WorldWideScience

Sample records for hybrid magnet consisting

  1. Magnetic Exchange Couplings from Semilocal Functionals Evaluated Nonself-Consistently on Hybrid Densities: Insights on Relative Importance of Exchange, Correlation, and Delocalization.

    Science.gov (United States)

    Phillips, Jordan J; Peralta, Juan E

    2012-09-11

    Semilocal functionals generally yield poor magnetic exchange couplings for transition-metal complexes, typically overpredicting in magnitude the experimental values. Here we show that semilocal functionals evaluated nonself-consistently on densities from hybrid functionals can yield magnetic exchange couplings that are greatly improved with respect to their self-consistent semilocal values. Furthermore, when semilocal functionals are evaluated nonself-consistently on densities from a "half-and-half" hybrid, their errors with respect to experimental values can actually be lower than those from self-consistent calculations with standard hybrid functionals such as PBEh or TPSSh. This illustrates that despite their notoriously poor performance for exchange couplings, for many systems semilocal functionals are capable of delivering accurate relative energies for magnetic states provided that their electron delocalization error is corrected. However, while self-consistent calculations with hybrids uniformly improve results for all complexes, evaluating nonself-consistently with semilocal functionals does not give a balanced improvement for both ferro- and antiferromagnetically coupled complexes, indicating that there is more at play with the overestimation problem than simply the delocalization error. Additionally, we show that for some systems the conventional wisdom of choice of exchange functional mattering more than correlation does not hold. This combined with results from the nonself-consistent calculations provide insight on clarifying the relative roles of exchange, correlation, and delocalization in calculating magnetic exchange coupling parameters in Kohn-Sham Density Functional Theory.

  2. Hybrid superconducting magnetic suspensions

    International Nuclear Information System (INIS)

    Tixador, P.; Hiebel, P.; Brunet, Y.; Chaud, X.; Gautier-Picard, P.

    1996-01-01

    Superconductors, especially high T c ones, are the most attractive materials to design stable and fully passive magnetic suspensions which have to control five degrees of freedom. The hybrid superconducting magnetic suspensions present high performances and a simple cooling mode. They consist of a permanent magnet bearing, stabilized by a suitable magnet-superconductor structure. Several designs are given and compared in terms of forces and stiffnesses. The design of the magnet bearing plays an important part. The superconducting magnetic bearing participates less in levitation but must provide a high stabilizing stiffness. This is achieved by the magnet configuration, a good material in term of critical current density and field cooling. A hybrid superconducting suspension for a flywheel is presented. This system consists of a magnet thrust bearing stabilized by superconductors interacting with an alternating polarity magnet structure. First tests and results are reported. Superconducting materials are magnetically melt-textured YBaCuO

  3. Hybrid magnets at Tohoku University

    International Nuclear Information System (INIS)

    Muto, Yoshio; Nakagawa, Yasuaki; Noto, Koshichi; Hoshi, Akira; Miura, Shigeto; Watanabe, Kazuo; Kido, Giyuu

    1984-01-01

    The High Field Laboratory for Superconducting Materials was established in April 1981 at Tohoku University in order to provide research facilities for the development of superconducting materials suitable for superconducting magnets for the plasma confinement in fusion reactors. Main facilities of this laboratory are three hybrid magnets up to 30 Tesla dc magnetic fields with inner bores from 32 to 52mm in diameter. The magnets consist of superconducting outer solenoids and water-cooled inner ones with a maximum steady power dissipation of 8 MW. The design and construction of these three hybrid magnets have finished in last three years, and two of them (HM-3;20T, 32 mm bore and HM-2; 23T, 52 mm bore) have already opened to scientists and engineers in the superconductivity and other fields. The rated field of the third hybrid magnet (HM-1) is 31 (or 29) Tesla in a bore of 32 (or 52) mm in diameter. By this hybrid system we have succeeded to produce 29.3 Tesla on April 21, 1984. Detailed descriptions are presented on the superconducting magnets, power supplies and cooling systems for them, water-cooled magnets, dc-high power source and water-cooled system for them, the monitoring and control system for the hybrid magnets including a super-minicomputer system, a hard-wired interlock system for the safety of human beings and machines, and so on. The fourth hybrid magnet system which aims at 35 Tesla as the next phase is also discussed. (author)

  4. A novel structure of permanent-magnet-biased radial hybrid magnetic bearing

    International Nuclear Information System (INIS)

    Sun Jinji; Fang Jiancheng

    2011-01-01

    The paper proposes a novel structure for a permanent-magnet-biased radial hybrid magnetic bearing. Based on the air gap between the rotor and stator of traditional radial hybrid magnetic bearings, a subsidiary air gap is first constructed between the permanent magnets and the inner magnetic parts. Radial magnetic bearing makes X and Y magnetic fields independent of each other with separate stator poles, and the subsidiary air gap makes control flux to a close loop. As a result, magnetic field coupling of the X and Y channels is decreased significantly by the radial hybrid magnetic bearing and makes it easier to design control systems. Then an external rotor structure is designed into the radial hybrid magnetic bearing. The working principle of the radial hybrid magnetic bearing and its mathematical model is discussed. Finally, a non-linear magnetic network method is proposed to analyze the radial hybrid magnetic bearing. Simulation results indicate that magnetic fields in the two channels of the proposed radial hybrid magnetic bearing decouple well from each other.

  5. A novel structure of permanent-magnet-biased radial hybrid magnetic bearing

    Energy Technology Data Exchange (ETDEWEB)

    Sun Jinji, E-mail: sunjinji@aspe.buaa.edu.c [Key Laboratory of Fundamental Science for National Defense, Novel Inertial Instrument and Navigation System Technology, School of Instrument Science and Opto-electronics Engineering, Beijing University of Aeronautics and Astronautics, 100191 (China); Fang Jiancheng [Key Laboratory of Fundamental Science for National Defense, Novel Inertial Instrument and Navigation System Technology, School of Instrument Science and Opto-electronics Engineering, Beijing University of Aeronautics and Astronautics, 100191 (China)

    2011-01-15

    The paper proposes a novel structure for a permanent-magnet-biased radial hybrid magnetic bearing. Based on the air gap between the rotor and stator of traditional radial hybrid magnetic bearings, a subsidiary air gap is first constructed between the permanent magnets and the inner magnetic parts. Radial magnetic bearing makes X and Y magnetic fields independent of each other with separate stator poles, and the subsidiary air gap makes control flux to a close loop. As a result, magnetic field coupling of the X and Y channels is decreased significantly by the radial hybrid magnetic bearing and makes it easier to design control systems. Then an external rotor structure is designed into the radial hybrid magnetic bearing. The working principle of the radial hybrid magnetic bearing and its mathematical model is discussed. Finally, a non-linear magnetic network method is proposed to analyze the radial hybrid magnetic bearing. Simulation results indicate that magnetic fields in the two channels of the proposed radial hybrid magnetic bearing decouple well from each other.

  6. Conceptual Design of the 45 T Hybrid Magnet at the Nijmegen High Field Magnet Laboratory

    CERN Document Server

    Wiegers, SAJ; Bird, M D; Rook, J; Perenboom, J A A J; Wiegers, S A J; Bonito-Oliva, A; den Ouden, A

    2010-01-01

    A 45 T Hybrid Magnet System is being developed at the Nijmegen High Field Magnet Laboratory as part of the Nijmegen Center for Advanced Spectroscopy. The 45 T Hybrid Magnet System will be used in combination with far-infra-red light produced by a Free Electron Laser under construction directly adjacent to the High Field Magnet Laboratory. The superconducting outsert magnet will consist of three CICC coils wound on a single coil form, using Nb$_{3}$Sn strands. A test program for strand and cable qualification is underway. The CICC will carry 13 kA and the coils will produce 12 T on axis field in a 600 mm warm bore. The nominal operating temperature will be 4.5 K maintained with forced-flow supercritical helium. The insert magnet will produce 33 T at 40 kA in a 32 mm bore consuming 20 MW, and will consist of four coils. The insert magnet will be galvanically and mechanically isolated from the outsert magnet. Complete system availability for users is expected in 2014. In this paper we will report on the conceptu...

  7. Thermal analysis of the cryocooled superconducting magnet for the liquid helium-free hybrid magnet

    International Nuclear Information System (INIS)

    Ishizuka, Masayuki; Hamajima, Takataro; Itou, Tomoyuki; Sakuraba, Junji; Nishijima, Gen; Awaji, Satoshi; Watanabe, Kazuo

    2010-01-01

    The liquid helium-free hybrid magnet, which consists of an outer large bore cryocooled superconducting magnet and an inner water-cooled resistive magnet, was developed for magneto-science in high fields. The characteristic features of the cryogen-free outsert superconducting magnet are described in detail in this paper. The superconducting magnet cooled by Gifford-McMahon cryocoolers, which has a 360 mm room temperature bore in diameter, was designed to generate high magnetic fields up to 10 T. The hybrid magnet has generated the magnetic field of 27.5 T by combining 8.5 T generation of the cryogen-free superconducting magnet with 19 T generation of the water-cooled resistive magnet. The superconducting magnet was composed of inner Nb 3 Sn coils and outer NbTi coils. In particular, inner Nb 3 Sn coils were wound using high-strength CuNi-NbTi/Nb 3 Sn wires in consideration of large hoop stress. Although the cryocooled outsert superconducting magnet achieved 9.5 T, we found that the outsert magnet has a thermal problem to generate the designed maximum field of 10 T in the hybrid magnet operation. This problem is associated with unexpected AC losses in Nb 3 Sn wires.

  8. Hybride magnetic nanostructure based on amino acids functionalized polypyrrole

    Energy Technology Data Exchange (ETDEWEB)

    Nan, Alexandrina, E-mail: alexandrina.nan@itim-cj.ro; Bunge, Alexander; Turcu, Rodica [National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293 Cluj-Napoca (Romania)

    2015-12-23

    Conducting polypyrrole is especially promising for many commercial applications because of its unique optical, electric, thermal and mechanical properties. We report the synthesis and characterization of novel pyrrole functionalized monomers and core-shell hybrid nanostructures, consisting of a conjugated polymer layer (amino acids functionalized pyrrole copolymers) and a magnetic nanoparticle core. For functionalization of the pyrrole monomer we used several amino acids: tryptophan, leucine, phenylalanine, serine and tyrosine. These amino acids were linked via different types of hydrophobic linkers to the nitrogen atom of the pyrrole monomer. The magnetic core-shell hybrid nanostructures are characterized by various methods such as FTIR spectroscopy, transmission electron microscopy (TEM) and magnetic measurements.

  9. A hybrid data acquisition system for magnetic measurements of accelerator magnets

    International Nuclear Information System (INIS)

    Wang, X.; Hafalia, R.; Joseph, J.; Lizarazo, J.; Martchevsky, M.; Sabbi, G.L.

    2011-01-01

    A hybrid data acquisition system was developed for magnetic measurement of superconducting accelerator magnets at LBNL. It consists of a National Instruments dynamic signal acquisition (DSA) card and two Metrolab fast digital integrator (FDI) cards. The DSA card records the induced voltage signals from the rotating probe while the FDI cards records the flux increment integrated over a certain angular step. This allows the comparison of the measurements performed with two cards. In this note, the setup and test of the system is summarized. With a probe rotating at a speed of 0.5 Hz, the multipole coefficients of two magnets were measured with the hybrid system. The coefficients from the DSA and FDI cards agree with each other, indicating that the numerical integration of the raw voltage acquired by the DSA card is comparable to the performance of the FDI card in the current measurement setup.

  10. Analysis and design of permanent magnet biased magnetic bearing based on hybrid factor

    Directory of Open Access Journals (Sweden)

    Jinji Sun

    2016-03-01

    Full Text Available In this article, hybrid factor is proposed for hybrid magnetic bearing. The hybrid factor is defined as the ratio of the force produced by the permanent magnet and the forces produced by the permanent magnet and current in hybrid magnetic bearing. It is deduced from a certain radial hybrid magnetic bearing using its important parameters such as the current stiffness and displacement stiffness at first and then the dynamic model of magnetically suspended rotor system is established. The relationship between structural parameters and control system parameters is analyzed based on the hybrid factor. Some influencing factors of hybrid factor in hybrid magnetic bearing, such as the size of the permanent magnet, length of air gap, and area of the stator poles, are analyzed in this article. It can be concluded that larger hybrid factor can be caused by the smaller power loss according to the definition of hybrid factor mentioned above. Meanwhile, the hybrid factor has a maximum value, which is related to control system parameters such as proportional factor expect for structural parameters. Finally, the design steps of parameters of hybrid magnetic bearing can be concluded.

  11. Hybrid Magnetics and Power Applications

    DEFF Research Database (Denmark)

    Mo, Wai Keung; Paasch, Kasper

    2017-01-01

    A hybrid magnetic approach, merging two different magnetic core properites such as ferrite and iron powder cores, is an effective solution for power converter applications. It can offer similar magnetic properties to that of magnetic powder cores but showing less copper loss than powder cores....... In order to prevent ferrite core saturation, placing an effective air gap within the ferrite core is a key method to obtain optimum hybrid magnetic performance. Furthermore, a relatively large inductance at low loading current is an excellent way to minimze power loss in order to achieve high efficiency...

  12. High performance hybrid magnetic structure for biotechnology applications

    Science.gov (United States)

    Humphries, David E [El Cerrito, CA; Pollard, Martin J [El Cerrito, CA; Elkin, Christopher J [San Ramon, CA

    2009-02-03

    The present disclosure provides a high performance hybrid magnetic structure made from a combination of permanent magnets and ferromagnetic pole materials which are assembled in a predetermined array. The hybrid magnetic structure provides means for separation and other biotechnology applications involving holding, manipulation, or separation of magnetic or magnetizable molecular structures and targets. Also disclosed are further improvements to aspects of the hybrid magnetic structure, including additional elements and for adapting the use of the hybrid magnetic structure for use in biotechnology and high throughput processes.

  13. Superconducting and hybrid systems for magnetic field shielding

    International Nuclear Information System (INIS)

    Gozzelino, L; Gerbaldo, R; Ghigo, G; Laviano, F; Truccato, M; Agostino, A

    2016-01-01

    In this paper we investigate and compare the shielding properties of superconducting and hybrid superconducting/ferromagnetic systems, consisting of cylindrical cups with an aspect ratio of height/radius close to unity. First, we reproduced, by finite-element calculations, the induction magnetic field values measured along the symmetry axis in a superconducting (MgB 2 ) and in a hybrid configuration (MgB 2 /Fe) as a function of the applied magnetic field and of the position. The calculations are carried out using the vector potential formalism, taking into account simultaneously the non-linear properties of both the superconducting and the ferromagnetic material. On the basis of the good agreement between the experimental and the computed data we apply the same model to study the influence of the geometric parameters of the ferromagnetic cup as well as of the thickness of the lateral gap between the two cups on the shielding properties of the superconducting cup. The results show that in the considered non-ideal geometry, where the edge effect in the flux penetration cannot be disregarded, the superconducting shield is always the most efficient solution at low magnetic fields. However, a partial recovery of the shielding capability of the hybrid configuration occurs if a mismatch in the open edges of the two cups is considered. In contrast, at high magnetic fields the hybrid configurations are always the most effective. In particular, the highest shielding factor was found for solutions with the ferromagnetic cup protruding over the superconducting one. (paper)

  14. Cryogenic system for the 45 Tesla hybrid magnet

    International Nuclear Information System (INIS)

    Van Sciver, S.W.; Miller, J.R.; Welton, S.; Schneider-Muntau, H.J.; McIntosh, G.E.

    1994-01-01

    The 45 Tesla hybrid magnet system will consist of a 14 Tesla superconducting outsert magnet and a 31 Tesla water cooled insert. The magnet is planned for operation in early 1995 at the National High Magnetic Field Laboratory. Its purpose is to provide the highest DC magnetic fields for the materials research community. The present paper discusses the overall design of the cryogenic system for the superconducting magnet. Unique features of this system include static 1.8 K pressurized He II as a coolant for the magnet and a refrigerated structural support system for load transfer during fault conditions. The system will consist of two connected cryostats. The magnet is contained within one cryostat which has a clear warm bore of 616 mm and is designed to be free of system interfaces and therefore minimize interference with the magnet user. A second supply cryostat provides the connections to the refrigeration system and magnet power supply. The magnet and supply cryostats are connected to each other through a horizontal services duct section. Issues to be discussed in the present paper include design and thermal analysis of the magnet system during cooldown and in steady state operation and overall cryogenic system design

  15. Power supply system for the superconducting outsert of the CHMFL hybrid magnet

    Science.gov (United States)

    Fang, Z.; Zhu, J.; Chen, W.; Jiang, D.; Huang, P.; Chen, Z.; Tan, Y.; Kuang, G.

    2017-12-01

    The construction of a new hybrid magnet, consisting of a 11 T superconducting outsert and a 34 T resistive insert magnet, has been finished at the Chinese High Magnetic Field Laboratory (CHMFL) in Hefei. With a room temperature bore of 800 mm in diameter, the hybrid magnet superconducting outsert is composed of four separate Nb3Sn-based Cable-in-Conduit Conductor (CICC) coils electrically connected in series and powered by a single power supply system. The power supply system for the superconducting outsert consists of a 16 kA DC power supply, a quench protection system, a pair of 16 kA High Temperature Superconducting (HTS) current leads, and two Low Temperature Superconducting bus-lines. The design and manufacturing of the power supply system have been completed at the CHMFL. This paper describes the design features of the power supply system as well as the current fabrication condition of its main components.

  16. Magnetic properties and thermal stability of MnBi/NdFeB hybrid bonded magnets

    International Nuclear Information System (INIS)

    Cao, S.; Yue, M.; Yang, Y. X.; Zhang, D. T.; Liu, W. Q.; Zhang, J. X.; Guo, Z. H.; Li, W.

    2011-01-01

    Magnetic properties and thermal stability were investigated for the MnBi/NdFeB (MnBi = 0, 20, 40, 60, 80, and 100 wt.%) bonded hybrid magnets prepared by spark plasma sintering (SPS) technique. Effect of MnBi content on the magnetic properties of the hybrid magnets was studied. With increasing MnBi content, the coercivity of the MnBi/NdFeB hybrid magnets increases rapidly, while the remanence and maximum energy product drops simultaneously. Thermal stability measurement on MnBi magnet, NdFeB magnet, and the hybrid magnet with 20 wt.% MnBi indicates that both the NdFeB magnet and the MnBi/NdFeB hybrid magnet have a negative temperature coefficient of coercivity, while the MnBi magnet has a positive one. The (BH) max of the MnBi/NdFeB magnet (MnBi = 20 wt.%) is 5.71 MGOe at 423 K, which is much higher than 3.67 MGOe of the NdFeB magnet, indicating a remarkable improvement of thermal stability.

  17. Rotational characteristics in the resonance state of the HTSC-permanent magnet hybrid magnetic bearing

    Energy Technology Data Exchange (ETDEWEB)

    Morii, Y.; Sukedai, M. [Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680 (Japan); Ohashi, S., E-mail: ohashi@kansai-u.ac.jp [Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680 (Japan)

    2011-11-15

    The hybrid magnetic bearing has been developed. In the hybrid system, effect of the pinning force becomes smaller. Influence of the vibration and the gradient angle in the resonance state is large. The resonance frequency becomes small in the hybrid bearing system. The hybrid magnetic bearing using permanent magnets and the high-Tc bulk superconductor (HTSC) has been developed. Repulsive force of the permanent magnet is introduced to increase the load weight of the magnetic bearing. Effect of the hybrid system has been shown. In this paper, influence of the hybrid system on the dynamic characteristics of the rotor is studied. The rotational characteristics in the mechanical resonance state are studied, and the equivalent magnetic spring coefficient is estimated from the experimental results of the load weight. The resonance frequency is measured by the rotation experiments. The rotor achieves stable levitation even in the resonance state. In the hybrid system, effect of the pinning force becomes smaller than that of the lateral force generated by the repulsive force between the two permanent magnets at the smaller air gap. Thus influence of the lateral vibration and the gradient angle in the resonance state becomes larger at a smaller air gap. The equivalent magnetic spring coefficient becomes also small, and the resonance frequency becomes small in the hybrid bearing system.

  18. Magnetic properties of the magnetic hybrid membranes based on various polymer matrices and inorganic fillers

    International Nuclear Information System (INIS)

    Rybak, Aleksandra; Kaszuwara, Waldemar

    2015-01-01

    Magnetic hybrid membranes based on ethylcellulose (EC), poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) and various magnetic praseodymium and neodymium powder microparticles as fillers were obtained. Permeability, diffusion and sorption coefficients of O 2 , N 2 and synthetic air components were estimated for homogeneous and heterogeneous membranes using the Time Lag method based on constant pressure permeation technique. The microstructure studies and the phase analysis of magnetic membranes were also performed using SEM and XRD. The influence of magnetic parameters, like coercivity, remanence and saturation magnetization of created membranes on the gas transport properties was studied. The results showed that their coercivity depended on composition and microstructure of the magnetic powder. On the other hand, remanence and saturation magnetization increased with the increase of the powder addition in the membrane. It was found that the magnetic membrane's gas transport properties were improved with the increase of membrane's remanence, saturation magnetization and magnetic particle filling. The decrease in powder particle size and associated increase of the membrane's coercivity also positively influenced the gas transport and separation properties of investigated membranes. It was observed that the magnetic ethylcellulose and poly(2,6-dimethyl-1,4-phenylene oxide) membranes had higher gas permeability, while their permselectivity and solubility coefficient values were rather maintained or slightly increased. The results also showed that the magnetic powder content enhanced significantly gas diffusivity in EC and PPO membranes. It was also analyzed the dependence of the drift coefficient w on the magnetic parameters of investigated membranes. The correlation between the membrane selectivity, permeability and magnetic properties with their XRD characteristics was stated. - Highlights: • Membrane's production consisting of EC or PPO polymers and

  19. Magnetic properties of the magnetic hybrid membranes based on various polymer matrices and inorganic fillers

    Energy Technology Data Exchange (ETDEWEB)

    Rybak, Aleksandra, E-mail: Aleksandra.Rybak@polsl.pl [Department of Physical Chemistry and Technology of Polymers, Faculty of Chemistry, Silesian University of Technology, Strzody 9, 44-100 Gliwice (Poland); Kaszuwara, Waldemar [Faculty of Materials Science and Engineering, Warsaw University of Technology, Woloska 141, 02-507 Warszawa (Poland)

    2015-11-05

    Magnetic hybrid membranes based on ethylcellulose (EC), poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) and various magnetic praseodymium and neodymium powder microparticles as fillers were obtained. Permeability, diffusion and sorption coefficients of O{sub 2}, N{sub 2} and synthetic air components were estimated for homogeneous and heterogeneous membranes using the Time Lag method based on constant pressure permeation technique. The microstructure studies and the phase analysis of magnetic membranes were also performed using SEM and XRD. The influence of magnetic parameters, like coercivity, remanence and saturation magnetization of created membranes on the gas transport properties was studied. The results showed that their coercivity depended on composition and microstructure of the magnetic powder. On the other hand, remanence and saturation magnetization increased with the increase of the powder addition in the membrane. It was found that the magnetic membrane's gas transport properties were improved with the increase of membrane's remanence, saturation magnetization and magnetic particle filling. The decrease in powder particle size and associated increase of the membrane's coercivity also positively influenced the gas transport and separation properties of investigated membranes. It was observed that the magnetic ethylcellulose and poly(2,6-dimethyl-1,4-phenylene oxide) membranes had higher gas permeability, while their permselectivity and solubility coefficient values were rather maintained or slightly increased. The results also showed that the magnetic powder content enhanced significantly gas diffusivity in EC and PPO membranes. It was also analyzed the dependence of the drift coefficient w on the magnetic parameters of investigated membranes. The correlation between the membrane selectivity, permeability and magnetic properties with their XRD characteristics was stated. - Highlights: • Membrane's production consisting of EC or PPO

  20. Hybrid Magnetic Shielding

    Science.gov (United States)

    Royal, Kevin; Crawford, Christopher; Mullins, Andrew; Porter, Greg; Blanton, Hunter; Johnstone, Connor; Kistler, Ben; Olivera, Daniela

    2017-09-01

    The search for the electric dipole moment of the neutron requires the ambient magnetic field to be on the pT scale which is accomplished with large magnetic shielding rooms. These rooms are fitted with large mu-metal sheets to allow for passive cancellation of background magnetic fields. Active shielding technology cannot uniformly cancel background magnetic fields. These issues can be remedied by combining the methods into a hybrid system. The design used is composed of panels that have an active layer of cancellation between two sheets of mu-metal. The panels form a cube and draw in magnetic fields perpendicular to the surface which can then be reduced using active shielding. This work is supported by the Department of Energy under Contract DE-SC0008107.

  1. Hot-injection synthesis of Ni-ZnO hybrid nanocrystals with tunable magnetic properties and enhanced photocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Deqian; Qiu, Yulong; Chen, Yuanzhi, E-mail: yuanzhi@xmu.edu.cn; Zhang, Qinfu; Liu, Xiang; Peng, Dong-Liang, E-mail: dlpeng@xmu.edu.cn [Xiamen University, Department of Materials Science and Engineering, Fujian Provincial Key Laboratory of Materials Genome, Collaborative Innovation Center of Chemistry for Energy Materials, College of Materials (China)

    2017-04-15

    Magnetic metal-semiconductor hybrid nanocrystals containing ferromagnetic Ni and semiconductor ZnO have been prepared via a hot-injection route. The Ni-ZnO hybrid nanocrystals have a flower-like morphology that consists of Ni inner cores and ZnO petal shells. In spite of their large lattice mismatch, ZnO nanocrystals can still grow on faceted Ni nanocrystals to form stable interfaces. The composition of Ni-ZnO hybrid nanocrystals is readily controlled, and the average size of Ni core is tunable from 25 to 50 nm. Room temperature ferromagnetic properties are observed in these hybrid nanocrystals, and tunable magnetic properties also can be achieved by varying the size of Ni core. The as-prepared Ni-ZnO hybrid nanocrystals exhibit enhanced photocatalytic performance under ultraviolet light illumination as compared to pure ZnO nanocrystals. Furthermore, the superior reusability of hybrid nanocrystals for photocatalytic application is achieved by virtue of their magnetic properties. The facile and efficient seed-mediate strategy is particularly attractive to construct hybrid magnetic-semiconducting heterostructures. The as-obtained Ni-ZnO hybrid nanocrystals offer great potential for various applications due to their combined magnetic and semiconducting properties and low-cost earth-abundant availability.

  2. Improvement of the rotational characteristics in the HTSC-permanent magnet hybrid bearing using ring shaped magnet

    Energy Technology Data Exchange (ETDEWEB)

    Emoto, Kozo; Sugiyama, Ryo; Takagi, Shogo; Ohashi, Shunsuke, E-mail: k145676@kansai-u.ac.jp

    2013-11-15

    Highlights: •We have developed the HTS-permanent magnet hybrid bearing system. •Three dimensional numerical analysis is undertaken to get the effective hybrid configuration. •Repulsive force and pinning force are combined effectively. •The hybrid system shows better levitation characteristics than the non-hybrid one. •In the mechanical resonance state, vibration of the rotor in the hybrid system is small. -- Abstract: We have developed the hybrid magnetic bearing using permanent magnets and the high-T{sub c} bulk superconductor (HTSC). Pinning force of the HTSC is used for the levitation and the guidance. Repulsive force of the permanent magnets is introduced to increase the load weight of the magnetic bearing. In this system, the stator side permanent magnet has the ring type structure so that both pinning force and repulsive force are used effectively. In this paper, influence of the hybrid system on dynamic characteristics of the rotor is studied. The rotor which is supported by the hybrid magnetic bearing is rotated. Then, vibration and the gradient angle of the rotor are measured until the rotor reaches to the end of the resonance state. Three dimensional numerical analysis of the flux which penetrates on the surface of the HTSC is undertaken. The relation between the dynamic characteristics and the flux is considered, and that of the hybrid system is compared with the non-hybrid one. In the hybrid system, the flux is changed by the influences of the stator side permanent magnet. Vibration and the gradient angle of the hybrid system are shown to be smaller than that of the non-hybrid one.

  3. Improvement of the rotational characteristics in the HTSC-permanent magnet hybrid bearing using ring shaped magnet

    International Nuclear Information System (INIS)

    Emoto, Kozo; Sugiyama, Ryo; Takagi, Shogo; Ohashi, Shunsuke

    2013-01-01

    Highlights: •We have developed the HTS-permanent magnet hybrid bearing system. •Three dimensional numerical analysis is undertaken to get the effective hybrid configuration. •Repulsive force and pinning force are combined effectively. •The hybrid system shows better levitation characteristics than the non-hybrid one. •In the mechanical resonance state, vibration of the rotor in the hybrid system is small. -- Abstract: We have developed the hybrid magnetic bearing using permanent magnets and the high-T c bulk superconductor (HTSC). Pinning force of the HTSC is used for the levitation and the guidance. Repulsive force of the permanent magnets is introduced to increase the load weight of the magnetic bearing. In this system, the stator side permanent magnet has the ring type structure so that both pinning force and repulsive force are used effectively. In this paper, influence of the hybrid system on dynamic characteristics of the rotor is studied. The rotor which is supported by the hybrid magnetic bearing is rotated. Then, vibration and the gradient angle of the rotor are measured until the rotor reaches to the end of the resonance state. Three dimensional numerical analysis of the flux which penetrates on the surface of the HTSC is undertaken. The relation between the dynamic characteristics and the flux is considered, and that of the hybrid system is compared with the non-hybrid one. In the hybrid system, the flux is changed by the influences of the stator side permanent magnet. Vibration and the gradient angle of the hybrid system are shown to be smaller than that of the non-hybrid one

  4. Hybrid MEFPI/FBG sensor for simultaneous measurement of strain and magnetic field

    Science.gov (United States)

    Chen, Mao-qing; Zhao, Yong; Lv, Ri-qing; Xia, Feng

    2017-12-01

    A hybrid fiber-optic sensor consisting of a micro extrinsic Fabry-Perot Interferometer (MEFPI) and an etched fiber Bragg grating (FBG) is proposed, which can measure strain and magnetic field simultaneously. The etched FBG is sealed in a capillary with ferrofluids to detect the surrounding magnetic field. FBG with small diameter will be more sensitive to magnetic field is confirmed by simulation results. The MEFPI sensor that is prepared through welding a short section of hollow-core fiber (HCF) with single-mode fiber (SMF) is effective for strain detection. The experiment shows that strain and magnetic field can be successfully simultaneously detected based on hybrid MEFPI/FBG sensor. The sensitivities of the strain and magnetic field intensity are measured to be up to 1.41 pm/με and 5.11 pm/mT respectively. There is a negligible effect on each other, hence simultaneously measuring strain and magnetic field is feasible. It is anticipated that such easy preparation, compact and low-cost fiber-optic sensors for simultaneous measurement of strain and magnetic field could find important applications in practice.

  5. Single axis controlled hybrid magnetic bearing for left ventricular assist device: hybrid core and closed magnetic circuit.

    Science.gov (United States)

    da Silva, Isaias; Horikawa, Oswaldo; Cardoso, Jose R; Camargo, Fernando A; Andrade, Aron J P; Bock, Eduardo G P

    2011-05-01

    In previous studies, we presented main strategies for suspending the rotor of a mixed-flow type (centrifugal and axial) ventricular assist device (VAD), originally presented by the Institute Dante Pazzanese of Cardiology (IDPC), Brazil. Magnetic suspension is achieved by the use of a magnetic bearing architecture in which the active control is executed in only one degree of freedom, in the axial direction of the rotor. Remaining degrees of freedom, excepting the rotation, are restricted only by the attraction force between pairs of permanent magnets. This study is part of a joint project in development by IDPC and Escola Politecnica of São Paulo University, Brazil. This article shows advances in that project, presenting two promising solutions for magnetic bearings. One solution uses hybrid cores as electromagnetic actuators, that is, cores that combine iron and permanent magnets. The other solution uses actuators, also of hybrid type, but with the magnetic circuit closed by an iron core. After preliminary analysis, a pump prototype has been developed for each solution and has been tested. For each prototype, a brushless DC motor has been developed as the rotor driver. Each solution was evaluated by in vitro experiments and guidelines are extracted for future improvements. Tests have shown good results and demonstrated that one solution is not isolated from the other. One complements the other for the development of a single-axis-controlled, hybrid-type magnetic bearing for a mixed-flow type VAD. © 2011, Copyright the Authors. Artificial Organs © 2011, International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  6. Upper Hybrid Resonance of Microwaves with a Large Magnetized Plasma Sheet

    International Nuclear Information System (INIS)

    Huo Wenqing; Guo Shijie; Ding Liang; Xu Yuemin

    2013-01-01

    A large magnetized plasma sheet with size of 60 cm × 60 cm × 2 cm was generated by a linear hollow cathode discharge under the confinement of a uniform magnetic field generated by a Helmholtz Coil. The microwave transmission characteristic of the plasma sheet was measured for different incident frequencies, in cases with the electric field polarization of the incident microwave either perpendicular or parallel to the magnetic field. In this measurement, parameters of the plasma sheet were changed by varying the discharge current and magnetic field intensity. In the experiment, upper hybrid resonance phenomena were observed when the electric field polarization of the incident wave was perpendicular to the magnetic field. These resonance phenomena cannot be found in the case of parallel polarization incidence. This result is consistent with theoretical consideration. According to the resonance condition, the electron density values at the resonance points are calculated under various experimental conditions. This kind of resonance phenomena can be used to develop a specific method to diagnose the electron density of this magnetized plasma sheet apparatus. Moreover, it is pointed out that the operating parameters of the large plasma sheet in practical applications should be selected to keep away from the upper hybrid resonance point to prevent signals from polarization distortion

  7. Exchange-coupled nanoscale SmCo/NdFeB hybrid magnets

    Energy Technology Data Exchange (ETDEWEB)

    Wang Dapeng; Poudyal, Narayan; Rong, Chuanbing [Department of Physics, University of Texas at Arlington, Arlington, TX 76019 (United States); Zhang Ying [Department of Physics, University of Texas at Arlington, Arlington, TX 76019 (United States); Materials Science and Engineering, Ames Laboratory, USDOE, Iowa State University, Ames, IA 50011 (United States); Kramer, M.J. [Materials Science and Engineering, Ames Laboratory, USDOE, Iowa State University, Ames, IA 50011 (United States); Liu, J. Ping, E-mail: pliu@uta.edu [Department of Physics, University of Texas at Arlington, Arlington, TX 76019 (United States)

    2012-09-15

    Nanoscale hybrid magnets containing SmCo{sub 5} and Nd{sub 2}Fe{sub 14}B hard magnetic phases have been produced via a novel 'in-one-pot' processing route. The grain size of the processed bulk composite materials is controlled below 20 nm. The refinement of the nanoscale morphology leads to effective inter-phase exchange coupling that results in single-phase like magnetic properties. Energy product of 14 MGOe was obtained in the isotropic nanocomposite magnets at room temperature. At elevated temperatures, the hybrid magnets have greatly improved thermal stability compared to the Nd{sub 2}Fe{sub 14}B single-phase counterpart and have substantially increased magnetization and energy products compared to the single-phase SmCo{sub 5} counterpart. - Highlights: Black-Right-Pointing-Pointer We realize interphase exchange coupling in nanoscale SmCo{sub 5}/Nd{sub 2}Fe{sub 14}B magnets. Black-Right-Pointing-Pointer We observe homogenously distributed two-phase grains with size smaller than 20 nm. Black-Right-Pointing-Pointer We observe a common Curie temperature in the hybrid magnet. Black-Right-Pointing-Pointer High-temperature magnetic properties of the hybrid magnets greatly improved. Black-Right-Pointing-Pointer Plastic deformation of composite materials leads to self-nanoscaling of grains.

  8. Graphene-ferromagnet interfaces: hybridization, magnetization and charge transfer.

    Science.gov (United States)

    Abtew, Tesfaye; Shih, Bi-Ching; Banerjee, Sarbajit; Zhang, Peihong

    2013-03-07

    Electronic and magnetic properties of graphene-ferromagnet interfaces are investigated using first-principles electronic structure methods in which a single layer graphene is adsorbed on Ni(111) and Co(111) surfaces. Due to the symmetry matching and orbital overlap, the hybridization between graphene pπ and Ni (or Co) d(z(2)) states is very strong. This pd hybridization, which is both spin and k dependent, greatly affects the electronic and magnetic properties of the interface, resulting in a significantly reduced (by about 20% for Ni and 10% for Co) local magnetic moment of the top ferromagnetic layer at the interface and an induced spin polarization on the graphene layer. The calculated induced magnetic moment on the graphene layer agrees well with a recent experiment. In addition, a substantial charge transfer across the graphene-ferromagnet interfaces is observed. We also investigate the effects of thickness of the ferromagnet slab on the calculated electronic and magnetic properties of the interface. The strength of the pd hybridization and the thickness-dependent interfacial properties may be exploited to design structures with desirable magnetic and transport properties for spintronic applications.

  9. Thermal properties of a large-bore cryocooled 10 T superconducting magnet for a hybrid magnet

    International Nuclear Information System (INIS)

    Ishizuka, M.; Hamajima, T.; Itou, T.; Sakuraba, J.; Nishijima, G.; Awaji, S.; Watanabe, K.

    2010-01-01

    A cryocooled 10 T superconducting magnet with a 360 mm room temperature bore has been developed for a hybrid magnet. The superconducting magnet cooled by four Gifford-McMahon cryocoolers has been designed to generate a magnetic field of 10 T. Since superconducting wires composed of coils were subjected to large hoop stress over 150 MPa and Nb 3 Sn superconducting wires particularly showed a low mechanical strength due to those brittle property, Nb 3 Sn wires strengthened by NbTi-filaments were developed for the cryocooled superconducting magnet. We have already reported that the hybrid magnet could generate the resultant magnetic field of 27.5 T by adding 8.5 T from the superconducting magnet and 19 T from a water-cooled Bitter resistive magnet, after the water-cooled resistive magnet was inserted into the 360 mm room temperature bore of the cryocooled superconducting magnet. When the hybrid magnet generated the field of 27.5 T, it achieved the high magnetic-force field (B x ∂Bz/∂z) of 4500 T 2 /m, which was useful for magneto-science in high fields such as materials levitation research. In this paper, we particularly focus on the cause that the cryocooled superconducting magnet was limited to generate the designed magnetic field of 10 T in the hybrid magnet operation. As a result, it was found that there existed mainly two causes as the limitation of the magnetic field generation. One was a decrease of thermal conductive passes due to exfoliation from the coil bobbin of the cooling flange. The other was large AC loss due to both a thick Nb 3 Sn layer and its large diameter formed on Nb-barrier component in Nb 3 Sn wires.

  10. Design features of HTMR-hybrid toroidal magnet tokamak reactor

    International Nuclear Information System (INIS)

    Rosatelli, F.; Avanzini, P.G.; Derchi, D.; Magnasco, M.; Grattarola, M.; Peluffo, M.; Raia, G.; Brunelli, B.; Zampaglione, V.

    1984-01-01

    The HTMR (Hybrid Toroidal Magnet Tokamak Reactor) conceptual design is aimed to demonstrate the feasibility of a Tokamak reactor which could fulfil the scientific and technological objectives expected from next generation devices with size and costs as small as possible. A hybrid toroidal field magnet, made up by copper and superconducting coils, seems to be a promising solution, allowing a considerable flexibility in machine performances, so as to gain useful margins in front of the uncertainties in confinement time scaling laws and beta and plasma density limits. The optimization procedure for the hybrid magnet, configuration, the main design features of HTMR and the preliminary mechanical calculations of the superconducting toroidal coils are described. (author)

  11. Magnetic instability with increasing hybridization in cerium compounds

    International Nuclear Information System (INIS)

    Kioussis, N.; Cooper, B.R.; Wills, J.M.

    1991-01-01

    A synthesis of a phenomenological theory of orbitally driven magnetic ordering of moderately delocalized light rare-earth systems and ab initio electronic structure calculations has been applied to investigate the change in magnetic behavior on going from CeSb to CeTe, both of which have rocksalt structure with a small decrease in lattice parameter. The hybridization-potential matrix elements and the band energies entering the Anderson-lattice Hamiltonian are obtained from linear-muffin-tin-orbital (LMTO) electronic-structure calculations with the Ce 4f states treated as core states. The position of the Ce 4f energy level relative to the Fermi energy and the intra-atomic Coulomb energy U are obtained by use of a sequence of three total-energy supercell calculations with one out of four Ce sites constrained to f n occupation with n=0,1,2, successively. The calculations elucidate the origins, in the electronic structure, of the variation of the f-state resonance width and hybridization potential on going from CeSb to CeTe, and the resultant sensitivity of the hybridization dressing of the crystal-field splitting and the hybridization-induced exchange interactions to chemical environment. The effect of opening up successive angular momentum scattering channels of the ab initio calculated two-ion exchange-interaction matrix on the nature of the magnetic ordering is examined. The calculated magnitude and range dependence of the two-ion exchange interactions changes sharply from CeSb to CeTe, yielding a change in magnetic behavior in qualitative agreement with experiment. The nonlinear hybridization effects on the hybridization dressing of the crystal-field splitting have been examined

  12. Magnetic Criticality Enhanced Hybrid Nanodiamond Thermometer under Ambient Conditions

    Science.gov (United States)

    Wang, Ning; Liu, Gang-Qin; Leong, Weng-Hang; Zeng, Hualing; Feng, Xi; Li, Si-Hong; Dolde, Florian; Fedder, Helmut; Wrachtrup, Jörg; Cui, Xiao-Dong; Yang, Sen; Li, Quan; Liu, Ren-Bao

    2018-01-01

    Nitrogen-vacancy (NV) centers in diamond are attractive as quantum sensors owing to their superb coherence under ambient conditions. However, the NV center spin resonances are relatively insensitive to some important parameters such as temperature and pressure. Here we design and experimentally demonstrate a hybrid nanothermometer composed of NV centers and a magnetic nanoparticle (MNP), in which the temperature sensitivity is enhanced by the critical magnetization of the MNP near the ferromagnetic-paramagnetic transition temperature. The temperature susceptibility of the NV center spin resonance reaches 14 MHz /K , nearly 200 times larger than that of bare NV centers. The sensitivity of a hybrid nanothermometer composed of a Cu1 -xNix MNP and a nanodiamond is measured to be 11 mK /√{Hz } under ambient conditions. The working range of the hybrid thermometer can be designed from cryogenic temperature to about 600 K by tuning the chemical composition of the Cu1 -xNix MNP. We demonstrate in situ detection of the magnetic phase transition of a single magnetic nanoparticle using the hybrid nanothermometer. This hybrid nanothermometer provides a novel approach to studying a broad range of thermal processes at nanoscales such as nanoplasmonics, heat-stimulated subcellular processes, and thermodynamics of nanosystems.

  13. Magnetic Criticality Enhanced Hybrid Nanodiamond Thermometer under Ambient Conditions

    Directory of Open Access Journals (Sweden)

    Ning Wang

    2018-03-01

    Full Text Available Nitrogen-vacancy (NV centers in diamond are attractive as quantum sensors owing to their superb coherence under ambient conditions. However, the NV center spin resonances are relatively insensitive to some important parameters such as temperature and pressure. Here we design and experimentally demonstrate a hybrid nanothermometer composed of NV centers and a magnetic nanoparticle (MNP, in which the temperature sensitivity is enhanced by the critical magnetization of the MNP near the ferromagnetic-paramagnetic transition temperature. The temperature susceptibility of the NV center spin resonance reaches 14  MHz/K, nearly 200 times larger than that of bare NV centers. The sensitivity of a hybrid nanothermometer composed of a Cu_{1-x}Ni_{x} MNP and a nanodiamond is measured to be 11  mK/sqrt[Hz] under ambient conditions. The working range of the hybrid thermometer can be designed from cryogenic temperature to about 600 K by tuning the chemical composition of the Cu_{1-x}Ni_{x} MNP. We demonstrate in situ detection of the magnetic phase transition of a single magnetic nanoparticle using the hybrid nanothermometer. This hybrid nanothermometer provides a novel approach to studying a broad range of thermal processes at nanoscales such as nanoplasmonics, heat-stimulated subcellular processes, and thermodynamics of nanosystems.

  14. A self-consistent study of magnetic field effects on hybrid stars

    International Nuclear Information System (INIS)

    Dexheimer, V; Franzon, B; Schramm, S

    2017-01-01

    It is understood that strong magnetic fields affect the structure of neutron stars. Nevertheless, many calculations for magnetized neutron stars are still being performed using symmetric solutions of Einstein’s equations. In this conference proceeding, we review why this is not the correct procedure and we also discuss the effects of magnetic fields on the stellar population and temperature profiles. (paper)

  15. CSEM-steel hybrid wiggler/undulator magnetic field studies

    International Nuclear Information System (INIS)

    Halbach, K.; Hoyer, E.; Marks, S.; Plate, D.; Shuman, D.

    1985-05-01

    Current design of permanent magnet wiggler/undulators use either pure charge sheet equivalent material (CSEM) or the CSEM-Steel hybrid configuration. Hybrid configurations offer higher field strength at small gaps, field distributions dominated by the pole surfaces and pole tuning. Nominal performance of the hybrid is generally predicted using a 2-D magnetic design code neglecting transverse geometry. Magnetic measurements are presented showing transverse configuration influence on performance, from a combination of models using CSEMs, REC (H/sub c/ = 9.2 kOe) and NdFe (H/sub c/ = 10.7 kOe), different pole widths and end configurations. Results show peak field improvement using NdFe in place of REC in identical models, gap peak field decrease with pole width decrease (all results less than computed 2-D fields), transverse gap field distributions, and importance of CSEM material overhanging the poles in the transverse direction for highest gap fields

  16. Design features of HTMR-Hybrid Toroidal Magnet Tokamak Reactor

    International Nuclear Information System (INIS)

    Rosatelli, F.; Avanzini, P.G.; Brunelli, B.; Derchi, D.; Magnasco, M.; Grattarola, M.; Peluffo, M.; Raia, G.; Zampaglione, V.

    1985-01-01

    The HTMR (Hybrid Toroidal Magnet Tokamak Reactor) conceptual design is aimed to demonstrate the feasibility of a Tokamak reactor which could fulfill the scientific and technological objectives expected from next generation devices (e.g. INTOR-NET) with size and costs as small as possible. An hybrid toroidal field magnet, made up by copper and superconducting coils, seems to be a promising solution, allowing a considerable flexibility in machine performances, so as to gain useful margins in front of the uncertainties in confinement time scaling laws and beta and plasma density limits. In this paper the authors describe the optimization procedure for the hybrid magnet configuration, the main design features of HTMR and the preliminary mechanical calculations of the superconducting toroidal coils

  17. Self-consistent hybrid functionals for solids: a fully-automated implementation

    Science.gov (United States)

    Erba, A.

    2017-08-01

    A fully-automated algorithm for the determination of the system-specific optimal fraction of exact exchange in self-consistent hybrid functionals of the density-functional-theory is illustrated, as implemented into the public Crystal program. The exchange fraction of this new class of functionals is self-consistently updated proportionally to the inverse of the dielectric response of the system within an iterative procedure (Skone et al 2014 Phys. Rev. B 89, 195112). Each iteration of the present scheme, in turn, implies convergence of a self-consistent-field (SCF) and a coupled-perturbed-Hartree-Fock/Kohn-Sham (CPHF/KS) procedure. The present implementation, beside improving the user-friendliness of self-consistent hybrids, exploits the unperturbed and electric-field perturbed density matrices from previous iterations as guesses for subsequent SCF and CPHF/KS iterations, which is documented to reduce the overall computational cost of the whole process by a factor of 2.

  18. Consistency relation for cosmic magnetic fields

    DEFF Research Database (Denmark)

    Jain, R. K.; Sloth, M. S.

    2012-01-01

    If cosmic magnetic fields are indeed produced during inflation, they are likely to be correlated with the scalar metric perturbations that are responsible for the cosmic microwave background anisotropies and large scale structure. Within an archetypical model of inflationary magnetogenesis, we show...... that there exists a new simple consistency relation for the non-Gaussian cross correlation function of the scalar metric perturbation with two powers of the magnetic field in the squeezed limit where the momentum of the metric perturbation vanishes. We emphasize that such a consistency relation turns out...... to be extremely useful to test some recent calculations in the literature. Apart from primordial non-Gaussianity induced by the curvature perturbations, such a cross correlation might provide a new observational probe of inflation and can in principle reveal the primordial nature of cosmic magnetic fields. DOI...

  19. Enhancement of exchange coupling interaction of NdFeB/MnBi hybrid magnets

    Science.gov (United States)

    Nguyen, Truong Xuan; Nguyen, Khanh Van; Nguyen, Vuong Van

    2018-03-01

    MnBi ribbons were fabricated by melt - spinning with subsequent annealing. The MnBi ribbons were ground and mixed with NdFeB commercial Magnequench powders (MQA). The hybrid powder mixtures were subjected thrice to the annealing and ball-milling route. The hybrid magnets (100 - x)NdFeB/xMnBi, x=0, 30, 40, 50 and 100 wt% were in-mold aligned in an 18 kOe magnetic field and warm compacted at 290 °C by 2000 psi uniaxial pressure for 10 min. An enhancement of the exchange coupling of NdFeB/MnBi hybrid magnets was obtained by optimizing the magnets' microstructures via annealing and ball-milling processes. The magnetic properties of prepared NdFeB/MnBi hybrid magnets were studied and discussed in details.

  20. Giant Magnetic Field Enhancement in Hybridized MIM Structures

    KAUST Repository

    Alrasheed, Salma; Di Fabrizio, Enzo M.

    2017-01-01

    We propose numerically an approach to narrow the plasmon linewidth and enhance the magnetic near field intensity at a magnetic hot spot in a hybridized metal-insulatormetal (MIM) structure. First we insert in part of the dielectric layer of the MIM

  1. Magnetic Flux Distribution of Linear Machines with Novel Three-Dimensional Hybrid Magnet Arrays

    Directory of Open Access Journals (Sweden)

    Nan Yao

    2017-11-01

    Full Text Available The objective of this paper is to propose a novel tubular linear machine with hybrid permanent magnet arrays and multiple movers, which could be employed for either actuation or sensing technology. The hybrid magnet array produces flux distribution on both sides of windings, and thus helps to increase the signal strength in the windings. The multiple movers are important for airspace technology, because they can improve the system’s redundancy and reliability. The proposed design concept is presented, and the governing equations are obtained based on source free property and Maxwell equations. The magnetic field distribution in the linear machine is thus analytically formulated by using Bessel functions and harmonic expansion of magnetization vector. Numerical simulation is then conducted to validate the analytical solutions of the magnetic flux field. It is proved that the analytical model agrees with the numerical results well. Therefore, it can be utilized for the formulation of signal or force output subsequently, depending on its particular implementation.

  2. Adsorption mechanism of magnetically separable Fe_3O_4/graphene oxide hybrids

    International Nuclear Information System (INIS)

    Ouyang, Ke; Zhu, Chuanhe; Zhao, Ya; Wang, Leichao; Xie, Shan; Wang, Qun

    2015-01-01

    Graphical abstract: A recyclable Fe_3O_4/graphene oxide (GO) magnetic hybrid was successfully synthesized via a facile one-pot polylol approach and exhibited an effective adsorption of BPA in aqueous solution. - Highlights: • Magnetically separable Fe_3O_4/GO hybrids were synthesized via a facile one-pot polylol approach. • The Fe_3O_4/GO hybrid could be easily recovered and met the need of magnetic separation, exhibiting excellent reproducibility and reusability. • The hybrids showed excellent adsorption ability for bisphenol A in aqueous solution. • The effect of pH value, temperature and coexisting ions on the adsorption was studied. • π–π interactions were postulated to be the primary mechanisms of adsorption of BPA on Fe_3O_4/GO hybrids. - Abstract: A reclaimable Fe_3O_4/graphene oxide (GO) magnetic hybrid was successfully synthesized via a facile one-pot polyol approach and employed as a recyclable adsorbent for Bisphenol A (BPA) in aqueous solutions. The maximum adsorption capacity (q_m) of the Fe_3O_4/GO hybrid for BPA was 72.80 mg/g at 273 K. The kinetics of the adsorption process and the adsorption isotherm data were fitted using the Freundlich equation and a pseudo-second-order kinetic model. The results of the thermodynamic parameters ΔH°, ΔS° and ΔG° showed that the adsorption process was exothermic and spontaneous. Furthermore, the reusability of the samples was investigated, and the results indicated that the samples exhibited high stability. The magnetic characterization demonstrated that hybrids were superparamagnetic and could be recovered conveniently by magnetic separation. The strong π–π interaction was determined to be the predominant driving force behind the adsorption of BPA onto the Fe_3O_4/GO hybrid. Therefore, the Fe_3O_4/GO hybrid could be regarded as a potential adsorbent for wastewater treatment and purification processes.

  3. High-frequency electromagnetic properties of soft magnetic metal-polyimide hybrid thin films

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sang Woo [Nano-Materials Research Center, Korea Institute of Science and Technology, 39-1 Haweoulgog-dong, Sungbuk-gu, Seoul 136-791 (Korea, Republic of)]. E-mail: swkim@kist.re.kr; Yoon, Chong S. [Division of Advanced Materials Science, Hanyang University, Seoul 133-791 (Korea, Republic of)

    2007-09-15

    Although there are a lot of demands for suppression of unwanted high-frequency electromagnetic noise in highly integrated electronic devices such as mobile phones and notebook computers, electromagnetic thin films that effectively work in the high-frequency range have still been underdeveloped. Soft magnetic metal-polyimide (PI) hybrid films with high electrical resistivity were prepared by thermal imidization and selective oxidation between the metal alloy layer and polyamic acid (PAA) layer. Electromagnetic properties of the hybrid thin films in the radio-frequency range were characterized by using the microstrip line method and were correlated with their material parameters. Although anisotropy field of the CoFe/NiFe hybrid film was two times lower than that of the NiFe hybrid film, the saturation magnetization of the CoFe/NiFe hybrid film was three times higher than that of the NiFe hybrid film. The CoFe/NiFe hybrid film showed higher power loss in the frequency range of 3-6 GHz compared to the NiFe hybrid film. The high power loss of the CoFe/NiFe hybrid film was caused by high relative permeability and high ferromagnetic resonance (FMR) frequency due to high saturation magnetization.

  4. High-frequency electromagnetic properties of soft magnetic metal-polyimide hybrid thin films

    International Nuclear Information System (INIS)

    Kim, Sang Woo; Yoon, Chong S.

    2007-01-01

    Although there are a lot of demands for suppression of unwanted high-frequency electromagnetic noise in highly integrated electronic devices such as mobile phones and notebook computers, electromagnetic thin films that effectively work in the high-frequency range have still been underdeveloped. Soft magnetic metal-polyimide (PI) hybrid films with high electrical resistivity were prepared by thermal imidization and selective oxidation between the metal alloy layer and polyamic acid (PAA) layer. Electromagnetic properties of the hybrid thin films in the radio-frequency range were characterized by using the microstrip line method and were correlated with their material parameters. Although anisotropy field of the CoFe/NiFe hybrid film was two times lower than that of the NiFe hybrid film, the saturation magnetization of the CoFe/NiFe hybrid film was three times higher than that of the NiFe hybrid film. The CoFe/NiFe hybrid film showed higher power loss in the frequency range of 3-6 GHz compared to the NiFe hybrid film. The high power loss of the CoFe/NiFe hybrid film was caused by high relative permeability and high ferromagnetic resonance (FMR) frequency due to high saturation magnetization

  5. Magnetic field effects in hybrid perovskite devices

    Science.gov (United States)

    Zhang, C.; Sun, D.; Sheng, C.-X.; Zhai, Y. X.; Mielczarek, K.; Zakhidov, A.; Vardeny, Z. V.

    2015-05-01

    Magnetic field effects have been a successful tool for studying carrier dynamics in organic semiconductors as the weak spin-orbit coupling in these materials gives rise to long spin relaxation times. As the spin-orbit coupling is strong in organic-inorganic hybrid perovskites, which are promising materials for photovoltaic and light-emitting applications, magnetic field effects are expected to be negligible in these optoelectronic devices. We measured significant magneto-photocurrent, magneto-electroluminescence and magneto-photoluminescence responses in hybrid perovskite devices and thin films, where the amplitude and shape are correlated to each other through the electron-hole lifetime, which depends on the perovskite film morphology. We attribute these responses to magnetic-field-induced spin-mixing of the photogenerated electron-hole pairs with different g-factors--the Δg model. We validate this model by measuring large Δg (~ 0.65) using field-induced circularly polarized photoluminescence, and electron-hole pair lifetime using picosecond pump-probe spectroscopy.

  6. Recent Advances of Graphene-based Hybrids with Magnetic Nanoparticles for Biomedical Applications.

    Science.gov (United States)

    Alegret, Nuria; Criado, Alejandro; Prato, Maurizio

    2017-01-01

    The utilization of graphene-based nanomaterials combined with magnetic nanoparticles offers key benefits in the modern biomedicine. In this minireview, we focus on the most recent advances in hybrids of magnetic graphene derivatives for biomedical applications. We initially analyze the several methodologies employed for the preparation of graphene-based composites with magnetic nanoparticles, more specifically the kind of linkage between the two components. In the last section, we focus on the biomedical applications where these magnetic-graphene hybrids are essential and pay special attention on how the addition of graphene improves the resulting devices in magnetic resonance imaging, controlled drug delivery, magnetic photothermal therapy and cellular separation and isolation. Finally, we highlight the use of these magnetic hybrids as multifunctional material that will lead to a next generation of theranostics. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  7. Giant magnetic modulation of a planar, hybrid metamolecule resonance

    International Nuclear Information System (INIS)

    Gregory, Simon A; Stenning, Gavin B G; Bowden, Graham J; De Groot, Peter A J; Zheludev, Nikolay I

    2014-01-01

    Coupling magnetic elements to metamaterial structures creates hybrid metamolecules with new opportunities. Here we report on the magnetic control of a metamolecule resonance, by utilizing the interaction between a single split ring resonator (SRR) and a magnetic thin film of permalloy. To suppress eddy current shielding, the permalloy films are patterned into arrays of 30–500 μm diameter discs. Strong hybridized resonances were observed at the anticrossing between the split ring resonance and the ferromagnetic resonance (FMR) of the permalloy. In particular, it is possible to achieve 40 dB modulation of the electric (symmetric) mode of the SRR on sweeping the applied magnetic field through the SRR/FMR anticrossing. The results open the way to the design of planar metamaterials, with potential applications in nonlinear metamaterials, tunable metamaterials and spintronics. (papers)

  8. Design and Application of Hybrid Magnetic Field-Eddy Current Probe

    Science.gov (United States)

    Wincheski, Buzz; Wallace, Terryl; Newman, Andy; Leser, Paul; Simpson, John

    2013-01-01

    The incorporation of magnetic field sensors into eddy current probes can result in novel probe designs with unique performance characteristics. One such example is a recently developed electromagnetic probe consisting of a two-channel magnetoresistive sensor with an embedded single-strand eddy current inducer. Magnetic flux leakage maps of ferrous materials are generated from the DC sensor response while high-resolution eddy current imaging is simultaneously performed at frequencies up to 5 megahertz. In this work the design and optimization of this probe will be presented, along with an application toward analysis of sensory materials with embedded ferromagnetic shape-memory alloy (FSMA) particles. The sensory material is designed to produce a paramagnetic to ferromagnetic transition in the FSMA particles under strain. Mapping of the stray magnetic field and eddy current response of the sample with the hybrid probe can thereby image locations in the structure which have experienced an overstrain condition. Numerical modeling of the probe response is performed with good agreement with experimental results.

  9. Preparation and magnetic properties of anisotropic bulk MnBi/NdFeB hybrid magnets

    International Nuclear Information System (INIS)

    Ma, Y.L.; Liu, X.B.; Nguyen, V.V.; Poudyal, N.; Yue, M.; Liu, J.P.

    2016-01-01

    Anisotropic hybrid bulk magnets of MnBi/NdFeB with different composition ratio have been prepared with starting MnBi and Nd 2 Fe 14 B powders as well as epoxy resin as a binder in case it is needed to form bulk samples. It has been found that the ratio between the two phases in content has a remarkable influence on the magnetic properties, the thermal stability and the density of the bulk magnets. With increasing MnBi content the binder addition can be reduced. When the MnBi content is larger than 30 wt%, no binder is needed. On the other hand, the coercivity and saturation magnetization were increased significantly with increasing NdFeB content. When the NdFeB content was increased from 0% to 50%, the maximum energy product was enhanced from 4.7 to 10.0 MGOe, respectively. The energy product then decreased gradually with the NdFeB content due to the reduced density of the hybrid magnet. The thermal stability measurements showed that the temperature coefficient of coercivity grew with the MnBi content and became positive with MnBi=80 wt%. - Highlights: • Anisotropic bulk hybrid MnBi/NdFeB magnets were prepared. • MnBi content affected the density and coercivity temperature coefficient positively. • An energy product (BH) max of 10 MGOe was obtained at NdFeB content of 50 wt%.

  10. Preparation and magnetic properties of anisotropic bulk MnBi/NdFeB hybrid magnets

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Y.L. [Department of Physics, University of Texas at Arlington, Arlington, TX 76019 (United States); College of Metallurgical and Materials Engineering, Chongqing University of Science and Technology, Chongqing 401331 (China); Liu, X.B.; Nguyen, V.V.; Poudyal, N. [Department of Physics, University of Texas at Arlington, Arlington, TX 76019 (United States); Yue, M. [College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124 (China); Liu, J.P., E-mail: pliu@uta.edu [Department of Physics, University of Texas at Arlington, Arlington, TX 76019 (United States)

    2016-08-01

    Anisotropic hybrid bulk magnets of MnBi/NdFeB with different composition ratio have been prepared with starting MnBi and Nd{sub 2}Fe{sub 14}B powders as well as epoxy resin as a binder in case it is needed to form bulk samples. It has been found that the ratio between the two phases in content has a remarkable influence on the magnetic properties, the thermal stability and the density of the bulk magnets. With increasing MnBi content the binder addition can be reduced. When the MnBi content is larger than 30 wt%, no binder is needed. On the other hand, the coercivity and saturation magnetization were increased significantly with increasing NdFeB content. When the NdFeB content was increased from 0% to 50%, the maximum energy product was enhanced from 4.7 to 10.0 MGOe, respectively. The energy product then decreased gradually with the NdFeB content due to the reduced density of the hybrid magnet. The thermal stability measurements showed that the temperature coefficient of coercivity grew with the MnBi content and became positive with MnBi=80 wt%. - Highlights: • Anisotropic bulk hybrid MnBi/NdFeB magnets were prepared. • MnBi content affected the density and coercivity temperature coefficient positively. • An energy product (BH){sub max} of 10 MGOe was obtained at NdFeB content of 50 wt%.

  11. Hybrid magnet devices for molecule manipulation and small scale high gradient-field applications

    Science.gov (United States)

    Humphries, David E [El Cerrito, CA; Hong, Seok-Cheol [Seoul, KR; Cozzarelli, legal representative, Linda A.; Pollard, Martin J [El Cerrito, CA; Cozzarelli, Nicholas R [Berkeley, CA

    2009-01-06

    The present disclosure provides a high performance hybrid magnetic structure made from a combination of permanent magnets and ferromagnetic pole materials which are assembled in a predetermined array. The hybrid magnetic structure provides means for separation and other biotechnology applications involving holding, manipulation, or separation of magnetizable molecular structures and targets. Also disclosed are hybrid magnetic tweezers able to exert approximately 1 nN of force to 4.5 .mu.m magnetic bead. The maximum force was experimentally measured to be .about.900 pN which is in good agreement with theoretical estimations and other measurements. In addition, a new analysis scheme that permits fast real-time position measurement in typical geometry of magnetic tweezers has been developed and described in detail.

  12. Magnetically tunable elasticity for magnetic hydrogels consisting of carrageenan and carbonyl iron particles.

    Science.gov (United States)

    Mitsumata, Tetsu; Honda, Atomu; Kanazawa, Hiroki; Kawai, Mika

    2012-10-11

    A new class of magnetoelastic gel that demonstrates drastic and reversible changes in storage modulus without using strong magnetic fields was obtained. The magnetic gel consists of carrageenan and carbonyl iron particles. The magnetic gel with a volume fraction of magnetic particles of 0.30 exhibited a reversible increase by a factor of 1400 of the storage modulus upon a magnetic field of 500 mT, which is the highest value in the past for magnetorheological soft materials. It is considered that the giant magnetoelastic behavior is caused by both high dispersibility and high mobility of magnetic particles in the carrageenan gel. The off-field storage modulus of the magnetic gel at volume fractions below 0.30 obeyed the Krieger-Dougherty equation, indicating random dispersion of magnetic particles. At 500 mT, the storage modulus was higher than 4.0 MPa, which is equal to that of magnetic fluids, indicating that the magnetic particles move and form a chain structure by magnetic fields. Morphological study revealed the evidence that the magnetic particles embedded in the gel were aligned in the direction of magnetic fields, accompanied by stretching of the gel network. We conclude that the giant magnetoelastic phenomenon originates from the chain structure consisting of magnetic particles similar to magnetic fluids.

  13. Structure and magnetic properties of SiO{sub 2}/PCL novel sol–gel organic–inorganic hybrid materials

    Energy Technology Data Exchange (ETDEWEB)

    Catauro, Michelina, E-mail: michelina.catauro@unina2.it [Department of Industrial and Information Engineering, Second University of Naples, Via Roma 29, 81031 Aversa (Italy); Bollino, Flavia [Department of Industrial and Information Engineering, Second University of Naples, Via Roma 29, 81031 Aversa (Italy); Cristina Mozzati, Maria [Department of Physics, CNISM and INSTM, University of Pavia, Via Bassi 6, 27100 Pavia (Italy); Ferrara, Chiara; Mustarelli, Piercarlo [Department of Chemistry, Section of Physical Chemistry, University of Pavia and INSTM, Via Taramelli 16, 27100 Pavia (Italy)

    2013-07-15

    Organic–inorganic nanocomposite materials have been synthesized via sol–gel. They consist of an inorganic SiO{sub 2} matrix, in which different percentages of poly(ε-caprolactone) (PCL) have been incorporated. The formation of H-bonds among the carbonyl groups of the polymer chains and Si–OH group of the inorganic matrix has been proved by means of Fourier transform infrared spectroscopy (FT-IR) analysis and has been confirmed by solid-state nuclear magnetic resonance (NMR). X-Ray diffraction (XRD) analysis highlighted the amorphous nature of the synthesized materials. Scanning electron microscope (SEM) micrograph and atomic force microscope (AFM) topography showed their homogeneous morphology and nanostructure nature. Considering the opportunity to synthesize these hybrid materials under microgravity conditions by means of magnetic levitation, superconducting quantum interference device (SQUID) magnetometry has been used to quantify their magnetic susceptibility. This measure has shown that the SiO{sub 2}/PCL hybrid materials are diamagnetic and that their diamagnetic susceptibility is independent of temperature and increases with the PCL amount. - Graphical abstract: Characterization and magnetic properties of SiO{sub 2}/PCL organic–inorganic hybrid materials synthesized via sol–gel. FT-IR, Fourier transform infrared spectroscopy; solid-state NMR: solid-state nuclear magnetic resonance; SQUID: superconducting quantum interference device. - Highlights: • Sol–gel synthesis of SiO{sub 2}/PCL amorphous class I organic–inorganic hybrid materials. • FT-IR and NMR analyses show the hydrogen bonds formation between SiO{sub 2} and PCL. • AFM and SEM analyses confirm that the SiO{sub 2}/PCL are homogenous hybrid materials. • The SQUID measures show that the simples are diamagnetic. • Diamagnetic susceptibility of SiO{sub 2}/PCL materials increases with the PCL amount.

  14. Electronic and magnetic properties of modified silicene/graphene hybrid: Ab initio study

    Energy Technology Data Exchange (ETDEWEB)

    Chowdhury, Suman; Jana, Debnarayan, E-mail: cujanad@yahoo.com

    2016-11-01

    Among other two-dimensional (2D) novel materials, graphene and silicene both have drawn intense research interest among the researchers because they possess some unique intriguing properties which can change the scenario of the current electronic industry. In this work we have studied the electronic and the magnetic properties of a new kind of materials which is the hybrid of these two materials. Density functional theory (DFT) has been employed to calculate the relevant electronic and magnetic properties of this hybrid material. The pristine structure is modified by substitutional doping or by creating vacancy (Y-X, where one Y atom (Si or C) has been replaced by one X atom (B, N, Al, P or void)). The calculations have revealed that void systems are unstable while Si-B and Si-N are most stable ones. It has been noticed that some of these doped structures are magnetic in nature having induced mid-gap states in the system. In particular, Si-void structure is unstable yet it possess the highest magnetic moment of the order of 4 μ{sub B} (μ{sub B} being the Bohr magneton). The estimated band gaps of modified silicene/graphene hybrid from spin polarized partial density of states (PDOS) vary between 1.43–2.38 eV and 1.58–2.50 eV for spin-up and spin-down channel respectively. The implication of midgap states has been critically analysed in the light of magnetic nature. This study may be useful to build hybrid spintronic devices with controllable gap for spin up and spin down states. - Graphical abstract: We have studied the electronic and magnetic properties of silicene/graphene hybrid by employing density functional theory (DFT). - Highlights: • Electronic and magnetic properties of two dimensional graphene/silicene hybrid have been explored. • There is no magnetism in the system for a single carbon atom vacancy. • A net magnetic moment of 4.0 Bohr magneton is observed for a single silicon atom vacancy. • Unpaired electrons introduce mid-gap states which

  15. Effect of the repulsive force in the HTSC-permanent magnet hybrid bearing system

    International Nuclear Information System (INIS)

    Ohashi, S.; Kobayashi, S.

    2009-01-01

    Magnetic levitation using the pinning force of the YBaCuO high-T c bulk superconductor (HTSC) materials has an advantage to achieve stable levitation without control. To increase levitation force, the HTSC-permanent magnet hybrid magnetic bearing system is introduced. A circular shaped three phase Nd-Fe-B permanent magnet is installed on the rotor, and HTSC bulk superconductor is set on the stator. The additional permanent magnet is installed under the HTSC. Repulsive force of the permanent magnet is used for levitation, and pinning force between the HTSC and permanent magnet is used for guidance force of the bearing. In this system, relationship between permanent magnet and the HTSC is important. When repulsive force of the permanent magnet is large, pinning force of superconductor is used to keep the rotor position. As a result, stability for the lateral direction is decreased with hybrid system. For levitation force, effect of the hybrid system is not observed with column HTSC. Compared with the ring HTSC results, the following thing is considered. Because there is no space that flux of one permanent magnet acts on the other one with the column HTSC configuration, interaction between two permanent magnets becomes small.

  16. New displacement sensor for a hybrid magnetic bearing in liquid nitrogen

    International Nuclear Information System (INIS)

    Komori, M.; Kobayashi, H.; Shiraishi, C.

    1999-01-01

    This paper describes a newly developed displacement sensor. The displacement sensor is used for a hybrid magnetic bearing in liquid nitrogen. The principle of the displacement sensor is based on a differential transformer. The sensor is found to be useful in liquid nitrogen at 77 K (-196 C). Moreover, the sensor is applied to a hybrid magnetic bearing. The displacement sensor is found to be useful and promising

  17. A tubular hybrid Halbach/axially-magnetized permanent-magnet linear machine

    Directory of Open Access Journals (Sweden)

    Yi Sui

    2017-05-01

    Full Text Available A single-phase tubular permanent-magnet linear machine (PMLM with hybrid Halbach/axially-magnetized PM arrays is proposed for free-piston Stirling power generation system. Machine topology and operating principle are elaborately illustrated. With the sinusoidal speed characteristic of the free-piston Stirling engine considered, the proposed machine is designed and calculated by finite-element analysis (FEA. The main structural parameters, such as outer radius of the mover, radial length of both the axially-magnetized PMs and ferromagnetic poles, axial length of both the middle and end radially-magnetized PMs, etc., are optimized to improve both the force capability and power density. Compared with the conventional PMLMs, the proposed machine features high mass and volume power density, and has the advantages of simple control and low converter cost. The proposed machine topology is applicable to tubular PMLMs with any phases.

  18. A tubular hybrid Halbach/axially-magnetized permanent-magnet linear machine

    Science.gov (United States)

    Sui, Yi; Liu, Yong; Cheng, Luming; Liu, Jiaqi; Zheng, Ping

    2017-05-01

    A single-phase tubular permanent-magnet linear machine (PMLM) with hybrid Halbach/axially-magnetized PM arrays is proposed for free-piston Stirling power generation system. Machine topology and operating principle are elaborately illustrated. With the sinusoidal speed characteristic of the free-piston Stirling engine considered, the proposed machine is designed and calculated by finite-element analysis (FEA). The main structural parameters, such as outer radius of the mover, radial length of both the axially-magnetized PMs and ferromagnetic poles, axial length of both the middle and end radially-magnetized PMs, etc., are optimized to improve both the force capability and power density. Compared with the conventional PMLMs, the proposed machine features high mass and volume power density, and has the advantages of simple control and low converter cost. The proposed machine topology is applicable to tubular PMLMs with any phases.

  19. Self-consistent potential variations in magnetic wells

    International Nuclear Information System (INIS)

    Kesner, J.; Knorr, G.; Nicholson, D.R.

    1981-01-01

    Self-consistent electrostatic potential variations are considered in a spatial region of weak magnetic field, as in the proposed tandem mirror thermal barriers (with no trapped ions). For some conditions, equivalent to ion distributions with a sufficiently high net drift speed along the magnetic field, the desired potential depressions are found. When the net drift speed is not high enough, potential depressions are found only in combination with strong electric fields on the boundaries of the system. These potential depressions are not directly related to the magnetic field depression. (author)

  20. Exchange coupling in hybrid anisotropy magnetic multilayers quantified by vector magnetometry

    Energy Technology Data Exchange (ETDEWEB)

    Morrison, C., E-mail: C.Morrison.2@warwick.ac.uk; Miles, J. J.; Thomson, T. [School of Computer Science, University of Manchester, Manchester M13 9PL (United Kingdom); Anh Nguyen, T. N. [Materials Physics, School of ICT, KTH Royal Institute of Technology, Electrum 229, 164 40 Kista (Sweden); Spintronics Research Group, Laboratory for Nanotechnology (LNT), VNU-HCM, Ho Chi Minh City (Viet Nam); Fang, Y.; Dumas, R. K. [Department of Physics, University of Gothenburg, 412 96 Gothenburg (Sweden); Åkerman, J. [Materials Physics, School of ICT, KTH Royal Institute of Technology, Electrum 229, 164 40 Kista (Sweden); Department of Physics, University of Gothenburg, 412 96 Gothenburg (Sweden)

    2015-05-07

    Hybrid anisotropy thin film heterostructures, where layers with perpendicular and in-plane anisotropy are separated by a thin spacer, are novel materials for zero/low field spin torque oscillators and bit patterned media. Here, we report on magnetization reversal and exchange coupling in a archetypal Co/Pd (perpendicular)-NiFe (in-plane) hybrid anisotropy system studied using vector vibrating sample magnetometry. This technique allows us to quantify the magnetization reversal in each individual magnetic layer, and measure of the interlayer exchange as a function of non-magnetic spacer thickness. At large (>1 nm) spacer thicknesses Ruderman-Kittel-Kasuya-Yosida-like exchange dominates, with orange-peel coupling providing a significant contribution only for sub-nm spacer thickness.

  1. Separation of magnetic beads in a hybrid continuous flow microfluidic device

    Energy Technology Data Exchange (ETDEWEB)

    Samanta, Abhishek [Haldia Institute of Technology, Production Engineering Department, Haldia (India); Ganguly, Ranjan; Datta, Amitava [Jadavpur University, Power Engineering Department (India); Modak, Nipu, E-mail: nmechju@gmail.com [Jadavpur University, Mechanical Engineering Department (India)

    2017-04-01

    Magnetic separation of biological entities in microfluidic environment is a key task for a large number of bio-analytical protocols. In magnetophoretic separation, biochemically functionalized magnetic beads are allowed to bind selectively to target analytes, which are then separated from the background stream using a suitably imposed magnetic field. Here we present a numerical study, characterizing the performance of a magnetophoretic hybrid microfluidic device having two inlets and three outlets for immunomagnetic isolation of three different species from a continuous flow. The hybrid device works on the principle of split-flow thin (SPLITT) fractionation and field flow fractionation (FFF) mechanisms. Transport of the magnetic particles in the microchannel has been predicted following an Eulerian-Lagrangian model and using an in-house numerical code. Influence of the salient geometrical parameters on the performance of the separator is studied by characterizing the particle trajectories and their capture and separation indices. Finally, optimum channel geometry is identified that yields the maximum capture efficiency and separation index. - Highlights: • Immunomagnetic separation in a hybrid microchannel design is investigated numerically. • Influence of salient geometric parameters on the device performance is analysed. • Optimum device dimension for best separation parameters are identified. • Optimized design of hybrid separator performs better than FFF or SPLITT devices.

  2. Adsorption mechanism of magnetically separable Fe{sub 3}O{sub 4}/graphene oxide hybrids

    Energy Technology Data Exchange (ETDEWEB)

    Ouyang, Ke [Department of Chemical and Environment Engineering, Wuyi University, Jiangmen, Guangdong 529020 (China); Zhu, Chuanhe [Department of Civil, Construction and Environmental Engineering, Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011 (United States); Zhao, Ya; Wang, Leichao [Department of Chemical and Environment Engineering, Wuyi University, Jiangmen, Guangdong 529020 (China); Xie, Shan, E-mail: wyuchemxs@126.com [Department of Chemical and Environment Engineering, Wuyi University, Jiangmen, Guangdong 529020 (China); Wang, Qun, E-mail: qunwang@iastate.edu [Department of Civil, Construction and Environmental Engineering, Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011 (United States)

    2015-11-15

    Graphical abstract: A recyclable Fe{sub 3}O{sub 4}/graphene oxide (GO) magnetic hybrid was successfully synthesized via a facile one-pot polylol approach and exhibited an effective adsorption of BPA in aqueous solution. - Highlights: • Magnetically separable Fe{sub 3}O{sub 4}/GO hybrids were synthesized via a facile one-pot polylol approach. • The Fe{sub 3}O{sub 4}/GO hybrid could be easily recovered and met the need of magnetic separation, exhibiting excellent reproducibility and reusability. • The hybrids showed excellent adsorption ability for bisphenol A in aqueous solution. • The effect of pH value, temperature and coexisting ions on the adsorption was studied. • π–π interactions were postulated to be the primary mechanisms of adsorption of BPA on Fe{sub 3}O{sub 4}/GO hybrids. - Abstract: A reclaimable Fe{sub 3}O{sub 4}/graphene oxide (GO) magnetic hybrid was successfully synthesized via a facile one-pot polyol approach and employed as a recyclable adsorbent for Bisphenol A (BPA) in aqueous solutions. The maximum adsorption capacity (q{sub m}) of the Fe{sub 3}O{sub 4}/GO hybrid for BPA was 72.80 mg/g at 273 K. The kinetics of the adsorption process and the adsorption isotherm data were fitted using the Freundlich equation and a pseudo-second-order kinetic model. The results of the thermodynamic parameters ΔH°, ΔS° and ΔG° showed that the adsorption process was exothermic and spontaneous. Furthermore, the reusability of the samples was investigated, and the results indicated that the samples exhibited high stability. The magnetic characterization demonstrated that hybrids were superparamagnetic and could be recovered conveniently by magnetic separation. The strong π–π interaction was determined to be the predominant driving force behind the adsorption of BPA onto the Fe{sub 3}O{sub 4}/GO hybrid. Therefore, the Fe{sub 3}O{sub 4}/GO hybrid could be regarded as a potential adsorbent for wastewater treatment and purification processes.

  3. Preparation and magnetic properties of anisotropic bulk MnBi/NdFeB hybrid magnets

    Science.gov (United States)

    Ma, Y. L.; Liu, X. B.; Nguyen, V. V.; Poudyal, N.; Yue, M.; Liu, J. P.

    2016-08-01

    Anisotropic hybrid bulk magnets of MnBi/NdFeB with different composition ratio have been prepared with starting MnBi and Nd2Fe14B powders as well as epoxy resin as a binder in case it is needed to form bulk samples. It has been found that the ratio between the two phases in content has a remarkable influence on the magnetic properties, the thermal stability and the density of the bulk magnets. With increasing MnBi content the binder addition can be reduced. When the MnBi content is larger than 30 wt%, no binder is needed. On the other hand, the coercivity and saturation magnetization were increased significantly with increasing NdFeB content. When the NdFeB content was increased from 0% to 50%, the maximum energy product was enhanced from 4.7 to 10.0 MGOe, respectively. The energy product then decreased gradually with the NdFeB content due to the reduced density of the hybrid magnet. The thermal stability measurements showed that the temperature coefficient of coercivity grew with the MnBi content and became positive with MnBi=80 wt%.

  4. Hybrid Materials Based on Magnetic Layered Double Hydroxides: A Molecular Perspective.

    Science.gov (United States)

    Abellán, Gonzalo; Martí-Gastaldo, Carlos; Ribera, Antonio; Coronado, Eugenio

    2015-06-16

    Design of functional hybrids lies at the very core of synthetic chemistry as it has enabled the development of an unlimited number of solids displaying unprecedented or even improved properties built upon the association at the molecular level of quite disparate components by chemical design. Multifunctional hybrids are a particularly appealing case among hybrid organic/inorganic materials. Here, chemical knowledge is used to deploy molecular components bearing different functionalities within a single solid so that these properties can coexist or event interact leading to unprecedented phenomena. From a molecular perspective, this can be done either by controlled assembly of organic/inorganic molecular tectons into an extended architecture of hybrid nature or by intercalation of organic moieties within the empty channels or interlamellar space offered by inorganic solids with three-dimensional (MOFs, zeolites, and mesoporous hosts) or layered structures (phosphates, silicates, metal dichalcogenides, or anionic clays). This Account specifically illustrates the use of layered double hydroxides (LDHs) in the preparation of magnetic hybrids, in line with the development of soft inorganic chemistry processes (also called "Chimie Douce"), which has significantly contributed to boost the preparation hybrid materials based on solid-state hosts and subsequent development of applications. Several features sustain the importance of LDHs in this context. Their magnetism can be manipulated at a molecular level by adequate choice of constituting metals and interlayer separation for tuning the nature and extent of magnetic interactions across and between planes. They display unparalleled versatility in accommodating a broad range of anionic species in their interlamellar space that encompasses not only simple anions but chemical systems of increasing dimensionality and functionalities. Their swelling characteristics allow for their exfoliation in organic solvents with high

  5. A self-consistent theory of the magnetic polaron

    International Nuclear Information System (INIS)

    Marvakov, D.I.; Kuzemsky, A.L.; Vlahov, J.P.

    1984-10-01

    A finite temperature self-consistent theory of magnetic polaron in the s-f model of ferromagnetic semiconductors is developed. The calculations are based on the novel approach of the thermodynamic two-time Green function methods. This approach consists in the introduction of the ''irreducible'' Green functions (IGF) and derivation of the exact Dyson equation and exact self-energy operator. It is shown that IGF method gives a unified and natural approach for a calculation of the magnetic polaron states by taking explicitly into account the damping effects and finite lifetime. (author)

  6. Electron optics in hybrid photodetectors in magnetic fields

    International Nuclear Information System (INIS)

    Green, D.

    1996-12-01

    The CMS detector design has the hadronic calorimeter immersed in a 4 T magnetic field. The scintillator photon transducer must work reliably in this environment. The baseline phototransducer is the ''hybrid photomultiplier'', which consists of a standard photocathode (S20) followed by a high field acceleration onto the surface of a Si diode. Such a device has a linear response, 1 e out for every 3.6 eV of potential drop in excess of the threshold needed to penetrate the passivation layer of the diode. A threshold voltage of ∼2 kV is typical of these devices, leading to a gain of ∼2000 at 10 kV applied voltage. In the interest of reducing costs, the Si surface can be cut into pixels. However, the optics of the electron trajectories must be well understood so as to avoid crosstalk between pixels caused by misalignment of the accelerating electric field and the axis of the CMS magnetic field. The depletion depth of the Si is quite standard, ∼300 μm. The source capacity is ∼20 pF. The output pulse has a ∼6 nsec risetime for > 60 V diode biasing. The device is expected to be highly immune to magnetic field effects due to the short spacing, ∼3 mm, between photocathode and Si

  7. Hybrid, silica-coated, Janus-like plasmonic-magnetic nanoparticles

    OpenAIRE

    Sotiriou, Georgios A.; Hirt, Ann M.; Lozach, Pierre-Yves; Teleki, Alexandra; Krumeich, Frank; Pratsinis, Sotiris E.

    2011-01-01

    Hybrid plasmonic-magnetic nanoparticles possess properties that are attractive in bioimaging, targeted drug delivery, in vivo diagnosis and therapy. The stability and toxicity, however, of such nanoparticles challenge their safe use today. Here, biocompatible, SiO2-coated, Janus-like Ag/Fe2O3 nanoparticles are prepared by one-step, scalable flame aerosol technology. A nanothin SiO2 shell around these multifunctional nanoparticles leaves intact their morphology, magnetic and plasmonic properti...

  8. Biocompatible magnetic and molecular dual-targeting polyelectrolyte hybrid hollow microspheres for controlled drug release.

    Science.gov (United States)

    Du, Pengcheng; Zeng, Jin; Mu, Bin; Liu, Peng

    2013-05-06

    Well-defined biocompatible magnetic and molecular dual-targeting polyelectrolyte hybrid hollow microspheres have been accomplished via the layer-by-layer (LbL) self-assembly technique. The hybrid shell was fabricated by the electrostatic interaction between the polyelectrolyte cation, chitosan (CS), and the hybrid anion, citrate modified ferroferric oxide nanoparticles (Fe3O4-CA), onto the uniform polystyrene sulfonate microsphere templates. Then the magnetic hybrid core/shell composite particles were modified with a linear, functional poly(ethylene glycol) (PEG) monoterminated with a biotargeting molecule (folic acid (FA)). Afterward the dual targeting hybrid hollow microspheres were obtained after etching the templates by dialysis. The dual targeting hybrid hollow microspheres exhibit exciting pH response and stability in high salt-concentration media. Their pH-dependent controlled release of the drug molecule (anticancer drug, doxorubicin (DOX)) was also investigated in different human body fluids. As expected, the cell viability of the HepG2 cells which decreased more rapidly was treated by the FA modified hybrid hollow microspheres rather than the unmodified one in the in vitro study. The dual-targeting hybrid hollow microspheres demonstrate selective killing of the tumor cells. The precise magnetic and molecular targeting properties and pH-dependent controlled release offers promise for cancer treatment.

  9. Hybrid spacecraft attitude control system

    Directory of Open Access Journals (Sweden)

    Renuganth Varatharajoo

    2016-02-01

    Full Text Available The hybrid subsystem design could be an attractive approach for futurespacecraft to cope with their demands. The idea of combining theconventional Attitude Control System and the Electrical Power System ispresented in this article. The Combined Energy and Attitude ControlSystem (CEACS consisting of a double counter rotating flywheel assemblyis investigated for small satellites in this article. Another hybrid systemincorporating the conventional Attitude Control System into the ThermalControl System forming the Combined Attitude and Thermal ControlSystem (CATCS consisting of a "fluid wheel" and permanent magnets isalso investigated for small satellites herein. The governing equationsdescribing both these novel hybrid subsystems are presented and theironboard architectures are numerically tested. Both the investigated novelhybrid spacecraft subsystems comply with the reference missionrequirements.The hybrid subsystem design could be an attractive approach for futurespacecraft to cope with their demands. The idea of combining theconventional Attitude Control System and the Electrical Power System ispresented in this article. The Combined Energy and Attitude ControlSystem (CEACS consisting of a double counter rotating flywheel assemblyis investigated for small satellites in this article. Another hybrid systemincorporating the conventional Attitude Control System into the ThermalControl System forming the Combined Attitude and Thermal ControlSystem (CATCS consisting of a "fluid wheel" and permanent magnets isalso investigated for small satellites herein. The governing equationsdescribing both these novel hybrid subsystems are presented and theironboard architectures are numerically tested. Both the investigated novelhybrid spacecraft subsystems comply with the reference missionrequirements.

  10. Giant Magnetic Field Enhancement in Hybridized MIM Structures

    KAUST Repository

    Alrasheed, Salma

    2017-10-23

    We propose numerically an approach to narrow the plasmon linewidth and enhance the magnetic near field intensity at a magnetic hot spot in a hybridized metal-insulatormetal (MIM) structure. First we insert in part of the dielectric layer of the MIM, at its center, another dielectric material of a high refractive index (HRI). This results in an increase in the magnetic near field enhancement of the magnetic plasmon (MP) resonance by 82% compared with the MIM without the HRI material. We then couple this enhanced MP resonance to a propagating surface plasmon polariton (SPP) to achieve a further enhancement of 438%. The strong coupling between the MP and the SPP is demonstrated by the large anti-crossing in the reflection spectra. The resulting maximum magnetic field enhancement at the gap is ~ |H / Hi|² = 3555.

  11. Hybrid-secondary uncluttered permanent magnet machine and method

    Science.gov (United States)

    Hsu, John S.

    2005-12-20

    An electric machine (40) has a stator (43), a permanent magnet rotor (38) with permanent magnets (39) and a magnetic coupling uncluttered rotor (46) for inducing a slip energy current in secondary coils (47). A dc flux can be produced in the uncluttered rotor when the secondary coils are fed with dc currents. The magnetic coupling uncluttered rotor (46) has magnetic brushes (A, B, C, D) which couple flux in through the rotor (46) to the secondary coils (47c, 47d) without inducing a current in the rotor (46) and without coupling a stator rotational energy component to the secondary coils (47c, 47d). The machine can be operated as a motor or a generator in multi-phase or single-phase embodiments and is applicable to the hybrid electric vehicle. A method of providing a slip energy controller is also disclosed.

  12. Modeling of Hybrid Permanent Magnetic-Gas Bearings

    DEFF Research Database (Denmark)

    Morosi, Stefano; Santos, Ilmar

    2009-01-01

    Modern turbomachinery applications require nowadays ever-growing rotational speeds and high degree of reliability. It then becomes natural to focus the attention of the research to contact-free bearings elements. The present alternatives focus on gas lubricated journal bearings or magnetic bearings....... In the present paper, a detailed mathematical modeling of the gas bearing based on the compressible form of the Reynolds equation is presented. Perturbation theory is applied in order to identify the dynamic characteristic of the bearing. Due to the simple design of the magnetic bearings elements - being...... the rotor equilibrium position can be made independent on the rotational speed and applied load; it becomes function of the passive magnetic bearing offset. By adjusting the offset it is possible to significantly influence the dynamic coefficients of the hybrid bearing....

  13. Self-consistent kinetic simulations of lower hybrid drift instability resulting in electron current driven by fusion products in tokamak plasmas

    International Nuclear Information System (INIS)

    Cook, J W S; Chapman, S C; Dendy, R O; Brady, C S

    2011-01-01

    We present particle-in-cell (PIC) simulations of minority energetic protons in deuterium plasmas, which demonstrate a collective instability responsible for emission near the lower hybrid frequency and its harmonics. The simulations capture the lower hybrid drift instability in a parameter regime motivated by tokamak fusion plasma conditions, and show further that the excited electromagnetic fields collectively and collisionlessly couple free energy from the protons to directed electron motion. This results in an asymmetric tail antiparallel to the magnetic field. We focus on obliquely propagating modes excited by energetic ions, whose ring-beam distribution is motivated by population inversions related to ion cyclotron emission, in a background plasma with a temperature similar to that of the core of a large tokamak plasma. A fully self-consistent electromagnetic relativistic PIC code representing all vector field quantities and particle velocities in three dimensions as functions of a single spatial dimension is used to model this situation, by evolving the initial antiparallel travelling ring-beam distribution of 3 MeV protons in a background 10 keV Maxwellian deuterium plasma with realistic ion-electron mass ratio. These simulations provide a proof-of-principle for a key plasma physics process that may be exploited in future alpha channelling scenarios for magnetically confined burning plasmas.

  14. Facile method to synthesize magnetic iron oxides/TiO2 hybrid nanoparticles and their photodegradation application of methylene blue

    Directory of Open Access Journals (Sweden)

    Wu Wei

    2011-01-01

    Full Text Available Abstract Many methods have been reported to improving the photocatalytic efficiency of organic pollutant and their reliable applications. In this work, we propose a facile pathway to prepare three different types of magnetic iron oxides/TiO2 hybrid nanoparticles (NPs by seed-mediated method. The hybrid NPs are composed of spindle, hollow, and ultrafine iron oxide NPs as seeds and 3-aminopropyltriethyloxysilane as linker between the magnetic cores and TiO2 layers, respectively. The composite structure and the presence of the iron oxide and titania phase have been confirmed by transmission electron microscopy, X-ray diffraction, and X-ray photoelectron spectra. The hybrid NPs show good magnetic response, which can get together under an external applied magnetic field and hence they should become promising magnetic recovery catalysts (MRCs. Photocatalytic ability examination of the magnetic hybrid NPs was carried out in methylene blue (MB solutions illuminated under Hg light in a photochemical reactor. About 50% to 60% of MB was decomposed in 90 min in the presence of magnetic hybrid NPs. The synthesized magnetic hybrid NPs display high photocatalytic efficiency and will find recoverable potential applications in cleaning polluted water with the help of magnetic separation.

  15. Photovoltaic-wind hybrid system for permanent magnet DC motor

    Science.gov (United States)

    Nasir, M. N. M.; Lada, M. Y.; Baharom, M. F.; Jaafar, H. I.; Ramani, A. N.; Sulaima, M. F.

    2015-05-01

    Hybrid system of Photovoltaic (PV) - Wind turbine (WT) generation has more advantages and reliable compared to PV or wind turbine system alone. The aim of this paper is to model and design hybrid system of PV-WT supplying 100W permanent-magnet dc motor. To achieve the objective, both of PV and WT are connected to converter in order to get the same source of DC supply. Then both sources were combined and straightly connected to 100W permanent magnet dc motor. All the works in this paper is only applied in circuit simulator by using Matlab Simulink. The output produced from each converter is expected to be suit to the motor specification. The output produced from each renewable energy system is as expected to be high as it can support the motor if one of them is breakdown

  16. Cryocooled superconducting magnets for high magnetic fields at the HFLSM and future collaboration with the TML

    International Nuclear Information System (INIS)

    Watanabe, K; Nishijima, G; Awaji, S; Koyama, K; Takahashi, K; Kobayashi, N; Kiyoshi, T

    2006-01-01

    A hybrid magnet needs a large amount of liquid helium for operation. In order to make an easy-to-operate hybrid magnet system, we constructed a cryocooled 28 T hybrid magnet, consisting of an outer cryocooled 10 T superconducting magnet and an inner traditional water-cooled 19 T resistive magnet. As a performance test, the cryocooled hybrid magnet generated 27.5 T in a 32 mm room temperature experimental bore. As long as Nb3Sn superconducting wires are employed, the expected maximum high field generation in the cryocooled superconducting magnet will be 17 T at 5 K. We adopted the high temperature superconducting insert coil, employing Ag-sheathed Bi 2 Sr 2 Ca 2 Cu 3 O 10 superconducting tape. In combination with the low temperature 16.5 T back-up coil with a 174 mm cold bore, the cryocooled high temperature superconducting magnet successfully generated the total central field of 18.1 T in a 52 mm room temperature bore. As a next step, we start the collaboration with the National Institute for Materials Science for the new developmental works of a 30 T high temperature superconducting magnet and a 50 T-class hybrid magnet

  17. The effect of a parasite hybridizer on the magnetic behavior of partially delocalized transition shell systems (abstract)

    International Nuclear Information System (INIS)

    Sanchez-Castro, C.; Cooper, B.R.; Bedell, K.S.

    1991-01-01

    We have investigated how the behavior of a transition shell atomic species (species A) with orbital magnetism, driven by hybridization-mediated interactions via a sea of band electrons, is modified by the addition of a second parasite hybridizer (species B). Our approach involves a two-stage procedure. First, we calculate the modification of the band electron sea by hybridization with B by using a slave boson formalism. Second, the modifications in the A-A interionic interactions driving the orbital magnetic ordering are calculated by applying a Schrieffer--Wolff transformation on the renormalized Anderson lattice hamiltonian obtained from the first stage. The new A-A interactions have a different radial dependence (range factor) which depends in a nonlinear way on the band-B hybridization strength: and the consequences of this change on the magnetic ordering are studied using a mean-field approximation. This enables us to model the reduction in the magnetic ordering caused by competing parasite hybridization, and the dependence of this reduction on the relative hybridization strengths of the two species

  18. Decentralized Method for Load Sharing and Power Management in a Hybrid Single/Three-Phase-Islanded Microgrid Consisting of Hybrid Source PV/Battery Units

    DEFF Research Database (Denmark)

    Karimi, Yaser; Oraee, Hashem; Guerrero, Josep M.

    2017-01-01

    This paper proposes a new decentralized power management and load sharing method for a photovoltaic based, hybrid single/three-phase islanded microgrid consisting of various PV units, battery units and hybrid PV/battery units. The proposed method is not limited to the systems with separate PV...... in different load, PV generation and battery conditions is validated experimentally in a microgrid lab prototype consisted of one three-phase unit and two single-phase units....

  19. Magnetic Hybrid Nanosorbents for the Uptake of Paraquat from Water

    Directory of Open Access Journals (Sweden)

    Tiago Fernandes

    2017-03-01

    Full Text Available Although paraquat has been banned in European countries, this herbicide is still used all over the world, thanks to its low-cost, high-efficiency, and fast action. Because paraquat is highly toxic to humans and animals, there is interest in mitigating the consequences of its use, namely by implementing removal procedures capable of curbing its environmental and health risks. This research describes new magnetic nanosorbents composed of magnetite cores functionalized with bio-hybrid siliceous shells, that can be used to uptake paraquat from water using magnetically-assisted procedures. The biopolymers κ-carrageenan and starch were introduced into the siliceous shells, resulting in two hybrid materials, Fe3O4@SiO2/SiCRG and Fe3O4@SiO2/SiStarch, respectively, that exhibit a distinct surface chemistry. The Fe3O4@SiO2/SiCRG biosorbents displayed a superior paraquat removal performance, with a good fitting to the Langmuir and Toth isotherm models. The maximum adsorption capacity of paraquat for Fe3O4@SiO2/SiCRG biosorbents was 257 mg·g−1, which places this sorbent among the best systems for the removal of this herbicide from water. The interesting performance of the κ-carrageenan hybrid, along with its magnetic properties and good regeneration capacity, presents a very efficient way for the remediation of water contaminated with paraquat.

  20. Hybrid helical magnetic microrobots obtained by 3D template-assisted electrodeposition.

    Science.gov (United States)

    Zeeshan, Muhammad A; Grisch, Roman; Pellicer, Eva; Sivaraman, Kartik M; Peyer, Kathrin E; Sort, Jordi; Özkale, Berna; Sakar, Mahmut S; Nelson, Bradley J; Pané, Salvador

    2014-04-09

    Hybrid helical magnetic microrobots are achieved by sequential electrodeposition of a CoNi alloy and PPy inside a photoresist template patterned by 3D laser lithography. A controlled actuation of the microrobots by a rotating magnetic field is demonstrated in a fluidic environment. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. One-pot synthesis of magnetic hybrid materials based on ovoid-like carboxymethyl-cellulose/cetyltrimethylammonium-bromide templates

    Energy Technology Data Exchange (ETDEWEB)

    Torres-Martínez, Nubia E. [Universidad Autónoma de Nuevo León, Facultad de Ingeniería Mecánica y Eléctrica, San Nicolás de los Garza, 66450 Nuevo León (Mexico); Garza-Navarro, M.A., E-mail: marco.garzanr@uanl.edu.mx [Universidad Autónoma de Nuevo León, Facultad de Ingeniería Mecánica y Eléctrica, San Nicolás de los Garza, 66450 Nuevo León (Mexico); Universidad Autónoma de Nuevo León, Centro de Innovación, Investigación y Desarrollo en Ingeniería y Tecnología, Apodaca, 66600 Nuevo León (Mexico); Lucio-Porto, Raúl [Université de Nantes, CNRS, Institut des Matériaux Jean Rouxel (IMN), 2 rue de la Houssinière, BP32229, 44322 Nantes Cedex 3 (France); and others

    2013-09-16

    A novel one-pot synthetic procedure to obtain magnetic hybrid nanostructured materials (HNM), based on magnetic spinel-metal-oxide (SMO) nanoparticles stabilized in ovoid-like carboxymethyl-cellulose (CMC)/cetyltrimethylammonium-bromide (CTAB) templates, is reported. The HNM were synthesized from the controlled hydrolysis of inorganic salts of Fe (II) and Fe (III) into aqueous dissolutions of CMC and CTAB. The synthesized HNM were characterized by transmission electron microscopy, Fourier transform infrared spectroscopy and static magnetic measurements. The experimental evidence suggests that, due to the competition between CTAB molecules and SMO nanoparticles to occupy CMC intermolecular sites nearby to its carboxylate functional groups, the size of both, SMO nanoparticles and ovoid-like CMC/CTAB templates can be tuned, varying the CTAB:SMO weight ratio. Moreover, it was found that the magnetic response of the HNM depends on the confinement degree of the SMO nanoparticles into the CMC/CTAB template. Hence, their magnetic characteristics can be adjusted controlling the size of the template, the quantity and distribution of the SMO nanoparticles within the template and their size. - Graphical abstract: Display Omitted - Highlights: • The synthesis of magnetic hybrid materials is reported. • The hybrid materials were synthesized following a novel one-pot procedure. • The magnetic nanoparticles were stabilized in ovoid-like templates. • The size of the templates was tuned adjusting nanoparticles weight content. • The magnetic properties of hybrid materials depend on the size of the template.

  2. Detection of a magnetic bead by hybrid nanodevices using scanning gate microscopy

    Science.gov (United States)

    Corte-León, H.; Krzysteczko, P.; Marchi, F.; Motte, J.-F.; Manzin, A.; Schumacher, H. W.; Antonov, V.; Kazakova, O.

    2016-05-01

    Hybrid ferromagnetic(Py)/non-magnetic metal(Au) junctions with a width of 400 nm are studied by magnetotransport measurements, magnetic scanning gate microscopy (SGM) with a magnetic bead (MB) attached to the probe, and micromagnetic simulations. In the transverse geometry, the devices demonstrate a characteristic magnetoresistive behavior that depends on the direction of the in plane magnetic field, with minimum/maximum variation when the field is applied parallel/perpendicular to the Py wire. The SGM is performed with a NdFeB bead of 1.6 μm diameter attached to the scanning probe. Our results demonstrate that the hybrid junction can be used to detect this type of MB. A rough approximation of the sensing volume of the junction has the shape of elliptical cylinder with the volume of ˜1.51 μm3. Micromagnetic simulations coupled to a magnetotransport model including anisotropic magnetoresistance and planar Hall effects are in good agreement with the experimental findings, enabling the interpretation of the SGM images.

  3. Study on control method of running velocity for the permanent magnet-HTSC hybrid magnetically levitated conveyance system

    International Nuclear Information System (INIS)

    Nishio, R.; Ikeda, M.; Sasaki, R.; Ohashi, S.

    2011-01-01

    The hybrid magnetically levitated carrying system is developed. Control method of running velocity of the carrier is studied. Running velocity is controlled by current of the propulsion coils. Propulsion characteristcs are improved. We have developed the magnetically levitated carrying system. In this system, pinning force of high temperature bulk super conductor (HTSC) is used for the levitation and guidance. Four HTSCs are installed on the carrier. The magnetic rail is set on the ground, and flux from the magnetic rail is pinned by HTSCs. To increase levitation force, repulsive force of the permanent magnet is used. The hybrid levitation system is composed. The permanent magnet is installed under the load stage of the carrier. Repulsive force by the permanent magnet between the load stage on the carrier and the magnetic rail on the ground is used to support the load weight. Levitation and guidance one by pinning effect of the YBaCuO HTSC in the carrier is used to levitate the carrier body. The load stage is separated from the carrier flame and can move freely for vertical direction levitation. For the propulsion system, electromagnet is installed on the surface of the magnetic rail. In this paper, control method of running velocity of the carrier is studied. Propulsion force is given as follows; Air core copper coils are installed on the magnetic rail. Interaction between current of these coils and permanent magnets on the carrier generates propulsion force. Running velocity is controlled by current of the propulsion coils. It is also changed by position of the carrier and the load weight. From the results, stability of the propulsion system is given, and propulsion characteristics are improved.

  4. Study on control method of running velocity for the permanent magnet-HTSC hybrid magnetically levitated conveyance system

    Energy Technology Data Exchange (ETDEWEB)

    Nishio, R.; Ikeda, M.; Sasaki, R. [Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680 (Japan); Ohashi, S., E-mail: ohashi@kansai-u.ac.jp [Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680 (Japan)

    2011-11-15

    The hybrid magnetically levitated carrying system is developed. Control method of running velocity of the carrier is studied. Running velocity is controlled by current of the propulsion coils. Propulsion characteristcs are improved. We have developed the magnetically levitated carrying system. In this system, pinning force of high temperature bulk super conductor (HTSC) is used for the levitation and guidance. Four HTSCs are installed on the carrier. The magnetic rail is set on the ground, and flux from the magnetic rail is pinned by HTSCs. To increase levitation force, repulsive force of the permanent magnet is used. The hybrid levitation system is composed. The permanent magnet is installed under the load stage of the carrier. Repulsive force by the permanent magnet between the load stage on the carrier and the magnetic rail on the ground is used to support the load weight. Levitation and guidance one by pinning effect of the YBaCuO HTSC in the carrier is used to levitate the carrier body. The load stage is separated from the carrier flame and can move freely for vertical direction levitation. For the propulsion system, electromagnet is installed on the surface of the magnetic rail. In this paper, control method of running velocity of the carrier is studied. Propulsion force is given as follows; Air core copper coils are installed on the magnetic rail. Interaction between current of these coils and permanent magnets on the carrier generates propulsion force. Running velocity is controlled by current of the propulsion coils. It is also changed by position of the carrier and the load weight. From the results, stability of the propulsion system is given, and propulsion characteristics are improved.

  5. Hybrid Spintronic Structures With Magnetic Oxides and Heusler Alloys

    DEFF Research Database (Denmark)

    Xu, Y. B.; Hassan, S. S. A.; Wong, P. K. J.

    2008-01-01

    Hybrid spintronic structures, integrating half-metallic magnetic oxides and Heusler alloys with their predicted high spin polarization, are important for the development of second-generation spintronics with high-efficient spin injection. We have synthesized epitaxial magnetic oxide Fe3O4 on Ga......As(100) and the unit cell of the Fe3O4 was found to be rotated by 45 degrees to match the gallium arsenide GaAs. The films were found to have a bulk-like moment down to 3-4 nm and a low coercivity indicating a high-quality magnetic interface. The magnetization hysteresis loops of the ultrathin films...... are controlled by uniaxial magnetic anisotropy. The dynamic response of the sample shows a heavily damped precessional response to the applied field pulses. In the Heusler alloy system of Co-2 MnGa on GaAs, we found that the magnetic moment was reduced for thicknesses down to 10 nm, which may account...

  6. Hybrid superconducting-magnetic memory device using competing order parameters.

    Science.gov (United States)

    Baek, Burm; Rippard, William H; Benz, Samuel P; Russek, Stephen E; Dresselhaus, Paul D

    2014-05-28

    In a hybrid superconducting-magnetic device, two order parameters compete, with one type of order suppressing the other. Recent interest in ultra-low-power, high-density cryogenic memories has spurred new efforts to simultaneously exploit superconducting and magnetic properties so as to create novel switching elements having these two competing orders. Here we describe a reconfigurable two-layer magnetic spin valve integrated within a Josephson junction. Our measurements separate the suppression in the superconducting coupling due to the exchange field in the magnetic layers, which causes depairing of the supercurrent, from the suppression due to the stray magnetic field. The exchange field suppression of the superconducting order parameter is a tunable and switchable behaviour that is also scalable to nanometer device dimensions. These devices demonstrate non-volatile, size-independent switching of Josephson coupling, in magnitude as well as phase, and they may enable practical nanoscale superconducting memory devices.

  7. Development of a hybrid bearing using permanent magnets and piezoelectric actuators

    International Nuclear Information System (INIS)

    Park, Jung-Ho; Ham, Young-Bog; Yun, So-Nam; Lee, Hu-Seung

    2010-01-01

    In this study, a hybrid magnetic bearing with permanent magnets and piezoelectric actuators is investigated. First, in this study, a novel concept in which piezoelectric actuators are used to compensate for low stiffness and damping resulting from the unstable characteristics of a passive magnetic bearing using only permanent magnets is proposed. Secondly, the permanent magnets are optimally arranged through an electromagnetic field analysis. Then, the driving amplifier unit and a prototype radial bearing using the proposed concept are fabricated. Finally, basic characteristics, such as the results of an impact test and a rotational runout test with constant speed are investigated and discussed, and experiments using PID control method are conducted.

  8. Hybrid nanostructured materials with tunable magnetic characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Torres-Martínez, Nubia E.; Garza-Navarro, M. A., E-mail: marco.garzanr@uanl.edu.mx; García-Gutiérrez, Domingo; González-González, Virgilio A.; Torres-Castro, Alejandro; Ortiz-Méndez, U. [Universidad Autónoma de Nuevo León, Facultad de Ingeniería Mecánica y Eléctrica (Mexico)

    2014-12-15

    We report on the development of hybrid nanostructured materials (HNM) based on spinel-metal-oxide nanoparticles (SMON) stabilized in carboxymethyl-cellulose (CMC)/cetyltrimethyl-ammonium-bromide (CTAB) templates, with tunable magnetic characteristics. These HNM were synthesized using a one-pot chemical approach to obtain CMC/CTAB templates with controllable size and morphology, where the SMON could be densely arranged. The synthesized HNM were characterized by transmission electron microscopy and its related techniques, such as bright field (BF) and Z-contrast (HAADF-STEM) imaging, and selected area electron diffraction, as well as static magnetic measuring. Experimental evidence suggests that the morphology and size of the CMC/CTAB templates are highly dependent on the weight ratio of CTAB:SMON, as well as the hydration days of the CMC that is used for the synthesis of the HNM. Controlling these parameters allows modifying the density of the SMON arrangement in the CMC/CTAB templates. Moreover, magnetic features such as remanence, coercivity, and blocking/de-blocking processes of the particles’ magnetic moments are highly dependent on the interactions among the SMON assembled in the templates. Hence, the magnetic characteristics of HNM can be modulated or tuned by controlling the manner the SMON are arranged within the CMC/CTAB templates.

  9. Nd-Fe-B/Sm-M/Nd-M (M = Fe, Co, Ti, Cu, Zr) hybrid magnets with improved thermal stability

    Science.gov (United States)

    Grigoras, M.; Lostun, M.; Urse, M.; Borza, F.; Chiriac, H.; Lupu, N.

    2018-02-01

    Hybrid magnets of Nd12Fe82B6(2:14:1-phase)/Nd9.4Fe59Co25.3Ti6.3(3:29-phase) and Nd12Fe82B6/Sm11.1Co65.8Fe8.9Cu10.7Zr3.5(2:17-phase) with different weight ratio have been prepared by spark plasma sintering pressing technique from ball-milled powders obtained from melt-spun ribbons. Influence of the ratio between the two phases on the magnetic properties and thermal stability of the hybrid magnets was studied. It has been found that the ratio has a remarkable influence, especially on the thermal stability of the bulk magnets. However, the magnetic properties of such type of hybrid magnets result not only from the type and ratio of components but also from the interaction between them. It was found that in NdFeB/3:29 hybrid magnets with 15% content of 3:29-phase, the temperature coefficients of remanence (α) and of coercivity (β) are improved from -0.095 to -0.082 (%/°C) and from -0.57 to -0.47 (%/°C), respectively, as compared to the Nd2Fe14B single-phase counterpart. While for the NdFeB/2:17 hybrid magnets the content of 2:17-phase is not significantly influencing the temperature coefficient of induction (α), the temperature coefficient of °C (β) increases up to -0.41 (%/°C) for 10% content of 2:17-phase. The increase in the reversible temperature coefficients of hybrid magnets indicate a remarkable improvement of their thermal stability.

  10. Fluorescent magnetic hybrid nanoprobe for multimodal bioimaging

    Energy Technology Data Exchange (ETDEWEB)

    Koktysh, Dmitry [Department of Chemistry, Vanderbilt University, Station B 351822, Nashville, TN 37235 (United States); Bright, Vanessa; Pham, Wellington, E-mail: dmitry.koktysh@vanderbilt.edu, E-mail: wellington.pham@vanderbilt.edu [Institute of Imaging Science, Vanderbilt University, 1161 21st Avenue South AA, 1105 MCN, Nashville, TN 37232 (United States)

    2011-07-08

    A fluorescent magnetic hybrid imaging nanoprobe (HINP) was fabricated by the conjugation of superparamagnetic Fe{sub 3}O{sub 4} nanoparticles and visible light emitting ({approx}600 nm) fluorescent CdTe/CdS quantum dots (QDs). The assembly strategy used the covalent linking of the oxidized dextran shell of magnetic particles to the glutathione ligands of QDs. The synthesized HINP formed stable water-soluble colloidal dispersions. The structure and properties of the particles were characterized by transmission electron and atomic force microscopy, energy dispersive x-ray analysis and inductively coupled plasma optical emission spectroscopy, dynamic light scattering analysis, optical absorption and photoluminescence spectroscopy, and fluorescent imaging. The luminescence imaging region of the nanoprobe was extended to the near-infrared (NIR) ({approx}800 nm) by conjugation of the superparamagnetic nanoparticles with synthesized CdHgTe/CdS QDs. Cadmium, mercury based QDs in HINP can be easily replaced by novel water-soluble glutathione stabilized AgInS{sub 2}/ZnS QDs to present a new class of cadmium-free multimodal imaging agents. The observed NIR photoluminescence of fluorescent magnetic nanocomposites supports their use for bioimaging. The developed HINP provides dual-imaging channels for simultaneous optical and magnetic resonance imaging.

  11. Magnetic Flux Conversion in the DIII-D Steady-State Hybrid Scenario

    Science.gov (United States)

    Taylor, N. Z.; Luce, T. C.; La Haye, R. J.; Petty, C. C.; Nazikian, R.

    2017-10-01

    The hybrid is a promising high confinement scenario for ITER. The broader current profile aids discharge sustainment by raising qmin > 1 thereby avoiding sawtooth-triggered 2/1 tearing modes. In DIII-D hybrid scenario discharges, the rate of poloidal magnetic energy consumption is more than the rate of energy flow from the poloidal field coils. This is evidence that there is a conversion of toroidal flux to poloidal flux, which may be responsible for the anomalous broadening of the current profile known as flux pumping. The rate of poloidal flux being provided and consumed was tracked with coil and kinetic flux states. During long stationary intervals (1.5 seconds) with constant stored magnetic energy, a significant flux state deficit rate >10 mV was observed. The inequality in the evolution of the flux states was observed in hybrids that were 100% non-inductive and with successful RMP ELM suppression. Work supported by the US DOE under DE-FC02-04ER54698 and DE-AC05-06OR23100.

  12. In Vivo Deep Tissue Fluorescence and Magnetic Imaging Employing Hybrid Nanostructures.

    Science.gov (United States)

    Ortgies, Dirk H; de la Cueva, Leonor; Del Rosal, Blanca; Sanz-Rodríguez, Francisco; Fernández, Nuria; Iglesias-de la Cruz, M Carmen; Salas, Gorka; Cabrera, David; Teran, Francisco J; Jaque, Daniel; Martín Rodríguez, Emma

    2016-01-20

    Breakthroughs in nanotechnology have made it possible to integrate different nanoparticles in one single hybrid nanostructure (HNS), constituting multifunctional nanosized sensors, carriers, and probes with great potential in the life sciences. In addition, such nanostructures could also offer therapeutic capabilities to achieve a wider variety of multifunctionalities. In this work, the encapsulation of both magnetic and infrared emitting nanoparticles into a polymeric matrix leads to a magnetic-fluorescent HNS with multimodal magnetic-fluorescent imaging abilities. The magnetic-fluorescent HNS are capable of simultaneous magnetic resonance imaging and deep tissue infrared fluorescence imaging, overcoming the tissue penetration limits of classical visible-light based optical imaging as reported here in living mice. Additionally, their applicability for magnetic heating in potential hyperthermia treatments is assessed.

  13. Detection of a magnetic bead by hybrid nanodevices using scanning gate microscopy

    Directory of Open Access Journals (Sweden)

    H. Corte-León

    2016-05-01

    Full Text Available Hybrid ferromagnetic(Py/non-magnetic metal(Au junctions with a width of 400 nm are studied by magnetotransport measurements, magnetic scanning gate microscopy (SGM with a magnetic bead (MB attached to the probe, and micromagnetic simulations. In the transverse geometry, the devices demonstrate a characteristic magnetoresistive behavior that depends on the direction of the in plane magnetic field, with minimum/maximum variation when the field is applied parallel/perpendicular to the Py wire. The SGM is performed with a NdFeB bead of 1.6 μm diameter attached to the scanning probe. Our results demonstrate that the hybrid junction can be used to detect this type of MB. A rough approximation of the sensing volume of the junction has the shape of elliptical cylinder with the volume of ∼1.51 μm3. Micromagnetic simulations coupled to a magnetotransport model including anisotropic magnetoresistance and planar Hall effects are in good agreement with the experimental findings, enabling the interpretation of the SGM images.

  14. Voltage control of a magnetization easy axis in piezoelectric/ferromagnetic hybrid films

    International Nuclear Information System (INIS)

    Kim, Sang-Koog; Lee, Jeong-Won; Shin, Sung-Chul; Song, Han Wook; Lee, Chang Ho; No, Kwangsoo

    2003-01-01

    We have established a spontaneous magnetization-axis switching in ferromagnetic films by applying a low voltage to a piezoelectric layer in a newly developed hybrid system comprised of the ferromagnetic and piezoelectric films. The magnetization easy axis along which a spontaneous magnetization is oriented, is readily switchable by a voltage without applying an external magnetic field through both the inverse magnetostrictive and piezoelectric effects of CoPd and lead-zirconate-titanate alloy films, respectively. This challenging work provides a new way into the memory writing as well as storage means of ultrahigh bit densities in nonvolatile magnetic random access memory

  15. Microscopic Description of Electric and Magnetic Toroidal Multipoles in Hybrid Orbitals

    Science.gov (United States)

    Hayami, Satoru; Kusunose, Hiroaki

    2018-03-01

    We derive the quantum-mechanical operator expressions of multipoles under the space-time inversion group. We elucidate that electric and magnetic toroidal multipoles, in addition to ordinary non-toroidal ones, are fundamental pieces to express arbitrary electronic degrees of freedom. We show that electric (magnetic) toroidal multipoles higher than the dipole (monopole) can become active in a hybridized-orbital system. We also demonstrate emergent cross-correlated couplings between the electric, magnetic, and elastic degrees of freedom, such as magneto-electric and magneto(electro)-elastic coupling, under toroidal multipole orders.

  16. Island shape, size and interface dependency on electronic and magnetic properties of graphene hexagonal-boron nitride (h-BN) in-plane hybrids

    Science.gov (United States)

    Akman, Nurten; Özdoğan, Cem

    2018-04-01

    We systematically investigate the energetics of ion implantation, stability, electronic, and magnetic properties of graphene/hexagonal boron nitrate (h-BN) in-plane hybrids through first principle calculations. We consider hexagonal and triangular islands in supercells of graphene and h-BN layouts. In the case of triangular islands, both phases mix with each other by either solely Csbnd N or Csbnd B bonds. We also patterned triangles with predominating Csbnd N or Csbnd B bonds at their interfaces. The energetics of island implantation is discussed in detail. Formation energies point out that the island implantation could be even exothermic for all hybrids studied in this work. Effects of size and shape of the island, and dominating bonding sort at the island-layout interfaces on the stability, band gap, and magnetic properties of hybrids are studied particularly. The hybrids become more stable with increasing island size. Regardless of the layout, hybrids with hexagonal islands are all non-magnetic and semiconducting. One can thus open a band gap in the semimetallic graphene by mixing it with the h-BN phase. In general, hybrids containing graphene triangles show metallic property and exhibit considerable amount of magnetic moments for possible localized spin utilizations. Total magnetic moment of hybrids with both graphene and h-BN layouts increases with growing triangle island as well. The spin densities of magnetic hybrids are derived from interfaces of the islands and diminish towards their center. We suggest that the increase in stability and magnetic moment depend on the number of atoms at the interfaces rather than the island size.

  17. Hybrid supercapacitors for reversible control of magnetism.

    Science.gov (United States)

    Molinari, Alan; Leufke, Philipp M; Reitz, Christian; Dasgupta, Subho; Witte, Ralf; Kruk, Robert; Hahn, Horst

    2017-05-10

    Electric field tuning of magnetism is one of the most intensely pursued research topics of recent times aiming at the development of new-generation low-power spintronics and microelectronics. However, a reversible magnetoelectric effect with an on/off ratio suitable for easy and precise device operation is yet to be achieved. Here we propose a novel route to robustly tune magnetism via the charging/discharging processes of hybrid supercapacitors, which involve electrostatic (electric-double-layer capacitance) and electrochemical (pseudocapacitance) doping. We use both charging mechanisms-occurring at the La 0.74 Sr 0.26 MnO 3 /ionic liquid interface to control the balance between ferromagnetic and non-ferromagnetic phases of La 1-x Sr x MnO 3 to an unprecedented extent. A magnetic modulation of up to ≈33% is reached above room temperature when applying an external potential of only about 2.0 V. Our case study intends to draw attention to new, reversible physico-chemical phenomena in the rather unexplored area of magnetoelectric supercapacitors.

  18. Current leads cooling for the series-connected hybrid magnets

    Science.gov (United States)

    Bai, Hongyu; Marshall, William S.; Bird, Mark D.; Gavrilin, Andrew V.; Weijers, Hubertus W.

    2014-01-01

    Two Series-Connected Hybrid (SCH) magnets are being developed at the National High Magnetic Field Laboratory. Both SCH magnets combine a set of resistive Florida-Bitter coils with a superconducting outsert coil constructed of the cable-in-conduit conductor (CICC). The outsert coils of the two magnets employ 20 kA BSCCO HTS current leads for the power supply although they have different designs and cooling methods. The copper heat exchangers of the HTS current leads for the HZB SCH are cooled with forced flow helium at a supply temperature of 44 K, while the copper heat exchangers of HTS current leads for NHMFL SCH are cooled with liquid nitrogen at a temperature of 78 K in a self-demand boil-off mode. This paper presents the two cooling methods and their impacts on cryogenic systems. Their efficiencies and costs are compared and presented.

  19. A Hybrid Excited Machine with Flux Barriers and Magnetic Bridges

    Directory of Open Access Journals (Sweden)

    Marcin Wardach

    2018-03-01

    Full Text Available In this paper, an U-shape flux barrier rotor concept for a hybrid excited synchronous machine with flux magnetic bridges fixed on the rotor is presented. Using 3D finite element analysis, the influence of axial flux bridges on the field-weakening and -strengthening characteristics, electromagnetic torque, no-load magnetic flux linkage, rotor iron losses and back electromotive force is shown. Three different rotor designs are analyzed. Furthermore, the field control characteristics depending on additional DC control coil currents are shown.

  20. Novel hybrid (magnet plus curve grasper) technique during transumbilical cholecystectomy: initial experience of a promising approach.

    Science.gov (United States)

    Millan, Carolina; Bignon, Horacion; Bellia, Gaston; Buela, Enrique; Rabinovich, Fernando; Albertal, Mariano; Martinez Ferro, Marcelo

    2013-10-01

    The use of magnets in transumbilical cholecystectomy (TUC) improves triangulation and achieves an optimal critical view. Nonetheless, the tendency of the magnets to collide hinders the process. In order to simplify the surgical technique, we developed a hybrid model with a single magnet and a curved grasper. All TUCs performed with a hybrid strategy in our pediatric population between September 2009 and July 2012 were retrospectively reviewed. Of 260 surgical procedures in which at least one magnet was used, 87 were TUCs. Of those, 62 were hybrid: 33 in adults and 29 in pediatric patients. The technique combines a magnet and a curved grasper. Through a transumbilical incision, we placed a 12-mm trocar and another flexible 5-mm trocar. The laparoscope with the working channel used the 12-mm trocar. The magnetic grasper was introduced to the abdominal cavity using the working channel to provide cephalic retraction of the gallbladder fundus. Across the flexible trocar, the assistant manipulated the curved grasper to mobilize the infundibulum. The surgeon operated through the working channel of the laparoscope. In this pediatric population, the mean age was 14 years (range, 4-17 years), and mean weight was 50 kg (range, 18-90 kg); 65% were girls. Mean operative time was 62 minutes. All procedures achieved a critical view of safety with no instrumental collision. There were no intraoperative or postoperative complications. The hospital stay was 1.4±0.6 days, and the median follow-up was 201 days. A hybrid technique, combining magnets and a curved grasper, simplifies transumbilical surgery. It seems feasible and safe for TUC and potentially reproducible.

  1. A new hybrid protection system for high-field superconducting magnets

    CERN Document Server

    Ravaioli, E; Kirby, G; ten Kate, H H J; Verweij, A P

    2014-01-01

    The new generation of high-field superconducting accelerator magnets poses a challenge concerning the protection of the magnet coil in the case of a quench. The very high stored energy per unit volume requires a fast and efficient quench heating system in order to avoid damage due to overheating. A new protection system for superconducting magnets is presented, comprising a combination of a novel coupling-loss induced quench (CLIQ) system and conventional quench heaters. CLIQ can provoke a very fast transition to the normal state in coil windings by introducing coupling loss and thus heat in the coil's conductor. The advantage of the hybrid protection system is a global transition, resulting in a much faster current decay, a significantly lower hot-spot temperature, and a more homogeneous temperature distribution in the magnet's coil.

  2. Kalman Filtered Bio Heat Transfer Model Based Self-adaptive Hybrid Magnetic Resonance Thermometry.

    Science.gov (United States)

    Zhang, Yuxin; Chen, Shuo; Deng, Kexin; Chen, Bingyao; Wei, Xing; Yang, Jiafei; Wang, Shi; Ying, Kui

    2017-01-01

    To develop a self-adaptive and fast thermometry method by combining the original hybrid magnetic resonance thermometry method and the bio heat transfer equation (BHTE) model. The proposed Kalman filtered Bio Heat Transfer Model Based Self-adaptive Hybrid Magnetic Resonance Thermometry, abbreviated as KalBHT hybrid method, introduced the BHTE model to synthesize a window on the regularization term of the hybrid algorithm, which leads to a self-adaptive regularization both spatially and temporally with change of temperature. Further, to decrease the sensitivity to accuracy of the BHTE model, Kalman filter is utilized to update the window at each iteration time. To investigate the effect of the proposed model, computer heating simulation, phantom microwave heating experiment and dynamic in-vivo model validation of liver and thoracic tumor were conducted in this study. The heating simulation indicates that the KalBHT hybrid algorithm achieves more accurate results without adjusting λ to a proper value in comparison to the hybrid algorithm. The results of the phantom heating experiment illustrate that the proposed model is able to follow temperature changes in the presence of motion and the temperature estimated also shows less noise in the background and surrounding the hot spot. The dynamic in-vivo model validation with heating simulation demonstrates that the proposed model has a higher convergence rate, more robustness to susceptibility problem surrounding the hot spot and more accuracy of temperature estimation. In the healthy liver experiment with heating simulation, the RMSE of the hot spot of the proposed model is reduced to about 50% compared to the RMSE of the original hybrid model and the convergence time becomes only about one fifth of the hybrid model. The proposed model is able to improve the accuracy of the original hybrid algorithm and accelerate the convergence rate of MR temperature estimation.

  3. Reversible electrical-field control of magnetization and anomalous Hall effect in Co/PMN-PT hybrid heterostructures

    Science.gov (United States)

    Wang, J.; Huang, Q. K.; Lu, S. Y.; Tian, Y. F.; Chen, Y. X.; Bai, L. H.; Dai, Y.; Yan, S. S.

    2018-04-01

    Room-temperature reversible electrical-field control of the magnetization and the anomalous Hall effect was reported in hybrid multiferroic heterojunctions based on Co/Pb(Mg1/3Nb2/3)0.7Ti0.3O3 (PMN-PT). We demonstrate herein that electrical-field-induced strain and oxygen-ion migration in ZnO/Co/PMN-PT junctions exert opposing effects on the magnetic properties of the Co sublayer, and the competition between these effects determines the final magnitude of magnetization. This proof-of-concept investigation opens an alternative way to optimize and enhance the electrical-field effect on magnetism through the combination of multiple electrical manipulation mechanisms in hybrid multiferroic devices.

  4. Magnetic tunable confinement of the superconducting condensate in superconductor/ferromagnet hybrids

    International Nuclear Information System (INIS)

    Aladyshkin, A.Yu.; Gillijns, W.; Silhanek, A.V.; Moshchalkov, V.V.

    2008-01-01

    The effect of a nonuniform magnetic field induced by a ferromagnet on the magnetoresistance of thin-film superconductor/ferromagnet hybrid structures was investigated experimentally. Two different magnetic textures with out-of-plane magnetization were considered: a plain ferromagnetic film with bubble domains and a regular array of ferromagnetic dots. The stray fields of the structures are able to affect the spatial profile of the superconducting condensate, leading to a modification of the dependence of the critical temperature T c on an external magnetic field H. We showed how the standard linear T c (H) dependence with a single maximum at H=0 can be continuously transformed into so-called reentrant phase boundary with two T c peaks. We demonstrated that both domain-wall superconductivity and field-induced superconductivity are different manifestations of the magnetic confinement effect in various magnetic patterns

  5. Feedforward-feedback hybrid control for magnetic shape memory alloy actuators based on the Krasnosel'skii-Pokrovskii model.

    Directory of Open Access Journals (Sweden)

    Miaolei Zhou

    Full Text Available As a new type of smart material, magnetic shape memory alloy has the advantages of a fast response frequency and outstanding strain capability in the field of microdrive and microposition actuators. The hysteresis nonlinearity in magnetic shape memory alloy actuators, however, limits system performance and further application. Here we propose a feedforward-feedback hybrid control method to improve control precision and mitigate the effects of the hysteresis nonlinearity of magnetic shape memory alloy actuators. First, hysteresis nonlinearity compensation for the magnetic shape memory alloy actuator is implemented by establishing a feedforward controller which is an inverse hysteresis model based on Krasnosel'skii-Pokrovskii operator. Secondly, the paper employs the classical Proportion Integration Differentiation feedback control with feedforward control to comprise the hybrid control system, and for further enhancing the adaptive performance of the system and improving the control accuracy, the Radial Basis Function neural network self-tuning Proportion Integration Differentiation feedback control replaces the classical Proportion Integration Differentiation feedback control. Utilizing self-learning ability of the Radial Basis Function neural network obtains Jacobian information of magnetic shape memory alloy actuator for the on-line adjustment of parameters in Proportion Integration Differentiation controller. Finally, simulation results show that the hybrid control method proposed in this paper can greatly improve the control precision of magnetic shape memory alloy actuator and the maximum tracking error is reduced from 1.1% in the open-loop system to 0.43% in the hybrid control system.

  6. Feedforward-feedback hybrid control for magnetic shape memory alloy actuators based on the Krasnosel'skii-Pokrovskii model.

    Science.gov (United States)

    Zhou, Miaolei; Zhang, Qi; Wang, Jingyuan

    2014-01-01

    As a new type of smart material, magnetic shape memory alloy has the advantages of a fast response frequency and outstanding strain capability in the field of microdrive and microposition actuators. The hysteresis nonlinearity in magnetic shape memory alloy actuators, however, limits system performance and further application. Here we propose a feedforward-feedback hybrid control method to improve control precision and mitigate the effects of the hysteresis nonlinearity of magnetic shape memory alloy actuators. First, hysteresis nonlinearity compensation for the magnetic shape memory alloy actuator is implemented by establishing a feedforward controller which is an inverse hysteresis model based on Krasnosel'skii-Pokrovskii operator. Secondly, the paper employs the classical Proportion Integration Differentiation feedback control with feedforward control to comprise the hybrid control system, and for further enhancing the adaptive performance of the system and improving the control accuracy, the Radial Basis Function neural network self-tuning Proportion Integration Differentiation feedback control replaces the classical Proportion Integration Differentiation feedback control. Utilizing self-learning ability of the Radial Basis Function neural network obtains Jacobian information of magnetic shape memory alloy actuator for the on-line adjustment of parameters in Proportion Integration Differentiation controller. Finally, simulation results show that the hybrid control method proposed in this paper can greatly improve the control precision of magnetic shape memory alloy actuator and the maximum tracking error is reduced from 1.1% in the open-loop system to 0.43% in the hybrid control system.

  7. Axisymmetric Magnetic Mirror Fusion-Fission Hybrid

    Energy Technology Data Exchange (ETDEWEB)

    Moir, R. W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Martovetsky, N. N. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Molvik, A. W. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Ryutov, D. D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Simonen, T. C. [Univ. of California, Berkeley, CA (United States)

    2011-05-13

    The achieved performance of the gas dynamic trap version of magnetic mirrors and today’s technology we believe are sufficient with modest further efforts for a neutron source for material testing (Q=Pfusion/Pinput~0.1). The performance needed for commercial power production requires considerable further advances to achieve the necessary high Q>>10. An early application of the mirror, requiring intermediate performance and intermediate values of Q~1 are the hybrid applications. The Axisymmetric Mirror has a number of attractive features as a driver for a fusion-fission hybrid system: geometrical simplicity, inherently steady-state operation, and the presence of the natural divertors in the form of end tanks. This level of physics performance has the virtue of low risk and only modest R&D needed and its simplicity promises economy advantages. Operation at Q~1 allows for relatively low electron temperatures, in the range of 4 keV, for the DT injection energy ~ 80 keV. A simple mirror with the plasma diameter of 1 m and mirror-to-mirror length of 35 m is discussed. Simple circular superconducting coils are based on today’s technology. The positive ion neutral beams are similar to existing units but designed for steady state. A brief qualitative discussion of three groups of physics issues is presented: axial heat loss, MHD stability in the axisymmetric geometry, microstability of sloshing ions. Burning fission reactor wastes by fissioning actinides (transuranics: Pu, Np, Am, Cm, .. or just minor actinides: Np, Am, Cm, …) in the hybrid will multiply fusion’s energy by a factor of ~10 or more and diminish the Q needed to less than 1 to overcome the cost of recirculating power for good economics. The economic value of destroying actinides by fissioning is rather low based on either the cost of long-term storage or even deep geologic disposal so most of the revenues of hybrids will come from electrical power. Hybrids that obtain revenues from

  8. Functionalized graphene oxide/Fe3O4 hybrids for cellular magnetic resonance imaging and fluorescence labeling.

    Science.gov (United States)

    Zhou, Chaohui; Wu, Hui; Wang, Mingliang; Huang, Chusen; Yang, Dapeng; Jia, Nengqin

    2017-09-01

    In this work, we developed a T 2 -weighted contrast agent based on graphene oxide (GO)/Fe 3 O 4 hybrids for efficient cellular magnetic resonance imaging (MRI). The GO/Fe 3 O 4 hybrids were obtained by combining with co-precipitation method and pyrolysis method. The structural, surface and magnetic characteristics of the hybrids were systematically characterized by transmission electron microscopy (TEM), vibrating sample magnetometer (VSM), AFM, Raman, FT-IR and XRD. The GO/Fe 3 O 4 hybrids were functionalized by modifying with anionic and cationic polyelectrolyte through layer-by-layer assembling. The fluorescence probe fluorescein isothiocyanate (FITC) was further loaded on the surface of functionalized GO/Fe 3 O 4 hybrids to trace the location of GO/Fe 3 O 4 hybrids in cells. Functionalized GO/Fe 3 O 4 hybrids possess good hydrophilicity, less cytotoxicity, high MRI enhancement with the relaxivity (r 2 ) of 493mM -1 s -1 as well as cellular MRI contrast effect. These obtained results indicated that the functionalized GO/Fe 3 O 4 hybrids could have great potential to be utilized as cellular MRI contrast agents for tumor early diagnosis and monitoring. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Self-consistent studies of magnetic thin film Ni (001)

    International Nuclear Information System (INIS)

    Wang, C.S.; Freeman, A.J.

    1979-01-01

    Advances in experimental methods for studying surface phenomena have provided the stimulus to develop theoretical methods capable of interpreting this wealth of new information. Of particular interest have been the relative roles of bulk and surface contributions since in several important cases agreement between experiment and bulk self-consistent (SC) calculations within the local spin density functional formalism (LSDF) is lacking. We discuss our recent extension of the (LSDF) approach to the study of thin films (slabs) and the role of surface effects on magnetic properties. Results are described for Ni (001) films using our new SC numerical basis set LCAO method. Self-consistency within the superposition of overlapping spherical atomic charge density model is obtained iteratively with the atomic configuration as the adjustable parameter. Results are presented for the electronic charge densities and local density of states. The origin and role of (magnetic) surface states is discussed by comparison with results of earlier bulk calculations

  10. A Novel Integral 5-DOFs Hybrid Magnetic Bearing with One Permanent Magnet Ring Used for Turboexpander

    Directory of Open Access Journals (Sweden)

    Bangcheng Han

    2014-01-01

    Full Text Available We propose a novel combined five-degrees-of-freedom (5-DOFs hybrid magnetic bearing (HMB with only one permanent magnet ring (PMR used for turboexpanders. It has two radial magnetic bearing (RMB units; each has four poles and one thrust magnetic bearing (TMB to control 5-DOFs. Based on one PMR, the bias flux of the two radial magnetic bearing units and the one thrust magnetic bearing unit is constructed. As a result, ultra-high-speed, lower power loss, small size, and low cost can be achieved. Furthermore, the equivalent magnetic circuit method and 3D finite element method (FEM are used to model and analyze the combined 5-DOFs HMB. The force-current, force-position, torque-coil currents, the torque-angle position, and the stiffness models of the combined 5-DOFs HMB are given. Moreover, its coupling problems between the RMB units and the AMB unit are also proposed in this paper. An example is given to clarify the mathematical models and the coupling problems, and the linearized models are proposed for the follow-up controller design.

  11. Magnetic ripple and the modeling of lower-hybrid current drive in tokamaks

    International Nuclear Information System (INIS)

    Peysson, Y.; Arslanbekov, R.; Basiuk, V.; Carrasco, J.; Litaudon, X.; Moreau, D.; Bizarro, J.P.

    1996-01-01

    Using ray-tracing, a detailed investigation of the lower hybrid (LH) wave propagation in presence of toroidal magnetic field ripple is presented. By coupling ray tracing with a one-dimensional relativistic Fokker-Planck code, simulations of LH experiments have been performed for the Tore Supra tokamak. Taking into account magnetic ripple in LH simulations, a better agreement is found between numerical predictions and experimental observations, such as non-thermal Bremsstrahlung emission, current profile, ripple-induced power losses in local magnetic mirrors, when plasma conditions correspond to the ' 'few passes' regime. (author)

  12. Preparation and Characterization of Graphene-Based Magnetic Hybrid Nano composite

    International Nuclear Information System (INIS)

    Jashiela Wani Jusin; Madzlan Aziz

    2016-01-01

    Graphene-based magnetic hybrid nano composite has the advantage of exhibiting better performance as platform or supporting materials to develop novel properties of composite by increasing selectivity of the targeted adsorbate. The hybrid nano material was prepared by mixing and hydrolysing iron (II) and iron (III) salt precursors in the presence of GO dispersion through coprecipitation method followed by in situ chemical reduction of GO. The effect of weight loading ratio of Fe to GO (4:1, 2.5:1, 1:1 and 1:4) on structural properties of the hybrid nano materials was investigated. The presence of characteristic peaks in FTIR spectra indicated that GO has been successfully oxidized from graphite while the decrease in oxygenated functional groups and peaks intensity evidenced the formation of hybrid nano materials through the subsequent reduction process. The presence of characteristic peaks in XRD pattern denoted that magnetite nanoparticles disappeared at higher loading of GO. TEM micrograph showed that the best distribution of iron oxide particles on the surface of hybrid nano material occurred when the loading ratio of Fe to GO was fixed at 2:5 to 1. The reduced graphene oxide (RGO) sheets in the hybrid materials showed less wrinkled sheet like structure compared to GO due to exfoliation and reduction process during the synthesis. The layered morphology of GO degrades at higher concentrations of iron oxide. (author)

  13. Hybrid permanent magnet gradient dipoles for the recycler ring at Fermilab

    International Nuclear Information System (INIS)

    Brown, B.C.; Dimarco, J.; Foster, G.W.; Glass, H.D.; Haggard, J.E.; Harding, D.J.; Jackson, G.R.; May, M.R.; Nicol, T.H.; Ostiguy, J.-F.; Schlabach, R.; Volk, J.T.

    1997-11-01

    Hybrid permanent magnets provide the magnetic fields for an anti- proton storage ring which is under construction at Fermilab. Using a combined function lattice, gradient magnets provide the bending, focusing and sextupole correction for the regular cells. Shorter magnets without sextupole are used in dispersion suppressor cells. These magnets use a 4.7 m ( 3 m) long iron shell for flux return, bricks of 25.4 mm thick strontium ferrite supply the flux and transversely tapered iron poles separated by aluminum spacers set the shape of the magnetic field. Central fields of 0.14 T with gradients of ∼6%/inch (∼13%/inch) are required. Field errors are expected to be less than 10 -4 of the bend field over an aperture of ±40 mm (horizontal) x ±20 mm (vertical). Design, procurement, fabrication, pole potential adjustment, field shape trimming and measured fields will be reported

  14. Coexistence of spin-triplet superconductivity with magnetism within a single mechanism for orbitally degenerate correlated electrons: statistically consistent Gutzwiller approximation

    International Nuclear Information System (INIS)

    Zegrodnik, M; Spałek, J; Bünemann, J

    2013-01-01

    An orbitally degenerate two-band Hubbard model is analyzed with the inclusion of the Hund's rule-induced spin-triplet even-parity paired states and their coexistence with magnetic ordering. The so-called statistically consistent Gutzwiller approximation (SGA) has been applied to the case of a square lattice. The superconducting gaps, the magnetic moment and the free energy are analyzed as a function of the Hund's rule coupling strength and the band filling. Also, the influence of the intersite hybridization on the stability of paired phases is discussed. In order to examine the effect of correlations the results are compared with those calculated earlier within the Hartree–Fock (HF) approximation combined with the Bardeen–Cooper–Schrieffer (BCS) approach. Significant differences between the two methods used (HF + BCS versus SGA + real-space pairing) appear in the stability regions of the considered phases. Our results supplement the analysis of this canonical model used widely in the discussions of pure magnetic phases with the detailed elaboration of the stability of the spin-triplet superconducting states and the coexistent magnetic-superconducting states. At the end, we briefly discuss qualitatively the factors that need to be included for a detailed quantitative comparison with the corresponding experimental results. (paper)

  15. Magnetism in Sc-doped ZnO with zinc vacancies: A hybrid density functional and GGA + U approaches

    KAUST Repository

    Kanoun, Mohammed; Goumri-Said, Souraya; Schwingenschlö gl, Udo; Manchon, Aurelien

    2012-01-01

    We investigate the zinc vacancy effects on the electronic structures and magnetic properties of Sc-doped ZnO, by performing first-principles calculations within both GGA + U and Heyd-Scuseria-Ernzerhof hybrid functional methods. We find that Sc impurities stabilize considerably Zn vacancies. The electronic and magnetic analysis shows a half metallic ferromagnetic character with a total magnetic moment of 2.01 μ B. The magnetism mainly stems from the O 2p states around the Zn vacancies. Calculations with the hybrid density functional agree with the GGA + U results but give an accurate description of the electronic structure for pure ZnO and Sc-doped ZnO with Zn vacancies. © 2012 Elsevier B.V. All rights reserved.

  16. Magnetism in Sc-doped ZnO with zinc vacancies: A hybrid density functional and GGA + U approaches

    KAUST Repository

    Kanoun, Mohammed

    2012-04-01

    We investigate the zinc vacancy effects on the electronic structures and magnetic properties of Sc-doped ZnO, by performing first-principles calculations within both GGA + U and Heyd-Scuseria-Ernzerhof hybrid functional methods. We find that Sc impurities stabilize considerably Zn vacancies. The electronic and magnetic analysis shows a half metallic ferromagnetic character with a total magnetic moment of 2.01 μ B. The magnetism mainly stems from the O 2p states around the Zn vacancies. Calculations with the hybrid density functional agree with the GGA + U results but give an accurate description of the electronic structure for pure ZnO and Sc-doped ZnO with Zn vacancies. © 2012 Elsevier B.V. All rights reserved.

  17. Carbon Nano-Allotrope/Magnetic Nanoparticle Hybrid Nanomaterials as T2 Contrast Agents for Magnetic Resonance Imaging Applications

    Directory of Open Access Journals (Sweden)

    Yunxiang Gao

    2018-02-01

    Full Text Available Magnetic resonance imaging (MRI is the most powerful tool for deep penetration and high-quality 3D imaging of tissues with anatomical details. However, the sensitivity of the MRI technique is not as good as that of the radioactive or optical imaging methods. Carbon-based nanomaterials have attracted significant attention in biomaterial research in recent decades due to their unique physical properties, versatile functionalization chemistry, as well as excellent biological compatibility. Researchers have employed various carbon nano-allotropes to develop hybrid MRI contrast agents for improved sensitivity. This review summarizes the new research progresses in carbon-based hybrid MRI contrast agents, especially those reported in the past five years. The review will only focus on T2-weighted MRI agents and will be categorized by the different carbon allotrope types and magnetic components. Considering the strong trend in recent bio-nanotechnology research towards multifunctional diagnosis and therapy, carbon-based MRI contrast agents integrated with other imaging modalities or therapeutic functions are also covered.

  18. Carbon nanotubes/magnetite hybrids prepared by a facile synthesis process and their magnetic properties

    International Nuclear Information System (INIS)

    Zhang Li; Ni, Qing-Qing; Natsuki, Toshiaki; Fu Yaqin

    2009-01-01

    In this paper, a facile synthesis process is proposed to prepare multiwalled carbon nanotubes/magnetite (MWCNTs/Fe 3 O 4 ) hybrids. The process involves two steps: (1) water-soluble CNTs are synthesized by one-pot modification using potassium persulfate (KPS) as oxidant. (2) Fe 3 O 4 is assembled along the treated CNTs by employing a facile hydrothermal process with the presence of hydrazine hydrate as the mineralizer. The treated CNTs can be easily dispersed in aqueous solvent. Moreover, X-ray photoelectron spectroscopy (XPS) analysis reveals that several functional groups such as potassium carboxylate (-COOK), carbonyl (-C=O) and hydroxyl (-C-OH) groups are formed on the nanotube surfaces. The MWCNTs/Fe 3 O 4 hybrids are characterized with respect to crystal structure, morphology, element composition and magnetic property by X-ray diffraction (XRD), transmission electron microscopy (TEM), XPS and superconducting quantum interference device (SQUID) magnetometer. XRD and TEM results show that the Fe 3 O 4 nanoparticles with diameter in the range of 20-60 nm were firmly assembled on the nanotube surface. The magnetic property investigation indicated that the CNTs/Fe 3 O 4 hybrids exhibit a ferromagnetic behavior and possess a saturation magnetization of 32.2 emu/g. Further investigation indicates that the size of assembled Fe 3 O 4 nanoparticles can be turned by varying experiment factors. Moreover, a probable growth mechanism for the preparation of CNTs/Fe 3 O 4 hybrids was discussed.

  19. A model for cytoplasmic rheology consistent with magnetic twisting cytometry.

    Science.gov (United States)

    Butler, J P; Kelly, S M

    1998-01-01

    Magnetic twisting cytometry is gaining wide applicability as a tool for the investigation of the rheological properties of cells and the mechanical properties of receptor-cytoskeletal interactions. Current technology involves the application and release of magnetically induced torques on small magnetic particles bound to or inside cells, with measurements of the resulting angular rotation of the particles. The properties of purely elastic or purely viscous materials can be determined by the angular strain and strain rate, respectively. However, the cytoskeleton and its linkage to cell surface receptors display elastic, viscous, and even plastic deformation, and the simultaneous characterization of these properties using only elastic or viscous models is internally inconsistent. Data interpretation is complicated by the fact that in current technology, the applied torques are not constant in time, but decrease as the particles rotate. This paper describes an internally consistent model consisting of a parallel viscoelastic element in series with a parallel viscoelastic element, and one approach to quantitative parameter evaluation. The unified model reproduces all essential features seen in data obtained from a wide variety of cell populations, and contains the pure elastic, viscoelastic, and viscous cases as subsets.

  20. Development of an extraction type magnetometer under high pressure and high magnetic fields over 200 kOe in the hybrid magnet

    International Nuclear Information System (INIS)

    Koyama, K; Miura, S; Okada, H; Watanabe, K

    2006-01-01

    An extraction-type magnetometer has been developed, which is performed under pressures up to 12 kbar using a miniature high-pressure clamp-cell, in magnetic fields up to 270 kOe using our hybrid magnet and at the temperature range from 1.5 to 300 K. Magnetization curves can be measured for absolute value over 0.04 emu. We confirmed that resolution is about ±0.01 emu under high pressures and high magnetic fields if a sample has the magnetic moment of about 3 emu. For demonstrating the ability of the instrument, high field magnetization curves for SmMn 2 Ge 2 under high pressures are presented

  1. Decentralized method for load sharing and power management in a hybrid single/three-phase islanded microgrid consisting of hybrid source PV/battery units

    DEFF Research Database (Denmark)

    Karimi, Yaser; Guerrero, Josep M.; Oraee, Hashem

    2016-01-01

    This paper proposes a new decentralized power management and load sharing method for a photovoltaic based, hybrid single/three-phase islanded microgrid consisting of various PV units, battery units and hybrid PV/battery units. The proposed method takes into account the available PV power...... and battery conditions of the units to share the load among them and power flow among different phases is performed automatically through three-phase units. Modified active power-frequency droop functions are used according to operating states of each unit and the frequency level is used as trigger...... for switching between the states. Efficacy of the proposed method in different load, PV generation and battery conditions is validated experimentally in a microgrid lab prototype consisted of one three-phase unit and two single-phase units....

  2. Effect of c-f hybridization on electric and magnetic properties of some Heavy Fermion (HF) systems

    Energy Technology Data Exchange (ETDEWEB)

    Sahoo, J., E-mail: jitendrasahoo2008@gmail.com [Regional Office of Vocational Education, Sambalpur, Odisha -768 004 (India); Nayak, P. [School of Physics, Sambalpur University, Sambalpur, Odisha - 768 019 (India)

    2017-02-01

    Representing the heavy fermion systems by the Periodic Anderson Model (PAM), we have used Zubarev technique to see the effect of c-f hybridization on the temperature dependence of resistivity and magnetic susceptibility. The calculated resistivity and magnetic susceptibility show the general features observed in these materials experimentally. Further, we have shown how the strength of hybridization as well as the position of the f-level affects both the properties and the Kondo temperature of these systems.

  3. Subsolar magnetopause observation and kinetic simulation of a tripolar guide magnetic field perturbation consistent with a magnetic island

    Science.gov (United States)

    Eriksson, S.; Cassak, P. A.; Retinò, A.; Mozer, F. S.

    2016-04-01

    The Polar satellite recorded two reconnection exhausts within 6 min on 1 April 2001 across a subsolar magnetopause that displayed a symmetric plasma density, but different out-of-plane magnetic field signatures for similar solar wind conditions. The first magnetopause crossing displayed a bipolar guide field variation in a weak external guide field consistent with a symmetric Hall field from a single X line. The subsequent crossing represents the first observation of a tripolar guide field perturbation at Earth's magnetopause in a strong guide field. This perturbation consists of a significant guide field enhancement between two narrow guide field depressions. A particle-in-cell simulation for the prevailing conditions across this second event resulted in a magnetic island between two simulated X lines across which a tripolar guide field developed consistent with the observation. The simulated island supports a scenario whereby Polar encountered the asymmetric quadrupole Hall magnetic fields between two X lines for symmetric conditions across the magnetopause.

  4. Sol-gel hybrid materials for aerospace applications: Chemical characterization and comparative investigation of the magnetic properties

    Science.gov (United States)

    Catauro, Michelina; Mozzati, Maria Cristina; Bollino, Flavia

    2015-12-01

    In the material science field, weightless conditions can be successfully used to understand the relationship between manufacturing process, structure and properties of the obtained materials. Aerogels with controlled microstructure could be obtained by sol-gel methods in microgravity environment, simulated using magnetic levitation if they are diamagnetic. In the present work, a sol-gel route was used to synthesize class I, organic-inorganic nanocomposite materials. Two different formulations were prepared: the former consisted in a SiO2 matrix in which different percentages of polyethylene glycol (PEG) were incorporated, the latter was a ZrO2 matrix entrapping different amounts of poly (ε-caprolactone) (PCL). Fourier Transform Infrared Spectroscopy (FT-IR) detected that the organic and the inorganic components in both the formulation interact by means of hydrogen bonds. X-ray diffraction (XRD) analysis highlighted the amorphous nature of the synthesized materials and Scanning Electron Microscope (SEM) showed that they have homogeneous morphology and are nanocomposites. Superconducting Quantum Interference Device (SQUID) magnetometry confirmed the expected diamagnetic character of those hybrid systems. The obtained results were compared to those achieved in previous studies regarding the influence of the polymer amount on the magnetic properties of SiO2/PCL and ZiO2/PEG hybrids, in order to understand how the diamagnetic susceptibility is influenced by variation of both the inorganic matrix and organic component.

  5. Hybrid excited claw pole generator with skewed and non-skewed permanent magnets

    Science.gov (United States)

    Wardach, Marcin

    2017-12-01

    This article contains simulation results of the Hybrid Excited Claw Pole Generator with skewed and non-skewed permanent magnets on rotor. The experimental machine has claw poles on two rotor sections, between which an excitation control coil is located. The novelty of this machine is existence of non-skewed permanent magnets on claws of one part of the rotor and skewed permanent magnets on the second one. The paper presents the construction of the machine and analysis of the influence of the PM skewing on the cogging torque and back-emf. Simulation studies enabled the determination of the cogging torque and the back-emf rms for both: the strengthening and the weakening of magnetic field. The influence of the magnets skewing on the cogging torque and the back-emf rms have also been analyzed.

  6. Hybridization and magnetism in U(Ru, Rh)X, X=Al, Ga

    NARCIS (Netherlands)

    Sechovsky, V.; Havela, L.; Boer, de F.R.; Veenhuizen, P.A.; Sugiyama, K.; Kuroda, T.; Sugiura, T.; Ono, M.; Date, M.; Yamagishi, A.

    1992-01-01

    Results of magnetic studies of pseudoternary U(Ru, Rh)Al and U(Ru, Rh)Ga systems are presented. Reduction of the 5f-4d hybridization with increasing Rh content is reflected in a gradual transition from paramagnetic (spin fluctuation) behaviour of URuX to ferromagnetism in URhX. The huge uniaxial

  7. A hybrid magnetic/complementary metal oxide semiconductor three-context memory bit cell for non-volatile circuit design

    International Nuclear Information System (INIS)

    Jovanović, B.; Brum, R. M.; Torres, L.

    2014-01-01

    After decades of continued scaling to the beat of Moore's law, it now appears that conventional silicon based devices are approaching their physical limits. In today's deep-submicron nodes, a number of short-channel and quantum effects are emerging that affect the manufacturing process, as well as, the functionality of the microelectronic systems-on-chip. Spintronics devices that exploit both the intrinsic spin of the electron and its associated magnetic moment, in addition to its fundamental electronic charge, are promising solutions to circumvent these scaling threats. Being compatible with the CMOS technology, such devices offer a promising synergy of radiation immunity, infinite endurance, non-volatility, increased density, etc. In this paper, we present a hybrid (magnetic/CMOS) cell that is able to store and process data both electrically and magnetically. The cell is based on perpendicular spin-transfer torque magnetic tunnel junctions (STT-MTJs) and is suitable for use in magnetic random access memories and reprogrammable computing (non-volatile registers, processor cache memories, magnetic field-programmable gate arrays, etc). To demonstrate the potential our hybrid cell, we physically implemented a small hybrid memory block using 45 nm × 45 nm round MTJs for the magnetic part and 28 nm fully depleted silicon on insulator (FD-SOI) technology for the CMOS part. We also report the cells measured performances in terms of area, robustness, read/write speed and energy consumption

  8. A hybrid magnetic/complementary metal oxide semiconductor three-context memory bit cell for non-volatile circuit design

    Energy Technology Data Exchange (ETDEWEB)

    Jovanović, B., E-mail: bojan.jovanovic@lirmm.fr, E-mail: lionel.torres@lirmm.fr; Brum, R. M.; Torres, L. [LIRMM—University of Montpellier 2/UMR CNRS 5506, 161 Rue Ada, 34095 Montpellier (France)

    2014-04-07

    After decades of continued scaling to the beat of Moore's law, it now appears that conventional silicon based devices are approaching their physical limits. In today's deep-submicron nodes, a number of short-channel and quantum effects are emerging that affect the manufacturing process, as well as, the functionality of the microelectronic systems-on-chip. Spintronics devices that exploit both the intrinsic spin of the electron and its associated magnetic moment, in addition to its fundamental electronic charge, are promising solutions to circumvent these scaling threats. Being compatible with the CMOS technology, such devices offer a promising synergy of radiation immunity, infinite endurance, non-volatility, increased density, etc. In this paper, we present a hybrid (magnetic/CMOS) cell that is able to store and process data both electrically and magnetically. The cell is based on perpendicular spin-transfer torque magnetic tunnel junctions (STT-MTJs) and is suitable for use in magnetic random access memories and reprogrammable computing (non-volatile registers, processor cache memories, magnetic field-programmable gate arrays, etc). To demonstrate the potential our hybrid cell, we physically implemented a small hybrid memory block using 45 nm × 45 nm round MTJs for the magnetic part and 28 nm fully depleted silicon on insulator (FD-SOI) technology for the CMOS part. We also report the cells measured performances in terms of area, robustness, read/write speed and energy consumption.

  9. Density Functional Theory applied to magnetic materials: Mn{sub 3}O{sub 4} at different hybrid functionals

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, R.A.P. [Department of Chemistry, State University of Ponta Grossa, Av. General Carlos Cavalcanti, 4748, 84030-900 Ponta Grossa, PR (Brazil); Lazaro, S.R. de, E-mail: srlazaro@upeg.br [Department of Chemistry, State University of Ponta Grossa, Av. General Carlos Cavalcanti, 4748, 84030-900 Ponta Grossa, PR (Brazil); Pianaro, S.A. [Department of Materials Engineering, State University of Ponta Grossa, Av. General Carlos Cavalcanti, 4748, 84030-900 Ponta Grossa, PR (Brazil)

    2015-10-01

    Antiferromagnetic Mn{sub 3}O{sub 4} in spinel structure was investigated employing the Density Functional Theory at different hybrid functionals with default HF exchange percentage. Structural, electronic and magnetic properties were examined. Structural results were in agreement with experimental and Hartree–Fock results showing that the octahedral site was distorted by the Jahn–Teller effect, which changed the electron density distribution. Band-gap results for B3LYP and B3PW hybrid functionals were closer to the experimental when compared to PBE0. Mulliken Population Analysis revealed magnetic moments very close to ideal d{sup 4} and d{sup 5} electron configurations of Mn{sup 3+} and Mn{sup 2+}, respectively. Electron density maps are useful to determine that oxygen atoms mediate the electron transfer between octahedral and tetrahedral clusters. Magnetic properties were investigated from theoretical results for exchange coupling constants. Intratetrahedral and tetra-octahedral interactions were observed to be antiferromagnetic, whereas, octahedral sites presented antiferromagnetic interactions in the same layer and ferromagnetic in adjacent layers. Results showed that only default B3LYP was successful to describe magnetic properties of antiferromagnetic materials in agreement with experimental results. - Highlights: • We study structural, electronic and magnetic properties of antiferromagnetic Mn{sub 3}O{sub 4}. • B3LYP, B3PW and PBE0 hybrid functionals are compared. • B3LYP and B3PW hybrid functionals are better to band-gap calculations. • Only default B3LYP was successful to describe exchange interactions for Mn{sub 3}O{sub 4}.

  10. Calculation of the Initial Magnetic Field for Mercury's Magnetosphere Hybrid Model

    Science.gov (United States)

    Alexeev, Igor; Parunakian, David; Dyadechkin, Sergey; Belenkaya, Elena; Khodachenko, Maxim; Kallio, Esa; Alho, Markku

    2018-03-01

    Several types of numerical models are used to analyze the interactions of the solar wind flow with Mercury's magnetosphere, including kinetic models that determine magnetic and electric fields based on the spatial distribution of charges and currents, magnetohydrodynamic models that describe plasma as a conductive liquid, and hybrid models that describe ions kinetically in collisionless mode and represent electrons as a massless neutralizing liquid. The structure of resulting solutions is determined not only by the chosen set of equations that govern the behavior of plasma, but also by the initial and boundary conditions; i.e., their effects are not limited to the amount of computational work required to achieve a quasi-stationary solution. In this work, we have proposed using the magnetic field computed by the paraboloid model of Mercury's magnetosphere as the initial condition for subsequent hybrid modeling. The results of the model have been compared to measurements performed by the Messenger spacecraft during a single crossing of the magnetosheath and the magnetosphere. The selected orbit lies in the terminator plane, which allows us to observe two crossings of the bow shock and the magnetopause. In our calculations, we have defined the initial parameters of the global magnetospheric current systems in a way that allows us to minimize paraboloid magnetic field deviation along the trajectory of the Messenger from the experimental data. We have shown that the optimal initial field parameters include setting the penetration of a partial interplanetary magnetic field into the magnetosphere with a penetration coefficient of 0.2.

  11. Hybrid excited claw pole generator with skewed and non-skewed permanent magnets

    Directory of Open Access Journals (Sweden)

    Wardach Marcin

    2017-12-01

    Full Text Available This article contains simulation results of the Hybrid Excited Claw Pole Generator with skewed and non-skewed permanent magnets on rotor. The experimental machine has claw poles on two rotor sections, between which an excitation control coil is located. The novelty of this machine is existence of non-skewed permanent magnets on claws of one part of the rotor and skewed permanent magnets on the second one. The paper presents the construction of the machine and analysis of the influence of the PM skewing on the cogging torque and back-emf. Simulation studies enabled the determination of the cogging torque and the back-emf rms for both: the strengthening and the weakening of magnetic field. The influence of the magnets skewing on the cogging torque and the back-emf rms have also been analyzed.

  12. Fluxball magnetic field analysis using a hybrid analytical/FEM/BEM with equivalent currents

    International Nuclear Information System (INIS)

    Fernandes, João F.P.; Camilo, Fernando M.; Machado, V. Maló

    2016-01-01

    In this paper, a fluxball electric machine is analyzed concerning the magnetic flux, force and torque. A novel method is proposed based in a special hybrid FEM/BEM (Finite Element Method/Boundary Element Method) with equivalent currents by using an analytical treatment for the source field determination. The method can be applied to evaluate the magnetic field in axisymmetric problems, in the presence of several magnetic materials. Same results obtained by a commercial Finite Element Analysis tool are presented for validation purposes with the proposed method. - Highlights: • The Fluxball machine magnetic field is analyzed by a new FEM/BEM/Analytical method. • The method is adequate for axisymmetric non homogeneous magnetic field problems. • The source magnetic field is evaluated considering a non-magnetic equivalent problem. • Material magnetization vectors are accounted by using equivalent currents. • A strong reduction of the finite element domain is achieved.

  13. Extraordinary magnetoresistance in semiconductor/metal hybrids: A review

    KAUST Repository

    Sun, J.; Kosel, Jü rgen

    2013-01-01

    The Extraordinary Magnetoresistance (EMR) effect is a change in the resistance of a device upon the application of a magnetic field in hybrid structures, consisting of a semiconductor and a metal. The underlying principle of this phenomenon is a

  14. Design and Analysis of the AlNiCo Hybrid Magnet in EMS Maglev Vehicles

    Directory of Open Access Journals (Sweden)

    Lv Chao

    2017-01-01

    Full Text Available In order to solve the problem of hybrid electromagnet lock orbit, we design a new type of AlNiCo-NdFeB hybrid levitation electromagnet. The theoretical analysis has be carried on and mathematical model is established for AlNiCo-NdFeB hybrid levitation electromagnet. Through two dimensional simulation, the electromagnetic characteristics of the suspended electromagnet are analyzed in the 3 typical operating conditions , which are in heavy load at gap 8mm, in full load at gap 16mm and in no-load at gap 3mm. And it’s compared with the traditional electromagnetic magnet and NdFeB hybrid electromagnet. Calculation and analysis show that the new hybrid levitation electromagnet can effectively solve the problems of the electromagnet lock orbit, at the same time, have a good dynamic performance and suspension regulation performance.

  15. Effect of magnetic and density fluctuations on the propagation of lower hybrid waves in tokamaks

    Science.gov (United States)

    Vahala, George; Vahala, Linda; Bonoli, Paul T.

    1992-12-01

    Lower hybrid waves have been used extensively for plasma heating, current drive, and ramp-up as well as sawteeth stabilization. The wave kinetic equation for lower hybrid wave propagation is extended to include the effects of both magnetic and density fluctuations. This integral equation is then solved by Monte Carlo procedures for a toroidal plasma. It is shown that even for magnetic/density fluctuation levels on the order of 10-4, there are significant magnetic fluctuation effects on the wave power deposition into the plasma. This effect is quite pronounced if the magnetic fluctuation spectrum is peaked within the plasma. For Alcator-C-Mod [I. H. Hutchinson and the Alcator Group, Proceedings of the IEEE 13th Symposium on Fusion Engineering (IEEE, New York, 1990), Cat. No. 89CH 2820-9, p. 13] parameters, it seems possible to be able to infer information on internal magnetic fluctuations from hard x-ray data—especially since the effects of fluctuations on electron power density can explain the hard x-ray data from the JT-60 tokamak [H. Kishimoto and JT-60 Team, in Plasma Physics and Controlled Fusion (International Atomic Energy Agency, Vienna, 1989), Vol. I, p. 67].

  16. A hybrid analytical model for open-circuit field calculation of multilayer interior permanent magnet machines

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhen [School of Electrical Engineering and Automation, Tianjin University, Tianjin 300072 (China); Xia, Changliang [School of Electrical Engineering and Automation, Tianjin University, Tianjin 300072 (China); Tianjin Engineering Center of Electric Machine System Design and Control, Tianjin 300387 (China); Yan, Yan, E-mail: yanyan@tju.edu.cn [School of Electrical Engineering and Automation, Tianjin University, Tianjin 300072 (China); Geng, Qiang [Tianjin Engineering Center of Electric Machine System Design and Control, Tianjin 300387 (China); Shi, Tingna [School of Electrical Engineering and Automation, Tianjin University, Tianjin 300072 (China)

    2017-08-01

    Highlights: • A hybrid analytical model is developed for field calculation of multilayer IPM machines. • The rotor magnetic field is calculated by the magnetic equivalent circuit method. • The field in the stator and air-gap is calculated by subdomain technique. • The magnetic scalar potential on rotor surface is modeled as trapezoidal distribution. - Abstract: Due to the complicated rotor structure and nonlinear saturation of rotor bridges, it is difficult to build a fast and accurate analytical field calculation model for multilayer interior permanent magnet (IPM) machines. In this paper, a hybrid analytical model suitable for the open-circuit field calculation of multilayer IPM machines is proposed by coupling the magnetic equivalent circuit (MEC) method and the subdomain technique. In the proposed analytical model, the rotor magnetic field is calculated by the MEC method based on the Kirchhoff’s law, while the field in the stator slot, slot opening and air-gap is calculated by subdomain technique based on the Maxwell’s equation. To solve the whole field distribution of the multilayer IPM machines, the coupled boundary conditions on the rotor surface are deduced for the coupling of the rotor MEC and the analytical field distribution of the stator slot, slot opening and air-gap. The hybrid analytical model can be used to calculate the open-circuit air-gap field distribution, back electromotive force (EMF) and cogging torque of multilayer IPM machines. Compared with finite element analysis (FEA), it has the advantages of faster modeling, less computation source occupying and shorter time consuming, and meanwhile achieves the approximate accuracy. The analytical model is helpful and applicable for the open-circuit field calculation of multilayer IPM machines with any size and pole/slot number combination.

  17. HTMR: an experimental tokamak reactor with hybrid copper/superconductor toroidal field magnet

    International Nuclear Information System (INIS)

    Avanzini, P.G.; Raia, G.; Rosatelli, F.; Zampaglione, V.

    1985-01-01

    The feasibility of a hybrid configuration superconducting coils/copper coils for a next generation tokamak TF magnet has been investigated. On the basis of this hybrid solution, the conceptual design has been developed for a medium-high toroidal field tokamak reactor (HTMR). The results of this study show the possibility of designing a tokamak reactor with reduced size in comparison with other INTOR like devices, still gaining some margins in front of the uncertainties in the scaling laws for plasma physics parameters and retaining the presence of a blanket with a tritium breeding ratio of about 1

  18. Research on Hybrid Vehicle Drivetrain

    Science.gov (United States)

    Xie, Zhongzhi

    Hybrid cars as a solution to energy saving, emission reduction measures, have received widespread attention. Motor drive system as an important part of the hybrid vehicles as an important object of study. Based on the hybrid electric vehicle powertrain control system for permanent magnet synchronous motor as the object of study. Can be applied to hybrid car compares the characteristics of traction motors, chose permanent magnet synchronous Motors as drive motors for hybrid vehicles. Building applications in hybrid cars in MATLAB/Simulink simulation model of permanent-magnet synchronous motor speed control system and analysis of simulation results.

  19. Spin interactions in Graphene-Single Molecule Magnets Hybrids

    Science.gov (United States)

    Cervetti, Christian; Rettori, Angelo; Pini, Maria Gloria; Cornia, Andrea; Repollés, Aña; Luis, Fernando; Rauschenbach, Stephan; Dressel, Martin; Kern, Klaus; Burghard, Marko; Bogani, Lapo

    2014-03-01

    Graphene is a potential component of novel spintronics devices owing to its long spin diffusion length. Besides its use as spin-transport channel, graphene can be employed for the detection and manipulation of molecular spins. This requires an appropriate coupling between the sheets and the single molecular magnets (SMM). Here, we present a comprehensive characterization of graphene-Fe4 SMM hybrids. The Fe4 clusters are anchored non-covalently to the graphene following a diffusion-limited assembly and can reorganize into random networks when subjected to slightly elevated temperature. Molecules anchored on graphene sheets show unaltered static magnetic properties, whilst the quantum dynamics is profoundly modulated. Interaction with Dirac fermions becomes the dominant spin-relaxation channel, with observable effects produced by graphene phonons and reduced dipolar interactions. Coupling to graphene drives the spins over Villain's threshold, allowing the first observation of strongly-perturbative tunneling processes. Preliminary spin-transport experiments at low-temperature are further presented.

  20. {pi}-{pi} Interactions and magnetic properties in a series of hybrid inorganic-organic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, M.; Lemus-Santana, A.A. [Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada, Unidad Legaria, Instituto Politecnico Nacional, Mexico, D. F. (Mexico); Rodriguez-Hernandez, J. [Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada, Unidad Legaria, Instituto Politecnico Nacional, Mexico, D. F. (Mexico); Instituto de Ciencia y Tecnologia de Materiales, Universidad de La Habana (Cuba); Knobel, M. [Instituto de Fisica ' Gleb Wataghin' , Universidade Estadual de Campinas, SP (Brazil); Reguera, E., E-mail: edilso.reguera@gmail.com [Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada, Unidad Legaria, Instituto Politecnico Nacional, Mexico, D. F. (Mexico)

    2013-01-15

    The series of hybrid inorganic-organic solids T(Im){sub 2}[Ni(CN){sub 4}] with T=Fe, Co, Ni and Im=imidazole were prepared by soft chemical routes from aqueous solutions of the involved building units: imidazole, T{sup 2+} metal and the [Ni(CN){sub 4}]{sup 2-} anionic block. The obtained samples were characterized from infrared and UV-vis spectroscopies, and thermogravimetric, X-ray diffraction and magnetic measurements. Anhydrous solids which crystallize with a monoclinic unit cell, in the I2/a space group with four formula units per cell (Z=4) were obtained. Their crystal structure was solved ab initio from the recorded X-ray powder patterns and then refined by the Rietveld method. The metal T is found with octahedral coordination to four N ends of CN groups and two imidazole molecules while the inner Ni atom preserves its planar coordination. The system of layers remains stacked in an ordered 3D structure through dipole-dipole and {pi}-{pi} interactions between imidazole rings from neighboring layers. In this way, a pillared structure is achieved without requiring the coordination of both nitrogen atoms from imidazole ring. The recorded magnetic data indicate the occurrence of a predominant ferromagnetic interaction at low temperature for Co and Ni but not for Fe. Such magnetic ordering is more favorable for Ni with transition temperature of 14.67 K, which was ascribed to the relatively high polarizing power for this metal. Within the considered T metals, to nickel the highest electron-withdrawing ability corresponds and this leads to an increase for the metal-ligand electron clouds overlapping and to a stronger {pi}-{pi} attractive interaction, two factors that result into a higher magnetic ordering temperature. - Graphical Abstract: Magnetic ordering through the {pi}-{pi} interaction between the imidazole rings. Highlights: Black-Right-Pointing-Pointer Hybrid inorganic-organic solids. Black-Right-Pointing-Pointer Hybrid inorganic-organic molecular based

  1. Analysis and optimization of hybrid excitation permanent magnet synchronous generator for stand-alone power system

    Science.gov (United States)

    Wang, Huijun; Qu, Zheng; Tang, Shaofei; Pang, Mingqi; Zhang, Mingju

    2017-08-01

    In this paper, electromagnetic design and permanent magnet shape optimization for permanent magnet synchronous generator with hybrid excitation are investigated. Based on generator structure and principle, design outline is presented for obtaining high efficiency and low voltage fluctuation. In order to realize rapid design, equivalent magnetic circuits for permanent magnet and iron poles are developed. At the same time, finite element analysis is employed. Furthermore, by means of design of experiment (DOE) method, permanent magnet is optimized to reduce voltage waveform distortion. Finally, the validity of proposed design methods is validated by the analytical and experimental results.

  2. A simple model based magnet sorting algorithm for planar hybrid undulators

    International Nuclear Information System (INIS)

    Rakowsky, G.

    2010-01-01

    Various magnet sorting strategies have been used to optimize undulator performance, ranging from intuitive pairing of high- and low-strength magnets, to full 3D FEM simulation with 3-axis Helmholtz coil magnet data. In the extreme, swapping magnets in a full field model to minimize trajectory wander and rms phase error can be time consuming. This paper presents a simpler approach, extending the field error signature concept to obtain trajectory displacement, kick angle and phase error signatures for each component of magnetization error from a Radia model of a short hybrid-PM undulator. We demonstrate that steering errors and phase errors are essentially decoupled and scalable from measured X, Y and Z components of magnetization. Then, for any given sequence of magnets, rms trajectory and phase errors are obtained from simple cumulative sums of the scaled displacements and phase errors. The cost function (a weighted sum of these errors) is then minimized by swapping magnets, using one's favorite optimization algorithm. This approach was applied recently at NSLS to a short in-vacuum undulator, which required no subsequent trajectory or phase shimming. Trajectory and phase signatures are also obtained for some mechanical errors, to guide 'virtual shimming' and specifying mechanical tolerances. Some simple inhomogeneities are modeled to assess their error contributions.

  3. Efficient self-consistency for magnetic tight binding

    Science.gov (United States)

    Soin, Preetma; Horsfield, A. P.; Nguyen-Manh, D.

    2011-06-01

    Tight binding can be extended to magnetic systems by including an exchange interaction on an atomic site that favours net spin polarisation. We have used a published model, extended to include long-ranged Coulomb interactions, to study defects in iron. We have found that achieving self-consistency using conventional techniques was either unstable or very slow. By formulating the problem of achieving charge and spin self-consistency as a search for stationary points of a Harris-Foulkes functional, extended to include spin, we have derived a much more efficient scheme based on a Newton-Raphson procedure. We demonstrate the capabilities of our method by looking at vacancies and self-interstitials in iron. Self-consistency can indeed be achieved in a more efficient and stable manner, but care needs to be taken to manage this. The algorithm is implemented in the code PLATO. Program summaryProgram title:PLATO Catalogue identifier: AEFC_v2_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEFC_v2_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 228 747 No. of bytes in distributed program, including test data, etc.: 1 880 369 Distribution format: tar.gz Programming language: C and PERL Computer: Apple Macintosh, PC, Unix machines Operating system: Unix, Linux, Mac OS X, Windows XP Has the code been vectorised or parallelised?: Yes. Up to 256 processors tested RAM: Up to 2 Gbytes per processor Classification: 7.3 External routines: LAPACK, BLAS and optionally ScaLAPACK, BLACS, PBLAS, FFTW Catalogue identifier of previous version: AEFC_v1_0 Journal reference of previous version: Comput. Phys. Comm. 180 (2009) 2616 Does the new version supersede the previous version?: Yes Nature of problem: Achieving charge and spin self-consistency in magnetic tight binding can be very

  4. Characterization of a rotary hybrid multimodal energy harvester

    Science.gov (United States)

    Larkin, Miles R.; Tadesse, Yonas

    2014-04-01

    In this study, experimental characterizations of a new hybrid energy harvesting device consisting of piezoelectric and electromagnetic transducers are presented. The generator, to be worn on the legs or arms of a person, harnesses linear motion and impact forces from human motion to generate electrical energy. The device consists of an unbalanced rotor made of three piezoelectric beams which have permanent magnets attached to the ends. Impact forces cause the beams to vibrate, generating a voltage across their electrodes and linear motion causes the rotor to spin. As the rotor spins, the magnets pass over ten electromagnetic coils mounted to the base, inducing a current through the wire. Several design related issues were investigated experimentally in order to optimize the hybrid device for maximum power generation. Further experiments were conducted on the system to characterize the energy harvesting capabilities of the device, all of which are presented in this study.

  5. New hybrid magnet system for structure research at highest magnetic fields and temperatures in the millikelvin region

    International Nuclear Information System (INIS)

    Smeibidl, Peter; Ehmler, Hartmut; Tennant, Alan; Bird, Mark

    2012-01-01

    The Helmholtz Centre Berlin (HZB) is a user facility for the study of structure and dynamics with neutrons and synchrotron radiation with special emphasis on experiments under extreme conditions. Neutron scattering is uniquely suited to study magnetic properties on a microscopic length scale, because neutrons have comparable wavelengths and, due to their magnetic moment, they interact with the atomic magnetic moments. At HZB a dedicated instrument for neutron scattering at extreme magnetic fields and low temperatures is under construction, the Extreme Environment Diffractometer ExED. It is projected according to the time-of-flight principle for elastic and inelastic neutron scattering and for the special geometric constraints of analysing samples in a high field magnet. The new hybrid magnet will not only allow for novel experiments, it will be at the forefront of development in magnet technology itself. With a set of superconducting and resistive coils a maximum field above 30 T will be possible. To compromise between the needs of the magnet design for highest fields and the concept of the neutron instrument, the magnetic field will be generated by means of a coned, resistive inner solenoid and a superconducting outer solenoid with horizontal field orientation. To allow for experiments down to Millikelvin Temperatures the installation of a 3 He or a dilution cryostat with a closed cycle precooling stage is foreseen.

  6. Research of a hybrid undulator

    International Nuclear Information System (INIS)

    Ma Youwu; Wu Bing; Liu Bo

    1995-12-01

    A 1.5 m tapered hybrid undulator has been designed and built for mid-infrared free electron laser experiments at CIAE. The undulator utilizes the REC-steel hybrid configuration. The magnetic gap and magnetic field taper can be continuously adjusted. The rms error of the peak field is less than 0.53%. The electron trajectory deviation is around 0.03 mm. The design of undulator, sorting of magnets in hybrid undulator using simulated annealing technique, the motion of electron beam in the ideal and measured magnetic field, magnetic field measurement technique and magnetic field adjustment are described. (6 refs., 10 figs., 1 tab)

  7. Novel multifunctional NiFe_2O_4/ZnO hybrids for dye removal by adsorption, photocatalysis and magnetic separation

    International Nuclear Information System (INIS)

    Zhu, Hua-Yue; Jiang, Ru; Fu, Yong-Qian; Li, Rong-Rong; Yao, Jun; Jiang, Sheng-Tao

    2016-01-01

    Graphical abstract: - Highlights: • The NiFe_2O_4 was decorated on ZnO surface by a hydrothermal method. • NiFe_2O_4/ZnO hybrids show high adsorption capacity and excellent photostability. • The main active species in dye decolorization by NiFe_2O_4/ZnO hybrids are ·OH and h"+. • NiFe_2O_4/ZnO hybrids can be easily separated by an external magnet. - Abstract: Novel multifunctional NiFe_2O_4/ZnO hybrids were prepared by a hydrothermal method and their physicochemical properties were characterized by XRD, SEM, TEM, TGA, VSM, BET and UV–vis DRS. The adsorption and photocatalytic performance of NiFe_2O_4/ZnO hybrids were systematically investigated using congo red as a model contaminant. With the introduction of NiFe_2O_4, NiFe_2O_4/ZnO hybrids can absorb the whole light from 300 nm to 700 nm. The adsorption capacity (221.73 mg g"−"1) of NiFe_2O_4/ZnO hybrids is higher than those of NiFe_2O_4, ZnO and mechanically mixed NiFe_2O_4/ZnO hybrids. The removal of congo red solution (20 mg L"−"1) by NiFe_2O_4/ZnO hybrids was about 94.55% under simulated solar light irradiation for 10 min. ·OH and h"+ play important roles in the decolorization of congo red solution by NiFe_2O_4/ZnO hybrids under simulated solar light irradiation. The decolorization efficiency of congo red solution is 97.23% for the fifth time by NiFe_2O_4/ZnO hybrids under simulate solar light irradiation, indicating the high photostability and durability. NO_3"− and Cl"− anions which are ubiquitous components in dye-containing wastewater have negligible influence on the effectiveness of NiFe_2O_4/ZnO hybrids. Moreover, the magnetic NiFe_2O_4/ZnO hybrids can be easily separated from the reacted solution by an external magnet.

  8. Nanotechnology : emerging applications of cellulose-based green magnetic nanocomposites

    Science.gov (United States)

    Tao Wang; Zhiyong Cai; Lei Liu; Ilker S. Bayer; Abhijit Biswas

    2010-01-01

    In recent years, a new type of nanocomposite – cellulose based hybrid nanocomposites, which adopts cellulose nanofibers as matrices, has been intensively developed. Among these materials, hybrid nanocomposites consisting of cellulosic fibers and magnetic nanoparticles have recently attracted much attention due to their potential novel applications in biomedicine,...

  9. A Hybrid Extended Kalman Filter as an Observer for a Pot-Electro-Magnetic Actuator

    International Nuclear Information System (INIS)

    Schmidt, Simon; Mercorelli, Paolo

    2017-01-01

    This paper deals with an application in which a hybrid extended Kalman Filter (HEKF) is used to estimate state variables in a U-shaped electro-magnetic actuator to be used in mechanical systems. In this context a hybrid Kalman Filter is the one which switches between different models. The paper proposes a hybrid model for an extended Kalman Filter to be used as an observer to estimate the state and to control the force of the actuator. Applications include position, velocity and force control in automotive, engine and manufacturing systems. This work is focused on the estimation of state variables of the actuator. Simulated results show the effectiveness of the proposed approach. (paper)

  10. Thermodynamic analysis of energy conversion and transfer in hybrid system consisting of wind turbine and advanced adiabatic compressed air energy storage

    International Nuclear Information System (INIS)

    Zhang, Yuan; Yang, Ke; Li, Xuemei; Xu, Jianzhong

    2014-01-01

    A simulation model consisting of wind speed, wind turbine and AA-CAES (advanced adiabatic compressed air energy storage) system is developed in this paper, and thermodynamic analysis on energy conversion and transfer in hybrid system is carried out. The impacts of stable wind speed and unstable wind speed on the hybrid system are analyzed and compared from the viewpoint of energy conversion and system efficiency. Besides, energy conversion relationship between wind turbine and AA-CAES system is investigated on the basis of process analysis. The results show that there are several different forms of energy in hybrid system, which have distinct conversion relationship. As to wind turbine, power coefficient determines wind energy utilization efficiency, and in AA-CAES system, it is compressor efficiency that mainly affects energy conversion efficiencies of other components. The strength and fluctuation of wind speed have a direct impact on energy conversion efficiencies of components of hybrid system, and within proper wind speed scope, the maximum of system efficiency could be expected. - Highlights: • A hybrid system consisting of wind, wind turbine and AA-CAES system is established. • Energy conversion in hybrid system with stable and unstable wind speed is analyzed. • Maximum efficiency of hybrid system can be reached within proper wind speed scope. • Thermal energy change in hybrid system is more sensitive to wind speed change. • Compressor efficiency can affect other efficiencies in AA-CAES system

  11. Magnetic-field-driven electron transport in ferromagnetic/ insulator/semiconductor hybrid structures

    Science.gov (United States)

    Volkov, N. V.; Tarasov, A. S.; Rautskii, M. V.; Lukyanenko, A. V.; Varnakov, S. N.; Ovchinnikov, S. G.

    2017-10-01

    Extremely large magnetotransport phenomena were found in the simple devices fabricated on base of the Me/SiO2/p-Si hybrid structures (where Me are Mn and Fe). These effects include gigantic magnetoimpedance (MI), dc magnetoresistance (MR) and the lateral magneto-photo-voltaic effect (LMPE). The MI and MR values exceed 106% in magnetic field about 0.2 T for Mn/SiO2/p-Si Schottky diode. LMPE observed in Fe/SiO2/p-Si lateral device reaches the value of 104% in a field of 1 T. We believe that in case with the Schottky diode MR and MI effects are originate from magnetic field influence on impact ionization process by two different ways. First, the trajectory of the electron is deflected by a magnetic field, which suppresses acquisition of kinetic energy and therefore impact ionization. Second, the magnetic field gives rise to shift of the acceptor energy levels in silicon to a higher energy. As a result, the activation energy for impact ionization significantly increases and consequently threshold voltage rises. Moreover, the second mechanism (acceptor level energy shifting in magnetic field) can be responsible for giant LMPE.

  12. Identification of waves by RF magnetic probes during lower hybrid wave injection experiments on the TST-2 spherical tokamak

    International Nuclear Information System (INIS)

    Shinya, Takahiro; Ejiri, Akira; Takase, Yuichi

    2014-01-01

    RF magnetic probes can be used to measure not only the wavevector, but also the polarization of waves in plasmas. A 5-channel RF magnetic probe (5ch-RFMP) was installed in the TST-2 spherical tokamak and the waves were studied in detail during lower hybrid wave injection experiments. From the polarization measurements, the poloidal RF magnetic field is found to be dominant. In addition to polarization, components of k perpendicular to the major radial direction were obtained from phase differences among the five channels. The radial wavenumber was obtained by scanning the radial position of the 5ch-RFMP on a shot by shot basis. The measured wavevector and polarization in the plasma edge region were consistent with those calculated from the wave equation for the slow wave branch. While the waves with small and large k ∥ were excited by the antenna, only the small k ∥ component was measured by the 5ch-RFMP; this suggests that the waves with larger k ∥ were absorbed by the plasma. (author)

  13. Strain-controlled magnetic domain wall propagation in hybrid piezoelectric/ferromagnetic structures.

    Science.gov (United States)

    Lei, Na; Devolder, Thibaut; Agnus, Guillaume; Aubert, Pascal; Daniel, Laurent; Kim, Joo-Von; Zhao, Weisheng; Trypiniotis, Theodossis; Cowburn, Russell P; Chappert, Claude; Ravelosona, Dafiné; Lecoeur, Philippe

    2013-01-01

    The control of magnetic order in nanoscale devices underpins many proposals for integrating spintronics concepts into conventional electronics. A key challenge lies in finding an energy-efficient means of control, as power dissipation remains an important factor limiting future miniaturization of integrated circuits. One promising approach involves magnetoelectric coupling in magnetostrictive/piezoelectric systems, where induced strains can bear directly on the magnetic anisotropy. While such processes have been demonstrated in several multiferroic heterostructures, the incorporation of such complex materials into practical geometries has been lacking. Here we demonstrate the possibility of generating sizeable anisotropy changes, through induced strains driven by applied electric fields, in hybrid piezoelectric/spin-valve nanowires. By combining magneto-optical Kerr effect and magnetoresistance measurements, we show that domain wall propagation fields can be doubled under locally applied strains. These results highlight the prospect of constructing low-power domain wall gates for magnetic logic devices.

  14. Low eddy loss axial hybrid magnetic bearing with gimballing control ability for momentum flywheel

    International Nuclear Information System (INIS)

    Tang, Jiqiang; Sun, Jinji; Fang, Jiancheng; Shuzhi Sam, Ge

    2013-01-01

    For a magnetically suspended momentum flywheel (MSMF), the spinning rotor can be tilted by a pair of the presented axial hybrid magnetic bearing (AHMB) with eight poles and rotates around the radial axes to generate a large torque to maneuver the spacecraft. To improve the control performance and gimballing control ability of the AHMB, characteristics such as magnetic suspension force, angular stiffness and tilting momentum are researched. These segmented stator poles cause the magnetic density in the thrust rotor plate to be uneven unavoidably and the rotational loss is large at high speed, but we optimized the stator poles configuration and caused the thrust rotor plate formed by bulk DT4C and laminated material to make the magnetic density in the thrust rotor plate change less and be smoother. Laminated material such as 1J50 film with a thickness of 0.1 mm can make the variation of the magnetic density in DT4C become very small and the eddy loss of it be negligible, but the stress produced in the “O” shape stacks by reeling has a bad effect on its power loss. Nanocrystalline can reduce eddy losses and is not affected by the reeling process. Based on the AHBM consisting of the stator with eight improved poles and the presented thrust rotor plate with DT4 and nanocrystalline, the rotational loss of 5-DOF magnetically suspended momentum flywheel with angular momentum of 15 N m s at 5000 rpm has reduced from 23.4 W to 3.2 W, which proved that this AHMB has low eddy loss for the gimballing control ability. - Highlights: ► Control methods of rotor driven by AHMBs and their characteristics are researched. ► Optimized stator and rotor of AHMB reduce its eddy losses greatly. ► Presented the factors affecting the eddy losses of AHMBs. ► The good performances of AHMB with low eddy loss are proved by experiments.

  15. Effects of Dzyaloshinsky–Moriya interaction on magnetism in nanodisks from a self-consistent approach

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Zhaosen, E-mail: liuzhsnj@yahoo.com [Nanjing University of Information Science and Technology, Department of Applied Physics (China); Ian, Hou, E-mail: houian@umac.mo [University of Macau, Institute of Applied Physics and Materials Engineering, FST (China)

    2016-01-15

    We give a theoretical study on the magnetic properties of monolayer nanodisks with both Heisenberg exchange and Dzyaloshinsky–Moriya (DM) interactions. In particular, we survey the magnetic effects caused by anisotropy, external magnetic field, and disk size when DM interaction is present by means of a new quantum simulation method facilitated by a self-consistent algorithm based on mean field theory. This computational approach finds that uniaxial anisotropy and transversal magnetic field enhance the net magnetization as well as increase the transition temperature of the vortical phase while preserving the chiralities of the swirly magnetic structures, whereas when the strength of DM interaction is sufficiently strong for a given disk size, magnetic domains appear within the circularly bounded region, which vanish and give in to a single vortex when a transversal magnetic field is applied. The latter confirms the magnetic skyrmions induced by the magnetic field as observed in the experiments.

  16. Stationary magnetic shear reversal during Lower Hybrid experiments in Tore Supra

    International Nuclear Information System (INIS)

    Litaudon, X.; Arslanbekov, R.; Hoang, G.T.; Joffrin, E.; Kazarian-Vibert, F.; Moreau, D.; Peysson, Y.; Bibet, P.

    1996-01-01

    Stable and stationary states with hollow current density profiles have been achieved with Lower Hybrid Current Drive (LHCD) during Lower Hybrid (LH) wave accessibility experiments. By analysing the bounded propagation domain in phase space which naturally limits the central penetration and absorption of the waves, off-axis LH power deposition has been realized in a reproducible manner. The resulting current density profile modifications have led to a global confinement enhancement attributed to the formation of an internal 'transport barrier' in the central reversed shear region where the electron thermal diffusivity is reduced to its neoclassical collisional level. The multiple-pass LH wave propagation in the weak Landau damping and reversed magnetic shear regime is also investigated in the framework of a statistical theory and the experimental validation of this theory is discussed. (author)

  17. Convective plasma stability consistent with MHD equilibrium in magnetic confinement systems with a decreasing field

    International Nuclear Information System (INIS)

    Tsventoukh, M. M.

    2010-01-01

    A study is made of the convective (interchange, or flute) plasma stability consistent with equilibrium in magnetic confinement systems with a magnetic field decreasing outward and large curvature of magnetic field lines. Algorithms are developed which calculate convective plasma stability from the Kruskal-Oberman kinetic criterion and in which the convective stability is iteratively consistent with MHD equilibrium for a given pressure and a given type of anisotropy in actual magnetic geometry. Vacuum and equilibrium convectively stable configurations in systems with a decreasing, highly curved magnetic field are calculated. It is shown that, in convectively stable equilibrium, the possibility of achieving high plasma pressures in the central region is restricted either by the expansion of the separatrix (when there are large regions of a weak magnetic field) or by the filamentation of the gradient plasma current (when there are small regions of a weak magnetic field, in which case the pressure drops mainly near the separatrix). It is found that, from the standpoint of equilibrium and of the onset of nonpotential ballooning modes, a kinetic description of convective stability yields better plasma confinement parameters in systems with a decreasing, highly curved magnetic field than a simpler MHD model and makes it possible to substantially improve the confinement parameters for a given type of anisotropy. For the Magnetor experimental compact device, the maximum central pressure consistent with equilibrium and stability is calculated to be as high as β ∼ 30%. It is shown that, for the anisotropy of the distribution function that is typical of a background ECR plasma, the limiting pressure gradient is about two times steeper than that for an isotropic plasma. From a practical point of view, the possibility is demonstrated of achieving better confinement parameters of a hot collisionless plasma in systems with a decreasing, highly curved magnetic field than those

  18. Alginate/magnetite hybrid beads for magnetically stimulated release of dopamine.

    Science.gov (United States)

    Kondaveeti, Stalin; Cornejo, Daniel R; Petri, Denise Freitas Siqueira

    2016-02-01

    Hybrid beads composed of magnetite nanoparticles (MNP) and alginate (Alg) were synthesized and coded as Alg-MNP. They were incubated in dopamine (DOPA) solution (5 g/L), at pH 7.4 and 8 °C, during 12 h, promoting the DOPA loaded magnetic beads, coded as Alg-MNP/DOPA. The release of DOPA was further evaluated in the absence and the presence of external magnetic field (EMF) of 0.4 T. The products Alg-MNP and Alg-MNP/DOPA were characterized by scanning electron microscopy with energy dispersive spectroscopy (SEM-EDS), Fourier transform infrared vibrational spectroscopy (FTIR), UV spectrophotometry, thermogravimetric analyses (TGA), inductively coupled plasma atomic emission spectroscopy (ICP-AES) analyses and superconducting quantum interference device (SQUID) magnetometer. The magnetic and chemical properties of Alg-MNP beads were not affected by DOPA loading. The incorporation of DOPA into the beads depended on the pH and on the negative charge density. At pH 7.4 38% of DOPA were loaded into Alg-MNP beads, whereas at pH 2 or using neat Alg beads (lower charge density than Alg-MNP) the loading efficiency decreased to one third or less. In the absence of EMF, 24% of the loaded DOPA was released from Alg-MNP at pH 7.4 over a period of 26 h. The released amount increased to 33% under the stimulus of EMF. A model was proposed to explain the loading efficiency of charged drugs, as DOPA, into hybrid beads and the role played by EMF on delivery systems, where drug and matrix are oppositely charged. The results suggest that the alginate combined with magnetite nanoparticles is a promising system for release of DOPA in the presence of EMF. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Hybrid permanent magnet quadrupoles for the Recycler Ring at Fermilab

    International Nuclear Information System (INIS)

    Brown, B.C.; Pruss, S.M.; Foster, G.W.; Glass, H.D.; Harding, D.J.; Jackson, G.R.; May, M.R.; Nicol, T.H.; Ostiguy, J.-F.; Schlabach, R.; Volk, J.T.

    1997-10-01

    Hybrid Permanent Magnet Quadrupoles are used in several applications for the Fermilab Recycler Ring and associated beam transfer lines. Most of these magnets use a 0.6096 m long iron shell and provide integrated gradients up to 1.4 T-m/m with an iron pole tip radius of 41.6 mm. A 58.4 mm pole radius design is also required. Bricks of 25. 4 mm thick strontium ferrite supply the flux to the back of the pole to produce the desired gradients (0.6 to 2.75 T/m). For temperature compensation, Ni-Fe alloy strips are interspersed between ferrite bricks to subtract flux in a temperature dependent fashion. Adjustments of the permeance of each pole using iron between the pole and the flux return shell permits the matching of pole potentials. Magnetic potentials of the poles are adjusted to the desired value to achieve the prescribed strength and field uniformity based on rotating coil harmonic measurements. Procurement, fabrication, pole potential adjustment, and measured fields will be reported

  20. Design, manufacture and performance evaluation of HTS electromagnets for the hybrid magnetic levitation system

    International Nuclear Information System (INIS)

    Chu, S.Y.; Hwang, Y.J.; Choi, S.; Na, J.B.; Kim, Y.J.; Chang, K.S.; Bae, D.K.; Lee, C.Y.; Ko, T.K.

    2011-01-01

    A high speed electromagnetic suspension (EMS) maglev has emerged as the solution to speed limit problem that conventional high-speed railroad has. In the EMS maglev, small levitation gap needs uniform guide-way which leads to increase the construction cost. The large levitation gap can reduce the construction cost. However it is hard for normal conducting electromagnet to produce larger magneto-motive force (MMF) for generating levitation force as increased levitation gap. This is because normal conductors have limited rating current to their specific volume. Therefore, the superconducting electromagnet can be one of the solutions for producing both large levitation gap and sufficient MMF. The superconducting electromagnets have incomparably high allowable current density than what normal conductors have. In this paper, the prototype of high temperature superconducting (HTS) electromagnets were designed and manufactured applicable to hybrid electromagnetic suspension system (H-EMS). The H-EMS consists of control coils for levitation control and superconducting coils for producing MMF for levitation. The required MMF for generating given levitation force was calculated by both equations of ideal U-core magnet and magnetic field analysis using the finite element method (FEM). The HTS electromagnets were designed as double pancakes with Bi-2223/Ag tapes. Experiments to confirm its operating performance were performed in liquid nitrogen (LN 2 ).

  1. Design, manufacture and performance evaluation of HTS electromagnets for the hybrid magnetic levitation system

    Science.gov (United States)

    Chu, S. Y.; Hwang, Y. J.; Choi, S.; Na, J. B.; Kim, Y. J.; Chang, K. S.; Bae, D. K.; Lee, C. Y.; Ko, T. K.

    2011-11-01

    A high speed electromagnetic suspension (EMS) maglev has emerged as the solution to speed limit problem that conventional high-speed railroad has. In the EMS maglev, small levitation gap needs uniform guide-way which leads to increase the construction cost. The large levitation gap can reduce the construction cost. However it is hard for normal conducting electromagnet to produce larger magneto-motive force (MMF) for generating levitation force as increased levitation gap. This is because normal conductors have limited rating current to their specific volume. Therefore, the superconducting electromagnet can be one of the solutions for producing both large levitation gap and sufficient MMF. The superconducting electromagnets have incomparably high allowable current density than what normal conductors have. In this paper, the prototype of high temperature superconducting (HTS) electromagnets were designed and manufactured applicable to hybrid electromagnetic suspension system (H-EMS). The H-EMS consists of control coils for levitation control and superconducting coils for producing MMF for levitation. The required MMF for generating given levitation force was calculated by both equations of ideal U-core magnet and magnetic field analysis using the finite element method (FEM). The HTS electromagnets were designed as double pancakes with Bi-2223/Ag tapes. Experiments to confirm its operating performance were performed in liquid nitrogen (LN2).

  2. Design, manufacture and performance evaluation of HTS electromagnets for the hybrid magnetic levitation system

    Energy Technology Data Exchange (ETDEWEB)

    Chu, S.Y.; Hwang, Y.J.; Choi, S.; Na, J.B.; Kim, Y.J.; Chang, K.S. [School of Electrical and Electronic Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of); Bae, D.K. [Chungju National University, Chungju 380-702 (Korea, Republic of); Lee, C.Y. [Ultra High-Speed Train Research Department, Korea Railroad Research Institute, Uiwang-Si 437-757 (Korea, Republic of); Ko, T.K., E-mail: tkko@yonsei.ac.kr [School of Electrical and Electronic Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of)

    2011-11-15

    A high speed electromagnetic suspension (EMS) maglev has emerged as the solution to speed limit problem that conventional high-speed railroad has. In the EMS maglev, small levitation gap needs uniform guide-way which leads to increase the construction cost. The large levitation gap can reduce the construction cost. However it is hard for normal conducting electromagnet to produce larger magneto-motive force (MMF) for generating levitation force as increased levitation gap. This is because normal conductors have limited rating current to their specific volume. Therefore, the superconducting electromagnet can be one of the solutions for producing both large levitation gap and sufficient MMF. The superconducting electromagnets have incomparably high allowable current density than what normal conductors have. In this paper, the prototype of high temperature superconducting (HTS) electromagnets were designed and manufactured applicable to hybrid electromagnetic suspension system (H-EMS). The H-EMS consists of control coils for levitation control and superconducting coils for producing MMF for levitation. The required MMF for generating given levitation force was calculated by both equations of ideal U-core magnet and magnetic field analysis using the finite element method (FEM). The HTS electromagnets were designed as double pancakes with Bi-2223/Ag tapes. Experiments to confirm its operating performance were performed in liquid nitrogen (LN{sub 2}).

  3. High Voltage Dielectrophoretic and Magnetophoretic Hybrid Integrated Circuit / Microfluidic Chip

    Science.gov (United States)

    Issadore, David; Franke, Thomas; Brown, Keith A.; Hunt, Thomas P.; Westervelt, Robert M.

    2010-01-01

    A hybrid integrated circuit (IC) / microfluidic chip is presented that independently and simultaneously traps and moves microscopic objects suspended in fluid using both electric and magnetic fields. This hybrid chip controls the location of dielectric objects, such as living cells and drops of fluid, on a 60 × 61 array of pixels that are 30 × 38 μm2 in size, each of which can be individually addressed with a 50 V peak-to-peak, DC to 10 MHz radio frequency voltage. These high voltage pixels produce electric fields above the chip’s surface with a magnitude , resulting in strong dielectrophoresis (DEP) forces . Underneath the array of DEP pixels there is a magnetic matrix that consists of two perpendicular sets of 60 metal wires running across the chip. Each wire can be sourced with 120 mA to trap and move magnetically susceptible objects using magnetophoresis (MP). The DEP pixel array and magnetic matrix can be used simultaneously to apply forces to microscopic objects, such as living cells or lipid vesicles, that are tagged with magnetic nanoparticles. The capabilities of the hybrid IC / microfluidic chip demonstrated in this paper provide important building blocks for a platform for biological and chemical applications. PMID:20625468

  4. Hybrid luminescent/magnetic nanostructured porous silicon particles for biomedical applications

    Science.gov (United States)

    Muñoz-Noval, Álvaro; Sánchez-Vaquero, Vanessa; Torres-Costa, Vicente; Gallach, Darío; Ferro-Llanos, Vicente; Javier Serrano, José; Manso-Silván, Miguel; García-Ruiz, Josefa Predestinación; Del Pozo, Francisco; Martín-Palma, Raúl J.

    2011-02-01

    This work describes a novel process for the fabrication of hybrid nanostructured particles showing intense tunable photoluminescence and a simultaneous ferromagnetic behavior. The fabrication process involves the synthesis of nanostructured porous silicon (NPSi) by chemical anodization of crystalline silicon and subsequent in pore growth of Co nanoparticles by electrochemically-assisted infiltration. Final particles are obtained by subsequent sonication of the Co-infiltrated NPSi layers and conjugation with poly(ethylene glycol) aiming at enhancing their hydrophilic character. These particles respond to magnetic fields, emit light in the visible when excited in the UV range, and internalize into human mesenchymal stem cells with no apoptosis induction. Furthermore, cytotoxicity in in-vitro systems confirms their biocompatibility and the viability of the cells after incorporation of the particles. The hybrid nanostructured particles might represent powerful research tools as cellular trackers or in cellular therapy since they allow combining two or more properties into a single particle.

  5. Characterization of extremely low frequency magnetic fields from diesel, gasoline and hybrid cars under controlled conditions.

    Science.gov (United States)

    Hareuveny, Ronen; Sudan, Madhuri; Halgamuge, Malka N; Yaffe, Yoav; Tzabari, Yuval; Namir, Daniel; Kheifets, Leeka

    2015-01-30

    This study characterizes extremely low frequency (ELF) magnetic field (MF) levels in 10 car models. Extensive measurements were conducted in three diesel, four gasoline, and three hybrid cars, under similar controlled conditions and negligible background fields. Averaged over all four seats under various driving scenarios the fields were lowest in diesel cars (0.02 μT), higher for gasoline (0.04-0.05 μT) and highest in hybrids (0.06-0.09 μT), but all were in-line with daily exposures from other sources. Hybrid cars had the highest mean and 95th percentile MF levels, and an especially large percentage of measurements above 0.2 μT. These parameters were also higher for moving conditions compared to standing while idling or revving at 2500 RPM and higher still at 80 km/h compared to 40 km/h. Fields in non-hybrid cars were higher at the front seats, while in hybrid cars they were higher at the back seats, particularly the back right seat where 16%-69% of measurements were greater than 0.2 μT. As our results do not include low frequency fields (below 30 Hz) that might be generated by tire rotation, we suggest that net currents flowing through the cars' metallic chassis may be a possible source of MF. Larger surveys in standardized and well-described settings should be conducted with different types of vehicles and with spectral analysis of fields including lower frequencies due to magnetization of tires.

  6. A new concept of a hybrid trapped field magnet lens

    Science.gov (United States)

    Takahashi, Keita; Fujishiro, Hiroyuki; Ainslie, Mark D.

    2018-04-01

    In this paper, a new concept of a hybrid trapped field magnet lens (HTFML) is proposed. The HTMFL exploits the ‘vortex pinning effect’ of an outer superconducting bulk cylinder, which is magnetized as a trapped field magnet (TFM) using field-cooled magnetization (FCM), and the ‘diamagnetic shielding effect’ of an inner bulk magnetic lens to generate a concentrated magnetic field higher than the trapped field from the TFM in the bore of the magnetic lens. This requires that, during the zero-field-cooled magnetization process, the outer cylinder is in the normal state (T> superconducting transition temperature, T c) and the inner lens is in the superconducting state (T operating temperature, then removing the external field. This is explored for two potential cases: (1) exploiting the difference in T c of two different bulk materials (‘case-1’), e.g. MgB2 (T c = 39 K) and GdBaCuO (T c = 92 K) or (2) using the same material for the whole HTFML, e.g., GdBaCuO, but utilizing individually controlled cryostats, the same cryostat with different cooling loops or coolants, or heaters that keep the outer bulk cylinder at a temperature above T c to achieve the same desired effect. The HTFML is verified using numerical simulations for ‘case-1’ using an MgB2 cylinder and GdBaCuO lens pair and for ‘case-2’ using a GdBaCuO cylinder and GdBaCuO lens pair. As a result, the HTFML could reliably generate a concentrated magnetic field B c = 4.73 T with the external magnetizing field B app = 3 T in the ‘case-1’, and a higher B c = 13.49 T with higher B app = 10 T in the ‘case-2’, respectively. This could, for example, be used to enhance the magnetic field in the bore of a bulk superconducting NMR/MRI system to improve its resolution.

  7. Hybrid Magnetic Core-Shell Nanophotocatalysts for Environmental Applications

    Energy Technology Data Exchange (ETDEWEB)

    Gaulden, Patrick [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Murph, Simona Hunyadi [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Univ. of Georgia, Athens, GA (United States). Dept. of Physics and Astronomy

    2016-07-29

    This research study describes a facile sol-gel method to creating hybrid iron (III) oxide/silica/titania nanomaterials decorated with gold nanoparticles for use in environmental applications. The multi-functional composition of the nanomaterials allows for photocatalyzed reactions to occur in both the visible and the UV range. The morphologies, elemental composition, and surface charge of the nanoparticles were determined by Scanning Electron Microscopy (SEM), Energy Dispersive X-ray Spectroscopy (EDS), and Phase Analysis Light Scattering (PALS), respectively. The photocatalytic activity of the synthesized hybrid nanoparticles for breaking down a model analyte, methyl orange (MO), was then evaluated using UV-Vis Spectroscopy. The efficiency of the photocatalyst under UV light irradiation was measured and compared to other well-studied nanophotocatalysts, namely titanium oxide and iron oxide nanoparticles. The concentration dependence of both the photocatalyst and the analyte was also investigated. By utilizing the known UV-active properties of TiO2, the magnetic properties of Fe2O3, the optical properties of gold in the visible range of the spectrum, and the high stability of silica, a novel, highly efficient photocatalyst that is active on a broad range of the spectrum (UV-Vis) can be created to destroy organic pollutants in wastewater streams.

  8. Synthesis of polydopamine-functionalized magnetic graphene and carbon nanotubes hybrid nanocomposites as an adsorbent for the fast determination of 16 priority polycyclic aromatic hydrocarbons in aqueous samples.

    Science.gov (United States)

    Chen, Kun; Jin, Rongrong; Luo, Chen; Song, Guoxin; Hu, Yaoming; Cheng, Hefa

    2018-04-01

    A novel adsorbent made of polydopamine-functionalized magnetic graphene and carbon nanotubes hybrid nanocomposite was synthesized and applied to determine 16 priority polycyclic aromatic hydrocarbons by magnetic solid phase extraction in water samples. FTIR spectroscopy, transmission electron microscopy, scanning electron microscopy, and Raman spectroscopy consistently indicate that the synthesized adsorbents are made of core-shell nanoparticles well dispersed on the surface of graphene and carbon nanotubes. The major factors affecting the extraction efficiency, including the pH value of samples, the amount of adsorbent, adsorption time and desorption time, type and volume of desorption solvent, were systematically optimized. Under the optimum extraction conditions, a linear response was obtained for polycyclic aromatic hydrocarbons between concentrations of 10 and 500 ng/L with the correlation coefficients ranging from 0.9958 to 0.9989, and the limits of detection (S/N = 3) were between 0.1 and 3.0 ng/L. Satisfactory results were also obtained when applying these magnetic graphene/carbon nanotubes/polydopamine hybrid nanocomposites to detect polycyclic aromatic hydrocarbons in several environmental aqueous samples. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Hybrid magnetorheological fluid–elastomeric lag dampers for helicopter stability augmentation

    International Nuclear Information System (INIS)

    Hu Wei; Wereley, Norman M

    2008-01-01

    A laboratory demonstration of a hybrid magnetorheological fluid–elastomeric (MRFE) damper is investigated for adjustable or programmable lag mode damping in helicopters, so that damping requirements can be varied as a function of different flight conditions. The laboratory demonstration of this hybrid MRFE lag damper consists of a double lap shear elastomeric damper in parallel with two magnetorheological (MR) flow mode dampers. This is compared to a damper where only elastomeric materials are implemented, i.e., a double lap shear specimen. The relationship between the output force and the quasi-steady harmonic displacement input to a flow mode MR damper is exploited, where the output force can be adjusted as a function of applied magnetic field. Equivalent viscous damping is used to compare the damping characteristics of the hybrid damper to a conventional elastomeric damper under steady-state sinusoidal displacement excitation. To demonstrate feasibility, a hybrid MRFE damper test setup is designed, and single frequency (lag frequency or rotor in-plane bending frequency) and dual frequency (lag frequency and rotor frequency) tests are conducted under different magnetic fields. The hybrid MRFE damper exhibits amplitude-dependent damping behavior. However, with application of a magnetic field, the damping level is controlled to a specific damping level objective as a function of displacement amplitude. Similarly, under dual frequency conditions, damping degradation at the lag frequency, because of lag motion at the rotor frequency, can also be recovered by increasing magnetic field. A time-domain analysis is developed to study the nonlinear dynamic behavior of the hybrid MRFE damper. Using rate-dependent elasto-slides, the amplitude-dependent behavior of the hybrid MRFE damper is accurately reconstructed using both constant and current-dependent (i.e. controllable) parameters. The analysis is physically motivated and can be applied to the elastomer and MR fluid

  10. Controllable manipulation of superconductivity using magnetic vortices

    International Nuclear Information System (INIS)

    Villegas, J E; Schuller, Ivan K

    2011-01-01

    The magneto-transport of a superconducting/ferromagnetic hybrid structure, consisting of a superconducting thin film in contact with an array of magnetic nanodots in the so-called 'magnetic vortex state', exhibits interesting properties. For certain magnetic states, the stray magnetic field from the vortex array is intense enough to drive the superconducting film into the normal state. In this fashion, the normal-to-superconducting phase transition can be controlled by the magnetic history. The strong coupling between superconducting and magnetic subsystems allows characteristically ferromagnetic properties, such as hysteresis and remanence, to be dramatically transferred into the transport properties of the superconductor.

  11. Experiments, modeling and simulation of the magnetic behavior of inhomogeneously coated nickel/aluminum hybrid foams

    Energy Technology Data Exchange (ETDEWEB)

    Jung, A., E-mail: anne.jung@mx.uni-saarland.de [Universität des Saarlandes, Institute of Applied Mechanics, Campus A4 2, 66123 Saarbrücken (Germany); Klis, D., E-mail: d.klis@lte.uni-saarland.de [Universität des Saarlandes, Laboratory for Electromagnetic Theory, Campus C6 3, 66123 Saarbrücken (Germany); Goldschmidt, F., E-mail: f.goldschmidt@mx.uni-saarland.de [Universität des Saarlandes, Institute of Applied Mechanics, Campus A4 2, 66123 Saarbrücken (Germany)

    2015-03-15

    Open-cell metal foams are used as lightweight construction elements, energy absorbers or as support for catalytic coatings. Coating of open-cell metal foams is not only used for catalytic applications, but it leads also to tremendous increase in stiffness and energy absorption capacity. A non-line of sight coating technique for complex 3D structures is electrodeposition. Unfortunately, due to the 3D porosity and the related problems in mass transport limitation during the deposition, it is not possible to produce homogeneously coated foams. In the present contribution, we present a semi-non-destructive technique applicable to determine the coating thickness distribution of magnetic coatings by measuring the remanent magnetic field of coated foams. In order to have a closer look at the mass transport mechanism, a numerical model was developed to predict the field scans for different coating thickness distributions in the foams. For long deposition times the deposition reaches a steady state whereas a Helmholtz equation is sufficient to predict the coating thickness distribution. The applied current density could be identified as the main influencing parameter. Based on the developed model, it is possible to improve the electrodeposition process and hence the homogeneity in the coating thickness of coated metal foams. This leads to enhanced mechanical properties of the hybrid foams and contributes to better and resource-efficient energy absorbers and lightweight materials. - Highlights: • Production of hybrid foams by electrodeposition of nickel on open-cell metal foams. • Magnetic field scans for visualization of spatial coating thickness distribution. • Modeling of magnetic fields of inhomogeneously coated hybrid foams. • Investigation of mass transport limitation during coating by a Helmholtz equation. • Increasing coating homogeneity by use of low current densities and deposition rates.

  12. Basic Characteristics and Design of a Novel Hybrid Magnetic Bearing for Wind Turbines

    Directory of Open Access Journals (Sweden)

    Yanjun Yu

    2016-11-01

    Full Text Available This paper proposes a five-degree-of-freedom (5-DOF hybrid magnetic bearing (HMB for direct-drive wind turbines, which can realize suspension in the 4-DOF radial and 1-DOF axial directions. Only two sets of radial control windings are employed in the proposed HMB because only one set of radial control windings can achieve the 2-DOF suspension in the radial direction. Unlike the traditional active thrust magnetic bearings, this paper uses a cylindrical rotor core without a large thrust disc in the novel HMB. The numbers of the controller, power amplifier and system volume can be reduced in the magnetic suspension system. This paper also presents the structure and basic characteristics of the proposed magnetic bearing. A precision equivalent magnetic circuit analysis of the permanent magnet ring and control magnetic field is conducted in this study, in consideration of the non-uniform distribution of magnetic density. Accordingly, the mathematical models, including the suspension force expression, are derived based on the accurate equivalent magnetic circuit. The basic principle of the structure parameter design is presented, based on the given key parameters. The accuracy of the analytical method is further validated by 3D finite element analysis.

  13. Synchronous motor with hybrid permanent magnets on the rotor.

    Science.gov (United States)

    Slusarek, Barbara; Kapelski, Dariusz; Antal, Ludwik; Zalas, Pawel; Gwoździewicz, Maciej

    2014-07-10

    Powder metallurgy allows designers of electric motors to implement new magnetic circuit structures. A relatively new concept is the use of a magnet system consisting of various types of magnets on one rotor, for example sintered and bonded magnets. This concept has been applied to the design and manufacture of the four-pole rotor of a synchronous motor with 400 W power and a rotational speed of 1500 rpm. In this motor, the stator of an asynchronous motor type Sh 71-4B is applied. The application of the new construction of the rotor resulted in an increase in motor efficiency and power factor compared to an asynchronous motor with the same volume.

  14. Synchronous Motor with Hybrid Permanent Magnets on the Rotor

    Directory of Open Access Journals (Sweden)

    Barbara Slusarek

    2014-07-01

    Full Text Available Powder metallurgy allows designers of electric motors to implement new magnetic circuit structures. A relatively new concept is the use of a magnet system consisting of various types of magnets on one rotor, for example sintered and bonded magnets. This concept has been applied to the design and manufacture of the four-pole rotor of a synchronous motor with 400 W power and a rotational speed of 1500 rpm. In this motor, the stator of an asynchronous motor type Sh 71-4B is applied. The application of the new construction of the rotor resulted in an increase in motor efficiency and power factor compared to an asynchronous motor with the same volume.

  15. The fusion-fission hybrid

    International Nuclear Information System (INIS)

    Teller, E.

    1985-01-01

    As the history of the development of fusion energy shows, a sustained controlled fusion reaction is much more difficult to produce than rapid uncontrolled release of fusion energy. Currently, the ''magnetic bottle'' technique shows sufficient progress that it might applied for the commercial fuel production of /sup 233/U, suitable for use in fission reactors, by developing a fusion-fission hybrid. Such a device would consist of a fusion chamber core surrounded by a region containing cladded uranium pellets cooled by helium, with lithium salts also present to produce tritium to refuel the fusion process. Successful development of this hybrid might be possible within 10 y, and would provide both experience and funds for further development of controlled fusion energy

  16. Magnetization control in multifunctional heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Althammer, M.; Gross, R.; Goennenwein, S.T.B. [Walther-Meissner-Institut, Garching (Germany); Bihler, C.; Brandt, M.S. [Walter Schottky Institut, Garching (Germany); Schoch, W.; Limmer, W. [Institut fuer Halbleiterphysik, Ulm (Germany)

    2009-07-01

    The functionality of magnetoelectronic devices depends on the efficiency and scalabilty of magnetization control schemes. We here discuss the voltage control of magnetization orientation via the magnetoelastic channel in ferromagnetic semiconductor/piezoelectric actuator hybrid structures. The hybrids consist of a thin Ga{sub 0.955}Mn{sub 0.045}As film cemented onto a piezoelectric actuator. Using anisotropic magnetoresistance techniques, we have quantitatively determined the magnetic anisotropy within the plane of the Ga{sub 0.955}Mn{sub 0.045}As films. Exploiting the substantial changes of the magnetic anisotropy in Ga{sub 0.955}Mn{sub 0.045}As as a function of temperature T, different ratios between the magnetoelastic and the magnetocrystalline anisotropies can be realized in one and the same sample. At T=5 K the magnetoelastic anisotropy term is only a small contribution to the total anisotropy, so that only the coercive fields are slightly modified as a function of the control voltage. For T=50 K the magnetoelastic contribution dominates the magnetic anisotropy which allows to achieve a voltage control of the magnetization orientation by about 70 {sup circle}.

  17. Vortices at the magnetic equator generated by hybrid Alfvén resonant waves

    Science.gov (United States)

    Hiraki, Yasutaka

    2015-01-01

    We performed three-dimensional magnetohydrodynamic simulations of shear Alfvén waves in a full field line system with magnetosphere-ionosphere coupling and plasma non-uniformities. Feedback instability of the Alfvén resonant modes showed various nonlinear features under the field line cavities: (i) a secondary flow shear instability occurs at the magnetic equator, (ii) trapping of the ionospheric Alfvén resonant modes facilitates deformation of field-aligned current structures, and (iii) hybrid Alfvén resonant modes grow to cause vortices and magnetic oscillations around the magnetic equator. Essential features in the initial brightening of auroral arc at substorm onsets could be explained by the dynamics of Alfvén resonant modes, which are the nature of the field line system responding to a background rapid change.

  18. Electric field control of deterministic current-induced magnetization switching in a hybrid ferromagnetic/ferroelectric structure

    Science.gov (United States)

    Cai, Kaiming; Yang, Meiyin; Ju, Hailang; Wang, Sumei; Ji, Yang; Li, Baohe; Edmonds, Kevin William; Sheng, Yu; Zhang, Bao; Zhang, Nan; Liu, Shuai; Zheng, Houzhi; Wang, Kaiyou

    2017-07-01

    All-electrical and programmable manipulations of ferromagnetic bits are highly pursued for the aim of high integration and low energy consumption in modern information technology. Methods based on the spin-orbit torque switching in heavy metal/ferromagnet structures have been proposed with magnetic field, and are heading toward deterministic switching without external magnetic field. Here we demonstrate that an in-plane effective magnetic field can be induced by an electric field without breaking the symmetry of the structure of the thin film, and realize the deterministic magnetization switching in a hybrid ferromagnetic/ferroelectric structure with Pt/Co/Ni/Co/Pt layers on PMN-PT substrate. The effective magnetic field can be reversed by changing the direction of the applied electric field on the PMN-PT substrate, which fully replaces the controllability function of the external magnetic field. The electric field is found to generate an additional spin-orbit torque on the CoNiCo magnets, which is confirmed by macrospin calculations and micromagnetic simulations.

  19. Analysis and optimization of hybrid excitation permanent magnet synchronous generator for stand-alone power system

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Huijun, E-mail: huijun024@gmail.com [School of Instrumentation Science and Opto-electronics Engineering, Beihang University (China); Qu, Zheng; Tang, Shaofei; Pang, Mingqi [School of Instrumentation Science and Opto-electronics Engineering, Beihang University (China); Zhang, Mingju [Shanghai Aerospace Control Technology Institute, Shanghai (China)

    2017-08-15

    Highlights: • One novel permanent magnet generator structure has been proposed to reduce voltage regulation ratio. • Finite element method and equivalent circuit methods are both employed to realize rapid generator design. • Design of experiment (DOE) method is used to optimize permanent magnet shape for reduce voltage waveform distortion. • The obtained analysis and experiment results verify the proposed design methods. - Abstract: In this paper, electromagnetic design and permanent magnet shape optimization for permanent magnet synchronous generator with hybrid excitation are investigated. Based on generator structure and principle, design outline is presented for obtaining high efficiency and low voltage fluctuation. In order to realize rapid design, equivalent magnetic circuits for permanent magnet and iron poles are developed. At the same time, finite element analysis is employed. Furthermore, by means of design of experiment (DOE) method, permanent magnet is optimized to reduce voltage waveform distortion. Finally, the validity of proposed design methods is validated by the analytical and experimental results.

  20. Analysis and optimization of hybrid excitation permanent magnet synchronous generator for stand-alone power system

    International Nuclear Information System (INIS)

    Wang, Huijun; Qu, Zheng; Tang, Shaofei; Pang, Mingqi; Zhang, Mingju

    2017-01-01

    Highlights: • One novel permanent magnet generator structure has been proposed to reduce voltage regulation ratio. • Finite element method and equivalent circuit methods are both employed to realize rapid generator design. • Design of experiment (DOE) method is used to optimize permanent magnet shape for reduce voltage waveform distortion. • The obtained analysis and experiment results verify the proposed design methods. - Abstract: In this paper, electromagnetic design and permanent magnet shape optimization for permanent magnet synchronous generator with hybrid excitation are investigated. Based on generator structure and principle, design outline is presented for obtaining high efficiency and low voltage fluctuation. In order to realize rapid design, equivalent magnetic circuits for permanent magnet and iron poles are developed. At the same time, finite element analysis is employed. Furthermore, by means of design of experiment (DOE) method, permanent magnet is optimized to reduce voltage waveform distortion. Finally, the validity of proposed design methods is validated by the analytical and experimental results.

  1. Development of novel FePt/nanodiamond hybrid nanostructures: L1{sub 0} phase size-growth suppression and magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Douvalis, A. P., E-mail: adouval@uoi.gr; Bourlinos, A. B. [University of Ioannina, Physics Department (Greece); Tucek, J.; Čépe, K. [Palacký University Olomouc, Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science (Czech Republic); Bakas, T. [University of Ioannina, Physics Department (Greece); Zboril, R. [Palacký University Olomouc, Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science (Czech Republic)

    2016-05-15

    A new type of hybrid nanomaterial composed of magnetic FePt nanoparticles grown on the surface of nanodiamond nanotemplate assemblies is described for the first time. Post annealing in vacuum of the as-made nanomaterial bearing cubic A1 soft magnetic FePt nanoparticles leads to the development of FePt nanoparticles with tetragonal L1{sub 0} hard, magnetic-phase characteristics, leaving untouched the nanodiamond nanotemplate assemblies. X-ray diffraction, high-resolution transmission electron microscopy including chemical mapping (HRTEM/HAADF), magnetization measurements, and {sup 57}Fe Mössbauer spectroscopy data show that the magnetic FePt nanoparticles, with average sizes of 3 and 8 nm in the as-made and annealed hybrids, respectively, are homogenously distributed within the nanodiamond template in both nanomaterials. As a consequence, their structural, morphological, and magnetic properties differ significantly from the corresponding properties of the nonsupported (free) as-made and annealed FePt nanoparticles with average sizes of 6 and 32 nm, respectively, developed by the same methods. This spatial isolation suppresses the size-growth of the FePt nanoparticles during the post-annealing procedure, triggering superparamagnetic relaxation phenomena, which are exposed as a combination of hard and soft magnetic-phase characteristics.

  2. Optimization of a Hybrid Magnetic Bearing for a Magnetically Levitated Blood Pump via 3-D FEA.

    Science.gov (United States)

    Cheng, Shanbao; Olles, Mark W; Burger, Aaron F; Day, Steven W

    2011-10-01

    In order to improve the performance of a magnetically levitated (maglev) axial flow blood pump, three-dimensional (3-D) finite element analysis (FEA) was used to optimize the design of a hybrid magnetic bearing (HMB). Radial, axial, and current stiffness of multiple design variations of the HMB were calculated using a 3-D FEA package and verified by experimental results. As compared with the original design, the optimized HMB had twice the axial stiffness with the resulting increase of negative radial stiffness partially compensated for by increased current stiffness. Accordingly, the performance of the maglev axial flow blood pump with the optimized HMBs was improved: the maximum pump speed was increased from 6000 rpm to 9000 rpm (50%). The radial, axial and current stiffness of the HMB was found to be linear at nominal operational position from both 3-D FEA and empirical measurements. Stiffness values determined by FEA and empirical measurements agreed well with one another. The magnetic flux density distribution and flux loop of the HMB were also visualized via 3-D FEA which confirms the designers' initial assumption about the function of this HMB.

  3. Experimental Evaluation of Superconductor Flywheel Energy Storage System with Hybrid Type Active Magnetic Bearing

    International Nuclear Information System (INIS)

    Lee, J. P.; Kim, H. G.; Han, S. C.

    2012-01-01

    In this paper, we designed Active Magnetic Bearing (AMB) for large scale Superconductor Flywheel Energy Storage System (SFESS) and PD controller for AMB. And we experimentally evaluated SFESS including hybrid type AMB. The radial AMB was designed to provide force slew rate that was sufficient for the unbalance disturbances at the maximum operating speed. The thrust AMB is a hybrid type where a permanent magnet carries the weight of the flywheel and an electromagnetic actuator generates the dynamic control force. We evaluated the design performance of the manufactured AMB through comparison of FEM analysis and the results of experimental force measurement. In order to obtain gains of PD controller and design a notch filter, the system identification was performed through measuring frequency response including dynamics for the AMBs, a power amp and a sensor using a sine swept test method after levitating the flywheel. Through measuring the current input of the AMBs and the orbit of a flywheel according to rotational speed, we verified excellent control performance of the AMBs with small amount current for the large scale SFESS.

  4. One-pot synthesis of polyamines improved magnetism and fluorescence Fe3O4-carbon dots hybrid NPs for dual modal imaging.

    Science.gov (United States)

    Li, Bo; Wang, Xudong; Guo, Yali; Iqbal, Anam; Dong, Yaping; Li, Wu; Liu, Weisheng; Qin, Wenwu; Chen, Shizhen; Zhou, Xin; Yang, Yunhuang

    2016-04-07

    A one-step hydrothermal method was developed to fabricate Fe3O4-carbon dots (Fe3O4-CDs) magnetic-fluorescent hybrid nanoparticles (NPs). Ferric ammonium citrate (FAC) was used as a cheap and nontoxic iron precursor and as the carbon source. Moreover, triethylenetetramine (TETA) was used to improve the adhesive strength of CDs on Fe3O4 and the fluorescence intensity of CDs. The prepared water-soluble hybrid NPs not only exhibit excellent superparamagnetic properties (Ms = 56.8 emu g(-1)), but also demonstrate excitation-independent photoluminescence for down-conversion and up-conversion at 445 nm. Moreover, the prepared water-soluble Fe3O4-CDs hybrid NPs have a dual modal imaging ability for both magnetic resonance imaging (MRI) and fluorescence imaging.

  5. Hybrid nodal loop metal: Unconventional magnetoresponse and material realization

    Science.gov (United States)

    Zhang, Xiaoming; Yu, Zhi-Ming; Lu, Yunhao; Sheng, Xian-Lei; Yang, Hui Ying; Yang, Shengyuan A.

    2018-03-01

    A nodal loop is formed by a band crossing along a one-dimensional closed manifold, with each point on the loop a linear nodal point in the transverse dimensions, and can be classified as type I or type II depending on the band dispersion. Here, we propose a class of nodal loops composed of both type-I and type-II points, which are hence termed as hybrid nodal loops. Based on first-principles calculations, we predict the realization of such loops in the existing electride material Ca2As . For a hybrid loop, the Fermi surface consists of coexisting electron and hole pockets that touch at isolated points for an extended range of Fermi energies, without the need for fine-tuning. This leads to unconventional magnetic responses, including the zero-field magnetic breakdown and the momentum-space Klein tunneling observable in the magnetic quantum oscillations, as well as the peculiar anisotropy in the cyclotron resonance.

  6. Self-consistent electronic structure of spin-polarized dilute magnetic semiconductor quantum wells

    International Nuclear Information System (INIS)

    Hong, S. P.; Yi, K. S.; Quinn, J. J.

    2000-01-01

    The electronic properties of spin-symmetry-broken dilute magnetic semiconductor quantum wells are investigated self-consistently at zero temperature. The spin-split subband structure and carrier concentration of modulation-doped quantum wells are examined in the presence of a strong magnetic field. The effects of exchange and correlations of electrons are included in a local-spin-density-functional approximation. We demonstrate that exchange correlation of electrons decreases the spin-split subband energy but enhances the carrier density in a spin-polarized quantum well. We also observe that as the magnetic field increases, the concentration of spin-down (majority) electrons increases but that of spin-up (minority) electrons decreases. The effect of orbital quantization on the in-plane motion of electrons is also examined and shows a sawtoothlike variation in subband electron concentrations as the magnetic-field intensity increases. The latter variation is attributed to the presence of ionized donors acting as the electron reservoir, which is partially responsible for the formation of the integer quantum Hall plateaus. (c) 2000 The American Physical Society

  7. Electromagnetic radiation by parametric decay of upper hybrid waves in ionospheric modification experiments

    International Nuclear Information System (INIS)

    Leyser, T.B.

    1994-01-01

    A nonlinear dispersion relation for the parametric decay of an electrostatic upper hybrid wave into an ordinary mode electromagnetic wave, propagating parallel to the ambient magnetic field, and an electrostatic low frequency wave, being either a lower hybrid wave or a high harmonic ion Bernstein wave, is derived. The coherent and resonant wave interaction is considered to take place in a weakly magnetized and collisionless Vlasov plasma. The instability growth rate is computed for parameter values typical of ionospheric modification experiments, in which a powerful high frequency electromagnetic pump wave is injected into the ionospheric F-region from ground-based transmitters. The electromagnetic radiation which is excited by the decaying upper hybrid wave is found to be consistent with the prominent and commonly observed downshifted maximum (DM) emission in the spectrum of stimulated electromagnetic emission

  8. NMR spectroscopy up to 35.2T using a series-connected hybrid magnet.

    Science.gov (United States)

    Gan, Zhehong; Hung, Ivan; Wang, Xiaoling; Paulino, Joana; Wu, Gang; Litvak, Ilya M; Gor'kov, Peter L; Brey, William W; Lendi, Pietro; Schiano, Jeffrey L; Bird, Mark D; Dixon, Iain R; Toth, Jack; Boebinger, Gregory S; Cross, Timothy A

    2017-11-01

    The National High Magnetic Field Laboratory has brought to field a Series-Connected Hybrid magnet for NMR spectroscopy. As a DC powered magnet it can be operated at fields up to 36.1T. The series connection between a superconducting outsert and a resistive insert dramatically minimizes the high frequency fluctuations of the magnetic field typically observed in purely resistive magnets. Current-density-grading among various resistive coils was used for improved field homogeneity. The 48mm magnet bore and 42mm outer diameter of the probes leaves limited space for conventional shims and consequently a combination of resistive and ferromagnetic shims are used. Field maps corrected for field instabilities were obtained and shimming achieved better than 1ppm homogeneity over a cylindrical volume of 1cm diameter and height. The magnetic field is regulated within 0.2ppm using an external 7 Li lock sample doped with paramagnetic MnCl 2 . The improved field homogeneity and field regulation using a modified AVANCE NEO console enables NMR spectroscopy at 1 H frequencies of 1.0, 1.2 and 1.5GHz. NMR at 1.5GHz reflects a 50% increase in field strength above the highest superconducting magnets currently available. Three NMR probes have been constructed each equipped with an external lock rf coil for field regulation. Initial NMR results obtained from the SCH magnet using these probes illustrate the very exciting potential of ultra-high magnetic fields. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Novel multifunctional NiFe{sub 2}O{sub 4}/ZnO hybrids for dye removal by adsorption, photocatalysis and magnetic separation

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Hua-Yue [Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, Zhejiang 318000 (China); Department of Environmental Engineering, Taizhou University, Taizhou, Zhejiang 318000 (China); Jiang, Ru, E-mail: jiangru0576@163.com [Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, Zhejiang 318000 (China); Department of Environmental Engineering, Taizhou University, Taizhou, Zhejiang 318000 (China); Fu, Yong-Qian [Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, Zhejiang 318000 (China); Li, Rong-Rong [College of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou, Zhejiang 318000 (China); Yao, Jun; Jiang, Sheng-Tao [Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, Zhejiang 318000 (China); Department of Environmental Engineering, Taizhou University, Taizhou, Zhejiang 318000 (China)

    2016-04-30

    Graphical abstract: - Highlights: • The NiFe{sub 2}O{sub 4} was decorated on ZnO surface by a hydrothermal method. • NiFe{sub 2}O{sub 4}/ZnO hybrids show high adsorption capacity and excellent photostability. • The main active species in dye decolorization by NiFe{sub 2}O{sub 4}/ZnO hybrids are ·OH and h{sup +}. • NiFe{sub 2}O{sub 4}/ZnO hybrids can be easily separated by an external magnet. - Abstract: Novel multifunctional NiFe{sub 2}O{sub 4}/ZnO hybrids were prepared by a hydrothermal method and their physicochemical properties were characterized by XRD, SEM, TEM, TGA, VSM, BET and UV–vis DRS. The adsorption and photocatalytic performance of NiFe{sub 2}O{sub 4}/ZnO hybrids were systematically investigated using congo red as a model contaminant. With the introduction of NiFe{sub 2}O{sub 4}, NiFe{sub 2}O{sub 4}/ZnO hybrids can absorb the whole light from 300 nm to 700 nm. The adsorption capacity (221.73 mg g{sup −1}) of NiFe{sub 2}O{sub 4}/ZnO hybrids is higher than those of NiFe{sub 2}O{sub 4}, ZnO and mechanically mixed NiFe{sub 2}O{sub 4}/ZnO hybrids. The removal of congo red solution (20 mg L{sup −1}) by NiFe{sub 2}O{sub 4}/ZnO hybrids was about 94.55% under simulated solar light irradiation for 10 min. ·OH and h{sup +} play important roles in the decolorization of congo red solution by NiFe{sub 2}O{sub 4}/ZnO hybrids under simulated solar light irradiation. The decolorization efficiency of congo red solution is 97.23% for the fifth time by NiFe{sub 2}O{sub 4}/ZnO hybrids under simulate solar light irradiation, indicating the high photostability and durability. NO{sub 3}{sup −} and Cl{sup −} anions which are ubiquitous components in dye-containing wastewater have negligible influence on the effectiveness of NiFe{sub 2}O{sub 4}/ZnO hybrids. Moreover, the magnetic NiFe{sub 2}O{sub 4}/ZnO hybrids can be easily separated from the reacted solution by an external magnet.

  10. Studies of a hybrid avalanche photo-detector in magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Šantelj, L., E-mail: luka.santelj@kek.jp [High Energy Accelerator Research Organization (KEK) (Japan); Adachi, I. [High Energy Accelerator Research Organization (KEK) (Japan); Sokendai University (Japan); Hataya, K. [Tokyo Metropolitan University (Japan); Iori, S. [Toho University (Japan); Iwata, S.; Kakuno, H. [Tokyo Metropolitan University (Japan); Kataura, R. [Niigata University (Japan); Kawai, H. [Chiba University (Japan); Kindo, H. [Sokendai University (Japan); Korpar, S. [University of Maribor (Slovenia); Jožef Stefan Institute, Ljubljana (Slovenia); Križan, P. [Jožef Stefan Institute, Ljubljana (Slovenia); University of Ljubljana (Slovenia); Mrvar, M. [Jožef Stefan Institute, Ljubljana (Slovenia); Nath, K. [Indian Institute of Technology Guwahati (India); Nishida, S. [High Energy Accelerator Research Organization (KEK) (Japan); Sokendai University (Japan); Ogawa, S. [Niigata University (Japan); Pestotnik, R.; Stanovnik, A.; Seljak, A. [Jožef Stefan Institute, Ljubljana (Slovenia); Sumiyoshi, T. [Tokyo University of Science, Tokyo (Japan); Tabata, M. [Chiba University (Japan); and others

    2017-02-11

    For the Belle II spectrometer a proximity focusing RICH counter with an aerogel radiator (ARICH) will be employed as a PID system in the forward endcap region of the spectrometer. The main challenge was the development of a reliable multichannel sensor for single photons that operates in the high magnetic field of the spectrometer (1.5 T) and withstands the radiation levels expected at the experiment. A 144-channel Hybrid Avalanche Photo-Detector (HAPD) was developed with Hamamatsu Photonics K.K. and the mass production of ∼480 HAPDs was completed recently. While our first tests of HAPD performance in the magnetic field (before mass production) showed no issues, we lately observed a presence of very large signal pulses (∼5000× single photon signal), generated internally within about 20% of HAPDs, while operating in the magnetic field. The rate of these pulses varies from sample to sample. These pulses impact the HAPD performance in two ways: they introduce periods of dead time and, in some cases, damage to the front-end electronics was observed. Here we present conditions under which such large pulses are generated, their properties and impact on HAPD performance, and discuss possible mechanism of their origin.

  11. Development of a Hybrid Piezo Natural Rubber Piezoelectricity and Piezoresistivity Sensor with Magnetic Clusters Made by Electric and Magnetic Field Assistance and Filling with Magnetic Compound Fluid.

    Science.gov (United States)

    Shimada, Kunio; Saga, Norihiko

    2017-02-10

    Piezoelements used in robotics require large elasticity and extensibility to be installed in an artificial robot skin. However, the piezoelements used until recently are vulnerable to large forces because of the thin solid materials employed. To resolve this issue, we utilized a natural rubber and applied our proposed new method of aiding with magnetic and electric fields as well as filling with magnetic compound fluid (MCF) and doping. We have verified the piezoproperties of the resulting MCF rubber. The effect of the created magnetic clusters is featured in a new two types of multilayered structures of the piezoelement. By measuring the piezoelectricity response to pressure, the synergetic effects of the magnetic clusters, the doping and the electric polymerization on the piezoelectric effect were clarified. In addition, by examining the relation between the piezoelectricity and the piezoresistivity created in the MCF piezo element, we propose a hybrid piezoelement.

  12. Development of a Hybrid Piezo Natural Rubber Piezoelectricity and Piezoresistivity Sensor with Magnetic Clusters Made by Electric and Magnetic Field Assistance and Filling with Magnetic Compound Fluid

    Science.gov (United States)

    Shimada, Kunio; Saga, Norihiko

    2017-01-01

    Piezoelements used in robotics require large elasticity and extensibility to be installed in an artificial robot skin. However, the piezoelements used until recently are vulnerable to large forces because of the thin solid materials employed. To resolve this issue, we utilized a natural rubber and applied our proposed new method of aiding with magnetic and electric fields as well as filling with magnetic compound fluid (MCF) and doping. We have verified the piezoproperties of the resulting MCF rubber. The effect of the created magnetic clusters is featured in a new two types of multilayered structures of the piezoelement. By measuring the piezoelectricity response to pressure, the synergetic effects of the magnetic clusters, the doping and the electric polymerization on the piezoelectric effect were clarified. In addition, by examining the relation between the piezoelectricity and the piezoresistivity created in the MCF piezo element, we propose a hybrid piezoelement. PMID:28208625

  13. Development of a Hybrid Piezo Natural Rubber Piezoelectricity and Piezoresistivity Sensor with Magnetic Clusters Made by Electric and Magnetic Field Assistance and Filling with Magnetic Compound Fluid

    Directory of Open Access Journals (Sweden)

    Kunio Shimada

    2017-02-01

    Full Text Available Piezoelements used in robotics require large elasticity and extensibility to be installed in an artificial robot skin. However, the piezoelements used until recently are vulnerable to large forces because of the thin solid materials employed. To resolve this issue, we utilized a natural rubber and applied our proposed new method of aiding with magnetic and electric fields as well as filling with magnetic compound fluid (MCF and doping. We have verified the piezoproperties of the resulting MCF rubber. The effect of the created magnetic clusters is featured in a new two types of multilayered structures of the piezoelement. By measuring the piezoelectricity response to pressure, the synergetic effects of the magnetic clusters, the doping and the electric polymerization on the piezoelectric effect were clarified. In addition, by examining the relation between the piezoelectricity and the piezoresistivity created in the MCF piezo element, we propose a hybrid piezoelement.

  14. Dust-cyclotron and dust-lower-hybrid modes in self-gravitating magnetized dusty plasmas

    International Nuclear Information System (INIS)

    Mamun, A.A.

    1999-07-01

    A theoretical investigation has been made of two new ultra-low-frequency electrostatic modes, namely, dust-cyclotron mode and dust-lower-hybrid mode, propagating perpendicular to the external magnetic field, in a self-gravitating magnetized two fluid dusty plasma system. It has been shown that the effect of the self-gravitational force, acting on both dust grains and ions, significantly modifies the dispersion properties of both of these two electrostatic modes. It is also found that under certain conditions, this self-gravitational effect can destabilize these ultra-low-frequency electrostatic modes. The implications of these results to some space and astrophysical dusty plasma systems, especially to planetary ring-systems and cometary tails, are briefly mentioned. (author)

  15. Quantum capacitance of an ultrathin topological insulator film in a magnetic field

    KAUST Repository

    Tahir, M.; Sabeeh, K.; Schwingenschlö gl, Udo

    2013-01-01

    We present a theoretical study of the quantum magnetocapacitance of an ultrathin topological insulator film in an external magnetic field. The study is undertaken to investigate the interplay of the Zeeman interaction with the hybridization between the upper and lower surfaces of the thin film. Determining the density of states, we find that the electron-hole symmetry is broken when the Zeeman and hybridization energies are varied relative to each other. This leads to a change in the character of the magnetocapacitance at the charge neutrality point. We further show that in the presence of both Zeeman interaction and hybridization the magnetocapacitance exhibits beating at low and splitting of the Shubnikov de Haas oscillations at high perpendicular magnetic field. In addition, we address the crossover from perpendicular to parallel magnetic field and find consistency with recent experimental data.

  16. Quantum capacitance of an ultrathin topological insulator film in a magnetic field

    KAUST Repository

    Tahir, M.

    2013-02-12

    We present a theoretical study of the quantum magnetocapacitance of an ultrathin topological insulator film in an external magnetic field. The study is undertaken to investigate the interplay of the Zeeman interaction with the hybridization between the upper and lower surfaces of the thin film. Determining the density of states, we find that the electron-hole symmetry is broken when the Zeeman and hybridization energies are varied relative to each other. This leads to a change in the character of the magnetocapacitance at the charge neutrality point. We further show that in the presence of both Zeeman interaction and hybridization the magnetocapacitance exhibits beating at low and splitting of the Shubnikov de Haas oscillations at high perpendicular magnetic field. In addition, we address the crossover from perpendicular to parallel magnetic field and find consistency with recent experimental data.

  17. Calculation of magnetic error fields in hybrid insertion devices

    International Nuclear Information System (INIS)

    Savoy, R.; Halbach, K.; Hassenzahl, W.; Hoyer, E.; Humphries, D.; Kincaid, B.

    1989-08-01

    The Advanced Light Source (ALS) at the Lawrence Berkeley Laboratory requires insertion devices with fields sufficiently accurate to take advantage of the small emittance of the ALS electron beam. To maintain the spectral performance of the synchrotron radiation and to limit steering effects on the electron beam these errors must be smaller than 0.25%. This paper develops a procedure for calculating the steering error due to misalignment of the easy axis of the permanent magnet material. The procedure is based on a three dimensional theory of the design of hybrid insertion devices developed by one of us. The acceptable tolerance for easy axis misalignment is found for a 5 cm period undulator proposed for the ALS. 11 refs., 5 figs

  18. Presentation and Performance Evaluation of a Novel Stator-Permanent-Magnet Hybrid Stepping Motor

    Directory of Open Access Journals (Sweden)

    Binglin Lu

    2017-05-01

    Full Text Available In this paper, a new type of hybrid stepping motor (HSM with permanent magnets (PMs embedded in the stator, namely the stator-permanent-magnet hybrid stepping motor (SHSM, is presented. It has the same operation principles as the traditional HSM, with a 2-D distributed magnetic field nature and superiorities such as simpler rotor structure, easier PM cooling, higher torque and power density, and higher power grade. Its structural topology and operation principles are initially presented. Then an investigation on the performance comparison between the HSM and the SHSM, in terms of PM flux density, PM torque, detent torque, positional holding accuracy, stator core saturation issue, PM flux leakage, and PM utilization rate is carried out theoretically to make an assessment of the performance superiorities of the SHSM. A prototype of a 2-phase 8-pole 50-rotor-tooth SHSM is fabricated and experimentally compared with the HSM by using finite element analysis (FEA to verify the motor’s operational feasibility and the theoretical analysis. The FEA and experimental results show that the proposed SHSM has performance advantages such as higher torque density, higher power grade, and higher pull-out torque, holding torque, and torque-speed property, although it has performance defects such as higher torque ripple and relatively lower positional holding accuracy in the open-loop operation than the conventional HSM. Consequently, this novel SHSM is more suitable for electromechanical energy conversion applications rather than positioning mechanisms, especially taking into account the open-loop control advantage.

  19. Electronic transport and magnetization dynamics in magnetic systems

    International Nuclear Information System (INIS)

    Borlenghi, Simone

    2011-01-01

    The aim of this thesis is to understand the mutual influence between electronic transport and magnetization dynamics in magnetic hybrid metallic nano-structures. At first, we have developed a theoretical model, based on random matrix theory, to describe at microscopic level spin dependent transport in a heterogeneous nano-structure. This model, called Continuous Random Matrix Theory (CRMT), has been implemented in a simulation code that allows one to compute local (spin torque, spin accumulation and spin current) and macroscopic (resistance) transport properties of spin valves. To validate this model, we have compared it with a quantum theory of transport based on the non equilibrium Green's functions formalism. Coupling the two models has allowed to perform a multi-scale description of metallic hybrid nano-structures, where ohmic parts are described using CRMT, while purely quantum parts are described using Green's functions. Then, we have coupled CRMT to a micro-magnetic simulation code, in order to describe the complex dynamics of the magnetization induced by spin transfer effect. The originality of this approach consists in modelling a spectroscopic experiment based on a mechanical detection of the ferromagnetic resonance, and performed on a spin torque nano-oscillator. This work has allowed us to obtain the dynamical phase diagram of the magnetization, and to detect the selection rules for spin waves induced by spin torque, as well as the competition between the Eigen-modes of the system when a dc current flows through the multilayer, in partial agreement with experimental data. (author)

  20. Self-consistent, relativistic, ferromagnetic band structure of gadolinium

    International Nuclear Information System (INIS)

    Harmon, B.N.; Schirber, J.; Koelling, D.D.

    1977-01-01

    An initial self-consistent calculation of the ground state magnetic band structure of gadolinium is described. A linearized APW method was used which included all single particle relativistic effects except spin-orbit coupling. The spin polarized potential was obtained in the muffin-tin form using the local spin density approximation for exchange and correlation. The most striking and unorthodox aspect of the results is the position of the 4f spin-down ''bands'' which are required to float just on top of the Fermi level in order to obtain convergence. If the 4f states (l = 3 resonance) are removed from the occupied region of the conduction bands the magnetic moment is approximately .75 μ/sub B//atom; however, as the 4f spin-down states are allowed to find their own position they hybridize with the conduction bands at the Fermi level and the moment becomes smaller. Means of improving the calculation are discussed

  1. Electromagnetic Properties Analysis on Hybrid-driven System of Electromagnetic Motor

    Science.gov (United States)

    Zhao, Jingbo; Han, Bingyuan; Bei, Shaoyi

    2018-01-01

    The hybrid-driven system made of permanent-and electromagnets applied in the electromagnetic motor was analyzed, equivalent magnetic circuit was used to establish the mathematical models of hybrid-driven system, based on the models of hybrid-driven system, the air gap flux, air-gap magnetic flux density, electromagnetic force was proposed. Taking the air-gap magnetic flux density and electromagnetic force as main research object, the hybrid-driven system was researched. Electromagnetic properties of hybrid-driven system with different working current modes is studied preliminary. The results shown that analysis based on hybrid-driven system can improve the air-gap magnetic flux density and electromagnetic force more effectively and can also guarantee the output stability, the effectiveness and feasibility of the hybrid-driven system are verified, which proved theoretical basis for the design of hybrid-driven system.

  2. Shimming with permanent magnets for the x-ray detector in a hybrid x-ray∕MR system

    Science.gov (United States)

    Wen, Zhifei; Fahrig, Rebecca; Williams, Scott T.; Pelc, Norbert J.

    2008-01-01

    In this x-ray∕MR hybrid system an x-ray flat panel detector is placed under the patient cradle, close to the MR volume of interest (VOI), where the magnetic field strength is ∼0.5 T. Immersed in this strong field, several electronic components inside the detector become magnetized and create an additional magnetic field that is superimposed on the original field of the MR scanner. Even after linear shimming, the field homogeneity of the MR scanner remains disrupted by the detector. The authors characterize the field due to the detector with the field of two magnetic dipoles and further show that two sets of permanent magnets (NdFeB) can withstand the main magnetic field and compensate for the nonlinear components of the additional field. The ideal number of magnets and their locations are calculated based on a field map measured with the detector in place. Experimental results demonstrate great promise for this technique, which may be useful in many settings where devices with magnetic components need to be placed inside or close to an MR scanner. PMID:18841840

  3. A hybrid analytical model for open-circuit field calculation of multilayer interior permanent magnet machines

    Science.gov (United States)

    Zhang, Zhen; Xia, Changliang; Yan, Yan; Geng, Qiang; Shi, Tingna

    2017-08-01

    Due to the complicated rotor structure and nonlinear saturation of rotor bridges, it is difficult to build a fast and accurate analytical field calculation model for multilayer interior permanent magnet (IPM) machines. In this paper, a hybrid analytical model suitable for the open-circuit field calculation of multilayer IPM machines is proposed by coupling the magnetic equivalent circuit (MEC) method and the subdomain technique. In the proposed analytical model, the rotor magnetic field is calculated by the MEC method based on the Kirchhoff's law, while the field in the stator slot, slot opening and air-gap is calculated by subdomain technique based on the Maxwell's equation. To solve the whole field distribution of the multilayer IPM machines, the coupled boundary conditions on the rotor surface are deduced for the coupling of the rotor MEC and the analytical field distribution of the stator slot, slot opening and air-gap. The hybrid analytical model can be used to calculate the open-circuit air-gap field distribution, back electromotive force (EMF) and cogging torque of multilayer IPM machines. Compared with finite element analysis (FEA), it has the advantages of faster modeling, less computation source occupying and shorter time consuming, and meanwhile achieves the approximate accuracy. The analytical model is helpful and applicable for the open-circuit field calculation of multilayer IPM machines with any size and pole/slot number combination.

  4. Electrostatic lower hybrid waves excited by electromagnetic whistler mode waves scattering from planar magnetic-field-aligned plasma density irregularities

    International Nuclear Information System (INIS)

    Bell, T.F.; Ngo, H.D.

    1990-01-01

    Recent satellite observations demonstrate that high amplitude, short wavelength (5 m ≤ λ ≤ 100 m) electrostatic waves are commonly excited by electromagnetic whistler mode waves propagating in regions of the magnetosphere and topside ionosphere where small-scale magnetic-field-aligned plasma density irregularities are thought to exist. A new theoretical model of this phenomenon is presented, based upon passive linear scattering in a cold magnetoplasma. In this model the electrostatic waves are excited by linear mode coupling as the incident electromagnetic whistler mode waves scatter from the magnetic-field-aligned plasma density irregularities. The excited short wavelength waves are quasi-electrostatic whistler mode waves, a type of lower hybrid wave, whose wave normal lies near the whistler mode resonance cone where the wave refractive index becomes very large. The amplitude of the excited electrostatic lower hybrid waves is calculated for a wide range of values of input electromagnetic wave frequency, wave normal direction, electron plasma frequency, gyrofrequency, ion composition, and irregularity scale and density enhancement. Results indicate that high amplitude lower hybrid waves can be excited over a wide range of parameters for irregularity density enhancements as low as 5% whenever the scale of the irregularity is of the same order as the lower hybrid wavelength

  5. Heat transfer and entropy generation analysis of hybrid graphene/Fe3O4 ferro-nanofluid flow under the influence of a magnetic field

    DEFF Research Database (Denmark)

    Mehrali, Mohammad; Sadeghinezhad, Emad; Akhiani, Amir Reza

    2017-01-01

    oxide, iron salts and tannic acid as the reductant and stabilizer. The thermophysical and magnetic properties of the hybrid nanofluid have been widely characterized and thermal conductivity has shown an enhancement of 11%. The experimental results indicated that the heat transfer enhancement of hybrid...

  6. A two-dimensional magnetic hybrid material based on intercalation of a cationic Prussian blue analog in montmorillonite nanoclay

    NARCIS (Netherlands)

    Gournis, Dimitrios; Papachristodoulou, Christina; Maccallini, Enrico; Rudolf, Petra; Karakassides, Michael A.; Karamanis, Dimitrios T.; Sage, Marie-Helene; Palstra, Thomas T. M.; Colomer, Jean-Francois; Papavasileiou, Konstantinos D.; Melissas, Vasilios S.; Gangas, Nicolaos H.

    2010-01-01

    A highly ordered two-dimensional hybrid magnetic nanocomposite has been prepared by synthesizing and intercalating a new cationic aluminum-hydroxy ferric ferrocyanide compound into a cation-adsorbing nanoclay (montmorillonite). Chemical and structural properties were investigated by X-ray

  7. Shape anisotropy and hybridization enhanced magnetization in nanowires of Fe/MgO/Fe encapsulated in carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Aryee, Dennis [Army Research Laboratory, Weapons and Materials Research Directorate, Aberdeen Proving Ground, MD 21005 (United States); Department of Physics and Engineering Physics, Morgan State University, Baltimore, MD 21251 (United States); Seifu, Dereje, E-mail: dereje.seifu@morgan.edu [Department of Physics and Engineering Physics, Morgan State University, Baltimore, MD 21251 (United States)

    2017-05-01

    Arrays of tunneling magnetoresistance (TMR) nanowires were synthesized for the first time by filling Fe/MgO/Fe inside vertically grown and substrate supported carbon nanotubes. The magnetic properties of nanowires and planar nanoscale thin films of Fe/MgO/Fe showed several similarities, such as two-fold magnetic symmetry and ratio of orbital moment to spin moment. Nanowires of Fe/MgO/Fe showed higher saturation magnetization by a factor of 2.7 compared to planar thin films of Fe/MgO/Fe at 1.5 kOe. The enhanced magnetic properties likely resulted from shape anisotropy of the nanowires and as well as the hybridization that occur between the π- electronic states of carbon and 3d-bands of the Fe-surface.

  8. Extraordinary Magnetoresistance in Semiconductor/Metal Hybrids: A Review

    Science.gov (United States)

    Sun, Jian; Kosel, Jürgen

    2013-01-01

    The Extraordinary Magnetoresistance (EMR) effect is a change in the resistance of a device upon the application of a magnetic field in hybrid structures, consisting of a semiconductor and a metal. The underlying principle of this phenomenon is a change of the current path in the hybrid structure upon application of a magnetic field, due to the Lorentz force. Specifically, the ratio of current, flowing through the highly conducting metal and the poorly conducting semiconductor, changes. The main factors for the device’s performance are: the device geometry, the conductivity of the metal and semiconductor, and the mobility of carriers in the semiconductor. Since the discovery of the EMR effect, much effort has been devoted to utilize its promising potential. In this review, a comprehensive overview of the research on the EMR effect and EMR devices is provided. Different geometries of EMR devices are compared with respect to MR ratio and output sensitivity, and the criteria of material selection for high-performance devices are discussed. PMID:28809321

  9. Superconducting magnet for EHS

    International Nuclear Information System (INIS)

    Desportes, H.; Duthil, R.; Celebart, J.C.; Leschevin, C.; Lesmond, C.

    1980-10-01

    A 55 Mjoules Magnet has been installed and commissioned at CERN for the Rapid Cycling Bubble Chamber of the EHS experiment (European Hybrid Spectrometer). The magnet consists of two separate circular coils, assembled with their axis horizontal into a massive iron structure, and provides a central field of 3 T in a useful volume of 1.4 m in diameter and 0.82 m gap with a completely azimuthally free acceptance of +-18 deg from the central plane. Special features of the magnet, which is otherwise of a classical pancake-type, bath-cooled design, are a relatively high average current density (2500 Amp/cm 2 ) and an elaborate support structure required by the particular force configuration within the iron structure

  10. Specialty magnets

    International Nuclear Information System (INIS)

    Halbach, K.

    1986-07-01

    A number of basic conceptual designs are explained for magnet systems that use permanent magnet materials. Included are iron free multipoles and hybrid magnets. Also appended is a discussion of the manufacturing process and magnetic properties of some permanent magnet materials

  11. Presentation of electric motor and motor control technology for electric vehicles and hybrid vehicles; Denki jidosha hybrid sha yo motor oyobi motor seigyo gijutsu no shokai

    Energy Technology Data Exchange (ETDEWEB)

    Matsudaira, N.; Masakik, R.; Tajima, F. [Hitachi, Ltd., Tokyo (Japan)

    1999-02-01

    The authors have developed a motor drive system for electric vehicles and hybrid vehicles. This system consists of a permanent magnet type synchronous motor, an inverter using insulated gate bipolar transistors (IGBTs) and a controller based on a single-chip microcomputer. To achieve a compact and light weight synchronous motor, an internal permanent magnet type rotor structure was designed. This paper presents motor control technology for electric vehicles, such as an optimization method of field weakening control and a new current control method. (author)

  12. Mirror fusion--fission hybrids

    International Nuclear Information System (INIS)

    Lee, J.D.

    1978-01-01

    The fusion-fission concept and the mirror fusion-fission hybrid program are outlined. Magnetic mirror fusion drivers and blankets for hybrid reactors are discussed. Results of system analyses are presented and a reference design is described

  13. Calculation of the magnetic anisotropy energy and finite-temperature magnetic properties of transition-metal films

    International Nuclear Information System (INIS)

    Garibay-Alonso, R; Villasenor-Gonzalez, P; Dorantes-Davila, J; Pastor, G M

    2004-01-01

    The magnetic anisotropy energy at the interface (IMAE) of Co films deposited on the Pd(111) surface are determined in the framework of a self-consistent, real-space tight-binding method at zero temperature. Significant spin moments are induced at the Pd atoms at the interface which have an important influence on the observed reorientation transitions as a function of Co film thickness. Film-substrate hybridizations are therefore crucial for the magneto-anisotropic behaviour of thin transition-metal films deposited on metallic non-magnetic substrates. Furthermore, using a real-space recursive expansion of the local Green function and within the virtual-crystal approximation we calculate the magnetization curves and the Curie temperature T C for free-standing Fe films

  14. Electrically induced magnetic fields; a consistent approach

    Science.gov (United States)

    Batell, Brian; Ferstl, Andrew

    2003-09-01

    Electromagnetic radiation exists because changing magnetic fields induce changing electric fields and vice versa. This fact often appears inconsistent with the way some physics textbooks solve particular problems using Faraday's law. These types of problems often ask students to find the induced electric field given a current that does not vary linearly with time. A typical example involves a long solenoid carrying a sinusoidal current. This problem is usually solved as an example or assigned as a homework exercise. The solution offered by many textbooks uses the approximation that the induced, changing electric field produces a negligible magnetic field, which is only valid at low frequencies. If this approximation is not explicitly acknowledged, then the solution appears inconsistent with the description of electromagnetic radiation. In other cases, when the problem is solved without this approximation, the electric and magnetic fields are derived from the vector potential. We present a detailed calculation of the electric and magnetic fields inside and outside the long solenoid without using the vector potential. We then offer a comparison of our solution and a solution given in an introductory textbook.

  15. Study on a Highly Stabilized Power Supply for Hybrid-Magnet Superconducting Outsert

    International Nuclear Information System (INIS)

    Wu Jinglin; Long Jiaojiao; Liu Xiaoning

    2014-01-01

    The superconducting outsert of the 40 T hybrid-magnet in High Magnetic Field Laboratory (HMFL) of Chinese Academy of Sciences (CAS) requires a highly stabilized power supply. In this paper, two kinds of power supply design are briefly presented and both advantages and disadvantages are analyzed. In order to overcome the drawbacks of switching power supply, a series regulated active filter is adopted and a new design is proposed which ensures cooperative relationship between the feedback control loops of the switching converter and the series regulated active filter. Besides, unlike the traditional switching power supply, which can generate positive voltage only, this new design can also generate negative voltage which is needed in the quench protection for the superconducting magnet. In order to demonstrate the effectiveness of the methodology, a low-power prototype has been accomplished. The simulation and experiment results show that the power supply achieves high precision under the combined action of two feedback control loops. The peak-to-peak amplitude of the output ripple voltage of the prototype is 0.063%, while the peak-to-peak amplitude of the output ripple current is 120 ppm. (fusion engineering)

  16. A One-Dimensional Magnetic Chip with a Hybrid Magnetosensor and a Readout Circuit

    Directory of Open Access Journals (Sweden)

    Guo-Ming Sung

    2018-01-01

    Full Text Available This work presents a one-dimensional magnetic chip composed of a hybrid magnetosensor and a readout circuit, which were fabricated with 0.18 μm 1P6M CMOS technology. The proposed magnetosensor includes a polysilicon cross-shaped Hall plate and two separated metal-oxide semiconductor field-effect transistors (MOSFETs to sense the magnetic induction perpendicular to the chip surface. The readout circuit, which comprises a current-to-voltage converter, a low-pass filter, and an instrumentation amplifier, is designed to amplify the output Hall voltage with a gain of 43 dB. Furthermore, a SPICE macro model is proposed to predict the sensor’s performance in advance and to ensure sufficient comprehension of the magnetic mechanism of the proposed magnetosensor. Both simulated and measured results verify the correctness and flexibility of the proposed SPICE macro model. Measurements reveal that the maximum output Hall voltage VH, the optimum current-related magnetosensitivity SRI, the optimum voltage-related magnetosensitivity SRV, the averaged nonlinearity error NLE, and the relative bias current Ibias are 4.381 mV, 520.5 V/A·T, 40.04 V/V·T, 7.19%, and 200 μA, respectively, for the proposed 1-D magnetic chip with a readout circuit of 43 dB. The averaged NLE is small at high magnetic inductions of ±30 mT, whereas it is large at low magnetic inductions of ±30 G.

  17. Magnetic resonance imaging of the inner ear by using a hybrid radiofrequency coil at 7 T

    Science.gov (United States)

    Kim, Kyoung-Nam; Heo, Phil; Kim, Young-Bo; Han, Gyu-Cheol

    2015-01-01

    Visualization of the membranous structures of the inner ear has been limited to the detection of the normal fluid signal intensity within the bony labyrinth by using magnetic resonance imaging (MRI) equipped with a 1.5 Tesla (T) magnet. High-field (HF) MRI has been available for more than a decade, and numerous studies have documented its significant advantages over conventional MRI with regards to its use in basic scientific research and routine clinical assessments. No previous studies of the inner ear by using HF MRI have been reported, in part because high-quality resolution of mastoid pneumatization is challenging due to artifacts generated in the HF environment and insufficient performance of radiofrequency (RF) coils. Therefore, a hybrid RF coil with integrated circuitry was developed at 7 T and was targeted for anatomical imaging to achieve a high resolution image of the structure of the human inner ear, excluding the bony portion. The inner-ear's structure is composed of soft tissues containing hydrogen ions and includes the membranous labyrinth, endolymphatic space, perilymphatic space, and cochlear-vestibular nerves. Visualization of the inner-ear's anatomy was performed in-vivo with a custom-designed hybrid RF coil and a specific imaging protocol based on an interpolated breath-held examination sequence. The comparative signal intensity value at 30-mm away from the phantom side was 88% higher for the hybrid RF coil and 24% higher for the 8-channel transmit/receive (Tx/Rx) coil than for the commercial birdcage coil. The optimized MRI protocol employed a hybrid RF coil because it enabled high-resolution imaging of the inner-ear's anatomy and accurate mapping of structures including the cochlea and the semicircular canals. These results indicate that 7 T MRI achieves high spatial resolution visualization of the inner-ear's anatomy. Therefore, MRI imaging using a hybrid RF coil at 7 T could provide a powerful tool for clinical investigations of petrous

  18. Optimal design of permanent magnet flux switching generator for wind applications via artificial neural network and multi-objective particle swarm optimization hybrid approach

    International Nuclear Information System (INIS)

    Meo, Santolo; Zohoori, Alireza; Vahedi, Abolfazl

    2016-01-01

    Highlights: • A new optimal design of flux switching permanent magnet generator is developed. • A prototype is employed to validate numerical data used for optimization. • A novel hybrid multi-objective particle swarm optimization approach is proposed. • Optimization targets are weight, cost, voltage and its total harmonic distortion. • The hybrid approach preference is proved compared with other optimization methods. - Abstract: In this paper a new hybrid approach obtained combining a multi-objective particle swarm optimization and artificial neural network is proposed for the design optimization of a direct-drive permanent magnet flux switching generators for low power wind applications. The targets of the proposed multi-objective optimization are to reduce the costs and weight of the machine while maximizing the amplitude of the induced voltage as well as minimizing its total harmonic distortion. The permanent magnet width, the stator and rotor tooth width, the rotor teeth number and stator pole number of the machine define the search space for the optimization problem. Four supervised artificial neural networks are designed for modeling the complex relationships among the weight, the cost, the amplitude and the total harmonic distortion of the output voltage respect to the quantities of the search space. Finite element analysis is adopted to generate training dataset for the artificial neural networks. Finite element analysis based model is verified by experimental results with a 1.5 kW permanent magnet flux switching generator prototype suitable for renewable energy applications, having 6/19 stator poles/rotor teeth. Finally the effectiveness of the proposed hybrid procedure is compared with the results given by conventional multi-objective optimization algorithms. The obtained results show the soundness of the proposed multi objective optimization technique and its feasibility to be adopted as suitable methodology for optimal design of permanent

  19. Magnetic characterisation of large grain, bulk Y–Ba–Cu–O superconductor–soft ferromagnetic alloy hybrid structures

    International Nuclear Information System (INIS)

    Philippe, M.P.; Fagnard, J.-F.; Kirsch, S.; Xu, Z.; Dennis, A.R.; Shi, Y.-H.; Cardwell, D.A.; Vanderheyden, B.; Vanderbemden, P.

    2014-01-01

    Highlights: • Large grain, bulk YBaCuO superconductor (SC) combined with ferromagnetic elements. • The flux lines curve outwards through the ferromagnet in the remanent state. • The trapped field in the SC is enhanced by the presence of the ferromagnet. • The effects of the SC and the ferromagnet add when the ferromagnet is saturated. - Abstract: Large grain, bulk Y–Ba–Cu–O (YBCO) high temperature superconductors (HTS) have significant potential for use in a variety of practical applications that incorporate powerful quasi-permanent magnets. In the present work, we investigate how the trapped field of such magnets can be improved by combining bulk YBCO with a soft FeNi, ferromagnetic alloy. This involves machining the alloy into components of various shapes, such as cylinders and rings, which are attached subsequently to the top surface of a solid, bulk HTS cylinder. The effect of these modifications on the magnetic hysteresis curve and trapped field of the bulk superconductor at 77 K are then studied using pick-up coil and Hall probe measurements. The experimental data are compared to finite element modelling of the magnetic flux distribution using Campbell’s algorithm. Initially we establish the validity of the technique involving pick-up coils wrapped around the bulk superconductor to obtain its magnetic hysteresis curve in a non-destructive way and highlight the difference between the measured signal and the true magnetization of the sample. We then consider the properties of hybrid ferromagnet/superconductor (F/S) structures. Hall probe measurements, together with the results of the model, establish that flux lines curve outwards through the ferromagnet, which acts, effectively, like a magnetic short circuit. Magnetic hysteresis curves show that the effects of the superconductor and the ferromagnet simply add when the ferromagnet is saturated fully by the applied field. The trapped field of the hybrid structure is always larger than that of the

  20. Magnetic fluctuations can contribute to plasma transport, ''self-consistency constraints'' notwithstanding

    International Nuclear Information System (INIS)

    Krommes, J.A.; Kim, Chang-Bae.

    1987-09-01

    The recent conclusion that in a turbulent, collisionless plasma ''magnetic transport including quasilinear magnetic flutter transport ... does not contribute to the relaxation of (f), and thus is not responsible for electron energy or momentum transport'' is shown to be incorrect for a variety of situations of physical interest, including saturation by quasilinear plateau formation, induced scattering, and, most importantly, conventional mode coupling. The well-established theory of the mean infinitesimal response function and the spectral balance equation provides a unifying framework for understanding the above conclusion. In particular, the cancellations which lead to their conclusion are special cases of well-known relationships between the response function, particle propagator, and dielectric function. A more general, concise, and manifestly gauge-invariant algebraic derivation of the cancellations is given. Though the cancellations occur in a certain limit, these conclusions do not follow in general: The picture of steady-state turbulence as consisting of small-scale ''incoherent'' ballistic ''clumps'' shielded by long-wavelength ''coherent'' dielectric response is physically misleading and mathematically incomplete, as it ignores or mistreates the often dominant process of renormalized n-wave coupling. Thus, when ion nonlinearities are considered, formulas for the magnetic contribution to transport emerge which are quite similar to the quasilinear one. Furthermore, limits are possible in which all or part of the noise can be negligible, yet in which the total fluctuation spectrum remains finite. 56 refs

  1. Magnetism by interfacial hybridization and p-type doping of MoS(2) in Fe(4)N/MoS(2) superlattices: a first-principles study.

    Science.gov (United States)

    Feng, Nan; Mi, Wenbo; Cheng, Yingchun; Guo, Zaibing; Schwingenschlögl, Udo; Bai, Haili

    2014-03-26

    Magnetic and electronic properties of Fe4N(111)/MoS2(√3 × √3) superlattices are investigated by first-principles calculations, considering two models: (I) Fe(I)Fe(II)-S and (II) N-S interfaces, each with six stacking configurations. In model I, strong interfacial hybridization between Fe(I)/Fe(II) and S results in magnetism of monolayer MoS2, with a magnetic moment of 0.33 μB for Mo located on top of Fe(I). For model II, no magnetism is induced due to weak N-S interfacial bonding, and the semiconducting nature of monolayer MoS2 is preserved. Charge transfer between MoS2 and N results in p-type MoS2 with Schottky barrier heights of 0.5-0.6 eV. Our results demonstrate that the interfacial geometry and hybridization can be used to tune the magnetism and doping in Fe4N(111)/MoS2(√3 × √3) superlattices.

  2. Development of the heat treatment system for the 40 T hybrid magnet superconducting outsert.

    Science.gov (United States)

    Chen, W G; Chen, Z M; Chen, Z Y; Huang, P C; He, P; Zhu, J W

    2011-10-01

    The heat treatment of Nb(3)Sn coil with the glass fabric insulation is one of the key and critical processes for the outsert solenoids of the 40 T hybrid magnet, which could be wound with cable-in-conduit conductors using the insulation-wind-and-react technique. The manufacturing of the large vertical type vacuum/Ar atmosphere-protection heat treatment system has been completed and recently installed in the High Magnetic Filed Laboratory, Chinese Academy of Sciences. The heat treatment system composed mainly the furnace, the purging gas supply system, the control system, the gas impurities monitoring system, and so on. At present, the regulation and testing of the heat treatment system has been successfully finished, and all of technical parameters meet or exceed specifications.

  3. Clinical perspectives of hybrid proton-fluorine magnetic resonance imaging and spectroscopy.

    Science.gov (United States)

    Wolters, Martijn; Mohades, Seyede G; Hackeng, Tilman M; Post, Mark J; Kooi, Marianne E; Backes, Walter H

    2013-05-01

    The number of applications of fluorine 19 (19F) magnetic resonance (MR) imaging and spectroscopy in biomedical and clinical research is steadily growing. The 100% natural abundance of fluorine and its relatively high sensitivity for MR (83% to that of protons) make it an interesting nucleus for a wide range of MR applications. Fluorinated contrast media have a number of advantages over the conventionally used gadolinium-based or iron-based contrast agents. The absence of an endogenous fluorine background intensity in the human body facilitates reliable quantification of fluorinated contrast medium or drugs. Anatomy can be visualized separately with proton MR imaging, creating the application of hybrid hydrogen 1 (1H)/19F MR imaging. The availability of 2 channels (ie, the 1H and 19F channels) enables dual-targeted molecular imaging. Recently, novel developments have emerged on fluorine-based contrast media in preclinical studies and imaging techniques. The developments in fluorine MR seem promising for clinical applications, with contributions in therapy monitoring, assessment of lung function, angiography, and molecular imaging. This review outlines the translation from recent advances in preclinical MR imaging and spectroscopy to future perspectives of clinical hybrid 1H/19/F MR imaging applications.

  4. Room-temperature synthesis of three-dimensional porous ZnO@CuNi hybrid magnetic layers with photoluminescent and photocatalytic properties

    Science.gov (United States)

    Guerrero, Miguel; Zhang, Jin; Altube, Ainhoa; García-Lecina, Eva; Roldan, Mònica; Baró, Maria Dolors; Pellicer, Eva; Sort, Jordi

    2016-01-01

    Abstract A facile synthetic approach to prepare porous ZnO@CuNi hybrid films is presented. Initially, magnetic CuNi porous layers (consisting of phase separated CuNi alloys) are successfully grown by electrodeposition at different current densities using H2 bubbles as a dynamic template to generate the porosity. The porous CuNi alloys serve as parent scaffolds to be subsequently filled with a solution containing ZnO nanoparticles previously synthesized by sol-gel. The dispersed nanoparticles are deposited dropwise onto the CuNi frameworks and the solvent is left to evaporate while the nanoparticles impregnate the interior of the pores, rendering ZnO-coated CuNi 3D porous structures. No thermal annealing is required to obtain the porous films. The synthesized hybrid porous layers exhibit an interesting combination of tunable ferromagnetic and photoluminescent properties. In addition, the aqueous photocatalytic activity of the composite is studied under UV−visible light irradiation for the degradation of Rhodamine B. The proposed method represents a fast and inexpensive approach towards the implementation of devices based on metal-semiconductor porous systems, avoiding the use of post-synthesis heat treatment steps which could cause deleterious oxidation of the metallic counterpart, as well as collapse of the porous structure and loss of the ferromagnetic properties. PMID:27877868

  5. Hybrid simulations of plasma transport by Kelvin-Helmholtz instability at the magnetopause: magnetic shear

    Energy Technology Data Exchange (ETDEWEB)

    Cowee, Misa M [Los Alamos National Laboratory; Winske, Dan [Los Alamos National Laboratory; Gary, S Peter [Los Alamos National Laboratory

    2009-01-01

    Two-dimensional hybrid (kinetic ions, massless fluid electrons) simulations of the Kelvin Helmholtz Instability (KHI) for a magnetopause configuration with a magnetic shear across the boundary are carried out to examine how the transport of magnetosheath plasma into the magnetosphere is affected by the shear field. Low magnetic shear conditions where the magnetosheath magnetic field is within 30{sup o} of northward is included in the simulations because KHI is thought to be important for plasma transport only for northward or near-northward interplanetary magnetic field orientations. The simulations show that coherent vortices can grow for these near-northward angles, and that they are sometimes more coherent than for pure northward conditions because the turbulence which breaks-down these vortices is reduced when there are magnetic tension forces. With increasing magnetic shear angle, the growth rate is reduced, and the vortices do not grow to as large of size which reduces the plasma transport. By tracking the individual particle motions diffusion coefficients can be obtained for the system, where the diffusion is not classical in nature but instead has a time dependence resulting from both the increasingly large-scale vortex motion and the small-scale turbulence generated in the break-down of the instabilities. Results indicate that diffusion on the order of 10{sup 9} m{sup 2}/s could possibly be generated by KHI on the flanks of the magnetosphere.

  6. A novel integrated 4-DOF radial hybrid magnetic bearing for MSCMG

    Energy Technology Data Exchange (ETDEWEB)

    Jinji, Sun; Ziyan, Ju [School of Instrumentation Science & Opto-electronics Engineering, Beijing University of Aeronautics and Astronautics, Science and Technology on Inertial Laboratory, Beijing 100191 (China); Weitao, Han, E-mail: hanweitaotao@163.com [CRRC Qingdao Sifang CO., LTD, Qingdao 266111 (China); Gang, Liu [School of Instrumentation Science & Opto-electronics Engineering, Beijing University of Aeronautics and Astronautics, Science and Technology on Inertial Laboratory, Beijing 100191 (China)

    2017-01-01

    This paper proposes a novel integrated radial hybrid magnetic bearing (RHMB) for application with the small-sized magnetically suspended control moment gyroscope (MSCMG), which can control four degrees of freedom (4-DOFs), including two radial translational DOFs and two radial tilting DOFs, and provide the axial passive resilience. The configuration and working principle of the RHMB are introduced. Mathematical models of radial force, axial resilience and moment are established by using equivalent magnetic circuit method (EMCM), from which the radial force–radial displacement, radial force–current relationships are derived, as well as axial resilience–axial displacement, moment–tilting angle and moment–current. Finite element method (FEM) is also applied to analyze the performance and characteristics of the RHMB. The analysis results are in good agreement with that calculated by the EMCM, which is helpful in designing, optimizing and controlling the RHMB. The comparisons between the performances of the integrated 4-DOF RHMB and the traditional 4-DOF RHMB are made. The contrast results indicate that the proposed integrated 4-DOF RHMB possesses better performance compared to the traditional structure, such as copper loss, current stiffness, and tilting current stiffness. - Highlights: • An integrated 4-DOF RHMB is proposed for the small-sized MSCMG. • The 4-DOF RHMB has good linear force–displacement and force–current characteristics. • The RHMB has good linear moment–current and the moment–tilting angle characteristic.

  7. Whole-body magnetic resonance angiography at 3 tesla using a hybrid protocol in patients with peripheral arterial disease

    DEFF Research Database (Denmark)

    Nielsen, Yousef W; Eiberg, Jonas P; Logager, Vibeke B

    2009-01-01

    The purpose of this study was to determine the diagnostic performance of 3T whole-body magnetic resonance angiography (WB-MRA) using a hybrid protocol in comparison with a standard protocol in patients with peripheral arterial disease (PAD). In 26 consecutive patients with PAD two different proto...

  8. Flywheel Energy Storage System Suspended by Hybrid Magnetic Bearing

    Science.gov (United States)

    Owusu-Ansah, Prince; Hu, Yefa; Misbawu, Adam

    This work presents a prototype flywheel energy storage system (FESS) suspended by hybrid magnetic bearing (HMB) rotating at a speed of 20000rpm with a maximum storage power capacity of 30W with a maximum tip speed of 300m/s. The design presented is an improvement of most existing FESS, as the design incorporates a unique feature in that the upper and the lower rotor and stator core are tapered which enhances larger thrust and much lower radial force to be exerted on the system. Without any adverse effect being experienced by the model. The work also focuses on the description of developing a prototype FESS suspended by HMB using solid works as a basis of developing in the nearer future a more improved FESS suspended by HMB capable of injecting the ever increasing high energy demand situation in the 21st century and beyond.

  9. A pedestal temperature model with self-consistent calculation of safety factor and magnetic shear

    International Nuclear Information System (INIS)

    Onjun, T; Siriburanon, T; Onjun, O

    2008-01-01

    A pedestal model based on theory-motivated models for the pedestal width and the pedestal pressure gradient is developed for the temperature at the top of the H-mode pedestal. The pedestal width model based on magnetic shear and flow shear stabilization is used in this study, where the pedestal pressure gradient is assumed to be limited by first stability of infinite n ballooning mode instability. This pedestal model is implemented in the 1.5D BALDUR integrated predictive modeling code, where the safety factor and magnetic shear are solved self-consistently in both core and pedestal regions. With the self-consistently approach for calculating safety factor and magnetic shear, the effect of bootstrap current can be correctly included in the pedestal model. The pedestal model is used to provide the boundary conditions in the simulations and the Multi-mode core transport model is used to describe the core transport. This new integrated modeling procedure of the BALDUR code is used to predict the temperature and density profiles of 26 H-mode discharges. Simulations are carried out for 13 discharges in the Joint European Torus and 13 discharges in the DIII-D tokamak. The average root-mean-square deviation between experimental data and the predicted profiles of the temperature and the density, normalized by their central values, is found to be about 14%

  10. Effect of magnetic field on thermal conductivity and viscosity of a magnetic nanofluid loaded with carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Shahsavar, Amin [Kermanshah University of Technology, Kermanshah (Iran, Islamic Republic of); Salimpour, Mohammad Reza; Saghafian, Mohsen [Isfahan University of Technology, Isfahan (Iran, Islamic Republic of); Shafii, M. B. [Sharif University of Technology, Tehran(Iran, Islamic Republic of)

    2016-02-15

    The present work examines experimentally the effect of magnetic field on the viscosity and thermal conductivity of a hybrid nanofluid containing tetramethylammonium hydroxide (TMAH) coated Fe{sub 3}O{sub 4} nanoparticles and Gum arabic (GA) coated carbon nanotubes (CNTs). The hybrid nanofluid was prepared by using ultrasonic dispersion method. Magnetic field was created by a pair of spaced apart magnet plates. The effect of temperature on the time variation of thermal conductivity under applied magnetic field was also investigated. According to the results of this study, viscosity of the hybrid nanofluid increases with the strength of magnetic field, while it decreases with the increase of temperature. Additionally, it is found that the hybrid nanofluid behaves as a shear thinning fluid at low shear rates while it exhibits Newtonian behavior at high shear rates. Furthermore, results show that when an external magnetic field is applied to the studied magnetic nanofluids, the thermal conductivity experiences a peak.

  11. Self-assembly of multiferroic core-shell particulate nanocomposites through DNA-DNA hybridization and magnetic field directed assembly of superstructures

    Energy Technology Data Exchange (ETDEWEB)

    Sreenivasulu, Gollapudi; Srinivasan, Gopalan, E-mail: srinivas@oakland.edu, E-mail: chavez@oakland.edu [Department of Physics, Oakland University, Rochester, MI 48309-4401 (United States); Lochbiler, Thomas A.; Panda, Manashi; Chavez, Ferman A., E-mail: srinivas@oakland.edu, E-mail: chavez@oakland.edu [Department of Chemistry, Oakland University, Rochester, MI 48309-4401 (United States)

    2016-04-15

    Multiferroic composites of ferromagnetic and ferroelectric phases are of importance for studies on mechanical strain mediated coupling between the magnetic and electric subsystems. This work is on DNA-assisted self-assembly of superstructures of such composites with nanometer periodicity. The synthesis involved oligomeric DNA-functionalized ferroelectric and ferromagnetic nanoparticles, 600 nm BaTiO{sub 3} (BTO) and 200 nm NiFe{sub 2}O{sub 4} (NFO), respectively. Mixing BTO and NFO particles, possessing complementary DNA sequences, resulted in the formation of ordered core-shell heteronanocomposites held together by DNA hybridization. The composites were imaged by scanning electron microscopy and scanning microwave microscopy. The presence of heteroassemblies along with core-shell architecture is clearly observed. The reversible nature of the DNA hybridization allows for restructuring the composites into mm-long linear chains and 2D-arrays in the presence of a static magnetic field and ring-like structures in a rotating-magnetic field. Strong magneto-electric (ME) coupling in as-assembled composites is evident from static magnetic field H induced polarization and low-frequency magnetoelectric voltage coefficient measurements. Upon annealing the nanocomposites at high temperatures, evidence for the formation of bulk composites with excellent cross-coupling between the electric and magnetic subsystems is obtained by H-induced polarization and low-frequency ME voltage coefficient. The ME coupling strength in the self-assembled composites is measured to be much stronger than in bulk composites with randomly distributed NFO and BTO prepared by direct mixing and sintering.

  12. Ferromagnetic resonance in a single crystal of iron borate and magnetic field tuning of hybrid oscillations in a composite structure with a dielectric: Experiment and theory

    International Nuclear Information System (INIS)

    Popov, M. A.; Zavislyak, I. V.; Chumak, H. L.; Strugatsky, M. B.; Yagupov, S. V.; Srinivasan, G.

    2015-01-01

    The high-frequency properties of a composite resonator comprised single crystal iron borate (FeBO 3 ), a canted antiferromagnet with a weak ferromagnetic moment, and a polycrystalline dielectric were investigated at 9–10 GHz. Ferromagnetic resonance in this frequency range was observed in FeBO 3 for bias magnetic fields of ∼250 Oe. In the composite resonator, the magnetic mode in iron borate and dielectric mode are found to hybridize strongly. It is shown that the hybrid mode can be tuned with a static magnetic field. Our studies indicate that coupling between the magnetic mode and the dielectric resonance can be altered from maximum hybridization to a minimum by adjusting the position of resonator inside the waveguide. Magnetic field tuning of the resonance frequency by a maximum of 145 MHz and a change in the transmitted microwave power by as much as 16 dB have been observed for a bias field of 250 Oe. A model is discussed for the magnetic field tuning of the composite resonator and theoretical estimates are in reasonable agreement with the data. The composite resonator with a weak ferromagnet and a dielectric is of interest for application in frequency agile devices with electronically tunable electrodynamic characteristics for the mm and sub-mm wave bands

  13. Simulation of Mercury's magnetosheath with a combined hybrid-paraboloid model

    Science.gov (United States)

    Parunakian, David; Dyadechkin, Sergey; Alexeev, Igor; Belenkaya, Elena; Khodachenko, Maxim; Kallio, Esa; Alho, Markku

    2017-08-01

    In this paper we introduce a novel approach for modeling planetary magnetospheres that involves a combination of the hybrid model and the paraboloid magnetosphere model (PMM); we further refer to it as the combined hybrid model. While both of these individual models have been successfully applied in the past, their combination enables us both to overcome the traditional difficulties of hybrid models to develop a self-consistent magnetic field and to compensate the lack of plasma simulation in the PMM. We then use this combined model to simulate Mercury's magnetosphere and investigate the geometry and configuration of Mercury's magnetosheath controlled by various conditions in the interplanetary medium. The developed approach provides a unique comprehensive view of Mercury's magnetospheric environment for the first time. Using this setup, we compare the locations of the bow shock and the magnetopause as determined by simulations with the locations predicted by stand-alone PMM runs and also verify the magnetic and dynamic pressure balance at the magnetopause. We also compare the results produced by these simulations with observational data obtained by the magnetometer on board the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft along a dusk-dawn orbit and discuss the signatures of the magnetospheric features that appear in these simulations. Overall, our analysis suggests that combining the semiempirical PMM with a self-consistent global kinetic model creates new modeling possibilities which individual models cannot provide on their own.

  14. Long-range p-d exchange interaction in a ferromagnet-semiconductor hybrid structure

    Science.gov (United States)

    Korenev, V. L.; Salewski, M.; Akimov, I. A.; Sapega, V. F.; Langer, L.; Kalitukha, I. V.; Debus, J.; Dzhioev, R. I.; Yakovlev, D. R.; Müller, D.; Schröder, C.; Hövel, H.; Karczewski, G.; Wiater, M.; Wojtowicz, T.; Kusrayev, Yu. G.; Bayer, M.

    2016-01-01

    Hybrid structures synthesized from different materials have attracted considerable attention because they may allow not only combination of the functionalities of the individual constituents but also mutual control of their properties. To obtain such a control an interaction between the components needs to be established. For coupling the magnetic properties, an exchange interaction has to be implemented which typically depends on wavefunction overlap and is therefore short-ranged, so that it may be compromised across the hybrid interface. Here we study a hybrid structure consisting of a ferromagnetic Co layer and a semiconducting CdTe quantum well, separated by a thin (Cd, Mg)Te barrier. In contrast to the expected p-d exchange that decreases exponentially with the wavefunction overlap of quantum well holes and magnetic atoms, we find a long-ranged, robust coupling that does not vary with barrier width up to more than 30 nm. We suggest that the resulting spin polarization of acceptor-bound holes is induced by an effective p-d exchange that is mediated by elliptically polarized phonons.

  15. Synthesis of raspberry-like monodisperse magnetic hollow hybrid nanospheres by coating polystyrene template with Fe(3)O(4)@SiO(2) particles.

    Science.gov (United States)

    Wang, Chunlei; Yan, Juntao; Cui, Xuejun; Wang, Hongyan

    2011-02-01

    In this paper, we present a novel method for the preparation of raspberry-like monodisperse magnetic hollow hybrid nanospheres with γ-Fe(2)O(3)@SiO(2) particles as the outer shell. PS@Fe(3)O(4)@SiO(2) composite nanoparticles were successfully prepared on the principle of the electrostatic interaction between negatively charged silica and positively charged polystyrene, and then raspberry-like magnetic hollow hybrid nanospheres with large cavities were achieved by means of calcinations, simultaneously, the magnetite (Fe(3)O(4)) was transformed into maghemite (γ-Fe(2)O(3)). Transmission electron microscopy (TEM) demonstrated that the obtained magnetic hollow silica nanospheres with the perfect spherical profile were well monodisperse and uniform with the mean size of 253nm. The Fourier transform infrared (FTIR) spectrometry, energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD) provided the sufficient evidences for the presence of Fe(3)O(4) in the silica shell. Moreover, the magnetic hollow silica nanospheres possessed a characteristic of superparamagnetic with saturation magnetization value of about 7.84emu/g by the magnetization curve measurement. In addition, the nitrogen adsorption-desorption measurement exhibited that the pore size, BET surface area, pore volume of magnetic hollow silica nanospheres were 3.5-5.5nm, 307m(2)g(-1) and 1.33cm(3)g(-1), respectively. Therefore, the magnetic hollow nanospheres possess a promising future in controlled drug delivery and targeted drug applications. Copyright © 2010 Elsevier Inc. All rights reserved.

  16. Extraordinary magnetoresistance in semiconductor/metal hybrids: A review

    KAUST Repository

    Sun, J.

    2013-02-13

    The Extraordinary Magnetoresistance (EMR) effect is a change in the resistance of a device upon the application of a magnetic field in hybrid structures, consisting of a semiconductor and a metal. The underlying principle of this phenomenon is a change of the current path in the hybrid structure upon application of a magnetic field, due to the Lorentz force. Specifically, the ratio of current, flowing through the highly conducting metal and the poorly conducting semiconductor, changes. The main factors for the device\\'s performance are: the device geometry, the conductivity of the metal and semiconductor, and the mobility of carriers in the semiconductor. Since the discovery of the EMR effect, much effort has been devoted to utilize its promising potential. In this review, a comprehensive overview of the research on the EMR effect and EMR devices is provided. Different geometries of EMR devices are compared with respect to MR ratio and output sensitivity, and the criteria of material selection for high-performance devices are discussed. 2013 by the authors.

  17. Extraordinary Magnetoresistance in Semiconductor/Metal Hybrids: A Review

    Directory of Open Access Journals (Sweden)

    Jürgen Kosel

    2013-02-01

    Full Text Available The Extraordinary Magnetoresistance (EMR effect is a change in the resistance of a device upon the application of a magnetic field in hybrid structures, consisting of a semiconductor and a metal. The underlying principle of this phenomenon is a change of the current path in the hybrid structure upon application of a magnetic field, due to the Lorentz force. Specifically, the ratio of current, flowing through the highly conducting metal and the poorly conducting semiconductor, changes. The main factors for the device’s performance are: the device geometry, the conductivity of the metal and semiconductor, and the mobility of carriers in the semiconductor. Since the discovery of the EMR effect, much effort has been devoted to utilize its promising potential. In this review, a comprehensive overview of the research on the EMR effect and EMR devices is provided. Different geometries of EMR devices are compared with respect to MR ratio and output sensitivity, and the criteria of material selection for high-performance devices are discussed.

  18. Tailoring the vortex pinning strength of YBCO thin films by systematic incorporation of hybrid artificial pinning centers

    International Nuclear Information System (INIS)

    Jha, Alok K; Matsumoto, Kaname; Horide, Tomoya; Saini, Shrikant; Mele, Paolo; Ichinose, Ataru; Yoshida, Yutaka; Awaji, Satoshi

    2015-01-01

    The effect of hybrid (columnar and spherical together) artificial pinning centers (APCs) on the vortex pinning properties of YBa 2 Cu 3 O 7−δ (YBCO) thin films is investigated in detail on the basis of variation of critical current density (J C ) with applied magnetic field and also with the orientation of the applied magnetic field at 65 K and 77 K. Premixed YBCO + BaSnO 3 composite targets are used for the deposition of the YBCO films which consist of self-assembled BaSnO 3 nanocolumns (1D APCs); on the other hand, for the deposition of the YBCO films with hybrid APCs (BaSnO 3 nanocolumns together with Y 2 O 3 nanoparticles), the surface of the premixed YBCO + BaSnO 3 composite targets are modified by putting a thin Y 2 O 3 sectored piece on the premixed YBCO + BaSnO 3 composite targets by means of silver paste. F pmax value increases systematically with incorporation of 1D and 1D and 3D APCs and it also shifts towards higher applied magnetic fields. Films with 1D APCs exhibit a strong J C peak at Θ = 0° (H//c-axis) whereas films consisting of hybrid APCs exhibit enhanced J C at all the investigated angular regimes. A possible mechanism of vortex pinning in samples with hybrid APCs is also discussed suggesting the role of 1D and 3D APCs. (paper)

  19. Magnetism by interfacial hybridization and p-type doping of MoS2 in Fe4N/MoS2 superlattices: A first-principles study

    KAUST Repository

    Feng, Nan

    2014-03-26

    Magnetic and electronic properties of Fe4N(111)/MoS 2(√3 × √3) superlattices are investigated by first-principles calculations, considering two models: (I) FeIFe II-S and (II) N-S interfaces, each with six stacking configurations. In model I, strong interfacial hybridization between FeI/Fe II and S results in magnetism of monolayer MoS2, with a magnetic moment of 0.33 μB for Mo located on top of Fe I. For model II, no magnetism is induced due to weak N-S interfacial bonding, and the semiconducting nature of monolayer MoS2 is preserved. Charge transfer between MoS2 and N results in p-type MoS2 with Schottky barrier heights of 0.5-0.6 eV. Our results demonstrate that the interfacial geometry and hybridization can be used to tune the magnetism and doping in Fe4N(111)/MoS2(√3 × √3) superlattices. © 2014 American Chemical Society.

  20. Magnetism by interfacial hybridization and p-type doping of MoS2 in Fe4N/MoS2 superlattices: A first-principles study

    KAUST Repository

    Feng, Nan; Mi, Wenbo; Cheng, Yingchun; Guo, Zaibing; Schwingenschlö gl, Udo; Bai, Haili

    2014-01-01

    Magnetic and electronic properties of Fe4N(111)/MoS 2(√3 × √3) superlattices are investigated by first-principles calculations, considering two models: (I) FeIFe II-S and (II) N-S interfaces, each with six stacking configurations. In model I, strong interfacial hybridization between FeI/Fe II and S results in magnetism of monolayer MoS2, with a magnetic moment of 0.33 μB for Mo located on top of Fe I. For model II, no magnetism is induced due to weak N-S interfacial bonding, and the semiconducting nature of monolayer MoS2 is preserved. Charge transfer between MoS2 and N results in p-type MoS2 with Schottky barrier heights of 0.5-0.6 eV. Our results demonstrate that the interfacial geometry and hybridization can be used to tune the magnetism and doping in Fe4N(111)/MoS2(√3 × √3) superlattices. © 2014 American Chemical Society.

  1. Hybrid quantum-classical master equations

    International Nuclear Information System (INIS)

    Diósi, Lajos

    2014-01-01

    We discuss hybrid master equations of composite systems, which are hybrids of classical and quantum subsystems. A fairly general form of hybrid master equations is suggested. Its consistency is derived from the consistency of Lindblad quantum master equations. We emphasize that quantum measurement is a natural example of exact hybrid systems. We derive a heuristic hybrid master equation of time-continuous position measurement (monitoring). (paper)

  2. Hybrid model for simulation of plasma jet injection in tokamak

    Science.gov (United States)

    Galkin, Sergei A.; Bogatu, I. N.

    2016-10-01

    Hybrid kinetic model of plasma treats the ions as kinetic particles and the electrons as charge neutralizing massless fluid. The model is essentially applicable when most of the energy is concentrated in the ions rather than in the electrons, i.e. it is well suited for the high-density hyper-velocity C60 plasma jet. The hybrid model separates the slower ion time scale from the faster electron time scale, which becomes disregardable. That is why hybrid codes consistently outperform the traditional PIC codes in computational efficiency, still resolving kinetic ions effects. We discuss 2D hybrid model and code with exact energy conservation numerical algorithm and present some results of its application to simulation of C60 plasma jet penetration through tokamak-like magnetic barrier. We also examine the 3D model/code extension and its possible applications to tokamak and ionospheric plasmas. The work is supported in part by US DOE DE-SC0015776 Grant.

  3. Hybrid Adaptive Filter development for the minimisation of transient fluctuations superimposed on electrotelluric field recordings mainly by magnetic storms

    Directory of Open Access Journals (Sweden)

    A. Konstantaras

    2006-01-01

    Full Text Available The method of Hybrid Adaptive Filtering (HAF aims to recover the recorded electric field signals from anomalies of magnetotelluric origin induced mainly by magnetic storms. An adaptive filter incorporating neuro-fuzzy technology has been developed to remove any significant distortions from the equivalent magnetic field signal, as retrieved from the original electric field signal by reversing the magnetotelluric method. Testing with further unseen data verifies the reliability of the model and demonstrates the effectiveness of the HAF method.

  4. The effect of lower-hybrid waves on the propagation of hydromagnetic waves

    International Nuclear Information System (INIS)

    Hamabata, Hiromitsu; Namikawa, Tomikazu; Mori, Kazuhiro

    1988-01-01

    Propagation characteristics of hydromagnetic waves in a magnetic plasma are investigated using the two-plasma fluid equations including the effect of lower-hybrid waves propagating perpendicularly to the magnetic field. The effect of lower-hybrid waves on the propagation of hydromagnetic waves is analysed in terms of phase speed, growth rate, refractive index, polarization and the amplitude relation between the density perturbation and the magnetic-field perturbation for the cases when hydromagnetic waves propagate in the plane whose normal is perpendicular to both the magnetic field and the propagation direction of lower-hybrid waves and in the plane perpendicular to the propagation direction of lower-hybrid waves. It is shown that hydromagnetic waves propagating at small angles to the propagation direction of lower-hybrid waves can be excited by the effect of lower-hybrid waves and the energy of excited waves propagates nearly parallel to the propagation direction of lower-hybrid waves. (author)

  5. Universal features underlying the magnetism in diluted magnetic semiconductors

    Science.gov (United States)

    Andriotis, Antonis N.; Menon, Madhu

    2018-04-01

    Investigation of a diverse variety of wide band gap semiconductors and metal oxides that exhibit magnetism on substitutional doping has revealed the existence of universal features that relate the magnetic moment of the dopant to a number of physical properties inherent to the dopants and the hosts. The investigated materials consist of ZnO, GaN, GaP, TiO2, SnO2, Sn3N4, MoS2, ZnS and CdS doped with 3d-transition metal atoms. The primary physical properties contributing to magnetism include the orbital hybridization and charge distribution, the d-band filling, d-band center, crystal field splitting, electron pairing energy and electronegativity. These features specify the strength of the spin-polarization induced by the dopants on their first nearest neighboring anions which in turn specify the long range magnetic coupling among the dopants through successively induced spin polarizations (SSP) on neighboring dopants. The proposed local SSP process for the establishment of the magnetic coupling among the TM-dopants appears as a competitor to other classical processes (superexchange, double exchange, etc). Furthermore, these properties can be used as a set of descriptors suitable for developing statistical predictive theories for a much larger class of magnetic materials.

  6. Universal features underlying the magnetism in diluted magnetic semiconductors.

    Science.gov (United States)

    Andriotis, Antonis N; Menon, Madhu

    2018-04-04

    Investigation of a diverse variety of wide band gap semiconductors and metal oxides that exhibit magnetism on substitutional doping has revealed the existence of universal features that relate the magnetic moment of the dopant to a number of physical properties inherent to the dopants and the hosts. The investigated materials consist of ZnO, GaN, GaP, TiO 2 , SnO 2 , Sn 3 N 4 , MoS 2 , ZnS and CdS doped with 3d-transition metal atoms. The primary physical properties contributing to magnetism include the orbital hybridization and charge distribution, the d-band filling, d-band center, crystal field splitting, electron pairing energy and electronegativity. These features specify the strength of the spin-polarization induced by the dopants on their first nearest neighboring anions which in turn specify the long range magnetic coupling among the dopants through successively induced spin polarizations (SSP) on neighboring dopants. The proposed local SSP process for the establishment of the magnetic coupling among the TM-dopants appears as a competitor to other classical processes (superexchange, double exchange, etc). Furthermore, these properties can be used as a set of descriptors suitable for developing statistical predictive theories for a much larger class of magnetic materials.

  7. Design of magnetic akaganeite-cyanobacteria hybrid biofilms

    International Nuclear Information System (INIS)

    Dahoumane, Si Amar; Djediat, Chakib; Yepremian, Claude; Coute, Alain; Fievet, Fernand; Brayner, Roberta

    2010-01-01

    Common Anabaena cyanobacteria are shown to form intra-cellularly akaganeite β-FeOOH nanorods of well-controlled size and unusual morphology at room temperature. High-resolution transmission electron microscopy showed that these nanorods present a complex arrangement of pores forming a spongelike structure. These hybrid akaganeite-cyanobacteria were used to form 'one-pot' hybrid biofilms. The hybrid biofilm presents higher coercivity (H c = 44.6 kA m -1 (560 Oe)) when compared to lyophilized akaganeite-cyanobacteria powder (H c = 0.8 kA m -1 (10 Oe)) due to the quasi-assembly of the cells on the glass substrate compared to the lyophilized randomly akaganeite-cyanobacteria powder.

  8. Hybrid emulsion spectrometer for the detection of hadronically produced heavy flavor states

    International Nuclear Information System (INIS)

    Kodama, K.; Ushida, N.; Lander, R.L.; Mokhtarani, A.; Paolone, V.S.; Wilcox, J.O.; Yager, P.M.; Edelstein, R.M.; Freyberger, A.P.; Gibaut, D.B.; Lipton, R.J.; Nichols, W.R.; Potter, D.M.; Russ, J.R.; Zhang, Y.; Jang, H.I.; Kim, J.Y.; Pac, M.Y.; Baller, B.R.; Stefanski, R.J.; Nakazawa, K.; Tasaka, S.; Choi, Y.S.; Chung, K.H.; Kim, D.C.; Park, I.G.; Song, J.S.; Yoon, C.S.; Chikawa, M.; Abe, T.; Fujii, T.; Fujioka, G.; Fujiwara, K.; Fukushima, H.; Hara, T.; Takahashi, Y.; Taruma, K.; Tsuzuki, Y.; Yokoyama, C.; Chang, S.D.; Cheon, B.G.; Cho, J.H.; Kang, J.S.; Kim, C.O.; Kim, K.Y.; Kim, T.Y.; Lee, J.C.; Lee, S.B.; Lim, G.Y.; Lim, I.T.; Nam, S.W.; Shin, T.S.; Sim, K.S.; Woo, J.K.; Isokane, Y.; Tsuneoka, Y.; Aoki, S.; Gauthier, A.; Hoshino, K.; Kitamura, H.; Kobayashi, M.; Miyanishi, M.; Nakamura, K.; Nakamura, M.; Nakamura, Y.; Nakanishi, S.; Niu, K.; Niwa, K.; Tajima, H.; Dunlea, J.M.; Frederiksen, S.G.; Kuramata, S.; Lundberg, B.G.; Oleynik, G.A.; Reay, N.W.; Reibel, K.; Rush, C.J.; Sidwell, R.A.; Stanton, N.R.; Moriyama, K.; Shibata, H.; Jaffery, T.S.; Kalbfleisch, G.R.; Skubic, P.L.; Snow, J.M.; Willis, S.E.; Yuan, W.Y.; Kusumoto, O.; Okusawa, T.; Teranaka, M.; Tominaga, T.; Watanabe, T.; Yamato, J.; Okabe, H.; Yokota, J.; Sato, Y.; Tezuka, I.; Bahk, S.Y.; Kim, S.K.

    1990-01-01

    A hybrid apparatus consisting of a movable emulsion target and a magnetic spectrometer was used in a fixed target Fermilab Tevatron experiment to study the production of heavy quarks by high-energy hadron beams. High-resolution silicon microstrip detectors were used for precise tracking in the dense particle environment. Details of the experimental apparatus, including the data acquisition system, are described. (orig.)

  9. Tuning the magnetic interactions in GaAs:Mn/MnAs hybrid structures by controlling shape and position of MnAs nanoclusters

    Energy Technology Data Exchange (ETDEWEB)

    Elm, Matthias Thomas

    2010-07-01

    In this work the magnetic properties of hexagonal MnAs nanoclusters and their influence on the transport properties of GaAs:Mn /MnAs hybrid structures were studied. Various arrangements of isolated nanoclusters and cluster chains were grown on (111)B-GaAs substrates by SA-MOVPE. The first part of this work deals with the manufacturing process of the different cluster arrangements investigated. By a suitable pre-structuring of the substrate it was possible to influence the cluster size, cluster shape and cluster position systematically. Preparing various arrangements it could be shown that the hexagonal nanoclusters prefer to grow along their a-axes. In the second part, the magnetic properties of the nanoclusters were studied. Ferromagnetic resonance (FMR) measurements show a hard magnetic axis perpendicular to the sample plane, i.e. parallel to the c-axis. By measurements, where the magnetic field was rotated in the sample plane, it could be demonstrated that the orientation of the magnetization can be forced into a certain direction by controlling the cluster shape. These results are confirmed by measurements using magnetic force microscopy. The third part deals with the influence of the nanoclusters and their arrangement on the transport properties of the GaAs:Mn matrix. For temperatures above 30 K the structures investigated show positive as well as negative magnetoresistance effects, which are typical for granular GaAs:Mn/MnAs hybrid structures. This behaviour can be explained in the context of transport in extended band states. The size of the magnetoresistance effects correlates strongly with the respective cluster arrangement of the sample. This behaviour has been predicted theoretically and could be confirmed experimentally in the context of this work. Below 30 K large positive magnetoresistance effects show up for the regular cluster arrangements, which cannot be observed for hybrid structures with random cluster distributions. These large positive

  10. Voltage-driven magnetization control in topological insulator/magnetic insulator heterostructures

    Directory of Open Access Journals (Sweden)

    Michael E. Flatté

    2017-05-01

    Full Text Available A major barrier to the development of spin-based electronics is the transition from current-driven spin torque, or magnetic-field-driven magnetization reversal, to a more scalable voltage-driven magnetization reversal. To achieve this, multiferroic materials appear attractive, however the effects in current materials occur at very large voltages or at low temperatures. Here the potential of a new class of hybrid multiferroic materials is described, consisting of a topological insulator adjacent to a magnetic insulator, for which an applied electric field reorients the magnetization. As these materials lack conducting states at the chemical potential in their bulk, no dissipative charge currents flow in the bulk. Surface states at the interface, if present, produce effects similar to surface recombination currents in bipolar devices, but can be passivated using magnetic doping. Even without conducting states at the chemical potential, for a topological insulator there is a finite spin Hall conductivity provided by filled bands below the chemical potential. Spin accumulation at the interface with the magnetic insulator provides a torque on the magnetization. Properly timed voltage pulses can thus reorient the magnetic moment with only the flow of charge current required in the leads to establish the voltage. If the topological insulator is sufficiently thick the resulting low capacitance requires little charge current.

  11. Strain-controlled nonvolatile magnetization switching

    Science.gov (United States)

    Geprägs, S.; Brandlmaier, A.; Brandt, M. S.; Gross, R.; Goennenwein, S. T. B.

    2014-11-01

    We investigate different approaches towards a nonvolatile switching of the remanent magnetization in single-crystalline ferromagnets at room temperature via elastic strain using ferromagnetic thin film/piezoelectric actuator hybrids. The piezoelectric actuator induces a voltage-controllable strain along different crystalline directions of the ferromagnetic thin film, resulting in modifications of its magnetization by converse magnetoelastic effects. We quantify the magnetization changes in the hybrids via ferromagnetic resonance spectroscopy and superconducting quantum interference device magnetometry. These measurements demonstrate a significant strain-induced change of the magnetization, limited by an inefficient strain transfer and domain formation in the particular system studied. To overcome these obstacles, we address practicable engineering concepts and use a model to demonstrate that a strain-controlled, nonvolatile magnetization switching should be possible in appropriately engineered ferromagnetic/piezoelectric actuator hybrids.

  12. Field errors in hybrid insertion devices

    International Nuclear Information System (INIS)

    Schlueter, R.D.

    1995-02-01

    Hybrid magnet theory as applied to the error analyses used in the design of Advanced Light Source (ALS) insertion devices is reviewed. Sources of field errors in hybrid insertion devices are discussed

  13. Field errors in hybrid insertion devices

    Energy Technology Data Exchange (ETDEWEB)

    Schlueter, R.D. [Lawrence Berkeley Lab., CA (United States)

    1995-02-01

    Hybrid magnet theory as applied to the error analyses used in the design of Advanced Light Source (ALS) insertion devices is reviewed. Sources of field errors in hybrid insertion devices are discussed.

  14. Selective Synthesis of Gasoline-Ranged Hydrocarbons from Syngas over Hybrid Catalyst Consisting of Metal-Loaded ZSM-5 Coupled with Copper-Zinc Oxide

    Directory of Open Access Journals (Sweden)

    Ting Ma

    2014-04-01

    Full Text Available The conversion of syngas (CO + H2 to gasoline-ranged hydrocarbons was carried out using a hybrid catalyst consisting of metal-loaded ZSM-5 coupled with Cu-ZnO in a near-critical n-hexane solvent. Methanol was synthesized from syngas over Cu-ZnO; subsequently, was converted to hydrocarbons through the formation of dimethyl ether (DME over the metal-loaded ZSM-5. When 0.5 wt% Pd/ZSM-5 and 5 wt% Cu/ZSM-5 among the metal-loaded ZSM-5 catalysts with Pd, Co, Fe or Cu were employed as a portion of the hybrid catalyst, the gasoline-ranged hydrocarbons were selectively produced (the gasoline-ranged hydrocarbons in all hydrocarbons: 59% for the hybrid catalyst with Pd/ZSM-5 and 64% for that with Cu/ZSM-5 with a similar CO conversion during the reaction. An increase in the Cu loading on ZSM-5 resulted in increasing the yield of the gasoline-ranged hydrocarbons, and in decreasing the yield of DME. Furthermore, the hybrid catalyst with Cu/ZSM-5 exhibited no deactivation for 30 h of the reaction. It was revealed that a hybrid catalyst containing Cu/ZSM-5 was efficient in the selective synthesis of gasoline-ranged hydrocarbons from syngas via methanol in the near-critical n-hexane fluid.

  15. Magneto-transport phenomena in metal/SiO2/n(p)-Si hybrid structures

    Science.gov (United States)

    Volkov, N. V.; Tarasov, A. S.; Rautskii, M. V.; Lukyanenko, A. V.; Bondarev, I. A.; Varnakov, S. N.; Ovchinnikov, S. G.

    2018-04-01

    Present review touches upon a subject of magnetotransport phenomena in hybrid structures which consist of ferromagnetic or nonmagnetic metal layer, layer of silicon oxide and silicon substrate with n- or p-type conductivity. Main attention will be paid to a number gigantic magnetotransport effects discovered in the devices fabricated on the base of the M/SiO2/n(p)-Si (M is ferromagnetic or paramagnetic metal) hybrid structures. These effects include bias induced dc magnetoresistance, gigantic magnetoimpedance, dc magnetoresistance induced by an optical irradiation and lateral magneto-photo-voltaic effect. The magnetoresistance ratio in ac and dc modes for some of our devices can exceed 106% in a magnetic field below 1 T. For lateral magneto-photo-voltaic effect, the relative change of photo-voltage in magnetic field can reach 103% at low temperature. Two types of mechanisms are responsible for sensitivity of the transport properties of the silicon based hybrid structures to magnetic field. One is related to transformation of the energy structure of the (donor) acceptor states including states near SiO2/n(p)-Si interface in magnetic field. Other mechanism is caused by the Lorentz force action. The features in behaviour of magnetotransport effects in concrete device depend on composition of the used structure, device topology and experimental conditions (bias voltage, optical radiation and others). Obtained results can be base for design of some electronic devices driven by a magnetic field. They can also provide an enhancement of the functionality for existing sensors.

  16. Time-domain finite-difference/finite-element hybrid simulations of radio frequency coils in magnetic resonance imaging

    International Nuclear Information System (INIS)

    Wang Shumin; Duyn, Jeff H

    2008-01-01

    A hybrid method that combines the finite-difference time-domain (FDTD) method and the finite-element time-domain (FETD) method is presented for simulating radio-frequency (RF) coils in magnetic resonance imaging. This method applies a high-fidelity FETD method to RF coils, while the human body is modeled with a low-cost FDTD method. Since the FDTD and the FETD methods are applied simultaneously, the dynamic interaction between RF coils and the human body is fully accounted for. In order to simplify the treatment of the highly irregular FDTD/FETD interface, composite elements are proposed. Two examples are provided to demonstrate the validity and effectiveness of the hybrid method in high-field receive-and-transmit coil design. This approach is also applicable to general bio-electromagnetic simulations

  17. Hybrid functional pseudopotentials

    Science.gov (United States)

    Yang, Jing; Tan, Liang Z.; Rappe, Andrew M.

    2018-02-01

    The consistency between the exchange-correlation functional used in pseudopotential construction and in the actual density functional theory calculation is essential for the accurate prediction of fundamental properties of materials. However, routine hybrid density functional calculations at present still rely on generalized gradient approximation pseudopotentials due to the lack of hybrid functional pseudopotentials. Here, we present a scheme for generating hybrid functional pseudopotentials, and we analyze the importance of pseudopotential density functional consistency for hybrid functionals. For the PBE0 hybrid functional, we benchmark our pseudopotentials for structural parameters and fundamental electronic gaps of the Gaussian-2 (G2) molecular dataset and some simple solids. Our results show that using our PBE0 pseudopotentials in PBE0 calculations improves agreement with respect to all-electron calculations.

  18. Compositional Modelling of Stochastic Hybrid Systems

    NARCIS (Netherlands)

    Strubbe, S.N.

    2005-01-01

    In this thesis we present a modelling framework for compositional modelling of stochastic hybrid systems. Hybrid systems consist of a combination of continuous and discrete dynamics. The state space of a hybrid system is hybrid in the sense that it consists of a continuous component and a discrete

  19. A global three dimensional hybrid simulation of the interaction between a weakly magnetized obstacle and the solar wind

    Czech Academy of Sciences Publication Activity Database

    Trávníček, Pavel; Hellinger, Petr; Schiver, D.

    2003-01-01

    Roč. 679, CP679 (2003), s. 485-488 ISSN 1551-7616. [Solar wind ten. Pisa, 17.06.2002-21.06.2002] Grant - others:ESA(NL) Prodex14529/00/NL/SFe; NSF(US) INT-0010111 Institutional research plan: CEZ:AV0Z3042911 Keywords : magnetized obstacle * solar wind * global hybrid simulations Subject RIV: BL - Plasma and Gas Discharge Physics

  20. Magnetic phase transition in layered inorganic-organic hybrid (C12H25NH3)2CuCl4

    Science.gov (United States)

    Bochalya, Madhu; Kumar, Sunil; Kanaujia, Pawan K.; Prakash, G. Vijaya

    2018-05-01

    Inorganic-organic (IO) hybrids are material systems which have become an interesting theme of research for physicist and chemists recently due to the possibility of engineering specific magnetic, thermal or optoelectronic properties by playing around with the transition metal, halides and the organic components. Our experiments on (C12H25NH3)2CuCl4 show that the system exhibits a long range ferromagnetic order below ˜11 K. In such an inorganic-organic hybrid system, Jahn-Teller distortion of the copper ions results into a weak ferromagnetic order as compared to the antiferromagnetic spin-spin exchange in the pure inorganic CuCl2 compound. Moreover, this particular hybrid system also exhibits photoluminescence when excited below absorption maximum related to charge transfer peak though the effect is much weaker as compared to that in extensively studied other MX4-based (M = Sn, Pb; X = Cl, Br, I) counterparts.

  1. 1-D hybrid code for FRM start-up

    International Nuclear Information System (INIS)

    Stark, R.A.; Miley, G.H.

    1982-01-01

    A one-D hybrid has been developed to study the start-up of the FRM via neutral-beam injection. The code uses a multi-group numerical model originally developed by J. Willenberg to describe fusion product dynamics in a solenoidal plasma. Earlier we described such a model for use in determining self-consistent ion currents and magnetic fields in FRM start-up. However, consideration of electron dynamics during start-up indicate that the electron current will oppose the injected ion current and may even foil the attempt to achieve reversal. For this reason, we have combined the multi-group ion (model) with a fluid treatment for electron dynamics to form the hybrid code FROST (Field Reversed One-dimensional STart-up). The details of this merger, along with sample results of operation of FROST, are given

  2. Consistency evaluation between EGSnrc and Geant4 charged particle transport in an equilibrium magnetic field.

    Science.gov (United States)

    Yang, Y M; Bednarz, B

    2013-02-21

    Following the proposal by several groups to integrate magnetic resonance imaging (MRI) with radiation therapy, much attention has been afforded to examining the impact of strong (on the order of a Tesla) transverse magnetic fields on photon dose distributions. The effect of the magnetic field on dose distributions must be considered in order to take full advantage of the benefits of real-time intra-fraction imaging. In this investigation, we compared the handling of particle transport in magnetic fields between two Monte Carlo codes, EGSnrc and Geant4, to analyze various aspects of their electromagnetic transport algorithms; both codes are well-benchmarked for medical physics applications in the absence of magnetic fields. A water-air-water slab phantom and a water-lung-water slab phantom were used to highlight dose perturbations near high- and low-density interfaces. We have implemented a method of calculating the Lorentz force in EGSnrc based on theoretical models in literature, and show very good consistency between the two Monte Carlo codes. This investigation further demonstrates the importance of accurate dosimetry for MRI-guided radiation therapy (MRIgRT), and facilitates the integration of a ViewRay MRIgRT system in the University of Wisconsin-Madison's Radiation Oncology Department.

  3. Consistency evaluation between EGSnrc and Geant4 charged particle transport in an equilibrium magnetic field

    International Nuclear Information System (INIS)

    Yang, Y M; Bednarz, B

    2013-01-01

    Following the proposal by several groups to integrate magnetic resonance imaging (MRI) with radiation therapy, much attention has been afforded to examining the impact of strong (on the order of a Tesla) transverse magnetic fields on photon dose distributions. The effect of the magnetic field on dose distributions must be considered in order to take full advantage of the benefits of real-time intra-fraction imaging. In this investigation, we compared the handling of particle transport in magnetic fields between two Monte Carlo codes, EGSnrc and Geant4, to analyze various aspects of their electromagnetic transport algorithms; both codes are well-benchmarked for medical physics applications in the absence of magnetic fields. A water–air–water slab phantom and a water–lung–water slab phantom were used to highlight dose perturbations near high- and low-density interfaces. We have implemented a method of calculating the Lorentz force in EGSnrc based on theoretical models in literature, and show very good consistency between the two Monte Carlo codes. This investigation further demonstrates the importance of accurate dosimetry for MRI-guided radiation therapy (MRIgRT), and facilitates the integration of a ViewRay MRIgRT system in the University of Wisconsin-Madison's Radiation Oncology Department. (note)

  4. Numerical and experimental analyses of different magnetic thermodynamic cycles with an active magnetic regenerator

    International Nuclear Information System (INIS)

    Plaznik, Uroš; Tušek, Jaka; Kitanovski, Andrej; Poredoš, Alojz

    2013-01-01

    We have analyzed the influence of different magnetic thermodynamic cycles on the performance of a magnetic cooling device with an active magnetic regenerator (AMR) based on the Brayton, Ericsson and Hybrid Brayton–Ericsson cycles. Initially, a numerical simulation was performed using a 1D, time-dependent, numerical model. Then a comparison was made with respect to the cooling power and the COP for different temperature spans. We showed that applying the Ericsson or the Hybrid Brayton–Ericsson cycle with an AMR, instead of the standard Brayton cycle, can increase the efficiency of the selected cooling device. Yet, in the case of the Ericsson cycle, the cooling power was decreased compared to the Hybrid and especially compared to the Brayton cycle. Next, an experimental analysis was carried out using a linear-type magnetic cooling device. Again, the Brayton, Ericsson and Hybrid Brayton–Ericsson cycles with an AMR were compared with respect to the cooling power and the COP for different temperature spans. The results of the numerical simulation were confirmed. The Hybrid Brayton–Ericsson cycle with an AMR showed the best performance if a no-load temperature span was considered as a criterion. -- Highlights: • New thermodynamic cycles with an active magnetic regenerator (AMR) are presented. • Three different thermodynamic cycles with an AMR were analyzed. • Numerical and experimental analyses were carried out. • The best overall performance was achieved with the Hybrid Brayton–Ericsson cycle. • With this cycle the temperature span of test device was increased by almost 10%

  5. Millimeter positron focusing using a hybrid lens design

    International Nuclear Information System (INIS)

    Cheung, C.K.; Kwan, P.Y.; Shan, Y.Y.; Naik, P.S.; Weng, H.M.; Beling, C.D.; Fung, S.

    2004-01-01

    The study of metal-semiconductor and metal-oxide-semiconductor systems with low energy positrons is made considerably easier if structures of millimeter dimension can be studied. For this reason the production of a positron beam of sub-millimeter dimension has been a long-term goal of the positron research group at the university of Hong Kong. The hybrid lens system employed consists of a standard Soa extraction lens in a magnetic field free region followed by a gridded Einzel lens that focuses positrons into a 100G magnetic funnel at an energy of 10keV for transportation to the target. Here we report on the present progress, by showing the capability of obtaining millimeter diameter focusing at a preliminary 7.5 kV beam energy. (orig.)

  6. OBSERVATIONS OF A HYBRID DOUBLE-STREAMER/PSEUDOSTREAMER IN THE SOLAR CORONA

    Energy Technology Data Exchange (ETDEWEB)

    Rachmeler, L. A.; Seaton, D. B. [Royal Observatory of Belgium, Avenue Circulaire 3, 1180 Brussels (Belgium); Platten, S. J. [School of Mathematics and Statistics, University of St. Andrews, North Haugh, St. Andrews, Fife KY16 9SS (United Kingdom); Bethge, C. [Kiepenheuer-Institut für Sonnenphysik, Schöneckstrasse 6, D-79104 Freiburg (Germany); Yeates, A. R., E-mail: rachmeler@oma.be [Department of Mathematical Sciences, Durham University, Science Laboratories, South Road, Durham DH1 3LE (United Kingdom)

    2014-05-20

    We report on the first observation of a single hybrid magnetic structure that contains both a pseudostreamer and a double streamer. This structure was originally observed by the SWAP instrument on board the PROBA2 satellite between 2013 May 5 and 10. It consists of a pair of filament channels near the south pole of the Sun. On the western edge of the structure, the magnetic morphology above the filaments is that of a side-by-side double streamer, with open field between the two channels. On the eastern edge, the magnetic morphology is that of a coronal pseudostreamer without the central open field. We investigated this structure with multiple observations and modeling techniques. We describe the topology and dynamic consequences of such a unified structure.

  7. Tearing mode growth in a regime of weak magnetic shear

    International Nuclear Information System (INIS)

    Riyopoulos, S.; Hazeltine, R.D.

    1987-06-01

    The nonlinear growth for the m/n ≥ 2 resistive tearing mode is studied in case when the rational surface q(r 0 ) = m/n falls in a regime of weak magnetic shear, q'(r 0 ) ≅ 0. The island width is determined self-consistently from the nonlinear, zero-helicity component of the perturbed magnetic flux that provides the local shear. It is found that the magnetic perturbation keeps growing exponentially in the nonlinear regime on a hybrid resistive-Alfvenic time scale, while the island width and the vorticity grow on a much slower time scale. Accordingly, much faster release of magnetic energy results for modes growing near minima of hollow q profiles

  8. Electric control of wave vector filtering in a hybrid magnetic-electric-barrier nanostructure

    Science.gov (United States)

    Kong, Yong-Hong; Lu, Ke-Yu; He, Ya-Ping; Liu, Xu-Hui; Fu, Xi; Li, Ai-Hua

    2018-06-01

    We theoretically investigate how to manipulate the wave vector filtering effect by a traverse electric field for electrons across a hybrid magnetic-electric-barrier nanostructure, which can be experimentally realized by depositing a ferromagnetic stripe and a Schottky-metal stripe on top and bottom of a GaAs/Al x Ga1- x As heterostructure, respectively. The wave vector filtering effect is found to be related closely to the applied electric field. Moreover, the wave vector filtering efficiency can be manipulated by changing direction or adjusting strength of the traverse electric field. Therefore, such a nanostructure can be employed as an electrically controllable electron-momentum filter for nanoelectronics applications.

  9. Intraoperative magnetic tracker calibration using a magneto-optic hybrid tracker for 3-D ultrasound-based navigation in laparoscopic surgery.

    Science.gov (United States)

    Nakamoto, Masahiko; Nakada, Kazuhisa; Sato, Yoshinobu; Konishi, Kozo; Hashizume, Makoto; Tamura, Shinichi

    2008-02-01

    This paper describes a ultrasound (3-D US) system that aims to achieve augmented reality (AR) visualization during laparoscopic surgery, especially for the liver. To acquire 3-D US data of the liver, the tip of a laparoscopic ultrasound probe is tracked inside the abdominal cavity using a magnetic tracker. The accuracy of magnetic trackers, however, is greatly affected by magnetic field distortion that results from the close proximity of metal objects and electronic equipment, which is usually unavoidable in the operating room. In this paper, we describe a calibration method for intraoperative magnetic distortion that can be applied to laparoscopic 3-D US data acquisition; we evaluate the accuracy and feasibility of the method by in vitro and in vivo experiments. Although calibration data can be acquired freehand using a magneto-optic hybrid tracker, there are two problems associated with this method--error caused by the time delay between measurements of the optical and magnetic trackers, and instability of the calibration accuracy that results from the uniformity and density of calibration data. A temporal calibration procedure is developed to estimate the time delay, which is then integrated into the calibration, and a distortion model is formulated by zeroth-degree to fourth-degree polynomial fitting to the calibration data. In the in vivo experiment using a pig, the positional error caused by magnetic distortion was reduced from 44.1 to 2.9 mm. The standard deviation of corrected target positions was less than 1.0 mm. Freehand acquisition of calibration data was performed smoothly using a magneto-optic hybrid sampling tool through a trocar under guidance by realtime 3-D monitoring of the tool trajectory; data acquisition time was less than 2 min. The present study suggests that our proposed method could correct for magnetic field distortion inside the patient's abdomen during a laparoscopic procedure within a clinically permissible period of time, as well as

  10. Magnetization reversal mechanisms in hybrid resin-bonded Nd Fe B magnets

    Science.gov (United States)

    Plusa, D.; Dospial, M.; Slusarek, B.; Kotlarczyk, U.

    2006-11-01

    The magnetic properties of isotropic epoxy resin-bonded magnets prepared by mixing a hard magnetic powder made from melt quenched Nd-Fe-Co-B ribbons and a soft magnetic iron powder have been examined. The magnetization reversal processes and the magnetic parameters have been studied by the measurement of the virgin magnetization curves, the major and minor hysteresis loops and sets of recoil curves. From these recoil curves the field dependence of the reversible and irreversible magnetization components during the magnetization and demagnetization processes has been derived. The remanence relationship was used to study the nature of magnetic interaction between the grains. A study of interaction domains was conducted using optical microscopy. Groups of domains, each over several grains, were observed. It was found that the reversal process in the samples investigated involves the rotation of magnetization vectors in the iron powder grains and pinning of domain walls at the MQP-B grain boundaries.

  11. Magnetization reversal mechanisms in hybrid resin-bonded Nd-Fe-B magnets

    International Nuclear Information System (INIS)

    Plusa, D.; Dospial, M.; Slusarek, B.; Kotlarczyk, U.

    2006-01-01

    The magnetic properties of isotropic epoxy resin-bonded magnets prepared by mixing a hard magnetic powder made from melt quenched Nd-Fe-Co-B ribbons and a soft magnetic iron powder have been examined. The magnetization reversal processes and the magnetic parameters have been studied by the measurement of the virgin magnetization curves, the major and minor hysteresis loops and sets of recoil curves. From these recoil curves the field dependence of the reversible and irreversible magnetization components during the magnetization and demagnetization processes has been derived. The remanence relationship was used to study the nature of magnetic interaction between the grains. A study of interaction domains was conducted using optical microscopy. Groups of domains, each over several grains, were observed. It was found that the reversal process in the samples investigated involves the rotation of magnetization vectors in the iron powder grains and pinning of domain walls at the MQP-B grain boundaries

  12. Induced superconductivity in Nb/InAs-hybrid structures in parallel and perpendicular magnetic fields

    International Nuclear Information System (INIS)

    Rohlfing, Franziska

    2007-07-01

    The thesis in hand investigates experimentally Josephson contacts based on Nb/InAs-hybrid structures. The experiments discussed here were done on samples of different width of the Josephson contacts (between 500 nm and 2000 nm). They were realized by means of different methods of the semiconductor technology. The length of the Josephson contacts was about 600 nm and, as superconducting material, niobium was used. Both critical current and characteristics in the resistive regime (excess-current and multiple Andreev reflection) are studied as a function of temperature and external magnetic fields. Measurements in perpendicular and parallel magnetic fields with respect to the plain of the two-dimensional electron gas, are presented. The Andreev reflection amplitude determining the supercurrent is calculated by means of the Greens functions of the two-dimensional electron gas beneath the superconductors which is modified by the proximity effect. From the fit to the data with this model, the transparency of the boundary between the superconductor and the two-dimensional electron gas can be estimated to be about 0.1. The transparency of the point contacts in the two-dimensional electrons gas can be determined independently from the Josephson junction width dependence of the normal resistance (T=10 K). This transparency amounts to about 0.8 in the examined samples. The measurements of the critical current in a magnetic field perpendicular to the two-dimensional electron gas show a Fraunhofer pattern. In order to study the transition from perpendicular orientation into parallel orientation, measurements of the critical current as a function of the magnetic field were done for different angles. In the resistive regime, the excess current measurements in the magnetic field show a very interesting behaviour: In parallel magnetic fields, the excess current becomes zero at about 2.5 T. In perpendicular magnetic field however, the excess current is strongly suppressed below 30 m

  13. A hybrid charged-particle guide for studying (n, charged particle) reactions

    International Nuclear Information System (INIS)

    Haight, R.C.; White, R.M.; Zinkle, S.J.

    1983-01-01

    Charged-particle transport systems consisting of magnetic quadrupole lenses have been employed in recent years in the study of (n, charged particle) reactions. A new transport system was completed at the laboratory that is based both on magnetic lenses as well as electrostatic fields. The magnetic focusing of the charged-particle guide is provided by six magnetic quadrupole lenses arranged in a CDCCDC sequence (in the vertical plane). The electrostatic field is produced by a wire at high voltage which stretches the length of the guide and is physically at the centre of the magnetic axis. The magnetic lenses are used for charged particles above 5 MeV; the electrostatic guide is used for lower energies. This hybrid system possesses the excellent focusing and background rejection properties of other magnetic systems. For low energy charged-particles, the electrostatic transport avoids the narrow band-passes in charged-particle energy which are a problem with purely magnetic transport systems. This system is installed at the LLNL Cyclograaff facility for the study of (n, charged particle) reactions at neutron energies up to 35 MeV. (Auth.)

  14. Hybrid Dye-Sensitized Solar Cells Consisting of Double Titania Layers for Harvesting Light with Wide Range of Wavelengths

    Science.gov (United States)

    Sadamasu, Kengo; Inoue, Takafumi; Ogomi, Yuhei; Pandey, Shyam S.; Hayase, Shuzi

    2011-02-01

    We report a hybrid dye-sensitized solar cell consisting of double titania layers (top and bottom layers) stained with two dyes. A top layer fabricated on a glass was mechanically pressed with a bottom layer fabricated on a glass cloth. The glass cloth acts as a supporter of a porous titania layer as well as a holder of electrolyte. The incident photon to current efficiency (IPCE) curve had two peaks corresponding to those of the two dyes, which demonstrates that electrons are collected from both the top and bottom layers.

  15. Development of a PCR/LDR/flow-through hybridization assay using a capillary tube, probe DNA-immobilized magnetic beads and chemiluminescence detection.

    Science.gov (United States)

    Hommatsu, Manami; Okahashi, Hisamitsu; Ohta, Keisuke; Tamai, Yusuke; Tsukagoshi, Kazuhiko; Hashimoto, Masahiko

    2013-01-01

    A polymerase chain reaction (PCR)/ligase detection reaction (LDR)/flow-through hybridization assay using chemiluminescence (CL) detection was developed for analyzing point mutations in gene fragments with high diagnostic value for colorectal cancers. A flow-through hybridization format using a capillary tube, in which probe DNA-immobilized magnetic beads were packed, provided accelerated hybridization kinetics of target DNA (i.e. LDR product) to the probe DNA. Simple fluid manipulations enabled both allele-specific hybridization and the removal of non-specifically bound DNA in the wash step. Furthermore, the use of CL detection greatly simplified the detection scheme, since CL does not require a light source for excitation of the fluorescent dye tags on the LDR products. Preliminary results demonstrated that this analytical system could detect both homozygous and heterozygous mutations, without the expensive instrumentation and cumbersome procedures required by conventional DNA microarray-based methods.

  16. Synergy of exchange bias with superconductivity in ferromagnetic-superconducting layered hybrids: the influence of in-plane and out-of-plane magnetic order on superconductivity

    International Nuclear Information System (INIS)

    Stamopoulos, D; Manios, E; Pissas, M

    2007-01-01

    It is generally believed that superconductivity and magnetism are two antagonistic long-range phenomena. However, as was preliminarily highlighted in Stamopoulos et al (2007 Phys. Rev. B 75 014501), and extensively studied in this work, under specific circumstances these phenomena instead of being detrimental to each other may even become cooperative so that their synergy may promote the superconducting properties of a hybrid structure. Here, we have studied systematically the magnetic and transport behavior of such exchange biased hybrids that are comprised of ferromagnetic (FM) Ni 80 Fe 20 and low-T c superconducting (SC) Nb for the case where the magnetic field is applied parallel to the specimens. Two structures have been studied: FM-SC-FM trilayers (TLs) and FM-SC bilayers (BLs). Detailed magnetization data on the longitudinal and transverse magnetic components are presented for both the normal and superconducting states. These data are compared to systematic transport measurements including I-V characteristics. The comparison of the exchange biased BLs and TLs that are studied here with the plain ones studied in Stamopoulos et al (2007 Phys. Rev. B 75 184504) enable us to reveal an underlying parameter that may falsify the interpretation of the transport properties of relevant FM-SC-FM TLs and FM-SC BLs investigated in the recent literature: the underlying mechanism motivating the extreme magnetoresistance peaks in the TLs relates to the suppression of superconductivity mainly due to the magnetic coupling of the two FM layers as the out-of-plane rotation of their magnetizations takes place across the coercive field where stray fields emerge in their whole surface owing to the multidomain magnetic state that they acquire. The relative in-plane magnetization configuration of the outer FM layers exerts a secondary contribution on the SC interlayer. Since the exchange bias directly controls the in-plane magnetic order it also controls the out-of-plane rotation of

  17. Wave propagation to lower hybrid resonance in a magnetic field with shear

    International Nuclear Information System (INIS)

    Ohkubo, Kunizo; Ohasa, Kazumi; Matsuura, Kiyokata

    1977-01-01

    The ray trajectories of electrostatic wave to the lower hybrid (LH) resonance on the meridian plane of torus is significantly modified as compared with that without shear. The ray starting from the vicinity of the plasma surface rotates spirally around the magnetic axis. The ray reaching the layer S=0, where the perpendicular dielectric constant vanishes, is not terminated but reflected along the second characteristic curve towards another point on the layer S=0. After being reflected successively, rays finally converge on the node point of the layer S=0 on the equatorial plane. In the absence of the layer S=0 the rays infinitely reflect between the cutoff layers near the center and surface of plasma and cover all the region between the layers. (auth.)

  18. Relativistic Adiabatic Time-Dependent Density Functional Theory Using Hybrid Functionals and Noncollinear Spin Magnetization

    DEFF Research Database (Denmark)

    Bast, Radovan; Jensen, Hans Jørgen Aagaard; Saue, Trond

    2009-01-01

    into reduction of algebra from quaternion to complex or real. For hybrid GGAs with noncollinear spin magnetization we derive a new computationally advantageous equation for the full second variational derivatives of such exchange-correlation functionals. We apply our implementation to calculations on the ns2...... → ns1np1 excitation energies in the Zn, Cd, and Hg atoms (n = 4-6) and (vertical) excitation energies of UO2+ 2 ; and we test the performance of various functionals by comparison with experimental data (group 12 atoms) or higher-level computational results (UO2+2 ). The results indicate...

  19. Structural design aspects of magnetic coils for a linear theta-pinch hybrid reactor

    International Nuclear Information System (INIS)

    Bartholomew, R.J.

    1976-02-01

    The structural design aspects of a linear theta-pinch hybrid reactor (LTPHR) are centered in the solenoidal adiabatic compression coil (ACC) which must support the high magnetic pulse forces that tend to expand the coil and separate the leads. The structural model is represented by the theory of elasticity solution to a thick-walled cylinder. Dynamic amplification (or attenuation) is considered by a shock spectrum technique. A composite material is postulated, where the conductor material for each strand is clad with a high-strength stainless steel with insulation considered. Yield strength (for isolated-pulse operation) and endurance limit (for repetitive-pulse operation) for the high-strength steel impose magnetic field strength constraints on the coil design. These constraints are combined in an overall energy balance calculation that includes neutronic considerations to determine an optimum ACC design. The computer code ENBAL was used to incorporate neutronic, electrical, and structural constraints into the overall energy balance of the LTPHR. The lead separation problem is solved by designing spaced clamps to hold the leads together over great distances

  20. Generation of lower hybrid and whistler waves by an ion velocity ring distribution

    International Nuclear Information System (INIS)

    Winske, D.; Daughton, W.

    2012-01-01

    Using fully kinetic simulations in two and three spatial dimensions, we consider the generation and nonlinear evolution of lower hybrid waves produced by a cold ion ring velocity distribution in a low beta plasma. We show that the initial development of the instability is very similar in two and three dimensions and not significantly modified by electromagnetic effects, consistent with linear theory. At saturation, the level of electric field fluctuations is a small fraction of the background thermal energy; the electric field and corresponding density fluctuations consist of long, field-aligned striations. Energy extracted from the ring goes primarily into heating the background ions and the electrons at comparable rates. The initial growth and saturation of the magnetic components of the lower hybrid waves are related to the electric field components, consistent with linear theory. As the growing electric field fluctuations saturate, parallel propagating whistler waves develop by the interaction of two lower hybrid waves. At later times, these whistlers are replaced by longer wavelength, parallel propagating whistlers that grow through the decay of the lower hybrid fluctuations. Wave matching conditions demonstrate these conversion processes of lower hybrid waves to whistler waves. The conversion efficiency (=ratio of the whistler wave energy to the energy in the saturated lower hybrid waves) is computed and found to be significant (∼15%) for the parameters of the three-dimensional simulation (and even larger in the two-dimensional simulation), although when normalized in terms of the initial kinetic energy in the ring ions the overall efficiency is very small ( −4 ). The results are compared with relevant linear and nonlinear theory.

  1. Dressed topological insulators. Rashba impurity, Kondo effect, magnetic impurities, proximity-induced superconductivity, hybrid systems

    International Nuclear Information System (INIS)

    Posske, Thore Hagen

    2016-01-01

    Topological insulators are electronic phases that insulate in the bulk and accommodate a peculiar, metallic edge liquid with a spin-dependent dispersion. They are regarded to be of considerable future use in spintronics and for quantum computation. Besides determining the intrinsic properties of this rather novel electronic phase, considering its combination with well-known physical systems can generate genuinely new physics. In this thesis, we report on such combinations including topological insulators. Specifically, we analyze an attached Rashba impurity, a Kondo dot in the two channel setup, magnetic impurities on the surface of a strong three-dimensional topological insulator, the proximity coupling of the latter system to a superconductor, and hybrid systems consisting of a topological insulator and a semimetal. Let us summarize our primary results. Firstly, we determine an analytical formula for the Kondo cloud and describe its possible detection in current correlations far away from the Kondo region. We thereby rely on and extend the method of refermionizable points. Furthermore, we find a class of gapless topological superconductors and semimetals, which accommodate edge states that behave similarly to the ones of globally gapped topological phases. Unexpectedly, we also find edge states that change their chirality when affected by sufficiently strong disorder. We regard the presented research helpful in future classifications and applications of systems containing topological insulators, of which we propose some examples.

  2. Dressed topological insulators. Rashba impurity, Kondo effect, magnetic impurities, proximity-induced superconductivity, hybrid systems

    Energy Technology Data Exchange (ETDEWEB)

    Posske, Thore Hagen

    2016-02-26

    Topological insulators are electronic phases that insulate in the bulk and accommodate a peculiar, metallic edge liquid with a spin-dependent dispersion. They are regarded to be of considerable future use in spintronics and for quantum computation. Besides determining the intrinsic properties of this rather novel electronic phase, considering its combination with well-known physical systems can generate genuinely new physics. In this thesis, we report on such combinations including topological insulators. Specifically, we analyze an attached Rashba impurity, a Kondo dot in the two channel setup, magnetic impurities on the surface of a strong three-dimensional topological insulator, the proximity coupling of the latter system to a superconductor, and hybrid systems consisting of a topological insulator and a semimetal. Let us summarize our primary results. Firstly, we determine an analytical formula for the Kondo cloud and describe its possible detection in current correlations far away from the Kondo region. We thereby rely on and extend the method of refermionizable points. Furthermore, we find a class of gapless topological superconductors and semimetals, which accommodate edge states that behave similarly to the ones of globally gapped topological phases. Unexpectedly, we also find edge states that change their chirality when affected by sufficiently strong disorder. We regard the presented research helpful in future classifications and applications of systems containing topological insulators, of which we propose some examples.

  3. Tuning the magnetic properties of GaAs:Mn/MnAs hybrids via the MnAs cluster shape

    International Nuclear Information System (INIS)

    Nidda, H-A Krug von; Kurz, T; Loidl, A; Hartmann, Th; Klar, P J; Heimbrodt, W; Lampalzer, M; Volz, K; Stolz, W

    2006-01-01

    We report a systematic study of ferromagnetic resonance in granular GaAs:Mn/MnAs hybrids grown on GaAs(001) substrates by metal-organic vapour-phase epitaxy. The ferromagnetic resonance of the MnAs clusters can be resolved at all temperatures below T c . An additional broad absorption is observed below 60 K and is ascribed to localized charge carriers of the GaAs:Mn matrix. The anisotropy of the MnAs ferromagnetic resonance field originates from the magneto-crystalline field and demagnetization effects of the ferromagnetic MnAs clusters embedded in the GaAs:Mn matrix. Its temperature dependence basically scales with magnetization. Comparison of the observed angular dependence of the resonance field with model calculations yields the preferential orientation and shape of the clusters formed in hybrid layers of different thickness (150-1000 nm) grown otherwise at the same growth conditions. The hexagonal axes of the MnAs clusters are oriented along the four cubic GaAs space diagonals. Thin layers contain lens-shaped MnAs clusters close to the surface, whereas thick layers also contain spherical clusters in the bulk of the layer. The magnetic properties of the hexagonal MnAs clusters can be tuned by a controlled variation of the cluster shape

  4. Hierarchical hybrid peroxidase catalysts for remediation of phenol wastewater

    KAUST Repository

    Duan, Xiaonan

    2014-02-20

    We report a new family of hierarchical hybrid catalysts comprised of horseradish peroxidase (HRP)-magnetic nanoparticles for advanced oxidation processes and demonstrate their utility in the removal of phenol from water. The immobilized HRP catalyzes the oxidation of phenols in the presence of H2O2, producing free radicals. The phenoxy radicals react with each other in a non-enzymatic process to form polymers, which can be removed by precipitation with salts or condensation. The hybrid peroxidase catalysts exhibit three times higher activity than free HRP and are able to remove three times more phenol from water compared to free HRP under similar conditions. In addition, the hybrid catalysts reduce substrate inhibition and limit inactivation from reaction products, which are common problems with free or conventionally immobilized enzymes. Reusability is improved when the HRP-magnetic nanoparticle hybrids are supported on micron-scale magnetic particles, and can be retained with a specially designed magnetically driven reactor. The performance of the hybrid catalysts makes them attractive for several industrial and environmental applications and their development might pave the way for practical applications by eliminating most of the limitations that have prevented the use of free or conventionally immobilized enzymes. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Hierarchical hybrid peroxidase catalysts for remediation of phenol wastewater

    KAUST Repository

    Duan, Xiaonan; Corgié , Sté phane C.; Aneshansley, Daniel J.; Wang, Peng; Walker, Larry P.; Giannelis, Emmanuel P.

    2014-01-01

    We report a new family of hierarchical hybrid catalysts comprised of horseradish peroxidase (HRP)-magnetic nanoparticles for advanced oxidation processes and demonstrate their utility in the removal of phenol from water. The immobilized HRP catalyzes the oxidation of phenols in the presence of H2O2, producing free radicals. The phenoxy radicals react with each other in a non-enzymatic process to form polymers, which can be removed by precipitation with salts or condensation. The hybrid peroxidase catalysts exhibit three times higher activity than free HRP and are able to remove three times more phenol from water compared to free HRP under similar conditions. In addition, the hybrid catalysts reduce substrate inhibition and limit inactivation from reaction products, which are common problems with free or conventionally immobilized enzymes. Reusability is improved when the HRP-magnetic nanoparticle hybrids are supported on micron-scale magnetic particles, and can be retained with a specially designed magnetically driven reactor. The performance of the hybrid catalysts makes them attractive for several industrial and environmental applications and their development might pave the way for practical applications by eliminating most of the limitations that have prevented the use of free or conventionally immobilized enzymes. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Computing magnetic anisotropy constants of single molecule magnets

    Indian Academy of Sciences (India)

    We present here a theoretical approach to compute the molecular magnetic anisotropy parameters, and for single molecule magnets in any given spin eigenstate of exchange spin Hamiltonian. We first describe a hybrid constant -valence bond (VB) technique of solving spin Hamiltonians employing full spatial ...

  7. Integrating magnetism into semiconductor electronics

    Energy Technology Data Exchange (ETDEWEB)

    Zakharchenya, Boris P; Korenev, Vladimir L [A.F. Ioffe Physico-Technical Institute, Russian Academy of Sciences, St. Petersburg (Russian Federation)

    2005-06-30

    The view of a ferromagnetic-semiconducting hybrid structure as a single tunable system is presented. Based on an analysis of existing experiments it is shown that, contrary to a 'common sense', a nonmagnetic semiconductor is capable of playing an important role in controlling ferromagnetism. Magnetic properties of a hybrid (the hysteresis loop and the spatial orientation of magnetization) can be tuned both optically and electrically by utilizing semiconductor-making the hybrid an electronic-write-in and electronic-read-out elementary storage unit. (methodological notes)

  8. Integrating magnetism into semiconductor electronics

    International Nuclear Information System (INIS)

    Zakharchenya, Boris P; Korenev, Vladimir L

    2005-01-01

    The view of a ferromagnetic-semiconducting hybrid structure as a single tunable system is presented. Based on an analysis of existing experiments it is shown that, contrary to a 'common sense', a nonmagnetic semiconductor is capable of playing an important role in controlling ferromagnetism. Magnetic properties of a hybrid (the hysteresis loop and the spatial orientation of magnetization) can be tuned both optically and electrically by utilizing semiconductor-making the hybrid an electronic-write-in and electronic-read-out elementary storage unit. (methodological notes)

  9. Magnetic and luminescent hybrid nanomaterial based on Fe{sub 3}O{sub 4} nanocrystals and GdPO{sub 4}:Eu{sup 3+} nanoneedles

    Energy Technology Data Exchange (ETDEWEB)

    Runowski, Marcin; Grzyb, Tomasz; Lis, Stefan, E-mail: blis@amu.edu.pl [Adam Mickiewicz University, Department of Rare Earths, Faculty of Chemistry (Poland)

    2012-10-15

    A bifunctional hybrid nanomaterial, which can show magnetic and luminescent properties, was obtained. A magnetic phase was synthesized as a core/shell type composite. Nanocrystalline magnetite, Fe{sub 3}O{sub 4} was used as the core and was encapsulated in a silica shell. The luminescent phase was GdPO{sub 4} doped with Eu{sup 3+} ions, as the emitter. The investigated materials were synthesized using a coprecipitation method. Encapsulated Fe{sub 3}O{sub 4} was 'trapped' in a nano-scaffold composed of GdPO{sub 4} crystalline nanoneedles. When an external magnetic field was applied, this hybrid composite was attracted in one direction. Also, the luminescent phase can move simultaneously with magnetite due to a 'trapping' effect. The structure and morphology of the obtained nanocomposites were examined with the use of transmission electron microscopy and X-ray powder diffraction. Spectroscopic properties of the Eu{sup 3+}-doped nanomaterials were studied by measuring their excitation and emission spectra as well as their luminescence decay times.Graphical Abstract.

  10. Numerical Research on Hybrid Fuel Locking Device for Upward Flow Core-Research Reactor

    International Nuclear Information System (INIS)

    Huh, Hyung; Cho, Yeong-Garp; Yoo, Yeon-Sik; Ryu, Jeong-Soo

    2016-01-01

    The assembly must be held firmly against these forces, but cannot be permanently attached to the support stand because periodic refueling of the reactor requires removal or relocation of each assembly. There are so many kinds of fuel locking device, but they are operated manually. As a part of a new project, we have investigated a hybrid fuel locking device (HFLD) for research reactor which is operated automatically. Prior method of holding down the fuel assembly includes a hybrid zero electromagnet consisting of an electromagnet and a permanent magnet. The role of an electromagnet is converged to zero power for overcoming the lifting power of a permanent magnet by controlling the coil current. At this time, a HFLD is an unlocking state. On the contrary, it is locking state that only a permanent magnet works when the power of an electromagnet is off. The results of a FEM in this work lead to the following conclusions: (1) It is possible that an electromagnet is converged to zero power for overcoming the lifting power of a permanent magnet by remote controlling the coil current. (2) At this time, it is able to detect remotely using proximity sensor whether a HFLD is latched or not

  11. A Novel Tunable Multi-Frequency Hybrid Vibration Energy Harvester Using Piezoelectric and Electromagnetic Conversion Mechanisms

    Directory of Open Access Journals (Sweden)

    Zhenlong Xu

    2016-01-01

    Full Text Available This paper presents a novel tunable multi-frequency hybrid energy harvester (HEH. It consists of a piezoelectric energy harvester (PEH and an electromagnetic energy harvester (EMEH, which are coupled with magnetic interaction. An electromechanical coupling model was developed and numerically simulated. The effects of magnetic force, mass ratio, stiffness ratio, and mechanical damping ratios on the output power were investigated. A prototype was fabricated and characterized by experiments. The measured first peak power increases by 16.7% and 833.3% compared with that of the multi-frequency EMEH and the multi-frequency PEH, respectively. It is 2.36 times more than the combined output power of the linear PEH and linear EMEH at 22.6 Hz. The half-power bandwidth for the first peak power is also broadened. Numerical results agree well with the experimental data. It is indicated that magnetic interaction can tune the resonant frequencies. Both magnetic coupling configuration and hybrid conversion mechanism contribute to enhancing the output power and widening the operation bandwidth. The magnitude and direction of magnetic force have significant effects on the performance of the HEH. This proposed HEH is an effective approach to improve the generating performance of the micro-scale energy harvesting devices in low-frequency range.

  12. Plasmonic and Magnetically Responsive Gold ShellMagnetic Nanorod Hybrids

    Science.gov (United States)

    2017-10-10

    including bio -targeting/sensing,1,2 structural enhancement/health monitoring,3,4 and energy harvesting/storage.5,6 Typical approaches to achieve...Mirshahghassemi S, Ebner AD, Cai B, Lead JR, Application of high gradient magnetic separation for oil remediation using polymer-coated magnetic

  13. Electromagnetic field analyses of two-layer power transmission cables consisting of coated conductors with magnetic and non-magnetic substrates and AC losses in their superconductor layers

    International Nuclear Information System (INIS)

    Nakahata, Masaaki; Amemiya, Naoyuki

    2008-01-01

    Two-dimensional electromagnetic field analyses were undertaken using two representative cross sections of two-layer cables consisting of coated conductors with magnetic and non-magnetic substrates. The following two arrangements were used for the coated conductors between the inner and outer layers: (1) tape-on-tape and (2) alternate. The calculated magnetic flux profile around each coated conductor was visualized. In the case of the non-magnetic substrate, the magnetic field to which coated conductors in the outer layer are exposed contains more perpendicular component to the conductor wide face (perpendicular field component) when compared to that in the inner layer. On the other hand, for the tape-on-tape arrangement of coated conductors with a magnetic substrate, the reverse is true. In the case of the alternate arrangement of the coated conductor with a magnetic substrate, the magnetic field to which the coated conductors in the inner and outer layers are exposed experiences a small perpendicular field component. When using a non-magnetic substrate, the AC loss in the superconductor layer of the coated conductors in the two-layer cables is dominated by that in the outer layer, whereas the reverse is true in the case of a magnetic substrate. When comparing the AC losses in superconductor layers of coated conductors with non-magnetic and magnetic substrates in two-layer cables, the latter is larger than the former, but the influence of the magnetism of substrates on AC losses in superconductor layers is not remarkable

  14. Influence of field and geometric configurations on the mode conversion characteristics of hybrid waves in a magnetoplasma slab

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Myoung-Jae [Department of Physics, Hanyang University, Seoul 04763 (Korea, Republic of); Research Institute for Natural Sciences, Hanyang University, Seoul 04763 (Korea, Republic of); Jung, Young-Dae, E-mail: ydjung@hanyang.ac.kr [Department of Applied Physics and Department of Bionanotechnology, Hanyang University, Ansan, Kyunggi-Do 15588 (Korea, Republic of); Department of Electrical and Computer Engineering, MC 0407, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0407 (United States)

    2016-12-01

    Highlights: • The mode conversion characteristics of hybrid surface waves are investigated in a magneto dusty plasma slab. • Upper- and lower-hybrid waves are found for the symmetric mode when the magnetic field is parallel to the slab surfaces. • The hybrid property of the surface waves disappears for the anti-symmetric mode. • The variations of the surface hybrid waves with the change of field and geometric configurations are also discussed. - Abstract: We explore the mode conversion characteristics of electrostatic hybrid surface waves due to the magnetic field orientation in a magnetoplasma slab. We obtain the dispersion relations for the symmetric and anti-symmetric modes of hybrid surface waves for two different magnetic field configurations: parallel and perpendicular. For the parallel magnetic field configuration, we have found that the symmetric mode propagates as upper- and lower-hybrid waves. However, the hybrid characteristics disappear and two non-hybrid waves are produced for the anti-symmetric mode. For the perpendicular magnetic field configuration, however, the anti-symmetric mode propagates as the upper- and lower-hybrid waves and the symmetric mode produces two non-hybrid branches of waves.

  15. Influence of field and geometric configurations on the mode conversion characteristics of hybrid waves in a magnetoplasma slab

    International Nuclear Information System (INIS)

    Lee, Myoung-Jae; Jung, Young-Dae

    2016-01-01

    Highlights: • The mode conversion characteristics of hybrid surface waves are investigated in a magneto dusty plasma slab. • Upper- and lower-hybrid waves are found for the symmetric mode when the magnetic field is parallel to the slab surfaces. • The hybrid property of the surface waves disappears for the anti-symmetric mode. • The variations of the surface hybrid waves with the change of field and geometric configurations are also discussed. - Abstract: We explore the mode conversion characteristics of electrostatic hybrid surface waves due to the magnetic field orientation in a magnetoplasma slab. We obtain the dispersion relations for the symmetric and anti-symmetric modes of hybrid surface waves for two different magnetic field configurations: parallel and perpendicular. For the parallel magnetic field configuration, we have found that the symmetric mode propagates as upper- and lower-hybrid waves. However, the hybrid characteristics disappear and two non-hybrid waves are produced for the anti-symmetric mode. For the perpendicular magnetic field configuration, however, the anti-symmetric mode propagates as the upper- and lower-hybrid waves and the symmetric mode produces two non-hybrid branches of waves.

  16. Input/output routines for a hybrid computer

    International Nuclear Information System (INIS)

    Izume, Akitada; Yodo, Terutaka; Sakama, Iwao; Sakamoto, Akira; Miyake, Osamu

    1976-05-01

    This report is concerned with data processing programs for a hybrid computer system. Especially pre-data processing of magnetic tapes which are recorded during the dynamic experiment by FACOM 270/25 data logging system in the 50 MW steam generator test facility is described in detail. The magnetic tape is a most effective recording medium for data logging, but recording formats of the magnetic tape are different between data logging systems. In our section, the final data analyses are performed by data in the disk of EAI-690 hybrid computer system, and to transfer all required information in magnetic tapes to the disk, the magnetic tape editing and data transit are necessary by sub-computer NEAC-3200 system. This report is written for users as a manual and reference hand book of pre-data processing between different type computers. (auth.)

  17. Probing spin-polarized tunneling at high bias and temperature with a magnetic tunnel transistor

    NARCIS (Netherlands)

    Park, B.G.; Banerjee, T.; Min, B.C.; Sanderink, Johannes G.M.; Lodder, J.C.; Jansen, R.

    2005-01-01

    The magnetic tunnel transistor (MTT) is a three terminal hybrid device that consists of a tunnel emitter, a ferromagnetic (FM) base, and a semiconductor collector. In the MTT with a FM emitter and a single FM base, spin-polarized hot electrons are injected into the base by tunneling. After

  18. Magnetic Hysteresis in Nanocomposite Films Consisting of a Ferromagnetic AuCo Alloy and Ultrafine Co Particles

    Directory of Open Access Journals (Sweden)

    Federico Chinni

    2017-06-01

    Full Text Available One fundamental requirement in the search for novel magnetic materials is the possibility of predicting and controlling their magnetic anisotropy and hence the overall hysteretic behavior. We have studied the magnetism of Au:Co films (~30 nm thick with concentration ratios of 2:1, 1:1, and 1:2, grown by magnetron sputtering co-deposition on natively oxidized Si substrates. They consist of a AuCo ferromagnetic alloy in which segregated ultrafine Co particles are dispersed (the fractions of Co in the AuCo alloy and of segregated Co increase with decreasing the Au:Co ratio. We have observed an unexpected hysteretic behavior characterized by in-plane anisotropy and crossed branches in the loops measured along the hard magnetization direction. To elucidate this phenomenon, micromagnetic calculations have been performed for a simplified system composed of two exchange-coupled phases: a AuCo matrix surrounding a Co cluster, which represents an aggregate of particles. The hysteretic features are qualitatively well reproduced provided that the two phases have almost orthogonal anisotropy axes. This requirement can be plausibly fulfilled assuming a dominant magnetoelastic character of the anisotropy in both phases. The achieved conclusions expand the fundamental knowledge on nanocomposite magnetic materials, offering general guidelines for tuning the hysteretic properties of future engineered systems.

  19. Audiovisual Biofeedback Improves Cine–Magnetic Resonance Imaging Measured Lung Tumor Motion Consistency

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Danny [Radiation Physics Laboratory, Sydney Medical School, The University of Sydney, Sidney, NSW (Australia); Greer, Peter B. [School of Mathematical and Physical Sciences, The University of Newcastle, Newcastle, NSW (Australia); Department of Radiation Oncology, Calvary Mater Newcastle, Newcastle, NSW (Australia); Ludbrook, Joanna; Arm, Jameen; Hunter, Perry [Department of Radiation Oncology, Calvary Mater Newcastle, Newcastle, NSW (Australia); Pollock, Sean; Makhija, Kuldeep; O' brien, Ricky T. [Radiation Physics Laboratory, Sydney Medical School, The University of Sydney, Sidney, NSW (Australia); Kim, Taeho [Radiation Physics Laboratory, Sydney Medical School, The University of Sydney, Sidney, NSW (Australia); Department of Radiation Oncology, Virginia Commonwealth University, Richmond, Virginia (United States); Keall, Paul, E-mail: paul.keall@sydney.edu.au [Radiation Physics Laboratory, Sydney Medical School, The University of Sydney, Sidney, NSW (Australia)

    2016-03-01

    Purpose: To assess the impact of an audiovisual (AV) biofeedback on intra- and interfraction tumor motion for lung cancer patients. Methods and Materials: Lung tumor motion was investigated in 9 lung cancer patients who underwent a breathing training session with AV biofeedback before 2 3T magnetic resonance imaging (MRI) sessions. The breathing training session was performed to allow patients to become familiar with AV biofeedback, which uses a guiding wave customized for each patient according to a reference breathing pattern. In the first MRI session (pretreatment), 2-dimensional cine-MR images with (1) free breathing (FB) and (2) AV biofeedback were obtained, and the second MRI session was repeated within 3-6 weeks (mid-treatment). Lung tumors were directly measured from cine-MR images using an auto-segmentation technique; the centroid and outlier motions of the lung tumors were measured from the segmented tumors. Free breathing and AV biofeedback were compared using several metrics: intra- and interfraction tumor motion consistency in displacement and period, and the outlier motion ratio. Results: Compared with FB, AV biofeedback improved intrafraction tumor motion consistency by 34% in displacement (P=.019) and by 73% in period (P<.001). Compared with FB, AV biofeedback improved interfraction tumor motion consistency by 42% in displacement (P<.046) and by 74% in period (P=.005). Compared with FB, AV biofeedback reduced the outlier motion ratio by 21% (P<.001). Conclusions: These results demonstrated that AV biofeedback significantly improved intra- and interfraction lung tumor motion consistency for lung cancer patients. These results demonstrate that AV biofeedback can facilitate consistent tumor motion, which is advantageous toward achieving more accurate medical imaging and radiation therapy procedures.

  20. Audiovisual Biofeedback Improves Cine–Magnetic Resonance Imaging Measured Lung Tumor Motion Consistency

    International Nuclear Information System (INIS)

    Lee, Danny; Greer, Peter B.; Ludbrook, Joanna; Arm, Jameen; Hunter, Perry; Pollock, Sean; Makhija, Kuldeep; O'brien, Ricky T.; Kim, Taeho; Keall, Paul

    2016-01-01

    Purpose: To assess the impact of an audiovisual (AV) biofeedback on intra- and interfraction tumor motion for lung cancer patients. Methods and Materials: Lung tumor motion was investigated in 9 lung cancer patients who underwent a breathing training session with AV biofeedback before 2 3T magnetic resonance imaging (MRI) sessions. The breathing training session was performed to allow patients to become familiar with AV biofeedback, which uses a guiding wave customized for each patient according to a reference breathing pattern. In the first MRI session (pretreatment), 2-dimensional cine-MR images with (1) free breathing (FB) and (2) AV biofeedback were obtained, and the second MRI session was repeated within 3-6 weeks (mid-treatment). Lung tumors were directly measured from cine-MR images using an auto-segmentation technique; the centroid and outlier motions of the lung tumors were measured from the segmented tumors. Free breathing and AV biofeedback were compared using several metrics: intra- and interfraction tumor motion consistency in displacement and period, and the outlier motion ratio. Results: Compared with FB, AV biofeedback improved intrafraction tumor motion consistency by 34% in displacement (P=.019) and by 73% in period (P<.001). Compared with FB, AV biofeedback improved interfraction tumor motion consistency by 42% in displacement (P<.046) and by 74% in period (P=.005). Compared with FB, AV biofeedback reduced the outlier motion ratio by 21% (P<.001). Conclusions: These results demonstrated that AV biofeedback significantly improved intra- and interfraction lung tumor motion consistency for lung cancer patients. These results demonstrate that AV biofeedback can facilitate consistent tumor motion, which is advantageous toward achieving more accurate medical imaging and radiation therapy procedures.

  1. Global Hybrid Simulations of The Magnetopause Boundary Layers In Low- and High-latitude Magnetic Reconnections

    Science.gov (United States)

    Lin, Y.; Perez, J. D.

    A 2-D global hybrid simulation is carried out to study the structure of the dayside mag- netopause in the noon-midnight meridian plane associated with magnetic reconnec- tion. In the simulation the bow shock, magnetosheath, and magnetopause are formed self-consistently by supersonic solar wind passing the geomagnetic field. The recon- nection events at high- and low-latitudes are simulated for various IMF conditions. The following results will be presented. (1) Large-amplitude rotational discontinuities and Alfvén waves are present in the quasi-steady reconnection layer. (2) The rotational discontinuity possesses an electron sense, or right-hand polarization in the magnetic field as the discontinuity forms from the X line. Later, however, the rotational dis- continuity tends to evolve to a structure with a smallest field rotational angle and thus may reverse its sense of the field rotation. The Walén relation is tested for elec- tron and ion flows in the magnetopause rotational discontinuities with left-hand and right-hand polarizations. (3) The structure of the magnetopause discontinuities and that of the accelerated/decelerated flows are modified significantly by the presence of the local magnetosheath flow. (4) Field-aligned currents are generated in the magne- topause rotational discontinuities. Part of the magnetopause currents propagate with Alfvén waves along the field lines into the polar ionosphere, contributing to the field- aligned current system in the high latitudes. The generation of the parallel currents under northward and southward IMF conditions is investigated. (5) Finally, typical ion velocity distributions will be shown at various locations across the magnetopause northward and southward of the X lines. The ion distributions associated with single or multiple X lines will be discussed.

  2. Proton nuclear magnetic resonance and spectrophotometric studies of nickel(II)-iron(II) hybrid hemoglobins

    International Nuclear Information System (INIS)

    Shibayama, N.; Inubushi, T.; Morimoto, H.; Yonetani, T.

    1987-01-01

    Ni(II)-Fe(II) hybrid hemoglobins, α(Fe) 2 β(Ni) 2 and α(Ni) 2 β(Fe) 2 , have been characterized by proton nuclear magnetic resonance with Ni(II) protoporphyrin IX (Ni-PP) incorporated in apoprotein, which serves as a permanent deoxyheme. α(Fe) 2 β(Ni) 2 , α(Ni) 2 β(Fe) 2 , and NiHb commonly show exchangeable proton resonances at 11 and 14 ppm, due to hydrogen-bonded protons in a deoxy-like structure. Upon binding of carbon monoxide (CO) to α(Fe) 2 β(Ni) 2 , these resonances disappear at pH 6.5 to pH 8.5. On the other hand, the complementary hybrid α(Ni) 2 β(Fe-CO) 2 showed the 11 and 14 ppm resonances at low pH. Upon raising pH, the intensities of both resonances are reduced, although these changes are not synchronized. Electronic absorption spectra and hyperfine-shifted proton resonances indicate that the ligation of CO in the β(Fe) subunits induced changes in the coordination and spin states of Ni-PP in the α subunits. In a deoxy-like structure, the coordination of Ni-PP in the α subunits is predominantly in a low-spin (S = 0) four-coordination state, whereas in an oxy-like structure the contribution of a high-spin (S = 1) five-coordination state markedly increased. Ni-PP in the β subunits always takes a high-spin five-coordination state regardless of solution conditions and the state of ligation in the partner α(Fe) subunits. In the β(Ni) subunits, a significant downfield shift of the proximal histidyl N/sub δ/H resonance and a change in the absorption spectrum of Ni-PP were detected, upon changing the quaternary structure of the hybrid. The chemical shifts were analyzed in terms of the E11-Val methyls vs. the porphyrin rings in hybrid Hbs

  3. A hybrid method combining the FDTD and a time domain boundary-integral equation marching-on-in-time algorithm

    Directory of Open Access Journals (Sweden)

    A. Becker

    2003-01-01

    Full Text Available In this paper a hybrid method combining the FDTD/FIT with a Time Domain Boundary-Integral Marching-on-in-Time Algorithm (TD-BIM is presented. Inhomogeneous regions are modelled with the FIT-method, an alternative formulation of the FDTD. Homogeneous regions (which is in the presented numerical example the open space are modelled using a TD-BIM with equivalent electric and magnetic currents flowing on the boundary between the inhomogeneous and the homogeneous regions. The regions are coupled by the tangential magnetic fields just outside the inhomogeneous regions. These fields are calculated by making use of a Mixed Potential Integral Formulation for the magnetic field. The latter consists of equivalent electric and magnetic currents on the boundary plane between the homogeneous and the inhomogeneous region. The magnetic currents result directly from the electric fields of the Yee lattice. Electric currents in the same plane are calculated by making use of the TD-BIM and using the electric field of the Yee lattice as boundary condition. The presented hybrid method only needs the interpolations inherent in FIT and no additional interpolation. A numerical result is compared to a calculation that models both regions with FDTD.

  4. Behaviour of Belle II ARICH Hybrid Avalanche Photo-Detector in magnetic field

    Science.gov (United States)

    Kindo, H.; Adachi, I.; Dolenec, R.; Hataya, K.; Iori, S.; Iwata, S.; Kakuno, H.; Kataura, R.; Kawai, H.; Kobayashi, T.; Konno, T.; Korpar, S.; Kriz˘an, P.; Kumita, T.; Mrvar, M.; Nishida, S.; Ogawa, K.; Ogawa, S.; Pestotnik, R.; Šantelj, L.; Sumiyoshi, T.; Tabata, M.; Yonenaga, M.; Yusa, Y.

    2017-12-01

    The proximity-focusing Aerogel Ring-Imaging Cherenkov detector (ARICH) has been designed to separate kaons from pions in the forward end-cap of the Belle II spectrometer. The detector will be placed in 1.5 T magnetic field and must have immunity to it. In ARICH R&D, we solve the problem with new equipment called Hybrid Avalanche Photo-Detector (HAPD) which developed by Hamamatsu Photonics. Recently the production of about 500 HAPDs was completed. We test HAPDs in magnetic field in KEK. We found some HAPDs have significant amount of dead time, which reaches up to 30% in the worst case. The dead time is caused by very large (more than 10,000 times larger than a single photon signal) and frequent (∼5 Hz) signals, which make electronics paralysed. The huge signals are observed in about 30% of HAPDs. To identify the origin and understand the mechanism, we perform some extra test of HAPDs. We find a strange dependence of the huge signals to the APD bias voltage. If we reduce the bias voltage applied to one of the 4 APDs by 10 V, the frequency of the huge signals is much reduced. On the other hand, if we reduce the voltage of all the 4 HAPDs, huge signals do not decrease, or even increase in some case. We also find the huge signals seems to be related to the vacuum inside HAPD. We present about the observation of the huge signals of HAPDs in the magnetic field, and our strategy to manage it.

  5. Self-consistent treatment of spin and magnetization dynamic effect in spin transfer switching

    International Nuclear Information System (INIS)

    Guo Jie; Tan, Seng Ghee; Jalil, Mansoor Bin Abdul; Koh, Dax Enshan; Han, Guchang; Meng, Hao

    2011-01-01

    The effect of itinerant spin moment (m) dynamic in spin transfer switching has been ignored in most previous theoretical studies of the magnetization (M) dynamics. Thus in this paper, we proposed a more refined micromagnetic model of spin transfer switching that takes into account in a self-consistent manner of the coupled m and M dynamics. The numerical results obtained from this model further shed insight on the switching profiles of m and M, both of which show particular sensitivity to parameters such as the anisotropy field, the spin torque field, and the initial deviation between m and M.

  6. Theory of strong hybridization-induced relaxation in uranium systems

    International Nuclear Information System (INIS)

    Hu, G.; Cooper, B.R.

    1988-01-01

    Commonly, for metallic uranium systems, sharp magnetic excitations are not observed in neutron inelastic scattering experiments, but rather there is a continuous spectrum of magnetic response. By extending our earlier theory for partially delocalized cerium systems, we can understand this behavior. The band-f hybridization is transformed to resonant scattering in our theory, where the exchange part of the scattering gives both a two-ion interaction (physically corresponding to cooperative hybridization, giving anisotropic magnetic ordering with unusual excitation dispersion for cerium systems) and a hybridization coupling of each ion to the band sea (giving relaxation and strong energy renormalization of the excitations for cerium systems). For uranium the f delocalization (and hence the hybridization) is much stronger than for cerium. The two-ion interaction (giving quasi-ionic energy level splitting) grows by an order of magnitude or more, as evidenced by greatly increased magnetic ordering temperatures. On the other hand, the single-site hybridization strength parameter J-script characterizing the f-to-band-bath coupling grows more moderately as the f levels move toward the Fermi energy, because of the renormalizing effect of the direct scattering which broadens the f levels. The increased energy scale of the quasi-ionic level splitting for uranium as compared to cerium or plutonium is the major contributor to the greatly increased width of magnetic scattering distributions, while the moderate increase in coupling of each uranium quasi-ion to the band sea gives a lesser contribution. We apply this theory to UP and UAs and compare our results with experiment

  7. Magnetic topology changes induced by lower hybrid waves and their profound effect on edge-localized modes in the EAST tokamak.

    Science.gov (United States)

    Liang, Y; Gong, X Z; Gan, K F; Gauthier, E; Wang, L; Rack, M; Wang, Y M; Zeng, L; Denner, P; Wingen, A; Lv, B; Ding, B J; Chen, R; Hu, L Q; Hu, J S; Liu, F K; Jie, Y X; Pearson, J; Qian, J P; Shan, J F; Shen, B; Shi, T H; Sun, Y; Wang, F D; Wang, H Q; Wang, M; Wu, Z W; Zhang, S B; Zhang, T; Zhang, X J; Yan, N; Xu, G S; Guo, H Y; Wan, B N; Li, J G

    2013-06-07

    Strong mitigation of edge-localized modes has been observed on Experimental Advanced Superconducting Tokamak, when lower hybrid waves (LHWs) are applied to H-mode plasmas with ion cyclotron resonant heating. This has been demonstrated to be due to the formation of helical current filaments flowing along field lines in the scrape-off layer induced by LHW. This leads to the splitting of the outer divertor strike points during LHWs similar to previous observations with resonant magnetic perturbations. The change in the magnetic topology has been qualitatively modeled by considering helical current filaments in a field-line-tracing code.

  8. Crystal structure, thermochromic and magnetic properties of organic-inorganic hybrid compound: (C7H7N2S)2CuCl4

    Science.gov (United States)

    Vishwakarma, Ashok K.; Kumari, Reema; Ghalsasi, Prasanna S.; Arulsamy, Navamoney

    2017-08-01

    The synthesis, thermal analysis, crystal structure and magnetic properties of (2-aminobenzothiazolium)2CuCl4, organic-inorganic hybrid compound, have been described. The compound crystallizes in the monoclinic space group P21/c with two formula units in a unit cell of dimensions a = 6.9522(4) Å, b = 9.6979(4) Å, c = 13.9633(6) Å, β = 97.849(3)° and volume 930.83(8) Å3 at 150(2) K. The structure consists of isolated nearly square planer [CuC14]2- units, with somewhat longer than normal Cusbnd Cl bond lengths [Cusbnd Cl (average) = 2.2711 Å]. The magnetic measurements of (2-aminobenzothiazolium)2CuCl4 using SQUID magnetometer show paramagnetic nature of the compound. Thermal measurements (TG-DTA and DSC) on this compound showed reversible phase transition at 83 °C. This transition is accompanied by the reversible change in colour of the prismatic crystal from green to dark brown, thermochromic behaviour. Temperature dependent EPR measurements on powdered sample ascertain change in coordination sphere around Cu(II) with shift in g|| = 2.150 and g⊥ = 2.071 at room temperature, typical of square planar, to g|| = 2.201 and g⊥ = 2.182 at 170 °C, typical of distorted tetrahedral geometry.

  9. Self-consistent mean field theory studies of the thermodynamics and quantum spin dynamics of magnetic Skyrmions.

    Science.gov (United States)

    Wieser, R

    2017-05-04

    A self-consistent mean field theory is introduced and used to investigate the thermodynamics and spin dynamics of an S  =  1 quantum spin system with a magnetic Skyrmion. The temperature dependence of the Skyrmion profile as well as the phase diagram are calculated. In addition, the spin dynamics of a magnetic Skyrmion is described by solving the time dependent Schrödinger equation with additional damping term. The Skyrmion annihilation process driven by an electric field is used to compare the trajectories of the quantum mechanical simulation with a semi-classical description for the spin expectation values using a differential equation similar to the classical Landau-Lifshitz-Gilbert equation.

  10. Micropatterned superconducting film circuitry for operation in hybrid quantum devices

    International Nuclear Information System (INIS)

    Bothner, Daniel

    2013-01-01

    This thesis discusses three aspects of the arduous way towards hybrid quantum systems consisting of superconducting circuits and ensembles of ultracold paramagnetic atoms. In the first part of the thesis, superconducting coplanar microwave resonators as used for quantum information processing with superconducting qubits are investigated in magnetic fields. In the second part of the thesis integrated atom chips are designed and fabricated, which offer the possibility to trap an ensemble of ultracold atoms close to a superconducting coplanar resonator on that chip. In the third and last part of the thesis, unconventional disordered and quasiperiodic arrangements of microfabricated holes (antidots) in superconducting films are patterned and investigated with respect to the impact of the arrangement on the superconductor transport properties in magnetic fields.

  11. Ultra-Compact 100 × 100 μm2 Footprint Hybrid Device with Spin-Valve Nanosensors

    Directory of Open Access Journals (Sweden)

    Diana C. Leitao

    2015-12-01

    Full Text Available Magnetic field mapping with micrometric spatial resolution and high sensitivity is a challenging application, and the technological solutions are usually based on large area devices integrating discrete magnetic flux guide elements. In this work we demonstrate a high performance hybrid device with improved field sensitivity levels and small footprint, consisting of a ultra-compact 2D design where nanometric spin valve sensors are inserted within the gap of thin-film magnetic flux concentrators. Pole-sensor distances down to 400 nm are demonstrated using nanofabrication techniques combined with an optimized liftoff process. These 100 × 100 μm 2 pixel sensors can be integrated in modular devices for surface mapping without moving parts.

  12. Hybrid quantum circuit with a superconducting qubit coupled to an electron spin ensemble

    Energy Technology Data Exchange (ETDEWEB)

    Kubo, Yuimaru; Grezes, Cecile; Vion, Denis; Esteve, Daniel; Bertet, Patrice [Quantronics Group, SPEC (CNRS URA 2464), CEA-Saclay, 91191 Gif-sur-Yvette (France); Diniz, Igor; Auffeves, Alexia [Institut Neel, CNRS, BP 166, 38042 Grenoble (France); Isoya, Jun-ichi [Research Center for Knowledge Communities, University of Tsukuba, 305-8550 Tsukuba (Japan); Jacques, Vincent; Dreau, Anais; Roch, Jean-Francois [LPQM (CNRS, UMR 8537), Ecole Normale Superieure de Cachan, 94235 Cachan (France)

    2013-07-01

    We report the experimental realization of a hybrid quantum circuit combining a superconducting qubit and an ensemble of electronic spins. The qubit, of the transmon type, is coherently coupled to the spin ensemble consisting of nitrogen-vacancy (NV) centers in a diamond crystal via a frequency-tunable superconducting resonator acting as a quantum bus. Using this circuit, we prepare arbitrary superpositions of the qubit states that we store into collective excitations of the spin ensemble and retrieve back into the qubit. We also report a new method for detecting the magnetic resonance of electronic spins at low temperature with a qubit using the hybrid quantum circuit, as well as our recent progress on spin echo experiments.

  13. Antimagnets: controlling magnetic fields with superconductor-metamaterial hybrids

    International Nuclear Information System (INIS)

    Sanchez, Alvaro; Navau, Carles; Prat-Camps, Jordi; Chen Duxing

    2011-01-01

    Magnetism is very important in various areas of science and technology, ranging from magnetic recording through energy generation to trapping cold atoms. Physicists have managed to master magnetism-to create and manipulate magnetic fields-almost at will. Surprisingly, there is at least one property that has been elusive until now: how to 'switch off' the magnetic interaction of a magnetic material with existing magnetic fields without modifying them. Here we introduce the antimagnet, a design that conceals the magnetic response of a given volume from its exterior, without altering the external magnetic fields, in some respects analogous to recent theoretical proposals for cloaking electromagnetic waves with metamaterials. However, unlike these devices, which require extreme material properties, our device is feasible and needs only two kinds of available materials: superconductors and isotropic magnetic materials. Antimagnets may have applications in magnetic-based medical techniques such as magnetic resonance imaging or in reducing the magnetic signature of vessels or planes.

  14. Modelling the solar wind interaction with Mercury by a quasi-neutral hybrid model

    Directory of Open Access Journals (Sweden)

    E. Kallio

    2003-11-01

    Full Text Available Quasi-neutral hybrid model is a self-consistent modelling approach that includes positively charged particles and an electron fluid. The approach has received an increasing interest in space plasma physics research because it makes it possible to study several plasma physical processes that are difficult or impossible to model by self-consistent fluid models, such as the effects associated with the ions’ finite gyroradius, the velocity difference between different ion species, or the non-Maxwellian velocity distribution function. By now quasi-neutral hybrid models have been used to study the solar wind interaction with the non-magnetised Solar System bodies of Mars, Venus, Titan and comets. Localized, two-dimensional hybrid model runs have also been made to study terrestrial dayside magnetosheath. However, the Hermean plasma environment has not yet been analysed by a global quasi-neutral hybrid model. In this paper we present a new quasi-neutral hybrid model developed to study various processes associated with the Mercury-solar wind interaction. Emphasis is placed on addressing advantages and disadvantages of the approach to study different plasma physical processes near the planet. The basic assumptions of the approach and the algorithms used in the new model are thoroughly presented. Finally, some of the first three-dimensional hybrid model runs made for Mercury are presented. The resulting macroscopic plasma parameters and the morphology of the magnetic field demonstrate the applicability of the new approach to study the Mercury-solar wind interaction globally. In addition, the real advantage of the kinetic hybrid model approach is to study the property of individual ions, and the study clearly demonstrates the large potential of the approach to address these more detailed issues by a quasi-neutral hybrid model in the future.Key words. Magnetospheric physics (planetary magnetospheres; solar wind-magnetosphere interactions – Space plasma

  15. Synthesis and hyperthermia property of hydroxyapatite-ferrite hybrid particles by ultrasonic spray pyrolysis

    International Nuclear Information System (INIS)

    Inukai, Akihiro; Sakamoto, Naonori; Aono, Hiromichi; Sakurai, Osamu; Shinozaki, Kazuo; Suzuki, Hisao; Wakiya, Naoki

    2011-01-01

    Biocompatible hybrid particles composed of hydroxyapatite (Ca 10 (PO 4 ) 6 (OH) 2 , HAp) and ferrite (γ-Fe 2 O 3 and Fe 3 O 4 ) were synthesized using a two-step procedure. First, the ferrite particles were synthesized by co-precipitation. Second, the suspension, which was composed of ferrite particles by a co-precipitation method, Ca(NO 3 ) 2 , and H 3 PO 4 aqueous solution with surfactant, was nebulized into mist ultrasonically. Then the mist was pyrolyzed at 1000 o C to synthesize HAp-ferrite hybrid particles. The molar ratio of Fe ion and HAp was (Fe 2+ and Fe 3+ )/HAp=6. The synthesized hybrid particle was round and dimpled, and the average diameter of a secondary particle was 740 nm. The cross section of the synthesized hybrid particles revealed two phases: HAp and ferrite. The ferrite was coated with HAp. The synthesized hybrid particles show a saturation magnetization of 11.8 emu/g. The net saturation magnetization of the ferrite component was calculated as 32.5 emu/g. The temperature increase in the AC-magnetic field (370 kHz, 1.77 kA/m) was 9 o C with 3.4 g (the ferrite component was 1.0 g). These results show that synthesized hybrid particles are biocompatible and might be useful for magnetic transport and hyperthermia studies. - Research Highlights: → Biocompatible hybrid particles composed of hydroxyapatite (Ca 10 (PO 4 ) 6 (OH) 2 , HAp) and ferrite (γ-Fe 2 O 3 and Fe 3 O 4 ) were synthesized using a two-step synthesis, which is comprised of co-precipitation and ultrasonic spray pyrolysis. → Cross sectional TEM observation and X-ray diffraction revealed that synthesized hybrid particles showed two phases (HAp and ferrite), and the ferrite was coated with HAp. → The saturation magnetization of ferrite in the HAp-ferrite hybrid was 32.49 emu/g. → The increased temperature in the AC-magnetic field (370 kHz, 1.77 kA/m) was 9 o C with 3.4 g (the ferrite component was 1.0 g).

  16. Hybrid chitosan–Pluronic F-127 films with BaTiO3:Co nanoparticles: Synthesis and properties

    International Nuclear Information System (INIS)

    Fuentes, S.; Dubo, J.; Barraza, N.; González, R.; Veloso, E.

    2015-01-01

    In this study, magnetic BaTiO 3 :Co (BT:Co) nanoparticles prepared using a combined sol–gel–hydrothermal technique were dispersed in a chitosan/Pluronic F-127 solution (QO/Pl) to obtain a nanocomposite hybrid films. Nanoparticles and hybrid films were characterized by X-ray powder diffraction, Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM) and alternating gradient magnetometry (AGM). Experimental results indicated that the BT:Co nanoparticles were encapsulated in the QO/Pl hybrid films and that the magnetic properties of the QO/Pl/BT:Co nanocomposites are similar to the naked BT:Co nanoparticles. Results indicate that Co doping produces an enhancement in the ferromagnetic behavior of the BT nanoparticle. The coating restricts this enhancement only to low-fields, leaving the diamagnetic behavior of BT at high-fields. Magnetically stable sizes (PSD) were obtained at 3% Co doping for both naked nanoparticles and hybrid films. These show an increased magnetic memory capacity and a softer magnetic hardness with respect to non-doped BT nanoparticles. - Highlights: • We described the synthesis of magnetic BaTiO 3 :Co dispersed in chitosan (QO)/Pluronic F-127 (Pl) solution by sonication to obtain nanocomposite hybrid films. • We describe the physical and magnetic properties of BaTiO 3 :Co nanoparticles and QO/Pl/BT:Co hybrid films. • The magnetic properties are defines by the presence of magnetic domains. These magnetic domains are close related with the amount of Co in the host lattice. • The prepared phases could be considered as multifunctional materials, with magnetic and ferri-electrical properties, with potential uses in the design of devices

  17. Propagation and radiation characteristics of the circular electric, circular magnetic and hybrid waveguide modes

    International Nuclear Information System (INIS)

    Crenn, J.P.

    1996-06-01

    The field distributions and propagation constants of the circular electric, circular magnetic and hybrid modes of oversized waveguides are expressed, taking the effects of walls into account. The near and far field patterns are derived in the case of real wall functions. It is shown that, for very oversized waveguides, the terms containing wall functions can be ignored in the calculations, and it results that the expressions of fields and propagation constants become independent of the types of waveguides. An application to corrugated waveguides for Electron Cyclotron Resonance Heating experiments shows the variations of the radiation characteristics versus geometric parameters of the corrugations and determines the ranges of interest for these parameters. (author)

  18. A self-consistent two-dimensional resistive fluid theory of field-aligned potential structures including charge separation and magnetic and velocity shear

    International Nuclear Information System (INIS)

    Hesse, M.; Birn, J.; Schindler, K.

    1990-01-01

    A self-consistent two-fluid theory that includes the magnetic field and shear patterns therein is developed to model stationary electrostatic structures with field-aligned potential drops. Shear flow is also included in the theory since this seems to be a prominent feature of the structures of interest. In addition, Ohmic dissipation, a Hall term and pressure gradients in a generalized Ohm's law, modified for cases without quasi-neutrality are included. In the analytic theory, the electrostatic force is balanced by field-aligned pressure gradients, i.e., thermal effects in the direction of the magnetic field, and by pressure gradients and magnetic stresses in the perpendicular direction. Within this theory simple examples of applications are presented to demonstrate the kind of solutions resulting from the model. The results show how the effects of charge separation and shear in the magnetic field and the velocity can be combined to form self-consistent structures such as are found to exist above the aurora, suggested also in association with solar flares

  19. Hybrid finite difference/finite element solution method development for non-linear superconducting magnet and electrical circuit breakdown transient analysis

    International Nuclear Information System (INIS)

    Kraus, H.G.; Jones, J.L.

    1986-01-01

    The problem of non-linear superconducting magnet and electrical protection circuit system transients is formulated. To enable studying the effects of coil normalization transients, coil distortion (due to imbalanced magnetic forces), internal coil arcs and shorts, and other normal and off-normal circuit element responses, the following capabilities are included: temporal, voltage and current-dependent voltage sources, current sources, resistors, capacitors and inductors. The concept of self-mutual inductance, and the form of the associated inductance matrix, is discussed for internally shorted coils. This is a Kirchhoff's voltage loop law and Kirchhoff's current node law formulation. The non-linear integrodifferential equation set is solved via a unique hybrid finite difference/integral finite element technique. (author)

  20. METHODOLOGICAL NOTES: Integrating magnetism into semiconductor electronics

    Science.gov (United States)

    Zakharchenya, Boris P.; Korenev, Vladimir L.

    2005-06-01

    The view of a ferromagnetic-semiconducting hybrid structure as a single tunable system is presented. Based on an analysis of existing experiments it is shown that, contrary to a 'common sense', a nonmagnetic semiconductor is capable of playing an important role in controlling ferromagnetism. Magnetic properties of a hybrid (the hysteresis loop and the spatial orientation of magnetization) can be tuned both optically and electrically by utilizing semiconductor—making the hybrid an electronic-write-in and electronic-read-out elementary storage unit.

  1. Periodic permanent magnet focusing system with high peak field

    International Nuclear Information System (INIS)

    Zhang Hong; Liu Weiwei; Bai Shuxin; Chen Ke

    2008-01-01

    In this study, hybrid periodic permanent magnet (PPM) system is studied, which has high axial magnetic field and low magnetic leakage. By simulation computation, some laws of magnetic field distribution vs. structure dimensions were obtained. A hybrid PPM is designed and constructed whose peak field reaches 0.6 T. The factors inducing discrepancies between computational results and practical measurements are analyzed. The magnetic field distribution is very sensitive to the variations of constructional parameters. Construction accuracy greatly influences the magnetic field distribution. Research results obtained here are potentially valuable for future work

  2. Magnetic silica hybrids modified with guanidine containing co-polymers for drug delivery applications

    Energy Technology Data Exchange (ETDEWEB)

    Timin, Alexander S., E-mail: a_timin@mail.ru [Inorganic Chemistry Department, Ivanovo State University of Chemistry and Technology (ISUCT), 7, Sheremetevsky prosp., 153000 Ivanovo (Russian Federation); RASA Center in Tomsk, Tomsk Polytechnic University, 30, Lenin Avenue, 634500 Tomsk (Russian Federation); Khashirova, Svetlana Yu. [Kabardino-Balkar State University, ul. Chernyshevskogo 173, Nal' chik, 360004 Kabardino-Balkaria (Russian Federation); Rumyantsev, Evgeniy V.; Goncharenko, Alexander A. [Inorganic Chemistry Department, Ivanovo State University of Chemistry and Technology (ISUCT), 7, Sheremetevsky prosp., 153000 Ivanovo (Russian Federation)

    2016-07-01

    Guanidine containing co-polymers grafted onto silica nanoparticles to form core-shell structure were prepared by sol-gel method in the presence of γ-Fe{sub 2}O{sub 3} nanoparticles. The morphological features for uncoated and coated silica particles have been characterized with scanning electron microscopy. The results show that the polymer coated silicas exhibit spherical morphology with rough polymeric surface covered by γ-Fe{sub 2}O{sub 3} nanoparticles. The grafting amount of guanidine containing co-polymers evaluated by thermogravimetric analysis was in the range from 17 to 30%. Then, the drug loading properties and cumulative release of silica hybrids modified with guanidine containing co-polymers were evaluated using molsidomine as a model drug. It was shown that after polymer grafting the loading content of molsidomine could reach up to 3.42 ± 0.21 and 2.34 ± 0.14 mg/g respectively. The maximum drug release of molsidomine is achieved at pH 1.6 (approximately 71–75% release at 37 °C), whereas at pH 7.4 drug release is lower (50.4–59.6% release at 37 °C). These results have an important implication that our magneto-controlled silica hybrids modified with guanidine containing co-polymers are promising as drug carriers with controlled behaviour under influence of magnetic field. - Highlights: • Polymer coated silica hybrids containing γ-Fe{sub 2}O{sub 3} were prepared via sol–gel method. • Polymer grafting influences pH-response and surface properties of final products. • Molsidomine as a model drug was effectively loaded into polymer coated silicas. • The drug loading depends on the nature of grafted polymer and its content.

  3. Dual mode linguistic hedge fuzzy logic controller for an isolated wind-diesel hybrid power system with superconducting magnetic energy storage unit

    International Nuclear Information System (INIS)

    Thameem Ansari, M.Md.; Velusami, S.

    2010-01-01

    A design of dual mode linguistic hedge fuzzy logic controller for an isolated wind-diesel hybrid power system with superconducting magnetic energy storage unit is proposed in this paper. The design methodology of dual mode linguistic hedge fuzzy logic controller is a hybrid model based on the concepts of linguistic hedges and hybrid genetic algorithm-simulated annealing algorithms. The linguistic hedge operators are used to adjust the shape of the system membership functions dynamically and can speed up the control result to fit the system demand. The hybrid genetic algorithm-simulated annealing algorithm is adopted to search the optimal linguistic hedge combination in the linguistic hedge module. Dual mode concept is also incorporated in the proposed controller because it can improve the system performance. The system with the proposed controller was simulated and the frequency deviation resulting from a step load disturbance is presented. The comparison of the proportional plus integral controller, fuzzy logic controller and the proposed dual mode linguistic hedge fuzzy logic controller shows that, with the application of the proposed controller, the system performance is improved significantly. The proposed controller is also found to be less sensitive to the changes in the parameters of the system and also robust under different operating modes of the hybrid power system.

  4. Going With the Flow: An Aid in Detecting and Differentiating Bronchopulmonary Sequestrations and Hybrid Lesions.

    Science.gov (United States)

    Oliver, Edward R; DeBari, Suzanne E; Giannone, Mariann M; Pogoriler, Jennifer E; Johnson, Ann M; Horii, Steven C; Gebb, Juliana S; Howell, Lori J; Adzick, N Scott; Coleman, Beverly G

    2018-02-01

    To assess the ability of prenatal ultrasound (US) in identifying systemic feeding arteries in bronchopulmonary sequestrations and hybrid lesions and report the ability of US in classifying bronchopulmonary sequestrations as intralobar or extralobar. Institutional Review Board-approved radiology and clinical database searches from 2008 to 2015 were performed for prenatal lung lesions with final diagnoses of bronchopulmonary sequestrations or hybrid lesions. All patients had detailed US examinations, and most patients had ultrafast magnetic resonance imaging (MRI). Lesion location, size, and identification of systemic feeding arteries and draining veins were assessed with US. The study consisted of 102 bronchopulmonary sequestrations and 86 hybrid lesions. The median maternal age was 30 years. The median gestational age was 22 weeks 5 days. Of bronchopulmonary sequestrations, 66 had surgical pathologic confirmation, and 100 had postnatal imaging. Bronchopulmonary sequestration locations were intrathoracic (n = 77), intra-abdominal (n = 19), and transdiaphragmatic (n = 6). Of hybrid lesions, 84 had surgical pathologic confirmation, and 83 had postnatal imaging. Hybrid lesion locations were intrathoracic (n = 84) and transdiaphragmatic (n = 2). Ultrasound correctly identified systemic feeding arteries in 86 of 102 bronchopulmonary sequestrations and 79 of 86 hybrid lesions. Of patients who underwent MRI, systemic feeding arteries were reported in 62 of 92 bronchopulmonary sequestrations and 56 of 81 hybrid lesions. Ultrasound identified more systemic feeding arteries than MRI in both bronchopulmonary sequestrations and hybrid lesions (P < .01). Magnetic resonance imaging identified systemic feeding arteries that US did not in only 2 cases. In cases in which both systemic feeding arteries and draining veins were identified, US could correctly predict intrathoracic lesions as intralobar or extralobar in 44 of 49 bronchopulmonary sequestrations and

  5. A comprehensive study of soft magnetic materials based on FeSi spheres and polymeric resin modified by silica nanorods

    International Nuclear Information System (INIS)

    Strečková, M.; Füzer, J.; Kobera, L.; Brus, J.; Fáberová, M.; Bureš, R.; Kollár, P.; Lauda, M.; Medvecký, Ĺ.; Girman, V.; Hadraba, H.; Bat'ková, M.; Bat'ko, I.

    2014-01-01

    A novel soft magnetic composite (SMC) based on spherical FeSi particles precisely covered by hybrid phenolic resin was designed. The hybrid resin including silica nano-rods chemically incorporated into the phenolic polymer matrix was prepared by the modified sol–gel method. A chemical bridge connecting silica nano-rods with the base polymeric net was verified by FTIR, 13 C and 29 Si NMR spectroscopy, whereas the shape and size of silica nano-rods were determined by TEM. It is shown that the modification of polymeric resin by silica nano-rods generally leads to the improved thermal and mechanical properties of the final samples. The hybrid resin serves as a perfect insulating coating deposited on FeSi particles and the core–shell particles can be further compacted by standard powder metallurgy methods in order to prepare final samples for mechanical, electric and magnetic testing. SEM images evidence negligible porosity, uniform distribution of the hybrid resin around FeSi particles, as well as, dimensional shape stability of the final samples after thermal treatment. The hardness, flexural strength and density of the final samples are comparable to the sintered SMCs, but they simultaneously exhibit much higher specific resistivity along with only slightly lower coercivity and permeability. - Highlights: • Soft magnetic composites are designed for electrotechnical applications. • Electroinsulating layer consists of phenolic resin modified with silica nano-rods. • NMR, FTIR and DSC analysis is used to characterize hybrid resin. • Spherical Fe–Si particles covered by hybrid resin form a core–shell composite. • Mechanical, electrical and magnetic properties are described in detail

  6. Fabrication of polyaniline coated iron oxide hybrid particles and their dual stimuli-response under electric and magnetic fields

    Directory of Open Access Journals (Sweden)

    B. Sim

    2015-08-01

    Full Text Available Polyaniline (PANI-coated iron oxide (Fe3O4 sphere particles were fabricated and applied to a dual stimuliresponsive material under electric and magnetic fields, respectively. Sphere Fe3O4 particles were synthesized by a solvothermal process and protonated after acidification. The aniline monomer tended to surround the surface of the Fe3O4 core due to the electrostatic and hydrogen bond interactions. A core-shell structured product was finally formed by the oxidation polymerization of PANI on the surface of Fe3O4. The formation of Fe3O4@PANI particles was examined by scanning electron microscope and transmission electron microscope. The bond between Fe3O4 and PANI was confirmed by Fourier transform-infrared spectroscope and magnetic properties were analyzed by vibration sample magnetometer. A hybrid of a conducting and magnetic particle-based suspension displayed dual stimuli-response under electric and magnetic fields. The suspension exhibited typical electrorheological and magnetorheological behaviors of the shear stress, shear viscosity and dynamic yield stress, as determined using a rotational rheometer. Sedimentation stability was also compared between Fe3O4 and Fe3O4@PANI suspension.

  7. Towards hybrid biocompatible magnetic rHuman serum albumin-based nanoparticles: use of ultra-small (CeLn)3/4+ cation-doped maghemite nanoparticles as functional shell

    Science.gov (United States)

    Israel, Liron L.; Kovalenko, Elena I.; Boyko, Anna A.; Sapozhnikov, Alexander M.; Rosenberger, Ina; Kreuter, Jörg; Passoni, Lorena; Lellouche, Jean-Paul

    2015-01-01

    Human serum albumin (HSA) is a protein found in human blood. Over the last decade, HSA has been evaluated as a promising drug carrier. However, not being magnetic, HSA cannot be used for biomedical applications such as magnetic resonance imaging (MRI) and magnetic drug targeting. Therefore, subsequent composites building on iron oxide nanoparticles that are already used clinically as MRI contrast agents are extensively studied. Recently and in this context, innovative fully hydrophilic ultra-small CAN-stabilized maghemite ((CeLn)3/4+-γ-Fe2O3) nanoparticles have been readily fabricated. The present study discusses the design, fabrication, and characterization of a dual phase hybrid core (rHSA)-shell ((CeLn)3/4+-γ-Fe2O3 NPs) nanosystem. Quite importantly and in contrast to widely used encapsulation strategies, rHSA NP surface-attached (CeLn)3/4+-γ-Fe2O3 NPs enabled to exploit both rHSA (protein functionalities) and (CeLn)3/4+-γ-Fe2O3 NP surface functionalities (COOH and ligand L coordinative exchange) in addition to very effective MRI contrast capability due to optimal accessibility of H2O molecules with the outer magnetic phase. Resulting hybrid nanoparticles might be used as a platform modular system for therapeutic (drug delivery system) and MR diagnostic purposes.

  8. Whole-Body Magnetic Resonance Angiography at 3 Tesla Using a Hybrid Protocol in Patients with Peripheral Arterial Disease

    International Nuclear Information System (INIS)

    Nielsen, Yousef W.; Eiberg, Jonas P.; Logager, Vibeke B.; Schroeder, Torben V.; Just, Sven; Thomsen, Henrik S.

    2009-01-01

    The purpose of this study was to determine the diagnostic performance of 3T whole-body magnetic resonance angiography (WB-MRA) using a hybrid protocol in comparison with a standard protocol in patients with peripheral arterial disease (PAD). In 26 consecutive patients with PAD two different protocols were used for WB-MRA: a standard sequential protocol (n = 13) and a hybrid protocol (n = 13). WB-MRA was performed using a gradient echo sequence, body coil for signal reception, and gadoterate meglumine as contrast agent (0.3 mmol/kg body weight). Two blinded observers evaluated all WB-MRA examinations with regard to presence of stenoses, as well as diagnostic quality and degree of venous contamination in each of the four stations used in WB-MRA. Digital subtraction angiography served as the method of reference. Sensitivity for detecting significant arterial disease (luminal narrowing ≥ 50%) using standard-protocol WB-MRA for the two observers was 0.63 (95%CI: 0.51-0.73) and 0.66 (0.58-0.78). Specificities were 0.94 (0.91-0.97) and 0.96 (0.92-0.98), respectively. In the hybrid protocol WB-MRA sensitivities were 0.75 (0.64-0.84) and 0.70 (0.58-0.8), respectively. Specificities were 0.93 (0.88-0.96) and 0.95 (0.91-0.97). Interobserver agreement was good using both the standard and the hybrid protocol, with κ = 0.62 (0.44-0.67) and κ = 0.70 (0.59-0.79), respectively. WB-MRA quality scores were significantly higher in the lower leg using the hybrid protocol compared to standard protocol (p = 0.003 and p = 0.03, observers 1 and 2). Distal venous contamination scores were significantly lower with the hybrid protocol (p = 0.02 and p = 0.01, observers 1 and 2). In conclusion, hybrid-protocol WB-MRA shows a better diagnostic performance than standard protocol WB-MRA at 3 T in patients with PAD.

  9. Review of Micro Magnetic Generator

    OpenAIRE

    Lin DU; Gengchen SHI; Jingjing ZHAO

    2014-01-01

    This paper discusses the research progress of micro magnetic generator systems. Micro magnetic generator systems convert energy from the environment to electric energy with advantages as high reliability, high power density, long life time and can be applied to extreme environment. This paper summarizes methods for improving generator performance of micro magnetic generator, including rotational magnetic generator, vibrational magnetic generator and hybrid magnetic generator, analyzes and com...

  10. Hybrid chitosan–Pluronic F-127 films with BaTiO{sub 3}:Co nanoparticles: Synthesis and properties

    Energy Technology Data Exchange (ETDEWEB)

    Fuentes, S., E-mail: sfuentes@ucn.cl [Departamento de Ciencias Farmacéuticas, Facultad de Ciencias, Universidad Católica del Norte, Casilla 1280, Antofagasta (Chile); Center for the Development of Nanoscience and Nanotechnology, CEDENNA, Santiago (Chile); Dubo, J. [Departamento de Ciencias Farmacéuticas, Facultad de Ciencias, Universidad Católica del Norte, Casilla 1280, Antofagasta (Chile); Barraza, N. [Departamento de Física, Facultad de Ciencias, Universidad Católica del Norte, Casilla 1280, Antofagasta (Chile); González, R. [Laboratorio de Magnetismo, Departamento de Ciencias Geológicas, Universidad Católica del Norte, Antofagasta (Chile); Veloso, E. [Dirección de Investigaciones Científicas y Tecnológicas, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Santiago (Chile)

    2015-03-01

    In this study, magnetic BaTiO{sub 3}:Co (BT:Co) nanoparticles prepared using a combined sol–gel–hydrothermal technique were dispersed in a chitosan/Pluronic F-127 solution (QO/Pl) to obtain a nanocomposite hybrid films. Nanoparticles and hybrid films were characterized by X-ray powder diffraction, Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM) and alternating gradient magnetometry (AGM). Experimental results indicated that the BT:Co nanoparticles were encapsulated in the QO/Pl hybrid films and that the magnetic properties of the QO/Pl/BT:Co nanocomposites are similar to the naked BT:Co nanoparticles. Results indicate that Co doping produces an enhancement in the ferromagnetic behavior of the BT nanoparticle. The coating restricts this enhancement only to low-fields, leaving the diamagnetic behavior of BT at high-fields. Magnetically stable sizes (PSD) were obtained at 3% Co doping for both naked nanoparticles and hybrid films. These show an increased magnetic memory capacity and a softer magnetic hardness with respect to non-doped BT nanoparticles. - Highlights: • We described the synthesis of magnetic BaTiO{sub 3}:Co dispersed in chitosan (QO)/Pluronic F-127 (Pl) solution by sonication to obtain nanocomposite hybrid films. • We describe the physical and magnetic properties of BaTiO{sub 3}:Co nanoparticles and QO/Pl/BT:Co hybrid films. • The magnetic properties are defines by the presence of magnetic domains. These magnetic domains are close related with the amount of Co in the host lattice. • The prepared phases could be considered as multifunctional materials, with magnetic and ferri-electrical properties, with potential uses in the design of devices.

  11. Magnetic shielding for MRI superconducting magnets

    International Nuclear Information System (INIS)

    Ishiyama, A.; Hirooka, H.

    1991-01-01

    This paper describes an optimal design of a highly homogeneous superconducting coil system with magnetic shielding for Magnetic Resonance Imaging (MRI). The presented optimal design method; which is originally proposed in our earlier papers, is a combination of the hybrid finite element and boundary element method for analysis of an axially symmetric nonlinear open boundary magnetic field problem, and the mathematical programming method for solving the corresponding optimization problem. In this paper, the multi-objective goal programming method and the nonlinear least squares method have been adopted. The optimal design results of 1.5- and 4.7-Tesla-magnet systems with different types of magnetic shielding for whole-body imaging are compared and the advantages of a combination of active and yoke shields are shown

  12. Magnetic orientation of paraffin in a magnetic levitation furnace

    Science.gov (United States)

    Takahashi, K.; Umeki, C.; Mogi, I.; Koyama, K.; Awaji, S.; Motokawa, M.; Watanabe, K.

    2004-04-01

    Containerless melting of paraffin under a magnetic levitation condition has been performed by using a cryogen-free hybrid magnet and two kinds of laser furnaces. One is local irradiation of CO 2 laser light at the top of the sample. The other is homogeneous irradiation of YAG laser light with a concave ring mirror. In the latter case, reduction of the Marangoni convection on the surface of the sample and the magnetic orientation of paraffin molecules were observed. The magnetic anisotropy of the spherical sample was confirmed by the measurement of magnetization and X-ray diffraction.

  13. Magnetic orientation of paraffin in a magnetic levitation furnace

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, K.; Umeki, C.; Mogi, I.; Koyama, K.; Awaji, S.; Motokawa, M.; Watanabe, K

    2004-04-30

    Containerless melting of paraffin under a magnetic levitation condition has been performed by using a cryogen-free hybrid magnet and two kinds of laser furnaces. One is local irradiation of CO{sub 2} laser light at the top of the sample. The other is homogeneous irradiation of YAG laser light with a concave ring mirror. In the latter case, reduction of the Marangoni convection on the surface of the sample and the magnetic orientation of paraffin molecules were observed. The magnetic anisotropy of the spherical sample was confirmed by the measurement of magnetization and X-ray diffraction.

  14. Magnetic orientation of paraffin in a magnetic levitation furnace

    International Nuclear Information System (INIS)

    Takahashi, K.; Umeki, C.; Mogi, I.; Koyama, K.; Awaji, S.; Motokawa, M.; Watanabe, K.

    2004-01-01

    Containerless melting of paraffin under a magnetic levitation condition has been performed by using a cryogen-free hybrid magnet and two kinds of laser furnaces. One is local irradiation of CO 2 laser light at the top of the sample. The other is homogeneous irradiation of YAG laser light with a concave ring mirror. In the latter case, reduction of the Marangoni convection on the surface of the sample and the magnetic orientation of paraffin molecules were observed. The magnetic anisotropy of the spherical sample was confirmed by the measurement of magnetization and X-ray diffraction

  15. Hybrid Model of Inhomogeneous Solar Wind Plasma Heating by Alfven Wave Spectrum: Parametric Studies

    Science.gov (United States)

    Ofman, L.

    2010-01-01

    Observations of the solar wind plasma at 0.3 AU and beyond show that a turbulent spectrum of magnetic fluctuations is present. Remote sensing observations of the corona indicate that heavy ions are hotter than protons and their temperature is anisotropic (T(sub perpindicular / T(sub parallel) >> 1). We study the heating and the acceleration of multi-ion plasma in the solar wind by a turbulent spectrum of Alfvenic fluctuations using a 2-D hybrid numerical model. In the hybrid model the protons and heavy ions are treated kinetically as particles, while the electrons are included as neutralizing background fluid. This is the first two-dimensional hybrid parametric study of the solar wind plasma that includes an input turbulent wave spectrum guided by observation with inhomogeneous background density. We also investigate the effects of He++ ion beams in the inhomogeneous background plasma density on the heating of the solar wind plasma. The 2-D hybrid model treats parallel and oblique waves, together with cross-field inhomogeneity, self-consistently. We investigate the parametric dependence of the perpendicular heating, and the temperature anisotropy in the H+-He++ solar wind plasma. It was found that the scaling of the magnetic fluctuations power spectrum steepens in the higher-density regions, and the heating is channeled to these regions from the surrounding lower-density plasma due to wave refraction. The model parameters are applicable to the expected solar wind conditions at about 10 solar radii.

  16. Magnetic and optical properties of Ag@SiO{sub 2}-FITC-Fe{sub 3}O{sub 4} hybrid nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Sui, Ning [Université de Lyon, Institut des Nanotechnologies de Lyon–INL, UMR CNRS 5270, Site Ecole Centrale de Lyon, 36 Avenue Guy de Collongue, F-69134 Ecully Cedex (France); College of Material Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042 (China); Monnier, Virginie, E-mail: virginie.monnier@ec-lyon.fr [Université de Lyon, Institut des Nanotechnologies de Lyon–INL, UMR CNRS 5270, Site Ecole Centrale de Lyon, 36 Avenue Guy de Collongue, F-69134 Ecully Cedex (France); Salvia, Marie-Virginie; Chevolot, Yann; Souteyrand, Eliane [Université de Lyon, Institut des Nanotechnologies de Lyon–INL, UMR CNRS 5270, Site Ecole Centrale de Lyon, 36 Avenue Guy de Collongue, F-69134 Ecully Cedex (France)

    2014-03-15

    Highlights: • New magnetic/fluorescent nanoparticles were synthesized. • The silver core led to a maximum 4-fold enhanced fluorescence of fluorophore. • Maximum enhancement factor was obtained when metal-fluorophore distance is 5 nm. • Magnetism and fluorescence appeared simultaneously for nanoparticles in solution. -- Abstract: Nanoparticles composed of a silver core coated with a silica shell (Ag@SiO{sub 2}) were prepared. A dye, fluorescein isothiocyanate (FITC), was further encapsulated during the growth of a second silica shell onto Ag@SiO{sub 2} nanoparticles. The proximity of silver nanoparticles led to a 4-fold maximal enhancement in the fluorescence of FITC when the first silica shell thickness was set at 5 nm. After amino-functionalization of Ag@SiO{sub 2}-FITC nanoparticles, iron oxide nanoparticles were bonded to their surface. The magnetic and metal-enhanced fluorescence properties appeared simultaneously when Ag@SiO{sub 2}-FITC-Fe{sub 3}O{sub 4} hybrid nanoparticles were dispersed in a solution.

  17. SU-E-T-590: Optimizing Magnetic Field Strengths with Matlab for An Ion-Optic System in Particle Therapy Consisting of Two Quadrupole Magnets for Subsequent Simulations with the Monte-Carlo Code FLUKA

    International Nuclear Information System (INIS)

    Baumann, K; Weber, U; Simeonov, Y; Zink, K

    2015-01-01

    Purpose: Aim of this study was to optimize the magnetic field strengths of two quadrupole magnets in a particle therapy facility in order to obtain a beam quality suitable for spot beam scanning. Methods: The particle transport through an ion-optic system of a particle therapy facility consisting of the beam tube, two quadrupole magnets and a beam monitor system was calculated with the help of Matlab by using matrices that solve the equation of motion of a charged particle in a magnetic field and field-free region, respectively. The magnetic field strengths were optimized in order to obtain a circular and thin beam spot at the iso-center of the therapy facility. These optimized field strengths were subsequently transferred to the Monte-Carlo code FLUKA and the transport of 80 MeV/u C12-ions through this ion-optic system was calculated by using a user-routine to implement magnetic fields. The fluence along the beam-axis and at the iso-center was evaluated. Results: The magnetic field strengths could be optimized by using Matlab and transferred to the Monte-Carlo code FLUKA. The implementation via a user-routine was successful. Analyzing the fluence-pattern along the beam-axis the characteristic focusing and de-focusing effects of the quadrupole magnets could be reproduced. Furthermore the beam spot at the iso-center was circular and significantly thinner compared to an unfocused beam. Conclusion: In this study a Matlab tool was developed to optimize magnetic field strengths for an ion-optic system consisting of two quadrupole magnets as part of a particle therapy facility. These magnetic field strengths could subsequently be transferred to and implemented in the Monte-Carlo code FLUKA to simulate the particle transport through this optimized ion-optic system

  18. Enhanced fuel production in thorium/lithium hybrid blankets utilizing uranium multipliers

    International Nuclear Information System (INIS)

    Pitulski, R.H.

    1979-10-01

    A consistent neutronics analysis is performed to determine the effectiveness of uranium bearing neutron multiplier zones on increasing the production of U 233 in thorium/lithium blankets for use in a tokamak fusion-fission hybrid reactor. The nuclear performance of these blankets is evaluated as a function of zone thicknesses and exposure by using the coupled transport burnup code ANISN-CINDER-HIC. Various parameters such as U 233 , Pu 239 , and H 3 production rates, the blanket energy multiplication, isotopic composition of the fuels, and neutron leakages into the various zones are evaluated during a 5 year (6 MW.y.m -2 ) exposure period. Although the results of this study were obtained for a tokomak magnetic fusion device, the qualitative behavior associated with the use of the uranium bearing neutron multiplier should be applicable to all fusion-fission hybrids

  19. Effect of Orbital Hybridization on Spin-Polarized Tunneling across Co/C60 Interfaces.

    Science.gov (United States)

    Wang, Kai; Strambini, Elia; Sanderink, Johnny G M; Bolhuis, Thijs; van der Wiel, Wilfred G; de Jong, Michel P

    2016-10-26

    The interaction between ferromagnetic surfaces and organic semiconductors leads to the formation of hybrid interfacial states. As a consequence, the local magnetic moment is altered, a hybrid interfacial density of states (DOS) is formed, and spin-dependent shifts of energy levels occur. Here, we show that this hybridization affects spin transport across the interface significantly. We report spin-dependent electronic transport measurements for tunnel junctions comprising C 60 molecular thin films grown on top of face-centered-cubic (fcc) epitaxial Co electrodes, an AlO x tunnel barrier, and an Al counter electrode. Since only one ferromagnetic electrode (Co) is present, spin-polarized transport is due to tunneling anisotropic magnetoresistance (TAMR). An in-plane TAMR ratio of approximately 0.7% has been measured at 5 K under application of a magnetic field of 800 mT. The magnetic switching behavior shows some remarkable features, which are attributed to the rotation of interfacial magnetic moments. This behavior can be ascribed to the magnetic coupling between the Co thin films and the newly formed Co/C 60 hybridized interfacial states. Using the Tedrow-Meservey technique, the tunnel spin polarization of the Co/C 60 interface was found to be 43%.

  20. Bioactivity of Hybrid Polymeric Magnetic Nanoparticles and Their Applications in Drug Delivery.

    Science.gov (United States)

    Mohammed, Leena; Ragab, Doaa; Gomaa, Hassan

    2016-01-01

    Engineered magnetic nanoparticles (MNPs) possess unique properties and hold great potential in biomedicine and clinical applications. With their magnetic properties and their ability to work at cellular and molecular level, MNP have been applied both in-vitro and in-vivo in targeted drug delivery and imaging. Focusing on Iron Oxide Superparamagnetic nanoparticles (SPIONs), this paper elaborates on the recent advances in development of hybrid polymeric-magnetic nanoparticles. Their main applications in drug delivery include Chemotherapeutics, Hyperthermia treatment, Radio-therapeutics, Gene delivary, and Biotheraputics. Physiochemical properties such as size, shape, surface and magnetic properties are key factors in determining their behavior. Additionally tailoring SPIONs surface is often vital for desired cell targetting and improved efficiency. Polymer coating is specifically reviewed with brief discussion of SPIONs administration routes. Commonly used drug release models for describing release mechanisms and the nanotoxicity aspects are also discussed. This review focus on superparamagnetic nanoparticles coated with different types of polymers starting with the key physiochemical features that dominate their behavior. The importance of surface modification is addressed. Subsequently, the major classes of polymer modified iron oxide nanoparticles is demonstrated according to their clinical use and application. Clinically approved nanoparticles are then addressed and the different routes of administration are mentioned. Lastly, mathematical models of drug release profile of the common used nanoparticles are addressed. MNPs emerging in recent medicine are remarkable for both imaging and therapeutics, particularly, as drug carriers for their great potential in targeted delivery and cancer treatment. Targeting ability and biocompatibility can be improved though surface coating which provides a mean to alter the surface features including physical characteristics and

  1. Optical orientation in ferromagnet/semiconductor hybrids

    International Nuclear Information System (INIS)

    Korenev, V L

    2008-01-01

    The physics of optical pumping of semiconductor electrons in ferromagnet/semiconductor hybrids is discussed. Optically oriented semiconductor electrons detect the magnetic state of a ferromagnetic film. In turn, the ferromagnetism of the hybrid can be controlled optically with the help of a semiconductor. Spin–spin interactions near the ferromagnet/semiconductor interface play a crucial role in the optical readout and the manipulation of ferromagnetism

  2. Optical orientation in ferromagnet/semiconductor hybrids

    Science.gov (United States)

    Korenev, V. L.

    2008-11-01

    The physics of optical pumping of semiconductor electrons in ferromagnet/semiconductor hybrids is discussed. Optically oriented semiconductor electrons detect the magnetic state of a ferromagnetic film. In turn, the ferromagnetism of the hybrid can be controlled optically with the help of a semiconductor. Spin-spin interactions near the ferromagnet/semiconductor interface play a crucial role in the optical readout and the manipulation of ferromagnetism.

  3. Optical Orientation in Ferromagnet/Semiconductor Hybrids

    OpenAIRE

    Korenev, V. L.

    2008-01-01

    The physics of optical pumping of semiconductor electrons in the ferromagnet/semiconductor hybrids is discussed. Optically oriented semiconductor electrons detect the magnetic state of the ferromagnetic film. In turn, the ferromagnetism of the hybrid can be controlled optically with the help of the semiconductor. Spin-spin interactions near the interface ferromagnet/semiconductor play crucial role in the optical readout and the manipulation of ferromagnetism.

  4. Self-consistent radial sheath

    International Nuclear Information System (INIS)

    Hazeltine, R.D.

    1988-12-01

    The boundary layer arising in the radial vicinity of a tokamak limiter is examined, with special reference to the TEXT tokamak. It is shown that sheath structure depends upon the self-consistent effects of ion guiding-center orbit modification, as well as the radial variation of E /times/ B-induced toroidal rotation. Reasonable agreement with experiment is obtained from an idealized model which, however simplified, preserves such self-consistent effects. It is argued that the radial sheath, which occurs whenever confining magnetic field-lines lie in the plasma boundary surface, is an object of some intrinsic interest. It differs from the more familiar axial sheath because magnetized charges respond very differently to parallel and perpendicular electric fields. 11 refs., 1 fig

  5. 'Fixed-axis' magnetic orientation by an amphibian: non-shoreward-directed compass orientation, misdirected homing or positioning a magnetite-based map detector in a consistent alignment relative to the magnetic field?

    Science.gov (United States)

    Phillips, John B; Borland, S Chris; Freake, Michael J; Brassart, Jacques; Kirschvink, Joseph L

    2002-12-01

    Experiments were carried out to investigate the earlier prediction that prolonged exposure to long-wavelength (>500 nm) light would eliminate homing orientation by male Eastern red-spotted newts Notophthalmus viridescens. As in previous experiments, controls held in outdoor tanks under natural lighting conditions and tested in a visually uniform indoor arena under full-spectrum light were homeward oriented. As predicted, however, newts held under long-wavelength light and tested under either full-spectrum or long-wavelength light (>500 nm) failed to show consistent homeward orientation. The newts also did not orient with respect to the shore directions in the outdoor tanks in which they were held prior to testing. Unexpectedly, however, the newts exhibited bimodal orientation along a more-or-less 'fixed' north-northeast-south-southwest magnetic axis. The orientation exhibited by newts tested under full-spectrum light was indistinguishable from that of newts tested under long-wavelength light, although these two wavelength conditions have previously been shown to differentially affect both shoreward compass orientation and homing orientation. To investigate the possibility that the 'fixed-axis' response of the newts was mediated by a magnetoreception mechanism involving single-domain particles of magnetite, natural remanent magnetism (NRM) was measured from a subset of the newts. The distribution of NRM alignments with respect to the head-body axis of the newts was indistinguishable from random. Furthermore, there was no consistent relationship between the NRM of individual newts and their directional response in the overall sample. However, under full-spectrum, but not long-wavelength, light, the alignment of the NRM when the newts reached the 20 cm radius criterion circle in the indoor testing arena (estimated by adding the NRM alignment measured from each newt to its magnetic bearing) was non-randomly distributed. These findings are consistent with the earlier

  6. Towards hybrid biocompatible magnetic rHuman serum albumin-based nanoparticles: use of ultra-small (CeLn)3/4+ cation-doped maghemite nanoparticles as functional shell

    International Nuclear Information System (INIS)

    Israel, Liron L; Lellouche, Jean-Paul; Kovalenko, Elena I; Boyko, Anna A; Sapozhnikov, Alexander M; Rosenberger, Ina; Kreuter, Jörg; Passoni, Lorena

    2015-01-01

    Human serum albumin (HSA) is a protein found in human blood. Over the last decade, HSA has been evaluated as a promising drug carrier. However, not being magnetic, HSA cannot be used for biomedical applications such as magnetic resonance imaging (MRI) and magnetic drug targeting. Therefore, subsequent composites building on iron oxide nanoparticles that are already used clinically as MRI contrast agents are extensively studied. Recently and in this context, innovative fully hydrophilic ultra-small CAN-stabilized maghemite ((CeL n ) 3/4+ -γ-Fe 2 O 3 ) nanoparticles have been readily fabricated. The present study discusses the design, fabrication, and characterization of a dual phase hybrid core (rHSA)-shell ((CeL n ) 3/4+ -γ-Fe 2 O 3 NPs) nanosystem. Quite importantly and in contrast to widely used encapsulation strategies, rHSA NP surface-attached (CeL n ) 3/4+ -γ-Fe 2 O 3 NPs enabled to exploit both rHSA (protein functionalities) and (CeL n ) 3/4+ -γ-Fe 2 O 3 NP surface functionalities (COOH and ligand L coordinative exchange) in addition to very effective MRI contrast capability due to optimal accessibility of H 2 O molecules with the outer magnetic phase. Resulting hybrid nanoparticles might be used as a platform modular system for therapeutic (drug delivery system) and MR diagnostic purposes. (paper)

  7. Preparation and photocatalytic properties of hybrid core–shell reusable CoFe2O4–ZnO nanospheres

    International Nuclear Information System (INIS)

    Wilson, A.; Mishra, S.R.; Gupta, R.; Ghosh, K.

    2012-01-01

    Magnetically separable and reusable core–shell CoFe 2 O 4 –ZnO photocatalyst nanospheres were prepared by the hydrothermal synthesis technique using glucose derived carbon nanospheres as the template. The morphology and the phase of core–shell hybrid structure of CoFe 2 O 4 –ZnO were assessed via TEM, SEM and XRD. The magnetic composite showed high UV photocatalytic activity for the degradation of methylene blue in water. The photocatalytic activity was found to be ZnO shell thickness dependent. Thicker ZnO shells lead to higher rate of photocatalytic activity. Hybrid nanospheres recovered using an external magnetic field demonstrated good repeatability of photocatalytic activity. These results promise the reusability of the hybrid nanospheres for photocatalytic activity. - Highlights: ► Synthesis of novel hybrid magnetic-ZnO core–shell composite nanospheres. ► High photocatalytic activity of hybrid nanospheres was noted as compared to that of pure ZnO nanoparticles. ► The hybrid nanospheres could be easily retrieved using an external magnet for repeated use. ► Repeated use of hybrid nanospheres did not show any degradation in the photocatalytic activity. ► The photocatalysis rate was observed to be ZnO shell thickness dependent.

  8. A plastic dilution refrigerator in a 35 T magnet

    International Nuclear Information System (INIS)

    Oliveira, N.F.Jr; Bindilatti, V.; Haar, E. ter; Martin, R.V.; McNiff, E.J.Jr.

    1996-01-01

    We have built a plastic dilution refrigerator, small enough to fit in the bore of the 35 T hybrid magnet at MIT. The base temperature at H = 0 was 20 mK, measured with a CMN thermometer. In the field, we used capacitive glass thermometers and Matsushita resistors. All data obtained were consistent with a field independent glass thermometer and a negligible magnetoresistance of the Matsushitas at high fields. The minimum temperature measured at 34 T was 25 mK. The effect of magnet vibrations as well as field sweeps (≅ 1 T/min) corresponded to less than 1 μW heating. We observed that, above 29 T, the temperature gradients existent inside the mixing chamber suddenly disappeared, with the temperature becoming homogeneous from top to bottom. We attribute this fact to the effect of the magnetic forces on the liquid. (author)

  9. Advanced propulsion system for hybrid vehicles

    Science.gov (United States)

    Norrup, L. V.; Lintz, A. T.

    1980-01-01

    A number of hybrid propulsion systems were evaluated for application in several different vehicle sizes. A conceptual design was prepared for the most promising configuration. Various system configurations were parametrically evaluated and compared, design tradeoffs performed, and a conceptual design produced. Fifteen vehicle/propulsion systems concepts were parametrically evaluated to select two systems and one vehicle for detailed design tradeoff studies. A single hybrid propulsion system concept and vehicle (five passenger family sedan)were selected for optimization based on the results of the tradeoff studies. The final propulsion system consists of a 65 kW spark-ignition heat engine, a mechanical continuously variable traction transmission, a 20 kW permanent magnet axial-gap traction motor, a variable frequency inverter, a 386 kg lead-acid improved state-of-the-art battery, and a transaxle. The system was configured with a parallel power path between the heat engine and battery. It has two automatic operational modes: electric mode and heat engine mode. Power is always shared between the heat engine and battery during acceleration periods. In both modes, regenerative braking energy is absorbed by the battery.

  10. Wave propagation near the lower hybrid resonance in toroidal plasmas

    International Nuclear Information System (INIS)

    Ohkubo, K.; Ohasa, K.; Matsuura, K.

    1975-10-01

    Dielectric tensor and equipotential curves (ray trajectories) of an electrostatic wave near the lower hybrid resonance are investigated for the toroidal plasma with a shear magnetic field. The ray trajectories start from the vicinity of the plasma surface, and rotate in a spiral form around the magnetic axis, and then reach the lower or upper parts of lower hybrid resonance layer. The numerical computations are performed on the parameters of JIPP T-II device with two dimensional inhomogeneity. (auth.)

  11. Hybrid soft computing approaches research and applications

    CERN Document Server

    Dutta, Paramartha; Chakraborty, Susanta

    2016-01-01

    The book provides a platform for dealing with the flaws and failings of the soft computing paradigm through different manifestations. The different chapters highlight the necessity of the hybrid soft computing methodology in general with emphasis on several application perspectives in particular. Typical examples include (a) Study of Economic Load Dispatch by Various Hybrid Optimization Techniques, (b) An Application of Color Magnetic Resonance Brain Image Segmentation by ParaOptiMUSIG activation Function, (c) Hybrid Rough-PSO Approach in Remote Sensing Imagery Analysis,  (d) A Study and Analysis of Hybrid Intelligent Techniques for Breast Cancer Detection using Breast Thermograms, and (e) Hybridization of 2D-3D Images for Human Face Recognition. The elaborate findings of the chapters enhance the exhibition of the hybrid soft computing paradigm in the field of intelligent computing.

  12. Engineering hybrid Co-picene structures with variable spin coupling

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Chunsheng [Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Shan, Huan; Li, Bin, E-mail: libin@mail.ustc.edu.cn, E-mail: adzhao@ustc.edu.cn; Zhao, Aidi, E-mail: libin@mail.ustc.edu.cn, E-mail: adzhao@ustc.edu.cn; Wang, Bing [Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China)

    2016-04-25

    We report on the in situ engineering of hybrid Co-picene magnetic structures with variable spin coupling using a low-temperature scanning tunneling microscope. Single picene molecules adsorbed on Au(111) are manipulated to accommodate individual Co atoms one by one, forming stable artificial hybrid structures with magnetism introduced by the Co atoms. By monitoring the evolution of the Kondo effect at each site of Co atom, we found that the picene molecule plays an important role in tuning the spin coupling between individual Co atoms, which is confirmed by theoretical calculations based on the density-functional theory. Our findings indicate that the hybrid metal-molecule structures with variable spin coupling on surfaces can be artificially constructed in a controlled manner.

  13. NMR metabolomics of thrips (Frankliniella occidentalis) resistance in Senecio hybrids.

    Science.gov (United States)

    Leiss, Kirsten A; Choi, Young H; Abdel-Farid, Ibrahim B; Verpoorte, Robert; Klinkhamer, Peter G L

    2009-02-01

    Western flower thrips (Frankliniella occidentalis) has become a key insect pest of agricultural and horticultural crops worldwide. Little is known about host plant resistance to thrips. In this study, we investigated thrips resistance in F (2) hybrids of Senecio jacobaea and Senecio aquaticus. We identified thrips-resistant hybrids applying three different bioassays. Subsequently, we compared the metabolomic profiles of these hybrids applying nuclear magnetic resonance spectroscopy (NMR). The new developments of NMR facilitate a wide range coverage of the metabolome. This makes NMR especially suitable if there is no a priori knowledge of the compounds related to herbivore resistance and allows a holistic approach analyzing different chemical compounds simultaneously. We show that the metabolomes of thrips-resistant and -susceptible hybrids differed considerably. Thrips-resistant hybrids contained higher amounts of the pyrrolizidine alkaloids (PA), jacobine, and jaconine, especially in younger leaves. Also, a flavanoid, kaempferol glucoside, accumulated in the resistant plants. Both PAs and kaempferol are known for their inhibitory effect on herbivores. In resistant and susceptible F (2) hybrids, young leaves showed less thrips damage than old leaves. Consistent with the optimal plant defense theory, young leaves contained increased levels of primary metabolites such as sucrose, raffinose, and stachyose, but also accumulated jacaranone as a secondary plant defense compound. Our results prove NMR as a promising tool to identify different metabolites involved in herbivore resistance. It constitutes a significant advance in the study of plant-insect relationships, providing key information on the implementation of herbivore resistance breeding strategies in plants.

  14. Performance Studies of Pixel Hybrid Photon Detectors for the LHCb RICH Counters

    CERN Document Server

    Aglieri Rinella, G; Piedigrossi, D; Van Lysebetten, A

    2004-01-01

    The Pixel Hybrid Photon Detector is a vacuum tube with a multi-alkali photo cathode, high voltage cross-focused electron optics and an anode consisting of a silicon pixel detector bump-bonded to a readout CMOS electronic chip fully encapsulated in the device. The Pixel HPD fulfils the requirements of the Ring Imaging Cherenkov counters of the LHCb experiment at LHC. The performances of the Pixel HPD will be discussed with reference to laboratory measurements, Cherenkov light imaging in recent beam tests, image distortions due to a magnetic field.

  15. Effect of magnetic fullerene on magnetization reversal created at the Fe/C60 interface.

    Science.gov (United States)

    Mallik, Srijani; Mattauch, Stefan; Dalai, Manas Kumar; Brückel, Thomas; Bedanta, Subhankar

    2018-04-03

    Probing the hybridized magnetic interface between organic semiconductor (OSC) and ferromagnetic (FM) layers has drawn significant attention in recent years because of their potential in spintronic applications. Recent studies demonstrate various aspects of organic spintronics such as magnetoresistance, induced interface moment etc. However, not much work has been performed to investigate the implications of such OSC/FM interfaces on the magnetization reversal and domain structure which are the utmost requirements for any applications. Here, we show that non-magnetic Fullerene can obtain non-negligible magnetic moment at the interface of Fe(15 nm)/C 60 (40 nm) bilayer. This leads to substantial effect on both the magnetic domain structure as well as the magnetization reversal when compared to a single layer of Fe(15 nm). This is corroborated by the polarized neutron reflectivity (PNR) data which indicates presence of hybridization at the interface by the reduction of magnetic moment in Fe. Afterwards, upto 1.9 nm of C 60 near the interface exhibits magnetic moment. From the PNR measurements it was found that the magnetic C 60 layer prefers to be aligned anti-parallel with the Fe layer at the remanant state. The later observation has been confirmed by domain imaging via magneto-optic Kerr microscopy.

  16. Modelling the solar wind interaction with Mercury by a quasi-neutral hybrid model

    Directory of Open Access Journals (Sweden)

    E. Kallio

    Full Text Available Quasi-neutral hybrid model is a self-consistent modelling approach that includes positively charged particles and an electron fluid. The approach has received an increasing interest in space plasma physics research because it makes it possible to study several plasma physical processes that are difficult or impossible to model by self-consistent fluid models, such as the effects associated with the ions’ finite gyroradius, the velocity difference between different ion species, or the non-Maxwellian velocity distribution function. By now quasi-neutral hybrid models have been used to study the solar wind interaction with the non-magnetised Solar System bodies of Mars, Venus, Titan and comets. Localized, two-dimensional hybrid model runs have also been made to study terrestrial dayside magnetosheath. However, the Hermean plasma environment has not yet been analysed by a global quasi-neutral hybrid model.

    In this paper we present a new quasi-neutral hybrid model developed to study various processes associated with the Mercury-solar wind interaction. Emphasis is placed on addressing advantages and disadvantages of the approach to study different plasma physical processes near the planet. The basic assumptions of the approach and the algorithms used in the new model are thoroughly presented. Finally, some of the first three-dimensional hybrid model runs made for Mercury are presented.

    The resulting macroscopic plasma parameters and the morphology of the magnetic field demonstrate the applicability of the new approach to study the Mercury-solar wind interaction globally. In addition, the real advantage of the kinetic hybrid model approach is to study the property of individual ions, and the study clearly demonstrates the large potential of the approach to address these more detailed issues by a quasi-neutral hybrid model in the future.

    Key words. Magnetospheric physics

  17. Magnetically modulated electroluminescence from hybrid organic/inorganic light-emitting diodes based on electron donor-acceptor exciplex blends

    Science.gov (United States)

    Pang, Zhiyong; Baniya, Sangita; Zhang, Chuang; Sun, Dali; Vardeny, Z. Valy

    2016-03-01

    We report room temperature magnetically modulated electroluminescence from a hybrid organic/inorganic light-emitting diode (h-OLED), in which an inorganic magnetic tunnel junction (MTJ) with large room temperature magnetoresistance is coupled to an N,N,N ',N '-Tetrakis(4-methoxyphenyl)benzidine (MeO-TPD): tris-[3-(3-pyridyl)mesityl]borane (3TPYMB) [D-A] based OLED that shows thermally activated delayed luminescence. The exciplex-based OLED provides two spin-mixing channels: upper energy channel of polaron pairs and lower energy channel of exciplexes. In operation, the large resistance mismatch between the MTJ and OLED components is suppressed due to the non-linear I-V characteristic of the OLED. This leads to enhanced giant magneto-electroluminescence (MEL) at room temperature. We measured MEL of ~ 75% at ambient conditions. Supported by SAMSUNG Global Research Outreach (GRO) program, and also by the NSF-Material Science & Engineering Center (MRSEC) program at the University of Utah (DMR-1121252).

  18. Spin-torque oscillation in large size nano-magnet with perpendicular magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Linqiang, E-mail: LL6UK@virginia.edu [Department of Physics, University of Virginia, Charlottesville, VA 22904 (United States); Kabir, Mehdi [Department of Electrical & Computer Engineering, University of Virginia, Charlottesville, VA 22904 (United States); Dao, Nam; Kittiwatanakul, Salinporn [Department of Materials Science & Engineering, University of Virginia, Charlottesville, VA 22904 (United States); Cyberey, Michael [Department of Electrical Engineering, University of Virginia, Charlottesville, VA 22904 (United States); Wolf, Stuart A. [Department of Physics, University of Virginia, Charlottesville, VA 22904 (United States); Department of Materials Science & Engineering, University of Virginia, Charlottesville, VA 22904 (United States); Institute of Defense Analyses, Alexandria, VA 22311 (United States); Stan, Mircea [Department of Electrical & Computer Engineering, University of Virginia, Charlottesville, VA 22904 (United States); Lu, Jiwei [Department of Materials Science & Engineering, University of Virginia, Charlottesville, VA 22904 (United States)

    2017-06-15

    Highlights: • 500 nm size nano-pillar device was fabricated by photolithography techniques. • A magnetic hybrid structure was achieved with perpendicular magnetic fields. • Spin torque switching and oscillation was demonstrated in the large sized device. • Micromagnetic simulations accurately reproduced the experimental results. • Simulations demonstrated the synchronization of magnetic inhomogeneities. - Abstract: DC current induced magnetization reversal and magnetization oscillation was observed in 500 nm large size Co{sub 90}Fe{sub 10}/Cu/Ni{sub 80}Fe{sub 20} pillars. A perpendicular external field enhanced the coercive field separation between the reference layer (Co{sub 90}Fe{sub 10}) and free layer (Ni{sub 80}Fe{sub 20}) in the pseudo spin valve, allowing a large window of external magnetic field for exploring the free-layer reversal. A magnetic hybrid structure was achieved for the study of spin torque oscillation by applying a perpendicular field >3 kOe. The magnetization precession was manifested in terms of the multiple peaks on the differential resistance curves. Depending on the bias current and applied field, the regions of magnetic switching and magnetization precession on a dynamical stability diagram has been discussed in details. Micromagnetic simulations are shown to be in good agreement with experimental results and provide insight for synchronization of inhomogeneities in large sized device. The ability to manipulate spin-dynamics on large size devices could be proved useful for increasing the output power of the spin-transfer nano-oscillators (STNOs).

  19. Hybrid nanostructures: synthesis, morphology and functional properties

    International Nuclear Information System (INIS)

    Povolotskaya, A V; Povolotskiy, A V; Manshina, A A

    2015-01-01

    Hybrid nanostructures representing combinations of different materials and possessing properties that are absent in separate components forming the hybrid are discussed. Particular attention is given to hybrid structures containing plasmonic and magnetic nanoparticles, methods of their synthesis and the relationship between the composition, structure and properties. The functional features of the hybrid nanomaterials of various morphology (with core–shell structures, with encapsulated metal nanoparticles and with metal nanoparticles on the surface) are considered. The unique properties of these hybrid materials are demonstrated, which are of interest for solving problems of catalysis and photocatalysis, detecting impurities in various media, in vivo visualization, bioanalysis, as well as for the design of optical labels and multifunctional diagnostic nanoplatforms. The bibliography includes 182 references

  20. Multi-valued logic circuits using hybrid circuit consisting of three gates single-electron transistors (TG-SETs) and MOSFETs.

    Science.gov (United States)

    Shin, SeungJun; Yu, YunSeop; Choi, JungBum

    2008-10-01

    New multi-valued logic (MVL) families using the hybrid circuits consisting of three gates single-electron transistors (TG-SETs) and a metal-oxide-semiconductor field-effect transistor (MOSFET) are proposed. The use of SETs offers periodic literal characteristics due to Coulomb oscillation of SET, which allows a realization of binary logic (BL) circuits as well as multi-valued logic (MVL) circuits. The basic operations of the proposed MVL families are successfully confirmed through SPICE circuit simulation based on the physical device model of a TG-SET. The proposed MVL circuits are found to be much faster, but much larger power consumption than a previously reported MVL, and they have a trade-off between speed and power consumption. As an example to apply the newly developed MVL families, a half-adder is introduced.

  1. Optimal design of a novel hybrid MR brake for motorcycles considering axial and radial magnetic flux

    International Nuclear Information System (INIS)

    Nguyen, Q H; Choi, S B

    2012-01-01

    This work presents an optimal solution of a new type of motorcycle brake featuring different smart magnetorheological (MR) fluids. In this study, typical types of commercial MR fluid are considered there for the design of a motorcycle MR brake; MRF-122-2ED (low yield stress), MRF-132-DG (medium yield stress) and MRF-140-CG (high yield stress). As a first step, a new configuration featuring a T-shaped drum MR brake is introduced and a hybrid concept of magnetic circuit (using both axial and radial magnetic flux) to generate braking force is analyzed based on the finite element method. An optimal design of the MR brake considering the required braking torque, the temperature due to friction of the MR fluid, the mass of the brake system and all significant geometric dimensions is then performed. For the optimization, the finite element analysis (FEA) is used to achieve principal geometric dimensions of the MR brake. In addition, the size, mass and power consumption of three different MR motorcycle brakes are quantitatively analyzed and compared. (paper)

  2. Magnetoresistive sensors for measurements of DNA hybridization kinetics - effect of TINA modifications

    DEFF Research Database (Denmark)

    Rizzi, Giovanni; Dufva, Martin; Hansen, Mikkel Fougt

    2017-01-01

    We present the use of magnetoresistive sensors integrated in a microfluidic system for real-time studies of the hybridization kinetics of DNA labeled with magnetic nanoparticles to an array of surface-tethered probes. The nanoparticles were magnetized by the magnetic field from the sensor current....... A local negative reference ensured that only the specific binding signal was measured. Analysis of the real-time hybridization using a two-compartment model yielded both the association and dissociation constants kon, and koff. The effect of probe modifications with ortho-Twisted Intercalating Nucleic...

  3. Preparation and photocatalytic properties of hybrid core-shell reusable CoFe{sub 2}O{sub 4}-ZnO nanospheres

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, A. [Department of Physics, University of Memphis, Memphis, TN 38152 (United States); Mishra, S.R., E-mail: srmishra@memphis.edu [Department of Physics, University of Memphis, Memphis, TN 38152 (United States); Gupta, R.; Ghosh, K. [Department of Physics, Materials Science, and Astronomy, Missouri State University, Springfield, MO (United States)

    2012-08-15

    Magnetically separable and reusable core-shell CoFe{sub 2}O{sub 4}-ZnO photocatalyst nanospheres were prepared by the hydrothermal synthesis technique using glucose derived carbon nanospheres as the template. The morphology and the phase of core-shell hybrid structure of CoFe{sub 2}O{sub 4}-ZnO were assessed via TEM, SEM and XRD. The magnetic composite showed high UV photocatalytic activity for the degradation of methylene blue in water. The photocatalytic activity was found to be ZnO shell thickness dependent. Thicker ZnO shells lead to higher rate of photocatalytic activity. Hybrid nanospheres recovered using an external magnetic field demonstrated good repeatability of photocatalytic activity. These results promise the reusability of the hybrid nanospheres for photocatalytic activity. - Highlights: Black-Right-Pointing-Pointer Synthesis of novel hybrid magnetic-ZnO core-shell composite nanospheres. Black-Right-Pointing-Pointer High photocatalytic activity of hybrid nanospheres was noted as compared to that of pure ZnO nanoparticles. Black-Right-Pointing-Pointer The hybrid nanospheres could be easily retrieved using an external magnet for repeated use. Black-Right-Pointing-Pointer Repeated use of hybrid nanospheres did not show any degradation in the photocatalytic activity. Black-Right-Pointing-Pointer The photocatalysis rate was observed to be ZnO shell thickness dependent.

  4. Enhanced fuel production in thorium/lithium hybrid blankets utilizing uranium multipliers

    Energy Technology Data Exchange (ETDEWEB)

    Pitulski, R.H.

    1979-10-01

    A consistent neutronics analysis is performed to determine the effectiveness of uranium bearing neutron multiplier zones on increasing the production of U/sup 233/ in thorium/lithium blankets for use in a tokamak fusion-fission hybrid reactor. The nuclear performance of these blankets is evaluated as a function of zone thicknesses and exposure by using the coupled transport burnup code ANISN-CINDER-HIC. Various parameters such as U/sup 233/, Pu/sup 239/, and H/sup 3/ production rates, the blanket energy multiplication, isotopic composition of the fuels, and neutron leakages into the various zones are evaluated during a 5 year (6 MW.y.m/sup -2/) exposure period. Although the results of this study were obtained for a tokomak magnetic fusion device, the qualitative behavior associated with the use of the uranium bearing neutron multiplier should be applicable to all fusion-fission hybrids.

  5. Hybrid rail gun electromagnetic accelerators

    International Nuclear Information System (INIS)

    Chen, K.W.; Hachen, H.; Lee, A.; Legh, G.; Lin, T.; Mattay, S.; Wipf, S.

    1983-01-01

    Theoretical and experimental investigations on hybrid rail accelerators are presented. It is shown that the side surface areas and in some cases sabots of the projectile can be used to provide substantial amount of additional thrust. Moreover, it is shown that in most cases examined, external magnetic fields can be conveniently incorporated in the accelerator designs to supplement the rail-induced fields. Total thrusts in excess of 10 MN for kilogram-sized projectiles can in principle be established with driving currents of the order of 1 MA. No obvious stress limitations are foreseen. The percentages of thrust from external magnetic fields are sufficiently high that the use of which should be encouraged. The increased flexibility in the projectile shapes available permits the use of the proposed hybrid electromagnetic launcher technology in a variety of new areas, such as thrust boosts in conventional chemical rockets and other similar applications. Furthermore, the additional thrust obtained from the use of side surface areas greatly increases the maximum permissable thrust otherwise limited by material strength considerations. Thrust analyses for projectiles in several hybrid rail accelerator designs are discussed. Some laboratory experimental observations are presented

  6. Holistic electronic response underlying the development of magnetism in co-doped diluted magnetic semiconductors

    Science.gov (United States)

    Andriotis, Antonis N.; Menon, Madhu

    2018-05-01

    A systematic analysis of the properties of codoped diluted magnetic semiconductors (DMSs) reveals the role and the effect of the codopants in dictating the magnetic features of the DMSs. Our results indicate that the magnetic features of a codoped DMS is the outcome of synergistic electronic processes of the whole system rather than a local hybridization process isolated from the rest of the system. Specifically, the d-orbital hybridization of the (co)dopants and the introduction of their impurity bands lead to the readjustment of the position of the p-band center of the host’s anions and that of the valence band maximum (VBM). The overall effect of these is to pull the hybridized d-bands of the (co)dopants relative to the Fermi energy, E F , which in turn dictate the value of the magnetic moment of both the dopant as well as the codopant. More precisely, the magnetic moment of a dopant shows an almost linearly increasing (decreasing) variation as the dopant’s d-band center (the latter dictated by the codopant) moves away from (gets closer to) E F . Our results thus suggest a completely new approach in the investigation and understanding of the origin of the defect induced magnetism and support previous reports suggesting the Fermi-energy engineering as a mean for developing high T C DMSs. These trends are demonstrated with results obtained for GaN, GaP, and CdS doped with one of the V, Mn, Co and Cu dopants and codoped with the transition metals of the 3d-series.

  7. Magnetic iron oxide nanoparticles (MIONs) cross-linked natural polymer-based hybrid gel beads: Controlled nano anti-TB drug delivery application.

    Science.gov (United States)

    Kesavan, Mookkandi Palsamy; Ayyanaar, Srinivasan; Vijayakumar, Vijayaparthasarathi; Dhaveethu Raja, Jeyaraj; Annaraj, Jamespandi; Sakthipandi, Kathiresan; Rajesh, Jegathalaprathaban

    2018-04-01

    The nanosized rifampicin (RIF) has been prepared to increase the solubility in aqueous solution, which leads to remarkable enhancement of its bioavailability and their convenient delivery system studied by newly produced nontoxic, biodegradable magnetic iron oxide nanoparticles (MIONs) cross-linked polyethylene glycol hybrid chitosan (mCS-PEG) gel beads. The functionalization of both nano RIF and mCS-PEG gel beads were studied using various spectroscopic and microscopic techniques. The size of prepared nano RIF was found to be 70.20 ± 3.50 nm. The mechanical stability and swelling ratio of the magnetic gel beads increased by the addition of PEG with a maximum swelling ratio of 38.67 ± 0.29 g/g. Interestingly, this magnetic gel bead has dual responsive assets in the nano drug delivery application (pH and the magnetic field). As we expected, magnetic gel beads show higher nano drug releasing efficacy at acidic medium (pH = 5.0) with maximum efficiency of 71.00 ± 0.87%. This efficacy may also be tuned by altering the external magnetic field and the weight percentage (wt%) of PEG. These results suggest that such a dual responsive magnetic gel beads can be used as a potential system in the nano drug delivery applications. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 1039-1050, 2018. © 2017 Wiley Periodicals, Inc.

  8. Self-consistent modeling of induced magnetic field in Titan's atmosphere accounting for the generation of Schumann resonance

    Science.gov (United States)

    Béghin, Christian

    2015-02-01

    This model is worked out in the frame of physical mechanisms proposed in previous studies accounting for the generation and the observation of an atypical Schumann Resonance (SR) during the descent of the Huygens Probe in the Titan's atmosphere on 14 January 2005. While Titan is staying inside the subsonic co-rotating magnetosphere of Saturn, a secondary magnetic field carrying an Extremely Low Frequency (ELF) modulation is shown to be generated through ion-acoustic instabilities of the Pedersen current sheets induced at the interface region between the impacting magnetospheric plasma and Titan's ionosphere. The stronger induced magnetic field components are focused within field-aligned arcs-like structures hanging down the current sheets, with minimum amplitude of about 0.3 nT throughout the ramside hemisphere from the ionopause down to the Moon surface, including the icy crust and its interface with a conductive water ocean. The deep penetration of the modulated magnetic field in the atmosphere is thought to be allowed thanks to the force balance between the average temporal variations of thermal and magnetic pressures within the field-aligned arcs. However, there is a first cause of diffusion of the ELF magnetic components, probably due to feeding one, or eventually several SR eigenmodes. A second leakage source is ascribed to a system of eddy-Foucault currents assumed to be induced through the buried water ocean. The amplitude spectrum distribution of the induced ELF magnetic field components inside the SR cavity is found fully consistent with the measurements of the Huygens wave-field strength. Waiting for expected future in-situ exploration of Titan's lower atmosphere and the surface, the Huygens data are the only experimental means available to date for constraining the proposed model.

  9. Harvesting Broad Frequency Band Blue Energy by a Triboelectric-Electromagnetic Hybrid Nanogenerator.

    Science.gov (United States)

    Wen, Zhen; Guo, Hengyu; Zi, Yunlong; Yeh, Min-Hsin; Wang, Xin; Deng, Jianan; Wang, Jie; Li, Shengming; Hu, Chenguo; Zhu, Liping; Wang, Zhong Lin

    2016-07-26

    Ocean wave associated energy is huge, but it has little use toward world energy. Although such blue energy is capable of meeting all of our energy needs, there is no effective way to harvest it due to its low frequency and irregular amplitude, which may restrict the application of traditional power generators. In this work, we report a hybrid nanogenerator that consists of a spiral-interdigitated-electrode triboelectric nanogenerator (S-TENG) and a wrap-around electromagnetic generator (W-EMG) for harvesting ocean energy. In this design, the S-TENG can be fully isolated from the external environment through packaging and indirectly driven by the noncontact attractive forces between pairs of magnets, and W-EMG can be easily hybridized. Notably, the hybrid nanogenerator could generate electricity under either rotation mode or fluctuation mode to collect energy in ocean tide, current, and wave energy due to the unique structural design. In addition, the characteristics and advantages of outputs indicate that the S-TENG is irreplaceable for harvesting low rotation speeds (10 Hz). The complementary output can be maximized and hybridized for harvesting energy in a broad frequency range. Finally, a single hybrid nanogenerator unit was demonstrated to harvest blue energy as a practical power source to drive several LEDs under different simulated water wave conditions. We also proposed a blue energy harvesting system floating on the ocean surface that could simultaneously harvest wind, solar, and wave energy. The proposed hybrid nanogenerator renders an effective and sustainable progress in practical applications of the hybrid nanogenerator toward harvesting water wave energy offered by nature.

  10. Self-consistent simulation study on magnetized inductively coupled plasma for 450 mm semiconductor wafer processing

    International Nuclear Information System (INIS)

    Lee, Ho-Jun; Kim, Yun-Gi

    2012-01-01

    The characteristics of weakly magnetized inductively coupled plasma (MICP) are investigated using a self-consistent simulation based on the drift–diffusion approximation with anisotropic transport coefficients. MICP is a plasma source utilizing the cavity mode of the low-frequency branch of the right-hand circularly polarized wave. The model system is 700 mm in diameter and has a 250 mm gap between the radio-frequency window and wafer holder. The model chamber size is chosen to verify the applicability of this type of plasma source to the 450 mm wafer process. The effects of electron density distribution and external axial magnetic field on the propagation properties of the plasma wave, including the wavelength modulation and refraction toward the high-density region, are demonstrated. The restricted electron transport and thermal conductivity in the radial direction due to the magnetic field result in small temperature gradient along the field lines and off-axis peak density profile. The calculated impedance seen from the antenna terminal shows that MICP has a resistance component that is two to threefold higher than that of ICP. This property is practically important for large-size, low-pressure plasma sources because high resistance corresponds to high power-transfer efficiency and stable impedance matching characteristics. For the 0.665 Pa argon plasma, MICP shows a radial density uniformity of 6% within 450 mm diameter, which is much better than that of nonmagnetized ICP.

  11. Emergent magnetism at transition-metal-nanocarbon interfaces.

    Science.gov (United States)

    Al Ma'Mari, Fatma; Rogers, Matthew; Alghamdi, Shoug; Moorsom, Timothy; Lee, Stephen; Prokscha, Thomas; Luetkens, Hubertus; Valvidares, Manuel; Teobaldi, Gilberto; Flokstra, Machiel; Stewart, Rhea; Gargiani, Pierluigi; Ali, Mannan; Burnell, Gavin; Hickey, B J; Cespedes, Oscar

    2017-05-30

    Charge transfer at metallo-molecular interfaces may be used to design multifunctional hybrids with an emergent magnetization that may offer an eco-friendly and tunable alternative to conventional magnets and devices. Here, we investigate the origin of the magnetism arising at these interfaces by using different techniques to probe 3d and 5d metal films such as Sc, Mn, Cu, and Pt in contact with fullerenes and rf-sputtered carbon layers. These systems exhibit small anisotropy and coercivity together with a high Curie point. Low-energy muon spin spectroscopy in Cu and Sc-C 60 multilayers show a quick spin depolarization and oscillations attributed to nonuniform local magnetic fields close to the metallo-carbon interface. The hybridization state of the carbon layers plays a crucial role, and we observe an increased magnetization as sp 3 orbitals are annealed into sp 2 -π graphitic states in sputtered carbon/copper multilayers. X-ray magnetic circular dichroism (XMCD) measurements at the carbon K edge of C 60 layers in contact with Sc films show spin polarization in the lowest unoccupied molecular orbital (LUMO) and higher π*-molecular levels, whereas the dichroism in the σ*-resonances is small or nonexistent. These results support the idea of an interaction mediated via charge transfer from the metal and dz -π hybridization. Thin-film carbon-based magnets may allow for the manipulation of spin ordering at metallic surfaces using electrooptical signals, with potential applications in computing, sensors, and other multifunctional magnetic devices.

  12. Hybrid design method for air-core solenoid with axial homogeneity

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Li; Lee, Sang Jin [Uiduk University, Gyeongju (Korea, Republic of); Choi, Suk Jin [Institute for Basic Science, Daejeon (Korea, Republic of)

    2016-03-15

    In this paper, a hybrid method is proposed to design an air-core superconducting solenoid system for 6 T axial uniform magnetic field using Niobium Titanium (NbTi) superconducting wire. In order to minimize the volume of conductor, the hybrid optimization method including a linear programming and a nonlinear programming was adopted. The feasible space of solenoid is divided by several grids and the magnetic field at target point is approximated by the sum of magnetic field generated by an ideal current loop at the center of each grid. Using the linear programming, a global optimal current distribution in the feasible space can be indicated by non-zero current grids. Furthermore the clusters of the non-zero current grids also give the information of probable solenoids in the feasible space, such as the number, the shape, and so on. Applying these probable solenoids as the initial model, the final practical configuration of solenoids with integer layers can be obtained by the nonlinear programming. The design result illustrates the efficiency and the flexibility of the hybrid method. And this method can also be used for the magnet design which is required the high homogeneity within several ppm (parts per million)

  13. Synthesis and Characterization of Hybrid-Magnetic Nanoparticles and Their Application for Removal of Arsenic from Groundwater

    Directory of Open Access Journals (Sweden)

    Marta A. Bavio

    2013-01-01

    Full Text Available Multiwall carbon nanotubes (MWCNTs were oxidized with different agents and a characterization study was carried out. Then, hybrid-magnetic nanoparticles (HMNPs were synthesized as iron oxide supported on the selected multiwalled carbon nanotubes (MWCNTs-Fe3O4 obtained from MWCNTs oxidized with HNO3. The HMNPs characterization revealed the presence of iron oxide as magnetite onto the MWCNTs surfaces. These HMNPs were used for arsenic removal from groundwater. The adsorption process variables were optimized (concentration of NPs, contact time, and pH, and these systems could remove 39.93 mg As/g adsorbent. Therefore, these nanoparticles appear as a good alternative for removing arsenic from water samples.

  14. A consistent magnetic polarity stratigraphy of Plio-Pleistocene fluvial sediments from the Heidelberg Basin (Germany)

    Science.gov (United States)

    Scheidt, Stephanie; Hambach, Ulrich; Rolf, Christian

    2014-05-01

    Deep drillings in the Heidelberg Basins provide access to one of the thickest and most complete successions of Quaternary and Upper Pliocene continental sediments in Central-Europe [1]. In absence of any comprehensive chronostratigraphic model, these sediments are so far classified by lithological and hydrogeological criteria. Therefore the age of this sequence is still controversially discussed ([1], [2]). In spite of the fact that fluvial sediments are a fundamental challenge for the application of magnetic polarity stratigraphy we performed a thorough study on four drilling cores (from Heidelberg, Ludwigshafen and nearby Viernheim). Here, we present the results from the analyses of these cores, which yield to a consistent chronostratigraphic framework. The components of natural remanent magnetisation (NRM) were separated by alternating field and thermal demagnetisation techniques and the characteristic remanent magnetisations (ChRM) were isolated by principle component analysis [3]. Due to the coring technique solely inclination data of the ChRM is used for the determination of the magnetic polarity stratigraphy. Rock magnetic proxies were applied to identify the carriers of the remanent magnetisation. The investigations prove the NRM as a stable, largely primary magnetisation acquired shortly after deposition (PDRM). The Matuyama-Gauss boundary is clearly defined by a polarity change in each core, as suggested in previous work [4]. These findings are in good agreement with the biostratigraphic definition of the base of the Quaternary ([5], [6], [7]). The Brunhes-Matuyama boundary could be identified in core Heidelberg UniNord 1 and 2 only. Consequently, the position of the Jaramillo and Olduvai subchron can be inferred from the lithostratigraphy and the development of fluvial facies architecture in the Rhine system. The continuation of the magnetic polarity stratigraphy into the Gilbert chron (Upper Pliocene) allows alternative correlation schemes for the cores

  15. Giant magnetoresistance effect in nanostructures consisting of magnetic-electric barriers

    International Nuclear Information System (INIS)

    Tang, Wei-Hua; Li, Chun-Shu; Kong, Yong-Hong; Zhang, Gui-Lian

    2007-01-01

    The GMR effect in magnetic-electric barrier nanostructure, which can be realized experimentally by depositing two parallel metallic ferromagnetic strips with an applied voltage on the top of heterostructure, is investigated theoretically. It is shown that a considerable GMR effect can be achieved in such nanosystems due to the significant transmission difference for electrons tunneling through parallel and antiparallel magnetization configurations. It is also shown that the magnetoresistance ratio is strongly dependent upon the applied voltage to metallic ferromagnetic strips in nanosystems, thus may leading to voltage-tunable GMR devices

  16. Genetic basis to hybrid inviability is more complex than hybrid male sterility in Caenorhabditis nematodes.

    Science.gov (United States)

    Bundus, Joanna D; Wang, Donglin; Cutter, Asher D

    2018-04-07

    Hybrid male sterility often evolves before female sterility or inviability of hybrids, implying that the accumulation of divergence between separated lineages should lead hybrid male sterility to have a more polygenic basis. However, experimental evidence is mixed. Here, we use the nematodes Caenorhabditis remanei and C. latens to characterize the underlying genetic basis of asymmetric hybrid male sterility and hybrid inviability. We demonstrate that hybrid male sterility is consistent with a simple genetic basis, involving a single X-autosome incompatibility. We also show that hybrid inviability involves more genomic compartments, involving diverse nuclear-nuclear incompatibilities, a mito-nuclear incompatibility, and maternal effects. These findings demonstrate that male sensitivity to genetic perturbation may be genetically simple compared to hybrid inviability in Caenorhabditis and motivates tests of generality for the genetic architecture of hybrid incompatibility across the breadth of phylogeny.

  17. fMRI activation patterns in an analytic reasoning task: consistency with EEG source localization

    Science.gov (United States)

    Li, Bian; Vasanta, Kalyana C.; O'Boyle, Michael; Baker, Mary C.; Nutter, Brian; Mitra, Sunanda

    2010-03-01

    Functional magnetic resonance imaging (fMRI) is used to model brain activation patterns associated with various perceptual and cognitive processes as reflected by the hemodynamic (BOLD) response. While many sensory and motor tasks are associated with relatively simple activation patterns in localized regions, higher-order cognitive tasks may produce activity in many different brain areas involving complex neural circuitry. We applied a recently proposed probabilistic independent component analysis technique (PICA) to determine the true dimensionality of the fMRI data and used EEG localization to identify the common activated patterns (mapped as Brodmann areas) associated with a complex cognitive task like analytic reasoning. Our preliminary study suggests that a hybrid GLM/PICA analysis may reveal additional regions of activation (beyond simple GLM) that are consistent with electroencephalography (EEG) source localization patterns.

  18. Hybrid winding concept for toroids

    DEFF Research Database (Denmark)

    Schneider, Henrik; Andersen, Thomas; Knott, Arnold

    2013-01-01

    and placement machinery. This opens up the possibility for both an automated manufacturing process and an automated production process of toroidal magnetics such as power inductors, filtering inductors, air core inductors, transformers etc. Both the proposed hybrid and the common wire wound winding...

  19. Design of a 16 kbit superconducting latching/SFQ hybrid RAM

    International Nuclear Information System (INIS)

    Nagasawa, Shuichi; Hasegawa, Haruhiro; Hashimoto, Tatsunori; Suzuki, Hideo; Miyahara, Kazunori; Enomoto, Youichi

    1999-01-01

    We have designed a 16 kbit superconducting latching/SFQ hybrid (SLASH) RAM, which enables high-frequency clock operation up to 10 GHz. The 16 kbit SLASH RAM consists of four 4x4 matrix arrays of 256 bit RAM blocks, block decoders, latching block drivers, latching block senses, impedance matched lines and the powering circuits. The 256 bit RAM block is composed of a 16x16 matrix array of vortex transitional memory cells, latching drivers, SFQ NOR decoders and latching sense circuits. We have also designed and implemented an SFQ NOR decoder that is composed of magnetically coupled multi-input OR gates and RSFQ inverters. (author)

  20. A simple model of the plasma deflagration gun including self-consistent electric and magnetic fields

    International Nuclear Information System (INIS)

    Enloe, C.L.; Reinovsky, R.E.

    1985-01-01

    At the Air Force Weapons Laboratory, interest has continued for some time in energetic plasma injectors. A possible scheme for such a device is the plasma deflagration gun. When the question arose whether it would be possible to scale a deflagration gun to the multi-megajoule energy level, it became clear that a scaling law which described the fun as a circuit element and allowed one to confidently scale gun parameters would be required. The authors sought to develop a scaling law which self-consistently described the current, magnetic field, and velocity profiles in the gun. They based this scaling law on plasma parameters exclusively, abandoning the fluid approach

  1. An unusual hybrid fluoride featuring a [V7F27]6- chain motif based on a pyrochlore-like building unit

    International Nuclear Information System (INIS)

    Aldous, David W.; Slawin, Alexandra M.Z.; Lightfoot, Philip

    2008-01-01

    A new hybrid vanadium (III) fluoride [C 4 H 12 N 2 ] 3 [V 7 F 27 ] has been synthesised solvothermally. The crystal structure (trigonal, R3-bar c; a=17.367(2) A, c=19.604(2) A) reveals an unusual and novel chain motif consisting of pyrochlore-like heptameric units of corner-sharing octahedra, which are further linked into linear chains of alternating triple and single octahedral groups. The chains are separated by hydrogen-bonded piperazinium moieties. Magnetic susceptibility data show moderate antiferromagnetic interactions but no long-range order above 2 K, consistent with pronounced one-dimensional character, as well as frustration arising within the triangular units of magnetic ions in the chains. - Graphical abstract: A unique chain-structure vanadium(III) fluoride [C 4 H 12 N 2 ] 3 [V 7 F 27 ], based on a pyrochlore-like building unit, has been prepared solvothermally. Despite antiferromagnetic interactions, no long-range magnetic order occurs above 2 K, suggesting possible frustration

  2. Magnetic solid phase extraction of gemfibrozil from human serum and pharmaceutical wastewater samples utilizing a β-cyclodextrin grafted graphene oxide-magnetite nano-hybrid.

    Science.gov (United States)

    Abdolmohammad-Zadeh, Hossein; Talleb, Zeynab

    2015-03-01

    A magnetic solid phase extraction method based on β-cyclodextrin (β-CD) grafted graphene oxide (GO)/magnetite (Fe3O4) nano-hybrid as an innovative adsorbent was developed for the separation and pre-concentration of gemfibrozil prior to its determination by spectrofluorometry. The as-prepared β-CD/GO/Fe3O4 nano-hybrid possesses the magnetism property of Fe3O4 nano-particles that makes it easily manipulated by an external magnetic field. On the other hand, the surface modification of GO by β-CD leads to selective separation of the target analyte from sample matrices. The structure and morphology of the synthesized adsorbent were characterized using powder X-ray diffraction, Fourier transform infrared spectroscopy, and field emission scanning electron microscopy. The experimental factors affecting the extraction/pre-concentration and determination of the analyte were investigated and optimized. Under the optimized experimental conditions, the calibration graph was linear in the range between 10 and 5000 pg mL(-1) with a correlation coefficient of 0.9989. The limit of detection and enrichment factor for gemfibrozil were 3 pg mL(-1) and 100, respectively. The maximum sorption capacity of the adsorbent for gemfibrozil was 49.8 mg g(-1). The method was successfully applied to monitoring gemfibrozil in human serum and pharmaceutical wastewaters samples with recoveries in the range of 96.0-104.0% for the spiked samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Spatially Resolved Large Magnetization in Ultrathin BiFeO3

    KAUST Repository

    Guo, Er-Jia

    2017-06-19

    Here, a quantitative magnetic depth profile across the planar interfaces in BiFeO3 /La0.7 Sr0.3 MnO3 (BFO/LSMO) superlattices using polarized neutron reflectometry is obtained. An enhanced magnetization of 1.83 ± 0.16 μB /Fe in BFO layers is observed when they are interleaved between two manganite layers. The enhanced magnetic order in BFO persists up to 200 K. The depth dependence of magnetic moments in BFO/LSMO superlattices as a function of the BFO layer thickness is also explored. The results show the enhanced net magnetic moment in BFO from the LSMO/BFO interface extends 3-4 unit cells into BFO. The interior part of a thicker BFO layer has a much smaller magnetization, suggesting it still keeps the small canted AFM state. The results exclude charge transfer, intermixing, epitaxial strain, and octahedral rotations/tilts as dominating mechanisms for the large net magnetization in BFO. An explanation-one suggested by others previously and consistent with the observations-attributes the temperature dependence of the net magnetization of BFO to strong orbital hybridization between Fe and Mn across the interfaces. Such orbital reconstruction would establish an upper temperature limit for magnetic ordering of BFO.

  4. Hands-off and hands-on casting consistency of amputee below knee sockets using magnetic resonance imaging.

    Science.gov (United States)

    Safari, Mohammad Reza; Rowe, Philip; McFadyen, Angus; Buis, Arjan

    2013-01-01

    Residual limb shape capturing (Casting) consistency has a great influence on the quality of socket fit. Magnetic Resonance Imaging was used to establish a reliable reference grid for intercast and intracast shape and volume consistency of two common casting methods, Hands-off and Hands-on. Residual limbs were cast for twelve people with a unilateral below knee amputation and scanned twice for each casting concept. Subsequently, all four volume images of each amputee were semiautomatically segmented and registered to a common coordinate system using the tibia and then the shape and volume differences were calculated. The results show that both casting methods have intra cast volume consistency and there is no significant volume difference between the two methods. Inter- and intracast mean volume differences were not clinically significant based on the volume of one sock criteria. Neither the Hands-off nor the Hands-on method resulted in a consistent residual limb shape as the coefficient of variation of shape differences was high. The resultant shape of the residual limb in the Hands-off casting was variable but the differences were not clinically significant. For the Hands-on casting, shape differences were equal to the maximum acceptable limit for a poor socket fit.

  5. Tooth-coil permanent magnet synchronous machine design for special applications

    Energy Technology Data Exchange (ETDEWEB)

    Ponomarev, P.

    2013-11-01

    This doctoral thesis presents a study on the design of tooth-coil permanent magnet synchronous machines. The electromagnetic properties of concentrated non-overlapping winding permanent magnet synchronous machines, or simply tooth-coil permanent magnet synchronous machines (TC-PMSMs), are studied in details. It is shown that current linkage harmonics play the deterministic role in the behavior of this type of machines. Important contributions are presented as regards of calculation of parameters of TC-PMSMs,particularly the estimation of inductances. The current linkage harmonics essentially define the air-gap harmonic leakage inductance, rotor losses and localized temporal inductance variation. It is proven by FEM analysis that inductance variation caused by the local temporal harmonic saturation results in considerable torque ripple, and can influence on sensorless control capabilities. Example case studies an integrated application of TC-IPMSMs in hybrid off-highway working vehicles. A methodology for increasing the efficiency of working vehicles is introduced. It comprises several approaches - hybridization, working operations optimization, component optimization and integration. As a result of component optimization and integration, a novel integrated electro-hydraulic energy converter (IEHEC) for off-highway working vehicles is designed. The IEHEC can considerably increase the operational efficiency of a hybrid working vehicle. The energy converter consists of an axial-piston hydraulic machine and an integrated TCIPMSM being built on the same shaft. The compact assembly of the electrical and hydraulic machines enhances the ability to find applications for such a device in the mobile environment of working vehicles.Usage of hydraulic fluid, typically used in working actuators, enables direct-immersion oil cooling of designed electrical machine, and further increases the torque- and power- densities of the whole device. (orig.)

  6. Hybrid fission-fusion nuclear reactors

    International Nuclear Information System (INIS)

    Zucchetti, Massimo

    2011-01-01

    A fusion-fission hybrid could contribute to all components of nuclear power - fuel supply, electricity production, and waste management. The idea of the fusion-fission hybrid is many decades old. Several ideas, both new and revisited, have been investigated by hybrid proponents. These ideas appear to have attractive features, but they require various levels of advances in plasma science and fusion and nuclear technology. As a first step towards the development of hybrid reactors, fusion neutron sources can be considered as an option. Compact high-field tokamaks can be a candidate for being the neutron source in a fission-fusion hybrid, essentially due to their design characteristics, such as compact dimensions, high magnetic field, flexibility of operation. This study presents the development of a tokamak neutron source for a material testing facility using an Ignitor-based concept. The computed values show the potential of this neutron-rich device for fusion materials testing. Some full-power months of operation are sufficient to obtain relevant radiation damage values in terms of dpa. (Author)

  7. The role of equilibrium volume and magnetism on the stability of iron phases at high pressures.

    Science.gov (United States)

    Alnemrat, S; Hooper, J P; Vasiliev, I; Kiefer, B

    2014-01-29

    The present study provides new insights into the pressure dependence of magnetism by tracking the hybridization between crystal orbitals for pressures up to 600 GPa in the known hcp, bcc and fcc iron. The Birch-Murnaghan equation of state parameters are; bcc: V0 = 11.759 A(3)/atom, K0 = 177.72 GPa; hcp: V0 = 10.525 A(3)/atom, K0 = 295.16 GPa; and fcc: V0 = 10.682 A(3)/atom, K0 = 274.57 GPa. These parameters compare favorably with previous studies. Consistent with previous studies we find that the close-packed hcp and fcc phases are non-magnetic at pressures above 50 GPa and 60 GPa, respectively. The principal features of magnetism in iron are predicted to be invariant, at least up to ∼6% overextension of the equilibrium volume. Our results predict that magnetism for overextended fcc iron disappears via an intermediate spin state. This feature suggests that overextended lattices can be used to stabilize particular magnetic states. The analysis of the orbital hybridization shows that the magnetic bcc structure at high pressures is stabilized by splitting the majority and minority spin bands. The bcc phase is found to be magnetic at least up to 600 GPa; however, magnetism is insufficient to stabilize the bcc phase itself, at least at low temperatures. Finally, the analysis of the orbital contributions to the total energy provides evidence that non-magnetic hcp and fcc phases are likely more stable than bcc at core earth pressures.

  8. Magnetic and electronic properties of some actinide intermetallic compounds

    International Nuclear Information System (INIS)

    Yaar, Ilan

    1992-06-01

    The electronic structure and magnetic properties of the light actinide intermetallic compounds are often related to interplay between localized and itinerant (band like) behavior of the 5f- electrons. In the present work, the properties of some actinide, mainly Np, intermetallic compounds were studied by Mossbauer effect, ac and dc susceptibility, X-ray and Neutron diffraction techniques. 1. NpX 2 (X=Ga,Si) - Both compounds order ferromagnetically at TC=55(2) and 48(2) K respectively. A comparison of our data with the results for other NpX 2 (X=Al,As,Sb,Tl) compounds indicates that NpGa 2 is a highly localized 5f electron system, whereas in NpSi 2 the 5f electrons are partially delocalized. The magnetic properties of NpX 2 compounds can neither be consistently explained within the conventional crystal electric field picture (CEF) nor by takink into account hybridization dressing of local spin density models. 2. NpX 3 (X=Ga,Si,In,Al) in the cubic AuCu 3 (Pm3m) crystallographic structure - From the Mossbauer isomer shift (IS) data we argue that the Np ion in the NpX 3 family is close to the formal 3+ (5I 4 ) charge state. The magnetic moment of the Np in NpSi 3 is totally suppressed whereas in NpGa 3 and NpAl 3 a localized (narrow band) moment is established. However, in NpIn 3 at 4.2 K, a modulated magnetic moment (0-1.5μB) is observed. Comparing the magnetic behavior of the NpX 3 family (X=Si,Ge,Ga, Al,In and Sn), we find an impressive variation of the magnetic properties, from temperature independent paramagnetism (TIP), localized and modulated ordered moments, to the formation of a concentrated Kondo lattice. Hybridization of 5f electrons with ligand electrons appears to play a crucial role in establishing these magnetic properties. However, at present a consistent theoretical picture can not be drawn. 3. XFe 4 Al 8 (X=Ho,Np,U) spin galss (SG) systems in the ThMn 12 (I 4 /mmm) crystallographic structure - Localized and itinerant behaviour of the f electrons

  9. A spot check for assessing static orientation consistency of inertial and magnetic sensing units.

    Science.gov (United States)

    Picerno, Pietro; Cereatti, Andrea; Cappozzo, Aurelio

    2011-03-01

    Despite the widespread use of Magnetic and Inertial Measurement Units (MIMUs) for movement reconstruction, only a few studies have tackled issues related to their accuracy. It has been proved that their performance decreases over a period of use since calibration parameters become no longer effective. Good practice rules recommend to assess, prior to any experimental session, the instrumental errors associated to the relevant measures. Aim of this study was to provide a practical and reproducible spot check for assessing the performance of MIMUs in terms of consistency in determining their orientation with respect to a common (inter-MIMUs consistency, IC) and invariant (self-MIMU consistency, SC) global frame. IC was assessed by verifying the hypothesis that the orientation of 9 MIMUs aligned to each other on a rigid Plexiglas plank coincided at any orientation of the plank. SC was assessed separately by verifying differences between measured and imposed known rotations imparted to each MIMU. The orientation of MIMUs relative to the global frame was expressed in terms of quaternion. IC test showed that MIMUs defined their orientation differently. This difference was not constant but varied according to the plank's orientation. The least consistent MIMU showed discrepancy up to 5.7°. SC test confirmed the same MIMU as that affected by the highest inaccuracy (8.4°), whereas it revealed errors within limits (1°) in correspondence to other MIMUs. A tool has been proposed that allows the users to be aware of the errors that may be expected when using MIMUs for the estimate of absolute and relative segments kinematics. Copyright © 2010 Elsevier B.V. All rights reserved.

  10. Optimum design and research on novel vehicle hybrid excitation synchronous generator

    Directory of Open Access Journals (Sweden)

    Liu Zhong-Shu

    2017-01-01

    Full Text Available Hybrid excitation is an organic combination of permanent magnet excitation and electric excitation. Hybrid excitation synchronous generator (HESG both has the advantages of light quality, less losses and high efficiency like permanent magnet generator and the advantages of good magnetic field adjusting performance like electric excitation generator, so it is very suitable for the vehicle application. This paper presented a novel vehicle HESG which has skew stator core, permanent magnet rotor and both armature winding and field winding in the stator. Using ANSYS software, simulating the electric excitation field and the magnetic field, and finally the main parameters of HESG were designed. The simulation and the test results both show that the novel vehicle PMSG has the advantages of small cogging torque, high efficiency, small harmonic component output voltage and low waveform aberration, so as to meet the design requirements fully.

  11. Determination of microturbulence enhanced electron collisionality in magnetized coaxial accelerator channels by direct magnetic field measurement

    International Nuclear Information System (INIS)

    Black, D.C.; Mayo, R.M.; Caress, R.W.

    1997-01-01

    A miniature magnetic probe array, consisting of 10 spatially separated coils, has been used to obtain profile information on the time varying magnetic field within the 2.54 cm wide flow channel of the coaxial plasma source experiment (CPS-1) [R. M. Mayo et al., Plasma Sources Sci. Technol. 4, 47 (1995)]. The magnetic field data have been used, together with a resistive, Hall magnetohydrodynamic (MHD) model of applied field distortion by the flowing plasma, to obtain estimates of the microturbulent enhancement to electron collisionality within the CPS-1 flow channel. These measurements provide direct experimental evidence of anomalous electron collisionality, a previously predicted effect in these devices. The anomaly parameter, a=ν an /ν cl , determined both from the distortion of contours of constant magnetic flux, and from local B θ and B z measurements scales with the classical electron magnetization parameter (Ω cl =ω ce /ν e cl ), indicating that collisionality plays a strong role in determining the level of anomalous transport in the plasma. When this anomaly parameter scaling is cast in terms of the ratio ν e cl /ω lh , it is found that the resistivity enhancement scales with ν e cl /ω lh , and becomes significant at ν e cl /ω lh ≤1, suggesting that a lower hybrid drift instability may be the responsible mechanism for enhanced transport. copyright 1997 American Institute of Physics

  12. Emergent magnetism at transition-metal–nanocarbon interfaces

    Science.gov (United States)

    Al Ma’Mari, Fatma; Rogers, Matthew; Alghamdi, Shoug; Moorsom, Timothy; Lee, Stephen; Prokscha, Thomas; Luetkens, Hubertus; Valvidares, Manuel; Flokstra, Machiel; Stewart, Rhea; Ali, Mannan; Burnell, Gavin; Hickey, B. J.

    2017-01-01

    Charge transfer at metallo–molecular interfaces may be used to design multifunctional hybrids with an emergent magnetization that may offer an eco-friendly and tunable alternative to conventional magnets and devices. Here, we investigate the origin of the magnetism arising at these interfaces by using different techniques to probe 3d and 5d metal films such as Sc, Mn, Cu, and Pt in contact with fullerenes and rf-sputtered carbon layers. These systems exhibit small anisotropy and coercivity together with a high Curie point. Low-energy muon spin spectroscopy in Cu and Sc–C60 multilayers show a quick spin depolarization and oscillations attributed to nonuniform local magnetic fields close to the metallo–carbon interface. The hybridization state of the carbon layers plays a crucial role, and we observe an increased magnetization as sp3 orbitals are annealed into sp2−π graphitic states in sputtered carbon/copper multilayers. X-ray magnetic circular dichroism (XMCD) measurements at the carbon K edge of C60 layers in contact with Sc films show spin polarization in the lowest unoccupied molecular orbital (LUMO) and higher π*-molecular levels, whereas the dichroism in the σ*-resonances is small or nonexistent. These results support the idea of an interaction mediated via charge transfer from the metal and dz–π hybridization. Thin-film carbon-based magnets may allow for the manipulation of spin ordering at metallic surfaces using electrooptical signals, with potential applications in computing, sensors, and other multifunctional magnetic devices. PMID:28507160

  13. Hybrid type I-type II superconducting behavior in magnesium diboride

    International Nuclear Information System (INIS)

    Kunchur, M.N.; Saracila, G.; Arcos, D.A.; Cui, Y.; Pogrebnyakov, A.; Orgiani, P.; Xi, X.X.

    2006-01-01

    In traditional type-II superconductors, an applied magnetic field depresses the transition temperature and introduces magnetic flux vortices that cause resistive losses accompanied by a broadening of the transition. High-field high-pulsed-current measurements have revealed a new hybrid behavior in disordered magnesium diboride films: The superconductivity survives high magnetic fields by entering a mixed state with vortices (like a type II superconductor) but holds its vortices nearly motionless and avoids dissipation (like a type I superconductor). A study of this phenomenon in magnesium diboride films with varying degrees of scattering indicate that the hybrid type I-type II behavior arises from the two-band nature of the superconductivity and the different degrees of influence that disorder exerts on its different bands. (author)

  14. CoFe2O4@MIL-100(Fe) hybrid magnetic nanoparticles exhibit fast and selective adsorption of arsenic with high adsorption capacity

    Science.gov (United States)

    Yang, Ji-Chun; Yin, Xue-Bo

    2017-01-01

    In this study, we report the synthesis and application of mesoporous CoFe2O4@MIL-100(Fe) hybrid magnetic nanoparticles (MNPs) for the simultaneous removal of inorganic arsenic (iAs). The hybrid adsorbent had a core-shell and mesoporous structure with an average diameter of 260 nm. The nanoscale size and mesoporous character impart a fast adsorption rate and high adsorption capacity for iAs. In total, 0.1 mg L−1 As(V) and As(III) could be adsorbed within 2 min, and the maximum adsorption capacities were 114.8 mg g−1 for As(V) and 143.6 mg g−1 for As(III), higher than most previously reported adsorbents. The anti-interference capacity for iAs adsorption was improved by the electrostatic repulsion and size exclusion effects of the MIL-100(Fe) shell, which also decreased the zero-charge point of the hybrid absorbent for a broad pH adsorption range. The adsorption mechanisms of iAs on the MNPs are proposed. An Fe-O-As structure was formed on CoFe2O4@MIL-100(Fe) through hydroxyl substitution with the deprotonated iAs species. Monolayer adsorption of As(V) was observed, while hydrogen bonding led to the multi-layer adsorption of neutral As(III) for its high adsorption capacity. The high efficiency and the excellent pH- and interference-tolerance capacities of CoFe2O4@MIL-100(Fe) allowed effective iAs removal from natural water samples, as validated with batch magnetic separation mode and a portable filtration strategy. PMID:28102334

  15. Operational characteristics of hybrid-type SFCL with closed and open cores

    International Nuclear Information System (INIS)

    Cho, Y.S.; Lee, N.Y.; Choi, H.S.; Chung, D.C.; Lim, S.H.

    2007-01-01

    We investigated the operational characteristics of the hybrid-type superconducting fault current limiter (SFCL) with the closed and the open cores, which induced the variation of the magnetic flux between the primary and the secondary windings. The experimental set-up of the hybrid-type SFCL with the closed and the open cores were prepared and the experimental analyses for the current limiting characteristics were performed. The peak value of the fault current in the hybrid-type SFCL with the open core was higher than that of the closed core at the first cycle after fault occurrence. However, in the case of the hybrid-type SFCL with the open core, the limiting current level after fault occurrence was decreased less than that of the hybrid-type SFCL with the closed core, because the magnetic leakage reluctance of the open core was higher than that of the closed core. The quench time (T q ) and the arrival time (T a ) for the peak voltage (V SC ) in the hybrid-type SFCL with the closed core were faster than that of the hybrid-type SFCL with the open core due to the increase of the mutual flux. We verified that the consumption power in the hybrid-type SFCL with the open core was larger owing to the increase of leakage flux by the reduction of mutual inductance between primary and secondary windings

  16. Radial modes of slowly rotating compact stars in the presence of magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Panda, N.R. [Institute of Physics, Bhubaneswar (India); Siksha ' O' Anusandhan University, Bhubaneswar (India); Mohanta, K.K. [Rairangpur College, Rairangpur, Odisha (India); Sahu, P.K. [Institute of Physics, Bhubaneswar (India)

    2016-09-15

    Compact stars are composed of very high-density hadron matter. When the matter is above nuclear matter density, then there is a chance of different phases of matter such as hadron matter to quark matter. There is a possible phase which, having the quark core surrounded by a mixed phase followed by hadronic matter, may be considered as a hybrid phase inside the stars called hybrid star (HS). The star which consists of only u, d and s quarks is called quark star (QS) and the star which has only hadronic matter is called neutron star (NS). For the equation of state (EOS) of hadronic matter, we have considered the Relativistic Mean Field (RMF) theory and we incorporated the effect of strong magnetic fields. For the EOS of the quark phase we use the simple MIT bag model. We have assumed Gaussian parametrization to make the density dependent for both bag pressure in quark matter and magnetic field. We have constructed the intermediate mixed phase by using the Glendenning conjecture. Eigenfrequencies of radial pulsations of slowly rotating magnetized compact stars (NS, QS, HS) are calculated in a general relativistic formalism given by Chandrasekhar and Friedman. We have studied the effect of central density on the square of the frequencies of the compact stars in the presence of zero and strong magnetic field. (orig.)

  17. Magnetic properties of partially oxidized Fe films

    Science.gov (United States)

    Garcia, Miguel Angel; Lopez-Dominguez, Victor; Hernando, Antonio

    Hybrid magnetic nanostructures exhibit appealing properties due to interface and proximity effects. A simple and interesting system of hybrid magnetic nanomaterials are partially oxidized ferromagnetic films. We have fabricated Fe films by thermal evaporation and performed a partial oxidation to magnetite (Fe3O4) by annealing in air at different times and temperatures. The magnetic properties of the films evolve from those of pure metallic iron to pure magnetite, showing intermediate states where the proximity effects control the magnetic behavior. At some stages, the magnetization curves obtained by SQUID and MOKE magnetometry exhibit important differences due to the dissimilar contribution of both phases to the magneto-optical response of the system This work has been supported by the Ministerio Español de Economia y Competitividad (MINECO) MAT2013-48009-C4-1. V.L.D and M.A.G. acknowledges financial support from BBVA foundation.

  18. Self-assembled organic-inorganic magnetic hybrid adsorbent ferrite based on cyclodextrin nanoparticles.

    Science.gov (United States)

    Denadai, Angelo M L; De Sousa, Frederico B; Passos, Joel J; Guatimosim, Fernando C; Barbosa, Kirla D; Burgos, Ana E; de Oliveira, Fernando Castro; da Silva, Jeann C; Neves, Bernardo R A; Mohallem, Nelcy D S; Sinisterra, Rubén D

    2012-01-01

    Organic-inorganic magnetic hybrid materials (MHMs) combine a nonmagnetic and a magnetic component by means of electrostatic interactions or covalent bonds, and notable features can be achieved. Herein, we describe an application of a self-assembled material based on ferrite associated with β-cyclodextrin (Fe-Ni/Zn/βCD) at the nanoscale level. This MHM and pure ferrite (Fe-Ni/Zn) were used as an adsorbent system for Cr(3+) and Cr(2)O(7) (2-) ions in aqueous solutions. Prior to the adsorption studies, both ferrites were characterized in order to determine the particle size distribution, morphology and available binding sites on the surface of the materials. Microscopy analysis demonstrated that both ferrites present two different size domains, at the micro- and nanoscale level, with the latter being able to self-assemble into larger particles. Fe-Ni/Zn/βCD presented smaller particles and a more homogeneous particle size distribution. Higher porosity for this MHM compared to Fe-Ni/Zn was observed by Brunauer-Emmett-Teller isotherms and positron-annihilation-lifetime spectroscopy. Based on the pKa values, potentiometric titrations demonstrated the presence of βCD in the inorganic matrix, indicating that the lamellar structures verified by transmission electronic microscopy can be associated with βCD assembled structures. Colloidal stability was inferred as a function of time at different pH values, indicating the sedimentation rate as a function of pH. Zeta potential measurements identified an amphoteric behavior for the Fe-Ni/Zn/βCD, suggesting its better capability to remove ions (cations and anions) from aqueous solutions compared to that of Fe-Ni/Zn.

  19. Self-assembled organic–inorganic magnetic hybrid adsorbent ferrite based on cyclodextrin nanoparticles

    Directory of Open Access Journals (Sweden)

    Ângelo M. L. Denadai

    2012-11-01

    Full Text Available Organic–inorganic magnetic hybrid materials (MHMs combine a nonmagnetic and a magnetic component by means of electrostatic interactions or covalent bonds, and notable features can be achieved. Herein, we describe an application of a self-assembled material based on ferrite associated with β-cyclodextrin (Fe-Ni/Zn/βCD at the nanoscale level. This MHM and pure ferrite (Fe-Ni/Zn were used as an adsorbent system for Cr3+ and Cr2O72− ions in aqueous solutions. Prior to the adsorption studies, both ferrites were characterized in order to determine the particle size distribution, morphology and available binding sites on the surface of the materials. Microscopy analysis demonstrated that both ferrites present two different size domains, at the micro- and nanoscale level, with the latter being able to self-assemble into larger particles. Fe-Ni/Zn/βCD presented smaller particles and a more homogeneous particle size distribution. Higher porosity for this MHM compared to Fe-Ni/Zn was observed by Brunauer–Emmett–Teller isotherms and positron-annihilation-lifetime spectroscopy. Based on the pKa values, potentiometric titrations demonstrated the presence of βCD in the inorganic matrix, indicating that the lamellar structures verified by transmission electronic microscopy can be associated with βCD assembled structures. Colloidal stability was inferred as a function of time at different pH values, indicating the sedimentation rate as a function of pH. Zeta potential measurements identified an amphoteric behavior for the Fe-Ni/Zn/βCD, suggesting its better capability to remove ions (cations and anions from aqueous solutions compared to that of Fe-Ni/Zn.

  20. On self-consistent ray-tracing and Fokker-Planck modeling of the hard X-ray emission during lower-hybrid current driven in Tokamaks

    International Nuclear Information System (INIS)

    Bizarro, J.P.; Peysson, Y.; Bonoli, P.T.; Carrasco, J.; Dudok de Wit, T.; Fuchs, V.; Hoang, G.T.; Litaudon, X.; Moreau, D.; Pocheau, C.; Shkarofsky, I.P.

    1993-04-01

    A detailed investigation is presented on the ability of combined ray-tracing and Fokker-Planck calculations to predict the hard x-ray (HXR) emission during lower-hybrid (LH) current drive in tokamaks when toroidally induced-ray-stochasticity is important. A large number of rays is used and the electron distribution function is obtained by self-consistently iterating the appropriate LH power deposition and Fokker-Planck calculations. Most of the experimentally observed features of the HXR emission are correctly predicted. It is found that corrections due to radial diffusion of suprathermal electrons and to radiation scattering by the inner wall can be significant

  1. Magnetic isotope effect and theory of atomic orbital hybridization to predict a mechanism of chemical exchange reactions.

    Science.gov (United States)

    Epov, Vladimir N

    2011-08-07

    A novel approach is suggested to investigate the mechanisms of chemical complexation reactions based on the results of Fujii with co-workers; they have experimentally observed that several metals and metalloids demonstrate mass-independent isotope fractionation during the reactions with the DC18C6 crown ether using solvent-solvent extraction. In this manuscript, the isotope fractionation caused by the magnetic isotope effect is used to understand the mechanisms of chemical exchange reactions. Due to the rule that reactions are allowed for certain electron spin states, and forbidden for others, magnetic isotopes show chemical anomalies during these reactions. Mass-independent fractionation is suggested to take place due to the hyperfine interaction of the nuclear spin with the electron spin of the intermediate product. Moreover, the sign of the mass-independent fractionation is found to be dependent on the element and its species, which is also explained by the magnetic isotope effect. For example, highly negative mass-independent isotope fractionation of magnetic isotopes was observed for reactions of DC18C6 with SnCl(2) species and with several Ru(III) chloro-species, and highly positive for reactions of this ether with TeCl(6)(2-), and with several Cd(II) and Pd(II) species. The atomic radius of an element is also a critical parameter for the reaction with crown ether, particularly the element ions with [Kr]4d(n)5s(m) electron shell fits the best with the DC18C6 crown ring. It is demonstrated that the magnetic isotope effect in combination with the theory of orbital hybridization can help to understand the mechanism of complexation reactions. The suggested approach is also applied to explain previously published mass-independent fractionation of Hg isotopes in other types of chemical exchange reactions. This journal is © the Owner Societies 2011

  2. Hybridization effect on generation capability of an embedded CPA

    Directory of Open Access Journals (Sweden)

    M. Klach

    2016-03-01

    Full Text Available The purpose of this paper is to compare performances of two configurations of an embedded Claw Pole Alternator (CPA where the excitation winding is transferred to the stator side. These configurations are: the Simple Excited Automotive Alternator (SE2A and the Hybrid Excited Automotive Alternator (HE2A. Performed study is based on test at no-load and under load operation regimes, using Magnetic Equivalent Circuit (MEC models validated experimentally. It has been found that the hybrid Excited claw pole alternator provides higher performances, due to the increase of leakage flux through the integration of permanent magnets between adjacent rotor claws.

  3. Design Features of a Planar Hybrid/Permanent Magnet Strong Focusing Undulator for Free Electron Laser (FEL) And Synchrotron Radiation (SR) Applications

    Energy Technology Data Exchange (ETDEWEB)

    Tatchyn, Roman; /SLAC

    2011-09-09

    Insertion devices for Angstrom-wavelength Free Electron Laser (FEL) amplifiers driven by multi-GeV electron beams generally require distributed focusing substantially stronger than their own natural focusing fields. Over the last several years a wide variety of focusing schemes and configurations have been proposed for undulators of this class, ranging from conventional current-driven quadrupoles external to the undulator magnets to permanent magnet (PM) lattices inserted into the insertion device gap. In this paper we present design studies of a flexible high-field hybrid/PM undulator with strong superimposed planar PM focusing proposed for a 1.5 Angstrom Linac Coherent Light Source (LCLS) driven by an electron beam with a 1 mm-mr normalized emittance. Attainable field parameters, tuning modes, and potential applications of the proposed structure are discussed.

  4. A Study on Magnetic Decoupling of Compound-Structure Permanent-Magnet Motor for HEVs Application

    Directory of Open Access Journals (Sweden)

    Qiwei Xu

    2016-10-01

    Full Text Available The compound-structure permanent-magnet (CSPM motor is used for an electrical continuously-variable transmission (E-CVT in a hybrid electric vehicle (HEV. It can make the internal combustion engine (ICE independent of the road loads and run in the high efficiency area to improve the fuel economy and reduce the emissions. This paper studies the magnetic coupling of a new type of CSPM motor used in HEVs. Firstly, through the analysis of the parameter matching with CSPM in the HEV, we receive the same dynamic properties’ design parameters between the CSPM motor and the THS (Toyota Hybrid System of the Toyota Prius. Next, we establish the equivalent magnetic circuit model of the overall and the secondary model considering the tangential and radial flux distribution in the outer rotor of the CSPM motor. Based on these two models, we explore the internal magnetic coupling rule of the CSPM motor. Finally, finite element method analysis in 2D-ansoft is used to analyze the magnetic field distribution of the CSPM motor in different operation modes. By the result of the finite element method analysis, the internal magnetic decoupling scheme is put forward, laying the theoretical foundation for the further application of the CSPM motor in HEVs.

  5. Hyper-cross-linked, hybrid membranes via interfacial polymerization

    NARCIS (Netherlands)

    Raaijmakers, Michiel

    2015-01-01

    Hyper-cross-linked, hybrid membranes consist of covalent networks of alternating organic and inorganic, or biological groups. This thesis reports on the preparation of such hybrid networks via interfacial polymerization. The structure-property relationships of the hybrid networks depend strongly on

  6. Review of Micro Magnetic Generator

    Directory of Open Access Journals (Sweden)

    Lin DU

    2014-08-01

    Full Text Available This paper discusses the research progress of micro magnetic generator systems. Micro magnetic generator systems convert energy from the environment to electric energy with advantages as high reliability, high power density, long life time and can be applied to extreme environment. This paper summarizes methods for improving generator performance of micro magnetic generator, including rotational magnetic generator, vibrational magnetic generator and hybrid magnetic generator, analyzes and compares their design and performance, and concludes key technologies and ongoing challenges for further progress. The paper is instructive and meaningful to for research work of related field.

  7. A facile one-pot solvothermal method for synthesis of magnetically recoverable Pd-Fe3O4 hybrid nanocatalysts for the Mizoroki-Heck reaction

    Science.gov (United States)

    Zhen, Fangchen; Ran, Maofei; Chu, Wei; Jiang, Chengfa; Sun, Wenjing

    2018-03-01

    Pd-Fe3O4 hybrid nanostructures were prepared using a simple one-pot hydrothermal method. The prepared materials were characterized by Fourier transform-infrared spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, transmission electron microscopy, inductively coupled plasma, N2 adsorption-desorption, and vibrating sample magnetometry. This self-assembled nanosystem acted as an efficient magnetically recyclable noble metal-based multi-functional nanocatalyst. It showed excellent catalytic activity and stability for the Heck reaction of iodobenzene and styrene under mild conditions. The methods used to prepare the Pd-Fe3O4 catalysts were simple and low-cost, which will be useful for the large-scale development and application of a magnetically recoverable Pd catalyst.

  8. Driving cycle suitable layout of permanent magnet synchronous machines for hybrid vehicles and electric powered vehicles; Fahrzyklusgerechte Auslegung von permanentmagneterregten Synchronmaschinen fuer Hybrid- und Elektrofahrzeuge

    Energy Technology Data Exchange (ETDEWEB)

    Finken, Thomas

    2011-07-01

    An increasing environmental awareness and the prospect of a shortage of fossil resources will result in a development of efficient vehicles with a lower consumption of fuel. In addition to the hybrid electric vehicle, the electric powered vehicle increasingly is focused in the development of vehicles. A good efficiency is the most important demand on the electrical machine. The author of the book under consideration reports on exemplary operating point distributions for various vehicle concepts and user profiles. After comparing the most common types of machine in terms of the use in electrified powertrains, the permanent magnet synchronous machine is selected and discussed in detail. A table shows the advantages and disadvantages of all considered geometries and variations. Thus, a suitable combination of geometry for a given vehicle concept and its requirements are selected.

  9. Two Contemporary Problems in Magnetized Plasmas: the ion-ion hybrid resonator and MHD stability in a snowflake divertor

    Energy Technology Data Exchange (ETDEWEB)

    Farmer, William Anthony [Univ. of California, Los Angeles, CA (United States)

    2014-01-01

    The rst part of the dissertation investigates the e ects of multiple-ions on the propagation of shear Alfv en waves. It is shown that the presence of a second ion-species allows for the formation of an ion-ion hybrid resonator in the presence of a magnetic well. A fullwave description is shown to explain the measured eigenfrequencies and spatial form of the resonator modes identi ed in experiments in the Large Plasma Device (LAPD) at UCLA. However, it is determined that neither electron collisions or radial convection of the mode due to coupling to either the compressional or ion-Bernstein wave can explain the observed dissipation.

  10. Cost Performance Estimating Relationships for Hybrid Electric Vehicle Components

    Science.gov (United States)

    2003-07-31

    Permanent magnet motors are more likely to be used as generators, while AC induction motors are more efficiently used as motors. Inverters/controllers can...than permanent magnet motors . Switched Reluctance motors are also used on hybrid electric vehicles, but are not used as widely as either AC...induction or permanent magnet motors , and are not analyzed here. Methodology The motor estimates are based on power, with kilowatts being the unit of

  11. Magnetic composites based on hybrid spheres of aluminum oxide and superparamagnetic nanoparticles of iron oxides

    International Nuclear Information System (INIS)

    Braga, Tiago P.; Vasconcelos, Igor F.; Sasaki, Jose M.; Fabris, J.D.; Oliveira, Diana Q.L. de; Valentini, Antoninho

    2010-01-01

    Materials containing hybrid spheres of aluminum oxide and superparamagnetic nanoparticles of iron oxides were obtained from a chemical precursor prepared by admixing chitosan and iron and aluminum hydroxides. The oxides were first characterized with scanning electron microscopy, X-ray diffraction, and Moessbauer spectroscopy. Scanning electron microscopy micrographs showed the size distribution of the resulting spheres to be highly homogeneous. The occurrence of nano-composites containing aluminum oxides and iron oxides was confirmed from powder X-ray diffraction patterns; except for the sample with no aluminum, the superparamagnetic relaxation due to iron oxide particles were observed from Moessbauer spectra obtained at 298 and 110 K; the onset six line-spectrum collected at 20 K indicates a magnetic ordering related to the blocking relaxation effect for significant portion of small spheres in the sample with a molar ratio Al:Fe of 2:1.

  12. Design of digital load torque observer in hybrid electric vehicle

    Science.gov (United States)

    Sun, Yukun; Zhang, Haoming; Wang, Yinghai

    2008-12-01

    In hybrid electric vehicle, engine begain to work only when motor was in high speed in order to decrease tail gas emission. However, permanent magnet motor was sensitive to its load, adding engine to the system always made its speed drop sharply, which caused engine to work in low efficiency again and produced much more environment pollution. Dynamic load torque model of permanent magnet synchronous motor is established on the basic of motor mechanical equation and permanent magnet synchronous motor vector control theory, Full- digital load torque observer and compensation control system is made based on TMS320F2407A. Experiment results prove load torque observer and compensation control system can detect and compensate torque disturbing effectively, which can solve load torque disturbing and decrease gas pollution of hybrid electric vehicle.

  13. Dynamic Measurement of Tumor Vascular Permeability and Perfusion using a Hybrid System for Simultaneous Magnetic Resonance and Fluorescence Imaging.

    Science.gov (United States)

    Ren, Wuwei; Elmer, Andreas; Buehlmann, David; Augath, Mark-Aurel; Vats, Divya; Ripoll, Jorge; Rudin, Markus

    2016-04-01

    Assessing tumor vascular features including permeability and perfusion is essential for diagnostic and therapeutic purposes. The aim of this study was to compare fluorescence and magnetic resonance imaging (MRI)-based vascular readouts in subcutaneously implanted tumors in mice by simultaneous dynamic measurement of tracer uptake using a hybrid fluorescence molecular tomography (FMT)/MRI system. Vascular permeability was measured using a mixture of extravascular imaging agents, GdDOTA and the dye Cy5.5, and perfusion using a mixture of intravascular agents, Endorem and a fluorescent probe (Angiosense). Dynamic fluorescence reflectance imaging (dFRI) was integrated into the hybrid system for high temporal resolution. Excellent correspondence between uptake curves of Cy5.5/GdDOTA and Endorem/Angiosense has been found with correlation coefficients R > 0.98. The two modalities revealed good agreement regarding permeability coefficients and centers-of-gravity of the imaging agent distribution. The FMT/dFRI protocol presented is able to accurately map physiological processes and poses an attractive alternative to MRI for characterizing tumor neoangiogenesis.

  14. A Novel Method for Rapid Hybridization of DNA to a Solid Support

    Science.gov (United States)

    Pettersson, Erik; Ahmadian, Afshin; Ståhl, Patrik L.

    2013-01-01

    Here we present a novel approach entitled Magnetic Forced Hybridization (MFH) that provides the means for efficient and direct hybridization of target nucleic acids to complementary probes immobilized on a glass surface in less than 15 seconds at ambient temperature. In addition, detection is carried out instantly since the beads become visible on the surface. The concept of MFH was tested for quality control of array manufacturing, and was combined with a multiplex competitive hybridization (MUCH) approach for typing of Human Papilloma Virus (HPV). Magnetic Forced Hybridization of bead-DNA constructs to a surface achieves a significant reduction in diagnostic testing time. In addition, readout of results by visual inspection of the unassisted eye eliminates the need for additional expensive instrumentation. The method uses the same set of beads throughout the whole process of manipulating and washing DNA constructs prior to detection, as in the actual detection step itself. PMID:23950946

  15. Maximally localized Wannier functions in LaMnO3 within PBE + U, hybrid functionals and partially self-consistent GW: an efficient route to construct ab initio tight-binding parameters for eg perovskites.

    Science.gov (United States)

    Franchini, C; Kováčik, R; Marsman, M; Murthy, S Sathyanarayana; He, J; Ederer, C; Kresse, G

    2012-06-13

    Using the newly developed VASP2WANNIER90 interface we have constructed maximally localized Wannier functions (MLWFs) for the e(g) states of the prototypical Jahn-Teller magnetic perovskite LaMnO(3) at different levels of approximation for the exchange-correlation kernel. These include conventional density functional theory (DFT) with and without the additional on-site Hubbard U term, hybrid DFT and partially self-consistent GW. By suitably mapping the MLWFs onto an effective e(g) tight-binding (TB) Hamiltonian we have computed a complete set of TB parameters which should serve as guidance for more elaborate treatments of correlation effects in effective Hamiltonian-based approaches. The method-dependent changes of the calculated TB parameters and their interplay with the electron-electron (el-el) interaction term are discussed and interpreted. We discuss two alternative model parameterizations: one in which the effects of the el-el interaction are implicitly incorporated in the otherwise 'noninteracting' TB parameters and a second where we include an explicit mean-field el-el interaction term in the TB Hamiltonian. Both models yield a set of tabulated TB parameters which provide the band dispersion in excellent agreement with the underlying ab initio and MLWF bands.

  16. Evaluation of the magnetic properties of hybrids MnFe{sub 2}O{sub 4}/SiO{sub 2} /chitosan aiming its application as biosensors; Avaliacao das propriedades magneticas de hibridos MnFe{sub 2}O{sub 4}/SiO{sub 2}/quitosana visando sua aplicacao como biosensores

    Energy Technology Data Exchange (ETDEWEB)

    Leal, E.; Santos, P.T. A.; Costa, F.M., E-mail: elvialeal@gmail.com [Universidade Federal de Campina Grande (LabSMaC/UFCG), PB (Brazil). Laboratorio de Sintese de Materiais Ceramicos; Barbosa, D.C. [Universidade Federal de Alagoas (UFAL), Maceio, AL (Brazil). Instituto de Quimica e Biotecnologia; Cornejo, D.R. [Universidade de Sao Paulo (USP), SP (Brazil). Instituto de Fisica; Kiminami, R.H.G.A. [Universidade Federal de Sao Carlos (UFSCar), SP (Brazil). Departamento de Engenharia de Materiais

    2014-07-01

    Magnetic nanoparticles have potential application in biomedicine since their features allow a wide variety of applications, such as biosensors, drug carriers, destruction of tumor cells and magnetic separation of cells and proteins. Overlooking that, the proposal is to obtain the hybrid MnFe{sub 2}O{sub 4}/SiO{sub 2}/ chitosan, to evaluate it as its magnetic property, aiming to obtain a biocompatible hybrid for biological applications, such as, e.g., biosensors. The samples were analyzed by XRD, FTIR, SEM and magnetic measurements. The results revealed that the samples of pure MnFe{sub 2}O{sub 4}, silanized and with chitosan presented the formation of the spinel with crystallite sizes of 77, 80 and 79 nm, respectively. The FTIR spectra confirmed the presence of characteristic absorption bands of the spinel and groups present in silanol and chitosan, confirming the formation of the hybrid. The silane introduction kept the ferrimagnetic characteristic of the material and led to a slight increase in the saturation magnetization, going from 55 to 61 emu/g. (author)

  17. [Possibilities of a software-based hybrid single photon emission computed tomography/magnetic resonance imaging in the diagnosis of complicated diabetic foot syndrome].

    Science.gov (United States)

    Zavadovskaya, V D; Zorkal'tsev, M A; Udodov, V D; Zamyshevskaya, M A; Kilina, O Yu; Kurazhov, A P; Popov, K M

    2015-01-01

    To give the results of a software-based hybrid single photon emission computed tomography/magnetic resonance imaging (SPECT/MRI) in detecting osteomyelitis (OM) in patients with diabetic foot syndrome (DFS). Seventy-six patients (35 men and 41 women) (mean age, 59.4 +/- 7.1 years) with type 1 and 2 diabetes mellitus and suspected OM were examined. The investigation enrolled patients with neuropathic (n = 25), ischemic (n = 13), and mixed (n = 38) DFS. All the patients underwent (99m)Tc-HMPAO/ (99m)Tc-technefit labeled leukocyte scintigraphy; magnetic resonance imaging was performed in 30 patients. The results were combined using RView 9.06 software (Colin Studholme). Labeled leukocyte SPECT to Diagnose OM yielded 255 true positive (TP), 38 true negative (TN), 12 false negative (FP), and 1 false negative (FN) results. The accuracy of the technique was 82.9%. The FP results were due to the low resolution of the technique and to the small sizes of the object under study. One FN result was detected in a patient with ischemic DFS because of reduced blood flow. MRI to identify OM in patients with DFS provided 20 TP, 16 TN, 4 FP, and 2 FN results. Its diagnostic accuracy was 85.7%. The relative low specificity of MRI was associated with the presence of FP results due to the complexity of differential diagnosis of bone marrow edema and inflammatory infiltration. Assessing 42 hybrid SPECT/MR-images revealed 21 TP, 17 TN, 3 FP, and I FN results. The diagnostic accuracy was equal to 95.9%. Thus, comparing MRI (90.9% sensitivity and 80.0% specificity), labeled leukocyte scintigraphy (96.2% sensitivity and 76.0% specificity), and hybrid SPECT/MRI (95.5% sensitivity and 85.0% specificity) showed the high diagnostic efficiency of the latter.

  18. Recent Advances on Hybrid Intelligent Systems

    CERN Document Server

    Melin, Patricia; Kacprzyk, Janusz

    2013-01-01

    This book presents recent advances on hybrid intelligent systems using soft computing techniques for intelligent control and robotics, pattern recognition, time series prediction and optimization of complex problems. Soft Computing (SC) consists of several intelligent computing paradigms, including fuzzy logic, neural networks, and bio-inspired optimization algorithms, which can be used to produce powerful hybrid intelligent systems. The book is organized in five main parts, which contain groups of papers around a similar subject. The first part consists of papers with the main theme of hybrid intelligent systems for control and robotics, which are basically state of the art papers that propose new models and concepts, which can be the basis for achieving intelligent control and mobile robotics. The second part contains papers with the main theme of hybrid intelligent systems for pattern recognition and time series prediction, which are basically papers using nature-inspired techniques, like evolutionary algo...

  19. Experimental study on heat transfer augmentation of graphene based ferrofluids in presence of magnetic field

    DEFF Research Database (Denmark)

    Sadeghinezhad, Emad; Mehrali, Mohammad; Akhiani, Amir Reza

    2017-01-01

    The effect of a permanent magnetic field on the heat transfer characteristics of hybrid graphene-magnetite nanofluids (hybrid nanofluid) under forced laminar flow was experimentally investigated. For this purpose, a reduced graphene oxide-Fe3O4 was synthesized by using two-dimensional (2D) graphene...... and it shows that the thermal conductivity increased up to 11%. The hybrid nanofluid behaves as a Newtonian fluid with liquid like behavior with superparamagnetic properties as was evident from its magnetic saturation value at 45.9 emu/g. Moreover, the experimental heat-transfer results indicated that the heat...... transfer enhancement of the hybrid nanofluid compared to the control fluid (distilled water) was negligible when no magnetic field was applied. Additionally, the convective heat transfer was significantly improved under the influence of a magnetic field with a maximum enhancement of 82% in terms...

  20. Measurement of radiation induced transients in hybrid microcircuits by magnetic thin film sensor/recorders

    International Nuclear Information System (INIS)

    Hsieh, E.J.; Vindelov, K.E.; Brown, T.G.; Miller, D.E.

    1976-01-01

    Magnetic thin film transient current sensor/recorders were modified to make two types of nuclear test measurements, transient currents in hybrid microcircuits and internal electromagnetic pulse (IEMP) fields. The measurements were made possible by the invention of split-domain sensor/recorders which can measure bilateral currents and can be reset and readout on location. The sensor/recorders were used in two underground nuclear tests and numerous calibration tests in radiation-simulation machines. The data showed that the nuclear environment had negligible effect on the sensor/recorder's operation and the recorded informations on the sensor/recorders were the signals intended to be monitored. Also, the experimental data agreed with the theoretical analysis in controlled experiments. The data were examined first by on location readout with a magnetic tape viewer and later by Kerr magneto-optic readout in the laboratory. To translate the data into current readings, we reconstructed facsimile data (on each of the sensor/recorders) in the laboratory by current pulses with the same pulse width as the radiation event. An additional check on the accuracy of the data was made by using both the sensor/recorder and the conventional pickup-oscilloscope-camera technique to monitor the same current lead in a simulated radiation environment. Over five runs were made, and the agreement among the two measurement methods was within 25%. The data collectively implied that the measurements were reliable and dependable

  1. Self-consistent modeling of the dynamic evolution of magnetic island growth in the presence of stabilizing electron-cyclotron current drive

    International Nuclear Information System (INIS)

    Chatziantonaki, Ioanna; Tsironis, Christos; Isliker, Heinz; Vlahos, Loukas

    2013-01-01

    The most promising technique for the control of neoclassical tearing modes in tokamak experiments is the compensation of the missing bootstrap current with an electron-cyclotron current drive (ECCD). In this frame, the dynamics of magnetic islands has been studied extensively in terms of the modified Rutherford equation (MRE), including the presence of a current drive, either analytically described or computed by numerical methods. In this article, a self-consistent model for the dynamic evolution of the magnetic island and the driven current is derived, which takes into account the island's magnetic topology and its effect on the current drive. The model combines the MRE with a ray-tracing approach to electron-cyclotron wave-propagation and absorption. Numerical results exhibit a decrease in the time required for complete stabilization with respect to the conventional computation (not taking into account the island geometry), which increases by increasing the initial island size and radial misalignment of the deposition. (paper)

  2. Self-consistent modeling of the dynamic evolution of magnetic island growth in the presence of stabilizing electron-cyclotron current drive

    Science.gov (United States)

    Chatziantonaki, Ioanna; Tsironis, Christos; Isliker, Heinz; Vlahos, Loukas

    2013-11-01

    The most promising technique for the control of neoclassical tearing modes in tokamak experiments is the compensation of the missing bootstrap current with an electron-cyclotron current drive (ECCD). In this frame, the dynamics of magnetic islands has been studied extensively in terms of the modified Rutherford equation (MRE), including the presence of a current drive, either analytically described or computed by numerical methods. In this article, a self-consistent model for the dynamic evolution of the magnetic island and the driven current is derived, which takes into account the island's magnetic topology and its effect on the current drive. The model combines the MRE with a ray-tracing approach to electron-cyclotron wave-propagation and absorption. Numerical results exhibit a decrease in the time required for complete stabilization with respect to the conventional computation (not taking into account the island geometry), which increases by increasing the initial island size and radial misalignment of the deposition.

  3. Design and fabrication of a hybrid maglev model employing PML and SML

    Science.gov (United States)

    Sun, R. X.; Zheng, J.; Zhan, L. J.; Huang, S. Y.; Li, H. T.; Deng, Z. G.

    2017-10-01

    A hybrid maglev model combining permanent magnet levitation (PML) and superconducting magnetic levitation (SML) was designed and fabricated to explore a heavy-load levitation system advancing in passive stability and simple structure. In this system, the PML was designed to levitate the load, and the SML was introduced to guarantee the stability. In order to realize different working gaps of the two maglev components, linear bearings were applied to connect the PML layer (for load) and the SML layer (for stability) of the hybrid maglev model. Experimental results indicate that the hybrid maglev model possesses excellent advantages of heavy-load ability and passive stability at the same time. This work presents a possible way to realize a heavy-load passive maglev concept.

  4. Optimization of autonomous magnetic field sensor consisting of giant magnetoimpedance sensor and surface acoustic wave transducer

    KAUST Repository

    Li, Bodong; Morsy, Ahmed Mohamed Aly; Kosel, Jü rgen

    2012-01-01

    This paper presents a novel autonomous thin film magnetic field sensor consisting of a tri-layer giant magnetoimpedance sensor and a surface acoustic wave transponder. Double and single electrode interdigital transducer (IDT) designs are employed and compared. The integrated sensor is fabricated using standard microfabrication technology. The results show the double electrode IDT has an advantage in terms of the sensitivity. In order to optimize the matching component, a simulation based on P-matrix is carried out. A maximum change of 2.4 dB of the reflection amplitude and a sensitivity of 0.34 dB/Oe are obtained experimentally. © 2012 IEEE.

  5. Optimization of autonomous magnetic field sensor consisting of giant magnetoimpedance sensor and surface acoustic wave transducer

    KAUST Repository

    Li, Bodong

    2012-11-01

    This paper presents a novel autonomous thin film magnetic field sensor consisting of a tri-layer giant magnetoimpedance sensor and a surface acoustic wave transponder. Double and single electrode interdigital transducer (IDT) designs are employed and compared. The integrated sensor is fabricated using standard microfabrication technology. The results show the double electrode IDT has an advantage in terms of the sensitivity. In order to optimize the matching component, a simulation based on P-matrix is carried out. A maximum change of 2.4 dB of the reflection amplitude and a sensitivity of 0.34 dB/Oe are obtained experimentally. © 2012 IEEE.

  6. Single-Step Incubation Determination of miRNAs in Cancer Cells Using an Amperometric Biosensor Based on Competitive Hybridization onto Magnetic Beads

    Directory of Open Access Journals (Sweden)

    Eva Vargas

    2018-03-01

    Full Text Available This work reports an amperometric biosensor for the determination of miRNA-21, a relevant oncogene. The methodology involves a competitive DNA-target miRNA hybridization assay performed on the surface of magnetic microbeads (MBs and amperometric transduction at screen-printed carbon electrodes (SPCEs. The target miRNA competes with a synthetic fluorescein isothiocyanate (FITC-modified miRNA with an identical sequence for hybridization with a biotinylated and complementary DNA probe (b-Cp immobilized on the surface of streptavidin-modified MBs (b-Cp-MBs. Upon labeling, the FITC-modified miRNA attached to the MBs with horseradish peroxidase (HRP-conjugated anti-FITC Fab fragments and magnetic capturing of the MBs onto the working electrode surface of SPCEs. The cathodic current measured at −0.20 V (versus the Ag pseudo-reference electrode was demonstrated to be inversely proportional to the concentration of the target miRNA. This convenient biosensing method provided a linear range between 0.7 and 10.0 nM and a limit of detection (LOD of 0.2 nM (5 fmol in 25 μL of sample for the synthetic target miRNA without any amplification step. An acceptable selectivity towards single-base mismatched oligonucleotides, a high storage stability of the b-Cp-MBs, and usefulness for the accurate determination of miRNA-21 in raw total RNA (RNAt extracted from breast cancer cells (MCF-7 were demonstrated.

  7. Polyfunctional inorganic-organic hybrid materials: an unusual kind of NLO active layered mixed metal oxalates with tunable magnetic properties and very large second harmonic generation.

    Science.gov (United States)

    Cariati, Elena; Macchi, Roberto; Roberto, Dominique; Ugo, Renato; Galli, Simona; Casati, Nicola; Macchi, Piero; Sironi, Angelo; Bogani, Lapo; Caneschi, Andrea; Gatteschi, Dante

    2007-08-01

    Mixed M(II)/M(III) metal oxalates, as "stripes" connected through strong hydrogen bonding by para-dimethylaminobenzaldeide (DAMBA) and water, form an organic-inorganic 2D network that enables segregation in layers of the cationic organic NLO-phore trans-4-(4-dimethylaminostyryl)-1-methylpyridinium, [DAMS+]. The crystalline hybrid materials obtained have the general formula [DAMS]4[M2M'(C2O4)6].2DAMBA.2H2O (M = Rh, Fe, Cr; M' = Mn, Zn), and their overall three-dimensional packing is non-centrosymmetric and polar, therefore suitable for second harmonic generation (SHG). All the compounds investigated are characterized by an exceptional SHG activity, due both to the large molecular quadratic hyperpolarizability of [DAMS+] and to the efficiency of the crystalline network which organizes [DAMS+] into head-to-tail arranged J-type aggregates. The tunability of the pairs of metal ions allows exploiting also the magnetic functionality of the materials. Examples containing antiferro-, ferro-, and ferri-magnetic interactions (mediated by oxalato bridges) are obtained by coupling proper M(III) ions (Fe, Cr, Rh) with M(II) (Mn, Zn). This shed light on the role of weak next-nearest-neighbor interactions and main nearest-neighbor couplings along "stripes" of mixed M(II)/M(III) metal oxalates of the organic-inorganic 2D network, thus suggesting that these hybrid materials may display isotropic 1D magnetic properties along the mixed M(II)/M(III) metal oxalates "stripes".

  8. One dimensional spatial resolution optimization on a hybrid low field MRI-gamma detector

    Energy Technology Data Exchange (ETDEWEB)

    Agulles-Pedrós, L., E-mail: lagullesp@unal.edu.co; Abril, A., E-mail: ajabrilf@unal.edu.co [Medical Physics Group, Physics Department, Universidad Nacional de Colombia, Bogotá (Colombia)

    2016-07-07

    Hybrid systems like Positron Emission Tomography/Magnetic Resonance Imaging (PET/MRI) and MRI/gamma camera, offer advantages combining the resolution and contrast capability of MRI with the better contrast and functional information of nuclear medicine techniques. However, the radiation detectors are expensive and need an electronic set-up, which can interfere with the MRI acquisition process or viceversa. In order to improve these drawbacks, in this work it is presented the design of a low field NMR system made up of permanent magnets compatible with a gamma radiation detector based on gel dosimetry. The design is performed using the software FEMM for estimation of the magnetic field, and GEANT4 for the physical process involved in radiation detection and effect of magnetic field. The homogeneity in magnetic field is achieved with an array of NbFeB magnets in a linear configuration with a separation between the magnets, minimizing the effect of Compton back scattering compared with a no-spacing linear configuration. The final magnetic field in the homogeneous zone is ca. 100 mT. In this hybrid proposal, although the gel detector do not have spatial resolution per se, it is possible to obtain a dose profile (1D image) as a function of the position by using a collimator array. As a result, the gamma detector system described allows a complete integrated radiation detector within the low field NMR (lfNMR) system. Finally we present the better configuration for the hybrid system considering the collimator parameters such as height, thickness and distance.

  9. High magnetic fields science and technology

    CERN Document Server

    Miura, Noboru

    2003-01-01

    This three-volume book provides a comprehensive review of experiments in very strong magnetic fields that can only be generated with very special magnets. The first volume is entirely devoted to the technology of laboratory magnets: permanent, superconducting, high-power water-cooled and hybrid; pulsed magnets, both nondestructive and destructive (megagauss fields). Volumes 2 and 3 contain reviews of the different areas of research where strong magnetic fields are an essential research tool. These volumes deal primarily with solid-state physics; other research areas covered are biological syst

  10. Low-frequency electrostatic dust-modes in a nonuniform magnetized dusty plasma

    International Nuclear Information System (INIS)

    Paul, S.K.; Duha, S.S.; Mamun, A.A.

    2004-07-01

    A self-consistent and general description of obliquely propagating low frequency electrostatic dust-modes in a inhomogeneous, magnetized dusty plasma system has been presented. A number of different situations, which correspond to different low-frequency electrostatic dust-modes, namely, dust-acoustic mode, dust-drift mode, dust-cyclotron mode, dust-lower-hybrid mode, and other associated modes (such as, accelerated and retarded dust-acoustic modes, accelerated and retarded dust-lower-hybrid modes, etc.), have also been investigated. It has been shown that the effects of obliqueness and inhomogeneities in plasma particle number densities introduce new electrostatic dust modes as well as significantly modify the dispersion properties of the other low-frequency electrostatic dust-modes. The implications of these results to some space and astrophysical dusty plasma systems, especially to planetary ring-systems and cometary tails, are briefly mentioned. (author)

  11. Performance Comparison of Permanent Magnet Linear Actuators of Different Mover Types

    DEFF Research Database (Denmark)

    Ritchie, Ewen; Hinov, K.; Yatchev, I.

    2006-01-01

    A comparative study of permanent magnet linear actuators with different location of the permanent magnet is reported. Three mover types are considered - soft magnetic mover, permanent magnet mover and hybrid mover. Force-stroke characteristics are obtained with the help of finite element models...

  12. Designing magnetic composite materials using aqueous magnetic fluids

    CERN Document Server

    Galicia, J A; Cousin, F; Guemghar, D; Menager, C; Cabuil, V

    2003-01-01

    In this paper, we report on how to take advantage of good knowledge of both the chemistry and the stability of an aqueous magnetic colloidal suspension to realize different magnetic composites. The osmotic pressure of the magnetic nanoparticles is set prior to the realization of the composite to a given value specially designed for the purpose for each hybrid material: magnetic particles in polymer networks, particles as probes for studying the structure of clay suspensions and shape modification of giant liposomes. First, we show that the introduction of magnetic particles in polyacrylamide gels enhances their Young modulus and reduces the swelling caused by water. The particles cause both a mechanical and an osmotic effect. The latter is strongly dependent on the ionic strength and is attributed to an attraction between particles and the polymeric matrix. In the second part, we determine the microscopic structure of suspensions of laponite as a function of concentration, by combining SANS and magneto-optica...

  13. Coupled spin, elastic and charge dynamics in magnetic nanostructures

    NARCIS (Netherlands)

    Kamra, A.

    2015-01-01

    In this Thesis, I address the interaction of magnetic degrees of freedom with charge current and elastic dynamics in hybrid systems composed of magnetic and non-magnetic materials. The objective, invariably, is to control and study spin dynamics using charge and elastic degrees of freedom. In

  14. THREE-DIMENSIONAL ATMOSPHERIC CIRCULATION MODELS OF HD 189733b AND HD 209458b WITH CONSISTENT MAGNETIC DRAG AND OHMIC DISSIPATION

    International Nuclear Information System (INIS)

    Rauscher, Emily; Menou, Kristen

    2013-01-01

    We present the first three-dimensional circulation models for extrasolar gas giant atmospheres with geometrically and energetically consistent treatments of magnetic drag and ohmic dissipation. Atmospheric resistivities are continuously updated and calculated directly from the flow structure, strongly coupling the magnetic effects with the circulation pattern. We model the hot Jupiters HD 189733b (T eq ≈ 1200 K) and HD 209458b (T eq ≈ 1500 K) and test planetary magnetic field strengths from 0 to 30 G. We find that even at B = 3 G the atmospheric structure and circulation of HD 209458b are strongly influenced by magnetic effects, while the cooler HD 189733b remains largely unaffected, even in the case of B = 30 G and super-solar metallicities. Our models of HD 209458b indicate that magnetic effects can substantially slow down atmospheric winds, change circulation and temperature patterns, and alter observable properties. These models establish that longitudinal and latitudinal hot spot offsets, day-night flux contrasts, and planetary radius inflation are interrelated diagnostics of the magnetic induction process occurring in the atmospheres of hot Jupiters and other similarly forced exoplanets. Most of the ohmic heating occurs high in the atmosphere and on the dayside of the planet, while the heating at depth is strongly dependent on the internal heat flux assumed for the planet, with more heating when the deep atmosphere is hot. We compare the ohmic power at depth in our models, and estimates of the ohmic dissipation in the bulk interior (from general scaling laws), to evolutionary models that constrain the amount of heating necessary to explain the inflated radius of HD 209458b. Our results suggest that deep ohmic heating can successfully inflate the radius of HD 209458b for planetary magnetic field strengths of B ≥ 3-10 G.

  15. PHOTOSPHERE EMISSION FROM A HYBRID RELATIVISTIC OUTFLOW WITH ARBITRARY DIMENSIONLESS ENTROPY AND MAGNETIZATION IN GRBs

    Energy Technology Data Exchange (ETDEWEB)

    Gao, He [Current address: Department of Astronomy and Astrophysics, Department of Physics, Center for Particle Astrophysics, Pennsylvania State University, University Park, PA 16802 (United States); Zhang, Bing, E-mail: gaohe@physics.unlv.edu, E-mail: zhang@physics.unlv.edu, E-mail: hug18@psu.edu [Department of Physics and Astronomy, University of Nevada, Las Vegas, NV 89154 (United States)

    2015-03-10

    In view of the recent Fermi observations of gamma-ray burst (GRB) prompt emission spectra, we develop a theory of photosphere emission of a hybrid relativistic outflow with a hot fireball component (defined by dimensionless entropy η) and a cold Poynting-flux component (defined by magnetization σ{sub 0} at the central engine). We consider the scenarios both without and with sub-photospheric magnetic dissipations. Based on a simplified toy model of jet dynamics, we develop two approaches: a 'bottom-up' approach to predict the temperature (for a non-dissipative photosphere) and luminosity of the photosphere emission and its relative brightness for a given pair of (η, σ{sub 0}); and a 'top-down' approach to diagnose central engine parameters (η and σ{sub 0}) based on the observed quasi-thermal photosphere emission properties. We show that a variety of observed GRB prompt emission spectra with different degrees of photosphere thermal emission can be reproduced by varying η and σ{sub 0} within the non-dissipative photosphere scenario. In order to reproduce the observed spectra, the outflows of most GRBs need to have a significant σ, both at the central engine and at the photosphere. The σ value at 10{sup 15} cm from the central engine (a possible non-thermal emission site) is usually also greater than unity, so that internal-collision-induced magnetic reconnection and turbulence (ICMART) may be the mechanism to power the non-thermal emission. We apply our top-down approach to GRB 110721A and find that the temporal evolution behavior of its blackbody component can be well interpreted with a time-varying (η, σ{sub 0}) at the central engine, instead of invoking a varying engine base size r {sub 0} as proposed by previous authors.

  16. Hybrid micro-particles as a magnetically-guidable decontaminant for cesium-eluted ash slurry

    Science.gov (United States)

    Namiki, Yoshihisa; Ueyama, Toshihiko; Yoshida, Takayuki; Watanabe, Ryoei; Koido, Shigeo; Namiki, Tamami

    2014-09-01

    Decontamination of the radioactive cesium that is widely dispersed owing to a nuclear power station accident and concentrated in fly ash requires an effective elimination system. Radioactive fly ash contains large amounts of water-soluble cesium that can cause severe secondary contamination and represents a serious health risk, yet its complete removal is complicated and difficult. Here it is shown that a new fine-powder formulation can be magnetically guided to eliminate cesium after being mixed with the ash slurry. This formulation, termed MagCE, consists of a ferromagnetic porous structure and alkaline- and salt-resistant nickel ferrocyanide. It has potent cesium-adsorption- and magnetic-separation-properties. Because of its resistance against physical and chemical attack such as with ash particles, as well as with the high pH and salt concentration of the ash slurry, MagCE simplifies the decontamination process without the need of the continued presence of the hazardous water-soluble cesium in the treated ash.

  17. Insight and Evidence Motivating the Simplification of Dual-Analysis Hybrid Systems into Single-Analysis Hybrid Systems

    Science.gov (United States)

    Todling, Ricardo; Diniz, F. L. R.; Takacs, L. L.; Suarez, M. J.

    2018-01-01

    Many hybrid data assimilation systems currently used for NWP employ some form of dual-analysis system approach. Typically a hybrid variational analysis is responsible for creating initial conditions for high-resolution forecasts, and an ensemble analysis system is responsible for creating sample perturbations used to form the flow-dependent part of the background error covariance required in the hybrid analysis component. In many of these, the two analysis components employ different methodologies, e.g., variational and ensemble Kalman filter. In such cases, it is not uncommon to have observations treated rather differently between the two analyses components; recentering of the ensemble analysis around the hybrid analysis is used to compensated for such differences. Furthermore, in many cases, the hybrid variational high-resolution system implements some type of four-dimensional approach, whereas the underlying ensemble system relies on a three-dimensional approach, which again introduces discrepancies in the overall system. Connected to these is the expectation that one can reliably estimate observation impact on forecasts issued from hybrid analyses by using an ensemble approach based on the underlying ensemble strategy of dual-analysis systems. Just the realization that the ensemble analysis makes substantially different use of observations as compared to their hybrid counterpart should serve as enough evidence of the implausibility of such expectation. This presentation assembles numerous anecdotal evidence to illustrate the fact that hybrid dual-analysis systems must, at the very minimum, strive for consistent use of the observations in both analysis sub-components. Simpler than that, this work suggests that hybrid systems can reliably be constructed without the need to employ a dual-analysis approach. In practice, the idea of relying on a single analysis system is appealing from a cost-maintenance perspective. More generally, single-analysis systems avoid

  18. Effect of orbital hybridization on spin-polarized tunneling across Co/C60 interfaces

    NARCIS (Netherlands)

    Wang, Kai; Strambini, Elia; Sanderink, Johannes G.M.; Bolhuis, Thijs; van der Wiel, Wilfred Gerard; de Jong, Machiel Pieter

    2016-01-01

    The interaction between ferromagnetic surfaces and organic semiconductors leads to the formation of hybrid interfacial states. As a consequence, the local magnetic moment is altered, a hybrid interfacial density of states (DOS) is formed, and spin-dependent shifts of energy levels occur. Here, we

  19. Hybrid polymer composite membrane for an electromagnetic (EM) valveless micropump

    Science.gov (United States)

    Said, Muzalifah Mohd; Yunas, Jumril; Bais, Badariah; Azlan Hamzah, Azrul; Yeop Majlis, Burhanuddin

    2017-07-01

    In this paper, we report on a hybrid membrane used as an actuator in an electromagnetically driven valveless micropump developed using MEMS processes. The membrane structure consists of the combination of a magnetic polymer composite membrane and an attached bulk permanent magnet which is expected to have a compact structure and a strong magnetic force with maintained membrane flexibility. A soft polymeric material made of polydimethylsiloxane (PDMS) is initially mixed with neodymium magnetic particles (NdFeB) to form a magnetic polymer composite membrane. The membrane is then bonded with the PDMS based microfluidic part, developed using soft lithography process. The developed micropump was tested in terms of the actuator membrane deflection capability and the fluidic flow of the injected fluid sample through the microfluidic channel. The experimental results show that the magnetic composite actuator membrane with an attached bulk permanent magnet is capable of producing a maximum membrane deflection of up to 106 µm. The functionality test of the electromagnetic (EM) actuator for fluid pumping purposes was done by supplying an AC voltage with various amplitudes, signal waves and frequencies. A wide range of sample injection rates from a few µl min-1 to tens of nl min-1 was achieved with a maximum flow rate of 6.6 µl min-1. The injection flow rate of the EM micropump can be controlled by adjusting the voltage amplitude and frequency supplied to the EM coil, to control the membrane deflection in the pump chamber. The designed valveless EM micropump has a very high potential to enhance the drug delivery system capability in biomedical applications.

  20. Consistent energy barrier distributions in magnetic particle chains

    International Nuclear Information System (INIS)

    Laslett, O.; Ruta, S.; Chantrell, R.W.; Barker, J.; Friedman, G.; Hovorka, O.

    2016-01-01

    We investigate long-time thermal activation behaviour in magnetic particle chains of variable length. Chains are modelled as Stoner–Wohlfarth particles coupled by dipolar interactions. Thermal activation is described as a hopping process over a multidimensional energy landscape using the discrete orientation model limit of the Landau–Lifshitz–Gilbert dynamics. The underlying master equation is solved by diagonalising the associated transition matrix, which allows the evaluation of distributions of time scales of intrinsic thermal activation modes and their energy representation. It is shown that as a result of the interaction dependence of these distributions, increasing the particle chain length can lead to acceleration or deceleration of the overall relaxation process depending on the initialisation procedure.

  1. Parametric systems analysis for ICF hybrid reactors

    International Nuclear Information System (INIS)

    Berwald, D.H.; Maniscalco, J.A.; Chapin, D.L.

    1981-01-01

    Parametric design and systems analysis for inertial confinement fusion-fission hybrids are presented. These results were generated as part of the Electric Power Research Institute (EPRI) sponsored Feasibility Assessment of Fusion-Fission Hybrids, using an Inertial Confinement Fusion (ICF) hybrid power plant design code developed in conjunction with the feasibility assessment. The SYMECON systems analysis code, developed by Westinghouse, was used to generate economic results for symbiotic electricity generation systems consisting of the hybrid and its client Light Water Reactors (LWRs). These results explore the entire fusion parameter space for uranium fast fission blanket hybrids, thorium fast fission blanket hybrids, and thorium suppressed fission blanket types are discussed, and system sensitivities to design uncertainties are explored

  2. MMS Observations of Ion-Scale Magnetic Island in the Magnetosheath Turbulent Plasma

    Science.gov (United States)

    Huang, S. Y.; Sahraoui, F.; Retino, A.; Contel, O. Le; Yuan, Z. G.; Chasapis, A.; Aunai, N.; Breuillard, H.; Deng, X. H.; Zhou, M.; hide

    2016-01-01

    In this letter, first observations of ion-scale magnetic island from the Magnetospheric Multiscale mission in the magnetosheath turbulent plasma are presented. The magnetic island is characterized by bipolar variation of magnetic fields with magnetic field compression, strong core field, density depletion, and strong currents dominated by the parallel component to the local magnetic field. The estimated size of magnetic island is about 8 di, where di is the ion inertial length. Distinct particle behaviors and wave activities inside and at the edges of the magnetic island are observed: parallel electron beam accompanied with electrostatic solitary waves and strong electromagnetic lower hybrid drift waves inside the magnetic island and bidirectional electron beams, whistler waves, weak electromagnetic lower hybrid drift waves, and strong broadband electrostatic noise at the edges of the magnetic island. Our observations demonstrate that highly dynamical, strong wave activities and electron-scale physics occur within ion-scale magnetic islands in the magnetosheath turbulent plasma..

  3. Tailoring the magnetic properties and thermal stability of FeSiAl-Al{sub 2}O{sub 3} thin films fabricated by hybrid oblique gradient-composition sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Xiaoxi, E-mail: xiaoxi.zhong@gmail.com [Sichuan Province Key Laboratory of Information Materials and Devices Application, Chengdu University of Information Technology, Chengdu 610225 (China); Phuoc, Nguyen N. [Temasek Laboratories, National University of Singapore, 5A Engineering Drive 2, 117411 Singapore (Singapore); Soh, Wee Tee [Center for Superconducting and Magnetic Materials, Department of Physics, National University of Singapore, 2 Science Drive3, 117542 Singapore (Singapore); Ong, C.K. [Temasek Laboratories, National University of Singapore, 5A Engineering Drive 2, 117411 Singapore (Singapore); Center for Superconducting and Magnetic Materials, Department of Physics, National University of Singapore, 2 Science Drive3, 117542 Singapore (Singapore); Peng, Long; Li, Lezhong [Sichuan Province Key Laboratory of Information Materials and Devices Application, Chengdu University of Information Technology, Chengdu 610225 (China)

    2017-05-01

    In this study, we systematically investigate the dynamic magnetic properties of FeSiAl-Al{sub 2}O{sub 3} thin films fabricated by hybrid oblique gradient-composition sputtering technique with respect to temperature ranging from 300 K to 420 K. The magnetic anisotropy field H{sub K} and ferromagnetic resonance frequency f{sub FMR} can be tuned from 14.06 to 110.18 Oe and 1.05–3.05 GHz respectively, by changing the oblique angle, which can be interpreted in terms of the contribution of stress-induced anisotropy and shape anisotropy. In addition, the thermal stability of FeSiAl-Al{sub 2}O{sub 3} films in terms of magnetic anisotropy H{sub K} and ferromagnetic resonance frequency f{sub FMR} are enhanced with the increase of oblique angle up to 35° while the thermal stability of effective Gilbert damping factor α{sub eff} and the maximum imaginary permeability μ’’{sub max} are improved with the increase of oblique angle up to 45°. - Highlights: • We prepared FeSiAl-based thin films using hybrid oblique gradient-composition deposition technique. • The microwave properties of FeSiAl-based thin films were systematically studied. • The thermal stability of microwave properties of FeSiAl-based films was studied. • The permeabilities were got using shorted micro-strip transmission-line perturbation. • The thermal stability of properties we studied is relatively good.

  4. Electric control of magnetism in low-dimensional magnets on ferroelectric surfaces

    Directory of Open Access Journals (Sweden)

    Dorj Odkhuu

    2017-05-01

    Full Text Available Employing first-principles electronic structure calculations, we have studied the electric field controls of magnetism and magnetic anisotropy energy (MAE of the Fe adatoms on ferroelectric BaTiO3 and PbTiO3 surfaces. Remarkably, those effects exhibit dependence of the level of coverage as well as adsorption site of Fe atoms. While the magnitude of MAE is shown tunable by ferroelectric polarization in the full coverage of Fe monolayer, the direction of magnetization undergoes a transition from perpendicular to in-plane for the half or lower coverages. This magnetization reorientation is mainly ascribed to the site-dependent Fe d–O p hybridization, as a consequence of the formation of FeTiO2 layer at the surface.

  5. Tuning the hybridization and magnetic ground state of electron and hole doped CeOs2Al10 : An x-ray spectroscopy study

    Science.gov (United States)

    Chen, Kai; Sundermann, Martin; Strigari, Fabio; Kawabata, Jo; Takabatake, Toshiro; Tanaka, Arata; Bencok, Peter; Choueikani, Fadi; Severing, Andrea

    2018-04-01

    Here we present linear and circular polarized soft x-ray absorption spectroscopy (XAS) data at the Ce M4 ,5 edges of the electron (Ir) and hole-doped (Re) Kondo semiconductor CeOs2Al10 . Both substitutions have a strong impact on the unusual high Néel temperature TN=28.5 K, and also the direction of the ordered moment in case of Ir. The substitution dependence of the linear dichroism is weak thus validating the crystal-field description of CeOs2Al10 being representative for the Re and Ir substituted compounds. The impact of electron and hole doping on the hybridization between conduction and 4 f electrons is related to the amount of f0 in the ground state and reduction of x-ray magnetic circular dichroism. A relationship of c f -hybridization strength and enhanced TN is discussed. The direction and doping dependence of the circular dichroism strongly supports the idea of strong Kondo screening along the crystallographic a direction.

  6. Design and implementation of a hybrid electric motorcycle

    Energy Technology Data Exchange (ETDEWEB)

    Tong, C.C.; Jwo, W.S.; Chien, W.L.; Liu, Y.L.; Chen, S.W.; Hsu, C.Y. [Chienkuo Technology Univ., Changhua, Taiwan (China). Dept. of Electrical Engineering

    2005-07-01

    A hybrid electric motorcycle (HEM) was described. The HEM was developed from a modified 50 cc motorcycle currently available on the market. The motorcycle gearbox was attached to the back wheel. A master-slave tracking control method was used to expedite the HEM's development phases and cost. A 600 watt DC servo-motor was used to track the speed of the rear wheel of the HEM as well as to increase torque. The real time master-slave composite was comprised of a gearbox, a frequency-voltage converter, and a proportional, integrative, and derivative (PID) speed tracking controller. The frequency-voltage converter was used to convert the frequency signals of the rear wheels and electric motor rotational speeds into voltage signals. A Hall was used to sense 4 permanent magnets place along the rear wheel. A Schmitt trigger gate was used to detect signals from the rear wheel. An actuation system consisted of a motor driving circuit, a current-limiting protection circuit, and a low battery voltage protection circuit. It was concluded that the HEM design is both feasible and highly marketable. Artificial intelligence will be used to build a high performance hybrid motorcycle in the future. 10 refs., 1 tab., 11 figs.

  7. New possibility of magnetic ripple shielding for specific heat measurements in hybrid magnets

    NARCIS (Netherlands)

    Tarnawski, Z.; Meulen, der, H. van; Franse, J.J.M.; Kadowaki, K.; Veenhuizen, P.A.; Klaasse, J.

    1988-01-01

    A test of the new high Tc superconducting materials for magnetic ripple shielding has been carried out. It was found that magnetic ripples of 0.0009 T (peak-to-peak) in the frequency range below 20 kHz can be completely shielded in high static fields by a 2 mm thick Y-Ba-Cu-O screen.

  8. Quantitative magneto-optical investigation of superconductor/ferromagnet hybrid structures.

    Science.gov (United States)

    Shaw, G; Brisbois, J; Pinheiro, L B G L; Müller, J; Blanco Alvarez, S; Devillers, T; Dempsey, N M; Scheerder, J E; Van de Vondel, J; Melinte, S; Vanderbemden, P; Motta, M; Ortiz, W A; Hasselbach, K; Kramer, R B G; Silhanek, A V

    2018-02-01

    We present a detailed quantitative magneto-optical imaging study of several superconductor/ferromagnet hybrid structures, including Nb deposited on top of thermomagnetically patterned NdFeB and permalloy/niobium with erasable and tailored magnetic landscapes imprinted in the permalloy layer. The magneto-optical imaging data are complemented with and compared to scanning Hall probe microscopy measurements. Comprehensive protocols have been developed for calibrating, testing, and converting Faraday rotation data to magnetic field maps. Applied to the acquired data, they reveal the comparatively weaker magnetic response of the superconductor from the background of larger fields and field gradients generated by the magnetic layer.

  9. Quantitative magneto-optical investigation of superconductor/ferromagnet hybrid structures

    Science.gov (United States)

    Shaw, G.; Brisbois, J.; Pinheiro, L. B. G. L.; Müller, J.; Blanco Alvarez, S.; Devillers, T.; Dempsey, N. M.; Scheerder, J. E.; Van de Vondel, J.; Melinte, S.; Vanderbemden, P.; Motta, M.; Ortiz, W. A.; Hasselbach, K.; Kramer, R. B. G.; Silhanek, A. V.

    2018-02-01

    We present a detailed quantitative magneto-optical imaging study of several superconductor/ferromagnet hybrid structures, including Nb deposited on top of thermomagnetically patterned NdFeB and permalloy/niobium with erasable and tailored magnetic landscapes imprinted in the permalloy layer. The magneto-optical imaging data are complemented with and compared to scanning Hall probe microscopy measurements. Comprehensive protocols have been developed for calibrating, testing, and converting Faraday rotation data to magnetic field maps. Applied to the acquired data, they reveal the comparatively weaker magnetic response of the superconductor from the background of larger fields and field gradients generated by the magnetic layer.

  10. Characterization of Selected Parameters of Organic-Inorganic Hybrid Membranes Based on Various Polymers and Nd-Fe-B Fillers

    Directory of Open Access Journals (Sweden)

    Rybak A.

    2016-12-01

    Full Text Available In this paper magnetic organic-inorganic hybrid membranes based on EC, PPO polymer matrices and various magnetic powder microparticles were synthesized and studied. Constant pressure permeation technique and the Time Lag method were used to obtain the gas transport coefficients. The mechanical, rheological and magnetic parameters of magnetic hybrid membranes were examined. It was found that their separation and gas transport properties (D, P, S and α were improved with the decrease in powder particle size and the increase of membrane’s remanence, saturation magnetization and magnetic particle filling. The increase of the magnetic powder addition and a decrease of its granulation improved also mechanical and rheological parameters of the tested membranes. This improvement also had a positive effect on their gas separation properties and their potential usage in the future.

  11. Composite Strain Hardening Properties of High Performance Hybrid Fibre Reinforced Concrete

    Directory of Open Access Journals (Sweden)

    Vikram Jothi Jayakumar

    2014-01-01

    Full Text Available Hybrid fibres addition in concrete proved to be a promising method to improve the composite mechanical properties of the cementitious system. Fibre combinations involving different fibre lengths and moduli were added in high strength slag based concrete to evaluate the strain hardening properties. Influence of hybrid fibres consisting of steel and polypropylene fibres added in slag based cementitious system (50% CRL was explored. Effects of hybrid fibre addition at optimum volume fraction of 2% of steel fibres and 0.5% of PP fibres (long and short steel fibre combinations were observed in improving the postcrack strength properties of concrete. Test results also indicated that the hybrid steel fibre additions in slag based concrete consisting of short steel and polypropylene (PP fibres exhibited a the highest compressive strength of 48.56 MPa. Comparative analysis on the performance of monofibre concrete consisting of steel and PP fibres had shown lower residual strength compared to hybrid fibre combinations. Hybrid fibres consisting of long steel-PP fibres potentially improved the absolute and residual toughness properties of concrete composite up to a maximum of 94.38% compared to monofibre concrete. In addition, the relative performance levels of different hybrid fibres in improving the matrix strain hardening, postcrack toughness, and residual strength capacity of slag based concretes were evaluated systematically.

  12. A non-axial superconducting magnet design for optimized patient access and minimal SAD for use in a Linac-MR hybrid: proof of concept

    Science.gov (United States)

    Yaghoobpour Tari, Shima; Wachowicz, Keith; Fallone, B. Gino

    2017-04-01

    A prototype rotating hybrid magnetic resonance imaging system and linac has been developed to allow for simultaneous imaging and radiation delivery parallel to B 0. However, the design of a compact magnet capable of rotation in a small vault with sufficient patient access and a typical clinical source-to-axis distance (SAD) is challenging. This work presents a novel superconducting magnet design as a proof of concept that allows for a reduced SAD and ample patient access by moving the superconducting coils to the side of the yoke. The yoke and pole-plate structures are shaped to direct the magnetic flux appropriately. The outer surface of the pole plate is optimized subject to the minimization of a cost function, which evaluates the uniformity of the magnetic field over an ellipsoid. The magnetic field calculations required in this work are performed with the 3D finite element method software package Opera-3D. Each tentative design strategy is virtually modeled in this software package, which is externally controlled by MATLAB, with its key geometries defined as variables. The optimization variables are the thickness of the pole plate at control points distributed over the pole plate surface. A novel design concept as a superconducting non-axial magnet is introduced, which could create a large uniform B 0 magnetic field with fewer geometric restriction. This non-axial 0.5 T superconducting magnet has a moderately reduced SAD of 123 cm and a vertical patient opening of 68 cm. This work is presented as a proof of principle to investigate the feasibility of a non-axial magnet with the coils located around the yoke, and the results encourage future design optimizations to maximize the benefits of this non-axial design.

  13. A non-axial superconducting magnet design for optimized patient access and minimal SAD for use in a Linac-MR hybrid: proof of concept.

    Science.gov (United States)

    Yaghoobpour Tari, Shima; Wachowicz, Keith; Gino Fallone, B

    2017-04-21

    A prototype rotating hybrid magnetic resonance imaging system and linac has been developed to allow for simultaneous imaging and radiation delivery parallel to B 0 . However, the design of a compact magnet capable of rotation in a small vault with sufficient patient access and a typical clinical source-to-axis distance (SAD) is challenging. This work presents a novel superconducting magnet design as a proof of concept that allows for a reduced SAD and ample patient access by moving the superconducting coils to the side of the yoke. The yoke and pole-plate structures are shaped to direct the magnetic flux appropriately. The outer surface of the pole plate is optimized subject to the minimization of a cost function, which evaluates the uniformity of the magnetic field over an ellipsoid. The magnetic field calculations required in this work are performed with the 3D finite element method software package Opera-3D. Each tentative design strategy is virtually modeled in this software package, which is externally controlled by MATLAB, with its key geometries defined as variables. The optimization variables are the thickness of the pole plate at control points distributed over the pole plate surface. A novel design concept as a superconducting non-axial magnet is introduced, which could create a large uniform B 0 magnetic field with fewer geometric restriction. This non-axial 0.5 T superconducting magnet has a moderately reduced SAD of 123 cm and a vertical patient opening of 68 cm. This work is presented as a proof of principle to investigate the feasibility of a non-axial magnet with the coils located around the yoke, and the results encourage future design optimizations to maximize the benefits of this non-axial design.

  14. Tough hybrid ceramic-based material with high strength

    International Nuclear Information System (INIS)

    Guo, Shuqi; Kagawa, Yutaka; Nishimura, Toshiyuki

    2012-01-01

    This study describes a tough and strong hybrid ceramic material consisting of platelet-like zirconium compounds and metal. A mixture of boron carbide and excess zirconium powder was heated to 1900 °C using a liquid-phase reaction sintering technique to produce a platelet-like ZrB 2 -based hybrid ceramic bonded by a thin zirconium layer. The platelet-like ZrB 2 grains were randomly present in the as-sintered hybrid ceramic. Relative to non-hybrid ceramics, the fracture toughness and flexural strength of the hybrid ceramic increased by approximately 2-fold.

  15. Electronic and magnetic properties of TTF and TCNQ covered Co thin films

    Energy Technology Data Exchange (ETDEWEB)

    Geijn, Elmer van, E-mail: e.vangeijn@utwente.nl; Wang, Kai; Jong, Michel P. de [NanoElectronics Group, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede (Netherlands)

    2016-05-07

    Interfacial effects like orbital hybridization and charge transfer strongly influence the transfer of spins from ferromagnetic metals to organic semiconductors and can lead to the formation of interfacial states with distinct magnetic properties. The changes in the electronic and magnetic properties of a thin Co film upon adsorption of a layer of either the molecular organic electron donor tetrathiafulvalene (TTF) or the acceptor tetracyanoquinodimethane (TCNQ) have been investigated by X-ray absorption spectroscopy and X-ray magnetic circular dichroism using synchrotron radiation. Clear differences between the spectra of the adsorbed molecules and the neutral molecules show the hybridization of the molecular orbitals with the Co interface. Deposition of both organic materials leads to a small increase of the ratio of the orbital magnetic moment to the spin magnetic moment of the Co atoms at the interface. The main effect of overlayer deposition is a modification of the magnetic hysteresis of the Co film: The TCNQ slightly reduces the coercivity of the Co, while the TTF increases the coercivity by a factor of ∼1.5. These complementary effects of either a molecular organic electron donor or acceptor on the interfacial properties of a metal ferromagnetic thin film are a promising result for the controlled modification of the magnetic structure of hybrid interfaces.

  16. MAGNETIC VISCOSITY IN NdFeB MAGNETS

    OpenAIRE

    Martinez , J.; Missell , F.

    1988-01-01

    The relaxation of the magnetization is calculated for isotropic and anisotropic magnets. For NdFeB magnets, the dependence of Sv on texture, above room temperature, is roughly consistent with the model, while the NdDyFeB magnets show no dependence upon texture.

  17. Optimal energy management for a flywheel-based hybrid vehicle

    NARCIS (Netherlands)

    Berkel, van K.; Hofman, T.; Vroemen, B.G.; Steinbuch, M.

    2011-01-01

    This paper presents the modeling and design of an optimal Energy Management Strategy (EMS) for a flywheel-based hybrid vehicle, that does not use any electrical motor/generator, or a battery, for its hybrid functionalities. The hybrid drive train consists of only low-cost components, such as a

  18. Hybrid Therapy Regimen for Helicobacter Pylori Eradication

    Directory of Open Access Journals (Sweden)

    Zhi-Qiang Song

    2016-01-01

    Conclusions: Hybrid therapy showed wide differences in the efficacy but consistently good compliance and safety across different regions. Dual clarithromycin and metronidazole resistance were the key factor to efficacy. Hybrid therapy was similar to sequential or concomitant therapy in the efficacy, safety, and compliance.

  19. First-principles study of the stability, magnetic and electronic properties of Fe and Co monoatomic chains encapsulated into copper nanotube

    Science.gov (United States)

    Ma, Liang-Cai; Ma, Ling; Zhang, Jian-Min

    2017-07-01

    By using first-principles calculations based on density-functional theory, the stability, magnetic and electronic properties of Fe and Co monoatomic chains encapsulated into copper nanotube are systematically investigated. The binding energies of the hybrid structures are remarkably higher than those of corresponding freestanding TM chains, indicating the TM chains are significantly stabilized after encapsulating into copper nanotube. The formed bonds between outer Cu and inner TM atoms show some degree of covalent bonding character. The magnetic ground states of Fe@CuNW and Co@CuNW hybrid structures are ferromagnetic, and both spin and orbital magnetic moments of inner TM atoms have been calculated. The magnetocrystalline anisotropy energies (MAE) of the hybrid structures are enhanced by nearly fourfold compared to those of corresponding freestanding TM chains, indicating that the hybrid structures can be used in ultrahigh density magnetic storage. Furthermore, the easy magnetization axis switches from that along the axis in freestanding Fe chain to that perpendicular to the axis in Fe@CuNT hybrid structure. The large spin polarization at the Fermi level also makes the hybrid systems interesting as good potential materials for spintronic devices.

  20. Double-staining chromogenic in situ hybridization as a useful alternative to split-signal fluorescence in situ hybridization in lymphoma diagnostics

    DEFF Research Database (Denmark)

    van Rijk, A.; Svenstroup-Poulsen, T.; Jones, M.

    2010-01-01

    within the reach of every pathology laboratory. Design and Methods Our study was initiated to determine the consistency between chromogenic in situ hybridization and fluorescence in situ hybridization, both using split-signal probes developed for the detection of chromosomal breaks. Five hundred...... and actual signal were compared to the original fluorescence hybridization results. In addition, hematoxylin background staining intensity and signal intensity of the double-staining chromogenic in situ hybridization procedure were analyzed. Results With respect to the presence or absence of chromosomal...

  1. A handy motion driven hybrid energy harvester: dual Halbach array based electromagnetic and triboelectric generators

    International Nuclear Information System (INIS)

    Salauddin, M; Park, J Y

    2016-01-01

    In this work, we have proposed and experimentally validated of hybrid electromagnetic and triboelectric energy harvester using dual Halbach magnets array excited by human handy motion. Hybrid electromagnetic (EM) and triboelectric (TE) generator that can deliver an output performance much higher than that of the individual energy-harvesting unit due to the combination operation of EM and TE mechanisms under the same mechanical movements. A Halbach array concentrates the magnetic flux lines on one side of the array while suppressing the flux lines on the other side. Dual Halbach array allows the concentrated magnetic flux lines to interact with the same coil in a way where maximum flux linkage occurs. When an external mechanical vibration is applied to the hybrid structure in the axial direction of the harvester, the suspended mass (two sided dual-Halbach-array frame) starts to oscillate within the magnetic springs and TEG part. Therefore, the TEG part, the Al film and microstructure PDMS film are collected into full contact with each other, generating triboelectric charges due to the various triboelectricities between them. A prototype of the hybrid harvester has been fabricated and tested. The EMG is capable of delivering maximum 11.5mW peak power at 32.5Ω matching load resistance and the TEG delivering 88μW peak power at 10MΩ load resistance. (paper)

  2. Collisional drag may lead to disappearance of wave-breaking phenomenon of lower hybrid oscillations

    International Nuclear Information System (INIS)

    Maity, Chandan; Chakrabarti, Nikhil

    2013-01-01

    The inhomogeneity in the magnetic field in a cold electron-ion non-dissipative homogeneous plasma leads to the breaking of lower hybrid modes via phase mixing phenomenon [Maity et al. Phys. Plasmas 19, 102302 (2012)]. In this work, we show that an inclusion of collisional drag force in fluid equations may lead to the disappearance of the wave-breaking phenomenon of lower hybrid oscillations. The nonlinear analysis in Lagrangian variables provides an expression for a critical value of damping rate, above which spikes in the plasma density profile may disappear. The critical damping rate depends on the perturbation and magnetic field inhomogeneity amplitudes as well as the ratio of the magnetic field inhomogeneity and perturbation scale lengths.

  3. An Electromagnetic Drift Instability in the Magnetic Reconnection Experiment (MRX) and its Importance for Magnetic Reconnection

    International Nuclear Information System (INIS)

    Russell Kulsrud; Hantao Ji; Will Fox; Masaaki Yamada

    2005-01-01

    The role which resistivity plays in breaking magnetic field lines, heating the plasma, and plasma field slippage during magnetic reconnection is discussed. Magnetic fluctuations are observed in the MRX (Magnetic Reconnection Experiment) that are believed to provide resistive friction or wave resistivity. A localized linear theory has been proposed for their origin as an obliquely propagating Lower Hybrid Drift Instability. In this paper, the linear theory of the instability is summarized, and the resulting heating and slippage are calculated from quasi-linear theory. Making use of measured amplitudes of the magnetic fluctuations in the MRX the amount of these effects is estimated. Within the experimental uncertainties they are shown to be quite important for the magnetic reconnection process

  4. Synthesis and characterization of magnetic cobalt ferrite nanoparticles covered with 3-aminopropyltriethoxysilane for use as hybrid material in nano technology

    International Nuclear Information System (INIS)

    Camilo, Ruth Luqueze

    2006-01-01

    Nowadays with the appear of nano science and nano technology, magnetic nanoparticles have been finding a variety of applications in the fields of biomedicine, diagnosis, molecular biology, biochemistry, catalysis, etc. The magnetic functionalized nanoparticles are constituted of a magnetic nucleus, involved by a polymeric layer with active sites, which ones could anchor metals or selective organic compounds. These nanoparticles are considered organic inorganic hybrid materials and have great interest as materials for commercial applications due to the specific properties. Among the important applications it can be mentioned: magneto hyperthermia treatment, drugs delivery in specific local of the body, molecular recognition, biosensors, enhancement of nuclear magnetic resonance images quality, etc. This work was developed in two parts: 1) the synthesis of the nucleus composed by superparamagnetic nanoparticles of cobalt ferrite and, 2) the recovering of nucleus by a polymeric bifunctional 3-aminopropyltriethoxysilane. The parameters studied in the first part of the research were: pH, hydroxide molar concentration, hydroxide type, reagent order of addition, reagent way of addition, speed of shake, metals initial concentrations, molar fraction of cobalt and thermal treatment. In the second part it was studied: pH, temperature, catalyst type, catalyst concentration, time of reaction, relation ratios of H 2 O/silane, type of medium and the efficiency of the recovering regarding to pH. The products obtained were characterized using the following techniques X-ray powder diffraction (DRX), transmission electronic microscopy (TEM), scanning electronic microscopy (SEM), spectroscopy of scatterbrained energy spectroscopy (DES), atomic emission spectroscopy (ICP-AES), thermogravimetric analysis (TGA/DTGA), Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC) and magnetization curves (VSM). (author)

  5. Simple calculation of hybridization effects in UTX and U2T2X compounds

    International Nuclear Information System (INIS)

    Prokes, K.; Brueck, E.; Nakotte, H.; De Chatel, P.F.; De Boer, F.R.

    1995-01-01

    The band widths of several UTX and U 2 T 2 X compounds (T: transition metal, X: p-metal) are evaluated by means of a tight-binding method. The magnetism in both groups of compounds is governed by the hybridization between U f-states and transition-metal d-states. Comparing the sum of all hybridization effects, we find approximately the same hybridization effects in both groups of compounds. We also observe a decrease of the band width with increasing atomic number Z within a transition-metal series. By comparing the band width with the theoretical critical energies for the f 3 and f 2 configurations, it is in some cases possible to predict whether the ground state is magnetically ordered or not. ((orig.))

  6. A self-consistent spin-diffusion model for micromagnetics

    KAUST Repository

    Abert, Claas; Ruggeri, Michele; Bruckner, Florian; Vogler, Christoph; Manchon, Aurelien; Praetorius, Dirk; Suess, Dieter

    2016-01-01

    We propose a three-dimensional micromagnetic model that dynamically solves the Landau-Lifshitz-Gilbert equation coupled to the full spin-diffusion equation. In contrast to previous methods, we solve for the magnetization dynamics and the electric potential in a self-consistent fashion. This treatment allows for an accurate description of magnetization dependent resistance changes. Moreover, the presented algorithm describes both spin accumulation due to smooth magnetization transitions and due to material interfaces as in multilayer structures. The model and its finite-element implementation are validated by current driven motion of a magnetic vortex structure. In a second experiment, the resistivity of a magnetic multilayer structure in dependence of the tilting angle of the magnetization in the different layers is investigated. Both examples show good agreement with reference simulations and experiments respectively.

  7. A self-consistent spin-diffusion model for micromagnetics

    KAUST Repository

    Abert, Claas

    2016-12-17

    We propose a three-dimensional micromagnetic model that dynamically solves the Landau-Lifshitz-Gilbert equation coupled to the full spin-diffusion equation. In contrast to previous methods, we solve for the magnetization dynamics and the electric potential in a self-consistent fashion. This treatment allows for an accurate description of magnetization dependent resistance changes. Moreover, the presented algorithm describes both spin accumulation due to smooth magnetization transitions and due to material interfaces as in multilayer structures. The model and its finite-element implementation are validated by current driven motion of a magnetic vortex structure. In a second experiment, the resistivity of a magnetic multilayer structure in dependence of the tilting angle of the magnetization in the different layers is investigated. Both examples show good agreement with reference simulations and experiments respectively.

  8. Lower-hybrid absorption at the ion cyclotron harmonics

    International Nuclear Information System (INIS)

    Puri, S.

    1975-01-01

    In the presence of magnetic field gradients, the lower-hybrid wave can be absorbed through linear collisionless damping at the location of cyclotron or cyclotron harmonic resonances acting as singular turning points in the path of the advancing wave-front. (Auth.)

  9. An efficient and stable hybrid extended Lagrangian/self-consistent field scheme for solving classical mutual induction

    International Nuclear Information System (INIS)

    Albaugh, Alex; Demerdash, Omar; Head-Gordon, Teresa

    2015-01-01

    We have adapted a hybrid extended Lagrangian self-consistent field (EL/SCF) approach, developed for time reversible Born Oppenheimer molecular dynamics for quantum electronic degrees of freedom, to the problem of classical polarization. In this context, the initial guess for the mutual induction calculation is treated by auxiliary induced dipole variables evolved via a time-reversible velocity Verlet scheme. However, we find numerical instability, which is manifested as an accumulation in the auxiliary velocity variables, that in turn results in an unacceptable increase in the number of SCF cycles to meet even loose convergence tolerances for the real induced dipoles over the course of a 1 ns trajectory of the AMOEBA14 water model. By diagnosing the numerical instability as a problem of resonances that corrupt the dynamics, we introduce a simple thermostating scheme, illustrated using Berendsen weak coupling and Nose-Hoover chain thermostats, applied to the auxiliary dipole velocities. We find that the inertial EL/SCF (iEL/SCF) method provides superior energy conservation with less stringent convergence thresholds and a correspondingly small number of SCF cycles, to reproduce all properties of the polarization model in the NVT and NVE ensembles accurately. Our iEL/SCF approach is a clear improvement over standard SCF approaches to classical mutual induction calculations and would be worth investigating for application to ab initio molecular dynamics as well

  10. Towards a programmable magnetic bead microarray in a microfluidic channel

    DEFF Research Database (Denmark)

    Smistrup, Kristian; Bruus, Henrik; Hansen, Mikkel Fougt

    2007-01-01

    to use larger currents and obtain forces of longer range than from thin current lines at a given power limit. Guiding of magnetic beads in the hybrid magnetic separator and the construction of a programmable microarray of magnetic beads in the microfluidic channel by hydrodynamic focusing is presented....

  11. Hybrid spacecraft attitude control system

    OpenAIRE

    Renuganth Varatharajoo; Ramly Ajir; Tamizi Ahmad

    2016-01-01

    The hybrid subsystem design could be an attractive approach for futurespacecraft to cope with their demands. The idea of combining theconventional Attitude Control System and the Electrical Power System ispresented in this article. The Combined Energy and Attitude ControlSystem (CEACS) consisting of a double counter rotating flywheel assemblyis investigated for small satellites in this article. Another hybrid systemincorporating the conventional Attitude Control System into the ThermalControl...

  12. Development of pregnant female, hybrid voxel-mathematical models and their application to the dosimetry of applied magnetic and electric fields at 50 Hz

    International Nuclear Information System (INIS)

    Dimbylow, Peter

    2006-01-01

    This paper describes the development of 2 mm resolution hybrid voxel-mathematical models of the pregnant female. Mathematical models of the developing foetus at 8-, 13-, 26- and 38-weeks of gestation were converted into voxels and combined with the adult female model, NAOMI. This set of models was used to calculate induced current densities and electric fields in the foetus from applied 50 Hz magnetic and electric fields. The influence of foetal tissue conductivities was investigated and implications for electromagnetic field guidelines discussed

  13. Hybrid magnetic mechanism for active locomotion based on inchworm motion

    International Nuclear Information System (INIS)

    Kim, Sung Hoon; Hashi, Shuichiro; Ishiyama, Kazushi

    2013-01-01

    Magnetic robots have been studied in the past. Insect-type micro-robots are used in various biomedical applications; researchers have developed inchworm micro-robots for endoscopic use. A biological inchworm has a looping locomotion gait. However, most inchworm micro-robots depend on a general bending, or bellows, motion. In this paper, we introduce a new robotic mechanism using magnetic force and torque control in a rotating magnetic field for a looping gait. The proposed robot is controlled by the magnetic torque, attractive force, and body mechanisms (two stoppers, flexible body, and different frictional legs). The magnetic torque generates a general bending motion. In addition, the attractive force and body mechanisms produce the robot’s looping motion within a rotating magnetic field and without the use of an algorithm for field control. We verified the device’s performance and analyzed the motion through simulations and various experiments. The robot mechanism can be applied to active locomotion for various medical robots, such as wireless endoscopes. (technical note)

  14. Monte Carlo simulated dynamical magnetization of single-chain magnets

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jun; Liu, Bang-Gui, E-mail: bgliu@iphy.ac.cn

    2015-03-15

    Here, a dynamical Monte-Carlo (DMC) method is used to study temperature-dependent dynamical magnetization of famous Mn{sub 2}Ni system as typical example of single-chain magnets with strong magnetic anisotropy. Simulated magnetization curves are in good agreement with experimental results under typical temperatures and sweeping rates, and simulated coercive fields as functions of temperature are also consistent with experimental curves. Further analysis indicates that the magnetization reversal is determined by both thermal-activated effects and quantum spin tunnelings. These can help explore basic properties and applications of such important magnetic systems. - Highlights: • Monte Carlo simulated magnetization curves are in good agreement with experimental results. • Simulated coercive fields as functions of temperature are consistent with experimental results. • The magnetization reversal is understood in terms of the Monte Carlo simulations.

  15. Hybrid Clustering And Boundary Value Refinement for Tumor Segmentation using Brain MRI

    Science.gov (United States)

    Gupta, Anjali; Pahuja, Gunjan

    2017-08-01

    The method of brain tumor segmentation is the separation of tumor area from Brain Magnetic Resonance (MR) images. There are number of methods already exist for segmentation of brain tumor efficiently. However it’s tedious task to identify the brain tumor from MR images. The segmentation process is extraction of different tumor tissues such as active, tumor, necrosis, and edema from the normal brain tissues such as gray matter (GM), white matter (WM), as well as cerebrospinal fluid (CSF). As per the survey study, most of time the brain tumors are detected easily from brain MR image using region based approach but required level of accuracy, abnormalities classification is not predictable. The segmentation of brain tumor consists of many stages. Manually segmenting the tumor from brain MR images is very time consuming hence there exist many challenges in manual segmentation. In this research paper, our main goal is to present the hybrid clustering which consists of Fuzzy C-Means Clustering (for accurate tumor detection) and level set method(for handling complex shapes) for the detection of exact shape of tumor in minimal computational time. using this approach we observe that for a certain set of images 0.9412 sec of time is taken to detect tumor which is very less in comparison to recent existing algorithm i.e. Hybrid clustering (Fuzzy C-Means and K Means clustering).

  16. Managing hybrid marketing systems.

    Science.gov (United States)

    Moriarty, R T; Moran, U

    1990-01-01

    As competition increases and costs become critical, companies that once went to market only one way are adding new channels and using new methods - creating hybrid marketing systems. These hybrid marketing systems hold the promise of greater coverage and reduced costs. But they are also hard to manage; they inevitably raise questions of conflict and control: conflict because marketing units compete for customers; control because new indirect channels are less subject to management authority. Hard as they are to manage, however, hybrid marketing systems promise to become the dominant design, replacing the "purebred" channel strategy in all kinds of businesses. The trick to managing the hybrid is to analyze tasks and channels within and across a marketing system. A map - the hybrid grid - can help managers make sense of their hybrid system. What the chart reveals is that channels are not the basic building blocks of a marketing system; marketing tasks are. The hybrid grid forces managers to consider various combinations of channels and tasks that will optimize both cost and coverage. Managing conflict is also an important element of a successful hybrid system. Managers should first acknowledge the inevitability of conflict. Then they should move to bound it by creating guidelines that spell out which customers to serve through which methods. Finally, a marketing and sales productivity (MSP) system, consisting of a central marketing database, can act as the central nervous system of a hybrid marketing system, helping managers create customized channels and service for specific customer segments.

  17. Biohydrogels with magnetic nanoparticles as crosslinker: characteristics and potential use for controlled antitumor drug-delivery.

    Science.gov (United States)

    Barbucci, Rolando; Giani, Gabriele; Fedi, Serena; Bottari, Severino; Casolaro, Mario

    2012-12-01

    Hybrid magnetic hydrogels are of interest for applications in biomedical science as controlled drug-delivery systems. We have developed a strategy to obtain novel hybrid hydrogels with magnetic nanoparticles (NPs) of CoFe(2)O(3) and Fe(3)O(4) as crosslinker agents of carboxymethylcellulose (CMC) or hyaluronic acid (HYAL) polymers and we have tested these systems for controlled doxorubicin release. The magnetic NPs are functionalized with (3-aminopropyl)trimethoxysilane (APTMS) in order to introduce amino groups on the surface. The amino coating is determined and quantified by standard Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy methods, and by cyclic voltammetry, a novel approach that permits us to look at the solution properties of the functionalized NPs. The gel formation involves the creation of an amide bond between the carboxylic groups of CMC or HYAL and the amine groups of functionalized NPs, which work as crosslinking agents of the polymer chains. The hybrid hydrogels are chemically and morphologically characterized. The rheological and the water uptake properties of the hydrogels are also investigated. Under the application of an alternating magnetic field, the CMC-HYAL hybrid hydrogel previously loaded with doxorubicin shows a drug release greater than that showed by the CMC-HYAL hydrogel crosslinked with 1,3-diaminopropane. In conclusion, the presence of magnetic NPs makes the synthesized hybrid hydrogels suitable for application as a drug-delivery system by means of alternating magnetic fields. Copyright © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  18. Investigations of mechanical, electronic, and magnetic properties of non-magnetic MgTe and ferro-magnetic Mg0.75TM0.25Te (TM = Fe, Co, Ni): An ab-initio calculation

    International Nuclear Information System (INIS)

    Mahmood, Q; Alay-e-Abbas, S M; Mahmood, I; Noor, N A; Asif, Mahmood

    2016-01-01

    The mechanical, electronic and magnetic properties of non-magnetic MgTe and ferro-magnetic (FM) Mg 0.75 TM 0.25 Te (TM = Fe, Co, Ni) in the zinc-blende phase are studied by ab-initio calculations for the first time. We use the generalized gradient approximation functional for computing the structural stability, and mechanical properties, while the modified Becke and Johnson local (spin) density approximation (mBJLDA) is utilized for determining the electronic and magnetic properties. By comparing the energies of non-magnetic and FM calculations, we find that the compounds are stable in the FM phase, which is confirmed by their structural stabilities in terms of enthalpy of formation. Detailed descriptions of elastic properties of Mg 0.75 TM 0.25 Te alloys in the FM phase are also presented. For electronic properties, the spin-polarized electronic band structures and density of states are computed, showing that these compounds are direct bandgap materials with strong hybridizations of TM 3d states and Te p states. Further, the ferromagnetism is discussed in terms of the Zener free electron model, RKKY model and double exchange model. The charge density contours in the (110) plane are calculated to study bonding properties. The spin exchange splitting and crystal field splitting energies are also calculated. The distribution of electron spin density is employed in computing the magnetic moments appearing at the magnetic sites (Fe, Co, Ni), as well as at the non-magnetic sites (Mg, Te). It is found that the p–d hybridization causes not only magnetic moments on the magnetic sites but also induces negligibly small magnetic moments at the non-magnetic sites. (paper)

  19. Spiky gold shells on magnetic particles for DNA biosensors.

    Science.gov (United States)

    Bedford, Erin E; Boujday, Souhir; Pradier, Claire-Marie; Gu, Frank X

    2018-05-15

    Combined separation and detection of biomolecules has the potential to speed up and improve the sensitivity of disease detection, environmental testing, and biomolecular analysis. In this work, we synthesized magnetic particles coated with spiky nanostructured gold shells and used them to magnetically separate out and detect oligonucleotides using SERS. The distance dependence of the SERS signal was then harnessed to detect DNA hybridization using a Raman label bound to a hairpin probe. The distance of the Raman label from the surface increased upon complementary DNA hybridization, leading to a decrease in signal intensity. This work demonstrates the use of the particles for combined separation and detection of oligonucleotides without the use of an extrinsic tag or secondary hybridization step. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Spinel ferrite nanocrystals embedded inside ZnO: magnetic, electronic andmagneto-transport properties

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Shengqiang; Potzger, K.; Xu, Qingyu; Kuepper, K.; Talut, G.; Marko, D.; Mucklich, A.; Helm, M.; Fassbender, J.; Arenholz, E.; Schmidt, H.

    2009-08-21

    In this paper we show that spinel ferrite nanocrystals (NiFe{sub 2}O{sub 4}, and CoFe{sub 2}O{sub 4}) can be texturally embedded inside a ZnO matrix by ion implantation and post-annealing. The two kinds of ferrites show different magnetic properties, e.g. coercivity and magnetization. Anomalous Hall effect and positive magnetoresistance have been observed. Our study suggests a ferrimagnet/semiconductor hybrid system for potential applications in magneto-electronics. This hybrid system can be tuned by selecting different transition metal ions (from Mn to Zn) to obtain various magnetic and electronic properties.

  1. Hybrid plasma system for magnetron deposition of coatings with ion assistance

    International Nuclear Information System (INIS)

    Vavilin, K V; Kralkina, E A; Nekludova, P A; Petrov, A. K; Nikonov, A M; Pavlov, V B; Airapetov, A A; Odinokov, V V; Pavlov, G Ya; Sologub, V A

    2016-01-01

    The results of the study of the plasma hybrid system based on the combined magnetron discharge and high-frequency inductive discharge located in the external magnetic field is presented. Magnetron discharge provides the generation of atoms and ions of the target materials while the flow of accelerated ions used for the ion assistance is provided by the RF inductive discharge. An external magnetic field is used to optimize the power input to the discharge, to increase the ion current density in the realm of substrate and to enhance the area of uniform plasma. The joint operation of magnetron and RF inductive discharge leads to a substantial increase (not equal to the sum of the parameters obtained under separate operation of two hybrid system channels) of the ion current density and intensity of sputtered material spectral lines radiation. Optimal mode of the hybrid plasma system operation provides uniform ion current density on the diameter of at least 150mm at 0.7PA argon pressure. The optimal values of the magnetic fields in the region of the substrate location lie in the range 2-8 mTl, while in the region of the RF input power unit lie in the range 0.5-25 mTl. (paper)

  2. A new adaptive hybrid electromagnetic damper: modelling, optimization, and experiment

    International Nuclear Information System (INIS)

    Asadi, Ehsan; Ribeiro, Roberto; Behrad Khamesee, Mir; Khajepour, Amir

    2015-01-01

    This paper presents the development of a new electromagnetic hybrid damper which provides regenerative adaptive damping force for various applications. Recently, the introduction of electromagnetic technologies to the damping systems has provided researchers with new opportunities for the realization of adaptive semi-active damping systems with the added benefit of energy recovery. In this research, a hybrid electromagnetic damper is proposed. The hybrid damper is configured to operate with viscous and electromagnetic subsystems. The viscous medium provides a bias and fail-safe damping force while the electromagnetic component adds adaptability and the capacity for regeneration to the hybrid design. The electromagnetic component is modeled and analyzed using analytical (lumped equivalent magnetic circuit) and electromagnetic finite element method (FEM) (COMSOL ® software package) approaches. By implementing both modeling approaches, an optimization for the geometric aspects of the electromagnetic subsystem is obtained. Based on the proposed electromagnetic hybrid damping concept and the preliminary optimization solution, a prototype is designed and fabricated. A good agreement is observed between the experimental and FEM results for the magnetic field distribution and electromagnetic damping forces. These results validate the accuracy of the modeling approach and the preliminary optimization solution. An analytical model is also presented for viscous damping force, and is compared with experimental results The results show that the damper is able to produce damping coefficients of 1300 and 0–238 N s m −1 through the viscous and electromagnetic components, respectively. (paper)

  3. Principle and Basic Characteristics of a Hybrid Variable-Magnetic-Force Motor

    Science.gov (United States)

    Sakai, Kazuto; Kuramochi, Satoru

    Reduction in the power consumed by motors is important for energy saving in the case of electrical appliances and electric vehicles (EVs). The motors used for operating these devices operate at variable speeds. Further, the motors operate with a small load in the stationary mode and a large load in the starting mode. A permanent magnet motor can be operated at the rated power with a high efficiency. However, the efficiency is low at a small load or at a high speed because the large constant magnetic force results in substantial core loss. Furthermore, the flux-weakening current that decreases the voltage at a high speed leads to significant copper loss and core loss. Therefore, we have developed a new technique for controlling the magnetic force of a permanent magnet on the basis of the load or speed of the motor. In this paper, we propose a novel motor that can vary the magnetic flux of a permanent magnet and clarify the principle and basic characteristics of the motor. The new motor has a permanent magnet that is magnetized by the magnetizing coil of the stator. The analysis results show that the magnetic flux linkage of the motor can be changed from 37% to 100% that a high torque can be produced.

  4. Characterization and Curing Kinetics of Epoxy/Silica Nano-Hybrids

    Science.gov (United States)

    Yang, Cheng-Fu; Wang, Li-Fen; Wu, Song-Mao; Su, Chean-Cheng

    2015-01-01

    The sol-gel technique was used to prepare epoxy/silica nano-hybrids. The thermal characteristics, curing kinetics and structure of epoxy/silica nano-hybrids were studied using differential scanning calorimetry (DSC), 29Si nuclear magnetic resonance (NMR) and transmission electron microscopy (TEM). To improve the compatibility between the organic and inorganic phases, a coupling agent was used to modify the diglycidyl ether of bisphenol A (DGEBA) epoxy. The sol-gel technique enables the silica to be successfully incorporated into the network of the hybrids, increasing the thermal stability and improving the mechanical properties of the prepared epoxy/silica nano-hybrids. An autocatalytic mechanism of the epoxy/SiO2 nanocomposites was observed. The low reaction rate of epoxy in the nanocomposites is caused by the steric hindrance in the network of hybrids that arises from the consuming of epoxide group in the network of hybrids by the silica. In the nanocomposites, the nano-scale silica particles had an average size of approximately 35 nm, and the particles were well dispersed in the epoxy matrix, according to the TEM images. PMID:28793616

  5. 3D microwave cavity with magnetic flux control and enhanced quality factor

    Energy Technology Data Exchange (ETDEWEB)

    Reshitnyk, Yarema [The University of Queensland, School of Mathematics and Physics, St Lucia (Australia); Jerger, Markus [The University of Queensland, ARC Centre of Excellence for Engineered Quantum Systems, 4072 (Australia); Fedorov, Arkady [The University of Queensland, School of Mathematics and Physics, St Lucia (Australia); The University of Queensland, ARC Centre of Excellence for Engineered Quantum Systems, 4072 (Australia)

    2016-12-15

    Three-dimensional (3D) microwave cavities have been extensively used for coupling and interacting with superconducting quantum bits (qubits), providing a versatile platform for quantum control experiments and for realizing hybrid quantum systems. While having high quality factors (>10{sup 6}) superconducting cavities do not permit magnetic field control of qubits. In contrast, cavities made of normal metals are transparent to magnetic fields, but experience lower quality factors (∝10{sup 4}). We have created a hybrid cavity which is primarily composed of aluminium but also contains a small copper insert reaching the internal quality factor of ≅10{sup 5}, an order of magnitude improvement over all previously tested normal metal cavities. In order to demonstrate precise magnetic control, we performed spectroscopy of three superconducting qubits, where individual control of each qubit's frequency was exerted with small external wire coils. An improvement in quality factor and magnetic field control makes this 3D hybrid cavity an attractive new element for circuit quantum electrodynamics experiments. (orig.)

  6. Parametric decay instability near the upper hybrid resonance in magnetically confined fusion plasmas

    DEFF Research Database (Denmark)

    Hansen, Søren Kjer; Nielsen, Stefan Kragh; Salewski, Mirko

    2017-01-01

    In this paper we investigate parametric decay of an electromagnetic pump wave into two electrostatic daughter waves, particularly an X-mode pump wave decaying into a warm upper hybrid wave (a limit of an electron Bernstein wave) and a warm lower hybrid wave. We describe the general theory...

  7. Hybrid simulation of electrode plasmas in high-power diodes

    International Nuclear Information System (INIS)

    Welch, Dale R.; Rose, David V.; Bruner, Nichelle; Clark, Robert E.; Oliver, Bryan V.; Hahn, Kelly D.; Johnston, Mark D.

    2009-01-01

    New numerical techniques for simulating the formation and evolution of cathode and anode plasmas have been successfully implemented in a hybrid code. The dynamics of expanding electrode plasmas has long been recognized as a limiting factor in the impedance lifetimes of high-power vacuum diodes and magnetically insulated transmission lines. Realistic modeling of such plasmas is being pursued to aid in understanding the operating characteristics of these devices as well as establishing scaling relations for reliable extrapolation to higher voltages. Here, in addition to kinetic and fluid modeling, a hybrid particle-in-cell technique is described that models high density, thermal plasmas as an inertial fluid which transitions to kinetic electron or ion macroparticles above a prescribed energy. The hybrid technique is computationally efficient and does not require resolution of the Debye length. These techniques are first tested on a simple planar diode then applied to the evolution of both cathode and anode plasmas in a high-power self-magnetic pinch diode. The impact of an intense electron flux on the anode surface leads to rapid heating of contaminant material and diode impedance loss.

  8. Interfacial symmetry of Co–Alq_3–Co hybrid structures for effective spin filtering

    International Nuclear Information System (INIS)

    Lam, Tu-Ngoc; Lai, Yu-Ling; Chen, Chih-Han; Chen, Po-Hung; Wei, Der-Hsin; Lin, Hong-Ji; Chen, C.T.; Sheu, Jeng-Tzong; Hsu, Yao-Jane

    2015-01-01

    Graphical abstract: - Highlights: • The spin interface at Alq_3/Co and Co/Alq_3 contacts was examined. • An interfacial symmetry was determined at Co–Alq_3–Co interfaces. • Spin-polarized N orbitals are induced within the Co atop Alq_3 hybridized interface. • The spin-filter role at the top contact interface of Alq_3/Co is proved. • Effective spin-filtering at Co–Alq_3–Co contacts was elucidated. - Abstract: Understanding the interfacial behavior at FM-OSC-FM hybrid structures for both the bottom contact (Alq_3 adsorption on Co, Co/Alq_3) and the top contact (Co atop Alq_3, Alq_3/Co) is crucial for efficient spin filtering with transport of spin-polarized charge carriers through these interfaces. X-ray photoelectron spectroscopy (XPS) spectra indicate a symmetry of charge transfer from Co to Alq_3 and the corresponding orbital hybridization to a certain extent at both contacts. The alignment of energy levels at both Alq_3/Co and Co/Alq_3 heterostructures is depicted with ultraviolet photoelectron spectroscopy (UPS). Through magnetic images acquired with a X-ray photoemission electron microscope (XPEEM), the strong hybridization of the top contact presents no micromagnetic domain but still shows magnetic coupling, to some extent, to the bottom contact in the Co–Alq_3–Co trilayer structure. Measurements of X-ray magnetic circular dichroism (XMCD) demonstrate the induced spin-polarization of non-magnetic Alq_3 at both contacts, proving Alq_3 a unique and promising organic material for spin filtering in OSV.

  9. Investigation of lower hybrid physics through power modulation experiments on Alcator C-Moda)

    Science.gov (United States)

    Schmidt, A.; Bonoli, P. T.; Meneghini, O.; Parker, R. R.; Porkolab, M.; Shiraiwa, S.; Wallace, G.; Wright, J. C.; Harvey, R. W.; Wilson, J. R.

    2011-05-01

    Lower hybrid current drive (LHCD) is an attractive tool for off-axis current profile control in magnetically confined tokamak plasmas and burning plasmas (ITER), because of its high current drive efficiency. The LHCD system on Alcator C-Mod operates at 4.6 GHz, with ~ 1 MW of coupled power, and can produce a wide range of launched parallel refractive index (n||) spectra. A 32 chord, perpendicularly viewing hard x-ray camera has been used to measure the spatial and energy distribution of fast electrons generated by lower hybrid (LH) waves. Square-wave modulation of LH power on a time scale much faster than the current relaxation time does not significantly alter the poloidal magnetic field inside the plasma and thus allows for realistic modeling and consistent plasma conditions for different n|| spectra. Inverted hard x-ray profiles show clear changes in LH-driven fast electron location with differing n||. Boxcar binning of hard x-rays during LH power modulation allows for ~ 1 ms time resolution which is sufficient to resolve the build-up, steady-state, and slowing-down phases of fast electrons. Ray-tracing/Fokker-Planck modeling in combination with a synthetic hard x-ray diagnostic shows quantitative agreement with the x-ray data for high n|| cases. The time histories of hollow x-ray profiles have been used to measure off-axis fast electron transport in the outer half of the plasma, which is found to be small on a slowing down time scale.

  10. An Unscented Kalman-Particle Hybrid Filter for Space Object Tracking

    Science.gov (United States)

    Raihan A. V, Dilshad; Chakravorty, Suman

    2018-03-01

    Optimal and consistent estimation of the state of space objects is pivotal to surveillance and tracking applications. However, probabilistic estimation of space objects is made difficult by the non-Gaussianity and nonlinearity associated with orbital mechanics. In this paper, we present an unscented Kalman-particle hybrid filtering framework for recursive Bayesian estimation of space objects. The hybrid filtering scheme is designed to provide accurate and consistent estimates when measurements are sparse without incurring a large computational cost. It employs an unscented Kalman filter (UKF) for estimation when measurements are available. When the target is outside the field of view (FOV) of the sensor, it updates the state probability density function (PDF) via a sequential Monte Carlo method. The hybrid filter addresses the problem of particle depletion through a suitably designed filter transition scheme. To assess the performance of the hybrid filtering approach, we consider two test cases of space objects that are assumed to undergo full three dimensional orbital motion under the effects of J 2 and atmospheric drag perturbations. It is demonstrated that the hybrid filters can furnish fast, accurate and consistent estimates outperforming standard UKF and particle filter (PF) implementations.

  11. CuNi/Nb S-F hybrid heterostructures for investigation of induced magnetization in superconducting layer

    International Nuclear Information System (INIS)

    Khaydukov, Yu.; Kim, J.-H.; Logvenov, G.; Morari, R.; Babakova, E.; Sidorenko, A.

    2013-01-01

    The mutual influence of the magnetism and superconductivity in superconductor/ferromagnet (S/F) nano fabricated thin films hybrid heterostructures has been an exciting topic in solid-state physics during last decade. However, the interesting theoretical predictions still wait for unambiguous experimental verification. One of such effect is the so-called spin screening (often called inverse proximity effect), which designates a spin polarization in the superconducting layer close to the S/F interface. It is theoretically shown that a spin polarization develops in the S layer with direction opposite to the spin polarization of the conduction electrons in the F layer. If the thicknesses of the ferromagnetic and superconducting layers are small compared to the London penetration length, then the orbital effect, caused by Meissner screening currents of superconductor will be small compared to the spin effect due to spin polarization. The thickness of the spin polarized sub-layer is comparable to the coherence length ξ of the superconductor. Therefore an advanced technology should be used for fabrication of S/F nanostructures with thin superconducting layers. (authors)

  12. A hybrid type undulator for far-infrared FELs at FELI

    Energy Technology Data Exchange (ETDEWEB)

    Zako, A.; Miyauchi, Y.; Koga, A. [Free Electron Laser Research Institute, Inc., Osaka (Japan)] [and others

    1995-12-31

    Two FEL facilities of the FELI are now operating in the wavelength range of 1-20 {mu}m. A 3.2-m hybrid type undulator ({lambda}{sub u}=80mm, N=40) has been designed for far-infrared FELs and will be installed in December. It can cover the wavelength of 20-60 {mu}m by changing K-value from 1 to 2.7 for a 28.0-MeV electron beam. It is composed of ferrite magnetic poles and Sm-Co permanent magnets. Commonly wound coils induce alternating magnetic field in ferrite poles. Combination of the induced field and the permanent magnet field can controls the magnetic field between the undulator gap.

  13. Sequence-dependent theory of oligonucleotide hybridization kinetics

    International Nuclear Information System (INIS)

    Marimuthu, Karthikeyan; Chakrabarti, Raj

    2014-01-01

    A theoretical approach to the prediction of the sequence and temperature-dependent rate constants for oligonucleotide hybridization reactions has been developed based on the theory of relaxation kinetics. One-sided and two-sided melting reaction mechanisms for oligonucleotide hybridization reactions have been considered, analyzed, modified, and compared to select a physically consistent as well as robust model for prediction of the relaxation times of DNA hybridization reactions that agrees with the experimental evidence. The temperature- and sequence-dependent parameters of the proposed model have been estimated using available experimental data. The relaxation time model that we developed has been combined with the nearest neighbor model of hybridization thermodynamics to estimate the temperature- and sequence-dependent rate constants of an oligonucleotide hybridization reaction. The model-predicted rate constants are compared to experimentally determined rate constants for the same oligonucleotide hybridization reactions. Finally, we consider a few important applications of kinetically controlled DNA hybridization reactions

  14. Conversion of localized lower hybrid oscillations and fast magnetosonic waves at a plasma density cavity

    International Nuclear Information System (INIS)

    Hall, J.O.

    2004-01-01

    Analytic expressions are presented for conversion of localized lower hybrid oscillations and magnetosonic waves by scattering off a small scale density cavity. The governing equations are solved in slab geometry with wave vectors perpendicular to both the ambient magnetic field and the density gradient associated with density cavity using a scale length separation method. The theory predicts strong excitation of localized lower hybrid oscillations for a set of frequencies between the lower hybrid frequency of the ambient plasma and the minimum lower hybrid frequency inside the cavity. The theory is relevant for the lower hybrid solitary structures observed in space plasmas

  15. Magnetic phase transition induced by electrostatic gating in two-dimensional square metal-organic frameworks

    Science.gov (United States)

    Wang, Yun-Peng; Li, Xiang-Guo; Liu, Shuang-Long; Fry, James N.; Cheng, Hai-Ping

    2018-03-01

    We investigate theoretically magnetism and magnetic phase transitions induced by electrostatic gating of two-dimensional square metal-organic framework compounds. We find that electrostatic gating can induce phase transitions between homogeneous ferromagnetic and various spin-textured antiferromagnetic states. Electronic structure and Wannier function analysis can reveal hybridizations between transition-metal d orbitals and conjugated π orbitals in the organic framework. Mn-containing compounds exhibit a strong d -π hybridization that leads to partially occupied spin-minority bands, in contrast to compounds containing transition-metal ions other than Mn, for which electronic structure around the Fermi energy is only slightly spin split due to weak d -π hybridization and the magnetic interaction is of the Ruderman-Kittel-Kasuya-Yosida type. We use a ferromagnetic Kondo lattice model to understand the phase transition in Mn-containing compounds in terms of carrier density and illuminate the complexity and the potential to control two-dimensional magnetization.

  16. Magnetic response of hybrid ferromagnetic and antiferromagnetic core-shell nanostructures.

    Science.gov (United States)

    Khan, U; Li, W J; Adeela, N; Irfan, M; Javed, K; Wan, C H; Riaz, S; Han, X F

    2016-03-21

    The synthesis of FeTiO3-Ni(Ni80Fe20) core-shell nanostructures by a two-step method (sol-gel and DC electrodeposition) has been demonstrated. XRD analysis confirms the rhombohedral crystal structure of FeTiO3(FTO) with space group R3[combining macron]. Transmission electron microscopy clearly depicts better morphology of nanostructures with shell thicknesses of ∼25 nm. Room temperature magnetic measurements showed significant enhancement of magnetic anisotropy for the permalloy (Ni80Fe20)-FTO over Ni-FTO core-shell nanostructures. Low temperature magnetic measurements of permalloy-FeTiO3 core-shell structure indicated a strong exchange bias mechanism with magnetic coercivity below the antiferromagnetic Neel temperature (TN = 59 K). The exchange bias is attributed to the alignment of magnetic moments in the antiferromagnetic material at low temperature. Our scheme opens a path towards optimum automotive systems and wireless communications wherein broader bandwidths and smaller sizes are required.

  17. Iterative Reconstruction Methods for Hybrid Inverse Problems in Impedance Tomography

    DEFF Research Database (Denmark)

    Hoffmann, Kristoffer; Knudsen, Kim

    2014-01-01

    For a general formulation of hybrid inverse problems in impedance tomography the Picard and Newton iterative schemes are adapted and four iterative reconstruction algorithms are developed. The general problem formulation includes several existing hybrid imaging modalities such as current density...... impedance imaging, magnetic resonance electrical impedance tomography, and ultrasound modulated electrical impedance tomography, and the unified approach to the reconstruction problem encompasses several algorithms suggested in the literature. The four proposed algorithms are implemented numerically in two...

  18. Magnetically levitated space elevator to low-earth orbit

    International Nuclear Information System (INIS)

    Hull, J. R.; Mulcahy, T. M.

    2001-01-01

    The properties of currently available NbTi superconductor and carbon-fiber structural materials enable the possibility of constructing a magnetically levitated space elevator from the earth's surface up to an altitude of(approx) 200 km. The magnetic part of the elevator consists of a long loop of current-carrying NbTi, composed of one length that is attached to the earth's surface in an east-west direction and a levitated-arch portion. The critical current density of NbTi is sufficiently high that these conductors will stably levitate in the earth's magnetic field. The magnetic self-field from the loop increases the levitational force and for some geometries assists levitational stability. The 200-km maximum height of the levitated arch is limited by the allowable stresses of the structural material. The loop is cryogenically cooled with helium, and the system utilizes intermediate pumping and cooling stations along both the ground and the levitated portion of the loop, similar to other large terrestrial cryogenic systems. Mechanically suspended from the basic loop is an elevator structure, upon which mass can be moved between the earth's surface and the top of the loop by a linear electric motor or other mechanical or electrical means. At the top of the loop, vehicles may be accelerated to orbital velocity or higher by rocket motors, electromagnetic propulsion, or hybrid methods

  19. Hybrid surface waves in two-dimensional Rashba-Dresselhaus materials

    Science.gov (United States)

    Yudin, Dmitry; Gulevich, Dmitry R.; Shelykh, Ivan A.

    2017-01-01

    We address the electromagnetic properties of two-dimensional electron gas confined by a dielectric environment in the presence of both Rashba and Dresselhaus spin-orbit interactions. It is demonstrated that off-diagonal components of the conductivity tensor resulting from a delicate interplay between Rashba and Dresselhaus couplings lead to the hybridization of transverse electric and transverse magnetic surface electromagnetic modes localized at the interface. We show that the characteristics of these hybrid surface waves can be controlled by additional intense external off-resonant coherent pumping.

  20. PHASE GRADIENT METHOD OF MAGNETIC FIELD MEASUREMENTS IN ELECTRIC VEHICLES

    Directory of Open Access Journals (Sweden)

    N. G. Ptitsyna

    2013-01-01

    Full Text Available Operation of electric and hybrid vehicles demands real time magnetic field control, for instance, for fire and electromagnetic safety. The article deals with a method of magnetic field measurements onboard electric cars taking into account peculiar features of these fields. The method is based on differential methods of measurements, and minimizes the quantity of magnetic sensors.