coherent Light Source (LCLS) driven by an electron beam with a 1 mm-mr normalized emittance. Attainable field parameters, tuning modes, and potential applications of the proposed structure are discussed.

  12. Improvement of the propulsion force for HTSC-permanent magnet hybrid magnetically levitated carrying system by using the pinned flux of HTSC

    Science.gov (United States)

    Ikeda, M.; Sasaki, R.; Ueno, T.; Ohashi, S.

    Magnetically levitated carrying system has been developed. In this system, pinning force of high temperature bulk superconductor (HTSC) is used for the levitation and guidance. The magnetic rail is set on the ground, and flux from the magnetic rail is pinned by HTSCs. To increase levitation force, repulsive force of the permanent magnet is used. For the propulsion system, electromagnets are installed on the surface of the magnetic rail. Improvement of the propulsion force is studied. In the previous system, only flux of the permanent magnet of the carrier is used for propulsion. To increase propulsion force, that of the HTSC of the carrier is also used. Using this excitation method, the propulsion force is improved even though total number of the excited coil is the same.

  13. Inorganic-organic hybrid framework solids

    Indian Academy of Sciences (India)

    Srinivasan Natarajan

    2000-06-01

    Recent developments in the area of hybrid structures are overviewed with special emphasis on iron phosphate-oxalate materials. The structure of the iron phosphate-oxalates consists of iron phosphate chains or layers that are connected by oxalate moieties completing the architecture. The compounds exhibit interesting magnetic properties originating from the super-exchange interactions that are predominantly anti-ferromagnetic, involving the iron phosphates and the oxalate moieties. One of the materials, IV, also exhibits interesting adsorptive properties reminiscent of aluminosilicate zeolites. The aluminum phosphate-oxalate, VII, indicates that hybrid structures can be formed with zeolite architecture.

  14. Orbital hybridization and magnetic coupling of the A-site Cu spins in CaCu3B4O12 (B = Ti, Ge, and Sn) perovskites.

    Science.gov (United States)

    Mizumaki, M; Saito, T; Shiraki, H; Shimakawa, Y

    2009-04-20

    X-ray absorption spectroscopy (XAS) spectra near the O K-edge of A-site-ordered perovskite with A-site Cu(2+) (S = (1)/(2)) spins were measured. The spectra of ferromagnetic CaCu(3)Ge(4)O(12) and CaCu(3)Sn(4)O(12) showed hybridization between Cu 3d and O 2p orbitals, but magnetic circular dichroism measurement revealed that the O 2p orbital played a less important role in magnetic interaction. The XAS spectra of antiferromagnetic CaCu(3)Ti(4)O(12), on the other hand, showed strong hybridization of the Cu 3d, Ti 3d, and O 2p orbitals. These results demonstrated that direct exchange interaction of the Cu(2+) spins primarily determined the ferromagnetic ordering of CaCu(3)Ge(4)O(12) and CaCu(3)Sn(4)O(12), whereas the involvement of Ti 3d orbitals induced the antiferromagnetic property in CaCu(3)Ti(4)O(12).

  15. Magnetic hybride layers. Magnetic properties of locally exchange-coupled NiFe/IrMn layers; Magnetische Hybridschichten. Magnetische Eigenschaften lokal austauschgekoppelter NiFe/IrMn-Schichten

    Energy Technology Data Exchange (ETDEWEB)

    Hamann, Christine

    2010-10-06

    By the lateral modification of the magnetic properties of exchange-coupled NiFe/IrMn layers soft-magnetic layers were produced, which show both new static and dynamic properties. As lateral structuration methods hereby the localoxidation as well as ion implantation were applied. By means of thes procedures it has been succeeded to mould specific magnetic domain configurations with strp structure into the layers. In dependence of the structure orientation as well as strip period the remagnetization behavior as well as the magnetic-resonance frequency and damping of the layers could directly be modified. The new dynamical properties are hereby discussed in the framework of the coupling via dynamical charges and the direct affection of the effective field of the artificially inserted domain state. The presented results prove by this the large potential of the lateral magneto-structuration for the tuning of specifical static as well as dynamic properties of magnetically thin layers.

  16. Strain-induced macroscopic magnetic anisotropy from smectic liquid-crystalline elastomer-maghemite nanoparticle hybrid nanocomposites.

    Science.gov (United States)

    Haberl, Johannes M; Sánchez-Ferrer, Antoni; Mihut, Adriana M; Dietsch, Hervé; Hirt, Ann M; Mezzenga, Raffaele

    2013-06-21

    We combine tensile strength analysis and X-ray scattering experiments to establish a detailed understanding of the microstructural coupling between liquid-crystalline elastomer (LCE) networks and embedded magnetic core-shell ellipsoidal nanoparticles (NPs). We study the structural and magnetic re-organization at different deformations and NP loadings, and the associated shape and magnetic memory features. In the quantitative analysis of a stretching process, the effect of the incorporated NPs on the smectic LCE is found to be prominent during the reorientation of the smectic domains and the softening of the nanocomposite. Under deformation, the soft response of the nanocomposite material allows the organization of the nanoparticles to yield a permanent macroscopically anisotropic magnetic material. Independent of the particle loading, the shape-memory properties and the smectic phase of the LCEs are preserved. Detailed studies on the magnetic properties demonstrate that the collective ensemble of individual particles is responsible for the macroscopic magnetic features of the nanocomposite.

  17. Well-Combined Magnetically Separable Hybrid Cobalt Ferrite/Nitrogen-Doped Graphene as Efficient Catalyst with Superior Performance for Oxygen Reduction Reaction.

    Science.gov (United States)

    Lu, Lei; Hao, Qingli; Lei, Wu; Xia, Xifeng; Liu, Peng; Sun, Dongping; Wang, Xin; Yang, Xujie

    2015-11-18

    Catalysts with low-cost, high activity and stability toward oxygen reduction reaction (ORR) are extremely desirable, but its development still remains a great challenge. Here, a novel magnetically separable hybrid of multimetal oxide, cobalt ferrite (CoFe2O4), anchored on nitrogen-doped reduced graphene oxide (CoFe2O4/NG) is prepared via a facile solvothermal method followed by calcination at 500 °C. The structure of CoFe2O4/NG and the interaction of both components are analyzed by several techniques. The possible formation of Co/Fe-N interaction in the CoFe2O4/NG catalyst is found. As a result, the well-combination of CoFe2O4 nanoparticles with NG and its improved crystallinity lead to a synergistic and efficient catalyst with high performance to ORR through a four-electron-transfer process in alkaline medium. The CoFe2O4/NG exhibits particularly comparable catalytic activity as commercial Pt/C catalyst, and superior stability against methanol oxidation and CO poisoning. Meanwhile, it has been proved that both nitrogen doping and the spinel structure of CoFe2O4 can have a significant contribution to the catalytic activity by contrast experiments. Multimetal oxide hybrid demonstrates better catalysis to ORR than a single metal oxide hybrid. All results make the low-cost and magnetically separable CoFe2O4/NG a promising alternative for costly platinum-based ORR catalyst in fuel cells and metal-air batteries. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. CoFe2O4@MIL-100(Fe) hybrid magnetic nanoparticles exhibit fast and selective adsorption of arsenic with high adsorption capacity

    Science.gov (United States)

    Yang, Ji-Chun; Yin, Xue-Bo

    2017-01-01

    In this study, we report the synthesis and application of mesoporous CoFe2O4@MIL-100(Fe) hybrid magnetic nanoparticles (MNPs) for the simultaneous removal of inorganic arsenic (iAs). The hybrid adsorbent had a core-shell and mesoporous structure with an average diameter of 260 nm. The nanoscale size and mesoporous character impart a fast adsorption rate and high adsorption capacity for iAs. In total, 0.1 mg L−1 As(V) and As(III) could be adsorbed within 2 min, and the maximum adsorption capacities were 114.8 mg g−1 for As(V) and 143.6 mg g−1 for As(III), higher than most previously reported adsorbents. The anti-interference capacity for iAs adsorption was improved by the electrostatic repulsion and size exclusion effects of the MIL-100(Fe) shell, which also decreased the zero-charge point of the hybrid absorbent for a broad pH adsorption range. The adsorption mechanisms of iAs on the MNPs are proposed. An Fe-O-As structure was formed on CoFe2O4@MIL-100(Fe) through hydroxyl substitution with the deprotonated iAs species. Monolayer adsorption of As(V) was observed, while hydrogen bonding led to the multi-layer adsorption of neutral As(III) for its high adsorption capacity. The high efficiency and the excellent pH- and interference-tolerance capacities of CoFe2O4@MIL-100(Fe) allowed effective iAs removal from natural water samples, as validated with batch magnetic separation mode and a portable filtration strategy. PMID:28102334

  19. CoFe2O4@MIL-100(Fe) hybrid magnetic nanoparticles exhibit fast and selective adsorption of arsenic with high adsorption capacity

    Science.gov (United States)

    Yang, Ji-Chun; Yin, Xue-Bo

    2017-01-01

    In this study, we report the synthesis and application of mesoporous CoFe2O4@MIL-100(Fe) hybrid magnetic nanoparticles (MNPs) for the simultaneous removal of inorganic arsenic (iAs). The hybrid adsorbent had a core-shell and mesoporous structure with an average diameter of 260 nm. The nanoscale size and mesoporous character impart a fast adsorption rate and high adsorption capacity for iAs. In total, 0.1 mg L‑1 As(V) and As(III) could be adsorbed within 2 min, and the maximum adsorption capacities were 114.8 mg g‑1 for As(V) and 143.6 mg g‑1 for As(III), higher than most previously reported adsorbents. The anti-interference capacity for iAs adsorption was improved by the electrostatic repulsion and size exclusion effects of the MIL-100(Fe) shell, which also decreased the zero-charge point of the hybrid absorbent for a broad pH adsorption range. The adsorption mechanisms of iAs on the MNPs are proposed. An Fe-O-As structure was formed on CoFe2O4@MIL-100(Fe) through hydroxyl substitution with the deprotonated iAs species. Monolayer adsorption of As(V) was observed, while hydrogen bonding led to the multi-layer adsorption of neutral As(III) for its high adsorption capacity. The high efficiency and the excellent pH- and interference-tolerance capacities of CoFe2O4@MIL-100(Fe) allowed effective iAs removal from natural water samples, as validated with batch magnetic separation mode and a portable filtration strategy.

  20. Attractors of hybrid magnetic levitation ball system and stability research%混合磁悬浮球系统吸引子及稳定性研究

    Institute of Scientific and Technical Information of China (English)

    马凤莲; 江东; 张翔; 杨嘉祥

    2012-01-01

    为了避免磁悬浮球混沌运动,设计了永磁和电磁混合型磁悬浮球模型,推导了磁悬浮球的动力学方程,并建立了磁悬浮球系统的仿真模型.通过改变初始状态,得到不同初始条件下的磁悬浮球系统吸引子.混合型磁悬浮球系统具有单、双两类吸引子,双吸引子表现出较强的混沌特性,磁悬浮球围绕平衡点附近的波动较大,磁悬浮球由混沌运动状态向非混沌运动状态转变时,由双吸引子逐渐向单吸引子过渡,系统演变为具有周期特性的运动状态,再演变为相轨迹收敛于一个点,磁悬浮球处于较稳定的运动状态.仿真和实验结果表明,通过磁悬浮球吸引子的研究可了解混沌产生的初始区间,进而为设计中避开混沌区实现磁悬浮球的稳定运动提供了参考依据.%In order to avoid magnetic levitation ball in the chaotic region, the model of permanent magnet and electromagnet hybrid magnetic levitation ball system was designed,the dynamic equation of magnetic levitation ball was deduced, and the magnetic levitation system simulation mode] was set up. The different attractors were obtained by changing the initial states. The simulation results show that the hybrid magnetic levitation ball system designed has single and double two types of attractors. The double attractors have stronger chaotic performance and the magnetic levitation ball has greater fluctuation around the equilibrium point. The attractor is gradually from double attractors to single attractor in magnetic levitation ball from chaotic station transition to non-chaotic state, the magnetic levitation ball becomes a cyclical nature of the motion state and it gradually evolves to a point of phase trajectories when the system presents a stable state. Simulation and test show that the chaos generated by the initial region can be understood by studying the magnetic levitation ball attractors, which provides a reference design basis to a

  1. 计及边缘效应的交流混合磁轴承建模%Modeling for AC Hybrid Magnetic Bearings Considering Edge Effect

    Institute of Scientific and Technical Information of China (English)

    朱熀秋; 丁书玲

    2016-01-01

    在混合磁轴承(hybrid magnetic bearing,HMB)建模过程中,通常忽略涡流效应、边缘效应和漏磁等因素,使得悬浮力数学模型精度降低。为了提高模型精度,提出了计及磁极端部边缘效应的混合磁轴承改进模型。该文以交流径向混合磁轴承为例分析其工作原理和磁通分布特性,采用磁场分割法分别求解不同边缘磁通区域的磁导,通过叠加原则获得单个磁极下的总磁导,根据等效磁路法建立径向悬浮力的精确数学模型。实验结果表明:改进前模型计算所得悬浮力与实验所得悬浮力误差接近10%,改进后的数学模型所得悬浮力与实验所得悬浮力误差小于5%。比较结果证明了计及边缘效应能有效提高悬浮力数学模型的精度。%In modeling proceeding of hybrid magnetic bearings (HMBs), factors such as the eddy current effect, the edge effect and the flux leakage are commonly ignored, which decreases the precision of the mathematical model of suspension forces. In order to improve the precision, an improved mathematical model of hybrid magnetic bearings considering the edge effect was established. An AC hybrid magnetic bearing was taken as an example, its working principle and features of flux distribution were analyzed. Then, the magnetic field division method was employed to calculate the permeances of different regions located around the end portion of the pole. The permeances were added by the superposition principle, and the total permeance of the single pole was obtained. The accurate model was obtained by using the equivalent magnetic circuit method. The experimental results show that the error between original model values and experimental values is about 10%, the error between improved model values and experimental values is less than 5%. The results of the comparison have verified that the consideration of the edge effect can effectively improve the precision of the mathematical model

  2. Resin Catalyst Hybrids

    Institute of Scientific and Technical Information of China (English)

    S. Asaoka

    2005-01-01

    @@ 1Introduction: What are resin catalyst hybrids? There are typically two types of resin catalyst. One is acidic resin which representative is polystyrene sulfonic acid. The other is basic resin which is availed as metal complex support. The objective items of this study on resin catalyst are consisting of pellet hybrid, equilibrium hybrid and function hybrid of acid and base,as shown in Fig. 1[1-5].

  3. MAGNET

    CERN Multimedia

    by B. Curé

    2011-01-01

    The magnet operation was very satisfactory till the technical stop at the end of the year 2010. The field was ramped down on 5th December 2010, following the successful regeneration test of the turbine filters at full field on 3rd December 2010. This will limit in the future the quantity of magnet cycles, as it is no longer necessary to ramp down the magnet for this type of intervention. This is made possible by the use of the spare liquid Helium volume to cool the magnet while turbines 1 and 2 are stopped, leaving only the third turbine in operation. This obviously requires full availability of the operators to supervise the operation, as it is not automated. The cryogenics was stopped on 6th December 2010 and the magnet was left without cooling until 18th January 2011, when the cryoplant operation resumed. The magnet temperature reached 93 K. The maintenance of the vacuum pumping was done immediately after the magnet stop, when the magnet was still at very low temperature. Only the vacuum pumping of the ma...

  4. Magnetic solid phase extraction of gemfibrozil from human serum and pharmaceutical wastewater samples utilizing a β-cyclodextrin grafted graphene oxide-magnetite nano-hybrid.

    Science.gov (United States)

    Abdolmohammad-Zadeh, Hossein; Talleb, Zeynab

    2015-03-01

    A magnetic solid phase extraction method based on β-cyclodextrin (β-CD) grafted graphene oxide (GO)/magnetite (Fe3O4) nano-hybrid as an innovative adsorbent was developed for the separation and pre-concentration of gemfibrozil prior to its determination by spectrofluorometry. The as-prepared β-CD/GO/Fe3O4 nano-hybrid possesses the magnetism property of Fe3O4 nano-particles that makes it easily manipulated by an external magnetic field. On the other hand, the surface modification of GO by β-CD leads to selective separation of the target analyte from sample matrices. The structure and morphology of the synthesized adsorbent were characterized using powder X-ray diffraction, Fourier transform infrared spectroscopy, and field emission scanning electron microscopy. The experimental factors affecting the extraction/pre-concentration and determination of the analyte were investigated and optimized. Under the optimized experimental conditions, the calibration graph was linear in the range between 10 and 5000 pg mL(-1) with a correlation coefficient of 0.9989. The limit of detection and enrichment factor for gemfibrozil were 3 pg mL(-1) and 100, respectively. The maximum sorption capacity of the adsorbent for gemfibrozil was 49.8 mg g(-1). The method was successfully applied to monitoring gemfibrozil in human serum and pharmaceutical wastewaters samples with recoveries in the range of 96.0-104.0% for the spiked samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Equivalent Magnetic Circuit Model of Flux-switching Hybrid Excitation Machine%混合励磁磁通切换电机等效磁路模型

    Institute of Scientific and Technical Information of China (English)

    许泽刚; 谢少军; 毛鹏

    2011-01-01

    混合励磁磁通切换电机(flux-switching hybrid excitationmachine,FSHM)是一种新型定子励磁型交流无刷电机,具有磁链双极性、结构简单、功率密度高、运行可靠等优点。改变电励磁绕组电流的大小和方向,实现了对永磁气隙磁场的有效调节与控制,而引入导磁磁桥可提升气隙磁场调节范围。以建立电枢绕组磁链最大位置的等效磁路模型为切入点,推导了峰值磁通表达式,探索了磁桥段相对磁导率的估算方法,结合有限元仿真分析了磁桥厚度变化与磁桥式FSHM初始气隙磁密、磁桥磁密、气隙磁场调节能力、磁力线路径转移等特性的关系。样机的有限元仿真及实验结果与等效磁路模型预测趋势基本一致,验证了建模方法与理论分析的正确性,可用于指导磁通切换电机的设计与性能分析。%Flux-switching hybrid excitation machine(FSHM) was an interesting brushless machine with magnets in the stator,which offered the advantages of bipolar flux linkage,simple and robust rotor structure and high power density.Adjustment and control of the PM air gap magnetic field could be achieved by means of controlling the field winding current,and magnetic bridge amplified the effect of field flux on PM flux.This paper took equivalent magnetic circuit model(EMCM) of maximum phase flux-linkage position as point of penetration,deduced the equation of peak magnetic flux,and explored a method for estimating the relative permeability of magnetic bridge.The characteristic relation between the thickness of magnetic bridge and initial air gap flux density,magnetic bridge flux density,regulating capacity of air gap magnetic field,and magnetic lines transfer were studied combined with finite element analysis(FEA).The estimation results based on EMCM agreed well with the FEA and experiment data,which confirmed the correctness of modeling method and theoretical analysis.It provided reference for

  6. Magnon, phonon, and electron temperature profiles and the spin Seebeck effect in magnetic insulator/normal metal hybrid structures

    NARCIS (Netherlands)

    Schreier, M.; Kamra, A.; Weiler, M.; Xiao, J.; Bauer, G.E.W.; Gross, R.; Goennenwein, S.T.B.

    2013-01-01

    We calculate the phonon, electron, and magnon temperature profiles in yttrium iron garnet/platinum bilayers by diffusive theory with appropriate boundary conditions, in particular taking into account interfacial thermal resistances. Our calculations show that in thin film hybrids, the interface magn

  7. Magnetic and optical properties of Ag@SiO{sub 2}-FITC-Fe{sub 3}O{sub 4} hybrid nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Sui, Ning [Université de Lyon, Institut des Nanotechnologies de Lyon–INL, UMR CNRS 5270, Site Ecole Centrale de Lyon, 36 Avenue Guy de Collongue, F-69134 Ecully Cedex (France); College of Material Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042 (China); Monnier, Virginie, E-mail: virginie.monnier@ec-lyon.fr [Université de Lyon, Institut des Nanotechnologies de Lyon–INL, UMR CNRS 5270, Site Ecole Centrale de Lyon, 36 Avenue Guy de Collongue, F-69134 Ecully Cedex (France); Salvia, Marie-Virginie; Chevolot, Yann; Souteyrand, Eliane [Université de Lyon, Institut des Nanotechnologies de Lyon–INL, UMR CNRS 5270, Site Ecole Centrale de Lyon, 36 Avenue Guy de Collongue, F-69134 Ecully Cedex (France)

    2014-03-15

    Highlights: • New magnetic/fluorescent nanoparticles were synthesized. • The silver core led to a maximum 4-fold enhanced fluorescence of fluorophore. • Maximum enhancement factor was obtained when metal-fluorophore distance is 5 nm. • Magnetism and fluorescence appeared simultaneously for nanoparticles in solution. -- Abstract: Nanoparticles composed of a silver core coated with a silica shell (Ag@SiO{sub 2}) were prepared. A dye, fluorescein isothiocyanate (FITC), was further encapsulated during the growth of a second silica shell onto Ag@SiO{sub 2} nanoparticles. The proximity of silver nanoparticles led to a 4-fold maximal enhancement in the fluorescence of FITC when the first silica shell thickness was set at 5 nm. After amino-functionalization of Ag@SiO{sub 2}-FITC nanoparticles, iron oxide nanoparticles were bonded to their surface. The magnetic and metal-enhanced fluorescence properties appeared simultaneously when Ag@SiO{sub 2}-FITC-Fe{sub 3}O{sub 4} hybrid nanoparticles were dispersed in a solution.

  8. Modeling and Analysis of Coupling Performance of Dynamic Stiffness Models for a Novel Combined Radial-Axial Hybrid Magnetic Bearing

    Directory of Open Access Journals (Sweden)

    Bangcheng Han

    2014-01-01

    Full Text Available The combined radial-axial magnetic bearing (CRAMB with permanent magnet creating bias flux can reduce the size, cost, and mass and save energy of the magnetic bearing. The CRAMB have three-degree-of-freedom control ability, so its structure and magnetic circuits are more complicated compared to those of the axial magnetic bearing (AMB or radial magnetic bearing (RMB. And the eddy currents have a fundamental impact on the dynamic performance of the CRAMB. The dynamic stiffness model and its cross coupling problems between different degrees of freedom affected for the CRAMB are proposed in this paper. The dynamic current stiffness and the dynamic displacement stiffness models of the CRAMB are deduced by using the method of equivalent magnetic circuit including eddy current effect, but the dynamic current stiffness of the RMB unit is approximately equal to its static current stiffness. The analytical results of an example show that the bandwidth of the dynamic current stiffness of the AMB unit and the dynamic displacement stiffness of the CRAMB is affected by the time-varying control currents or air gap, respectively. And the dynamic current stiffness and the dynamic displacement stiffness between the AMB unit and the RMB unit are decoupled due to few coupling coefficients.

  9. Constructing magnetic polyaniline/metal hybrid nanostructures using polyaniline/Fe 3O 4 composite hollow spheres as supports

    Science.gov (United States)

    Kong, Lirong; Lu, Xiaofeng; Jin, E.; Jiang, Shan; Bian, Xiujie; Zhang, Wanjin; Wang, Ce

    2009-08-01

    Polyaniline (PANI)/Fe 3O 4 composite hollow spheres have been successfully synthesized in one step using sulfonated polystyrene (PS) spheres as templates. The magnetic PANI hollow spheres were used as supports for noble metal nanoparticles (NPs) such as Au and Pd. The morphology, composition and magnetic properties of the resulting products were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, inductively coupled plasma (ICP) atomic spectra and vibrating sample magnetometer. The catalytic activity of magnetic PANI/Au composite shells on the oxidation of dopamine was investigated by cyclic voltammetry. The obtained results provide our product with a practical application for the detection of dopamine. On the other hand, the catalytic activity of magnetic PANI/Pd composite shells on the reduction of 4-nitroaniline was investigated by spectroscopic methods and compared with Pd/C catalyst which was already widely used in industrial production.

  10. MAGNET

    CERN Multimedia

    B. Curé

    2012-01-01

      The magnet was energised at the beginning of March 2012 at a low current to check all the MSS safety chains. Then the magnet was ramped up to 3.8 T on 6 March 2012. Unfortunately two days later an unintentional switch OFF of the power converter caused a slow dump. This was due to a misunderstanding of the CCC (CERN Control Centre) concerning the procedure to apply for the CMS converter control according to the beam-mode status at that time. Following this event, the third one since 2009, a discussion was initiated to define possible improvement, not only on software and procedures in the CCC, but also to evaluate the possibility to upgrade the CMS hardware to prevent such discharge from occurring because of incorrect procedure implementations. The magnet operation itself was smooth, and no power cuts took place. As a result, the number of magnetic cycles was reduced to the minimum, with only two full magnetic cycles from 0 T to 3.8 T. Nevertheless the magnet suffered four stops of the cryogeni...

  11. MAGNET

    CERN Multimedia

    Benoit Curé

    2010-01-01

    Operation of the magnet has gone quite smoothly during the first half of this year. The magnet has been at 4.5K for the full period since January. There was an unplanned short stop due to the CERN-wide power outage on May 28th, which caused a slow dump of the magnet. Since this occurred just before a planned technical stop of the LHC, during which access in the experimental cavern was authorized, it was decided to leave the magnet OFF until 2nd June, when magnet was ramped up again to 3.8T. The magnet system experienced a fault also resulting in a slow dump on April 14th. This was triggered by a thermostat on a filter choke in the 20kA DC power converter. The threshold of this thermostat is 65°C. However, no variation in the water-cooling flow rate or temperature was observed. Vibration may have been the root cause of the fault. All the thermostats have been checked, together with the cables, connectors and the read out card. The tightening of the inductance fixations has also been checked. More tem...

  12. MAGNET

    CERN Multimedia

    B. Curé

    2012-01-01

      Following the unexpected magnet stops last August due to sequences of unfortunate events on the services and cryogenics [see CMS internal report], a few more events and initiatives again disrupted the magnet operation. All the magnet parameters stayed at their nominal values during this period without any fault or alarm on the magnet control and safety systems. The magnet was stopped for the September technical stop to allow interventions in the experimental cavern on the detector services. On 1 October, to prepare the transfer of the liquid nitrogen tank on its new location, several control cables had to be removed. One cable was cut mistakenly, causing a digital input card to switch off, resulting in a cold-box (CB) stop. This tank is used for the pre-cooling of the magnet from room temperature down to 80 K, and for this reason it is controlled through the cryogenics control system. Since the connection of the CB was only allowed for a field below 2 T to avoid the risk of triggering a fast d...

  13. Magnetic characterisation of large grain, bulk Y–Ba–Cu–O superconductor–soft ferromagnetic alloy hybrid structures

    OpenAIRE

    Philippe, Matthieu; Fagnard, Jean-François; Kirsch, Sébastien; Xu, Zhihan; Dennis, Anthony; Shi, Yunhua; Cardwell, David A.; Vanderheyden, Benoît; Vanderbemden, Philippe

    2014-01-01

    Large grain, bulk Y–Ba–Cu–O (YBCO) high temperature superconductors (HTS) have significant potential for use in a variety of practical applications that incorporate powerful quasi-permanent magnets. In the present work, we investigate how the trapped field of such magnets can be improved by combining bulk YBCO with a soft FeNi, ferromagnetic alloy. This involves machining the alloy into components of various shapes, such as cylinders and rings, which are attached subsequently to the top surfa...

  14. Concept of a Hybrid (Normal and Superconducting) Bending Magnet based on Iron Magnetization for 80-100km Lepton/Hadron Colliders

    CERN Document Server

    Milanese, A; Piekarz, H

    2014-01-01

    We present a concept of twin aperture iron dominated bending magnets. These compact “transmission line” dipoles are meant to be installed in the same 80-100 km tunnel of the Future Circular Colliders (FCC) currently being studied at CERN, where they shall be used for the high energy injector synchrotrons. The main feature is the coupling of a resistive cable (for first use in a leptons machine) with a superconducting one (for hadrons operation, presumably in a second phase of FCC). The main challenges in terms of operating field range are commented in the light of similar magnets already built.

  15. The Shortening of MWNT-SPION Hybrids by Steam Treatment Improves Their Magnetic Resonance Imaging Properties In Vitro and In Vivo.

    Science.gov (United States)

    Cabana, Laura; Bourgognon, Maxime; Wang, Julie T-W; Protti, Andrea; Klippstein, Rebecca; de Rosales, Rafael T M; Shah, Ajay M; Fontcuberta, Josep; Tobías-Rossell, Ester; Sosabowski, Jane K; Al-Jamal, Khuloud T; Tobias, Gerard

    2016-06-01

    Carbon nanotubes (CNTs) have been advocated as promising nanocarriers in the biomedical field. Their high surface area and needle-like shape make these systems especially attractive for diagnostic and therapeutic applications. Biocompatibility, cell internalization, biodistribution, and pharmacokinetic profile have all been reported to be length dependent. In this study, further insights are gotten on the role that the length of CNTs plays when developing novel contrast agents for magnetic resonance imaging (MRI). Two samples of CNTs with different length distribution have been decorated with radio-labeled iron oxide nanoparticles. Despite characterization of the prepared hybrids reveals a similar degree of loading and size of the nanoparticles for both samples, the use of short CNTs is found to enhance the MRI properties of the developed contrast agents both in vitro and in vivo compared to their long counterparts.

  16. Effect of Rashba and Dresselhaus Spin-Orbit Couplings on Electron Spin Polarization in a Hybrid Magnetic-Electric Barrier Nanostructure

    Science.gov (United States)

    Yang, Shi-Peng; Lu, Mao-Wang; Huang, Xin-Hong; Tang, Qiang; Zhou, Yong-Long

    2017-04-01

    A theoretical study has been carried out on the spin-dependent electron transport in a hybrid magnetic-electric barrier nanostructure with both Rashba and Dresselhaus spin-orbit couplings, which can be experimentally realized by depositing a ferromagnetic strip and a Schottky metal strip on top of a semiconductor heterostructure. The spin-orbit coupling-dependent transmission coefficient, conductance, and spin polarization are calculated by solving the Schrödinger equation exactly with the help of the transfer-matrix method. We find that both the magnitude and sign of the electron spin polarization vary strongly with the spin-orbit coupling strength. Thus, the degree of electron spin polarization can be manipulated by properly adjusting the spin-orbit coupling strength, and such a nanosystem can be employed as a controllable spin filter for spintronics applications.

  17. Hybrid magneto-optical mode converter made with a magnetic nanoparticles-doped SiO2/ZrO2 layer coated on an ion-exchanged glass waveguide

    Science.gov (United States)

    Amata, Hadi; Royer, François; Choueikani, Fadi; Jamon, Damien; Parsy, François; Broquin, Jean-Emmanuel; Neveu, Sophie; Jacques Rousseau, Jean

    2011-12-01

    This paper describes the possibility to achieve a TE-TM mode conversion in a magneto-optical hybrid waveguide operating at λ = 1550 nm. This hybrid device is made by coating a SiO2/ZrO2 layer doped with magnetic nanoparticles on an ion-exchanged glass waveguide. Soft annealing (90 °C) and UV treatment, both compatible with the ion exchange process, have been implemented to finalize the magneto-optical film. Optical characterizations that have been carried out demonstrated the efficiency of these hybrid structures in terms of lateral confinement and mode conversion. Indeed, TE to TM mode conversion has been observed when a longitudinal magnetic field is applied to the device. The amount of this conversion is discussed taking into account the distribution of light between the layer and the guide, and the modal birefringence of the structure.

  18. MAGNET

    CERN Multimedia

    B. Curé

    2012-01-01

      The magnet and its sub-systems were stopped at the beginning of the winter shutdown on 8th December 2011. The magnet was left without cooling during the cryogenics maintenance until 17th January 2012, when the cryoplant operation resumed. The magnet temperature reached 93 K. The vacuum pumping was maintained during this period. During this shutdown, the yearly maintenance was performed on the cryogenics, the vacuum pumps, the magnet control and safety systems, and the power converter and discharge lines. Several preventive actions led to the replacement of the electrovalve command coils, and the 20A DC power supplies of the magnet control system. The filters were cleaned on the demineralised water circuits. The oil of the diffusion pumps was changed. On the cryogenics, warm nitrogen at 343 K was circulated in the cold box to regenerate the filters and the heat exchangers. The coalescing filters have been replaced at the inlet of both the turbines and the lubricant trapping unit. The active cha...

  19. MAGNET

    CERN Multimedia

    Benoit Curé

    2010-01-01

    The magnet was successfully operated at the end of the year 2009 despite some technical problems on the cryogenics. The magnet was ramped up to 3.8 T at the end of November until December 16th when the shutdown started. The magnet operation met a few unexpected stops. The field was reduced to 3.5 T for about 5 hours on December 3rd due to a faulty pressure sensor on the helium compressor. The following day the CERN CCC stopped unintentionally the power converters of the LHC and the experiments, triggering a ramp down that was stopped at 2.7 T. The magnet was back at 3.8 T about 6 hours after CCC sent the CERN-wide command. Three days later, a slow dump was triggered due to a stop of the pump feeding the power converter water-cooling circuit, during an intervention on the water-cooling plant done after several disturbances on the electrical distribution network. The magnet was back at 3.8 T in the evening the same day. On December 10th a break occurred in one turbine of the cold box producing the liquid ...

  20. MAGNET

    CERN Multimedia

    B. Curé

    2013-01-01

      The magnet was operated without any problem until the end of the LHC run in February 2013, apart from a CERN-wide power glitch on 10 January 2013 that affected the CMS refrigerator, causing a ramp down to 2 T in order to reconnect the coldbox. Another CERN-wide power glitch on 15 January 2013 didn’t affect the magnet subsystems, the cryoplant or the power converter. At the end of the magnet run, the reconnection of the coldbox at 2.5 T was tested. The process will be updated, in particular the parameters of some PID valve controllers. The helium flow of the current leads was reduced but only for a few seconds. The exercise will be repeated with the revised parameters to validate the automatic reconnection process of the coldbox. During LS1, the water-cooling services will be reduced and many interventions are planned on the electrical services. Therefore, the magnet cryogenics and subsystems will be stopped for several months, and the magnet cannot be kept cold. In order to avoid unc...

  1. MAGNET

    CERN Multimedia

    B. Curé

    2011-01-01

    The CMS magnet has been running steadily and smoothly since the summer, with no detected flaw. The magnet instrumentation is entirely operational and all the parameters are at their nominal values. Three power cuts on the electrical network affected the magnet run in the past five months, with no impact on the data-taking as the accelerator was also affected at the same time. On 22nd June, a thunderstorm caused a power glitch on the service electrical network. The primary water cooling at Point 5 was stopped. Despite a quick restart of the water cooling, the inlet temperature of the demineralised water on the busbar cooling circuit increased by 5 °C, up to 23.3 °C. It was kept below the threshold of 27 °C by switching off other cooling circuits to avoid the trigger of a slow dump of the magnet. The cold box of the cryogenics also stopped. Part of the spare liquid helium volume was used to maintain the cooling of the magnet at 4.5 K. The operators of the cryogenics quickly restarted ...

  2. Electric field control of magnetization in Cu2O/porous anodic alumina hybrid structures at room temperature

    Science.gov (United States)

    Qi, L. Q.; Liu, H. Y.; Sun, H. Y.; Liu, L. H.; Han, R. S.

    2016-04-01

    Cu2O nanoporous films are deposited on porous anodic alumina (PAA) substrates by DC-reactive magnetron sputtering. This paper focuses on voltage driven magnetization switching in Cu2O/PAA (CP) composite films prepared by DC-reactive magnetron sputtering. By applying a dc electric field, the magnetization of the CP composite films can be controlled in a reversible and reproducible way and shows an analogous on-off behavior. The magnitude of the change in the magnetization was about 75 emu/cm3 as the electric field was switched on and off. Resistive switching behavior was also observed in as-prepared CP composite films. Further analysis indicated that the formation/rupture of conducting filaments composed of oxygen vacancies is likely responsible for the changes in the magnetization as well as in the resistivity. Such reversible change of magnetization controlled by an electric field at room temperature may have applications in spintronics and power efficient data storage technologies.

  3. Chip Multithreaded Consistency Model

    Institute of Scientific and Technical Information of China (English)

    Zu-Song Li; Dan-Dan Huan; Wei-Wu Hu; Zhi-Min Tang

    2008-01-01

    Multithreaded technique is the developing trend of high performance processor. Memory consistency model is essential to the correctness, performance and complexity of multithreaded processor. The chip multithreaded consistency model adapting to multithreaded processor is proposed in this paper. The restriction imposed on memory event ordering by chip multithreaded consistency is presented and formalized. With the idea of critical cycle built by Wei-Wu Hu, we prove that the proposed chip multithreaded consistency model satisfies the criterion of correct execution of sequential consistency model. Chip multithreaded consistency model provides a way of achieving high performance compared with sequential consistency model and ensures the compatibility of software that the execution result in multithreaded processor is the same as the execution result in uniprocessor. The implementation strategy of chip multithreaded consistency model in Godson-2 SMT processor is also proposed. Godson-2 SMT processor supports chip multithreaded consistency model correctly by exception scheme based on the sequential memory access queue of each thread.

  4. MAGNETS

    Science.gov (United States)

    Hofacker, H.B.

    1958-09-23

    This patent relates to nmgnets used in a calutron and more particularly to means fur clamping an assembly of magnet coils and coil spacers into tightly assembled relation in a fluid-tight vessel. The magnet comprises windings made up of an assembly of alternate pan-cake type coils and spacers disposed in a fluid-tight vessel. At one end of the tank a plurality of clamping strips are held firmly against the assembly by adjustable bolts extending through the adjacent wall. The foregoing arrangement permits taking up any looseness which may develop in the assembly of coils and spacers.

  5. A hybrid approach for quantizing complicated motion of a charged particle in time-varying magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Menouar, Salah [Laboratory of Optoelectronics and Compounds (LOC), Department of Physics, Faculty of Science, University of Ferhat Abbas Setif 1, Setif 19000 (Algeria); Choi, Jeong Ryeol, E-mail: choiardor@hanmail.net [Department of Radiologic Technology, Daegu Health College, Yeongsong 15, Buk-gu, Daegu 702-722 (Korea, Republic of)

    2015-02-15

    Quantum characteristics of a charged particle subjected to a singular oscillator potential under an external magnetic field is investigated via SU(1,1) Lie algebraic approach together with the invariant operator and the unitary transformation methods. The system we managed is somewhat complicated since we considered not only the time-variation of the effective mass of the system but also the dependence of the external magnetic field on time in an arbitrary fashion. In this case, the system is a kind of time-dependent Hamiltonian systems which require more delicate treatment when we study it. The complete wave functions are obtained without relying on the methods of perturbation and/or approximation, and the global phases of the system are identified. To promote the understanding of our development, we applied it to a particular case, assuming that the effective mass slowly varies with time under a time-dependent magnetic field.

  6. Magnetic Fields of Be Stars: Preliminary Results from a Hybrid Analysis of the MiMeS Sample

    Science.gov (United States)

    Wade, G. A.; Petit, V.; Grunhut, J. H.; Neiner, C.; MiMeS Collaboration

    2016-11-01

    In the context of the MiMeS survey of magnetism in massive stars, 85 classical Be stars were observed in circular polarization with the aim of detecting magnetic fields at their surfaces. No direct evidence of such fields is found, in contrast to the significant rate of detection (5-10%) in non-Be B-type stars. In this paper we describe the sample properties, the methodology and the data quality. We describe a novel method, previously applied to Herbig Ae/Be stars, that allows us to infer upper limits on organized (dipolar) magnetic fields present in the photospheres of our targets. We review the characteristics and robustness of this null result, and discuss its implications.

  7. 基于磁路分析的轴向混合磁轴承径向承载力解析计算%Calculation of Radial Electromagnetic Force of Axial Hybrid Magnetic Bearing Based on Magnetic Circuit Analysis

    Institute of Scientific and Technical Information of China (English)

    张云鹏; 刘淑琴; 李红伟; 范友鹏

    2012-01-01

    研究轴向混合磁轴承实现五自由度悬浮时,需要计算径向承载力与磁轴承结构参数以及永磁体参数之间的关系。为了解决轴向混合磁轴承缺乏径向承载力解析数学模型的问题,该文在分析轴向混合磁轴承磁路以及各部分磁导的基础上,结合稀土永磁体的工作特性,用虚位移法得出了轴向混合磁轴承的径向承载力解析数学模型。模型表明,在小径向位移时,该型的混合磁轴承径向承载力随着径向位移增加而增加,近似线性关系,径向承载力和刚度随轴向气隙增大而减小;磁轴承径向承载力随永磁体的有效长度增加呈现先增大后趋近饱和。利用有限元方法对径向承载力进行仿真计算,仿真结果与模型计算结果基本吻合。%In studying axial hybrid magnetic bearing (HMB) for suspension in five degree of freedom (DOF), the relationship between radial electromagnetic force and magnetic bearing structural parameters and permanent magnet parameters should be calculated. In order to overcome the lack of analytical calculation model for radial electromagnet force of axial HMB, based on magnetic circuit analysis and calculation of magnetic conductance for each parts, the analytical calculation model for radial electromagnet force of axial HMB is proposed in this paper. The analytical formulation of radial electromagnetic force is derived by using virtual displacement method and demagnetization characteristics of the rare earth permanent magnet. It is found that the radial electromagnetic force increases with the radial displacement increasing approximately in linear relationship, and the radial force and stiffness decreases with the axial gap increasing. The radial electromagnetic force increased and then saturated with increasing permanent magnet effective length. The model of axial HMB is simulated by finite-element method software and the simulation results are basically in

  8. The Nonlinear Coupling of Electromagnetic Ion Cyclotron and Lower Hybrid Waves in the Ring Current Region: The Magnetic Storm May 1-7 1998

    Science.gov (United States)

    Khazanov, G. V.; Krivorutsky, E.; Gamayunov, K.; Avanov, L.

    2003-01-01

    The excitation of lower hybrid waves (LHWs) is a widely discussed mechanism of interaction between plasma species in space, and is one of the unresolved questions of magnetospheric multi-ion plasmas. In this paper we present the morphology, dynamics, and level of LHW activity generated by electromagnetic ion cyclotron (EMIC) waves during the May 2-7, 1998 storm period on the global scale. The LHWs were calculated based on our newly developed self-consistent model that couples the system of two kinetic equations: one equation describes the ring current (RC) ion dynamic, and another equation describes the evolution of EMIC waves. It is found that the LHWs are excited by helium ions due to their mass dependent drift in the electric field of EMIC waves. The level of LHW activity is calculated assuming that the induced scattering process is the main saturation mechanism for these waves. The calculated LHWs electric fields are consistent with the observational data.

  9. Electromagnetic Comparison of 3-, 5- and 7-phases Permanent-Magnet Synchronous Machines : Mild Hybrid Traction Application

    Directory of Open Access Journals (Sweden)

    D. Ouamara

    2016-09-01

    Full Text Available Authors compare the electromagnetic performances of three multi-phases permanent-magnet (PM synchronous machines (PMSM for Mild Hybridtraction application. This comparison was made using two-dimensional (2-D numerical simulations in transient magnetic with eddy-current reaction field in the PMs. The best machine was determined using an energetic analysis (i.e., losses, torque and efficiency according specifications. In this study, the non-overlapping winding with double layer (i.e. all teeth wound type was used. The winding synthesis is based on the "Star of slots" method as well as the Fourier series decomposition of the magnetomotive force (MMF.

  10. MAGNET

    CERN Multimedia

    B. Curé

    2011-01-01

    The magnet ran smoothly in the last few months until a fast dump occurred on 9th May 2011. Fortunately, this occurred in the afternoon of the first day of the technical stop. The fast dump was due to a valve position controller that caused the sudden closure of a valve. This valve is used to regulate the helium flow on one of the two current leads, which electrically connects the coil at 4.5 K to the busbars at room temperature. With no helium flow on the lead, the voltage drop and the temperatures across the leads increase up to the defined thresholds, triggering a fast dump through the Magnet Safety System (MSS). The automatic reaction triggered by the MSS worked properly. The helium release was limited as the pressure rise was just at the limit of the safety valve opening pressure. The average temperature of the magnet reached 72 K. It took four days to recover the temperature and refill the helium volumes. The faulty valve controller was replaced by a spare one before the magnet ramp-up resumed....

  11. Magnetic/NIR-responsive drug carrier, multicolor cell imaging, and enhanced photothermal therapy of gold capped magnetite-fluorescent carbon hybrid nanoparticles

    Science.gov (United States)

    Wang, Hui; Cao, Guixin; Gai, Zheng; Hong, Kunlun; Banerjee, Probal; Zhou, Shuiqin

    2015-04-01

    This paper reports a type of multifunctional hybrid nanoparticle (NP) composed of gold nanocrystals coated on and/or embedded in a magnetite-fluorescent porous carbon core-shell NP template (Fe3O4@PC-CDs-Au) for biomedical applications, including magnetic/NIR-responsive drug release, multicolor cell imaging, and enhanced photothermal therapy. The synthesis of the Fe3O4@PC-CDs-Au NPs firstly involves the preparation of core-shell template NPs with magnetite nanocrystals clustered in the cores and fluorescent carbon dots (CDs) embedded in a porous carbon shell, followed by an in situ reduction of silver ions (Ag+) loaded in the porous carbon shell and a subsequent replacement of Ag NPs with Au NPs through a galvanic replacement reaction using HAuCl4 as a precursor. The Fe3O4@PC-CDs-Au NPs can enter the intracellular region and light up mouse melanoma B16F10 cells in multicolor mode. The porous carbon shell, anchored with hydrophilic hydroxyl/carboxyl groups, endows the Fe3O4@PC-CDs-Au NPs with excellent stability in the aqueous phase and a high loading capacity (719 mg g-1) for the anti-cancer drug doxorubicin (DOX). The superparamagnetic Fe3O4@PC-CDs-Au NPs with a saturation magnetization of 23.26 emu g-1 produce localized heat under an alternating magnetic field, which triggers the release of the loaded drug. The combined photothermal effects of the Au nanocrystals and the CDs on/in the carbon shell can not only regulate the release rate of the loaded drug, but also efficiently kill tumor cells under NIR irradiation. Benefitting from their excellent optical properties, their magnetic field and NIR light-responsive drug release capabilities and their enhanced photothermal effect, such nanostructured Fe3O4@PC-CDs-Au hybrid NPs are very promising for simultaneous imaging diagnostics and high efficacy therapy.This paper reports a type of multifunctional hybrid nanoparticle (NP) composed of gold nanocrystals coated on and/or embedded in a magnetite-fluorescent porous

  12. Trend of tunnel magnetoresistance and variation in threshold voltage for keeping data load robustness of metal–oxide–semiconductor/magnetic tunnel junction hybrid latches

    Energy Technology Data Exchange (ETDEWEB)

    Ohsawa, T. [Center for Spintronics Integrated Systems, Tohoku University, Sendai 980-8579 (Japan); Ikeda, S.; Hanyu, T.; Ohno, H. [Center for Spintronics Integrated Systems, Tohoku University, Sendai 980-8579 (Japan); Research Institute of Electrical Communication, Tohoku University, Sendai 980-8577 (Japan); Center for Innovative Integrated Electronic Systems, Tohoku University, Sendai 980-8579 (Japan); Endoh, T., E-mail: tetsuo.endoh@cies.tohoku.ac.jp [Center for Spintronics Integrated Systems, Tohoku University, Sendai 980-8579 (Japan); Center for Innovative Integrated Electronic Systems, Tohoku University, Sendai 980-8579 (Japan); Graduate School of Engineering, Tohoku University, Sendai 980-8579 (Japan)

    2014-05-07

    The robustness of data load of metal–oxide–semiconductor/magnetic tunnel junction (MOS/MTJ) hybrid latches at power-on is examined by using Monte Carlo simulation with the variations in magnetoresistances for MTJs and in threshold voltages for MOSFETs involved in 90 nm technology node. Three differential pair type spin-transfer-torque-magnetic random access memory cells (4T2MTJ, 6T2MTJ, and 8T2MTJ) are compared for their successful data load at power-on. It is found that the 4T2MTJ cell has the largest pass area in the shmoo plot in TMR ratio (tunnel magnetoresistance ratio) and V{sub dd} in which a whole 256 kb cell array can be powered-on successfully. The minimum TMR ratio for the 4T2MTJ in 0.9 V < V{sub dd} < 1.9 V is 140%, while the 6T2MTJ and the 8T2MTJ cells require TMR ratio larger than 170%.

  13. Cryogenic system for the 43 T Hybrid Magnet at LNCMI Grenoble: from the needs to the commissioning

    Science.gov (United States)

    Ronayette, L.; Crispel, S.; Berriaud, C.; Berthier, R.; Caplanne, G.; Gorski, M.; Graffin, P.; Hanoux, P.; Hergat, T.; Hervieu, B.; Juster, FP; Pfister, R.; Pissard, M.; Pugnat, P.; Vincent, B.

    2017-02-01

    LNCMI is one of the unique worldwide laboratories offering the scientific community access to various experimental conditions with continuous magnetic fields well above 20 T. LNCMI is currently developing a large field flexible experimental platform. One configuration will produce a continuous magnetic field of 43 T in a 34 mm warm bore aperture from the combination of homemade resistive electromagnet inserts and a large bore outer superconducting magnet (1.1 m internal cold dia.), the latter being built in close collaboration with CEA-IRFU Saclay. The superconducting magnet with its mechanical structure and its helium vessel will represent a mass of 22 tons to cool down to 1.8 K and maintain at this temperature 10 months per year. An overview of the project will be given focusing on the cryogenics and particularly on the helium liquefier designed and manufactured by Air Liquide Advanced Technologies. This system - the most powerful even produced in the Helial ML range - and its ancillaries has been integrated and commissioned as a turnkey system in the existing site of LNCMI.

  14. Mesoscopic spin-flip transport through a hybrid system with a single molecular dot system applied with ac magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Chen Qiao, E-mail: cqhy1127@yahoo.com.c [Department of Maths and Physics, Hunan Institute of Engineering, Xiangtan 411104 (China); Liu Jin [Institute of Theoretical Physics, Chinese Academy of Science, Beijing 100190 (China); Wang Zhiyong [School of Optoelectronic Information, Chongqing University of Technology, Chongqing 400054 (China)

    2011-01-17

    We have investigated the current for the system of vibrating quantum dot irradiated with a rotating magnetic field and an oscillating magnetic field by nonequilibrium Green's function. The rotating magnetic field rotates with the angular frequency {omega}{sub r} around the z-axis with the tilt angle {theta}, and the time-oscillating magnetic field is located in the z-axis with the angular frequency {omega}. Different behaviors have been shown in the presence of electron-phonon interaction (EPI) which plays a significant role in the transport. The current displays asymmetric behavior as the source-drain bias eV=0, novel side peaks or shoulders can be found due to the phonon absorption and emission procedure, and the negative differential resistance becomes stronger as the parameter g increases. Furthermore, the strong EPI also destroys the quasiperiodic oscillations of current in the region {mu}{sub 0}B{sub 1}>2.5{Delta}. The electron transport properties are also significantly influenced by the linewidth function {Gamma}.

  15. Field errors in hybrid insertion devices

    Energy Technology Data Exchange (ETDEWEB)

    Schlueter, R.D. [Lawrence Berkeley Lab., CA (United States)

    1995-02-01

    Hybrid magnet theory as applied to the error analyses used in the design of Advanced Light Source (ALS) insertion devices is reviewed. Sources of field errors in hybrid insertion devices are discussed.

  16. MAGNET

    CERN Multimedia

    B. Curé

    2013-01-01

    The magnet is fully stopped and at room temperature. The maintenance works and consolidation activities on the magnet sub-systems are progressing. To consolidate the cryogenic installation, two redundant helium compressors will be installed as ‘hot spares’, to avoid the risk of a magnet downtime in case of a major failure of a compressor unit during operation. The screw compressors, their motors, the mechanical couplings and the concrete blocks are already available and stored at P5. The metallic structure used to access the existing compressors in SH5 will be modified to allow the installation of the two redundant ones. The plan is to finish the installation and commissioning of the hot spare compressors before the summer 2014. In the meantime, a bypass on the high-pressure helium piping will be installed for the connection of a helium drier unit later during the Long Shutdown 1, keeping this installation out of the schedule critical path. A proposal is now being prepared for the con...

  17. MAGNET

    CERN Multimedia

    B. Curé

    MAGNET During the winter shutdown, the magnet subsystems went through a full maintenance. The magnet was successfully warmed up to room temperature beginning of December 2008. The vacuum was broken later on by injecting nitrogen at a pressure just above one atmosphere inside the vacuum tank. This was necessary both to prevent any accidental humidity ingress, and to allow for a modification of the vacuum gauges on the vacuum tank and maintenance of the diffusion pumps. The vacuum gauges had to be changed, because of erratic variations on the measurements, causing spurious alarms. The new type of vacuum gauges has been used in similar conditions on the other LHC experiments and without problems. They are shielded against the stray field. The lubricants of the primary and diffusion pumps have been changed. Several minor modifications were also carried out on the equipment in the service cavern, with the aim to ease the maintenance and to allow possible intervention during operation. Spare sensors have been bough...

  18. MAGNET

    CERN Multimedia

    Benoit Curé

    2010-01-01

    The magnet worked very well at 3.8 T as expected, despite a technical issue that manifested twice in the cryogenics since June. All the other magnet sub-systems worked without flaw. The issue in the cryogenics was with the cold box: it could be observed that the cold box was getting progressively blocked, due to some residual humidity and air accumulating in the first thermal exchanger and in the adsorber at 65 K. This was later confirmed by the analysis during the regeneration phases. An increase in the temperature difference between the helium inlet and outlet across the heat exchanger and a pressure drop increase on the filter of the adsorber were observed. The consequence was a reduction of the helium flow, first compensated by the automatic opening of the regulation valves. But once they were fully opened, the flow and refrigeration power reduced as a consequence. In such a situation, the liquid helium level in the helium Dewar decreased, eventually causing a ramp down of the magnet current and a field...

  19. MAGNET

    CERN Multimedia

    Benoit Curé.

    The magnet operation restarted end of June this year. Quick routine checks of the magnet sub-systems were performed at low current before starting the ramps up to higher field. It appeared clearly that the end of the field ramp down to zero was too long to be compatible with the detector commissioning and operations plans. It was decided to perform an upgrade to keep the ramp down from 3.8T to zero within 4 hours. On July 10th, when a field of 1.5T was reached, small movements were observed in the forward region support table and it was decided to fix this problem before going to higher field. At the end of July the ramps could be resumed. On July 28th, the field was at 3.8T and the summer CRAFT exercise could start. This run in August went smoothly until a general CERN wide power cut took place on August 3rd, due to an insulation fault on the high voltage network outside point 5. It affected the magnet powering electrical circuit, as it caused the opening of the main circuit breakers, resulting in a fast du...

  20. Study of the Advantages of Internal Permanent Magnet Drive Motor with Selectable Windings for Hybrid-Electric Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Otaduy, P.J.; Hsu, J.S.; Adams, D.J.

    2007-11-30

    This report describes research performed on the viability of changing the effectively active number of turns in the stator windings of an internal permanent magnet (IPM) electric motor to strengthen or weaken the magnetic fields in order to optimize the motor's performance at specific operating speeds and loads. Analytical and simulation studies have been complemented with research on switching mechanisms to accomplish the task. The simulation studies conducted examine the power and energy demands on a vehicle following a series of standard driving cycles and the impact on the efficiency and battery size of an electrically propelled vehicle when it uses an IPM motor with turn-switching capabilities. Both full driving cycle electric propulsion and propulsion limited starting from zero to a set speed have been investigated.

  1. Analysis of Magnetic Properties on the Outer Rotor Type Hybrid Stepping Motors Using 3D Finite Element Method

    Science.gov (United States)

    Enomoto, Yuji; Miyata, Kenji; Oonishi, Kazuo; Motegi, Yasuaki

    The three-dimensional magnetic field analysis has clarified the effect of several structural and manufacturing factors on the properties of the outer rotor type stepping motors. (1) The number of rotor teeth, 128, can make a unit step angle under 0.5 degree and a cogging torque under 1mNm for the outer rotor type stepping motor with the outer diameter under 60mm and with the output torque above 0.4Nm. (2) The permanent magnet flux has an optimal value dependent on the thickness of the laminated core to maximize the motor torque. (3) The lamination stacking error of the small teeth of the rotor and stator has a large effect on the cogging torque of the stepping motor.

  2. Consistent model driven architecture

    Science.gov (United States)

    Niepostyn, Stanisław J.

    2015-09-01

    The goal of the MDA is to produce software systems from abstract models in a way where human interaction is restricted to a minimum. These abstract models are based on the UML language. However, the semantics of UML models is defined in a natural language. Subsequently the verification of consistency of these diagrams is needed in order to identify errors in requirements at the early stage of the development process. The verification of consistency is difficult due to a semi-formal nature of UML diagrams. We propose automatic verification of consistency of the series of UML diagrams originating from abstract models implemented with our consistency rules. This Consistent Model Driven Architecture approach enables us to generate automatically complete workflow applications from consistent and complete models developed from abstract models (e.g. Business Context Diagram). Therefore, our method can be used to check practicability (feasibility) of software architecture models.

  3. Graphene supported silver@silver chloride & ferroferric oxide hybrid, a magnetically separable photocatalyst with high performance under visible light irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Suting; Jiang, Wei, E-mail: superfine_jw@126.com; Han, Mei; Liu, Gongzong; Zhang, Na; Lu, Yue

    2015-08-30

    Graphical abstract: - Highlights: • The composites were synthesized via a facile and effective process. • Plenty of Fe{sub 3}O{sub 4} and Ag@AgCl nanoparticles are deposited on the reduced graphene oxide nanosheets. • The catalyst exhibited an enhanced photocatalytic performance and magnetic property. • The catalyst is stable under the visible light irradiation. - Abstract: A stable magnetic separable plasmonic photocatalyst was successfully fabricated by grafting silver@silver chloride (Ag@AgCl) and ferroferric oxide (Fe{sub 3}O{sub 4}) nanoparticles on graphene sheets. The composite exhibited high activity degrading methylene blue (MB) and rhodamine B (RB) under visible light irradiation: decomposition 97.4% of MB in 100 min and 97.9% of RB in 120 min. The enhanced photocatalytic activities can be attributed to synergistic effect between Ag@AgCl and graphene: the effective charge transfer from Ag@AgCl to graphene thus promotes the separation of electron–hole pairs. Moreover, the excellent magnetic property gives a more convenient way to recycle the photocatalysts.

  4. Preparation and application of a magnetic organic-inorganic hybrid nanocatalyst for the synthesis of α-aminonitriles

    Indian Academy of Sciences (India)

    ALI MALEKI; RAZIEH FIROUZI HAJI; MINA GHASSEMI; HOSSEIN GHAFURI

    2017-04-01

    This article is the first report of the catalytic application of copper ferrite-coated chitosan in organic reactions as a bio-nanocomposite. CuFe2O4/chitosan was used as a hybrid nanocatalyst for the multicomponent Strecker synthesis of α-aminonitriles by using aryl aldehydes, trimethylsilyl cyanide (TMSCN) and aromatic amines at room temperature in ethanol as a green solvent. The catalyst was characterized by Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), field-emission scanning electron microscopy (FE-SEM) and energy-dispersive X-ray spectroscopy (EDX) analyses. The nanocatalyst was recovered and reused several times without significant loss of catalytic activity. The organic products were obtained easily without need for column chromatography in good-to-excellent yields.

  5. No consistent bimetric gravity?

    CERN Document Server

    Deser, S; Waldron, A

    2013-01-01

    We discuss the prospects for a consistent, nonlinear, partially massless (PM), gauge symmetry of bimetric gravity (BMG). Just as for single metric massive gravity, ultimate consistency of both BMG and the putative PM BMG theory relies crucially on this gauge symmetry. We argue, however, that it does not exist.

  6. Toroidal Dipolar Excitation in Metamaterials Consisting of Metal nanodisks and a Dielectrc Spacer on Metal Substrate.

    Science.gov (United States)

    Tang, Chaojun; Yan, Bo; Wang, Qiugu; Chen, Jing; Yan, Zhendong; Liu, Fanxin; Chen, Naibo; Sui, Chenghua

    2017-04-03

    We have investigated numerically toroidal dipolar excitation at optical frequency in metamaterials whose unit cell consists of three identical Ag nanodisks and a SiO2 spacer on Ag substrate. The near-field plasmon hybridization between individual Ag nanodisks and substrate forms three magnetic dipolar resonances, at normal incidence of plane electromagnetic waves. The strong coupling among three magnetic dipolar resonances leads to the toroidal dipolar excitation, when space-inversion symmetry is broke along the polarization direction of incident light. The influences of some geometrical parameters on the resonance frequency and the excitation strength of toroidal dipolar mode are studied in detail. The radiated power from toroidal dipole is also compared with that from conventional electric and magnetic multipoles.

  7. 40 T混合磁体低温分配阀箱真空系统设计%Design of vacuum system for cryogenic valve box of 40 T hybrid magnet

    Institute of Scientific and Technical Information of China (English)

    刘烨芒; 欧阳峥嵘; 李洪强; 曲继坤

    2013-01-01

    根据40 T稳态混合磁体低温分配阀箱对真空的要求,对低温分配阀箱真空系统进行了设计,设计结果如下:选择阀箱真空室的壳体形状,通过计算确定出真空室壳体壁厚为12 mm;选择封头形状,对封头强度进行校核,确定封头壁厚为16 mm;对整个真空系统抽真空泵机组进行选型,选出粗抽泵机组由一套ZJ-150罗茨泵和2XZ-30旋片式真空泵组成,主抽泵由一套F-100/ll0分子泵和2X-4旋片式机械泵组成,可达到阀箱对真空度的要求.%Based on the vacuum requirement of the cryogenic valve box,the vacuum system for cryogenic valve box of 40 T hybrid magnet was designed.The design results were as follows:selecting the shell shape of the vacuum chamber of the valve box,the wall thickness of the vacuum chamber was 12 mm;selecting the shape of shell cover,the wall thickness of the shell cover was 16 mm; the entire vacuum system vacuum pump units were selected,roots pumping sets consisting of one ZJ-150 and 2XZ-30 pumps,turbo-molecular pumping sets consisting of one F-100/110 and 2X-4 pumps.The vacuum system can meet the vacuum requirement of the cryogenic valve box.

  8. The inverse problem in magnetic force microscopy--inferring sample magnetization from MFM images.

    Science.gov (United States)

    Rawlings, Colin; Durkan, Colm

    2013-08-02

    Nanomagnetic structures have the potential to surpass silicon's scaling limitations both as elements in hybrid CMOS logic and as novel computational elements. Magnetic force microscopy (MFM) offers a convenient characterization technique for use in the design of such nanomagnetic structures. MFM measures the magnetic field and not the sample's magnetization. As such the question of the uniqueness of the relationship between an external magnetic field and a magnetization distribution is a relevant one. To study this problem we present a simple algorithm which searches for magnetization distributions consistent with an external magnetic field and solutions to the micromagnetic equations' qualitative features. The algorithm is not computationally intensive and is found to be effective for our test cases. On the basis of our results we propose a systematic approach for interpreting MFM measurements.

  9. MAGNET

    CERN Multimedia

    Benoit Curé

    The magnet subsystems resumed operation early this spring. The vacuum pumping was restarted mid March, and the cryogenic power plant was restarted on March 30th. Three and a half weeks later, the magnet was at 4.5 K. The vacuum pumping system is performing well. One of the newly installed vacuum gauges had to be replaced at the end of the cool-down phase, as the values indicated were not coherent with the other pressure measurements. The correction had to be implemented quickly to be sure no helium leak could be at the origin of this anomaly. The pressure measurements have been stable and coherent since the change. The cryogenics worked well, and the cool-down went quite smoothly, without any particular difficulty. The automated start of the turbines had to be fine-tuned to get a smooth transition, as it was observed that the cooling power delivered by the turbines was slightly higher than needed, causing the cold box to stop automatically. This had no consequence as the cold box safety system acts to keep ...

  10. MAGNET

    CERN Multimedia

    B. Curé

    During the winter shutdown, the magnet subsystems went through a full maintenance. The magnet was successfully warmed up to room temperature beginning of December 2008. The vacuum was broken later on by injecting nitrogen at a pressure just above one atmosphere inside the vacuum tank. This was necessary both to prevent any accidental humidity ingress, and to allow for a modification of the vacuum gauges on the vacuum tank and maintenance of the diffusion pumps. The vacuum gauges had to be changed, because of erratic variations on the measurements, causing spurious alarms. The new type of vacuum gauges has been used in similar conditions on the other LHC experiments and without problems. They are shielded against the stray field. The lubricants of the primary and diffusion pumps have been changed. Several minor modifications were also carried out on the equipment in the service cavern, with the aim to ease the maintenance and to allow possible intervention during operation. Spare sensors have been bought. Th...

  11. Hybrid Simulation of Supersonic Flow of Weakly Ionized Plasma along Open Field Magnetic Line Effect of Background Pressure

    Science.gov (United States)

    Laosunthara, Ampan; Akatsuka, Hiroshi

    2016-09-01

    In previous study, we experimentally examined physical properties of supersonic flow of weakly ionized expanding arc-jet plasma through an open magnetic field line (Bmax 0.16T). We found supersonic velocity of helium plasma up to Mach 3 and the space potential drop at the end of the magnets. To understand the plasma in numerical point of view, the flows of ion and neutral are treated by particle-based Direct Simulation Monte Carlo (DSMC) method, electron is treated as a fluid. The previous numerical study, we assumed 2 conditions. Ion and electron temperatures were the same (LTE condition). Ion and electron velocities were the same (current-free condition). We found that ion velocity decreased by collision with residual gas molecules (background pressure). We also found that space potential changing with background pressure. In other words, it was indicated that electric field exists and the current-free assumption is not proper. In this study, we add electron continuity and electron momentum equations to obtain electron velocity and space potential. We find that space potential changing with background pressure slightly. It is indicated that electron is essential to space potential formation than ion.

  12. Prizes for consistency

    Energy Technology Data Exchange (ETDEWEB)

    Hiscock, S.

    1986-07-01

    The importance of consistency in coal quality has become of increasing significance recently, with the current trend towards using coal from a range of sources. A significant development has been the swing in responsibilities for coal quality. The increasing demand for consistency in quality has led to a re-examination of where in the trade and transport chain the quality should be assessed and where further upgrading of inspection and preparation facilities are required. Changes are in progress throughout the whole coal transport chain which will improve consistency of delivered coal quality. These include installation of beneficiation plant at coal mines, export terminals, and on the premises of end users. It is suggested that one of the keys to success for the coal industry will be the ability to provide coal of a consistent quality.

  13. Consistent sets contradict

    CERN Document Server

    Kent, A

    1996-01-01

    In the consistent histories formulation of quantum theory, the probabilistic predictions and retrodictions made from observed data depend on the choice of a consistent set. We show that this freedom allows the formalism to retrodict several contradictory propositions which correspond to orthogonal commuting projections and which all have probability one. We also show that the formalism makes contradictory probability one predictions when applied to generalised time-symmetric quantum mechanics.

  14. Experimental characterization of the lower hybrid wave field on the first pass using a magnetic probe array

    Science.gov (United States)

    Shinya, T.; Baek, S. G.; Wallace, G. M.; Parker, R. R.; Shiraiwa, S.; Takase, Y.

    2016-10-01

    Experimental characterization of the lower hybrid (LH) wave propagation from the launcher to the core plasma is important to validate an antenna spectrum model and to identify parasitic wave-edge plasma interactions occurring in front of the launcher. On Alcator C-Mod, the wave frequency spectrum and dominant parallel wavenumber are characterized with two probe arrays installed near the edge plasma. The first one is mounted on a radially movable structure that is about 108 deg toroidally away from the launcher. A phasing scan experiment at moderate density suggests a resonance-cone propagation of the launched slow LH wave with a finite spectral width. As plasma density is raised, the measured power decreases, correlated with the observed loss of efficiency. Recently, the second probe array with an increased number of probes has been installed on a limiter that is 54 deg. toroidally away from the launcher, which is expected to be dominantly sensitive to the wave-field directly leaving the launcher. An initial measurement shows that the probe array detects a coherent wave field. A full-wave model to evaluate the wave electric-field pattern in front of the probe array is under development. If available, further experimental and modeling results will be presented. Supported by USDoE Award(s) DE-FC02-99ER54512 and Japan/U.S. Cooperation in Fusion Research and Development.

  15. Magnetic gold nanotriangles by microwave-assisted polyol synthesis

    Science.gov (United States)

    Yu, Siming; Hachtel, Jordan A.; Chisholm, Matthew F.; Pantelides, Sokrates T.; Laromaine, Anna; Roig, Anna

    2015-08-01

    Simple approaches to synthesize hybrid nanoparticles with magnetic and plasmonic functionalities, with high control of their shape and avoiding cytotoxic reactants, to target biomedical applications remain a huge challenge. Here, we report a facile, fast and bio-friendly microwave-assisted polyol route for the synthesis of a complex multi-material consisting of monodisperse gold nanotriangles around 280 nm in size uniformly decorated by superparamagnetic iron oxide nanoparticles of 5 nm. These nanotriangles are readily dispersible in water, display a strong magnetic response (10 wt% magnetic fraction) and exhibit a localized surface plasmon resonance band in the NIR region (800 nm). Moreover, these hybrid particles can be easily self-assembled at the liquid-air interfaces.Simple approaches to synthesize hybrid nanoparticles with magnetic and plasmonic functionalities, with high control of their shape and avoiding cytotoxic reactants, to target biomedical applications remain a huge challenge. Here, we report a facile, fast and bio-friendly microwave-assisted polyol route for the synthesis of a complex multi-material consisting of monodisperse gold nanotriangles around 280 nm in size uniformly decorated by superparamagnetic iron oxide nanoparticles of 5 nm. These nanotriangles are readily dispersible in water, display a strong magnetic response (10 wt% magnetic fraction) and exhibit a localized surface plasmon resonance band in the NIR region (800 nm). Moreover, these hybrid particles can be easily self-assembled at the liquid-air interfaces. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr03113c

  16. C