WorldWideScience

Sample records for hybrid insertion device

  1. Field errors in hybrid insertion devices

    Energy Technology Data Exchange (ETDEWEB)

    Schlueter, R.D. [Lawrence Berkeley Lab., CA (United States)

    1995-02-01

    Hybrid magnet theory as applied to the error analyses used in the design of Advanced Light Source (ALS) insertion devices is reviewed. Sources of field errors in hybrid insertion devices are discussed.

  2. Insertion devices

    CERN Document Server

    Bahrdt, J

    2006-01-01

    The interaction of an insertion device with the electron beam in a storage ring is discussed. The radiation property including brightness, ux and polarization of an ideal and real planar and helical / elliptical device is described. The magnet design of planar, helical, quasiperiodic devices and of devices with a reduced on axis power density are resumed.

  3. Insertion device calculations with mathematica

    Energy Technology Data Exchange (ETDEWEB)

    Carr, R. [Stanford Synchrotron Radiation Lab., CA (United States); Lidia, S. [Univ. of California, Davis, CA (United States)

    1995-02-01

    The design of accelerator insertion devices such as wigglers and undulators has usually been aided by numerical modeling on digital computers, using code in high level languages like Fortran. In the present era, there are higher level programming environments like IDL{reg_sign}, MatLab{reg_sign}, and Mathematica{reg_sign} in which these calculations may be performed by writing much less code, and in which standard mathematical techniques are very easily used. The authors present a suite of standard insertion device modeling routines in Mathematica to illustrate the new techniques. These routines include a simple way to generate magnetic fields using blocks of CSEM materials, trajectory solutions from the Lorentz force equations for given magnetic fields, Bessel function calculations of radiation for wigglers and undulators and general radiation calculations for undulators.

  4. Insertion device and method for accurate and repeatable target insertion

    Energy Technology Data Exchange (ETDEWEB)

    Gubeli, III, Joseph F.; Shinn, Michelle D.; Bevins, Michael E.; Dillon-Townes, Lawrence; Neil, George R.

    2017-07-04

    The present invention discloses a device and a method for inserting and positioning a target within a free electron laser, particle accelerator, or other such device that generates or utilizes a beam of energy or particles. The system includes a three-point registration mechanism that insures angular and translational accuracy and repeatability of positioning upon multiple insertions within the same structure.

  5. Hybrid silicon evanescent devices

    Directory of Open Access Journals (Sweden)

    Alexander W. Fang

    2007-07-01

    Full Text Available Si photonics as an integration platform has recently been a focus of optoelectronics research because of the promise of low-cost manufacturing based on the ubiquitous electronics fabrication infrastructure. The key challenge for Si photonic systems is the realization of compact, electrically driven optical gain elements. We review our recent developments in hybrid Si evanescent devices. We have demonstrated electrically pumped lasers, amplifiers, and photodetectors that can provide a low-cost, scalable solution for hybrid integration on a Si platform by using a novel hybrid waveguide architecture, consisting of III-V quantum wells bonded to Si waveguides.

  6. Hybrid electroluminescent devices

    Science.gov (United States)

    Shiang, Joseph John; Duggal, Anil Raj; Michael, Joseph Darryl

    2010-08-03

    A hybrid electroluminescent (EL) device comprises at least one inorganic diode element and at least one organic EL element that are electrically connected in series. The absolute value of the breakdown voltage of the inorganic diode element is greater than the absolute value of the maximum reverse bias voltage across the series. The inorganic diode element can be a power diode, a Schottky barrier diode, or a light-emitting diode.

  7. Insertion of lithium into electrochromic devices after completion

    Energy Technology Data Exchange (ETDEWEB)

    Berland, Brian Spencer; Lanning, Bruce Roy; Frey, Jonathan Mack; Barrett, Kathryn Suzanne; DuPont, Paul Damon; Schaller, Ronald William

    2015-12-22

    The present disclosure describes methods of inserting lithium into an electrochromic device after completion. In the disclosed methods, an ideal amount of lithium can be added post-fabrication to maximize or tailor the free lithium ion density of a layer or the coloration range of a device. Embodiments are directed towards a method to insert lithium into the main device layers of an electrochromic device as a post-processing step after the device has been manufactured. In an embodiment, the methods described are designed to maximize the coloration range while compensating for blind charge loss.

  8. Insertion of lithium into electrochromic devices after completion

    Energy Technology Data Exchange (ETDEWEB)

    Berland, Brian Spencer; Lanning, Bruce Roy; Frey, Jonathan Mack; Barrett, Kathryn Suzanne; DuPont, Paul Damon; Schaller, Ronald William

    2015-12-22

    The present disclosure describes methods of inserting lithium into an electrochromic device after completion. In the disclosed methods, an ideal amount of lithium can be added post-fabrication to maximize or tailor the free lithium ion density of a layer or the coloration range of a device. Embodiments are directed towards a method to insert lithium into the main device layers of an electrochromic device as a post-processing step after the device has been manufactured. In an embodiment, the methods described are designed to maximize the coloration range while compensating for blind charge loss.

  9. Spontaneous Radiation Emission from Short, High Field Strength Insertion Devices

    Energy Technology Data Exchange (ETDEWEB)

    Geoffrey Krafft

    2005-09-15

    Since the earliest papers on undulaters were published, it has been known how to calculate the spontaneous emission spectrum from ''short'' undulaters when the magnetic field strength parameter is small compared to unity, or in ''single'' frequency sinusoidal undulaters where the magnetic field strength parameter is comparable to or larger than unity, but where the magnetic field amplitude is constant throughout the undulater. Fewer general results have been obtained in the case where the insertion device is both short, i.e., the magnetic field strength parameter changes appreciably throughout the insertion device, and the magnetic field strength is high enough that ponderomotive effects, radiation retardation, and harmonic generation are important physical phenomena. In this paper a general method is presented for calculating the radiation spectrum for short, high-field insertion devices. It is used to calculate the emission from some insertion device designs of recent interest.

  10. Immediate Intrauterine Device Insertion Following Surgical Abortion.

    Science.gov (United States)

    Patil, Eva; Bednarek, Paula H

    2015-12-01

    Placement of an intrauterine device (IUD) immediately after a first or second trimester surgical abortion is safe and convenient and decreases the risk of repeat unintended pregnancy. Immediate postabortion IUD placement is not recommended in the setting of postprocedure hemorrhage, uterine perforation, infection, or hematometra. Otherwise, there are few contraindications to IUD placement following surgical abortion. Sexually transmitted infection screening should follow US Centers for Disease Control and Prevention guidelines. No additional antibiotics are needed beyond those used for the abortion. Placing immediate postabortion IUDs makes highly-effective long-acting reversible contraception more accessible to women.

  11. Nanofabrication of Hybrid Optoelectronic Devices

    Science.gov (United States)

    Dibos, Alan Michael

    The material requirements for optoelectronic devices can vary dramatically depending on the application. Often disparate material systems need to be combined to allow for full device functionality. At the nanometer scale, this can often be challenging because of the inherent chemical and structural incompatibilities of nanofabrication. This dissertation concerns the integration of seemingly dissimilar materials into hybrid optoelectronic devices for photovoltaic, plasmonic, and photonic applications. First, we show that combining a single strip of conjugated polymer and inorganic nanowire can yield a nanoscale solar cell, and modeling of optical absorption and exciton diffusion in this device can provide insight into the efficiency of charge separation. Second, we use an on-chip nanowire light emitting diode to pump a colloidal quantum dot coupled to a silver waveguide. The resulting device is an electro-optic single plasmon source. Finally, we transfer diamond waveguides onto near-field avalanche photodiodes fabricated from GaAs. Embedded in the diamond waveguides are nitrogen vacancy color centers, and the mapping of emission from these single-photon sources is demonstrated using our on-chip detectors, eliminating the need for external photodetectors on an optical table. These studies show the promise of hybrid optoelectronic devices at the nanoscale with applications in alternative energy, optical communication, and quantum optics.

  12. Design and resistive inserts for NHMFL 45-T hybrid magnet

    Energy Technology Data Exchange (ETDEWEB)

    Bird, M.D.; Bole, S.; Eyssa, Y.M.; Gao, B.J.; Zhang, H.; Schneider-Muntau, H.J. [National High Magnetic Field Lab., Tallahassee, FL (United States)

    1994-07-01

    The authors present conceptual designs for 24--27 MW hybrid magnet inserts generating more than 31 T in a warm bore of 32 mm to be installed at the new National High Magnetic Field Laboratory (NHMFL). The insert housing is designed to accommodate both axially and radially cooled magnets although here they only present axially cooled designs. The magnet coils are radially partitioned (poly-Bitter) to provide high fields at moderate stress and cooling levels. GlidCop, Cu-Be and Cu-Ag conductors are considered providing resistive fields at high as 34 T in a background field of 14 T.

  13. An overview of the insertion device development at SRRC

    CERN Document Server

    Hwang, C S; Fan, T C; Wang, C; Chen, J R; Chen, C T

    2001-01-01

    Five high performance insertion devices, namely W20, U10, U5, U9 and EPU5.6, have been constructed and installed in the storage ring of the Synchrotron Radiation Research Center (SRRC). Among them, the 2-m-long conventional undulator U10 and the 4-m-long elliptically polarized undulator EPU5.6 were designed and built in-house. These two devices have achieved high magnetic field quality and high spectral performance. To facilitate hard-X-ray experiments, the project of building a superconducting wavelength shifter (SWLS) and a superconducting multi-pole wiggler (SMPW) is ongoing. These two superconducting insertion devices were designed to be cryogen-free.

  14. Insertion devices at the Swiss Light Source (phase I)

    CERN Document Server

    Schmidt, T; Imhof, A; Patterson, B D; Patthey, L; Quitmann, C; Schulze-Briese, C; Abela, R

    2001-01-01

    The insertion devices under construction for phase I of the Swiss Light Source (SLS) are described. Five undulators and one wiggler will be installed in four straight sections of the third generation 2.4 GeV SLS storage ring, under construction at the Paul Scherrer Institute. To provide undulator radiation in the energy range from 10 eV to 18 keV, both long period and short period, small gap undulators will be installed.

  15. The first insertion devices at SSRL - some personal recollections

    Energy Technology Data Exchange (ETDEWEB)

    Winick, H. [Stanford Linear Accelerator Center, CA (United States)

    1995-02-01

    The author recounts his experiences with insertion devices at the Stanford Synchrotron Radiation Laboratory. His first experiences with wigglers occured at the Cambridge Electron Accelerator, and was carried over to SSRL with the proposal for a six pole electromagnetic wiggler. Most modern undulators, and many wigglers are now designed around permanent magnets, and the origin of this transition at SSRL was rather fortuitous and humorous. It reflects some of the personality characteristics of Klaus Halbach.

  16. Natural hybrid organic-inorganic photovoltaic devices

    Science.gov (United States)

    De Padova, Paola; Lucci, Massimiliano; Olivieri, Bruno; Quaresima, Claudio; Priori, Sandro; Francini, Roberto; Grilli, Antonio; Hricovini, Karol; Davoli, Ivan

    2009-06-01

    Natural hybrid organic-inorganic photovoltaic devices based on TiO 2 have been realized. Chlorophyll A (from anacystis nidulans algae), chlorophyll B (from spinach), carmic acid (from insect Coccus cacti L.), synthetic trans- β-carotene, natural fresh picked Morus nigra, and their mixtures have been used as an organic photo active layer to fabricate photovoltaic prototypes. In order to reduce the charge's interfacial recombination, different thicknesses (5-45 nm) of Si layers, subsequently oxidized in air, were inserted between the TiO 2 and chlorophyll B. Scanning electron microscopy of TiO 2 and Si/TiO 2 systems shows the coexistence at least of four classes of nanoparticles of 60, 100, 150 and 250 nm in size. Auger electron spectroscopy of the Si L 2,3V V transition demonstrates the presence of silica and SiO x suboxides. Photocurrent measurements versus radiation wavelength in the range 300-800 nm exhibit different peaks according to the absorption spectra of the organic molecules. All realized photovoltaic devices are suitable for solar light electric energy conversion. Those made of a blend of all organic molecules achieved higher current and voltage output. The Si/TiO 2-based devices containing chlorophyll B exhibited an enhanced photocurrent response with respect to those with TiO 2 only.

  17. Lossless hybridization between photovoltaic and thermoelectric devices.

    Science.gov (United States)

    Park, Kwang-Tae; Shin, Sun-Mi; Tazebay, Abdullah S; Um, Han-Don; Jung, Jin-Young; Jee, Sang-Won; Oh, Min-Wook; Park, Su-Dong; Yoo, Bongyoung; Yu, Choongho; Lee, Jung-Ho

    2013-01-01

    The optimal hybridization of photovoltaic (PV) and thermoelectric (TE) devices has long been considered ideal for the efficient harnessing solar energy. Our hybrid approach uses full spectrum solar energy via lossless coupling between PV and TE devices while collecting waste energy from thermalization and transmission losses from PV devices. Achieving lossless coupling makes the power output from the hybrid device equal to the sum of the maximum power outputs produced separately from individual PV and TE devices. TE devices need to have low internal resistances enough to convey photo-generated currents without sacrificing the PV fill factor. Concomitantly, a large number of p-n legs are preferred to drive a high Seebeck voltage in TE. Our simple method of attaching a TE device to a PV device has greatly improved the conversion efficiency and power output of the PV device (~30% at a 15°C temperature gradient across a TE device).

  18. Feasibility and speed of insertion of seven supraglottic airway devices under simulated airway conditions

    National Research Council Canada - National Science Library

    Robak, Oliver; Leonardelli, Marco; Zedtwitz-Liebenstein, Konstantin; Rützler, Kurt; Schuster, Ernst; Vaida, Sonia; Salem, Ramez; Frass, Michael

    2012-01-01

    .... The main goals of our study were to evaluate the success rate and speed of insertion of different supraglottic airway devices and to determine whether the devices could be properly inserted under...

  19. A new gap separation mechanism for APS insertion devices.

    Energy Technology Data Exchange (ETDEWEB)

    Trakhtenberg, E. M.; Tcheskidov, V.; Den Hartog, P. K.; Deriy, B.; Erdmann, M.; Makarov, O.; Moog, E. R.

    1999-10-25

    A new gap separation mechanism for use with the standard Advanced Photon Source (APS) 3.3-cm-period undulator magnetic structures has been designed and built and the first system has been installed in the APS storage ring. The system allows a minimum magnetic gap of 10 mm for use with the APS 8-mm insertion device vacuum chambers. The mechanism is a bolted steel frame structure with a simple 4-motor mechanical drive train. The control system uses servomotors with incremental rotary encoders and virtual absolute linear encoders.

  20. Insertion device operating experience at the Advanced Photon Source

    Science.gov (United States)

    Grimmer, John; Ramanathan, Mohan; Smith, Martin; Merritt, Michael

    2002-03-01

    The Advanced Photon Source has 29 insertion devices (IDs) installed in the 7 GeV electron storage ring; 28 of these devices, most of which are 3.3 cm period undulators, use two horizontal permanent magnet structures positioned over a straight vacuum chamber. A support and drive mechanism allows the vertical gap between the magnet structures to be varied, thus changing the x-ray energy produced by the ID [J. Viccaro, Proc. SPIE 1345, 28 (1990); E. Gluskin, J. Synchrotron Radiat. 5, 189 (1998)]. Most of these IDs use a drive scheme with two stepper motors, one driving each end through a mechanism synchronizing the upper and lower magnet structures. Our experience in almost 5 yr of operating this system will be discussed. All of the IDs are in continuous operation for approximately 10 weeks at a time. Reliability of operation is of paramount importance, as access to the storage ring for servicing of a single ID inhibits operation for all users. Our experience in achieving highly reliable ID operation is reviewed. Accuracy of operation and repeatability over time are also vital. To this end, these devices use absolute optical linear encoders with submicron resolution for primary position feedback. Absolute rotary encoders are used as a backup to the linear encoders. The benefits and limitations of each type of encoder, and our experience dealing with radiation and electrical noise are reviewed. The insertion devices operate down to gaps as small as 8.5 mm, with clearance over the vacuum chamber as small as 200 μm. The vacuum chamber has a minimum wall thickness of only 1 mm. A number of levels of safeguards are used to prevent contact between the magnet structure and the vacuum chamber. These safeguards and their evolution after gaining operational experience are presented.

  1. Pyoderma gangrenosum after totally implanted central venous access device insertion

    Directory of Open Access Journals (Sweden)

    Hagen Monica E

    2008-03-01

    Full Text Available Abstract Background Pyoderma gangrenosum is an aseptic skin disease. The ulcerative form of pyoderma gangrenosum is characterized by a rapidly progressing painful irregular and undermined bordered necrotic ulcer. The aetiology of pyoderma gangrenosum remains unclear. In about 70% of cases, it is associated with a systemic disorder, most often inflammatory bowel disease, haematological disease or arthritis. In 25–50% of cases, a triggering factor such as recent surgery or trauma is identified. Treatment consists of local and systemic approaches. Systemic steroids are generally used first. If the lesions are refractory, steroids are combined with other immunosuppressive therapy or to antimicrobial agents. Case presentation A 90 years old patient with myelodysplastic syndrome, seeking regular transfusions required totally implanted central venous access device (Port-a-Cath® insertion. Fever and inflammatory skin reaction at the site of insertion developed on the seventh post-operative day, requiring the device's explanation. A rapid progression of the skin lesions evolved into a circular skin necrosis. Intravenous steroid treatment stopped the necrosis' progression. Conclusion Early diagnosis remains the most important step to the successful treatment of pyoderma gangrenosum.

  2. Improvement in field uniformity of the hybrid insert magnet

    Energy Technology Data Exchange (ETDEWEB)

    Asano, T; Yoshioka, H; Matsumoto, S; Kiyoshi, T [Tsukuba Magnet Laboratory, National Institute for Materials Science, Sakura 3-13, Tsukuba, Ibaraki 305-0003 (Japan)

    2006-11-15

    The hybrid magnet (HM) at the Tsukuba Magnet Laboratory (TML) generates 35 T in a 52-mm warm bore with a field uniformity of about 6500 ppm in a 10 mm diameter sphere volume (DSV). A new resistive insert magnet with the same bore was designed to provide the higher field uniformity in the HM operation and the construction was started. This e-magnet is composed of three concentric Bitter coils. The height of the outer coil is almost equal to that of present insert, . Tand the middle coil is made of a split-paired winding; . Tthe split gap is 53 mm. The A uniformity better than 10 ppm in a 10 mm DSV will be achieved at a themagnetic field of 34.0 T in a backup field of 14 T. This eimprovement in uniformity, in conjuncllaboration with the improvements of the DC power supply already in progress at the TML, will make it possible to expand the application fields of the HM of the TML.

  3. Adequacy of the device intrauterine by ultrasound evaluation: postpartum and post-abortion insertion versus insertion during the menstrual cycle

    National Research Council Canada - National Science Library

    de Holanda, Antônio Arildo Reginaldo; Pessoa, Aline de Melo; Holanda, Julita de Campos Pipolo; de Melo, Maria Helena Vieira; Maranhão, Técia Maria de Oliveira

    2013-01-01

    To compare by transvaginal ultrasound the position of the intrauterine device (IUD) inside the uterine cavity, depending on the time of insertion, postpartum and post-abortion, and during the menstrual cycle...

  4. A minimalist technique for insertion of intrauterine devices

    Directory of Open Access Journals (Sweden)

    Norman David Goldstuck

    2015-05-01

    Full Text Available The world’s population is approaching 7 billion. As a general rule, the countries with the highest population have the least available healthcare resources, the most notable exception being the United States of America (USA. Most of these countries have an urgent need to reduce their populations. The intrauterine device (IUD is used by the largest number of contraceptives world-wide and it has a proven record in reducing unwanted pregnancies. Its efficacy rate as a long-acting reversible contraceptive is matched only by subdermal implants which are not as cost effective. Although the rates of pelvic infection are elevated in many countries with low-resource health care systems, we now know that pelvic infection rates are independent of IUD usage. This is therefore no longer a contraindication for using IUDs on a large scale in family planning programs. The technique of IUD insertion as described in most textbooks and journals is unnecessarily complex and based on ritual rather than good clinical evidence. This is particularly interesting in that at a time where we prefer evidence based medicine there are still so many clinical practice sacred cows. This article advocates a simplification of the technique for inserting IUDs. The scientific rationale for simplifying the technique is presented, as well as evidence that it is as safe if not safer than the currently suggested methods, if used for the correct type of IUD acceptors.

  5. Theory of electromagnetic insertion devices and the corresponding synchrotron radiation

    Science.gov (United States)

    Shumail, Muhammad; Tantawi, Sami G.

    2016-07-01

    Permanent magnet insertion devices (IDs), which are the main radiation generating devices in synchrotron light sources and free-electron lasers, use a time-invariant but space-periodic magnetic field to wiggle relativistic electrons for short-wavelength radiation generation. Recently, a high power microwave based undulator has also been successfully demonstrated at SLAC which promises the advantage of dynamic tunability of radiation spectrum and polarization. Such IDs employ transverse elecromagnetic fields which are periodic in both space and time to undulate the electrons. In this paper we develop a detailed theory of the principle of electromagnetic IDs from first principles for both linear and circular polarization modes. The electromagnetic equivalent definitions of undulator period (λu) and undulator deflection parameter (K ) are derived. In the inertial frame where the average momentum of the electron is zero, we obtain the figure-8-like trajectory for the linear polarization mode and the circular trajectory for the circular polarization mode. The corresponding radiation spectra and the intensity of harmonics is also calculated.

  6. Effects of insertion device on SSRF storage ring

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Shanghai Synchrotron Radiation Facility (SSRF), one of the third generation light sources, aims to produce high brightness and/or high flux X-ray source for users; therefore insertion devices (IDs) are important magnetic elements for SSRF. In this paper, the linear perturbations due to IDs toward its storage ring lattice, such as beta function distortions, tune shifts, emittance growths, and energy spreads are estimated by using analytical formulae, and the nonlinear effects from IDs, especially dynamic aperture, are simulated by using Racetrack code. The results show that (a) the reduction of dynamic aperture from single undulator is negligible, since electron beam energy of 3.5 GeV is high and ID's magnetic field is low, and the beta functions in the middle of straight sections, where ID is located, are well optimized; (b) however, the reduction from single wigglers, especially super-conducting wiggler, is visible, because of its higher magnetic field; (c) effects of each ID on emittance growths and energy spreads are less than 7%.

  7. Approaches to hybrid synthetic devices

    Science.gov (United States)

    Verma, Vivek

    All living creatures are made up of cells that have the ability to replicate themselves in a repetitive process called cell division. As these cells mature and divide into two there is an extensive movement of cellular components. In order to perform this essential task that sustains life, cells have evolved machines composed of proteins. Biological motors, such as kinesin, transport intracellular cargo and position organelles in eukaryotic cells via unidirectional movement on cytoskeletal tracts called microtubules. Biomolecular motor proteins have the potential to be used as 'nano-engines' for switchable devices, directed self assembly, controlled bioseparations and powering nano- and microelectromechanical systems. However, engineering such systems requires fabrication processes that are compatible with biological materials such as kinesin motor proteins and microtubules. The first objective of the research was to establish biocompatibility between protein systems and nanofabrication. The second objective was to use current micro- and nanofabrication techniques for patterning proteins at specific locations and to study role of casein in supporting the operation of surface bound kinesin. The third objective was to link kinesin and microtubule system to cellulose nanowhiskers. The effects of micro- and nanofabrication processing chemicals and resists on the functionality of casein, kinesin, and microtubule proteins are systematically examined to address the important missing link of the biocompatibility of micro- and nanofabrication processes needed to realize hybrid system fabrication. It was found that both casein, which is used to prevent motor denaturation on surfaces, and kinesin motors are surprisingly tolerant of most of the processing chemicals examined. Microtubules, however, are much more sensitive. Exposure to the processing chemicals leads to depolymerization, which is partially attributed to the pH of the solutions examined. When the chemicals were

  8. A study of the suitability of ferrite for use in low-field insertion devices

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, K.; Hassenzahl, W.V.

    1995-02-01

    Most insertion devices built to date use rare-earth permanent-magnet materials, which have a high remanent field and are more expensive than many other permanent-magnet materials. Low-field insertion devices could use less-expensive, lower performance magnetic materials if they had suitable magnetic characteristics. These materials must be resistant to demagnetization during construction and operation of the insertion device, have uniform magnetization, possess low minor-axis magnetic moments, and have small minor field components on the surfaces. This paper describes an investigation to determine if ferrite possesses magnetic qualities suitable for insertion device applications. The type of ferrite investigated, MMPA Ceramic 8 from Stackpole Inc., was found to be acceptable for insertion device applications.

  9. [Adequacy of the device intrauterine by ultrasound evaluation: postpartum and post-abortion insertion versus insertion during the menstrual cycle].

    Science.gov (United States)

    de Holanda, Antônio Arildo Reginaldo; Pessoa, Aline de Melo; Holanda, Julita de Campos Pipolo; de Melo, Maria Helena Vieira; Maranhão, Técia Maria de Oliveira

    2013-08-01

    To compare by transvaginal ultrasound the position of the intrauterine device (IUD) inside the uterine cavity, depending on the time of insertion, postpartum and post-abortion, and during the menstrual cycle. Epidemiologic, observational and cross-sectional study carried out between February and July, 2013. A total of 290 women were included, 205 of them with insertion during the menstrual cycle and 85 during the postpartum and post-abortion periods. The independent variables were: age, parity, time of use, insertion time, number of returns to family planning, satisfaction with the method, wish to continue using the device, symptoms and complications. The dependent variable was the adequate position of the IUD inside the uterine cavity. The χ² test with Pearson's correction and the Fisher exact test were used for statistical analysis, with the level of significance set at 5%. The average age was 29.4 years and the average time of IUD use was 2.7 years; 39.3% of the women had symptoms associated with the method, the most frequent being menorrhagia (44.7%). The degree of satisfaction was 85% and 61.4% of the women returned two or more times for consultation about family planning. Age, parity and the position of the uterus in the pelvic cavity was not associated with a poor position of the IUD inside the uterine cavity (p>0.05). Insertion during the menstrual cycle was significantly more associated with a correct position of the IUD than postpartum and post-abortion insertion (pabortion insertion showed worse results regarding the adequacy of IUD position, a fact that was not observed regarding age, parity or position of the uterus in the pelvic cavity.

  10. The endometrial bacterial flora following insertion of intrauterine contraceptive device.

    Science.gov (United States)

    Kamar, R; Wajntraub, G; Godfried, L; Czazkes, E; Aloni, T A

    1980-01-01

    Bacteriological cultures of material were collected from the endometrium and cervix of 150 women using the IUD, 75 control women and transfundally from 20 uteri of women who had undergone abdominal hysterectomy. The results show that the IUD does not alter the endometrial flora unless it is left in situ for a period exceeding two years. The transfundal cultures yielded the lowest positive cultures. The relationship of positive culture to the cycle and the period of insertion of IUD is discussed.

  11. An unknown complication of peripherally inserted central venous catheter in a patient with ventricular assist device

    Directory of Open Access Journals (Sweden)

    Parikh M

    2011-01-01

    Full Text Available We report an unknown complication of peripherally inserted central venous catheter in a patient with Ventricular Assist Device. This rare complication led to the failure of the right ventricular assist device, which could be detrimental in patients with dilated cardiomyopathy.

  12. Diamond MEMS: wafer scale processing, devices, and technology insertion

    Science.gov (United States)

    Carlisle, J. A.

    2009-05-01

    Diamond has long held the promise of revolutionary new devices: impervious chemical barriers, smooth and reliable microscopic machines, and tough mechanical tools. Yet it's been an outsider. Laboratories have been effectively growing diamond crystals for at least 25 years, but the jump to market viability has always been blocked by the expense of diamond production and inability to integrate with other materials. Advances in chemical vapor deposition (CVD) processes have given rise to a hierarchy of carbon films ranging from diamond-like carbon (DLC) to vapor-deposited diamond coatings, however. All have pros and cons based on structure and cost, but they all share some of diamond's heralded attributes. The best performer, in theory, is the purest form of diamond film possible, one absent of graphitic phases. Such a material would capture the extreme hardness, high Young's modulus and chemical inertness of natural diamond. Advanced Diamond Technologies Inc., Romeoville, Ill., is the first company to develop a distinct chemical process to create a marketable phase-pure diamond film. The material, called UNCD® (for ultrananocrystalline diamond), features grain sizes from 3 to 300 nm in size, and layers just 1 to 2 microns thick. With significant advantages over other thin films, UNCD is designed to be inexpensive enough for use in atomic force microscopy (AFM) probes, microelectromechanical machines (MEMS), cell phone circuitry, radio frequency devices, and even biosensors.

  13. High performance lithium insertion negative electrode materials for electrochemical devices

    Energy Technology Data Exchange (ETDEWEB)

    Channu, V.S. Reddy, E-mail: chinares02@gmail.com [SMC Corporation, College Station, TX 77845 (United States); Rambabu, B. [Solid State Ionics and Surface Sciences Lab, Department of Physics, Southern University and A& M College, Baton Rouge, LA 70813 (United States); Kumari, Kusum [Department of Physics, National Institute of Technology, Warangal (India); Kalluru, Rajmohan R. [The University of Southern Mississippi, College of Science and Technology, 730 E Beach Blvd, Long Beach, MS 39560 (United States); Holze, Rudolf [Institut für Chemie, AG Elektrochemie, Technische Universität Chemnitz, D-09107 Chemnitz (Germany)

    2016-11-30

    Highlights: • LiCrTiO{sub 4} nanostructures were synthesized for electrochemical applications by soft chemical synthesis followed by annealing. • The presence of Cr and Ti elements are confirmed from the EDS spectrum. • Oxalic acid assisted LiCrTiO{sub 4} electrode shows higher specific capacity (mAh/g). - Abstract: Spinel LiCrTiO{sub 4} oxides to be used as electrode materials for a lithium ion battery and an asymmetric supercapacitor were synthesized using a soft-chemical method with and without chelating agents followed by calcination at 700 °C for 10 h. Structural and morphological properties were studied with powder X-ray diffraction, scanning electron and transmission electron microscopy. Particles of 50–10 nm in size are observed in the microscopic images. The presence of Cr and Ti is confirmed from the EDS spectrum. Electrochemical properties of LiCrTiO{sub 4} electrode were examined in a lithium ion battery. The electrode prepared with oxalic acid-assisted LiCrTiO{sub 4} shows higher specific capacity.This LiCrTiO{sub 4} is also used as anode material for an asymmetric hybrid supercapacitor. The cell exhibits a specific capacity of 65 mAh/g at 1 mA/cm{sup 2}. The specific capacity decreases with increasing current densities.

  14. High performance lithium insertion negative electrode materials for electrochemical devices

    Science.gov (United States)

    Channu, V. S. Reddy; Rambabu, B.; Kumari, Kusum; Kalluru, Rajmohan R.; Holze, Rudolf

    2016-11-01

    Spinel LiCrTiO4 oxides to be used as electrode materials for a lithium ion battery and an asymmetric supercapacitor were synthesized using a soft-chemical method with and without chelating agents followed by calcination at 700 °C for 10 h. Structural and morphological properties were studied with powder X-ray diffraction, scanning electron and transmission electron microscopy. Particles of 50-10 nm in size are observed in the microscopic images. The presence of Cr and Ti is confirmed from the EDS spectrum. Electrochemical properties of LiCrTiO4 electrode were examined in a lithium ion battery. The electrode prepared with oxalic acid-assisted LiCrTiO4 shows higher specific capacity.This LiCrTiO4 is also used as anode material for an asymmetric hybrid supercapacitor. The cell exhibits a specific capacity of 65 mAh/g at 1 mA/cm2. The specific capacity decreases with increasing current densities.

  15. Failure of post-coital contraception after insertion of an intrauterine device. Case report.

    Science.gov (United States)

    Kubba, A A; Guillebaud, J

    1984-06-01

    This paper reports the case of in situ failure of a postcoitally inserted IUD. The patient selected to have a Nova-T IUD inserted 69 hours after a single episode of unprotected intercourse and 19 days after her last menstrual period. 18 days after insertion, the patient had a positive urine pregnancy test. There was no evidence of partial expulsion or malposition of the device. Before this failure, 116 IUDs had been inserted at the center, primarily for postcotial contraception. Only 2 failures/1300 postcoital IUD insertions are expected to occur, and the 1300 case reports in the literature include no reports of failure. Although the failure rate is theoretically low, the effectiveness of this method should not be overstated during counseling.

  16. Portable Hybrid Powered Water Filtration Device

    Directory of Open Access Journals (Sweden)

    Maria Lourdes V. Balansay

    2015-08-01

    Full Text Available The existing water filtration device has features that can be developed to be more useful and functional during emergency situations. The project’s development has been aided by following provisions in PEC, NEC, NEMA and Philippine National Standard for Safe Drinking Water provide standards for the construction of the project. These standards protect both the prototype and the user. These also served as guide for the maintenance of every component. The design of the portable hybrid powered water filtration device shows that the project has more advanced features such as portability and the power supply used such as photovoltaic module solar cells and manually operated generator. This also shows its effectiveness and reliability based on the results of discharging test, water quality test and water production test. Based on analysis of the overall financial aspects, the machine can be profitable and the amount of revenue and operating cost will increase as years pass. Using the proper machine/ tools and methods of fabrication helps in easy assembly of the project. The materials and components used are cost effective and efficient. The best time for charging the battery using solar panel is 9:00 am onwards while the hand crank generator is too slow because the generated current is little. The water filtration device is very efficient regarding the operating hours and water production. The machine may have a great effect to society and economy in generation of clean available water at less cost.

  17. Immediate postpartum levonorgestrel intrauterine device insertion and breast-feeding outcomes: a noninferiority randomized controlled trial.

    Science.gov (United States)

    Turok, David K; Leeman, Lawrence; Sanders, Jessica N; Thaxton, Lauren; Eggebroten, Jennifer L; Yonke, Nicole; Bullock, Holly; Singh, Rameet; Gawron, Lori M; Espey, Eve

    2017-08-23

    Immediate postpartum levonorgestrel intrauterine device insertion is increasing in frequency in the United States, but few studies have investigated the effect of early placement on breast-feeding outcomes. This study examined the effect of immediate vs delayed postpartum levonorgestrel intrauterine device insertion on breast-feeding outcomes. We conducted this noninferiority randomized controlled trial at the University of Utah and the University of New Mexico Health Sciences Centers from February 2014 through March 2016. Eligible women were pregnant and planned to breast-feed, spoke English or Spanish, were aged 18-40 years, and desired a levonorgestrel intrauterine device. Enrolled women were randomized 1:1 to immediate postpartum insertion or delayed insertion at 4-12 weeks' postpartum. Prespecified exclusion criteria included delivery <37.0 weeks' gestational age, chorioamnionitis, postpartum hemorrhage, contraindications to levonorgestrel intrauterine device insertion, and medical complications of pregnancy that could affect breast-feeding. We conducted per-protocol analysis as the primary approach, as it is considered the standard for noninferiority studies; we also report the alternative intent-to-treat analysis. We powered the study for the primary outcome, breast-feeding continuation at 8 weeks, to detect a 15% noninferiority margin between groups, requiring 132 participants in each arm. The secondary study outcome, time to lactogenesis, used a validated measure, and was analyzed by survival analysis and log rank test. We followed up participants for ongoing data collection for 6 months. Only the data analysis team was blinded to the intervention. We met the enrollment target with 319 participants, but lost 34 prior to randomization and excluded an additional 26 for medical complications prior to delivery. The final analytic sample included 132 in the immediate group and 127 in the delayed group. Report of any breast-feeding at 8 weeks in the immediate

  18. Study of low insertion loss and miniaturization wavelet transform and inverse transform processor using SAW devices.

    Science.gov (United States)

    Jiang, Hua; Lu, Wenke; Zhang, Guoan

    2013-07-01

    In this paper, we propose a low insertion loss and miniaturization wavelet transform and inverse transform processor using surface acoustic wave (SAW) devices. The new SAW wavelet transform devices (WTDs) use the structure with two electrode-widths-controlled (EWC) single phase unidirectional transducers (SPUDT-SPUDT). This structure consists of the input withdrawal weighting interdigital transducer (IDT) and the output overlap weighting IDT. Three experimental devices for different scales 2(-1), 2(-2), and 2(-3) are designed and measured. The minimum insertion loss of the three devices reaches 5.49dB, 4.81dB, and 5.38dB respectively which are lower than the early results. Both the electrode width and the number of electrode pairs are reduced, thus making the three devices much smaller than the early devices. Therefore, the method described in this paper is suitable for implementing an arbitrary multi-scale low insertion loss and miniaturization wavelet transform and inverse transform processor using SAW devices.

  19. A prospective study of immediate postpartum intra uterine device insertion in a tertiary level hospital

    Directory of Open Access Journals (Sweden)

    Arti Sharma

    2015-01-01

    Full Text Available Background: In India there is an unmet need for contraception. Intrauterine device is a long acting reversible method. This study was done to determine the efficacy and safety of immediate Post-Partum Intrauterine Device (PPIUD and to compare the outcome of PPIUD insertion after vaginal delivery and caesarean section. Methods: A total of 113 women who underwent PPIUD insertion were followed up at 6 weeks and 6 months post-partum. Outcome in term of side effects, removal and expulsion was compared in vaginal delivery and caesarean section insertions. Results: In 61.45% women there was no complaint. Menstrual disturbances were found in 16.66% women and pelvic pain in 13.54% women. The expulsion rate was 5.20% and IUD removal was done in 13.54% women. Incidence of removal was more in vaginal insertions than in caesarean insertions and this difference was statistically significant. Continuation rate at 6 months was 81.25%. Conclusion: Immediate postpartum IUD insertion is a safe, convenient and effective method. [Int J Res Med Sci 2015; 3(1.000: 183-187

  20. Self-Administered Lidocaine Gel for Intrauterine Device Insertion in Nulliparous Women: A Randomized Controlled Trial.

    Science.gov (United States)

    Rapkin, Rachel B; Achilles, Sharon L; Schwarz, E Bimla; Meyn, Leslie; Cremer, Miriam; Boraas, Christy M; Chen, Beatrice A

    2016-09-01

    To evaluate self-administration of vaginal lidocaine gel to decrease pain with intrauterine device (IUD) insertion in nulliparous women. In this randomized, double-blind, placebo-controlled trial, women self-administered 2% lidocaine or placebo vaginal gel 5 minutes before IUD insertion. The primary outcome was change in pain from baseline to IUD insertion on a 100-mm visual analog scale. We also assessed pain after speculum insertion, tenaculum placement, uterine sounding, and 5 minutes after IUD insertion. Secondary outcomes included patient acceptability, ease of IUD insertion, and need for pain medication for up to 7 days. From July 2012 to May 2013, 59 women were randomized; 30 received lidocaine gel and 29 placebo. Baseline demographics, including age, race, and body mass index, were similar. There was no difference in median change in pain during IUD insertion in women receiving lidocaine (61 mm [interquartile range 53-71]) compared with placebo (69 mm [interquartile range 63-80], P=.06). Women receiving lidocaine experienced less pain with tenaculum placement (32 mm [interquartile range 18-54]) compared with placebo (56 mm [interquartile range 26-75], P=.02). Most (76%) women were satisfied with their IUD insertion experience and 86% would probably or definitely recommend an IUD to a friend. Thirty-four percent of women required pain medication for at least 3 days after IUD insertion. For nulliparous women, self-administered vaginal lidocaine gel does not reduce pain with IUD insertion, but does decrease pain with tenaculum placement. ClinicalTrials.gov, http://clinicaltrials.gov, NCT01534520.

  1. U60 Undulator: An Insertion Device for the Siam Photon Source

    OpenAIRE

    Thananchai DASRI

    2011-01-01

    Properties of insertion device, undulators, for the synchrotron light source are reviewed. Undulators are magnetic devices installed in the storage ring to improve the properties of the synchrotron light. First, the ideal simulated undulator fields will be discussed. Later the simulated fields produced by a defective undulator will be shown. Last, their effects on the stored electron beam are presented. The U60 undulator of the Siam Photon Source is used as an example.

  2. U60 Undulator: An Insertion Device for the Siam Photon Source

    Directory of Open Access Journals (Sweden)

    Thananchai DASRI

    2011-01-01

    Full Text Available Properties of insertion device, undulators, for the synchrotron light source are reviewed. Undulators are magnetic devices installed in the storage ring to improve the properties of the synchrotron light. First, the ideal simulated undulator fields will be discussed. Later the simulated fields produced by a defective undulator will be shown. Last, their effects on the stored electron beam are presented. The U60 undulator of the Siam Photon Source is used as an example.

  3. Insertional mutagenesis by a hybrid piggyBac and sleeping beauty transposon in the rat.

    Science.gov (United States)

    Furushima, Kenryo; Jang, Chuan-Wei; Chen, Diane W; Xiao, Ningna; Overbeek, Paul A; Behringer, Richard R

    2012-12-01

    A hybrid piggyBac/Sleeping Beauty transposon-based insertional mutagenesis system that can be mobilized by simple breeding was established in the rat. These transposons were engineered to include gene trap sequences and a tyrosinase (Tyr) pigmentation reporter to rescue the albinism of the genetic background used in the mutagenesis strategy. Single-copy transposon insertions were transposed into the rat genome by co-injection of plasmids carrying the transposon and RNA encoding piggyBac transposase into zygotes. The levels of transgenic Tyr expression were influenced by chromosomal context, leading to transgenic rats with different pigmentation that enabled visual genotyping. Transgenic rats designed to ubiquitously express either piggyBac or Sleeping Beauty transposase were generated by standard zygote injection also on an albino background. Bigenic rats carrying single-copy transposons at known loci and transposase transgenes exhibited coat color mosaicism, indicating somatic transposition. PiggyBac or Sleeping Beauty transposase bigenic rats bred with wild-type albino rats yielded offspring with pigmentation distinct from the initial transposon insertions as a consequence of germline transposition to new loci. The germline transposition frequency for Sleeping Beauty and piggyBac was ∼10% or about one new insertion per litter. Approximately 50% of the insertions occurred in introns. Chimeric transcripts containing endogenous and gene trap sequences were identified in Gabrb1 mutant rats. This mutagenesis system based on simple crosses and visual genotyping can be used to generate a collection of single-gene mutations in the rat.

  4. Reorientation simplified: A device for recording and reproducing the path of insertion for removable partial dentures

    Directory of Open Access Journals (Sweden)

    Vaibhav D Kamble

    2014-01-01

    Full Text Available Aim: The record of path of insertion on the dental cast is part of the dentist′s work authorization to the dental laboratory technician. The path of insertion record enables the dental technician to replace the cast on a surveyor in the same position that the dentist selected. Analysis of factors that influence the path of insertion should determine a path of insertion that will reduce the potential for dislodgement and promote stability of removable partial denture (RPD. Materials and Methods: The recording of the relation of a cast to a dental surveyor and the transfer of this relationship to the dental laboratory may be done by tripodization, by scoring the base of the cast, or by cementing a reference pin on the cast. Conclusion: Recording the established path of insertion can be difficult when the procedure uses a cemented pin and the casts are mounted in an articulator. This article describes a procedure for innovative dowel pin and sleeve device to record the path of insertion of RPDs, which serves the same purpose as the cemented pin but can be easily removed and replaced.

  5. [Ultrasound-guided percutaneous insertion of implantable venous devices: a review of 102 patients].

    Science.gov (United States)

    Nguyen, V; Jarry, J; Farthouat, P; Bourilhon, N; Milou, F; Michel, P

    2013-02-01

    Techniques of insertion of implantable venous devices have been widely described. The use of ultrasound guidance is part of the good practice recommendations of the SOR 2008 but there are few data in the literature and recommendations are based only on expert agreement. To this end we conducted a prospective, single-center study from January 2008 to August 2009 on percutaneous ultrasound-guided insertion of implantable devices. In addition to age, sex, the therapeutic indication and the site of implantation, we identified the operative time and number of venipunctures performed for each procedure. We then identified the infectious complications at three months and thromboembolic complications at 1 year and a half. Our study examined 102 consecutive patients. The mean age was 61.8 years (28-90); 71% of patients were men. For 101 patients, the internal jugular vein was punctured, the subclavian vein in one patient. In 86% of cases, the implantable venous device was inserted into the right vein. The average length of procedure was 30 minutes (18-60) for a single-vein puncture. Among the 102 patients, the overall morbidity was 7.8% with four infections (3.9%) and four thromboses (3.9%). There were no immediate perioperative complications (arterial puncture, hematoma, pneumothorax). In conclusion, percutaneous ultrasound-guided insertion of implantable venous devices in the internal jugular vein is a safe, minimally invasive technique which complies with the 2008 SOR recommendations by preventing the risk of venous thrombosis and avoiding repeated venous puncture. Less invasive than the open surgical approach, ultrasound-guided insertion is safer than puncture based solely on anatomical landmarks. In summary, this is a reliable, simple and easily reproducible technique which limits iatrogenic risks and improves patient comfort.

  6. Hybrid radical energy storage device and method of making

    Energy Technology Data Exchange (ETDEWEB)

    Gennett, Thomas; Ginley, David S.; Braunecker, Wade; Ban, Chunmei; Owczarczyk, Zbyslaw

    2016-04-26

    Hybrid radical energy storage devices, such as batteries or electrochemical devices, and methods of use and making are disclosed. Also described herein are electrodes and electrolytes useful in energy storage devices, for example, radical polymer cathode materials and electrolytes for use in organic radical batteries.

  7. Microbial colonization of tailed and tailless intrauterine contraceptive devices: influence of the mode of insertion in the rabbit.

    Science.gov (United States)

    Jacques, M; Olson, M E; Costerton, J W

    1986-03-01

    An experimental rabbit model was developed to study the microbial colonization of intrauterine contraceptive devices. Tailed and tailless devices were surgically inserted into into the uterus by two different routes: surgically, directly into the uterine horn, thus avoiding contact with the vaginal and cervical microfloras, or via the vagina and cervix. After 1 to 8 weeks the devices were recovered and prepared for scanning electron microscopy. The surfaces of surgically inserted devices remained uncolonized all through the experiment whereas in those inserted via the cervix microorganisms colonized the core surface as early as 2 weeks after insertion. Our data suggest that in our experimental conditions the mode of insertion appears to be the major factor influencing the microbial colonization of intrauterine contraceptive devices and that the presence of a tail does not seem to play a significant role.

  8. [Rare problem with the insertion of a Supreme™ laryngeal mask airway device. Case of the trimester].

    Science.gov (United States)

    2014-03-01

    A breast tumor was resected under general anesthesia. After induction, the airway was managed with a Supreme™ laryngeal mask airway device. The insertion of the laryngeal mask airway device, the insertion of the orogastric tube through the drain tube, as well as the mechanical ventilation, were very difficult from the beginning. On removing the laryngeal mask airway device to solve the problem, it was observed that the drain tube was broken, and the orogastric tube had passed into the anterior, laryngeal part of the device through the split. It was later found out that the laryngeal mask airway device, as well as the whole manufacturing batch, had suffered a design modification: the cuff was constructed with a softer material without reinforcement in the tip, and the drain tube had a heat-sealing defect that facilitated the break. The incident was reported to the local supplier and the manufacturer, and the defective batch of laryngeal mask airway devices was recalled. The incident was also reported to other hospitals via SENSAR, to warn other users of the potential dangers of the design modification in the Supreme™ laryngeal mask airway. Copyright © 2013 Sociedad Española de Anestesiología, Reanimación y Terapéutica del Dolor. Published by Elsevier España. All rights reserved.

  9. Use of echosonography to monitor uterine placement of intrauterine devices after immediate postpartum insertions.

    Science.gov (United States)

    Ortiz Mariscal, J D; Guerrero Barrera, C; Wheeler, R G; Waszak, C S

    1987-02-01

    A study designed to monitor uterine placement of IUDs inserted immediately postpartum using echosonography was conducted at the Hospital de Gineco Obstetricia No. 23, "Dr. Ignacio Morones Prieto" in Monterrey, Mexico. TCu220 and Delta T IUDs were randomly assigned to, and inserted in women immediately following a normal vaginal delivery. Ultrasound examinations were to be performed within 60 min postinsertion, at 24 h postinsertion and at 1- and 3-month follow-up visits. There were no differences in the expulsion rates of the two device groups. Data are presented on the readings taken at the ultrasound examinations of the distance between the fundus and the upper part of the stem of the T. These differences differed significantly between the two device groups at the first ultrasound reading only (P less than or equal to 0.01). No relationship was found between the incidence of expulsion and the distance between the IUD and the fundus at any of the readings.

  10. NSLS-II storage ring insertion device and front-end commissioning and operation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, G., E-mail: gwang@bnl.gov; Shaftan, T.; Amundsen, C.; Bassi, G.; Bengtsson, J.; Blednykh, A.; Blum, E.; Cheng, W.; Choi, J.; Chubar, O.; Corwin, T.; Davidsaver, M.; Doom, L.; Guo, W.; Harder, D.; Hidaka, Y.; Hu, Y.; Ilinski, P.; Kitegi, C.; Kramer, S. [Brookhaven National Laboratory, Upton, NY 11973 (United States); and others

    2016-07-27

    The National Synchrotron Light Source II (NSLS-II) is a state of the art 3 GeV third generation light source at Brookhaven National Laboratory. During spring/ summer of 2014, the storage ring was commissioned up to 50 mA without insertion devices. In the fall of 2014, we began commissioning of the project beamlines, which included seven insertion devices on six ID ports. Beamlines IXS, HXN, CSX-1, CSX-2, CHX, SRX, and XPD-1 consist of elliptically polarized undulator (EPU), damping wigglers (DW) and in-vacuum undulators (IVU) covering from VUV to hard x-ray range. In this paper, experience with commissioning and operation is discussed. We focus on reaching storage ring performance with IDs, including injection, design emittance, compensation of orbit distortions caused by ID residual field, source point stability, beam alignment and tools for control, monitoring and protection of the ring chambers from ID radiation.

  11. Linear motion device and method for inserting and withdrawing control rods

    Science.gov (United States)

    Smith, J.E.

    Disclosed is a linear motion device and more specifically a control rod drive mechanism (CRDM) for inserting and withdrawing control rods into a reactor core. The CRDM and method disclosed is capable of independently and sequentially positioning two sets of control rods with a single motor stator and rotor. The CRDM disclosed can control more than one control rod lead screw without incurring a substantial increase in the size of the mechanism.

  12. Immediate postpartum versus 6-week postpartum intrauterine device insertion: a feasibility study of a randomized controlled trial.

    Science.gov (United States)

    Bryant, Amy G; Kamanga, Gift; Stuart, Gretchen S; Haddad, Lisa B; Meguid, Tarek; Mhango, Chisale

    2013-06-01

    This study aimed to evaluate the feasibility of conducting a randomized controlled trial of postpartum intrauterine device insertion and to demonstrate that the postpartum intrauterine device is acceptable to women. Women attending prenatal care at a maternity hospital in Lilongwe, Malawi were recruited into a trial comparing immediate (10 minutes to 48 hours) to 6 week postpartum insertion. Feasibility of recruiting and consenting 140 women and randomizing 70% of them was evaluated. Satisfaction with the intrauterine device was also assessed. One hundred fifteen women consented and 49 (61%) were randomized. Twenty-six women were assigned to immediate insertion, and 23 to insertion at 6 weeks postpartum. Thirty (24%) women received the device as part of the study protocol, and 28 (93%) had the device in place at 12 weeks postpartum. The intrauterine device is acceptable to some postpartum women in Malawi, but conducting a randomized clinical trial may not be feasible.

  13. [The optimal insertion position of the lumbar interspinous dynamic stabilization device (Coflex): a biomechanical evaluation].

    Science.gov (United States)

    Zu, Dan; Hai, Yong; Lu, Shibao; Yang, Jincai; Liu, Yuzeng; Liu, Tie; Meng, Xianglong; Zhou, Lijin; Pang, Chuan

    2014-03-01

    To evaluate the optimal insertion position of the Coflex lumbar interspinous dynamic stabilization device. Six fresh adult human cadaveric lumbar spine specimens (L1-L5) were mounted in a materials testing machine by embedding to clamps with L1 and L5 vertebrae. L3-4 motion segment of each specimen was operated by selective decompression and Coflex interspinous device insertion. The L3 and L4 vertebrae was inserted one needle attached with four marker points respectively, which were used to record the range of motion (ROM). Each lumbar spine specimen was tested according to the loading sequence at 5 groups: intact (keeping lumbar ligamenta and facet joints intact) group, partial destabilized (resection of L3-4 interspinous ligamenta, ligamentum flavum, facet capsule, and bilateral resection 50% of L3 inferior facets) group, 10 mm insertion (distance between apex of U-shaped Coflex and dural sac was 10 mm)group, 5 mm insertion (distance was 5 mm)group, and 0 mm insertion (distance was 0 mm)group. Each lumbar spine specimen was tested repeatedly 3 times according to a loading sequence consisting of flexion, extension, left/right lateral bending, left/right axial rotation, loaded with pure moments of 8 N·m, and was recorded the ROM of operative segment at the third time. ROM of 5 groups in 6 directions respectively were analyzed with one-way ANOVA test and multiple comparisons were based on LSD method. The means ROM of 5 groups were not all equal in flexion, extension, left/right lateral bending, left/right axial rotation (F = 8.472, 18.301, 7.700, 12.473, 16.809, 6.624; all P 0.05). The ROM of the 5 mm and 0 mm insertion group were no significant differences comparing with the intact group in flexion, extension, left/right axial rotation (P > 0.05), but it were significant differences comparing with the partial destabilized group in the same directions (5 mm insertion group: t = 3.19, 6.34, 5.26, 3.43, all P bending between the 5mm/0mm insertion groups and the

  14. Hybrid perovskites: Approaches towards light-emitting devices

    KAUST Repository

    Alias, Mohd Sharizal

    2016-10-06

    The high optical gain and absorption of organic-inorganic hybrid perovskites have attracted extensive research for photonic device applications. Using the bromide halide as an example, we present key approaches of our work towards realizing efficient perovskites based light-emitters. The approaches involved determination of optical constants for the hybrid perovskites thin films, fabrication of photonic nanostructures in the form of subwavelength grating reflector patterned directly on the hybrid perovskites as light manipulation layer, and enhancing the emission property of the hybrid perovskites by using microcavity structure. Our results provide a platform for realization of hybrid perovskites based light-emitting devices for solid-state lighting and display applications. © 2016 IEEE.

  15. Measurement of impulse peak insertion loss for four hearing protection devices in field conditions.

    Science.gov (United States)

    Murphy, William J; Flamme, Gregory A; Meinke, Deanna K; Sondergaard, Jacob; Finan, Donald S; Lankford, James E; Khan, Amir; Vernon, Julia; Stewart, Michael

    2012-02-01

    In 2009, the U.S. Environmental Protection Agency (EPA) proposed an impulse noise reduction rating (NRR) for hearing protection devices based upon the impulse peak insertion loss (IPIL) methods in the ANSI S12.42-2010 standard. This study tests the ANSI S12.42 methods with a range of hearing protection devices measured in field conditions. The method utilizes an acoustic test fixture and three ranges for impulse levels: 130-134, 148-152, and 166-170 dB peak SPL. For this study, four different models of hearing protectors were tested: Bilsom 707 Impact II electronic earmuff, E·A·R Pod Express, E·A·R Combat Arms version 4, and the Etymotic Research, Inc. Electronic BlastPLG™ EB1. Five samples of each protector were fitted on the fixture or inserted in the fixture's ear canal five times for each impulse level. Impulses were generated by a 0.223 caliber rifle. The average IPILs increased with peak pressure and ranged between 20 and 38 dB. For some protectors, significant differences were observed across protector examples of the same model, and across insertions. The EPA's proposed methods provide consistent and reproducible results. The proposed impulse NRR rating should utilize the minimum and maximum protection percentiles as determined by the ANSI S12.42-2010 methods.

  16. Hybrid Recentering Energy Dissipative Device for Seismic Protection

    Directory of Open Access Journals (Sweden)

    Wenke Tang

    2014-01-01

    Full Text Available A hybrid recentering energy dissipative device that has both recentering and energy dissipation capabilities is proposed and studied in this paper. The proposed hybrid device, referred to as the hybrid shape memory alloy (SMA recentering viscous fluid (RCVF energy dissipation device, connects the apex of a chevron brace to an adjoining beam using two sets of SMA wires arranged in series on either side of the brace and a viscous fluid damper arranged in parallel with the SMA wires. The viscous damper is used because being a velocity-dependent device it does not exert any force that counteracts the recentering force from the SMA wires after the vibration of the frame ceases. In the numerical study, the Wilde’s SMA constitutive model is used to model the SMA wires, and the Maxwell model is used to simulate the viscous fluid damper. To demonstrate the viability and effectiveness of the proposed hybrid device, comparative studies are performed on several single-story shear frames and a series of four-story steel frames. The results show that the frames equipped with the hybrid device have noticeably smaller peak top story displacements and residual story drifts when subjected to ground motions at three different intensity levels.

  17. Hybrid graphene nematic liquid crystal light scattering device

    Science.gov (United States)

    Qasim, M. M.; Khan, A. A.; Kostanyan, A.; Kidambi, P. R.; Cabrero-Vilatela, A.; Braeuninger-Weimer, P.; Gardiner, D. J.; Hofmann, S.; Wilkinson, T. D.

    2015-08-01

    A hybrid graphene nematic liquid crystal (LC) light scattering device is presented. This device exploits the inherent poly-crystallinity of chemical vapour deposited (CVD) graphene films to induce directional anchoring and formation of LC multi-domains. This thereby enables efficient light scattering without the need for crossed polarisers or separate alignment layers/additives. The hybrid LC device exhibits switching thresholds at very low electric fields (crossed polarisers or separate alignment layers/additives. The hybrid LC device exhibits switching thresholds at very low electric fields (< 1 V μm-1) and repeatable, hysteresis free characteristics. This exploitation of LC alignment effects on CVD graphene films enables a new generation of highly efficient nematic LC scattering displays as well as many other possible applications. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr04094a

  18. Cryogenic refrigeration requirements for superconducting insertion devices in a light source

    Energy Technology Data Exchange (ETDEWEB)

    Green, Michael A.; Green, Michael A.; Green, Michael A.

    2003-08-15

    This report discusses cryogenic cooling superconducting insertion devices for modern light sources. The introductory part of the report discusses the difference between wiggler and undulators and how the bore temperature may affect the performance of the magnets. The steps one would take to reduce the gap between the cold magnet pole are discussed. One section of the report is devoted to showing how one would calculate the heat that enters the device. Source of heat include, heat entering through the vacuum chamber, heating due to stray electrons and synchrotron radiation, heating due to image current on the bore, heat flow by conduction and radiation, and heat transfer into the cryostat through the magnet leads. A section of the report is devoted to cooling options such as small cryo-cooler and larger conventional helium refrigerators. This section contains a discussion as to when it is appropriate to use small coolers that do not have J-T circuits. Candidate small cryo-coolers are discussed in this section of the report. Cooling circuits for cooling with a conventional refrigerator are also discussed. A section of the report is devoted to vibration isolation and how this may affect how the cooling is attached to the device. Vibration isolation using straps is compared to vibration isolation using helium heat pipes. The vibration isolation of a conventional refrigeration system is also discussed. Finally, the cool down of an insertion device is discussed. The device can either be cooled down using liquid cryogenic nitrogen and liquid helium or by using the cooler used to keep the devices cold over the long haul.

  19. Vertical hybrid inorganic-organic nanoelectronic devices

    NARCIS (Netherlands)

    Wilbers, Janine Gabriele Elisabeth

    2016-01-01

    The implementation of organic building blocks into nanoelectronics devices is finding increased interest due to the huge potential for low-cost, large-area, flexible electronics. However, contacting molecules for investigating their properties is not straightforward. In this thesis, several device s

  20. Inhaled Lavender Effect on Anxiety and Pain Caused From Intrauterine Device Insertion

    Directory of Open Access Journals (Sweden)

    Mahnaz Shahnazi

    2012-11-01

    Full Text Available Introduction: Intrauterine device (IUD is the most common reliable, effective and reversible contraceptive method used worldwide and in areas with high growth rate is of particular importance. IUD insertion is associated with high anxiety in most people that causes pain and discomfort. The aim of this study was to determine the effects of aromatherapy on anxiety and pain caused by IUD insertion. Methods: This study was conducted on 106 women in a health care center located in Ardebil, Iran. Participants were divided into two groups by randomized blocks of 4 and 6. In the experimental group lavender scent was inhaled and in the control group the placebo was inhaled 30 minutes before IUD insertion. The anxiety of the participants was measured by Spielberger questionnaire, and the pain of IUD insertion was measured immediately after the insertion using visual analog scale (range 0-10. Results: The mean score (standard deviation of anxiety before intervention was 43.2 (9.2 in the experimental group that decreased after intervention to 39.0 (10.5 (p < 0.001, while this score was 42.2 (9.0 and 41.5 (8.4 before and after the intervention in the control group (p = 0.21. Mean differences of anxiety in both groups was statistically significant (p < 0.001. The pain score after intervention did not show significant difference between two groups (p = 0.51. Conclusion: Aromatherapy with lavender inhalation was effective in decreasing anxiety in IUD procedure, and this method can be used in health care centers as complementary treatments.

  1. Surgical treatment of lumbar spinal stenosis with microdecompression and interspinous distraction device insertion. A case series

    Directory of Open Access Journals (Sweden)

    Ploumis Avraam

    2012-10-01

    Full Text Available Abstract Background Interspinous distraction devices (IPDD are indicated as stand-alone devices for the treatment of spinal stenosis. The purpose of this study is to evaluate the results of patients undergoing surgery for spinal stenosis with a combination of unilateral microdecompression and interspinous distraction device insertion. Methods This is a prospective clinical and radiological study of minimum 2 years follow-up. Twenty-two patients (average age 64.5 years with low-back pain and unilateral sciatica underwent decompressive surgery for lumbar spinal stenosis. Visual Analogue Scale, Oswestry Disability Index and walking capacity plus radiologic measurements of posterior disc height of the involved level and lumbar lordosis Cobb angle were documented both preoperatively and postoperatively. One-sided posterior subarticular and foraminal decompression was conducted followed by dynamic stabilization of the diseased level with an IPDD (X-STOP. Results The average follow-up time was 27.4 months. Visual Analogue Scale and Oswestry Disability Index improved statistically significantly (p Conclusions The described surgical technique using unilateral microdecompression and IPDD insertion is a clinically effective and radiologically viable treatment method for symptoms of spinal stenosis resistant to non-operative treatment.

  2. Photonic Integration on the Hybrid Silicon Evanescent Device Platform

    Directory of Open Access Journals (Sweden)

    Hyundai Park

    2008-01-01

    Full Text Available This paper reviews the recent progress of hybrid silicon evanescent devices. The hybrid silicon evanescent device structure consists of III-V epitaxial layers transferred to silicon waveguides through a low-temperature wafer bonding process to achieve optical gain, absorption, and modulation efficiently on a silicon photonics platform. The low-temperature wafer bonding process enables fusion of two different material systems without degradation of material quality and is scalable to wafer-level bonding. Lasers, amplifiers, photodetectors, and modulators have been demonstrated with this hybrid structure and integration of these individual components for improved optical functionality is also presented. This approach provides a unique way to build photonic active devices on silicon and should allow application of silicon photonic integrated circuits to optical telecommunication and optical interconnects.

  3. The effects of the insertion devices at the VSX light source

    CERN Document Server

    Harada, K; Takaki, H; Koseki, T; Nakamura, N; Kamiya, Yu

    2001-01-01

    The VSX ring is a third-generation VUV and soft X-ray light source, which has 0.75 nm rad emittance for the ultra-low emittance mode at 1.0 GeV and 5.6 nm rad emittance for the low emittance mode at 1.6 GeV. The ring has about 250 m circumference and twelve straight sections, two of which are 29 m, four 5.4 m, four 2.3 m and two 2 m. The insertion devices to be installed are a 27 m long undulator, three 5 m undulators, a 4 m undulator, a multipole wiggler, two minipole undulators and a superconducting wiggler. We studied the linear effects of these devices. In addition, we studied the nonlinear effects of 27 m undulator because this undulator has the most dominant nonlinear effects on the beam among all the undulators.

  4. Multidimensional materials and device architectures for future hybrid energy storage

    Science.gov (United States)

    Lukatskaya, Maria R.; Dunn, Bruce; Gogotsi, Yury

    2016-09-01

    Electrical energy storage plays a vital role in daily life due to our dependence on numerous portable electronic devices. Moreover, with the continued miniaturization of electronics, integration of wireless devices into our homes and clothes and the widely anticipated `Internet of Things', there are intensive efforts to develop miniature yet powerful electrical energy storage devices. This review addresses the cutting edge of electrical energy storage technology, outlining approaches to overcome current limitations and providing future research directions towards the next generation of electrical energy storage devices whose characteristics represent a true hybridization of batteries and electrochemical capacitors.

  5. Final design of a 24 MW radially-cooled insert for a 45 T hybrid system

    Energy Technology Data Exchange (ETDEWEB)

    Weggel, R.J.; Stejskal, V.; Bobrov, E.; Holowinski, M.; Williams, J.E.C. [M.I.T., Cambridge, MA (United States). Francis Bitter National Magnet Lab.

    1996-07-01

    For the National High Magnetic Field Laboratory the Francis Bitter National Magnet Laboratory has designed and is fabricating a 24 MW radially-cooled insert magnet. It is to add 31 teslas or more to the 14 T of the 616 mm bore superconducting magnet of Hybrid V, a system to generate at least 45 T in a 32 mm bore. The insert embodies many innovations for the sake of housing component commonality, unobstructed access for users, quick installation, efficiency, longevity and burnout isolation, while coping with power densities up to 7 W/mm{sup 3}, heat flux densities to 9 W/mm{sup 2}, water pressures to 40 bars, and fault loads to 3.5 MN. The upper surface of the housing is free of all electrical and hydraulic clutter. The compact coil package plugs in from above. Its three coils are electrically and hydraulically in series-parallel, with inward flow through the outer two coils. High water pressure and short passages give water velocities up to 40 m/s, despite depths of only 0.10 to 0.15 mm, thus achieving outstanding cooling efficiency and a peak temperature of only 68C. Conductors, with strengths to match local stresses, are two thicknesses of copper, three of Be-Cu and two of 24% Ag-Cu. All have excellent combinations of strength and electrical conductivity.

  6. Hybrid optoelectronic device with multiple bistable outputs

    Science.gov (United States)

    Costazo-Caso, Pablo A.; Jin, Yiye; Gelh, Michael; Granieri, Sergio; Siahmakoun, Azad

    2011-01-01

    Optoelectronic circuits which exhibit optical and electrical bistability with hysteresis behavior are proposed and experimentally demonstrated. The systems are based on semiconductor optical amplifiers (SOA), bipolar junction transistors (BJT), PIN photodiodes (PD) and laser diodes externally modulated with integrated electro-absorption modulators (LD-EAM). The device operates based on two independent phenomena leading to both electrical bistability and optical bistability. The electrical bistability is due to the series connection of two p-i-n structures (SOA, BJT, PD or LD) in reverse bias. The optical bistability is consequence of the quantum confined Stark effect (QCSE) in the multi-quantum well (MQW) structure in the intrinsic region of the device. This effect produces the optical modulation of the transmitted light through the SOA (or reflected from the PD). Finally, because the optical transmission of the SOA (in reverse bias) and the reflected light from the PD are so small, a LD-EAM modulated by the voltage across these devices are employed to obtain a higher output optical power. Experiments show that the maximum switching frequency is in MHz range and the rise/fall times lower than 1 us. The temporal response is mainly limited by the electrical capacitance of the devices and the parasitic inductances of the connecting wires. The effects of these components can be reduced in current integration technologies.

  7. Insertional translocation detected using FISH confirmation of array-comparative genomic hybridization (aCGH) results.

    Science.gov (United States)

    Kang, Sung-Hae L; Shaw, Chad; Ou, Zhishuo; Eng, Patricia A; Cooper, M Lance; Pursley, Amber N; Sahoo, Trilochan; Bacino, Carlos A; Chinault, A Craig; Stankiewicz, Pawel; Patel, Ankita; Lupski, James R; Cheung, Sau Wai

    2010-05-01

    Insertional translocations (ITs) are rare events that require at least three breaks in the chromosomes involved and thus qualify as complex chromosomal rearrangements (CCR). In the current study, we identified 40 ITs from approximately 18,000 clinical cases (1:500) using array-comparative genomic hybridization (aCGH) in conjunction with fluorescence in situ hybridization (FISH) confirmation of the aCGH findings, and parental follow-up studies. Both submicroscopic and microscopically visible IT events were detected. They were divided into three major categories: (1) simple intrachromosomal and interchromosomal IT resulting in pure segmental trisomy, (2) complex IT involving more than one abnormality, (3) deletion inherited from a parent with a balanced IT resulting in pure segmental monosomy. Of the cases in which follow-up parental studies were available, over half showed inheritance from an apparently unaffected parent carrying the same unbalanced rearrangement detected in the propositi, thus decreasing the likelihood that these IT events are clinically relevant. Nevertheless, we identified six cases in which small submicroscopic events were detected involving known disease-associated genes/genomic segments and are likely to be pathogenic. We recommend that copy number gains detected by clinical aCGH analysis should be confirmed using FISH analysis whenever possible in order to determine the physical location of the duplicated segment. We hypothesize that the increased use of aCGH in the clinic will demonstrate that IT occurs more frequently than previously considered but can identify genomic rearrangements with unclear clinical significance.

  8. Ophthalmic viscosurgical device backflow into cartridge during intraocular lens insertion using injectors

    Directory of Open Access Journals (Sweden)

    Matsuura K

    2014-01-01

    Full Text Available Kazuki Matsuura,1 Yoshitsugu Inoue2 1Nojima Hospital, 2Tottori University, Kurayoshi City, Tottori, Japan Background: The purpose of this study was to assess the risk of intraocular contamination caused by intraocular lens (IOL insertion with injectors by observing the dynamics of an ophthalmic viscosurgical device (OVD. Methods: Each type of injector was equipped with a colored OVD and IOL, and a 2 mm length from the tip of the cartridge was replaced with a colored OVD. The various combinations of IOLs and injectors used were: a three-piece shaped IOL, VA60BBR + TypeE1 (HOYA incision size 2.5 mm; group A, n=5; a single-piece IOL, 251+ iSert micro, preloaded (HOYA, incision size 2.2 mm; group G, n=5; and a single-piece IOL, SN6CWS preloaded (Alcon, incision size 2.7 mm; group C, n=5. Results: In group A, the intraocular OVD instantly flowed backward into the injector, whereas the colored OVD was pushed backward deep inside the cartridge without flowing into the eye. In group B, the backflow of the intraocular OVD into the injector was limited, resulting in the influx of a large amount of the colored OVD into the eye along with the IOL. In group C, as in group A, a large amount of the intraocular OVD flowed backward into the injector. Consequently, a small amount of the colored OVD flowed into the eye. Conclusion: The tip of the injector and OVD could be contaminated because the surgical field cannot be completely sterile, even after preoperative disinfection. Our experiments revealed that OVD backflow into the injector cavity occurs during IOL insertion, and this phenomenon may have minimized intraocular contamination. However, small-diameter cartridges along with plate-type haptics allow insufficient OVD backflow, resulting in intraocular influx of the contaminated OVD. Surgeons have to be notified that intraoperative bacterial contamination can occur even after IOL insertion using injectors. Keywords: intraocular lens insertion

  9. A blind insertion airway device in dogs as an alternative to traditional endotracheal intubation.

    Science.gov (United States)

    James, Timothy; Lane, Michael; Crowe, Dennis; Pullen, William

    2015-02-01

    Endotracheal intubation is the standard of care to establish a secure airway; however, laryngeal airway management systems are increasingly being used in human patients for elective surgical procedures and in emergency settings. In this study, a double lumen, blind insertion airway device (BIAD) was placed in the esophagus of dogs and evaluated for its ability to ventilate the lungs. Initially, 10 euthanazed dogs were evaluated, followed by a group of 15 mixed breed dogs that were undergoing elective spay or neuter procedures, and a group of 10 healthy dogs. Post-procedure evaluation included visual examination with a laryngoscope to inspect for signs of inflammation or mucosal damage. The device provided adequate ventilation in all subjects; the dogs were under anesthesia or heavily sedated for 10 min to 2 h and recovered uneventfully. No evidence of esophagitis, aspiration pneumonia, tracheitis, subcutaneous emphysema or esophageal laceration was observed. In conclusion, the use of double lumen airway devices warrants further study as an alternative airway management system in dogs.

  10. Development of an auditory implant manipulator for minimally invasive surgical insertion of implantable hearing devices.

    Science.gov (United States)

    Stieger, C; Caversaccio, M; Arnold, A; Zheng, G; Salzmann, J; Widmer, D; Gerber, N; Thurner, M; Nauer, C; Mussard, Y; Kompis, M; Nolte, L P; Häusler, R; Weber, S

    2011-03-01

    To present the auditory implant manipulator, a navigation-controlled mechanical and electronic system which enables minimally invasive ('keyhole') transmastoid access to the tympanic cavity. The auditory implant manipulator is a miniaturised robotic system with five axes of movement and an integrated drill. It can be mounted on the operating table. We evaluated the surgical work field provided by the system, and the work sequence involved, using an anatomical whole head specimen. The work field provided by the auditory implant manipulator is considerably greater than required for conventional mastoidectomy. The work sequence for a keyhole procedure included pre-operative planning, arrangement of equipment, the procedure itself and post-operative analysis. Although system improvements are necessary, our preliminary results indicate that the auditory implant manipulator has the potential to perform keyhole insertion of implantable hearing devices.

  11. Hybrid stent device of flow-diverting effect and stent-assisted coil embolization formed by fractal structure.

    Science.gov (United States)

    Kojima, Masahiro; Irie, Keiko; Masunaga, Kouhei; Sakai, Yasuhiko; Nakajima, Masahiro; Takeuchi, Masaru; Fukuda, Toshio; Arai, Fumihito; Negoro, Makoto

    2016-05-01

    This paper presents a novel hybrid medical stent device. This hybrid stent device formed by fractal mesh structures provides a flow-diverting effect and stent-assisted coil embolization. Flow-diverter stents decrease blood flow into an aneurysm to prevent its rupture. In general, the mesh size of a flow-diverter stent needs to be small enough to prevent blood flow into the aneurysm. Conventional flow-diverter stents are not available for stent-assisted coil embolization, which is an effective method for aneurysm occlusion, because the mesh size is too small to insert a micro-catheter for coil embolization. The proposed hybrid stent device is capable of stent-assisted coil embolization while simultaneously providing a flow-diverting effect. The fractal stent device is composed of mesh structures with fine and rough mesh areas. The rough mesh area can be used to insert a micro-catheter for stent-assisted coil embolization. Flow-diverting effects of two fractal stent designs were composed to three commercially available stent designs. Flow-diverting effects were analyzed using computational fluid dynamics (CFD) analysis and particle image velocimetry (PIV) experiment. Based on the CFD and PIV results, the fractal stent devices reduce the flow velocity inside an aneurism just as much as the commercially available flow-diverting stents while allowing stent-assisted coil embolization.

  12. A conceptual design of the set-up for solid state spectroscopy with free electron laser and insertion device radiation

    CERN Document Server

    Makhov, V N

    2001-01-01

    The set-up for complex solid state spectroscopy with the use of enhanced properties of radiation from insertion devices and free electron lasers is proposed. Very high flux and pulsed properties of radiation from insertion devices and free electron lasers offer the possibility for the use of such powerful techniques as electron paramagnetic resonance (EPR) and optically detected magnetic resonance (ODMR) for the studies of excited states of electronic excitations or defects in solids. The power density of radiation can become high enough for one more method of exited-state spectroscopy: transient optical absorption spectroscopy. The set-up is supposed to combine the EPR/ODMR spectrometer, i.e. cryostat supplied with superconducting magnet and microwave system, and the optical channels for excitation (by radiation from insertion devices or free electron laser) and detection of luminescence (i.e. primary and secondary monochromators). The set-up can be used both for 'conventional' spectroscopy of solids (reflec...

  13. White organic light emitting devices with hybrid emissive layers combining phosphorescence and fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Lei Gangtie; Chen Xiaolan; Wang Lei; Zhu Meixiang; Zhu Weiguo [Key Lab of Environmental-friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105 (China); Wang Liduo; Qiu Yong [Key Lab of Organic-Optoelectronics and Molecular Sciences of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084 (China)], E-mail: lgt@xtu.edu.cn

    2008-05-21

    We fabricated a white organic light-emitting diode (WOLED) by hybrid emissive layers which combined phosphorescence with fluorescence. In this device, the thin layer of 4-(dicyanomethylene)-2-(t-butyl)-6-(1, 1, 7, 7-tetramethyljulolidyl-9-enyl)-4H-pyran played the role of undoped red emissive layer which was inserted between two blue phosphorescence emissive layers. The blue phosphorescent dye was bis[(4, 6-difluorophenyl)-pyridinato-N, C{sup 2}] (picolinato) Ir(III), which was doped in the host material, N, N'-dicarbazolyl-1, 4-dimethene-benzene. The WOLED showed stable Commission Internationale de L'Eclairage coordinates and a high efficency of 9.6 cd A{sup -1} when the current density was 1.8 A m{sup -2}. The maximum luminance of the device achieved was 17 400 cd m{sup -2} when the current density was 3000 A m{sup -2}.

  14. IUD in first-trimester abortion: immediate intrauterine contraceptive devices insertion vs delayed insertion following the next menstruation bleeding.

    Science.gov (United States)

    Tsikouras, Panagiotis; Vrachnis, Nikolaos; Grapsa, Anastasia; Tsagias, Nikolaos; Pinidis, Petros; Liberis, Anastasios; Ammari, Alexandros; Grapsas, Xenofon; Galazios, Georgios; Liberis, Vasileios

    2014-07-01

    Approximately 21 days after an abortion, ovulation occurs in 50 % of women. Installation of an IUD directly after induced or spontaneous abortion offers immediate contraceptive protection. The purpose of the present study was to weigh up contraceptive safety and adverse reactions of IUD inserted directly after first-trimester abortion under general or paracervical anesthesia as against the fitting of IUD in the days of the next menstrual cycle without anesthesia. During the period May 1987 to October 2010, 73 women (Group A) underwent an immediate post-abortion insertion IUD after a first-trimester spontaneous or induced abortion under general or local paracervical anesthesia and 69 participants (Group B) received IUD during the next menstrual cycle without anesthesia. Questionnaires were completed by all the women of the study with respect to the effects of IUD. The women were examined every 3 months for 1 year after the fitting of the IUD in the out-patient department of the University Obstetrics Gynecological Department of Alexandroupolis, Democritus University of Thrace, Greece. The demographic characteristics of the women of the two groups were similar. The age of the women ranged between 19 and 44 years, while 61.98 % were women with one or two children and 38.02 % were women with three or more children. During the first menstrual cycles, with the exception of vaginal hemorrhages (5 %) and adnexitis (1 %), no serious adverse reactions were noted. During the transvaginal ultrasonography checks in both groups, no observation was made of any dislocation of the IUD, except for two cases in the subgroup of those women with paracervical anesthesia and one case in the women of Group B. As concerns the questionnaire with regard to the women's subjective evaluation of IUD, satisfactory answers were given. There were no differences between the two groups either with respect to the security of the supplied contraceptive methods or to the development of side effects.

  15. Energy efficient hybrid computing systems using spin devices

    Science.gov (United States)

    Sharad, Mrigank

    Emerging spin-devices like magnetic tunnel junctions (MTJ's), spin-valves and domain wall magnets (DWM) have opened new avenues for spin-based logic design. This work explored potential computing applications which can exploit such devices for higher energy-efficiency and performance. The proposed applications involve hybrid design schemes, where charge-based devices supplement the spin-devices, to gain large benefits at the system level. As an example, lateral spin valves (LSV) involve switching of nanomagnets using spin-polarized current injection through a metallic channel such as Cu. Such spin-torque based devices possess several interesting properties that can be exploited for ultra-low power computation. Analog characteristic of spin current facilitate non-Boolean computation like majority evaluation that can be used to model a neuron. The magneto-metallic neurons can operate at ultra-low terminal voltage of ˜20mV, thereby resulting in small computation power. Moreover, since nano-magnets inherently act as memory elements, these devices can facilitate integration of logic and memory in interesting ways. The spin based neurons can be integrated with CMOS and other emerging devices leading to different classes of neuromorphic/non-Von-Neumann architectures. The spin-based designs involve `mixed-mode' processing and hence can provide very compact and ultra-low energy solutions for complex computation blocks, both digital as well as analog. Such low-power, hybrid designs can be suitable for various data processing applications like cognitive computing, associative memory, and currentmode on-chip global interconnects. Simulation results for these applications based on device-circuit co-simulation framework predict more than ˜100x improvement in computation energy as compared to state of the art CMOS design, for optimal spin-device parameters.

  16. Paracervical block with 1% lidocaine for pain control during intrauterine device insertion: a prospective, single-blinded, controlled study

    Directory of Open Access Journals (Sweden)

    Derya Akdag Cirik

    2013-06-01

    Full Text Available In this prospective controlled study we aimed to investigate efficacy of paracervical block with 1% Lidocaine for pain control and demographic variables which may affect pain perception during intrauterine device insertion in Turkish women. Data from 95 women assigned to paracervical block (n=34, placebo (n=30 and no treatment (n=31 arms and asked to grade the pain level they felt during tenaculum placement, intrauterine device insertion and 5 minutes after the procedure using a visual pain scale. Demographic variables were also recorded. Pain scores were found to be lower in paracervical block group when compared to other 2 groups during tenaculum placement (p=0.00, intrauterine device insertion (p=0.00 and 5 minutes after the procedure (p=0.00. Level of pain was unrelated to mode of previous deliveries and current breastfeeding. Paracervical block is an easy, safe and effective way of pain control during intrauterine device insertion. Lack of vaginal birth history is not a reason to draw back from intrauterine device use. [Int J Reprod Contracept Obstet Gynecol 2013; 2(3.000: 263-267

  17. Polymer/metal hybrid multilayers modified Schottky devices

    Energy Technology Data Exchange (ETDEWEB)

    Torrisi, V.; Isgrò, G.; Li Destri, G.; Marletta, G. [Laboratory for Molecular Surfaces and Nanotechnology (LAMSUN), Department of Chemical Sciences, University of Catania and CSGI, Viale A. Doria 6, 95125 Catania (Italy); Ruffino, F.; Grimaldi, M. G. [Dipartimento di Fisica ed Astronomia-Università di Catania, via S. Sofia 64, 95123 Catania (Italy); MATIS IMM-CNR, via S. Sofia 64, 95123 Catania (Italy); Crupi, I. [MATIS IMM-CNR, via S. Sofia 64, 95123 Catania (Italy)

    2013-11-04

    Insulating, polymethylmethacrylate (PMMA), and semiconducting, poly(3-hexylthiophene) (P3HT), nanometer thick polymers/Au nanoparticles based hybrid multilayers (HyMLs) were fabricated on p-Si single-crystal substrate. An iterative method, which involves, respectively, spin-coating (PMMA and P3HT deposition) and sputtering (Au nanoparticles deposition) techniques to prepare Au/HyMLs/p-Si Schottky device, was used. The barrier height and the ideality factor of the Au/HyMLs/p-Si Schottky devices were investigated by current-voltage measurements in the thickness range of 1–5 bilayers. It was observed that the barrier height of such hybrid layered systems can be tuned as a function of bilayers number and its evolution was quantified and analyzed.

  18. Fabrication of Hybrid Organic Photovoltaic Devices Using Electrostatic Spray Method

    Directory of Open Access Journals (Sweden)

    Zhe-Wei Chiu

    2014-01-01

    Full Text Available Hybrid organic photovoltaic devices (OPVDs are fabricated using the electrostatic spray (e-spray method and their optical and electrical properties are investigated. E-spray is used to deposit a hybrid film (P3HT: PCBM/nanodiamond with morphology and optical characteristics onto OPVDs. The root-mean-square roughness and optical absorption increase with increasing nanodiamond content. The performance of e-spray is comparable to that of the spin-coating method under uniform conditions. The device takes advantage of the high current density, power conversion efficiency, and low cost. Nanodiamond improves the short-circuit current density and power conversion efficiency. The best performance was obtained with 1.5 wt% nanodiamond content, with a current density of 7.28 mA/cm2 and a power conversion efficiency of 2.25%.

  19. A New Kind of Blue Hybrid Electroluminescent Device.

    Science.gov (United States)

    Wang, Junling; Li, Zhuan; Liu, Chunmei

    2016-04-01

    Bright blue Electroluminescence come from a ITO/BBOT doped silica (6 x 10(-3) M) made by a sol-gel method/Al driven by AC with 500 Hz at different voltages and Gaussian analysis under 55 V showed that blue emission coincidenced with typical triple emission from BBOT. This kind of device take advantage of organics (BBOT) and inorganics (silica). Electroluminescence from a single-layered sandwiched device consisting of blue fluorescent dye 2,5-bis (5-tert-butyl-2-benzoxazolyl) thiophene (BBOT) doped silica made by sol-gel method was investigated. A number of concentrations of hybrid devices were prepared and the maxium concentration was 6 x 10(-3) M. Blue electroluminescent (EL) always occurred above a threshold field 8.57 x 10(5) V/cm (30 V) at alternating voltage at 500 HZ. The luminance of the devices increased with the concentration of doped BBOT, but electroluminescence characteristics were different from a single molecule's photoluminescence properties of triple peaks. When analyzing in detail direct-current electroluminescence devices of pure BBOT, a single peak centered at 2.82 eV appeared with the driven voltage increase, which is similar to the hybrid devices. Comparing Gaussian decomposition date between two kinds of devices, the triple peak characteristic of BBOT was consistent. It is inferred that BBOT contributed EL of the hybrid devices mainly and silica may account for a very small part. Meanwhile the thermal stability of matrix silica was measured by Thermal Gravity-Mass Spectroscopy (TG-MS). There is 12 percent weight loss from room temperature to 1000 °C and silica has about 95% transmittance. So the matric silica played an important role in thermal stability and optical stability for BBOT. In addition, this kind of blue electroluminescence device can take advantages of organic materials BBOT and inorganic materials silica. This is a promising way to enrich EL devices, especially enriching inorganic EL color at a low cost.

  20. Diclofenac plus lidocaine gel for pain relief during intrauterine device insertion. A randomized, double-blinded, placebo-controlled study.

    Science.gov (United States)

    Fouda, Usama M; Salah Eldin, Noha M; Elsetohy, Khaled A; Tolba, Hoda A; Shaban, Mona M; Sobh, Sherin M

    2016-06-01

    To determine the effectiveness of diclofenac potassium combined with 2% lidocaine gel in reducing the pain of intrauterine device (IUD) insertion. We randomized 90 parous women requesting copper T380A IUD insertion in a 1:1 ratio to active or placebo treatment. Active treatment included administration of two 50-mg diclofenac potassium tablets 1h before IUD insertion, application of 3mL of 2% lidocaine gel on the anterior cervical lip 3min before IUD insertion and placement of a cotton swab soaked in 2% lidocaine gel in the cervical canal 3min before IUD insertion. Women in the placebo group received placebo tablets and gel. Participants assessed pain intensity using a 10-cm visual analog scale (VAS). We considered a 2-cm difference in VAS pain score between both groups during IUD insertion to be a clinically significant difference. Subjects receiving active treatment, as compared to placebo, experienced less pain during tenaculum placement (1.66±0.85 vs. 2.33±1.19, p=.003) and IUD insertion (3.14±0.92 vs. 3.94±1.3, p=.001). Women who delivered only by cesarean section had higher pain scores with IUD insertion compared with women with previous vaginal deliveries (4.41±1.24 vs. 3.29±1.05, p=.001). Diclofenac potassium combined with 2% lidocaine gel slightly reduced pain scores during tenaculum application and copper IUD insertion in parous women; however, the reduction in pain scores lacked clinical significance. Although we found a statistically significant lowering of pain scores with pretreatment with diclofenac potassium and lidocaine gel in parous women having copper IUD placement, the reduction is not clinically relevant. These findings may be more relevant for nulliparous women who experience more pain than parous women with IUD insertion and support studies of diclofenac potassium and lidocaine gel in this population. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. HistoFlex--a microfluidic device providing uniform flow conditions enabling highly sensitive, reproducible and quantitative in situ hybridizations.

    Science.gov (United States)

    Søe, Martin Jensen; Okkels, Fridolin; Sabourin, David; Alberti, Massimo; Holmstrøm, Kim; Dufva, Martin

    2011-11-21

    A microfluidic device (the HistoFlex) designed to perform and monitor molecular biological assays under dynamic flow conditions on microscope slide-substrates, with special emphasis on analyzing histological tissue sections, is presented. Microscope slides were reversibly sealed onto a cast polydimethylsiloxane (PDMS) insert, patterned with distribution channels and reaction chambers. Topology optimization was used to design reaction chambers with uniform flow conditions. The HistoFlex provided uniform hybridization conditions, across the reaction chamber, as determined by hybridization to microscope slides of spotted DNA microarrays when applying probe concentrations generally used in in situ hybridization (ISH) assays. The HistoFlex's novel ability in online monitoring of an in situ hybridization assay was demonstrated using direct fluorescent detection of hybridization to 18S rRNA. Tissue sections were not visually damaged during assaying, which enabled adapting a complete ISH assay for detection of microRNAs (miRNA). The effects of flow based incubations on hybridization, antibody incubation and Tyramide Signal Amplification (TSA) steps were investigated upon adapting the ISH assay for performing in the HistoFlex. The hybridization step was significantly enhanced using flow based incubations due to improved hybridization efficiency. The HistoFlex device enabled a fast miRNA ISH assay (3 hours) which provided higher hybridization signal intensity compared to using conventional techniques (5 h 40 min). We further demonstrate that the improved hybridization efficiency using the HistoFlex permits more complex assays e.g. those comprising sequential hybridization and detection of two miRNAs to be performed with significantly increased sensitivity. The HistoFlex provides a new histological analysis platform that will allow multiple and sequential assays to be performed under their individual optimum assay conditions. Images can subsequently be recorded either in

  2. Space Station and Shuttle Payloads: Rack Insertion Device Pneumatic Assembly Setup and Test

    Science.gov (United States)

    Conde, Nathan

    2007-01-01

    As part of my KSC summer internship, I was given the very cool task of writing a test preparation sheet (TPS). A TPS is a set of instructions for certain procedures or tasks, and serves as the documentation for the tasks. TPSs guide task leaders and technicians throughout the work procedures, safely, informing them of what steps will be hazardous, what precautions must be taken, and what to do in the case of an accident or emergency. I was placed in Boeing's Resupply & Return Division (R&R). R&R is responsible for sending up food and supplies to the International Space Station (ISS) with the use of three Italian Multi Purpose Logistics Modules - Leonardo, Donatello, and Raffaello. The supplies are loaded into Resupply Stowage Racks (RSRs) or Resupply Stowage Platforms (RSPs) (though, both are usually referred to as racks), depending on their size and shape. These racks are loaded into the modules with the help of a specialized crane known as the Rack Insertion Device (RID). The RID rests on four pneumatic air jacks, these allow for an operator to raise or lower the RID. The pneumatic air system supplies the air jacks with the necessary air pressure required to lift the RID.

  3. Conceptual design of a 24--32 MW radially-cooled insert for a {ge}45 T hybrid system

    Energy Technology Data Exchange (ETDEWEB)

    Weggel, R.J.; Hake, M.E.; Stejskal, V. [Massachusetts Inst. of Tech., Cambridge, MA (United States). Francis Bitter National Magnet Lab.

    1994-07-01

    The FBNML is designing and will fabricate a radially-cooled insert magnet to generate 70% of the field of a system, Hybrid V, to surpass 45 T in a 32 mm bore. The insert is to have an overall diameter and a maximum active coil length of 610 mm. With a background field of 14 T the system should generate 47 T at 24 MW and nearly 49 T at 32 MW. The peak stress is extremely high, calling for conductors such as Be-Cu (UNS C17510) and 24% Ag-Cu with strengths up to 1,100 MPa. The peak heat flux density also is high, nearly 12 W/mm{sup 2}. Because the water is coldest and its velocity highest where the heat flux is highest, however, the peak temperature is only 80 C. The water flow is {approx} 200 l/s at 27 atm. The system is to be very user friendly. Access is completely unobstructed at the top. Insert removal leaves the plumbing and electrical connections intact. The massive and expensive outer coils should be long lived, the inner coil easily replaceable. During an inner coil burnout, a sleeve intercepts arcing from the inner coil to the middle one, reducing burnout severity and fault loads. The insert should be a worthy successor to those of the FBNML`s world-record holding systems, Hybrids II and III.

  4. Best practices to minimize risk of infection with intrauterine device insertion.

    Science.gov (United States)

    Caddy, Sheila; Yudin, Mark H; Hakim, Julie; Money, Deborah M

    2014-03-01

    Contexte : Les dispositifs intra-utérins constituent un moyen de contraception à long terme extrêmement efficace qui compte l’avantage d’être réversible. Historiquement, l’utilisation de certains dispositifs intra-utérins a été associée à une hausse du risque de syndrome inflammatoire pelvien. Des données plus récentes laissent entendre que cette association ne s’applique pas aux nouveaux dispositifs; toutefois, certains facteurs de risque peuvent accroître la possibilité d’infection. Objectifs : Analyser le risque d’infection associé à l’insertion de dispositifs intra-utérins et recommander des stratégies visant la prévention de l’infection. Issues : Les issues prises en considération ont été le risque de syndrome inflammatoire pelvien, les effets du dépistage de la vaginose bactérienne et des infections transmissibles sexuellement (dont la chlamydiose et la gonorrhée), et le rôle de l’antibioprophylaxie. Résultats : La littérature publiée a été récupérée par l’intermédiaire de recherches menées, le 21 juillet 2011, dans PubMed, Embase et The Cochrane Library au moyen d’un vocabulaire contrôlé (p. ex. « intrauterine devices », « pelvic inflammatory disease ») et de mots clés (p. ex. « adnexitis », « endometritis », « IUD ») appropriés. Un filtre étiologique a été appliqué dans PubMed. Les recherches ont été limitées à la période débutant en l’an 2000. Aucune restriction n’a été appliquée en matière de langue. La littérature grise (non publiée) a été identifiée par l’intermédiaire de recherches menées dans les sites Web de sociétés de spécialité médicale nationales et internationales. Valeurs : La qualité des résultats est évaluée au moyen des critères décrits dans le rapport du Groupe d’étude canadien sur les soins de santé préventifs (Tableau). Recommandations 1. Toutes les femmes demandant l’insertion d’un dispositif intra

  5. Three-Dimensional Printing Based Hybrid Manufacturing of Microfluidic Devices.

    Science.gov (United States)

    Alapan, Yunus; Hasan, Muhammad Noman; Shen, Richang; Gurkan, Umut A

    2015-05-01

    Microfluidic platforms offer revolutionary and practical solutions to challenging problems in biology and medicine. Even though traditional micro/nanofabrication technologies expedited the emergence of the microfluidics field, recent advances in advanced additive manufacturing hold significant potential for single-step, stand-alone microfluidic device fabrication. One such technology, which holds a significant promise for next generation microsystem fabrication is three-dimensional (3D) printing. Presently, building 3D printed stand-alone microfluidic devices with fully embedded microchannels for applications in biology and medicine has the following challenges: (i) limitations in achievable design complexity, (ii) need for a wider variety of transparent materials, (iii) limited z-resolution, (iv) absence of extremely smooth surface finish, and (v) limitations in precision fabrication of hollow and void sections with extremely high surface area to volume ratio. We developed a new way to fabricate stand-alone microfluidic devices with integrated manifolds and embedded microchannels by utilizing a 3D printing and laser micromachined lamination based hybrid manufacturing approach. In this new fabrication method, we exploit the minimized fabrication steps enabled by 3D printing, and reduced assembly complexities facilitated by laser micromachined lamination method. The new hybrid fabrication method enables key features for advanced microfluidic system architecture: (i) increased design complexity in 3D, (ii) improved control over microflow behavior in all three directions and in multiple layers, (iii) transverse multilayer flow and precisely integrated flow distribution, and (iv) enhanced transparency for high resolution imaging and analysis. Hybrid manufacturing approaches hold great potential in advancing microfluidic device fabrication in terms of standardization, fast production, and user-independent manufacturing.

  6. Surface Acoustic Wave Device with Reduced Insertion Loss by Electrospinning P(VDF-TrFE)/ZnO Nanocomposites

    Institute of Scientific and Technical Information of China (English)

    Robin Augustine; Frederic Sarry; Nandakumar Kalarikkal; Sabu Thomas; Laurent Badie; Didier Rouxel

    2016-01-01

    Surface acoustic wave (SAW) devices have been utilized for the sensing of chemical and biological phe-nomena in microscale for the past few decades. In this study, SAW device was fabricated by electrospinning poly(vinylidenefluoride-co-trifluoroethylene) (P(VDF-TrFE)) incorporated with zinc oxide (ZnO) nanoparticles over the delay line area of the SAW device. The morphology, composition, and crystallinity of P(VDF-TrFE)/ZnO nanocom-posites were investigated. After measurement of SAW frequency response, it was found that the insertion loss of the SAW devices incorporated with ZnO nanoparticles was much less than that of the neat polymer-deposited device. The fabricated device was expected to be used in acoustic biosensors to detect and quantify the cell proliferation in cell culture systems.

  7. RETENSION RATE OF INTRA CAESARIAN INSERTION OF INTRAUTERINE CONTRACEPTIVE DEVICE AND EVALUATION OF COMPLICATIONS

    Directory of Open Access Journals (Sweden)

    Suja Mary

    2015-03-01

    Full Text Available The purpose of the study was to evaluate the percentage of patients retaining IUCD at 6 weeks and 6 months post intra caesarian insertion. Additionally, it also evaluates the safety and compares the possible complications like abnormal vaginal discharge, fever, subinvolution, abnormal uterine bleeding, perforation, expulsion etc. associated with intra caesarian insertion of IUCD with insertion done 3months or later after delive ry. MATERIALS AND METHODS: A total 90 cases were evaluated:30 intra caesarian IUCD insertion, 30 LSCS without IUCD, and 30cases of IUCD insertion 3 months or later after child birth.6 months evaluation was carried out in the Department of Obstetrics & Gyna ecology, MOSC Medical College, Kolenchery and follow up was done for the next 6months. RESULT: 80% of cases involving intra caesarian IUCD insertion retained IUCD at the end of 6mths follow up; 10% expelled before 6wks and 10% by 6mths. Complications were comparable in intra caesarian insertion and post puerperal insertion. No pregnancies occured in both the groups during follow up. As IUCD is a foreign body; compared to both groups with IUCD, complications were less in the group for which caesarian alone was done. But, there were four pregnancies because of lack of contraception in that group.

  8. Graphene-on-dielectric micromembrane for optoelectromechanical hybrid devices

    DEFF Research Database (Denmark)

    Schmid, Silvan; Bagci, Tolga; Zeuthen, Emil;

    2013-01-01

    Due to their exceptional mechanical and optical properties, dielectric silicon nitride (SiN) micromembranes have become the centerpiece of many optomechanical experiments. Efficient capacitive coupling of the membrane to an electrical system would facilitate exciting hybrid optoelectromechanical ...... devices. However, capacitive coupling of such SiN membranes is rather weak. Here we add a single layer of graphene on SiN micromembranes (SiN-G) and compare the electromechanical coupling and mechanical properties to bare SiN membranes and to membranes coated with an aluminium layer (Si...

  9. Characteristics of CoPc/CdS hybrid diode device

    Indian Academy of Sciences (India)

    Murat Çalişkan; Serço Serkis Yeşilkaya; Mevlüde Canlica

    2015-09-01

    CdS/CoPc hybrid heterojunctions were fabricated and characterized. CdS films were deposited by the spray pyrolysis technique on indium tin oxide (ITO)-coated glass substrates and CoPc films coated on CdS by chemical precipitation. Ag contact metal deposited on CoPc by e-beam evaporation and glass/ITO/CdS/ CoPc/Ag structures were fabricated. Rectification ratio, ideality factor, barrier height and junction parameters of the devices were determined. It is shown that device has diode characteristics with the ideality factor (n) of 4.8, rectification ratio of 4.5 and the built-in voltage (b) of 0.48 V. Absorption energy for CoPc was found as 1.57 eV. The results encourage utilizing CoPc as absorber organic material for solar cells.

  10. Hybrid nano-structure for enhanced energy storage devices

    Science.gov (United States)

    Shuvo, Mohammad Arif Ishtiaque

    The goal of this research is to develop electrode materials using various nano-structure hybrids for improved energy storage devices. Enhancing the performance of energy storage device has been gaining tremendous attention since it holds the key solution to advance renewable energy usage thus reduce the consumption of fossil fuels. The application of energy storage devices such as super-capacitor and Li-ion-battery has seen significant growth; however, it is still limited mainly by charge/discharge rate and energy density. One of the solutions is to use nano-structure materials, which offer higher power at high energy density and improved stability during the charge discharge cycling of ions in and out of the storage electrode material. In this research, carbon-based materials (e.g. porous carbon, graphene) in conjunction with metal oxides such as CeO2 nanoparticles/TiO2 nanowires are synthesized utilizing low temperature hydrothermal method for the fabrication of advanced electrode materials. Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), X-ray Diffraction (XRD), Thermogravimetric Analysis (TGA), X-ray Photoelectron Spectroscopy (XPS), and Fourier Transformation Infrared Spectroscopy (FTIR) were used for materials characterization. Poentio-galvanostat, battery analyzer, and Electrochemical Impedance Spectroscopy (EIS) were used for evaluating the electrochemical performance. The testing results have shown that a maximum 500% higher specific capacitance could be obtained using porous carbon/CeO2 instead of porous carbon for super-capacitor application and microwave exfoliated graphene oxide/TiO2 nanowire hybrid provides up to 80% increment of specific capacity compared to porous carbon anode for Li-ion-battery application.

  11. Molecular detection via hybrid peptide-semiconductor photonic devices

    Science.gov (United States)

    Estephan, E.; Saab, M.-b.; Martin, M.; Cloitre, T.; Larroque, C.; Cuisinier, F. J. G.; Malvezzi, A. M.; Gergely, C.

    2011-03-01

    The aim of this work was to investigate the possibilities to support device functionality that includes strongly confined and localized light emission and detection processes within nano/micro-structured semiconductors for biosensing applications. The interface between biological molecules and semiconductor surfaces, yet still under-explored is a key issue for improving biomolecular recognition in devices. We report on the use of adhesion peptides, elaborated via combinatorial phage-display libraries for controlled placement of biomolecules, leading to user-tailored hybrid photonic systems for molecular detection. An M13 bacteriophage library has been used to screen 1010 different peptides against various semiconductors to finally isolate specific peptides presenting a high binding capacity for the target surfaces. When used to functionalize porous silicon microcavities (PSiM) and GaAs/AlGaAs photonic crystals, we observe the formation of extremely thin (detection was monitored via both linear and nonlinear optical measurements. Our linear reflectance spectra demonstrate an enhanced detection resolution via PSiM devices, when functionalized with the Si-specific peptide. Molecular capture at even lower concentrations (femtomols) is possible via the second harmonic generation of GaAs/AlGaAs photonic crystals when functionalized with GaAs-specific peptides. Our work demonstrates the outstanding value of adhesion peptides as interface linkers between semiconductors and biological molecules. They assure an enhanced molecular detection via both linear and nonlinear answers of photonic crystals.

  12. Battery-Supercapacitor Hybrid Devices: Recent Progress and Future Prospects.

    Science.gov (United States)

    Zuo, Wenhua; Li, Ruizhi; Zhou, Cheng; Li, Yuanyuan; Xia, Jianlong; Liu, Jinping

    2017-07-01

    Design and fabrication of electrochemical energy storage systems with both high energy and power densities as well as long cycling life is of great importance. As one of these systems, Battery-supercapacitor hybrid device (BSH) is typically constructed with a high-capacity battery-type electrode and a high-rate capacitive electrode, which has attracted enormous attention due to its potential applications in future electric vehicles, smart electric grids, and even miniaturized electronic/optoelectronic devices, etc. With proper design, BSH will provide unique advantages such as high performance, cheapness, safety, and environmental friendliness. This review first addresses the fundamental scientific principle, structure, and possible classification of BSHs, and then reviews the recent advances on various existing and emerging BSHs such as Li-/Na-ion BSHs, acidic/alkaline BSHs, BSH with redox electrolytes, and BSH with pseudocapacitive electrode, with the focus on materials and electrochemical performances. Furthermore, recent progresses in BSH devices with specific functionalities of flexibility and transparency, etc. will be highlighted. Finally, the future developing trends and directions as well as the challenges will also be discussed; especially, two conceptual BSHs with aqueous high voltage window and integrated 3D electrode/electrolyte architecture will be proposed.

  13. Majorana fermions in hybrid superconductor-semiconductor nanowire devices

    Science.gov (United States)

    Mourik, V.; Zuo, K.; van Woerkom, D. J.; de Vries, F. R.; Gul, O.; Zhang, H.; de Moor, M. A. W.; Car, D.; Bakkers, E. P. A. M.; Kouwenhoven, L. P.

    2015-03-01

    Our experiment carried out in hybrid superconductor-semiconductor nanowire devices gave the first experimental indications for the existence of Majorana fermions, but many open questions need to be answered. Majorana fermions have to come in pairs, before we were only capable of probing one Majorana fermion. Majorana fermions should be fully gate controllable, which could not be demonstrated convincingly. Upon bringing Majorana fermions closer together, an energy splitting between the two is expected, giving rise to a pair of split peaks instead of a single zero bias peak (ZBP). We are performing new experiments in similar but improved three terminal normal-superconductor-normal InSb nanowire devices. This enables the possibility to probe Majorana fermions occurring at the ends of the superconducting contact by using tunneling spectroscopy. Furthermore, the devices have an improved gate design enabling more efficient gating under the superconducting contact and they have improved contact interfaces resulting in less undesired resonant states. We have observed ZBP's in a large magnetic field range, an oscillatory behavior from ZBP to split peak and back, and tunability of ZBP's by gates underneath the superconducting contact.

  14. Low-loss, high performance hybrid photonics devices enabled by ion-exchanged glass waveguides

    Science.gov (United States)

    Araci, Ismail Emre

    Robust ion-exchanged glass waveguides exhibit low optical losses in a broad spectral range and they allow integration of several devices on the same chip due to their planar structure. Consequently, they can be a low cost alternative to semiconductors for fabricating various integrated optical devices. Two high performance photonic devices were designed and realized, demonstrating the potential of glass waveguides. The well-controlled silver-film ion-exchange process allowed the fabrication of: i) a highly sensitive biosensor based on optical absorption and, ii) a low loss hybrid electro-optic (EO) polymer modulator with a narrow coplanar electrode gap. The single-mode, channel integrated optical ion-exchange waveguide on borosilicate glass (Corning 0211) is described for broad spectral band (400-650 nm) detection and analysis of heme-containing protein films at a glass/water interface. The evanescent wave interaction is improved significantly by fabricating ion-exchange waveguides with a step-like index profile. Silver nano-particle formation is reduced in order to achieve low loss in the Soret-band (˜400 nm). Unlike other surface-specific techniques (e.g. SPR, interferometry) that probe local refractive-index changes and therefore are susceptible to temperature fluctuations, the integrated optical waveguide absorption technique probes molecular-specific transition bands and is expected to be less vulnerable to environmental perturbations. The hybrid integration of phosphate glass (IOG-1) and EO polymer is realized for the first time. The critical alignment steps which are typically required for hybrid optoelectronic devices are eliminated with a simple alignment-free fabrication technique. The low loss adiabatic transition from glass to EO polymer waveguide is enabled by gray scale patterning of the novel EO polymer, AJLY. Total insertion loss of 5 dB and electrode gap of 8 mum is obtained for an optimized device design. EO polymer poling at 135 °C and 75 V

  15. Ultra-Compact 100 × 100 μm2 Footprint Hybrid Device with Spin-Valve Nanosensors

    Directory of Open Access Journals (Sweden)

    Diana C. Leitao

    2015-12-01

    Full Text Available Magnetic field mapping with micrometric spatial resolution and high sensitivity is a challenging application, and the technological solutions are usually based on large area devices integrating discrete magnetic flux guide elements. In this work we demonstrate a high performance hybrid device with improved field sensitivity levels and small footprint, consisting of a ultra-compact 2D design where nanometric spin valve sensors are inserted within the gap of thin-film magnetic flux concentrators. Pole-sensor distances down to 400 nm are demonstrated using nanofabrication techniques combined with an optimized liftoff process. These 100 × 100 μm 2 pixel sensors can be integrated in modular devices for surface mapping without moving parts.

  16. [Genital actinomycosis, following insertion of intra-uterine device (IUD) -- possibilities for prevention (author's transl)].

    Science.gov (United States)

    Szabo, L G; Esztergaly, S; Dzvonyar, I

    1981-01-01

    Occurrence of actinomyces infection, following IUD insertion, was observed by the authors in two cases. A pathogenetic role has been positively ascribed to the IUD. In one case, actinomycosis was histologically confirmed on a surgically removed and accompanied by severe tuberculoid tissue reaction. In the second case, actinomyces colonies were recorded and identified from the IUD which had been removed for adnexitis. Good success was obtained by early medication. Prevention and early detection will be possible by vaginal smears prior to insertion of an IUD and with the latter in place, after some time, as well as by testing the IUD proper for actinomycosis, after its removal.

  17. Space Storable Hybrid Rockets for Orbit Insertion or In Situ Resource Utilization Applications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Goals:1. Continue development of a flexible facility capable of small scale hybrid propulsion tests. The facility will be able to adapt to new research objectives as...

  18. Electronic heat current rectification in hybrid superconducting devices

    Energy Technology Data Exchange (ETDEWEB)

    Fornieri, Antonio, E-mail: antonio.fornieri@sns.it; Giazotto, Francesco, E-mail: francesco.giazotto@sns.it [NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, I-56127 Pisa (Italy); Martínez-Pérez, María José [Physikalisches Institut - Experimentalphysik II Universität Tübingen, D-72076 Tübingen (Germany)

    2015-05-15

    In this work, we review and expand recent theoretical proposals for the realization of electronic thermal diodes based on tunnel-junctions of normal metal and superconducting thin films. Starting from the basic rectifying properties of a single hybrid tunnel junction, we will show how the rectification efficiency can be largely increased by combining multiple junctions in an asymmetric chain of tunnel-coupled islands. We propose three different designs, analyzing their performance and their potential advantages. Besides being relevant from a fundamental physics point of view, this kind of devices might find important technological application as fundamental building blocks in solid-state thermal nanocircuits and in general-purpose cryogenic electronic applications requiring energy management.

  19. Multilayer crack-free hybrid coatings for functional devices

    Science.gov (United States)

    Islam, Shumaila; Bidin, Noriah; Riaz, Saira; Naseem, Shahzad; Marsin Sanagi, Mohd.; Imran, M.

    2016-04-01

    Porous acid catalyzed TiO2 single, SiO2-TiO2 hybrid, and TiO2/SiO2-TiO2/SiO2 multilayer coatings are synthesized and characterized for optical and electro-optical applications. The reflection value is reasonably reduced from the surface of the glass by integrating sol-gel based spin-coated single and multilayer thin films. Structurally, the films show uniform, crack-free, and porous nanofilms with good surface roughness of below 10 nm, which has potential for optical applications. Wide range tunability of refractive index (2.83 to 1.59) with more than 78% optical transparency is observed. The multilayered reflection profile is observed around 0.18%, so these coatings are desirable for optochemical functional devices.

  20. Central venous access device insertion and perioperative management of patients with severe haemophilia A: a local experience.

    Science.gov (United States)

    Fonseca, Adriana; Nagel, Kim; Decker, Kay; Pukulakatt, Mimitha; Pai, Mohan; Walton, Mark; Chan, Anthony K C

    2016-03-01

    Central venous access device (CVAD) insertion is one of the most common procedures performed on paediatric haemophilia patients. There are no clear guidelines outlining the optimal dosing schedule of factor VIII (FVIII) and duration of treatment required to achieve adequate haemostasis during and after surgery. In this article, we describe the experience at McMaster Children's Hospital using FVIII replacement therapy in 15 children with severe haemophilia A during the course of 7 years. This is a retrospective institutional chart review. Patients between 0 and 18 years of age with severe haemophilia A that underwent CVAD insertion at McMaster Children's Hospital in Hamilton, Ontario, from 2004 to 2010, were identified and charts were reviewed. A total of 15 CVAD insertion surgeries were reviewed. The total average preoperative dose of FVIII was 93.5 IU/kg (range: 53.7-145.4 IU/kg). The total average postoperative dose was 818.7 IU/kg (range: 441-1258 IU/kg). The total perioperative dose was 912.2 IU/kg (range: 495.2-1349 IU/kg). The current study attempts to describe the experience at McMaster Children's Hospital for CVAD insertion surgeries, the average factor dose administered has decreased during the years. These results may be of help in the development of optimal treatment schedules.

  1. Immediate Postpartum Intrauterine Contraceptive Device Insertions in Caesarean and Vaginal Deliveries: A Comparative Study of Follow-Up Outcomes

    Science.gov (United States)

    Nanda, Smiti; Gupta, Anjali; More, Hemant

    2016-01-01

    Background. Immediate postpartum intrauterine contraceptive device (IPPIUCD) is a lucrative postpartum family planning method which provides effective reversible contraception to women in the delivery setting. Our aim was to study the clinical outcomes of IPPIUCD insertions and compare them as a factor of route of insertion (vaginal versus caesarean). Methods. This is a retrospective analytical study done in a tertiary care teaching institute. A Cohort of 593 vaginal and caesarean deliveries with IPPIUCD insertions, over a two-year period, was studied and compared for follow-up results. Outcome measures were safety (perforation, irregular bleeding, unusual vaginal discharge, and infection), efficacy (pregnancy, expulsions, and discontinuations), and incidence of undescended IUCD strings. Descriptives were calculated for various outcomes and chi square tests were used for comparison in between categorical variables. Results. Overall complication rates were low. No case of perforation or pregnancy was reported. Spontaneous expulsions were present in 5.3% cases and were significantly higher in vaginal insertions (p = 0.042). The incidence of undescended strings was high (38%), with highly significant difference between both groups (p = 0.000). Conclusion. IPPIUCD is a strong weapon in the family planning armoury and should be encouraged in both vaginal and caesarean deliveries. Early follow-up should be encouraged to detect expulsions and tackle common problems. PMID:27631023

  2. Hybrid materials and polymer electrolytes for electrochromic device applications.

    Science.gov (United States)

    Thakur, Vijay Kumar; Ding, Guoqiang; Ma, Jan; Lee, Pooi See; Lu, Xuehong

    2012-08-08

    Electrochromic (EC) materials and polymer electrolytes are the most imperative and active components in an electrochromic device (ECD). EC materials are able to reversibly change their light absorption properties in a certain wavelength range via redox reactions stimulated by low direct current (dc) potentials of the order of a fraction of volts to a few volts. The redox switching may result in a change in color of the EC materials owing to the generation of new or changes in absorption band in visible region, infrared or even microwave region. In ECDs the electrochromic layers need to be incorporated with supportive components such as electrical contacts and ion conducting electrolytes. The electrolytes play an indispensable role as the prime ionic conduction medium between the electrodes of the EC materials. The expected applications of the electrochromism in numerous fields such as reflective-type display and smart windows/mirrors make these materials of prime importance. In this article we have reviewed several examples from our research work as well as from other researchers' work, describing the recent advancements on the materials that exhibit visible electrochromism and polymer electrolytes for electrochromic devices. The first part of the review is centered on nanostructured inorganic and conjugated polymer-based organic-inorganic hybrid EC materials. The emphasis has been to correlate the structures, morphologies and interfacial interactions of the EC materials to their electronic and ionic properties that influence the EC properties with unique advantages. The second part illustrates the perspectives of polymer electrolytes in electrochromic applications with emphasis on poly (ethylene oxide) (PEO), poly (methyl methacrylate) (PMMA) and polyvinylidene difluoride (PVDF) based polymer electrolytes. The requirements and approaches to optimize the formulation of electrolytes for feasible electrochromic devices have been delineated. Copyright © 2012 WILEY

  3. New hybrid encapsulation for flexible organic light-emitting devices on plastic substrates

    Institute of Scientific and Technical Information of China (English)

    LIU Song; ZHANG DeQiang; LI Yang; DUAN Lian; DONG GuiFang; WANG LiDuo; QIU Yong

    2008-01-01

    The hybrid encapsulation for flexible organic light-emitting devices on plastic substrate was investi-gated. The hybrid encapsulation consisted of four periods of Alq3/LiF layers as the pre-encapsulation layer and a flexible aluminum foil coated with getter as the encapsulation cap. We measured the device lifetime at a continuous constant current of 20 mA/cm2, which corresponded to an initial luminance of 2000 cd/m2, The half-luminance decay time of the encapsulated device was about 458 h. More over, the hybrid encapsulation is ultrathin and flexible, ensuring device bendability.

  4. POST-PLACENTAL INTRAUTERINE CONTRACEPTIVE DEVICE (PPIUCD INSERTION -2 YEAR EXPERIENCE AT A GOVT. MEDICAL COLLEGE, VIMS, BELLARY, KARNATAKA

    Directory of Open Access Journals (Sweden)

    Asha Rani

    2015-11-01

    Full Text Available Post-partum period is one of the critical times when both woman and new-born need a special and integrated package of health services as morbidity and mortality rates are quite high during this period and also the women are vulnerable to unintended pregnancy. Studies show that pregnancies taking place within 24 months of a previous birth have a higher risk of adverse outcomes like abortions, premature labor, post-partum haemorrhage, low birth weight babies, fetal loss and maternal death. In India, 65 percent of women in the first year post-partum have an unmet need for family planning. Hence, contraception needs to be practiced in this critical period.1 Intrauterine contraceptive device is the most commonly used reversible method of contraception worldwide with about 127 million current users.2 Insertion of an IUD immediately after delivery is appealing for several reasons. The woman is not pregnant and is motivated for contraception and the setting is convenient for both woman and provider. For women with limited access to medical care, the delivery affords a unique opportunity to address the need for contraception. The evidence for post-partum IUD insertion was weak when this study was undertaken. Therefore, the present study was planned to evaluate the safety and efficacy (In terms of pain, expulsion, excessive bleeding, foul smelling vaginal discharge of insertion of immediate post-partum IUD in women delivering vaginally or by caesarean section.

  5. Characterization of new hybrid pixel module concepts for the ATLAS Insertable B-Layer upgrade

    CERN Document Server

    Backhaus, Malte

    2012-01-01

    The ATLAS Insertable B-Layer (IBL) collaboration plans to insert a fourth pixel layer inside the present Pixel Detector to recover from eventual failures in the current pixel system, especially the b-layer. Additionally the IBL will ensure excellent tracking, vertexing and b-tagging performance during the LHC phase I and add robustness in tracking with high luminosity pile-up. The expected peak luminosity for IBL is 2 to 3centerdot1034 cm-2s-1 and IBL is designed for an integrated luminosity of 700 fb-1. This corresponds to an expected fluence of 5centerdot1015 1 MeV neqcm-2 and a total ionizing dose of 250 MRad. In order to cope with these requirements, two new module concepts are under investigation, both based on a new front end IC, called FE-I4. This IC was designed as readout chip for future ATLAS Pixel Detectors and its first application will be the IBL. The planar pixel sensor (PPS) based module concept benefits from its well understood design, which is kept as similar as possible to the design of the ...

  6. Characterization of new hybrid pixel module concepts for the ATLAS Insertable B-Layer upgrade

    CERN Document Server

    Backhaus, M

    2012-01-01

    The ATLAS Insertable B-Layer (IBL) collaboration plans to insert a fourth pixel layer inside the present Pixel Detector to recover from eventual failures in the current pixel system, especially the b-layer. Additionally the IBL will ensure excellent tracking, vertexing and b-tagging performance during the LHC phase I and add robustness in tracking with high luminosity pile-up. The expected peak luminosity for IBL is 2 to 3•10^34 cm^−2 s^ −1 and IBL is designed for an integrated luminosity of 700 fb^−1 . This corresponds to an expected fluence of 5 • 10^15 1 MeV n_eqcm^−2 and a total ionizing dose of 250 MRad. In order to cope with these requirements, two new module concepts are under investigation, both based on a new front end IC, called FE-I4. This IC was designed as readout chip for future ATLAS Pixel Detectors and its first application will be the IBL. The planar pixel sensor (PPS) based module concept benefits from its well understood design, which is kept as similar as possible to the design...

  7. Material and cooling requirements for poly-Bitter resistive magnets and hybrid inserts generating continuous fields up to 50 T

    Energy Technology Data Exchange (ETDEWEB)

    Gao, B.J.; Bird, M.D.; Eyssa, Y.M.; Schneider-Muntau, H.J. [National High Magnetic Field Lab., Tallahassee, FL (United States)

    1994-07-01

    The new National High Magnetic Field Laboratory (NHMFL), equipped with a 40 MW DC power supply, will design and construct the next generation of high field resistive magnets and hybrid inserts generating DC fields up to 50 T. The authors present a study on the required materials and the necessary cooling characteristics, these magnets need. The configuration selected for this study consists of a combination of thin poly-Bitter and thick Bitter coils optimized in dimensions and power under constraint of maximum design stress and heat removal to obtain maximum field. The study shows that each design requires a different optimum ratio of conductor strength to electrical conductivity and that efficient cooling is only advantageous if strong copper alloys are used. For efficient use of the available power the development of new high strength, high conductivity materials will be necessary. Equally important are improvements in the heat transfer characteristics of these high power density magnets.

  8. A backing device based on an embedded stiffener and retractable insertion tool for thin-film cochlear arrays

    Science.gov (United States)

    Tewari, Radheshyam

    Intracochlear trauma from surgical insertion of bulky electrode arrays and inadequate pitch perception are areas of concern with current hand-assembled commercial cochlear implants. Parylene thin-film arrays with higher electrode densities and lower profiles are a potential solution, but lack rigidity and hence depend on manually fabricated permanently attached polyethylene terephthalate (PET) tubing based bulky backing devices. As a solution, we investigated a new backing device with two sub-systems. The first sub-system is a thin poly(lactic acid) (PLA) stiffener that will be embedded in the parylene array. The second sub-system is an attaching and detaching mechanism, utilizing a poly(N-vinylpyrrolidone)-block-poly(d,l-lactide) (PVP-b-PDLLA) copolymer-based biodegradable and water soluble adhesive, that will help to retract the PET insertion tool after implantation. As a proof-of-concept of sub-system one, a microfabrication process for patterning PLA stiffeners embedded in parylene has been developed. Conventional hot-embossing, mechanical micromachining, and standard cleanroom processes were integrated for patterning fully released and discrete stiffeners coated with parylene. The released embedded stiffeners were thermoformed to demonstrate that imparting perimodiolar shapes to stiffener-embedded arrays will be possible. The developed process when integrated with the array fabrication process will allow fabrication of stiffener-embedded arrays in a single process. As a proof-of-concept of sub-system two, the feasibility of the attaching and detaching mechanism was demonstrated by adhering 1x and 1.5x scale PET tube-based insertion tools and PLA stiffeners embedded in parylene using the copolymer adhesive. The attached devices survived qualitative adhesion tests, thermoforming, and flexing. The viability of the detaching mechanism was tested by aging the assemblies in-vitro in phosphate buffer solution. The average detachment times, 2.6 minutes and 10 minutes

  9. Hybrid energy harvesting/transmission system for embedded devices

    Science.gov (United States)

    Hehr, Adam; Park, Gyuhae; Farinholt, Kevin

    2012-04-01

    In most energy harvesting applications the need for a reliable long-term energy supply is essential in powering embedded sensing and control electronics. The goal of many harvesters is to extract energy from the ambient environment to power hardware; however in some applications there may be conditions in which the harvester's performance cannot meet all of the demands of the embedded electronics. One method for addressing this shortfall is to supplement harvested power through the transmission of wireless energy, a concept that has successfully been demonstrated by the authors in previous studies. In this paper we present our findings on the use of a single electromagnetic coil to harvest kinetic energy in a solenoid configuration, as well as background and directed wireless energy in the 2.4 GHz radio frequency (RF) bands commonly used in WiFi and cellular phone applications. The motivation for this study is to develop a compact energy harvester / receiver that conserves physical volume, while providing multi-modal energy harvesting capabilities. As with most hybrid systems there are performance trade-offs that must be considered when capturing energy from different physical sources. As part of this paper, many of the issues related to power transmission, physical design, and potential applications are addressed for this device.

  10. Voltage biased Varistor-Transistor Hybrid Devices: Properties and Applications

    Directory of Open Access Journals (Sweden)

    Raghvendra K Pandey

    2015-08-01

    Full Text Available The paper describes the properties and potential applications of a novel hybrid varistor device originating from biased voltage induced modified nonlinear current-voltage (I-V characteristics. Single crystal of an oxide semiconductor in the family of iron-titanates with the chemical formula of Fe2TiO5 (pseudobrookite has been used as substrate for the varistor. The modifications of the varistor characteristics are achieved by superimposition of a bias voltage in the current path of the varistor. These altered I-V characteristics, when analyzed, reveal the existence of embedded transistors coexisting with the varistor. These transistors exhibit mutual conductance, signal amplification and electronic switching which are the defining signatures of a typical transistor. The tuned varistors also acquire the properties of signal amplification and mutual conductance which expand the range of applications for a varistor beyond its traditional use as circuit protector. Both tuned varistors and the embedded transistors have attributes which make them suitable for many applications in electronics including at high temperatures and for radiation dominated environments such as space.

  11. Investigation of over-moulded hybrid metal/polymer devices

    DEFF Research Database (Denmark)

    Tosello, Guido; Hansen, Hans Nørgaard; Tang, Peter Torben

    2006-01-01

    was designed and manufactured by over-moulding and hot-embossing. The bonding strength between the insert and the plastic part was tested by means of a tensile test. A variety of parameters was studied in order to investigate their influence on the bonding: different polymeric and metallic materials, insert...... thickness, metal surface roughness and texture topography, surface treatment and coating, i.e. metal insert designs to improve polymer/metal interlocking and tensile test speed. Results show a strong influence of the surface properties and of the employed material on the bonding strength. The proposed...

  12. Some aspects of achieving an ultimate accuracy during insertion device magnetic measurements by a Hall probe.

    Science.gov (United States)

    Vasserman, I B; Strelnikov, N O; Xu, J Z

    2013-02-01

    An extensive test of a new Senis 2-axis Hall probe was done at the Advanced Photon Source using the Undulator A device and calibration system. This new probe has clear advantages compared with previously used Bell and Sentron Hall probes: very stable zero offset (less than the noise of 0.026 G) and compensated planar Hall effect. It can be used with proper calibration even for first and second field integral measurements. A comparison with reference measurements by long stretched coil shows that the difference in the first field integral measurement results for a 2.4-m-long Undulator A device is between 17 G cm for the best of four Hall probes used for the test and 51 G cm for the worst of them for all gap ranges from 10.5 mm to 150 mm.

  13. Self-assembling hybrid diamond-biological quantum devices

    Science.gov (United States)

    Albrecht, A.; Koplovitz, G.; Retzker, A.; Jelezko, F.; Yochelis, S.; Porath, D.; Nevo, Y.; Shoseyov, O.; Paltiel, Y.; Plenio, M. B.

    2014-09-01

    The realization of scalable arrangements of nitrogen vacancy (NV) centers in diamond remains a key challenge on the way towards efficient quantum information processing, quantum simulation and quantum sensing applications. Although technologies based on implanting NV-centers in bulk diamond crystals or hybrid device approaches have been developed, they are limited by the achievable spatial resolution and by the intricate technological complexities involved in achieving scalability. We propose and demonstrate a novel approach for creating an arrangement of NV-centers, based on the self-assembling capabilities of biological systems and their beneficial nanometer spatial resolution. Here, a self-assembled protein structure serves as a structural scaffold for surface functionalized nanodiamonds, in this way allowing for the controlled creation of NV-structures on the nanoscale and providing a new avenue towards bridging the bio-nano interface. One-, two- as well as three-dimensional structures are within the scope of biological structural assembling techniques. We realized experimentally the formation of regular structures by interconnecting nanodiamonds using biological protein scaffolds. Based on the achievable NV-center distances of 11 nm, we evaluate the expected dipolar coupling interaction with neighboring NV-centers as well as the expected decoherence time. Moreover, by exploiting these couplings, we provide a detailed theoretical analysis on the viability of multiqubit quantum operations, suggest the possibility of individual addressing based on the random distribution of the NV intrinsic symmetry axes and address the challenges posed by decoherence and imperfect couplings. We then demonstrate in the last part that our scheme allows for the high-fidelity creation of entanglement, cluster states and quantum simulation applications.

  14. Research Update: Hybrid energy devices combining nanogenerators and energy storage systems for self-charging capability

    Science.gov (United States)

    Kim, Jeonghun; Lee, Ju-Hyuck; Lee, Jaewoo; Yamauchi, Yusuke; Choi, Chang Ho; Kim, Jung Ho

    2017-07-01

    The past decade has been especially creative for nanogenerators as energy harvesting devices utilizing both piezoelectric and triboelectric properties. Most recently, self-charging power units using both nanogenerators and energy storage systems have begun to be investigated for portable and wearable electronics to be used in our daily lives. This review focuses on these hybrid devices with self-charging combined with energy harvesting storage systems based on the most recent reports. In this research update, we will describe the materials, device structures, integration, applications, and research progress up to the present on hybrid devices.

  15. Hybrid Optical Devices: The Case of the Unification of the Electrochromic Device and the Organic Solar Cell

    Directory of Open Access Journals (Sweden)

    Andre F. S. Guedes

    2016-06-01

    Full Text Available The development of Hybrid Optical Devices, using some flexible optically transparent substrate material and organic semiconductor materials, has been widely utilized by the organic electronic industry, when manufacturing new technological products. The Hybrid Optical Device is constituted by the union of the electrochromic device and the organic solar cell. The flexible organic photovoltaic solar cells, in this hybrid optical device, have been the Poly base (3-hexyl thiophene, P3HT, Phenyl-C61-butyric acid methyl ester, PCBM and Polyaniline, PANI, all being deposited in Indium Tin Oxide, ITO. In addition, the thin film, obtained by the deposition of PANI, and prepared in perchloric acid solution, has been identified through PANI-X1. In the flexible electrochromic device, the Poly base (3,4-ethylenedioxythiophene, PEDOT, has been prepared in Propylene Carbonate, PC, being deposited in Indium Tin Oxide, ITO. Also, both devices have been united by an electrolyte solution prepared with Vanadium Pentoxide, V2O5, Lithium Perchlorate, LiClO4, and Polymethylmethacrylate, PMMA. This device has been characterized through Electrical Measurements, such as UV-Vis Spectroscopy and Scanning Electron Microscopy (SEM. Thus, the result obtained through electrical measurements has demonstrated that the flexible organic photovoltaic solar cell presented the characteristic curve of standard solar cell after spin-coating and electrodeposition. Accordingly, the results obtained with optical and electrical characterization have revealed that the electrochromic device demonstrated some change in optical absorption, when subjected to some voltage difference. Moreover, the inclusion of the V2O5/PANI-X1 layer reduced the effects of degradation that this hybrid organic device caused, that is, solar irradiation. Studies on Scanning Electron Microscopy (SEM have found out that the surface of V2O5/PANI-X1 layers can be strongly conditioned by the surface morphology of the

  16. A solution to reducing insertion loss and achieving high sidelobe rejection for wavelet transform and reconstruction processor using SAW devices

    Science.gov (United States)

    Jiang, Hua; Lu, Wenke; Zhang, Guoan; Xie, Zhengguang

    2013-02-01

    An arbitrary wavelet transform and reconstruction processor is composed of multiple single-scale wavelet transform devices (SSWTDs) with different scales. For improving the performance of the processor using surface acoustic wave (SAW) devices, this research investigates how to reduce the insertion loss (IL) and achieve a high sidelobe rejection. To reduce the triple transit echo (TTE) and to achieve a high signal-noise ratio (SNR), the structure of the SSWTD consists of two electrode-widths-controlled (EWC) single phase unidirectional transducers (SPUDTs). In the propagation process of the SAW, the unidirectional characteristic of the new structure reduces the bidirectional loss of the entire device. In addition, to enlarge the fractional bandwidth and the sidelobe rejection, the internal structure of the SSWTD uses an input apodized transducer according to the envelope of the Morlet wavelet function as well as an output withdrawal weighting transducer. In this paper, we present a SSWTD for scale 2-2 as an example to illustrate the design method and experimental results. The new device is fabricated on 128° rotated YX-cut lithium niobate (Y128°X-LiNbO3) with the electromechanical coupling coefficient k2 = 5.5% and the SAW velocity 3992 m/s. We get the experimental frequency response with the center frequency 68.14 MHz, the minimum IL -9.96 dB, the fractional bandwidth 3.3%, the maximum passband ripples 0.4 dB and the sidelobe rejection greater than 40 dB. The proposed method and structure can be extended to an arbitrary SSWTD. The experimental results confirm that the performance of the wavelet transform and reconstruction processor can be improved by the proposed solution.

  17. A Security Scheme for Dependable Key Insertion in Mobile Embedded Devices

    Directory of Open Access Journals (Sweden)

    Alexander Klimm

    2011-01-01

    Full Text Available Public Key Cryptography enables entity authentication protocols based on a platform's knowledge of other platforms' public key. This is particularly advantageous for embedded systems, such as FPGA platforms, with limited or none read-protected memory resources. For access control systems, an access token is authenticated by the mobile system. Only the public key of authorized tokens needs to be stored inside the mobile platform. At some point during the platform's lifetime, these might need to be updated in the field due to loss or damage of tokens. This paper proposes a holistic approach for an automotive access control system based on Public Key Cryptography. Next to a FPGA-based hardware architecture, we focus on a secure scheme for key flashing of public keys to highly mobile systems. The main goal of the proposed scheme is the minimization of online dependencies to Trusted Third Parties, Certification Authorities, or the like, to enable key flashing in remote locations with only minor technical infrastructure. Introducing trusted mediator devices, new tokens can be authorized and later their public key can be flashed into a mobile system on demand.

  18. Wide Temperature Range Hybrid Energy Storage Device Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal concerns the fabrication of a hybrid battery capacitor (HBC) using Eltron's knowledge gained in battery and capacitor research. Energy storage systems...

  19. A detector insert based on continuous scintillators for hybrid MR–PET imaging of the human brain

    Energy Technology Data Exchange (ETDEWEB)

    Rato Mendes, P., E-mail: pedro.rato@ciemat.es [CIEMAT, Avenida Complutense 40, 28040 Madrid (Spain); Cuerdo, R.; Sarasola, I.; García de Acilu, P.; Navarrete, J.; Vela, O.; Oller, J.C.; Cela, J.M. [CIEMAT, Avenida Complutense 40, 28040 Madrid (Spain); Núñez, L.; Pastrana, M. [Hospital Universitario Puerta de Hierro Majadahonda, Manuel de Falla 1, 28222 Majadahonda (Spain); Romero, L.; Willmott, C. [CIEMAT, Avenida Complutense 40, 28040 Madrid (Spain)

    2013-02-21

    We are developing a positron emission tomography (PET) insert for existing magnetic resonance (MR) equipment, aiming at hybrid MR–PET imaging. Our detector block design is based on trapezoid-shaped LYSO:Ce monolithic scintillators coupled to magnetically compatible Hamamatsu S8550-02 silicon avalanche photodiode (APD) matrices with a dedicated ASIC front-end readout from GammaMedica-Ideas (Fornebu, Norway). The detectors are position sensitive, capable of determining the incidence point of 511 keV gammas with an intrinsic spatial resolution on the order of 2 mm by means of supervised learning neural-network (NN) algorithms. These algorithms, apart from providing continuous coordinates, are also intrinsically corrected for depth of interaction effects and thus parallax-free. Recently we have implemented an advanced prototype featuring two heads with four detector blocks each and final front-end and readout electronics, improving the spatial resolution of reconstructed point source images down to 1.7 mm full width at half maximum (FWHM). Presently we are carrying out operational tests of components and systems under magnetic fields using a 3 T MR scanner. In this paper we present a description of our project, a summary of the results obtained with laboratory prototypes, and the strategy to build and install the complete system at the nuclear medicine department of a collaborating hospital.

  20. A detector insert based on continuous scintillators for hybrid MR-PET imaging of the human brain

    Science.gov (United States)

    Rato Mendes, P.; Cuerdo, R.; Sarasola, I.; García de Acilu, P.; Navarrete, J.; Vela, O.; Oller, J. C.; Cela, J. M.; Núñez, L.; Pastrana, M.; Romero, L.; Willmott, C.

    2013-02-01

    We are developing a positron emission tomography (PET) insert for existing magnetic resonance (MR) equipment, aiming at hybrid MR-PET imaging. Our detector block design is based on trapezoid-shaped LYSO:Ce monolithic scintillators coupled to magnetically compatible Hamamatsu S8550-02 silicon avalanche photodiode (APD) matrices with a dedicated ASIC front-end readout from GammaMedica-Ideas (Fornebu, Norway). The detectors are position sensitive, capable of determining the incidence point of 511 keV gammas with an intrinsic spatial resolution on the order of 2 mm by means of supervised learning neural-network (NN) algorithms. These algorithms, apart from providing continuous coordinates, are also intrinsically corrected for depth of interaction effects and thus parallax-free. Recently we have implemented an advanced prototype featuring two heads with four detector blocks each and final front-end and readout electronics, improving the spatial resolution of reconstructed point source images down to 1.7 mm full width at half maximum (FWHM). Presently we are carrying out operational tests of components and systems under magnetic fields using a 3 T MR scanner. In this paper we present a description of our project, a summary of the results obtained with laboratory prototypes, and the strategy to build and install the complete system at the nuclear medicine department of a collaborating hospital.

  1. Biperiodic nanostructured waveguides for wavelength-selectivity of hybrid photonic devices.

    Science.gov (United States)

    Talneau, A; Pommarède, X; Itawi, A; Pantzas, K; Lupu, A; Benisty, H

    2015-11-15

    A biperiodic nanostructuration consisting of a super-periodicity added to a nanohole lattice of subwavelength pitch is demonstrated to provide both modal confinement and wavelength selectivity within a hybrid III-V on a silicon waveguide. The wavelength-selective behavior stems from finely tuned larger holes. Such biperiodic hybrid waveguides have been fabricated by oxide-free bonding III-V material on silicon and display well-defined stop bands. Such nanostructured waveguides offer the versatility for designing advanced optical functions within hybrid devices. Moreover, keeping the silicon waveguide surface planar, such nanostructured waveguides are compatible with electrical operation across the oxide-free hybrid interface.

  2. Synthesis of a hybrid model of the VSC FACTS devices and HVDC technologies

    Science.gov (United States)

    Borovikov, Yu S.; Gusev, A. S.; Sulaymanov, A. O.; Ufa, R. A.

    2014-10-01

    The motivation of the presented research is based on the need for development of new methods and tools for adequate simulation of FACTS devices and HVDC systems as part of real electric power systems (EPS). The Research object: An alternative hybrid approach for synthesizing VSC-FACTS and -HVDC hybrid model is proposed. The results: the VSC- FACTS and -HVDC hybrid model is designed in accordance with the presented concepts of hybrid simulation. The developed model allows us to carry out adequate simulation in real time of all the processes in HVDC, FACTS devices and EPS as a whole without any decomposition and limitation on their duration, and also use the developed tool for effective solution of a design, operational and research tasks of EPS containing such devices.

  3. A hybrid approach to device integration on a genetic analysis platform

    Science.gov (United States)

    Brennan, Des; Jary, Dorothee; Kurg, Ants; Berik, Evgeny; Justice, John; Aherne, Margaret; Macek, Milan; Galvin, Paul

    2012-10-01

    Point-of-care (POC) systems require significant component integration to implement biochemical protocols associated with molecular diagnostic assays. Hybrid platforms where discrete components are combined in a single platform are a suitable approach to integration, where combining multiple device fabrication steps on a single substrate is not possible due to incompatible or costly fabrication steps. We integrate three devices each with a specific system functionality: (i) a silicon electro-wetting-on-dielectric (EWOD) device to move and mix sample and reagent droplets in an oil phase, (ii) a polymer microfluidic chip containing channels and reservoirs and (iii) an aqueous phase glass microarray for fluorescence microarray hybridization detection. The EWOD device offers the possibility of fully integrating on-chip sample preparation using nanolitre sample and reagent volumes. A key challenge is sample transfer from the oil phase EWOD device to the aqueous phase microarray for hybridization detection. The EWOD device, waveguide performance and functionality are maintained during the integration process. An on-chip biochemical protocol for arrayed primer extension (APEX) was implemented for single nucleotide polymorphism (SNiP) analysis. The prepared sample is aspirated from the EWOD oil phase to the aqueous phase microarray for hybridization. A bench-top instrumentation system was also developed around the integrated platform to drive the EWOD electrodes, implement APEX sample heating and image the microarray after hybridization.

  4. Prospective clinical phase II study of two new indwelling voice prostheses (Provox Vega 22.5 and 20 Fr) and a novel anterograde insertion device (Provox Smart Inserter)

    NARCIS (Netherlands)

    Hilgers, F.J.M.; Ackerstaff, A.H.; Jacobi, I.; Balm, A.J.M.; Tan, I.B.; van den Brekel, M.W.M.

    2010-01-01

    Objectives/Hypothesis: To assess device life of the new Provox Vega 22.5 and 20 Fr prostheses, to establish whether the optimized airflow characteristics of these devices materialize in better voice characteristics in comparison to Provox2, and to assess the feasibility of voice prosthesis replaceme

  5. Complete and partial uterine perforation and embedding following insertion of intrauterine devices. II. Diagnostic methods, prevention, and management.

    Science.gov (United States)

    Zakin, D; Stern, W Z; Rosenblatt, R

    1981-08-01

    This paper discusses the various methods used to diagnose uterine perforation caused by an IUD. Radiography, or plain film, has a limited use in the diagnosis of uterine perforation since its usefulness depends on the radiopacity of the particular IUD; if the IUD appears on film, plain film does not allow one to conclude whether the device is in its proper position. Several modifications of plain film have been tried but all methods fall short of their goals. Hysterography permits the best diagnostic assessment since it allows the visualization of the entire uterine cavity so that the position of the IUD is immediately evident in cases of embedding and of perforation. Pelvic pneumography can differentiate between intraperitoneal or extraperitoneal locations of perforated IUDs; it can be enhanced by hysterosalpingography and can be done on an ambulatory basis. Ultrasonography simply determines the presence or absence of an IUD, but has the advantage of accurately demonstrating a concomitant pregnancy; the sonogram is not reliable if the IUD is surrounded by omentum or by loops of bowel; ultrasonography can be advantageously coupled with hysterography. Laparoscopy is still the method most used to diagnose uterine IUD perforation; when removal of the device is advisable laparotomy is usually carried out concomitantly; successful laparoscopy requires a skilled and experienced operator. Hysteroscopy is a new and extremely valuable technique which should not be chosen as a primary procedure because it carries a risk of complications. The best prevention of uterine perforation is a meticulous and well executed insertion technique, done only by an experienced operator and after a careful pelvic examination. Uterine size, consistency and position must be exactly known; IUD insertion is easier during or immediately after menstruation. Perforated IUDs should be removed even if considered innocuous, although this is a matter still debated by the specialists. Spontaneous IUD

  6. Applications of HTSC films in hybrid optoelectronic devices

    Science.gov (United States)

    Pavuna, Davor

    1992-03-01

    An overview is given of potential applications of high-Tc superconductors (HTSC) in the context of hybrid optoelectronic technology. The main requirements are described for the in situ growth of epitaxial YBa2Cu3O(7-delta) (YBCO) films on SrTiO3 and discuss the properties of YBCO layers grown on Si and GaAs substrates with intermediate, conducting indium-tin-oxide buffer layers. The performances of the microbridge and the meander type of HTSC bolometer are compared, and several concepts are discussed that may become relevant for future hybrid optoelectronic technology.

  7. Effect of cervical lidocaine-prilocaine cream on pain perception during copper T380A intrauterine device insertion among parous women: A randomized double-blind controlled trial.

    Science.gov (United States)

    Abbas, Ahmed M; Abdellah, Mohamed S; Khalaf, Mohamed; Bahloul, Mustafa; Abdellah, Noura H; Ali, Mohamed K; Abdelmagied, Ahmed M

    2017-03-01

    The objective was to investigate the analgesic effect of cervical lidocaine-prilocaine (LP) cream in alleviating pain during copper T380A intrauterine device (IUD) insertion among parous women. We conducted a randomized, double-blind, placebo-controlled trial at Assiut Women's Health Hospital, Egypt, from October 2015 to April 2016 of parous women desiring copper IUD insertion. We randomized the subjects in a 1:1 ratio to LP cream or placebo. Seven minutes prior to IUD insertion, women received 2 ml of LP cream or placebo to the anterior cervical lip, followed by 2 ml placed in the cervical canal using a Q-tip applicator. The study end point was the subjects' self-reported pain using a 10-cm visual analog scale (VAS) during cervical tenaculum placement, sound insertion, IUD insertion and 5 min postprocedure. We considered a 2-cm difference in VAS scores between study groups as clinically significant. Also, the difference in the ease of insertion score using a 10-cm VAS with 0=very easy insertion and 10=terribly difficult insertion was assessed. The study included 120 women (n=60 in each group). LP cream reduces the median VAS pain scores during tenaculum placement (2 vs. 4), sound insertion (3 vs. 6) and IUD insertion (3 vs. 6.5) with p=.0001 at all steps. A lower ease of insertion score was also determined among LP women (2.5±0.98 vs. 4.5±2.7, p=.001). Participants reported no side effects. Use of cervical LP cream prior to copper T380A IUD insertion may alleviate the IUD insertion pain among parous women. Cervical LP cream could be effective as an analgesic prior to copper T380A IUD insertion with no side effects. Further studies are needed to assess the women's satisfaction from lying with a speculum in place for 7 min while waiting for the cream to be effective. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Utilizing wind and solar energy as power sources for a hybrid building ventilation device

    Energy Technology Data Exchange (ETDEWEB)

    Shun, Simon; Ahmed, Noor A. [School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney (Australia)

    2008-06-15

    Wind and solar energy are currently used to power many building ventilation devices. Such devices rely exclusively on either solar or wind energy, which limits their usefulness. A low-cost hybrid ventilation device that utilizes both wind and solar energy as power sources was designed to overcome some of the shortcomings of these devices. Wind tunnel testing conducted at the aerodynamics laboratory of the University of New South Wales revealed that the hybrid device had improved operational and performance benefits compared with conventional commercial roof top ventilators, particularly at zero to low wind speeds. This represents a significant step forward and will have an immediate impact in promoting the use of clean energy for the purposes of building ventilation. (author)

  9. Hybrid Superconducting Magnetic Bearing (HSMB) for high load devices

    Science.gov (United States)

    McMichael, C. K.; Ma, K. B.; Lamb, M. A.; Lin, M. W.; Chow, L.; Meng, R. L.; Hor, P. H.; Chu, W. K.

    1992-05-01

    Lifting capacities greater than 41 N/cm(exp 2) (60 psi) at 77 K have been achieved with a new type of levitation (hybrid) using a combination of permanent magnets and high quality melt-mixtured YBa2Cu3O(7-delta) (YBCO). The key concept of the hybrid superconducting magnetic bearing (HSMB) is the use of strong magnetic repulsion and attraction from permanent magnets for high levitation or suspension forces in conjunction with a superconductor's flux pinning characteristics to counteract the inherent instabilities in a system consisting of magnets only. To illustrate this concept, radial and axial forces between magnet/superconductor, magnet/magnet, and magnet/superconductor/magnet, were measured and compared for the thrust bearing configuration

  10. Hybrid Nonlinear Optical Materials for Applications in Power Limiting and Photorefractive Devices

    Science.gov (United States)

    2010-03-01

    Final 3. DATES COVERED (From - To) 04/01/2007 to 11/30/2009 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER FA9550-07-1-0307 Hybrid Nonlinear Optical Materials for...Hybrid  Nonlinear   Optical   Materials  for Applications in Power  Limiting and Photorefractive devices      Prime Contract: FA95500710307

  11. A feasibility study of a prototype PET insert device to convert a general-purpose animal PET scanner to higher resolution.

    Science.gov (United States)

    Wu, Heyu; Pal, Debashish; O'Sullivan, Joseph A; Tai, Yuan-Chuan

    2008-01-01

    We developed a prototype system to evaluate the feasibility of using a PET insert device to achieve higher resolution from a general-purpose animal PET scanner. The system consists of a high-resolution PET detector, a computer-controlled rotation stage, and a custom mounting plate. The detector consists of a cerium-doped lutetium oxyorthosilicate array (12 x 12 crystals, 0.8 x 1.66 x 3.75 mm(3) each) directly coupled to a position-sensitive photomultiplier tube (PS-PMT). The detector signals were fed into the scanner electronics to establish coincidences between the 2 systems. The detector was mounted to a rotation stage that is attached to the scanner via the custom mounting plate after removing the transmission source holder. The rotation stage was concentric with the center of the scanner. The angular offset of the insert detector was calibrated via optimizing point-source images. In all imaging experiments, coincidence data were collected from 9 angles to provide 180 degrees sampling. A (22)Na point source was imaged at different offsets from the center to characterize the in-plane resolution of the insert system. A (68)Ge point source was stepped across the axial field of view to measure the sensitivity of the system. A 23.2-g mouse was injected with 38.5 MBq of (18)F-fluoride and imaged at 3 h after injection for 2 h. The transverse image resolution of the PET insert device ranges from 1.1- to 1.4-mm full width at half maximum (FWHM) without correction for the point-source dimension. This corresponds to approximately 33% improvement over the resolution of the original scanner (1.7- to 1.8-mm FWHM) in 2 of the 3 directions. The sensitivity of the device is 0.064% at the center of the field, 46-fold lower than the sensitivity of an existing animal PET scanner. The mouse bone scan had improved image resolution using the PET insert device over that of the existing animal PET scanner alone. We have demonstrated the feasibility of using a high-resolution insert

  12. Chemically Integrated Inorganic-Graphene Two-Dimensional Hybrid Materials for Flexible Energy Storage Devices.

    Science.gov (United States)

    Peng, Lele; Zhu, Yue; Li, Hongsen; Yu, Guihua

    2016-12-01

    State-of-the-art energy storage devices are capable of delivering reasonably high energy density (lithium ion batteries) or high power density (supercapacitors). There is an increasing need for these power sources with not only superior electrochemical performance, but also exceptional flexibility. Graphene has come on to the scene and advancements are being made in integration of various electrochemically active compounds onto graphene or its derivatives so as to utilize their flexibility. Many innovative synthesis techniques have led to novel graphene-based hybrid two-dimensional nanostructures. Here, the chemically integrated inorganic-graphene hybrid two-dimensional materials and their applications for energy storage devices are examined. First, the synthesis and characterization of different kinds of inorganic-graphene hybrid nanostructures are summarized, and then the most relevant applications of inorganic-graphene hybrid materials in flexible energy storage devices are reviewed. The general design rules of using graphene-based hybrid 2D materials for energy storage devices and their current limitations and future potential to advance energy storage technologies are also discussed.

  13. Hybrid superconductor-ferromagnet transistor-like device

    Energy Technology Data Exchange (ETDEWEB)

    Nevirkovets, I P [Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208 (United States); Belogolovskii, M A [Donetsk Institute for Physics and Engineering, National Academy of Sciences of Ukraine, 72 R. Luxemburg Street, Donetsk 83114 (Ukraine)

    2011-02-15

    We demonstrate theoretically and experimentally that a ferromagnetic layer as thin as a few nanometres, which is almost transparent for non-superconducting charge transport, can be used as a cut-off filter to block transport of charge-carrier superconducting correlations. This property may be exploited in some applications, as is exemplified by the case of double-barrier S{sub 1}IS{sub 2}FIS{sub 3} multi-terminal devices (with S, I, and F denoting a superconductor, an insulator, and a ferromagnetic metal, respectively), whose principle of operation is based on a nonequilibrium superconducting state driven by tunnel injection of quasiparticles. Using the F layer makes the device asymmetric and considerably improves input-output isolation in comparison with the formerly investigated symmetric S{sub 1}IS{sub 2}IS{sub 3} devices.

  14. Hybrid Back Surface Reflector GaInAsSb Thermophotovoltaic Devices

    Science.gov (United States)

    Huang, Robin K.; Wang, Christine A.; Connors, Michael K.; Turner, George W.; Dashiell, Michael

    2004-11-01

    Back surface reflectors have the potential to improve thermophotovoltaic (TPV) device performance though the recirculation of infrared photons. The "hybrid" back-surface reflector (BSR) TPV cell approach allows one to construct BSRs for TPV devices using conventional, high efficiency, GaInAsSb-based TPV material. The design, fabrication, and measurements of hybrid BSR-TPV cells are described. The BSR was shown to provide a 4 mV improvement in open-circuit voltage under a constant short-circuit current, which is comparable to the 5 mV improvement theoretically predicted. Larger improvements in open-circuit voltage are expected in the future with materials improvements.

  15. Hybrid Quantum Device with Nitrogen-Vacancy Centers in Diamond Coupled to Carbon Nanotubes

    Science.gov (United States)

    Li, Peng-Bo; Xiang, Ze-Liang; Rabl, Peter; Nori, Franco

    2016-07-01

    We show that nitrogen-vacancy (NV) centers in diamond interfaced with a suspended carbon nanotube carrying a dc current can facilitate a spin-nanomechanical hybrid device. We demonstrate that strong magnetomechanical interactions between a single NV spin and the vibrational mode of the suspended nanotube can be engineered and dynamically tuned by external control over the system parameters. This spin-nanomechanical setup with strong, intrinsic, and tunable magnetomechanical couplings allows for the construction of hybrid quantum devices with NV centers and carbon-based nanostructures, as well as phonon-mediated quantum information processing with spin qubits.

  16. Performance evaluation of hybrid VLC using device cost and power over data throughput criteria

    Science.gov (United States)

    Lee, C. C.; Tan, C. S.; Wong, H. Y.; Yahya, M. B.

    2013-09-01

    Visible light communication (VLC) technology has attained its attention in both academic and industry lately. It is determined by the development of light emitting diode (LED) technology for solid-state lighting (SSL).It has great potential to gradually replace radio frequency (RF) wireless technology because it offers unregulated and unlicensed bandwidth to withstand future demand of indoor wireless access to real-time bandwidth-demanding applications. However, it was found to provide intrusive uplink channel that give rise to unpleasant irradiance from the user device which could interfere with the downlink channel of VLC and hence limit mobility to users as a result of small coverage (field of view of VLC).To address this potential problem, a Hybrid VLC system which integrates VLC (for downlink) and RF (for uplink) technology is proposed. It offers a non-intrusive RF back channel that provides high throughput VLC and maintains durability with conventional RF devices. To deploy Hybrid VLC system in the market, it must be energy and cost saving to attain its equivalent economical advantage by comparing to existing architecture that employs fluorescent or LED lights with RF technology. In this paper, performance evaluation on the proposed hybrid system was carried out in terms of device cost and power consumption against data throughput. Based on our simulation, Hybrid VLC system was found to reduce device cost by 3% and power consumption by 68% when compares to fluorescent lights with RF technology. Nevertheless, when it is compared to LED lights with RF technology, our proposed hybrid system is found to achieve device cost saving as high as 47% and reduced power consumption by 49%. Such promising results have demonstrated that Hybrid VLC system is a feasible solution and has paved the way for greater cost saving and energy efficient compares with the current RF architecture even with the increasing requirement of indoor area coverage.

  17. GaAs nanowires: from doping to plasmonic hybrid devices

    OpenAIRE

    Casadei, Alberto

    2016-01-01

    Semiconductor nanowires (NWs) are filamentary crystals with the diameter ranging from few tens up to few hundreds of nanometers. In the last 20 years, they have been intensively studied for the prospects that their unique quasi-one dimensional shape offers to both fundamental and applied science. More recently particular attention has been dedicated to use NWs as building blocks for nano-electronic devices. In this thesis we investigate the electro-optical properties of NWs in order to put so...

  18. Photonic devices based on black phosphorus and related hybrid materials

    Science.gov (United States)

    Vitiello, M. S.; Viti, L.

    2016-08-01

    Artificial semiconductor heterostructures played a pivotal role in modern electronic and photonic technologies, providing a highly effective means for the manipulation and control of carriers, from the visible to the far-infrared, leading to the development of highly efficient devices like sources, detectors and modulators. The discovery of graphene and the related fascinating capabilities have triggered an unprecedented interest in devices based on inorganic two-dimensional (2D) materials. Amongst them, black phosphorus (BP) recently showed an extraordinary potential in a variety of applications across micro-electronics and photonics. With an energy gap between the gapless graphene and the larger gap transition metal dichalcogenides, BP can form the basis for a new generation of high-performance photonic devices that could be specifically engineered to comply with different applications, like transparent saturable absorbers, fast photocounductive switches and low noise photodetectors, exploiting its peculiar electrical, thermal and optical anisotropy. This paper will review the latest achievements in black-phosphorus-based THz photonics and discuss future perspectives of this rapidly developing research field.

  19. Synergistic tungsten oxide/organic framework hybrid nanofibers for electrochromic device application

    Science.gov (United States)

    Dulgerbaki, Cigdem; Komur, Ali Ihsan; Nohut Maslakci, Neslihan; Kuralay, Filiz; Uygun Oksuz, Aysegul

    2017-08-01

    We report the first successful applications of tungsten oxide/conducting polymer hybrid nanofiber assemblies in electrochromic devices. Poly(3,4-ethylenedioxythiophene)/tungsten oxide (PEDOT/WO3) and polypyrrole/tungsten oxide (PPy/WO3) composites were prepared by an in situ chemical oxidative polymerization of monomers in different ionic liquids; 1-butyl-3-methylimidazolium tetrafluoroborate (BMIMBF4), 1-butyl-3-methylimidazolium hexafluorophosphate (BMIMPF6), 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide (BMIMTFSI) and 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl) imide (BMPTFSI). Electrospinning process was used to form hybrid nanofibers from chemically synthesized nanostructures. The electrospun hybrid samples were compared from both morphological and electrochemical perspectives. Importantly, deposition of nanofibers from chemically synthesized hybrids can be achieved homogenously, on nanoscale dimensions. The morphologies of these assemblies were evaluated by SEM, whereas their electroactivity was characterized by cyclic voltammetry. Electrochromic devices made from hybrid nanofiber electrodes exhibited highest chromatic contrast of 37.66% for PEDOT/WO3/BMIMPF6, 40.42% for PPy/WO3/BMIMBF4 and show a strong electrochromic color change from transparent to light brown. Furthermore, the nanofiber devices exhibit outstanding stability when color switching proceeds, which may ensure a versatile platform for color displays, rear-view mirrors and smart windows.

  20. Hybrid device based on GaN nanoneedles and MEH-PPV/PEDOT:PSS polymer

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Min Jeong; Gwon, Dong-Oh; Lee, Chan-Mi; Lee, Gang Seok [Department of Applied Science, Korea Maritime and Ocean University, Busan 606-791 (Korea, Republic of); Jeon, In-Jun [Department of Nano-semiconductor Engineering, Korea Maritime and Ocean University, Busan 606-791 (Korea, Republic of); Ahn, Hyung Soo [Department of Applied Science, Korea Maritime and Ocean University, Busan 606-791 (Korea, Republic of); Department of Nano-semiconductor Engineering, Korea Maritime and Ocean University, Busan 606-791 (Korea, Republic of); Yi, Sam Nyung, E-mail: snyi@kmou.ac.kr [Department of Applied Science, Korea Maritime and Ocean University, Busan 606-791 (Korea, Republic of); Department of Nano-semiconductor Engineering, Korea Maritime and Ocean University, Busan 606-791 (Korea, Republic of); Ha, Dong Han [Division of Convergence Technology, Korea Research Institute of Standards and Science, Daejeon 305-340 (Korea, Republic of)

    2015-08-15

    Highlights: • A hybrid device was demonstrated by using MEH-PPV, PEDOT:PSS, and GaN nanoneedles. • I–V curve of the hybrid device showed its rectification behaviour, similar to a diode. • EL peak originated by the different potential barriers at MEH-PPV and GaN interface. - Abstract: A hybrid device that combines the properties of organic and inorganic semiconductors was fabricated and studied. It incorporated poly[2-methoxy-5-(2-ethylhexyloxy)- 1,4-phenylenevinylene] (MEH-PPV) and poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) as organic polymers and GaN nanoneedles as an inorganic semiconductor. Layers of the two polymers were spin coated on to the GaN nanoneedles. The one peak in the electroluminescence spectrum originated from the MEH-PPV layer owing to the different potential barriers of electrons and holes at its interface with the GaN nanoneedles. However, the photoluminescence spectrum showed peaks due to both GaN nanoneedles and MEH-PPV. Such hybrid structures, suitably developed, might be able to improve the efficiency of optoelectronic devices.

  1. Micro insert: a prototype full-ring PET device for improving the image resolution of a small-animal PET scanner.

    Science.gov (United States)

    Wu, Heyu; Pal, Debashish; Song, Tae Yong; O'Sullivan, Joseph A; Tai, Yuan-Chuan

    2008-10-01

    A full-ring PET insert device should be able to enhance the image resolution of existing small-animal PET scanners. The device consists of 18 high-resolution PET detectors in a cylindric enclosure. Each detector contains a cerium-doped lutetium oxyorthosilicate array (12 x 12 crystals, 0.72 x 1.51 x 3.75 mm each) coupled to a position-sensitive photomultiplier tube via an optical fiber bundle made of 8 x 16 square multiclad fibers. Signals from the insert detectors are connected to the scanner through the electronics of the disabled first ring of detectors, which permits coincidence detection between the 2 systems. Energy resolution of a detector was measured using a (68)Ge point source, and a calibrated (68)Ge point source stepped across the axial field of view (FOV) provided the sensitivity profile of the system. A (22)Na point source imaged at different offsets from the center characterized the in-plane resolution of the insert system. Imaging was then performed with a Derenzo phantom filled with 19.5 MBq of (18)F-fluoride and imaged for 2 h; a 24.3-g mouse injected with 129.5 MBq of (18)F-fluoride and imaged in 5 bed positions at 3.5 h after injection; and a 22.8-g mouse injected with 14.3 MBq of (18)F-FDG and imaged for 2 h with electrocardiogram gating. The energy resolution of a typical detector module at 511 keV is 19.0% +/- 3.1%. The peak sensitivity of the system is approximately 2.67%. The image resolution of the system ranges from 1.0- to 1.8-mm full width at half maximum near the center of the FOV, depending on the type of coincidence events used for image reconstruction. Derenzo phantom and mouse bone images showed significant improvement in transaxial image resolution using the insert device. Mouse heart images demonstrated the gated imaging capability of the device. We have built a prototype full-ring insert device for a small-animal PET scanner to provide higher-resolution PET images within a reduced imaging FOV. Development of additional

  2. Characterization of 4 K CMOS devices and circuits for hybrid Josephson-CMOS systems

    OpenAIRE

    Yoshikawa, Nobuyuki; Tomida, T.; Tokuda, A.; Liu, Q.; Meng, X.(Institute of High Energy Physics, Beijing, China); Whiteley, SR.; VanDuzer, T.

    2005-01-01

    Characterization and modeling of CMOS devices at 4.2 K are carried out in order to simulate low-temperature operation of CMOS circuits for Josephson-CMOS hybrid systems. CMOS devices examined in this study have been fabricated by using 0.18 mu m, 0.25 mu m, and 0.35 mu m commercial CMOS processes. Their static IN characteristics and capacitances are measured at 4.2 K to establish the low-temperature device model based on the BSIM3 SPICE model. The propagation delays of CMOS inverters measured...

  3. Effect of an atraumatic vulsellum versus a single-tooth tenaculum on pain perception during intrauterine device insertion: a randomized controlled trial.

    Science.gov (United States)

    Doty, Nora; MacIsaac, Laura

    2015-12-01

    Intrauterine devices (IUDs) are used by only 5.6% of contraceptive users in the United States. One barrier to IUD uptake is fear of pain during insertion, particularly among nulliparous women. Many interventions to reduce pain during IUD insertion have proven unsuccessful. Comparisons of different tenaculae have not been previously reported. This was a single-blinded, randomized control trial of 80 women randomized to the use of a vulsellum or a single-tooth tenaculum during IUD insertion. The primary outcome was reported pain on a 100-mm visual analog scale at the time of vulsellum placement. Secondary outcomes included pain at other intervals during IUD insertion and bleeding from the tenaculum site. Pain scores were analyzed with a Mann-Whitney test because they were not normally distributed. Pain scores at the time of single-tooth tenaculum (33.3 mm) and vulsellum (35.0 mm) placement were the same in both groups (p=0.58). It took longer to control bleeding in the single-tooth tenaculum versus the vulsellum group (1.1 vs. 0.4 min, p=0.001), although there was no statistically significant difference in the number of maneuvers required to control bleeding at the tenaculum site between the two groups. Preprocedure anxiety appeared to correlate with more pain during IUD insertion. This is the first randomized trial comparing tenaculae. There was no difference in reported pain, but the vulsellum may be associated with less bleeding than a single-tooth tenaculum. Women with higher preprocedure anxiety may experience more pain during IUD insertion. Future research could investigate an anxiolytic's effect on pain during IUD insertion. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Does insertion and use of an intrauterine device increase the risk of pelvic inflammatory disease among women with sexually transmitted infection? A systematic review.

    Science.gov (United States)

    Mohllajee, Anshu P; Curtis, Kathryn M; Peterson, Herbert B

    2006-02-01

    Concerns exist as to whether the insertion of copper and levonorgestrel-releasing intrauterine devices (IUDs) increases the risk of pelvic inflammatory disease (PID) among women with sexually transmitted infection (STI). We searched the MEDLINE database for all articles published between January 1966 and March 2005 that included evidence relevant to IUDs and STIs and PID. None of the studies that examined women with STIs compared the risk of PID between those with insertion or use of an IUD and those who had not received an IUD. We reviewed indirect evidence from six prospective studies that examined women with insertion of a copper IUD and compared risk of PID between those with STIs at the time of insertion with those with no STIs. These studies suggested that women with chlamydial infection or gonorrhea at the time of IUD insertion were at an increased risk of PID relative to women without infection. The absolute risk of PID was low for both groups (0-5% for those with STIs and 0-2% for those without).

  5. A randomized study for two techniques of immediate post-partum intrauterine contraceptive device insertion in India

    Directory of Open Access Journals (Sweden)

    Nidhi Gupta

    2014-04-01

    Conclusions: Manual technique of insertion of PPIUCD is equally good as compared to Kelly's placental forceps and it has no economic implications for purchasing and maintenance. [Int J Reprod Contracept Obstet Gynecol 2014; 3(2.000: 398-402

  6. 0 -π phase transition in hybrid superconductor-InSb nanowire quantum dot devices

    Science.gov (United States)

    Li, Sen; Kang, N.; Caroff, P.; Xu, H. Q.

    2017-01-01

    Hybrid superconductor-semiconducting nanowire devices provide an ideal platform to investigating interesting intragap bound states, such as the Andreev bound states (ABSs), Yu-Shiba-Rusinov (YSR) states, and the Majorana bound states. The competition between Kondo correlations and superconductivity in Josephson quantum dot (QD) devices results in two different ground states and the occurrence of a 0 -π quantum phase transition. Here we report on transport measurements on hybrid superconductor-InSb nanowire QD devices with different device geometries. We demonstrate a realization of continuous gate-tunable ABSs with both 0-type levels and π -type levels. This allow us to manipulate the transition between the 0 and π junction and explore charge transport and spectrum in the vicinity of the quantum phase transition regime. Furthermore, we find a coexistence of 0-type ABS and π -type ABS in the same charge state. By measuring temperature and magnetic field evolution of the ABSs, the different natures of the two sets of ABSs are verified, being consistent with the scenario of phase transition between the singlet and doublet ground state. Our study provides insight into Andreev transport properties of hybrid superconductor-QD devices and sheds light on the crossover behavior of the subgap spectrum in the vicinity of the 0 -π transition.

  7. Image dipoles approach to the local field enhancement in nanostructured Ag-Au hybrid devices.

    Science.gov (United States)

    David, Christin; Richter, Marten; Knorr, Andreas; Weidinger, Inez M; Hildebrandt, Peter

    2010-01-14

    We have investigated the plasmonic enhancement in the radiation field at various nanostructured multilayer devices that may be applied in surface enhanced Raman spectroscopy. We apply an image dipole method to describe the effect of surface morphology on the field enhancement in a quasistatic limit. In particular, we compare the performance of a nanostructured silver surface and a layered silver-gold hybrid device. It is found that localized surface plasmon states provide a high field enhancement in silver-gold hybrid devices, where symmetry breaking due to surface defects is a supporting factor. These results are compared to those obtained for multishell nanoparticles of spherical symmetry. Calculated enhancement factors are discussed on the background of recent experimental data.

  8. Evaluation of semiconductor devices for Electric and Hybrid Vehicle (EHV) ac-drive applications, volume 1

    Science.gov (United States)

    Lee, F. C.; Chen, D. Y.; Jovanovic, M.; Hopkins, D. C.

    1985-01-01

    The results of evaluation of power semiconductor devices for electric hybrid vehicle ac drive applications are summarized. Three types of power devices are evaluated in the effort: high power bipolar or Darlington transistors, power MOSFETs, and asymmetric silicon control rectifiers (ASCR). The Bipolar transistors, including discrete device and Darlington devices, range from 100 A to 400 A and from 400 V to 900 V. These devices are currently used as key switching elements inverters for ac motor drive applications. Power MOSFETs, on the other hand, are much smaller in current rating. For the 400 V device, the current rating is limited to 25 A. For the main drive of an electric vehicle, device paralleling is normally needed to achieve practical power level. For other electric vehicle (EV) related applications such as battery charger circuit, however, MOSFET is advantageous to other devices because of drive circuit simplicity and high frequency capability. Asymmetrical SCR is basically a SCR device and needs commutation circuit for turn off. However, the device poses several advantages, i.e., low conduction drop and low cost.

  9. First order devices, hybrid memristors, and the frontiers of nonlinear circuit theory

    CERN Document Server

    Riaza, Ricardo

    2010-01-01

    Several devices exhibiting memory effects have shown up in nonlinear circuit theory in recent years. Among others, these circuit elements include Chua's memristors, as well as memcapacitors and meminductors. These and other related devices seem to be beyond the, say, classical scope of circuit theory, which is formulated in terms of resistors, capacitors, inductors, and voltage and current sources. We explore in this paper the potential extent of nonlinear circuit theory by classifying such mem-devices in terms of the variables involved in their constitutive relations and the notions of the differential- and the state-order of a device. Within this framework, the frontier of first order circuit theory is defined by so-called hybrid memristors, which are proposed here to accommodate a characteristic relating all four fundamental circuit variables. Devices with differential order two and mem-systems are discussed in less detail. We allow for fully nonlinear characteristics in all circuit elements, arriving at a...

  10. Nanostructured copper/porous silicon hybrid systems as efficient sound-emitting devices.

    Science.gov (United States)

    Recio-Sánchez, Gonzalo; Namura, Kyoko; Suzuki, Motofumi; Martín-Palma, Raúl J

    2014-01-01

    In the present work, the photo-acoustic emission from nanostructured copper/porous silicon hybrid systems was studied. Copper nanoparticles were grown by photo-assisted electroless deposition on crystalline silicon and nanostructured porous silicon (nanoPS). Both the optical and photo-acoustic responses from these systems were determined. The experimental results show a remarkable increase in the photo-acoustic intensity when copper nanoparticles are incorporated to the porous structure. The results thus suggest that the Cu/nanoPS hybrid systems are suitable candidates for several applications in the field of thermoplasmonics, including the development of sound-emitting devices of great efficiency.

  11. A PROSPECTIVE STUDY TO EVALUATE SAFETY, EFFICACY AND EXPULSION RATE OF POST PLACENTAL INSERTION OF INTRA UTERINE DEVICE

    Directory of Open Access Journals (Sweden)

    Gunjan

    2015-07-01

    Full Text Available AIM: This study was conducted to know the factors associated with acceptability of immediate post placental IUCD insertion in women and to know the level of safety efficacy and expulsion of post placental insertion of IUCD. MATERIAL AND METHODS : This study was conducted in Obstetrics and Gynaecology, Department of Gandhi Memorial Hospital, Rewa (M. P. over period of 9 months. Women admitted and delivered at SGMH were counseled regarding IUCD like its advantage side effects and complications. CuT 380A was inserted within 15 minutes of delivery of placenta and membranes in women who had no contraindication for post placental IUCD and gave consent for this. All these women were followed up to 6 months post insertion period. RESULTS: Total number of counseled women was 600 over the period of three months from August 2014 to October 2014. Out of these only 400 women gave consent for PPIUCD insertion, 200 denied. 100 Lost follow - up only 300 women we re followed - up. Among followed - up women 30 women had expulsion, 20 women had only bleeding problem, 20 women had only pain in abdomen, bleeding and abdominal pain together in found in 60 women, thread problem in 5 women and continuation on contraceptive me thod by 230 women, 70 women discontinued IUD because of bleeding, pain in abdomen, missing thread, family pressure etc. CONCLUSION: On the basis of our results it may be concluded that insertion of CuT 380A within 15 minutes after placental delivery has hi gh retention rate, expulsion rate was not very high and it can be reduce with practice. Acceptability of this contraceptive method is high with proper counseling despite of low awareness level.

  12. Quantum transport in nanowire-based hybrid devices

    Energy Technology Data Exchange (ETDEWEB)

    Guenel, Haci Yusuf

    2013-05-08

    the Andreev reflection of quasiparticles at single interface, by suppressing the superconductivity of Al with small magnetic fields, as well as at double interface for zero magnetic field. The junction geometry was further changed by replacing the InAs nanowire with the InAs tube. In this case the GaAs/InAs core/shell tubular nanowires were contacted by two superconducting Nb electrodes. For this junction geometry we have demonstrated the interference of phase conjugated electron-hole pairs in the presence of coaxial magnetic. The effect of temperature, constant dc bias current and gate voltage on the magnetoresistance oscillations were examined. In the last part of this thesis, we have fabricated and characterized the single crystal Au nanowire-based proximity superconducting quantum interference device (SQUID).

  13. A comparison of the expected and actual pain experienced by women during insertion of an intrauterine contraceptive device

    Directory of Open Access Journals (Sweden)

    Brima N

    2015-02-01

    Full Text Available Nataliya Brima,1 Hannat Akintomide,2 Vivian Iguyovwe,3 Susan Mann4 1Medical Statistics, Centre for Sexual Health and HIV Research, Research Department of Infection and Population Health, University College London, London, UK; 2Sexual and Reproductive Health, CNWL Camden Provider Services, Margaret Pyke Centre, London, UK; 3Department of Sexual and Reproductive Health, Camberwell Sexual Health Centre, Denmark Hill, London, UK; 4Sexual and Reproductive Health, Kings College Hospital, London, UK Objective: To compare the expected and actual pain experienced with the insertion of intrauterine contraception in women, and to determine whether either of these are related to their personal circumstances, or affected their satisfaction with the procedure. Design: A convenience sample of 89 women aged 15–50 years attending a sexual health clinic for same day intrauterine contraception insertion were given a questionnaire that they completed following the procedure. The women were asked to rate their expectation of pain prior to insertion and to rate the actual pain they experienced immediately after insertion, on a scale of 1–10, with 10 being severe pain. Information on the women's circumstances and their level of satisfaction with the procedure was also obtained. Results: Overall, the median actual pain experienced by women during insertion (4 was significantly lower than the expected pain median (6 (P<0.001. For those women who had not had a previous vaginal delivery, actual pain was significantly higher compared with women who had had a previous vaginal delivery (median [interquartile range]: 6 [3.5–7.5] and 3 [1–5], P<0.001, respectively, but there was no significant difference between expected and actual pain experiences. In women who had a previous vaginal delivery, actual pain was much lower than expected (P<0.001. Neither actual nor expected pain experiences were linked to any other sociodemographic reproductive health or service use

  14. Single axis controlled hybrid magnetic bearing for left ventricular assist device: hybrid core and closed magnetic circuit.

    Science.gov (United States)

    da Silva, Isaias; Horikawa, Oswaldo; Cardoso, Jose R; Camargo, Fernando A; Andrade, Aron J P; Bock, Eduardo G P

    2011-05-01

    In previous studies, we presented main strategies for suspending the rotor of a mixed-flow type (centrifugal and axial) ventricular assist device (VAD), originally presented by the Institute Dante Pazzanese of Cardiology (IDPC), Brazil. Magnetic suspension is achieved by the use of a magnetic bearing architecture in which the active control is executed in only one degree of freedom, in the axial direction of the rotor. Remaining degrees of freedom, excepting the rotation, are restricted only by the attraction force between pairs of permanent magnets. This study is part of a joint project in development by IDPC and Escola Politecnica of São Paulo University, Brazil. This article shows advances in that project, presenting two promising solutions for magnetic bearings. One solution uses hybrid cores as electromagnetic actuators, that is, cores that combine iron and permanent magnets. The other solution uses actuators, also of hybrid type, but with the magnetic circuit closed by an iron core. After preliminary analysis, a pump prototype has been developed for each solution and has been tested. For each prototype, a brushless DC motor has been developed as the rotor driver. Each solution was evaluated by in vitro experiments and guidelines are extracted for future improvements. Tests have shown good results and demonstrated that one solution is not isolated from the other. One complements the other for the development of a single-axis-controlled, hybrid-type magnetic bearing for a mixed-flow type VAD.

  15. Service and multimedia data transmission in IoT networks using hybrid communication devices

    Directory of Open Access Journals (Sweden)

    Saveliev Anton

    2017-01-01

    Full Text Available Employment of various protocols and technologies in IoT networks leads to the lack of module unification and increase in incompatible technical solutions. Modern IoT networks are not designed for streaming audio/video data, so their application field is limited. Also, modern IoT networks should have connection areas for devices transferring data to the Internet, and consider hardware and software specific characteristics of these devices. We offer one-size-fits-all solution for organization of IoT network, using hybrid modules. These devices provide flexibility, scalability, energy efficiency and multi-use of network for the transfer of various types of data. This approach takes into account software and hardware features of the devices used for data transmission in IoT networks, which helps to automate connecting the modules chosen by user.

  16. Prospects for the application of GaN power devices in hybrid electric vehicle drive systems

    Science.gov (United States)

    Su, Ming; Chen, Chingchi; Rajan, Siddharth

    2013-07-01

    GaN, a wide bandgap semiconductor successfully implemented in optical and high-speed electronic devices, has gained momentum in recent years for power electronics applications. Along with rapid progress in material and device processing technologies, high-voltage transistors over 600 V have been reported by a number of teams worldwide. These advances make GaN highly attractive for the growing market of electrified vehicles, which currently employ bipolar silicon devices in the 600-1200 V class for the traction inverter. However, to capture this billion-dollar power market, GaN has to compete with existing IGBT products and deliver higher performance at comparable or lower cost. This paper reviews key achievements made by the GaN semiconductor industry, requirements of the automotive electric drive system and remaining challenges for GaN power devices to fit in the inverter application of hybrid vehicles.

  17. Tailored single-walled carbon nanotube--CdS nanoparticle hybrids for tunable optoelectronic devices.

    Science.gov (United States)

    Li, Xianglong; Jia, Yi; Cao, Anyuan

    2010-01-26

    The integration of organic and inorganic building blocks into novel nanohybrids is an important tool to exploit innovative materials with desirable functionalities. For this purpose, carbon nanotube--nanoparticle nanoarchitectures are intensively studied. We report here an efficient noncovalent chemical route to density-controllably and uniformly assemble single-walled carbon nanotubes with CdS nanoparticles. The methodology not only promises the resulting hybrids will be solution-processable but also endows the hybrids with distinct optoelectronic properties including tunable photoresponse mediated by amine molecules. On the basis of these merits, reliable thin-film photoswitches and light-driven chemical sensors are demonstrated, which highlights the potential of tailored hybrids in the development of new tunable optoelectronic devices and sensors.

  18. Rational design of multifunctional devices based on molybdenum disulfide and graphene hybrid nanostructures

    Science.gov (United States)

    Lim, Yi Rang; Lee, Young Bum; Kim, Seong Ku; Kim, Seong Jun; Kim, Yooseok; Jeon, Cheolho; Song, Wooseok; Myung, Sung; Lee, Sun Sook; An, Ki-Seok; Lim, Jongsun

    2017-01-01

    We rationally designed a new type of hybrid materials, molybdenum disulfide (MoS2) synthesized by Mo pre-deposition followed by subsequent sulfurization process directly on thermal chemical vapor deposition (TCVD)-grown graphene, for applications in a multifunctional device. The synthesis of stoichiometric and uniform multilayer MoS2 and high-crystalline monolayer graphene was evaluated by X-ray photoelectron spectroscopy and Raman spectroscopy. To examine the electrical transport and photoelectrical properties of MoS2-graphene hybrid films, field effect transistors (FETs) and visible-light photodetectors based on MoS2-graphene were both fabricated. As a result, the extracted mobility for MoS2-graphene hybrid FETs was two times higher than that of MoS2 FETs. In addition, the MoS2-graphene photodetectors revealed a significant photocurrent with abrupt switching behavior under periodic illumination.

  19. Carbon nanotube-ZnO nanowire hybrid architectures as multifunctional devices

    Directory of Open Access Journals (Sweden)

    L. T. Singh

    2013-08-01

    Full Text Available We report on multifunctional devices based on CNT arrays-ZnO nanowires hybrid architectures. The hybrid structure exhibit excellent high current Schottky like behavior with ZnO as p-type and an ideality factor close to the ideal value. Further the CNT-ZnO hybrid structures can be used as high current p-type field effect transistors that can deliver currents of the order of milliamperes and also can be used as ultraviolet detectors with controllable current on-off ratio and response time. The p-type nature of ZnO and possible mechanism for the rectifying characteristics of CNT-ZnO has been presented.

  20. Reversible energy storage on a fuel cell-supercapacitor hybrid device

    Energy Technology Data Exchange (ETDEWEB)

    Zerpa Unda, Jesus Enrique

    2011-02-18

    A new concept of energy storage based on hydrogen which operates reversibly near ambient conditions and without important energy losses is investigated. This concept involves the hybridization between a proton exchange membrane fuel cell and a supercapacitor. The main idea consists in the electrochemical splitting of hydrogen at a PEM fuel cell-type electrode into protons and electrons and then in the storage of these two species separately in the electrical double layer of a supercapacitor-type electrode which is made of electrically conductive large-surface area carbon materials. The investigation of this concept was performed first using a two-electrode fuel cell-supercapacitor hybrid device. A three-electrode hybrid cell was used to explore the application of this concept as a hydrogen buffer integrated inside a PEM fuel cell to be used in case of peak power demand. (orig.)

  1. Hybrid Back Surface Reflector GaInAsSb Thermophotovoltaic Devices

    Energy Technology Data Exchange (ETDEWEB)

    RK Huang; CA Wang; MK Connors; GW Turner; M Dashiell

    2004-05-11

    Back surface reflectors have the potential to improve thermophotovoltaic (TPV) device performance though the recirculation of infrared photons. The ''hybrid'' back-surface reflector (BSR) TPV cell approach allows one to construct BSRs for TPV devices using conventional, high efficiency, GaInAsSb-based TPV material. The design, fabrication, and measurements of hybrid BSR-TPV cells are described. The BSR was shown to provide a 4 mV improvement in open-circuit voltage under a constant shortcircuit current, which is comparable to the 5 mV improvement theoretically predicted. Larger improvements in open-circuit voltage are expected in the future with materials improvements.

  2. Efficient fluorescent deep-blue and hybrid white emitting devices based on carbazole/benzimidazole compound

    KAUST Repository

    Yang, Xiaohui

    2011-07-28

    We report the synthesis, photophysics, and electrochemical characterization of carbazole/benzimidazole-based compound (Cz-2pbb) and efficient fluorescent deep-blue light emitting devices based on Cz-2pbb with the peak external quantum efficiency of 4.1% and Commission Internationale dÉnclairage coordinates of (0.16, 0.05). Efficient deep-blue emission as well as high triplet state energy of Cz-2pbb enables fabrication of hybrid white organic light emitting diodes with a single emissive layer. Hybrid white emitting devices based on Cz-2pbb show the peak external quantum efficiency exceeding 10% and power efficiency of 14.8 lm/W at a luminance of 500 cd/m2. © 2011 American Chemical Society.

  3. Numerical Simulation of Carbon Nanotubes/GaAs Hybrid PV Devices with AMPS-1D

    Directory of Open Access Journals (Sweden)

    Georgi Xosrovashvili

    2014-01-01

    Full Text Available The performance and characteristics of a hybrid heterojunction single-walled carbon nanotube and GaAs solar cell are modelled and numerically simulated using AMPS-1D device simulation tool. The device physics and performance with different junction parameters are analysed. The results suggest that the open-circuit voltage changes very slightly by changing the electron affinity, acceptor and donor density while the other electrical parameters reach an optimum value. Increasing the concentration of a discrete defect density in the absorber layer decreases the electrical parameters. The current-voltage characteristics, quantum efficiency, band gap, and thickness variation of the photovoltaic response will be quantitatively considered.

  4. Stretchable living materials and devices with hydrogel-elastomer hybrids hosting programmed cells.

    Science.gov (United States)

    Liu, Xinyue; Tang, Tzu-Chieh; Tham, Eléonore; Yuk, Hyunwoo; Lin, Shaoting; Lu, Timothy K; Zhao, Xuanhe

    2017-02-28

    Living systems, such as bacteria, yeasts, and mammalian cells, can be genetically programmed with synthetic circuits that execute sensing, computing, memory, and response functions. Integrating these functional living components into materials and devices will provide powerful tools for scientific research and enable new technological applications. However, it has been a grand challenge to maintain the viability, functionality, and safety of living components in freestanding materials and devices, which frequently undergo deformations during applications. Here, we report the design of a set of living materials and devices based on stretchable, robust, and biocompatible hydrogel-elastomer hybrids that host various types of genetically engineered bacterial cells. The hydrogel provides sustainable supplies of water and nutrients, and the elastomer is air-permeable, maintaining long-term viability and functionality of the encapsulated cells. Communication between different bacterial strains and with the environment is achieved via diffusion of molecules in the hydrogel. The high stretchability and robustness of the hydrogel-elastomer hybrids prevent leakage of cells from the living materials and devices, even under large deformations. We show functions and applications of stretchable living sensors that are responsive to multiple chemicals in a variety of form factors, including skin patches and gloves-based sensors. We further develop a quantitative model that couples transportation of signaling molecules and cellular response to aid the design of future living materials and devices.

  5. Stretchable living materials and devices with hydrogel–elastomer hybrids hosting programmed cells

    Science.gov (United States)

    Liu, Xinyue; Tang, Tzu-Chieh; Tham, Eléonore; Yuk, Hyunwoo; Lin, Shaoting; Lu, Timothy K.; Zhao, Xuanhe

    2017-01-01

    Living systems, such as bacteria, yeasts, and mammalian cells, can be genetically programmed with synthetic circuits that execute sensing, computing, memory, and response functions. Integrating these functional living components into materials and devices will provide powerful tools for scientific research and enable new technological applications. However, it has been a grand challenge to maintain the viability, functionality, and safety of living components in freestanding materials and devices, which frequently undergo deformations during applications. Here, we report the design of a set of living materials and devices based on stretchable, robust, and biocompatible hydrogel–elastomer hybrids that host various types of genetically engineered bacterial cells. The hydrogel provides sustainable supplies of water and nutrients, and the elastomer is air-permeable, maintaining long-term viability and functionality of the encapsulated cells. Communication between different bacterial strains and with the environment is achieved via diffusion of molecules in the hydrogel. The high stretchability and robustness of the hydrogel–elastomer hybrids prevent leakage of cells from the living materials and devices, even under large deformations. We show functions and applications of stretchable living sensors that are responsive to multiple chemicals in a variety of form factors, including skin patches and gloves-based sensors. We further develop a quantitative model that couples transportation of signaling molecules and cellular response to aid the design of future living materials and devices. PMID:28202725

  6. Organic and Hybrid Organic Solid-State Photovoltaic Materials and Devices

    Science.gov (United States)

    2014-03-06

    conductive polyarylene ethynylene polymers for photovoltaic applications. The structure at the molecular scale was characterized using X-ray scattering...Processing of Thin Film Flexible Solar Cells” who exchanged knowledge about device-level questions and capabilities of simulations. The Ohio Department of...Indianapolis, IN, May, 2011. (2) “Hybrid Photovoltaic Materials: Characterization of Polymer -Nanoparticle composites” Lama, B.; Espe, M. P.; Central Regional

  7. Light matter interaction in WS{sub 2} nanotube-graphene hybrid devices

    Energy Technology Data Exchange (ETDEWEB)

    Mathew, John P.; Jegannathan, Gobinath; Grover, Sameer; Dongare, Pratiksha D.; Bapat, Rudheer D.; Chalke, Bhagyashree A.; Purandare, S. C.; Deshmukh, Mandar M., E-mail: deshmukh@tifr.res.in [Department of Condensed Matter Physics and Materials Science, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005 (India)

    2014-12-01

    We study the light matter interaction in WS{sub 2} nanotube-graphene hybrid devices. Using scanning photocurrent microscopy, we find that by engineering graphene electrodes for WS{sub 2} nanotubes we can improve the collection of photogenerated carriers. We observe inhomogeneous spatial photocurrent response with an external quantum efficiency of ∼1% at 0 V bias. We show that defects play an important role and can be utilized to enhance and tune photocarrier generation.

  8. Hybrid silicon nanocrystal-organic light-emitting devices for infrared electroluminescence.

    Science.gov (United States)

    Cheng, Kai-Yuan; Anthony, Rebecca; Kortshagen, Uwe R; Holmes, Russell J

    2010-04-14

    We demonstrate hybrid inorganic-organic light-emitting devices with peak electroluminescence (EL) at a wavelength of 868 nm using silicon nanocrystals (SiNCs). An external quantum efficiency of 0.6% is realized in the forward-emitted direction, with emission originating primarily from the SiNCs. Microscopic characterization indicates that complete coverage of the SiNCs on the conjugated polymer hole-transporting layer is required to observe efficient EL.

  9. Integrated ion sensor device applications based on printed hybrid material systems (Conference Presentation)

    Science.gov (United States)

    List-Kratochvil, Emil J. W.

    2016-09-01

    Comfortable, wearable sensors and computers will enhance every person's awareness of his or her health condition, environment, chemical pollutants, potential hazards, and information of interest. In agriculture and in the food industry there is a need for a constant control of the condition and needs of plants, animals, and farm products. Yet many of these applications depend upon the development of novel, cheap devices and sensors that are easy to implement and to integrate. Organic semiconductors as well as several inorganic materials and hybrid material systems have proven to combine a number of intriguing optical and electronic properties with simple processing methods. As it will be reviewed in this contribution, these materials are believed to find their application in printed electronic devices allowing for the development of smart disposable devices in food-, health-, and environmental monitoring, diagnostics and control, possibly integrated into arrays of sensor elements for multi-parameter detection. In this contribution we review past and recent achievements in the field. Followed by a brief introduction, we will focus on two topics being on the agenda recently: a) the use of electrolyte-gated organic field-effect transistor (EGOFET) and ion-selective membrane based sensors for in-situ sensing of ions and biological substances and b) the development of hybrid material based resistive switches and their integration into fully functional, printed hybrid crossbar sensor array structures.

  10. RIR-MAPLE deposition of conjugated polymers and hybrid nanocomposites for application to optoelectronic devices

    Energy Technology Data Exchange (ETDEWEB)

    Stiff-Roberts, Adrienne D.; Pate, Ryan; McCormick, Ryan; Lantz, Kevin R. [Department of Electrical and Computer Engineering, Duke University Box 90291, Durham, NC 27708-0291, 919-660-5560 (United States)

    2012-07-30

    Resonant infrared matrix-assisted pulsed laser evaporation (RIR-MAPLE) is a variation of pulsed laser deposition that is useful for organic-based thin films because it reduces material degradation by selective absorption of infrared radiation in the host matrix. A unique emulsion-based RIR-MAPLE approach has been developed that reduces substrate exposure to solvents and provides controlled and repeatable organic thin film deposition. In order to establish emulsion-based RIR-MAPLE as a preferred deposition technique for conjugated polymer or hybrid nanocomposite optoelectronic devices, studies have been conducted to demonstrate the value added by the approach in comparison to traditional solution-based deposition techniques, and this work will be reviewed. The control of hybrid nanocomposite thin film deposition, and the photoconductivity in such materials deposited using emulsion-based RIR-MAPLE, will also be reviewed. The overall result of these studies is the demonstration of emulsion-based RIR-MAPLE as a viable option for the fabrication of conjugated polymer and hybrid nanocomposite optoelectronic devices that could yield improved device performance.

  11. Control concept for a hybrid engine test device composed of a water vortex brake and an asynchronous machine; Regelungskonzept fuer einen Hybrid-Motorenpruefstand

    Energy Technology Data Exchange (ETDEWEB)

    Maeenpaeae, A. [ABB Automation Products, Mannheim (Germany); Fischer, G. [Technische Univ. Darmstadt (Germany)

    2000-07-01

    New environmental laws require lower exhaust limits of motor vehicles all over the world. To test these limits, drive-cycle tests are performed on engine test devices. Future laws will require the simulation od downhill driving, which requires extensive changes to the engine test devices. Hybrid test devices with a water vortex brake and an asynchronous machine could be advantageous. A new control concept for those hybrid test devices is described here. (orig.) [German] Neue Umweltgesetze druecken weltweit die Abgasgrenzwerte von Automobilen nach unten. Zur Ueberpruefung dieser Grenzwerte dienen Fahrzyklus-Testreihen auf Motorenpruefstaenden. Kuenftige Vorschriften erfordern dabei bald die Simulation des 'Schiebebetriebs' (wie bei Bergabfahrten). Das erfordert aufwendige Umruestungen bei den Motorenpruefstaenden. Eine preisguenstige Loesung stellen Hybrid-Pruefstaende aus einer Wasserwirbelbremse und einer Asynchron-Maschine dar. Ein neues Regelkonzept dafuer wird hier beschrieben. (orig.)

  12. Integrated hybrid polystyrene-polydimethylsiloxane device for monitoring cellular release with microchip electrophoresis and electrochemical detection

    Science.gov (United States)

    Johnson, Alicia S.; Mehl, Benjamin T.; Martin, R. Scott

    2015-01-01

    In this work, a polystyrene (PS)-polydimethylsiloxane (PDMS) hybrid device was developed to enable the integration of cell culture with analysis by microchip electrophoresis and electrochemical detection. It is shown that this approach combines the fundamental advantages of PDMS devices (the ability to integrate pumps and valves) and PS devices (the ability to permanently embed fluidic tubing and electrodes). The embedded fused-silica capillary enables high temporal resolution measurements from off-chip cell culture dishes and the embedded electrodes provide close to real-time analysis of small molecule neurotransmitters. A novel surface treatment for improved (reversible) adhesion between PS and PDMS is described using a chlorotrimethylsilane stamping method. It is demonstrated that a Pd decoupler is efficient at handling the high current (and cathodic hydrogen production) resulting from use of high ionic strength buffers needed for cellular analysis; thus allowing an electrophoretic separation and in-channel detection. The separation of norepinephrine (NE) and dopamine (DA) in highly conductive biological buffers was optimized using a mixed surfactant system. This PS-PDMS hybrid device integrates multiple processes including continuous sampling from a cell culture dish, on-chip pump and valving technologies, microchip electrophoresis, and electrochemical detection to monitor neurotransmitter release from PC 12 cells. PMID:25663849

  13. Transcap: A new integrated hybrid supercapacitor and electrolyte-gated transistor device (Presentation Recording)

    Science.gov (United States)

    Santato, Clara

    2015-10-01

    The boom in multifunctional, flexible, and portable electronics and the increasing need of low-energy cost and autonomy for applications ranging from wireless sensor networks for smart environments to biomedical applications are triggering research efforts towards the development of self-powered sustainable electronic devices. Within this context, the coupling of electronic devices (e.g. sensors, transistors) with small size energy storage systems (e.g. micro-batteries or micro-supercapacitors) is actively pursued. Micro-electrochemical supercapacitors are attracting much attention in electronics for their capability of delivering short power pulses with high stability over repeated charge/discharge cycling. For their high specific pseudocapacitance, electronically conducting polymers are well known as positive materials for hybrid supercapacitors featuring high surface carbon negative electrodes. The processability of both polymer and carbon is of great relevance for the development of flexible miniaturised devices. Electronically conducting polymers are even well known to feature an electronic conductivity that depends on their oxidation (p-doped state) and that it is modulated by the polymer potential. This property and the related pseudocapacitive response make polymer very attracting channel materials for electrolyte-gated (EG) transistors. Here, we propose a novel concept of "Trans-capacitor", an integrated device that exhibits the storage properties of a polymer/carbon hybrid supercapacitor and the low-voltage operation of an electrolyte-gated transistor.

  14. Carbon-Based Materials for Lithium-Ion Batteries, Electrochemical Capacitors, and Their Hybrid Devices.

    Science.gov (United States)

    Yao, Fei; Pham, Duy Tho; Lee, Young Hee

    2015-07-20

    A rapidly developing market for portable electronic devices and hybrid electrical vehicles requires an urgent supply of mature energy-storage systems. As a result, lithium-ion batteries and electrochemical capacitors have lately attracted broad attention. Nevertheless, it is well known that both devices have their own drawbacks. With the fast development of nanoscience and nanotechnology, various structures and materials have been proposed to overcome the deficiencies of both devices to improve their electrochemical performance further. In this Review, electrochemical storage mechanisms based on carbon materials for both lithium-ion batteries and electrochemical capacitors are introduced. Non-faradic processes (electric double-layer capacitance) and faradic reactions (pseudocapacitance and intercalation) are generally explained. Electrochemical performance based on different types of electrolytes is briefly reviewed. Furthermore, impedance behavior based on Nyquist plots is discussed. We demonstrate the influence of cell conductivity, electrode/electrolyte interface, and ion diffusion on impedance performance. We illustrate that relaxation time, which is closely related to ion diffusion, can be extracted from Nyquist plots and compared between lithium-ion batteries and electrochemical capacitors. Finally, recent progress in the design of anodes for lithium-ion batteries, electrochemical capacitors, and their hybrid devices based on carbonaceous materials are reviewed. Challenges and future perspectives are further discussed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Fluorescent deep-blue and hybrid white emitting devices based on a naphthalene-benzofuran compound

    KAUST Repository

    Yang, Xiaohui

    2013-08-01

    We report the synthesis, photophysics and electrochemical properties of naphthalene-benzofuran compound 1 and its application in organic light emitting devices. Fluorescent deep-blue emitting devices employing 1 as the emitting dopant embedded in 4-4′-bis(9-carbazolyl)-2,2′-biphenyl (CBP) host show the peak external quantum efficiency of 4.5% and Commission Internationale d\\'Énclairage (CIE) coordinates of (0.15, 0.07). Hybrid white devices using fluorescent blue emitting layer with 1 and a phosphorescent orange emitting layer based on an iridium-complex show the peak external quantum efficiency above 10% and CIE coordinates of (0.31, 0.37). © 2013 Published by Elsevier B.V.

  16. What Is the Optimal Device Length and Insertion Site for Needle Thoracostomy in UK Military Casualties? A Computed Tomography Study.

    Science.gov (United States)

    Blenkinsop, Georgina; Mossadegh, Somayyeh; Ballard, Mark; Parker, Paul

    2015-01-01

    Significant lessons to inform best practice in trauma care should be learned from the last decade of conflict in Afghanistan and Iraq. This study used radiological data collated in the UK Military Hospital in Camp Bastion, Afghanistan, to investigate the most appropriate device length for needle chest decompression of tension pneumothorax (TP). We reviewed the optimal length of device and site needed for needle decompression of a tension pneumothorax in a UK military population and found no significant difference between sites for needle chest decompression (NCD). As a result, we do not recommend use of devices longer than 60mm for UK service personnel. 2015.

  17. Phylogeny-function analysis of (meta)genomic libraries: screening for expression of ribosomal RNA genes by large-insert library fluorescent in situ hybridization (LIL-FISH).

    Science.gov (United States)

    Leveau, Johan H J; Gerards, Saskia; de Boer, Wietse; van Veen, Johannes A

    2004-09-01

    We assessed the utility of fluorescent in situ hybridization (FISH) in the screening of clone libraries of (meta)genomic or environmental DNA for the presence and expression of bacterial ribosomal RNA (rRNA) genes. To establish proof-of-principle, we constructed a fosmid-based library in Escherichia coli of large-sized genomic DNA fragments of the mycophagous soil bacterium Collimonas fungivorans, and hybridized 768 library clones with the Collimonas-specific fluorescent probe CTE998-1015. Critical to the success of this approach (which we refer to as large-insert library FISH or LIL-FISH) was the ability to induce fosmid copy number, the exponential growth status of library clones in the FISH assay and the use of a simple pooling strategy to reduce the number of hybridizations. Twelve out of 768 E. coli clones were suspected to harbour and express Collimonas 16S rRNA genes based on their hybridization to CTE998-1015. This was confirmed by the finding that all 12 clones were also identified in an independent polymerase chain reaction-based screening of the same 768 clones using a primer set for the specific detection of Collimonas 16S ribosomal DNA (rDNA). Fosmids isolated from these clones were grouped by restriction analysis into two distinct contigs, confirming that C. fungivorans harbours at least two 16S rRNA genes. For one contig, representing 1-2% of the genome, the nucleotide sequence was determined, providing us with a narrow but informative view of Collimonas genome structure and content.

  18. Fiberoptic-guided intubation after insertion of the i-gel airway device in spontaneously breathing patients with difficult airway predicted: a prospective observational study.

    Science.gov (United States)

    Arévalo-Ludeña, Julian; Arcas-Bellas, Jose Juan; Alvarez-Rementería, Rafael; Alameda, Luis Enrique Muñoz

    2016-12-01

    To assess the viability of performing fiberoptic-guided orotracheal intubation through the i-gel airway device previously inserted in spontaneously breathing patients with predicted difficult airway to achieve a patent airway. Prospective observational study. Operating room in a tertiary care hospital. Eighty-five adult patients with at least 3 difficult airway predictors or difficult airway management history were included. The i-gel device was inserted in spontaneous ventilation under oropharyngeal local anesthesia and sedation. After checking the adequate ventilation through the i-gel with capnography curve, general anesthesia was induced to introduce the endotracheal tube guided by fiberoptic bronchoscope. We recorded the i-gel insertion time (tgel), intubation time (tint), and O2 saturation in pulse oximetry in different moments: basal (t0), after 3 minutes of preoxygenation with a face mask at 100% fraction of inspired O2 (t1), after i-gel mask insertion (t2), and after intubation (t3). Adverse events during the procedure were also recorded, and patient discomfort was questioned. All patients were successfully intubated. O2 saturation in pulse oximetry values were (mean±SD): 96.9±1.22 (t0), 99.0±0.85 (t1), 96.2±2.37 (t2), and 96.0±2.54 (t3). tgel and tint were 38.0±7.76 seconds and 36.5±5.55 seconds (mean±SD), respectively. No serious adverse events were recorded, and no patient suffered airway damage. Visual analogue scale for patient discomfort was 2 (interquartile range, 1-3). i-gel insertion in spontaneously breathing patients avoids the "cannot ventilate" scenario. The subsequent fiberoptic-guided intubation through the i-gel is a safe and effective technique. More studies might be necessary to confirm the results presented, but we consider that the technique described is an adequate alternative to classic orotracheal intubation with fiberoptic bronchoscope in spontaneous ventilation for certain patients with predicted difficult airway. Copyright

  19. The Role of Nanocrystal Size in Solution Processable CdSe:P3HT Hybrid Photovoltaic Devices.

    Science.gov (United States)

    Bera, Susnata; Ray, Samit K

    2016-05-01

    Hybrid photovoltaic devices were fabricated using different sizes of CdSe quantum dots with different loading concentrations in P3HT matrix. CdSe quantum dots were synthesized chemically using olive oil as the capping agent, instead of toxic phosphine. The efficiency of hybrid poly-(3-hexylthiophene-2,5-diyl) P3HT:CdSe photovoltaic device was found to depend on the size as well as the loading of the nanocrystals. A maximum power conversion efficiency of -0.8% was achieved under AM1.5G solar illumination for the device with -5.3 nm CdSe nanocrystals. A hybrid photovoltaic device was demonstrated on polyethylene terephthalate (PET) substrates paving the way to achieve flexible,transparent and printable devices.

  20. A Flexible and Thin Graphene/Silver Nanowires/Polymer Hybrid Transparent Electrode for Optoelectronic Devices.

    Science.gov (United States)

    Dong, Hua; Wu, Zhaoxin; Jiang, Yaqiu; Liu, Weihua; Li, Xin; Jiao, Bo; Abbas, Waseem; Hou, Xun

    2016-11-16

    A typical thin and fully flexible hybrid electrode was developed by integrating the encapsulation of silver nanowires (AgNWs) network between a monolayer graphene and polymer film as a sandwich structure. Compared with the reported flexible electrodes based on PET or PEN substrate, this unique electrode exhibits the superior optoelectronic characteristics (sheet resistance of 8.06 Ω/□ at 88.3% light transmittance). Meanwhile, the specific up-to-bottom fabrication process could achieve the superflat surface (RMS = 2.58 nm), superthin thickness (∼8 μm thickness), high mechanical robustness, and lightweight. In addition, the strong corrosion resistance and stability for the hybrid electrode were proved. With these advantages, we employ this electrode to fabricate the simple flexible organic light-emitting device (OLED) and perovskite solar cell device (PSC), which exhibit the considerable performance (best PCE of OLED = 2.11 cd/A(2); best PCE of PSC = 10.419%). All the characteristics of the unique hybrid electrode demonstrate its potential as a high-performance transparent electrode candidate for flexible optoelectronics.

  1. Experimental MRI-SPECT insert system with Hybrid Semiconductor detectors Timepix for MR animal scanner Bruker 47/20

    Science.gov (United States)

    Zajicek, J.; Burian, M.; Soukup, P.; Novak, V.; Macko, M.; Jakubek, J.

    2017-01-01

    Multimodal medical imaging based on Magnetic Resonance is mainly combinated with one of the scintigraphic method like PET or SPECT. These methods provide functional information whereas magnetic resonance imaging provides high spatial resolution of anatomical information or complementary functional information. Fusion of imaging modalities allows researchers to obtain complimentary information in a single measurement. The combination of MRI with SPECT is still relatively new and challenging in many ways. The main complication of using SPECT in MRI systems is the presence of a high magnetic field therefore (ferro)magnetic materials have to be eliminated. Furthermore the application of radiofrequency fields within the MR gantry does not allow for the use of conductive structures such as the common heavy metal collimators. This work presents design and construction of an experimental MRI-SPECT insert system and its initial tests. This unique insert system consists of an MR-compatible SPECT setup with CdTe pixelated sensors Timepix tungsten collimators and a radiofrequency coil. Measurements were performed on a gelatine and tissue phantom with an embedded radioisotopic source (57Co 122 keV γ ray) inside the RF coil by the Bruker BioSpec 47/20 (4.7 T) MR animal scanner. The project was performed in the framework of the Medipix Collaboration.

  2. Carbon nano-strings as reporters in lateral flow devices for DNA sensing by hybridization.

    Science.gov (United States)

    Kalogianni, Despina P; Boutsika, Lemonia M; Kouremenou, Panagiota G; Christopoulos, Theodore K; Ioannou, Penelope C

    2011-05-01

    Presently, there is a growing interest in the development of lateral flow devices for nucleic acid analysis that enable visual detection of the target sequence (analyte) while eliminating several steps required for pipetting, incubation, and washing out the excess of reactants. In this paper, we present, for the first time, lateral flow tests exploiting oligonucleotide-functionalized and antibody-functionalized carbon nanoparticles (carbon nano-strings, CBNS) as reporters that enable confirmation of the target DNA sequence by hybridization. The CBNS reporters were applied to (a) the detection of PCR products and (b) visual genotyping of single nucleotide polymorphisms in human genomic DNA. Biotinylated PCR product was hybridized with a dA-tailed probe. In one assay configuration, the hybrid is captured at the test zone of the strip by immobilized streptavidin and detected by (dT)(30)-CBNS. In a second configuration, the hybrids are captured from immobilized (dA) strands and detected by antibiotin-CBNS. As low as 2.5 fmol of amplified DNA can be detected. For visual genotyping, allele-specific primers with a 5' oligo(dA) segment are extended by DNA polymerase with a concomitant incorporation of biotin moieties. Extension products are detected either by (dT)(30)-CBNS or by antibiotin-CBNS. Only three cycles of extension reaction are sufficient for detection. No purification of the PCR products or the extension product is required.

  3. 流产后立即放置宫内节育器%Immediate Post-abortal Insertion of the Intrauterine Devices

    Institute of Scientific and Technical Information of China (English)

    王彩燕; 黄紫蓉

    2013-01-01

    Women generally have strong desire for contraception when they are suffering from artificial abortion. The immediate insertion of an intrauterine device (IUD) after an artificial abortion can induce higher rate of effective contraception and lower rate of repeated abortion,while the cost of public health was finally saved. The immediate insertion of IUD after an artificial abortion is safe and high-effective without increased risks of adverse outcomes,such as pain,bleeding,perforation and pelvic inflammatory disease (PID). Although the rate of IUD expulsion of the immediate post-abortal insertion is low,the follow-up examination is still very important. It's not clear whether the removal of IUD in those women after menopause is difficult. There are two types of IUD for the immediate post-abortal insertion,the copper IUD and the progesterone-releasing IUD.%  人工流产时女性对避孕的愿望最强烈,同时放置宫内节育器(IUD)能提高人工流产后有效避孕率,降低重复流产率,节约公共卫生开支。人工流产术后立即放置IUD安全有效,而且并不增加术后疼痛、阴道出血、穿孔和感染等不良反应的发生。人工流产术后立即放置IUD总体的脱落率是低的,放置后的随访非常重要。人工流产术后立即放置IUD是否增加绝经后取器困难尚无定论。放置的IUD主要为活性IUD,包括含铜IUD和含药IUD均可选择。

  4. Inaccuracy of transthoracic echocardiography for the identification of right-sided vegetation in patients with no history of intravenous drug abuse or cardiac device insertion.

    Science.gov (United States)

    Xie, Jiang; Liu, Shuang; Yang, Jinghua; Xu, Jie; Zhu, Guangfa

    2014-06-01

    The use of transthoracic echocardiography (TTE) to identify right-sided infective endocarditis (RSIE) vegetation is controversial. Data are scarce for patients with no history of intravenous drug abuse (IVDA) or cardiac device insertion. This study analysed the consistency of presurgical echocardiographic results with surgical findings for vegetation identification, and the factors that influence accuracy of echocardiography. This retrospective trial divided infective endocarditis (IE) patients into three subgroups according to the results of their presurgical TTE: left-sided native IE (LSNIE), left-sided prosthetic valve IE (LSPIE) and RSIE. The accuracy of TTE was tested by comparing vegetation (number and location), detected presurgery by TTE, with actual findings during surgery. In total, 416 patients were analysed, 322 with LSNIE, 31 with LSPIE and 63 with RSIE. Consistency between TTE findings and surgical results was lower in the RSIE group compared with the LSPIE and LSNIE groups. Consistency was lowered by the presence of vegetation in multiple locations and atypical distribution--both of which were increased in the RSIE group. The chance of vegetation in both sides of the heart rose with increased numbers of vegetation locations in RSIE patients. A high proportion of RSIE patients had congenital heart defects, mostly ventricular septal defects. TTE may be unsuitable for RSIE patients with no history of IVDA or cardiac device insertion, because multifocal and atypically distributed vegetation may influence detection accuracy. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  5. Small-gap insertion-device development at the National Synchrotron Light Source--performance of the new X13 mini-gap undulator.

    Science.gov (United States)

    Ablett, J M; Berman, L E; Kao, C C; Rakowsky, G; Lynch, D

    2004-03-01

    The National Synchrotron Light Source (NSLS) 2.8 GeV electron storage ring continues to set high standards in insertion-device research and development. The Chasman-Green NSLS lattice design provides for dispersion-free long straight sections in addition to a very small vertical beta function. As the electron beam size is proportional to the square root of this function, a program to exploit this feature was undertaken more than a decade ago by implementing short-period small-gap insertion devices in the NSLS storage ring. The possibility of utilizing existing moderate-energy synchrotron radiation electron storage rings to produce high-brightness photon beams into the harder X-ray region have been realised using in-vacuum undulators. In this article the operation of a 1.25 cm-period mini-gap undulator, operating down to a gap of 3.3 mm within the NSLS X13 straight section, is reported. It is the brightest source of hard X-rays in the energy range approximately 3.7-16 keV at the NSLS, and replaces an in-vacuum undulator which had a more limited tunability.

  6. Hybrid retroviral vector with MCK enhancers inserted in LTR for stable and specific expression of human factor IX in skeletal muscle

    Institute of Scientific and Technical Information of China (English)

    WANG Jian-min 王健民; HOU Jun 侯军; QIU Xin-fang 邱信芳; Kurachi Kotoku; XUE Jing-lun 薛京伦

    2004-01-01

    Background Retroviral vectors have been widely used to introduce foreign into various target cells in vitro, thus showing relatively high systemic delivery efficiency of various transgene products. The authors investigated the stability and efficiency of skeletal muscle-specific hybrid retroviral vectors in expression of human factor IX (FIX) in vitro and iv vivo. Methods FIX cDNA in LIXSN vector was replaced with a FIX minigene containing splicing donor and splicing acceptor sequence of first intron of human FIX gene. Two copies of muscle creatine kinase enhancer (MCK, Me2) were inserted in forward or reverse orientation at NheI site of 3' long terminal repeat (LTR), resulting in two hybrid vectors, which were designated as LMe2IXm2SN(F) and LMe2IXm2SN(R), respectively. The vectors were tested in vitro and in vivo for stability and muscle-specificity of factor IX expression with SCID mice. Results Muscle cells carrying vector with Me2 expressed significantly higher levels of FIX (up to 1800 ng/106.24h) than those without Me2, thus suggesting that Me2 could specifically increase expression level of FIX in muscle cells. Myoblasts transduced with LMe2IXm2SN(R) produced much less FIX in vivo in SCID mice than LMe2IXm2SN(F). One or two copies of Me2 sequence were deleted in myoblasts transduced with LMe2IXm2SN(R) without changing the orientation of Me2. Conclusions LTR inserted with MCK enhancers can specifically increase human FIX expression in skeletal muscle cells in vitro and in vivo, and MCK enhancer should be positioned in the same orientation as that of LTR promoter.

  7. High process yield rates of thermoplastic nanofluidic devices using a hybrid thermal assembly technique.

    Science.gov (United States)

    Uba, Franklin I; Hu, Bo; Weerakoon-Ratnayake, Kumuditha; Oliver-Calixte, Nyote; Soper, Steven A

    2015-02-21

    Over the past decade, thermoplastics have been used as alternative substrates to glass and Si for microfluidic devices because of the diverse and robust fabrication protocols available for thermoplastics that can generate high production rates of the desired structures at low cost and with high replication fidelity, the extensive array of physiochemical properties they possess, and the simple surface activation strategies that can be employed to tune their surface chemistry appropriate for the intended application. While the advantages of polymer microfluidics are currently being realized, the evolution of thermoplastic-based nanofluidic devices is fraught with challenges. One challenge is assembly of the device, which consists of sealing a cover plate to the patterned fluidic substrate. Typically, channel collapse or substrate dissolution occurs during assembly making the device inoperable resulting in low process yield rates. In this work, we report a low temperature hybrid assembly approach for the generation of functional thermoplastic nanofluidic devices with high process yield rates (>90%) and with a short total assembly time (16 min). The approach involves thermally sealing a high T(g) (glass transition temperature) substrate containing the nanofluidic structures to a cover plate possessing a lower T(g). Nanofluidic devices with critical feature sizes ranging between 25-250 nm were fabricated in a thermoplastic substrate (T(g) = 104 °C) and sealed with a cover plate (T(g) = 75 °C) at a temperature significantly below the T(g) of the substrate. Results obtained from sealing tests revealed that the integrity of the nanochannels remained intact after assembly and devices were useful for fluorescence imaging at high signal-to-noise ratios. The functionality of the assembled devices was demonstrated by studying the stretching and translocation dynamics of dsDNA in the enclosed thermoplastic nanofluidic channels.

  8. Energy-Efficient Scheduling for Hybrid Tasks in Control Devices for the Internet of Things

    Directory of Open Access Journals (Sweden)

    Guojun Dai

    2012-08-01

    Full Text Available In control devices for the Internet of Things (IoT, energy is one of the critical restriction factors. Dynamic voltage scaling (DVS has been proved to be an effective method for reducing the energy consumption of processors. This paper proposes an energy-efficient scheduling algorithm for IoT control devices with hard real-time control tasks (HRCTs and soft real-time tasks (SRTs. The main contribution of this paper includes two parts. First, it builds the Hybrid tasks with multi-subtasks of different function Weight (HoW task model for IoT control devices. HoW describes the structure of HRCTs and SRTs, and their properties, e.g., deadlines, execution time, preemption properties, and energy-saving goals, etc. Second, it presents the Hybrid Tasks’ Dynamic Voltage Scaling (HTDVS algorithm. HTDVS first sets the slowdown factors of subtasks while meeting the different real-time requirements of HRCTs and SRTs, and then dynamically reclaims, reserves, and reuses the slack time of the subtasks to meet their ideal energy-saving goals. Experimental results show HTDVS can reduce energy consumption about 10%–80% while meeting the real-time requirements of HRCTs, HRCTs help to reduce the deadline miss ratio (DMR of systems, and HTDVS has comparable performance with the greedy algorithm and is more favorable to keep the subtasks’ ideal speeds.

  9. Energy-efficient scheduling for hybrid tasks in control devices for the Internet of Things.

    Science.gov (United States)

    Gao, Zhigang; Wu, Yifan; Dai, Guojun; Xia, Haixia

    2012-01-01

    In control devices for the Internet of Things (IoT), energy is one of the critical restriction factors. Dynamic voltage scaling (DVS) has been proved to be an effective method for reducing the energy consumption of processors. This paper proposes an energy-efficient scheduling algorithm for IoT control devices with hard real-time control tasks (HRCTs) and soft real-time tasks (SRTs). The main contribution of this paper includes two parts. First, it builds the Hybrid tasks with multi-subtasks of different function Weight (HoW) task model for IoT control devices. HoW describes the structure of HRCTs and SRTs, and their properties, e.g., deadlines, execution time, preemption properties, and energy-saving goals, etc. Second, it presents the Hybrid Tasks' Dynamic Voltage Scaling (HTDVS) algorithm. HTDVS first sets the slowdown factors of subtasks while meeting the different real-time requirements of HRCTs and SRTs, and then dynamically reclaims, reserves, and reuses the slack time of the subtasks to meet their ideal energy-saving goals. Experimental results show HTDVS can reduce energy consumption about 10%-80% while meeting the real-time requirements of HRCTs, HRCTs help to reduce the deadline miss ratio (DMR) of systems, and HTDVS has comparable performance with the greedy algorithm and is more favorable to keep the subtasks' ideal speeds.

  10. Hybrid optical-thermal devices and materials for light manipulation and radiative cooling

    CERN Document Server

    Boriskina, Svetlana V; Hsu, Wei-Chun; Weinstein, Lee; Huang, Xiaopeng; Loomis, James; Xu, Yanfei; Chen, Gang

    2015-01-01

    We report on optical design and applications of hybrid meso-scale devices and materials that combine optical and thermal management functionalities owing to their tailored resonant interaction with light in visible and infrared frequency bands. We outline a general approach to designing such materials, and discuss two specific applications in detail. One example is a hybrid optical-thermal antenna with sub-wavelength light focusing, which simultaneously enables intensity enhancement at the operating wavelength in the visible and reduction of the operating temperature. The enhancement is achieved via light recycling in the form of whispering-gallery modes trapped in an optical microcavity, while cooling functionality is realized via a combination of reduced optical absorption and radiative cooling. The other example is a fabric that is opaque in the visible range yet highly transparent in the infrared, which allows the human body to efficiently shed energy in the form of thermal emission. Such fabrics can find...

  11. Research Update: The electronic structure of hybrid perovskite layers and their energetic alignment in devices

    Directory of Open Access Journals (Sweden)

    Selina Olthof

    2016-09-01

    Full Text Available In recent years, the interest in hybrid organic–inorganic perovskites has increased at a rapid pace due to their tremendous success in the field of thin film solar cells. This area closely ties together fundamental solid state research and device application, as it is necessary to understand the basic material properties to optimize the performances and open up new areas of application. In this regard, the energy levels and their respective alignment with adjacent charge transport layers play a crucial role. Currently, we are lacking a detailed understanding about the electronic structure and are struggling to understand what influences the alignment, how it varies, or how it can be intentionally modified. This research update aims at giving an overview over recent results regarding measurements of the electronic structure of hybrid perovskites using photoelectron spectroscopy to summarize the present status.

  12. Removal of metal from acid mine drainage using a hybrid system including a pipes inserted microalgae reactor.

    Science.gov (United States)

    Park, Young-Tae; Lee, Hongkyun; Yun, Hyun-Shik; Song, Kyung-Guen; Yeom, Sung-Ho; Choi, Jaeyoung

    2013-12-01

    In this study, the microalgae culture system to combined active treatment system and pipe inserted microalgae reactor (PIMR) was investigated. After pretreated AMD in active treatment system, the effluent load to PIMR in order to Nephroselmis sp. KGE 8 culture. In experiment, effect of iron on growth and lipid accumulation in microalgae were inspected. The 2nd pretreatment effluent was economic feasibility of microalgae culture and lipid accumulation. The growth kinetics of the microalgae are modeled using logistic growth model and the model is primarily parameterized from data obtained through an experimental study where PIMR were dosed with BBM, BBM added 10 mg L(-1) iron and 2nd pretreatment effluent. Moreover, the continuous of microalgae culture in PIMR can be available. Overall, this study indicated that the use of pretreated AMD is a viable method for culture microalgae and lipid accumulation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Metaphase FISH on a Chip: Miniaturized Microfluidic Device for Fluorescence in situ Hybridization

    Directory of Open Access Journals (Sweden)

    Niels Tommerup

    2010-11-01

    Full Text Available Fluorescence in situ Hybridization (FISH is a major cytogenetic technique for clinical genetic diagnosis of both inherited and acquired chromosomal abnormalities. Although FISH techniques have evolved and are often used together with other cytogenetic methods like CGH, PRINS and PNA-FISH, the process continues to be a manual, labour intensive, expensive and time consuming technique, often taking over 3–5 days, even in dedicated labs. We have developed a novel microFISH device to perform metaphase FISH on a chip which overcomes many shortcomings of the current laboratory protocols. This work also introduces a novel splashing device for preparing metaphase spreads on a microscope glass slide, followed by a rapid adhesive tape-based bonding protocol leading to rapid fabrication of the microFISH device. The microFISH device allows for an optimized metaphase FISH protocol on a chip with over a 20-fold reduction in the reagent volume. This is the first demonstration of metaphase FISH on a microfluidic device and offers a possibility of automation and significant cost reduction of many routine diagnostic tests of genetic anomalies.

  14. Hybrid Lead Halide Perovskites for Ultrasensitive Photoactive Switching in Terahertz Metamaterial Devices.

    Science.gov (United States)

    Manjappa, Manukumara; Srivastava, Yogesh Kumar; Solanki, Ankur; Kumar, Abhishek; Sum, Tze Chien; Singh, Ranjan

    2017-08-01

    The recent meteoric rise in the field of photovoltaics with the discovery of highly efficient solar-cell devices is inspired by solution-processed organic-inorganic lead halide perovskites that exhibit unprecedented light-to-electricity conversion efficiencies. The stunning performance of perovskites is attributed to their strong photoresponsive properties that are thoroughly utilized in designing excellent perovskite solar cells, light-emitting diodes, infrared lasers, and ultrafast photodetectors. However, optoelectronic application of halide perovskites in realizing highly efficient subwavelength photonic devices has remained a challenge. Here, the remarkable photoconductivity of organic-inorganic lead halide perovskites is exploited to demonstrate a hybrid perovskite-metamaterial device that shows extremely low power photoswitching of the metamaterial resonances in the terahertz part of the electromagnetic spectrum. Furthermore, a signature of a coupled phonon-metamaterial resonance is observed at higher pump powers, where the Fano resonance amplitude is extremely weak. In addition, a low threshold, dynamic control of the highly confined electric field intensity is also observed in the system, which could tremendously benefit the new generation of subwavelength photonic devices as active sensors, low threshold optically controlled lasers, and active nonlinear devices with enhanced functionalities in the infrared, optical, and the terahertz parts of the electromagnetic spectrum. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Recognition of Cuneiform Inscription Signs by use of a Hybrid-Optoelectronic Correlator Device

    Science.gov (United States)

    Demoli, Nazif; Kamps, Jörn; Krüger, Sven; Gruber, Hartmut; Wernicke, Günther

    2002-08-01

    A hybrid-optoelectronic correlator device and an algorithm are proposed for recognizing cuneiform inscription signs. The device is based on the extended correlator architecture with three liquid-crystal display(s) (LCD)s and three light detectors: one CCD camera for capturing the input image, one LCD for displaying the input image, two LCDs for the complex correlation filter (amplitude and phase parts), and two detectors for measuring the total and peak intensities of the output correlation information. The recognition algorithm is designed to allow automatic as well as real-time processing. The recognition results are given for the cuneiform signs impressed on an original clay tablet. The investigated tablet (VAT 12890 of the Pergamon Museum, Berlin, Germany) was found in Bogazk öy (Hattusha) and dates from the 14th century B.C. It is a fragment of the Epic of Gilgamesh in the Akkadian language with a large number of the sign samples.

  16. Designing artificial photosynthetic devices using hybrid organic-inorganic modules based on polyoxometalates.

    Science.gov (United States)

    Symes, Mark D; Cogdell, Richard J; Cronin, Leroy

    2013-08-13

    Artificial photosynthesis aims at capturing solar energy and using it to produce storable fuels. However, while there is reason to be optimistic that such approaches can deliver higher energy conversion efficiencies than natural photosynthetic systems, many serious challenges remain to be addressed. Perhaps chief among these is the issue of device stability. Almost all approaches to artificial photosynthesis employ easily oxidized organic molecules as light harvesters or in catalytic centres, frequently in solution with highly oxidizing species. The 'elephant in the room' in this regard is that oxidation of these organic moieties is likely to occur at least as rapidly as oxidation of water, meaning that current device performance is severely curtailed. Herein, we discuss one possible solution to this problem: using self-assembling organic-polyoxometalate hybrid structures to produce compartments inside which the individual component reactions of photosynthesis can occur without such a high incidence of deleterious side reactions.

  17. Hybrid yttrium iron garnet-ferromagnet structures for spin-wave devices

    Energy Technology Data Exchange (ETDEWEB)

    Papp, A., E-mail: apapp@nd.edu [Center for Nano Science and Technology and Department of Electrical Engineering, University of Notre Dame, Notre Dame, Indiana 46556 (United States); Pázmány Péter Catholic University, Faculty of Information Technology, Budapest 1088 (Hungary); Porod, W., E-mail: porod@nd.edu; Csaba, G., E-mail: gcsaba@nd.edu [Center for Nano Science and Technology and Department of Electrical Engineering, University of Notre Dame, Notre Dame, Indiana 46556 (United States)

    2015-05-07

    We study coupled ferromagnetic layers, which could facilitate low loss, sub 100 nm wavelength spin-wave propagation and manipulation. One of the layers is a low-loss garnet film (such as yttrium iron garnet (YIG)) that enables long-distance, coherent spin-wave propagation. The other layer is made of metal-based (Permalloy, Co, and CoFe) magnetoelectronic structures that can be used to generate, manipulate, and detect the spin waves. Using micromagnetic simulations, we analyze the interactions between the spin waves in the YIG and the metallic nanomagnet structures and demonstrate the components of a scalable spin-wave based signal processing device. We argue that such hybrid-metallic ferromagnet structures can be the basis of potentially high-performance, ultra low-power computing devices.

  18. A light-stimulated synaptic device based on graphene hybrid phototransistor

    Science.gov (United States)

    Qin, Shuchao; Wang, Fengqiu; Liu, Yujie; Wan, Qing; Wang, Xinran; Xu, Yongbing; Shi, Yi; Wang, Xiaomu; Zhang, Rong

    2017-09-01

    Neuromorphic chips refer to an unconventional computing architecture that is modelled on biological brains. They are increasingly employed for processing sensory data for machine vision, context cognition, and decision making. Despite rapid advances, neuromorphic computing has remained largely an electronic technology, making it a challenge to access the superior computing features provided by photons, or to directly process vision data that has increasing importance to artificial intelligence. Here we report a novel light-stimulated synaptic device based on a graphene-carbon nanotube hybrid phototransistor. Significantly, the device can respond to optical stimuli in a highly neuron-like fashion and exhibits flexible tuning of both short- and long-term plasticity. These features combined with the spatiotemporal processability make our device a capable counterpart to today’s electrically-driven artificial synapses, with superior reconfigurable capabilities. In addition, our device allows for generic optical spike processing, which provides a foundation for more sophisticated computing. The silicon-compatible, multifunctional photosensitive synapse opens up a new opportunity for neural networks enabled by photonics and extends current neuromorphic systems in terms of system complexities and functionalities.

  19. An integrated hybrid microfluidic device for oviposition-based chemical screening of adult Drosophila melanogaster.

    Science.gov (United States)

    Leung, Jacob C K; Hilliker, Arthur J; Rezai, Pouya

    2016-02-21

    Chemical screening using Drosophila melanogaster (the fruit fly) is vital in drug discovery, agricultural, and toxicological applications. Oviposition (egg laying) on chemically-doped agar plates is an important read-out metric used to quantitatively assess the biological fitness and behavioral responses of Drosophila. Current oviposition-based chemical screening studies are inaccurate, labor-intensive, time-consuming, and inflexible due to the manual chemical doping of agar. In this paper, we have developed a novel hybrid agar-polydimethylsiloxane (PDMS) microfluidic device for single- and multi-concentration chemical dosing and on-chip oviposition screening of free-flying adult stage Drosophila. To achieve this, we have devised a novel technique to integrate agar with PDMS channels using ice as a sacrificial layer. Subsequently, we have conducted single-chemical toxicity and multiple choice chemical preference assays on adult Drosophila melanogaster using zinc and acetic acid at various concentrations. Our device has enabled us to 1) demonstrate that Drosophila is capable of sensing the concentration of different chemicals on a PDMS-agar microfluidic device, which plays significant roles in determining oviposition site selection and 2) investigate whether oviposition preference differs between single- and multi-concentration chemical environments. This device may be used to study fundamental and applied biological questions in Drosophila and other egg laying insects. It can also be extended in design to develop sophisticated and dynamic chemical dosing and high-throughput screening platforms in the future that are not easily achievable with the existing oviposition screening techniques.

  20. Tunable high-refractive index hybrid for solution-processed light management devices (Conference Presentation)

    Science.gov (United States)

    Bachevillier, Stefan

    2016-10-01

    After the use of highly efficient but expensive inorganic optical materials, solution-processable polymers and hybrids have drawn more and more interest. Our group have recently developed a novel polymer-based hybrid optical material from titanium oxide hydrate exhibiting an outstanding set of optical and material properties. Firstly, their low cost, processability and cross-linked states are particularly attractive for many applications. Moreover, a high refractive index can be repeatedly achieved while optical losses stays considerably low over the entire visible and near-infrared wavelength regime. Indeed, the formation of inorganic nanoparticles, usually present in nanocomposites, is avoided by a specific formulation process. Even more remarkably, the refractive index can be tuned by either changing the inorganic content, using different titanium precursors or via a low-temperature curing process. A part of our work is focused on the reliable optical characterization of these properties, in particular a microscope-based setup allowing in-situ measurement and sample mapping has been developed. Our efforts are also concentrated on various applications of these exceptional properties. This hybrid material is tailored for photonic devices, with a specific emphasis on the production of highly efficient solution processable Distributed Bragg Reflectors (DBR) and anti-reflection coatings. Furthermore, waveguides can be fabricated from thin films along with in-coupling and out-coupling structures. These light managements structures are particularly adapted to organic photovoltaic cells (OPVs) and light emitting diodes (OLEDs).

  1. Study of a fuel cell insertion in a hybrid system for energy generation; Estudo da insercao de celula a combustivel integrada a sistema hibrido de geracao de eletricidade isolado

    Energy Technology Data Exchange (ETDEWEB)

    Vale, Silvio Bispo do; Bezerra, Ubiratan Holanda; Pinho, Joao Tavares; Pereira, Edinaldo Jose da Silva [Universidade Federal do Para (UFPA), Belem, PA (Brazil). Programa de Pos-Graduacao em Engenharia Eletrica. Grupo de Estudo e Desenvolvimento em Alternativas Energeticas

    2004-07-01

    This paper presents a case study of a fuel cell (FC) insertion in a small hybrid system for energy generation composed by wind (10 kW), photovoltaic (3,2 kW) and diesel (20 kVA) generations, making computer simulations in order to evaluate the contribution of each one of the energy-supply systems involved. This paper intends to contribute for the establishment of parameters to measure the technical and economic viability for using such isolated hybrid systems, trying in the future several combinations of models to hybridize the energy generation in Amazon isolated villages, making easier the use of local energy resources. (author)

  2. Numerical Research on Hybrid Fuel Locking Device for Upward Flow Core-Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Huh, Hyung; Cho, Yeong-Garp; Yoo, Yeon-Sik; Ryu, Jeong-Soo [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    The assembly must be held firmly against these forces, but cannot be permanently attached to the support stand because periodic refueling of the reactor requires removal or relocation of each assembly. There are so many kinds of fuel locking device, but they are operated manually. As a part of a new project, we have investigated a hybrid fuel locking device (HFLD) for research reactor which is operated automatically. Prior method of holding down the fuel assembly includes a hybrid zero electromagnet consisting of an electromagnet and a permanent magnet. The role of an electromagnet is converged to zero power for overcoming the lifting power of a permanent magnet by controlling the coil current. At this time, a HFLD is an unlocking state. On the contrary, it is locking state that only a permanent magnet works when the power of an electromagnet is off. The results of a FEM in this work lead to the following conclusions: (1) It is possible that an electromagnet is converged to zero power for overcoming the lifting power of a permanent magnet by remote controlling the coil current. (2) At this time, it is able to detect remotely using proximity sensor whether a HFLD is latched or not.

  3. High Cost Performance Organic-Inorganic Hybrid Material for Electro-optic Devices

    Institute of Scientific and Technical Information of China (English)

    SUN Jie; ZHU Gui-Hua; SUN Xiao-Qiang; LI Tong; GAO Wei-Nan; ZHANG Da-Ming; HOU A-lin

    2009-01-01

    We report a low-cost electro-optic (EO) sol-gel material with large EO coefficient and excellent poling stability for EO devices. Disperse red 1 (DR1) chromophore is doped in the three-dimensional silicon dioxide/titanium dioxide network possessing a high γ33 (88pm/V at 1300 nm wavelength and 71 pm/V at 1550nm wavelength). Favourable poled stability (less than 5% relaxed after 2500 hours at 80 ℃) and low absorption are demonstrated. Strip-loaded waveguide Mach-Zehnder (M-Z) modulators are implemented based on this synthesized EO material, showing 7 V half-wave voltage and less than 9dB insertion loss at 1550nm wavelength.

  4. Silver nanowire embedded in P3HT:PCBM for high-efficiency hybrid photovoltaic device applications.

    Science.gov (United States)

    Kim, Chul-Hyun; Cha, Sang-Ho; Kim, Sung Chul; Song, Myungkwan; Lee, Jaebeom; Shin, Won Suk; Moon, Sang-Jin; Bahng, Joong Hwan; Kotov, Nicholas A; Jin, Sung-Ho

    2011-04-26

    A systematic approach has been followed in the development of a high-efficiency hybrid photovoltaic device that has a combination of poly(3-hexylthiophene) (P3HT), [6,6]-phenyl C61-butyric acid methyl ester (PCBM), and silver nanowires (Ag NWs) in the active layer using the bulk heterojunction concept. The active layer is modified by utilizing a binary solvent system for blending. In addition, the solvent evaporation process after spin-coating is changed and an Ag NWs is incorporated to improve the performance of the hybrid photovoltaic device. Hybrid photovoltaic devices were fabricated by using a 1:0.7 weight ratio of P3HT to PCBM in a 1:1 weight ratio of o-dichlorobenzene and chloroform solvent mixture, in the presence and absence of 20 wt % of Ag NWs. We also compared the photovoltaic performance of Ag NWs embedded in P3HT:PCBM to that of silver nanoparticles (Ag NPs). Atomic force microscopy, scanning electron microscopy, transmittance electron microscopy, UV-visible absorption, incident photon-to-current conversion efficiency, and time-of-flight measurements are performed in order to characterize the hybrid photovoltaic devices. The optimal hybrid photovoltaic device composed of Ag NWs generated in this effort exhibits a power conversion efficiency of 3.91%, measured by using an AM 1.5G solar simulator at 100 mW/cm(2) light illumination intensity.

  5. Assessment of Four Passive Hearing Protection Devices for Continuous Noise Attenuation, Impulsive Noise Insertion Loss, and Auditory Localization Performance

    Science.gov (United States)

    2014-11-17

    estimated unprotected signal was calculated for each ear of both ATFs for the protected shots. The IPIL was calculated as the difference (in decibels ...devices. Table 21. Attenuation – Combat Arms Earplug™ – vented. All attenuation values in decibels . Test # 125 Hz 250 Hz 500 Hz 1k Hz 2k Hz 4k...Attenuation – Combat Arms Earplug™ – unvented. All attenuation values in decibels . Test # 125 Hz 250 Hz 500 Hz 1k Hz 2k Hz 4k Hz 8k Hz 1 11.7 9.9 7.4 12.0

  6. Omnidirectional Harvesting of Weak Light Using a Graphene Quantum Dot-Modified Organic/Silicon Hybrid Device

    KAUST Repository

    Tsai, Meng-Lin

    2017-04-21

    Despite great improvements in traditional inorganic photodetectors and photovoltaics, more progress is needed in the detection/collection of light at low-level conditions. Traditional photodetectors tend to suffer from high noise when operated at room temperature; therefore, these devices require additional cooling systems to detect weak or dim light. Conventional solar cells also face the challenge of poor light-harvesting capabilities in hazy or cloudy weather. The real world features such varying levels of light, which makes it important to develop strategies that allow optical devices to function when conditions are less than optimal. In this work, we report an organic/inorganic hybrid device that consists of graphene quantum dot-modified poly(3,4-ethylenedioxythiophene) polystyrenesulfonate spin-coated on Si for the detection/harvest of weak light. The hybrid configuration provides the device with high responsivity and detectability, omnidirectional light trapping, and fast operation speed. To demonstrate the potential of this hybrid device in real world applications, we measured near-infrared light scattered through human tissue to demonstrate noninvasive oximetric photodetection as well as characterized the device\\'s photovoltaic properties in outdoor (i.e., weather-dependent) and indoor weak light conditions. This organic/inorganic device configuration demonstrates a promising strategy for developing future high-performance low-light compatible photodetectors and photovoltaics.

  7. Gold nanoparticle-embedded silk protein-ZnO nanorod hybrids for flexible bio-photonic devices

    Science.gov (United States)

    Gogurla, Narendar; Kundu, Subhas C.; Ray, Samit K.

    2017-04-01

    Silk protein has been used as a biopolymer substrate for flexible photonic devices. Here, we demonstrate ZnO nanorod array hybrid photodetectors on Au nanoparticle-embedded silk protein for flexible optoelectronics. Hybrid samples exhibit optical absorption at the band edge of ZnO as well as plasmonic energy due to Au nanoparticles, making them attractive for selective UV and visible wavelength detection. The device prepared on Au-silk protein shows a much lower dark current and a higher photo to dark-current ratio of ∼105 as compared to the control sample without Au nanoparticles. The hybrid device also exhibits a higher specific detectivity due to higher responsivity arising from the photo-generated hole trapping by Au nanoparticles. Sharp pulses in the transient photocurrent have been observed in devices prepared on glass and Au-silk protein substrates due to the light induced pyroelectric effect of ZnO, enabling the demonstration of self-powered photodetectors at zero bias. Flexible hybrid detectors have been demonstrated on Au-silk/polyethylene terephthalate substrates, exhibiting characteristics similar to those fabricated on rigid glass substrates. A study of the performance of photodetectors with different bending angles indicates very good mechanical stability of silk protein based flexible devices. This novel concept of ZnO nanorod array photodetectors on a natural silk protein platform provides an opportunity to realize integrated flexible and self-powered bio-photonic devices for medical applications in near future.

  8. Optimal setting of FACTS devices for voltage stability improvement using PSO adaptive GSA hybrid algorithm

    Directory of Open Access Journals (Sweden)

    Sai Ram Inkollu

    2016-09-01

    Full Text Available This paper presents a novel technique for optimizing the FACTS devices, so as to maintain the voltage stability in the power transmission systems. Here, the particle swarm optimization algorithm (PSO and the adaptive gravitational search algorithm (GSA technique are proposed for improving the voltage stability of the power transmission systems. In the proposed approach, the PSO algorithm is used for optimizing the gravitational constant and to improve the searching performance of the GSA. Using the proposed technique, the optimal settings of the FACTS devices are determined. The proposed algorithm is an effective method for finding out the optimal location and the sizing of the FACTS controllers. The optimal locations and the power ratings of the FACTS devices are determined based on the voltage collapse rating as well as the power loss of the system. Here, two FACTS devices are used to evaluate the performance of the proposed algorithm, namely, the unified power flow controller (UPFC and the interline power flow controller (IPFC. The Newton–Raphson load flow study is used for analyzing the power flow in the transmission system. From the power flow analysis, bus voltages, active power, reactive power, and power loss of the transmission systems are determined. Then, the voltage stability is enhanced while satisfying a given set of operating and physical constraints. The proposed technique is implemented in the MATLAB platform and consequently, its performance is evaluated and compared with the existing GA based GSA hybrid technique. The performance of the proposed technique is tested with the benchmark system of IEEE 30 bus using two FACTS devices such as, the UPFC and the IPFC.

  9. Au Nanocluster assisted PCE improvement in PEDOT: PSS - Si Hybrid Devices

    Science.gov (United States)

    Sharma, Manisha; Pudasaini, Pushpa Raj; Ayon, Arturo A.

    2015-03-01

    Poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS), a P-type organic polymer is frequently employed in the fabrication of heterojunction p-n solar cell devices due to its proper HOMO-LUMO band gap as well as its tunable conductivity. In this report we describe the incorporation of gold (Au) nanoclusters in the PEDOT:PSS blend and its influence on the power-conversion-efficiency (PCE) on planar silicon (Si) hybrid heterojunction solar cell devices. Specifically, the reference samples without the aforementioned nanoclusters, were measured to exhibit a 6.10% PCE, value that increased to 7.55% upon the addition of the Au nanoclusters. The observed increase in the PCE is attributed to the enhanced electrical conductivity of the PEDOT:PSS films due to the incorporation of the nanoclusters, which is directly reflected in their improved fill factor. It is further theorized that the presence of Au nanoclusters in the insulating PSS layer in the PEDOT:PSS blend have a positive influence in the charge collection effectiveness of the devices produced. Considering that the Au nanoparticles involved in this research exercise had an average size of only 4 nm, it is considered that plasmonic effects did not play a relevant role in the observed PCE improvement.

  10. Hybrid electroluminescent device based on MEH-PPV and ZnO

    Energy Technology Data Exchange (ETDEWEB)

    Hewidy, Dina; Gadallah, A.-S.; Fattah, G. Abdel

    2017-02-15

    Hybrid organic/inorganic electroluminescent device based on the structure of glass/ITO/PEDOT:PSS/MEH-PPV/ZnO/ZnO submicrorods/Al has been manufactured. Spin coating has been used to deposit both PEDOT:PSS and MEH-PPV. Two-step process has been used to synthesis ZnO submicrorods, namely, spin coating and chemical bath deposition. Changing the dimensions of the ZnO submicrorods in this layer structure has been investigated to improve the performance of the organic/inorganic electroluminescence device. Such layer structure provides electroluminescence with narrow emission bands due to a high gain with this structure. X-ray diffraction patterns and scanning electron microscope images show that ZnO submicrorods have hexagon structure. Current-voltage curve for the structure has been reported. Electroluminescence curves (electroluminescence intensity versus wavelength) at different bias voltages have been presented and these results show narrowing in full width at half maximum in the spectra at high current density compared to photoluminescence excitation. The narrowing in the spectrum has been explained. - Highlights: • Manufacturing of MEH-PPV and ZnO electroluminescent device has been reported. • Spin coating and chemical bath deposition have been used for preparation of ZnO. • SEM images and X-ray diffraction of ZnO have been presented. • Current-voltage curves and electroluminescent measurements have been reported.

  11. Nanocomposite Based Organic-Inorganic Cu3BiS3 High Sensitive Hybrid Photonic Devices.

    Science.gov (United States)

    Murali, Banavoth; Krupanidhi, S B

    2015-04-01

    We report the synthesis and application Cu3BiS3 nanorods in infrared photodectection. Cu3BiS3 nano rods were characterized structurally, optically and electrically. The detailed IR photodectection properties in terms of photo response were demonstrated with IR lamp and 1064 nm laser illuminations. The rapid photocurrent time constants followed by the slower components, resulting due to the defect states. The photo detecting properties for different concentrations of nanorods blended with the conjugate polymer devices were demonstrated. Further the photocurrent was enhanced to threefold increase from 3.47 x 10(-7) A to 2.37 x 10(-3) A at 1 V for 10 mg nanorods embedded in the polymer device. Responsivity of hybrid device was enhanced from 0.0158 A/W to 102 A/W. The detailed trap assisted space charge transport properties were studied considering the different regimes. Hence Cu3BiS3 can be a promising candidate in the nano switchable near IR photodetectors.

  12. Design and control of a dual unidirectional brake hybrid actuation system for haptic devices.

    Science.gov (United States)

    Rossa, Carlos; Lozada, José; Micaelli, Alain

    2014-01-01

    Hybrid actuators combining brakes and motors have emerged as an efficient solution to achieve high performance in haptic devices. In this paper, an actuation approach using two unidirectional brakes and a DC motor is proposed. The brakes are coupled to overrunning clutches and can apply a torque in only one rotational direction. The associated control laws, that are independent of the virtual environment model, calculate the control gains in real time in order limit the energy and the stiffness delivered by the motor to ensure stability. The reference torque is respected using the combination of the motor and the brake. Finally, an user experiment has been performed to evaluate the influence of passive and active torque differences in the perception of elasticity. The proposed actuator has a torque range of 0.03 Nm to 5.5 Nm with a 17.75 kNm (-2) torque density.

  13. Hybrid simulation of a parallel collisionless shock in the Large Plasma Device

    CERN Document Server

    Weidl, M S; Jenko, F; Niemann, C

    2016-01-01

    We present two-dimensional hybrid kinetic/magnetohydrodynamic simulations of planned laser-ablation experiments in the Large Plasma Device (LAPD). Our results, based on parameters which have been validated in previous experiments, show that a parallel collisionless shock can begin forming within the available space. Carbon-debris ions that stream along the magnetic-field direction with a blow-off speed of four times the Alfven velocity excite strong magnetic fluctuations, eventually transfering part of their kinetic energy to the surrounding hydrogen ions. This acceleration and compression of the background plasma creates a shock front, which satisfies the Rankine-Hugoniot conditions and can therefore propagate on its own. Furthermore, we analyze the upstream turbulence and show that it is dominated by the right-hand resonant instability.

  14. Hybrid Quantum Point Contact-Superconductor Devices Using InSb Nanowires

    Science.gov (United States)

    Gill, Stephen; Damasco, John Jeffrey; Car, Diana; Bakkers, Erik; Mason, Nadya

    Recent experiments using hybrid nanowire (NW)-superconductor (SC) devices have provided evidence for Majorana quasiparticles in tunneling experiments. However, these tunneling experiments are marked by a soft superconducting gap, which likely originates from disorder at the NW-SC interface. Hence, clean NW-SC interfaces are important for future Majorana studies. By carefully processing the NW-SC interface, we have realized quantized conductance steps in quantum point contacts fabricated from InSb NWs and superconducting contacts. We study the length dependence of ballistic behavior and the induced superconductivity in InSb NWs by quantum point contact spectroscopy. Additionally, we discuss how the transport in InSb NW-SC quantum point contacts evolves in magnetic field.

  15. Conducting polymer-coated Physarum polycephalum towards the synthesis of bio-hybrid electronic devices

    Science.gov (United States)

    de Lacy Costello, B. J. P.; Mayne, R.; Adamatzky, A.

    2015-04-01

    This paper presents a generic method for the production of functionalized coatings on biological substrates. The specific method described involves the functionalization of the living plasmodial stage of Physarum polycephalum with the conducting organic polymer polypyrrole. The simple method involves localized treatment of tube sections with a solution of ferric chloride, followed by exposure to the vapour or a liquid solution of the pyrrole monomer. This technique enables the production of surface-coated conducting plasmodial tubes of certain lengths to be formed at specific points. Measurement of the electrical resistance of a 1 cm functionalized tube gave a value of 100 k? . The use of this selective functionalization technique means that the majority of the growing plasmodium remains unfunctionalized and living; thus, a true hybrid device is formed. It can be seen how a range of functionalized polymers and materials whereby a chemical activator, for the formation of the product (or the pre-cursor) can be added to P. polycephalum (or other organisms) followed by reaction to form a hybrid material.

  16. Self-regenerating and hybrid irreversible/reversible PDMS microfluidic devices

    Science.gov (United States)

    Shiroma, Letícia S.; Piazzetta, Maria H. O.; Duarte-Junior, Gerson F.; Coltro, Wendell K. T.; Carrilho, Emanuel; Gobbi, Angelo L.; Lima, Renato S.

    2016-05-01

    This paper outlines a straightforward, fast, and low-cost method to fabricate polydimethylsiloxane (PDMS) chips. Termed sandwich bonding (SWB), this method requires only a laboratory oven. Initially, SWB relies on the reversible bonding of a coverslip over PDMS channels. The coverslip is smaller than the substrate, leaving a border around the substrate exposed. Subsequently, a liquid composed of PDMS monomers and a curing agent is poured onto the structure. Finally, the cover is cured. We focused on PDMS/glass chips because of their key advantages in microfluidics. Despite its simplicity, this method created high-performance microfluidic channels. Such structures featured self-regeneration after leakages and hybrid irreversible/reversible behavior. The reversible nature was achieved by removing the cover of PDMS with acetone. Thus, the PDMS substrate and glass coverslip could be detached for reuse. These abilities are essential in the stages of research and development. Additionally, SWB avoids the use of surface oxidation, half-cured PDMS as an adhesive, and surface chemical modification. As a consequence, SWB allows surface modifications before the bonding, a long time for alignment, the enclosure of sub-micron channels, and the prototyping of hybrid devices. Here, the technique was successfully applied to bond PDMS to Au and Al.

  17. sBCI-Headset—Wearable and Modular Device for Hybrid Brain-Computer Interface

    Directory of Open Access Journals (Sweden)

    Tatsiana Malechka

    2015-02-01

    Full Text Available Severely disabled people, like completely paralyzed persons either with tetraplegia or similar disabilities who cannot use their arms and hands, are often considered as a user group of Brain Computer Interfaces (BCI. In order to achieve high acceptance of the BCI by this user group and their supporters, the BCI system has to be integrated into their support infrastructure. Critical disadvantages of a BCI are the time consuming preparation of the user for the electroencephalography (EEG measurements and the low information transfer rate of EEG based BCI. These disadvantages become apparent if a BCI is used to control complex devices. In this paper, a hybrid BCI is described that enables research for a Human Machine Interface (HMI that is optimally adapted to requirements of the user and the tasks to be carried out. The solution is based on the integration of a Steady-state visual evoked potential (SSVEP-BCI, an Event-related (de-synchronization (ERD/ERS-BCI, an eye tracker, an environmental observation camera, and a new EEG head cap for wearing comfort and easy preparation. The design of the new fast multimodal BCI (called sBCI system is described and first test results, obtained in experiments with six healthy subjects, are presented. The sBCI concept may also become useful for healthy people in cases where a “hands-free” handling of devices is necessary.

  18. Securing E-mail Communication Using Hybrid Cryptosystem on Android-based Mobile Devices

    Directory of Open Access Journals (Sweden)

    Andri Zakariya

    2012-08-01

    Full Text Available One of the most popular internet services is electronic mail (e-mail. By using mobile devices with internet connection, e-mail can be widely used by anyone to exchange information anywhere and anytime whether public or confidential. Unfortunately, there are some security issues with email communication; e-mail is sent in over open networks and e-mail is stored on potentially insecure mail servers. Moreover, e-mail has no integrity protection so the body can be undectected altered in transit or on the e-mail server. E-mail also has no data origin authentication, so people cannot be sure that the emails they receive are from the e-mail address owner. In order to solve this problem, this study proposes a secure method of e-mail communication on Android-based mobile devices using a hybrid cryptosystem which combines symmetric encryption, asymmetric encryption and hash function. The experimental results show that the proposed method succeeded in meeting those aspects of information security including confidentiality, data integrity, authentication, and non-repudiation.

  19. Securing E-mail Communication Using Hybrid Cryptosystem on Android-based Mobile Devices

    Directory of Open Access Journals (Sweden)

    Andri Zakariya

    2012-12-01

    Full Text Available One of the most popular internet services is electronic mail (e-mail. By using mobile devices with internet connection, e-mail can be widely used by anyone to exchange information anywhere and anytime whether public or confidential. Unfortunately, there are some security issues with email communication; e-mail is sent in over open networks and e-mail is stored on potentially insecure mail servers. Moreover, e-mail has no integrity protection so the body can be undectected altered in transit or on the e-mail server. E-mail also has no data origin authentication, so people cannot be sure that the emails they receive are from the e-mail address owner. In order to solve this problem, this study proposes a secure method of e-mail communication on Android-based mobile devices using a hybrid cryptosystem which combines symmetric encryption, asymmetric encryption and hash function. The experimental results show that the proposed method succeeded in meeting those aspects of information security including confidentiality, data integrity, authentication, and non-repudiation.

  20. Traffic sounds and cycling safety : the use of electronic devices by cyclists and the quietness of hybrid and electric cars.

    NARCIS (Netherlands)

    Stelling-Konczak, A. Hagenzieker, M.P. & Wee, B. van

    2015-01-01

    The growing popularity of electric devices and the increasing number of hybrid and electric cars have recently raised concerns about the use of auditory signals by vulnerable road users. This paper consolidates current knowledge about the two trends in relation to cycling safety. Both a literature r

  1. Fabrication, Metrology, and Transport Characteristics of Single Polymeric Nanopores in Three-Dimensional Hybrid Microfluidic/Nanofluidic Devices

    Science.gov (United States)

    King, Travis L.

    2009-01-01

    The incorporation of nanofluidic elements between microfluidic channels to form hybrid microfluidic/nanofluidic architectures allows the extension of microfluidic systems into the third dimension, thus removing the constraints imposed by planarity. Measuring and understanding the behavior of these devices creates new analytical challenges due to…

  2. Traffic sounds and cycling safety : the use of electronic devices by cyclists and the quietness of hybrid and electric cars.

    NARCIS (Netherlands)

    Stelling-Konczak, A. Hagenzieker, M.P. & Wee, B. van

    2015-01-01

    The growing popularity of electric devices and the increasing number of hybrid and electric cars have recently raised concerns about the use of auditory signals by vulnerable road users. This paper consolidates current knowledge about the two trends in relation to cycling safety. Both a literature

  3. Quantum dot-block copolymer hybrids with improved properties and their application to quantum dot light-emitting devices.

    Science.gov (United States)

    Zorn, Matthias; Bae, Wan Ki; Kwak, Jeonghun; Lee, Hyemin; Lee, Changhee; Zentel, Rudolf; Char, Kookheon

    2009-05-26

    To combine the optical properties of CdSe@ZnS quantum dots (QDs) with the electrical properties of semiconducting polymers, we prepared QD/polymer hybrids by grafting a block copolymer (BCP) containing thiol-anchoring moieties (poly(para-methyl triphenylamine-b-cysteamine acrylamide)) onto the surfaces of QDs through the ligand exchange procedure. The prepared QD/polymer hybrids possess improved processability such as enhanced solubility in various organic solvents as well as the film formation properties along with the improved colloidal stability derived from the grafted polymer shells. We also demonstrated light-emitting diodes based on QD/polymer hybrids, exhibiting the improved device performance (i.e., 3-fold increase in the external quantum efficiency) compared with the devices prepared by pristine (unmodified) QDs.

  4. Development of a new deep-sea hybrid Raman insertion probe and its application to the geochemistry of hydrothermal vent and cold seep fluids

    Science.gov (United States)

    Zhang, Xin; Du, Zengfeng; Zheng, Ronger; Luan, Zhendong; Qi, Fujun; Cheng, Kai; Wang, Bing; Ye, Wangquan; Liu, Xiaorui; Lian, Chao; Chen, Changan; Guo, Jinjia; Li, Ying; Yan, Jun

    2017-05-01

    Hydrothermal vent fluids, cold seep fluids, their associated chemosynthetic communities, and the biogeochemical anaerobic oxidation of methane (AOM) play very important roles in the biogeochemical sulfur and carbon cycles in the ocean. Based on our previous success developing and deploying a deep-sea sediment pore water Raman probe, we developed a new deep-sea hybrid Raman insertion probe (RiP) designed to operate at temperatures up to 450 °C that can be inserted directly into high-temperature fluids emerging from hydrothermal vents. By routinely exchanging the various tips and optics of the probe, we can analyze the geochemistry of hydrothermal vent fluids, cold seep fluids, and sediment pore water profiles (0-60 cm) in situ. The instrument ensemble also includes a new deep-sea laser Raman spectrometer in a custom-designed, 6000-m titanium pressure housing, which is powered, controlled and deployed by the remotely operated vehicle (ROV) Faxian down to a maximum water depth of 4500 m. The new RiP was deployed at the Izena Hole hydrothermal area in the middle Okinawa Trough back-arc basin; the Papua-Australia-Canada-Manus (PACManus) hydrothermal vent area in the Manus back-arc basin, Papua New Guinea; and a cold seep field at Formosa Ridge in the northern South China Sea. The Raman peaks of CO2, CH4, H2S, HS-, SO42- and S8 were obtained in situ from high-temperature hydrothermal vents (290 °C), low-temperature cold seep fluids (2 °C) and the surrounding sediment pore water. Dissolved CH4 and S8 were identified for the first time in the fluids under the lush chemosynthetic communities of the cold seep. Several sediment pore water profiles collected near the cold seep were characterized by the loss of SO42- and increased CH4, H2S and HS- peaks. Additionally, the in situ pH range of the pore water profile was between 6.95 and 7.22. Thus, the RiP system provides a very useful tool for investigating the geochemistry of hydrothermal vent and cold seep fluids.

  5. Effects of buffer layer and thermal annealing on the performance of hybrid Cu2S/PVK electrically bistable devices

    Science.gov (United States)

    Li, Xu; Lu, Yue; Guan, Li; Li, Jiantao; Wang, Yichao; Dong, Guoyi; Tang, Aiwei; Teng, Feng

    2016-09-01

    Hybrid organic/inorganic electrically bistable devices (EBDs) based on Cu2S/PVK nanocomposites have been fabricated by using a simple spin-coating method. An obvious electrical bistability is observed in the current-voltage (I-V) characteristics of the devices, and the presence of the buffer layer and the annealing process have an important effect on the enhancement of the ON/OFF current ratios. Different electrical conduction mechanisms are responsible for the charge switching of the devices in the presence and absence of the buffer layer.

  6. Pixel detector insertion

    CERN Multimedia

    CMS

    2015-01-01

    Insertion of the Pixel Tracker, the 66-million-channel device used to pinpoint the vertex of each colliding proton pair, located at the heart of the detector. The geometry of CMS is a cylinder lying on its side (22 meters long and 15 meters high in dia

  7. Measurement of fluid flow by means of pressure differential devices inserted in circular cross-section conduits running full -- Part 4: Venturi tubes

    CERN Document Server

    International Organization for Standardization. Geneva

    2003-01-01

    ISO 5167-4:2003 specifies the geometry and method of use (installation and operating conditions) of Venturi tubes when they are inserted in a conduit running full to determine the flowrate of the fluid flowing in the conduit. ISO 5167-4:2003 also provides background information for calculating the flow-rate and is applicable in conjunction with the requirements given in ISO 5167-1. ISO 5167-4:2003 is applicable only to Venturi tubes in which the flow remains subsonic throughout the measuring section and where the fluid can be considered as single-phase. In addition, each of these devices can only be used within specified limits of pipe size, roughness, diameter ratio and Reynolds number. ISO 5167-4:2003 is not applicable to the measurement of pulsating flow. It does not cover the use of Venturi tubes in pipes sized less than 50 mm or more than 1 200 mm, or for where the pipe Reynolds numbers are below 20 000. ISO 5167-4:2003 deals with the three types of classical Venturi tubes: cast, machined and rough welde...

  8. Enhanced UV photoresponse of KrF-laser-synthesized single-wall carbon nanotubes/n-silicon hybrid photovoltaic devices.

    Science.gov (United States)

    Le Borgne, V; Gautier, L A; Castrucci, P; Del Gobbo, S; De Crescenzi, M; El Khakani, M A

    2012-06-01

    We report on the KrF-laser ablation synthesis, purification and photocurrent generation properties of single-wall carbon nanotubes (SWCNTs). The thermally purified SWCNTs are integrated into hybrid photovoltaic (PV) devices by spin-coating them onto n-Si substrates. These novel SWCNTs/n-Si hybrid devices are shown to generate significant photocurrent (PC) over the entire 250-1050 nm light spectrum with external quantum efficiencies (EQE) reaching up to ~23%. Our SWCNTs/n-Si hybrid devices are not only photoactive in the traditional spectral range of Si solar cells, but generate also significant PC in the UV domain (below 400 nm). This wider spectral response is believed to be the result of PC generation from both the SWCNTs themselves and the tremendous number of local p-n junctions created at the nanotubes/Si interface. To assess the prevalence of these two contributions, the EQE spectra and J-V characteristics of these hybrid devices were investigated in both planar and top-down configurations, as a function of SWCNTs' film thickness. A sizable increase in EQE in the near UV with respect to the silicon is observed in both configurations, with a more pronounced UV photoresponse in the planar mode, confirming thereby the role of SWCNTs in the photogeneration process. The PC generation is found to reach its maximum for an optimal the SWCNT film thickness, which is shown to correspond to the best trade-off between lowest electrical resistance and highest optical transparency. Finally, by analyzing the J-V characteristics of our SWCNTs/n-Si devices with an equivalent circuit model, we were able to point out the contribution of the various electrical components involved in the photogeneration process. The SWCNTs-based devices demonstrated here open up the prospect for their use in highly effective photovoltaics and/or UV-light sensors.

  9. Chemical detection with nano/bio hybrid devices based on carbon nanotubes and graphene

    Science.gov (United States)

    Lerner, Mitchell Bryant

    Carbon nanotube field-effect transistors (NT-FETs) and graphene field effect transistors (GFETs) provide a unique transduction platform for chemical and biomolecular detection. The work presented in this thesis describes the fabrication, characterization, and investigation of operational mechanisms of carbon-based biosensors. In the first set of experiments, we used carbon nanotubes as fast, all-electronic readout elements in novel vapor sensors, suitable for applications in environmental monitoring and medicine. Molecules bound to the hybrid alter the electrical properties of the NT-FET via several mechanisms, allowing direct detection as a change in the transistor conduction properties. Vapor sensors suitable for more complex system architectures characteristic of mammalian olfaction were demonstrated using NT-FETs functionalized with mouse olfactory receptor (mOR) proteins or single stranded DNA (ssDNA). Substitution of graphene as the channel material enabled production of hundreds of electronically similar devices with high yield. Etching large scale chemical vapor deposition (CVD)-grown graphene into small channels is itself a challenging problem, and we have developed novel fabrication methods to this end without sacrificing the inherent electrical quality that makes graphene such an attractive material. Large arrays of such devices have potential utility for understanding the physics of ligand-receptor interactions and contributing to the development of a new generation of devices for electronic olfaction. Tailored and specific detection was accomplished by chemically functionalizing the NT-FET or GFET with biomolecules, such as proteins or small molecules, to create a hybrid nanostructures. Targets for detection were widely varied, indicating the utility of these techniques, such as 1) live Salmonella cells in nutrient broth, 2) a biomarker protein indicative of prostate cancer, 3) antigen protein from the bacterium that causes Lyme disease, and 4) glucose

  10. Integrated Multi-Color Light Emitting Device Made with Hybrid Crystal Structure

    Science.gov (United States)

    Park, Yeonjoon (Inventor); Choi, Sang Hyouk (Inventor)

    2016-01-01

    An integrated hybrid crystal Light Emitting Diode ("LED") display device that may emit red, green, and blue colors on a single wafer. The various embodiments may provide double-sided hetero crystal growth with hexagonal wurtzite III-Nitride compound semiconductor on one side of (0001) c-plane sapphire media and cubic zinc-blended III-V or II-VI compound semiconductor on the opposite side of c-plane sapphire media. The c-plane sapphire media may be a bulk single crystalline c-plane sapphire wafer, a thin free standing c-plane sapphire layer, or crack-and-bonded c-plane sapphire layer on any substrate. The bandgap energies and lattice constants of the compound semiconductor alloys may be changed by mixing different amounts of ingredients of the same group into the compound semiconductor. The bandgap energy and lattice constant may be engineered by changing the alloy composition within the cubic group IV, group III-V, and group II-VI semiconductors and within the hexagonal III-Nitrides.

  11. Integrated Multi-Color Light Emitting Device Made with Hybrid Crystal Structure

    Science.gov (United States)

    Park, Yeonjoon (Inventor); Choi, Sang Hyouk (Inventor)

    2017-01-01

    An integrated hybrid crystal Light Emitting Diode ("LED") display device that may emit red, green, and blue colors on a single wafer. The various embodiments may provide double-sided hetero crystal growth with hexagonal wurtzite III-Nitride compound semiconductor on one side of (0001) c-plane sapphire media and cubic zinc-blended III-V or II-VI compound semiconductor on the opposite side of c-plane sapphire media. The c-plane sapphire media may be a bulk single crystalline c-plane sapphire wafer, a thin free standing c-plane sapphire layer, or crack-and-bonded c-plane sapphire layer on any substrate. The bandgap energies and lattice constants of the compound semiconductor alloys may be changed by mixing different amounts of ingredients of the same group into the compound semiconductor. The bandgap energy and lattice constant may be engineered by changing the alloy composition within the cubic group IV, group III-V, and group II-VI semiconductors and within the hexagonal III-Nitrides.

  12. Evaluating a hybrid three-dimensional metrology system: merging data from optical and touch probe devices

    Science.gov (United States)

    Gerde, Janice R.; Christens-Barry, William A.

    2011-08-01

    In a project to meet requirements for CBP Laboratory analysis of footwear under the Harmonized Tariff Schedule of the United States (HTSUS), a hybrid metrology system comprising both optical and touch probe devices has been assembled. A unique requirement must be met: To identify the interface-typically obscured in samples of concern-of the "external surface area upper" (ESAU) and the sole without physically destroying the sample. The sample outer surface is determined by discrete point cloud coordinates obtained using laser scanner optical measurements. Measurements from the optically inaccessible insole region are obtained using a coordinate measuring machine (CMM). That surface similarly is defined by point cloud data. Mathematically, the individual CMM and scanner data sets are transformed into a single, common reference frame. Custom software then fits a polynomial surface to the insole data and extends it to intersect the mesh fitted to the outer surface point cloud. This line of intersection defines the required ESAU boundary, thus permitting further fractional area calculations to determine the percentage of materials present. With a draft method in place, and first-level method validation underway, we examine the transformation of the two dissimilar data sets into the single, common reference frame. We also will consider the six previously-identified potential error factors versus the method process. This paper reports our on-going work and discusses our findings to date.

  13. Optimizing the performance of neural interface devices with hybrid poly(3,4-ethylene dioxythiophene) (PEDOT)

    Science.gov (United States)

    Kuo, Chin-chen

    This thesis describes methods for improving the performance of poly(3,4-ethylenedioxythiophene) (PEDOT) as a direct neural interfacing material. The chronic foreign body response is always a challenge for implanted bionic devices. After long-term implantation (typically 2-4 weeks), insulating glial scars form around the devices, inhibiting signal transmission, which ultimately leads to device failure. The mechanical mismatch at the device-tissue interface is one of the issues that has been associated with chronic foreign body response. Another challenge for using PEDOT as a neural interface material is its mechanical failure after implantation. We observed cracking and delamination of PEDOT coatings on devices after extended implantations. In the first part of this thesis, we present a novel method for directly measuring the mechanical properties of a PEDOT thin film. Before investigating methods to improve the mechanical behavior of PEDOT, a comprehensive understanding of the mechanical properties of PEDOT thin film is required. A PEDOT thin film was machined into a dog-bone shape specimen with a dual beam FIB-SEM. With an OmniProbe, this PEDOT specimen could be attached onto a force sensor, while the other side was attached to OmniProbe. By moving the OmniProbe, the specimen could be deformed in tension, and a force sensor recorded the applied load on the sample simultaneously. Mechanical tensile tests were conducted in the FIB-SEM chamber along with in situ observation. With precise force measurement from the force sensor and the corresponding high resolution SEM images, we were able to convert the data to a stress-strain curve for further analysis. By analyzing these stress-strain curves, we were able to obtain information about PEDOT including the Young's modulus, strength of failure, strain to failure, and toughness (energy to failure). This information should be useful for future material selection and molecular design for specific applications. The second

  14. Highly efficient hybrid energy generator: coupled organic photovoltaic device and randomly oriented electrospun poly(vinylidene fluoride) nanofiber.

    Science.gov (United States)

    Park, Boongik; Lee, Kihwan; Park, Jongjin; Kim, Jongmin; Kim, Ohyun

    2013-03-01

    A hybrid architecture consisting of an inverted organic photovoltaic device and a randomly-oriented electrospun PVDF piezoelectric device was fabricated as a highly-efficient energy generator. It uses the inverted photovoltaic device with coupled electrospun PVDF nanofibers as tandem structure to convert solar and mechanical vibrations energy to electricity simultaneously or individually. The power conversion efficiency of the photovoltaic device was also significantly improved up to 4.72% by optimized processes such as intrinsic ZnO, MoO3 and active layer. A simple electrospinning method with the two electrode technique was adopted to achieve a high voltage of - 300 mV in PVDF piezoelectric fibers. Highly-efficient HEG using voltage adder circuit provides the conceptual possibility of realizing multi-functional energy generator whenever and wherever various energy sources are available.

  15. Calorimeter insertion

    CERN Multimedia

    2006-01-01

    Calorimeter insertion between toroids in the ATLAS experiment detector Calorimeters are surrounding the inner detector. Calorimeters will absorb and measure the energies of the most charged and neutral particles after the collisions. The saved energy in the calorimeter is detected and converted to signals that are taken out with data taking electronics.

  16. 75 FR 76636 - Anthropomorphic Test Devices; Hybrid III 6-Year-Old Child Test Dummy, Hybrid III 6-Year-Old...

    Science.gov (United States)

    2010-12-09

    ... the drawings for the abdomen insert so that the abdominal insert dimensions on the drawings reflect... corrects the drawings for the abdomen insert so that the abdominal insert dimensions on the drawings... from FTSS and Denton. Both manufacturers sought to revise the abdomen insert drawing to match the...

  17. Juxtarenal Inflammatory Aneurysm Treated with Bilateral Iliac-Renal Bypass Using the Gore Hybrid Device and Total Sealing of the Aneurysmal Sac with a Nellix Device.

    Science.gov (United States)

    Martinelli, Ombretta; Malaj, Alban; Gattuso, Roberto; Irace, Luigi; Gossetti, Bruno

    2017-01-01

    The aim of this study is to present the treatment of a juxtarenal inflammatory aneurysm using a Nellix device (Endologix, Inc., Irvine, CA) to seal the entire aneurysmatic aorta combined with bilateral iliac-renal bypass using the Gore hybrid vascular graft (W. L. Gore & Associates, Inc., Flagstaff, AZ). A 63-year-old man was diagnosed with a 6-cm juxtarenal inflammatory aneurysm. It was initially decided to treat him with an aorto-aortic bypass and to revascularize the 2 renal arteries with "graft to renal artery bypass" using Gore hybrid vascular grafts. Due to the high intraoperative bleeding preparing the proximal neck and the tight adhesion of the aorta to the adjacent structures, we decided to change our plans and to treat the patient using the Nellix system combined with bilateral iliac-renal bypass using the Gore hybrid vascular grafts. Contrast computed tomography control at 1 month showed complete sealing of the aneurysm sac and patent iliac renal bypasses. The reported case demonstrated that the Nellix Endovascular Aneurysm Sealing system combined with Gore hybrid vascular grafts for bilateral iliac-renal bypass showed that it can be an effective modality for the treatment of juxtarenal, inflammatory aortic aneurysm and revascularization of the renal arteries from the distal iliac arteries. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Thickness effects of SiO xN y interlayer inserted between BaTiO 3 insulating layer and ZnS:Mn phosphor layer in thin film electroluminescent devices

    Science.gov (United States)

    Song, M. H.; Lee, Y. H.; Hahn, T. S.; Oh, M. H.; Yoon, K. H.

    1996-09-01

    We investigated the effects of a SiO xN y interlayer on a thin film electroluminescent device, inserted between an amorphous BaTiO 3 thin film and a ZnS:Mn phosphor layer. The effects on the thin film electroluminescent device was studied as a function of the thickness of the interlayer. We found that the introduction of the interlayer affected the growth behavior of the phosphor layer. With increasing thickness of the interlayer, the average grain size and the crystallinity of the phosphor layer was improved. The turn-on voltage of the electroluminescent device increased, and the saturation brightness slightly decreased with increasing interlayer thickness. In the case of the TFELD without the interlayer, Poole-Frenkel conduction was observed in the low dc field region, the devices with the interlayer exhibited effective electron tunneling from interface traps. The efficiency of the devices increased with increasing interlayer thickness.

  19. Reproduction of continuous flow left ventricular assist device experimental data by means of a hybrid cardiovascular model with baroreflex control.

    Science.gov (United States)

    Fresiello, Libera; Zieliński, Krzysztof; Jacobs, Steven; Di Molfetta, Arianna; Pałko, Krzysztof Jakub; Bernini, Fabio; Martin, Michael; Claus, Piet; Ferrari, Gianfranco; Trivella, Maria Giovanna; Górczyńska, Krystyna; Darowski, Marek; Meyns, Bart; Kozarski, Maciej

    2014-06-01

    Long-term mechanical circulatory assistance opened new problems in ventricular assist device-patient interaction, especially in relation to autonomic controls. Modeling studies, based on adequate models, could be a feasible approach of investigation. The aim of this work is the exploitation of a hybrid (hydronumerical) cardiovascular simulator to reproduce and analyze in vivo experimental data acquired during a continuous flow left ventricular assistance. The hybrid cardiovascular simulator embeds three submodels: a computational cardiovascular submodel, a computational baroreflex submodel, and a hydronumerical interface submodel. The last one comprises two impedance transformers playing the role of physical interfaces able to provide a hydraulic connection with specific cardiovascular sites (in this article, the left atrium and the ascending/descending aorta). The impedance transformers are used to connect a continuous flow pump for partial left ventricular support (Synergy Micropump, CircuLite, Inc., Saddlebrooke, NJ, USA) to the hybrid cardiovascular simulator. Data collected from five animals in physiological, pathological, and assisted conditions were reproduced using the hybrid cardiovascular simulator. All parameters useful to characterize and tune the hybrid cardiovascular simulator to a specific hemodynamic condition were extracted from experimental data. Results show that the simulator is able to reproduce animal-specific hemodynamic status both in physiological and pathological conditions, to reproduce cardiovascular left ventricular assist device (LVAD) interaction and the progressive unloading of the left ventricle for different pump speeds, and to investigate the effects of the LVAD on baroreflex activity. Results in chronic heart failure conditions show that an increment of LVAD speed from 20 000 to 22 000 rpm provokes a decrement of left ventricular flow of 35% (from 2 to 1.3 L/min). Thanks to its flexibility and modular structure, the

  20. Design of a Simple and Modular 2-DOF Ankle Physiotherapy Device Relying on a Hybrid Serial-Parallel Robotic Architecture

    Directory of Open Access Journals (Sweden)

    Christos E. Syrseloudis

    2011-01-01

    Full Text Available The aim of this work is to propose a new 2-DOF robotic platform with hybrid parallel-serial structure and to undertake its parametric design so that it can follow the whole range of ankle related foot movements. This robot can serve as a human ankle rehabilitation device. The existing ankle rehabilitation devices present typically one or more of the following shortcomings: redundancy, large size, or high cost, hence the need for a device that could offer simplicity, modularity, and low cost of construction and maintenance. In addition, our targeted device must be safe during operation, disallow undesirable movements of the foot, while adaptable to any human foot. Our detailed study of foot kinematics has led us to a new hybrid architecture, which strikes a balance among all aforementioned goals. It consists of a passive serial kinematics chain with two adjustable screws so that the axes of the chain match the two main ankle-axes of typical feet. An active parallel chain, which consists of two prismatic actuators, provides the movement of the platform. Thus, the platform can follow the foot movements, thanks to the passive chain, and also possesses the advantages of parallel robots, including rigidity, high stiffness and force capabilities. The lack of redundancy yields a simpler device with lower size and cost. The paper describes the kinematics modelling of the platform and analyses the force and velocity transmission. The parametric design of the platform is carried out; our simulations confirm the platform's suitability for ankle rehabilitation.

  1. Reversible transient hydrogen storage in a fuel cell-supercapacitor hybrid device.

    Science.gov (United States)

    Unda, Jesus E Zerpa; Roduner, Emil

    2012-03-21

    A new concept is investigated for hydrogen storage in a supercapacitor based on large-surface-area carbon material (Black Pearls 2000). Protons and electrons of hydrogen are separated on a fuel cell-type electrode and then stored separately in the electrical double layer, the electrons on the carbon and the protons in the aqueous electrolyte of the supercapacitor electrode. The merit of this concept is that it works spontaneously and reversibly near ambient pressure and temperature. This is in pronounced contrast to what has been known as electrochemical hydrogen storage, which does not involve hydrogen gas and where electrical work has to be spent in the loading process. With the present hybrid device, a H(2) storage capacity of 0.13 wt% was obtained, one order of magnitude more than what can be stored by conventional physisorption on large-surface-area carbons at the same pressure and temperature. Raising the pressure from 1.5 to 3.5 bar increased the capacity by less than 20%, indicating saturation. A capacitance of 11 μF cm(-2), comparable with that of a commercial double layer supercapacitor, was found using H(2)SO(4) as electrolyte. The chemical energy of the stored H(2) is almost a factor of 3 larger than the electrical energy stored in the supercapacitor. Further developments of this concept relate to a hydrogen buffer integrated inside a proton exchange membrane fuel cell to be used in case of peak power demand. This serial setup takes advantage of the suggested novel concept of hydrogen storage. It is fundamentally different from previous ways of operating a conventional supercapacitor hooked up in parallel to a fuel cell.

  2. Highly stable and flexible silver nanowire-graphene hybrid transparent conducting electrodes for emerging optoelectronic devices.

    Science.gov (United States)

    Lee, Donghwa; Lee, Hyungjin; Ahn, Yumi; Jeong, Youngjun; Lee, Dae-Young; Lee, Youngu

    2013-09-07

    A new AgNW-graphene hybrid transparent conducting electrode (TCE) was prepared by dry-transferring a chemical vapor deposition (CVD)-grown monolayer graphene onto a pristine AgNW TCE. The AgNW-graphene hybrid TCE exhibited excellent optical and electrical properties as well as mechanical flexibility. The AgNW-graphene hybrid TCE showed highly enhanced thermal oxidation and chemical stabilities because of the superior gas-barrier property of the graphene protection layer. Furthermore, the organic solar cells with the AgNW-graphene hybrid TCE showed excellent photovoltaic performance as well as superior long-term stability under ambient conditions.

  3. Microbial detection in microfluidic devices through dual staining of quantum dots-labeled immunoassay and RNA hybridization

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Qing [Division of Environmental Science and Engineering, National University of Singapore, Blk E1A, 07-03, Engineering Drive 2, Singapore 117576 (Singapore); Zhu Liang [Division of Environmental Science and Engineering, National University of Singapore, Blk E1A, 07-03, Engineering Drive 2, Singapore 117576 (Singapore); Feng Hanhua [Institute of Microelectronics (Singapore); Ang, Simon [Department of Electrical Engineering, University of Arkansas, Fayetteville (United States); Chau, F.S. [Department of Mechanical Engineering, National University of Singapore (Singapore); Liu, W.-T. [Division of Environmental Science and Engineering, National University of Singapore, Blk E1A, 07-03, Engineering Drive 2, Singapore 117576 (Singapore)]. E-mail: cveliuwt@nus.edu.sg

    2006-01-18

    This paper reported the development of a microfludic device for the rapid detection of viable and nonviable microbial cells through dual labeling by fluorescent in situ hybridization (FISH) and quantum dots (QDs)-labeled immunofluorescent assay (IFA). The coin sized device consists of a microchannel and filtering pillars (gap = 1-2 {mu}m) and was demonstrated to effectively trap and concentrate microbial cells (i.e. Giardia lamblia). After sample injection, FISH probe solution and QDs-labeled antibody solution were sequentially pumped into the device to accelerate the fluorescent labeling reactions at optimized flow rates (i.e. 1 and 20 {mu}L/min, respectively). After 2 min washing for each assay, the whole process could be finished within 30 min, with minimum consumption of labeling reagents and superior fluorescent signal intensity. The choice of QDs 525 for IFA resulted in bright and stable fluorescent signal, with minimum interference with the Cy3 signal from FISH detection.

  4. High-dynamic-range hybrid analog-digital control broadband optical spectral processor using micromirror and acousto-optic devices.

    Science.gov (United States)

    Riza, Nabeel A; Reza, Syed Azer

    2008-06-01

    For the first time, to the best of our knowledge, the design and demonstration of a programmable spectral filtering processor is presented that simultaneously engages the power of an analog-mode optical device such as an acousto-optic tunable filter and a digital-mode optical device such as the digital micromirror device. The demonstrated processor allows a high 50 dB attenuation dynamic range across the chosen 1530-1565 nm (~C band). The hybrid analog-digital spectral control mechanism enables the processor to operate with greater versatility when compared to analog- or digital-only processor designs. Such a processor can be useful both as a test instrument in biomedical applications and as an equalizer in fiber communication networks.

  5. Alkali Metal Halide Salts as Interface Additives to Fabricate Hysteresis-Free Hybrid Perovskite-Based Photovoltaic Devices.

    Science.gov (United States)

    Wang, Lili; Moghe, Dhanashree; Hafezian, Soroush; Chen, Pei; Young, Margaret; Elinski, Mark; Martinu, Ludvik; Kéna-Cohen, Stéphane; Lunt, Richard R

    2016-09-07

    A new method was developed for doping and fabricating hysteresis-free hybrid perovskite-based photovoltaic devices by using alkali metal halide salts as interface layer additives. Such salt layers introduced at the perovskite interface can provide excessive halide ions to fill vacancies formed during the deposition and annealing process. A range of solution-processed halide salts were investigated. The highest performance of methylammonium lead mixed-halide perovskite device was achieved with a NaI interlayer and showed a power conversion efficiency of 12.6% and a hysteresis of less than 2%. This represents a 90% improvement compared to control devices without this salt layer. Through depth-resolved mass spectrometry, optical modeling, and photoluminescence spectroscopy, this enhancement is attributed to the reduction of iodide vacancies, passivation of grain boundaries, and improved hole extraction. Our approach ultimately provides an alternative and facile route to high-performance and hysteresis-free perovskite solar cells.

  6. Improvement of uniformity in cultivation environment and crop growth rate by hybrid control of air flow devices

    Institute of Scientific and Technical Information of China (English)

    BAEK Min-Seon; KWON Sook-Youn; LIM Jae-Hyun

    2015-01-01

    A complete control type plant factory has high efficiency in terms of cultivation area by constructing vertical multiple layered cultivation beds. However, it has a problem of irregular crop growth due to temperature deviation at upper and lower beds and increases in energy consumption by a prolonged cultivation period. In this work, air flow rate inside a facility was improved by a hybrid control of air flow devices like air conditioning and air circulation fan with an established wireless sensor network to minimize temperature deviations between upper and lower beds and to promote crop growth. The performance of proposed system was verified with an experimental environment or Case A wherein air conditioning device was operated without a control algorithm and Case B wherein air conditioning and circulation fans were alternatively operated based on the hybrid control algorithm. After planting leafy vegetables under each experimental condition, crops were cultivated for 21 days. As a result, Case B wherein AC (air conditioning) and ACF (air-circulation fan) were alternatively operated based on the hybrid control algorithm showed that fresh mass, number of leaves, and leaf length for the crops grown were increased by 40.6%, 41.1%, and 11.1%, respectively, compared to Case A.

  7. Study of lower hybrid current drive system in tokamak fusion devices

    Energy Technology Data Exchange (ETDEWEB)

    Maebara, Sunao [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-01-01

    This report describes R and D of a high-power klystron, RF vacuum window, low-outgassing antenna and a front module for a plasma-facing antenna aiming the 5 GHz Lower Hybrid Current Drive (LHCD) system for the next Tokamak Fusion Device. 5 GHz klystron with a low-perveances of 0.7 {mu}P is designed for a high-power and a high-efficiency, the output-power of 715 kW and the efficiency of 63%, which are beyond the conventional design scaling of 450 kW-45%, are performed using the prototype klystron which operates at the pulse duration of 15 {mu}sec. A new pillbox window, which has an oversized length in both the axial and the radial direction, are designed to reduce the RF power density and the electric field strength at the ceramics. It is evaluated that the power capability by cooling edge of ceramics is 1 MW with continuous-wave operation. The antenna module using Dispersion Strengthened Copper which combines high mechanical property up to 500degC with high thermal conductivity, are developed for a low-outgassing antenna in a steady state operation. It is found that the outgassing rate is in the lower range of 4x10{sup -6} Pam{sup 3}/sm{sup 2} at the module temperature of 300degC, which requires no active vacuum pumping of the LHCD antenna. A front module using Carbon Fiber Composite (CFC) are fabricated and tested for a plasma facing antenna which has a high heat-resistive. Stationary operation of the CFC module with water cooling is performed at the RF power of 46 MWm{sup -2} (about 2 times higher than the design value) during 1000 sec, it is found that the outgassing rate is less than 10{sup -5} Pam{sup 3}/sm{sup 2} which is low enough for an antenna material. (author)

  8. Hybrid integration of III-V and silicon materials and devices

    Science.gov (United States)

    Luo, Zhongsheng

    Laser liftoff (LLO) based hybrid integration techniques including the double-transfer process and the pixel-to-point transfer process have been developed to integrate III-V photonics with silicon materials and circuitry. No degradation in the device performance has been observed using the LLO based transfer techniques. On the contrary, performance improvements in both electrical characteristics and electroluminescence (EL) output have been found for the (In,Ga)N light emitting diodes (LEDs) transferred onto Si substrate. Based on computer simulation, it is found that as much as 70% enhancement in EL output could be expected by optimizing the metal layering on the backside of the transferred LEDs. In order to understand the existing experimental data and improve controllability and damage-free transfer yield of the LLO process, a novel, comprehensive LLO model based on thermal-mechanical analysis has been proposed and developed. The LLO model has been validated in the well-studied GaN/sapphire system. By employing the LLO based transfer technique, two optoelectronic systems have been designed and demonstrated. The first one is an integrated fluorescence microsystem, which involved the integration of Cd(S,Se) bandgap filters, (In,Ga)N LEDs, Poly(dimethylsiloxane) (PDMS) microfluidic channels with a pre-fabricated Si PIN photodiode chip. Prototypes with both one color (blue LED) excitation and two-color (blue and green LED) excitation have consistently demonstrated a detection capability of as low as 1 nM fluosphere beads using Molecular Probes FluoSpheresRTM dye. Furthermore, the feasibility of multi-wavelength design has been verified using the bi-wavelength prototype. To optimize signal-to-noise ratio and detection sensitivity of the microsystem via system design, an in-depth mathematic analysis has also been performed. The second application is a zero-footprint optical metrology wafer, which relies on the reflection at the optical detection window, through which

  9. Energy and Propulsion Optimization of Solid-Propellant Grain of a Hybrid Power Device

    OpenAIRE

    Bondarchuk Sergey S.; Bondarchuk Iliya S.; Borisov Boris V.; Zhukov Alexandr S.

    2016-01-01

    A method of distribution of an additional solid-phase component (oxidizer) providing uniformity of grain burning for the purpose of evaluation and optimization of energy and propulsion parameters of hybrid solid-propellant motor is proposed in the paper.

  10. Energy and Propulsion Optimization of Solid-Propellant Grain of a Hybrid Power Device

    Science.gov (United States)

    Bondarchuk, Sergey S.; Bondarchuk, Iliya S.; Borisov, Boris V.; Zhukov, Alexandr S.

    2016-02-01

    A method of distribution of an additional solid-phase component (oxidizer) providing uniformity of grain burning for the purpose of evaluation and optimization of energy and propulsion parameters of hybrid solid-propellant motor is proposed in the paper.

  11. Capacitance of Fe3O4/rGO nanocomposites in an aqueous hybrid electrochemical storage device

    Science.gov (United States)

    Wasiński, Krzysztof; Walkowiak, Mariusz; Półrolniczak, Paulina; Lota, Grzegorz

    2015-10-01

    Hybrid electrochemical storage devices comprising a capacitor-type positive electrode and a battery-type negative electrode are regarded as a promising concept combining high power density with high energy density. In this work Fe3O4/reduced graphene oxide (rGO) nanocomposite has been synthesized and applied as negative electrode in an electrochemical energy storage device being a serial internal hybrid of an alkaline battery and an electrochemical double layer capacitor (EDLC). Beneficial effect of graphene on the performance of magnetite electrode has been evidenced by means of cyclic voltammetry, galvanostatic cycling and electrochemical impedance spectroscopy techniques. Unlike in a vast majority of reports, magnetite capacitances have been determined in real electrochemical devices, against activated carbon as positive electrode. In three-electrode cells with activated carbon as the positive electrode magnetite has been found to exhibit from 65 to 83 F g-1 for the rGO content from 9.7 to 27.8 %. The maximum voltage of a capacitor with Fe3O4/rGO negative electrode has been established as 1.0 V, which is higher than typical value of 0.8 V known for the symmetrical carbon-based capacitors.

  12. Prototype hybrid systems for neonatal warming: in vitro comparisons to standard of care devices.

    Science.gov (United States)

    Hubert, Terrence L; Lindemann, Rolf; Wu, Jichuan; Agnew, Catherine; Shaffer, Thomas H; Wolfson, Marla R

    2010-01-01

    Preterm infants lack necessary thermoregulation. An ideal incubator should maintain a uniform and constant thermal environment. We compared the effectiveness of a supplemental heating blanket to improve the heating characteristics of two different incubator warming devices using assessment of their respective function alone as controls. Device A and device B, with and without a heating blanket (Harvard Apparatus), were instrumented with a distribution matrix of multiple temperature (n = 11) and humidity probes. These data were serially measured during warm up to 37.5 °C and through a series of open-door perturbations. The time constant, temperature variation, and change in air temperature were calculated. Data were analyzed for significance by 2-factor ANOVA for each respective incubator either turned on or off with either the heating blanket turned on or off. Device A warms faster (33.87% ; p < 0.05) than device B, but has a greater (37.27% ; p < 0.05) temperature variation during warmup. The heating blanket enhances the thermal response of device A during warmup, but does not alter those of device B. With the side door open, device A shows a smaller (-16.5% ; p < 0.05) temperature variation than device B; the heating blanket attenuates the temperature change in both devices. These results demonstrate that the use of a supplemental heating blanket, as well as device-related differences, may impact clinical control of a thermal environment.

  13. Horizontally-connected ZnO-graphene hybrid films for multifunctional devices

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Yi Rang [Thin Film Materials Research Center, Korea Research Institute of Chemical Technology, Yuseong Post Office Box 107, Daejeon 305-600 (Korea, Republic of); School of Semiconductor and Chemical Engineering, Semiconductor Physics Research Center (SPRC), Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Song, Wooseok; Lee, Young Bum; Kim, Seong Ku; Han, Jin Kyu; Myung, Sung; Lee, Sun Sook; An, Ki-Seok [Thin Film Materials Research Center, Korea Research Institute of Chemical Technology, Yuseong Post Office Box 107, Daejeon 305-600 (Korea, Republic of); Choi, Chel-Jong [School of Semiconductor and Chemical Engineering, Semiconductor Physics Research Center (SPRC), Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Lim, Jongsun, E-mail: jslim@krict.re.kr [Thin Film Materials Research Center, Korea Research Institute of Chemical Technology, Yuseong Post Office Box 107, Daejeon 305-600 (Korea, Republic of)

    2016-08-30

    Highlights: • We designed horizontally-connected ZnO and graphene hybrid nanofilms with improved flexibility for multifunctional nanodevices including high performance TFTs. • The photocurrent on-off ratio, response time, and recovery time of the hybrid photodetectors were estimated to be 10{sup 2}, 34 s, and 27 s, respectively. The photocurrent from the hybrid photodetector decreased only by two-fold, whereas a significant decrease in photocurrent by two orders of magnitude was observed from the ZnO thin film based photodetectors after 10{sup 5} cycles of 5-mm radius bending. • The hybrid thin film transistors exhibited unipolar n-channel transistor behavior with electron mobility of 68.7 cm{sup 2}/V s and on-off ratio of 10{sup 7}. - Abstract: Here we designed horizontally-connected ZnO thin films and graphene in order to combine advantages of ZnO thin films, which are high on/off ratio and photo responsivity, and the superior mobility and sensitivity of graphene for applications in thin film transistors (TFTs) and flexible photodetectors. To synthesize the ZnO/graphene hybrid films, a 70-nm-thick ZnO thin film with a uniformly flat surface deposited by the atomic layer deposition process was horizontally connected with highly crystalline monolayer graphene grown by thermal chemical vapor deposition. The photocurrent on-off ratio, response time, and recovery time of the hybrid photodetectors were estimated to be 10{sup 2}, 34 s, and 27 s, respectively. The photocurrent from the hybrid photodetector decreased only by two-fold, whereas a significant decrease in photocurrent by two orders of magnitude was observed from the ZnO thin film based photodetectors after 10{sup 5} cycles of 5-mm radius bending. The hybrid TFT exhibited unipolar n-channel transistor behavior with electron mobility of 68.7 cm{sup 2}/V s and on-off ratio of 10{sup 7}.

  14. Solution-processed hybrid light emitting and photovoltaic devices comprising zinc oxide nanorod arrays and tungsten trioxide layers

    Directory of Open Access Journals (Sweden)

    Wei-Chi Chen

    2017-04-01

    Full Text Available The goal of this research is to prepare inverted optoelectronic devices with improved performance by combining zinc oxide (ZnO nanorod arrays and tungsten trioxide (WO3 layer. ZnO seed layers with thickness of 52 nm were established, followed by growth of ZnO nanorods with length of 300 nm vertical to the ITO substrates in the precursor bath. The ZnO nanorod arrays possess high transmittance up to 92% in the visible range. Inverted light-emitting devices with the configuration of ITO/ZnO nanorods/ionic PF/MEH-PPV/PEDOT:PSS/Au were constructed. The best device achieved a max brightness and current efficiency of 10,620 cd/m2 and 0.25 cd/A at 10 V, respectively, revealing much higher brightness compared with conventional devices using Ca/Al as cathode, or inverted devices based on ZnO thin film. By inserting a WO3 thin layer between PEDOT:PSS and Au electrode, the max brightness and current efficiency were further improved to 21,881 cd/m2 and 0.43 cd/A, respectively. Inverted polymer solar cells were also fabricated with the configuration of ITO/ZnO nanorods/ionic PF/P3HT:PC61BM/PEDOT/WO3/Au. The best device parameters, including the open-circuit voltage, short-circuit current density, fill factor, and power conversion efficiency, reached 0.54 V, 14.87 mA/cm2, 41%, and 3.31%, respectively

  15. Design and evaluation of a computed tomography (CT)-compatible needle insertion device using an electromagnetic tracking system and CT images

    NARCIS (Netherlands)

    Shahriari, Navid; Hekman, Edsko; Oudkerk, Matthijs; Misra, Sarthak

    2015-01-01

    Percutaneous needle insertion procedures are commonly used for diagnostic and therapeutic purposes. Although current technology allows accurate localization of lesions, they cannot yet be precisely targeted. Lung cancer is the most common cause of cancer-related death, and early detection reduces th

  16. A scanning probe-based pick-and-place procedure for assembly of integrated quantum optical hybrid devices

    CERN Document Server

    Schell, Andreas W; Schröder, Tim; Wolters, Janik; Aichele, Thomas; Benson, Oliver

    2011-01-01

    Integrated quantum optical hybrid devices consist of fundamental constituents such as single emitters and tailored photonic nanostructures. A reliable fabrication method requires the controlled deposition of active nanoparticles on arbitrary nanostructures with highest precision. Here, we describe an easily adaptable technique that employs picking and placing of nanoparticles with an atomic force microscope combined with a confocal setup. In this way, both the topography and the optical response can be monitored simultaneously before and after the assembly. The technique can be applied to arbitrary particles. Here, we focus on nanodiamonds containing single nitrogen vacancy centers, which are particularly interesting for quantum optical experiments on the single photon and single emitter level.

  17. Optimization of a carbon-based hybrid energy storage device with cerium (III) sulfate as redox electrolyte

    Science.gov (United States)

    Díaz, Patricia; González, Zoraida; Santamaría, Ricardo; Granda, Marcos; Menéndez, Rosa; Blanco, Clara

    2016-03-01

    The electrochemical performance of a carbon-based hybrid energy storage system, with Ce2(SO4)3/H2SO4 as inorganic redox electrolyte, was enhanced by optimizing several parameters of the device. A mass balance of the two electrodes forming the system together with the selection of a suitable activated carbon as negative electrode allowed the cell voltage to be increased up to 1.9 V. In addition, the use of a cation-exchange membrane significantly enhanced the electrochemical performance of the system by minimizing secondary reactions of cerium ions on the negative electrode. The optimized device reached energy and power density values up to ∼20 W h kg-1 and 524 W kg-1 respectively. Moreover, the system showed a good long-term electrochemical performance over 20,000 cycles.

  18. Hybrid Multi-Walled Carbon Nanotube TiO2 Electrode Material for Next Generation Energy Storage Devices

    CERN Document Server

    Marler, Sydney

    2016-01-01

    Current supercapacitors present several distinct limitations that severely inhibit the efficiency, power, and electrical capacitance of energy storage devices. Supercapacitors present an exciting prospect that has countless applications in renewable energy storage and modern day electronic devices. In recent years the exciting development of carbon nanotubes (CNTs) has presented an advantage in electrode development. CNTs, however beneficial for their increased electrode surface area, have severe limitations regarding conductivity and electrode density. Creating a nanocomposite hybrid out of a transition metal-oxide and carbon nanotube array would help the current limitations of the modern supercapacitor. TiO2 was chosen for its common occurrence in everyday materials and promising capacitance levels. A multi-walled carbon nanotube array was grown on a SiO2 precursor via CCVD. The transition metal oxide was then deposited via RF Sputtering methods to a MWCNT array. Recharge tests and characterization were con...

  19. Hybrid magnet devices for molecule manipulation and small scale high gradient-field applications

    Science.gov (United States)

    Humphries, David E.; Hong, Seok-Cheol; Cozzarelli, legal representative, Linda A.; Pollard, Martin J.; Cozzarelli, Nicholas R.

    2009-01-06

    The present disclosure provides a high performance hybrid magnetic structure made from a combination of permanent magnets and ferromagnetic pole materials which are assembled in a predetermined array. The hybrid magnetic structure provides means for separation and other biotechnology applications involving holding, manipulation, or separation of magnetizable molecular structures and targets. Also disclosed are hybrid magnetic tweezers able to exert approximately 1 nN of force to 4.5 .mu.m magnetic bead. The maximum force was experimentally measured to be .about.900 pN which is in good agreement with theoretical estimations and other measurements. In addition, a new analysis scheme that permits fast real-time position measurement in typical geometry of magnetic tweezers has been developed and described in detail.

  20. Metaphase FISH on a Chip: Miniaturized Microfluidic Device for Fluorescence in situ Hybridization

    DEFF Research Database (Denmark)

    Vedarethinam, Indumathi; Shah, Pranjul Jaykumar; Dimaki, Maria;

    2010-01-01

    Fluorescence in situ Hybridization (FISH) is a major cytogenetic technique for clinical genetic diagnosis of both inherited and acquired chromosomal abnormalities. Although FISH techniques have evolved and are often used together with other cytogenetic methods like CGH, PRINS and PNA-FISH, the pr......Fluorescence in situ Hybridization (FISH) is a major cytogenetic technique for clinical genetic diagnosis of both inherited and acquired chromosomal abnormalities. Although FISH techniques have evolved and are often used together with other cytogenetic methods like CGH, PRINS and PNA...

  1. A new transcutaneous energy transmission system with hybrid energy coils for driving an implantable biventricular assist device.

    Science.gov (United States)

    Okamoto, Eiji; Yamamoto, Yoshiro; Akasaka, Yuhta; Motomura, Tadashi; Mitamura, Yoshinori; Nosé, Yukihiko

    2009-08-01

    We have developed a new transcutaneous energy transmission (TET) system for a totally implantable biventricular assist device (BVAD) system in the New Energy and Industrial Development Organization (NEDO) artificial heart project. The TET system mainly consists of an energy transmitter, a hybrid energy coil unit, an energy receiver, an internal battery system, and an optical telemetry system. The hybrid energy coil unit consists of an air-core energy transmission coil and an energy-receiving coil having a ferrite core. Internal units of the TET system are encapsulated in a titanium alloy casing, which has a size of 111 mm in width, 73 mm in length, and 25 mm in height. In in vitro experiments, the TET system can transmit a maximum electric energy of 60 Watts, and it has a maximum transmission efficiency of 87.3%. A maximum surface temperature of 46.1 degrees C was measured at the ferrite core of the energy-receiving coil during an energy transmission of 20 Watts in air. The long-term performance test shows that the TET system has been able to operate stably for over 4 years with a decrease of energy-transmission efficiency from 85% to 80%. In conclusion, the TET system with the hybrid energy coil can overcome the drawback of previously reported TET systems, and it promises to be the highest performance TET system in the world.

  2. Flexible hybrid circuit fully inkjet-printed: Surface mount devices assembled by silver nanoparticles-based inkjet ink

    Science.gov (United States)

    Arrese, J.; Vescio, G.; Xuriguera, E.; Medina-Rodriguez, B.; Cornet, A.; Cirera, A.

    2017-03-01

    Nowadays, inkjet-printed devices such as transistors are still unstable in air and have poor performances. Moreover, the present electronics applications require a high degree of reliability and quality of their properties. In order to accomplish these application requirements, hybrid electronics is fulfilled by combining the advantages of the printing technologies with the surface-mount technology. In this work, silver nanoparticle-based inkjet ink (AgNP ink) is used as a novel approach to connect surface-mount devices (SMDs) onto inkjet-printed pads, conducted by inkjet printing technology. Excellent quality AgNP ink-junctions are ensured with high resolution picoliter drop jetting at low temperature (˜150 °C). Electrical, mechanical, and morphological characterizations are carried out to assess the performance of the AgNP ink junction. Moreover, AgNP ink is compared with common benchmark materials (i.e., silver epoxy and solder). Electrical contact resistance characterization shows a similar performance between the AgNP ink and the usual ones. Mechanical characterization shows comparable shear strength for AgNP ink and silver epoxy, and both present higher adhesion than solder. Morphological inspections by field-emission scanning electron microscopy confirm a high quality interface of the silver nanoparticle interconnection. Finally, a flexible hybrid circuit on paper controlled by an Arduino board is manufactured, demonstrating the viability and scalability of the AgNP ink assembling technique.

  3. Parity independence of the zero-bias conductance peak in a nanowire based topological superconductor-quantum dot hybrid device

    Science.gov (United States)

    Deng, M. T.; Yu, C. L.; Huang, G. Y.; Larsson, M.; Caroff, P.; Xu, H. Q.

    2014-01-01

    We explore the signatures of Majorana fermions in a nanowire based topological superconductor-quantum dot-topological superconductor hybrid device by charge transport measurements. At zero magnetic field, well-defined Coulomb diamonds and the Kondo effect are observed. Under the application of a finite, sufficiently strong magnetic field, a zero-bias conductance peak structure is observed. It is found that the zero-bias conductance peak is present in many consecutive Coulomb diamonds, irrespective of the even-odd parity of the quasi-particle occupation number in the quantum dot. In addition, we find that the zero-bias conductance peak is in most cases accompanied by two differential conductance peaks, forming a triple-peak structure, and the separation between the two side peaks in bias voltage shows oscillations closely correlated to the background Coulomb conductance oscillations of the device. The observed zero-bias conductance peak and the associated triple-peak structure are in line with Majorana fermion physics in such a hybrid topological system. PMID:25434375

  4. Parity independence of the zero-bias conductance peak in a nanowire based topological superconductor-quantum dot hybrid device.

    Science.gov (United States)

    Deng, M T; Yu, C L; Huang, G Y; Larsson, M; Caroff, P; Xu, H Q

    2014-01-01

    We explore the signatures of Majorana fermions in a nanowire based topological superconductor-quantum dot-topological superconductor hybrid device by charge transport measurements. At zero magnetic field, well-defined Coulomb diamonds and the Kondo effect are observed. Under the application of a finite, sufficiently strong magnetic field, a zero-bias conductance peak structure is observed. It is found that the zero-bias conductance peak is present in many consecutive Coulomb diamonds, irrespective of the even-odd parity of the quasi-particle occupation number in the quantum dot. In addition, we find that the zero-bias conductance peak is in most cases accompanied by two differential conductance peaks, forming a triple-peak structure, and the separation between the two side peaks in bias voltage shows oscillations closely correlated to the background Coulomb conductance oscillations of the device. The observed zero-bias conductance peak and the associated triple-peak structure are in line with Majorana fermion physics in such a hybrid topological system.

  5. THz waveguides, devices and hybrid polymer-chalcogenide photonic crystal fibers

    DEFF Research Database (Denmark)

    Bao, Hualong; Markos, Christos; Nielsen, Kristian;

    2014-01-01

    In this contribution, we review our recent activities in the design, fabrication and characterization of polymer THz waveguides. Besides the THz waveguides, we finally will also briefly show some of our initial results on a novel hybrid polymer photonic crystal fiber with integrated chalcogenide...

  6. VALVE TURBO-ALTERNATOR AS ADDITIONAL HYBRID CAR DEVICE FOR THE HIGH-VOLTAGE BATTERY CHARGE

    Directory of Open Access Journals (Sweden)

    S. Kolesnikov

    2009-01-01

    Full Text Available The description of the hybrid car, its drive components and method of the solution of the problem with moving period of the car on electric pulling by means of valve turbo-alternator is given in this article.

  7. Energy and Propulsion Optimization of Solid-Propellant Grain of a Hybrid Power Device

    Directory of Open Access Journals (Sweden)

    Bondarchuk Sergey S.

    2016-01-01

    Full Text Available A method of distribution of an additional solid-phase component (oxidizer providing uniformity of grain burning for the purpose of evaluation and optimization of energy and propulsion parameters of hybrid solid-propellant motor is proposed in the paper.

  8. OPTIMIZATION BALANCING DEVICES LI-ION BATTERIES FOR HYBRID AND ELECTRIC VEHICLES

    Directory of Open Access Journals (Sweden)

    R. P. Sharkovich

    2016-01-01

    Full Text Available The article discusses and proves the feasibility of using the proposed system balancing Li-ion battery consisting of a plurality of series-connected cells, applied to hybrid and electric transportation. The main objective of the system is to increase the performance and operating time of Li-ion batteries.

  9. Phylogeny-function analysis of (meta)genomic libraries: screening for expression of ribosomal RNA genes by large-insert library fluorescent in situ hybridization (LIL-FISH)

    NARCIS (Netherlands)

    Leveau, J.H.J.; Gerards, S.; De Boer, W.; Van Veen, J.A.

    2004-01-01

    We assessed the utility of fluorescent in situ hybridization (FISH) in the screening of clone libraries of (meta)genomic or environmental DNA for the presence and expression of bacterial ribosomal RNA (rRNA) genes. To establish proof-of-principle, we constructed a fosmid-based library in Escherichia

  10. Lessons learned: from dye-sensitized solar cells to all-solid-state hybrid devices.

    Science.gov (United States)

    Docampo, Pablo; Guldin, Stefan; Leijtens, Tomas; Noel, Nakita K; Steiner, Ullrich; Snaith, Henry J

    2014-06-25

    The field of solution-processed photovoltaic cells is currently in its second spring. The dye-sensitized solar cell is a widely studied and longstanding candidate for future energy generation. Recently, inorganic absorber-based devices have reached new record efficiencies, with the benefits of all-solid-state devices. In this rapidly changing environment, this review sheds light on recent developments in all-solid-state solar cells in terms of electrode architecture, alternative sensitizers, and hole-transporting materials. These concepts are of general applicability to many next-generation device platforms.

  11. Orientation and morphology of self-assembled oligothiophene semiconductors and development of hybrid nanostructures for photovoltaic devices

    Science.gov (United States)

    Tevis, Ian David

    This dissertation examines the self-assembly of electronically active small molecules for heterojunction photovoltaic devices and the synthesis of nanoscale hybrid materials with a focus on orientation and morphology. A hairpin-shaped self-assembling molecule featuring two semiconducting sexithiophene arms connected through a diamidocyclohexane linker was found to form p-type semiconducting nanowires through H-aggregation as well as J-aggregated bundles. This molecule was incorporated into heterojunction photovoltaics with phenyl-(C61/C71)-butyric acid methyl ester through spin-coating. The sexithiophene assembled during drying to form a percolating network of nanowires and fullerenes. Thermal annealing enhanced efficiencies by increasing domain sizes and organizing the fullerenes into the groves of the nanofibers to produce 0.48% efficient devices. A p-type quarterthiophene derivative was designed and synthesized to assemble through pi-pi stacking and hydrogen bonding and its assembly was explored. Solutions of the quarterthiophene drop-cast on poly(tetrafluoroethylene) dried quickly to form bundled fibers parallel to the substrate. Slower drying and higher concentrations led to the formation of rhombohedra and randomly oriented hexagonal prisms, respectively. Liquid-liquid interfacial precipitation was used with a porous aluminum oxide membrane between a solution of quarterthiophene and toluene to orient the hexagonal prisms perpendicular to the membrane. Depositing the molecule from solution onto a UV/Ozone treated transparent conducting oxide subtrated affored prisms and sheets with perpendicular pi-pi stacking was anisotropy observed by 2D-GISAXS. This perpendicular pi-pi stacking orientation and sheet formation on a planar electrode shortens charge transport distances and minimizes film defects, which could lead to improved photovoltaic devices. Interpenetrating donor and acceptor hybrid materials with perpendicular orientation for enhanced morphological

  12. PECASE: Nanostructure Hybrid Organic/Inorganic Materials for Active Opto-Electronic Devices

    Science.gov (United States)

    2011-01-03

    intergration and active device development: (1) the directed structuring of materials at the nanoscale through pattening and material growth methods, (2) the...electroluminescence (EL) that can be of use in fields as diverse as optical communications , spectroscopy, and environmental and industrial sensing. The RC structure...TFEL) devices already occupy a segment of the large-area, high-resolution, flat-panel-display market . The AC-TFEL displays, which consist of a

  13. Hybrid resonant organic-inorganic nanostructures for novel light emitting devices and solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Agranovich, Vladimir M. [Institute of Spectroscopy, Russian Academy of Science, Troitsk, Moscow (Russian Federation); Chemistry Department, University of Texas at Dallas, Texas (United States); Rupasov, Valery I. [ANTEOS, Inc., Shrewsbury, Massachusetts 01545 (United States); Silvestri, Leonardo [Dipartimento di Scienza dei Materiali, Universita degli Studi di Milano Bicocca, Milano (Italy)

    2010-06-15

    The energy transfer from an inorganic layer to an organic component of resonant hybrid organic/inorganic nanos-tructures can be used for creation of new type of LED. We mentioned the problem of electrical pumping which has to be solved. As was first suggested in 1979 by Dexter the transfer energy in opposite direction from organic part of nanostructure to semiconductor layer can be used for the creation of new type of solar cells. In this note we stress the importance of the idea by Dexter for photovoltaics and solar cells. We argue that the organic part in such hybrid structures can play a role of an effective organic collector of the light energy (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  14. Enhancing the plasma illumination behaviour of microplasma devices using microcrystalline/ultra-nanocrystalline hybrid diamond materials as cathodes.

    Science.gov (United States)

    Chang, Tinghsun; Lou, Shiucheng; Chen, Huangchin; Chen, Chulung; Lee, Chiyoung; Tai, Nyanhwa; Lin, Inan

    2013-08-21

    The properties of capacity-type microplasma devices were significantly enhanced due to the utilisation of hybrid diamond films as cathodes. The performance of the microplasma devices was closely correlated with the electron field emission (EFE) properties of the diamond cathode materials. The nanoemitters, which were prepared by growing duplex-structured diamond films [microcrystalline diamond (MCD)/ultra-nanocrystalline diamond (UNCD)] on Si-pyramid templates via a two-step microwave plasma enhanced chemical vapour deposition (MPE-CVD) process, exhibited improved EFE properties (E0 = 5.99 V μm(-1), J(e) = 1.10 mA cm(-2) at 8.50 V μm(-1) applied field), resulting in superior microplasma device performance (with a lower threshold field of 200 V mm(-1) and a higher plasma current density of 7.80 mA cm(-2)) in comparison with UNCD film devices prepared using a single-step MPE-CVD process. The superior EFE properties of the duplex-structured MCD-UNCD films relative to those of the UNCD films can be attributed to the unique granular structure of the diamond films. High-resolution transmission electron microscopy reveals that the MCD-UNCD films consisted of abundant graphitic phases located at the periphery of large diamond aggregates and at the boundaries between the ultra-small diamond grains. The presence of the graphite phase is presumed to be the prime factor that renders these films more conductive and causes these films to exhibit higher EFE properties, thus resulting in the improved plasma illumination properties of the microplasma devices.

  15. Nanostructured copper/porous silicon hybrid systems as efficient sound-emitting devices.

    OpenAIRE

    Recio-Sánchez, Gonzalo; Namura, Kyoko; Suzuki, Motofumi; Martín-Palma, Raúl J.

    2014-01-01

    In the present work, the photo-acoustic emission from nanostructured copper/porous silicon hybrid systems was studied. Copper nanoparticles were grown by photo-assisted electroless deposition on crystalline silicon and nanostructured porous silicon (nanoPS). Both the optical and photo-acoustic responses from these systems were determined. The experimental results show a remarkable increase in the photo-acoustic intensity when copper nanoparticles are incorporated to the porous structure. The ...

  16. Spin Polarization of Carriers in InGaAs Self-Assembled Quantum Rings Inserted in GaAs-AlGaAs Resonant Tunneling Devices

    Science.gov (United States)

    Orsi Gordo, V.; Gobato, Y. Galvão; Galeti, H. V. A.; Brasil, M. J. S. P.; Taylor, D.; Henini, M.

    2017-03-01

    In this work, we have investigated transport and polarization resolved photoluminescence (PL) of n-type GaAs-AlGaAs resonant tunneling diodes (RTDs) containing a layer of InGaAs self-assembled quantum rings (QRs) in the quantum well (QW). All measurements were performed under applied voltage, magnetic fields up to 15 T and using linearly polarized laser excitation. It was observed that the QRs' PL intensity and the circular polarization degree (CPD) oscillate periodically with applied voltage under high magnetic fields at 2 K. Our results demonstrate an effective voltage control of the optical and spin properties of InGaAs QRs inserted into RTDs.

  17. Optimal Planning and Operation of Hybrid Energy System Supplemented by Storage Devices

    DEFF Research Database (Denmark)

    Javadi, Mohammad Sadegh; Anvari-Moghaddam, Amjad; Guerrero, Josep M.

    2017-01-01

    This paper presents a two-stage model for optimal planning and operation of a distribution network. Optimal siting and sizing of renewable energy sources (RES) as well as electrical energy storage (EES) systems are considered in the proposed hybrid energy system. In this context, the planning...... problem is considered as a master problem, while there are different sub-problems associated with the short-term operational problem. To properly handle the uncertainties of forecasted load as well as renewable power generations, fair stochastic models are involved in the sub-problems based on historical...

  18. Hybrid superconductor-quantum point contact devices using InSb nanowires

    Science.gov (United States)

    Gill, S. T.; Damasco, J.; Car, D.; Bakkers, E. P. A. M.; Mason, N.

    2016-12-01

    Proposals for studying topological superconductivity and Majorana bound states in a nanowire proximity coupled to superconductors require that transport in the nanowire is ballistic. Previous works on hybrid nanowire-superconductor systems have shown evidence for Majorana bound states, but these experiments were also marked by disorder, which disrupts ballistic transport. In this paper, we demonstrate ballistic transport in the InSb nanowires interfaced directly with superconducting Al by observing quantized conductance at zero-magnetic field. Additionally, we demonstrate that the nanowire is proximity coupled to the superconducting contacts by observing Andreev reflection. These results are important steps for robustly establishing topological superconductivity in the InSb nanowires.

  19. Highly entangled photons from hybrid piezoelectric-semiconductor quantum dot devices.

    Science.gov (United States)

    Trotta, Rinaldo; Wildmann, Johannes S; Zallo, Eugenio; Schmidt, Oliver G; Rastelli, Armando

    2014-06-11

    Entanglement resources are key ingredients of future quantum technologies. If they could be efficiently integrated into a semiconductor platform, a new generation of devices could be envisioned, whose quantum-mechanical functionalities are controlled via the mature semiconductor technology. Epitaxial quantum dots (QDs) embedded in diodes would embody such ideal quantum devices, but a fine-structure splitting (FSS) between the bright exciton states lowers dramatically the degree of entanglement of the sources and hampers severely their real exploitation in the foreseen applications. In this work, we overcome this hurdle using strain-tunable optoelectronic devices, where any QD can be tuned for the emission of photon pairs featuring the highest degree of entanglement ever reported for QDs, with concurrence as high as 0.75 ± 0.02. Furthermore, we study the evolution of Bell's parameters as a function of FSS and demonstrate for the first time that filtering-free violation of Bell's inequalities requires the FSS to be smaller than 1 μeV. This upper limit for the FSS also sets the tuning range of exciton energies (∼1 meV) over which our device operates as an energy-tunable source of highly entangled photons. A moderate temporal filtering further increases the concurrence and the tunability of exciton energies up to 0.82 and 2 meV, respectively, though at the expense of 60% reduction of count rate.

  20. Performance-oriented Analysis of a Hybrid magnetic Assembly for a Heat-pump Magnetocaloric Device

    DEFF Research Database (Denmark)

    Insinga, Andrea Roberto; Smith, Anders; Bahl, Christian R.H.

    2014-01-01

    Conventional active-regenerator magnetocaloric devices include moving parts, with the purpose of generating an oscillating magnetic field in the magneto-caloric material, placed inside the regenerator. In this work a different design is analyzed, for application in a magnetocaloric heat pump...

  1. Optimization of hybrid organic-inorganic interdigitated photovoltaic device structure using a 2D diffusion model.

    Science.gov (United States)

    Krali, Emiljana; Curry, Richard J

    2011-04-26

    To improve the efficiency of organic photovoltaic devices the inclusion of semiconducting nanoparticles such as PbS has been used to enhance near-infrared absorption. Additionally the use of interdigitated heterojunctions has been explored as a means of improving charge extraction. In this paper we provide a two-dimensional model taking into account these approaches with the aim of predicting an optimized device geometry to maximize the efficiency. The steady-state exciton population has been calculated in each of the active regions taking into account the full optical response based on using a finite difference approach to obtain approximate numerical solutions to the 2D exciton diffusion equation. On the basis of this we calculate the contribution of each active material to the device short circuit current and power conversion efficiency. We show that optimized structures can lead to power conversions efficiencies of ∼50% compared to a maximum of ∼17% for planar heterojunction devices. To achieve this the interdigitated region thickness should be ∼800 nm with PbS and C(60) widths of ∼60 and 20 nm, respectively. Even modest nanopatterning using much thinner active regions provides improvements in efficiency and may be approached using a variety of methods including nanoimprinting lithography, nanotemplating, or the incorporation of presynthesized nanorod structures.

  2. The evaluation of MiL-Lx and Hybrid III Leg using Hybrid III and EUROSID2-re Anthropomorphic Test Devices

    CSIR Research Space (South Africa)

    Pandelani, T

    2012-09-01

    Full Text Available the standard in automotive testing until the Hybrid III family of ATDs was introduced in 1987. The Hybrid III addressed deficiencies of the Hybrid II, mainly in the area of the neck performance and provided improved bio-fidelity. The Hybrid III ATD also... used a curved spine which better represented the occupant in a sitting position, as opposed to the original Hybrid II straight spine. The Hybrid III is still the standard in automotive crash testing; however, newer specialized ATDs...

  3. Short-term and long-term outcome of radiological-guided insertion of central venous access port devices implanted at the forearm: a retrospective monocenter analysis in 1704 patients

    Energy Technology Data Exchange (ETDEWEB)

    Wildgruber, Moritz; Borgmeyer, Sebastian; Gaa, Jochen; Meier, Reinhard; Berger, Hermann [Technische Universitaet Muenchen, Division of Interventional Radiology, Department of Radiology, Klinikum Rechts der Isar, Muenchen (Germany); Haller, Bernhard [Technische Universitaet Muenchen, Department of Medical Statistics and Epidemiology, Klinikum Rechts der Isar, Munich (Germany); Jansen, Heike; Kiechle, Marion; Ettl, Johannes [Technische Universitaet Muenchen, Department of Obstetrics and Gynecology, Klinikum Rechts der Isar, Munich (Germany)

    2014-09-20

    The objectives are to analyze the technical success rate as well as the short-term and long-term complications of totally implantable venous access ports (TIVAPs) at the forearm. Retrospective analysis of 1,704 consecutively implanted TIVAPs was performed. Primary endpoints were defined as technical success rate, clinical outcome, device service interval, and rates of major complications. Minor complications not requiring port explantation were defined as secondary endpoints. The technical success rate was 99.2 % with no major complications. During follow-up, a total of 643,200 catheter-days were documented, the mean device service interval was 380.6 days/patient. A total of 243 complications (14.4 %) in 226 patients were observed (0.4/1000 catheter-days), in 140 patients (8.3 %) the port device had to be explanted. Disconnection between the port device and the catheter (1.6 %) was more frequent than fracture (0.8 %) and leakage (0.6 %) of the catheter, which occurred more frequently when the catheter was inserted via the cephalic versus the brachial vein. TIVAP implantation at the forearm is a simple and safe procedure with a low rate of early and late complications. (orig.)

  4. Control design for robust tracking and smooth transition in power systems with battery/supercapacitor hybrid energy storage devices

    Science.gov (United States)

    Jung, Hoeguk; Wang, Haifeng; Hu, Tingshu

    2014-12-01

    This paper considers some control design problems in a power system driven by battery/supercapacitor hybrid energy storage devices. The currents in the battery and the supercapacitor are actively controlled by two bidirectional buck-boost converters. Two control objectives are addressed in this paper: one is to achieve robust tracking of two reference variables, the battery current and the load voltage, the other is to achieve smooth transition of these variables during load switch. Based on the state-space averaged model we newly developed, the control design problems are converted into numerically efficient optimization problems with linear matrix inequality (LMI) constraints. An experimental system is constructed to validate the control design methods.

  5. Therapeutic efficacy of a hybrid mandibular advancement device in the management of obstructive sleep apnea assessed with acoustic reflection technique

    Directory of Open Access Journals (Sweden)

    S S Agarwal

    2015-01-01

    Full Text Available Obstructive sleep apnea (OSA is one of the most common forms of sleep-disordered breathing. Various treatment modalities include behavior modification therapy, nasal continuous positive airway pressure (CPAP, oral appliance therapy, and various surgical modalities. Oral appliances are noninvasive and recommended treatment modality for snoring, mild to moderate OSA cases and severe OSA cases when patient is not compliant to CPAP therapy and unwilling for surgery. Acoustic reflection technique (ART is a relatively new modality for three-dimensional assessment of airway caliber in various clinical situations. The accuracy and reproducibility of acoustic rhinometry and acoustic pharyngometry assessment are comparable to computerized tomography and magnetic resonance imaging. This case report highlights the therapeutic efficacy of an innovative customized acrylic hybrid mandibular advancement device in the management of polysomnography diagnosed OSA cases, and the treatment results were assessed by ART.

  6. Hybrid vapor phase-solution phase growth techniques for improved CZT(S,Se) photovoltaic device performance

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Liang-Yi; Gershon, Talia S.; Haight, Richard A.; Lee, Yun Seog

    2016-12-27

    A hybrid vapor phase-solution phase CZT(S,Se) growth technique is provided. In one aspect, a method of forming a kesterite absorber material on a substrate includes the steps of: depositing a layer of a first kesterite material on the substrate using a vapor phase deposition process, wherein the first kesterite material includes Cu, Zn, Sn, and at least one of S and Se; annealing the first kesterite material to crystallize the first kesterite material; and depositing a layer of a second kesterite material on a side of the first kesterite material opposite the substrate using a solution phase deposition process, wherein the second kesterite material includes Cu, Zn, Sn, and at least one of S and Se, wherein the first kesterite material and the second kesterite material form a multi-layer stack of the absorber material on the substrate. A photovoltaic device and method of formation thereof are also provided.

  7. A Six Degree-Of-Freedom Haptic Device Based On The Orthoglide And A Hybrid Agile Eye

    CERN Document Server

    Chablat, Damien

    2007-01-01

    This paper is devoted to the kinematic design of a new six degree-of-freedom haptic device using two parallel mechanisms. The first one, called orthoglide, provides the translation motions and the second one, called agile eye, produces the rotational motions. These two motions are decoupled to simplify the direct and inverse kinematics, as it is needed for real-time control. To reduce the inertial load, the motors are fixed on the base and a transmission with two universal joints is used to transmit the rotational motions from the base to the end-effector. Two alternative wrists are proposed (i), the agile eye with three degrees of freedom or (ii) a hybrid wrist made by the assembly of a two-dof agile eye with a rotary motor. The last one is optimized to increase its stiffness and to decrease the number of moving parts.

  8. Hybrid vapor phase-solution phase growth techniques for improved CZT(S,Se) photovoltaic device performance

    Science.gov (United States)

    Chang, Liang-Yi; Gershon, Talia S.; Haight, Richard A.; Lee, Yun Seog

    2016-12-27

    A hybrid vapor phase-solution phase CZT(S,Se) growth technique is provided. In one aspect, a method of forming a kesterite absorber material on a substrate includes the steps of: depositing a layer of a first kesterite material on the substrate using a vapor phase deposition process, wherein the first kesterite material includes Cu, Zn, Sn, and at least one of S and Se; annealing the first kesterite material to crystallize the first kesterite material; and depositing a layer of a second kesterite material on a side of the first kesterite material opposite the substrate using a solution phase deposition process, wherein the second kesterite material includes Cu, Zn, Sn, and at least one of S and Se, wherein the first kesterite material and the second kesterite material form a multi-layer stack of the absorber material on the substrate. A photovoltaic device and method of formation thereof are also provided.

  9. Motion-free hybrid design laser beam propagation analyzer using a digital micromirror device and a variable focus liquid lens.

    Science.gov (United States)

    Sheikh, Mumtaz; Riza, Nabeel A

    2010-06-01

    To the best of our knowledge, we propose the first motion-free laser beam propagation analyzer with a hybrid design using a digital micromirror device (DMD) and a liquid electronically controlled variable focus lens (ECVFL). Unlike prior analyzers that require profiling the beam at multiple locations along the light propagation axis, the proposed analyzer profiles the beam at the same plane for multiple values of the ECVFL focal length, thus eliminating beam profiler assembly motion. In addition to measuring standard Gaussian beam parameters, the analyzer can also be used to measure the M(2) beam propagation parameter of a multimode beam. Proof-of-concept beam parameter measurements with the proposed analyzer are successfully conducted for a 633 nm laser beam. Given the all-digital nature of the DMD-based profiling and all-analog motion-free nature of the ECVFL beam focus control, the proposed analyzer versus prior art promises better repeatability, speed, and reliability.

  10. Sticker-type ECG/PPG concurrent monitoring system hybrid integration of CMOS SoC and organic sensor device.

    Science.gov (United States)

    Lee, Yongsu; Lee, Hyeonwoo; Yoo, Seunghyup; Yoo, Hoi-Jun; Yongsu Lee; Hyeonwoo Lee; Seunghyup Yoo; Hoi-Jun Yoo; Yoo, Seunghyup; Lee, Yongsu; Yoo, Hoi-Jun; Lee, Hyeonwoo

    2016-08-01

    The sticker-type sensor system is proposed targeting ECG/PPG concurrent monitoring for cardiovascular diseases. The stickers are composed of two types: Hub and Sensor-node (SN) sticker. Low-power CMOS SoC for measuring ECG and PPG signal is hybrid integrated with organic light emitting diodes (OLEDs) and organic photo detector (OPD). The sticker has only 2g weight and only consumes 141μW. The optical calibration loop is adopted for maintaining SNR of PPG signal higher than 30dB. The pulse arrival time (PAT) and SpO2 value can be extracted from various body parts and verified comparing with the reference device from 20 people in-vivo experiments.

  11. Effect of the preparation procedure on the morphology of thin TiO₂ films and their device performance in small-molecule bilayer hybrid solar cells.

    Science.gov (United States)

    Unger, Eva L; Spadavecchia, Francesca; Nonomura, Kazuteru; Palmgren, Pål; Cappelletti, Giuseppe; Hagfeldt, Anders; Johansson, Erik M J; Boschloo, Gerrit

    2012-11-01

    Flat titanium dioxide films, to be used as the acceptor layer in bilayer hybrid solar cell devices, were prepared by spray-pyrolysis and by spin-casting. Both preparation methods resulted in anatase titania films with similar optical and electronic properties but considerably different film morphologies. Spray pyrolysis resulted in dense TiO₂ films grown onto and affected by the surface roughness of the underlying conducting glass substrates. The spin-casting preparation procedure resulted in nanoporous titania films. Hybrid solar cell devices with varying layer thickness of the small-molecule semiconducting dye TDCV-TPA were investigated. Devices built with spray-pyrolyzed titania substrates yielded conversion efficiencies up to 0.47%. Spin-cast titania substrates exhibited short circuits for thin dye layer thickness. For thicker dye layers the performance of these devices was up to 0.6% due to the higher interfacial area for charge separation of these nanoporous TiO₂ substrates.

  12. Frameless Stereotactic Insertion of Viewsite Brain Access System with Microscope-Mounted Tracking Device for Resection of Deep Brain Lesions: Technical Report.

    Science.gov (United States)

    White, Tim; Chakraborty, Shamik; Lall, Rohan; Fanous, Andrew A; Boockvar, John; Langer, David J

    2017-02-04

    The surgical management of deep brain tumors is often challenging due to the limitations of stereotactic needle biopsies and the morbidity associated with transcortical approaches. We present a novel microscopic navigational technique utilizing the Viewsite Brain Access System (VBAS) (Vycor Medical, Boca Raton, FL, USA) for resection of a deep parietal periventricular high-grade glioma as well as another glioma and a cavernoma with no related morbidity. The approach utilized a navigational tracker mounted on a microscope, which was set to the desired trajectory and depth. It allowed gentle continuous insertion of the VBAS directly to a deep lesion under continuous microscopic visualization, increasing safety by obviating the need to look up from the microscope and thus avoiding loss of trajectory. This technique has broad value for the resection of a variety of deep brain lesions.

  13. Rashba and Dresselhaus Effects in Hybrid Organic-Inorganic Perovskites: From Basics to Devices.

    Science.gov (United States)

    Kepenekian, Mikaël; Robles, Roberto; Katan, Claudine; Sapori, Daniel; Pedesseau, Laurent; Even, Jacky

    2015-12-22

    We use symmetry analysis, density functional theory calculations, and k·p modeling to scrutinize Rashba and Dresselhaus effects in hybrid organic-inorganic halide perovskites. These perovskites are at the center of a recent revolution in the field of photovoltaics but have also demonstrated potential for optoelectronic applications such as transistors and light emitters. Due to a large spin-orbit coupling of the most frequently used metals, they are also predicted to offer a promising avenue for spin-based applications. With an in-depth inspection of the electronic structures and bulk lattice symmetries of a variety of systems, we analyze the origin of the spin splitting in two- and three-dimensional hybrid perovskites. It is shown that low-dimensional nanostructures made of CH3NH3PbX3 (X = I, Br) lead to spin splittings that can be controlled by an applied electric field. These findings further open the door for a perovskite-based spintronics.

  14. Hybrid white organic light-emitting devices based on phosphorescent iridium-benzotriazole orange-red and fluorescent blue emitters

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Zhen-Yuan, E-mail: xiazhenyuan@hotmail.com [Key Laboratory for Advanced Materials and Institute of Fine Chemicals, East China University of Science and Technology, Shanghai 200237 (China); Su, Jian-Hua [Key Laboratory for Advanced Materials and Institute of Fine Chemicals, East China University of Science and Technology, Shanghai 200237 (China); Chang, Chi-Sheng; Chen, Chin H. [Display Institute, Microelectronics and Information Systems Research Center, National Chiao Tung University, Hsinchu, Taiwan 300 (China)

    2013-03-15

    We demonstrate that high color purity or efficiency hybrid white organic light-emitting devices (OLEDs) can be generated by integrating a phosphorescent orange-red emitter, bis[4-(2H-benzotriazol-2-yl)-N,N-diphenyl-aniline-N{sup 1},C{sup 3}] iridium acetylacetonate, Ir(TBT){sub 2}(acac) with fluorescent blue emitters in two different emissive layers. The device based on deep blue fluorescent material diphenyl-[4-(2-[1,1 Prime ;4 Prime ,1 Double-Prime ]terphenyl-4-yl-vinyl)-phenyl]-amine BpSAB and Ir(TBT){sub 2}(acac) shows pure white color with the Commission Internationale de L'Eclairage (CIE) coordinates of (0.33,0.30). When using sky-blue fluorescent dopant N,N Prime -(4,4 Prime -(1E,1 Prime E)-2,2 Prime -(1,4-phenylene)bis(ethene-2,1-diyl) bis(4,1-phenylene))bis(2-ethyl-6-methyl-N-phenylaniline) (BUBD-1) and orange-red phosphor with a color-tuning phosphorescent material fac-tris(2-phenylpyridine) iridium (Ir(ppy){sub 3} ), it exhibits peak luminance yield and power efficiency of 17.4 cd/A and 10.7 lm/W, respectively with yellow-white color and CIE color rendering index (CRI) value of 73. - Highlights: Black-Right-Pointing-Pointer An iridium-based orange-red phosphor Ir(TBT){sub 2}(acac) was applied in hybrid white OLEDs. Black-Right-Pointing-Pointer Duel- and tri-emitter WOLEDs were achieved with either high color purity or efficiency performance. Black-Right-Pointing-Pointer Peak luminance yield of tri-emitter WOLEDs was 17.4 cd/A with yellow-white color and color rendering index (CRI) value of 73.

  15. Multi-Radio Mobile Device in Role of Hybrid Node Between WiFi and LTE networks

    Directory of Open Access Journals (Sweden)

    Pavel Masek

    2015-05-01

    Full Text Available With the ubiquitous wireless network coverage, Machine-Type Communications (MTC is emerging to enable data transfers using devices/sensors without need for human interaction. In this paper we, we introduce a comprehensive simulation scenario for modeling and analysis for heterogeneous MTC. We demonstrate the most expected scenario of MTC communication using the IEEE 802.11 standard for direct communication between sensors and for transmitting data between individual sensor and Machine-Type Communication Gateway (MTCG. The MTCG represents the hybrid node serving as bridge between two heterogeneous networks (WiFi and LTE. Following the idea of hybrid node, two active interfaces must be implemented on this node together with mechanism for handling the incoming traffic (from WiFi network to LTE network. As a simulation tool, the Network Simulator 3 (NS-3 with implemented LTE/EPC Network Simulator (LENA framework was used. The major contribution of this paper therefore lies in the implementation of logic for interconnection of two heterogeneous networks in simulation environment NS-3.

  16. Hybrid nanostructured coating for increased resistance of prosthetic devices to staphylococcal colonization

    Science.gov (United States)

    Anghel, Ion; Grumezescu, Alexandru Mihai

    2013-01-01

    Prosthetic medical device-associated infections are responsible for significant morbidity and mortality rates. Novel improved materials and surfaces exhibiting inappropriate conditions for microbial development are urgently required in the medical environment. This study reveals the benefit of using natural Mentha piperita essential oil, combined with a 5 nm core/shell nanosystem-improved surface exhibiting anti-adherence and antibiofilm properties. This strategy reveals a dual role of the nano-oil system; on one hand, inhibiting bacterial adherence and, on the other hand, exhibiting bactericidal effect, the core/shell nanosystem is acting as a controlled releasing machine for the essential oil. Our results demonstrate that this dual nanobiosystem is very efficient also for inhibiting biofilm formation, being a good candidate for the design of novel material surfaces used for prosthetic devices.

  17. Hybrid nanostructured coating for increased resistance of prosthetic devices to staphylococcal colonization.

    Science.gov (United States)

    Anghel, Ion; Grumezescu, Alexandru Mihai

    2013-01-02

    Prosthetic medical device-associated infections are responsible for significant morbidity and mortality rates. Novel improved materials and surfaces exhibiting inappropriate conditions for microbial development are urgently required in the medical environment. This study reveals the benefit of using natural Mentha piperita essential oil, combined with a 5 nm core/shell nanosystem-improved surface exhibiting anti-adherence and antibiofilm properties. This strategy reveals a dual role of the nano-oil system; on one hand, inhibiting bacterial adherence and, on the other hand, exhibiting bactericidal effect, the core/shell nanosystem is acting as a controlled releasing machine for the essential oil. Our results demonstrate that this dual nanobiosystem is very efficient also for inhibiting biofilm formation, being a good candidate for the design of novel material surfaces used for prosthetic devices.

  18. High efficiency, hybrid electrochromic device on polycarbonate substrates with neon sputtered WO3-x thin films

    OpenAIRE

    2016-01-01

    Electrochromic materials change color reversibly by applying an external DC voltage. One among the many emerging application of electro-chromics is the smart windows. The coloration efficiency, the optical colour modulation and the cyclability are the factors that bench mark the device. Tungsten oxide (WO3-x) is versatile material and reactive DC magnetron sputtering (with argon as sputter gas) technique is common for electro-chromics. In the present communication we have prepared tungsten ox...

  19. Microwave assisted synthesis and characterisation of a zinc oxide/tobacco mosaic virus hybrid material. An active hybrid semiconductor in a field-effect transistor device.

    Science.gov (United States)

    Sanctis, Shawn; Hoffmann, Rudolf C; Eiben, Sabine; Schneider, Jörg J

    2015-01-01

    Tobacco mosaic virus (TMV) has been employed as a robust functional template for the fabrication of a TMV/zinc oxide field effect transistor (FET). A microwave based approach, under mild conditions was employed to synthesize stable zinc oxide (ZnO) nanoparticles, employing a molecular precursor. Insightful studies of the decomposition of the precursor were done using NMR spectroscopy and material characterization of the hybrid material derived from the decomposition was achieved using dynamic light scattering (DLS), transmission electron microscopy (TEM), grazing incidence X-ray diffractometry (GI-XRD) and atomic force microscopy (AFM). TEM and DLS data confirm the formation of crystalline ZnO nanoparticles tethered on top of the virus template. GI-XRD investigations exhibit an orientated nature of the deposited ZnO film along the c-axis. FET devices fabricated using the zinc oxide mineralized virus template material demonstrates an operational transistor performance which was achieved without any high-temperature post-processing steps. Moreover, a further improvement in FET performance was observed by adjusting an optimal layer thickness of the deposited ZnO on top of the TMV. Such a bio-inorganic nanocomposite semiconductor material accessible using a mild and straightforward microwave processing technique could open up new future avenues within the field of bio-electronics.

  20. Microwave assisted synthesis and characterisation of a zinc oxide/tobacco mosaic virus hybrid material. An active hybrid semiconductor in a field-effect transistor device

    Directory of Open Access Journals (Sweden)

    Shawn Sanctis

    2015-03-01

    Full Text Available Tobacco mosaic virus (TMV has been employed as a robust functional template for the fabrication of a TMV/zinc oxide field effect transistor (FET. A microwave based approach, under mild conditions was employed to synthesize stable zinc oxide (ZnO nanoparticles, employing a molecular precursor. Insightful studies of the decomposition of the precursor were done using NMR spectroscopy and material characterization of the hybrid material derived from the decomposition was achieved using dynamic light scattering (DLS, transmission electron microscopy (TEM, grazing incidence X-ray diffractometry (GI-XRD and atomic force microscopy (AFM. TEM and DLS data confirm the formation of crystalline ZnO nanoparticles tethered on top of the virus template. GI-XRD investigations exhibit an orientated nature of the deposited ZnO film along the c-axis. FET devices fabricated using the zinc oxide mineralized virus template material demonstrates an operational transistor performance which was achieved without any high-temperature post-processing steps. Moreover, a further improvement in FET performance was observed by adjusting an optimal layer thickness of the deposited ZnO on top of the TMV. Such a bio-inorganic nanocomposite semiconductor material accessible using a mild and straightforward microwave processing technique could open up new future avenues within the field of bio-electronics.

  1. A hybrid microfluidic-vacuum device for direct interfacing with conventional cell culture methods.

    Science.gov (United States)

    Chung, Bong Geun; Park, Jeong Won; Hu, Jia Sheng; Huang, Carlos; Monuki, Edwin S; Jeon, Noo Li

    2007-09-20

    Microfluidics is an enabling technology with a number of advantages over traditional tissue culture methods when precise control of cellular microenvironment is required. However, there are a number of practical and technical limitations that impede wider implementation in routine biomedical research. Specialized equipment and protocols required for fabrication and setting up microfluidic experiments present hurdles for routine use by most biology laboratories. We have developed and validated a novel microfluidic device that can directly interface with conventional tissue culture methods to generate and maintain controlled soluble environments in a Petri dish. It incorporates separate sets of fluidic channels and vacuum networks on a single device that allows reversible application of microfluidic gradients onto wet cell culture surfaces. Stable, precise concentration gradients of soluble factors were generated using simple microfluidic channels that were attached to a perfusion system. We successfully demonstrated real-time optical live/dead cell imaging of neural stem cells exposed to a hydrogen peroxide gradient and chemotaxis of metastatic breast cancer cells in a growth factor gradient. This paper describes the design and application of a versatile microfluidic device that can directly interface with conventional cell culture methods. This platform provides a simple yet versatile tool for incorporating the advantages of a microfluidic approach to biological assays without changing established tissue culture protocols.

  2. Hybrid Spintronic-CMOS Spiking Neural Network with On-Chip Learning: Devices, Circuits, and Systems

    Science.gov (United States)

    Sengupta, Abhronil; Banerjee, Aparajita; Roy, Kaushik

    2016-12-01

    Over the past decade, spiking neural networks (SNNs) have emerged as one of the popular architectures to emulate the brain. In SNNs, information is temporally encoded and communication between neurons is accomplished by means of spikes. In such networks, spike-timing-dependent plasticity mechanisms require the online programing of synapses based on the temporal information of spikes transmitted by spiking neurons. In this work, we propose a spintronic synapse with decoupled spike-transmission and programing-current paths. The spintronic synapse consists of a ferromagnet-heavy-metal heterostructure where the programing current through the heavy metal generates spin-orbit torque to modulate the device conductance. Low programing energy and fast programing times demonstrate the efficacy of the proposed device as a nanoelectronic synapse. We perform a simulation study based on an experimentally benchmarked device-simulation framework to demonstrate the interfacing of such spintronic synapses with CMOS neurons and learning circuits operating in the transistor subthreshold region to form a network of spiking neurons that can be utilized for pattern-recognition problems.

  3. A hybrid microfluidic-vacuum device for direct interfacing with conventional cell culture methods

    Directory of Open Access Journals (Sweden)

    Monuki Edwin S

    2007-09-01

    Full Text Available Abstract Background Microfluidics is an enabling technology with a number of advantages over traditional tissue culture methods when precise control of cellular microenvironment is required. However, there are a number of practical and technical limitations that impede wider implementation in routine biomedical research. Specialized equipment and protocols required for fabrication and setting up microfluidic experiments present hurdles for routine use by most biology laboratories. Results We have developed and validated a novel microfluidic device that can directly interface with conventional tissue culture methods to generate and maintain controlled soluble environments in a Petri dish. It incorporates separate sets of fluidic channels and vacuum networks on a single device that allows reversible application of microfluidic gradients onto wet cell culture surfaces. Stable, precise concentration gradients of soluble factors were generated using simple microfluidic channels that were attached to a perfusion system. We successfully demonstrated real-time optical live/dead cell imaging of neural stem cells exposed to a hydrogen peroxide gradient and chemotaxis of metastatic breast cancer cells in a growth factor gradient. Conclusion This paper describes the design and application of a versatile microfluidic device that can directly interface with conventional cell culture methods. This platform provides a simple yet versatile tool for incorporating the advantages of a microfluidic approach to biological assays without changing established tissue culture protocols.

  4. Hybrid photovoltaic devices from regioregular polythiophene and ZnO nanoparticles composites

    Energy Technology Data Exchange (ETDEWEB)

    Das, Narayan Ch. [Indiana University Cyclotron Facility, 2401 Milo B Sampson Lane, Bloomington, IN 47408 (United States); Sokol, Paul E. [Indiana University Cyclotron Facility, 2401 Milo B Sampson Lane, Bloomington, IN 47408 (United States); Department of Physics, Indiana University, Bloomington, IN 47405 (United States)

    2010-12-15

    The nano size zinc oxide (ZnO) was successfully synthesized at low temperature solution method. The structural characterization, size and distribution of synthesized ZnO particles were performed using X-ray diffraction (XRD) and neutron scattering technique. The hybrid polymer-metal oxide bulk heterojunction solar cell has been fabricated by blending of ZnO and regioregular poly(3-hexylthiophene) (P3HT) through solution process and flow coating on the flexible substrate. The decrease in the photoluminescence (PL) emission intensity more than 79% for ZnO:P3HT composites film indicates high charge generation efficiency. The cell shows the V{sub oc} and I{sub sc} of 0.33 V and 6.5 mA/cm{sup 2}, respectively. The performance and stability of cell were investigated using UV illumination of white light. (author)

  5. A light-stimulated neuromorphic device based on graphene hybrid phototransistor

    CERN Document Server

    Qin, Shuchao; Liu, Yujie; Wan, Qing; Wang, Xinran; Xu, Yongbing; Shi, Yi; Wang, Xiaomu; Zhang, Rong

    2016-01-01

    Neuromorphic chip refers to an unconventional computing architecture that is modelled on biological brains. It is ideally suited for processing sensory data for intelligence computing, decision-making or context cognition. Despite rapid development, conventional artificial synapses exhibit poor connection flexibility and require separate data acquisition circuitry, resulting in limited functionalities and significant hardware redundancy. Here we report a novel light-stimulated artificial synapse based on a graphene-nanotube hybrid phototransistor that can directly convert optical stimuli into a "neural image" for further neuronal analysis. Our optically-driven synapses involve multiple steps of plasticity mechanisms and importantly exhibit flexible tuning of both short- and long-term plasticity. Furthermore, our neuromorphic phototransistor can take multiple pre-synaptic light stimuli via wavelength-division multiplexing and allows advanced optical processing through charge-trap-mediated optical coupling. The...

  6. Design and Fabrication of Hybrid Piezomotor Applied in Precision Positioning Devices

    Institute of Scientific and Technical Information of China (English)

    CHENG Dong-ming; DUAN Zhi-yong; MA Feng-ying; GONG Qiao-xia

    2007-01-01

    The motor's configuration is designed and the dynamic analysis equations based on its simplified model are deduced. A testing system utilizing grating is set up to test this new motor, and the theoretical movement principle for the motor is proved by experiments. The pulse waveforms are applied to drive the motor to move in steps. The motor has a displacement resolution of 10nm and a maximum velocity of 0.6 mm/s. It can drive a 200 g slider whose range is 20 mm. A one-dimensional precision positioning platform is fabricated by using the new hybrid piezoelectric motor. The prototype is made up of two servomotors and two piezoelectric motors, which are controlled automatically by a computer. The positioning range of the platform is 10 cm.

  7. Polarity reversion of the operation mode of HfO2-based resistive random access memory devices by inserting Hf metal layer.

    Science.gov (United States)

    Peng, Ching-Shiang; Chang, Wen-Yuan; Lin, Ming-Ho; Chen, Wei-Su; Chen, Frederick; Tsai, Ming-Jinn

    2013-03-01

    The reversion of polarity within bipolar resistive switching operation occurs in Pt/HfO2/TiN and Pt/Hf/HfO2/TiN resistive random access memory devices. This reversion of voltage polarity is the result of interface generation which induces a conduction mechanism transformation from Poole-Frenkel emission to space charge limited current mechanism. To prove the reversion of polarity, this study uses curve fitting of I-V relations to verify the conduction mechanism theoretically and physical analysis to verify the oxygen ion distribution practically. The proposed Pt/Hf/HfO2/TiN devices exhibit good resistive switching characteristics, such as good uniformity, low voltage operation, robust endurance (10(3) dc sweep), and long retention (3 x 10(4) s at 85 degrees C).

  8. A Novel Hybrid Intelligent Indoor Location Method for Mobile Devices by Zones Using Wi-Fi Signals

    Directory of Open Access Journals (Sweden)

    Manuel Castañón–Puga

    2015-12-01

    Full Text Available The increasing use of mobile devices in indoor spaces brings challenges to location methods. This work presents a hybrid intelligent method based on data mining and Type-2 fuzzy logic to locate mobile devices in an indoor space by zones using Wi-Fi signals from selected access points (APs. This approach takes advantage of wireless local area networks (WLANs over other types of architectures and implements the complete method in a mobile application using the developed tools. Besides, the proposed approach is validated by experimental data obtained from case studies and the cross-validation technique. For the purpose of generating the fuzzy rules that conform to the Takagi–Sugeno fuzzy system structure, a semi-supervised data mining technique called subtractive clustering is used. This algorithm finds centers of clusters from the radius map given by the collected signals from APs. Measurements of Wi-Fi signals can be noisy due to several factors mentioned in this work, so this method proposed the use of Type-2 fuzzy logic for modeling and dealing with such uncertain information.

  9. A Novel Hybrid Intelligent Indoor Location Method for Mobile Devices by Zones Using Wi-Fi Signals.

    Science.gov (United States)

    Castañón-Puga, Manuel; Salazar, Abby Stephanie; Aguilar, Leocundo; Gaxiola-Pacheco, Carelia; Licea, Guillermo

    2015-12-02

    The increasing use of mobile devices in indoor spaces brings challenges to location methods. This work presents a hybrid intelligent method based on data mining and Type-2 fuzzy logic to locate mobile devices in an indoor space by zones using Wi-Fi signals from selected access points (APs). This approach takes advantage of wireless local area networks (WLANs) over other types of architectures and implements the complete method in a mobile application using the developed tools. Besides, the proposed approach is validated by experimental data obtained from case studies and the cross-validation technique. For the purpose of generating the fuzzy rules that conform to the Takagi-Sugeno fuzzy system structure, a semi-supervised data mining technique called subtractive clustering is used. This algorithm finds centers of clusters from the radius map given by the collected signals from APs. Measurements of Wi-Fi signals can be noisy due to several factors mentioned in this work, so this method proposed the use of Type-2 fuzzy logic for modeling and dealing with such uncertain information.

  10. In-situ spectroscopy and nanoscale electronics in superconductor-topological insulator hybrid devices: a combined thin film growth and quantum transport study

    NARCIS (Netherlands)

    Ngabonziza, Prosper

    2016-01-01

    In this dissertation, we presented a combined thin film growth and quantum transport study on superconductor topological insulator hybrid devices. Understanding of the electronic properties of topological insulators (TIs), their preparation in high quality thin film form and their interaction with o

  11. Uniform, High Efficiency, Hybrid CIGS Process with Application to Novel Device Structures: Annual Technical Report, 15 March 2005 - 14 March 2006

    Energy Technology Data Exchange (ETDEWEB)

    Delahoy, A. E.; Chen, L.; Sang, B.

    2006-06-01

    One of the main Phase I objectives of this subcontract was for EPV to demonstrate 14%-efficient CIGS devices using a hybrid process. The processing was also required to have good control ability. These goals were successfully accomplished. It will be seen that during Phase I, we successfully developed a new, simplified hybrid process. A highlight of intensive work was the achievement of a 14.0% NREL-verified device at a CIGS thickness of 1.13 ..mu..m. The simplified hybrid process considerably reduces CIGS film formation time and offers the promise of being a truly cost-effective and manufacturable one. It is considered to be one of the more attractive CIGS processes in the industry.

  12. Multilevel and Hybrid Architecture for Device Abstraction and Context Information Management in Smart Home Environments

    Science.gov (United States)

    Peláez, Víctor; González, Roberto; San Martín, Luis Ángel; Campos, Antonio; Lobato, Vanesa

    Hardware device management, and context information acquisition and abstraction are key factors to develop the ambient intelligent paradigm in smart homes. This work presents an architecture that addresses these two problems and provides a usable framework to develop applications easily. In contrast to other proposals, this work addresses performance issues specifically. Results show that the execution performance of the developed prototype is suitable for deployment in a real environment. In addition, the modular design of the system allows the user to develop applications using different techniques and different levels of abstraction.

  13. Hybrid electroluminescent device based on MEH-PPV and ZnO

    Science.gov (United States)

    Hewidy, Dina.; Gadallah, A.-S.; Fattah, G. Abdel

    2017-02-01

    Hybird organic/inorganic electroluminescent device based on the structure of glass/ITO/PEDOT:PSS/MEH-PPV/ZnO/ZnO submicrorods/Al has been manufactured. Spin coating has been used to deposit both PEDOT:PSS and MEH-PPV. Two-step process has been used to synthesis ZnO submicrorods, namely, spin coating and chemical bath deposition. Changing the dimensions of the ZnO submicrorods in this layer structure has been investigated to improve the performance of the organic/inorganic electroluminescence device. Such layer structure provides electroluminescence with narrow emission bands due to a high gain with this structure. X-ray diffraction patterns and scanning electron microscope images show that ZnO submicrorods have hexagon structure. Current-voltage curve for the structure has been reported. Electroluminescence curves (electroluminescence intensity versus wavelength) at different bias voltages have been presented and these results show narrowing in full width at half maximum in the spectra at high current density compared to photoluminescence excitation. The narrowing in the spectrum has been explained.

  14. Bright hybrid white light-emitting quantum dot device with direct charge injection into quantum dot

    Science.gov (United States)

    Cao, Jin; Xie, Jing-Wei; Wei, Xiang; Zhou, Jie; Chen, Chao-Ping; Wang, Zi-Xing; Jhun, Chulgyu

    2016-12-01

    A bright white quantum dot light-emitting device (white-QLED) with 4-[4-(1-phenyl-1H-benzo[d]imidazol-2-yl)phenyl]-2- [3-(tri-phenylen-2-yl)phen-3-yl]quinazoline deposited on a thin film of mixed green/red-QDs as a bilayer emitter is fabricated. The optimized white-QLED exhibits a turn-on voltage of 3.2 V and a maximum brightness of 3660 cd/m2@8 V with the Commission Internationale de l’Eclairage (CIE) chromaticity in the region of white light. The ultra-thin layer of QDs is proved to be critical for the white light generation in the devices. Excitation mechanism in the white-QLEDs is investigated by the detailed analyses of electroluminescence (EL) spectral and the fluorescence lifetime of QDs. The results show that charge injection is a dominant mechanism of excitation in the white-QLED. Project supported by the National Natural Science Foundation of China (Grant No. 21302122) and the Science and Technology Commission of Shanghai Municipality, China (Grant No. 13ZR1416600).

  15. Surface modification with MK-2 organic dye in a ZnO/P3HT hybrid solar cell: Impact on device performance

    Directory of Open Access Journals (Sweden)

    Yu Jin Kim

    2014-07-01

    Full Text Available The photovoltaic performance of a hybrid ZnO/P3HT heterojunction was improved by modifying the device surface with the MK-2 dye. This organic dye enhanced the compatibility between the polymer and the metal oxide, increased the exciton separation efficiency, and improved the molecular ordering in the charge transport network. The resulting device displayed a substantial enhancement in the photocurrent, open circuit voltage, and fill factor, leading to a 12-fold increase in the power conversion efficiency relative to the unmodified device, from 0.13% to 1.53%.

  16. Insertional protein engineering for analytical molecular sensing

    Directory of Open Access Journals (Sweden)

    Arís Anna

    2006-04-01

    Full Text Available Abstract The quantitative detection of low analyte concentrations in complex samples is becoming an urgent need in biomedical, food and environmental fields. Biosensors, being hybrid devices composed by a biological receptor and a signal transducer, represent valuable alternatives to non biological analytical instruments because of the high specificity of the biomolecular recognition. The vast range of existing protein ligands enable those macromolecules to be used as efficient receptors to cover a diversity of applications. In addition, appropriate protein engineering approaches enable further improvement of the receptor functioning such as enhancing affinity or specificity in the ligand binding. Recently, several protein-only sensors are being developed, in which either both the receptor and signal transducer are parts of the same protein, or that use the whole cell where the protein is produced as transducer. In both cases, as no further chemical coupling is required, the production process is very convenient. However, protein platforms, being rather rigid, restrict the proper signal transduction that necessarily occurs through ligand-induced conformational changes. In this context, insertional protein engineering offers the possibility to develop new devices, efficiently responding to ligand interaction by dramatic conformational changes, in which the specificity and magnitude of the sensing response can be adjusted up to a convenient level for specific analyte species. In this report we will discuss the major engineering approaches taken for the designing of such instruments as well as the relevant examples of resulting protein-only biosensors.

  17. Method and device for detecting impact events on a security barrier which includes a hollow rebar allowing insertion and removal of an optical fiber

    Science.gov (United States)

    Pies, Ross E.

    2016-03-29

    A method and device for the detection of impact events on a security barrier. A hollow rebar is farmed within a security barrier, whereby the hollow rebar is completely surrounded by the security barrier. An optical fiber passes through the interior of the hollow rebar. An optical transmitter and an optical receiver are both optically connected to the optical fiber and connected to optical electronics. The optical electronics are configured to provide notification upon the detection of an impact event at the security barrier based on the detection of disturbances within the optical fiber.

  18. Hermetically sealable package for hybrid solid-state electronic devices and the like

    Science.gov (United States)

    Miller, Wilson N. (Inventor); Gray, Ormal E. (Inventor)

    1988-01-01

    A light-weight, inexpensively fabricated, hermetically sealable, repairable package for small electronic or electromechanical units, having multiple connections, is described. A molded ring frame of polyamide-imide plastic (Torlon) is attached along one edge to a base plate formed of a highly heat conducting material, such as aluminum or copper. Bores are placed through a base plate within the area of the edge surface of ring frame which result in an attachment of the ring frame to the base plate during molding. Electrical leads are molded into the ring frame. The leads are L-shaped gold-plated copper wires imbedded within widened portions of the side wall of the ring frame. Within the plastic ring frame wall the leads are bent (typically, though not necessarily at 90 deg) so that they project into the interior volume of the ring frame for connection to the solid state devices.

  19. 求解带硬时间窗车辆路径问题的改进UMDA算法%A Univariate Marginal Distribution Algorithm Hybridized with Insertion Heuristics for the Vehicle Routing Problem with Hard Time Windows

    Institute of Scientific and Technical Information of China (English)

    柴获; 何瑞春; 马昌喜; 代存杰

    2016-01-01

    This paper presents a univariate marginal distribution algorithm hybridized with insertion heuristics for the vehicle routing problem with hard time windows (VRPHTW). In the VRPHTW,a fleet of vehicles must deliver goods to a set of customers,time window constraints of the customers must be respected and the fact that the travel time between two points depends on the time of departure has to be taken into account. The latter assumption is particularly important in an urban context where the traffic plays a significant role. A shortcoming of univariate marginal distribution algorithm for vehicle routing problems is that,customers are not independent events in probabilistic model. Hence,we propose a novel probabilistic model that probability of the distribution of customers delivered by the same vehicle. Moreover,the new population is generated by two phase insertion heuristics method. Computational results with 56 Solomon benchmark problems confirm the benefits of other algorithms,the resulting algorithm turns out to be competitive,matching or improving the best known results.%针对带硬时间窗的车辆路径问题(VRPHTW)求解,提出了一种混合单变量边缘分布算法(hybrid UDMA,hUDMA),改进了基本UMDA的概率模型.统计节点按路径分布的概率,使其能够在解空间上找到节点—路径的分布关系,提高了UMDA的全局搜索能力.采用两阶段插入法进行最佳节点搜索和路径分配完成UMDA采样操作,通过种群进化来获取最优解.计算Solomon 100客户的6类问题56个算例的实验结果表明:在最优解的取得方面,C类算例能够全部取得最优解,R、RC类算例能以50%左右概率取得最优解;在平均误差方面,C类算例计算结果与已知最优解一致,R、RC类算例计算误差率与已知最优解比较接近,平均误差率为1.03%.

  20. Analysis of psychological status of women before intrauterine device insertion%放置宫内节育器育龄妇女的心理状态分析

    Institute of Scientific and Technical Information of China (English)

    陈粮; 袁荣亲; 郭练; 林佩萱; 杨烨; 张淑婷; 袁玉枝; 刁伟坚

    2011-01-01

    Objective: To explore the psychological and mental health status of women at reproductive age before intrauterine device (IUD) insertion, in order to provide a theoretical and practice basis for better family planning and contraceptive quality service. Methods: Women underwent psychological evaluation with symptom checklist 90 (SCL -90) , selfrating anxiety scale (SAS) and selfrating depression scale (SDS) before intrauterine device insertion. Results; There was no significant difference between the score of SCL - 90 of these women and that of the national norm in somatization and psychosis (P > 0.05 ) , while scores of other factors were even lower than those of the national norm ( P < 0. 05 ). The score of SDS was lower than that of -the national norm ( P < 0.05 ). And the score of SAS was higher than that of the national norm ( P < 0.05 ). Conclusion: IUD insertion was a safe, simple, effective, reversible and acceptable contraceptive measure. While it could induce symptoms of mild anxiety because of the operation may act as a stress source.%目的:了解放置宫内节育器(IUD)育龄妇女的精神症状及心理卫生状况,为更好地开展避孕节育优质服务提供理论和实践依据.方法:对2008年3月~2009年12月在广州市人口和计划生育科学研究所放置IUD的妇女行症状自评量表(SCL-90)、焦虑自评量表(SAS)和抑郁自评量表(SDS)心理测评.结果:SCL-90与全国常模相比,除躯体化、精神病性因子无明显差异外,其余各因子评分均低于全国常模(P<0.05);SDS分值亦低于全国常模(P<0.05);SAS分值则高于全国常模(P<0.05).结论:放置IUD是一个安全、简单、有效、可逆的避孕措施,但作为一项手术,可能成为一个应激源,引发置器妇女的轻度焦虑症状.

  1. Toward highly stable solid-state unconventional thin-film battery-supercapacitor hybrid devices: Interfacing vertical core-shell array electrodes with a gel polymer electrolyte

    Science.gov (United States)

    Pandey, Gaind P.; Klankowski, Steven A.; Liu, Tao; Wu, Judy; Li, Jun

    2017-02-01

    A novel solid-state battery-supercapacitor hybrid device is fabricated for high-performance electrical energy storage using a Si anode and a TiO2 cathode in conjunction with a flexible, solid-like gel polymer electrolyte film as the electrolyte and separator. The electrodes were fabricated as three-dimensional nanostructured vertical arrays by sputtering active materials as conformal shells on vertically aligned carbon nanofibers (VACNFs) which serve as the current collector and structural template. Such nanostructured vertical core-shell array-electrodes enable short Li-ion diffusion path and large pseudocapacitive contribution by fast surface reactions, leading to the hybrid features of batteries and supercapacitors that can provide high specific energy over a wide range of power rates. Due to the improved mechanical stability of the infiltrated composite structure, the hybrid cell shows excellent cycling stability and is able to retain more than 95% of the original capacity after 3500 cycles. More importantly, this solid-state device can stably operate in a temperature range from -20 to 60 °C with a very low self-discharge rate and an excellent shelf life. This solid-state architecture is promising for the development of highly stable thin-film hybrid energy storage devices for unconventional applications requiring largely varied power, wider operation temperature, long shelf-life and higher safety standards.

  2. Metamaterials: A New Ba0.6 Sr0.4 TiO3 -Silicon Hybrid Metamaterial Device in Terahertz Regime (Small 19/2016).

    Science.gov (United States)

    Wu, Liang; Du, Ting; Xu, Ningning; Ding, Chunfeng; Li, Hui; Sheng, Quan; Liu, Ming; Yao, Jianquan; Wang, Zhiyong; Lou, Xiaojie; Zhang, Weili

    2016-05-01

    A giant terahertz modulation based on a Ba0.6 Sr0.4 TiO3 -silicon hybrid metamaterial is reported by L. Wu, W. Zhang, and co-workers on page 2610. The proposed nanoscale Ba0.6 Sr0.4 TiO3 (BST) hybrid metamaterial, delivering a transmission contrast of up to ≈79% due to electrically enabled carrier transport between the ferroelectric thin film and silicon substrate, is promising in developing high-performance real world photonic devices for terahertz technology.

  3. Comparison of surgical time and IOP spikes with two ophthalmic viscosurgical devices following Visian STAAR (ICL, V4c model insertion in the immediate postoperative period

    Directory of Open Access Journals (Sweden)

    Ganesh S

    2016-01-01

    Full Text Available Sri Ganesh, Sheetal BrarDepartment of Phaco and Refractive Surgeries, Nethradhama Superspeciality Eye Hospital, Bangalore, IndiaPurpose: To compare the effect of two ocular viscosurgical devices (OVDs on intraocular pressure (IOP and surgical time in immediate postoperative period after bilateral implantable collamer lens (using the V4c model implantation.Methods: A total of 20 eligible patients were randomized to receive 2% hydroxypropylmethylcellulose (HPMC in one eye and 1% hyaluronic acid in fellow eye. Time taken for complete removal of OVD and total surgical time were recorded. At the end of surgery, IOP was adjusted between 15 and 20 mmHg in both the eyes.Results: Mean time for complete OVD evacuation and total surgical time were significantly higher in the HPMC group (P=0.00. Four eyes in the HPMC group had IOP spike, requiring treatment. IOP values with noncontact tonometry at 1, 2, 4, 24, and 48 hours were not statistically significant (P>0.05 for both the groups.Conclusion: The study concluded that 1% hyaluronic acid significantly reduces total surgical time, and incidence of acute spikes may be lower compared to 2% HPMC when used for implantable collamer lens (V4c model.Keywords: OVD, hyaluronic acid, ICL, V4c, IOP spikes

  4. Comparison of surgical time and IOP spikes with two ophthalmic viscosurgical devices following Visian STAAR (ICL, V4c model) insertion in the immediate postoperative period

    Science.gov (United States)

    Ganesh, Sri; Brar, Sheetal

    2016-01-01

    Purpose To compare the effect of two ocular viscosurgical devices (OVDs) on intraocular pressure (IOP) and surgical time in immediate postoperative period after bilateral implantable collamer lens (using the V4c model) implantation. Methods A total of 20 eligible patients were randomized to receive 2% hydroxypropylmethylcellulose (HPMC) in one eye and 1% hyaluronic acid in fellow eye. Time taken for complete removal of OVD and total surgical time were recorded. At the end of surgery, IOP was adjusted between 15 and 20 mmHg in both the eyes. Results Mean time for complete OVD evacuation and total surgical time were significantly higher in the HPMC group (P=0.00). Four eyes in the HPMC group had IOP spike, requiring treatment. IOP values with noncontact tonometry at 1, 2, 4, 24, and 48 hours were not statistically significant (P>0.05) for both the groups. Conclusion The study concluded that 1% hyaluronic acid significantly reduces total surgical time, and incidence of acute spikes may be lower compared to 2% HPMC when used for implantable collamer lens (V4c model). PMID:26869754

  5. Sulfur and Nitrogen co-doped graphene quantum dot decorated ZnO nanorod/polymer hybrid flexible device for photosensing applications

    Energy Technology Data Exchange (ETDEWEB)

    Hmar, Jehova Jire L.; Majumder, Tanmoy; Dhar, Saurab; Mondal, Suvra Prakash, E-mail: suvraphy@gmail.com

    2016-08-01

    S and N co-doped graphene quantum dots (S,N-GQDs) have been synthesized by a hydrothermal process. S,N-GQDs are made up of 1–5 monolayer of graphene with average diameter 13.3 nm. The absorption peaks at 336 and 621 nm, are attributed to n → Π{sup ⁎} transitions of electrons in C=O and S=O bonds, respectively. S,N-GQDs are highly luminescent and showed excitation dependent emission behaviors. Hybrid photosensing device has been fabricated with S,N-GQD sensitized ZnO nanorods and a conjugated polymer poly(3-hexylthiophene) (P3HT). S,N-GQD decorated ZnO nanorod demonstrated higher photoresponse compared to pristine ZnO nanorod based device. S,N-GQD/ZnO nanorod hybrid device showed superior incident photon to electron conversion efficiency (IPCE), photoresponsivity and detectivity compared to the control samples. The flexibility study of the samples has been monitored by measuring current-voltage characteristics at different bending angles. - Highlights: • S and N co-doped graphene quantum dots (S,N-GQDs) were synthesized. • ZnO nanorods were grown on ITO coated flexible PET substrates. • S,N-GQDs were attached with ZnO nanorods and used as a green sensitizer. • Photosensing properties of S,N-GQD/ZnO and P3HT polymer hybrid device was studied.

  6. Resistive Switching in All-Printed, Flexible and Hybrid MoS2-PVA Nanocomposite based Memristive Device Fabricated by Reverse Offset

    Science.gov (United States)

    Rehman, Muhammad Muqeet; Siddiqui, Ghayas Uddin; Gul, Jahan Zeb; Kim, Soo-Wan; Lim, Jong Hwan; Choi, Kyung Hyun

    2016-11-01

    Owing to the increasing interest in the nonvolatile memory devices, resistive switching based on hybrid nanocomposite of a 2D material, molybdenum disulphide (MoS2) and polyvinyl alcohol (PVA) is explored in this work. As a proof of concept, we have demonstrated the fabrication of a memory device with the configuration of PET/Ag/MoS2-PVA/Ag via an all printed, hybrid, and state of the art fabrication approach. Bottom Ag electrodes, active layer of hybrid MoS2-PVA nanocomposite and top Ag electrode are deposited by reverse offset, electrohydrodynamic (EHD) atomization and electrohydrodynamic (EHD) patterning respectively. The fabricated device displayed characteristic bistable, nonvolatile and rewritable resistive switching behavior at a low operating voltage. A decent off/on ratio, high retention time, and large endurance of 1.28 × 102, 105 sec and 1000 voltage sweeps were recorded respectively. Double logarithmic curve satisfy the trap controlled space charge limited current (TCSCLC) model in high resistance state (HRS) and ohmic model in low resistance state (LRS). Bendability test at various bending diameters (50-2 mm) for 1500 cycles was carried out to show the mechanical robustness of fabricated device.

  7. Treatment based on syndrome differentiation of irregular menstruation after intrauterine device insertion%放置宫内节育器后月经不调辨证论治

    Institute of Scientific and Technical Information of China (English)

    吕应慧

    2014-01-01

    Intrauterine device (IUD) is the most convenient, safety, long lasting and economic method of contraception for women at childbearing age[1]. Abnormal menstruation is the main adverse reaction after intrauterine device (IUD) insertion, also the main reason of the discontinuation of IUD, mainly for menorrhagia, namely menstruation too much and prolonged menstruation, drip or irregular. This article only states cases given treatment based on syndrome differentiation of Traditional Chinese Medicine in recent years which has reached great curative effects.%宫内节育器是目前育龄妇女最方便、安全、长效且经济的避孕方法[1]。月经异常是宫内节育器的主要不良反应,也是宫内节育器停用的主要原因,主要表现为月经过多,即月经量增多或流血时间和经期延长、点滴或不规则。本文仅对近几年在临床中遇到的病例运用中医中药进行分型辨证论治取得了较好疗效。

  8. Hybrid approach of ventricular assist device and autologous bone marrow stem cells implantation in end-stage ischemic heart failure enhances myocardial reperfusion

    Directory of Open Access Journals (Sweden)

    Khayat Andre

    2011-01-01

    Full Text Available Abstract We challenge the hypothesis of enhanced myocardial reperfusion after implanting a left ventricular assist device together with bone marrow mononuclear stem cells in patients with end-stage ischemic cardiomyopathy. Irreversible myocardial loss observed in ischemic cardiomyopathy leads to progressive cardiac remodelling and dysfunction through a complex neurohormonal cascade. New generation assist devices promote myocardial recovery only in patients with dilated or peripartum cardiomyopathy. In the setting of diffuse myocardial ischemia not amenable to revascularization, native myocardial recovery has not been observed after implantation of an assist device as destination therapy. The hybrid approach of implanting autologous bone marrow stem cells during assist device implantation may eventually improve native cardiac function, which may be associated with a better prognosis eventually ameliorating the need for subsequent heart transplantation. The aforementioned hypothesis has to be tested with well-designed prospective multicentre studies.

  9. Chest tube insertion

    Science.gov (United States)

    ... tube insertion; Insertion of tube into chest; Tube thoracostomy; Pericardial drain ... Kirsch TD, Sax J. Tube thoracostomy. In: Roberts JR, ed. Roberts and ... . 6th ed. Philadelphia, PA: Elsevier Saunders; 2014:chap 10.

  10. Feeding tube insertion - gastrostomy

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/002937.htm Feeding tube insertion - gastrostomy To use the sharing features on this page, please enable JavaScript. A gastrostomy feeding tube insertion is the placement of a feeding ...

  11. Efficient charge transfer and field-induced tunneling transport in hybrid composite device of organic semiconductor and cadmium telluride quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Varade, Vaibhav, E-mail: vaibhav.tvarade@gmail.com; Jagtap, Amardeep M.; Koteswara Rao, K. S. R.; Ramesh, K. P.; Menon, R. [Department of Physics, Indian Institute of Science, Bangalore 560012 (India); Anjaneyulu, P. [Department of Physics, Gitam University, Hyderabad 502329 (India)

    2015-06-07

    Temperature and photo-dependent current–voltage characteristics are investigated in thin film devices of a hybrid-composite comprising of organic semiconductor poly(3,4-ethylenedioxythiophene):polystyrenesulfonate (PEDOT:PSS) and cadmium telluride quantum dots (CdTe QDs). A detailed study of the charge injection mechanism in ITO/PEDOT:PSS-CdTe QDs/Al device exhibits a transition from direct tunneling to Fowler–Nordheim tunneling with increasing electric field due to formation of high barrier at the QD interface. In addition, the hybrid-composite exhibits a huge photoluminescence quenching compared to aboriginal CdTe QDs and high increment in photoconductivity (∼ 400%), which is attributed to the charge transfer phenomena. The effective barrier height (Φ{sub B} ≈ 0.68 eV) is estimated from the transition voltage and the possible origin of its variation with temperature and photo-illumination is discussed.

  12. Numerical Simulation of the Tube Inserted with Rotors -assembled Device for Heat Transfer Enhancement%换热管内转子强化换热的数值模拟

    Institute of Scientific and Technical Information of China (English)

    张震; 韩崇刚; 李锋样; 阎华; 杨卫民

    2011-01-01

    Principle of the rotors - assembled device for heat transfer enhancement and automatic cleaning was first introduced in the paper.Flow field, temperature field, pressure field and process of heat exchange were regarded to evaluate flow and heat transfer characteristics of the tube by building up 3 - D flow models of a plain tube and the tube inserted with several rotors.The comparison of simulation results showed that the three - dimensional flow in the tube inserted with rotors was very complex, with clear circular flow between rotors and the tube wall, while the tangential velocity and radial velocity increased to some extent, and the fluid inside the rotating radius flowed in a spiral way.In all, the tube inserted with rotors achieved stronger turbulence intensity than the plain tube, especially in the near- wall region.Therefore convective heat transfer was enhanced with heat transfer coefficient increased, which proved heat transfer enhancement and automatic cleaning functions of rotors.%本文概述了转子组合式强化传热装置的强化传热和自清洁原理.分别通过建立光管及内置多个转子换热管的三维流动模型,对换热管内流场、温度场、压力场以及换热过程进行了模拟,得到了管内流体的流动特性和传热特性.对比模拟结果表明,内置转子换热管管内的三维流动比较复杂,转子与管壁之间缝隙内的流体有着明显的环绕流动,切向速度和径向速度也增大到一定范围,转子旋转半径内的流体整体呈螺旋流动.总的来说,内置转子的换热管内较光管有较强的湍流度,尤其是近壁区域,因此强化了管内的对流换热,传热系数显著提高,从而验证了转子具有强化传热和自清洁的双重功能.

  13. Fiscal 1997 R and D project on industrial science and technology under a consignment from NEDO. R and D of the superconducting material and device (technical development of the Josephson device hybrid system); 1997 nendo sangyo kagaku gijutsu kenkyu kaihatsu jigyo Shin energy Sangyo Gijutsu Sogo Kaihatsu Kiko itaku. Chodendo zairyo chodendo soshi no kenkyu kaihatsu (Josephson soshi hybrid system no gijutsu kaihatsu) seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    In order to establish basic technology for hybrid systems of superconducting and semiconducting devices, study was made on ultrahigh speed and low energy consumption properties of Josephson devices. As Josephson IC technology, a logical circuit, ring network, memory circuit, and oxide superconductor logical circuit were studied. As superconducting hybrid system technology, a Josephson device- semiconductor device interface, formation technology of signal transmission lines, and Josephson-MOS IC technology were developed. In fiscal 1997, as Josephson IC technology, switch motion of 4GHz in clock frequency was achieved by new high-density wiring process. Integration of some semiconducting processor elements, junction of surface- stabilized superconducting thin films, and motion of combination structure of some SQUIDs were also confirmed. On the hybrid system, voltage conversion operation of all interfaces was confirmed. Proper logical operation of the Josephson device hybrid circuit was also confirmed. 95 refs., 90 figs., 5 tabs.

  14. Hybrid vehicles

    Energy Technology Data Exchange (ETDEWEB)

    West, J.G.W. [Electrical Machines (United Kingdom)

    1997-07-01

    The reasons for adopting hybrid vehicles result mainly from the lack of adequate range from electric vehicles at an acceptable cost. Hybrids can offer significant improvements in emissions and fuel economy. Series and parallel hybrids are compared. A combination of series and parallel operation would be the ideal. This can be obtained using a planetary gearbox as a power split device allowing a small generator to transfer power to the propulsion motor giving the effect of a CVT. It allows the engine to run at semi-constant speed giving better fuel economy and reduced emissions. Hybrid car developments are described that show the wide range of possible hybrid systems. (author)

  15. Microplasma mode transition and corresponding propagation characteristics controlled by manipulating electric field strength in a microchannel-cavity hybrid structure device

    Science.gov (United States)

    Wang, Y.; Ni, J. H.; Zhong, S.; Zhang, X.; Liang, Z.; Liu, C.; Park, S.-J.; Eden, J. G.

    2016-10-01

    Plasma redistribution in a symmetric microchannel-cavity hybrid structure device has been investigated by modulating the applied electric field strength. The device array has been operated in 200 Torr of argon, driven by a 20 kHz bipolar waveform. With the existence of the intervening microchannel between microcavities, several stable modes of operation of the microplasma have been observed, including cavity mode, hybrid mode and channel mode. Transition between the modes occurs with modulation of the applied voltage from 800 to 1100 V. The characteristics of microplasma propagation in different modes are investigated and the propagation speed along diagonal direction of the device in cavity mode, hybrid and channel mode are calculated to be ~48, ~29 and ~32 km s-1, respectively. Nonhomogeneous electric field strength distribution and plasma interaction have been discussed to explain these experimental results. Emission intensity and propagation speed differences in the cavity mode between the polarities of the applied voltage are interpreted through spatially resolved measurements of the emission profile in a partial channel-cavity array.

  16. HistoFlex-a microfluidic device providing uniform flow conditions enabling highly sensitive, reproducible and quantitative in situ hybridizations

    DEFF Research Database (Denmark)

    Søe, Martin Jensen; Okkels, Fridolin; Sabourin, David;

    2011-01-01

    slides of spotted DNA microarrays when applying probe concentrations generally used in in situ hybridization (ISH) assays. The HistoFlex's novel ability in online monitoring of an in situ hybridization assay was demonstrated using direct fluorescent detection of hybridization to 18S rRNA. Tissue sections...... were not visually damaged during assaying, which enabled adapting a complete ISH assay for detection of microRNAs (miRNA). The effects of flow based incubations on hybridization, antibody incubation and Tyramide Signal Amplification (TSA) steps were investigated upon adapting the ISH assay...

  17. Bipolar resistive switching properties of Ti-CuO/(hexafluoro-hexa-peri-hexabenzocoronene)-Cu hybrid interface device: Influence of electronic nature of organic layer

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Bharti; Mehta, B. R.; Varandani, Deepak [Thin Film Laboratory, Department of Physics, Indian Institute of Technology Delhi, New Delhi 110016 (India); Govind [Surface Physics Group, National Physical Laboratory (CSIR), New Delhi-110012 (India); Narita, A.; Feng, X.; Muellen, K. [Max-Planck Institute for Polymer Research, D-55128 Mainz (Germany)

    2013-05-28

    This study reports the change in the structural and junction properties of Ti-CuO-Cu structure on incorporation of a 2-dimensional (2D) organic layer comprising of n-type hexafluoro-hexa-peri-hexabenzocoronene (6F-HBC). A bipolar resistive switching is observed in the device having interface between sputter deposited copper oxide (CuO) and vacuum sublimated 6F-HBC hybrid interface. The CuO/6F-HBC hybrid interface exhibits rectifying I-V characteristics in complete contrast to the ohmic and rectifying characteristics of junctions based on individual 6F-HBC and CuO layers. Large change in resistive switching property from unipolar resistive switching in CuO/HBC to bipolar resistive switching in CuO/6F-HBC interface was observed. At the CuO/6F-HBC interface, C1s peak corresponding to fluorinated carbon is shifted by 0.68 eV towards higher binding energy (BE) side and O1s peak due to non-lattice oxygen is shifted by 0.6 eV towards lower BE, confirming the interaction of O{sup 2-} ion in CuO with fluorinated carbon atoms in 6F-HBC at the hybrid interface. Correlation between conductive atomic force microscopy images and atomic force microscopy topography images, I-V characteristics in conducting, non-conducting, and pristine regions along with x-ray photoelectron spectroscopy results establishes the important role of hybrid interface to determining the resistive switching properties. This study demonstrates that the resistive switching and interface properties of a hybrid device based on inorganic and organic 2D materials can be modified by changing the electronic properties of organic layer by attaching suitable functional groups.

  18. Coherent Radiation in Insertion Devices-II

    CERN Document Server

    Bessonov, E G

    2011-01-01

    We represent results of calculations of coherent synchrotron radiation (CSR) of the relativistic bunch in an undulator with a vacuum chamber of arbitrary cross section with a new algorithm. This algorithm associated with direct calculations of electric field rather than the vector potential. CSR normalized to the incoherent one and compared with analytical calculations for a free space.

  19. Comparing the effectiveness of copper intrauterine devices available in Canada. Is FlexiT non-inferior to NovaT when inserted immediately after first-trimester abortion? Study protocol for a randomized controlled trial

    Directory of Open Access Journals (Sweden)

    Norman Wendy V

    2012-08-01

    Full Text Available Abstract Background We describe the rationale and protocol for a randomized noninferiority controlled trial (RCT to determine if the Flexi-T380(+ copper intrauterine contraceptive device (IUD is comparable in terms of effectiveness and expulsion rates to the most common Canadian IUD currently in use, NovaT-200, when placed immediately after a first-trimester abortion. Methods/Design Consenting women choosing to use an IUD after an abortion for a pregnancy of less than 12 weeks of gestation will be randomized to device-type groups to receive immediate post-abortion placement of either a Flexi-T380(+ IUD, a device for which no current evidence on expulsion or effectiveness rates is available, or the Nova-T200 IUD, the only other brand of copper IUD available in Canada at the time of study initiation. The primary outcome measure is IUD expulsion rate at 1 year. Secondary outcomes include: pregnancy rate, method continuation rate, complication rates (infection, perforation, and satisfaction with contraceptive method. A non-intervention group of consenting women choosing a range of other post-abortion contraception methods, including no contraception, will be included for comparison of secondary outcomes. Web-based contraception satisfaction questionnaires, clinical records, and government-linked health administrative databases will be used to assess primary and secondary outcomes. Discussion The RCT design, combined with access to clinical records at all provincial abortion clinics, and to information in provincial single-payer linked administrative health databases, birth registry, and hospital records, offers a unique opportunity to determine if a novel IUD has a comparable expulsion rate to that of the current standard IUD in Canada, in addition to the first opportunity to determine pregnancy rate and method satisfaction at 1 year post-abortion for women choosing a range of post-abortion contraceptive options. We highlight considerations of

  20. Long-distance effects of insertional mutagenesis.

    Directory of Open Access Journals (Sweden)

    Ruchi Singhal

    Full Text Available BACKGROUND: Most common systems of genetic engineering of mammalian cells are associated with insertional mutagenesis of the modified cells. Insertional mutagenesis is also a popular approach to generate random alterations for gene discovery projects. A better understanding of the interaction of the structural elements within an insertional mutagen and the ability of such elements to influence host genes at various distances away from the insertion site is a matter of considerable practical importance. METHODOLOGY/PRINCIPAL FINDINGS: We observed that, in the context of a lentiviral construct, a transcript, which is initiated at an internal CMV promoter/enhancer region and incorporates a splice donor site, is able to extend past a collinear viral LTR and trap exons of host genes, while the polyadenylation signal, which is naturally present in the LTR, is spliced out. Unexpectedly, when a vector, which utilizes this phenomenon, was used to produce mutants with elevated activity of NF-κB, we found mutants, which owed their phenotype to the effect of the insert on a gene located tens or even hundreds of kilobases away from the insertion site. This effect did not result from a CMV-driven transcript, but was sensitive to functional suppression of the insert. Interestingly, despite the long-distance effect, expression of loci most closely positioned to the insert appeared unaffected. CONCLUSIONS/SIGNIFICANCE: We concluded that a polyadenylation signal in a retroviral LTR, when occurring within an intron, is an inefficient barrier against the formation of a hybrid transcript, and that a vector containing a strong enhancer may selectively affect the function of genes far away from its insertion site. These phenomena have to be considered when experimental or therapeutic transduction is performed. In particular, the long-distance effects of insertional mutagenesis bring into question the relevance of the lists of disease-associated retroviral integration

  1. A Comparative Analysis of Different Finishing and Polishing Devices on Nanofilled, Microfilled, and Hybrid Composite: A Scanning Electron Microscopy and Profilometric Study

    Science.gov (United States)

    Yadav, Rishi D; Raisingani, Deepak; Mathur, Rachit

    2016-01-01

    The continuous development of esthetically acceptable adhesive restorative material has made a variety of tooth-colored materials available for clinical use. The advent of visible light polymerizing resin and the use of finer filler particles permit resin composites to be polished to higher degree. The effect of polishing systems on surface finish has been reported to be material-dependent, and the effectiveness of these systems was mostly product-dependent. Hence, the purpose of this study was to evaluate the efficiency of finishing and polishing systems on the surface roughness of nanofilled, microfilled, and hybrid composite restorative materials available in the market. How to cite this article Yadav RD, Raisingani D, Jindal D, Mathur R. A Comparative Analysis of Different Finishing and Polishing Devices on Nanofilled, Microfilled, and Hybrid Composite: A Scanning Electron Microscopy and Profilometric Study. Int J Clin Pediatr Dent 2016;9(3):201-208. PMID:27843250

  2. Minimization of temperature ranges between the top and bottom of an air flow controlling device through hybrid control in a plant factory.

    Science.gov (United States)

    Moon, Seung-Mi; Kwon, Sook-Youn; Lim, Jae-Hyun

    2014-01-01

    To maintain the production timing, productivity, and product quality of plant factories, it is necessary to keep the growth environment uniform. A vertical multistage type of plant factory involves different levels of growing trays, which results in the problem of difference in temperature among vertically different locations. To address it, it is necessary to install air flow devices such as air flow fan and cooling/heating device at the proper locations in order to facilitate air circulation in the facility as well as develop a controlling technology for efficient operation. Accordingly, this study compares the temperature and air distribution within the space of a vertical multistage closed-type plant factory by controlling cooling/heating devices and air flow fans harmoniously by means of the specially designed testbed. The experiment results indicate that in the hybrid control of cooling and heating devices and air flow fans, the difference in temperature decreased by as much as 78.9% compared to that when only cooling and heating devices were operated; the air distribution was improved by as much as 63.4%.

  3. Tie rod insertion test

    CERN Multimedia

    B. LEVESY

    2002-01-01

    The superconducting coil is inserted in the outer vaccum tank and supported by a set of tie rods. These tie rods are made of titanium alloy. This test reproduce the final insertion of the tie rods inside the outer vacuum tank.

  4. The Brief Analysis of The Control and Qpplication for The Vacuum Refining Inserting The Scarfing Cinder Device%浅析真空精炼插入管清渣装置控制及应用

    Institute of Scientific and Technical Information of China (English)

    谢丽娟

    2012-01-01

    简要阐述了某钢厂钢水真空精炼插入管清渣装置系统的组成、功能、设计.经过现场使用表明,装置清渣耗时不到10min,定位精度波动在8mm~+10mm,清渣作业率大于98%,能够在每炉生产的间隙进行,解决了原来火焰清渣时间太长的问题,大大减轻了工人的劳动强度,同时提高了钢水真空精炼的作业率.该厂的成功经验对国内同行具有借鉴价值.%This essay briefly introduces the composition, function, design in a steel plant when the vacuum refining of the molten steel inserts the scarfing cinder device. By field use it shows that the positioning accuracy is in-8 mm ~ + 10mm fluctuation when the time-consuming of scarfing cinder is within about 10 min. It can be carried out in each of the production of the furnace when the operating rate of scarfing cinder is more than 98%. It solves the original problem that the scarfing cinder of the flame takes too long and greatly reduces the labor intensity of the workers. And at the same time, it improves the operating rate of the vacuum refining for the molten steel. The plant's successful experiences has great reference value for the domestic colleagues.

  5. High performance hybrid rGO/Ag quasi-periodic mesh transparent electrodes for flexible electrochromic devices

    Science.gov (United States)

    Voronin, A. S.; Ivanchenko, F. S.; Simunin, M. M.; Shiverskiy, A. V.; Aleksandrovsky, A. S.; Nemtsev, I. V.; Fadeev, Y. V.; Karpova, D. V.; Khartov, S. V.

    2016-02-01

    A possibility of creating a stable hybrid coating based on the hybrid of a reduced graphene oxide (rGO)/Ag quasi-periodic mesh (q-mesh) coating has been demonstrated. The main advantages of the suggested method are the low cost of the processes and the technology scalability. The Ag q-mesh coating is formed by means of the magnetron sputtering of silver on the original template obtained as a result of quasi-periodic cracking of a silica film. The protective rGO film is formed by low temperature reduction of a graphene oxide (GO) film, applied by the spray-deposition in the solution of NaBH4. The coatings have low sheet resistance (12.3 Ω/sq) and high optical transparency (82.2%). The hybrid coatings are characterized by high chemical stability, as well as they show high stability to deformation impacts. High performance of the hybrid coatings as electrodes in the sandwich-system «electrode-electrochromic composition-electrode» has been demonstrated. The hybrid electrodes allow the electrochromic sandwich to function without any visible degradation for a long time, while an unprotected mesh electrode does not allow performing even a single switching cycle.

  6. Carrier transport mechanisms of bistable memory devices fabricated utilizing core-shell CdSe/ZnSe quantum-dot/multi-walled carbon nanotube hybrid nanocomposites

    Science.gov (United States)

    Li, Fushan; Ick Son, Dong; Kim, Tae Whan; Ryu, Euidock; Kim, Sang Wook

    2009-02-01

    Transmission electron microscopy images showed that conjugation between single core-shell CdSe/ZnSe quantum dots (QDs) and oxidized multi-walled carbon nanotubes (MWCNTs) was achieved through the complexation reaction. Current-voltage (I-V) measurements on Al/CdSe:MWCNT conjugated nanocomposite/indium-tin-oxide devices at 300 K showed that the on/off ratio of the current bistability was as large as about 104, which was significantly increased due to an enhancement of the carrier transfer efficiency between the CdSe/ZnSe QDs and the MWCNTs. Carrier transport mechanisms of the bistable memory devices fabricated utilizing CdSe/ZnSe QD/MWCNT hybrid nanocomposite are described on the basis of the I-V results.

  7. Majorana modes in InSb nanowires (I): zero bias peaks in hybrid devices with low-disorder and hard induced superconducting gap

    Science.gov (United States)

    Gül, Ö.; Zhang, H.; de Moor, M. W. A.; de Vries, F.; van Veen, J.; van Woerkom, D. J.; Zuo, K.; Mourik, V.; Cassidy, M.; Geresdi, A.; Car, D.; Bakkers, E. P. A. M.; Goswami, S.; Watanabe, K.; Taniguchi, T.; Kouwenhoven, L. P.

    Majorana modes in hybrid superconductor-semiconductor nanowire devices can be probed via tunnelling spectroscopy which shows a zero bias peak (ZBP) in differential conductance (1). However, alternative mechanisms such as disorder or formation of quantum dots can also give rise to ZBPs, and obscure experimental studies of Majoranas. Further, a soft induced superconducting gap commonly observed in experiments presents an outstanding challenge for the demonstration of their topological protection. In this talk we show that with device improvements, we reach low-disorder transport regime with clear quantized conductance plateaus and Andreev enhancement approaching the theoretical limit. Tunnelling spectroscopy shows a hard induced superconducting gap and no formation of quantum dots. Together with extremely stable ZBPs observed in large gate voltage and magnetic field ranges, we exclude various alternative theories besides the formation of localized Majorana modes for our observations.

  8. Energy-Efficient Source Authentication for Secure Group Communication with Low-Powered Smart Devices in Hybrid Wireless/Satellite Networks

    Directory of Open Access Journals (Sweden)

    Baras JohnS

    2011-01-01

    Full Text Available We describe a new class of lightweight, symmetric-key digital certificates called extended TESLA certificates and a source authentication protocol for wireless group communication that is based on the certificate. The certificate binds the identity of a wireless smart device to the anchor element of its key chain; keys from the chain are used for computing message authentication codes (MACs on messages sourced by the device. The authentication protocol requires a centralized infrastructure in the network: we describe the protocol in a hybrid wireless network with a satellite overlay interconnecting the wireless devices. The satellite is used as the Certificate Authority (CA and also acts as the proxy for the senders in disclosing the MAC keys to the receivers. We also design a probabilistic nonrepudiation mechanism that utilizes the satellite's role as the CA and sender proxy. Through analysis, we show that the authentication protocol is secure against malicious adversaries. We also present detailed simulation results that demonstrate that the proposed protocol is much cheaper than traditional public key-based authentication technologies for metrics like processing delay, storage requirements, and energy consumption of the smart devices.

  9. Ultraviolet photoconductive devices with an n-GaN nanorod-graphene hybrid structure synthesized by metal-organic chemical vapor deposition.

    Science.gov (United States)

    Kang, San; Mandal, Arjun; Chu, Jae Hwan; Park, Ji-Hyeon; Kwon, Soon-Yong; Lee, Cheul-Ro

    2015-06-01

    The superior photoconductive behavior of a simple, cost-effective n-GaN nanorod (NR)-graphene hybrid device structure is demonstrated for the first time. The proposed hybrid structure was synthesized on a Si (111) substrate using the high-quality graphene transfer method and the relatively low-temperature metal-organic chemical vapor deposition (MOCVD) process with a high V/III ratio to protect the graphene layer from thermal damage during the growth of n-GaN nanorods. Defect-free n-GaN NRs were grown on a highly ordered graphene monolayer on Si without forming any metal-catalyst or droplet seeds. The prominent existence of the undamaged monolayer graphene even after the growth of highly dense n-GaN NRs, as determined using Raman spectroscopy and high-resolution transmission electron microscopy (HR-TEM), facilitated the excellent transport of the generated charge carriers through the photoconductive channel. The highly matched n-GaN NR-graphene hybrid structure exhibited enhancement in the photocurrent along with increased sensitivity and photoresponsivity, which were attributed to the extremely low carrier trap density in the photoconductive channel.

  10. Hybrid supercapacitor devices based on MnCo2O4 as the positive electrode and FeMn2O4 as the negative electrode

    Science.gov (United States)

    Nagamuthu, Sadayappan; Vijayakumar, Subbukalai; Lee, Seong-Hun; Ryu, Kwang-Sun

    2016-12-01

    MnCo2O4 nanosheets and FeMn2O4 nanospheres were synthesized using a hydrothermal method. Choline chloride was used as the capping agent during the preparation of the nanoparticles. XRD patterns confirmed the spinel structure of MnCo2O4 and FeMn2O4. XPS measurements were used to determine the oxidation state of the prepared spinel metal oxides. HRTEM images revealed the formation of hexagonal nanosheets of MnCo2O4 and nanospheres of FeMn2O4. Electrochemical measurements were made for both positive and negative electrodes using three electrode systems. MnCo2O4 Exhibits 282C g-1 and FeMn2O4 yields 110C g-1 at a specific current of 1 A g-1. Hybrid supercapacitor device was fabricated using MnCo2O4 as the positive and FeMn2O4 as the negative electrode material. The hybrid supercapacitor device was delivered a maximum power of 37.57 kW kg-1.

  11. A coated electrode carrier for cochlear implantation reduces insertion forces.

    Science.gov (United States)

    Radeloff, Andreas; Unkelbach, Marc H; Mack, Martin G; Settevendemie, Claudia; Helbig, Silke; Mueller, Joachim; Hagen, Rudolf; Mlynski, Robert

    2009-05-01

    To assess the insertion forces and feasibility of insertion of a prototype electrode carrier coated with a flexible and biodegradable coating developed for lubrication and drug delivery. Experimental study. Eight coated and eight uncoated electrode carriers were inserted into a scala tympani model by means of an insertion device, and forces produced during insertion were determined in near real time. The maximum insertion depths and insertion angle were determined. To test the handling and operability, five coated electrode carriers were implanted into human temporal bones. Additionally, the bones were processed undecalcified and the distribution of the coating material within the cochlea evaluated. Insertion forces were markedly reduced in the group of coated electrode carriers for insertion depths above 15 mm. The insertions were less fitful and led to a higher maximum insertion angle. The insertion of the coated electrode carrier was feasible, and the coating material was evident up to the apical parts of the cochlea postimplantation. Coating of a cochlear implant electrode carrier may reduce insertion forces responsible for the surgical trauma. Loaded with active substances, the coating may help to deliver drugs to the apical parts of the cochlear where hair cells reside in patients with residual hearing.

  12. Detection of alprazolam with a lab on paper economical device integrated with urchin like Ag@ Pd shell nano-hybrids.

    Science.gov (United States)

    Narang, Jagriti; Malhotra, Nitesh; Singhal, Chaitali; Mathur, Ashish; Pn, Anoop Krishna; Pundir, C S

    2017-11-01

    We present results of the studies relating to fabrication of a microfluidic biosensor chip based on urchin like Ag@ Pd shell nano-hybrids that is capable of sensing alprazolam through electrochemical detection. Using this chip we demonstrate, with high reliability and in a time efficient manner, the detection of alprazolam present in buffer solutions at clinically relevant concentrations. Methylene blue (MB) was also doped as redox transition substance for sensing alprazolam. Nano-hybrids modified EμPAD showed wide linear range 1-300ng/ml and low detection limit of 0.025ng/l. Low detection limit can further enhance its suitability for forensic application. Nano-hybrids modified EμPAD was also employed for determination of drug in real samples such as human urine. Reported facile lab paper approach integrated with urchin like Ag@ Pd shell nano-hybrids could be well applied for the determination of serum metabolites. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Chest tube insertion - slideshow

    Science.gov (United States)

    ... presentations/100008.htm Chest tube insertion - series—Normal anatomy To use the sharing features ... pleural space is the space between the inner and outer lining of the lung. It is normally very thin, and lined only ...

  14. Ear tube insertion - slideshow

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/presentations/100045.htm Ear tube insertion - series—Normal anatomy To use the ... 4 Overview The eardrum (tympanic membrane) separates the ear canal from the middle ear. Review Date 8/ ...

  15. Downstream resource utilization following hybrid cardiac imaging with an integrated cadmium-zinc-telluride/64-slice CT device

    Energy Technology Data Exchange (ETDEWEB)

    Fiechter, Michael; Kaufmann, Philipp A. [University Hospital Zurich, Department of Radiology, Cardiac Imaging, Zurich (Switzerland); University of Zurich, Zurich Center for Integrative Human Physiology (ZIHP), Zurich (Switzerland); Ghadri, Jelena R.; Wolfrum, Mathias; Kuest, Silke M.; Pazhenkottil, Aju P.; Nkoulou, Rene N.; Herzog, Bernhard A.; Gebhard, Catherine; Fuchs, Tobias A.; Gaemperli, Oliver [University Hospital Zurich, Department of Radiology, Cardiac Imaging, Zurich (Switzerland)

    2012-03-15

    Low yield of invasive coronary angiography and unnecessary coronary interventions have been identified as key cost drivers in cardiology for evaluation of coronary artery disease (CAD). This has fuelled the search for noninvasive techniques providing comprehensive functional and anatomical information on coronary lesions. We have evaluated the impact of implementation of a novel hybrid cadmium-zinc-telluride (CZT)/64-slice CT camera into the daily clinical routine on downstream resource utilization. Sixty-two patients with known or suspected CAD were referred for same-day single-session hybrid evaluation with CZT myocardial perfusion imaging (MPI) and coronary CT angiography (CCTA). Hybrid MPI/CCTA images from the integrated CZT/CT camera served for decision-making towards conservative versus invasive management. Based on the hybrid images patients were classified into those with and those without matched findings. Matched findings were defined as the combination of MPI defect with a stenosis by CCTA in the coronary artery subtending the respective territory. All patients with normal MPI and CCTA as well as those with isolated MPI or CCTA finding or combined but unmatched findings were categorized as ''no match''. All 23 patients with a matched finding underwent invasive coronary angiography and 21 (91%) were revascularized. Of the 39 patients with no match, 5 (13%, p < 0.001 vs matched) underwent catheterization and 3 (8%, p < 0.001 vs matched) were revascularized. Cardiac hybrid imaging in CAD evaluation has a profound impact on patient management and may contribute to optimal downstream resource utilization. (orig.)

  16. Comparing Leaf and Root Insertion

    Directory of Open Access Journals (Sweden)

    Jaco Geldenhuys

    2010-07-01

    Full Text Available We consider two ways of inserting a key into a binary search tree: leaf insertion which is the standard method, and root insertion which involves additional rotations. Although the respective cost of constructing leaf and root insertion binary search trees trees, in terms of comparisons, are the same in the average case, we show that in the worst case the construction of a root insertion binary search tree needs approximately 50% of the number of comparisons required by leaf insertion.

  17. Research and development on power coupling device of hybrid electric tractor%混合动力拖拉机动力耦合装置的研制

    Institute of Scientific and Technical Information of China (English)

    邓晓亭; 朱思洪; 钱忠祥; 张莹

    2012-01-01

    近年来,农用车辆特别是拖拉机对环境和资源造成的压力逐年增大,开展节能环保拖拉机特别是混合动力拖拉机的研发已成为迫在眉睫的重要课题,而动力耦合装置是混合动力拖拉机的核心.该文根据拖拉机工作特性和传动特性要求,对混合动力拖拉机动力耦合装置传动比、特征参数和齿数匹配等进行了设计.根据传动载荷需求和制造工艺要求进行了结构设计和强度校核,研制了适用于并联式混合动力拖拉机的动力耦合装置.在自行搭建的混合动力拖拉机试验台上对该耦合装置进行了测试.试验结果表明,该装置能够满足拖拉机工作状态下的工作特性要求,输出端转速对动力源的转速变化很敏感,实时变化性能优,而输出端转矩对动力源转速变化不敏感.该耦合装置的研制为混合动力拖拉机的研发提供了基础.%In recent years, effects of agricultural vehicles, especially tractors on the environment and resources are increasing year by year, so carrying out the research and development of energy-conservation and environmental protection tractors, especially hybrid electric tractors has become the imminent important subject. And the power coupling is the core of hybrid electric drive system. According to the requirements of working properties and transmission characteristics of tractors, the transmission ratio, characteristic parameters and matching number of gear teeth of power coupling device for hybrid electric tractor were designed. Based on the requirement of transmission load and manufacturing technology, the structure design and strength check were processed. Then a new power coupling for parallel hybrid electric tractor was developed, which was also tested on self-developed hybrid electric tractor test-bed. The results showed that the power coupling device can meet the needs of working characteristic under working condition. In addition, the output speeds were

  18. Multifunctional hybrids for electromagnetic absorption

    Energy Technology Data Exchange (ETDEWEB)

    Huynen, I. [Research Center in Micro and Nanoscopic Materials and Electronic Devices, CeRMiN, Universite catholique de Louvain, B-1348 Louvain-la-Neuve (Belgium); Information and Communications Technologies, Electronics and Applied Mathematics (ICTEAM), Microwave Laboratory, Universite catholique de Louvain, B-1348 Louvain-la-Neuve (Belgium); Quievy, N. [Institute of Condensed Matter and Nanosciences (IMCN), Universite catholique de Louvain, B-1348 Louvain-la-Neuve (Belgium); Bailly, C. [Research Center in Micro and Nanoscopic Materials and Electronic Devices, CeRMiN, Universite catholique de Louvain, B-1348 Louvain-la-Neuve (Belgium); Institute of Condensed Matter and Nanosciences (IMCN), Universite catholique de Louvain, B-1348 Louvain-la-Neuve (Belgium); Institute of Mechanics, Materials and Civil Engineering (iMMC), Universite catholique de Louvain, B-1348 Louvain-la-Neuve (Belgium); Bollen, P. [Information and Communications Technologies, Electronics and Applied Mathematics (ICTEAM), Microwave Laboratory, Universite catholique de Louvain, B-1348 Louvain-la-Neuve (Belgium); Institute of Condensed Matter and Nanosciences (IMCN), Universite catholique de Louvain, B-1348 Louvain-la-Neuve (Belgium); Institute of Mechanics, Materials and Civil Engineering (iMMC), Universite catholique de Louvain, B-1348 Louvain-la-Neuve (Belgium); Detrembleur, C. [Center for Education and Research on Macromolecules (CERM), University of Liege, Sart-Tilman B6a, 4000 Liege (Belgium); Eggermont, S.; Molenberg, I. [Information and Communications Technologies, Electronics and Applied Mathematics (ICTEAM), Microwave Laboratory, Universite catholique de Louvain, B-1348 Louvain-la-Neuve (Belgium); Thomassin, J.M.; Urbanczyk, L. [Center for Education and Research on Macromolecules (CERM), University of Liege, Sart-Tilman B6a, 4000 Liege (Belgium)

    2011-05-15

    Highlights: > EM absorption requires low dielectric constant and {approx}1 S/m electrical conductivity. > New hybrids were processed with CNT-filled polymer foam inserted in Al honeycomb. > The EM absorption in the GHz range is superior to any known material. > A closed form model is used to guide the design of the hybrid. > The architectured material is light with potential for thermal management. - Abstract: Electromagnetic (EM) interferences are ubiquitous in modern technologies and impact on the reliability of electronic devices and on living cells. Shielding by EM absorption, which is preferable over reflection in certain instances, requires combining a low dielectric constant with high electrical conductivity, which are antagonist properties in the world of materials. A novel class of hybrid materials for EM absorption in the gigahertz range has been developed based on a hierarchical architecture involving a metallic honeycomb filled with a carbon nanotube-reinforced polymer foam. The waveguide characteristics of the honeycomb combined with the performance of the foam lead to unexpectedly large EM power absorption over a wide frequency range, superior to any known material. The peak absorption frequency can be tuned by varying the shape of the honeycomb unit cell. A closed form model of the EM reflection and absorption provides a tool for the optimization of the hybrid. This designed material sets the stage for a new class of sandwich panels combining high EM absorption with mass efficiency, stiffness and thermal management.

  19. 基于有/无源混合执行器的力觉交互装置%Haptic interaction device based on active/passive hybrid actuator

    Institute of Scientific and Technical Information of China (English)

    戴金桥; 王爱民; 宋爱国; 张小瑞

    2011-01-01

    In order to solve such problems as big volume,poor safety and stability as well as inability to impose force on manipulator actively in haptic interaction devices singly driven by active or passive actuators in a virtual reality system,a haptic interaction device cooperatively driven by active/passive hybrid actuator was proposed.Through analyzing the structure,realization principle and performance of a passive rheological motor,the design method for the haptic interaction device based on the passive rheological motor/active motor was studied.The device has such structural characteristic that the output force is generated through the cooperative driving of both active motor and passive rheological motor.The control method of haptic interaction device based on the hybrid actuator was proposed.In addition,a haptic interaction platform was established and some experimental research was performed.The results verify that the haptic interaction device based on active/passive hybrid actuator not only overcomes the disadvantages of the haptic interaction device based on single active or passive actuators,but also has such advantages as high fidelity and big controllable range of output force.%针对虚拟现实系统中由有源或无源执行器单独驱动的力觉交互装置存在体积大、安全稳定性差和无法主动给操作者施加力等问题,提出了一种由有/无源混合执行器共同驱动的力觉交互装置.在分析无源流变电机结构、实现原理和性能的基础上,研究了基于无源流变电机/有源电机力觉交互装置的设计方法,其结构特点是输出力在有源电机和无源流变电机的共同驱动下产生.提出了基于混合执行器的力觉交互装置控制方法,构建了力觉交互平台并进行了实验研究.实验结果表明,基于有/无源混合执行器的力觉交互装置,不仅克服了基于有源或无源执行器力觉交互装置的缺点,还具有高保真性和输出力可控制范围大等优点.

  20. App-assisted external ventricular drain insertion.

    Science.gov (United States)

    Eftekhar, Behzad

    2016-09-01

    The freehand technique for insertion of an external ventricular drain (EVD) is based on fixed anatomical landmarks and does not take individual variations into consideration. A patient-tailored approach based on augmented-reality techniques using devices such as smartphones can address this shortcoming. The Sina neurosurgical assist (Sina) is an Android mobile device application (app) that was designed and developed to be used as a simple intraoperative neurosurgical planning aid. It overlaps the patient's images from previously performed CT or MRI studies on the image seen through the device camera. The device is held by an assistant who aligns the images and provides information about the relative position of the target and EVD to the surgeon who is performing EVD insertion. This app can be used to provide guidance and continuous monitoring during EVD placement. The author describes the technique of Sina-assisted EVD insertion into the frontal horn of the lateral ventricle and reports on its clinical application in 5 cases as well as the results of ex vivo studies of ease of use and precision. The technique has potential for further development and use with other augmented-reality devices.

  1. Beamline Insertions Manager at Jefferson Lab

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Michael C. [Jefferson Lab., Newport News, VA (United States)

    2015-09-01

    The beam viewer system at Jefferson Lab provides operators and beam physicists with qualitative and quantitative information on the transverse electron beam properties. There are over 140 beam viewers installed on the 12 GeV CEBAF accelerator. This paper describes an upgrade consisting of replacing the EPICS-based system tasked with managing all viewers with a mixed system utilizing EPICS and high-level software. Most devices, particularly the beam viewers, cannot be safely inserted into the beam line during high-current beam operations. Software is partly responsible for protecting the machine from untimely insertions. The multiplicity of beam-blocking and beam-vulnerable devices motivates us to try a data-driven approach. The beamline insertions application components are centrally managed and configured through an object-oriented software framework created for this purpose. A rules-based engine tracks the configuration and status of every device, along with the beam status of the machine segment containing the device. The application uses this information to decide on which device actions are allowed at any given time.

  2. Integration of carbon nanotubes with semiconductor technology: fabrication of hybrid devices by III–V molecular beam epitaxy

    DEFF Research Database (Denmark)

    Stobbe, Søren; Lindelof, P. E.; Nygård, J.

    2006-01-01

    on incorporation of singlewall nanotubes in III–V semiconductor heterostructures grown by molecular beam epitaxy (MBE). We demonstrate that singlewall carbon nanotubes can be overgrown using MBE; electrical contacts to the nanotubes are obtained by GaMnAs grown at 250 °C. The resulting devices can exhibit field......We review a number of essential issues regarding the integration of carbon nanotubes in semiconductor devices for electronics: material compatibility, electrical contacts, functionalities, circuit architectures and reliability. In the second part of the paper, we present our own recent results...

  3. Remote toehold: a mechanism for flexible control of DNA hybridization kinetics.

    Science.gov (United States)

    Genot, Anthony J; Zhang, David Yu; Bath, Jonathan; Turberfield, Andrew J

    2011-02-23

    Hybridization of DNA strands can be used to build molecular devices, and control of the kinetics of DNA hybridization is a crucial element in the design and construction of functional and autonomous devices. Toehold-mediated strand displacement has proved to be a powerful mechanism that allows programmable control of DNA hybridization. So far, attempts to control hybridization kinetics have mainly focused on the length and binding strength of toehold sequences. Here we show that insertion of a spacer between the toehold and displacement domains provides additional control: modulation of the nature and length of the spacer can be used to control strand-displacement rates over at least 3 orders of magnitude. We apply this mechanism to operate displacement reactions in potentially useful kinetic regimes: the kinetic proofreading and concentration-robust regimes.

  4. High Seebeck effects from conducting polymer: Poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) based thin-film device with hybrid metal/polymer/metal architecture

    Energy Technology Data Exchange (ETDEWEB)

    Stanford, Michael G [ORNL; Wang, Hsin [ORNL; Ivanov, Ilia N [ORNL; Hu, Bin [University of Tennessee, Knoxville (UTK)

    2012-01-01

    Conductive polymers are of particular interest for thermoelectric applications due to their low thermal conductivity and relatively high electrical conductivity. In this study, commercially available conducting polymer poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) was used in a hybrid metal/polymer/metal thin film design in order to achieve a high Seebeck coefficient with the value of 252lV/k on a relatively low temperature scale. Polymer film thickness was varied in order to investigate its influence on the Seebeck effect. The high Seebeck coefficient indicates that the metal/polymer/metal design can develop a large entropy difference in internal energy of charge carriers between high and low-temperature metal electrodes to develop electrical potential due to charge transport in conducting polymer film through metal/polymer interface. Therefore, the metal/polymer/metal structure presents a new design to combine inorganic metals and organic polymers in thin-film form to develop Seebeck devices

  5. Carrier recombination spatial transfer by reduced potential barrier causes blue/red switchable luminescence in C8 carbon quantum dots/organic hybrid light-emitting devices

    Directory of Open Access Journals (Sweden)

    Xifang Chen

    2016-04-01

    Full Text Available The underlying mechanism behind the blue/red color-switchable luminescence in the C8 carbon quantum dots (CQDs/organic hybrid light-emitting devices (LEDs is investigated. The study shows that the increasing bias alters the energy-level spatial distribution and reduces the carrier potential barrier at the CQDs/organic layer interface, resulting in transition of the carrier transport mechanism from quantum tunneling to direct injection. This causes spatial shift of carrier recombination from the organic layer to the CQDs layer with resultant transition of electroluminescence from blue to red. By contrast, the pure CQDs-based LED exhibits green–red electroluminescence stemming from recombination of injected carriers in the CQDs.

  6. Design and simulation of a smart optically controlled high-power switch based on a Si/SiC hybrid device structure

    Science.gov (United States)

    Bhadri, Prashant; Sukumaran, Deepti; Dasgupta, Samhita; Beyette, Fred R., Jr.

    2001-11-01

    In avionic systems, data integrity and high data rates are necessary for stable flight control. Unfortunately, conventional electronic control systems are susceptible to electromagnetic interference (EMI) that can reduce the clarity of flight control signals. Fly-by-Light systems that use optical signals to actuate the flight control surfaces of an aircraft have been suggested as a solution to the EMI problem in avionic systems. Fly-by-Light in avionic systems reduces electromagnetic interference hence improving the clarity of the control signals. A hybrid approach combining a silicon photoreceiver module with a SiC power transistor is proposed. The resulting device uses a 5 mW optical control signal to produce a 150 A current suitable for driving an electric motor.

  7. Magnetic characteristics measurements of ethanol-water mixtures using a hybrid-type high-temperature superconducting quantum-interference device magnetometer

    Science.gov (United States)

    Tsukada, Keiji; Matsunaga, Yasuaki; Isshiki, Ryota; Nakamura, Yuta; Sakai, Kenji; Kiwa, Toshihiko

    2017-05-01

    The magnetic characteristics of ethanol-water mixtures were investigated using our newly developed hybrid-type magnetometer based on a high-temperature superconducting quantum-interference device. The magnetization (M-H) curves of ethanol-water mixtures show good diamagnetic characteristics. The magnetic moments of the mixture show ethanol concentration dependence. However, the variation in magnetic moment differs from the characteristics expected by considering the magnetic moment ratio between water and ethanol, and volume-reduction rate. It showed two decrement regions separated at approximately 50-60% concentration values. It is also observed that the concentration dependence of the magnetic moment measured using the sample vibration method under a uniform magnetic field and that by the sample rotation method showed slightly different characteristics. These anomalies are attributed to the formation of clustered structures in the mixture.

  8. Flexible, Transparent, Thickness-Controllable SWCNT/PEDOT:PSS Hybrid Films Based on Coffee-Ring Lithography for Functional Noncontact Sensing Device

    KAUST Repository

    Tai, Yanlong

    2015-12-08

    Flexible transparent conductive films (FTCFs) as the essential components of the next generation of functional circuits and devices are presently attracting more attention. Here, a new strategy has been demonstrated to fabricate thickness-controllable FTCFs through coffee ring lithography (CRL) of single-wall carbon nanotube (SWCNT)/poly(3,4-ethylenedioxythiophene)-polystyrenesulfonate (PEDOT:PSS) hybrid ink. The influence of ink concentration and volume on the thickness and size of hybrid film has been investigated systematically. Results show that the final FTCFs present a high performance, including a homogeneous thickness of 60-65 nm, a sheet resistance of 1.8 kohm/sq, a visible/infrared-range transmittance (79%, PET = 90%), and a dynamic mechanical property (>1000 cycle, much better than ITO film), respectively, when SWCNT concentration is 0.2 mg/mL, ink volume is 0.4 μL, drying at room temperature. Moreover, the benefits of these kinds of FTCFs have been verified through a full transparent, flexible noncontact sensing panel (3 × 4 sensing pixels) and a flexible battery-free wireless sensor based on a humidity sensing mechanism, showing excellent human/machine interaction with high sensitivity, good stability, and fast response/recovery ability. © 2015 American Chemical Society.

  9. The Composite Insertion Electrode

    DEFF Research Database (Denmark)

    Atlung, Sven; Zachau-Christiansen, Birgit; West, Keld

    1984-01-01

    The specific energy obtainable by discharge of porous insertion electrodes is limited by electrolyte depletion in thepores. This can be overcome using a solid ion conductor as electrolyte. The term "composite" is used to distinguishthese electrodes from porous electrodes with liquid electrolyte...

  10. Inserting the CMS solenoid

    CERN Multimedia

    Maximilien Brice

    2005-01-01

    The huge superconducting solenoid for CMS is inserted into the cryostat barrel. CMS uses the world's largest thin solenoid, in terms of energy stored, and is 12 m long, with a diameter of 6 m and weighing 220 tonnes. When turned on the magnet will produce a field strength of 4 T using superconducting niobium-titanium material at 4.5 K.

  11. Vacuum-actuated percutaneous insertion/implantation tool for flexible neural probes and interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Sheth, Heeral; Bennett, William J.; Pannu, Satinderpall S.; Tooker, Angela C.

    2017-03-07

    A flexible device insertion tool including an elongated stiffener with one or more suction ports, and a vacuum connector for interfacing the stiffener to a vacuum source, for attaching the flexible device such as a flexible neural probe to the stiffener during insertion by a suction force exerted through the suction ports to, and to release the flexible device by removing the suction force.

  12. A hybrid electrochemical device based on a synergetic inner combination of Li ion battery and Li ion capacitor for energy storage

    Science.gov (United States)

    Zheng, Jun-Sheng; Zhang, Lei; Shellikeri, Annadanesh; Cao, Wanjun; Wu, Qiang; Zheng, Jim P.

    2017-01-01

    Li ion battery (LIB) and electrochemical capacitor (EC) are considered as the most widely used energy storage systems (ESSs) because they can produce a high energy density or a high power density, but it is a huge challenge to achieve both the demands of a high energy density as well as a high power density on their own. A new hybrid Li ion capacitor (HyLIC), which combines the advantages of LIB and Li ion capacitor (LIC), is proposed. This device can successfully realize a potential match between LIB and LIC and can avoid the excessive depletion of electrolyte during the charge process. The galvanostatic charge-discharge cycling tests reveal that at low current, the HyLIC exhibits a high energy density, while at high current, it demonstrates a high power density. Ragone plot confirms that this device can make a synergetic balance between energy and power and achieve a highest energy density in the power density range of 80 to 300 W kg−1. The cycle life test proves that HyLIC exhibits a good cycle life and an excellent coulombic efficiency. The present study shows that HyLIC, which is capable of achieving a high energy density, a long cycle life and an excellent power density, has the potential to achieve the winning combination of a high energy and power density. PMID:28169329

  13. A hybrid electrochemical device based on a synergetic inner combination of Li ion battery and Li ion capacitor for energy storage.

    Science.gov (United States)

    Zheng, Jun-Sheng; Zhang, Lei; Shellikeri, Annadanesh; Cao, Wanjun; Wu, Qiang; Zheng, Jim P

    2017-02-07

    Li ion battery (LIB) and electrochemical capacitor (EC) are considered as the most widely used energy storage systems (ESSs) because they can produce a high energy density or a high power density, but it is a huge challenge to achieve both the demands of a high energy density as well as a high power density on their own. A new hybrid Li ion capacitor (HyLIC), which combines the advantages of LIB and Li ion capacitor (LIC), is proposed. This device can successfully realize a potential match between LIB and LIC and can avoid the excessive depletion of electrolyte during the charge process. The galvanostatic charge-discharge cycling tests reveal that at low current, the HyLIC exhibits a high energy density, while at high current, it demonstrates a high power density. Ragone plot confirms that this device can make a synergetic balance between energy and power and achieve a highest energy density in the power density range of 80 to 300 W kg(-1). The cycle life test proves that HyLIC exhibits a good cycle life and an excellent coulombic efficiency. The present study shows that HyLIC, which is capable of achieving a high energy density, a long cycle life and an excellent power density, has the potential to achieve the winning combination of a high energy and power density.

  14. A hybrid electrochemical device based on a synergetic inner combination of Li ion battery and Li ion capacitor for energy storage

    Science.gov (United States)

    Zheng, Jun-Sheng; Zhang, Lei; Shellikeri, Annadanesh; Cao, Wanjun; Wu, Qiang; Zheng, Jim P.

    2017-02-01

    Li ion battery (LIB) and electrochemical capacitor (EC) are considered as the most widely used energy storage systems (ESSs) because they can produce a high energy density or a high power density, but it is a huge challenge to achieve both the demands of a high energy density as well as a high power density on their own. A new hybrid Li ion capacitor (HyLIC), which combines the advantages of LIB and Li ion capacitor (LIC), is proposed. This device can successfully realize a potential match between LIB and LIC and can avoid the excessive depletion of electrolyte during the charge process. The galvanostatic charge-discharge cycling tests reveal that at low current, the HyLIC exhibits a high energy density, while at high current, it demonstrates a high power density. Ragone plot confirms that this device can make a synergetic balance between energy and power and achieve a highest energy density in the power density range of 80 to 300 W kg‑1. The cycle life test proves that HyLIC exhibits a good cycle life and an excellent coulombic efficiency. The present study shows that HyLIC, which is capable of achieving a high energy density, a long cycle life and an excellent power density, has the potential to achieve the winning combination of a high energy and power density.

  15. Investigation of multi-state charge-storage properties of redox-active organic molecules in silicon-molecular hybrid devices for DRAM and Flash applications

    Science.gov (United States)

    Gowda, Srivardhan Shivappa

    Molecular electronics has recently spawned a considerable amount of interest with several molecules possessing charge-conduction and charge-storage properties proposed for use in electronic devices. Hybrid silicon-molecular technology has the promise of augmenting the current silicon technology and provide for a transitional path to future molecule-only technology. The focus of this dissertation work has been on developing a class of hybrid silicon-molecular electronic devices for DRAM and Flash memory applications utilizing redox-active molecules. This work exploits the ability of molecules to store charges with single-electron precision at room temperature. The hybrid devices are fabricated by forming self-assembled monolayers of redox-active molecules on Si and oxide (SiO2 and HfO2) surfaces via formation of covalent linkages. The molecules possess discrete quantum states from which electrons can tunnel to the Si substrate at discrete applied voltages (oxidation process, cell write), leaving behind a positively charged layer of molecules. The reduction (erase) process, which is the process of electrons tunneling back from Si to the molecules, neutralizes the positively charged molecular monolayer. Hybrid silicon-molecular capacitor test structures were electrically characterized with an electrolyte gate using cyclic voltammetry (CyV) and impedance spectroscopy (CV) techniques. The redox voltages, kinetics (write/erase speeds) and charge-retention characteristics were found to be strongly dependent on the Si doping type and densities, and ambient light. It was also determined that the redox energy states in the molecules communicate with the valence band of the Si substrate. This allows tuning of write and read states by modulating minority carriers in n- and p-Si substrates. Ultra-thin dielectric tunnel barriers (SiO2, HfO2) were placed between the molecules and the Si substrate to augment charge-retention for Flash memory applications. The redox response was

  16. High Speed Video Insertion

    Science.gov (United States)

    Janess, Don C.

    1984-11-01

    This paper describes a means of inserting alphanumeric characters and graphics into a high speed video signal and locking that signal to an IRIG B time code. A model V-91 IRIG processor, developed by Instrumentation Technology Systems under contract to Instrumentation Marketing Corporation has been designed to operate in conjunction with the NAC model FHS-200 High Speed Video Camera which operates at 200 fields per second. The system provides for synchronizing the vertical and horizontal drive signals such that the vertical sync precisely coincides with five millisecond transitions in the IRIG time code. Additionally, the unit allows for the insertion of an IRIG time message as well as other data and symbols.

  17. Thiophene-Functionalized Hybrid Perovskite Microrods and their Application in Photodetector Devices for Investigating Charge Transport Through Interfaces in Particle-Based Materials.

    Science.gov (United States)

    Kollek, Tom; Wurmbrand, Daniel; Birkhold, Susanne T; Zimmermann, Eugen; Kalb, Julian; Schmidt-Mende, Lukas; Polarz, Sebastian

    2017-01-11

    Particle-based semiconductor materials are promising constituents of future technologies. They are described by unique features resulting from the combination of discrete nanoparticle characteristics and the emergence of cooperative phenomena based on long-range interaction within their superstructure. (Nano)particles of outstanding quality with regards to size and shape can be prepared via colloidal synthesis using appropriate capping agents. The classical capping agents are electrically insulating, which impedes particle-particle electronic communication. Consequently, there exists a high demand for realizing charge transport through interfaces especially for semiconductors of relevance like hybrid perovskites (HYPEs), for example, CH3NH3PbI3 (MAPI) as one of the most prominent representatives. Of particular interest are crystals in the micrometer range, as they possess synergistic advantages of single crystalline bulk properties, shape control as well as the possibility of being functionalized. Here we provide a synthetic strategy toward thiophene-functionalized single crystalline MAPI microrods originating from the single source precursor CH3NH3PbI3TEG2 (TEG = triethylene glycol). In the dark, the microrods show enhanced charge transport characteristics of holes over 2 orders of magnitude compared to microscale cuboids with insulating alkyl surface modifiers and nonfunctionalized random sized particles. In large-area prototype photodetector devices (2.21 cm(2)), the thiophene functionalization improves the response times because of the interparticle charge transport (tON = 190 ms, tOFF = 430 ms) compared to alkyl-functionalized particles (tON = 1055 ms, tOFF = 60 ms), at similar responsivities of 0.65 and 0.71 mA W(-1), respectively. Further, the surface functionalization and crystal grains on the micrometer scale improve the device stability. Therefore, this study provides clear evidence for the interplay and importance of crystal size, shape and surface

  18. Accelerated Thermal-Aging-Induced Degradation of Organometal Triiodide Perovskite on ZnO Nanostructures and Its Effect on Hybrid Photovoltaic Devices.

    Science.gov (United States)

    Kumar, S; Dhar, A

    2016-07-20

    Organometal halide perovskite materials are presently some of the pacesetters for light harvesting in hybrid photovoltaic devices because of their excellent inherent electrical and optical properties. However, long-term durability of such perovskite materials remains a major bottleneck for their commercialization especially in countries with hot and humid climatic conditions, thus violating the international standards for photovoltaic technology. Albeit, TiO2 as an electron-transport layer has been well investigated for perovskite solar cells; the high-temperature processing makes it unsuitable for low-cost and large-scale roll-to-roll production of flexible photovoltaic devices. Herein, we have chosen low-temperature (photovoltaic devices. We have also elaborately addressed the effect of the annealing duration on the conversion of a precursor solution into the required perovskite phase on ZnO nanostructures. The investigations show that the presence of ZnO nanostructures accelerates the rate of degradation of MAPbI3 films under ambient annealing and thus requires proper optimization. The role of ZnO in enhancing the degradation kinetics of the perovskite layer has been investigated by X-ray photoelectron spectroscopy and a buffer layer passivation technique. The effect of the annealing duration of the MAPbI3 perovskite on the optical, morphological, and compositional behavior has been closely studied and correlated with the photovoltaic efficiency. The study captures the degradation behavior of the commercially interesting MAPbI3 perovskite on a ZnO electron-transport layer and thus can provide insight for developing alternative families of perovskite material with better thermal and environmental stability for application in low-cost flexible photovoltaic technology.

  19. Low-temperature bonding process for the fabrication of hybrid glass-membrane organ-on-a-chip devices

    Science.gov (United States)

    Pocock, Kyall J.; Gao, Xiaofang; Wang, Chenxi; Priest, Craig; Prestidge, Clive A.; Mawatari, Kazuma; Kitamori, Takehiko; Thierry, Benjamin

    2016-10-01

    The integration of microfluidics with living biological systems has paved the way to the exciting concept of "organs-on-a-chip," which aims at the development of advanced in vitro models that replicate the key features of human organs. Glass-based devices have long been utilized in the field of microfluidics but the integration of alternative functional elements within multilayered glass microdevices, such as polymeric membranes, remains a challenge. To this end, we have extended a previously reported approach for the low-temperature bonding of glass devices that enables the integration of a functional polycarbonate porous membrane. The process was initially developed and optimized on specialty low-temperature bonding equipment (μTAS2001, Bondtech, Japan) and subsequently adapted to more widely accessible hot embosser units (EVG520HE Hot Embosser, EVG, Austria). The key aspect of this method is the use of low temperatures compatible with polymeric membranes. Compared to borosilicate glass bonding (650°C) and quartz/fused silica bonding (1050°C) processes, this method maintains the integrity and functionality of the membrane (Tg 150°C for polycarbonate). Leak tests performed showed no damage or loss of integrity of the membrane for up to 150 h, indicating sufficient bond strength for long-term cell culture. A feasibility study confirmed the growth of dense and functional monolayers of Caco-2 cells within 5 days.

  20. Ocular inserts - Advancement in therapy of eye diseases

    Directory of Open Access Journals (Sweden)

    Anita Kumari

    2010-01-01

    Full Text Available The ocular insert represents a significant advancement in the therapy of eye disease. Ocular inserts are defined as sterile, thin, multilayered, drug-impregnated, solid or semisolid consistency devices placed into the cul-de-sac or conjuctival sac, whose size and shape are especially designed for ophthalmic application. They are composed of a polymeric support that may or may not contain a drug. The drug can later be incorporated as dispersion or a solution in the polymeric support. They offer several advantages as increased ocular residence and sustained release of medication into the eye. The insert includes a body portion sized to position within a lachrymal canaliculus of the eyelid. The inserts are classified according to their solubility as insoluble, soluble, or bioerodible inserts. The release of drug from the insert depends upon the diffusion, osmosis, and bioerosion of the drug, and this article is an attempt to present a brief about this newer drug delivery system.

  1. COMPARATIVE STUDY OF EARLY POSTPARTUM IUCD INSERTION TO INTERVAL IUCD INSERTION

    Directory of Open Access Journals (Sweden)

    Shibani Devi

    2016-07-01

    Full Text Available INTRODUCTION According to National Family Health Survey-3, Indian women have 13% unmet need for contraception and according to District Level Household & Facility Survey-3, it is 21.3% in the postpartum period. Postpartum intrauterine contraceptive device insertion - both immediately post-placental delivery and somewhat later, but within 48 hours after delivery are options which merit consideration as the woman is likely to have a high motivation for accepting contraception and the healthcare centre provides a convenient setting for insertion of IUCD. AIM Comparison of efficacy and complications of IUCD insertions in post-placental with interval period: 6-month followup. METHOD This perspective study was conducted among 100 women: - 50 women had IUCD inserted within 10 minutes of placental delivery and 50 had insertion more than 6 weeks after delivery. They were followed till 6 months post insertion and were compared regarding early and late complications, continuation rates and expulsion rates. RESULT At the end of six months, we found higher occurrence of lower abdominal pain, heavy menstrual bleeding in case of interval insertion as compared to post-placental insertion which was statistically significant (p value-0.04 & 0.007 respectively. However, the expulsion rates of post-placental IUCD were somewhat elevated (14% compared to interval insertions (2%. Continuation rates at the end of 6 months in both the groups were 82% and 86% respectively which is comparable. CONCLUSION Post-placental IUCD is thus found to be an ideal method to meet the unmet need of postpartum women as it is easily accessible and convenient for both women and their health care providers, is associated with less discomfort and fewer side effects and allow women to obtain safe, long acting, highly effective contraception while still in the health care system.

  2. Laser-induced defect insertion in DNA-linked 2D colloidal crystal array

    Science.gov (United States)

    Geiss, Erik; Kim, Sejong; Marcus, Harris L.; Papadimitrakopoulos, Fotios

    2009-02-01

    Insertion of vacancies at predetermined sites within the lattice of colloidal crystals is a prerequisite in order to realize high-quality, opaline-based photonic devices. In this contribution, we demonstrate a novel methodology to afford controlled insertion of vacancies within two-dimensional (2D) opaline arrays. These 2D opaline arrays have been substrate-anchored with the help of DNA hybridization. This provides a heat-sensitive ‘adhesive’ between substrate and microspheres within a surrounding aqueous medium that enables tuning the hybridization strength of DNA linker as well as a mechanism to facilitate the removal of unbound microspheres. Focusing a laser beam onto the substrate/microsphere interface induces a localized heating event that detaches the irradiated microspheres, leaving behind vacancies. By repeating this process, line vacancies were successfully obtained. The effects of salt concentration, laser power, light-absorbing dyes, DNA length and refractive-index mismatch were investigated and found to correlate with heat-induced microsphere release.

  3. Hybrid halide perovskite solar cell precursors: colloidal chemistry and coordination engineering behind device processing for high efficiency.

    Science.gov (United States)

    Yan, Keyou; Long, Mingzhu; Zhang, Tiankai; Wei, Zhanhua; Chen, Haining; Yang, Shihe; Xu, Jianbin

    2015-04-01

    The precursor of solution-processed perovskite thin films is one of the most central components for high-efficiency perovskite solar cells. We first present the crucial colloidal chemistry visualization of the perovskite precursor solution based on analytical spectra and reveal that perovskite precursor solutions for solar cells are generally colloidal dispersions in a mother solution, with a colloidal size up to the mesoscale, rather than real solutions. The colloid is made of a soft coordination complex in the form of a lead polyhalide framework between organic and inorganic components and can be structurally tuned by the coordination degree, thereby primarily determining the basic film coverage and morphology of deposited thin films. By utilizing coordination engineering, particularly through employing additional methylammonium halide over the stoichiometric ratio for tuning the coordination degree and mode in the initial colloidal solution, along with a thermal leaching for the selective release of excess methylammonium halides, we achieved full and even coverage, the preferential orientation, and high purity of planar perovskite thin films. We have also identified that excess organic component can reduce the colloidal size of and tune the morphology of the coordination framework in relation to final perovskite grains and partial chlorine substitution can accelerate the crystalline nucleation process of perovskite. This work demonstrates the important fundamental chemistry of perovskite precursors and provides genuine guidelines for accurately controlling the high quality of hybrid perovskite thin films without any impurity, thereby delivering efficient planar perovskite solar cells with a power conversion efficiency as high as 17% without distinct hysteresis owing to the high quality of perovskite thin films.

  4. Competition between insertion of Li+ and Mg2+: An example of TiO2-B nanowires for Mg rechargeable batteries and Li+/Mg2+ hybrid-ion batteries

    Science.gov (United States)

    Meng, Yuan; Wang, Dashuai; Wei, Yingjin; Zhu, Kai; Zhao, Yingying; Bian, Xiaofei; Du, Fei; Liu, Bingbing; Gao, Yu; Chen, Gang

    2017-04-01

    Titanium dioxide bronze (TiO2-B) nanowires were prepared by the hydrothermal method and used as the positive electrode for Mg rechargeable batteries and Li+/Mg2+ hybrid-ion batteries. First-principles calculations showed that the diffusion barrier for Mg2+ (0.6 eV) in the TiO2-B lattice was more than twice of that for Li+ (0.3 eV). Electrochemical impedance spectroscopy showed that the charge transfer resistance of TiO2-B in the Mg2+ ion electrolyte was much larger than that in the Li+/Mg2+ hybrid electrolyte. For these reasons, the Mg rechargeable battery showed a small discharge capacity of 35 mAh g-1 resulting from an electrochemical double-layer capacitive process. In comparison, the TiO2-B nanowires exhibited a large capacity (242 mAh g-1 at the 20 mA g-1 current density), high rate capability (114 mAh g-1 at 1 A g-1), and excellent cycle stability in the Li+/Mg2+ hybrid-ion battery. The dominant reaction occurred in the TiO2-B electrode was intercalation of Li+ ions, of which about 74% of the total capacity was attributed to Li+ pseudo-capacitance.

  5. Paper analytical devices for dynamic evaluation of cell surface N-glycan expression via a bimodal biosensor based on multibranched hybridization chain reaction amplification.

    Science.gov (United States)

    Liang, Linlin; Lan, Feifei; Li, Li; Ge, Shenguang; Yu, Jinghua; Ren, Na; Liu, Haiyun; Yan, Mei

    2016-12-15

    A novel colorimetric/fluorescence bimodal lab-on-paper cyto-device was fabricated based on concanavalin A (Con A)-integrating multibranched hybridization chain reaction (mHCR). The product of mHCR was modified PtCu nanochains (colorimetric signal label) and graphene quantum dot (fluorescence signal label) for in situ and dynamically evaluating cell surface N-glycan expression. In this strategy, preliminary detection was carried out through colorimetric method, if needed, then the fluorescence method was applied for a precise determination. Au-Ag-paper devices increased the surface areas and active sites for immobilizing larger amount of aptamers, and then specifically and efficiently captured more cancer cells. Moreover, it could effectively reduce the paper background fluorescence. Due to the specific recognition of Con A with mannose and the effective signal amplification of mHCR, the proposed strategy exhibited excellent high sensitivity for the cytosensing of MCF-7 cells ranging from 100 to 1.0×10(7) and 80-5.0×10(7) cellsmL(-1) with the detection limit of 33 and 26 cellsmL(-1) for colorimetric and fluorescence, respectively. More importantly, this strategy was successfully applied to dynamically monitor cell-surface multi-glycans expression on living cells under external stimuli of inhibitors as well as for N-glycan expression inhibitor screening. These results implied that this biosensor has potential in studying complex native glycan-related biological processes and elucidating the N-glycan-related diseases in biological and physiological processes.

  6. ENDOSCOPIC GROMMET INSERTION OUR EXPERIENCE

    Directory of Open Access Journals (Sweden)

    Balasubramanian Thiagarajan

    2012-03-01

    Full Text Available Grommet insertion the commonest surgical procedure next only to circumcision is usually performed using an operating microscope 1. Authors have been using 4 mm 0 degree nasalendoscopes to perform this procedure during the last 5 years. This is a report of their experience in using endoscope inlieu of microscope in performing this surgery. This study makes a comparative analysis of Endoscopic Grommet insertion viz a viz Microscopic Grommet insertion. For this comparative analysis one year (2009 data base of Government Stanley Medical College Chennai India was used. This study reveals that Endoscopic Grommet insertion compared favorably with Microscopic Grommet insertion in all aspects with certain obvious advantages.

  7. A New HLA-Based Distributed Control Architecture for Agricultural Teams of Robots in Hybrid Applications with Real and Simulated Devices or Environments

    Directory of Open Access Journals (Sweden)

    Rafael J. Martínez

    2011-04-01

    Full Text Available The control architecture is one of the most important part of agricultural robotics and other robotic systems. Furthermore its importance increases when the system involves a group of heterogeneous robots that should cooperate to achieve a global goal. A new control architecture is introduced in this paper for groups of robots in charge of doing maintenance tasks in agricultural environments. Some important features such as scalability, code reuse, hardware abstraction and data distribution have been considered in the design of the new architecture. Furthermore, coordination and cooperation among the different elements in the system is allowed in the proposed control system. By integrating a network oriented device server Player, Java Agent Development Framework (JADE and High Level Architecture (HLA, the previous concepts have been considered in the new architecture presented in this paper. HLA can be considered the most important part because it not only allows the data distribution and implicit communication among the parts of the system but also allows to simultaneously operate with simulated and real entities, thus allowing the use of hybrid systems in the development of applications.

  8. A new HLA-based distributed control architecture for agricultural teams of robots in hybrid applications with real and simulated devices or environments.

    Science.gov (United States)

    Nebot, Patricio; Torres-Sospedra, Joaquín; Martínez, Rafael J

    2011-01-01

    The control architecture is one of the most important part of agricultural robotics and other robotic systems. Furthermore its importance increases when the system involves a group of heterogeneous robots that should cooperate to achieve a global goal. A new control architecture is introduced in this paper for groups of robots in charge of doing maintenance tasks in agricultural environments. Some important features such as scalability, code reuse, hardware abstraction and data distribution have been considered in the design of the new architecture. Furthermore, coordination and cooperation among the different elements in the system is allowed in the proposed control system. By integrating a network oriented device server Player, Java Agent Development Framework (JADE) and High Level Architecture (HLA), the previous concepts have been considered in the new architecture presented in this paper. HLA can be considered the most important part because it not only allows the data distribution and implicit communication among the parts of the system but also allows to simultaneously operate with simulated and real entities, thus allowing the use of hybrid systems in the development of applications.

  9. A flexible triboelectric-piezoelectric hybrid nanogenerator based on P(VDF-TrFE) nanofibers and PDMS/MWCNT for wearable devices

    Science.gov (United States)

    Wang, Xingzhao; Yang, Bin; Liu, Jingquan; Zhu, Yanbo; Yang, Chunsheng; He, Qing

    2016-11-01

    This paper studied and realized a flexible nanogenerator based on P(VDF-TrFE) nanofibers and PDMS/MWCNT thin composite membrane, which worked under triboelectric and piezoelectric hybrid mechanisms. The P(VDF-TrFE) nanofibers as a piezoelectric functional layer and a triboelectric friction layer are formed by electrospinning process. In order to improve the performance of triboelectric nanogenerator, the multiwall carbon nanotubes (MWCNT) is doped into PDMS patterned films as the other flexible friction layer to increase the initial capacitance. The flexible nanogenerator is fabricated by low cost MEMS processes. Its output performance is characterized in detail and structural optimization is performed. The device’s output peak-peak voltage, power and power density under triboelectric mechanism are 25 V, 98.56 μW and 1.98 mW/cm3 under the pressure force of 5 N, respectively. The output peak-peak voltage, power and power density under piezoelectric working principle are 2.5 V, 9.74 μW, and 0.689 mW/cm3 under the same condition, respectively. We believe that the proposed flexible, biocompatible, lightweight, low cost nanogenerator will supply effective power energy sustainably for wearable devices in practical applications.

  10. Hybrid Photonic Integration on a Polymer Platform

    Directory of Open Access Journals (Sweden)

    Ziyang Zhang

    2015-09-01

    Full Text Available To fulfill the functionality demands from the fast developing optical networks, a hybrid integration approach allows for combining the advantages of various material platforms. We have established a polymer-based hybrid integration platform (polyboard, which provides flexible optical input/ouptut interfaces (I/Os that allow robust coupling of indium phosphide (InP-based active components, passive insertion of thin-film-based optical elements, and on-chip attachment of optical fibers. This work reviews the recent progress of our polyboard platform. On the fundamental level, multi-core waveguides and polymer/silicon nitride heterogeneous waveguides have been fabricated, broadening device design possibilities and enabling 3D photonic integration. Furthermore, 40-channel optical line terminals and compact, bi-directional optical network units have been developed as highly functional, low-cost devices for the wavelength division multiplexed passive optical network. On a larger scale, thermo-optic elements, thin-film elements and an InP gain chip have been integrated on the polyboard to realize a colorless, dual-polarization optical 90° hybrid as the frontend of a coherent receiver. For high-end applications, a wavelength tunable 100Gbaud transmitter module has been demonstrated, manifesting the joint contribution from the polyboard technology, high speed polymer electro-optic modulator, InP driver electronics and ceramic electronic interconnects.

  11. Improving the organic/Si heterojunction hybrid solar cell property by optimizing PEDOT:PSS film and with amorphous silicon as back surface field

    Science.gov (United States)

    Wen, Hongbin; Cai, Hongkun; Du, Yangyang; Dai, Xiaowan; Sun, Yun; Ni, Jian; Li, Juan; Zhang, Dexian; Zhang, Jianjun

    2017-01-01

    Organic/Si hybrid heterojunction hybrid solar cells have got a great progress. The hybrid device may be promising in terms of reducing cost due to its simple technological process. It is crucial for high efficiency solar cells to form better coating films on the Si substrate. Here, the performance of organic/Si heterojunction hybrid solar cells is obviously enhanced by adding surfactant (FS300) into poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) film and the device with amorphous silicon as back surface field is successfully fabricated. The proper amount of surfactant addition improves the uniformity and homogeneous of the polymer film that can be reflected by scanning electron microscope and atomic force microscope, which allows good contact on the texture-Si substrate resulting in excellent device property. Also, the power conversion efficiency of cells is boosted to 9.37 from 7.31% displayed a 28% enhancement by embedding amorphous silicon thin film layer at rear interface as holes blocking layer. The insertion layer of amorphous silicon enhances the extraction of photon-generated carrier and suppresses the recombination of hole-electron at the rear cathode. Which results all improvement in the short-circuit current density, the open-circuit voltage and the fill factor. By optimizing the polymer film property and inserting the hole blocking layer, the performance of hybrid Si/organic hybrid solar cells is greatly improved.

  12. Facility target insert shielding assessment

    Energy Technology Data Exchange (ETDEWEB)

    Mocko, Michal [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-10-06

    Main objective of this report is to assess the basic shielding requirements for the vertical target insert and retrieval port. We used the baseline design for the vertical target insert in our calculations. The insert sits in the 12”-diameter cylindrical shaft extending from the service alley in the top floor of the facility all the way down to the target location. The target retrieval mechanism is a long rod with the target assembly attached and running the entire length of the vertical shaft. The insert also houses the helium cooling supply and return lines each with 2” diameter. In the present study we focused on calculating the neutron and photon dose rate fields on top of the target insert/retrieval mechanism in the service alley. Additionally, we studied a few prototypical configurations of the shielding layers in the vertical insert as well as on the top.

  13. Impedance calculation for ferrite inserts

    Energy Technology Data Exchange (ETDEWEB)

    Breitzmann, S.C.; Lee, S.Y.; /Indiana U.; Ng, K.Y.; /Fermilab

    2005-01-01

    Passive ferrite inserts were used to compensate the space charge impedance in high intensity space charge dominated accelerators. They study the narrowband longitudinal impedance of these ferrite inserts. they find that the shunt impedance and the quality factor for ferrite inserts are inversely proportional to the imaginary part of the permeability of ferrite materials. They also provide a recipe for attaining a truly passive space charge impedance compensation and avoiding narrowband microwave instabilities.

  14. A NOVEL ARCHITECTURE OF MAXIMUM POWER POINT TRACKING FOR ULTRA-LOW-POWER BASED HYBRID ENERGY HARVESTER IN UBIQUITOUS DEVICES: A REVIEW

    Directory of Open Access Journals (Sweden)

    Michelle Lim Sern Mi

    2013-01-01

    Full Text Available This research work presents a novel architecture of an Ultra-Low-Power (ULP based Hybrid Energy Harvester (HEH consisting of multiple input sources such as kinetic, thermal and solar energy, harvested from passive human power. Having multiple ambient sources mitigates limitations caused by single sources especially for bodily-worn applications; however, this results in impedance mismatch among the different integrated sources. To overcome this limitation, the proposed ULP-HEH will use one power management unit with Maximum Power Point Tracking (MPPT algorithm and impedance matching considerations to efficiently manage and combine power harvested from all three sources to achieve ULP consumptions. Among other crucial sub-modules of the ULP-HEH are its Asynchronous Finite State Machine (AFSM cum resource sharing arbiter to prioritize and share energy sources for overall power reduction, an efficient rectification scheme for the piezoelectric input, an adaptive feedback for ULP conditioning, Zero-Current Switching (ZCS for semi-lossless switching, a self-start circuit for low ambient startup, a Boost converter, a Buck regulator, a fuzzy-based micro-battery charger and a de-multiplexer to switch between harvesting or charging capabilities. All of which are implemented for maximum output extraction and minimal losses. This ULP-HEH will be developed in PSPICE software, Verilog coding under Mentor Graphics environment and later to be verified using Field Programmable Gate Array (FPGA board before the final layout implementation in CMOS 0.13-µm process technology. This battery-less ULP-HEH is expected to deliver 3.0-5.0V of regulated voltage output from low ambient sources of 35 mV at startup. An efficiency of 90% with an output power of 650 µm is expected when all sources are summed. Also, this ULP-HEH is aimed at reducing power consumption to at least twice (<70 µW of conventional approaches. The proposed ULP-HEH can be used for ULP bodily

  15. Polymer waveguide based hybrid opto-electric integration technology

    Science.gov (United States)

    Mao, Jinbin; Deng, Lingling; Jiang, Xiyan; Ren, Rong; Zhai, Yumeng; Wang, Jin

    2014-10-01

    While monolithic integration especially based on InP appears to be quite an expensive solution for optical devices, hybrid integration solutions using cheaper material platforms are considered powerful competitors because of the high freedom of design, yield optimization and relative cost-efficiency. Among them, the polymer planar-lightwave circuit (PLC) technology is regarded attractive as polymer offers the potential of fairly simple and low-cost fabrication, and of low-cost packaging. In our work, polymer PLC was fabricated by using the standard reactive ion etching (RIE) technique, while other active and passive devices can be integrated on the polymer PLC platform. Exemplary polymer waveguide devices was a 13-channel arrayed waveguide grating (AWG) chip, where the central channel cross-talk was below -30dB and the polarization dependent frequency shift was mitigated by inserting a half wave plate. An optical 900 hybrid was also realized with one 2×4 multi-mode interferometer (MMI). The excess insertion losses are below 4dB for the C-band, while the transmission imbalance is below 1.2dB. When such an optical hybrid was integrated vertically with mesa-type photodiodes, the responsivity of the individual PD was around 0.06 A/W, while the 3 dB bandwidth reaches 24 ~ 27 GHz, which is sufficient for 100Gbit/s receivers. Another example of the hybrid integration was to couple the polymer waveguides to fiber by applying fiber grooves, whose typical loss value was 0.2 dB per-facet over a broad spectral range from 1200-1600 nm.

  16. Lithium insertion in nanostructured titanates

    NARCIS (Netherlands)

    Borghols, W.J.H.

    2010-01-01

    Upon nano-sizing of insertion compounds several significant changes in Li-insertion behavior have been observed for sizes below approximately 50 nm. Although the origins of the phenomena are interrelated, the changes can be divided in three main observations. (1) The formation of new phases, leading

  17. Integrating Haptics with Augmented Reality in a Femoral Palpation and Needle Insertion Training Simulation.

    Science.gov (United States)

    Coles, T R; John, N W; Gould, Derek A; Caldwell, D G

    2011-01-01

    This paper presents a virtual environment for training femoral palpation and needle insertion, the opening steps of many interventional radiology procedures. A novel augmented reality simulation called PalpSim has been developed that allows the trainees to feel a virtual patient using their own hands. The palpation step requires both force and tactile feedback. For the palpation haptics effect, two off-the-shelf force feedback devices have been linked together to provide a hybrid device that gives five degrees of force feedback. This is combined with a custom built hydraulic interface to provide a pulse like tactile effect. The needle interface is based on a modified PHANTOM Omni end effector that allows a real interventional radiology needle to be mounted and used during simulation. While using the virtual environment, the haptics hardware is masked from view using chroma-key techniques. The trainee sees a computer generated patient and needle, and interacts using their own hands. This simulation provides a high level of face validity and is one of the first medical simulation devices to integrate haptics with augmented reality.

  18. Design Features of a Planar Hybrid/Permanent Magnet Strong Focusing Undulator for Free Electron Laser (FEL) And Synchrotron Radiation (SR) Applications

    Energy Technology Data Exchange (ETDEWEB)

    Tatchyn, Roman; /SLAC

    2011-09-09

    Insertion devices for Angstrom-wavelength Free Electron Laser (FEL) amplifiers driven by multi-GeV electron beams generally require distributed focusing substantially stronger than their own natural focusing fields. Over the last several years a wide variety of focusing schemes and configurations have been proposed for undulators of this class, ranging from conventional current-driven quadrupoles external to the undulator magnets to permanent magnet (PM) lattices inserted into the insertion device gap. In this paper we present design studies of a flexible high-field hybrid/PM undulator with strong superimposed planar PM focusing proposed for a 1.5 Angstrom Linac Coherent Light Source (LCLS) driven by an electron beam with a 1 mm-mr normalized emittance. Attainable field parameters, tuning modes, and potential applications of the proposed structure are discussed.

  19. Non-insertional Achilles tendinopathy

    Science.gov (United States)

    Pearce, Christopher J.; Tan, Audrey

    2016-01-01

    Non-insertional Achilles tendinopathy is a degenerative condition characterised by pain on activity. Eccentric stretching is the most effective treatment. Surgical treatment is reserved for recalcitrant cases. Minimally-invasive and tendinoscopic treatments are showing promising results. Cite this article: Pearce CJ, Tan A. Non-insertional Achilles tendinopathy. EFORT Open Rev 2016;1:383-390. DOI: 10.1302/2058-5241.1.160024. PMID:28461917

  20. Gas turbine vane cooling air insert

    Energy Technology Data Exchange (ETDEWEB)

    North, W.E.; Hultgren, K.G.; Dishman, C.D.; Van Heusden, G.S.

    1992-09-08

    This patent describes a gas turbine. It comprises turbine vanes, each of the vanes supplied with cooling air and having: an airfoil portion forming a first cavity having an insert disposed therein for directing the flow of the cooling air, the insert having first and second insert ends; a shroud portion from which the airfoil portion extends, the insert attached to the shroud portion at the first insert end; an insert extension extending through a portion of the insert and extending beyond the first insert end, the insert extension and the insert forming an annular gap therebetween separating the insert from the insert extension; a plate covering at least a portion of the shroud, the plate having a first hole formed therein through which the insert extension extends; and at least a first seal extending between the insert extension and the insert, and sealing the annular gap therebetween. This patent also describes a method of making a gas turbine. It comprises welding a first tubular insert adjacent its first end to a vane outer shroud; partially inserting a second tubular insert into the first tubular member and attaching the second tubular insert thereto; placing a plate having a hole formed therein on the outer shroud so that the hole surrounds the second tubular insert; and attaching the second tubular insert to the plate by placing a first seal between the first and second tubular inserts and attaching the first seal to each of the first and second tubular inserts, and placing a second seal between the second tubular insert and the plate and welding the second seal to the second tubular insert and the plate.

  1. Dedicated optoelectronic stochastic parallel processor for real-time image processing: motion-detection demonstration and design of a hybrid complementary-metal-oxide semiconductor- self-electro-optic-device-based prototype.

    Science.gov (United States)

    Cassinelli, A; Chavel, P; Desmulliez, M P

    2001-12-10

    We report experimental results and performance analysis of a dedicated optoelectronic processor that implements stochastic optimization-based image-processing tasks in real time. We first show experimental results using a proof-of-principle-prototype demonstrator based on standard silicon-complementary-metal-oxide-semiconductor (CMOS) technology and liquid-crystal spatial light modulators. We then elaborate on the advantages of using a hybrid CMOS-self-electro-optic-device-based smart-pixel array to monolithically integrate photodetectors and modulators on the same chip, providing compact, high-bandwidth intrachip optoelectronic interconnects. We have modeled the operation of the monolithic processor, clearly showing system-performance improvement.

  2. Tokamak Fusion Core Experiment: design studies based on superconducting and hybrid toroidal field coils. Design overview

    Energy Technology Data Exchange (ETDEWEB)

    Flanagan, C.A. (ed.)

    1984-10-01

    This document is a design overview that describes the scoping studies and preconceptual design effort performed in FY 1983 on the Tokamak Fusion Core Experiment (TFCX) class of device. These studies focussed on devices with all-superconducting toroidal field (TF) coils and on devices with superconducting TF coils supplemented with copper TF coil inserts located in the bore of the TF coils in the shield region. Each class of device is designed to satisfy the mission of ignition and long pulse equilibrium burn. Typical design parameters are: major radius = 3.75 m, minor radius = 1.0 m, field on axis = 4.5 T, plasma current = 7.0 MA. These designs relay on lower hybrid (LHRH) current rampup and heating to ignition using ion cyclotron range of frequency (ICRF). A pumped limiter has been assumed for impurity control. The present document is a design overview; a more detailed design description is contained in a companion document.

  3. Marsupialization of large residual cyst and subsequent dental implant insertion: Technical note.

    Science.gov (United States)

    Rahpeyma, Amin; Khajehahmadi, Saeedeh

    2017-02-20

    Marsupialization is an option for treatment of large jaw cysts. In this article with a case report successful marsupialization of a large residual cyst is demonstrated. Selecting appropriate case and device is necessary for success. Dental implant insertion at the end of treatment restores the function. This article presents a simple device, made from disposable hypodermic syringe as marsupialization device.

  4. High-performance solid-state supercapacitors based on graphene-ZnO hybrid nanocomposites

    Science.gov (United States)

    2013-01-01

    In this paper, we report a facile low-cost synthesis of the graphene-ZnO hybrid nanocomposites for solid-state supercapacitors. Structural analysis revealed a homogeneous distribution of ZnO nanorods that are inserted in graphene nanosheets, forming a sandwiched architecture. The material exhibited a high specific capacitance of 156 F g−1 at a scan rate of 5 mV.s−1. The fabricated solid-state supercapacitor device using these graphene-ZnO hybrid nanocomposites exhibits good supercapacitive performance and long-term cycle stability. The improved supercapacitance property of these materials could be ascribed to the increased conductivity of ZnO and better utilization of graphene. These results demonstrate the potential of the graphene-ZnO hybrid nanocomposites as an electrode in high-performance supercapacitors. PMID:24215772

  5. Micro- and nano-scale optoelectronic devices using vanadium dioxide

    Science.gov (United States)

    Joushaghani, Arash

    Miniaturization has the potential to reduce the size, cost, and power requirements of active optical devices. However, implementing (sub)wavelength-scale electro-optic switches with high efficiency, low insertion loss, and high extinction ratios remains challenging due to their small active volumes. Here, we use the insulator-metal phase transition of vanadium dioxide (VO2), which exhibits a large and reversible change in the refractive index across the phase transition to demonstrate compact, broadband, and efficient switches and photodetectors with record-setting characteristics. We begin by analyzing the electrical and optical properties of VO2 thin films across the phase transition and discuss the fabrication processes that yield micron- and nano-scale VO2 devices. We then demonstrate a surface plasmon thermo-optic switch, which achieves an extinction ratio of 10 dB in a 5 um long device, a record for plasmonic devices. The switch operates over a 100 nm optical bandwidth, and exhibits a thermally limited switching time of 40 mus. We investigate the current and voltage induced switching of VO2 in nano-gap junctions and show optical switching times as short as 20 ns. The two terminal VO2 junctions are incorporated in a silicon photonics platform to yield silicon-VO2 hybrid waveguide devices with a record extinction ratio of 12 dB in a 1 mum long device. In photodetector mode, the devices exhibit a nonlinear responsivity greater than 12 A/W for optical powers less than 1 muW. This device is the smallest electrically controlled and integrated switch and photodetector capable of achieving extinction ratios > 10 dB/mum. We finally investigate the ultra-fast thermal heating in gold nano-apertures and demonstrate that electron heating can change the gold lattice temperature by 300 K in tens of picoseconds. These nano-apertures can be hybridized with VO2 to demonstrate high extinction and ultrafast optical switches.

  6. The accuracy and the safety of individualized 3D printing screws insertion templates for cervical screw insertion.

    Science.gov (United States)

    Deng, Ting; Jiang, Minghui; Lei, Qing; Cai, Lihong; Chen, Li

    2016-12-01

    Clinical trial for cervical screw insertion by using individualized 3-dimensional (3D) printing screw insertion templates device. The objective of this study is to evaluate the safety and accuracy of the individualized 3D printing screw insertion template in the cervical spine. Ten patients who underwent posterior cervical fusion surgery with cervical pedicle screws, laminar screws or lateral mass screws between December 2014 and December 2015 were involved in this study. The patients were examined by CT scan before operation. The individualized 3D printing templates were made with photosensitive resin by a 3D printing system to ensure the screw shafts entered the vertebral body without breaking the pedicle or lamina cortex. The templates were sterilized by a plasma sterilizer and used during the operation. The accuracy and the safety of the templates were evaluated by CT scans at the screw insertion levels after operation. The accuracy of this patient-specific template technique was demonstrated. Only one screw axis greatly deviated from the planned track and breached the cortex of the pedicle because the template was split by rough handling and then we inserted the screws under the fluoroscopy. The remaining screws were inserted in the track as preoperative design and the screw axis deviated by less than 2 mm. Vascular or neurologic complications or injuries did not happen. And no infection, broken nails, fracture of bone structure, or screw pullout occurred. This study verified the safety and the accuracy of the individualized 3D printing screw insertion templates in the cervical spine as a kind of intraoperative screw navigation. This individualized 3D printing screw insertion template was user-friendly, moderate cost, and enabled a radiation-free cervical screw insertion.

  7. Intraocular pressure and haemodynamic responses to insertion of the i-gel, laryngeal mask airway or endotracheal tube.

    Science.gov (United States)

    Ismail, Salah A; Bisher, Neama A; Kandil, Hazem W; Mowafi, Hany A; Atawia, Hayam A

    2011-06-01

    We hypothesised that the effects of insertion of an i-gel supraglottic airway management device on intraocular pressure (IOP) and haemodynamic variables would be milder than those associated with insertion of a laryngeal mask airway (LMA) or an endotracheal tube. This study evaluated IOP and haemodynamic responses following insertion of an i-gel airway, LMA or endotracheal tube. This was a randomised controlled study in a tertiary care centre in which 60 adults scheduled for elective non-ophthalmic procedures under general anaesthesia were allocated to one of three groups. Patients with pre-existing glaucoma, cardiovascular, pulmonary or metabolic diseases or anticipated difficult intubation were excluded. Following induction of general anaesthesia, an endotracheal tube, LMA or i-gel device was inserted. IOP, SBP, DBP, heart rate (HR) and perfusion index were measured before induction of anaesthesia and before and after insertion of the airway device. Insertion of the i-gel did not increase IOP. Insertion of an endotracheal tube increased IOP from 11.6 ± 1.6 to 16.5 ± 1.7 mmHg (P intubation significantly increased HR, SBP and DBP. Insertion of the LMA significantly increased HR and SBP. These increases were significantly higher than those which followed insertion of the i-gel device. Insertion of the endotracheal tube or LMA resulted in a significant decrease in perfusion index which was maintained for 5 min following tracheal intubation and for 2 min after insertion of the LMA. Insertion of the i-gel device did not change perfusion index significantly. Insertion of the i-gel device provides better stability of IOP and the haemodynamic system compared with insertion of an endotracheal tube or LMA in patients undergoing elective non-ophthalmic surgery.

  8. Reducing Insertion Sites of Penetrating Multipolar Shaft Electrodes by Double Side Electrode Arrangement

    Science.gov (United States)

    2007-11-02

    Abstract-Micromachined devices with substrate-integrated elec- trodes are the key component in implantable microdevices for recording neuronal ...INSERTION SITES OF PENETRATING MULTIPOLAR SHAFT ELECTRODES BY DOUBLE SIDE ELECTRODE ARRANGEMENT T.Stieglitz1, P. Heiduschka2, M. Schuettler1, M. Gross1...and Subtitle Reducing Insertion Sites of Penetrating Multipolar Shaft Electrodes by Double Side Electrode Arrangement Contract Number Grant Number

  9. A new specifically designed forceps for chest drain insertion.

    LENUS (Irish Health Repository)

    Andrews, Emmet

    2012-02-03

    Insertion of a chest drain can be associated with serious complications. It is recommended that the drain is inserted with blunt dissection through the chest wall but there is no specific instrument to aid this task. We describe a new reusable forceps that has been designed specifically to facilitate the insertion of chest drains.A feasibility study of its use in patients who required a chest drain as part of elective cardiothoracic operations was undertaken. The primary end-point was successful and accurate placement of the drain. The operators also completed a questionnaire rating defined aspects of the procedure. The new instrument was used to insert the chest drain in 30 patients (19 male, 11 female; median age 61.5 years (range 16-81 years)). The drain was inserted successfully without the trocar in all cases and there were no complications. Use of the instrument rated as significantly easier relative to experience of previous techniques in all specified aspects. The new device can be used to insert intercostal chest drains safely and efficiently without using the trocar or any other instrument.

  10. Post-CTS Delay Insertion

    Directory of Open Access Journals (Sweden)

    Jianchao Lu

    2010-01-01

    clock skew operation is performed only at the clock sinks in order to preserve the structure and the optimizations implemented in the clock tree synthesis stage. The methodology is implemented as a linear programming model amenable to two design objectives: fixing timing violations or optimizing the clock period. Experimental results show that the clock networks of the largest ISCAS'89 circuits can be corrected post-CTS to resolve the timing conflicts in approximately 90% of the circuits with minimal delay insertion (0.159  ×  clock period per clock path on average. It is also shown that the majority of the clock period improvement achievable through unrestricted clock skew scheduling are obtained through very limited insertion (≈43% average improvement through 10% of max insertion.

  11. Gene Insertion Patterns and Sites

    Science.gov (United States)

    Vain, Philippe; Thole, Vera

    During the past 25 years, the molecular analysis of transgene insertion patterns and sites in plants has greatly contributed to our understanding of the mechanisms underlying transgene integration, expression, and stability in the nuclear genome. Molecular characterization is also an essential step in the safety assessment of genetically modified crops. This chapter describes the standard experimental procedures used to analyze transgene insertion patterns and loci in cereals and grasses transformed using Agrobacterium tumefaciens or direct transfer of DNA. Methods and protocols enabling the determination of the number and configuration of transgenic loci via a combination of inheritance studies, polymerase chain reaction, and Southern analyses are presented. The complete characterization of transgenic inserts in plants is, however, a holistic process relying on a wide variety of experimental approaches. In this chapter, these additional approaches are not detailed but references to relevant bibliographic records are provided.

  12. Tactile feedback as a sensory subtraction technique in haptics for needle insertion

    CERN Document Server

    Prattichizzo, D; Rosati, G

    2011-01-01

    A sensory substitution technique is presented in which the kinesthetic and tactile feedback are substituted by tactile feedback only provided by two wearable devices able to apply forces to the index finger and thumb holding a handle during a needle insertion task. The force pattern fed back to the user while using the tactile device is similar, in terms of intensity and area of application, to that perceived while interacting with a haptic device providing both tactile and kinesthetic feedback and it can be thought as a subtraction between the complete haptic and kinesthetic feedback. For this reason we refer to this approach as sensory subtraction instead of sensory substitution. A needle insertion scenario is considered. The haptic device is connected to a virtual environment simulating a needle insertion task. Experiments show that the perception of inserting a needle using the tactile feedback only is nearly indistinguishable from the one felt by the user using both tactile and kinesthetic feedback. As m...

  13. An insertion algorithm for catabolizability

    CERN Document Server

    Blasiak, Jonah

    2009-01-01

    Motivated by our recent work relating canonical bases to combinatorics of Garsia-Procesi modules \\cite{B}, we give an insertion algorithm that computes the catabolizability of the insertion tableau of a standard word. This allows us to characterize catabolizability as the statistic on words invariant under Knuth transformations, certain (co)rotations, and a new operation called a catabolism transformation. We also prove a Greene's Theorem-like characterization of catabolizability, and a result about how cocyclage changes catabolizability, strengthening a similar result in \\cite{SW}.

  14. A three-dimensional magnetostatics computer code for insertion devices.

    Science.gov (United States)

    Chubar, O; Elleaume, P; Chavanne, J

    1998-05-01

    RADIA is a three-dimensional magnetostatics computer code optimized for the design of undulators and wigglers. It solves boundary magnetostatics problems with magnetized and current-carrying volumes using the boundary integral approach. The magnetized volumes can be arbitrary polyhedrons with non-linear (iron) or linear anisotropic (permanent magnet) characteristics. The current-carrying elements can be straight or curved blocks with rectangular cross sections. Boundary conditions are simulated by the technique of mirroring. Analytical formulae used for the computation of the field produced by a magnetized volume of a polyhedron shape are detailed. The RADIA code is written in object-oriented C++ and interfaced to Mathematica [Mathematica is a registered trademark of Wolfram Research, Inc.]. The code outperforms currently available finite-element packages with respect to the CPU time of the solver and accuracy of the field integral estimations. An application of the code to the case of a wedge-pole undulator is presented.

  15. Post-placental postpartum intrauterine contraceptive devices insertion: our scenario

    Directory of Open Access Journals (Sweden)

    Monica Soni

    2016-03-01

    Conclusions: PPIUCD, a long-acting reversible method of contraception, is a safe option with high retention rate and very few expulsions and side effects. There was higher rate of acceptance, no expulsion and high continuation rate in post-cesarean cases as compared to vaginally delivered cases. [Int J Reprod Contracept Obstet Gynecol 2016; 5(3.000: 766-769

  16. Concepts for stereoselective acrylate insertion

    KAUST Repository

    Neuwald, Boris

    2013-01-23

    Various phosphinesulfonato ligands and the corresponding palladium complexes [{((PaO)PdMeCl)-μ-M}n] ([{( X1-Cl)-μ-M}n], (PaO) = κ2- P,O-Ar2PC6H4SO2O) with symmetric (Ar = 2-MeOC6H4, 2-CF3C6H4, 2,6-(MeO)2C6H3, 2,6-(iPrO)2C 6H3, 2-(2′,6′-(MeO)2C 6H3)C6H4) and asymmetric substituted phosphorus atoms (Ar1 = 2,6-(MeO)2C6H 3, Ar2 = 2′-(2,6-(MeO)2C 6H3)C6H4; Ar1 = 2,6-(MeO)2C6H3, Ar2 = 2-cHexOC 6H4) were synthesized. Analyses of molecular motions and dynamics by variable temperature NMR studies and line shape analysis were performed for the free ligands and the complexes. The highest barriers of ΔGa = 44-64 kJ/mol were assigned to an aryl rotation process, and the flexibility of the ligand framework was found to be a key obstacle to a more effective stereocontrol. An increase of steric bulk at the aryl substituents raises the motional barriers but diminishes insertion rates and regioselectivity. The stereoselectivity of the first and the second methyl acrylate (MA) insertion into the Pd-Me bond of in situ generated complexes X1 was investigated by NMR and DFT methods. The substitution pattern of the ligand clearly affects the first MA insertion, resulting in a stereoselectivity of up to 6:1 for complexes with an asymmetric substituted phosphorus. In the consecutive insertion, the stereoselectivity is diminished in all cases. DFT analysis of the corresponding insertion transition states revealed that a selectivity for the first insertion with asymmetric (P aO) complexes is diminished in the consecutive insertions due to uncooperatively working enantiomorphic and chain end stereocontrol. From these observations, further concepts are developed. © 2012 American Chemical Society.

  17. Space and power efficient hybrid counters array

    Science.gov (United States)

    Gara, Alan G.; Salapura, Valentina

    2009-05-12

    A hybrid counter array device for counting events. The hybrid counter array includes a first counter portion comprising N counter devices, each counter device for receiving signals representing occurrences of events from an event source and providing a first count value corresponding to a lower order bits of the hybrid counter array. The hybrid counter array includes a second counter portion comprising a memory array device having N addressable memory locations in correspondence with the N counter devices, each addressable memory location for storing a second count value representing higher order bits of the hybrid counter array. A control device monitors each of the N counter devices of the first counter portion and initiates updating a value of a corresponding second count value stored at the corresponding addressable memory location in the second counter portion. Thus, a combination of the first and second count values provide an instantaneous measure of number of events received.

  18. A new modified Seldinger technique for 2- and 3-French peripherally inserted central venous catheters.

    Science.gov (United States)

    Wald, Martin; Happel, Christoph M; Kirchner, Lieselotte; Jeitler, Valerie; Sasse, Michael; Wessel, Armin

    2008-11-01

    This study describes a modified Seldinger technique for 2- and 3-French peripherally inserted central venous catheters: A device similar to that used in heart catherisation with a standard micro-introducer serving as sheath and an arterial catheter serving as inner dilator was pushed forward over a wire guide that had before been inserted via a peripheral venous catheter. With this method 2-and 3-French catheters could be safely inserted into peripheral veins of 14 paediatric patients. In conclusion successful insertion of a small peripheral venous catheter offers in most cases a possibility for the placement of a central venous line.

  19. High-optical-quality blends of anionic polymethine salts and polycarbonate with enhanced third-order non-linearities for silicon-organic hybrid devices.

    Science.gov (United States)

    Li, Zhong'an; Liu, Yang; Kim, Hyeongeu; Hales, Joel M; Jang, Sei-Hum; Luo, Jingdong; Baehr-Jones, Tom; Hochberg, Michael; Marder, Seth R; Perry, Joseph W; Jen, Alex K-Y

    2012-11-20

    A series of anionic polymethine dyes with different aromatic counterions are prepared to improve their compatibility as guests in an amorphous polycarbonate host. When they are used as the cladding material for silicon hybrid slot waveguides, four-wave mixing wavelength conversion and two-photon absorption-based optical-power modulation are observed. Such guest-host materials may be attractive candidates for all-optical signal-processing applications.

  20. Design and Coordination Kinematics of an Insertable Robotic Effectors Platform for Single-Port Access Surgery

    OpenAIRE

    Ding, Jienan; Goldman, Roger E.; Kai XU; Allen, Peter K.; Fowler, Dennis L.; Simaan, Nabil

    2013-01-01

    Single port access surgery (SPAS) presents surgeons with added challenges that require new surgical tools and surgical assistance systems with unique capabilities. To address these challenges, we designed and constructed a new insertable robotic end-effectors platform (IREP) for SPAS. The IREP can be inserted through a Ø15 mm trocar into the abdomen and it uses 21 actuated joints for controlling two dexterous arms and a stereo-vision module. Each dexterous arm has a hybrid mechanical architec...

  1. A high-voltage rechargeable magnesium-sodium hybrid battery

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yifei; An, Qinyou; Cheng, Yingwen; Liang, Yanliang; Ren, Yang; Sun, Cheng-Jun; Dong, Hui; Tang, Zhongjia; Li, Guosheng; Yao, Yan

    2017-04-01

    Growing global demand of safe and low-cost energy storage technology triggers strong interests in novel battery concepts beyond state-of-art Li-ion batteries. Here we report a high-voltage rechargeable Mg–Na hybrid battery featuring dendrite-free deposition of Mg anode and Na-intercalation cathode as a low-cost and safe alternative to Li-ion batteries for large-scale energy storage. A prototype device using a Na3V2(PO4)3 cathode, a Mg anode, and a Mg–Na dual salt electrolyte exhibits the highest voltage (2.60 V vs. Mg) and best rate performance (86% capacity retention at 10C rate) among reported hybrid batteries. Synchrotron radiation-based X-ray absorption near edge structure (XANES), atomic-pair distribution function (PDF), and high-resolution X-ray diffraction (HRXRD) studies reveal the chemical environment and structural change of Na3V2(PO4)3 cathode during the Na ion insertion/deinsertion process. XANES study shows a clear reversible shift of vanadium K-edge and HRXRD and PDF studies reveal a reversible two-phase transformation and V–O bond length change during cycling. The energy density of the hybrid cell could be further improved by developing electrolytes with a higher salt concentration and wider electrochemical window. This work represents a significant step forward for practical safe and low-cost hybrid batteries.

  2. Exploiting p-Type Delayed Fluorescence in Hybrid White OLEDs: Breaking the Trade-off between High Device Efficiency and Long Lifetime.

    Science.gov (United States)

    Zhang, Dongdong; Zhang, Deqiang; Duan, Lian

    2016-09-01

    Despite that the majority of practical organic light-emitting diodes (OLEDs) still rely on blue fluorophors with low triplet (T1) for creating blue light, hybrid white OLEDs based on low T1 blue fluorophors are still much lagged behind in power efficiency. Here, "ideal" hybrid WOLEDs with recorded efficiency as well as low roll-off, good color-stability and long lifetime were realized by utilizing the bipolar mixed materials as the host of green phosphor as well as the spacer to reduce T1 trap, while blue fluorophors with p-type delayed fluorescence to recycle the trapped T1. An electron transport material with both high electron mobility and good exciton confinement ability was used to boost the TTA efficiency. Hybrid WOLEDs with maximum current efficiency, external quantum efficiency and power efficiency of 49.6 cd/A, 19.1%, and 49.3 lm/W, respectively, together with a high color rendering index of 80 and a half lifetime of over 7000 h at an initial luminescence of 1000 cd/m(2) were realized, manifesting the high potential of the strategy.

  3. In-office insertion of a miniaturized insertable cardiac monitor: Results from the Reveal LINQ In-Office 2 randomized study.

    Science.gov (United States)

    Rogers, John D; Sanders, Prashanthan; Piorkowski, Christopher; Sohail, M Rizwan; Anand, Rishi; Crossen, Karl; Khairallah, Farhat S; Kaplon, Rachelle E; Stromberg, Kurt; Kowal, Robert C

    2017-02-01

    Recent miniaturization of an insertable cardiac monitor (ICM) may make it possible to move device insertion from a hospital to office setting. However, the safety of this strategy is unknown. The primary objective was to compare the safety of inserting the Reveal LINQ ICM in an office vs a hospital environment. Ancillary objectives included summarizing device- and procedure-related adverse events and responses to a physician questionnaire. Five hundred twenty-one patients indicated for an ICM were randomized (1:1 ratio) to undergo ICM insertion in a hospital or office environment at 26 centers in the United States in the Reveal LINQ In-Office 2 study (ClinicalTrials.gov identifier NCT02395536). Patients were followed for 90 days. ICM insertion was successful in all 482 attempted patients (office: 251; hospital: 231). The untoward event rate (composite of unsuccessful insertion and ICM- or insertion-related complications) was 0.8% (2 of 244) in the office and 0.9% (2 of 227) in the hospital (95% confidence interval, -3.0% to 2.9%; 5% noninferiority: P office and 4.4% (10 of 227) of hospital insertions (95% confidence interval [office minus inhospital rates], -5.8% to 1.9%; 5% noninferiority: P office vs a hospital, there were fewer delays >15 minutes (16% vs 35%; P office location "very convenient" more frequently than the hospital location (85% vs 27%; P < .001). The safety profile for the insertion of the Reveal LINQ ICM is excellent irrespective of insertion environment. These results may expand site of service options for LINQ insertion. Copyright © 2016 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.

  4. Lesion insertion in the projection domain: Methods and initial results

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Baiyu; Leng, Shuai; Yu, Lifeng; Yu, Zhicong; Ma, Chi; McCollough, Cynthia, E-mail: mccollough.cynthia@mayo.edu [Department of Radiology, Mayo Clinic, Rochester, Minnesota 55905 (United States)

    2015-12-15

    Purpose: To perform task-based image quality assessment in CT, it is desirable to have a large number of realistic patient images with known diagnostic truth. One effective way of achieving this objective is to create hybrid images that combine patient images with inserted lesions. Because conventional hybrid images generated in the image domain fails to reflect the impact of scan and reconstruction parameters on lesion appearance, this study explored a projection-domain approach. Methods: Lesions were segmented from patient images and forward projected to acquire lesion projections. The forward-projection geometry was designed according to a commercial CT scanner and accommodated both axial and helical modes with various focal spot movement patterns. The energy employed by the commercial CT scanner for beam hardening correction was measured and used for the forward projection. The lesion projections were inserted into patient projections decoded from commercial CT projection data. The combined projections were formatted to match those of commercial CT raw data, loaded onto a commercial CT scanner, and reconstructed to create the hybrid images. Two validations were performed. First, to validate the accuracy of the forward-projection geometry, images were reconstructed from the forward projections of a virtual ACR phantom and compared to physically acquired ACR phantom images in terms of CT number accuracy and high-contrast resolution. Second, to validate the realism of the lesion in hybrid images, liver lesions were segmented from patient images and inserted back into the same patients, each at a new location specified by a radiologist. The inserted lesions were compared to the original lesions and visually assessed for realism by two experienced radiologists in a blinded fashion. Results: For the validation of the forward-projection geometry, the images reconstructed from the forward projections of the virtual ACR phantom were consistent with the images physically

  5. Solution-Processed Hybrid Light-Emitting Devices Comprising TiO2 Nanorods and WO3 Layers as Carrier-Transporting Layers

    Science.gov (United States)

    Tsai, Tsung-Yan; Yan, Po-Ruei; Yang, Sheng-Hsiung

    2016-11-01

    The goal of this research is to prepare inverted light-emitting devices with improved performance by combining titanium dioxide (TiO2) nanorods and tungsten trioxide (WO3) layer. TiO2 nanorods with different lengths were established directly on the fluorine-doped tin oxide (FTO) substrates by the hydrothermal method. The prepared TiO2 nanorods with lengths shorter than 200 nm possess transmittance higher than 80% in the visible range. Inverted light-emitting devices with the configuration of FTO/TiO2 nanorods/ionic PF/MEH-PPV/PEDOT:PSS/WO3/Au were constructed. The best device based on 100-nm-height TiO2 nanorods achieved a max brightness of 4493 cd/m2 and current efficiency of 0.66 cd/A, revealing much higher performance compared with those using TiO2 compact layer or nanorods with longer lengths as electron-transporting layers.

  6. Meningococcal septic shock after IUD insertion, a case presentation.

    Science.gov (United States)

    Romosan, Gina; Blidisel, A; Grigoras, D; Houtsios, A; Ionac, M

    2013-01-01

    Neisseria meningitidis is a normal commensal of human mucous membranes that is no longer considered to be restricted to the nasopharynx. Due to the practice of oral sex, the mucous membranes of the cervix, urethra or anus have become a potential infection site for this bacterium. Inserting an intrauterine device (IUD), can alter the protective barrier of the endocervical mucosa, allowing for bacterial infection and systemic spread. We present a case report of a 40-year-old woman who presented with abdominal pain, spotting and fever after inserting an IUD and developed a fulminant septic shock. Blood cultures and cultures from ascites showed the presence of Neisseria meningitidis group Y. From our knowledge, there are a few cases presented in the literature of toxic shock syndrome after IUD insertion, caused by Staphylococcus aureus or Streptococcus group A, but this is the first case of meningococcal sepsis after IUD insertion described. So, even though IUDs rarely cause significant infection, physicians should consider this device as a possible source in reproductive-age women with the clinical features of sepsis.

  7. The first LHC insertion quadrupole

    CERN Multimedia

    2004-01-01

    An important milestone was reached in December 2003 at the CERN Magnet Assembly Facility. The team from the Accelerator Technology - Magnet and Electrical Systems group, AT-MEL, completed the first special superconducting quadrupole for the LHC insertions which house the experiments and major collider systems. The magnet is 8 metres long and contains two matching quadrupole magnets and an orbit corrector, a dipole magnet, used to correct errors in quadrupole alignment. All were tested in liquid helium and reached the ultimate performance criteria required for the LHC. After insertion in the cryostat, the superconducting magnet will be installed as the Q9 quadrupole in sector 7-8, the first sector of the LHC to be put in place in 2004. Members of the quadrupole team, from the AT-MEL group, gathered around the Q9 quadrupole at its inauguration on 12 December 2003 in building 181.

  8. Solution-Processed Hybrid Light-Emitting Devices Comprising TiO2 Nanorods and WO3 Layers as Carrier-Transporting Layers

    OpenAIRE

    Tsai, Tsung-Yan; Yan, Po-Ruei; Yang, Sheng-Hsiung

    2016-01-01

    The goal of this research is to prepare inverted light-emitting devices with improved performance by combining titanium dioxide (TiO2) nanorods and tungsten trioxide (WO3) layer. TiO2 nanorods with different lengths were established directly on the fluorine-doped tin oxide (FTO) substrates by the hydrothermal method. The prepared TiO2 nanorods with lengths shorter than 200 nm possess transmittance higher than 80% in the visible range. Inverted light-emitting devices with the configuration of ...

  9. Inserting Agility in System Development

    Science.gov (United States)

    2012-07-01

    Agile IT Acquisition, IT Box, Scrum Inserting Agility in System Development Matthew R. Kennedy and Lt Col Dan Ward, USAF With the fast-paced nature...1,700 individuals and 71 countries, found Scrum and eXtreme Programming to be the most widely followed method- ologies (VersionOne, 2007). Other...University http://www.dau.mil 259 Defense ARJ, July 2012, Vol. 19 No. 3 : 249–264 Scrum Scrum is a framework used for project management, which is

  10. HTS Insert Magnet Design Study

    CERN Document Server

    Devaux, M; Fleiter, J; Fazilleau, P; Lécrevisse, T; Pes, C; Rey, J-M; Rifflet, J-M; Sorbi, M; Stenvall, A; Tixador, P; Volpini, G

    2011-01-01

    Future accelerator magnets will need to reach higher field in the range of 20 T. This field level is very difficult to reach using only Low Temperature Superconductor materials whereas High Temperature Superconductors (HTS) provide interesting opportunities. High current densities and stress levels are needed to design such magnets. YBCO superconductor indeed carries large current densities under high magnetic field and provides good mechanical properties especially when produced using the IBAD approach. The HFM EUCARD program studies the design and the realization of an HTS insert of 6 T inside a Nb3Sn dipole of 13T at 4.2 K. In the2HTS insert, engineering current densities higher than 250 MA/m under 19 T are required to fulfill the specifications. The stress level is also very severe. YBCO IBAD tapes theoretically meet these challenges from presented measurements. The insert protection is also a critical because HTS materials show low quench propagation velocities and the coupling with the Nb3Sn magnet make...

  11. Development and comparison of projection and image space 3D nodule insertion techniques

    Science.gov (United States)

    Robins, Marthony; Solomon, Justin; Sahbaee, Pooyan; Samei, Ehsan

    2016-04-01

    This study aimed to develop and compare two methods of inserting computerized virtual lesions into CT datasets. 24 physical (synthetic) nodules of three sizes and four morphologies were inserted into an anthropomorphic chest phantom (LUNGMAN, KYOTO KAGAKU). The phantom was scanned (Somatom Definition Flash, Siemens Healthcare) with and without nodules present, and images were reconstructed with filtered back projection and iterative reconstruction (SAFIRE) at 0.6 mm slice thickness using a standard thoracic CT protocol at multiple dose settings. Virtual 3D CAD models based on the physical nodules were virtually inserted (accounting for the system MTF) into the nodule-free CT data using two techniques. These techniques include projection-based and image-based insertion. Nodule volumes were estimated using a commercial segmentation tool (iNtuition, TeraRecon, Inc.). Differences were tested using paired t-tests and R2 goodness of fit between the virtually and physically inserted nodules. Both insertion techniques resulted in nodule volumes very similar to the real nodules (<3% difference) and in most cases the differences were not statistically significant. Also, R2 values were all <0.97 for both insertion techniques. These data imply that these techniques can confidently be used as a means of inserting virtual nodules in CT datasets. These techniques can be instrumental in building hybrid CT datasets composed of patient images with virtually inserted nodules.

  12. Insertion trauma of a cochlear implant electrode array with Nitinol inlay.

    Science.gov (United States)

    Rau, Thomas S; Harbach, Lenka; Pawsey, Nick; Kluge, Marcel; Erfurt, Peter; Lenarz, Thomas; Majdani, Omid

    2016-11-01

    The integration of a shape memory actuator is a potential mechanism to achieve a consistent perimodiolar position after electrode insertion during cochlear implant surgery. After warming up, and therefore activation of the shape memory effect, the electrode array will change from a straight configuration into a spiral shaped one leading to a final position close to the modiolus. The aim of this study was to investigate whether the integration of an additional thin wire (referred to as an "inlay") made of Nitinol, a well-established shape memory alloy, in a conventional hearing preservation electrode array will affect the insertion behaviour in terms of increased risk of insertion trauma. Six conventional Hybrid-L electrode arrays (Cochlear Ltd., Sydney, Australia) were modified to incorporate a wire inlay made of Nitinol. The diameter of the wires was 100 µm with a tapered tip region. Electrodes were inserted into human temporal bone specimens using a standard surgical approach. After insertion and embedding in epoxy resin, histological sections were prepared to evaluate insertion trauma. Insertion was straightforward and no difficulties were observed. The addition of a shape memory wire, thin but also strong enough to curl the electrode array, does not result in histologically detectable insertion trauma. Atraumatic insertion seems possible.

  13. One-step inkjet printing of tungsten oxide-poly(3,4-ethylenedioxythiophene):polystyrene sulphonate hybrid film and its applications in electrochromic devices

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Thi-Thuy-Nga, E-mail: thuysnga@gmail.com; Chan, Chih-Yu; He, Ju-Liang

    2016-03-31

    Hybrid film comprised tungsten oxide and poly (3,4-ethylenedioxythiophene):polystyrene sulphonate (WO{sub 3}–PEDOT:PSS) was developed by applying one-step inkjet printing from an office inkjet printer. The WO{sub 3} nanoparticles were synthesized from commercial crystalline WO{sub 3} powder through a wet ball-milling process, which is a simple, environmentally friendly, and cost-effective method of using water as a green solvent and low-energy milling. The WO{sub 3}–PEDOT:PSS inkjet ink was prepared by dispersing the as-milled WO{sub 3} and PEDOT:PSS in n-propanol and deionized water. The inkjet-printed WO{sub 3}–PEDOT:PSS thin films show marked improvements of cathodic electrochromism over WO{sub 3} films: the transmittance change of 20% at 550 nm (visible region) and 35% at 900 nm (infrared region) along with the response time of 5.67/0.30 s in their colored/bleached state, and the electrochromic coloration efficiency of 27.86 cm{sup 2}/C at 550 nm and 69.64 cm{sup 2}/C at 900 nm. - Highlights: • WO{sub 3} nanoparticles were synthesized by milling commercial crystalline WO{sub 3}. • Wet ball-milling was carried out by using water as a green solvent and low energy. • WO{sub 3}–PEDOT:PSS hybrid ink was simply prepared by adding n-propanol and DI water. • WO{sub 3}–PEDOT:PSS hybrid films were inkjet-printed via an office inkjet printer. • WO{sub 3}–PEDOT:PSS films show better electrochromic performances than WO{sub 3} films.

  14. A Comparative Analysis of Different Finishing and Polishing Devices on Nanofilled, Microfilled, and Hybrid Composite: A Scanning Electron Microscopy and Profilometric Study.

    Science.gov (United States)

    Yadav, Rishi D; Raisingani, Deepak; Jindal, Divya; Mathur, Rachit

    2016-01-01

    The continuous development of esthetically acceptable adhesive restorative material has made a variety of tooth-colored materials available for clinical use. The advent of visible light polymerizing resin and the use of finer filler particles permit resin composites to be polished to higher degree. The effect of polishing systems on surface finish has been reported to be material-dependent, and the effectiveness of these systems was mostly product-dependent. Hence, the purpose of this study was to evaluate the efficiency of finishing and polishing systems on the surface roughness of nanofilled, microfilled, and hybrid composite restorative materials available in the market.

  15. Application of Hybrid HS and Tabu Search Algorithm for Optimal Location of FACTS Devices to Reduce Power Losses in Power Systems

    Directory of Open Access Journals (Sweden)

    Z. Masomi Zohrabad

    2016-12-01

    Full Text Available Power networks continue to grow following the annual growth of energy demand. As constructing new energy generation facilities bears a high cost, minimizing power grid losses becomes essential to permit low cost energy transmission in larger distances and additional areas. This study aims to model an optimization problem for an IEEE 30-bus power grid using a Tabu search algorithm based on an improved hybrid Harmony Search (HS method to reduce overall grid losses. The proposed algorithm is applied to find the best location for the installation of a Unified Power Flow Controller (UPFC. The results obtained from installation of the UPFC in the grid are presented by displaying outputs.

  16. Retraction of “Accurate Prediction of Essential Fundamental Properties for Semiconductors Used in Solar-Energy Conversion Devices from Range-Separated Hybrid Density Functional Theory”

    KAUST Repository

    Harb, Moussab

    2016-03-08

    The author retracts this article due to similarities with a previously published article by Le Bahers, T.; Rerat, M.; Sautet, ́ P. Semiconductors Used in Photovoltaic and Photocatalytic Devices: Assessing Fundamental Properties from DFT. J. Phys. Chem. C 2014, 118 (12), 5997−6008 (DOI: 10.1021/jp409724c).

  17. Stabilizing Semiconductor Devices With Hydrogen

    Science.gov (United States)

    Overhauser, Albert W.; Maserjian, Joseph

    1989-01-01

    Damage by radiation healed rapidly. Feature provides continuous, rapid recovery of devices from degradation caused by hot electrons, photons, and ionizing radiation. Several candidate sites for palladium film catalysts, inserted during manufacture as integral parts of devices. Paladium films made by evaporation, sputtering, or chemical-vapor deposition. If additional storage required, thick layer of palladium plated on inside of package surrounding device. Hydrogen stored by exposing palladium to hydrogen gas just before package sealed hermetically.

  18. Efficacy and tolerance of an injectable medical device containing stable hybrid cooperative complexes of high- and low-molecular-weight hyaluronic acid: a monocentric 16 weeks open-label evaluation

    Directory of Open Access Journals (Sweden)

    Sparavigna A

    2016-09-01

    Full Text Available Adele Sparavigna, Beatrice Tenconi DermIng srl, Clinical Research and Bioengineering Institute, Monza, MB, Italy Background: An injectable medical device containing stable hybrid cooperative complexes of high- and low-molecular-weight hyaluronic acid (HA has been developed with characteristics suited for a global improvement of facial esthetics. Objective: To evaluate the HA product performance in improving some key facial esthetic features. The study employed clinical scales, subjective evaluations, and facial skin objective measurements. Methods: A single Italian site treated 64 female subjects aged 38–60 years, with injections at five predetermined points, on each side of the face, with a 4-week time lapse between the first and the second product administration. Subjects were evaluated after 4, 8, 12, and 16 weeks, using validated clinical scales, subjective evaluation, and objective quantitative outcome measures. Assessment of esthetic results included photographic documentation. Results: Both the clinical and subjective assessments, and the majority of objective instrumental parameters indicated an improvement throughout the study and were already significant at week 4 or 8 and were still significant at week 16 (3 months after the second treatment. Minor and temporary local skin reactions were observed in 23% of subjects at the site of the injections, and the global judgment on tolerability was good or excellent, both in the investigators’ opinion and volunteers’ self-evaluation. Conclusion: Both subjective and objective improvement of the facial parameters was consistent with the bio-remodeling purpose, and persistent and still statistically significant at the end of the study. The tolerability and safety profile of the product were judged good or excellent both by investigators and volunteers. This study supports the claim for bio-remodeling of these stable hybrid cooperative complexes of low- and high-molecular-weight HA. Keywords

  19. Development of a hybrid solar tracking device using a GPS and a photo-sensor capable of operating at low solar radiation intensity

    Science.gov (United States)

    Lee, Hyo Geun; Kim, Sang Suk; Kim, Sung Jo; Park, Su-Jin; Yun, Chang-wuk; Im, Gil-pyeong

    2015-09-01

    The PhotoVoltaic System, which is and environmentally-sound source of sustainable energy among most representaion of what alternative energy resources, is in the limelight [1]. Especially, the concentration photovoltaic system (CPV) is more effective than the general photovoltaic system. However, In existing CPV systems tracking the sun position when insolation is low or rapidly changing due to clouds and fog is pratically impossible. For this reason, obtain satisfactory power generation is difficult. In this reserely a hybrid method for tracking the sun's altitude/latitude angles by combining a GPS sensor with an existing tracking system was developed. This study tested the accuracy of tracking when the hybrid tracking system was applied to a 5 kW photovoltaic system, Currently, this study is performing tests to demonstrate the tracking accuracy by testing CPV modules instead of applying general PV modules for the system. In the future, the application of this system in a define MCPV(MCPV) module will improve the efficiency of power generation.

  20. Pulse electrosynthesis of novel wormlike gadolinium oxide nanostructure and its nanocomposite with conjugated electroactive polymer as a hybrid and high efficient electrode material for energy storage device.

    Science.gov (United States)

    Shiri, Hamid Mohammad; Ehsani, Ali

    2016-12-15

    An effective approach for increasing the life cycle of pure p-type conductive polymers is combining conventional conductive polymers and nanomaterials to fabricate hybrid electrodes. In this paper, Gadolinium oxide (Gd2O3) has first been synthesized using pulse electrochemical approach. Hybrid POAP/Gd2O3 films have then been fabricated by POAP electropolymerization in the presence of Gd2O3 nanoparticles as active electrodes for electrochemical supercapacitors. Surface and electrochemical analyses have been used for characterization of Gd2O3 and POAP/Gd2O3 composite films. Different electrochemical methods including galvanostatic charge discharge experiments, cyclic voltammetry and electrochemical impedance spectroscopy have been applied to study the system performance. Specific capacitance, specific energy and specific power of the composite film are calculated 300F·g(-1), 41.66Wh·kg(-1) and 833.22W·kg(-1) respectively. This work introduces new nanocomposite materials for electrochemical redox capacitors with such advantages as the ease of synthesis, high active surface area and stability in an aqueous electrolyte.

  1. Hybridity in Embedded Computing Systems

    Institute of Scientific and Technical Information of China (English)

    虞慧群; 孙永强

    1996-01-01

    An embedded system is a system that computer is used as a component in a larger device.In this paper,we study hybridity in embedded systems and present an interval based temporal logic to express and reason about hybrid properties of such kind of systems.

  2. The Discussion about the Mobile Resisitance of Locating Block on the Inserter for Intrauterine Devices in the Standards of Intrauterine Devices%宫内节育器放置器定位块移动阻力在节育器系列标准中的要求探讨

    Institute of Scientific and Technical Information of China (English)

    李闻涛; 党琳琳; 邵文鹏; 王韵晴

    2015-01-01

    This artical compares the requirements of the mobile resisitance of locating block in the intrauterine devices and the inserter’s national standards with the requirements of the product registration standards. The writer points out the problums in those national standards and product registration standards and proposes the suggestions for improvement.%本文通过对现行宫内节育器及节育器放置器国行标及产品注册标准中对定位块移动阻力项规定的对比分析,提出了该类产品国行标及注册标准中存在的问题,并提出了改进的建议。

  3. Reliability Technology to Achieve Insertion of Advanced Packaging (RELTECH) program

    Science.gov (United States)

    Fayette, Daniel F.; Speicher, Patricia; Stoklosa, Mark J.; Evans, Jillian V.; Evans, John W.; Gentile, Mike; Pagel, Chuck A.; Hakim, Edward

    1993-01-01

    A joint military-commercial effort to evaluate multichip module (MCM) structures is discussed. The program, Reliability Technology to Achieve Insertion of Advanced Packaging (RELTECH), has been designed to identify the failure mechanisms that are possible in MCM structures. The RELTECH test vehicles, technical assessment task, product evaluation plan, reliability modeling task, accelerated and environmental testing, and post-test physical analysis and failure analysis are described. The information obtained through RELTECH can be used to address standardization issues, through development of cost effective qualification and appropriate screening criteria, for inclusion into a commercial specification and the MIL-H-38534 general specification for hybrid microcircuits.

  4. JT/LJT connector insert material evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Baca, J.R.F.

    1991-10-01

    Different insert (insulator) materials are undergoing evaluation to replace the Fiberite E-3938 BE96 material currently used. Also being evaluated is the reconfiguration of the insert and metal shell-edge geometries for the purpose of reducing the alleged interference principally responsible for insert damage.

  5. Dynamical investigation of macromolecular hybridization bioassays

    CERN Document Server

    Bittner, R; Wixforth, A

    2002-01-01

    A novel sensoric technique for the dynamical in situ investigation of a hybridization bio assay is presented, which utilizes a metal bead labeling method. Therein, hybridization results in an increased metal coverage on parts of a substrate, where it takes place. Our sensing principle relies on the measurement of the radio frequency impedance of the hybridization spots. We propose several examples for sensor devices.

  6. Intrauterine device developments.

    Science.gov (United States)

    1984-01-01

    Results of recent IUD research are presented. The largest study of postpartum IUD insertion to date, a multicenter comparative trail involving 3791 women at 15 sites in 13 countries, has shown that the practice is safe and effective if the IUD is correctly placed. Modifications in design of the device are unnecessary to reduce expulsions. In 1977, Family Health International (FHI) began developing IUDs that would have clinically acceptable expulsion rates following postpartum insertion. By adding chromic catgut suture material to the upper arms of the TCu andLippes Loop, FHI developed the Delta T and Delta Loop. Many of the centers involved in studies of postpartum IUD insertion were large urban maternity hospitals in developing countries with heavy caseloads of 10,000-30,000 deliveries/year. Results of the trials and of a 19-center evaluation of the timing of postpartum insertion support several conclusions: 1) insertion should take place within 10 minutes of placental expulsion; 2) if insertion is done within 10 minutes of delivery, there is no increased risk of infection or uterine perforation; 3) the type of device inserted is less important than the method of insertion; expulsion rates at different clinics ranged from 6-37/1000 women at 6 monts, and the fundal placement of the device is crucial; and 4) expulsions are higher for postpartum than interval insertions but not so high as to make the offer of an IUD immediately postpartum unacceptable. Since the incidence of pain or bleeding associated with IUD use is related to their size, attempts to decrease the side effects have centered on development of smaller copper devices. 1 such device, the copper i, consists of a straight stem with small crossarms in an 'x' configuration disigned to anchor the IUD in place. A copper wire around the stem of the device exposes 200 sq millimeters of cooper. A study of 98 women who used the Copper i showed an accidental pregnancy rate of 3.2 at 6 months and 9.0 at 12 months

  7. Nanostructured organic and hybrid solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Weickert, Jonas; Dunbar, Ricky B.; Hesse, Holger C.; Wiedemann, Wolfgang; Schmidt-Mende, Lukas [Department of Physics and Center for NanoScience (CeNS), Ludwig-Maximilians University (LMU) Munich, Amalienstr. 54, 80799 Munich (Germany)

    2011-04-26

    This progress report highlights recent developments in nanostructured organic and hybrid solar cells. The authors discuss novel approaches to control the film morphology in fully organic solar cells and the design of nanostructured hybrid solar cells. The motivation and recent results concerning fabrication and effects on device physics are emphasized. The aim of this review is not to give a summary of all recent results in organic and hybrid solar cells, but rather to focus on the fabrication, device physics, and light trapping properties of nanostructured organic and hybrid devices. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. Impact of Insertion Sequences and Recombination on the Population Structure of Staphylococcus haemolyticus.

    Directory of Open Access Journals (Sweden)

    Ons Bouchami

    Full Text Available Staphylococcus haemolyticus is one of the most common pathogens associated with medical-device related infections, but its molecular epidemiology is poorly explored. In the current study, we aimed to better understand the genetic mechanisms contributing to S. haemolyticus diversity in the hospital environment and their impact on the population structure and clinical relevant phenotypic traits. The analysis of a representative S. haemolyticus collection by multilocus sequence typing (MLST has identified a single highly prevalent and diverse genetic lineage of nosocomial S. haemolyticus clonal complex (CC 29 accounting for 91% of the collection of isolates disseminated worldwide. The examination of the sequence changes at MLST loci during clonal diversification showed that recombination had a higher impact than mutation in shaping the S. haemolyticus population. Also, we ascertained that another mechanism contributing significantly to clonal diversification and adaptation was mediated by insertion sequence (IS elements. We found that all nosocomial S. haemolyticus, belonging to different STs, were rich in IS1272 copies, as determined by Southern hybridization of macrorestriction patterns. In particular, we observed that the chromosome of a S. haemolyticus strain within CC29 was highly unstable during serial growth in vitro which paralleled with IS1272 transposition events and changes in clinically relevant phenotypic traits namely, mannitol fermentation, susceptibility to beta-lactams, biofilm formation and hemolysis. Our results suggest that recombination and IS transposition might be a strategy of adaptation, evolution and pathogenicity of the major S. haemolyticus prevalent lineage in the hospital environment.

  9. A CMOS-compatible poly-Si nanowire device with hybrid sensor/memory characteristics for System-on-Chip applications.

    Science.gov (United States)

    Chen, Min-Cheng; Chen, Hao-Yu; Lin, Chia-Yi; Chien, Chao-Hsin; Hsieh, Tsung-Fan; Horng, Jim-Tong; Qiu, Jian-Tai; Huang, Chien-Chao; Ho, Chia-Hua; Yang, Fu-Liang

    2012-01-01

    This paper reports a versatile nano-sensor technology using "top-down" poly-silicon nanowire field-effect transistors (FETs) in the conventional Complementary Metal-Oxide Semiconductor (CMOS)-compatible semiconductor process. The nanowire manufacturing technique reduced nanowire width scaling to 50 nm without use of extra lithography equipment, and exhibited superior device uniformity. These n type polysilicon nanowire FETs have positive pH sensitivity (100 mV/pH) and sensitive deoxyribonucleic acid (DNA) detection ability (100 pM) at normal system operation voltages. Specially designed oxide-nitride-oxide buried oxide nanowire realizes an electrically V(th)-adjustable sensor to compensate device variation. These nanowire FETs also enable non-volatile memory application for a large and steady V(th) adjustment window (>2 V Programming/Erasing window). The CMOS-compatible manufacturing technique of polysilicon nanowire FETs offers a possible solution for commercial System-on-Chip biosensor application, which enables portable physiology monitoring and in situ recording.

  10. A CMOS-Compatible Poly-Si Nanowire Device with Hybrid Sensor/Memory Characteristics for System-on-Chip Applications

    Directory of Open Access Journals (Sweden)

    Chia-Hua Ho

    2012-03-01

    Full Text Available This paper reports a versatile nano-sensor technology using “top-down” poly-silicon nanowire field-effect transistors (FETs in the conventional Complementary Metal-Oxide Semiconductor (CMOS-compatible semiconductor process. The nanowire manufacturing technique reduced nanowire width scaling to 50 nm without use of extra lithography equipment, and exhibited superior device uniformity. These n type polysilicon nanowire FETs have positive pH sensitivity (100 mV/pH and sensitive deoxyribonucleic acid (DNA detection ability (100 pM at normal system operation voltages. Specially designed oxide-nitride-oxide buried oxide nanowire realizes an electrically Vth-adjustable sensor to compensate device variation. These nanowire FETs also enable non-volatile memory application for a large and steady Vth adjustment window (>2 V Programming/Erasing window. The CMOS-compatible manufacturing technique of polysilicon nanowire FETs offers a possible solution for commercial System-on-Chip biosensor application, which enables portable physiology monitoring and in situ recording.

  11. Hybrid Baryons

    CERN Document Server

    Page, P R

    2003-01-01

    We review the status of hybrid baryons. The only known way to study hybrids rigorously is via excited adiabatic potentials. Hybrids can be modelled by both the bag and flux-tube models. The low-lying hybrid baryon is N 1/2^+ with a mass of 1.5-1.8 GeV. Hybrid baryons can be produced in the glue-rich processes of diffractive gamma N and pi N production, Psi decays and p pbar annihilation.

  12. Hybrid energy storage: the merging of battery and supercapacitor chemistries.

    Science.gov (United States)

    Dubal, D P; Ayyad, O; Ruiz, V; Gómez-Romero, P

    2015-04-07

    The hybrid approach allows for a reinforcing combination of properties of dissimilar components in synergic combinations. From hybrid materials to hybrid devices the approach offers opportunities to tackle much needed improvements in the performance of energy storage devices. This paper reviews the different approaches and scales of hybrids, materials, electrodes and devices striving to advance along the diagonal of Ragone plots, providing enhanced energy and power densities by combining battery and supercapacitor materials and storage mechanisms. Furthermore, some theoretical aspects are considered regarding the possible hybrid combinations and tactics for the fabrication of optimized final devices. All of it aiming at enhancing the electrochemical performance of energy storage systems.

  13. Comparison of rapid hybridization-based pathogen identification and resistance evaluation in sepsis using the Verigene® device paired with "good old culture".

    Science.gov (United States)

    Berktold, Michael; Mutschlechner, Wolfgang; Orth-Höller, Dorothea

    2017-06-01

    Rapid microbial diagnostics is important for septicemic patients. The current gold standard is blood culture with consecutive pathogen identification and antimicrobial susceptibility testing. However, these culture-based methods need at least 48 h.The aim of this study was to compare Verigene(®) (Nanosphere, Northbrook, IL, USA), a rapid hybridization-based method, with conventional culture-based methods for detection of pathogens and resistance markers from positive blood cultures of septic patients.In 85 of 100 tested blood culture samples (85 %), pathogen identification as well as resistance profile were identical in Verigene and conventional culture. In 4 %, discordant results were observed. In 9 %, conventional culture revealed a pathogen ID or resistance phenotype not included in the Verigene panel. In 2 % no Verigene result was available.In conclusion, Verigene offers the availability of fast and reliable pathogen identification and resistance profile determination, which may result in an earlier start of adequate antimicrobial treatment.

  14. IMPLEMENTATION OF TRANSMITTER AND RECEIVER ARCHITECTURE FOR PHYSICAL HYBRID INDICATOR CHANNEL OF LTE-ADVANCED USING PARTIAL RECONFIGURATION IN ML605 VIRTEX-6 DEVICE

    Directory of Open Access Journals (Sweden)

    S. Syed Ameer Abbas

    2014-09-01

    Full Text Available LTE-A (Long Term Evolution-Advanced is the fourth generation technology to increase the speed of wireless data network. The LTE-A Physical layer provides both data and control information between an enhanced base station and mobile user equipment which is quite complex and consists of a mixture of technologies. Since there is requirement for more resources to accommodate all the channels in a single FPGA, Partial Reconfiguration (PR technique is introduced to configure the total hardware into sub modules that configure and operate in different instants of time. PR enables a part of FPGA to be reconfigured, while the rest continues to function without any interruptions and reduces the hardware resource power and fabric area. This work proposes the realization of transmitter and receiver architecture of Physical Hybrid Indicator Channel (PHICH channel for LTE-A using partial reconfiguration on xc6vlx240tff1156-1 FPGA. The receiver architecture for PHICH is to report the correct reception of uplink user data to the User Equipment (UE in the form of Acknowledgment (ACK, or Negative ACK (NACK in a 1 millisecond duration sub-frame of Long Term Evolution (LTE System. The modules for the different diversities are reconfigured based on the control signals from the transmitter.

  15. Spectral analysis of hearing protector impulsive insertion loss.

    Science.gov (United States)

    Fackler, Cameron J; Berger, Elliott H; Murphy, William J; Stergar, Michael E

    2017-01-01

    To characterise the performance of hearing protection devices (HPDs) in impulsive-noise conditions and to compare various protection metrics between impulsive and steady-state noise sources with different characteristics. HPDs were measured per the impulsive test methods of ANSI/ASA S12.42- 2010 . Protectors were measured with impulses generated by both an acoustic shock tube and an AR-15 rifle. The measured data were analysed for impulse peak insertion loss (IPIL) and impulsive spectral insertion loss (ISIL). These impulsive measurements were compared to insertion loss measured with steady-state noise and with real-ear attenuation at threshold (REAT). Tested HPDs included a foam earplug, a level-dependent earplug and an electronic sound-restoration earmuff. IPIL for a given protector varied between measurements with the two impulse noise sources, but ISIL agreed between the two sources. The level-dependent earplug demonstrated level-dependent effects both in IPIL and ISIL. Steady-state insertion loss and REAT measurements tended to provide a conservative estimate of the impulsively-measured attenuation. Measurements of IPIL depend strongly on the source used to measure them, especially for HPDs with less attenuation at low frequencies. ISIL provides an alternative measurement of impulse protection and appears to be a more complete description of an HPD's performance.

  16. Enhancement of DNA hybridization under acoustic streaming with three-piezoelectric-transducer system.

    Science.gov (United States)

    Maturos, Thitima; Pogfay, Tawee; Rodaree, Kiattimant; Chaotheing, Sastra; Jomphoak, Apichai; Wisitsoraat, Anurat; Suwanakitti, Nattida; Wongsombat, Chayapat; Jaruwongrungsee, Kata; Shaw, Philip; Kamchonwongpaisan, Sumalee; Tuantranont, Adisorn

    2012-01-07

    Recently, we have demonstrated that DNA hybridization using acoustic streaming induced by two piezoelectric transducers provides higher DNA hybridization efficiency than the conventional method. In this work, we refine acoustic streaming system for DNA hybridization by inserting an additional piezoelectric transducer and redesigning the locations of the transducers. The Comsol® Multiphysics was used to design and simulate the velocity field generated by the piezoelectric agitation. The simulated velocity vector followed a spiral vortex flow field with an average direction outward from the center of the transducers. These vortices caused the lower signal intensity in the middle of the microarray for the two-piezoelectric disk design. On the contrary, the problem almost disappeared in the three-piezoelectric-disk system. The optimum condition for controlling the piezoelectric was obtained from the dye experiments with different activation settings for the transducers. The best setting was to activate the side disks and middle disk alternatively with 1 second activating time and 3 second non-activating time for both sets of transducers. DNA hybridization using microarrays for the malaria parasite Plasmodium falciparum from the optimized process yielded a three-fold enhancement of the signal compared to the conventional method. Moreover, a greater number of spots passed quality control in the optimized device, which could greatly improve biological interpretation of DNA hybridization data.

  17. Organic and hybrid solar cells

    CERN Document Server

    Huang, Hui

    2014-01-01

    This book delivers a comprehensive evaluation of organic and hybrid solar cells and identifies their fundamental principles and numerous applications. Great attention is given to the charge transport mechanism, donor and acceptor materials, interfacial materials, alternative electrodes, device engineering and physics, and device stability. The authors provide an industrial perspective on the future of photovoltaic technologies.

  18. a New Parameter:. AN Abacus for Optimizing Pv-T Hybrid Solar Device Functional Materials Using the Boubaker Polynomials Expansion Scheme

    Science.gov (United States)

    Fridjine, S.; Amlouk, M.

    In this study, we define a synthetic parameter: optothermal expansivity as a quantitative guide to evaluating and optimizing both the thermal and the optical performance of PV-T functional materials. The definition of this parameter, ψAB (Amlouk-Boubaker parameter), takes into account the thermal diffusivity and the optical effective absorptivity of the material. The values of this parameter, which seems to be a characteristic one, correspond to the total volume that contains a fixed amount of heat per unit time (m3 s-1) and can be considered as a 3D velocity of the transmitted heat inside the material. As the PV-T combined devices need to have simultaneous optical and thermal efficiency, we try to investigate some recently proposed materials (β-SnS2, In2S3, ZnS1-xSex|0 ≤xabacus.

  19. Efficacy and tolerance of an injectable medical device containing stable hybrid cooperative complexes of high- and low-molecular-weight hyaluronic acid: a monocentric 16 weeks open-label evaluation

    Science.gov (United States)

    Sparavigna, Adele; Tenconi, Beatrice

    2016-01-01

    Background An injectable medical device containing stable hybrid cooperative complexes of high- and low-molecular-weight hyaluronic acid (HA) has been developed with characteristics suited for a global improvement of facial esthetics. Objective To evaluate the HA product performance in improving some key facial esthetic features. The study employed clinical scales, subjective evaluations, and facial skin objective measurements. Methods A single Italian site treated 64 female subjects aged 38–60 years, with injections at five predetermined points, on each side of the face, with a 4-week time lapse between the first and the second product administration. Subjects were evaluated after 4, 8, 12, and 16 weeks, using validated clinical scales, subjective evaluation, and objective quantitative outcome measures. Assessment of esthetic results included photographic documentation. Results Both the clinical and subjective assessments, and the majority of objective instrumental parameters indicated an improvement throughout the study and were already significant at week 4 or 8 and were still significant at week 16 (3 months after the second treatment). Minor and temporary local skin reactions were observed in 23% of subjects at the site of the injections, and the global judgment on tolerability was good or excellent, both in the investigators’ opinion and volunteers’ self-evaluation. Conclusion Both subjective and objective improvement of the facial parameters was consistent with the bio-remodeling purpose, and persistent and still statistically significant at the end of the study. The tolerability and safety profile of the product were judged good or excellent both by investigators and volunteers. This study supports the claim for bio-remodeling of these stable hybrid cooperative complexes of low- and high-molecular-weight HA. PMID:27713647

  20. Analysis of Primary Stability of Dental Implants Inserted in Different Substrates Using the Pullout Test and Insertion Torque

    Directory of Open Access Journals (Sweden)

    Nathalia Ferraz Oliscovicz

    2013-01-01

    Full Text Available The aim of the study was to evaluate mechanical behavior of implants inserted in three substrates, by measuring the pullout strength and the relative stiffness. 32 implants (Master Porous-Conexao, cylindrical, external hexagon, and surface treatment were divided into 4 groups (n=8: pig rib bone, polyurethane Synbone, polyurethane Nacional 40 PCF, and pinus wood. Implants were installed with the exact distance of 5 mm of another implant. The insertion torque (N·cm was quantified using the digital Kratos torque meter and the pullout test (N was performed by an axial traction force toward the long axis of the implant (2 min/mm through mount implant devices attached to a piece adapted to a load cell of 200 Kg of a universal testing machine (Emic DL10000. Data of insertion torque and maximum pullout force were submitted to one-way ANOVA and Bonferroni tests (α=0.05. Polyurethane Nacional 40 PCF and pinus wood showed the highest values of insertion torque and pullout force, with significant statistical difference (P<0.05 with other groups. The analysis showed stiffness materials with the highest values for primary stability.

  1. Placement of a peripherally inserted central catheter into the azygous vein

    Energy Technology Data Exchange (ETDEWEB)

    Franklin, Iain, E-mail: iain.franklin@health.qld.gov.au; Gilmore, Christopher [The Prince Charles Hospital, Brisbane, Queensland (Australia)

    2015-06-15

    Peripherally inserted central catheters (PICC) are used for a variety of infusion therapies. They are indicated in patients requiring long-term venous access. Incorrect positioning of the insertion of a PICC line is one of the known complications when inserting the device in clinical practice. Radiographers once performing imaging will commonly check if the tip of a PICC has entered the superior vena cava. This case study will report on a lesser known incorrect placement of a PICC line into the azygous vein and how this can be detected on radiographic imaging. This outcome for the patient can be detrimental as it has an increased risk of perforation, thrombus, and fistula formation.

  2. Molecular data highlight hybridization in squirrel monkeys (Saimiri, Cebidae

    Directory of Open Access Journals (Sweden)

    Jeferson Carneiro

    Full Text Available Abstract Hybridization has been reported increasingly frequently in recent years, fueling the debate on its role in the evolutionary history of species. Some studies have shown that hybridization is very common in captive New World primates, and hybrid offspring have phenotypes and physiological responses distinct from those of the "pure" parents, due to gene introgression. Here we used the TA15 Alu insertion to investigate hybridization in the genus Saimiri. Our results indicate the hybridization of Saimiri boliviensis peruviensis with S. sciureus macrodon, and S. b. boliviensis with S. ustus. Unexpectedly, some hybrids of both S. boliviensis peruviensis and S. b. boliviensis were homozygous for the absence of the insertion, which indicates that the hybrids were fertile.

  3. Sequential cooling insert for turbine stator vane

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Russel B

    2017-04-04

    A sequential flow cooling insert for a turbine stator vane of a small gas turbine engine, where the impingement cooling insert is formed as a single piece from a metal additive manufacturing process such as 3D metal printing, and where the insert includes a plurality of rows of radial extending impingement cooling air holes alternating with rows of radial extending return air holes on a pressure side wall, and where the insert includes a plurality of rows of chordwise extending second impingement cooling air holes on a suction side wall. The insert includes alternating rows of radial extending cooling air supply channels and return air channels that form a series of impingement cooling on the pressure side followed by the suction side of the insert.

  4. Analog and hybrid computing

    CERN Document Server

    Hyndman, D E

    2013-01-01

    Analog and Hybrid Computing focuses on the operations of analog and hybrid computers. The book first outlines the history of computing devices that influenced the creation of analog and digital computers. The types of problems to be solved on computers, computing systems, and digital computers are discussed. The text looks at the theory and operation of electronic analog computers, including linear and non-linear computing units and use of analog computers as operational amplifiers. The monograph examines the preparation of problems to be deciphered on computers. Flow diagrams, methods of ampl

  5. Teleoperated master-slave needle insertion.

    Science.gov (United States)

    Abolhassani, Niki; Patel, Rajni V

    2009-12-01

    Accuracy of needle tip placement and needle tracking in soft tissue are of particular importance in many medical procedures. In recent years, developing autonomous and teleoperated systems for needle insertion has become an active area of research. In this study, needle insertion was performed using a master-slave set-up with multi-degrees of freedom. The effect of force feedback on the accuracy of needle insertion was investigated. In addition, this study compared autonomous, teleoperated and semi-autonomous needle insertion. The results of this study show that incorporation of force feedback can improve teleoperated needle insertion. However, autonomous and semi-autonomous needle insertions, which use feedback from a deflection model, provide significantly better performance. Development of a haptic master-slave needle insertion system, which is capable of performing some autonomous tasks based on feedback from tissue deformation and needle deflection models, can improve the performance of autonomous robotics-based insertions as well as non-autonomous teleoperated manual insertions. Copyright (c) 2009 John Wiley & Sons, Ltd.

  6. A HTS dipole insert coil constructed

    CERN Document Server

    Ballarino, A; Rey, J M; Stenvall, A; Sorbi, M; Tixador, P

    2013-01-01

    This report is the deliverable report 7.4.1 “A HTS dipole insert coil constructed“. The report has three parts: “Design report for the HTS dipole insert”, “One insert pancake prototype coil constructed with the setup for a high field test”, and “All insert components ordered”. The three report parts show that, although the insert construction will be only completed by end 2013, all elements are present for a successful completion and that, given the important investments done by the participants, there is a full commitment of all of them to finish the project

  7. Smart hybrid rotary damper

    Science.gov (United States)

    Yang, C. S. Walter; DesRoches, Reginald

    2014-03-01

    This paper develops a smart hybrid rotary damper using a re-centering smart shape memory alloy (SMA) material as well as conventional energy-dissipating metallic plates that are easy to be replaced. The ends of the SMA and steel plates are inserted in the hinge. When the damper rotates, all the plates bend, providing energy dissipating and recentering characteristics. Such smart hybrid rotary dampers can be installed in structures to mitigate structural responses and to re-center automatically. The damaged energy-dissipating plates can be easily replaced promptly after an external excitation, reducing repair time and costs. An OpenSEES model of a smart hybrid rotary was established and calibrated to reproduce the realistic behavior measured from a full-scale experimental test. Furthermore, the seismic performance of a 3-story moment resisting model building with smart hybrid rotary dampers designed for downtown Los Angeles was also evaluated in the OpenSEES structural analysis software. Such a smart moment resisting frame exhibits perfect residual roof displacement, 0.006", extremely smaller than 18.04" for the conventional moment resisting frame subjected to a 2500 year return period ground motion for the downtown LA area (an amplified factor of 1.15 on Kobe earthquake). The smart hybrid rotary dampers are also applied into an eccentric braced steel frame, which combines a moment frame system and a bracing system. The results illustrate that adding smart hybrid rotaries in this braced system not only completely restores the building after an external excitation, but also significantly reduces peak interstory drifts.

  8. The missing intrauterine device

    Directory of Open Access Journals (Sweden)

    Rajesh Devassy

    2016-10-01

    Full Text Available The Intrauterine Contraceptive Device (IUD is an acceptable and common form of contraception worldwide. The objective of this study was to report the case of an asymptomatic missing intrauterine contraceptive (IUD inserted to prevent intrauterine adhesions after synechiolysis. A patient presented with missing IUD threads. Ultrasound of the pelvis showed an empty uterine cavity with the missing IUD probably anterior to the uterus. We present a stepwise approach in the management of the and ldquo;lost IUD and rdquo;, where the strings of the device are not visible at the time of speculum examination. We suggest first determining sonographically whether the IUD is within the cavity. If it is in situ, options for retrieval are including hysteroscopic retrieval. If the IUD is not within the cavity, X-rays are recommended. The device will not be present on X-ray if expulsion has occurred. If the device is present on the X-ray, cystoscopic or laparoscopic retrieval is required. IUD-providers should not only screen potential users and insert IUD correctly, but also ensure adequate follow-up with localization. [Int J Reprod Contracept Obstet Gynecol 2016; 5(10.000: 3587-3589

  9. Multipurpose Transposon-Insertion Libraries in Yeast.

    Science.gov (United States)

    Kumar, Anuj

    2016-06-01

    Libraries of transposon-insertion alleles constitute powerful and versatile tools for large-scale analysis of yeast gene function. Transposon-insertion libraries are constructed most simply through mutagenesis of a plasmid-based genomic DNA library; modification of the mutagenizing transposon by incorporation of yeast selectable markers, recombination sites, and an epitope tag enables the application of insertion alleles for phenotypic screening and protein localization. In particular, yeast genomic DNA libraries have been mutagenized with modified bacterial transposons carrying the URA3 marker, lox recombination sites, and sequence encoding multiple copies of the hemagglutinin (HA) epitope. Mutagenesis with these transposons has yielded a large resource of insertion alleles affecting nearly 4000 yeast genes in total. Through well-established protocols, these insertion libraries can be introduced into the desired strain backgrounds and the resulting insertional mutants can be screened or systematically analyzed. Relative to alternative methods of UV irradiation or chemical mutagenesis, transposon-insertion alleles can be easily identified by PCR-based approaches or high-throughput sequencing. Transposon-insertion libraries also provide a cost-effective alternative to targeted deletion approaches, although, in contrast to start-codon to stop-codon deletions, insertion alleles might not represent true null-mutants. For protein-localization studies, transposon-insertion alleles can provide encoded epitope tags in-frame with internal codons; in many cases, these transposon-encoded epitope tags can provide a more accurate localization for proteins in which terminal sequences are crucial for intracellular targeting. Thus, overall, transposon-insertion libraries can be used quickly and economically and have a particular utility in screening for desired phenotypes and localization patterns in nonstandard genetic backgrounds.

  10. Design and fabrication of embedded micro-mirror inserts for out-of-plane coupling in PCB-level optical interconnections

    Science.gov (United States)

    Van Erps, Jurgen; Hendrickx, Nina; Bosman, Erwin; Van Daele, Peter; Debaes, Christof; Thienpont, Hugo

    2010-05-01

    Optical interconnections have gained interest over the last years, and several approaches have been presented for the integration of optics to the printed circuit board (PCB)-level. The use of a polymer optical waveguide layer appears to be the prevailing solution to route optical signals on the PCB. The most difficult issue is the efficient out-of-plane coupling of light between surface-normal optoelectronic devices (lasers and photodetectors) and PCB-integrated waveguides. The most common approach consists of using 45° reflecting micro-mirrors. The micro-mirror performance significantly affects the total insertion loss of the optical interconnect system, and hence has a crucial role on the system's bit error rate (BER) characteristics. Several technologies have been proposed for the fabrication of 45° reflector micro-mirrors directly into waveguides. Alternatively, it is possible to make use of discrete coupling components which have to be inserted into cavities formed in the PCB-integrated waveguides. In this paper, we present a hybrid approach where we try to combine the advantages of integrated and discrete coupling mirrors, i.e. low coupling loss and maintenance of the planararity of the top surface of the optical layer, allowing the lamination of additional layers or the mounting of optoelectronic devices. The micro-mirror inserts are designed through non-sequential ray tracing simulations, including a tolerance analysis, and subsequently prototyped with Deep Proton Writing (DPW). The DPW prototypes are compatible with mass fabrication at low cost in a wide variety of high-tech plastics. The DPW micro-mirror insert is metallized and inserted in a laser ablated cavity in the optical layer and in a next step covered with cladding material. Surface roughness measurements confirm the excellent quality of the mirror facet. An average mirror loss of 0.35-dB was measured in a receiver scheme, which is the most stringent configuration. Finally, the configuration

  11. HOW TO REDUCE NEEDLE INSERTION INDUCED PAIN

    Institute of Scientific and Technical Information of China (English)

    王斌; 董莉

    2001-01-01

    Acupuncture needle insertion always results in pain in the local area due to stimulating the free nerve endings—algesireceptors of the skin. In spite of mildness, this pain may induce many patients' fright, and thus, hinders more extensive application of acupuncture. In the present paper, the author introduces some methods for reducing needle insertion induced pain.

  12. Marginal adaptation of ceramic inserts after cementation

    NARCIS (Netherlands)

    Ozcan, M; Pfeiffer, P; Nergiz, [No Value

    2002-01-01

    The advantage of using ceramic inserts is to prevent major drawbacks of composite resins such as polymerization shrinkage, wear and microleakage. This in vitro study evaluated the marginal adaptation of two approximal ceramic insert systems after cementation to the cavities opened with ultrasonic ti

  13. An Elementary Account of Needle Insertion

    Institute of Scientific and Technical Information of China (English)

    张文兵; 霍则军

    2004-01-01

    @@ Based on the authors' clinical and personal experiences, several pain-inducing factors easily to be ignored by the operators when quick needle insertion is applied, and the authors' first invented slow painless needle insertion method are introduced in the article.

  14. Deflection measurement system for the hybrid iii six-year-old biofidelic abdomen.

    Science.gov (United States)

    Gregory, T Stan; Howes, Meghan K; Rouhana, Stephen W; Hardy, Warren N

    2012-01-01

    Motor vehicle collisions are the leading cause of death for children ages 5 to 14. Enhancement of child occupant protection is partly dependent on the ability to accurately assess the interaction of child-size occupants with restraint systems. Booster seat design and belt fit are evaluated using child anthropomorphic test devices, such as the Hybrid III 6-year-old dummy., A biofidelic abdomen for the Hybrid III 6-year-old dummy is being developed by the Ford Motor Company to enhance the dummy’s ability to assess injury risk and further quantify submarining risk by measuring abdominal deflection. A practical measurement system for the biofidelic abdominal insert has been developed and demonstrated for three dimensional determination of abdominal deflection. Quantification of insert deflection is achieved via differential signal measurement using electrodes mounted within a conductive medium. Signal amplitude is proportional to the distance between the electrodes. A microcontroller is used to calculate distances between ventral electrodes and a dorsal electrode in three dimensions. This system has been calibrated statically, and its performance demonstrated in a series of sled tests. Deflection measurements from the instrumented abdominal insert indicate performance differences between two booster seat designs, yielding an average peak anterior to posterior displacement of the abdomen of 1.0 ± 3.4 mm and 31.2 ± 7.2 mm for the seats, respectively. Implementation of a 6-year-old abdominal insert with the ability to evaluate submarining potential will likely help safety researchers further enhance booster seat design and interaction with vehicle restraint systems , and help to further understand child occupant injury risk in automobile collisions.

  15. Intradermal normal saline solution, self-selected music, and insertion difficulty effects on intravenous insertion pain.

    Science.gov (United States)

    Jacobson, A F

    1999-01-01

    To examine the effect of listening to self-selected music versus an intradermal injection of normal saline solution on the intensity and distress of intravenous (IV) catheter insertion pain. Prospective, randomized, controlled study. Inpatient and outpatient units in 2 university-affiliated southwestern medical centers. One hundred ten adult inpatients and outpatients undergoing IV therapy. Pain intensity, pain distress, and IV insertion difficulty visual analog scales. Patients were randomly assigned to receive an intradermal injection of normal saline solution, listen with headphones to self-selected music, or be in a control group for IV insertion. A MANOVA revealed no statistically significant multivariate or univariate differences in pain by treatment group, but significantly higher pain distress scores with failed IV insertions. The pain intensity and distress scores were significantly higher in the saline solution group when compared with the music and control groups combined. Insertion difficulty was significantly positively correlated with pain intensity and distress for the entire sample, with weak, nonsignificant correlations in the music group. Intradermal unpreserved saline solution contributes to greater pain intensity and distress, greater insertion difficulty, and a higher failure rate than the use of music or routine IV insertion. Listening to preferred music attenuates the effect of insertion difficulty on IV insertion pain. Intravenous insertion attempts were unsuccessful in more than one third of the subjects, resulting in higher pain distress scores. Further research is needed on interventions to reduce IV insertion pain and on factors contributing to IV insertion failure.

  16. Central Solenoid Insert Technical Specification

    Energy Technology Data Exchange (ETDEWEB)

    Martovetsky, Nicolai N [ORNL; Smirnov, Alexandre [ORNL

    2011-09-01

    The US ITER Project Office (USIPO) is responsible for the ITER central solenoid (CS) contribution to the ITER project. The Central Solenoid Insert (CSI) project will allow ITER validation the appropriate lengths of the conductors to be used in the full-scale CS coils under relevant conditions. The ITER Program plans to build and test a CSI to verify the performance of the CS conductor. The CSI is a one-layer solenoid with an inner diameter of 1.48 m and a height of 4.45 m between electric terminal ends. The coil weight with the terminals is approximately 820 kg without insulation. The major goal of the CSI is to measure the temperature margin of the CS under the ITER direct current (DC) operating conditions, including determining sensitivity to load cycles. Performance of the joints, ramp rate sensitivity, and stability against thermal or electromagnetic disturbances, electrical insulation, losses, and instrumentation are addressed separately and therefore are not major goals in this project. However, losses and joint performance will be tested during the CSI testing campaign. The USIPO will build the CSI that will be tested at the Central Solenoid Model Coil (CSMC) Test Facility at the Japan Atomic Energy Agency (JAEA), Naka, Japan. The industrial vendors (the Suppliers) will report to the USIPO (the Company). All approvals to proceed will be issued by the Company, which in some cases, as specified in this document, will also require the approval of the ITER Organization. Responsibilities and obligations will be covered by respective contracts between the USIPO, called Company interchangeably, and the industrial Prime Contractors, called Suppliers. Different stages of work may be performed by more than one Prime Contractor, as described in this specification. Technical requirements of the contract between the Company and the Prime Contractor will be covered by the Fabrication Specifications developed by the Prime Contractor based on this document and approved by

  17. Evaluation of four airway training manikins as patient simulators for the insertion of single use laryngeal mask airways.

    Science.gov (United States)

    Cook, T M; Green, C; McGrath, J; Srivastava, R

    2007-07-01

    We evaluated the performance of four manikins: Airsim(trade mark), Bill 1, Airway Management Trainer and Airway Trainer, as simulators for insertion of single-use laryngeal mask airways and the reusable LMA Classic. Sixteen volunteer anaesthetists inserted each laryngeal mask airway into each manikin twice. Insertions were scored for ease of insertion, clinical and fibreoptic position, and lung ventilation (maximum score 10). Scores mask airway performance. Poor insertion rate was 15% (range 9-21%) and was lowest for the VBM manikin (p = 0.02). Insertion failure rate was 2.6% and did not differ significantly between manikins (p = 0.2). Overall manikin performance was significantly different (p mask airways. Overall performance differences of laryngeal mask airways were statistically significant (p mask airways. The methodology is useful for future evaluations of devices, both manikins and supraglottic airways. Further human clinical research is required.

  18. Pneumothorax as a complication of central venous catheter insertion.

    Science.gov (United States)

    Tsotsolis, Nikolaos; Tsirgogianni, Katerina; Kioumis, Ioannis; Pitsiou, Georgia; Baka, Sofia; Papaiwannou, Antonis; Karavergou, Anastasia; Rapti, Aggeliki; Trakada, Georgia; Katsikogiannis, Nikolaos; Tsakiridis, Kosmas; Karapantzos, Ilias; Karapantzou, Chrysanthi; Barbetakis, Nikos; Zissimopoulos, Athanasios; Kuhajda, Ivan; Andjelkovic, Dejan; Zarogoulidis, Konstantinos; Zarogoulidis, Paul

    2015-03-01

    The central venous catheter (CVC) is a catheter placed into a large vein in the neck [internal jugular vein (IJV)], chest (subclavian vein or axillary vein) or groin (femoral vein). There are several situations that require the insertion of a CVC mainly to administer medications or fluids, obtain blood tests (specifically the "central venous oxygen saturation"), and measure central venous pressure. CVC usually remain in place for a longer period of time than other venous access devices. There are situations according to the drug administration or length of stay of the catheter that specific systems are indicated such as; a Hickman line, a peripherally inserted central catheter (PICC) line or a Port-a-Cath may be considered because of their smaller infection risk. Sterile technique is highly important here, as a line may serve as a port of entry for pathogenic organisms, and the line itself may become infected with organisms such as Staphylococcus aureus and coagulase-negative Staphylococci. In the current review we will present the complication of pneumothorax after CVC insertion.

  19. A RETROSPECTIVE STUDY ON ACCEPTABILITY AND COMPLICATIONS OF PPIUCD INSERTION

    Directory of Open Access Journals (Sweden)

    Runjun

    2016-04-01

    Full Text Available BACKGROUND Purpose: To study the acceptance level of Post-Partum Intrauterine Contraceptive Device (PPIUCD insertion among women attending tertiary level hospital for delivery between January 2013 to July 2015 in relation to age, parity and mode of delivery, safety and their complaints/complications during followup visit. METHOD This is a retrospective study done in a tertiary care centre, Jorhat Medical College and Hospital, Assam, between January 2013 to July 2015. Women who had accepted PPIUCD after delivery (Vaginally or by Lower Segment Caesarean section were included in this study. The entire PPIUCD inserted patients were followed up to 6 weeks and 6 months after delivery. With the help of data collected, relevant parameters and data are critically analysed in our study. RESULTS Acceptance of PPIUCD showed an increasing trend, acceptance was more among patients undergoing caesarean section; 43.86% of the acceptors were in the age group of 21-25 years. More than 50% of the total acceptors in the study came for followup. The main complaints at followup were missing thread and bleeding. The main causes of removal were bleeding and pressure from family. CONCLUSION The acceptance of PPIUCD was high in this study. The PPIUCD was demonstrably safe having no serious complication reported after insertion or during followup and low rates of expulsion. The method may be particularly beneficial in our setting where women do not come for postnatal contraception counselling and usage.

  20. Ti/Au Cathode for Electronic transport material-free organic-inorganic hybrid perovskite solar cells

    Science.gov (United States)

    Shi, Tongfei; Chen, Jian; Zheng, Jianqiang; Li, Xinhua; Zhou, Bukang; Cao, Huaxiang; Wang, Yuqi

    2016-12-01

    We have fabricated organic-inorganic hybrid perovskite solar cell that uses a Ti/Au multilayer as cathode and does not use electron transport materials, and achieved the highest power conversion efficiency close to 13% with high reproducibility and hysteresis-free photocurrent curves. Our cell has a Schottky planar heterojunction structure (ITO/PEDOT:PSS/perovskite/Ti/Au), in which the Ti insertion layer isolate the perovskite and Au layers, thus proving good contact between the Au and perovskite and increasing the cells’ shunt resistance greatly. Moreover, the Ti/Au cathode in direct contact with hybrid perovskite showed no reaction for a long-term exposure to the air, and can provide sufficient protection and avoid the perovskite and PEDOT:PSS layers contact with moisture. Hence, the Ti/Au based devices retain about 70% of their original efficiency after 300 h storage in the ambient environment.

  1. Additive Manufacturing of Hybrid Circuits

    Science.gov (United States)

    Sarobol, Pylin; Cook, Adam; Clem, Paul G.; Keicher, David; Hirschfeld, Deidre; Hall, Aaron C.; Bell, Nelson S.

    2016-07-01

    There is a rising interest in developing functional electronics using additively manufactured components. Considerations in materials selection and pathways to forming hybrid circuits and devices must demonstrate useful electronic function; must enable integration; and must complement the complex shape, low cost, high volume, and high functionality of structural but generally electronically passive additively manufactured components. This article reviews several emerging technologies being used in industry and research/development to provide integration advantages of fabricating multilayer hybrid circuits or devices. First, we review a maskless, noncontact, direct write (DW) technology that excels in the deposition of metallic colloid inks for electrical interconnects. Second, we review a complementary technology, aerosol deposition (AD), which excels in the deposition of metallic and ceramic powder as consolidated, thick conformal coatings and is additionally patternable through masking. Finally, we show examples of hybrid circuits/devices integrated beyond 2-D planes, using combinations of DW or AD processes and conventional, established processes.

  2. The effect of screw insertion torque on tendons fixed with spiked washers.

    Science.gov (United States)

    Beynnon, B D; Meriam, C M; Ryder, S H; Fleming, B C; Johnson, R J

    1998-01-01

    The long-term success of a hamstring tendon graft depends not only on the type of device that is used for fixation but also on the mechanical interlocking of the soft tissue between the fixation device and bone. The purpose of this study was to evaluate the effect of screw insertion torque on the structural properties of soft tissue fixed to bone with a spiked metal washer. Two bovine tendons, one similar in size to a human semitendinosus tendon and the other similar in size to a human gracilis tendon, were secured to a bovine femur using a figure-of-8 technique with screws and metal spiked washers. A single load to failure was applied at 25 mm/sec. A significant positive linear correlation was observed between fixation screw insertion torque magnitude and the ultimate failure load value. An increase in the fixation screw insertion torque produced an increase in the ultimate failure load value. Similarly, there was a significant positive linear correlation between fixation screw insertion torque magnitude and the average maximum linear load value. No relationship was detected between screw insertion torque magnitude and the linear stiffness values of the tendon-fixation construct, indicating that a reproducible model was used. This study demonstrates that screw insertion torque is an important variable that controls the initial strength of soft tissue fixation to bone.

  3. Safety and acceptability of post-abortal IUD insertion and the importance of counseling.

    Science.gov (United States)

    El-Tagy, Ahmed; Sakr, Ezzat; Sokal, David C; Issa, Adel Hakim

    2003-03-01

    This nonrandomized observational clinical study evaluated the safety and acceptability of intrauterine device insertion either immediately or 2 weeks after abortion, according to the patient's preference. Participants were 300 women with first-trimester abortions who agreed to immediate or delayed insertion. End points were bleeding patterns, pregnancy, expulsion, perforation, infection and device removal at 2, 6 and 10 weeks after insertion, and acceptance rates before and after counseling procedures were improved. The overall initial acceptance rate was 35.8%, and the actual acceptance rate was 31.7%. After counseling procedures were improved, the initial and actual acceptance rates increased substantially (17.7% vs. 44.3% and 10.2% vs. 42.0%, respectively). Bleeding, expulsion rates and pain did not differ significantly between the immediate and delayed insertion groups after IUD insertion. No pregnancies, perforations or cases of pelvic inflammatory disease were recorded in either group. Immediate post-abortal insertion offers the advantage of being a painless procedure. The quality of counseling is critical to improving acceptance of post-abortion contraception.

  4. Intrauterine devices containing progesterone.

    Science.gov (United States)

    Murad, F

    1977-05-01

    Characteristics of progesterone-releasing IUDs are reported. At present, the only progesterone-containing IUD on the market is Progestasert, a T-shaped ethylene vinyl acetate copolymer device containing 38 mg progesterone in silicone. The device releases approximately 65 mcg/day into the uterine cavity over the course of 1-year. The device does not alter pituitary function or ovulation, nor does it depend on a local mechanical effect. Rather, it may exert its effect by inhibiting sperm capacitation or survival, or it may prevent nidation by alterning the endometrium. The reported pregnancy rate for Progestasert is 1.9% in parous women and 2.5% in nulliparous women. This efficacy rate is similar to that for other IUDs and low-dose progestin-only oral contraceptives. Breakthrough bleeding is the most common side effect, and perhaps 10-15% of the acceptors will have the device removed for either bleeding, pain, or infection. The rate of spontaneous expulsion of the device is about 3-8%. It is recommended that the device be inserted during or shortly after the menstrual period.

  5. Study of Uranium Oxide Insertion Compounds

    Science.gov (United States)

    1993-01-01

    05 0-6 0-7 08 0.9 x in LiU03 Figure 1.6 Equilibrium discharge curve for lithium insertion into Y-U0 3 at approximately 25’C in 1 M LiBF4 in propylene...insertion into a-U 30 8 at - 25"C in 1M LiBF4 in propylene carbonate/1,2- dimethoxyethane Lithium insertion into a-U 30 8 causes very little change in

  6. Sequential cooling insert for turbine stator vane

    Science.gov (United States)

    Jones, Russell B; Krueger, Judson J; Plank, William L

    2014-04-01

    A sequential impingement cooling insert for a turbine stator vane that forms a double impingement for the pressure and suction sides of the vane or a triple impingement. The insert is formed from a sheet metal formed in a zigzag shape that forms a series of alternating impingement cooling channels with return air channels, where pressure side and suction side impingement cooling plates are secured over the zigzag shaped main piece. Another embodiment includes the insert formed from one or two blocks of material in which the impingement channels and return air channels are machined into each block.

  7. Insertions and the emergence of novel protein structure: a structure-based phylogenetic study of insertions

    Directory of Open Access Journals (Sweden)

    Blouin Christian

    2007-11-01

    Full Text Available Abstract Background In protein evolution, the mechanism of the emergence of novel protein domain is still an open question. The incremental growth of protein variable regions, which was produced by stochastic insertions, has the potential to generate large and complex sub-structures. In this study, a deterministic methodology is proposed to reconstruct phylogenies from protein structures, and to infer insertion events in protein evolution. The analysis was performed on a broad range of SCOP domain families. Results Phylogenies were reconstructed from protein 3D structural data. The phylogenetic trees were used to infer ancestral structures with a consensus method. From these ancestral reconstructions, 42.7% of the observed insertions are nested insertions, which locate in previous insert regions. The average size of inserts tends to increase with the insert rank or total number of insertions in the variable regions. We found that the structures of some nested inserts show complex or even domain-like fold patterns with helices, strands and loops. Furthermore, a basal level of structural innovation was found in inserts which displayed a significant structural similarity exclusively to themselves. The β-Lactamase/D-ala carboxypeptidase domain family is provided as an example to illustrate the inference of insertion events, and how the incremental growth of a variable region is capable to generate novel structural patterns. Conclusion Using 3D data, we proposed a method to reconstruct phylogenies. We applied the method to reconstruct the sequences of insertion events leading to the emergence of potentially novel structural elements within existing protein domains. The results suggest that structural innovation is possible via the stochastic process of insertions and rapid evolution within variable regions where inserts tend to be nested. We also demonstrate that the structure-based phylogeny enables the study of new questions relating to the

  8. Surface Damage on Dental Implants with Release of Loose Particles after Insertion into Bone.

    Science.gov (United States)

    Senna, Plinio; Antoninha Del Bel Cury, Altair; Kates, Stephen; Meirelles, Luiz

    2015-08-01

    Modern dental implants present surface features of distinct dimensions that can be damaged during the insertion procedure into bone. The aims of this study were (1) to quantify by means of roughness parameters the surface damage caused by the insertion procedure of dental implants and (2) to investigate the presence of loose particles at the interface. Three groups of dental implants representing different surface topographies were inserted in fresh cow rib bone blocks. The surface roughness was characterized by interferometry on the same area before and after the insertion. Scanning electron microscopy (SEM)-back-scattered electron detector (BSD) analysis was used to identify loose particles at the interface. The amplitude and hybrid roughness parameters of all three groups were lower after insertion. The surface presenting predominance of peaks (Ssk [skewness] > 0) associated to higher structures (height parameters) presented higher damage associated to more pronounced reduction of material volume. SEM-BSD images revealed loose titanium and aluminum particles at the interface mainly at the crestal cortical bone level. Shearing forces during the insertion procedure alters the surface of dental implants. Loose metal particles can be generated at bone-implant interface especially around surfaces composed mainly by peaks and with increased height parameters. © 2013 Wiley Periodicals, Inc.

  9. Current status of frameless anchored IUD for immediate intracesarean insertion.

    Science.gov (United States)

    Wildemeersch, Dirk; Goldstuck, Norman D; Hasskamp, Thomas

    2016-01-01

    Immediate postpartum intrauterine device (IUD) insertion deserves great attention as it can provide immediate, timely and convenient contraception plus the added benefit of preventing repeat unintended pregnancies. Although women post vaginal delivery can benefit from immediate post-placenta contraception, women undergoing Cesarean section clearly need contraception, as an inter-delivery interval shorter than 18 months places them at a high risk for uterine rupture. The main drawback of currently available framed IUD devices for immediate postpartum insertion of an IUD is their high expulsion and displacement rates when inserted immediately postpartum after both vaginal and Cesarean delivery. Current research suggests that a brief window of opportunity exists of 10 minutes for insertion of conventional IUDs after which time expulsion rates both immediately and over time are greatly enhanced. This paper summarizes the current research conducted to overcome the expulsion problems associated with conventional T-shaped devices as well as through the use of an anchored frameless device. In the 1970s and 1980s, attempts were made to solve the expulsion problem by modifying existing devices, such as adding absorbable sutures (Delta-T) or additional appendages. These attempts proved to be clinically unsuccessful as the catgut suture added to the transverse arms did not provide sufficient resistance to prevent downward displacement and expulsion. An anchoring technique to suspend a copper IUD to the fundus of the uterus was developed in Belgium in the 1980s and has been the subject of extensive ongoing clinical research since 1985. Recently the frameless copper releasing anchor IUD, GyneFix, has been tested for postplacental insertion. Initially, the anchor was modified by the inclusion of a biodegradable cone which was added below the anchoring knot. Clinical studies confirmed the adequacy of this approach suggesting that it was technically possible to anchor an IUD

  10. Bulkhead insert for an internal combustion engine

    Energy Technology Data Exchange (ETDEWEB)

    Maki, Clifford E.; Chottiner, Jeffrey Eliot; Williams, Rick L.; Thibault, Mark W.; Ervin, James Douglas; Boileau, James Maurice; McKeough, Bryan

    2017-08-01

    An engine includes a cylinder block defining at least one main bearing bulkhead adjacent to a cylinder, and a crankshaft rotatably housed within the block by a main bearing. A bulkhead insert has a cap portion, and an insert portion provided within the bulkhead. The insert portion has having first and second end regions connected by first and second straps. Each strap having a flanged beam cross section. The first and second ends of the insert portion are configured to connect a main bearing cap column to a cylinder head column. Each of the first and second end regions define at least one protrusion having a surface substantially normal to engine combustion and reactive loads. The cap portion is configured to mate with the first end region at the main bearing cap column and support the main bearing.

  11. HB+ inserted into the CMS Solenoid

    CERN Multimedia

    Tejinder S. Virdee, CERN

    2006-01-01

    The first half of the barrel hadron calorimeter (HB+) has been inserted into the superconducting solenoid of CMS, in preparation for the magnet test and cosmic challenge. The operation went smoothly, lasting a couple of days.

  12. One century of Kirschner wires and Kirschner wire insertion techniques : A historical review

    NARCIS (Netherlands)

    Franssen, Bas B. G. M.; Schuurman, Arnold H.; Van der Molen, Aebele Mink; Kon, Moshe

    2010-01-01

    A century ago, in 1909, Martin Kirschner (1879-942) introduced a smooth pin, presently known as the Kirschner wire (K-wire). The K-wire was initiallly used for skeletal traction and is now currently used for many different goals. The development of the K-wire and its insertion devices were mainly in

  13. Gastrostomy insertion: comparing the options - PEG, RIG or PIG?

    Energy Technology Data Exchange (ETDEWEB)

    Laasch, H.-U. E-mail: hul@smtr.nhs.uk; Wilbraham, L.; Bullen, K.; Marriott, A.; Lawrance, J.A.L.; Johnson, R.J.; Lee, S.H.; England, R.E.; Gamble, G.E.; Martin, D.F

    2003-05-01

    AIM: To compare percutaneous endoscopic gastrostomy (PEG) with radiologically inserted gastrostomy (RIG) and assess a hybrid gastrostomy technique (per-oral image-guided gastrostomy, PIG). MATERIALS AND METHODS: Fifty PEGs and 50 RIGs performed in three centres were prospectively compared and the endoscopic findings of 200 PEGs reviewed. A fluoroscopy-guided technique was modified to place 20 F over-the-wire PEG-tubes in 60 consecutive patients. RESULTS: Technical success was 98%, 100% and 100% for PEG, RIG and PIG, respectively. Antibiotic prophylaxis significantly reduced stoma infection for orally placed tubes (p=0.02). Ten out of 50 (20%) small-bore RIG tubes blocked. Replacement tubes were required in six out of 50 PEGs (12%), 10 out of 50 RIGs (20%), but no PIGs (p<0.001). No procedure-related complications occurred. The function of radiologically placed tubes was significantly improved with the larger PIG (p<0.001), with similar wound infection rates. PIG was successful in 24 patients where endoscopic insertion could not be performed. Significant endoscopic abnormalities were found in 42 out of 200 PEG patients (21%), all related to peptic disease. Insignificant pathology was found in 8.5%. CONCLUSION: PIG combines advantages of both traditional methods with a higher success and lower re-intervention rate. Endoscopy is unlikely to detect clinically relevant pathology other than peptic disease. PIG is a very effective gastrostomy method; it has better long-term results than RIG and is successful where conventional PEG has failed.

  14. Shrink-Fit Solderable Inserts Seal Hermetically

    Science.gov (United States)

    Croucher, William C.

    1992-01-01

    Shrink-fit stainless-steel insert in aluminum equipment housing allows electrical connectors to be replaced by soldering, without degrading hermeticity of housing or connector. Welding could destroy electrostatic-sensitive components and harm housing and internal cables. Steel insert avoids problems because connector soldered directly to it rather than welded to housing. Seals between flange and housing, and between connector and flange resistant to leaks, even after mechanical overloading and thermal shocking.

  15. The hybrid BCI

    Directory of Open Access Journals (Sweden)

    Gert Pfurtscheller

    2010-04-01

    Full Text Available Nowadays, everybody knows what a hybrid car is. A hybrid car normally has 2 engines, its main purpose being to enhance energy efficiency and reduce CO2 output. Similarly, a typical hybrid brain-computer interface (BCI is also composed of 2 BCIs or at least one BCI and another system. Such a hybrid BCI, like any BCI, must fulfil the following four criteria: (i the device must rely on signals recorded directly from the brain; (ii there must be at least one recordable brain signal that the user can intentionally modulate to effect goal-directed behaviour; (iii real time processing; and (iv the user must obtain feedback. This paper introduces some hybrid BCIs which have already been published or are currently in development or validation, and some concepts for future work. The BCIs described classify 2 EEG patterns: One is the event-related (desynchronisation (ERD, ERS of sensorimotor rhythms, and the other is the steady-state visual evoked potential (SSVEP. The hybrid BCI can either have more than one input whereby the inputs are typically processed simultaneously or operate 2 systems sequentially, whereby the first system can act as a “brain switch”. In the case of self-paced operation of a SSVEP-based hand orthosis control with an motor imagery-based switch it was possible to reduce the rate of false positives during resting periods by about 50% compared to the SSVEP BCI alone. It is shown that such a brain switch can also rely on hemodynamic changes measured through near-infrared spectroscopy (NIRS. Another interesting approach is a hybrid BCI with simultaneous operations of ERD- and SSVEP-based BCIs. Here it is important to prove the existing promising offline simulation results with online experiments. Hybrid BCIs can also use one brain signal and another input. Such an additional input can be a physiological signal like the heart rate but also a signal from an external device like, an eye gaze control system.

  16. Rhombohedrel Hybrid Crystal Semiconductor Device Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA Langley has succeeded in growing a rhombohedrally oriented single crystal SiGe on sapphire substrate. This opens up new challenges in micro-electronics. Since...

  17. Controllable proximity effect in superconducting hybrid devices

    NARCIS (Netherlands)

    Bakurskiy, Sergey

    2015-01-01

    This thesis is devoted to the study of controllable proximity effects in superconductors, both in terms of fundamental aspects and applications. As a part of this thesis theoretical description was suggested for a number of structures with superconducting electrodes and multiple interlayers. These s

  18. Modeling the Insertion Mechanics of Flexible Neural Probes Coated with Sacrificial Polymers for Optimizing Probe Design

    Directory of Open Access Journals (Sweden)

    Sagar Singh

    2016-03-01

    Full Text Available Single-unit recording neural probes have significant advantages towards improving signal-to-noise ratio and specificity for signal acquisition in brain-to-computer interface devices. Long-term effectiveness is unfortunately limited by the chronic injury response, which has been linked to the mechanical mismatch between rigid probes and compliant brain tissue. Small, flexible microelectrodes may overcome this limitation, but insertion of these probes without buckling requires supporting elements such as a stiff coating with a biodegradable polymer. For these coated probes, there is a design trade-off between the potential for successful insertion into brain tissue and the degree of trauma generated by the insertion. The objective of this study was to develop and validate a finite element model (FEM to simulate insertion of coated neural probes of varying dimensions and material properties into brain tissue. Simulations were performed to predict the buckling and insertion forces during insertion of coated probes into a tissue phantom with material properties of brain. The simulations were validated with parallel experimental studies where probes were inserted into agarose tissue phantom, ex vivo chick embryonic brain tissue, and ex vivo rat brain tissue. Experiments were performed with uncoated copper wire and both uncoated and coated SU-8 photoresist and Parylene C probes. Model predictions were found to strongly agree with experimental results (<10% error. The ratio of the predicted buckling force-to-predicted insertion force, where a value greater than one would ideally be expected to result in successful insertion, was plotted against the actual success rate from experiments. A sigmoidal relationship was observed, with a ratio of 1.35 corresponding to equal probability of insertion and failure, and a ratio of 3.5 corresponding to a 100% success rate. This ratio was dubbed the “safety factor”, as it indicated the degree to which the coating

  19. Improvements in valve devices for use in mining

    Energy Technology Data Exchange (ETDEWEB)

    Dettmers, M.; Weirich, W.

    1990-06-20

    A multi-way electromagnetically operated valve device for use in electro-hydraulic control systems of mining equipment employs a series of cylindrical inserts fitted into a bore in a housing. These inserts provide and locate the functional components of the valves and define connections between internal chambers and bores. To seal the inserts against the bore, O-rings are provided. The end most inserts accommodate O-rings in grooves while the other intermediate inserts have open recesses at their ends for receiving the other O-rings. To close the recesses and locate the O-rings in place use is made of axial collars on the inserts and a separate locking ring. This enables the valve device to be assembled without damaging the O-rings.

  20. Combining M-FISH and Quantum Dot technology for fast chromosomal assignment of transgenic insertions

    Directory of Open Access Journals (Sweden)

    Yusuf Mohammed

    2011-12-01

    Full Text Available Abstract Background Physical mapping of transgenic insertions by Fluorescence in situ Hybridization (FISH is a reliable and cost-effective technique. Chromosomal assignment is commonly achieved either by concurrent G-banding or by a multi-color FISH approach consisting of iteratively co-hybridizing the transgenic sequence of interest with one or more chromosome-specific probes at a time, until the location of the transgenic insertion is identified. Results Here we report a technical development for fast chromosomal assignment of transgenic insertions at the single cell level in mouse and rat models. This comprises a simplified 'single denaturation mixed hybridization' procedure that combines multi-color karyotyping by Multiplex FISH (M-FISH, for simultaneous and unambiguous identification of all chromosomes at once, and the use of a Quantum Dot (QD conjugate for the transgene detection. Conclusions Although the exploitation of the unique optical properties of QD nanocrystals, such as photo-stability and brightness, to improve FISH performance generally has been previously investigated, to our knowledge this is the first report of a purpose-designed molecular cytogenetic protocol in which the combined use of QDs and standard organic fluorophores is specifically tailored to assist gene transfer technology.