WorldWideScience

Sample records for hybrid inorganic-organic 2d

  1. Synthesis, Structure and Fluorescent Property of a Novel 2-D Sheet Inorganic-organic Hybrid Cadmium Polymer [CdBr2(bpdo)]n

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A novel 2-D sheet inorganic-organic hybrid cadmium polymer, [CdBr2(bpdo)]n (bpdo = N,N'-O,O-4,4'-bipyridine) has been hydrothermally synthesized and characterized by elemental analysis, IR and single-crystal X-ray diffraction. The crystal crystallizes in monoclinic, space group C2/c, with a = 16.336(3), b = 3.9904(5), c = 18.479(3) (A), β = 91.640(6)°, Mr = 460.40, V = 1204.1(3) (A)3, Z = 4, Dc = 2.540 g/cm3, μ = 8.439 mm-1, F(000) = 864, R = 0.0314 and wR = 0.0733 for 1069 observed reflections (I>2σ(I)). X-ray diffraction reveals that the title compound consists of the 2-D inorganic-organic hybrid sheet constructed from [CdBr2]n chains and bpdo bridges in the packing motif of …ABAB…. The title compound exhibits intense blue photoluminescence in the solid state at room temperature.

  2. Novel inorganic-organic hybrids constructed from multinuclear copper cluster and Keggin polyanions: from 1D wave-like chain to 2D network.

    Science.gov (United States)

    Wang, Xiuli; Wang, Yufei; Liu, Guocheng; Tian, Aixiang; Zhang, Juwen; Lin, Hongyan

    2011-09-28

    Two novel inorganic-organic hybrids constructed from Keggin-type polyanions and multinuclear copper clusters based on 1-H-1,2,3-benzotriazole (HBTA), [Cu(I)(8)(BTA)(4)(HBTA)(8)(SiMo(12)O(40))]·2H(2)O (1) and [Cu(II)(6)(OH)(4)(BTA)(4)(SiW(12)O(40))(H(2)O)(6)]·6H(2)O (2), have been hydrothermally synthesized and structurally characterized by single crystal X-ray diffraction, elemental analyses, IR spectra and thermogravimetric (TG) analyses. In compound 1, eight Cu(I) ions were linked by twelve HBTA/BTA ligands to form an octanuclear Cu(I) cluster, which is connected by SiMo(12)O(40)(4-) anion with two bridging O atoms and two terminal O atoms to construct a one-dimensional (1D) wave-like chain. The octanuclear copper unit represents the maximum subunit linked just by amine ligands in the POMs system. In 2, four BTA ligands linked five Cu(II) ions constructing a pentanuclear "porphyrin-like" subunit, which is connected by another Cu(II) ion to form a 1D metal-organic band. The SiW(12)O(40)(4-) polyanions as tetradentate inorganic linkages extend the 1D band into a two-dimensional (2D) network with (8(3))(2)(8(5)·10) topology. To the best of our knowledge, compounds 1 and 2 represent the first examples of inorganic-organic hybrids based on metal-HBTA multinuclear subunits and polyoxometalates. The photocatalysis and electrochemical properties have been investigated in this paper.

  3. Five inorganic-organic hybrids based on Keggin polyanion [SiMo12O40]4-: From 0D to 2D network

    Science.gov (United States)

    Yu, Xiao-Yang; Cui, Xiao-Bing; Lu, Jing; Luo, Yu-Hui; Zhang, Hong; Gao, Wei-Ping

    2014-01-01

    Five new inorganic-organic hybrids based on 4,4‧-bipyridine and Keggin-type polyoxometalate [SiMo12O40]4-, (SiMo12O40)(H2bipy)2·2H2O (1), [Cu(Hbipy)4(HSiMo12O40)(SiMo12O40)](H2bipy)0.5·7H2O (2), [Cu2(Hbipy)6(bipy)(SiMo12O40)3](Hbipy)2·6H2O (3), [Cu(bipy)2(SiMo12O40)](H2bipy)·2H2O (4) and [Cu2(bipy)4(H2O)4](SiMo12O40)·13H2O (5) (bipy=4,4‧-bipyridine), have been hydrothermally synthesized. 1 consists of H2bipy2+ and [SiMo12O40]4- units. In 2, two [SiMo12O40]4- are bridged by [Cu(Hbipy)4]6+ to form a [Cu(Hbipy)4(SiMo12O40)2]2- dimmer. In 3, [SiMo12O40]4- polyanions acting as bidentated bridging ligands and monodentated auxiliary ligands connect [Cu2(Hbipy)6(bipy)]8+ units into a 1D zigzag chain. In 4, [SiMo12O40]4- polyanions bridge neighboring 1D [Cu(bipy)2]2+ double chains into a 2D extended layer. In 5, [SiMo12O40]4- polyanions acting as templates site alternately upon the grids from both sides of the square grid [Cu2(bipy)4(H2O)4]4+ layer. In addition, the electrochemical behaviors of 1, 3 and 4 and the photocatalysis property of 1 have been investigated.

  4. Inorganic-organic hybrid white light phosphors.

    Science.gov (United States)

    Wang, Ming-Sheng; Guo, Guo-Cong

    2016-11-03

    Light-emitting diodes (LEDs) and organic light-emitting diodes (OLEDs) have brought about a revolution in lighting and display. A very hot field in recent years has been to develop white-light phosphors, aiming to achieve better colour stability, better reproducibility, and a simpler fabrication process for LEDs and OLEDs. This feature article reviews the development of inorganic-organic hybrid white-light phosphors, including coordination compounds of small organic molecules, organically templated inorganic compounds (phosphates, borates, sulfides, halides), metal-functionalized organic polymers, and organically coated nanoparticles.

  5. Converting 2D inorganic-organic ZnSe-DETA hybrid nanosheets into 3D hierarchical nanosheet-based ZnSe microspheres with enhanced visible-light-driven photocatalytic performances

    Science.gov (United States)

    Wu, Xuan; Xu, Rui; Zhu, Rongjiao; Wu, Rui; Zhang, Bin

    2015-05-01

    Engineering two-dimensional (2D) nanosheets into three-dimensional (3D) hierarchical structures is one of the great challenges in nanochemistry and materials science. We report a facile and simple chemical conversion route to fabricate 3D hierarchical nanosheet-based ZnSe microspheres by using 2D inorganic-organic hybrid ZnSe-DETA (DETA = diethylenetriamine) nanosheets as the starting precursors. The conversion mechanism involves the controlled depletion of the organic-component (DETA) from the hybrid precursors and the subsequent self-assembly of the remnant inorganic-component (ZnSe). The transformation reaction of ZnSe-DETA nanosheets is mainly influenced by the concentration of DETA in the reaction solution. We demonstrated that this organic-component depletion method could be extended to the synthesis of other hierarchical structures of metal sulfides. In addition, the obtained hierarchical nanosheet-based ZnSe microspheres exhibited outstanding performance in visible light photocatalytic degradation of methyl orange and were highly active for photocatalytic H2 production.Engineering two-dimensional (2D) nanosheets into three-dimensional (3D) hierarchical structures is one of the great challenges in nanochemistry and materials science. We report a facile and simple chemical conversion route to fabricate 3D hierarchical nanosheet-based ZnSe microspheres by using 2D inorganic-organic hybrid ZnSe-DETA (DETA = diethylenetriamine) nanosheets as the starting precursors. The conversion mechanism involves the controlled depletion of the organic-component (DETA) from the hybrid precursors and the subsequent self-assembly of the remnant inorganic-component (ZnSe). The transformation reaction of ZnSe-DETA nanosheets is mainly influenced by the concentration of DETA in the reaction solution. We demonstrated that this organic-component depletion method could be extended to the synthesis of other hierarchical structures of metal sulfides. In addition, the obtained

  6. Converting 2D inorganic-organic ZnSe-DETA hybrid nanosheets into 3D hierarchical nanosheet-based ZnSe microspheres with enhanced visible-light-driven photocatalytic performances.

    Science.gov (United States)

    Wu, Xuan; Xu, Rui; Zhu, Rongjiao; Wu, Rui; Zhang, Bin

    2015-06-07

    Engineering two-dimensional (2D) nanosheets into three-dimensional (3D) hierarchical structures is one of the great challenges in nanochemistry and materials science. We report a facile and simple chemical conversion route to fabricate 3D hierarchical nanosheet-based ZnSe microspheres by using 2D inorganic-organic hybrid ZnSe-DETA (DETA = diethylenetriamine) nanosheets as the starting precursors. The conversion mechanism involves the controlled depletion of the organic-component (DETA) from the hybrid precursors and the subsequent self-assembly of the remnant inorganic-component (ZnSe). The transformation reaction of ZnSe-DETA nanosheets is mainly influenced by the concentration of DETA in the reaction solution. We demonstrated that this organic-component depletion method could be extended to the synthesis of other hierarchical structures of metal sulfides. In addition, the obtained hierarchical nanosheet-based ZnSe microspheres exhibited outstanding performance in visible light photocatalytic degradation of methyl orange and were highly active for photocatalytic H2 production.

  7. Inorganic-organic hybrid polymers for food packaging

    CSIR Research Space (South Africa)

    Kesavan Pillai, Sreejarani

    2015-09-01

    Full Text Available packaging application. Numerous hybrid inorganic-organic materials have been developed using low temperature sol-gel chemistry, which enables the tailoring of the nanostructure and the resulting material is often multifunctional, offering a wide range...

  8. Inorganic-organic hybrid framework solids

    Indian Academy of Sciences (India)

    Srinivasan Natarajan

    2000-06-01

    Recent developments in the area of hybrid structures are overviewed with special emphasis on iron phosphate-oxalate materials. The structure of the iron phosphate-oxalates consists of iron phosphate chains or layers that are connected by oxalate moieties completing the architecture. The compounds exhibit interesting magnetic properties originating from the super-exchange interactions that are predominantly anti-ferromagnetic, involving the iron phosphates and the oxalate moieties. One of the materials, IV, also exhibits interesting adsorptive properties reminiscent of aluminosilicate zeolites. The aluminum phosphate-oxalate, VII, indicates that hybrid structures can be formed with zeolite architecture.

  9. Hybrid polaritons in a resonant inorganic/organic semiconductor microcavity

    Energy Technology Data Exchange (ETDEWEB)

    Höfner, M., E-mail: mhoefner@physik.hu-berlin.de; Sadofev, S.; Henneberger, F. [Institut für Physik, Humboldt-Universität zu Berlin, Newtonstr.15, 12489 Berlin (Germany); Kobin, B.; Hecht, S. [Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489 Berlin (Germany)

    2015-11-02

    We demonstrated the strong coupling regime in a hybrid inorganic-organic microcavity consisting of (Zn,Mg)O quantum wells and ladder-type oligo(p-phenylene) molecules embedded in a polymer matrix. A Fabry-Pérot cavity is formed by an epitaxially grown lower ZnMgO Bragg reflector and a dielectric mirror deposited atop of the organic layer. A clear anticrossing behavior of the polariton branches related to the Wannier-Mott and Frenkel excitons, and the cavity photon mode with a Rabi-splitting reaching 50 meV, is clearly identified by angular-dependent reflectivity measurements at low temperature. By tailoring the structural design, an equal mixing with weights of about 0.3 for all three resonances is achieved for the middle polariton branch at an incidence angle of about 35°.

  10. Fluorescent Properties of Manganese Halide Benzothiazole Inorganic-Organic Hybrids.

    Science.gov (United States)

    Yu, Hui; Mei, YingXuan; Wei, ZhenHong; Mei, GuangQuan; Cai, Hu

    2016-11-01

    The reaction of manganese (II) halides MnX2 and benzothiazole (btz) in the concentrated acids HX (X = Cl, Br) at 80 °C resulted in the formation of two inorganic-organic hybrid complexes: [(btz)2(MnX4)]·2H2O (X = Cl, 1; X = Br, 2). Both compounds showed green luminescence and exhibited moderate quantum yields of 43.17 % for 1 and 26.18 % for 2, which were directly originated from the tetrahedral coordination of Mn(2+) ion. Two organic - inorganic hybrids [(btz)2(MnX4)]·2H2O based on MnCl2, benzothiazole and halide acids emitted green light with the moderate quantum efficiencies when excited by 365 nm light. Graphical abstract Two organic-inorganic hybrids [(btz)2(MnX4)]·2H2O based on MnCl2, benzothiazole and halide acids emitted green light with the moderate quantum efficiencies when excited by 365 nm light.

  11. Charge-transfer induced surface conductivity for a copper based inorganic-organic hybrid

    NARCIS (Netherlands)

    Arkenbout, Anne H.; Uemura, Takafumi; Takeya, Jun; Palstra, Thomas T. M.

    2009-01-01

    Inorganic-organic hybrids are receiving increasing attention as they offer the opportunity to combine the robust properties of inorganic materials with the versatility of organic compounds. We have studied the electric properties of an inorganic-organic hybrid with the chemical formula:

  12. Inorganic and hybrid inorganic-organic systems for conservative treatments of stone and wood materials

    OpenAIRE

    Bergamonti, Laura

    2015-01-01

    Inorganic and hybrid inorganic-organic systems for conservative treatments of stone and wood materials The research has focused on the synthesis, characterization and application of inorganic and hybrid inorganic-organic systems for conservative treatments of stone and wood. The wood preservatives synthesized and tested for biocidal activity are polyamidoamines functionalized with hydroxyl and siloxane groups, while the coatings applied on the stones are water based TiO2 nanosols with ...

  13. An ionic 2D inorganic-organic hybrid of tris[((1H-tetrazol-5-yl)methyl)morpholine] dodecatungstophosphate(Ⅴ) pentahydrate:Synthesis X-ray crystal structure and spectroscopic characterizations

    Institute of Scientific and Technical Information of China (English)

    Mohsen; Nikpour; Hossein; Eshtiagh-Hosseini; Masoud; Mirzaei; Amir; Aghaei; Kaju; Soroush; Zarinabadi

    2010-01-01

    A unique ionic hybrid material[C_6H_(12)N_5O]_3[(PO_4)W__(12)O_(36)]·5H_2O has been synthesized from the reaction of((1H-tetrazole-5- yl)methyl)morpholine andα-H_3[(PO_4)W_(12)O_(36)]·21H_2O.It has successfully been characterized by elemental analysis,IR and ~1H NMR spectroscopies,TGA and single-crystal X-ray diffraction method.The title compound is constructed from the three [C_6H_(12)N_5O]~+ cations andα-Keggin[(PO_4)W_(12)O_(36)]~(3-) polyoxoanion.The most remarkable structural feature of this hybrid ...

  14. The enhancement of photoresponse of an ordered inorganic-organic hybrid architecture by increasing interfacial contacts

    Science.gov (United States)

    Zhang, Bin; Chen, Xudong; Ma, Shaohua; Chen, Yujie; Yang, Jin; Zhang, Mingqiu

    2010-02-01

    A modified ZnO quantum dot/polythiophene (ZnO/PTh) inorganic-organic hybrid architecture was fabricated by using ordered mesoporous silica (SBA-15) as the retaining template. First, a two-step strategy was developed to synthesize an ordered organic conducting polymer composite (PTh/SBA-15). Then, ZnO quantum dots were in situ formed on the pore walls of the ordered PTh/SBA-15 composite. Photoresponse of the inorganic-organic hybrid was studied with respect to its incident photon to collected electron conversion efficiency (IPCE) and morphology. The presence of SBA-15 proved to be critical for controlling the interfacial morphology and hence enlarging the interfacial area of the inorganic-organic heterojunction. The proposed approach may act as a key method to open up potential applications in photovoltaic devices.

  15. Synthesis, characterization and thermal properties of inorganic-organic hybrid

    Directory of Open Access Journals (Sweden)

    2007-10-01

    Full Text Available Poly (St-MAn-APTES/silica hybrid materials were successfully prepared from styrene (St, maleic anhydride (MAn and tetraethoxysilane (TEOS in the presence of a coupling agent 3-aminopropyltriethoxysilane (APTES, by freeradical solution polymerization and in situ sol-gel process. The TEOS content varied from 0 to 25 wt%. Fourier transform infrared spectroscopy and 29Si nuclear magnetic resonance spectroscopy were used to characterize the structure of the hybrids (condensed siloxane bonds designated as Q1, Q2, Q3, Q4, with 3-aminopropyltriethoxysilane having mono-, di-, tri, tetra-substituted siloxane bonds designated as T1, T2 and T3. The results revealed that Q3, Q4 and T3 were the major microstructure elements in forming a network structure. The hybrid materials were also characterized by the methods of solvent extraction, Transmission Electron Microscopy (TEM, differential scanning calorimetry (DSC and thermogravimetric analysis (TGA for determining the gel contents, particle size and thermal performance. The results showed that gel contents in the hybrid materials were much higher, the SiO2 phase were well dispersed in the polymer matrix, silicon dioxide existed at nanoscale in the composites, which had excellent thermal stability.

  16. Electrodeposition of inorganic/organic hybrid thin films

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Tsukasa [Center of Innovative Photovoltaic Systems, Gifu University (Japan); Environmental and Renewable Energy Systems Division, Graduate School of Engineering, Gifu University (Japan); Zhang, Jingbo; Komatsu, Daisuke; Sawatani, Seiichi; Minoura, Hideki [Environmental and Renewable Energy Systems Division, Graduate School of Engineering, Gifu University (Japan); Pauporte, Thierry; Lincot, Daniel [Laboratoire d' Electrochimie et Chimie Analytique, Ecole Nationale Superieure de Chimie de Paris 11 rue P. et M. Curie, 75231 Paris cedex 05 (France); Oekermann, Torsten [Institut fuer Physikalische Chemie und Elektrochemie, Universitaet Hannover (Germany); Schlettwein, Derck [Institut fuer Angewandte Physik, Justus-Liebig-Universitaet Giessen (Germany); Tada, Hirokazu [Institute for Molecular Science, Higashiyama (Japan); Woehrle, Dieter [Institut fuer Organische und Makromolekulare Chemie, Universitaet Bremen (Germany); Funabiki, Kazumasa; Matsui, Masaki [Department of Materials Science and Technology, Faculty of Engineering, Gifu University (Japan); Miura, Hidetoshi [Chemicrea Inc., Tokyo (Japan); Yanagi, Hisao [Graduate School of Materials Science, Nara Institute of Science and Technology Takayama-cho 8916-5, Ikoma (Japan)

    2009-01-09

    Electrodeposition of inorganic compound thin films in the presence of certain organic molecules results in self-assembly of various hybrid thin films with new properties. Examples of new discoveries by the authors are reviewed, taking cathodic formation of a ZnO/dye hybrid as the leading example. Hybridization of eosinY leads to the formation of highly oriented porous crystalline ZnO as the consequence of dye loading. The hybrid formation is a highly complicated process involving complex chemistry of many molecular and ionic constituents. However, electrochemical analyses of the relevant phenomena indicate the possibility of reaching a comprehensive understanding of the mechanism, giving us the chance to further develop them into industrial technologies. The porous crystals are ideal for photoelectrodes in dye-sensitized solar cells. As the process also permits the use of non-heat-resistant substrates, the technology can be applied for the development of colorful and light-weight plastic solar cells. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  17. Ionic Transfer in Hybrid Inorganic/Organic Membranes

    Institute of Scientific and Technical Information of China (English)

    A.B.Yaroslavtsev; I.A.Stenina; A.S.Shalimov

    2007-01-01

    1 Results In last years increasing interest has been devoted to the development and research of transport properties of hybrid organic/inorganic membranes. Traditionally, these membranes are used as electrolyte in fuel cells. However a number of their properties allow considering them as perspective materials for water treatment and substance purification. In this work transport properties of some ion exchange membranes modified by inorganic nanoparticles (hydrated oxides or solid acids) are discussed. ...

  18. Polymerizable Ionic Liquid Crystals Comprising Polyoxometalate Clusters toward Inorganic-Organic Hybrid Solid Electrolytes

    Directory of Open Access Journals (Sweden)

    Takeru Ito

    2017-07-01

    Full Text Available Solid electrolytes are crucial materials for lithium-ion or fuel-cell battery technology due to their structural stability and easiness for handling. Emergence of high conductivity in solid electrolytes requires precise control of the composition and structure. A promising strategy toward highly-conductive solid electrolytes is employing a thermally-stable inorganic component and a structurally-flexible organic moiety to construct inorganic-organic hybrid materials. Ionic liquids as the organic component will be advantageous for the emergence of high conductivity, and polyoxometalate, such as heteropolyacids, are well-known as inorganic proton conductors. Here, newly-designed ionic liquid imidazolium cations, having a polymerizable methacryl group (denoted as MAImC1, were successfully hybridized with heteropolyanions of [PW12O40]3− (PW12 to form inorganic-organic hybrid monomers of MAImC1-PW12. The synthetic procedure of MAImC1-PW12 was a simple ion-exchange reaction, being generally applicable to several polyoxometalates, in principle. MAImC1-PW12 was obtained as single crystals, and its molecular and crystal structures were clearly revealed. Additionally, the hybrid monomer of MAImC1-PW12 was polymerized by a radical polymerization using AIBN as an initiator. Some of the resulting inorganic-organic hybrid polymers exhibited conductivity of 10−4 S·cm−1 order under humidified conditions at 313 K.

  19. Anion-exchangeable inorganic-organic hybrid materials synthesized without using templates

    Institute of Scientific and Technical Information of China (English)

    XU Xianzhu; SONG Jiangwei; LI Defeng; XIAO Fengshou

    2004-01-01

    Inorganic-organic hybrid materials have been obtained at room temperature in aqueous solution without using the templates of surfactants. The materials are care fully characterized by anion-exchange measurement, elements analysis, X-ray diffraction, and infrared spectroscopy. Notably, the anion-exchange capacity of the samples (3.9 Interestingly, both small and large anions could be easily exchanged into the samples due to the plasticity of the sam pies, along with the phase transition.

  20. Examination of the solution behaviors of the giant inorganic-organic amphiphilic hybrids

    Science.gov (United States)

    Zhang, Baofang

    Presently, the self-assembly behaviors of traditional small surfactants and amphiphilic block copolymers are fairly well understood. In comparison, rather little is known about the self-assembly behaviors of the giant inorganic-organic amphiphilic hybrids in solution. It remains a wide open field to explore. Giant inorganic-organic amphiphilic hybrids, consisting of nanoscale inorganic clusters and organic functional groups, represent a novel class of functional hybrid materials. They have unique physical and chemical properties and potential applications in catalysis, electronic, optics, magnetic materials, medicine and biology. Therefore, as emerging building blocks, they have promising prospects in the advanced materials. In this PhD work, several representative giant inorganic-organic amphiphilic hybrids (triangular-shaped polyoxometalate (POM)-containing inorganic/organic amphiphilic hybrids, POM-containing fluorosurfactants hybrids, POM-containing peptide hybrids POM-peptide hybrids and polyhedral oligometric silsesquioxane (POSS)-polystyrene (PS) are chosen for studying their self-assembly behaviors in solution. Based on the knowledge of the physical chemistry, colloid and polymer science, we focus on the mechanism of the self-assembly process, and the morphology control of the supramolecular structures through the internal and external conditions, such as the composition of the giant amphiphilies, molecular architectures, solvent nature, temperature, concentration, and extrally added salts. It is found that the counterion-meditated interactions dominate the self-assembly of triangular-shaped hybrids in acetone/water mixed solutions, due to the highly dominant hydrophilic portions; the solvent-swelling effect, instead of the charge effect, dominates the whole self-assembly process of the POM-containing fluorosurfactants; the analogy between small surfactants and giant amphiphiles POSS-PS allows a rough assessment of the possible morphologies of the

  1. Inorganic/organic hybrid solar cells: optimal carrier transport in vertically aligned silicon nanowire arrays.

    Science.gov (United States)

    Sato, Keisuke; Dutta, Mrinal; Fukata, Naoki

    2014-06-07

    Inorganic/organic hybrid radial heterojunction solar cells that combine vertically-aligned n-type silicon nanowires (SiNWs) with poly(3,4-ethylenedioxythiophene):poly(styrene-sulfonate) (PEDOT:PSS) have great potential for replacing commercial Si solar cells. The chief advantage of such solar cells is that they exhibit higher absorbance for a given thickness than commercial Si solar cells, due to incident light-trapping within the NW arrays, thus enabling lower-cost solar cell production. We report herein on the effects of NW length, annealing and surface electrode on the device performance of SiNW/PEDOT:PSS hybrid radial heterojunction solar cells. The power conversion efficiency (PCE) of the obtained SiNW/PEDOT:PSS hybrid solar cells can be optimized by tuning the thickness of the surface electrode, and the etching conditions during NW formation and post-annealing. The PCE of 9.3% is obtained by forming efficient transport pathways for photogenerated charge carriers to electrodes. Our approach is a significant contribution to design of high-performance and low-cost inorganic/organic hybrid heterojunction solar cells.

  2. Solidified inorganic-organic hybrid electrolyte for all solid state flexible lithium battery

    Science.gov (United States)

    Baek, Seung-Wook; Honma, Itaru; Kim, Jedeok; Rangappa, Dinesh

    2017-03-01

    Solidified lithium conducting hybrid electrolyte is designed and processed to realize the large scale and flexible solid state Li battery satisfying energy capability and safety issue. This paper presents a solidified inorganic-organic hybrid electrolyte to obtain commercially-acceptable ionic conductivity and a stable electrochemical window to prevent electrolyte decomposition in Li ion batteries. Li3PO4 coated with solidified [Li][EMI][TFSI] ionic liquid is developed as hybrid electrolyte material. The material has high electrochemical stability on a high-voltage cathode and metallic anode, and the solid electrolyte has high ionic conductivity. This Li3PO4-[Li][EMI][TFSI] hybrid electrolyte has the advantages of long-term operation, safety and flexibility, so it may be suitable for use in high-voltage cathodes and Li anode.

  3. Inorganic-Organic Hybrid 18-Molybdodiphosphate Nanoparticles Bulk-modified Carbon Paste Electrode and Its Electrocatalysis

    Institute of Scientific and Technical Information of China (English)

    WANG,Xiu-Li(王秀丽); KANG,Zhen-Hui(康振辉); WANG,En-Bo(王恩波); HU,Chang-Wen(胡长文)

    2002-01-01

    A kind of inorganic- organic hybrid 18-molybdodiphosphate nanoparticles ([(C4H9)4N]6P2Mo18O62 @4H2O) was firstly used as a bulk-modifier to fabricate a three-dimensional chemically modified carbon paste electrode (CPE) by direct mixing. The electrochemical behavior of the solid nanoparticles dispersed in the CPE in acidic aqueous solution was characterized by cyclic and square-wave voltammetry. The hybrid 18-molybdodiphosphate nanoparticles bulk-modified CPE (MNP-CPE) displayed a high electrocatalytic activity towards the reduction of nitrite,bromate and hydrogen peroxide. The remarkable advantages of the MNP-CPE over the traditional polyoxometalates-modified electrodes are their excellent reproducibility of surface-renewal and high stability owing to the insolubility of the hybrid 18-molybdodiphosphate nanoparticles.

  4. Chlorine adlayer-templated growth of a hybrid inorganic-organic layered structure on Au(111)

    Science.gov (United States)

    Rzeźnicka, I. I.; Horino, H.; Yagyu, K.; Suzuki, T.; Kajimoto, S.; Fukumura, H.

    2016-10-01

    Growth of a hybrid inorganic-organic layered structure on the Au(111) surface using a one-step solution growth is reported. The hybrid structure is consist of 4,4‧-bipyridine [4,4‧-BiPyH2]2 + cations, Cl anions and Au adatoms, provided from substrate by means of the adsorbate-induced surface phase transition of a surface reconstruction. Its surface and bulk structures were characterized by scanning tunneling microscopy (STM), secondary ion mass spectrometry (SIMS), and Raman spectroscopy. STM results reveal growth of the first [4,4‧-BiPyH2]2 + layer on top of the p(√{ 3} ×√{ 3})" separators=", R 30 ° chlorine overlayer formed on the Au(111) surface. These two layers are found to provide a platform for a following three-dimensional growth facilitated by hydrogen bonding, aurophilic and π-π stacking interactions.

  5. Preparation of P(DVB-co-MPS) inorganic-organic hybrid polymer microspheres

    Science.gov (United States)

    Wu, Chunrong; Zhang, Jimei; Dai, Zhao; Chen, Xiaoyu

    2010-07-01

    A novel inorganic-organic hybrid polymer microspheres were facilely synthesised by distillation-precipitation polymerization in absence of any stabilizer or surfcant. The process were conducted with [3-(Methacryloyloxy) propyl] trimethoxysilan (MPS) as monomer, divinyl benzene (DVB) as cross linking agent and azobisisobutyronitrile (AIBN) as initator in acetonitrile. A series of silica nanoparticles were prepared in accordance with the volume ratio of MPS, which was varied in the range of 10% to 50%. However, there is no microspheres obtained while the ratio up to 50%. Products were charactered by transmission electron micrograph (TEM) and fourier transform infrared spectroscopy (FTIR). We may infer it from the constructional formular and FTIR graph that there were silicon hydroxyl remained in the microsphere surface.

  6. Structural Characterization and Infrared and Electrical Properties of the New Inorganic-Organic Hybrid Compound

    Directory of Open Access Journals (Sweden)

    A. Oueslati

    2013-01-01

    Full Text Available New inorganic-organic hybrid [(C3H74N]2Hg2Cl6 compound was obtained and characterised by single-crystal X-ray diffraction, infrared, and impedance spectroscopy. The latter crystallizes in the monoclinic system (space group C 2/c, with the following unit cell dimensions: (1 Å, (6 Å, (2 Å, and (2. Besides, its structure was solved using 84860 independent reflections leading to . Electrical properties of the material were studied using impedance spectroscopic technique at different temperatures in the frequency range of 209 Hz to 5 MHz. Detailed analysis of the impedance spectrum suggested that the electrical properties of the material are strongly temperature-dependent. The Nyquist plots clearly showed the presence of bulk and grain boundary effect in the compound.

  7. Tin-based inorganic-organic hybrid polymers for high energy-density applications

    Science.gov (United States)

    Tran, Huan; Kuma, Arun; Pilania, Ghanshyam; Ramprasad, Rampi

    2014-03-01

    In one of our recent works[1], an organotin polymer was synthesized and suggested to be promising polymeric dielectric, simultaneously exhibiting a high dielectric constant ɛ and a high band gap Eg. Motivated by this result, we study a family of inorganic-organic hybrid polymers based on -(SnF2) x-(CH2) y - as the repeating structural unit (x = 2 , y = 4 , 8 , and 12). The stable structures of these hybrid polymers, predicted by the minima-hopping method, are studied by first-principles calculations at the level of density functional theory. Our calculations show that these polymers are wide band gap materials (up to 6.07 eV). In addition, their dielectric constants are between 4.6 and 7.8, well above that of polypropylene (ɛ ~= 2 . 2), the standard dielectric material for high energy-density capacitors. Therefore, we suggest that the hybrid polymers based on -(SnF2) x-(CH2) y - are promising candidates for high energy-density applications. Our work is supported by the Office of Naval Research through the Multidisciplinary University Research Initiative (MURI).

  8. Inorganic/organic hybrid microcapsules: melamine formaldehyde-coated Laponite-based Pickering emulsions.

    Science.gov (United States)

    Williams, Mark; Olland, Birte; Armes, Steven P; Verstraete, Pierre; Smets, Johan

    2015-12-15

    A facile synthesis route to novel inorganic/organic hybrid microcapsules is reported. Laponite nanoparticles are surface-modified via electrostatic adsorption of Magnafloc, an amine-based polyelectrolyte allowing the formation of stable oil-in-water Pickering emulsions. Hybrid microcapsules can be subsequently prepared by coating these Pickering emulsion precursors with dense melamine formaldehyde (MF) shells. Employing a water-soluble polymeric stabiliser, poly(acrylamide-co-sodium acrylate) leads to stable hybrid microcapsules that survive an alcohol challenge and the ultrahigh vacuum conditions required for SEM studies. Unfortunately, the presence of this copolymer also leads to secondary nucleation of excess MF latex particles in the aqueous continuous phase. However, since the Magnafloc is utilised at submonolayer coverage when coating the Laponite particles, the nascent cationic MF nanoparticles can deposit onto anionic surface sites on the Laponite, which removes the requirement for the poly(acrylamide-co-sodium acrylate) component. Following this electrostatic adsorption, the secondary amine groups on the Magnafloc chains can react with the MF, leading to highly robust cross-linked MF shells. The absence of the copolymer leads to minimal secondary nucleation of MF latex particles, ensuring more efficient deposition at the surface of the emulsion droplets. However, the MF shells appear to become more brittle, as SEM studies reveal cracking on addition of ethanol.

  9. Large magnetocaloric effect in a dense and stable inorganic-organic hybrid cobridged by in situ generated sulfate and oxalate.

    Science.gov (United States)

    Han, Song-De; Miao, Xiao-Hong; Liu, Sui-Jun; Bu, Xian-He

    2014-11-01

    A dense and stable inorganic-organic hybrid with distorted cubic [Gd4O4] units as building blocks bridged by in situ generated sulfate and oxalate was synthesized. Magnetic measurements indicate that the title complex features a -ΔS(m)(max)=51.49 J kg(-1) K(-1), which is among the highest values reported so far.

  10. Colour tuning in white hybrid inorganic/organic light-emitting diodes

    Science.gov (United States)

    Bruckbauer, Jochen; Brasser, Catherine; Findlay, Neil J.; Edwards, Paul R.; Wallis, David J.; Skabara, Peter J.; Martin, Robert W.

    2016-10-01

    White hybrid inorganic/organic light-emitting diodes (LEDs) were fabricated by combining a novel organic colour converter with a blue inorganic LED. An organic small molecule was specifically synthesised to act as down-converter. The characteristics of the white colour were controlled by changing the concentration of the organic molecule based on the BODIPY unit, which was embedded in a transparent matrix, and volume of the molecule and encapsulant mixture. The concentration has a critical effect on the conversion efficiency, i.e. how much of the absorbed blue light is converted into yellow light. With increasing concentration the conversion efficiency decreases. This quenching effect is due to aggregation of the organic molecule at higher concentrations. Increasing the deposited amount of the converter does not increase the yellow emission despite more blue light being absorbed. Degradation of the organic converter was also observed during a period of 15 months from LED fabrication. Angular-dependent measurements revealed slight deviation from a Lambertian profile for the blue and yellow emission peaks leading to a small change in ‘whiteness’ with emission angle. Warm white and cool white light with correlated colour temperatures of 2770 K and 7680 K, respectively, were achieved using different concentrations of the converter molecule. Although further work is needed to improve the lifetime and poor colour rendering, these hybrid LEDs show promising results as an alternative approach for generating white LEDs compared with phosphor-based white LEDs.

  11. New Inorganic-organic Hybrid Tetravanadate:Preparation, Characterization and Application in Chemically Modified Electrode

    Institute of Scientific and Technical Information of China (English)

    SUN Ying-hua; LI Xiao-ping; MEI Ze-min; ZHU Yu; NIU Li

    2011-01-01

    A new inorganic-organic hybrid tetravanadate [Co(2,2'-bpy)3]2V4O12.llH2O(l) has been prepared and characterized. X-Ray diffraction study reveals that compound 1 contains classical cluster anions [V4O12]4-, coordi nated cations [Co(2,2'-bpy)3]2+ and eleven water molecules, in which an interesting decamer water cluster is formed.The hybrid nanoparticles were firstly used as a bulk-modifier to fabricate a chemically modified paste electrode (1-CPE). The electrochemical behavior and electrocatalysis of 1-CPE have been studied in detail. The results indicate that 1-CPE has a good electrocatalytic activity toward the reduction of bromate in a 0.5 mol/L H2SO4 aqueous solu tion. I-CPE shows remarkable stability that be ascribed to the hydrogen bonding interactions between V4O12 cluster and water cluster, which are very important for practical application in electrode modification.

  12. Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells.

    Science.gov (United States)

    Noh, Jun Hong; Im, Sang Hyuk; Heo, Jin Hyuck; Mandal, Tarak N; Seok, Sang Il

    2013-04-10

    Chemically tuned inorganic-organic hybrid materials, based on CH3NH3(═MA)Pb(I(1-x)Br(x))3 perovskites, have been studied using UV-vis absorption and X-ray diffraction patterns and applied to nanostructured solar cells. The band gap engineering brought about by the chemical management of MAPb(I(1-x)Br(x))3 perovskites can be controllably tuned to cover almost the entire visible spectrum, enabling the realization of colorful solar cells. We demonstrate highly efficient solar cells exhibiting 12.3% in a power conversion efficiency of under standard AM 1.5, for the most efficient device, as a result of tunable composition for the light harvester in conjunction with a mesoporous TiO2 film and a hole conducting polymer. We believe that the works highlighted in this paper represent one step toward the realization of low-cost, high-efficiency, and long-term stability with colorful solar cells.

  13. Toward design of multiple-property inorganic-organic hybrid compounds based on face-sharing octahedral iodoplumbate chains.

    Science.gov (United States)

    Zhao, Shun-Ping; Ren, Xiao-Ming

    2011-09-07

    In this review article, we have illustrated the strategies developed to achieve inorganic-organic hybrid compounds with technologically important physical properties. A series of target inorganic-organic hybrid compounds have been accomplished by incorporating the functional organic components (with a large hyperpolarizability and luminophore Schiff base cation) into the highly polarizable one-dimensional (1-D) iodoplumbate chain network. The effect of substituent features in the phenyl ring of the Schiff base cation on its molecular conformation as well as the crystal packing structure of the hybrid compound will be discussed and the multiple physical properties (ferroelectricity, NLO and multiple band emission) will also be mentioned. This journal is © The Royal Society of Chemistry 2011

  14. Inorganic-organic hybrid compounds based on octamolybdates and multidentate N-donor ligand: syntheses, structures, photoluminescence and photocatalysis.

    Science.gov (United States)

    Kan, Wei-Qiu; Yang, Jin; Liu, Ying-Ying; Ma, Jian-Fang

    2012-08-28

    Six inorganic-organic hybrid compounds, namely, [Cu(2)(2,4'-tmbpt)(2)(β-Mo(8)O(26))(H(2)O)(2)]·7H(2)O (1), [Cu(2,4'-tmbpt)(γ-Mo(8)O(26))(0.5)(H(2)O)]·H(2)O (2), [Co(2,4'-Htmbpt)(2)(γ-Mo(8)O(26))(H(2)O)(2)] (3), [Zn(2,4'-Htmbpt)(2)(γ-Mo(8)O(26))(H(2)O)(2)] (4), [Ni(2,4'-tmbpt)(α-Mo(8)O(26))(0.5)(H(2)O)]·2.5H(2)O (5) and [Ag(2,4'-Htmbpt)(β-Mo(8)O(26))(0.5)] (6), have been synthesized under hydrothermal conditions (2,4'-tmbpt = 1-((1H-1,2,4-triazol-1-yl)methyl)-3-(2-pyridyl)-5-(4-pyridyl)-1,2,4-triazole). The structures of compounds 1-6 have been determined by single-crystal X-ray diffraction analyses and characterized by infrared spectra (IR), elemental analyses, powder X-ray diffraction (PXRD) analyses and thermogravimetric analyses (TGA). Compound 1 shows a 3D (3,4)-connected framework constructed by the 2D Cu(II)-organic fragments and [β-Mo(8)O(26)](4-) anions. Compound 2 exhibits a 2D layer structure based on Cu(II)-organic chains and [γ-Mo(8)O(26)] chains. The layers are extended into a 3D supramolecular framework by hydrogen-bonding interactions. Compounds 3 and 4 are isostructural, and display 1D chain structures. The chains are further interlinked by hydrogen-bonding interactions to form 3D supramolecular architectures. Compound 5 shows a 3D framework based on the 2D Ni(II)-organic fragments and [α-Mo(8)O(26)](4-) anions. In compound 6, the 1D chains constructed by the Ag(I) ions, 2,4'-Htmbpt ligands and [β-Mo(8)O(26)](4-) anions are extended by hydrogen-bonding interactions into a 2D supramolecular layer. Each layer threads into the adjacent layers, yielding a 2D → 3D interdigitated structure. Moreover, the photoluminescent properties of 4 and 6, the optical band gaps of 1-6, and the photocatalytic properties of 1-6 have also been investigated.

  15. Deposition of Layer-by-layer Inorganic-organic Nano-hybrid Ultrathin Films onto SBA-15

    Institute of Scientific and Technical Information of China (English)

    Han Ming DING; Li Ping WANG; Yong Kui SHAN; Ming Yuan HE

    2003-01-01

    Deposition of inorganic-organic nano-hybrid ultrathin films onto mesoporous silicate materials has been proven possible by using layer-by-layer assembly method. In combination with sol-gel method, titania, subsequently dye molecules (or polymer) were successfully fabricated onto the inner wall of SBA-15. Their structures were preliminarily characterized by FTIR and solid-state UV-Vis spectroscopy, thermal analysis, and BET surface area measurements, respectively.

  16. Hydrothermal synthesis and characterization of two novel inorganic-organic hybrid materials

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    By using different organic ligands, two 3D inorganic-organic hybrid compounds Co(C4H4N2)(VO3)2 1 and Co(C12H12N2)(VO3)2 2 were synthesized by hydrothermal reaction and characterized by X-ray crystallography. Crystal data: 1.crystal system orthorhombic, space group Pnna, a=10.188(2) (A), b=11.497(2)(A), c=7.3975(15)(A), V=866.5(3) (A)3, Z=4, Dcalcd=2.705 g/cm3; 2. crystal system triclinic, space group P1- (No. 2), a=8.3190(17) (A), b=8.4764(17)(A), c=11.183(2)(A), α=95.48(3)°,β=92.03(3)°, γ=107.24(3)°, V=748.0(3) (A)3, Z=2, Dcalcd=1.958 g/cm3. The framework of compound 1 contains both {Co(C4H4N2)}and infinite metavanadate chains. Crystal structure of compound 2 is constructed with inorganic {CoV2O6} layers across-linked by organic 1,2-bis(4-pyridyl) ethane ligands. The two compounds are thermally stable to approximately 410 ℃ and 350 ℃, respectively. Their optical band gaps are determined to be 2.13 eV and 2.12 eV by UV-VIS-NIR diffuse reflectance spectra, which revealed their nature of semiconductor and optical absorption features.

  17. Inorganic/organic hybrid nanocomposite coating applications: Formulation, characterization, and evaluation

    Science.gov (United States)

    Eyassu, Tsehaye

    Nanotechnology applications in coatings have shown significant growth in recent years. Systematic incorporation of nano-sized inorganic materials into polymer coating enhances optical, electrical, thermal and mechanical properties significantly. The present dissertation will focus on formulation, characterization and evaluation of inorganic/organic hybrid nanocomposite coatings for heat dissipation, corrosion inhibition and ultraviolet (UV) and near infrared (NIR) cut applications. In addition, the dissertation will cover synthesis, characterization and dispersion of functional inorganic fillers. In the first project, we investigated factors that can affect the "Molecular Fan" cooling performance and efficiency. The investigated factors and conditions include types of nanomaterials, size, loading amount, coating thickness, heat sink substrate, substrate surface modification, and power input. Using the optimal factors, MF coating was formulated and applied on commercial HDUs, and cooling efficiencies up to 22% and 23% were achieved using multi-walled carbon nanotube and graphene fillers. The result suggests that molecular fan action can reduce the size and mass of heat-sink module and thus offer a low cost of LED light unit. In the second project, we report the use of thin organic/inorganic hybrid coating as a protection for corrosion and as a thermal management to dissipate heat from galvanized steel. Here, we employed the in-situ phosphatization method for corrosion inhibition and "Molecular fan" technique to dissipate heat from galvanized steel panels and sheets. Salt fog tests reveal successful completion of 72 hours corrosion protection time frame for samples coated with as low as ~0.7microm thickness. Heat dissipation measurement shows 9% and 13% temperature cooling for GI and GL panels with the same coating thickness of ~0.7microm respectively. The effect of different factors, in-situ phosphatization reagent (ISPR), cross-linkers and nanomaterial on corrosion

  18. Synthesis,crystal structure and properties of inorganic-organic hybrid polymers based on 8-hydroxylquinoline-5-sulfonic acid

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Two new inorganic-organic hybrid polymers, Mn(QS)(H2O) (1) and Co(QS)(H2O)2 (2) (H2QS=8-hydroxyl-quinoline-5-sulfonic acid), based on 8-hydroxylquinoline-5-sulfonate ligand, have been synthesized under solvothermal conditions and their structures were solved by single-crystal X-ray diffraction analysis. Compound 1 is a three-dimensional open framework with rutile topology structure, and compound 2 is a three-dimensional supramolecular structure. These compounds were characterized by powder XRD, infrared spectroscopy, thermogravimetric analysis, fluorescence properties and magnetism properties.

  19. Synthesis, crystal structure and properties of inorganic-organic hybrid polymers based on 8-hydroxylquinoline-5-sulfonic acid

    Institute of Scientific and Technical Information of China (English)

    WANG Ying; XUE Ming; XU JiaNing; ZHU GuangShan; QIU ShiLun

    2009-01-01

    Two new inorganic-organic hybrid polymers, Mn(QS)(H_2O) (1) and Co(QS)(H_2O)2 (2) (H2QS=8-hydroxylquinoline-5-sulfonic acid), based on 8-hydroxylquinoline-5-sulfonate ligand, have been synthesized under solvothermal conditions and their structures were solved by single-crystal X-ray diffraction analysis. Compound 1 is a three-dimensional open framework with rutile topology structure, and compound 2 is a three-dimensional supramolecular structure. These compounds were characterized by powder XRD, infrared spectroscopy, thermogravimetric analysis, fluorescence properties and magnetism properties.

  20. Synthesis and photoelectric properties of new Dawson-type polyoxometalate-based dimeric and oligomeric Pt(II)-acetylide inorganic-organic hybrids.

    Science.gov (United States)

    Liu, Li; Hu, Lei; Liu, Qian; Du, Zu-Liang; Li, Fa-Bao; Li, Guang-Hua; Zhu, Xun-Jin; Wong, Wai-Yeung; Wang, Lei; Li, Hua

    2015-01-07

    A new synthesis route for preparing Dawson-type polyoxometalate (POM) based inorganic-organic hybrid materials is presented. Two new heteropolytungstate-based dimeric and oligomeric Pt(II) acetylide inorganic-organic hybrid compounds (2PtOD and PPtOD) were prepared by Hagihara's dehydrohalogenating coupling of a terminal diacetylene POM hybrid containing diphosphoryl functionality and an appropriate platinum(II) halide precursor. This method provides a rigid covalent linkage between the POM and the organometallic Pt(II) acetylide moiety. The redox potential of the polyanion can be tuned by grafting the organic and organometallic groups on it. The photoelectric properties of hybrid LB films derived from these inorganic-organic composites were studied.

  1. Layered inorganic-organic hybrid with talc-like structure for cation removal at the solid/liquid interface

    Energy Technology Data Exchange (ETDEWEB)

    Badshah, Syed [Institute of Chemistry, University of Campinas, UNICAMP, P.O. Box 6154, 13084-971 Campinas, SP (Brazil); Airoldi, Claudio, E-mail: airoldi@iqm.unicamp.br [Institute of Chemistry, University of Campinas, UNICAMP, P.O. Box 6154, 13084-971 Campinas, SP (Brazil)

    2013-01-20

    Graphical abstract: A lamellar inorganic-organic hybrid with talc-like structure has been synthesized through a single sol-gel step. Highlights: Black-Right-Pointing-Pointer New silylating agent isolated from acrylamide includes basic centers attached to enlarged chain. Black-Right-Pointing-Pointer Lamellar inorganic-organic talc-like structure has been synthesized through a single sol-gel step. Black-Right-Pointing-Pointer High basal distance accommodates the pendant chain in the cavities only in inclined disposition. Black-Right-Pointing-Pointer The pendant chain sorbs spontaneously and favorable cations as demonstrated by thermodynamic data. - Abstract: A new silylating agent N-((3-(3-(trimethoxysilyl)propylthio)propanamido)methyl)acrylamide synthesized from the reaction of N,N-methylenebisacrylamide and 3-mercaptopropyltrimethoxysilane yielded layered inorganic-organic talc-like magnesium phyllosilicate through the sol-gel process. Elemental analysis data based on sulfur demonstrated incorporation of 2.70 mmol g{sup -1} of organic moiety inside the lamellar cavities and the X-ray diffraction patterns confirmed the talc-like structure with a basal distance of 2.11 nm. Infrared spectroscopy, {sup 13}C and {sup 29}Si NMR in the solid state are in agreement with the presence of organic chains covalently bonded to the inorganic lamellar framework, as also supported by the presence of T{sup n} silicon species. Nitrogen, oxygen and sulfur basic centers sorb divalent lead, copper and cobalt cations with maximum capacity of 5.30, 3.82 and 1.60 mmol g{sup -1}. The thermodynamic data for cation/basic center interactions at the solid/liquid interface were determined through calorimetric titration with exothermic enthalpy, negative Gibbs energy and positive entropy, as expected for spontaneous and favorable reaction conditions.

  2. Synthesis and Characterization of Two New Photochromic Inorganic-organic Hybrid Materials Based on Keggin-type Polyoxometalates

    Institute of Scientific and Technical Information of China (English)

    KU Zongjun; JIN Surong

    2008-01-01

    Two new photochromic inorganic-organic hybrid materials formed from Keggin-type polyoxometalates (POMs) and metronidazole (C6H9N3O3, MNZ), formulated as H3PMo12O40·3MNZ·3H2O (1) and H3PW12O40·3MNZ·3H2O (2), were synthesized and characterized by elemental analysis, IR spectra, electronic spectra, electron spin resonance (ESR) spectra and thermogravi-metry-differential thermal analysis (TG-DTA). Reflectance spectra show the presence of weak intermolecular charge transfer between the organic and inorganic moieties in the solid state. The photochromic properties were studied by solid diffuse reflectance spectra and ESR spectra, and the photochromic reactions were found to exhibit first-order kinetics. TG-DTA showed that two hybrid materials have similar thermal behavior.

  3. Preparation and characterization of inorganic-organic trilayer core-shell polysilsesquioxane/polyacrylate/polydimethylsiloxane hybrid latex particles

    Science.gov (United States)

    Bai, Ruiqin; Qiu, Teng; Han, Feng; He, Lifan; Li, Xiaoyu

    2012-07-01

    The inorganic-organic trilayer core-shell polysilsesquioxane/polyacrylate/polydimethylsiloxane hybrid latex particles have been successfully prepared via seeded emulsion polymerization of acrylate monomers and octamethylcyclotetrasiloxane (D4) gradually, using functional polymethacryloxypropylsilsesquioxane (PSQ) latex particles with reactive methacryloxypropyl groups synthesized by the hydrolysis and polycondensation of (3-methacryloxypropyl)trimethoxysilane in the presence of mixed emulsifiers as seeds. The FTIR spectra show that acrylate monomers and D4 are effectively involved in the emulsion copolymerization and formed the polydimethylsiloxane-containing hybrid latex particles. Transmission electron microscopy (TEM) and dynamic light scattering (DLS) confirm that the resultant hybrid latex particles have evident trilayer core-shell structure and a narrow size distribution. XPS analysis also indicates that polysilsesquioxane/polyacrylate/polydimethylsiloxane hybrid latex particles have been successfully prepared and PDMS is rich in the surface of the hybrid latex film. Additionally, compared with the hybrid latex film without PDMS, the hybrid latex film containing PDMS shows higher hydrophobicity (water contact angle) and lower water absorption.

  4. Preparation and characterization of inorganic-organic trilayer core-shell polysilsesquioxane/polyacrylate/polydimethylsiloxane hybrid latex particles

    Energy Technology Data Exchange (ETDEWEB)

    Bai Ruiqin [College of Materials Science and Engineering, State Key Laboratory of Organic-Inorganic Composite, Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing University of Chemical Technology, Beijing 100029 (China); Qiu Teng, E-mail: qiuteng@mail.buct.edu.cn [College of Materials Science and Engineering, State Key Laboratory of Organic-Inorganic Composite, Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing University of Chemical Technology, Beijing 100029 (China); Han Feng; He Lifan [College of Materials Science and Engineering, State Key Laboratory of Organic-Inorganic Composite, Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing University of Chemical Technology, Beijing 100029 (China); Li Xiaoyu, E-mail: lixy@mail.buct.edu.cn [College of Materials Science and Engineering, State Key Laboratory of Organic-Inorganic Composite, Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing University of Chemical Technology, Beijing 100029 (China)

    2012-07-15

    The inorganic-organic trilayer core-shell polysilsesquioxane/polyacrylate/polydimethylsiloxane hybrid latex particles have been successfully prepared via seeded emulsion polymerization of acrylate monomers and octamethylcyclotetrasiloxane (D{sub 4}) gradually, using functional polymethacryloxypropylsilsesquioxane (PSQ) latex particles with reactive methacryloxypropyl groups synthesized by the hydrolysis and polycondensation of (3-methacryloxypropyl)trimethoxysilane in the presence of mixed emulsifiers as seeds. The FTIR spectra show that acrylate monomers and D{sub 4} are effectively involved in the emulsion copolymerization and formed the polydimethylsiloxane-containing hybrid latex particles. Transmission electron microscopy (TEM) and dynamic light scattering (DLS) confirm that the resultant hybrid latex particles have evident trilayer core-shell structure and a narrow size distribution. XPS analysis also indicates that polysilsesquioxane/polyacrylate/polydimethylsiloxane hybrid latex particles have been successfully prepared and PDMS is rich in the surface of the hybrid latex film. Additionally, compared with the hybrid latex film without PDMS, the hybrid latex film containing PDMS shows higher hydrophobicity (water contact angle) and lower water absorption.

  5. Syntheses of silsesquioxane (POSS)-based inorganic/organic hybrid and the application in reinforcement for an epoxy resin.

    Science.gov (United States)

    Ni, Caihua; Ni, Guifeng; Zhang, Liping; Mi, Jiaquan; Yao, Bolong; Zhu, Changping

    2011-10-01

    A new inorganic/organic hybrid material containing silsesquioxane was prepared by the reaction of caged octa (aminopropyl silsesquioxane) (POSS-NH(2)) with n-butyl glycidyl ether (nBGE) and 1,4-butanediol diglycidyl ether (BDGE). The copolymers of POSS, nBGE, and BDGE could be obtained with varied feed ratio of POSS-NH(2), nBGE, and BDGE in the preparation. The hybrid material was added into an epoxy resin (E51) for enhancing the toughening and thermal properties of the epoxy resin. The results showed that the toughening and the thermal properties of the cured epoxy resin were greatly improved by the addition of the hybrid. The enhancement was ascribed to nano-scale effect of the POSS structure and the formation of anchor structure in the cured network. The investigation of kinetics for the curing process of the hybrid-modified epoxy resin revealed that two kinds of curing reactions occurred in different temperature ranges. They were attributed to the reactions between amino groups of the curing agent with epoxy groups of E51 and with residue epoxy groups in the hybrid. The reacting activation energies were calculated based on Kissinger's and Flynn-Wall-Ozawa's methods, respectively.

  6. Synthesis, characterization and electrochemical investigation of a new inorganic-organic hybrid compound constructed by Keggin-type polyoxometalate and cyanoguanidine

    Science.gov (United States)

    Zonoz, Farrokhzad Mohammadi; Zonoz, Irandokht Mohammadi; Jamshidi, Ali; Alizadeh, Mohammad Hassan

    2014-06-01

    An inorganic-organic hybrid complex [HDCD]3[PW12O40]·3H2O (1) (DCD = 2-cyanoguanidine) has been synthesized from the reaction of Keggin polyanion and cyanoguanidine (C2N4H4) under mild condition, and characterized by using elemental analysis, infrared spectrum, thermogravimatric analysis and single crystal X-ray diffraction. X-ray crystallography reveals that 1 displays an inorganic-organic hybrid frameworks constructed by [PW12O40]3- Keggin-type polyoxoanion and three {(HDCD)}+ monocationic hydrogen-bonded units. The electrochemical behavior and electrocatalysis of 1 have been studied in detail.

  7. Synthesis and Characterization of Novel Inorganic-Organic Hybrid Ru(II Complexes and Their Application in Selective Hydrogenation

    Directory of Open Access Journals (Sweden)

    El-Refaie Kenawy

    2010-02-01

    Full Text Available Novel Ru(II complex-based hybrid inorganic-organic materials immobilized via a diamine co-ligand site instead of the conventional diphosphine ligand have been prepared. The complexes were prepared by two different methods: sol-gel and surface modification techniques. The structures of the desired materials were deduced by several available physical measurements like elemental analyses, infrared, FAB-MS and 1H-, 13C- and 31P-NMR spectroscopy. Due to a lack of solubility the structures of xerogel 3 and modified 4 were studied by solid state 13C-, 29Si- and 31P-NMR spectroscopy, infrared spectroscopy and EXAFS. These materials were stable enough to serve as hydrogenation catalysts. Selective hydrogenation of functionalized carbonyls in a,b-unsaturated compounds was successfully carried out under mild conditions in a basic medium using these complexes as catalysts.

  8. Fabrication of inorganic-organic hybrid based on polyoxometalate SiW10Fe2 and folate as peroxidases for colorimetric immunoassay of cancer cells

    Institute of Scientific and Technical Information of China (English)

    Zhong Sun; Hai-Zhou Bie; Mei-Jie Wei; Jing-Jing wang; Xu-Guang Mi; Xiao-Hong Wang; Yin Wu

    2013-01-01

    Fabrication of folate and iron-substituted polyoxometalate [(FeOH2)2SiW10O36] to form nanoparticles(FA-SiWFe2) has been achieved.This inorganic-organic hybrid possesses intrinsic peroxidase-like activity,which could be used in detection of cancer cells in colorimetric multiplexed immunoassay.

  9. Biodegradable inorganic-organic hybrids of methacrylate star polymers for bone regeneration.

    Science.gov (United States)

    Chung, Justin J; Fujita, Yuki; Li, Siwei; Stevens, Molly M; Kasuga, Toshihiro; Georgiou, Theoni K; Jones, Julian R

    2017-03-08

    Hybrids that are molecular scale co-networks of organic and inorganic components are promising biomaterials, improving the brittleness of bioactive glass and the strength of polymers. Methacrylate polymers have high potential as the organic source for hybrids since they can be produced, through controlled polymerization, with sophisticated polymer architectures that can bond to silicate networks. Previous studies showed the mechanical properties of hybrids can be modified by polymer architecture and molar mass (MM). However, biodegradability is critical if hybrids are to be used as tissue engineering scaffolds, since the templates must be remodelled by host tissue. Degradation by-products have to either completely biodegrade or be excreted by the kidneys. Enzyme, or bio-degradation is preferred to hydrolysis by water uptake as it is expected to give a more controlled degradation rate. Here, branched and star shaped poly(methyl methacrylate-co-3-(trimethoxysilyl)propyl methacrylate) (poly(MMA-co-TMSPMA)) were synthesized with disulphide based dimethacrylate (DSDMA) as a biodegradable branching agent. Biodegradability was confirmed by exposing the copolymers to glutathione, a tripeptide which is known to cleave disulphide bonds. Cleaved parts of the star polymer from the hybrid system were detected after 2weeks of immersion in glutathione solution, and MM was under threshold of kidney filtration. The presence of the branching agent did not reduce the mechanical properties of the hybrids and bone progenitor cells attached on the hybrids in vitro. Incorporation of the DSDMA branching agent has opened more possibilities to design biodegradable methacrylate polymer based hybrids for regenerative medicine.

  10. Crystal Structure and Band Gap Engineering in Polyoxometalate-Based Inorganic-Organic Hybrids.

    Science.gov (United States)

    Roy, Soumyabrata; Sarkar, Sumanta; Pan, Jaysree; Waghmare, Umesh V; Dhanya, R; Narayana, Chandrabhas; Peter, Sebastian C

    2016-04-04

    We have demonstrated engineering of the electronic band gap of the hybrid materials based on POMs (polyoxometalates), by controlling its structural complexity through variation in the conditions of synthesis. The pH- and temperature-dependent studies give a clear insight into how these experimental factors affect the overall hybrid structure and its properties. Our structural manipulations have been successful in effectively tuning the optical band gap and electronic band structure of this kind of hybrids, which can find many applications in the field of photovoltaic and semiconducting devices. We have also addressed a common crystallographic disorder observed in Keggin-ion (one type of heteropolyoxometalate [POMs])-based hybrid materials. Through a combination of crystallographic, spectroscopic, and theoretical analysis of four new POM-based hybrids synthesized with tactically varied reaction conditions, we trace the origin and nature of the disorder associated with it and the subtle local structural coordination involved in its core picture. While the crystallography yields a centrosymmetric structure with planar coordination of Si, our analysis with XPS, IR, and Raman spectroscopy reveals a tetrahedral coordination with broken inversion symmetry, corroborated by first-principles calculations.

  11. Inorganic-Organic Hybrid Nanomaterials for Therapeutic and Diagnostic Imaging Applications

    Science.gov (United States)

    Vivero-Escoto, Juan L.; Huang, Yu-Tzu

    2011-01-01

    Nanotechnology offers outstanding potential for future biomedical applications. In particular, due to their unique characteristics, hybrid nanomaterials have recently been investigated as promising platforms for imaging and therapeutic applications. This class of nanoparticles can not only retain valuable features of both inorganic and organic moieties, but also provides the ability to systematically modify the properties of the hybrid material through the combination of functional elements. Moreover, the conjugation of targeting moieties on the surface of these nanomaterials gives them specific targeted imaging and therapeutic properties. In this review, we summarize the recent reports in the synthesis of hybrid nanomaterials and their applications in biomedical areas. Their applications as imaging and therapeutic agents in vivo will be highlighted. PMID:21747714

  12. Inorganic-Organic Hybrid Nanomaterials for Therapeutic and Diagnostic Imaging Applications

    Directory of Open Access Journals (Sweden)

    Juan L. Vivero-Escoto

    2011-06-01

    Full Text Available Nanotechnology offers outstanding potential for future biomedical applications. In particular, due to their unique characteristics, hybrid nanomaterials have recently been investigated as promising platforms for imaging and therapeutic applications. This class of nanoparticles can not only retain valuable features of both inorganic and organic moieties, but also provides the ability to systematically modify the properties of the hybrid material through the combination of functional elements. Moreover, the conjugation of targeting moieties on the surface of these nanomaterials gives them specific targeted imaging and therapeutic properties. In this review, we summarize the recent reports in the synthesis of hybrid nanomaterials and their applications in biomedical areas. Their applications as imaging and therapeutic agents in vivo will be highlighted.

  13. Soft templating strategies for the synthesis of mesoporous materials: inorganic, organic-inorganic hybrid and purely organic solids.

    Science.gov (United States)

    Pal, Nabanita; Bhaumik, Asim

    2013-03-01

    With the discovery of MCM-41 by Mobil researchers in 1992 the journey of the research on mesoporous materials started and in the 21st century this area of scientific investigation have extended into numerous branches, many of which contribute significantly in emerging areas like catalysis, energy, environment and biomedical research. As a consequence thousands of publications came out in large varieties of national and international journals. In this review, we have tried to summarize the published works on various synthetic pathways and formation mechanisms of different mesoporous materials viz. inorganic, organic-inorganic hybrid and purely organic solids via soft templating pathways. Generation of nanoscale porosity in a solid material usually requires participation of organic template (more specifically surfactants and their supramolecular assemblies) called structure-directing agent (SDA) in the bottom-up chemical reaction process. Different techniques employed for the syntheses of inorganic mesoporous solids, like silicas, metal doped silicas, transition and non-transition metal oxides, mixed oxides, metallophosphates, organic-inorganic hybrids as well as purely organic mesoporous materials like carbons, polymers etc. using surfactants are depicted schematically and elaborately in this paper. Moreover, some of the frontline applications of these mesoporous solids, which are directly related to their functionality, composition and surface properties are discussed at the appropriate places.

  14. Hybrid inorganic-organic tandem solar cells for broad absorption of the solar spectrum

    NARCIS (Netherlands)

    Speirs, M. J.; Groeneveld, B. G. H. M.; Protesescu, L.; Piliego, Claudia; Kovalenko, M. V.; Loi, M. A.

    2014-01-01

    We report the first hybrid tandem solar cell with solution processable active layers using colloidal PbS quantum dots (QDs) as the front subcell in combination with a polymer-fullerene rear subcell. Al/WO3 is introduced as an interlayer, yielding an open circuit voltage (V-OC) equal to about 92% of

  15. Physical and Gas Permeation Properties of a Series of Novel Hybrid Inorganic-Organic Composites Based on a Synthesized Fluorinated Polyimide

    OpenAIRE

    2000-01-01

    A series of hybrid inorganic-organic composites were fabricated from a functionalized fluorinated polyimide and tetraethoxysilane (TEOS), tetramethoxysilane, methyltrimethoxysilane (MTMOS), and phenyltrimethoxy-silane (PTMOS) employing the sol-gel process. Polyimides were synthesized from 4,4'-hexafluoroisopropylidene dianiline (6FpDA) and 4,4'-hexafluoroisopropyl-idenediphthalic anhydride (6FDA) utilizing a solution imidization technique. The hybrid materials were synthesized by in-situ so...

  16. Novel solar energy harvesting options based on solution-processable inorganic/organic hybrid materials

    Science.gov (United States)

    Stingelin, Natalie

    2015-03-01

    The growing demand for energy and increasing concerns for the effect of the excessive abuse of fossil fuels on the environment force the scientific world to search for alternative, clean and safe energy sources. Finding ways to harvest solar energy is thereby one of the most appealing options. Here, we present a novel approach that exploits the versatile properties of recently developed, photoactive organic/inorganic hybrid fluids based on titanium oxide hydrates and polyalcohols for the production of versatile solar fuels. We will show that such systems can absorb light in the UV-near visible wave-length range. The sunlight's energy is then converted into chemical energy in the form of reduced titanium species, which can be re-oxidised by oxygen when required. Therefore, the absorbed energy is stored as long as oxygen is excluded by the hybrid system. We, furthermore, demonstrate that once discharged, the fluid can be activated again by exposing it to sunlight and recycled - a property that is important technologically. The same hybrids can also be exploited to produce structures that permit efficient management of light. We will illustrate the potential of this class of materials based on some of our recent approaches to fabricate light-scattering and light in-coupling structures, and discuss future opportunities they open up.

  17. Design and synthesis of "dumb-bell" and "triangular" inorganic-organic hybrid nanopolyoxometalate clusters and their characterisation through ESI-MS analyses.

    Science.gov (United States)

    Pradeep, Chullikkattil P; Li, Feng-Yan; Lydon, Claire; Miras, Haralampos N; Long, De-Liang; Xu, Lin; Cronin, Leroy

    2011-06-27

    A series of tris(hydroxymethyl)aminomethane (TRIS)-based linear (bis(TRIS)) and triangular (tris(TRIS)) ligands has been synthesised and were covalently attached to the Wells-Dawson type cluster [P(2)V(3)W(15)O(62)](9-) to generate a series of nanometer-sized inorganic-organic hybrid polyoxometalate clusters. These huge hybrids, with a molecular mass similar to that of small proteins in the range of ≈10-16 kDa, were unambiguously characterised by using high-resolution ESI-MS. The ESI-MS spectra of these compounds revealed, in negative ion mode, a characteristic pattern showing distinct groups of peaks corresponding to different anionic charge states ranging from 3(-) to 8(-) for the hybrids. Each peak in these individual groups could be unambiguously assigned to the corresponding hybrid cluster anion with varying combinations of tetrabutylammonium (TBA) and other cations. This study therefore highlights the prowess of the high-resolution ESI-MS for the unambiguous characterisation of large, nanoscale, inorganic-organic hybrid clusters that have huge mass, of the order of 10-16 kDa. Also, the designed synthesis of these compounds points to the fact that we were able to achieve a great deal of structural pre-design in the synthesis of these inorganic-organic hybrid polyoxometalates (POMs) by means of a ligand design route, which is often not possible in traditional "one-pot" POM synthesis.

  18. Theory of coupled hybrid inorganic/organic systems: Excitation transfer at semiconductor/molecule interfaces

    Science.gov (United States)

    Specht, Judith; Verdenhalven, Eike; Theuerholz, Sverre; Knorr, Andreas; Richter, Marten

    2016-03-01

    We derive a theoretical framework for describing hybrid organic-inorganic systems consisting of an ordered organic molecular layer coupled to a semiconductor quantum well (e.g., ZnO). A Heisenberg equation of motion technique based on a density matrix formalism is applied to derive dynamical equations for the composite system on a mesoscopic scale. Our theoretical approach focuses on the inuence of nonradiative Förster excitation transfer across the hybrid interface on linear optical absorption spectra. Therefore, the dielectric screening is discussed at the interface of two materials with different dielectric constants. Moreover, the Förster transfer matrix element is calculated in the point-dipole approximation. For a consistent theoretical description of both constituents (i.e., the molecular layer and the semiconductor substrate), the problem is treated in momentum space. Solving the equations of motion for the microscopic polarizations in frequency space directly leads to an equation for the frequency-dependent linear absorption coefficient. Our theoretical approach forms the basis for studying parameter regimes and geometries with optimized excitation transfer efficiency across the semiconductor/ molecule interface.

  19. Pyramidal texturing of silicon surface via inorganic-organic hybrid alkaline liquor for heterojunction solar cells

    Science.gov (United States)

    Wang, Fengyou; Zhang, Xiaodan; Wang, Liguo; Jiang, Yuanjian; Wei, Changchun; Zhao, Ying

    2015-10-01

    We demonstrate a new class of silicon texturing approach based on inorganic (sodium hydroxide, NaOH) and organic (tetramethylammonium hydroxide, TMAH) alkaline liquor etching processes for photovoltaic applications. The first stage of inorganic alkaline etching textures the silicon surface rapidly with large pyramids and reduces the cost. The subsequent organic alkaline second-etching improves the coverage of small pyramids on the silicon surface and strip off the metallic contaminants produced by the first etching step. In addition, it could smoothen the surface of the pyramids to yield good morphology. In this study, the texturing duration of both etching steps was controlled to optimize the optical and electrical properties as well as the surface morphology and passivation characteristics of the silicon substrates. Compared with traditional inorganic NaOH texturing, this hybrid process yields smoother (111) facets of the pyramids, fewer residual Na+ ions on the silicon surface, and a shorter processing period. It also offers the advantage of lower cost compared with the organic texturing method based on the use of only TMAH. We applied this hybrid texturing process to fabricate silicon heterojunction solar cells, which showed a remarkable improvement compared with the cells based on traditional alkaline texturing processes.

  20. Syntheses, structures, properties and DFT study of hybrid inorganic-organic architectures constructed from trinuclear lanthanide frameworks and Keggin-type polyoxometalates.

    Science.gov (United States)

    Mirzaei, Masoud; Eshtiagh-Hosseini, Hossein; Lotfian, Nahid; Salimi, Alireza; Bauzá, Antonio; Van Deun, Rik; Decadt, Roel; Barceló-Oliver, Miquel; Frontera, Antonio

    2014-01-28

    In this paper we report the synthesis and X-ray characterization of four novel hybrid inorganic-organic assemblies generated from H4SiW12O40 as Keggin-type polyoxometalates (POM) and, in three of them, a trinuclear lanthanide cluster of type {Na(H2O)3[Ln(HCAM)(H2O)3]3}(4+) is formed, where Ln metal is La in compound 1, Ce in compound 2, and Eu in compound 3 (H3CAM = chelidamic acid or 2,6-dicarboxy-4-hydroxypyridine). These compounds represent the first POM-based inorganic-organic assemblies using chelidamic acid as an organic ligand. The thermal stability of the organic ligand is crucial, since pyridine-2,6-bis(monothiocarboxylate) instead of chelidamic acid is used (compound 4) under the same synthesis conditions, the decomposition of the ligand to pyridine was observed leading to the formation of colorless crystals of a pseudo hybrid inorganic-organic assembly. In compound 4 the hybrid inorganic-organic assembly is not formed and the organic part simply consists of four molecules of protonated pyridine acting as counterions of the [SiW12O40](4-) counterpart. The luminescent properties of compounds and have been investigated and their solid state architectures have been analyzed. Whereas compound only shows ligand emission, the Eu(3+) emission in compound 3 is discussed in detail. We have found that unprecedented anion-π interactions between the POM, which is a tetra-anion, and the aromatic rings play a crucial role in the crystal packing formation. To the best of our knowledge, this is the first report that describes and analyzes this interaction in Keggin-type POM based inorganic-organic frameworks. The energetic features of these interactions in the solid state have been analyzed using DFT calculations in some model systems predicted by us.

  1. Solubility studies of inorganic-organic hybrid nanoparticle photoresists with different surface functional groups

    Science.gov (United States)

    Li, Li; Chakrabarty, Souvik; Jiang, Jing; Zhang, Ben; Ober, Christopher; Giannelis, Emmanuel P.

    2016-01-01

    The solubility behavior of Hf and Zr based hybrid nanoparticles with different surface ligands in different concentrations of photoacid generator as potential EUV photoresists was investigated in detail. The nanoparticles regardless of core or ligand chemistry have a hydrodynamic diameter of 2-3 nm and a very narrow size distribution in organic solvents. The Hansen solubility parameters for nanoparticles functionalized with IBA and 2MBA have the highest contribution from the dispersion interaction than those with tDMA and MAA, which show more polar character. The nanoparticles functionalized with unsaturated surface ligands showed more apparent solubility changes after exposure to DUV than those with saturated ones. The solubility differences after exposure are more pronounced for films containing a higher amount of photoacid generator. The work reported here provides material selection criteria and processing strategies for the design of high performance EUV photoresists.The solubility behavior of Hf and Zr based hybrid nanoparticles with different surface ligands in different concentrations of photoacid generator as potential EUV photoresists was investigated in detail. The nanoparticles regardless of core or ligand chemistry have a hydrodynamic diameter of 2-3 nm and a very narrow size distribution in organic solvents. The Hansen solubility parameters for nanoparticles functionalized with IBA and 2MBA have the highest contribution from the dispersion interaction than those with tDMA and MAA, which show more polar character. The nanoparticles functionalized with unsaturated surface ligands showed more apparent solubility changes after exposure to DUV than those with saturated ones. The solubility differences after exposure are more pronounced for films containing a higher amount of photoacid generator. The work reported here provides material selection criteria and processing strategies for the design of high performance EUV photoresists. Electronic supplementary

  2. Reversible Structural Swell-Shrink and Recoverable Optical Properties in Hybrid Inorganic-Organic Perovskite.

    Science.gov (United States)

    Zhang, Yupeng; Wang, Yusheng; Xu, Zai-Quan; Liu, Jingying; Song, Jingchao; Xue, Yunzhou; Wang, Ziyu; Zheng, Jialu; Jiang, Liangcong; Zheng, Changxi; Huang, Fuzhi; Sun, Baoquan; Cheng, Yi-Bing; Bao, Qiaoliang

    2016-07-26

    Ion migration in hybrid organic-inorganic perovskites has been suggested to be an important factor for many unusual behaviors in perovskite-based optoelectronics, such as current-voltage hysteresis, low-frequency giant dielectric response, and the switchable photovoltaic effect. However, the role played by ion migration in the photoelectric conversion process of perovskites is still unclear. In this work, we provide microscale insights into the influence of ion migration on the microstructure, stability, and light-matter interaction in perovskite micro/nanowires by using spatially resolved optical characterization techniques. We observed that ion migration, especially the migration of MA(+) ions, will induce a reversible structural swell-shrink in perovskites and recoverably affect the reflective index, quantum efficiency, light-harvesting, and photoelectric properties. The maximum ion migration quantity in perovskites was as high as approximately 30%, resulting in lattice swell or shrink of approximately 4.4%. Meanwhile, the evidence shows that ion migration in perovskites could gradually accelerate the aging of perovskites because of lattice distortion in the reversible structural swell-shrink process. Knowledge regarding reversible structural swell-shrink and recoverable optical properties may shed light on the development of optoelectronic and converse piezoelectric devices based on perovskites.

  3. Evans-Showell-Type Polyoxometalates Constructing High-Dimensional Inorganic-Organic Hybrid Compounds with Copper-Organic Coordination Complexes: Synthesis and Oxidation Catalysis.

    Science.gov (United States)

    An, Haiyan; Hou, Yujiao; Wang, Lin; Zhang, Yumeng; Yang, Wei; Chang, ShenZhen

    2017-10-02

    Four new hybrid architectures containing a [Co2Mo10H4O38](6-) polyoxoanion, (en)[Cu3(ptz)4(H2O)4][Co2Mo10H4O38]·24H2O (1), (Hbim)2[{Cu(bim)2(H2O)2}2{Co2Mo10H4O38}]·5H2O (2), H2[Cu(dpdo)3(H2O)4][{Cu2(dpdo)3(H2O)4(CH3CN)}2{Co2Mo10H4O38}2]·9H2O (3), and (H2bpp)4[{Cu(H2O)2}{NaCo2Mo10H4O38}2]·10H2O (4), where ptz = 5-(4-pyridyl)-1H-tetrazole, en = ethylenediamine, bim = benzimidazole, dpdo = 4,4'-bipyridine-N,N'-dioxide, and bpp = 1,3-bis(4-pyridyl)propane, have been prepared and characterized through elemental analysis, thermogravimetric analysis, IR spectroscopy, and powder and single-crystal X-ray diffraction. Compound 1 shows a 3D host-guest framework composed of 3D Cu-ptz as the host and Evans-Showell-type polyoxoanion [Co2Mo10H4O38](6-) as the guest. Compound 2 is constructed from [Co2Mo10H4O38](6-) polyoxoanions and Cu-bim coordination complexes to form a 2D covalent layer. Compound 3 also exhibits a 2D hybrid network based on [Co2Mo10H4O38](6-) polyoxoanions linked by Cu-dpdo coordination groups. Compound 4 is a 1D double-chain structure composed of [Co2Mo10H4O38](6-) polyoxoanions joined together by Na(+) and Cu(2+) cations. As far as we know, compound 1 is the first host-guest compound with an Evans-Showell-type polyoxometalate as the guest, and compounds 2 and 3 are the first 2D inorganic-organic hybrid architectures constructed from Evans-Showell-type polyoxometalates. Compounds 1-4 are redox catalysts that heterogeneously prompt sulfide and alcohol oxidation with excellent efficiency.

  4. Crystal structure and catalytic properties of three inorganic-organic hybrid constructed from heteropolymolybdate and aminopyridine

    Science.gov (United States)

    Deng, Qian; Huang, Yilan; Peng, Zhenshan; Dai, Zengjin; Lin, Minru; Cai, Tiejun

    2013-04-01

    Three new organic-inorganic hybrid compounds (2-C5H7N2)3·(SiMo12O40)·(C4H8N4)0.5·(C5H6N2)2·(H2O)2 (1), (3-C5H7N2)8·(SiMo12O40)2·(C5H7N3)2·(H8O4)·(H2O)8 (2) and (4-C5H7N2)6·(SiMo12O40) (3) composed the heteropolymolybdate α-H4SiMo12O40 and the organic substrate 2/3/4-aminopyridine have been hydrothermally synthesized and characterized by routine methods. Compounds 1 and 2 exhibit a three-dimensional supramolecular network via hydrogen bond and π-π stacking interactions. Compound 2 contains a tetramolecular water cluster which consists of four water molecules connected by hydrogen bonds. These compounds exhibit good thermal stability and photoluminescent phenomena. Compounds 1 and 3 are active for catalytic oxidation of methanol in a continuous-flow fixed-bed micro-reactor, when the initial concentration of methanol is 2.75 g m-3 in air and flow rate is 10 mL min-1 at 150 °C, corresponding to the elimination rate of methanol i.e. 87.7% and 76.8%, respectively.

  5. Synthesis,Structure,and Photoluminescence Property of a Novel One-dimensional Inorganic-organic Hybrid Gallophosphate JGP-2

    Institute of Scientific and Technical Information of China (English)

    YANG Yu-lin; FAN Rui-qing; JIANG Zhao-hua; WANG Fu-ping; LIU Yun-ling; PANG Wen-qin

    2009-01-01

    A novel one-dimensional inorganic-organic hybrid gallophosphate compound,Ga(2,2'-bipy)(HPO4)·(H2PO4)(denoted JGP-2) was synthesized hydrothermaily with 2,2'-bipyridine as a ligand and characterized by X-ray powder diffraction (XRD),elemental analysis,inductively coupled plasma(ICP),TGA analysis,solid-state 31p NMR,and luminescence spectra and structurally determined by single-crystal X-ray diffraction analysis.JGP-2 crystallized in the triclinic system,space group Pi(No.2),with a=0.7818(1) nm,b=0.8611(2) nm,c=1.0908(2) nm,V=0.6727(2)nm3 and Z=2 with R1=0.0223.The structure of JGP-2 was built up by alternate arrangement of GaO4N2 octahedra,and HPO4(or H2PO4) tetrahedra to form an infinite one-dimensional corner-sharing-corncr(CSC) chain.Through P sites,the CSC chains link with an unusual edge-sharing dimmer,Ga2F4(H2O)2,giving rise to a 4,10-membered ring net layered structure of JGP-7.On excitation at 254 nm,JGP-2 can emit strong blue light at λmax=388 nm.JGP-7 presents a strong fluorescence emission band centered at 394 nm(λex=340 nm),the emission energy of JGP-7 is red-shifted compared with that of JGP-2.

  6. Inorganic-organic hybrid membranes with anhydrous proton conduction prepared from 3-aminopropyltriethoxysilane and sulfuric acid by the sol-gel method.

    Science.gov (United States)

    Tezuka, Teruaki; Tadanaga, Kiyoharu; Hayashi, Akitoshi; Tatsumisago, Masahiro

    2006-12-27

    Inorganic-organic hybrid membranes with anhydrous proton conduction were prepared from 3-aminopropyltriethoxysilane and H2SO4 by the sol-gel method. The membrane has a unique structure: a hexagonal phase formed by the stacking of rodlike polysiloxanes with ion complexes of ammonium groups and HSO4- extruded outside. The membranes showed high conductivity of 2 x 10-3 S cm-1 at 200 degrees C under dry atmosphere. In the membrane, protons probably migrate through the outside of the rodlike polysiloxanes along hydrogen-bond chains formed among HSO4- anions.

  7. Hybridized Plasmons in 2D Nanoslits: From Graphene to Anisotropic 2D Materials

    DEFF Research Database (Denmark)

    Gonçalves, P. A. D.; Xiao, Sanshui; Peres, N. M. R.

    2017-01-01

    of arbitrary width, and remains valid irrespective of the 2D conductive material (e.g., doped graphene, 2D transition metal dichalcogenides, or phosphorene). We derive the dispersion relation of the hybrid modes of a 2D nanoslit along with the corresponding induced potential and electric field distributions...

  8. Antibacterial inorganic-organic hybrid coatings on stainless steel via consecutive surface-initiated atom transfer radical polymerization for biocorrosion prevention.

    Science.gov (United States)

    Yuan, S J; Pehkonen, S O; Ting, Y P; Neoh, K G; Kang, E T

    2010-05-04

    To enhance the corrosion resistance of stainless steel (SS) and to impart its surface with antibacterial functionality for inhibiting biofilm formation and biocorrosion, well-defined inorganic-organic hybrid coatings, consisting of a polysilsesquioxane inner layer and quaternized poly(2-(dimethyamino)ethyl methacrylate) (P(DMAEMA)) outer blocks, were prepared via successive surface-initiated atom transfer radical polymerization (ATRP) of 3-(trimethoxysilyl)propyl methacrylate (TMSPMA) and 2-(dimethylamino)ethyl methacrylate (DMAEMA). The cross-linked P(TMASPMA), or polysilsesquioxane, inner layer provided a durable and resistant coating to electrolytes. The pendant tertiary amino groups of the P(DMAEMA) outer block were quaternized with alkyl halide to produce a high concentration of quaternary ammonium groups with biocidal functionality. The so-synthesized inorganic-organic hybrid coatings on the SS substrates exhibited good anticorrosion and antibacterial effects and inhibited biocorrosion induced by sulfate-reducing bacteria (SRB) in seawater media, as revealed by antibacterial assay and electrochemical analyses, and they are potentially useful to steel-based equipment under harsh industrial and marine environments.

  9. The Inorganic-organic Hybrid Junction with n-ZnO Nanorods/p-polyfluorene Structure Grown with Low-temperature Aqueous Chemical Growth Method

    Institute of Scientific and Technical Information of China (English)

    WU Wei; BIAN Jiming; SUN Yinglan; CHENG Chuanhui; SUN Jingchang; LLANG Hongwei; LUO Yingmin; DU Guotong

    2012-01-01

    The inorganic-organic hybrid junction was synthesized on ITO glass substrate,which was consisted of an n-type ZnO nanorods (NRs) grown by low-temperature aqueous chemical growth method and a p-type polyfluorene (PF) organic film fabricated by spin-coating.The experimental results indicate that densely and uniformly distributed ZnO nanorods are successfully grown on the PF layer.The thickness of the PF layer plays a dominant role for the current-voltage (Ⅰ-Ⅴ) characteristic of the ZnO NRs/PF inorganic-organic hybrid junction device,and a p-n junction with obviously rectifying behavior is achieved with optimal PF layer thickness.The photoluminescence (PL) spectrum coveting the broad visible range was obtained from the n-ZnO nanorods/p-polyfluorene (PF) structure,which was originated from the combination of the PF-related blue emission and the ZnO-related deep level emission.

  10. Enhanced photoelectrochemical performance of inorganic-organic hybrid consisting of BiVO4 and PEDOT:PSS

    Science.gov (United States)

    Trzciński, K.; Szkoda, M.; Siuzdak, K.; Sawczak, M.; Lisowska-Oleksiak, A.

    2016-12-01

    The PEDOT:PSS (poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)) was electrodeposited on a thin layer of bismuth vanadate (BiVO4) prepared using the pulsed laser deposition technique onto FTO. The inorganic-organic junction was characterized by Raman spectroscopy, UV-vis spectroscopy and scanning electron microscopy. Chronoamperometry curves, recorded under simulated solar light illumination, were performed to determine generated photocurrent during water and hydroquinone oxidation at the electrode surface. Experiments were performed for three types of electrode materials: (i) FTO/BiVO4, (ii) FTO/PEDOT:PSS and (iii) FTO/BiVO4/PEDOT:PSS in aqueous electrolyte. Almost 5 times higher photocurrent in electrolyte containing hole scavenger was generated after modification of BiVO4 photoanode with electrodeposited polymer. It is noteworthy that anodic photocurrent was stable even after 4 h of illumination. Cyclic voltammetry curves of FTO/BiVO4/PEDOT:PSS recorded before and after experiments performed under electrode illumination indicated that the organic part in tested junction is photo-corrosion resistant.

  11. Physical and gas permeation properties of a series of novel hybrid inorganic-organic composites based on a synthesized fluorinated polyimide

    Science.gov (United States)

    Cornelius, Christopher James

    2000-11-01

    A series of hybrid inorganic-organic composites were fabricated from a functionalized fluorinated polyimide and tetraethoxysilane (TEOS), tetramethoxysilane, methyltrimethoxysilane (MTMOS), and phenyltrimethoxy-silane (PTMOS) employing the sol-gel process. Polyimides were synthesized from 4,4'-hexafluoroisopropylidene dianiline (6FpDA) and 4,4'-hexafluoroisopropyl-idenediphthalic anhydride (6FDA) utilizing a solution imidization technique. The hybrid materials were synthesized by in-situ sol-gel processing of the aforementioned alkoxides and a fully imidized polyimide that was functionalized with 3-aminopropyltriethoxysilane. The gas permeability, diffusivity, and selectivity were evaluated for He, O2, N2, CH4, and CO2, while the physical properties of these hybrid materials were evaluated using several analytical techniques. The results from this study revealed that gas transport and physical properties were dependent on the type of alkoxide employed in the hybrid inorganic-organic material. Gas permeability was observed to increase with increasing gas penetrant size for MTMOS and PTMOS based hybrids, while TEOS based hybrids decreased gas permeability at all compositions. In general, MTMOS based hybrid materials had the largest increases in permeability, which was attributed to an increase in free volume. The TEOS based hybrid materials had the largest decreases in permeability, while PTMOS based hybrid materials had performance in between these alkoxides. Decreased permeability for the TEOS based hybrids was attributed to the formation of lower permeable material at a particle interface and coupled with increasing tortuosity. Results of PALS studies suggested that there was an increase in free volume and pore size for MTMOS based hybrids, while both TEOS and PTMOS based hybrids had decreases in both average pore size and free volume. The temperature dependence of permeation, diffusivity, and sorption were evaluated from 35°C to 125°C. These results suggested

  12. Optical Properties of Hybrid Inorganic/Organic Thin Film Encapsulation Layers for Flexible Top-Emission Organic Light-Emitting Diodes.

    Science.gov (United States)

    An, Jae Seok; Jang, Ha Jun; Park, Cheol Young; Youn, Hongseok; Lee, Jong Ho; Heo, Gi-Seok; Choi, Bum Ho; Lee, Choong Hun

    2015-10-01

    Inorganic/organic hybrid thin film encapsulation layers consist of a thin Al2O3 layer together with polymer material. We have investigated optical properties of thin film encapsulation layers for top-emission flexible organic light-emitting diodes. The transmittance of hybrid thin film encapsulation layers and the electroluminescent spectrum of organic light-emitting diodes that were passivated by hybrid organic/inorganic thin film encapsulation layers were also examined as a function of the thickness of inorganic Al203 and monomer layers. The number of interference peaks, their intensity, and their positions in the visible range can be controlled by varying the thickness of inorganic Al2O3 layer. On the other hand, changing the thickness of monomer layer had a negligible effect on the optical properties. We also verified that there is a trade-off between transparency in the visible range and the permeation of water vapor in hybrid thin film encapsulation layers. As the number of dyads decreased, optical transparency improved while the water vapor permeation barrier was degraded. Our study suggests that, in top-emission organic light-emitting diodes, the thickness of each thin film encapsulation layer, in particular that of the inorganic layer, and the number of dyads should be controlled for highly efficient top-emission flexible organic light-emitting diodes.

  13. Improved photochromic properties on viologen-based inorganic-organic hybrids by using π-conjugated substituents as electron donors and stabilizers.

    Science.gov (United States)

    Lin, Rong-Guang; Xu, Gang; Wang, Ming-Sheng; Lu, Gang; Li, Pei-Xin; Guo, Guo-Cong

    2013-02-04

    A series of inorganic-organic hybrid compounds L(2)(Bi(2)Cl(10)) (L = HMV(2+) = N-proton-N'-methyl-4,4'-bipyridinium for 1, L = HBzV(2+) = N-proton-N'-benzyl-4,4'-bipyridinium for 2, and L = HPeV(2+) = N-proton-N'-phenethyl-4,4'-bipyridinium for 3) have been successfully synthesized by an in situ solvothermal reaction. Compounds 1-3, with the same metal halide as anions but different asymmetric viologen molecules as cations, are ideal model compounds for investigating the detailed effect of different photochromically active molecules on the photochromic properties of the hybrids. Compound 1 shows no photochromic behavior, but compounds 2 and 3 possess photochromism and show a faster photoresponse rate than other reported viologen metal halide hybrids. Studies on the relationship between the structure and photochromic behavior clearly reveal that π-conjugated substituents could be used to improve the photoresponsibility and enrich the developed color efficiently and that the π···π interaction among organic components may not only be a powerful factor to stabilize the viologen monocation radical but also act as the second path of electron transfer from the π-conjugated substituent to the viologen cation for the photochromic process, which significantly influences the photochromic properties.

  14. Two new inorganic-organic hybrid materials based on inorganic cluster, [X2Mo18O62]6− (X=P, As)

    Indian Academy of Sciences (India)

    Fatma Hmida; Meriem Ayed; Brahim Ayed; Amor Haddad

    2015-09-01

    Two new inorganic-organic hybrid materials based on heteropolyoxometalates, (C4H10N)6 (P2 Mo18O62).4H2O I, and (C4H10N)6 (As2Mo18O62).4H2O II, where C4H10N is protonated pyrrolidine have been synthesized and structurally characterized by physic-chemical methods. Single-crystal X-ray diffraction method, infrared, ultraviolet spectroscopy, Thermogravimetricanalysis andcyclic voltammetry measurements of the title hybrid materials indicate that there are hydrogen bond interaction between O atoms of the hetero-polyoxometalates and water molecules as well as the N and O atoms of the organic compound. The molecular structures of synthesized hybrid materials contain discrete entities of pyrrolidinumion and water molecules surround every [X2Mo18O62]6− anion over the extended crystalline network that the [X2Mo18O62]6− anion retains its ``Dawson structure". Crystal data: I monoclinic, space group P21/a, a = 13,453(1) Å, b = 24,046 (1) Å, c = 24,119(1) = 97, 99(1)°, V = 7726,30(5) Å3 and Z = 4; II monoclinic, space group P21/a, a = 13.4900(1) Å, 24.0900(1) Å, 24.2740(1) Å, = 98.320(1)°, V = 7805.40(7) Å3 and Z = 4.

  15. Research progress in inorganic-organic hybrid proton exchange membrane based on phosphonic(phosphoric) acid%膦(磷)酸基无机-有机杂化质子交换膜的研究进展

    Institute of Scientific and Technical Information of China (English)

    郭芷含; 沈春晖; 陈成; 孔更金

    2012-01-01

    综述了通过溶胶-凝胶法制备的质子交换膜(PEM),即膦(磷)酸基无机-有机杂化PEM的发展状况.对比分析了掺杂磷酸和键合膦酸无机-有机杂化膜的稳定性以及膦(磷)酸与聚硅氧烷网络结构的连接方式对膜性能的影响.对膦酸基无机.有机杂化膜的发展前景进行了展望.%The development of inorganic-organic hybrid proton exchange membrane(PEM) based on phosphonic(phosphoric) acid was summarized, which were prepared from organosiloxane by sol-gel method. The stability between inorganic-organic hybrid membranes doped phosphoric acid and inorganic-organic hybrid membranes chemically grafted phosphonic acid was compared, then effect of connection ways of phosphonic (phosphoric) acid with the polysiloxane network structure on the membrane performance was discussed. The prospect development of inorganic-organic hybrid membranes based on phosphoric acid was described.

  16. Inorganic-organic hybrid coatings on stainless steel by layer-by-layer deposition and surface-initiated atom-transfer-radical polymerization for combating biocorrosion.

    Science.gov (United States)

    Yuan, S J; Pehkonen, S O; Ting, Y P; Neoh, K G; Kang, E T

    2009-03-01

    To improve the biocorrosion resistance of stainless steel (SS) and to confer the bactericidal function on its surface for inhibiting bacterial adhesion and biofilm formation, well-defined inorganic-organic hybrid coatings, consisting of the inner compact titanium oxide multilayers and outer dense poly(vinyl-N-hexylpyridinium) brushes, were successfully developed. Nanostructured titanium oxide multilayer coatings were first built up on the SS substrates via the layer-by-layer sol-gel deposition process. The trichlorosilane coupling agent, containing the alkyl halide atom-transfer-radical polymerization (ATRP) initiator, was subsequently immobilized on the titanium oxide coatings for surface-initiated ATRP of 4-vinylpyridine (4VP). The pyridium nitrogen moieties of the covalently immobilized 4VP polymer, or P(4VP), brushes were quaternized with hexyl bromide to produce a high concentration of quaternary ammonium salt on the SS surfaces. The excellent antibacterial efficiency of the grafted polycations, poly(vinyl-N-pyridinium bromide), was revealed by viable cell counts and atomic force microscopy images of the surface. The effectiveness of the hybrid coatings in corrosion protection was verified by the Tafel plot and electrochemical impedance spectroscopy measurements.

  17. Two novel POM-based inorganic-organic hybrid compounds: synthesis, structures, magnetic properties, photodegradation and selective absorption of organic dyes.

    Science.gov (United States)

    Dui, Xue-Jing; Yang, Wen-Bin; Wu, Xiao-Yuan; Kuang, Xiaofei; Liao, Jian-Zhen; Yu, Rongmin; Lu, Can-Zhong

    2015-05-28

    The hydrothermal reactions of a mixture of (NH4)6Mo7O24·4H2O, Cu(Ac)2·H2O and 3-bpo ligands at different temperatures result in the isolation of two novel inorganic-organic hybrid materials containing different but related isopolymolybdate units, [Cu(3-bpo)(H2O)(Mo4O13)]·3H2O () and [Cu2(3-bpo)2(Mo6O20)] (). The {Mo4O13}n chains in and unprecedented [Mo6O20](4-) isopolyhexamolybdate anions in are linked by octahedral Cu(2+) ions into two-dimensional hybrid layers. Interestingly, 3-bpo ligands in both and are located on either side of these hybrid layers and serve as arched footbridges to link Cu(ii) ions in the layer via pyridyl N-donors, and at the same time connect these hybrid layers into 3D supramolecular frameworks via weak MoNoxadiazole bonds. Another important point for is that water clusters are filled in the 1D channels surrounded by isopolytetramolybdate units. In addition, dye adsorption and photocatalytic properties of and magnetic properties of have been investigated. The results indicated that complex is not only a good heterogeneous photocatalyst in the degradation of methyl orange (MO) and methylene blue (MB), but also has high absorption capacity of MB at room temperature and can selectively capture MB molecules from binary mixtures of MB/MO or MB/RhB. All MB molecules absorbed on can be completely released and photodegraded in the presence of adequate peroxide. The temperature dependence of magnetic susceptibility revealed that complex exhibits antiferromagnetic ordering at about 5 K, and a spin-flop transition was observed at about 5.8 T at 2 K, indicating metamagnetic-like behaviour from antiferromagnetic to ferromagnetic phases.

  18. Inorganic-organic hybrid compounds based on face-sharing octahedral [PbI3]∞ chains: self-assemblies, crystal structures, and ferroelectric, photoluminescence properties.

    Science.gov (United States)

    Duan, Hai-Bao; Zhao, Hai-Rong; Ren, Xiao-Ming; Zhou, Hong; Tian, Zheng-Fang; Jin, Wan-Qin

    2011-02-28

    Eight inorganic-organic hybrid compounds with a formula of [R-Bz-1-APy][PbI(3)] (R-Bz-1-APy(+) = mono-substituted benzylidene-1-aminopyridinium Schiff base derivative; R = m-CN (1), m-CH(3) (2), H (3), p-F (4), p-Cl (5), p-Br (6), o-Cl (7), o-Br (8)) have been synthesized and characterized structurally. The common characteristic of the crystal structures of 1-8 is that the inorganic components form straight and face-sharing octahedral [PbI(3)](∞) chains and the Schiff base cations surround the [PbI(3)](∞) chains to form molecular stacks. The substituent (R) on the phenyl ring of the Schiff base cation clearly influences the packing structures of 1-8, and the hybrid compound crystallizes in the space group P6(3) when R = CN (1) in the meta-position of the phenyl ring, and in a central symmetric space group when R is in the ortho- or para-position of the phenyl ring. The conformation of the Schiff base cation is related to the R position, and the dihedral angle between the phenyl and pyridyl rings increases in the order of para- inorganic [PbI(3)](∞) chain in the para-substituted hybrid compounds, and perpendicular to the straight inorganic [PbI(3)](∞) chain in the ortho-substituted hybrid compounds. 1 is second harmonic generation (SHG) active with a comparable response as that of urea and also exhibits ferroelectricity with larger P(s) and P(r) values; 1-8 emit multi-band luminescence in the 300-650 nm regions under the excitation of ultraviolet light.

  19. Aluminum corrosion mitigation in alkaline electrolytes containing hybrid inorganic/organic inhibitor system for power sources applications

    Science.gov (United States)

    Gelman, Danny; Lasman, Itay; Elfimchev, Sergey; Starosvetsky, David; Ein-Eli, Yair

    2015-07-01

    The severe corrosion accompanied with hydrogen evolution process is the main obstacle preventing the implementation of Al as an anode in alkaline batteries. It impairs the functionality of alkaline battery, due to a drastic capacity loss and a short shelf life. The possibility to reduce Al corrosion rate in alkaline solution with the use of hybrid organic∖inorganic inhibitor based on poly (ethylene glycol) di-acid (PEG di-acid) and zinc oxide (ZnO) was examined in this work. A correlation between an Al corrosion rates and the concentrations of both PEG di-acid and ZnO in alkaline is shown. Selecting 5000 ppm PEG di-acid and 16 gr/l ZnO provides substantial corrosion protection of Al, reducing the corrosion rate in a strong alkaline solution by more than one order of magnitude. Moreover, utilizing the same formulation results in increase in Al-air battery discharge capacity, from 44.5 (for a battery utilizing only KOH in the electrolyte) to 70 mhA/cm2 (for a battery utilizing ZnO/PEG di-acid hybrid inhibitor in the electrolyte). The morphology and composition of the Al electrode surface (studied by SEM, EDS, and XRD) depend on PEG di-acid and ZnO concentrations.

  20. A novel Ni/Na - Containing inorganic-organic hybrid supramolecule based on polyoxometalate and EDTA with ultraviolet-visible light photochromism

    Science.gov (United States)

    Xiao, Han-Xi; Teng, Chun-Lin; Cai, Qing; Sun, Su-Qin; Cai, Tie-Jun; Deng, Qian

    2016-08-01

    A novel Ni/Na - containing inorganic-organic hybrid supramolecule {(PW12O40)·[Na2(NiH2EDTA·H2O)(H4EDTA)·2H2O]·2H2O·H3O}n (short for NiEDTA-PW12) has been successfully synthesized by solution method, and investigated by thermogravimetric-differential thermal analysis (TG-DTA), ultraviolet visible (UV-Vis) spectroscopy, cyclic voltammetry (CV), photoluminescence (PL), ultraviolet visible diffuse reflectance spectrum (UV-vis DRS) and single-crystal X-ray diffraction (XRD). NiEDTA-PW12 exhibits intriguing infinite supramolecular structure with Na+ ions as linker. Furthermore, NiEDTA-PW12 displays a fast-responsive reversible photochromism under ultraviolet or visible light. The photochromic property of NiEDTA-PW12 has been investigated by techniques of UV-vis DRS and PL, and the impact of the O2 on fading of the colored NiEDTA-PW12 has been investigated.

  1. pH-dependent assembly of two inorganic-organic hybrid compounds based on octamolybdates: an unusual intercalated layer and a 3D 4-connected framework.

    Science.gov (United States)

    Liu, Hai-Yan; Yang, Jin; Liu, Ying-Ying; Ma, Jian-Fang

    2012-09-07

    Two novel inorganic-organic hybrid compounds based on octamolybdates, namely, [Cu(H(2)L)(2)(γ-Mo(8)O(26))]·(Mo(6)O(19))·2H(2)O (1) and [Cu(H(2)L)(γ-Mo(8)O(26))(H(2)O)(2)]·5H(2)O (2), where L = 1,1'-(1,5-pentanediyl)bis[2-(4-pyridyl)benzimidazole], have been successfully synthesized at different pH values under hydrothermal conditions. Compound 1, which is hydrothermally prepared at pH ≈ 3.5, exhibits an entirely new type of intercalated layer. The nanosized hexamolybdate anions as guests are introduced into the layers. When the pH value is adjusted to 2, a structurally-different complex 2 was obtained. Compound 2 shows a unique 3D 4-connected framework constructed by inorganic layers and H(2)L(2+) ligands as bridges. The two compounds were characterized by elemental analyses, IR spectra and TGA. In addition, the electrochemical properties of 1-modified carbon paste electrode (CPE) have also been investigated in 1 M H(2)SO(4) aqueous solution.

  2. Hydrothermal Synthesis and Crystal Structure of Inorganic-organic Hybrid Compound [H3NC2H4NH2]VOPO4

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    An inorganic-organic hybrid compound, [H3NC2H4NH2]VOPO4 was synthesized by meansof the hydrothermal method. It was crystallized in a monoclinic system, a space group P21/c,with the crystal cell parameters: a=0. 922 85(11) nm, b=0. 729 94(9) nm, c=0. 984 95(11)nm, β=101. 280(3)°, V=0. 650 67(13) nm3, Mr=223.02 g/mol, Dc=2. 277 g/cm3, Z=4,R= 0. 031 5, ωR= 0. 086 5, GOF = 1. 085. The VO5N octahedra chains are corner-linked byPO4 tetrahedra; the VOsN octahedra are all trans-linked with V-O bonds being alternately short and long. The monoprotonated ethylenediamine was intercalated between the layers with one end coordinating to V and the other end as an H-bond donor interacting with a terminal O atom of PO4 from a neighboring sheet. The elementary analysis, infrared spectrum characters and thermal stability were also given.

  3. Synthesis and Crystal Structure of an Inorganic-organic Hybrid [DMAPM]+[CdI3]-:The First Example of Cd2I62- Dimer

    Institute of Scientific and Technical Information of China (English)

    任鹏; 秦金贵; 张德清; 胡怀明

    2004-01-01

    A new inorganic-organic hybrid,[DMAPM]+[CdI3]-(DMAPM+ = p-dimethyla-mino-1-methyl-pyridinium),has been synthesized by the reaction of [DMAPM]+I-and CdI2,and characterized by IR and elemental analysis.The crystal structure was obtained via X-ray single-crystal diffraction with the following data: triclinic,space group P1,a = 8.0974(9),b = 9.6187(10),c = 10.5028(8)(A),α = 75.049(6),β = 86.321(3),γ = 87.791(3)o,V = 788.50(13)(A)3,Dc = 2.655 g/cm3,Z = 2,R = 0.0385 and Wr = 0.0976.In the structure,one cadmium and four iodine atoms form a tetrahedral geometry,and two of such tetrahedra are connected in a co-line way to constitute Cd2I62-dimer.To our knowledge,this is the first example of dimerized CdI4 tetrahedron.All of the dimers are packed in the same mode,while the [DMAPM]+ cations are anti-parallelly arrayed.

  4. Inorganic-organic hybrid coating material for the online in-tube solid-phase microextraction of monohydroxy polycyclic aromatic hydrocarbons in urine.

    Science.gov (United States)

    Wang, ShuLing; Xu, Hui

    2016-12-01

    An inorganic-organic hybrid nanocomposite (zinc oxide/polypyrrole) that represents a novel kind of coating for in-tube solid-phase microextraction is reported. The composite coating was prepared by a facile electrochemical polymerization strategy on the inner surface of a stainless-steel tube. Based on the coated tube, a novel online in-tube solid-phase microextraction with liquid chromatography and mass spectrometry method was developed and applied for the extraction of three monohydroxy polycyclic aromatic hydrocarbons in human urine. The coating displayed good extraction ability toward monohydroxy polycyclic aromatic hydrocarbons. In addition, long lifespan, excellent stability, and good compression resistance were also obtained for the coating. The experimental conditions affecting the extraction were optimized systematically. Under the optimal conditions, the limits of detection and quantification were in the range of 0.039-0.050 and 0.130-0.167 ng/mL, respectively. Good linearity (0.2-100 ng/mL) was obtained with correlation coefficients larger than 0.9967. The repeatability, expressed as relative standard deviation, ranged between 2.5% and 9.4%. The method offered the advantage of process simplicity, rapidity, automation, and sensitivity in the analysis of human urinary monohydroxy polycyclic aromatic hydrocarbons in two different cities of Hubei province. An acceptable recovery of monohydroxy polycyclic aromatic hydrocarbons (64-122%) represented the additional attractive features of the method in real urine analysis.

  5. Inorganic- organic hybrid materials of POSS/EPDM composites%POSS/EPDM无机-有机杂化材料

    Institute of Scientific and Technical Information of China (English)

    高钧驰; 杨荣杰

    2011-01-01

    以自行合成的笼形八乙烯基硅倍半氧烷(OVP)与三元乙丙橡胶(EPDM)及硫化剂等通过双辊混炼机制备笼形低聚硅倍半氧烷(POSS)/EPDM纳米杂化材料.测定了POSS/EPDM杂化材料的力学性能和阻燃性能,并利用热重分析仪及锥形量热仪考察了材料的热稳定性及热释放速率.结果表明:含OVP的POSS/EPDM纳米杂化材料与纯EPDM相比,氧指数(LOI)和热稳定性明显提高,热释放速率显著降低.仅加入0.88%的OVP即可将LOI提高11.8%,起始热分解温度提高51℃,残炭量为纯EPDM的1.58倍,热释放速率降低25.8%,可见OVP在提高EPDM综合性能方面有较高应用价值.%Polyhedal oligomeric silsequioxane (POSS)/ethylene-propylene-diene-monomer rubber (EPDM) hybrid materials were prepared by twin roller mixing with octaphenylsilsequioxane (OVP), EPDM and vulcanizing agent.The mechanical properties and the flame retardcy of the hybrid materials were studied. The thermal stability and heat release rate (HRR) of the hybrid materials were investigated with thermo gravimetric analyzer and cone calorimeter.Comparing with the pure EPDM, the limited oxygen index (LOI) and thermal stability of POSS/EPDM with OVP are increased dramatically, the p-HRR of POSS/EPDM with OVP is decreased remarkably. The LOI is increased by 11.8%, the temperature of degradation is increased by 51 ℃, the HRR is decreased by 25.8%, the content of residue is 1.58 times as that of pure EPDM when 0.88% mass fraction OVP is added. The results show that OVP has great application value.

  6. Thin film encapsulation for organic light-emitting diodes using inorganic/organic hybrid layers by atomic layer deposition.

    Science.gov (United States)

    Zhang, Hao; Ding, He; Wei, Mengjie; Li, Chunya; Wei, Bin; Zhang, Jianhua

    2015-01-01

    A hybrid nanolaminates consisting of Al2O3/ZrO2/alucone (aluminum alkoxides with carbon-containing backbones) grown by atomic layer deposition (ALD) were reported for an encapsulation of organic light-emitting diodes (OLEDs). The electrical Ca test in this study was designed to measure the water vapor transmission rate (WVTR) of nanolaminates. We found that moisture barrier performance was improved with the increasing of the number of dyads (Al2O3/ZrO2/alucone) and the WVTR reached 8.5 × 10(-5) g/m(2)/day at 25°C, relative humidity (RH) 85%. The half lifetime of a green OLED with the initial luminance of 1,500 cd/m(2) reached 350 h using three pairs of the Al2O3 (15 nm)/ZrO2 (15 nm)/alucone (80 nm) as encapsulation layers.

  7. Synthesis, Processing, and Characterization of Inorganic-Organic Hybrid Cross-Linked Silica, Organic Polyimide, and Inorganic Aluminosilicate Aerogels

    Science.gov (United States)

    Nguyen, Baochau N.; Guo, Haiquan N.; McCorkle, Linda S.

    2014-01-01

    As aerospace applications become ever more demanding, novel insulation materials with lower thermal conductivity, lighter weight and higher use temperature are required to fit the aerospace application needs. Having nanopores and high porosity, aerogels are superior thermal insulators, among other things. The use of silica aerogels in general is quite restricted due to their inherent fragility, hygroscopic nature, and poor mechanical properties, especially in extereme aerospace environments. Our research goal is to develop aerogels with better mechanical and environmental stability for a variety of aeronautic and space applications including space suit insulation for planetary surface missions, insulation for inflatable structures for habitats, inflatable aerodynamic decelerators for entry, descent and landing (EDL) operations, and cryotank insulation for advance space propulsion systems. Different type of aerogels including organic-inorganic polymer reinforced (hybrid) silica-based aerogels, polyimide aerogels and inorganic aluminosilicate aerogels have been developed and examined.

  8. Inorganic-organic hybrid polymer electrolyte based on polysiloxane/poly(maleic imide-co-styrene) network

    Energy Technology Data Exchange (ETDEWEB)

    Kuo, P.-L.; Jheng, W.-H.; Chen, W.-F. [Department of Chemical Engineering, National Cheng Kung University, Tainan City 70101 (China); Liang, W.-J. [Fire Protection and Safety Research Center, National Cheng Kung University, Tainan City (China)

    2010-10-01

    Covalently cross-linked nonfluorinated hydrocarbon ionomers are synthesized by introducing sulfonate groups and a siloxane cross-linker through thermally and chemically stable imide bonding on poly(styrene-co-maleic anhydride). The three-dimensional polysiloxane framework, which does not only act as a robust scaffold but also provide sites for the hydrogen bonding with water, contribute to the increase in bound water degree, higher proton conductivity at lower ion exchange capacity, and greatly decreased methanol permeability. The spherical-shaped ionic clusters produce a comparable proton conductivity (10{sup -1} S cm{sup -1} above 60 C) to Nafion-117. The conductivity of the hybrid ionomer does not decrease to gain its selectivity, but instead increased. Methanol permeability is {proportional_to}70% lower than that of Nafion-117, but has a higher water uptake and IEC. The membrane with IEC values of 1.1 mequiv. g{sup -1} exhibits a constant conductivity for 200 h in hydrolytic stability test, and produce a power density 20% higher than Nafion-117 in single DMFC operation. (author)

  9. Exciton generation/dissociation/charge-transfer enhancement in inorganic/organic hybrid solar cells by robust single nanocrystalline LnPxOy (Ln = Eu, Y) doping.

    Science.gov (United States)

    Jin, Xiao; Sun, Weifu; Chen, Zihan; Wei, Taihuei; Chen, Chuyang; He, Xingdao; Yuan, Yongbiao; Li, Yue; Li, Qinghua

    2014-06-11

    Low-temperature solution-processed photovoltaics suffer from low efficiencies because of poor exciton or electron-hole transfer. Inorganic/organic hybrid solar cell, although still in its infancy, has attracted great interest thus far. One of the promising ways to enhance exciton dissociation or electron-hole transport is the doping of lanthanide phosphate ions. However, the underlying photophysical mechanism remains poorly understood. Herein, by applying femtosecond transient absorption spectroscopy, we successfully distinguished hot electron, less energetic electron, hole transport from electron-hole recombination. Concrete evidence has been provided that lanthanide phosphate doping improves the efficiency of both hot electron and "less energetic" electron transfers from donor to acceptor, but the hole transport almost remains unchanged. In particular, the hot electron transfer lifetime was shortened from 30.2 to 12.7 ps, that is, more than 60% faster than pure TiO2 acceptor. Such improvement was ascribed to the facts that the conduction band (CB) edge energy level of TiO2 has been elevated by 0.2 eV, while the valence band level almost remains unchanged, thus not only narrowing the energy offset between CB levels of TiO2 and P3HT, but also meanwhile enlarging the band gap of TiO2 itself that permits one to inhibit electron-hole recombination within TiO2. Consequently, lanthanide phosphate doped TiO2/P3HT bulk-heterojunction solar cell has been demonstrated to be a promising hybrid solar cell, and a notable power conversion efficiency of 2.91% is therefore attained. This work indicates that lanthanide compound ions can efficiently facilitate exciton generation, dissociation, and charge transport, thus enhancing photovoltaic performance.

  10. Hybrid 3D-2D printing for bone scaffolds fabrication

    Science.gov (United States)

    Seleznev, V. A.; Prinz, V. Ya

    2017-02-01

    It is a well-known fact that bone scaffold topography on micro- and nanometer scale influences the cellular behavior. Nano-scale surface modification of scaffolds allows the modulation of biological activity for enhanced cell differentiation. To date, there has been only a limited success in printing scaffolds with micro- and nano-scale features exposed on the surface. To improve on the currently available imperfect technologies, in our paper we introduce new hybrid technologies based on a combination of 2D (nano imprint) and 3D printing methods. The first method is based on using light projection 3D printing and simultaneous 2D nanostructuring of each of the layers during the formation of the 3D structure. The second method is based on the sequential integration of preliminarily created 2D nanostructured films into a 3D printed structure. The capabilities of the developed hybrid technologies are demonstrated with the example of forming 3D bone scaffolds. The proposed technologies can be used to fabricate complex 3D micro- and nanostructured products for various fields.

  11. Hybrid 3D-2D printing of bone scaffolds Hybrid 3D-2D printing methods for bone scaffolds fabrication.

    Science.gov (United States)

    Prinz, V Ya; Seleznev, Vladimir

    2016-12-13

    It is a well-known fact that bone scaffold topography on micro- and nanometer scale influences the cellular behavior. Nano-scale surface modification of scaffolds allows the modulation of biological activity for enhanced cell differentiation. To date, there has been only a limited success in printing scaffolds with micro- and nano-scale features exposed on the surface. To improve on the currently available imperfect technologies, in our paper we introduce new hybrid technologies based on a combination of 2D (nano imprint) and 3D printing methods. The first method is based on using light projection 3D printing and simultaneous 2D nanostructuring of each of the layers during the formation of the 3D structure. The second method is based on the sequential integration of preliminarily created 2D nanostructured films into a 3D printed structure. The capabilities of the developed hybrid technologies are demonstrated with the example of forming 3D bone scaffolds. The proposed technologies can be used to fabricate complex 3D micro- and nanostructured products for various fields. Copyright 2016 IOP Publishing Ltd.

  12. The atomic size effect on hybrid inorganic-organic perovskite CH3NH3BI3 (B = Pb, Sn) from first-principles study

    Science.gov (United States)

    Chen, Qing-Yuan; Liu, Ming-Yang; Huang, Yang; Cao, Chao; He, Yao

    2017-04-01

    The inorganic-organic perovskite CH3NH3PbI3 is a hot research material owing to its outstanding performances as one light absorbing layer of solid-state dye-sensitized solar cells. In this study, we focused on the atomic size effect on CH3NH3BI3 (B = Sn, Pb), provided the best atomic size with which CH3NH3BI3 absorbs widest range of different wavelengths of light, by first-principles calculation. We found that the halogen I-p states are mainly composed of the valence band maximum (VBM) of CH3NH3BI3, and the cation B-p states are primarily composed of the conduction band minimum (CBM). Besides, the bandgap of CH3NH3BI3 decreases and absorptive capacities of different wavelengths of light expand when we reduced the size of the atom and changed B atom from Pb to Sn during the change of suitable range. From all of the above, it is discovered that when the atomic size is 20% less than the normal size, CH3NH3PbI3 has the best optical properties, and its light-absorption range is the widest among all sizes of CH3NH3BI3 compounds. All these results reveal that the stress and strain on CH3NH3BI3 change the atomic size which leads to alteration of bandgap and optical properties in high-efficiency solar cells among all CH3NH3BI3 compounds, namely we can enhance the efficiency of the inorganic-organic perovskite solar cells by setting up suitable pressure on the material in future.

  13. Semitransparent ZnO/poly(3,4-ethylenedioxythiophene) based hybrid inorganic/organic heterojunction thin film diodes prepared by combined radio-frequency magnetron-sputtering and electrodeposition techniques

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez-Moreno, Jorge; Navarrete-Astorga, Elena; Martin, Francisco [Laboratorio de Materiales y Superficies (Unidad Asociada al CSIC), Departamentos de Fisica Aplicada and Ing. Quimica, Universidad de Malaga, E29071 Malaga (Spain); Schrebler, Ricardo [Instituto de Quimica, Facultad de Ciencias, Pontificia Universidad Catolica de Valparaiso, Casilla 4059, Valparaiso (Chile); Ramos-Barrado, Jose R. [Laboratorio de Materiales y Superficies (Unidad Asociada al CSIC), Departamentos de Fisica Aplicada and Ing. Quimica, Universidad de Malaga, E29071 Malaga (Spain); Dalchiele, Enrique A., E-mail: dalchiel@fing.edu.uy [Instituto de Fisica, Facultad de Ingenieria, Herrera y Reissig 565, C.C. 30, 11000 Montevideo (Uruguay)

    2012-12-15

    n-ZnO/p-poly(3,4-ethylenedioxythiophene) (PEDOT) semitransparent inorganic-organic hybrid vertical heterojunction thin film diodes have been fabricated with PEDOT and ZnO thin films grown by electrodeposition and radio-frequency magnetron-sputtering respectively, onto a tin doped indium oxide coated glass substrate. The diode exhibited an optical transmission of {approx} 40% to {approx} 50% in the visible region between 450 and 700 nm. The current-voltage (I-V) characteristics of the heterojunction show good rectifying diode characteristics, with a ratio of forward current to the reverse current as high as 35 in the range - 4 V to + 4 V. The I-V characteristic was examined in the framework of the thermionic emission model. The ideality factor and barrier height were obtained as 4.0 and 0.88 eV respectively. - Highlights: Black-Right-Pointing-Pointer Semitransparent inorganic-organic heterojunction thin film diodes investigated Black-Right-Pointing-Pointer n-ZnO/p-poly(3,4-ethylenedioxythipohene) used for the heterojunction Black-Right-Pointing-Pointer Diodes exhibited an optical transmission of {approx} 40%-{approx} 50% in the visible region Black-Right-Pointing-Pointer Heterojunction current-voltage features show good rectifying diode characteristics Black-Right-Pointing-Pointer A forward to reverse current ratio as high as 35 (- 4 V to + 4 V range) was attained.

  14. Hydrolysis preparation of the compact TiO2 layer using metastable TiCl4 isopropanol/water solution for inorganic-organic hybrid heterojunction perovskite solar cells

    Science.gov (United States)

    Xiaoyan, Dai; Chengwu, Shi; Yanru, Zhang; Ni, Wu

    2015-07-01

    A hydrolysis process was applied to prepare the compact TiO2 layer using the fresh metastable TiCl4 isopropanol/water solution as the precursor solution for the preparation of the inorganic-organic hybrid heterojunction perovskite solar cells. The optimal compact TiO2 layer prepared from the aqueous solution of 2 mol/L TiCl4 diluted in isopropanol at 1 : 3 by volume as precursor solution was uniform and with a film thickness of 126 nm. The corresponding perovskite solar cell gave a photovoltaic conversion efficiency of 10.61%. Project supported by the National Natural Science Foundation of China (Nos. 51472071, 51272061, 51072043), and the National Basic Research Program of China (No. 2011CBA00700).

  15. Synthesis of Cu-Deficient and Zn-Graded Cu-In-Zn-S Quantum Dots and Hybrid Inorganic-Organic Nanophosphor Composite for White Light Emission.

    Science.gov (United States)

    Ilaiyaraja, P; Mocherla, Pavana S V; Srinivasan, T K; Sudakar, C

    2016-05-18

    Cu-deficient graded-zinc Cu-In-Zn-S (CIZS) quantum dots (QDs) were synthesized by a two-step solvothermal method. These CIZS QDs exhibited size and composition tunable photoluminescence characteristics with emission color tunable from greenish-yellow to orange to red with a relatively high quantum yield between 45 and 60%. Novel white-light-emitting (WLE) hybrid composite is fabricated by integrating the blue-emissive 1,4-bis-2-(5-phenyl oxazolyl)-benzene (POPOP) organic fluorophore and quaternary CIZS inorganic QDs. Integrating CIZS QDs with POPOP fluorophore resulted in series of tunable emission colors with CIE coordinates lying in a straight line between the coordinates of the end member. WLE was shown for hybrid mixture comprising 0.5 nM of POPOP and 3 mg/mL of CIZS QDs with color coordinates (0.3312, 0.3324). Thin films of this hybrid mixture in PMMA matrix coated on UV-LED or on glass substrates with UV backlit light also showed broadband WLE with ideal CIE color coordinates of (0.34, 0.33), high color-rendering index value of 92, and correlated color temperature value of 5143 K. The hybrid composite exhibit Forster resonance energy transfer cascading from POPOP to CIZS which results in emission covering the entire visible spectral range. POPOP and CIZS QDs hybrid composite is a versatile material for WLED applications.

  16. New Inorganic-organic Hybrid Compound Containing One Dimensional Keggin Polyoxometalate[SiW11O39Co]6- Chains:Preparation,Characterization and Application in Chemically Bulk-modified Electrode

    Institute of Scientific and Technical Information of China (English)

    WANG Xiu-li; LIN Hong-yan; LIU Guo-cheng; CHEN Bao-kuan; BI Yan-feng

    2008-01-01

    A new inorganic-organic hybrid compound based on polyoxometalate and organic ligand formulated as (H2bpp)3[SiW11O39Co]~2H2O(1)[bpp=1,3-bis(4-pyridyl)propane]was hydrothermally synthesized and structurally characterized by elemental analysis,single-crystal X-ray diffraction,IR,TG,and cyclic voltammetry.Single-crystal X-ray diffraction analysis reveals that compound 1 consists of interesting cobalt-monosubstituted POMs one dimensional chain together with protonated bpp ligands.Additionally,the polyoxoanions combined with the discrete organic substrates by hydrogen bond interactions to afford a supramolecular 3D network structure.The hybrid compound 1 was used as a bulk modifier to fabricate a three-dimensional chemically modified carbon paste electrode(1-CPE)by direct mixing.The electrochemical behavior and electrocatalysis of 1-CPE were studied in detail.The results indicate that 1-CPE has good electrocatalytic activities toward the reduction of nitrite or bromate in 1mol/L H2SO4 aqueous solution.1-CPE shows remarkable stability that can be ascribed to the insolubility of compound 1 and the supramolecular interactions existed between 1D POM anion chains and organic ligand bpp,which is very important for practical applications in electrode modification.

  17. Inorganic-organic hybrids based on poly (ε-Caprolactone and silica oxide and characterization by relaxometry applying low-field NMR

    Directory of Open Access Journals (Sweden)

    Mariana Sato de Souza de Bustamante Monteiro

    2012-12-01

    Full Text Available Poly (ε-caprolactone (PCL based hybrids containing different amounts of modified (Aerosil® R972 and unmodified (Aerosil® A200 silica oxide were prepared employing the solution method, using chloroform. The relationships of the amount of nanofillers, organic coating, molecular structure and intermolecular interaction of the hybrid materials were investigated mainly using low-field nuclear magnetic resonance (NMR. The NMR analyses involved the hydrogen spin-lattice relaxation time (T1H and hydrogen spin-lattice relaxation time in the rotating frame (T1ρH. The spin-lattice relaxation time measurements revealed that the PCL/silica oxide hybrids were heterogeneous, meaning their components were well dispersed. X-ray diffraction (XRD, differential scanning calorimetry (DSC and thermogravimetric analysis (TGA were also employed. The DSC data showed that all the materials had lower crystallization temperature (Tc and melting temperature (Tm, so the crystallinity degree of the PCL decreased in the hybrids. The TGA analysis demonstrated that the addition of modified and unmodified silica oxide does not cause considerable changes to PCL's thermal stability, since no significant variations in the maximum temperature (Tmax were observed in relation to the neat polymer.

  18. Tuning of Ag-SPR band position in refractive index controlled inorganic-organic hybrid SiO2-PEO-TiO2 films

    Indian Academy of Sciences (India)

    Samar Kumar Medda; Moumita Mitra; Goutam De

    2008-11-01

    Inorganic (silica-titania)-organic (polyethylene oxide) hybrid films with variable refractive index (RI) values were synthesized and Ag nanoparticles were generated in situ inside such hybrid films to develop coloured coatings specially on plastic substrates. The hybrid films and the corresponding Agincorporated films were prepared from sols derived from a mixture of silicon tetraethoxide (STE), 3-(glycidoxypropyl)trimethoxysilane (GPTMS), titanium tetraisopropoxide (TTIP) and silver nitrate following a sol-gel dip-coating method and cured at low temperature (90°C), followed by UV treatment with an energy equivalent to 5.3 ± 0.1 J cm-2. The equivalent SiO2: SiO1.5(CH2)3OCH2CH(CH2)O : TiO2: Ag molar ratios (nominal) of the final cured films are varied in the ranges (67.9-0) : 29.1 : (0-67.9) : 3. The refractive index values of the cured hybrid films were found to be increased systematically from 1.475 to 1.710 with increasing Ti-component. The Ag-SPR peak, in case of silica-polyethylene oxide host (RI = 1.475), observed at 419 nm, gradually red-shifted to 497 nm upon increasing the Ticomponent (equivalent TiO2 content 67.9 mol%; RI = 1.710) of the film. As a consequence, a systematic change of Ag-SPR position yielded yellow, yellowish-orange, orange, brownish-orange and orangish-brown coloured coatings.

  19. Hybrid 2D-nanomaterials-based electrochemical immunosensing strategies for clinical biomarkers determination.

    Science.gov (United States)

    Campuzano, S; Pedrero, M; Nikoleli, G-P; Pingarrón, J M; Nikolelis, D P

    2017-03-15

    Owing to the outstanding conductivity and biocompatibility as well as numerous other fascinating properties of two-dimensional (2D)-nanomaterials, 2D-based nanohybrids have shown unparalleled superiorities in the field of electrochemical biosensors. This review highlights latest advances in electrochemical immunosensors for clinical biomarkers based on different hybrid 2D-nanomaterials. Particular attention will be given to hybrid nanostructures involving graphene and other graphene-like 2D-layered nanomaterials (GLNs). Several recent strategies for using such 2D-nanomaterial heterostructures in the development of modern immunosensors, both for tagging or modifying electrode transducers, are summarized and discussed. These hybrid nanocomposites, quite superior than their rival materials, will undoubtedly have an important impact within the near future and not only in clinical areas. Current challenges and future perspectives in this rapidly growing field are also outlined.

  20. First-principles Study on the Magnetic, Half-metal and Thermoelectric Transport Properties of Inorganic-Organic Hybrid Compounds [C4N2H12] [Fe4Ⅱ(HPO3)2(C2O4)3

    Institute of Scientific and Technical Information of China (English)

    LI Yan-Li; ZHANG Dian-Na

    2013-01-01

    The electronic structure,magnetic and half-metal properties of inorganic-organic hybrid compound [C4N2H12] [F4Ⅱ(HPO3)2(C2O4)3] are investigated by using the full-potential linearized augmented plane wave (FPLAPW)method within density-functional theory (DFT) calculations.The density of states (DOS),the total energy of the cell and the spontaneous magnetic moment of [C4N2H12] [Fe4Ⅱ(HPO3)2(C2O4)3] are calculated.The calculation results reveal that the low-temperature phase of [C4N2H12][Fe4Ⅱ (HPO3)2 (C2O4)3] exhibits a stable ferromagnetic (FM) ground state,and we find that this organic compound is a half-metal in FM state.In addition,we have calculated antiferromagnetically coupled interactions,revealing the existence of antiferromagnetic (AFM),which is in agreement with the experiment.We have also found that [C4N2H12][Fe4Ⅱ (HPO3)2(C2O4)3] is a semiconductor in the AFM state with a band gap of about 0.40 eV.Subsequently,the transport properties for potential thermoelectric applications have been studied in detail based on the Boltzmann transport theory.

  1. Ion-exchange synthesis and improved photovoltaic performance of CdS/Ag2S heterostructures for inorganic-organic hybrid solar cells

    Science.gov (United States)

    Xu, Xiaoyun; Wang, Xiong; Zhang, Yange; Li, Pinjiang

    2016-11-01

    A facile ultrasound-assisted ion exchange route was developed for the synthesis of CdS/Ag2S heterojunctions by ion exchange between the nanostructured CdS film and [Ag(NH3)2]+ under ultrasonication. The CdS/Ag2S heterojunction film was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), UV-vis DRS spectroscopy, photoelectrochemical measurements, and the transient photovoltage (TPV) technique. CdSsbnd Ag2S heterojunctions exhibit a dense morphology, enhanced visible light absorption and stronger photocurrent response than the pure CdS films. Poly(3-hexylthiophene) (P3HT) was then spin coated into the CdS/Ag2S framework. Hybrid solar cells constructed with FTO/CdS/Ag2S/P3HT/Au display relatively higher power conversion efficiency than FTO/CdS/P3HT/Au.

  2. Nanostructured films of inorganic-organic hybrid materials for application in photovoltaics; Nanostrukturierte Filme aus anorganisch-organischen Hybridmaterialien fuer die Photovoltaik

    Energy Technology Data Exchange (ETDEWEB)

    Perlich, Jan

    2009-06-25

    Nanostructured thin films of crystalline TiO{sub 2} for applications in photovoltaics were studied. The fabrication of the thin films is based on a hybrid approach. The anorganic metal oxide prepared via a sol-gel synthesis is structurated by the template properties of the applied organic block-copolymer. Via the film epitaxy by means of centrifugal coating first hybrid films (polymer-nanocomposite films) were fabricated, which were changed by calcination into crystalline TiO{sub 2} films with taylored morphology. The successful development of novel preparation approaches to the adaption to consisting conditions in the application field of photovoltaics contains a route to the fine-tuning of the morphology as well as the fabrication of hierarchical morphologies in different configurations. The structural study of the single nanostructurated TiO{sub 2} films up to the functional multilayer arrangement as photovoltaic demonstration cell was performed with conventionally imaging methods, as for instance scanning force microscopy and electron microscopy as well as the special small-angle X-ray scattering method under rigid incident angle (GISAXS). [German] Es wurden nanostrukturierte duenne Filme aus kristallinem TiO{sub 2} fuer Anwendungen in der Photovoltaik untersucht. Die Herstellung der duennen Filme basiert auf einem Hybridansatz. Das ueber eine Sol-Gel-Synthese bereitgestellte anorganische Metalloxid wird durch die Template-Eigenschaften des eingesetzten organischen Block-Copolymers strukturiert. Ueber die Filmaufbringung mittels Schleuderbeschichtung wurden zunaechst Hybridfilme (Polymer-Nanokompositfilme) hergestellt, die durch Kalzinierung in kristalline TiO{sub 2}-Filme mit massgeschneiderter Morphologie umgewandelt werden. Die erfolgreiche Entwicklung von neuartigen Praeparationsansaetzen zur Adaption an bestehende Gegebenheiten im Anwendungsgebiet der Photovoltaik beinhaltet eine Route zur Feineinstellung der Morphologie sowie die Herstellung von

  3. Crystallographic Characterization of the Novel Inorganic-organic Hybrid Coordinated Polymer:[(C22H50N2)(Ag2I4)]n

    Institute of Scientific and Technical Information of China (English)

    李浩宏; 陈之荣; 黄长沧; 肖光参; 任永刚

    2004-01-01

    A novel coordinated polymer [(C22H50N2)(Ag2I4)]n([C22H50N2]2+ = N,N′-1,2- ethylence-bis(N,N′-dimethyl octane ammonium) (EDO)) was synthesized by the reaction of AgI and EDO at room temperature with pH = 6.8, and structurally characterized by means of X-ray single- crystal diffraction. It crystallizes in triclinic, space group P1 with a = 9.6080(1), b = 12.7643(2), c = 7.2157(8)A,α = 100.835(8), β = 91.030(3), γ = 91.297(9)°, (C21.50H48.50Ag2I4N2), Mr = 1058.46, V = 868.71(19)A3, Z = 1, Dc = 2.023g/cm3, F(000) = 497.5, μ(MoKα) = 4.692 mm-1, the final R = 0.0623 and wR = 0.1949 for 2641 observed reflections with I > 2((I). The title compound consists of cations ([C22H50N2]2+) and anion chain (Ag2I42-)∞ which are combined by static attracting forces in the crystal to form the so-called organic-inorganic hybrid material.

  4. Syntheses, structures and photocatalytic properties of five new praseodymium-antimony oxochlorides: from discrete clusters to 3D inorganic-organic hybrid racemic compounds.

    Science.gov (United States)

    Zou, Guo-Dong; Wang, Ze-Ping; Song, Ying; Hu, Bing; Huang, Xiao-Ying

    2014-07-14

    Five novel praseodymium-antimony oxochloride (Pr-Sb-O-Cl) cluster-based compounds, namely (2-MepyH)2[Fe(1,10-phen)3]2[Pr4Sb12O18Cl14.6(OH)2.4(Hsal)]·H2O (1), (2-MepyH)2[Fe(1,10-phen)3]4{[Pr4Sb12O18Cl13.5(OH)0.5](bcpb)2[Pr4Sb12O18Cl13.5(OH)0.5]}·42H2O (2), (3-MepyH)2[Fe(1,10-phen)3]{[Pr4Sb12O18Cl13(H2O)2](bcpb)}·2(3-Mepy)·3H2O (3), [Fe(1,10-phen)3]2{[Pr4Sb12O18Cl10(H2O)2](bcpb)2}·3(3-Mepy)·13H2O (4), and (2-MepyH)6[Fe(1,10-phen)3]10{[Pr4Sb12O18Cl13(OH)2]2[Pr4Sb12O18Cl9][Pr4Sb12O18Cl9(OH)2]2(Hpdc)10(pdc)2}·110H2O (5) (2-Mepy = 2-methylpyridine, 3-Mepy = 3-methylpyridine, 1,10-phen = 1,10-phenanthroline, H2sal = salicylic acid, H3bcpb = 3,5-bis(4-carboxyphenoxy)benzoic acid, H3pdc = 3,5-pyrazoledicarboxylic acid) have been solvothermally synthesized and structurally characterized. Compound 1 is the first zero-dimensional (0D) Pr-Sb-O-Cl cluster decorated by an organic ligand. Compounds 2-4 are constructed from the same H3bcpb ligands but adopt different structures: 2 represents a rare example of a one-dimensional (1D) nanotubular structure based on high-nuclearity clusters; 3 exhibits a two-dimensional (2D) mono-layered structure, in which left-handed and right-handed helical chains are alternately arranged, while 4 features a double-layered structure with an unprecedented (3,3,6)-connected 3-nodal topological net. Compound 5 is a unique three-dimensional (3D) 2-fold interpenetrating racemic compound, simultaneously containing three kinds of Pr-Sb-O-Cl-pdc clusters. UV-light photocatalytic H2 evolution activity was observed for compound 3 with Pt as a co-catalyst and MeOH as a sacrificial electron donor. In addition, the magnetic properties of compounds 1 and 5 are also studied.

  5. Electronegativity explanation on the efficiency-enhancing mechanism of the hybrid inorganic-organic perovskite ABX3 from first-principles study

    Science.gov (United States)

    Qing-Yuan, Chen; Yang, Huang; Peng-Ru, Huang; Tai, Ma; Chao, Cao; Yao, He

    2016-02-01

    Organic-inorganic hybrid perovskites play an important role in improving the efficiency of solid-state dye-sensitized solar cells. In this paper, we systematically explore the efficiency-enhancing mechanism of ABX3 (A = CH3NH3; B = Sn, Pb; X = Cl, Br, I) and provide the best absorber among ABX3 when the organic framework A is CH3NH3 by first-principles calculations. The results reveal that the valence band maximum (VBM) of the ABX3 is mainly composed of anion X p states and that conduction band minimum (CBM) of the ABX3 is primarily composed of cation B p states. The bandgap of the ABX3 decreases and the absorptive capacities of different wavelengths of light expand when reducing the size of the organic framework A, changing the B atom from Pb to Sn, and changing the X atom from Cl to Br to I. Finally, based on our calculations, it is discovered that CH3NH3SnI3 has the best optical properties and its light-adsorption range is the widest among all the ABX3 compounds when A is CH3NH3. All these results indicate that the electronegativity difference between X and B plays a fundamental role in changing the energy gap and optical properties among ABX3 compounds when A remains the same and that CH3NH3SnI3 is a promising perovskite absorber in the high efficiency solar batteries among all the CH3NH3BX3 compounds. Project supported by the National Natural Science Foundation of China (Grant Nos. 61366007, 11164032, and 61066005), the Program for New Century Excellent Talents in University of Ministry of Education of China (Grant No. NCET-12-1080), the Basic Applied Research Foundation of Yunnan Province, China (Grant Nos. 2011CI003 and 2013FB007), and the Excellent Young Talents in Yunnan University, China.

  6. 2D Organic-Inorganic Hybrid Thin Films for Flexible UV-Visible Photodetectors

    KAUST Repository

    Velusamy, Dhinesh Babu

    2017-02-13

    Flexible 2D inorganic MoS and organic g-CN hybrid thin film photodetectors with tunable composition and photodetection properties are developed using simple solution processing. The hybrid films fabricated on paper substrate show broadband photodetection suitable for both UV and visible light with good responsivity, detectivity, and reliable and rapid photoswitching characteristics comparable to monolayer devices. This excellent performance is retained even after the films are severely deformed at a bending radius of ≈2 mm for hundreds of cycles. The detailed charge transfer and separation processes at the interface between the 2D materials in the hybrid films are confirmed by femtosecond transient absorption spectroscopy with broadband capability.

  7. Vertical hybrid inorganic-organic nanoelectronic devices

    NARCIS (Netherlands)

    Wilbers, Janine Gabriele Elisabeth

    2016-01-01

    The implementation of organic building blocks into nanoelectronics devices is finding increased interest due to the huge potential for low-cost, large-area, flexible electronics. However, contacting molecules for investigating their properties is not straightforward. In this thesis, several device s

  8. Hybrid inorganic-organic materials: Novel poly(propylene oxide)-based ceramers, abrasion-resistant sol-gel coatings for metals, and epoxy-clay nanocomposites, with an additional chapter on: Metallocene-catalyzed linear polyethylene

    Science.gov (United States)

    Jordens, Kurt

    1999-12-01

    The sol-gel process has been employed to generate hybrid inorganic-organic network materials. Unique ceramers were prepared based on an alkoxysilane functionalized soft organic oligomer, poly(propylene oxide (PPO), and tetramethoxysilane (TMOS). Despite the formation of covalent bonds between the inorganic and organic constituents, the resulting network materials were phase separated, composed of a silicate rich phase embedded in a matrix of the organic oligomer chains. The behavior of such materials was similar to elastomers containing a reinforcing filler. The study focused on the influence of initial oligomer molecular weight, functionality, and tetramethoxysilane, water, and acid catalyst content on the final structure, mechanical and thermal properties. The sol-gel approach has also been exploited to generate thin, transparent, abrasion resistant coatings for metal substrates. These systems were based on alkoxysilane functionalized diethylenetriamine (DETA) with TMOS, which generated hybrid networks with very high crosslink densities. These materials were applied with great success as abrasion resistant coatings to aluminum, copper, brass, and stainless steel. In another study, intercalated polymer-clay nanocomposites were prepared based on various epoxy networks montmorillonite clay. This work explored the influence of incorporated clay on the adhesive properties of the epoxies. The lap shear strength decreased with increasing day content This was due to a reduction in the toughness of the epoxy. Also, the delaminated (or exfoliated) nanocomposite structure could not be generated. Instead, all nanocomposite systems possessed an intercalated structure. The final project involved the characterization of a series of metallocene catalyzed linear polyethylenes, produced at Phillips Petroleum. Polyolefins synthesized with such new catalyst systems are becoming widely available. The influence of molecular weight and thermal treatment on the mechanical, rheological

  9. Synthesis and structure of dawson polyoxometalate-based, multifunctional, inorganic-organic hybrid compounds: organogermyl complexes with one terminal functional group and organosilyl analogues with two terminal functional groups.

    Science.gov (United States)

    Nomiya, Kenji; Togashi, Yoshihiro; Kasahara, Yuhki; Aoki, Shotaro; Seki, Hideaki; Noguchi, Marie; Yoshida, Shoko

    2011-10-03

    Four novel multifunctional polyoxometalate (POM)-based inorganic-organic hybrid compounds, [α(2)-P(2)W(17)O(61){(RGe)}](7-) (Ge-1, R(1) = HOOC(CH(2))(2(-)) and Ge-2, R(2) = H(2)C═CHCH(2(-))) and [α(2)-P(2)W(17)O(61){(RSi)(2)O}](6-) (Si-1, R(1) and Si-2, R(2)), were prepared by incorporating organic chains having terminal functional groups (carboxylic acid and allyl groups) into monolacunary site of Dawson polyoxoanion [α(2)-P(2)W(17)O(61)](10-). In these POMs, new modification of the terminal functional groups was attained by introducing organogermyl and organosilyl groups. Dimethylammonium salts of the organogermyl complexes, (Me(2)NH(2))(7)[α(2)-P(2)W(17)O(61)(R(1)Ge)]·H(2)O MeN-Ge-1 and (Me(2)NH(2))(7)[α(2)-P(2)W(17)O(61)(R(2)Ge)]·4H(2)O MeN-Ge-2, were obtained as analytically pure crystals, in 22.8% and 55.3% yields, respectively, by stoichiometric reactions of [α(2)-P(2)W(17)O(61)](10-) with separately prepared Cl(3)GeC(2)H(4)COOH in water, and H(2)C═CHCH(2)GeCl(3) in a solvent mixture of water/acetonitrile. Synthesis and X-ray structure analysis of the Dawson POM-based organogermyl complexes were first successful. Dimethylammonium salts of the corresponding organosilyl complexes, (Me(2)NH(2))(6)[α(2)-P(2)W(17)O(61){(R(1)Si)(2)O}]·4H(2)O MeN-Si-1 and (Me(2)NH(2))(6)[α(2)-P(2)W(17)O(61){(R(2)Si)(2)O}]·6H(2)O MeN-Si-2, were also obtained as analytically pure crystalline crystals, in 17.1% and 63.5% yields, respectively, by stoichiometric reactions of [α(2)-P(2)W(17)O(61)](10-) with NaOOC(CH(2))(2)Si(OH)(2)(ONa) and H(2)C═CHCH(2)Si(OEt)(3). These complexes were characterized by elemental analysis, thermogravimetric and differential thermal analyses (TG/DTA), FTIR, solid-state ((31)P) and solution ((31)P, (1)H, and (13)C) NMR, and X-ray crystallography.

  10. From 1D chain to 3D network: a new family of inorganic-organic hybrid semiconductors MO3(L)(x) (M = Mo, W; L = organic linker) built on perovskite-like structure modules.

    Science.gov (United States)

    Zhang, Xiao; Hejazi, Mehdi; Thiagarajan, Suraj J; Woerner, William R; Banerjee, Debasis; Emge, Thomas J; Xu, Wenqian; Teat, Simon J; Gong, Qihan; Safari, Ahmad; Yang, Ronggui; Parise, John B; Li, Jing

    2013-11-20

    MO3 (M = Mo, W) or VI-VI binary compounds are important semiconducting oxides that show great promise for a variety of applications. In an effort to tune and enhance their properties in a systematic manner we have applied a designing strategy to deliberately introduce organic linker molecules in these perovskite-like crystal lattices. This approach has led to a wealth of new hybrid structures built on one-dimensional (1D) and two-dimensional (2D) VI-VI modules. The hybrid semiconductors exhibit a number of greatly improved properties and new functionality, including broad band gap tunability, negative thermal expansion, largely reduced thermal conductivity, and significantly enhanced dielectric constant compared to their MO3 parent phases.

  11. 2D Hybrid Nanostructure of Reduced Graphene Oxide-CdS Nanosheet for Enhanced Photocatalysis.

    Science.gov (United States)

    Bera, Rajesh; Kundu, Simanta; Patra, Amitava

    2015-06-24

    Graphene-based hybrid nanostructures have recently emerged as a new class of functional materials for light-energy conversion and storage. Here, we have synthesized reduced graphene oxide (RGO)-semiconductor composites to improve the efficiency of photocatalysis. Zero-dimensional CdS nanoparticles (0D), one-dimensional CdS nanorods (1D), and two-dimensional CdS nanosheets (2D) are grafted on the RGO sheet (2D) by a surface modification method using 4-aminothiophenol (4-ATP). Structural analysis confirms the attachment of CdS nanocrystals with RGO, and the strong electronic interaction is found in the case of a CdS nanosheet and RGO, which has an influence on photocatalytic properties. The degradation of dye under visible light varies with changing the dimension of nanocrystals, and the catalytic activity of the CdS NS/RGO composite is ∼4 times higher than that of CdS nanoparticle/RGO and 3.4 times higher than that of CdS nanorod/RGO composite samples. The catalytic activity of the CdS nanosheet/RGO composite is also found to be ∼2.5 times than that of pure CdS nanosheet samples. The unique 2D-2D nanoarchitecture would be effective to harvest photons from solar light and transport electrons to reaction sites with respect to other 0D-2D and 1D-2D hybrid systems. This observation can be extended to other graphene-based inorganic semiconductor composites, which can provide a valuable opportunity to explore novel hybrid materials with superior visible-light-induced catalytic activity.

  12. High-response hybrid quantum dots- 2D conductor phototransistors: recent progress and perspectives

    Science.gov (United States)

    Sablon, Kimberly A.; Sergeev, Andrei; Najmaei, Sina; Dubey, Madan

    2017-03-01

    Having been inspired by the tremendous progress in material nanoscience and device nanoengineering, hybrid phototransistors combine solution processed colloidal semiconductor quantum dots (QDs) with graphene or two-dimensional (2D) semiconductor materials. Novel detectors demonstrate ultrahigh photoconductive gain, high and selective photoresponse, low noise, and very high responsivity in visible- and near-infrared ranges. The outstanding performance of phototransistors is primarily due to the strong, selective, and size tunable absorption of QDs and fast charge transfer in 2D high mobility conductors. However, the relatively small mobility of QD nanomaterials was a technological barrier, which limited the operating rate of devices. Very recent innovations in detector design and significant progress in QD ligand engineering provide effective tools for further qualitative improvements. This article reviews the recent progress in material science, nanophysics, and device engineering related to hybrid phototransistors. Detectors based on various QD nanomaterials and several 2D conductors are compared, and advantages and disadvantages of various nanomaterials for applications in hybrid phototransistors are identified. We also benchmark the experimental characteristics with model results that establish interrelations and tradeoffs between detector characteristics, such as responsivity, dark and noise currents, the photocarrier lifetime, response, and noise bandwidths. We have shown that the most recent phototransistors demonstrate performance limited by the fundamental generation recombination noise in high gain devices. Interrelation between the dynamic range of the detector and the detector sensitivity is discussed. The review is concluded with a brief discussion of the remaining challenges and possible significant improvements in the performance of hybrid phototransistors.

  13. Polyoxometalate (POM)-based, multi-functional, inorganic-organic, hybrid compounds: syntheses and molecular structures of silanol- and/or siloxane bond-containing species grafted on mono- and tri-lacunary Keggin POMs.

    Science.gov (United States)

    Aoki, Shotaro; Kurashina, Takayuki; Kasahara, Yuhki; Nishijima, Tadashi; Nomiya, Kenji

    2011-02-14

    Using 3-mercaptopropyltrimethoxysilane (HS(CH₂)₃Si(OMe)₃) as a silane-coupling agent (SCA), mono- and tri-lacunary Keggin polyoxometalate (POM)-based, multi-functional, inorganic-organic, hybrid compounds, (Et₄N)₃[α-PW₁₁O₃₉{(HS(CH₂)₃Si)₂O}] EtN-1 (the 1 : 2 complex of a POM unit and organosilyl groups), (Bu₄N)₃[A-PW₉O₃₄(HS(CH₂)₃SiOH)₃] BuN-2 (the 1 : 3 complex) and (Bu₄N)₃[A-α-PW₉O₃₄(HS(CH₂)₃SiO)₃(Si(CH₂)₃SH)] BuN-3 (the 1 : 4 complex) were synthesized and unequivocally characterized by elemental analysis, thermogravimetric and differential thermal analyses (TG/DTA), FTIR, solid-state (²⁹Si and ³¹P) CPMAS NMR, solution (²⁹Si, ³¹P, ¹H and ¹³C) NMR, and X-ray crystallography. [Note: The moieties of their polyoxoanions are abbreviated simply as 1-3, respectively.] The X-ray molecular structures of EtN-1 and BuN-3 were determined. In EtN-1, two organic groups connected through a siloxane bond (-Si-O-Si- bond) were grafted on a mono-lacunary site of a Keggin POM, whereas in BuN-3 four organic groups connected through siloxane bonds were grafted on a tri-lacunary site of a Keggin POM. In BuN-2, three organic groups were grafted in the form of silanol (-SiOH) on a tri-lacunary site, i.e., in BuN-2 there was no siloxane bond. BuN-3 was synthesized as BuN-3a and BuN-3b by two methods, respectively; (1) BuN-3a was obtained by a 1 : 1 molar-ratio reaction of BuN-2 and an SCA in CH₃CN, and (2) BuN-3b was prepared by a direct 1 : 4 molar-ratio reaction of a tri-lacunary Keggin POM and SCA in water-CH₃CN. X-Ray crystallography revealed that BuN-3a is the same as BuN-3b. It is probable that BuN-2 is an intermediate in the formation of BuN-3. Terminal -SH groups in 1-3, as well as -OH groups in 2, can be utilized for immobilization of POMs and, also, as building blocks for the formation of novel hybrid compounds.

  14. Excitonic and Polaronic Properties of 2D Hybrid Organic–Inorganic Perovskites

    KAUST Repository

    Yin, Jun

    2017-01-20

    We theoretically characterize the unusual white-light emission properties of two-dimensional (2D) hybrid organic inorganic perovskites with an APbX(4) structure (where A is a bidentate organic cation and X = Cl, Br). In addition to band structure calculations including corrections due to spin orbit couplings and electron hole interactions, a computationally intensive molecular cluster approach is exploited to describe the excitonic and polaronic properties of these 2D perovskites at the atomistic level. Upon adding or removing an electron from the neutral systems, we find that strongly localized small polarons form in the 2D clusters. The polaron charge density is distributed over just lattice sites, which is consistent with the calculated large polaron binding energies, on the order of similar to 0.4-1.2 eV.

  15. 2D-3D hybrid stabilized finite element method for tsunami runup simulations

    Science.gov (United States)

    Takase, S.; Moriguchi, S.; Terada, K.; Kato, J.; Kyoya, T.; Kashiyama, K.; Kotani, T.

    2016-09-01

    This paper presents a two-dimensional (2D)-three-dimensional (3D) hybrid stabilized finite element method that enables us to predict a propagation process of tsunami generated in a hypocentral region, which ranges from offshore propagation to runup to urban areas, with high accuracy and relatively low computational costs. To be more specific, the 2D shallow water equation is employed to simulate the propagation of offshore waves, while the 3D Navier-Stokes equation is employed for the runup in urban areas. The stabilized finite element method is utilized for numerical simulations for both of the 2D and 3D domains that are independently discretized with unstructured meshes. The multi-point constraint and transmission methods are applied to satisfy the continuity of flow velocities and pressures at the interface between the resulting 2D and 3D meshes, since neither their spatial dimensions nor node arrangements are consistent. Numerical examples are presented to demonstrate the performance of the proposed hybrid method to simulate tsunami behavior, including offshore propagation and runup to urban areas, with substantially lower computation costs in comparison with full 3D computations.

  16. VLSI Implementation of Hybrid Wave-Pipelined 2D DWT Using Lifting Scheme

    Directory of Open Access Journals (Sweden)

    G. Seetharaman

    2008-01-01

    Full Text Available A novel approach is proposed in this paper for the implementation of 2D DWT using hybrid wave-pipelining (WP. A digital circuit may be operated at a higher frequency by using either pipelining or WP. Pipelining requires additional registers and it results in more area, power dissipation and clock routing complexity. Wave-pipelining does not have any of these disadvantages but requires complex trial and error procedure for tuning the clock period and clock skew between input and output registers. In this paper, a hybrid scheme is proposed to get the benefits of both pipelining and WP techniques. In this paper, two automation schemes are proposed for the implementation of 2D DWT using hybrid WP on both Xilinx, San Jose, CA, USA and Altera FPGAs. In the first scheme, Built-in self-test (BIST approach is used to choose the clock skew and clock period for I/O registers between the wave-pipelined blocks. In the second approach, an on-chip soft-core processor is used to choose the clock skew and clock period. The results for the hybrid WP are compared with nonpipelined and pipelined approaches. From the implementation results, the hybrid WP scheme requires the same area but faster than the nonpipelined scheme by a factor of 1.25–1.39. The pipelined scheme is faster than the hybrid scheme by a factor of 1.15–1.39 at the cost of an increase in the number of registers by a factor of 1.78–2.73, increase in the number of LEs by a factor of 1.11–1.32 and it increases the clock routing complexity.

  17. Synthesis, characterization, single crystal X-ray structure, EPR and theoretical studies of a new hybrid inorganic-organic compound [Cu(Hdien)2(H2O)2](pnb)4·4H2O and its structural comparison with related [Cu(en)2(H2O)2](pnb)2

    Science.gov (United States)

    Kumar, Santosh; Sharma, Raj Pal; Venugopalan, Paloth; Witwicki, Maciej; Ferretti, Valeria

    2016-11-01

    A new hybrid inorganic-organic compound [Cu(Hdien)2(H2O)2](pnb)4·4H2O (1) (where pnb = p-nitrobenzoate), in which the tridentate ligand diethylenetriamine (dien) shows an unusual coordination behavior acting as a bidentate ligand when present in its monoprotonated form (Hdien+) has been synthesized by the reaction of copper(II) p-nitrobenzoate and slight excess of dien in methanol-water mixture (4:1v/v). Re-crystallization of the violet precipitated product from hot water gave single crystals suitable for X-ray diffraction studies. The newly synthesized compound 1 has been characterized by spectroscopic techniques (UV-Vis, FT-IR, EPR), and theoretical methods (DFT and MRCI/SORCI). Single crystal X-ray structure determination revealed the existence of the cationic species [Cu(Hdien)2(H2O)2]4+, four p-nitrobenzoate as counter anions and four water molecules are present as solvent of crystallization. Packing analyses of title compound as well as of the structurally similar [Cu(en)2(H2O)2](pnb)2,2 has shown similarities in the crystalline architecture that both hybrid inorganic-organic compounds is stabilized by various non-covalent interactions such as N-H⋯O, C-H⋯O, O-H⋯O etc.

  18. Surface-enhanced Raman scattering for 2-D WSesub>2sub> hybridized with functionalized gold nanoparticles.

    Science.gov (United States)

    Kim, Jun Young; Kim, Jeongyong; Joo, Jinsoo

    2016-11-28

    Two-dimensional (2-D) transition metal dichalcogenides, such as MoSsub>2sub>, WSesub>2sub>, and WSsub>2sub>, are promising materials for application in field effect transistors, optoelectronics, and sensing devices. In this study, 2-D WSesub>2sub> samples with various numbers of layers were hybridized with functionalized gold nanoparticles (Au-NPs) to achieve surface-enhanced Raman scattering (SERS). The nanoscale Raman and photoluminescence spectra of the WSesub>2sub> layers and WSesub>2sub>/Au-NP hybrids were measured using a high-resolution laser confocal microscope. The WSesub>2sub> exhibited distinct optical characteristics depending on the number of WSesub>2sub> layers. The intensities of the Raman characteristic modes of the WSesub>2sub> layers were significantly enhanced after hybridization with functionalized Au-NPs, indicating the SERS effect. The SERS effect weakened with increasing the number of WSesub>2sub> layers. The SERS effect was more pronounced for mono- and bi-layer WSesub>2sub> systems compared with the multi-layer WSesub>2sub> systems.

  19. 2D/2D nano-hybrids of γ-MnO₂ on reduced graphene oxide for catalytic ozonation and coupling peroxymonosulfate activation.

    Science.gov (United States)

    Wang, Yuxian; Xie, Yongbing; Sun, Hongqi; Xiao, Jiadong; Cao, Hongbin; Wang, Shaobin

    2016-01-15

    Two-dimensional reduced graphene oxide (2D rGO) was employed as both a shape-directing medium and support to fabricate 2D γ-MnO2/2D rGO nano-hybrids (MnO2/rGO) via a facile hydrothermal route. For the first time, the 2D/2D hybrid materials were used for catalytic ozonation of 4-nitrophenol. The catalytic efficiency of MnO2/rGO was much higher than either MnO2 or rGO only, and rGO was suggested to play the role for promoting electron transfers. Quenching tests using tert-butanol, p-benzoquinone, and sodium azide suggested that the major radicals responsible for 4-nitrophenol degradation and mineralization are O2(-) and (1)O2, but not ·OH. Reusability tests demonstrated a high stability of the materials in catalytic ozonation with minor Mn leaching below 0.5 ppm. Degradation mechanism, reaction kinetics, reusability and a synergistic effect between catalytic ozonation and coupling peroxymonosulfate (PMS) activation were also discussed.

  20. Self-surface charge exfoliation and electrostatically coordinated 2D hetero-layered hybrids

    Science.gov (United States)

    Yang, Min-Quan; Xu, Yi-Jun; Lu, Wanheng; Zeng, Kaiyang; Zhu, Hai; Xu, Qing-Hua; Ho, Ghim Wei

    2017-02-01

    At present, the technological groundwork of atomically thin two-dimensional (2D) hetero-layered structures realized by successive thin film epitaxial growth is in principle constrained by lattice matching prerequisite as well as low yield and expensive production. Here, we artificially coordinate ultrathin 2D hetero-layered metal chalcogenides via a highly scalable self-surface charge exfoliation and electrostatic coupling approach. Specifically, bulk metal chalcogenides are spontaneously exfoliated into ultrathin layers in a surfactant/intercalator-free medium, followed by unconstrained electrostatic coupling with a dissimilar transition metal dichalcogenide, MoSe2, into scalable hetero-layered hybrids. Accordingly, surface and interfacial-dominated photocatalysis reactivity is used as an ideal testbed to verify the reliability of diverse 2D ultrathin hetero-layered materials that reveal high visible-light photoreactivity, efficient charge transfer and intimate contact interface for stable cycling and storage purposes. Such a synthetic approach renders independent thickness and composition control anticipated to advance the development of `design-and-build' 2D layered heterojunctions for large-scale exploration and applications.

  1. Self-surface charge exfoliation and electrostatically coordinated 2D hetero-layered hybrids

    Science.gov (United States)

    Yang, Min-Quan; Xu, Yi-Jun; Lu, Wanheng; Zeng, Kaiyang; Zhu, Hai; Xu, Qing-Hua; Ho, Ghim Wei

    2017-01-01

    At present, the technological groundwork of atomically thin two-dimensional (2D) hetero-layered structures realized by successive thin film epitaxial growth is in principle constrained by lattice matching prerequisite as well as low yield and expensive production. Here, we artificially coordinate ultrathin 2D hetero-layered metal chalcogenides via a highly scalable self-surface charge exfoliation and electrostatic coupling approach. Specifically, bulk metal chalcogenides are spontaneously exfoliated into ultrathin layers in a surfactant/intercalator-free medium, followed by unconstrained electrostatic coupling with a dissimilar transition metal dichalcogenide, MoSe2, into scalable hetero-layered hybrids. Accordingly, surface and interfacial-dominated photocatalysis reactivity is used as an ideal testbed to verify the reliability of diverse 2D ultrathin hetero-layered materials that reveal high visible-light photoreactivity, efficient charge transfer and intimate contact interface for stable cycling and storage purposes. Such a synthetic approach renders independent thickness and composition control anticipated to advance the development of ‘design-and-build' 2D layered heterojunctions for large-scale exploration and applications. PMID:28146147

  2. Hybrid 2D-3D modelling of GTA welding with filler wire addition

    KAUST Repository

    Traidia, Abderrazak

    2012-07-01

    A hybrid 2D-3D model for the numerical simulation of Gas Tungsten Arc welding is proposed in this paper. It offers the possibility to predict the temperature field as well as the shape of the solidified weld joint for different operating parameters, with relatively good accuracy and reasonable computational cost. Also, an original approach to simulate the effect of immersing a cold filler wire in the weld pool is presented. The simulation results reveal two important observations. First, the weld pool depth is locally decreased in the presence of filler metal, which is due to the energy absorption by the cold feeding wire from the hot molten pool. In addition, the weld shape, maximum temperature and thermal cycles in the workpiece are relatively well predicted even when a 2D model for the arc plasma region is used. © 2012 Elsevier Ltd. All rights reserved.

  3. 2D dose distribution images of a hybrid low field MRI-γ detector

    Science.gov (United States)

    Abril, A.; Agulles-Pedrós, L.

    2016-07-01

    The proposed hybrid system is a combination of a low field MRI and dosimetric gel as a γ detector. The readout system is based on the polymerization process induced by the gel radiation. A gel dose map is obtained which represents the functional part of hybrid image alongside with the anatomical MRI one. Both images should be taken while the patient with a radiopharmaceutical is located inside the MRI system with a gel detector matrix. A relevant aspect of this proposal is that the dosimetric gel has never been used to acquire medical images. The results presented show the interaction of the 99mTc source with the dosimetric gel simulated in Geant4. The purpose was to obtain the planar γ 2D-image. The different source configurations are studied to explore the ability of the gel as radiation detector through the following parameters; resolution, shape definition and radio-pharmaceutical concentration.

  4. Inorganic-Organic Molecules and Solids with Nanometer-Sized Pores

    Energy Technology Data Exchange (ETDEWEB)

    Maverick, Andrew W

    2011-12-17

    We are constructing porous inorganic-organic hybrid molecules and solids, many of which contain coordinatively unsaturated metal centers. In this work, we use multifunctional ²-diketone ligands as building blocks to prepare extended-solid and molecular porous materials that are capable of reacting with a variety of guest molecules.

  5. 2D/3D perovskite hybrids as moisture-tolerant and efficient light absorbers for solar cells.

    Science.gov (United States)

    Ma, Chaoyan; Leng, Chongqian; Ji, Yixiong; Wei, Xingzhan; Sun, Kuan; Tang, Linlong; Yang, Jun; Luo, Wei; Li, Chaolong; Deng, Yunsheng; Feng, Shuanglong; Shen, Jun; Lu, Shirong; Du, Chunlei; Shi, Haofei

    2016-11-03

    The lifetime and power conversion efficiency are the key issues for the commercialization of perovskite solar cells (PSCs). In this paper, the development of 2D/3D perovskite hybrids (CA2PbI4/MAPbIxCl3-x) was firstly demonstrated to be a reliable method to combine their advantages, and provided a new concept for achieving both stable and efficient PSCs through the hybridization of perovskites. 2D/3D perovskite hybrids afforded significantly-improved moisture stability of films and devices without encapsulation in a high humidity of 63 ± 5%, as compared with the 3D perovskite (MAPbIxCl3-x). The 2D/3D perovskite-hybrid film did not undergo any degradation after 40 days, while the 3D perovskite decomposed completely under the same conditions after 8 days. The 2D/3D perovskite-hybrid device maintained 54% of the original efficiency after 220 hours, whereas the 3D perovskite device lost all the efficiency within only 50 hours. Moreover, the 2D/3D perovskite hybrid achieved comparable device performances (PCE: 13.86%) to the 3D perovskite (PCE: 13.12%) after the optimization of device fabrication conditions.

  6. Preparation, crystal structure, and characterization of an inorganic-organic hybrid polyoxoniobate [Cu(en)2]3[Cu(en)2(H2O)]1.5[K0.5Nb24O72H14.5]2.25H2O

    Indian Academy of Sciences (India)

    Jing-Ping Wang; Hong-Yu Niu; Jing-Yang Niu

    2008-05-01

    An inorganic-organic hybrid polyoxoniobate compound [Cu(en)2]3[Cu(en)2(H2O)]1.5 [K0.5Nb24O72H14.5]2.25H2O (1) was synthesized by reaction of K7HNb6O19.13H2O, Cu(CH3COOH)2.H2O and en (ethylenediamine) in aqueous solution and characterized by IR, ESR spectroscopy and singlecrystal X-ray diffraction method. Structure analysis indicates that compound 1 consists of a new type polyoxoniobate anion [K0.5Nb24O72H14.5]9-, three [Cu(en)2]2+, one point five [Cu(en)2(H2O)]2+, and two point two five crystal water molecules. The structure contains N-H$\\cdots$O hydrogen bonds between the coordinated ethylenediamine and the polyniobate-anion. The whole molecule possesses the 3 symmetry.

  7. A new inorganic-organic hybrid material Al-SBA-15-TPI/H6P2W18O62 catalyzed one-pot, three-component synthesis of 2H-indazolo[2,1-b]phthalazine-triones.

    Science.gov (United States)

    Tayebee, R; Amini, M M; Pouyamanesh, S; Aliakbari, A

    2015-03-28

    A new inorganic-organic hybrid material Al-SBA-15-TPI/H6P2W18O62 was prepared and fully characterized by SEM, XRD, FT-IR, TGA-DTA, and UV-Vis spectroscopic techniques. Then, the prepared nanomaterial was used as a simple, cost-effective, and reusable heterogeneous catalyst for the synthesis of 2H-indazolo[2,1-b]phthalazine-1,6,11(13H)-trione derivatives by a one-pot, three-component condensation reaction of phthalhydrazide, cyclic diones, and aromatic aldehydes under solvent free conditions at 100 °C in a short time. This methodology has proven to be efficient and environmentally benign in terms of high yields and low reaction times and offers significant improvements with regard to the scope of transformation and simplicity of operation by avoiding expensive or corrosive catalysts.

  8. Large 2D-arrays of size-controllable silver nanoparticles prepared by hybrid deposition

    Science.gov (United States)

    Dieu Thuy Ung, Thi; Hoa Nguyen, Thi; Liem Nguyen, Quang

    2016-09-01

    Two main results are presented in this paper. (i) Silver nanoparticles (AgNPs) with uniform size-distribution and controllability in the range of 20-50 nm were synthesized by seeding and growing at ambient conditions. The single-crystal Ag nano-seeds were created by reduction of AgNO3 in presence of citrate surfactant at 70 °C. Then, importantly, the fresh AgCl precursor was used in the presence of polyvinylpyrrolidone to adjust the reaction rate with ascorbic acid to generate Ag for growing on the surface of single-crystal Ag nano-seeds. The AgNPs size could be well-controlled by varying the amount of Ag nano-seeds while keeping the AgCl precursor concentration to be constant. (ii) The large 2D-arrays with homogeneous and dense monolayers of AgNPs were prepared on ITO substrates by hybrid method, in which the key technological point is the surface functionalization of AgNPs using mixed alkanethiols (dodecanethiol:octadecanethiol = 6:1). We have used the fabricated 2D-arrays from the 50 nm AgNPs as a surface enhanced Raman scattering substrate to take the Raman scattering spectra of rhodamine B (RhB), glucose and viral pathogen (H5N1) at very low concentrations of 10-10 M, 10-12 M and 4 ng μl-1, respectively.

  9. Application of a hybrid 3D-2D laser scanning system to the characterization of slate slabs.

    Science.gov (United States)

    López, Marcos; Martínez, Javier; Matías, José María; Vilán, José Antonio; Taboada, Javier

    2010-01-01

    Dimensional control based on 3D laser scanning techniques is widely used in practice. We describe the application of a hybrid 3D-2D laser scanning system to the characterization of slate slabs with structural defects that are difficult for the human eye to characterize objectively. Our study is based on automating the process using a 3D laser scanner and a 2D camera. Our results demonstrate that the application of this hybrid system optimally characterizes slate slabs in terms of the defects described by the Spanish UNE-EN 12326-1 standard.

  10. Unique Room Temperature Light Emitting Diode Based on 2D Hybrid Organic-Inorganic Low Dimensional Perovskite Semiconductor

    CERN Document Server

    Vassilakopoulou, Anastasia; Koutselas, Ioannis

    2016-01-01

    Room temperature single layer light emitting diode(LED), based on a two dimensional hybrid organic-inorganic semiconductor(HOIS), is demonstrated. This simple, low cost excitonic LED operates at low voltages. Such an excitonic device is presented for the first time as functioning at room temperature. The newly introduced class of perovskite LEDs, until now based on 3D perovksite HOIS, is now broadened with the implementation of the 2D HOIS. Novel functionalities can be realized since it is now possible to access the hybrid's 2D semiconductor advantageous properties, such as the increased excitonic peak wavelength tunability, excitonic binding energy and oscillator strength.

  11. A hybrid Boundary Element Unstructured Transmission-line (BEUT) method for accurate 2D electromagnetic simulation

    Science.gov (United States)

    Simmons, Daniel; Cools, Kristof; Sewell, Phillip

    2016-11-01

    Time domain electromagnetic simulation tools have the ability to model transient, wide-band applications, and non-linear problems. The Boundary Element Method (BEM) and the Transmission Line Modeling (TLM) method are both well established numerical techniques for simulating time-varying electromagnetic fields. The former surface based method can accurately describe outwardly radiating fields from piecewise uniform objects and efficiently deals with large domains filled with homogeneous media. The latter volume based method can describe inhomogeneous and non-linear media and has been proven to be unconditionally stable. Furthermore, the Unstructured TLM (UTLM) enables modelling of geometrically complex objects by using triangular meshes which removes staircasing and unnecessary extensions of the simulation domain. The hybridization of BEM and UTLM which is described in this paper is named the Boundary Element Unstructured Transmission-line (BEUT) method. It incorporates the advantages of both methods. The theory and derivation of the 2D BEUT method is described in this paper, along with any relevant implementation details. The method is corroborated by studying its correctness and efficiency compared to the traditional UTLM method when applied to complex problems such as the transmission through a system of Luneburg lenses and the modelling of antenna radomes for use in wireless communications.

  12. Metal Decoration Effects on the Gas-Sensing Properties of 2D Hybrid-Structures on Flexible Substrates

    Directory of Open Access Journals (Sweden)

    Byungjin Cho

    2015-09-01

    Full Text Available We have investigated the effects of metal decoration on the gas-sensing properties of a device with two-dimensional (2D molybdenum disulfide (MoS2 flake channels and graphene electrodes. The 2D hybrid-structure device sensitively detected NO2 gas molecules (>1.2 ppm as well as NH3 (>10 ppm. Metal nanoparticles (NPs could tune the electronic properties of the 2D graphene/MoS2 device, increasing sensitivity to a specific gas molecule. For instance, palladium NPs accumulate hole carriers of graphene/MoS2, electronically sensitizing NH3 gas molecules. Contrarily, aluminum NPs deplete hole carriers, enhancing NO2 sensitivity. The synergistic combination of metal NPs and 2D hybrid layers could be also applied to a flexible gas sensor. There was no serious degradation in the sensing performance of metal-decorated MoS2 flexible devices before/after 5000 bending cycles. Thus, highly sensitive and endurable gas sensor could be achieved through the metal-decorated 2D hybrid-structure, offering a useful route to wearable electronic sensing platforms.

  13. Metal Decoration Effects on the Gas-Sensing Properties of 2D Hybrid-Structures on Flexible Substrates.

    Science.gov (United States)

    Cho, Byungjin; Yoon, Jongwon; Lim, Sung Kwan; Kim, Ah Ra; Choi, Sun-Young; Kim, Dong-Ho; Lee, Kyu Hwan; Lee, Byoung Hun; Ko, Heung Cho; Hahm, Myung Gwan

    2015-09-25

    We have investigated the effects of metal decoration on the gas-sensing properties of a device with two-dimensional (2D) molybdenum disulfide (MoS₂) flake channels and graphene electrodes. The 2D hybrid-structure device sensitively detected NO₂ gas molecules (>1.2 ppm) as well as NH₃ (>10 ppm). Metal nanoparticles (NPs) could tune the electronic properties of the 2D graphene/MoS₂ device, increasing sensitivity to a specific gas molecule. For instance, palladium NPs accumulate hole carriers of graphene/MoS₂, electronically sensitizing NH₃ gas molecules. Contrarily, aluminum NPs deplete hole carriers, enhancing NO₂ sensitivity. The synergistic combination of metal NPs and 2D hybrid layers could be also applied to a flexible gas sensor. There was no serious degradation in the sensing performance of metal-decorated MoS₂ flexible devices before/after 5000 bending cycles. Thus, highly sensitive and endurable gas sensor could be achieved through the metal-decorated 2D hybrid-structure, offering a useful route to wearable electronic sensing platforms.

  14. A hybrid MAS/MoM technique for 2D impedance scatterers illuminated by closely positioned sources

    DEFF Research Database (Denmark)

    Larsen, Niels Vesterdal; Breinbjerg, Olav

    2005-01-01

    A hybrid technique for 2D scattering problems with impedance structures and closely positioned illuminating sources is presented. This technique combines the method of auxiliary sources (MAS) with a localized method of moments (MoM) region near the source. Significant improvements over standard MAS...

  15. Hydrothermal synthesis and study of an inorganic-organic hybrid vanadate of a nickel(II) coordination complex with pyrazine, Ni{sub 3}(C{sub 4}H{sub 4}N{sub 2}){sub 3}(V{sub 8}O{sub 23})

    Energy Technology Data Exchange (ETDEWEB)

    Larrea, Edurne S. [Dpto. de Mineralogia y Petrologia, Facultad de Ciencia y Tecnologia, Universidad del Pais Vasco/Euskal Herriko Unibertsitatea, UPV/EHU, Apdo. 644, E-48080 Bilbao (Spain); Mesa, Jose L., E-mail: joseluis.mesa@ehu.es [Dpto. de Quimica Inorganica, Facultad de Ciencia y Tecnologia, Universidad del Pais Vasco/Euskal Herriko Unibertsitatea, UPV/EHU, Apdo. 644, E-48080 Bilbao (Spain); Arriortua, Maria I. [Dpto. de Mineralogia y Petrologia, Facultad de Ciencia y Tecnologia, Universidad del Pais Vasco/Euskal Herriko Unibertsitatea, UPV/EHU, Apdo. 644, E-48080 Bilbao (Spain)

    2011-06-15

    Highlights: {yields} A novel inorganic-organic hybrid vanadate of nickel(II) coordination complex with pyrazine has been synthesized hydrothermally. {yields} The thermal and spectroscopic behavior has been studied. {yields} The compound shows AFM interactions which has been fitted to a magnetic model of lineal chains. -- Abstract: The three-dimensional hybrid compound Ni{sub 3}(C{sub 4}H{sub 4}N{sub 2}){sub 3}(V{sub 8}O{sub 23}) has been synthesized by mild hydrothermal methods under autogenous pressure at 170 {sup o}C. The structure of the phase is stable until 380 {sup o}C. The removal of the pyrazine molecules from the structure induces its collapse. The IR spectrum shows the vibration modes of the pyrazine molecule and those of the [VO{sub 4}]{sup 3-} groups. A UV-visible spectrum shows the characteristic bands of the Ni(II) d{sup 8}-high-spin cation in a slightly distorted octahedral coordination. Magnetic measurements indicate the existence of antiferromagnetic interactions that can be fitted with a chain model to give g = 2.31, J/k = -5.3, and zJ'/k = -5.5.

  16. The (Zn(0.95)Mn(0.05)S)2·L (L = hexylamine and octylamine) inorganic/organic hybrid luminescence films by a spin-coating method.

    Science.gov (United States)

    Wei, Shuo; Peng, Jing; Wang, Meng; Fang, Xiuhua; Fan, Yunxiao; Li, Xinxin; Lu, Jun

    2012-05-14

    The (Zn(0.95)Mn(0.05)S)(2)·L (L = hexylamine and octylamine) hybrids show the optimal Mn(2+) luminescence and their thin films were fabricated on the quartz substrate layer by layer by a spin coating method, which revealed the linear relationship of the UV optical absorption and the Mn(2+) luminescence intensity with the layer numbers.

  17. An amphidynamic inorganic-organic hybrid crystal of bromoplumbate with 1,5-bis(1-methylimidazolium)pentane exhibiting multi-functionality of a dielectric anomaly and temperature-dependent dual band emissions.

    Science.gov (United States)

    Tong, Yuan-Bo; Ren, Li-Te; Duan, Hai-Bao; Liu, Jian-Lan; Ren, Xiao-Ming

    2015-10-28

    Organic-inorganic hybrid crystals, [1,5-bis(1-methylimidazolium)pentane][PbBr3]2 (1), were achieved through the mutual diffusion of a bi-imidazolium based ionic liquid and PbBr2 solution of DMF in a glass tube. The hybrid solid crystallizes in the orthorhombic space group Fdd2 at room temperature; and is composed of one-dimensional [PbBr3]∞ chains where the neighbouring PbBr6 coordination octahedra are linked together via the face-sharing mode and the inorganic chains are surrounded by organic cations. The hybrid solid exhibits a dielectric anomaly around 443 K and dielectric relaxation above 400 K, the dielectric response mechanism was investigated using variable-temperature X-ray single crystal and powder diffraction as well as DSC techniques. Fascinatingly, this hybrid solid shows dual band emissions, moreover, the fluorescence nature of the two emission bands exhibits a distinct response to temperature, leading to a temperature-dependent fluorescence color, this feature has promising application in the emission temperature-sensing field.

  18. Hybrid van der Waals p-n Heterojunctions based on SnO and 2D MoS2

    KAUST Repository

    Wang, Zhenwei

    2016-08-30

    A p-type oxide/2D hybrid van der Waals p-n heterojunction is demonstrated for the first time between SnO (tin monoxide) (the p-type oxide) and 2D MoS2 (molybdenum disulfide), showing an ideality factor of 2 and rectification ratio up to 10(4) . The reported heterojunction is gate-tunable with typical anti-ambipolar transfer characteristics. Surface potential mapping is performed and a current model for such a heterojunction is proposed.

  19. 2D-ordered dielectric sub-micron bowls on a metal surface: a useful hybrid plasmonic-photonic structure

    Science.gov (United States)

    Lan, Yue; Wang, Shiqiang; Yin, Xianpeng; Liang, Yun; Dong, Hao; Gao, Ning; Li, Jian; Wang, Hui; Li, Guangtao

    2016-07-01

    Recently, it has been demonstrated that the combination of periodic dielectric structures with metallic structures provides an efficient means to yield a synergetic optical response or functionality in the resultant hybrid plasmonic-photonic systems. In this work, a new hybrid plasmonic-photonic structure of 2D-ordered dielectric sub-micron bowls on a flat gold surface was proposed, prepared, and theoretically and experimentally characterized. This hybrid structure supports two types of modes: surface plasmon polaritons bound at the metallic surface and waveguided mode of light confined in the cavity of bowls. Optical responses of this hybrid structure as well as the spatial electric field distribution of each mode are found to be strongly dependent on the structural parameters of this system, and thus could be widely modified on demand. Importantly, compared to the widely studied hybrid systems, namely the flat metallic surface coated with a monolayer array of latex spheres, the waveguided mode with strong field enhancement appearing in the cavities of bowls is more facilely accessible and thus suitable for practical use. For demonstration, a 2D-ordered silica sub-micron bowl array deposited on a flat gold surface was fabricated and used as a regenerable platform for fluorescence enhancement by simply accommodating emitters in bowls. All the simulation and experiment results indicate that the 2D-ordered dielectric sub-micron bowls on a metal surface should be a useful hybrid plasmonic-photonic system with great potential for applications such as sensors or tunable emitting devices if appropriate periods and materials are employed.Recently, it has been demonstrated that the combination of periodic dielectric structures with metallic structures provides an efficient means to yield a synergetic optical response or functionality in the resultant hybrid plasmonic-photonic systems. In this work, a new hybrid plasmonic-photonic structure of 2D-ordered dielectric sub

  20. 2D-ordered dielectric sub-micron bowls on a metal surface: a useful hybrid plasmonic-photonic structure.

    Science.gov (United States)

    Lan, Yue; Wang, Shiqiang; Yin, Xianpeng; Liang, Yun; Dong, Hao; Gao, Ning; Li, Jian; Wang, Hui; Li, Guangtao

    2016-07-21

    Recently, it has been demonstrated that the combination of periodic dielectric structures with metallic structures provides an efficient means to yield a synergetic optical response or functionality in the resultant hybrid plasmonic-photonic systems. In this work, a new hybrid plasmonic-photonic structure of 2D-ordered dielectric sub-micron bowls on a flat gold surface was proposed, prepared, and theoretically and experimentally characterized. This hybrid structure supports two types of modes: surface plasmon polaritons bound at the metallic surface and waveguided mode of light confined in the cavity of bowls. Optical responses of this hybrid structure as well as the spatial electric field distribution of each mode are found to be strongly dependent on the structural parameters of this system, and thus could be widely modified on demand. Importantly, compared to the widely studied hybrid systems, namely the flat metallic surface coated with a monolayer array of latex spheres, the waveguided mode with strong field enhancement appearing in the cavities of bowls is more facilely accessible and thus suitable for practical use. For demonstration, a 2D-ordered silica sub-micron bowl array deposited on a flat gold surface was fabricated and used as a regenerable platform for fluorescence enhancement by simply accommodating emitters in bowls. All the simulation and experiment results indicate that the 2D-ordered dielectric sub-micron bowls on a metal surface should be a useful hybrid plasmonic-photonic system with great potential for applications such as sensors or tunable emitting devices if appropriate periods and materials are employed.

  1. Synthesis, molecular structure, and characterization of a new 3D-layered inorganic-organic hybrid material: [D/L-C{sub 6}H{sub 13}O{sub 2}N-H]{sub 3}[(PO{sub 4})W{sub 12}O{sub 36}].4.5H{sub 2}O

    Energy Technology Data Exchange (ETDEWEB)

    Alizadeh, Mohammad H., E-mail: mhalizadehg@yahoo.com [Chemistry Department, School of Sciences, Ferdowsi University of Mashhad, P.O. Box 917791436, Mashhad (Iran, Islamic Republic of); Mirzaei, Masoud; Salimi, Ali R. [Chemistry Department, School of Sciences, Ferdowsi University of Mashhad, P.O. Box 917791436, Mashhad (Iran, Islamic Republic of); Razavi, Hossein [Chemistry Department, Georgetown University, P.O. Box 200571227, Washington, DC (United States)

    2009-07-01

    A new 3D-layered inorganic-organic hybrid [D/L-C{sub 6}H{sub 13}O{sub 2}N-H]{sub 3}[(PO{sub 4})W{sub 12}O{sub 36}].4.5H{sub 2}O (1), as racemic material in the solid phase, has been synthesized and fully characterized by elemental microanalysis, single crystal X-ray diffraction, and infrared, Raman, and proton nuclear magnetic resonance spectroscopes. The most unique structural feature of 1 is its three-dimensional inorganic infinite tunnel-like framework that results in weak van der Waals interactions along the a-axis. A weak interlayer interaction between the titled layers provides a desirable condition to explore its potential as a host in a host-guest complex. The racemization has been observed in the crystal structure with the centric space group (P2{sub 1}/c). The latter consists of {alpha}-[(PO{sub 4})W{sub 12}O{sub 36}]{sup 3-}and [D/L-C{sub 6}H{sub 13}O{sub 2}N-H]{sup +} moieties with water molecules linked together by a complex network of hydrogen bond interactions.

  2. Investigation of the Order-Disorder Transition in the Hybrid Inorganic-Organic System [(CH3)2NH2]Zn(HCOO)3 by means of ^1H NMR

    Science.gov (United States)

    Besara, T.; Jain, P.; Reyes, A. P.; Kuhns, P. L.; Dalal, N. S.; Kroto, H. W.; Cheetham, A. K.

    2009-03-01

    [(CH3)2NH2]Zn(HCOO)3, a hybrid ABX3 perovskite, with A=(CH3)2NH2, B=Zn and X=HCOO, undergoes a paraelectric-antiferroelectric transition around 156 K. Synchrotron studies indicate that hydrogen bonding between the H-atoms in the NH2 group and O-atoms from the formate group is involved. The dimethylamine cation is disordered with nitrogen existing in three different positions, but not known whether statically or dynamically. We have investigated it by means of spin-lattice relaxation time, T1, using proton NMR. We find that the cation is dynamically disordered and that the transition involves its slowing down. Evidence is seen for tunneling of the CH3 groups, and for the compound becoming a glass, with the cation displaying several metastable equilibrium geometries (T1 trajectories).

  3. Synthesis, X-ray crystal structure and highly non-linear optical properties of inorganic-organic hybrid compound: 1,4-Diazbicyclo-octane oxonium tri- nitrates single crystal

    Science.gov (United States)

    Henchiri, Rokaya; Ennaceur, Nasreddine; Cordier, Marie; Ledoux-Rak, Isabelle; Elaloui, Elimame

    2017-07-01

    A new nonlinear optical hybrid crystal 1,4-Diazbicyclo[222]octane oxonium tri-nitrates (DOTN), of the dimension 4×12×1 mm3. The crystal was grown using water as solvent at room temperature and crystal structure was determined by X-Ray diffraction respectively, this title compound was shown to crystallize in non-centrosymmetric trigonal system with space group P31c. The recorded FTIR spectrum has proven the presence of various functional groups in the grown crystal as well as the formation of DOTN. Besides, the thermal stability and melting temperature of the DOTN crystal were identified from the TG/DSC analysis. The suitability of this material for optical application was studied by non-linear optical (NLO) and UV-visible absorption techniques. Furthermore, the nonlinear optical property was analyzed by Kurtz-Perry powder technique and was 3.4 times than that of KDP (potassium dihydrogen phosphate) single crystals. The first hyperpolarizability of nitrate was determined by Second Harmonic light Scattering.

  4. Comparative Analysis of the Endosperm Proteins Separated by 2-D Electrophoresis for Two Cultivars of Hybrid Rice (Oryza sativa L.)

    Institute of Scientific and Technical Information of China (English)

    Pingfang Yang; Shihua Shen; Tingyun Kuang

    2006-01-01

    Liangyoupeijiu is a two-parental-line, and Shanyou63 is a three-parental-line hybrid rice (Oryza sativa L.).Although both belong to the indica subspecies, they have obvious differences with respect to morphology,physiology and grain quality. Variations in endosperm protein compositions were studied by comparing the 2-D electrophoresis (2-DE) maps for these two cultivars of hybrid rice. After matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF/MS) analysis, a 21-kDa precursor of 19-kDa globulin was identified as the major storage protein for both cultivars. Some isoforms of peroxiredoxin and seed maturation protein were found to only exist in Shanyou63, whereas aldose reductase and starch granule-bound starch synthase were only detected in Liangyoupeijiu. These data might provide a foundation for further comparative studies of these two cultivars of hybrid rice.

  5. Inorganic-organic thin implant coatings deposited by lasers.

    Science.gov (United States)

    Sima, Felix; Davidson, Patricia M; Dentzer, Joseph; Gadiou, Roger; Pauthe, Emmanuel; Gallet, Olivier; Mihailescu, Ion N; Anselme, Karine

    2015-01-14

    The lifetime of bone implants inside the human body is directly related to their osseointegration. Ideally, future materials should be inspired by human tissues and provide the material structure-function relationship from which synthetic advanced biomimetic materials capable of replacing, repairing, or regenerating human tissues can be produced. This work describes the development of biomimetic thin coatings on titanium implants to improve implant osseointegration. The assembly of an inorganic-organic biomimetic structure by UV laser pulses is reported. The structure consists of a hydroxyapatite (HA) film grown onto a titanium substrate by pulsed-laser deposition (PLD) and activated by a top fibronectin (FN) coating deposited by matrix-assisted pulsed laser evaporation (MAPLE). A pulsed KrF* laser source (λ = 248 nm, τ = 25 ns) was employed at fluences of 7 and 0.7J/cm(2) for HA and FN transfer, respectively. Films approximately 1500 and 450 nm thick were obtained for HA and FN, respectively. A new cryogenic temperature-programmed desorption mass spectrometry analysis method was employed to accurately measure the quantity of immobilized protein. We determined that less than 7 μg FN per cm(2) HA surface is adequate to improve adhesion, spreading, and differentiation of osteoprogenitor cells. We believe that the proposed fabrication method opens the door to combining and immobilizing two or more inorganic and organic materials on a solid substrate in a well-defined manner. The flexibility of this method enables the synthesis of new hybrid materials by simply tailoring the irradiation conditions according to the thermo-physical properties of the starting materials.

  6. Nano-spatial parameters from 3D to 2D lattice dimensionality by organic variant in [ZnCl4]- [R]+ hybrid materials: Structure, architecture-lattice dimensionality, microscopy, optical Eg and PL correlations

    Science.gov (United States)

    Kumar, Ajit; Verma, Sanjay K.; Alvi, P. A.; Jasrotia, Dinesh

    2016-04-01

    The nanospatial morphological features of [ZnCl]- [C5H4NCH3]+ hybrid derivative depicts 28 nm granular size and 3D spreader shape packing pattern as analyzed by FESEM and single crystal XRD structural studies. The organic moiety connect the inorganic components through N-H+…Cl- hydrogen bond to form a hybrid composite, the replacement of organic derivatives from 2-methylpyridine to 2-Amino-5-choloropyridine results the increase in granular size from 28nm to 60nm and unit cell packing pattern from 3D-2D lattice dimensionality along ac plane. The change in optical energy direct band gap value from 3.01eV for [ZnCl]- [C5H4NCH3]+ (HM1) to 3.42eV for [ZnCl]- [C5H5ClN2]+ (HM2) indicates the role of organic moiety in optical properties of hybrid materials. The photoluminescence emission spectra is observed in the wavelength range of 370 to 600 nm with maximum peak intensity of 9.66a.u. at 438 nm for (HM1) and 370 to 600 nm with max peak intensity of 9.91 a.u. at 442 nm for (HM2), indicating that the emission spectra lies in visible range. PL excitation spectra depicts the maximum excitation intensity [9.8] at 245.5 nm for (HM1) and its value of 9.9 a.u. at 294 nm, specify the excitation spectra lies in UV range. Photoluminescence excitation spectra is observed in the wavelength range of 280 to 350 nm with maximum peak intensity of 9.4 a.u. at 285.5 nm and 9.9 a.u. at 294 and 297 nm, indicating excitation in the UV spectrum. Single crystal growth process and detailed physiochemical characterization such as XRD, FESEM image analysis photoluminescence property reveals the structure stability with non-covalent interactions, lattice dimensionality (3D-2D) correlations interweaving into the design of inorganic-organic hybrid materials.

  7. Production of biofunctionalized MoS2 flakes with rationally modified lysozyme: a biocompatible 2D hybrid material

    Science.gov (United States)

    Siepi, Marialuisa; Morales-Narváez, Eden; Domingo, Neus; Monti, Daria Maria; Notomista, Eugenio; Merkoçi, Arben

    2017-09-01

    Bioapplications of 2D materials embrace demanding features in terms of environmental impact, toxicity and biocompatibility. Here we report on the use of a rationally modified lysozyme to assist the exfoliation of MoS2 bulk crystals suspended in water through ultrasonic exfoliation. The design of the proposed lysozyme derivative provides this exfoliated 2D-materail with both, hydrophobic groups that interact with the surface of MoS2 and hydrophilic groups exposed to the aqueous medium, which hinders its re-aggregation. This approach, clarified also by molecular docking studies, leads to a stable material (ζ-potential, 27  ±  1 mV) with a yield of up to 430 µg ml-1. The bio-hybrid material was characterized in terms of number of layers and optical properties according to different slots separated by diverse centrifugal forces. Furthermore the obtained material was proved to be biocompatible using human normal keratinocytes and human cancer epithelial cells, whereas the method was demonstrated to be applicable to produce other 2D materials such as graphene. This approach is appealing for the advantageous production of high quality MoS2 flakes and their application in biomedicine and biosensing. Moreover, this method can be applied to different starting materials, making the denatured lysozyme a promising bio-tool for surface functionalization of 2D materials.

  8. Hybrid platforms of graphane–graphene 2D structures: prototypes for atomically precise nanoelectronics

    OpenAIRE

    Mota,F.B.; Rivelino, R.; Medeiros, P.V.C.; Mascarenhas, A.J.S.; de Castilho, C. M. C.

    2014-01-01

    p.23558-23563 First-principles calculations demonstrate that line/ribbon defects, resulting from a controlled dehydrogenation in graphane, lead to the formation of low-dimensional electron-rich tracks in a monolayer. The present simulations point out that hybrid graphane–graphene nanostructures exhibit important elements, greatly required for the fabrication of efficient electronic circuits at the atomic level.

  9. Preparation, photophysical characterization, and modeling of LDS722/Laponite 2D-ordered hybrid films.

    Science.gov (United States)

    Epelde-Elezcano, Nerea; Duque-Redondo, Eduardo; Martínez-Martínez, Virginia; Manzano, Hegoi; López-Arbeloa, Iñigo

    2014-08-26

    A novel hybrid material with promising optical properties for nonlinear optical applications is presented, as formed by LDS 722 organic dye confined in Laponite clay. Thin films of the hybrid material with different dye loadings have been prepared. The film thickness, the dye and water content, and the clay swelling due to guest molecule incorporation have been characterized. Then, the photophysical properties of the thin films have been studied in detail using experimental methods and molecular simulation. As the dye load increases, the hybrid films present a hypsochromic shift in absorption and a bathochromic shift in emission. The former is attributed to the increasing strength of solvation of the dye donor group, while the latter is ascribed to a switch from an intramolecular to an intermolecular charge-transfer process as the dye load increases. The LDS 722 molecules are preferentially oriented in the host clay almost in parallel to the platelet surfaces, inducing macroscopic order that makes the material responsive to polarized light.

  10. Ultralow Self-Doping in 2D Hybrid Perovskite Single Crystals

    KAUST Repository

    Peng, Wei

    2017-06-28

    Unintentional self-doping in semiconductors through shallow defects is detrimental to optoelectronic device performance. It adversely affects junction properties and it introduces electronic noise. This is especially acute for solution-processed semiconductors, including hybrid perovskites, which are usually high in defects due to rapid crystallization. Here, we uncover extremely low self-doping concentrations in single crystals of (C6H5C2H4NH3)2PbI4・(CH3NH3PbI3)n-1 (n=1, 2, and 3)—over three orders of magnitude lower than those of typical three-dimensional hybrid perovskites—by analyzing their conductivity behavior. We propose that crystallization of hybrid perovskites containing large organic cations suppresses defect formation and thus favors a low self-doping level. To exemplify the benefits of this effect, we demonstrate extraordinarily high light-detectivity (1013 Jones) in (C6H5C2H4NH3)2PbI4・(CH3NH3PbI3)n-1 photoconductors due to the reduced electronic noise, which makes them particularly attractive for the detection of weak light signals. Furthermore, the low self-doping concentration reduces the equilibrium charge carrier concentration in (C6H5C2H4NH3)2PbI4・(CH3NH3PbI3)n-1, advantageous in the design of p-i-n heterojunction solar cells by optimizing band alignment and promoting carrier depletion in the intrinsic perovskite layer, thereby enhancing charge extraction.

  11. Angle calculations for a z-axis/(2S+2D) hybrid diffractometer

    DEFF Research Database (Denmark)

    Bunk, Oliver; Nielsen, Martin Meedom

    2004-01-01

    calculations are presented for a new 'hybrid' diffractometer consisting of a base instrument that can be combined with two different detector arms. With one of the detector arms, the instrument is a standard z-axis diffractometer as commonly used in surface studies. The other detector arm is designed...... for a heavy two-dimensional detector. The calculations are formulated in a general framework making it easy to incorporate, e. g. a second sample rotation stage, whereby it is possible to perform reflectivity and standard surface-crystallography measurements in the same geometry....

  12. Non-singular string cosmology in a 2d Hybrid model

    CERN Document Server

    Florakis, Ioannis; Partouche, Herve; Toumbas, Nicolaos

    2010-01-01

    The existence of non-singular string cosmologies is established in a class of two-dimensional supersymmetric Hybrid models at finite temperature. The left-moving sector of the Hybrid models gives rise to 16 real (N_4=4) spacetime supercharges as in the usual superstring models. The right-moving sector is non-supersymmetric at the massless level, but is characterized by MSDS symmetry, which ensures boson/fermion degeneracy of the right-moving massive levels. Finite temperature configurations, which are free of Hagedorn instabilities, are constructed in the presence of non-trivial "gravito-magnetic" fluxes. These fluxes inject non-trivial winding charge into the thermal vacuum and restore the thermal T-duality symmetry associated with the Euclidean time circle. Thanks to the unbroken right-moving MSDS symmetry, the one-loop string partition function is exactly calculable beyond any alpha'-approximation. At the self-dual point new massless thermal states appear, sourcing localized spacelike branes, which can be ...

  13. Non-conforming hybrid meshes for efficient 2-D wave propagation using the Discontinuous Galerkin Method

    Science.gov (United States)

    Hermann, Verena; Käser, Martin; Castro, Cristóbal E.

    2011-02-01

    We present a Discontinuous Galerkin finite element method using a high-order time integration technique for seismic wave propagation modelling on non-conforming hybrid meshes in two space dimensions. The scheme can be formulated to achieve the same approximation order in space and time and avoids numerical artefacts due to non-conforming mesh transitions or the change of the element type. A point-wise Gaussian integration along partially overlapping edges of adjacent elements is used to preserve the schemes accuracy while providing a higher flexibility in the problem-adapted mesh generation process. We describe the domain decomposition strategy of the parallel implementation and validate the performance of the new scheme by numerical convergence test and experiments with comparisons to independent reference solutions. The advantage of non-conforming hybrid meshes is the possibility to choose the mesh spacing proportional to the seismic velocity structure, which allows for simple refinement or coarsening methods even for regular quadrilateral meshes. For particular problems of strong material contrasts and geometrically thin structures, the scheme reduces the computational cost in the sense of memory and run-time requirements. The presented results promise to achieve a similar behaviour for an extension to three space dimensions where the coupling of tetrahedral and hexahedral elements necessitates non-conforming mesh transitions to avoid linking elements in form of pyramids.

  14. Accelerated parabolic Radon domain 2D adaptive multiple subtraction with fast iterative shrinkage thresholding algorithm and its application in parabolic Radon domain hybrid demultiple method

    Science.gov (United States)

    Li, Zhong-xiao; Li, Zhen-chun

    2017-08-01

    Adaptive multiple subtraction is an important step for successfully conducting surface-related multiple elimination in marine seismic exploration. 2D adaptive multiple subtraction conducted in the parabolic Radon domain has been proposed to better separate primaries and multiples than 2D adaptive multiple subtraction conducted in the time-offset domain. Additionally, the parabolic Radon domain hybrid demultiple method combining parabolic Radon filtering and parabolic Radon domain 2D adaptive multiple subtraction can better remove multiples than the cascaded demultiple method using time-offset domain 2D adaptive multiple subtraction and the parabolic Radon transform method sequentially. To solve the matching filter in the optimization problem with L1 norm minimization constraint of primaries, traditional parabolic Radon domain 2D adaptive multiple subtraction uses the iterative reweighted least squares (IRLS) algorithm, which is computationally expensive for solving a weighted LS inversion in each iteration. In this paper we introduce the fast iterative shrinkage thresholding algorithm (FISTA) as a faster alternative to the IRLS algorithm for parabolic Radon domain 2D adaptive multiple subtraction. FISTA uses the shrinkage-thresholding operator to promote the sparsity of estimated primaries and solves the 2D matching filter with iterative steps. FISTA based parabolic Radon domain 2D adaptive multiple subtraction reduces the computation time effectively while achieving similar accuracy compared with IRLS based parabolic Radon domain 2D adaptive multiple subtraction. Additionally, the provided examples show that FISTA based parabolic Radon domain 2D adaptive multiple subtraction can better separate primaries and multiples than FISTA based time-offset domain 2D adaptive multiple subtraction. Furthermore, we introduce FISTA based parabolic Radon domain 2D adaptive multiple subtraction into the parabolic Radon domain hybrid demultiple method to improve its computation

  15. 2D/0D graphene hybrids for visible-blind flexible UV photodetectors.

    Science.gov (United States)

    Tetsuka, Hiroyuki

    2017-07-17

    Nitrogen-functionalized graphene quantum dots (NGQDs) are attractive building blocks for optoelectronic devices because of their exceptional tunable optical absorption and fluorescence properties. Here, we developed a high-performance flexible NGQD/graphene field-effect transistor (NGQD@GFET) hybrid ultraviolet (UV) photodetector, using dimethylamine-functionalized GQDs (NMe2-GQDs) with a large bandgap of ca. 3.3 eV. The NMe2-GQD@GFET photodetector exhibits high photoresponsivity and detectivity of ca. 1.5 × 10(4) A W(-1) and ca. 5.5 × 10(11) Jones, respectively, in the deep-UV region as short as 255 nm without application of a backgate voltage. The feasibility of these flexible UV photodetectors for practical application in flame alarms is also demonstrated.

  16. Solution processed, hybrid 2D/3D MoS2/Si heterostructures with superior junction characteristics.

    Science.gov (United States)

    Mukherjee, Subhrajit; Biswas, Souvik; Das, Soumen; Ray, Samit K

    2017-02-03

    We report a theoretical and experimental investigation of the hybrid heterostructure interfaces between atomically thin MoS2 nanocrystals (NCs) on Si platform for their potential applications towards next generation electrical and optical devices. Mie theory based numerical analysis and COMSOL simulations based on finite element method (FEM) have been utilized to study the optical absorption characteristics and light matter interactions in variable sized MoS2 NCs. The size dependent absorption characteristics and the enhancement of electric field of the heterojunction in the UV-visible spectral range agree well with the experimental results. A lithography-free, wafer scale, 2D materials on a 3D substrate hybrid vertical heterostructure has been fabricated using colloidal n-MoS2 NCs on p-Si. The fabricated p-n heterojunction exhibited excellent junction characteristics with a high rectification ratio suitable for voltage clipper and rectifier applications. The current-voltage characteristics of the devices under illumination have been performed in the temperature range of 10-300 K. The device exhibits a high photo-to-dark current ratio of ~3 x 103 and a responsivity comparable to a commercial Si photodetector. The excellent heterojunction characteristics demonstrate the great potential of MoS2 NCs based hybrid electronic and optoelectronic devices in near future.

  17. Hydrothermal Synthesis, Crystal Structure and Electrochemical Behavior of 2d Hybrid Coordination Polymer

    Science.gov (United States)

    Fan, Weiqiang; Zhu, Lin; Shi, Weidong; Chen, Fuxiao; Bai, Hongye; Song, Shuyan; Yan, Yongsheng

    2013-06-01

    A novel metal-organic coordination polymer [Cu(phen)(L)0.5(H2O)]n (H4L = (N,N‧-5,5‧-bis(isophthalic acid)-p-xylylenediamine, and phen = 1,10-phenanthroline) has been hydrothermally synthesized and characterized by elemental analysis, IR, TGA, and single-crystal X-ray diffraction. The crystallographic data show that the title compound crystallizes in monoclinic space group P21/n with a = 10.682(2), b = 15.682(3), c = 11.909(2) Å, β = 91.39(3)°, V = 1994.3(7) Å3, C24H17CuN3O5, Mr = 490.95, Dc = 1.635 g/cm3, F(000) = 1004, Z = 4, μ(MoKα) = 1.141 mm-1, the final R = 0.0418 and wR = 0.0983 for 3578 observed reflections (I > 2σ(I)). The structural analyses reveal that the title compound exhibits shows a 2D layer structure, which are further linked by hydrogen bonding interactions to form a three-dimensional supramolecular network. In addition, the thermal stability and electrochemical behavior of title compound has been studied. CCDC: 900413.

  18. Optimization of hybrid organic-inorganic interdigitated photovoltaic device structure using a 2D diffusion model.

    Science.gov (United States)

    Krali, Emiljana; Curry, Richard J

    2011-04-26

    To improve the efficiency of organic photovoltaic devices the inclusion of semiconducting nanoparticles such as PbS has been used to enhance near-infrared absorption. Additionally the use of interdigitated heterojunctions has been explored as a means of improving charge extraction. In this paper we provide a two-dimensional model taking into account these approaches with the aim of predicting an optimized device geometry to maximize the efficiency. The steady-state exciton population has been calculated in each of the active regions taking into account the full optical response based on using a finite difference approach to obtain approximate numerical solutions to the 2D exciton diffusion equation. On the basis of this we calculate the contribution of each active material to the device short circuit current and power conversion efficiency. We show that optimized structures can lead to power conversions efficiencies of ∼50% compared to a maximum of ∼17% for planar heterojunction devices. To achieve this the interdigitated region thickness should be ∼800 nm with PbS and C(60) widths of ∼60 and 20 nm, respectively. Even modest nanopatterning using much thinner active regions provides improvements in efficiency and may be approached using a variety of methods including nanoimprinting lithography, nanotemplating, or the incorporation of presynthesized nanorod structures.

  19. Controlled Microstructure and Photochromism of Inorganic-organic Thin Films by Ultrasound

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A series of inorganic-organic thin films based on uniformly dispersed nanoparticles of polyoxometalates (POM)entrapped in polyacrylamide (PAM) matrix were prepared by ultrasonic method with different irradiation time.The microstructure, photochromic behavior and mechanism of the films were studied by transmission electron microscopy (TEM), ultraviolet-visible spectra (UV-VIS) and Fourier transform-infrared spectroscopy (FT-IR).The microstructure and photochromic properties of the hybrid thin films could be controlled by ultrasound.TEM image revealed that the average size of phosphotungstic acid (PWA) nanoparticles decreased from 20 to 10 nm with the ultrasound irradiation time from 30 to 60 min. After irradiated with ultraviolet light,the transparent films changed from colorless to blue and showed reversible photochromism. The hybrid film, with ultrasound irradiation for 60 min had higher photochromic efficiency and faster bleaching reaction than the one with ultrasound irradiation for 30 min. FT-IR spectra showed that the Keggin geometry of heteropolyoxometalate was still preserved inside the composites, and the interactions between polyanions and polymer matrix increased as the ultrasound time prolonged. It is suggested that the mechanism of the different photochromic properties for the inorganic-organic thin films is the variation of the microstructure and interfacial interactions induced by ultrasound.

  20. Fabricating porous materials using interpenetrating inorganic-organic composite gels

    Science.gov (United States)

    Seo, Dong-Kyun; Volosin, Alex

    2016-06-14

    Porous materials are fabricated using interpenetrating inorganic-organic composite gels. A mixture or precursor solution including an inorganic gel precursor, an organic polymer gel precursor, and a solvent is treated to form an inorganic wet gel including the organic polymer gel precursor and the solvent. The inorganic wet gel is then treated to form a composite wet gel including an organic polymer network in the body of the inorganic wet gel, producing an interpenetrating inorganic-organic composite gel. The composite wet gel is dried to form a composite material including the organic polymer network and an inorganic network component. The composite material can be treated further to form a porous composite material, a porous polymer or polymer composite, a porous metal oxide, and other porous materials.

  1. A hybrid experimental-numerical technique for determining 3D velocity fields from planar 2D PIV data

    Science.gov (United States)

    Eden, A.; Sigurdson, M.; Mezić, I.; Meinhart, C. D.

    2016-09-01

    Knowledge of 3D, three component velocity fields is central to the understanding and development of effective microfluidic devices for lab-on-chip mixing applications. In this paper we present a hybrid experimental-numerical method for the generation of 3D flow information from 2D particle image velocimetry (PIV) experimental data and finite element simulations of an alternating current electrothermal (ACET) micromixer. A numerical least-squares optimization algorithm is applied to a theory-based 3D multiphysics simulation in conjunction with 2D PIV data to generate an improved estimation of the steady state velocity field. This 3D velocity field can be used to assess mixing phenomena more accurately than would be possible through simulation alone. Our technique can also be used to estimate uncertain quantities in experimental situations by fitting the gathered field data to a simulated physical model. The optimization algorithm reduced the root-mean-squared difference between the experimental and simulated velocity fields in the target region by more than a factor of 4, resulting in an average error less than 12% of the average velocity magnitude.

  2. Inorganic-organic electrolyte materials for energy applications

    Science.gov (United States)

    Fei, Shih-To

    emphasizes the flammability studies. Chapter 4 expands the application of the ethyleneoxy phosphazene system to dye sensitized solar cell systems, and uses this material as a model for the study of electrode-electrolyte interfaces. We report here the results of our study on polymer electrolyte infiltration and its effect on dye-sensitized solar cells. In-depth studies have been made to compare the effects of different cell assembly procedures on the electrochemical properties as well as infiltration of electrolytes into various electrode designs. The first part of the study is based on the use of thermoplastic phosphazene electrolytes and how the overall fabrication procedure affects electrochemical performance, and the second is the use of cross-section microscopy to characterize the degree of electrolyte infiltration into various nanostructured titanium dioxide electrode surfaces. The results of this study should eventually improve the efficiency and longevity of thermally stable polymer dye solar cell systems. In Chapter 5 the effect of pendant polymer design on methanol fuel cell membrane performance was investigated. A synthetic method is described to produce a proton conductive polymer membrane with a polynorbornane backbone and inorganic-organic cyclic phosphazene pendent groups that bear sulfonic acid units. This hybrid polymer combines the inherent hydrophobicity and flexibility of the organic polymer with the tuning advantages of the cyclic phosphazene to produce a membrane with high proton conductivity and low methanol crossover at room temperature. The ion exchange capacity (IEC), the water swelling behavior of the polymer, and the effect of gamma radiation crosslinking were studied, together with the proton conductivity and methanol permeability of these materials. A typical membrane had an IEC of 0.329 mmolg-1 and had water swelling of 50 wt%. The maximum proton conductivity of 1.13x10 -4 Scm-1 at room temperature is less than values reported for some

  3. 微纳尺度无机-有机杂化凝胶固定化木瓜蛋白酶研究%Studies on Immobilization of Papain Based on Inorganic-organic Hybrid Gel of Micro-nano-scale

    Institute of Scientific and Technical Information of China (English)

    吴敏; 何琴; 左勇刚; 王芬; 孙岳明

    2011-01-01

    以吸附-絮凝耦合方法制备了微纳尺度的纳米TiO2-聚丙烯酰胺(polyacrylamide,PAM)杂化凝胶固定化酶.利用扫描电镜(SEM)、能谱面扫描(EDS)、粒度分析表征了杂化凝胶絮凝酶形貌、尺寸及分散性.通过对酸碱度有效调控,以及表面Zeta电位分析,探寻了酶-纳米复合凝胶静电作用机制.结果表明,静电相互作用力对酶的负载和颗粒粒度分布影响较大,在pH=7.0,TiO2和木瓜蛋白酶(papain,PA)质量比为7.5∶1时,固定化酶负载量达121.84 mg/g,负载率91.38%;杂化凝胶固定化酶尺寸约为0.444 μm左右,固定化酶在杂化凝胶载体上高度分散.该杂化凝胶絮凝酶经过5批次反应后相对酶活力能保持在50%以上.可见由吸附-絮凝法制备的微纳尺度的杂化凝胶固定化酶,分散性好,稳定性好,酶负载量高,这是一种利用纳米材料和微纳结构进行固定化酶的新途径.%The hybrid inorganic/organic gel with immobilized papain enzyme in micro/nano size was pre pared by absorption-flocculation co-immobilization method, in which polyacrylamide (PAM) was used as the flocculation agent, and characterized by scanning electron microscopy (SEM), energy dispersive spec trometer mapping (EDS), and size analyzer. Evolution of surface Zeta potential (ZP) of nano-gel containing enzyme with pH revealed that the main interaction between the enzyme and immobilization support was electrostatic attraction. The electrostatic field generated by the surface charges exhibited major impact on the enzyme loading and particle size distribution. At pH=7.0 and mass ratio of TiO2 to PA=7.5 ∶ 1, the maxi mum amount of enzyme loading was achieved as 121.84 mg/g, corresponding to the efficiency of 91.38%. The size of nano-gel with immobilized enzyme was about 0.444 urn and its distribution was very narrow in either low or high pH range. SEM/EDS results showed that immobilized papain was homogeneously dispersed in the porous hybrid gel. The

  4. Structural mapping and framework interconversions in 1D, 2D, and 3D divalent metal R,S-hydroxyphosphonoacetate hybrids.

    Science.gov (United States)

    Colodrero, Rosario M P; Olivera-Pastor, Pascual; Cabeza, Aurelio; Papadaki, Maria; Demadis, Konstantinos D; Aranda, Miguel A G

    2010-01-18

    Reactions of divalent cations (Mg(2+), Co(2+), Ni(2+), and Zn(2+)) with R,S-hydroxyphosphonoacetic acid (HPAA) in aqueous solutions (pH values ranging 1.0-4.0) yielded a range of crystalline hydrated M-HPAA hybrids. One-dimensional (1D) chain compounds were formed at room temperature whereas reactions conducted under hydrothermal conditions resulted in two-dimensional (2D) layered frameworks or, in some cases, three-dimensional (3D) networks incorporating various alkaline cations. 1D phases with compositions [M{HO(3)PCH(OH)CO(2)}(H(2)O)(2)].2H(2)O (M = Mg, Co, and Zn) were isolated. These compounds were dehydrated in liquid water to yield the corresponding [M{HO(3)PCH(OH)CO(2)}(H(2)O)(2)] compounds lacking the lattice water between the 1D chains. [M{HO(3)PCH(OH)CO(2)}(H(2)O)(2)] (M = Mg, Ni, Co, Zn) compounds were formed by crystallization at room temperature (at higher pH values) or also by partial dehydration of 1D compounds with higher hydration degrees. Complete dehydration of these 1D solids at 240-270 degrees C led to 3D phases, [M{HO3PCH(OH)CO(2)}]. The 2D layered compound [Mg{HO(3)PCH(OH)CO(2)}(H(2)O)(2)] was obtained under hydrothermal conditions. For both synthesis methods, addition of alkali metal hydroxides to adjust the pH usually led to mixed phase materials, whereas direct reactions between the metal oxides and the hydroxyphosphonoacetic acid gave single phase materials. On the other hand, adjusting the pH with acetate salts and increasing the ratio M(2+)/HPAA and/or the A(+)/M(2+) ratio (A = Na, K) resulted in 3D networks, where the alkali cations were incorporated within the frameworks for charge compensation. The crystal structures of eight new M(II)-HPAA hybrids are reported herein and the thermal behavior related to dehydration/rehydration of some compounds are studied in detail.

  5. Self-Assembly of 1D/2D Hybrid Nanostructures Consisting of a Cd(II Coordination Polymer and NiAl-Layered Double Hydroxides

    Directory of Open Access Journals (Sweden)

    Gonzalo Abellán

    2015-12-01

    Full Text Available The preparation and characterization of a novel hybrid material based on the combination of a 2D-layered double hydroxide (LDH nanosheets and a 1D-coordination polymer (1D-CP has been achieved through a simple mixture of suspensions of both building blocks via an exfoliation/restacking approach. The hybrid material has been thoroughly characterized demonstrating that the 1D-CP moieties are intercalated as well as adsorbed on the surface of the LDH, giving rise to a layered assembly with the coexistence of the functionalities of their initial constituents. This hybrid represents the first example of the assembly of 1D/2D nanomaterials combining LDH with CP and opens the door for a plethora of different functional hybrid systems.

  6. Matrices for Sensors from Inorganic, Organic, and Biological Nanocomposites

    Directory of Open Access Journals (Sweden)

    Eugenia Pechkova

    2011-08-01

    Full Text Available Matrices and sensors resulting from inorganic, organic and biological nanocomposites are presented in this overview. The term nanocomposite designates a solid combination of a matrix and of nanodimensional phases differing in properties from the matrix due to dissimilarities in structure and chemistry. The nanoocomposites chosen for a wide variety of health and environment sensors consist of Anodic Porous Allumina and P450scc, Carbon nanotubes and Conductive Polymers, Langmuir Blodgett Films of Lipases, Laccases, Cytochromes and Rhodopsins, Three-dimensional Nanoporous Materials and Nucleic Acid Programmable Protein Arrays.

  7. Communication: Effect of accidental mode degeneracy on Raman intensity in 2D materials: Hybrid functional study of bilayer phosphorene

    Science.gov (United States)

    Sun, Yi-Yang; Zhang, Shengbai

    2016-07-01

    Bulk black phosphorus has two optical phonon modes labeled as Ag2 and B2u, respectively, that are nearly degenerate in frequency. However, density functional theory calculations using local or semi-local functionals cannot reproduce this degeneracy. Here, we propose a hybrid functional approach aided by van der Waals (vdW) force fields, which can accurately describe the lattice dynamic and electronic properties of both bulk and few-layer black phosphorus (phosphorene). Using this approach we show that in bilayer phosphorene, the two Raman modes derived from the B2u and Ag2 modes could exhibit strong resonance as a result of the accidental degeneracy so that both modes could be observed in Raman experiment. Without the mode degeneracy, however, the Raman intensity of the B2u-derived mode would be too weak to be observed. We further show that the accidental degeneracy is correlated to the applied strain, which enables Raman spectroscopy to be a powerful tool for characterizing built-in strains in 2D materials, e.g., due to the interaction with substrates, which has emerged as an important issue in vdW epitaxy.

  8. Communication: Effect of accidental mode degeneracy on Raman intensity in 2D materials: Hybrid functional study of bilayer phosphorene.

    Science.gov (United States)

    Sun, Yi-Yang; Zhang, Shengbai

    2016-07-14

    Bulk black phosphorus has two optical phonon modes labeled as Ag (2) and B2u, respectively, that are nearly degenerate in frequency. However, density functional theory calculations using local or semi-local functionals cannot reproduce this degeneracy. Here, we propose a hybrid functional approach aided by van der Waals (vdW) force fields, which can accurately describe the lattice dynamic and electronic properties of both bulk and few-layer black phosphorus (phosphorene). Using this approach we show that in bilayer phosphorene, the two Raman modes derived from the B2u and Ag (2) modes could exhibit strong resonance as a result of the accidental degeneracy so that both modes could be observed in Raman experiment. Without the mode degeneracy, however, the Raman intensity of the B2u-derived mode would be too weak to be observed. We further show that the accidental degeneracy is correlated to the applied strain, which enables Raman spectroscopy to be a powerful tool for characterizing built-in strains in 2D materials, e.g., due to the interaction with substrates, which has emerged as an important issue in vdW epitaxy.

  9. Morphological and biochemical T2 evaluation of cartilage repair tissue based on a hybrid double echo at steady state (DESS-T2d) approach.

    Science.gov (United States)

    Welsch, Goetz H; Mamisch, Tallal C; Zak, Lukas; Mauerer, Andreas; Apprich, Sebastian; Stelzeneder, David; Marlovits, Stefan; Trattnig, Siegfried

    2011-10-01

    To use a new approach which provides, based on the widely used three-dimensional double-echo steady-state (DESS) sequence, in addition to the morphological information, the generation of biochemical T2 maps in one hybrid sequence. In 50 consecutive MRIs at 3.0 Tesla (T) after matrix-associated autologous chondrocyte transplantation (MACT) of the knee, by the use this new DESS-T2d approach, the morphological Magnetic resonance Observation of CArtilage Repair Tissue (MOCART) score, as well as biochemical T2d values were assessed. Furthermore, these results were correlated to standard morphological sequences as well as to standard multi-echo spin-echo T2 mapping. The MOCART score correlated (Pearson:0.945; P < 0.001) significantly as assessed with standard morphological sequences (68.8 ± 13.2) and the morphological images of the DESS T2d sequence (68.7 ± 12.6). T2 and T2d relaxation times (ms) were comparable in between the control cartilage (T2: 52.5 ± 11.4; T2d: 46.6 ± 10.3) and the repair tissue (T2: 54.4 ± 11.4; T2d: 47.5 ± 13.0) (T2: P = 0.157; T2d: P = 0.589). As expected, T2d values were lower than the standard-T2 values, however, both functional relaxation times correlated significantly (Pearson:0.429; P < 0.001). The presented hybrid approach provides the possibility to combine morphological and biochemical MRI in one fast 3D sequence, and thus, may attract for the clinical use of biochemical MRI. Copyright © 2011 Wiley-Liss, Inc.

  10. Inorganic/organic doped carbon aerogels as biosensing materials for the detection of hydrogen peroxide.

    Science.gov (United States)

    Dong, Sheying; Li, Nan; Suo, Gaochao; Huang, Tinglin

    2013-12-17

    In this article, three different inorganic/organic doped carbon aerogel (CA) materials (Ni-CA, Pd-CA, and Ppy-CA) were, respectively, mixed with ionic liquid (IL) to form three stable composite films, which were used as enhanced elements for an integrated sensing platform to increase the surface area and to improve the electronic transmission rate. Subsequently, the effect of the materials performances such as adsorption, specific surface area and conductivity on electrochemistry for myoglobin (Mb) was discussed using N2 adsorption-desorption isotherm measurements, scanning electron microscopy (SEM), and electrochemical impedance spectroscopy (EIS). Moreover, they could act as sensors toward the detection of hydrogen peroxide (H2O2) with lower detection limits (1.68 μM, 1.02 μM, and 0.85 μM, for Ni-CA/IL/Mb-CPE, Pd-CA/IL/Mb-CPE, and Ppy-CA/IL/Mb-CPE, respectively) and smaller apparent Michaelis-Menten constants KM. The results indicated that the electroconductibility of the doped CA materials would become dominant, thus playing an important role in facilitating the electron transfer. Meanwhile, the synergetic effect with [BMIm]BF4 IL improved the capability of the composite inorganic/organic doped CA/IL matrix for protein immobilization. This work demonstrates the feasibility and the potential of a series of CA-based hybrid materials as biosensors, and further research and development are required to prepare other functional CAs and make them valuable for more extensive application in biosensing.

  11. Self-Adaptive Power Control Mechanism in D2D Enabled Hybrid Cellular Network with mmWave Small Cells:An Optimization Approach

    OpenAIRE

    Raza, Syed Ahsan; Hassan, Syed Ali; Pervaiz, Haris Bin; Ni, Qiang; Musavian, Leila

    2016-01-01

    Millimeter wave (mmWave) and Device-to-Device (D2D) communications have been considered as the key enablers of the next generation networks. We consider a D2D-enabled hybrid cellular network compromising of μW macro-cells coexisting with mmWave small cells. We investigate the dynamic resource sharing in downlink transmission to maximize the energy efficiency (EE) of the priority, or cellular users (CUs), that are opportunistically served by either macrocells or mmWave small cells, while satis...

  12. Constructing 2D layered hybrid CdS nanosheets/MoS2 heterojunctions for enhanced visible-light photocatalytic H2 generation

    Science.gov (United States)

    Ma, Song; Xie, Jun; Wen, Jiuqing; He, Kelin; Li, Xin; Liu, Wei; Zhang, Xiangchao

    2017-01-01

    In this work, a 2D hybrid CdS nanosheets(NSs)/MoS2 layered heterojunctions were successfully synthesized by a two-step hydrothermal method and subsequent ultrasonic treatment. The results showed that the loading ultrathin MoS2 NSs as co-catalysts could significantly boost the photocatalytic H2-evolution activity of CdS NSs. It is demonstrated that the optimized 2D CdS NSs/MoS2 (1.0 wt%) layered heterojunctions could achieve the highest photocatalytic H2-evolution activity of 1.75 mmol g-1 h-1 from an aqueous solution containing sulfide and sulfite under visible light, which is 2.03 times as high as that of the pristine CdS NSs. It is believed that the deposition of ultrathin MoS2 NSs and intimate 2D-2D coupling interfaces are mainly responsible for the excellent H2-evolution performance of 2D CdS NSs/MoS2 layered heterojunctions, owing to the effectively promoted separation and transportation of charge carriers and the enhanced following surface H2-evolution kinetics. Interestingly, the lactic acid and formic acid have also been demonstrated to be better sacrificial reagents than the Na2S/Na2SO3, for the photocatalytic H2 evolution over the 2D CdS NSs/MoS2 layered heterojunctions. It is hoped that the strategy of 2D-2D interfacical coupling based on CdS NSs can become a general strategy to improve the H2-evolution activity over various kinds of conventional semiconductor NSs.

  13. h-BN Nanosheets as 2D Substrates to Load 0D Fe3O4 Nanoparticles: A Hybrid Anode Material for Lithium-Ion Batteries.

    Science.gov (United States)

    Duan, Zhi-Qiang; Liu, Yi-Tao; Xie, Xu-Ming; Ye, Xiong-Ying; Zhu, Xiao-Dong

    2016-03-18

    h-BN, as an isoelectronic analogue of graphene, has improved thermal mechanical properties. Moreover, the liquid-phase production of h-BN is greener since harmful oxidants/reductants are unnecessary. Here we report a novel hybrid architecture by employing h-BN nanosheets as 2D substrates to load 0D Fe3O4 nanoparticles, followed by phenol/formol carbonization to form a carbon coating. The resulting carbon-encapsulated h-BN@Fe3O4 hybrid architecture exhibits synergistic interactions: 1) The h-BN nanosheets act as flexible 2D substrates to accommodate the volume change of the Fe3O4 nanoparticles; 2) The Fe3O4 nanoparticles serve as active materials to contribute to a high specific capacity; and 3) The carbon coating not only protects the hybrid architecture from deformation but also keeps the whole electrode highly conductive. The synergistic interactions translate into significantly enhanced electrochemical performances, laying a basis for the development of superior hybrid anode materials.

  14. Enhanced Geometric Map:a 2D & 3D Hybrid City Model of Large Scale Urban Environment for Robot Navigation

    Institute of Scientific and Technical Information of China (English)

    LI Haifeng; HU Zunhe; LIU Jingtai

    2016-01-01

    To facilitate scene understanding and robot navigation in large scale urban environment, a two-layer enhanced geometric map (EGMap) is designed using videos from a monocular onboard camera. The 2D layer of EGMap consists of a 2D building boundary map from top-down view and a 2D road map, which can support localization and advanced map-matching when compared with standard polyline-based maps. The 3D layer includes features such as 3D road model, and building facades with coplanar 3D vertical and horizontal line segments, which can provide the 3D metric features to localize the vehicles and flying-robots in 3D space. Starting from the 2D building boundary and road map, EGMap is initially constructed using feature fusion with geometric constraints under a line feature-based simultaneous localization and mapping (SLAM) framework iteratively and progressively. Then, a local bundle adjustment algorithm is proposed to jointly refine the camera localizations and EGMap features. Furthermore, the issues of uncertainty, memory use, time efficiency and obstacle effect in EGMap construction are discussed and analyzed. Physical experiments show that EGMap can be successfully constructed in large scale urban environment and the construction method is demonstrated to be very accurate and robust.

  15. Hybrid plan verification for intensity-modulated radiation therapy (IMRT) using the 2D ionization chamber array I'mRT MatriXX--a feasibility study.

    Science.gov (United States)

    Dobler, Barbara; Streck, Natalia; Klein, Elisabeth; Loeschel, Rainer; Haertl, Petra; Koelbl, Oliver

    2010-01-21

    The 2D ionization chamber array I'mRT MatriXX (IBA, Schwarzenbruck, Germany) has been developed for absolute 2D dosimetry and verification of intensity-modulated radiation therapy (IMRT) for perpendicular beam incidence. The aim of this study is to evaluate the applicability of I'mRT MatriXX for oblique beam incidence and hybrid plan verification of IMRT with original gantry angles. For the assessment of angular dependence, open fields with gantry angles in steps of 10 degrees were calculated on a CT scan of I'mRT MatriXX. For hybrid plan verification, 17 clinical IMRT plans and one rotational plan were used. Calculations were performed with pencil beam (PB), collapsed cone (CC) and Monte Carlo (MC) methods, which had been previously validated. Measurements were conducted on an Elekta SynergyS linear accelerator. To assess the potential and limitations of the system, gamma evaluation was performed with different dose tolerances and distances to agreement. Hybrid plan verification passed the gamma test with 4% dose tolerance and 3 mm distance to agreement in all cases, in 82-88% of the cases for tolerances of 3%/3 mm, and in 59-76% of the cases if 3%/2 mm were used. Separate evaluation of the low dose and high dose regions showed that I'mRT MatriXX can be used for hybrid plan verification of IMRT plans within 3% dose tolerance and 3 mm distance to agreement with a relaxed dose tolerance of 4% in the low dose region outside the multileaf collimator (MLC).

  16. Inorganic/organic nanocomposites: Reaching a high filler content without increasing viscosity using core-shell structured nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Benhadjala, W., E-mail: warda.benhadjala@cea.fr [IMS Laboratory - UMR CNRS 5218, University of Bordeaux, 351 Cours de la Libération, 33405 Talence (France); CEA, LETI, Minatec Campus, 38000 Grenoble (France); Gravoueille, M.; Weiss, M. [EDF, Centre d' Expertise et d' Inspection dans les Domaines de la Réalisation et de l' Exploitation (CEIDRE), Chinon, BP 80, 37420 Avoine (France); Bord-Majek, I.; Béchou, L.; Ousten, Y. [IMS Laboratory - UMR CNRS 5218, University of Bordeaux, 351 Cours de la Libération, 33405 Talence (France); Suhir, E. [Maseeh College of Engineering and Computer Science, Portland State University, Oregon 97201 (United States); Buet, M.; Louarn, M.; Rougé, F.; Gaud, V. [Polyrise SAS, 16 Avenue Pey Berland, 33607 Pessac (France)

    2015-11-23

    Extensive research is being conducted on the development of inorganic/organic nanocomposites for a wide variety of applications in microelectronics, biotechnologies, photonics, adhesives, or optical coatings. High filler contents are usually required to fully optimize the nanocomposites properties. However, numerous studies demonstrated that traditional composite viscosity increases with increasing the filler concentration reducing therefore significantly the material processability. In this work, we synthesized inorganic/organic core-shell nanocomposites with different shell thicknesses. By reducing the shell thickness while maintaining a constant core size, the nanoparticle molecular mass decreases but the nanocomposite filler fraction is correlatively increased. We performed viscosity measurements, which clearly highlighted that intrinsic viscosity of hybrid nanoparticles decreases as the molecular mass decreases, and thus, as the filler fraction increases, as opposed to Einstein predictions about the viscosity of traditional inorganic/polymer two-phase mixtures. This exceptional behavior, modeled by Mark-Houwink-Sakurada equation, proves to be a significant breakthrough for the development of industrializable nanocomposites with high filler contents.

  17. Self-assembly and morphology change of four organic-polyoxometalate hybrids with different solid structures from 2D lamellar to 3D hexagonal forms

    Science.gov (United States)

    TAN, Chunxia

    2017-02-01

    A series of organic-polyoxometalate hybrids L-EuW11, L-EuW10, L-EuW22 and L-Mo132 were fabricated by the same organic cations with different polyoxometalate anions from K5[Eu(SiW11O39)(H2O)2], K13[Eu(SiW11O39)2]·15H2O, Na9[EuW10O36]·36H2O to "Keplerate" -type (NH4)72[Mo132O372(SO4)30(H2O)72]. The structures of hybrids were characterized by elemental analysis, thermogravimetric analysis (TGA), infrared spectra (IR) and small-angle X-ray scattering (SAXS). Self-assembly behaviors and aggregates morphology of these hybrids in mixed solution of chloroform-methanol are obtained by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). L-EuW11, L-EuW10 and L-EuW22 have different aggregation morphology but the similarly layered structures. Micron-sized vesicular structures of L-Mo132 rupture in solvent and eventually turn into approximate hexagon. SAXS analysis of L-EuW11, L-EuW10 and L-EuW22 shows that these hybrids aggregates change from two-dimensional (2D) lamellar to three-dimensional (3D) hexagonal structure in solid state.

  18. Photoelectrocatalytic oxidation of GMP on an ITO electrode modified with clay/[Ru(phen)2(dC 18bpy)]2+hybrid film

    Institute of Scientific and Technical Information of China (English)

    CHANG Xue-Qin; WANG Shun; LIN Da-Jie; GUAN Wei-Peng; ZHOU Huan; HUANG Shao-Ming

    2009-01-01

    An indium tin oxide (ITO) electrode modified with monolayer clay/[Ru(phen)2(dC18bpy)]2+ (phen= 1,10-phenanthroline, dC18bpy = 4,4'-dioctsdecyl-2,2' bipyridyl) hybrid film has been fabricated by the Langmuir-Blodgett (LB) method. Atomic force microscopy revealed that the single-layered hybrid film of clay/[Ru(phen)2(dC18bpy)]2+. (denoted as Clay-Ru) was closely packed at a surface pressure of 25 Ru(Ⅱ) complex decreased when incorporated into the clay film, suggesting that the clay layer acts as a barrier against electron transfer. When applied to oxidizing the mononucleotide of guanosine 5'-monophosphate (GMP), a large catalytic oxidative current was achieved on the Clay-Ru(Ⅱ) modified ITO electrode at the external potential above 900 mV (vs. AglAgCIlKCI) and, more significantly, this response was further enhanced by light irradiation (λ360 nm), in which the photocurrent is increased about 11 times in comparison with that of a bare ITO. Mechanism of the photoelectrocatalytic effect was proposed in terms of the reduction of the photoelectrochemically generated Ru(Ⅲ) complex in the Clay-Ru film by GMP.

  19. Fabrication of 2D protein microstructures and 3D polymer-protein hybrid microstructures by two-photon polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Engelhardt, Sascha [Lehrstuhl fuer Lasertechnik, RWTH Aachen, Steinbachstrasse 15, Aachen (Germany); Hoch, Eva; Tovar, Guenter E M [Institut fuer Grenzflaechenverfahrenstechnik, Universitaet Stuttgart, Nobelstrasse 12, Stuttgart (Germany); Borchers, Kirsten [Fraunhofer-Institut fuer Grenzflaechen- und Bioverfahrenstechnik, Nobelstrasse 12, Stuttgart (Germany); Meyer, Wolfdietrich; Krueger, Hartmut [Fraunhofer-Institut fuer Angewandte Polymerforschung, Geiselbergstrasse 69, Potsdam (Germany); Gillner, Arnold, E-mail: sascha.engelhardt@ilt.fraunhofer.de [Fraunhofer-Institut fuer Lasertechnik, Steinbachstrasse 15, Aachen (Germany)

    2011-06-15

    Two-photon polymerization (TPP) offers the possibility of creating artificial cell scaffolds composed of micro- and nanostructures with spatial resolutions of less than 1 {mu}m. For use in tissue engineering, the identification of a TPP-processable polymer that provides biocompatibility, biofunctionality and appropriate mechanical properties is a difficult task. ECM proteins such as collagen or fibronectin, which could mimic native tissues best, often lack the mechanical stability. Hence, by generating polymer-protein hybrid structures, the beneficial properties of proteins can be combined with the advantageous characteristics of polymers, such as sufficient mechanical stability. This study describes three steps toward facilitated application of TPP for biomaterial generation. (1) The efficiency of a low-cost ps-laser source is compared to a fs-laser source by testing several materials. A novel photoinitiator for polymerization with a ps-laser source is synthesized and proved to enable increased fabrication throughput. (2) The fabrication of 3D-microstructures with both systems and the fabrication of polymer-protein hybrid structures are demonstrated. (3) The tissue engineering capabilities of TPP are demonstrated by creating cross-linked gelatin microstructures, which clearly forced porcine chondrocytes to adapt their cell morphology.

  20. Highly sensitive photodetectors based on hybrid 2D-0D SnS{sub 2}-copper indium sulfide quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Yun; Zhan, Xueying; Xu, Kai; Yin, Lei; Cheng, Zhongzhou; Jiang, Chao; Wang, Zhenxing, E-mail: wangzx@nanoctr.cn, E-mail: hej@nanoctr.cn; He, Jun, E-mail: wangzx@nanoctr.cn, E-mail: hej@nanoctr.cn [CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190 (China)

    2016-01-04

    Both high speed and efficiency of photoelectric conversion are essential for photodetectors. As an emerging layered metal dichalcogenide (LMD), tin disulfide owns intrinsic faster photodetection ability than most other LMDs but poor light absorption and low photoelectric conversion efficiency. We develop an efficient method to enhance its performance by constructing a SnS{sub 2}-copper indium sulfide hybrid structure. As a result, the responsivity reaches 630 A/W, six times stronger than pristine SnS{sub 2} and much higher than most other LMDs photodetectors. Additionally, the photocurrents are enhanced by more than 1 order of magnitude. Our work may open up a pathway to improve the performance of photodetectors based on LMDs.

  1. Ultra low-loss, isotropic 2D optical negative-index metamaterial based on hybrid metal-semiconductor nanowires

    CERN Document Server

    Paniagua-Dominguez, R; Sanchez-Gil, J A

    2012-01-01

    In the past few years, many of the fascinating and previously almost unconceivable properties predicted for those novel, artificial, man-made materials, so called metamaterials, were demonstrated to be not only a tangible reality, but a very useful one. However, plenty of the best achievements in that newly discovered field are far from having a direct translation to the, in many aspects more interesting, high frequency range, without being burdened not only by technological difficulties, but also conceptual ones. Of particular importance within the realm of optical metamaterials having a negative index of refraction, often designated negative-index metamaterials (NIM), is the issue of simultaneously achieving a strong response of the system and low associated losses. In the present work, we demonstrate the possibility to use hybrid metal-semiconductor nanowires to obtain an isotropic optical NIM, with very strong electric and magnetic responses, which exhibits extremely low losses (about two orders of magnit...

  2. Graph Structure-Based Simultaneous Localization and Mapping Using a Hybrid Method of 2D Laser Scan and Monocular Camera Image in Environments with Laser Scan Ambiguity.

    Science.gov (United States)

    Oh, Taekjun; Lee, Donghwa; Kim, Hyungjin; Myung, Hyun

    2015-07-03

    Localization is an essential issue for robot navigation, allowing the robot to perform tasks autonomously. However, in environments with laser scan ambiguity, such as long corridors, the conventional SLAM (simultaneous localization and mapping) algorithms exploiting a laser scanner may not estimate the robot pose robustly. To resolve this problem, we propose a novel localization approach based on a hybrid method incorporating a 2D laser scanner and a monocular camera in the framework of a graph structure-based SLAM. 3D coordinates of image feature points are acquired through the hybrid method, with the assumption that the wall is normal to the ground and vertically flat. However, this assumption can be relieved, because the subsequent feature matching process rejects the outliers on an inclined or non-flat wall. Through graph optimization with constraints generated by the hybrid method, the final robot pose is estimated. To verify the effectiveness of the proposed method, real experiments were conducted in an indoor environment with a long corridor. The experimental results were compared with those of the conventional GMappingapproach. The results demonstrate that it is possible to localize the robot in environments with laser scan ambiguity in real time, and the performance of the proposed method is superior to that of the conventional approach.

  3. Graph Structure-Based Simultaneous Localization and Mapping Using a Hybrid Method of 2D Laser Scan and Monocular Camera Image in Environments with Laser Scan Ambiguity

    Science.gov (United States)

    Oh, Taekjun; Lee, Donghwa; Kim, Hyungjin; Myung, Hyun

    2015-01-01

    Localization is an essential issue for robot navigation, allowing the robot to perform tasks autonomously. However, in environments with laser scan ambiguity, such as long corridors, the conventional SLAM (simultaneous localization and mapping) algorithms exploiting a laser scanner may not estimate the robot pose robustly. To resolve this problem, we propose a novel localization approach based on a hybrid method incorporating a 2D laser scanner and a monocular camera in the framework of a graph structure-based SLAM. 3D coordinates of image feature points are acquired through the hybrid method, with the assumption that the wall is normal to the ground and vertically flat. However, this assumption can be relieved, because the subsequent feature matching process rejects the outliers on an inclined or non-flat wall. Through graph optimization with constraints generated by the hybrid method, the final robot pose is estimated. To verify the effectiveness of the proposed method, real experiments were conducted in an indoor environment with a long corridor. The experimental results were compared with those of the conventional GMappingapproach. The results demonstrate that it is possible to localize the robot in environments with laser scan ambiguity in real time, and the performance of the proposed method is superior to that of the conventional approach. PMID:26151203

  4. Graph Structure-Based Simultaneous Localization and Mapping Using a Hybrid Method of 2D Laser Scan and Monocular Camera Image in Environments with Laser Scan Ambiguity

    Directory of Open Access Journals (Sweden)

    Taekjun Oh

    2015-07-01

    Full Text Available Localization is an essential issue for robot navigation, allowing the robot to perform tasks autonomously. However, in environments with laser scan ambiguity, such as long corridors, the conventional SLAM (simultaneous localization and mapping algorithms exploiting a laser scanner may not estimate the robot pose robustly. To resolve this problem, we propose a novel localization approach based on a hybrid method incorporating a 2D laser scanner and a monocular camera in the framework of a graph structure-based SLAM. 3D coordinates of image feature points are acquired through the hybrid method, with the assumption that the wall is normal to the ground and vertically flat. However, this assumption can be relieved, because the subsequent feature matching process rejects the outliers on an inclined or non-flat wall. Through graph optimization with constraints generated by the hybrid method, the final robot pose is estimated. To verify the effectiveness of the proposed method, real experiments were conducted in an indoor environment with a long corridor. The experimental results were compared with those of the conventional GMappingapproach. The results demonstrate that it is possible to localize the robot in environments with laser scan ambiguity in real time, and the performance of the proposed method is superior to that of the conventional approach.

  5. The 2D Hyperlink/Geocaching hybrid as a New Method for Improving Communication and Educational Delivery in Environmental Science

    Science.gov (United States)

    Graham, J.; Byrne, J. M.

    2009-12-01

    Geocaching is a game of hiding and locating caches (treasures), usually with the aid of a GPS-enabled device, and then posting the locations online for others to discover. Its remarkable success as a cultural phenomenon - transcending the traditional boundaries of age, gender, race and culture, while seamlessly combining the elements of technology, mental challenge, travel, geography, orienteering and entertainment - has been well documented. One would expect, therefore, that something so accessible and so physically, mentally and technologically engaging could also have great potential as an educational tool; specifically for the teaching of environmental science in situ. The attempts to date, however, have been disappointing. It will be the purpose of this poster to demonstrate a new and effective approach to educational environmental science-based geocaching; one which treats discreet elements of the living landscape as caches (rather than obstacles), and which combines several commonly available technologies so as to create a rich, immersive experience for viewers of many ages and backgrounds. Specifically, our poster will demonstrate how traditional geocaching methods can be dramatically improved, for the purposes of education, by combining it with 2D hyperlinking technologies in such a way as to allow the viewer to access a variety of different online and/or offline media elements - documentaries, texts, websites, animations, and images, while immersed in the physical environment to which they relate. It will be shown that this site-specific approach to environmental education has considerable potential for improving the meaningful dialogue between environmental scientists and the general public.

  6. Frequency Resource Sharing and Allocation Scheme Based on Coalition Formation Game in Hybrid D2D-Cellular Network

    Directory of Open Access Journals (Sweden)

    Qing Ou

    2015-01-01

    Full Text Available A distributed cooperation scheme on frequency resource sharing is proposed to improve the quality of service (QoS in device-to-device (D2D communications underlaying cellular networks. Specifically, we formulate the resource allocation problem as a coalition formation game with transferable utility, in which all users have the incentive to cooperate with some others and form a competitive group to maximize the probability of obtaining their favorite spectrum resources. Taking the cost for coalition formation into account, such as the path loss for data sharing, we prove that the core of the proposed game is empty, which shows the impossibility of grand coalition. Hence, we propose a distributed merge-and-split based coalition formation algorithm based on a new defined Max-Coalition order to effectively solve the coalition game. Compared with the exhaustive search, our algorithm has much lower computer complexity. In addition, we prove that stability and convergence of the proposed algorithm using the concept of a defection function. Finally, the simulation results show that the proposed scheme achieves a suboptimal performance in terms of network sum rate compared with the centralized optimal resource allocation scheme obtained via exhaustive search.

  7. Pixel readout ASIC for an APD based 2D X-ray hybrid pixel detector with sub-nanosecond resolution

    Energy Technology Data Exchange (ETDEWEB)

    Thil, Ch., E-mail: christophe.thil@ziti.uni-heidelberg.d [Heidelberg University, Institute of Computer Engineering, B6, 26, 68161 Mannheim (Germany); Baron, A.Q.R. [RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148 (Japan); Fajardo, P. [ESRF, Polygone Scientifique Louis Neel, 6, rue Jules Horowitz, 38000 Grenoble (France); Fischer, P. [Heidelberg University, Institute of Computer Engineering, B6, 26, 68161 Mannheim (Germany); Graafsma, H. [DESY, Notkestrasse 85, 22607 Hamburg (Germany); Rueffer, R. [ESRF, Polygone Scientifique Louis Neel, 6, rue Jules Horowitz, 38000 Grenoble (France)

    2011-02-01

    The fast response and the short recovery time of avalanche photodiodes (APDs) in linear mode make those devices ideal for direct X-ray detection in applications requiring high time resolution or counting rate. In order to provide position sensitivity, the XNAP project aims at creating a hybrid pixel detector with nanosecond time resolution based on a monolithic APD sensor array with 32 x32 pixels covering about 1 cm{sup 2} active area. The readout is implemented in a pixelated front-end ASIC suited for the readout of such arrays, matched to pixels of 280{mu}mx280{mu}m size. Every single channel features a fast transimpedance amplifier, a discriminator with locally adjustable threshold and two counters with high dynamic range and counting speed able to accumulate X-ray hits with no readout dead time. Additionally, the detector can be operated in list mode by time-stamping every single event with sub-nanosecond resolution. In a first phase of the project, a 4x4 pixel test module is built to validate the conceptual design of the detector. The XNAP project is briefly presented and the performance of the readout ASIC is discussed.

  8. 2D hybrid simulations of super-diffusion at the magnetopause driven by Kelvin-Helmholtz instability

    Energy Technology Data Exchange (ETDEWEB)

    Cowee, Misa M [Los Alamos National Laboratory; Winske, Dan [Los Alamos National Laboratory; Gary, S Peter [Los Alamos National Laboratory

    2009-01-01

    This manuscript describes the self-consistent simulation of diffusion at the magnetopause driven by Kelvin-Helmholtz (KH) instability. Two-dimensional hybrid (kinetic ions, fluid electrons) simulations of the most KH-unstable configuration where the shear flow is oriented perpendicular to the uniform magnetic field are carried out. The motion of the simulation particles are tracked during the run and their mean-square displacement normal to the magnetopause is calculated from which diffusion coefficients are determined. The diffusion coefficients are found to be time dependent, with D{sub x} {proportional_to} t{sup {alpha}}, where {alpha} > 1. Additionally, the probability distribution functions (PDF) of the 'jump lengths' the particles make over time are found to be non-gaussian. Such time-dependent diffusion coefficients and non-gaussian PDF's have been associated with so-called 'super-diffusion', in which diffusive mixing of particles is enhanced over classical diffusion. The results indicate that while turbulence associated with the break-down of vortices contributes to this enhanced diffusion, it is the growth of large-scale, coherent vortices is the more important process in facilitating it.

  9. Global SH-wave propagation in a 2D whole Moon model using the parallel hybrid PSM/FDM method

    Science.gov (United States)

    Jiang, Xianghua; Wang, Yanbin; Qin, Yanfang; Takenaka, Hiroshi

    2015-06-01

    We present numerical modeling of SH-wave propagation for the recently proposed whole Moon model and try to improve our understanding of lunar seismic wave propagation. We use a hybrid PSM/FDM method on staggered grids to solve the wave equations and implement the calculation on a parallel PC cluster to improve the computing efficiency. Features of global SH-wave propagation are firstly discussed for a 100-km shallow and 900-km deep moonquakes, respectively. Effects of frequency range and lateral variation of crust thickness are then investigated with various models. Our synthetic waveforms are finally compared with observed Apollo data to show the features of wave propagation that were produced by our model and those not reproduced by our models. Our numerical modeling show that the low-velocity upper crust plays significant role in the development of reverberating wave trains. Increasing frequency enhances the strength and duration of the reverberations. Surface multiples dominate wavefields for shallow event. Core-mantle reflections can be clearly identified for deep event at low frequency. The layered whole Moon model and the low-velocity upper crust produce the reverberating wave trains following each phases consistent with observation. However, more realistic Moon model should be considered in order to explain the strong and slow decay scattering between various phases shown on observation data.

  10. ZnO Nanorods on a LaAlO 3 -SrTiO 3 Interface: Hybrid 1D-2D Diodes with Engineered Electronic Properties

    KAUST Repository

    Bera, Ashok

    2015-12-28

    Integrating nanomaterials with different dimensionalities and properties is a versatile approach toward realizing new functionalities in advanced devices. Here, a novel diode-type heterostructure is reported consisting of 1D semiconducting ZnO nanorods and 2D metallic LaAlO3-SrTiO3 interface. Tunable insulator-to-metal transitions, absent in the individual components, are observed as a result of the competing temperature-dependent conduction mechanisms. Detailed transport analysis reveals direct tunneling at low bias, Fowler-Nordheim tunneling at high forward bias, and Zener breakdown at high reverse bias. Our results highlight the rich electronic properties of such artificial diodes with hybrid dimensionalities, and the design principle may be generalized to other nanomaterials. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. ZnO Nanorods on a LaAlO3 -SrTiO3 Interface: Hybrid 1D-2D Diodes with Engineered Electronic Properties.

    Science.gov (United States)

    Bera, Ashok; Lin, Weinan; Yao, Yingbang; Ding, Junfeng; Lourembam, James; Wu, Tom

    2016-02-10

    Integrating nanomaterials with different dimensionalities and properties is a versatile approach toward realizing new functionalities in advanced devices. Here, a novel diode-type heterostructure is reported consisting of 1D semiconducting ZnO nanorods and 2D metallic LaAlO3-SrTiO3 interface. Tunable insulator-to-metal transitions, absent in the individual components, are observed as a result of the competing temperature-dependent conduction mechanisms. Detailed transport analysis reveals direct tunneling at low bias, Fowler-Nordheim tunneling at high forward bias, and Zener breakdown at high reverse bias. Our results highlight the rich electronic properties of such artificial diodes with hybrid dimensionalities, and the design principle may be generalized to other nanomaterials.

  12. Strain-Gated Field Effect Transistor of a MoS2-ZnO 2D-1D Hybrid Structure.

    Science.gov (United States)

    Chen, Libo; Xue, Fei; Li, Xiaohui; Huang, Xin; Wang, Longfei; Kou, Jinzong; Wang, Zhong Lin

    2016-01-26

    Two-dimensional (2D) molybdenum disulfide (MoS2) is an exciting material due to its unique electrical, optical, and piezoelectric properties. Owing to an intrinsic band gap of 1.2-1.9 eV, monolayer or a-few-layer MoS2 is used for fabricating field effect transistors (FETs) with high electron mobility and on/off ratio. However, the traditional FETs are controlled by an externally supplied gate voltage, which may not be sensitive enough to directly interface with a mechanical stimulus for applications in electronic skin. Here we report a type of top-pressure/force-gated field effect transistors (PGFETs) based on a hybrid structure of a 2D MoS2 flake and 1D ZnO nanowire (NW) array. Once an external pressure is applied, the piezoelectric polarization charges created at the tips of ZnO NWs grown on MoS2 act as a gate voltage to tune/control the source-drain transport property in MoS2. At a 6.25 MPa applied stimulus on a packaged device, the source-drain current can be tuned for ∼25%, equivalent to the results of applying an extra -5 V back gate voltage. Another type of PGFET with a dielectric layer (Al2O3) sandwiched between MoS2 and ZnO also shows consistent results. A theoretical model is proposed to interpret the received data. This study sets the foundation for applying the 2D material-based FETs in the field of artificial intelligence.

  13. Solution of scattering from rough surface with a 2D target above it by a hybrid method based on the reciprocity theorem and the forward-backward method

    Institute of Scientific and Technical Information of China (English)

    Wang Yun-Hua; Zhang Yan-Min; He Ming-Xia; Guo Li-Xin

    2008-01-01

    This paper proposes a hybrid method based on the forward-backward method(FBM)and the reciprocity theorem(RT)for evaluating the scattering field from dielectric rough surface with a 2D target above it.Here,the equivalent electric/magnetic current densities on the rough surface as well as the scattering field from it are numerically calculated by FBM,and the scattered field from the isolated target is obtained utilizing the method of moments(MOM).Meanwhile,the rescattered coupling interactions between the target and the surface are evaluated employing the combination of FBM and RT.Our hybrid method is first validated by available MOM results.Then,the functional dependences of bistatic and monostatic scattering from the target above rough surface upon the target altitude,incident and scattering angles are numerically simulated and discussed.This study presents a numerical description for the scattering mechanism associated with rescattered coupling interactions between a target and an underlying randomly rough surface.

  14. Preparation, Characterization and Application of Mg(OH)2-PAM Inorganic-Organic Composite Polymer in Removing Reactive Dye

    OpenAIRE

    Khai Ern Lee; Norhashimah Morad; Tjoon Tow Teng; Beng Teik Poh

    2012-01-01

    In this study, a series of inorganic-organic composite polymer was prepared. Magnesium hydroxide and polyacrylamide was composed in a composite matrix to prepare Mg(OH)2-PAM (MHPAM) inorganic-organic composite polymer. The characteristics of MHPAM inorganic-organic composite polymer was investigated in terms of chemical, physical, physical, thermal and morphological properties through FT-IR, conductivity, intrinsic viscosity, TGA and TEM, respectively. Results showed that the properties of MH...

  15. Synchrotron radiation studies of inorganic-organic semiconductor interfaces

    CERN Document Server

    Evans, D A; Vearey-Roberts, A R; Bushell, A; Cabailh, G; O'Brien, S; Wells, J W; McGovern, I T; Dhanak, V R; Kampen, T U; Zahn, D R T; Batchelor, D

    2003-01-01

    Organic semiconductors (polymers and small molecules) are widely used in electronic and optoelectronic technologies. Many devices are based on multilayer structures where interfaces play a central role in device performance and where inorganic semiconductor models are inadequate. Synchrotron radiation techniques such as photoelectron spectroscopy (PES), near-edge X-ray absorption fine structure (NEXAFS) and X-ray standing wave spectroscopy (XSW) provide a powerful means of probing the structural, electronic and chemical properties of these interfaces. The surface-specificity of these techniques allows key properties to be monitored as the heterostructure is fabricated. This methodology has been directed at the growth of hybrid organic-inorganic semiconductor interfaces involving copper phthalocyanine as the model organic material and InSb and GaAs as the model inorganic semiconductor substrates. Core level PES has revealed that these interfaces are abrupt and chemically inert due to the weak bonding between t...

  16. A hybrid consisting of coordination polymer and noncovalent organic networks: a highly ordered 2-D phenol network assembled by edge-to-face pi-pi interactions.

    Science.gov (United States)

    Ko, Jung Woo; Min, Kil Sik; Suh, Myunghyun Paik

    2002-04-22

    A 2-D metal-organic open framework having 1-D channels, [Cu(C(10)H(26)N(6))](3)[C(6)H(3)(COO)(3)](2).18H(2)O (1), was constructed by the self-assembly of the Cu(II) complex of hexaazamacrocycle A (A = C(10)H(26)N(6)) with sodium 1,3,5-benzenetricarboxylate (BTC(3)(-)) in DMSO-H(2)O solution. 1 crystallizes in the trigonal space group P with a = b = 17.705(1) A, c = 6.940(1) A, alpha = beta = 90 degrees, gamma = 120 degrees, V = 1884.0(3) A(3), Z = 1, and rho(calcd) = 1.428 g cm(-3). The X-ray crystal structure of 1 indicates that each Cu(II) macrocyclic unit binds two BTC(3-) ions in a trans position and each BTC(3-) ion coordinates three Cu(II) macrocyclic complexes to form 2-D coordination polymer layers with honeycomb cavities (effective size 8.1 A), and the layers are packed to generate 1-D channels perpendicularly to the 2-D layers. Solid 1 binds guest molecules such as MeOH, EtOH, and PhOH with different binding constant and capacity. By the treatment of 1 with aqueous solution of phenol, a hybrid solid [Cu(C(10)H(26)N(6))](3)[C(6)H(3)(COO)(3)](2).9PhOH.6H(2)O (2) was assembled. 2 crystallizes in the trigonal R3 space group with a = b = 20.461(1) A, c = 24.159(1) A, alpha = beta = 90 degrees, gamma = 120 degrees, V = 8759.2(7) A(3), Z = 3, and rho(calcd) = 1.280 g cm(-3). In 2, highly ordered 2-D noncovalent phenol layers are formed by the edge-to-face pi-pi interactions between the phenol molecules and are alternately packed with the coordination polymer layers in the crystal lattice.

  17. Functioning of inorganic/organic battery separators in silver-zinc cells

    Science.gov (United States)

    Philipp, W. H.; May, C. E.

    1976-01-01

    The results of three experimental studies related to the inorganic/organic battery separator operating mechanism are described: saponification of the plasticizer, resistivity of the simulated separators, and zincate diffusion through the separators. The inorganic/organic separator appears to be a particular example of a general class of ionic conducting films composed of inorganic fillers and/or substrates bonded together by an organic polymer containing an incompatible plasticizer that may be leached by the electrolyte. The I/O separator functions as a microporous film of varying tortuosity with essentially no specific chemical inhibition to zincate diffusion.

  18. Charge transport in bottom-up inorganic-organic and quantum-coherent nanostructures

    NARCIS (Netherlands)

    Makarenko, K.S.

    2015-01-01

    This thesis is based on results obtained from experiments designed for a consistent study of charge transport in bottom-up inorganic-organic and quantum-coherent nanostructures. New unconventional ways to build elements of electrical circuits (like dielectrophoresis, wedging transfer and bottom-up

  19. Charge transport in bottom-up inorganic-organic and quantum-coherent nanostructures

    NARCIS (Netherlands)

    Makarenko, Ksenia Sergeevna

    2015-01-01

    This thesis is based on results obtained from experiments designed for a consistent study of charge transport in bottom-up inorganic-organic and quantum-coherent nanostructures. New unconventional ways to build elements of electrical circuits (like dielectrophoresis, wedging transfer and bottom-up f

  20. 3D assembly based on 2D structure of Cellulose Nanofibril/Graphene Oxide Hybrid Aerogel for Adsorptive Removal of Antibiotics in Water

    Science.gov (United States)

    Yao, Qiufang; Fan, Bitao; Xiong, Ye; Jin, Chunde; Sun, Qingfeng; Sheng, Chengmin

    2017-01-01

    Cellulose nanofibril/graphene oxide hybrid (CNF/GO) aerogel was fabricated via a one-step ultrasonication method for adsorptive removal of 21 kinds of antibiotics in water. The as-prepared CNF/GO aerogel possesses interconnected 3D network microstructure, in which GO nanosheets with 2D structure were intimately grown along CNF through hydrogen bonds. The aerogel exhibited superior adsorption capacity toward the antibiotics. The removal percentages (R%) of the antibiotics were more than 69% and the sequence of six categories antibiotics according to the adsorption efficiency was as follows: Tetracyclines > Quinolones > Sulfonamides > Chloramphenicols > β-Lactams > Macrolides. The adsorption mechanism was proposed to be electrostatic attraction, p-π interaction, π-π interaction and hydrogen bonds. In detail, the adsorption capacities of CNF/GO aerogel were 418.7 mg·g−1 for chloramphenicol, 291.8 mg·g−1 for macrolides, 128.3 mg·g−1 for quinolones, 230.7 mg·g−1 for β-Lactams, 227.3 mg·g−1 for sulfonamides, and 454.6 mg·g−1 for tetracyclines calculated by the Langmuir isotherm models. Furthermore, the regenerated aerogels still could be repeatedly used after ten cycles without obvious degradation of adsorption performance. PMID:28368045

  1. 3D assembly based on 2D structure of Cellulose Nanofibril/Graphene Oxide Hybrid Aerogel for Adsorptive Removal of Antibiotics in Water

    Science.gov (United States)

    Yao, Qiufang; Fan, Bitao; Xiong, Ye; Jin, Chunde; Sun, Qingfeng; Sheng, Chengmin

    2017-04-01

    Cellulose nanofibril/graphene oxide hybrid (CNF/GO) aerogel was fabricated via a one-step ultrasonication method for adsorptive removal of 21 kinds of antibiotics in water. The as-prepared CNF/GO aerogel possesses interconnected 3D network microstructure, in which GO nanosheets with 2D structure were intimately grown along CNF through hydrogen bonds. The aerogel exhibited superior adsorption capacity toward the antibiotics. The removal percentages (R%) of the antibiotics were more than 69% and the sequence of six categories antibiotics according to the adsorption efficiency was as follows: Tetracyclines > Quinolones > Sulfonamides > Chloramphenicols > β-Lactams > Macrolides. The adsorption mechanism was proposed to be electrostatic attraction, p-π interaction, π-π interaction and hydrogen bonds. In detail, the adsorption capacities of CNF/GO aerogel were 418.7 mg·g-1 for chloramphenicol, 291.8 mg·g-1 for macrolides, 128.3 mg·g-1 for quinolones, 230.7 mg·g-1 for β-Lactams, 227.3 mg·g-1 for sulfonamides, and 454.6 mg·g-1 for tetracyclines calculated by the Langmuir isotherm models. Furthermore, the regenerated aerogels still could be repeatedly used after ten cycles without obvious degradation of adsorption performance.

  2. Controllable synthesis of inorganic-organic Zn1-xCdxS-DETA solid solution nanoflowers and their enhanced visible-light photocatalytic hydrogen-production performance.

    Science.gov (United States)

    Lv, Jiali; Zhang, Jinfeng; Dai, Kai; Liang, Changhao; Zhu, Guangping; Wang, Zhongliao; Li, Zhen

    2017-08-29

    Sustainable photocatalytic hydrogen evolution (PHE) of water splitting has been utilized to solve the serious environmental pollution and energy shortage problems over the last decade. Inorganic-organic hybrid materials could combine the organic molecules and functional inorganic blocks into unique materials through complicated physical and chemical interactions. In this paper, diethylenetriamine (DETA) was used as an organic molecule template for the synthesis of inorganic-organic Zn1-xCdxS-DETA solid solution nanoflowers (NFs) at very low temperature. The obtained Zn0.2Cd0.8S-DETA NFs exhibited the highest H2 production rate (12 718 μmol g(-1) h(-1)), which is 1.75 times as high as that of CdS-DETA. The suitable conduction band potential and excellent visible-light absorption of Zn0.2Cd0.8S-DETA solid solution NFs are closely related to the excellent PHE activity. Furthermore, the calculation on the electronic structure provides a new understanding of the band-gap shifts of the Zn1-xCdxS-DETA solid solution hybrids and the design of novel structural photocatalysts.

  3. New polymer lithium secondary batteries based on ORMOCER (R) electrolytes-inorganic-organic polymers

    DEFF Research Database (Denmark)

    Popall, M.; Buestrich, R.; Semrau, G.

    2001-01-01

    Based on new plasticized inorganic-organic polymer electrolytes CM. Popall, M. Andrei, J. Kappel, J. Kron, K. Olma, B. Olsowski,'ORMOCERs as Inorganic-organic Electrolytes for New Solid State Lithium Batteries and Supercapacitors', Electrochim. Acta 43 (1998) 1155] new flexible foil-batteries...... electrolyte, typical for polymer electrolytes. Cycling tests (more than 900 cycles) proved that the unplasticized electrolyte can act as binder in composite cathodes of lithium secondary batteries [2]. Charge/discharge cycles of complete batteries like (Cu/active carbon/ORMOCER(R)/LiCoO2/Al) with an ORMOCER......(R) as separator electrolyte were measured. The voltage drop of these batteries is very similar to cells with standard liquid electrolytes and the efficiency is close to 100%. Cycling the batteries with a current density of 0.25 mA cm(-2) between the voltage limits of 3.1 and 4.1 V results in a charge...

  4. Chemistry and applications of inorganic-organic polymers : organically modified silicates

    OpenAIRE

    Schmidt, Helmut K.; Seiferling, Bernhard

    1986-01-01

    The conbination of inorganic polymeric networks with organic components leads ot inorganic-organic polymers. A convenient method for the introduction of organic radials into an inorganic backbone is the use of aorganosubstituted silico esters in a polycondensation process. This leads to ≡Si-O-Si≡ network containing materials, so-called organically modified silicates (ORMOSILs). For the synthesis of the inorganic backbone, in opposition to the high temperature preparation of non-me...

  5. Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells.

    Science.gov (United States)

    Jeon, Nam Joong; Noh, Jun Hong; Kim, Young Chan; Yang, Woon Seok; Ryu, Seungchan; Seok, Sang Il

    2014-09-01

    Organolead trihalide perovskite materials have been successfully used as light absorbers in efficient photovoltaic cells. Two different cell structures, based on mesoscopic metal oxides and planar heterojunctions have already demonstrated very impressive advances in performance. Here, we report a bilayer architecture comprising the key features of mesoscopic and planar structures obtained by a fully solution-based process. We used CH3NH3 Pb(I(1-x)Br(x))3 (x = 0.1-0.15) as the absorbing layer and poly(triarylamine) as a hole-transporting material. The use of a mixed solvent of γ-butyrolactone and dimethylsulphoxide (DMSO) followed by toluene drop-casting leads to extremely uniform and dense perovskite layers via a CH3NH3I-PbI2-DMSO intermediate phase, and enables the fabrication of remarkably improved solar cells with a certified power-conversion efficiency of 16.2% and no hysteresis. These results provide important progress towards the understanding of the role of solution-processing in the realization of low-cost and highly efficient perovskite solar cells.

  6. Preparation and Photochromic Behavior of Novel Hybrid Inorganic-Organic Thin Film

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A novel photochromic complex comprising of Keggin type tungstophosphate acid (PW12) and polyacrylamide (PAM) was prepared. FT-IR results showed that the Keggin geometry of PW12 was still preserved inside the composite, and a charge-transfer bridge was built between PW12 and PAM via hydrogen bond. AFM images indicated that surface topography of polymer matrix changed after adding PW12. Under UV irradiation, the film was reduced photochemically to yield a blue species, which was reversible in the present of oxygen in polymeric network.

  7. Inorganic-organic hybrids originating from organosilane anchored onto leached vermiculite

    Directory of Open Access Journals (Sweden)

    Ana P. M. Alves

    2013-01-01

    Full Text Available The reactivity of clay minerals leached in grafting reactions was investigated. Precursor solids were prepared by treating the sodium vermiculites with nitric acid solutions at several concentrations. The lixiviation produced the restructured porous solids with surface area over a wide range, varying from 133 to 673 m² g- 1. The sodium and lixiviated vermiculites reacted covalently with silylating agent, 3-aminopropyltrimethoxysilane, to attach this agent onto the inorganic surface, through the free available silanols. The products were characterized by CNH elemental analysis, infrared spectroscopy, X-ray diffraction, nuclear magnetic resonance in the solid state for carbon and silicon. CHN data expressed by significant contents of anchored organic chains, up to 2.14 mmol g- 1, as the degree of leaching was increased. The success of this investigation is directly related to the leaching of the natural vermiculite, which is strongly influenced by the reactivity of the abundant original source.

  8. Chiral hybrid inorganic-organic materials: synthesis, characterization, and application in stereoselective organocatalytic cycloadditions.

    Science.gov (United States)

    Puglisi, Alessandra; Benaglia, Maurizio; Annunziata, Rita; Chiroli, Valerio; Porta, Riccardo; Gervasini, Antonella

    2013-11-15

    The synthesis of chiral imidazolidinones on mesoporous silica nanoparticles, exploiting two different anchoring sites and two different linkers, is reported. Catalysts 1-4 were prepared starting from l-phenylalanine or l-tyrosine methyl esters and supporting the imidazolidinone onto silica by grafting protocols or azide-alkyne copper(I)-catalyzed cycloaddition. The four catalysts were fully characterized by solid-state NMR, N2 physisorption, SEM, and TGA in order to provide structural assessments, including an evaluation of surface areas, pore dimensions, and catalyst loading. They were used in organocatalyzed Diels-Alder cycloadditions between cyclopentadiene and different aldehydes, affording results comparable to those obtained with the nonsupported catalyst (up to 91% yield and 92% ee in the model reaction between cyclopentadiene and cinnamic aldehyde). The catalysts were recovered from the reaction mixture by simple filtration or centrifugation. The most active catalyst was recycled two times with some loss of catalytic efficiency and a small erosion of ee.

  9. Synthesis of hybrid inorganic/organic nitric oxide-releasing silica nanoparticles for biomedical applications

    Science.gov (United States)

    Carpenter, Alexis Wells

    Nitric oxide (NO) is an endogenously produced free radical involved in a number of physiological processes. Thus, much research has focused on developing scaffolds that store and deliver exogenous NO. Herein, the synthesis of N-diazeniumdiolate-modified silica nanoparticles of various physical and chemical properties for biomedical applications is presented. To further develop NO-releasing silica particles for antimicrobial applications, a reverse microemulsion synthesis was designed to achieve nanoparticles of distinct sizes and similar NO release characteristics. Decreasing scaffold size resulted in improved bactericidal activity against Pseudomonas aeruginosa. Confocal microscopy revealed that the improved efficacy resulted from faster particle-bacterium association kinetics. To broaden the therapeutic potential of NO-releasing silica particles, strategies to tune NO release characteristics were evaluated. Initially, surface hydrophobicity and NO release kinetics were tuned by grafting hydrocarbon- and fluorocarbon-based silanes onto the surface of N-diazeniumdiolate-modified particles. The addition of fluorocarbons resulted in a 10x increase in the NO release half-life. The addition of short-chained hydrocarbons to the particle surface increased their stability in hydrophobic electrospun polyurethanes. Although NO release kinetics were longer than that of unmodified particles, durations were still limited to resin composites yielded antibacterial NO-releasing dental restorative materials. A 3-log reduction in viable adhered Streptococcus mutans was observed with the MOM-Pip/NO-doped composites compared to undoped controls. The greater chemical flexibility of macromolecular scaffolds is a major advantage over LMW NO donors as it allows for the incorporation of multiple functionalities onto a single scaffold. To demonstrate this advantage, dual functional particles were synthesized by covalently binding quaternary ammonium (QA) functionalities to the surface of NO-releasing silica particles. The QA functionality proved more effective against Staphylococcus aureus than P. aeruginosa, and increasing alkyl chain length correlated with increased efficacy. Nitric oxide-releasing QA-functionalized particles were found to be more effective against S. aureus compared to monofunctional particles.

  10. Interface Engineering for Organic Electronics; Manufacturing of Hybrid Inorganic-Organic Molecular Crystal Devices

    NARCIS (Netherlands)

    de Veen, P.J.

    2011-01-01

    Organic semiconductors are at the basis of Organic Electronics. Objective of this dissertation is “to fabricate high-quality organic molecular single-crystal devices”, to explore the intrinsic properties of organic semiconductors. To achieve this, the in situ fabrication of complete field-effect

  11. Hydrothermal Synthesis and Characterization of Inorganic /Organic Hybrid Complex Containing Tungstophsphate

    Institute of Scientific and Technical Information of China (English)

    JIN Su-rong; ZHANG Lian-meng; LIU Shi-zhong; ZHAO Wei-feng

    2004-01-01

    A new complex [Cu(C12H8N2)2]1.5PW12O40·1.5H2O was synthesized under hydrothermal conditions. The complex was characterized by the elemental analysis, SEM, X-ray powder diffraction analysis, IR,UV-Vis spectroscopy,and TG thermal analysis,respectively. The experimental result shows that the heteropolyanion is of a Keggin structure containing coordinated cations. Photochromism studies show that the electron transfer takes place from the organic compound to the heteropolyanion.

  12. Fabrication and characterization of nanostructured titania films with integrated function from inorganic-organic hybrid materials.

    Science.gov (United States)

    Rawolle, Monika; Niedermeier, Martin A; Kaune, Gunar; Perlich, Jan; Lellig, Philipp; Memesa, Mine; Cheng, Ya-Jun; Gutmann, Jochen S; Müller-Buschbaum, Peter

    2012-08-07

    Nanostructured titania films are of growing interest due to their application in future photovoltaic technologies. Therefore, a lot of effort has been put into the controlled fabrication and tailoring of titania nanostructures. The controlled sol-gel synthesis of titania, in particular in combination with block copolymer templates, is very promising because of its high control on the nanostructure, easy application and cheap processing possibilities. This tutorial review gives a short overview of the structural control of titania films gained by using templated sol-gel chemistry and shows how this approach is extended by the addition of further functionality to the films. Different expansions of the sol-gel templating are possible by the fabrication of gradient samples, by the addition of a homopolymer, by the combination with micro-fluidics and also by the application of novel precursors for low-temperature processing. Moreover, hierarchically structured titania films can be fabricated via the subsequent application of several sol-gel steps or via the inclusion of colloidal templates in a one-step process. Integrated function in the block copolymer used in the sol-gel synthesis allows for the fabrication of an integrated blocking layer or an integrated hole-conductor. Both approaches grant a one-step fabrication of two components of a working solar cell, which make them very promising towards a cheap solar cell production route. Looking to the complete solar cell, the top contact is also of great importance as it influences the function of the whole solar cell. Thus, the mechanisms acting in the top contact formation are also reviewed. For all these aspects, characterization techniques that allow for a structural investigation of nanostructures inside the active layers are important. Therefore, the characterization techniques that are used in real space as well as in reciprocal space are explained shortly as well.

  13. Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells

    Science.gov (United States)

    Jeon, Nam Joong; Noh, Jun Hong; Kim, Young Chan; Yang, Woon Seok; Ryu, Seungchan; Seok, Sang Il

    2014-09-01

    Organolead trihalide perovskite materials have been successfully used as light absorbers in efficient photovoltaic cells. Two different cell structures, based on mesoscopic metal oxides and planar heterojunctions have already demonstrated very impressive advances in performance. Here, we report a bilayer architecture comprising the key features of mesoscopic and planar structures obtained by a fully solution-based process. We used CH3NH3 Pb(I1 - xBrx)3 (x = 0.1-0.15) as the absorbing layer and poly(triarylamine) as a hole-transporting material. The use of a mixed solvent of γ-butyrolactone and dimethylsulphoxide (DMSO) followed by toluene drop-casting leads to extremely uniform and dense perovskite layers via a CH3NH3I-PbI2-DMSO intermediate phase, and enables the fabrication of remarkably improved solar cells with a certified power-conversion efficiency of 16.2% and no hysteresis. These results provide important progress towards the understanding of the role of solution-processing in the realization of low-cost and highly efficient perovskite solar cells.

  14. Coal liquefaction in an inorganic-organic medium. [DOE patent application

    Science.gov (United States)

    Vermeulen, T.; Grens, E.A. II; Holten, R.R.

    Improved process for liquefaction of coal by contacting pulverized coal in an inorganic-organic medium solvent system containing a ZnCl/sub 2/ catalyst, a polar solvent with the structure RX where X is one of the elements O, N, S, or P, and R is hydrogen or a lower hydrocarbon radical; the solvent system can contain a hydrogen donor solvent (and must when RX is water) which is immiscible in the ZnCl/sub 2/ and is a hydroaromatic hydrocarbon selected from tetralin, dihydrophenanthrene, dihydroanthracene or a hydrogenated coal derived hydroaromatic hydrocarbon distillate fraction.

  15. Five inorganic–organic hybrids based on Keggin polyanion [SiMo{sub 12}O{sub 40}]{sup 4−}: From 0D to 2D network

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Xiao-Yang, E-mail: yangyangyu0103@sohu.com [Key Laboratory of Polyoxometalate Science of Education, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024 (China); Jilin Institute of Chemical Technology, Jilin City, Jilin 132022 (China); Cui, Xiao-Bing [College of Chemistry and State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, Jilin 130021 (China); Lu, Jing [Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059 (China); Luo, Yu-Hui [Key Laboratory of Polyoxometalate Science of Education, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024 (China); Zhang, Hong, E-mail: zhangh@nenu.edu.cn [Key Laboratory of Polyoxometalate Science of Education, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024 (China); Gao, Wei-Ping, E-mail: gwp1960@163.com [Jilin Institute of Chemical Technology, Jilin City, Jilin 132022 (China)

    2014-01-15

    Five new inorganic–organic hybrids based on 4,4′-bipyridine and Keggin-type polyoxometalate [SiMo{sub 12}O{sub 40}]{sup 4−}, (SiMo{sub 12}O{sub 40})(H{sub 2}bipy){sub 2}·2H{sub 2}O (1), [Cu(Hbipy){sub 4}(HSiMo{sub 12}O{sub 40})(SiMo{sub 12}O{sub 40})](H{sub 2}bipy){sub 0.5}·7H{sub 2}O (2), [Cu{sub 2}(Hbipy){sub 6}(bipy)(SiMo{sub 12}O{sub 40}){sub 3}](Hbipy){sub 2}·6H{sub 2}O (3), [Cu(bipy){sub 2}(SiMo{sub 12}O{sub 40})](H{sub 2}bipy)·2H{sub 2}O (4) and [Cu{sub 2}(bipy){sub 4}(H{sub 2}O){sub 4}](SiMo{sub 12}O{sub 40})·13H{sub 2}O (5) (bipy=4,4′-bipyridine), have been hydrothermally synthesized. 1 consists of H{sub 2}bipy{sup 2+} and [SiMo{sub 12}O{sub 40}]{sup 4−} units. In 2, two [SiMo{sub 12}O{sub 40}]{sup 4−} are bridged by [Cu(Hbipy){sub 4}]{sup 6+} to form a [Cu(Hbipy){sub 4}(SiMo{sub 12}O{sub 40}){sub 2}]{sup 2−} dimmer. In 3, [SiMo{sub 12}O{sub 40}]{sup 4−} polyanions acting as bidentated bridging ligands and monodentated auxiliary ligands connect [Cu{sub 2}(Hbipy){sub 6}(bipy)]{sup 8+} units into a 1D zigzag chain. In 4, [SiMo{sub 12}O{sub 40}]{sup 4−} polyanions bridge neighboring 1D [Cu(bipy){sub 2}]{sup 2+} double chains into a 2D extended layer. In 5, [SiMo{sub 12}O{sub 40}]{sup 4−} polyanions acting as templates site alternately upon the grids from both sides of the square grid [Cu{sub 2}(bipy){sub 4}(H{sub 2}O){sub 4}]{sup 4+} layer. In addition, the electrochemical behaviors of 1, 3 and 4 and the photocatalysis property of 1 have been investigated. - Graphical abstract: Five new compounds based on [SiMo{sub 12}O{sub 40}]{sup 4−} have been successfully generated. [SiMo{sub 12}O{sub 40}]{sup 4−} anions play different roles in the structures of the five compounds. Display Omitted - Highlights: • Five new compounds based on [SiMo{sub 12}O{sub 40}]{sup 4−} have been generated. • [SiMo{sub 12}O{sub 40}]{sup 4−} anions play different roles in the five structures. • The electrochemical behaviors of 1, 3 and 4 have been

  16. Preparation, Characterization and Application of Mg(OH2-PAM Inorganic-Organic Composite Polymer in Removing Reactive Dye

    Directory of Open Access Journals (Sweden)

    Khai Ern Lee

    2012-01-01

    Full Text Available In this study, a series of inorganic-organic composite polymer was prepared. Magnesium hydroxide and polyacrylamide was composed in a composite matrix to prepare Mg(OH2-PAM (MHPAM inorganic-organic composite polymer. The characteristics of MHPAM inorganic-organic composite polymer was investigated in terms of chemical, physical, physical, thermal and morphological properties through FT-IR, conductivity, intrinsic viscosity, TGA and TEM, respectively. Results showed that the properties of MHPAM composite polymers varied with the compositions in the composite polymers. Different compositions of MHPAM inorganic-organic composite polymers were applied in removing reactive dye from aqueous solution. MHPAM inorganic-organic composite polymer with Mg(OH2 : PAM ratio of 90 : 10 gave the best dye removal (% where it was able to remove 98% of reactive dye at pH 11.00 with a dosage of 500 mg/L. Kinetics study was carried out using different dye concentration and it was found that the experimental data fitted the pseudo-second-order model better compared to pseudo-first-order model.

  17. Metal-inorganic-organic matrices as efficient sorbents for hydrogen storage.

    Science.gov (United States)

    Azzouz, Abdelkrim; Nousir, Saadia; Bouazizi, Nabil; Roy, René

    2015-03-01

    Stabilization of metal nanoparticles (MNPs) without re-aggregation is a major challenge. An unprecedented strategy is developed for achieving high dispersion of copper(0) or palladium(0) on montmorillonite-supported diethanolamine or thioglycerol. This results in novel metal-inorganic-organic matrices (MIOM) that readily capture hydrogen at ambient conditions, with easy release under air stream. Hydrogen retention appears to involve mainly physical interactions, slightly stronger on thioglycerol-based MIOM (S-MIOM). Thermal enhancement of desorption suggests also a contribution of chemical interactions. The increase of hydrogen uptake with prolonged contact times arises from diffusion hindrance, which appears to be beneficial by favoring hydrogen entrapment. Even with compact structures, MIOMs act as efficient sorbents with much higher efficiency factor (1.14-1.17 mmol H 2 m(-2)) than many other sophisticated adsorbents reported in the literature. This opens new prospects for hydrogen storage and potential applications in microfluidic hydrogenation reactions.

  18. Electron spin and the origin of Bio-homochirality II. Prebiotic inorganic-organic reaction model

    CERN Document Server

    Wang, Wei

    2014-01-01

    The emergence of biomolecular homochirality is a critically important question about life phenomenon and the origins of life. In a previous paper (arXiv:1309.1229), I tentatively put forward a new hypothesis that the emergence of a single chiral form of biomolecules in living organisms is specifically determined by the electron spin state during their enzyme-catalyzed synthesis processes. However, how a homochirality world of biomolecules could have formed in the absence of enzymatic networks before the origins of life remains unanswered. Here I discussed the electron spin properties in Fe3S4, ZnS, and transition metal doped dilute magnetic ZnS, and their possible roles in the prebiotic synthesis of chiral molecules. Since the existence of these minerals in hydrothermal vent systems is matter of fact, the suggested prebiotic inorganic-organic reaction model, if can be experimentally demonstrated, may help explain where and how life originated on early Earth.

  19. Investigation of kinetics and thermodynamics of DNA hybridization by means of 2-D fluorescence spectroscopy and soft/hard modeling techniques

    Energy Technology Data Exchange (ETDEWEB)

    Ebrahimi, Sara; Kompany-Zareh, Mohsen, E-mail: kmpz@dr.com

    2016-02-04

    Reversible hybridization reaction plays a key role in fundamental biological processes, in many laboratory techniques, and also in DNA based sensing devices. Comprehensive investigation of this process is, therefore, essential for the development of more sophisticated applications. Kinetics and thermodynamics of the hybridization reaction, as a second order process, are systematically investigated with the aid of the soft and hard chemometric methods. Labeling two complementary 21 mer DNA single strands with FAM and Texas red fluorophores, enabled recording of the florescence excitation−emission matrices during the experiments which led to three-way data sets. The presence of fluorescence resonance energy transfer in excitation and emission modes and the closure in concentration mode, made the three-way data arrays rank deficient. To acquire primary chemical information, restricted Tucker3 as a soft method was employed. Herein a model-based method, hard restricted trilinear decomposition, is introduced for in depth analysis of rank deficient three-way data sets. By employing proposed hard method, the nonlinear model parameters as well as the correct profiles could be estimated. In addition, a simple constraint is presented to extract chemically reasonable output profiles regarding the core elements of restricted Tucker3 model. - Highlights: • Hard restricted trilinear decomposition (HrTD) was introduced for model-based analysis of three-way rank deficient data. • DNA hybridization was investigated by two-dimensional fluorescence spectroscopy and soft/hard multi-way techniques. • Restricted Tucker3 analysis enabled accurate estimation of pure FRET profiles in the hybridized form. • HrTD was successfully employed to estimate kinetic and equilibrium parameters of DNA hybridization system. • The performance of the proposed methods in response to different physical stimuli was successfully evaluated.

  20. Investigation of kinetics and thermodynamics of DNA hybridization by means of 2-D fluorescence spectroscopy and soft/hard modeling techniques.

    Science.gov (United States)

    Ebrahimi, Sara; Kompany-Zareh, Mohsen

    2016-02-01

    Reversible hybridization reaction plays a key role in fundamental biological processes, in many laboratory techniques, and also in DNA based sensing devices. Comprehensive investigation of this process is, therefore, essential for the development of more sophisticated applications. Kinetics and thermodynamics of the hybridization reaction, as a second order process, are systematically investigated with the aid of the soft and hard chemometric methods. Labeling two complementary 21 mer DNA single strands with FAM and Texas red fluorophores, enabled recording of the florescence excitation-emission matrices during the experiments which led to three-way data sets. The presence of fluorescence resonance energy transfer in excitation and emission modes and the closure in concentration mode, made the three-way data arrays rank deficient. To acquire primary chemical information, restricted Tucker3 as a soft method was employed. Herein a model-based method, hard restricted trilinear decomposition, is introduced for in depth analysis of rank deficient three-way data sets. By employing proposed hard method, the nonlinear model parameters as well as the correct profiles could be estimated. In addition, a simple constraint is presented to extract chemically reasonable output profiles regarding the core elements of restricted Tucker3 model.

  1. Syntheses, structures and properties of two 2-D layered hybrid organic-inorganic materials based on different V4O12 building units.

    Science.gov (United States)

    Hou, Wentao; Guo, Jiuyu; Xu, Xiao; Wang, Zuoxiang; Zhang, Deng; Wan, Hongxiang; Song, You; Zhu, Dunru; Xu, Yan

    2014-01-14

    Two new layered hybrid organic-inorganic compounds [Zn(pyim)]2V4O12 () (pyim = 2-(2-pyridyl)imidazole) and [Cu(bim)2]2V4O12(H2O)·CH3CH2OH () (bim = bis(1-imidazolyl)methane) based on polyoxovanadates (POVs) and organic ligands decorated transition metal units have been synthesized by hydrothermal and solvothermal methods respectively. Single crystal XRD, fluorescence spectrum, magnetic measurement, IR spectra, powder XRD and thermogravimetric (TG) measurements were performed to analyze the structures and properties of and . The structural analysis reveals that compound features a two-dimensional {[Zn(pyim)]2V4O12}n layered structure, constructed by sine wave-like {V4O12}n(4n-) chains, Zn(2+) ions and pyim ligands. In the layered structure of , {V4O12}(4-) circles are connected by Cu(2+) ions to form {Cu(V4O12)}n(2n-) chains, which are further linked by {Cu(bim)4}(2+) subunits to generate a hybrid layer of . The magnetic susceptibility measurement indicates strong antiferromagnetic interactions between Cu(2+) ions in .

  2. Development of a Generalized Version of the Poisson-Nernst-Planck Equations Using the Hybrid Mixture Theory: Presentation of 2D Numerical Examples

    DEFF Research Database (Denmark)

    Johannesson, Björn

    2010-01-01

    A numerical scheme for the transient solution of generalized version of the Poisson-Nernst-Planck equations is presented. The finite element method is used to establish the coupled non-linear matrix system of equations capable of solving the present problem iteratively. The Poisson-Nernst-Planck ......A numerical scheme for the transient solution of generalized version of the Poisson-Nernst-Planck equations is presented. The finite element method is used to establish the coupled non-linear matrix system of equations capable of solving the present problem iteratively. The Poisson......, however, coupled in both directions. The governed set of equations is derived from a simplified version of the so-called hybrid mixture theory (HMT). This theory is a special version of the more ‘classical’ continuum mixture theories in the sense that it works with averaged equations at macro...

  3. A hybrid pressure-density-based Mach uniform algorithm for 2D Euler equations on unstructured grids by using multi-moment finite volume method

    Science.gov (United States)

    Xie, Bin; Deng, Xi; Sun, Ziyao; Xiao, Feng

    2017-04-01

    We propose a novel Mach-uniform numerical model for 2D Euler equations on unstructured grids by using multi-moment finite volume method. The model integrates two key components newly developed to solve compressible flows on unstructured grids with improved accuracy and robustness. A new variant of AUSM scheme, so-called AUSM+-pcp (AUSM+ with pressure-correction projection), has been devised including a pressure-correction projection to the AUSM+ flux splitting, which maintains the exact numerical conservativeness and works well for all Mach numbers. A novel 3th-order, non-oscillatory and less-dissipative reconstruction has been proposed by introducing a multi-dimensional limiting and a BVD (boundary variation diminishing) treatment to the VPM (volume integrated average (VIA) and point value (PV) based multi-moment) reconstruction. The resulting reconstruction scheme, the limited VPM-BVD formulation, is able to resolve both smooth and non-smooth solutions with high fidelity. Benchmark tests have been used to verify the present model. The numerical results substantiate the present model as an accurate and robust unstructured-grid formulation for flows of all Mach numbers.

  4. In situ intercalation dynamics in inorganic-organic layered perovskite thin films.

    Science.gov (United States)

    Ahmad, Shahab; Kanaujia, Pawan K; Niu, Wendy; Baumberg, Jeremy J; Vijaya Prakash, G

    2014-07-09

    The properties of layered inorganic semiconductors can be manipulated by the insertion of foreign molecular species via a process known as intercalation. In the present study, we investigate the phenomenon of organic moiety (R-NH3I) intercalation in layered metal-halide (PbI2)-based inorganic semiconductors, leading to the formation of inorganic-organic (IO) perovskites [(R-NH3)2PbI4]. During this intercalation strong resonant exciton optical transitions are created, enabling study of the dynamics of this process. Simultaneous in situ photoluminescence (PL) and transmission measurements are used to track the structural and exciton evolution. On the basis of the experimental observations, a model is proposed which explains the process of IO perovskite formation during intercalation of the organic moiety through the inorganic semiconductor layers. The interplay between precursor film thickness and organic solution concentration/solvent highlights the role of van der Waals interactions between the layers, as well as the need for maintaining stoichiometry during intercalation. Nucleation and growth occurring during intercalation matches a Johnson-Mehl-Avrami-Kolmogorov model, with results fitting both ideal and nonideal cases.

  5. Environmental applications of inorganic-organic clays for recalcitrant organic pollutants removal: Bisphenol A.

    Science.gov (United States)

    Rathnayake, Suramya I; Xi, Yunfei; Frost, Ray L; Ayoko, Godwin A

    2016-05-15

    Bisphenol-A (BPA) adsorption onto inorganic-organic clays (IOCs) was investigated. For this purpose, IOCs synthesised using octadecyltrimethylammonium bromide (ODTMA, organic modifier) and hydroxy aluminium (Al13, inorganic modifier) were used. Three intercalation methods were employed with varying ODTMA concentration in the synthesis of IOCs. Molecular interactions of clay surfaces with ODTMA and Al13 and their arrangements within the interlayers were determined using Fourier transform infrared spectroscopy (FTIR). Surface area and porous structure of IOCs were determined by applying Brunauer, Emmett, and Teller (BET) method to N2 adsorption-desorption isotherms. Surface area decreased upon ODTMA intercalation while it increased with Al13 pillaring. As a result, BET specific surface area of IOCs was considerably higher than those of organoclays. Initial concentration of BPA, contact time and adsorbent dose significantly affected BPA adsorption into IOCs. Pseudo-second order kinetics model is the best fit for BPA adsorption into IOCs. Both Langmuir and Freundlich adsorption isotherms were applicable for BPA adsorption (R(2)>0.91) for IOCs. Langmuir maximum adsorption capacity for IOCs was as high as 109.89mgg(-1) and it was closely related to the loaded ODTMA amount into the clay. Hydrophobic interactions between long alkyl chains of ODTMA and BPA are responsible for BPA adsorption into IOCs.

  6. New inorganic/organic copolymers (ORMOCER{reg_sign}s) for dental applications

    Energy Technology Data Exchange (ETDEWEB)

    Wolter, H.; Storch, W. [Fraunhofer-Inst. fuer Silicatforschung, Wuerzburg (Germany); Ott, H. [Blendax GmbH, Mainz (Germany)

    1994-12-31

    Urethane and thioether (meth)acrylate alkoxysilanes have been used, as sol-gel precursors, for the preparation of a special family of inorganic/organic copolymers (ORMOCER{reg_sign}s). The basic silane type offers the following structural and synthetic possibilities for modifying the properties of the resulting copolymers: variation of the number of alkoxy groups, combination with other, different, sol-gel precursors, variation of the number of attached (meth)acrylate groups (1--5), and variation within the molecular segment (kind, structure and length) connecting the inorganic with the organic polymer structure. To achieve the additional organic polymer structure in the cured copolymer the use of different radically induced polymerization approaches (UV-, visible light-, thermal- and redox induced) is possible. Taking the incorporation of fillers into account, the Young`s modulus of these copolymers is adjustable in a range of 1--17,000 MPa, and the thermal expansion coefficient in a range of 17--250{center_dot}10{sup {minus}6}{center_dot}K{sup {minus}1} (5--50 C). Other advantages are the low shrinkage (1--2,8 vol.-%), the high flexural strength (up to 160 MPa), and the high abrasion resistance. This new copolymer type seems to have significant potential for medical applications, especially as dental filling material to replace the currently used controversial amalgam fillings.

  7. Plasma beta dependence of the ion-scale spectral break of solar wind turbulence: high-resolution 2D hybrid simulations

    CERN Document Server

    Franci, Luca; Matteini, Lorenzo; Verdini, Andrea; Hellinger, Petr

    2016-01-01

    We investigate properties of the ion-scale spectral break of solar wind turbulence by means of two-dimensional high-resolution hybrid particle-in-cell simulations. We impose an initial ambient magnetic field perpendicular to the simulation box and add a spectrum of in-plane, large-scale, magnetic and kinetic fluctuations. We perform a set of simulations with different values of the plasma beta, distributed over three orders of magnitude, from 0.01 to 10. In all the cases, once turbulence is fully developed, we observe a power-law spectrum of the fluctuating magnetic field on large scales (in the inertial range) with a spectral index close to -5/3, while in the sub-ion range we observe another power-law spectrum with a spectral index systematically varying with $\\beta$ (from around -3.6 for small values to around -2.9 for large ones). The two ranges are separated by a spectral break around ion scales. The length scale at which this transition occurs is found to be proportional to the ion inertial length, $d_i$...

  8. 一种新颖有机/无机杂化配位聚合物[(C7H18N)(Ag2I3)]n的合成、结构及量子化学计算%Novel Inorganic-Organic Hybrid Coordination Polymer [(C7H18N)(Ag2I3)]n: Synthesis, Crystallographic Structure and Quantum Chemistry Calculation

    Institute of Scientific and Technical Information of China (English)

    李浩宏; 陈之荣; 黄长沧; 肖光参; 李俊篯; 张文选

    2005-01-01

    A one dimensional coordination polymer, [(C7H18N)(Ag2I3)]n((C7H18N)+=Methyltriethylammonium) has been successfully synthesized and characterized by X-ray single-crystal diffraction method. Structure analysis shows that the compound consists of organic cations(Methyltriethylammonium) and inorganic anion chains (Ag2I3)n-.The inorganic moiety consists of AgI4 tetrahedron, which shares the same edges with adjacent AgI4 tetrahedrons to the crystal. Anion chains are surrounded by Methyltriethylammonium cations. Anion chains and cations are in combination with each other by static attracting forces in the crystal to form so-called organic-inorganic hybrid structure. According to the crystal structure data, quantum chemistry calculation with DFT on B3LYP level was used to reveal the electronic structure of title compound. CCDC: 254288.

  9. Applications of synchrotron infrared microspectroscopy to the study of inorganic-organic interactions at the bacterial-mineral interface

    Energy Technology Data Exchange (ETDEWEB)

    Holman, H.Y.N.; Perry, D.L.; Martin, M.C.; McKinney, W.R. [Lawrence Berkeley National Lab., CA (United States)

    1998-12-31

    Synchrotron microspectroscopy has been used to study the inorganic-organic interactions in the mid-infrared region (4,000-400 cm{sup {minus}1}) as Arthrobacter oxydans attach themselves to magnetite surfaces. Relative band intensities and band intensity ratios for functional groups of organically-derived biological molecules that are inherent to the experimental system are discussed. The molecular components as they are perturbed by interactions with water, dichromate and chromate metal ions on the mineral surfaces are investigated. Mapping of the spectral markers for the inorganic-organic interactions at the biological-mineral interfaces is presented and discussed. Comparative analyses of the synchrotron infrared microspectra suggest that the bacterial-chromium interactions depend on the solubility and toxicity of the chromium compounds.

  10. A combined particle trap/HTDMA hygroscopicity study of mixed inorganic/organic aerosol particles

    Science.gov (United States)

    Zardini, A. A.; Sjogren, S.; Marcolli, C.; Krieger, U. K.; Gysel, M.; Weingartner, E.; Baltensperger, U.; Peter, T.

    2008-09-01

    Atmospheric aerosols are often mixtures of inorganic and organic material. Organics can represent a large fraction of the total aerosol mass and are comprised of water-soluble and insoluble compounds. Increasing attention was paid in the last decade to the capability of mixed inorganic/organic aerosol particles to take up water (hygroscopicity). We performed hygroscopicity measurements of internally mixed particles containing ammonium sulfate and carboxylic acids (citric, glutaric, adipic acid) in parallel with an electrodynamic balance (EDB) and a hygroscopicity tandem differential mobility analyzer (HTDMA). The organic compounds were chosen to represent three distinct physical states. During hygroscopicity cycles covering hydration and dehydration measured by the EDB and the HTDMA, pure citric acid remained always liquid, adipic acid remained always solid, while glutaric acid could be either. We show that the hygroscopicity of mixtures of the above compounds is well described by the Zdanovskii-Stokes-Robinson (ZSR) relationship as long as the two-component particle is completely liquid in the ammonium sulfate/glutaric acid system; deviations up to 10% in mass growth factor (corresponding to deviations up to 3.5% in size growth factor) are observed for the ammonium sulfate/citric acid 1:1 mixture at 80% RH. We observe even more significant discrepancies compared to what is expected from bulk thermodynamics when a solid component is present. We explain this in terms of a complex morphology resulting from the crystallization process leading to veins, pores, and grain boundaries which allow for water sorption in excess of bulk thermodynamic predictions caused by the inverse Kelvin effect on concave surfaces.

  11. Enhanced charge separation by sieve-layer mediation in high-efficiency inorganic-organic solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Chien-Hung; Lee, Jiun-Haw [Graduate Institute of Photonics and Optoelectronics and Department of Electrical Engineering, National Taiwan University, Taipei (China); Chattopadhyay, Surojit [Institute of Biophotonics, National Yang Ming University, Taipei (China); Hsu, Chia-Wen; Hwang, Jih-Shang [Institute of Optoelectronic Sciences, National Taiwan Ocean University, Keelung (China); Wu, Meng-Hsiu; Chen, Wei-Chao [Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei (China); Wu, Chien-Ting; Tseng, Shao-Chin; Chen, Chun-Wei [Department of Material Science and Engineering, National Taiwan University, Taipei (China); Chen, Cheng-Hsuan; Chen, Li-Chyong [Center for Condensed Matter Sciences, National Taiwan University, Taipei (China); Chen, Kuei-Hsien [Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei (China); Center for Condensed Matter Sciences, National Taiwan University, Taipei (China)

    2009-02-16

    The introduction of a thin electronic sieve layer of a material with a wide bandgap, such as lithium fluoride (LiF) or silicon oxide (SiO{sub x}), at the inorganic-organic interface of an organic photovoltaic device enhances the charge separation and improves the efficiency by more than an order to a maximum of 6.04%. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  12. Hybrid Organic/Inorganic Nanocomposites for Photovoltaic Cells

    Directory of Open Access Journals (Sweden)

    Ruchuan Liu

    2014-04-01

    Full Text Available Inorganic/organic hybrid solar cells have attracted a lot of interest due to their potential in combining the advantages of both components. To understand the key issues in association with photoinduced charge separation/transportation processes and to improve overall power conversion efficiency, various combinations with nanostructures of hybrid systems have been investigated. Here, we briefly review the structures of hybrid nanocomposites studied so far, and attempt to associate the power conversion efficiency with these nanostructures. Subsequently, we are then able to summarize the factors for optimizing the performance of inorganic/organic hybrid solar cells.

  13. Hybrid Organic/Inorganic Nanocomposites for Photovoltaic Cells.

    Science.gov (United States)

    Liu, Ruchuan

    2014-04-02

    Inorganic/organic hybrid solar cells have attracted a lot of interest due to their potential in combining the advantages of both components. To understand the key issues in association with photoinduced charge separation/transportation processes and to improve overall power conversion efficiency, various combinations with nanostructures of hybrid systems have been investigated. Here, we briefly review the structures of hybrid nanocomposites studied so far, and attempt to associate the power conversion efficiency with these nanostructures. Subsequently, we are then able to summarize the factors for optimizing the performance of inorganic/organic hybrid solar cells.

  14. Synthesis and characterization of two novel inorganic/organic hybrid materials based on polyoxomolybdate clusters: (C5H5N5)2(C5H6N5)4[(HAsO4)2Mo6O18]·11H2O and Na2(Himi)3[SeMo6O21(CH3COO)3]·6H2O

    Science.gov (United States)

    Ayed, Meriem; Mestiri, Imen; Ayed, Brahim; Haddad, Amor

    2017-01-01

    Two new organic-inorganic hybrid compound, (C5H5N5)2(C5H6N5)4[(HAsO4)2Mo6O18]·11H2O (I) and Na2(Himi)3[SeMo6O21(CH3COO)3]·6H2O (II) were synthesized and structurally characterized by scanning electron microscopy (SEM), elemental analyses, FTIR, UV spectroscopy, thermal stability analysis, XRD and single crystal X-ray diffraction. Crystal data: (I) triclinic system, space group P-1, a = 11,217 (9) Å, b = 11,637 (8) Å, c = 14,919 (8) Å, α = 70,90 (5)°, β = 70,83 (2)°, γ = 62,00(1)° and Z = 1; (II) triclinic system, space group P-1, a = 10.6740(1) Å, b = 10.6740(1) Å, c = 20.0570(1) Å, α = 76.285(1)°, β = 82.198(2)°, γ = 87.075(1)°, Z = 1. The crystal structure of (I) can be described by infinite polyanions [(HAsO4)2Mo6O18]4- organized with water molecules in layers parallel to the c-direction; adjacent layers are further joined up by hydrogen bonding interactions with organic groups which were associated in chains spreading along the b-direction. The structure of (II) consists of functionalized selenomolybdate clusters [SeMo6O21(CH3COO)3]5-, protonated imidazole cations, sodium ions and lattice water molecules, which are held together to generate a three-dimensional supramolecular network via hydrogen-bonding interaction. Furthermore, the electrochemical properties of these compounds have been studied.

  15. Crystal structures and spectral properties of two polyoxometalate-based inorganic-organic compounds from silver-azine building blocks with bis-bidentate and tridentate ligands

    Science.gov (United States)

    An, Bing; Zhou, Rui-Min; Sun, Li; Bai, Yan; Dang, Dong-Bin

    2014-07-01

    Two polyoxometalate-based inorganic-organic hybrid compounds constructed from silver(I)-L species and saturated Keggin type polyoxoanion, [Ag2L21]2(SiMo12O40)·1.5DMF·0.5CH3OHṡH2O 1 and [{Ag4L22(DMF)5}(SiMo12O40)] 2 (L1 = phenyl 2-pyridyl ketone azine, L2 = 3-phenyltriazolo[1,5-a]pyridine), have been synthesized and structurally characterized by IR, UV, elemental analysis, XRPD and complete single crystal structure analyses, where the ligands L1 and L2 are bis-bidentate and tridentate azines synthesized with the same materials under different conditions. The structure of 1 exhibits a dinuclear double-helicate with [SiMo12O40]4- anions as counter ions, where all of the Ag centers coordinate to bis-bidentate chelating ligands. Compound 2 displays a two-dimensional sheet formed by the Ag-organic infinite chains and the [SiMo12O40]4- alternately arranged in a “rail-like” fashion. The luminescent properties of 1 and 2 in the solid state were investigated.

  16. Crystal structures and spectral properties of two polyoxometalate-based inorganic-organic compounds from silver-azine building blocks with bis-bidentate and tridentate ligands.

    Science.gov (United States)

    An, Bing; Zhou, Rui-Min; Sun, Li; Bai, Yan; Dang, Dong-Bin

    2014-07-15

    Two polyoxometalate-based inorganic-organic hybrid compounds constructed from silver(I)-L species and saturated Keggin type polyoxoanion, [Ag2L2(1)]2(SiMo12O40)·1.5DMF·0.5CH3OH⋅H2O 1 and [{Ag4L2(2)(DMF)5}(SiMo12O40)] 2 (L(1) = phenyl 2-pyridyl ketone azine, L(2) = 3-phenyltriazolo[1,5-a]pyridine), have been synthesized and structurally characterized by IR, UV, elemental analysis, XRPD and complete single crystal structure analyses, where the ligands L(1) and L(2) are bis-bidentate and tridentate azines synthesized with the same materials under different conditions. The structure of 1 exhibits a dinuclear double-helicate with [SiMo12O40](4)(-) anions as counter ions, where all of the Ag centers coordinate to bis-bidentate chelating ligands. Compound 2 displays a two-dimensional sheet formed by the Ag-organic infinite chains and the [SiMo12O40](4)(-) alternately arranged in a "rail-like" fashion. The luminescent properties of 1 and 2 in the solid state were investigated. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Effect of organic chain length on structure, electronic composition, lattice potential energy, and optical properties of 2D hybrid perovskites [(NH3)(CH2) n (NH3)]CuCl4, n = 2-9

    Science.gov (United States)

    Abdel-Aal, Seham K.; Kocher-Oberlehner, Gudrun; Ionov, Andrei; Mozhchil, R. N.

    2017-08-01

    Diammonium series of Cu hybrid perovskites of the formula [(NH3)(CH2) n (NH3)]CuCl4, n = 6-9 are prepared from an ethanolic solution in stoichiometric ratio 1:1 (organic/inorganic). Formation of the desired material was confirmed and characterizes by microchemical analysis, FTIR, XRD and XPS spectra. The structure consists of corner-shared octahedron [CuCl4]2- anion alternative by organic [(NH3)(CH2) n (NH3)]2+ cations. The organic and inorganic layers form infinite 2D sheet that are connected via NH···Cl hydrogen bond. The calculated lattice potential energy U pot (kJ/mol) and lattice enthalpy Δ H L (kJ/mol) are inversely proportional to the molecular volume V m (nm3) and organic chain length. Optical properties show strong absorption peak at UV-visible range. The band gap energy calculated using Kubelka-Munk equation shows the decrease of the energy gap as organic chain length increases. The introduction of bromide ion to [(NH3)(CH2) n (NH3)]CuCl2Br2 denoted 2C7CuCB hybrid has shifted the energy gap to lower values from 2.6 to 2.18 eV for 2C7CuCl (yellow) and 2C7CuCB (brown), respectively, at the same organic chain length. All elements of [(NH3)(CH2)9(NH3)]CuCl4 and [(NH3)(CH2)7(NH3)]CuCl2Br2 were found in XPS spectra, as well as valence band spectra.

  18. A high specific capacity membraneless aluminum-air cell operated with an inorganic/organic hybrid electrolyte

    Science.gov (United States)

    Chen, Binbin; Leung, Dennis Y. C.; Xuan, Jin; Wang, Huizhi

    2016-12-01

    Aluminum-air cells have attracted a lot of interests because they have the highest volumetric capacity density in theory among the different metal-air systems. To overcome the self-discharge issue of aluminum, a microfluidic aluminum-air cell working with KOH methanol-based anolyte was developed in this work. A specific capacity up to 2507 mAh g-1 (that is, 84.1% of the theoretical value) was achieved experimentally. The KOH concentration and water content in the methanol-based anolyte were found to have direct influence on the cell performance. A possible mechanism of the aluminum reactions in KOH methanol-based electrolyte was proposed to explain the observed phenomenon.

  19. Layered double hydroxides as electrode materials for Ni based batteries and as novel inorganic/organic hybrid materials

    Energy Technology Data Exchange (ETDEWEB)

    Caravaggio, G.

    2002-07-01

    This study examined the electrochemical properties of layered double hydroxides (LDH) in half-cells to determine if they can be used in nickel-cadmium (Ni-Cd) and nickel-metal hydride (NiMH) batteries. The LDHs were prepared by coprecipitation and were characterized by X-ray diffraction analysis. The nickel-aluminium LDHs were found to be the most stable during potassium hydroxide electrolyte discharge because the aluminium acted in a two fold manner. The high charge to radius ratio increased the electrostatic interaction between the anions and the metal layers. The acidity of the hydroxyl groups was due to the high exchange of electrons. The powders had lower discharge capacity compared to commercial electrode materials because of their low density. The nickel-vanadium LDHs exchanged only up to 1.2 electrons and were stable only up to a maximum of 14 days in electrolytic solutions of the cells. Zinc-aluminium LDHs were also synthesized and intercalated with phenyl phosphonic acid or 1,4-phenylene bis phosphonic acid to create microporous materials. X-ray diffraction, infra-red spectroscopy and nuclear magnetic resonance was used to characterize the compounds and determine crystallographic spacing. Grafting of both phosphonates to the metal layers had occurred and both materials showed little or no microporosity.

  20. Wood surface modification by in-situ sol-gel deposition of hybrid inorganic-organic thin films

    Science.gov (United States)

    Mandla A. Tshabalala; Li-Piin Sung

    2007-01-01

    Interest in the use of nanoparticles of iron, titanium, aluminum, and zinc oxides in transparent coatings for wood is increasing. Such nano-composite coatings have the potential of not only preserving the natural color of the wood, but also stabilizing the wood surface against the combined degradative effects of sunlight and moisture. The nanoparticles can be used as...

  1. Synthesis and non linear optical properties of new inorganic-organic hybrid material: 4-Benzylpiperidinium sulfate monohydrate

    Science.gov (United States)

    Kessentini, Yassmin; Ahmed, Ali Ben; Al-Juaid, Salih S.; Mhiri, Tahar; Elaoud, Zakaria

    2016-03-01

    Single crystals of 4-benzyl-piperidine sulfate monohydrate were grown by slow evaporation method at room temperature. The synthesized compound was characterized by means of single-crystal X-ray diffraction, FT-IR and Raman spectroscopy, UV-visible and photoluminescence studies. The title compound crystallises at room temperature in the non centrosymmetric space group P212121.The recorded UV-visible spectrum show good transparency in the visible region and indicates a non-zero value of the first Hyperpolarizability. Photoluminescence spectrum shows a broad and intense band at 440 nm and indicates that the crystal emits blue fluorescence. We also report DFT calculations of the electric dipole moments (μ), Polarizability (α), the static first Hyperpolarizability (β) and HOMO-LUMO analysis of the title compound was theoretically investigated by GAUSSIAN 03 package. The calculated static first Hyperpolarizability is equal to 6.4022 × 10-31 esu. The results show that 4-benzyl-piperidine sulfate monohydrate crystal might have important non linear optical behavior and can be a potential non linear optical material of interest.

  2. Microheterogeneity in phenyl group modified inorganic/organic hybrid gels after aerosol drying or slow solvent evaporation.

    Science.gov (United States)

    Ulke, Simone; Koller, Hubert

    2011-01-01

    Sol-gel systems were prepared by co-hydrolysis and co-condensation of tetraethoxysilane (TEOS) and phenyltriethoxysilane (PhTES). The sols were transferred into silica gels by Evaporation Induced Self-Assembly (EISA) or Aerosol Assisted Self-Assembly (AASA) using a laboratory spray-dryer. The structural properties such as porosity and homogeneity/microheterogeneity of these different systems are compared by N(2) sorption measurements, thermal analysis (TG, DTG and DTA), (29)Si MAS NMR and (29)Si{(1)H} CP MAS NMR. The cross polarization of the AASA gels can be described with the conventional I-S dynamics of a homogeneous proton spin bath. The EISA gels are heterogeneous, and the I-I(*)-S model, or a bimodal I-S model, was employed for the simulation of CP dynamics. Microheterogeneities are observed by (1)H-(29)Si cross polarization on an EISA sample, whereas rapid drying (AASA) transfers the corresponding sol into homogeneous xerogels. The EISA gels are microporous after calcination at 923 K, and the AASA gels are dense.

  3. 2D semiconductor optoelectronics

    Science.gov (United States)

    Novoselov, Kostya

    The advent of graphene and related 2D materials has recently led to a new technology: heterostructures based on these atomically thin crystals. The paradigm proved itself extremely versatile and led to rapid demonstration of tunnelling diodes with negative differential resistance, tunnelling transistors, photovoltaic devices, etc. By taking the complexity and functionality of such van der Waals heterostructures to the next level we introduce quantum wells engineered with one atomic plane precision. Light emission from such quantum wells, quantum dots and polaritonic effects will be discussed.

  4. Stability Test for 2-D Continuous-Discrete Systems

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Models of 2-D continuous-discrete systems are introduced, which can be used to describe some complex systems. Different from classical 2-D continuous systems or 2-D discrete systems, the asymptotic stability of the continuous-discrete systems is determined by Hurwitz-Schur stability (hybrid one) of 2-D characteristic polynomials of the systems. An algebraic algorithm with simpler test procedure for Hurwitz-Schur stability test of 2-D polynomials is developed. An example to illustrate the applications of the test approach is provided.

  5. Optical modulators with 2D layered materials

    Science.gov (United States)

    Sun, Zhipei; Martinez, Amos; Wang, Feng

    2016-04-01

    Light modulation is an essential operation in photonics and optoelectronics. With existing and emerging technologies increasingly demanding compact, efficient, fast and broadband optical modulators, high-performance light modulation solutions are becoming indispensable. The recent realization that 2D layered materials could modulate light with superior performance has prompted intense research and significant advances, paving the way for realistic applications. In this Review, we cover the state of the art of optical modulators based on 2D materials, including graphene, transition metal dichalcogenides and black phosphorus. We discuss recent advances employing hybrid structures, such as 2D heterostructures, plasmonic structures, and silicon and fibre integrated structures. We also take a look at the future perspectives and discuss the potential of yet relatively unexplored mechanisms, such as magneto-optic and acousto-optic modulation.

  6. Hybrid Thin Films Based Upon Polyoxometalates-Polymer Assembly

    Science.gov (United States)

    Qi, Na; Jing, Benxin; Zhu, Yingxi

    2014-03-01

    Block copolymers (BCPs) and polyoxometalates (POMs) have been used individually as building blocks for design and synthesis of novel functional materials. POM nanoclusters, the assemblies of transition metal oxides with well-defined atomic coordination structure, have been recently explored as novel nanomaterials... for catalysis, semiconductors, and even anti-cancer treatment due to their unique chemical, optical and electrical characteristics. We have explored the blending of inorganic POM nanocluster with BCPs into hierarchaically structured inorganic-organic hybrid nanocomposites. Using polystyrene-b-poly(ethylene oxide) (PS-b-PEO) thin films as the template, we have observed that the spatial organization of BCP thin films is modified by molybdenum based POM nanocluster to form 2D in-plane hexagonal ordered or 3D ordered network of POM-BCP assemblies, depending on the concentration ratio of POM to PS-b-PEO. The dielectric properties of such hybrid thin films can be enhanced by embedded POMs but show a strong dependence on the supramolecular structures of POM-polymer complexes. The assembly of nanoclusters in BCP-templated thin films could pave a new path to design new hybrid nanocomposites with uniquely combined functionality and material properties.

  7. Tunable and white light emitting AlPO4 mesoporous glass by design of inorganic/organic luminescent species

    Directory of Open Access Journals (Sweden)

    Jin He

    2015-04-01

    Full Text Available The realization of tunable and white light emitting sources employed by UV-LED with single-host phosphors has been an exciting development in the search for high luminous efficiency and excellent color rendering index white-light source. A tunable and white light emitting mesoporous glass was prepared by utilizing both inorganic/organic (Europium/coumarin luminescent species in the meso-structure. The tunable and white light emission was deliberately designed by CIE calculation based on the individual emission spectra, which was realized by tailoring the emission of Eu2+/Eu3+ ions and coumarin 535 in sol-gel AlPO4 mesoporous glass. This simple and versatile procedure is not limited in the combination of rare earth and organic dye and is therefore extendable to other luminescent species in meso-structure for color-tunable efficient solid-state lighting sources.

  8. Tunable and white light emitting AlPO{sub 4} mesoporous glass by design of inorganic/organic luminescent species

    Energy Technology Data Exchange (ETDEWEB)

    He, Jin; Li, Rihong, E-mail: lirihong@siom.ac.cn; Yuan, Xinqiang; Zhang, Long, E-mail: lzhang@siom.ac.cn [Key Laboratory of Materials for High Power Lasers, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800 (China); Wang, Yan [Key Laboratory of Materials for High Power Lasers, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Xu, Shiqing [College of Materials Science and Engineering, China Jiliang University, Hangzhou, Zhejiang 310018 (China)

    2015-04-01

    The realization of tunable and white light emitting sources employed by UV-LED with single-host phosphors has been an exciting development in the search for high luminous efficiency and excellent color rendering index white-light source. A tunable and white light emitting mesoporous glass was prepared by utilizing both inorganic/organic (Europium/coumarin) luminescent species in the meso-structure. The tunable and white light emission was deliberately designed by CIE calculation based on the individual emission spectra, which was realized by tailoring the emission of Eu{sup 2+}/Eu{sup 3+} ions and coumarin 535 in sol-gel AlPO{sub 4} mesoporous glass. This simple and versatile procedure is not limited in the combination of rare earth and organic dye and is therefore extendable to other luminescent species in meso-structure for color-tunable efficient solid-state lighting sources.

  9. Activated sludge model No. 2d, ASM2d

    DEFF Research Database (Denmark)

    Henze, M.

    1999-01-01

    The Activated Sludge Model No. 2d (ASM2d) presents a model for biological phosphorus removal with simultaneous nitrification-denitrification in activated sludge systems. ASM2d is based on ASM2 and is expanded to include the denitrifying activity of the phosphorus accumulating organisms (PAOs...

  10. Structural and mechanical properties of Laponite-PEG hybrid films.

    Science.gov (United States)

    Shikinaka, Kazuhiro; Aizawa, Kazuto; Murakami, Yoshihiko; Osada, Yoshihito; Tokita, Masatoshi; Watanabe, Junji; Shigehara, Kiyotaka

    2012-03-01

    Inorganic/organic hybrids were obtained by the sol-gel type organic modification reaction of Laponite sidewalls with poly(ethylene glycol) (PEG) bearing alkoxysiloxy terminal functionality. By casting an aqueous dispersion of the hybrid, the flexible and transparent hybrid films were obtained. Regardless of the inorganic/organic component ratio, the hybrid film had the ordered structure of Laponite in-plane flat arrays. The mechanical strength of hybrid films was drastically improved by the presence of cross-linking among alkoxysilyl functionalities of PEG terminals and the absence of PEG crystallines. Hybrid films, especially those that consisted of PEG with short chain, showed good mechanical properties that originate from quasi-homogeneous dispersion of components due to anchoring of PEG terminal to Laponite sidewall and interaction of PEG to Laponite surface.

  11. Highly Stable Hierarchical Flower-like β-In2S3 Assembled from 2D Nanosheets with high Adsorption-Photodecolorization Activities for the Treatment of Wastewater

    Science.gov (United States)

    Cheng, Yang; Niu, Helin; Chen, Jingshuai; Song, Jiming; Mao, Changjie; Zhang, Shengyi; Chen, Changle; Gao, Yuanhao

    2017-05-01

    The hierarchical flower-like β-In2S3 catalyst assembled from 2D nanosheets was prepared using an organic-component depletion method utilizing inorganic-organic hybrids indium diethyldithiocarbamate (In-DDTC) as a single-source precursor. The crystallization, morphology and composition of the as-synthesized β-In2S3 were characterized by XRD, SEM, TEM, EDS and XPS, respectively. The β-In2S3 possessed high specific surface area of 134.1 m2 g-1, adsorption capacity of 195.5 mg g-1 for methylene blue, and extreme photodecolorization speed under visible light irradiation for the complete removal of methyl orange (MO) dye within 15 min and tetracycline within 60 min. Although methyl orange concentration decreased quickly, the total organic carbon (TOC) decreased slowly. UV-vis and mass spectrometry (MS) were applied to analyze the intermediates coming from the photodecolorization of MO. In order to estimate the roles of active species during the decolorization of MO, trapping experiments were conducted to determine the main active species during the decolorization process. The results indicated that . O2 - radicals and e-1 were the key intermediates. This enhanced activity was attributed to its unique structures assembled from 2D nanosheets with thickness of ca. 5-7 nm, leading to high specific surface area, wide range of pore size distribution and great efficiency in absorbing light and electron/hole separation. The hierarchical flower-like β-In2S3 demonstrated great advantages in the treatment of various wastewater pollutants including textile dyes and antibiotics.

  12. An Unprecedented 2D 4f-3d-5d Multimetal-lsonicotinic Acid Complex: Synthesis, Structural Characterization and Magnetic Properties

    Institute of Scientific and Technical Information of China (English)

    CHEN Wen-Tong; ZENG Xi-Rui; LIU Dong-Sheng; YING Shao-Ming; LIU Jiu-Hui

    2008-01-01

    A novel heterometallic metal-isonicotinic acid inorganic-organic hybrid complex [Zno.5(H2O)]{(Hg2C5)[Er(C6NO2H4)3(H2O)2]}(HgCl2)·0.5CH3OH·0.5H2O (1) has been successfully synthesized via a hydrothermal reaction and structurally characterized by single-crystal X-ray diffraction.Complex 1 crystallizes in the space group C2/c of the monoclinic system with eight formula units in a cell:a =34.165(4)A,b=9.4692(8)A,c=24.575(3)A,,β=115.090(5)°,V=7200(1) A3,C18.50H21Cl7ErHg3N3Ol0Zn0.50,Mr=1495.25,Dc=2.759 g/cm3,T=293(2) K,μ(Mo Ka)=15.954 mm-1,F(000)=5400 and R1/wR2=O.0561/0.0909 for 3157 observed reflections [I>2σ(I)]and 6468 unique reflections.Complex 1 is characteristic of a novel 2D { (Hg2Cl5)[Er(C6NO2H4)3(H2O)2]} layered structure constructed from the [Er(C6NO2H4)3(H2O)2]chains interconnected by the Hg2Clˉ5 linkers.The 2D {(Hg2Cl5)[Er(C6NO2H4)3(H2O)2]} layers,mercury chloride and the lattice water molecules are held together via hydrogen bonds to form a three-dimensional framework with the methanol molecules and the hydrated zinc ions located in the cavities.The magnetic properties show that complex 1 exhibits antiferromagnetic-like interactions.

  13. Advanced Magnetic Resonance Techniques for the Structural Characterization of Aminoxyl Radicals and Their Inorganic-Organic Nanocomposite Systems.

    Science.gov (United States)

    Eckert, Hellmut

    2016-11-15

    Electron and nuclear spins are extremely sensitive probes of their local structural and dynamic surroundings. Their Zeeman energy levels are modified by different types of local magnetic and electric fields created by their structural environment, which influence their magnetic resonance condition. For this reason, electron spin resonance (ESR) and nuclear magnetic resonance (NMR) spectroscopies have become extremely powerful tools of structural analysis, which are being widely used for the structural characterization of complex solids. Following a brief introduction into the basic theoretical foundations the most commonly used techniques and their application towards the structural characterization of paramagnetic solids based on aminoxyl radicals and their inorganic-organic nanocomposites will be described. Both ESR and NMR observables are useful for monitoring intermolecular interactions between unpaired electron spins, which are particularly important for the design of organically based ferromagnetic systems. ESR and NMR methods based on this effect can be used for monitoring the synthesis of polynitroxides and for evaluating the catalytic function of aminoxyl intercalation compounds. Finally, the sensitivity of ESR signals to motional dynamics can be exploited for characterizing molecule-surface interactions in nanocomposite systems. In the context of the latter work recently developed signal enhancement strategies are described, using polarization transfer from electron spins to nuclear spins for NMR spectroscopic detection.

  14. Hybrid 2D photonic crystal-assisted Lu3Al5O12:Ce ceramic-plate phosphor and free-standing red film phosphor for white LEDs with high color-rendering index.

    Science.gov (United States)

    Park, Hoo Keun; Oh, Ji Hye; Kang, Heejoon; Zhang, Jian; Do, Young Rag

    2015-03-04

    This paper reports the combined optical effects of a two-dimensional (2D) SiNx photonic crystal layer (PCL)-assisted Lu3Al5O12:Ce (LuAG:Ce) green ceramic-plate phosphor (CPP) and a free-standing (Sr,Ca)AlSiN3:Eu red film phosphor to enhance luminous efficacy, color rendering index (CRI), and special CRI (R9) of LuAG:Ce CPP-capped white light-emitting diodes (LEDs) for high-power white LEDs at 350 mA. By introducing the 2D SiNx PCL, the luminous efficacy was improved by a factor of 1.25 and 1.15 compared to that of the conventional flat CPP-capped LED and the thickness-increased CPP-capped LED (with a thickness of 0.15 mm), respectively, while maintaining low color-rendering properties. The combining of the free-standing red film phosphor in the flat CPP-capped, the 2D PCL-assisted CPP-capped, and the thickness-increased CPP-capped LEDs led to enhancement of the CRI and the special CRI (R9); it also led to a decrease of the correlated color temperature (CCT) due to broad wavelength coverage via the addition of red emission. High CRI (94), natural white CCT (4450 K), and acceptable luminous efficacy (71.1 lm/W) were attained from the 2D PCL-assisted LuAG:Ce CPP/free-standing red film phosphor-based LED using a red phosphor concentration of 7.5 wt %. It is expected that the combination of the 2D PCL and the free-standing red film phosphor will be a good candidate for achieving a high-power white CPP-capped LED with excellent CRI.

  15. Adsorption of transition metal ions from aqueous solutions onto a novel silica gel matrix inorganic-organic composite material.

    Science.gov (United States)

    Yin, Ping; Xu, Qiang; Qu, Rongjun; Zhao, Guifang; Sun, Yanzhi

    2010-01-15

    A novel inorganic-organic composite material silica gel microspheres encapsulated by imidazole functionalized polystyrene (SG-PS-azo-IM) has been synthesized and characterized. This composite material was used to investigate the adsorption of Cr(III), Mn(II), Fe(III), Ni(II), Cu(II), Zn(II), Hg(II), Pb(II), Pd(II), Pt(II), Ag(I), and Au(III) from aqueous solutions, and the research results displayed that SG-PS-azo-IM has the highest adsorption capacity for Au(III). Langmuir and Freundlich isotherm models were applied to analyze the experimental data, the best interpretation for the experimental data was given by the Langmuir isotherm equation, and the maximum adsorption capacity for Au(III) is 1.700 mmol/g. The adsorption selectivity, the dynamic adsorption and desorption properties of SG-PS-azo-IM for Au(III) have also been studied. The results showed that SG-PS-azo-IM had excellent adsorption for Au(III) in four binary ions system, especially in the systems of Au(III)-Zn(II) and Au(III)-Cu(II), and almost Au(III) could be desorbed with the eluent solution of 0.5% thiourea in 1 mol/L HCl. Moreover, this novel composite material was used to preconcentrate Au(III) before its determination by flame atomic adsorption spectrometry. In the initial concentration range of 0.10-0.20 microg/mL, multiple of enrichment could reach 5.28. Thus, silica gel encapsulated by polystyrene coupling with imidazole (SG-PS-azo-IM) is favorable and useful for the removal of transition metal ions, and the high adsorption capacity makes it a good promising candidate material for Au(III) removal.

  16. Effects of Inorganic-organic Incorporation on Productivity and Soil Fertility of Rice Cropping System in Red Soil Area of China

    Institute of Scientific and Technical Information of China (English)

    ZHOU Wei-jun; WANG Kai-rong; ZHANG Guan-yuan; XIE Xiao-li

    2002-01-01

    Results from ten-year (1990- 1999) field experiments indicated that the productivity and the soil fertility of rice cropping system were significantly influenced by the fertilization system adopted in red soil area of China. Contrasting with no-fertilizer treatment (CK), yield-increase rate of organic matter cycling,chemical NPK and inorganic-organic fertilizer incorporation treatments were 56.5%, 62.5% and 80.7%, respectively. In the case of optimum fertilization system, the largest contribution of inorganic fertilizer to the yield was 38.5% while that of inorganic-organic fertilizer incorporation was 44.7 %. The content of soil organic matter changed in tendency from decrease to equilibrium with heightened the extent of N, P and K incorporation while that of inorganic-organic fertilizer incorporation could be enhanced further. After N, P and K entered into the rice cropping system and maintained organic matter cycling in the system, the pools of total N, P and K could be strengthened.

  17. HypGrid2D. A 2-d mesh generator

    Energy Technology Data Exchange (ETDEWEB)

    Soerensen, N.N.

    1998-03-01

    The implementation of a hyperbolic mesh generation procedure, based on an equation for orthogonality and an equation for the cell face area is described. The method is fast, robust and gives meshes with good smoothness and orthogonality. The procedure is implemented in a program called HypGrid2D. The HypGrid2D program is capable of generating C-, O- and `H`-meshes for use in connection with the EllipSys2D Navier-Stokes solver. To illustrate the capabilities of the program, some test examples are shown. First a series of C-meshes are generated around a NACA-0012 airfoil. Secondly a series of O-meshes are generated around a NACA-65-418 airfoil. Finally `H`-meshes are generated over a Gaussian hill and a linear escarpment. (au)

  18. Synthesis, structure, lattice energy and enthalpy of 2D hybrid perovskite [NH3(CH2)4NH3]CoCl4, compared to [NH3(CH2)nNH3]CoCl4, n=3-9

    Science.gov (United States)

    Abdel-Aal, Seham K.; Abdel-Rahman, Ahmed S.

    2017-01-01

    A new organic-inorganic 2D hybrid perovskite [NH3(CH2)4NH3]CoCl4,1,4butane diammonium tetra-chlorocobaltate, has been synthesized. Blue prismatic single crystals were grown from ethanolic solution in 1:1 stoichiometric ratio (organic/inorganic) by gradual cooling to room temperature after heating at 70 °C for 1 h. The hybrid crystallizes in a triclinic phase with the centrosymetric space group P 1 bar . Its unit cell parameters are a=7.2869 (2) Å, b=8.1506 (2) Å, c=10.4127 (3) Å, α=77.2950 (12)°, β=80.0588 (11)°, γ=82.8373 (12)° and Z=2. The final R factor is 0.064. The structure consists of organic dications [NH3(CH2)4NH3]2+ which act as spacer between layers of inorganic dianions [CoCl4]2- in which CoII ions are coordinated by four Cl atoms in an isolated tetrahedral structure. The organic and inorganic layers form infinite 2D sheets which are parallel to the ac plane, stacking alternatively along the b-axis, and are connected via N-H…. Cl hydrogen bonds. The lamellar structure of the 1,4 butane diammonium tetrachlorocobaltate hybrid is typically considered as naturally self-assembled multiple quantum wells (MQW). The calculated lattice potential energy Upot (kJ/mol) and lattice enthalpy ΔHL (kJ/mol) are inversely proportional to the molecular volume Vm (nm3) of perovskite hybrid of the formula [NH3(CH2)nNH3]CoCl4, n=3-9.

  19. Robust stability test for 2-D continuous-discrete systems with interval parameters

    Institute of Scientific and Technical Information of China (English)

    肖扬

    2004-01-01

    It is revealed that the dynamic stability of 2-D recursive continuous-discrete systems with interval parameters involves the problem of robust Hurwitz-Schur stability of bivariate polynomials family. It is proved that the HurwitzSchur stability of the denominator polynomials of the systems is necessary and sufficient for the asymptotic stability of the 2-D hybrid systems. The 2-D hybrid transformation, i.e. 2-D Laplace-Z transformation, has been proposed to solve the stability analysis of the 2-D continuous-discrete systems, to get the 2-D hybrid transfer functions of the systems. The edge test for the Hurwitz-Schur stability of interval bivariate polynomials is introduced. The Hurwitz-Schur stability of the interval family of 2-D polynomials can be guaranteed by the stability of its finite edge polynomials of the family. An algorithm about the stability test of edge polynomials is given.

  20. Designing Z-scheme 2D-C{sub 3}N{sub 4}/Ag{sub 3}VO{sub 4} hybrid structures for improved photocatalysis and photocatalytic mechanism insight

    Energy Technology Data Exchange (ETDEWEB)

    She, Xiaojie; Yi, Jianjian; Xu, Yuanguo; Huang, Liying; Ji, Haiyan; Xu, Hui; Li, Huaming [School of the Environment and Safety Engineering, Institute for Energy Research, Jiangsu University, Zhenjiang 212013 (China); Song, Yanhua [School of Environmental and Chemical, Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003 (China)

    2017-06-15

    The two-dimensional oxygen-modified g-C{sub 3}N{sub 4} nanosheets-loaded Ag{sub 3}VO{sub 4} (2D-C{sub 3}N{sub 4}/Ag{sub 3}VO{sub 4}) photocatalysts were synthesized successfully via a facile in situ deposition method. The comprehensive characterizations were employed to characterize the morphologies, structures, chemical states, optical and electronic properties and photocatalytic performances of the samples. The 20% 2D-C{sub 3}N{sub 4}/Ag{sub 3}VO{sub 4} showed the best photocatalytic activity on the degradation of RhB and BPA. The enhanced photocatalytic activity is ascribed to the effective electron-hole separation efficiency and the larger specific surface area. The photogenerated electrons and holes can quickly separate by Z-scheme passageway in composite. Through ESR analysis, the photocatalytic mechanism was also researched in detail. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. Inorganic-organic phase arrangement as a factor affecting gas-phase desulfurization on catalytic carbonaceous adsorbents.

    Science.gov (United States)

    Ansari, Adil; Bandosz, Teresa J

    2005-08-15

    Dried sewage sludge was physically mixed with waste paper (paper-to-sludge ratios from 25% to 75%). To increase the catalytic activity, from 1% to 6% calcium hydroxide was added to the mixtures. Then the precursors were carbonized at 950 degrees C. The performance of materials as H2S adsorbents was tested using a home-developed dynamic breakthrough test. The samples, before and after the adsorption process, were characterized by adsorption of nitrogen, potentiometric titration, thermal analysis, XRF, and SEM. Differences in the performance were linked to the surface properties. Itwas found that mixing paper with sludge increases the amount of H2S adsorbed/oxidized in comparison with that adsorbed/oxidized by the adsorbents obtained from pure precursors (sludge or waste paper) and the capacity is comparable to those of the best activated carbons existing on the market. Although both sewage sludge and waste paper provide the catalytic centers for hydrogen sulfide oxidation, the dispersion of the catalyst and its location within accessible pores is an important factor. The presence of cellulose in the precursor mixture leads to the formation of a light macroporous char whose particles physically separate the inorganic catalytic phase of the sewage sludge origin, decreasing the density of the adsorbent and thus providing more space for storage of oxidation products. This, along with calcium, contributes to a significant increase in the capacity of the materials as hydrogen sulfide adsorbents. On their surface about 30 wt % H2S can be adsorbed, mainly as elemental sulfur or sulfates. The results demonstrate the importance of the composition and arrangement of inorganic/ organic phases for the removal of hydrogen sulfide. The interesting finding is that although some microporosity is necessary to increase the storage area for oxidation products, the carbonaceous phase does not need to be highly microporous. It is important that it provides space for deposition of sulfur

  2. Investigation of compression and flexural performance of 2D braided hybrid composite pipe%2D编织混杂复合材料圆管压缩和弯曲性能研究

    Institute of Scientific and Technical Information of China (English)

    马小菲; 张国利; 朱有欣; 陈光伟

    2014-01-01

    Quasi-static axial compression and three point bending tests are performed to study the compression and flexural performance of glass/kevlar hybrid composite pipe. The effect of braiding angle and fiber hybrid ratio on the compression and flexural performance of composite pipe are investigated and the fracture features are also analyzed. It is found that when the braiding angle is 30°, 45°and 60°respectively, the compression strength of composite pipe with glass/kevlar hybrid ratio 1∶1 is the lowest. The compression strength of 2G/2K-60 is 58.4 MPa, it decreases about 31.7%compared with pure glass fiber pipe G-60. In addition, with the same braiding angle, the bending strength of the tube is the highest with glass/kevlar hybrid ratio 1∶3. The tube G/3K-30 has the best bending performance. When glass/kevlar hybrid ratio is 3∶1, 1∶1 and 1∶3 respectively, the smaller braiding angle is, the bigger compression strength and bending strength will be. It is found that the fiber hybrid ratio and braiding parameters have an important influence on the compression and flexural failure mechanism of composite pipe.%通过玻璃/芳纶混杂纤维复合材料圆管的轴向静态压缩和三点弯曲实验,分析了复合材料圆管的压缩及弯曲性能,探讨了编织角和纤维混杂比对复合材料圆管压缩及弯曲性能的影响,并对其破坏形式进行了分析.结果表明:当编织角分别为30°、45°和60°时,玻璃/芳纶混杂比为1∶1时圆管的压缩强度最低,圆管2G/2K-60的压缩强度最低为58.4 MPa,比纯玻璃纤维圆管G-60降低了约31.7%;另外,在相同编织角下,玻璃/芳纶混杂比为1∶3时圆管的弯曲强度最高,复合材料圆管G/3K-30具有最好的弯曲性能;当玻璃/芳纶混杂比分别为3∶1、1∶1和1∶3时,编织角越小,圆管的压缩强度和弯曲强度越大.可见,复合材料圆管的压缩和弯曲破坏机理与纤维混杂比及编织工艺参数有关.

  3. Hybrid Si/TMD 2D electronic double channels fabricated using solid CVD few-layer-MoS2 stacking for Vth matching and CMOS-compatible 3DFETs

    KAUST Repository

    Chen, Min Cheng

    2014-12-01

    Stackable 3DFETs such as FinFET using hybrid Si/MoS2 channels were developed using a fully CMOS-compatible process. Adding several molecular layers (3-16 layers) of the transition-metal dichalcogenide (TMD), MoS2 to Si fin and nanowire resulted in improved (+25%) Ion,n of the FinFET and nanowire FET (NWFET). The PFETs also operated effectively and the N/P device Vth are low and matched perfectly. The proposed heterogeneous Si/TMD 3DFETs can be useful in future electronics. © 2014 IEEE.

  4. Aero Fighter - 2D Gaming

    CERN Document Server

    Ahmed, Zeeshan

    2010-01-01

    Designing and developing quality based computer game is always a challenging task for developers. In this paper I briefly discuss aero fighting war game based on simple 2D gaming concepts and developed in C & C++ programming languages, using old bitmapping concepts. Going into the details of the game development, I discuss the designed strategies, flow of game and implemented prototype version of game, especially for beginners of game programming.

  5. Head First 2D Geometry

    CERN Document Server

    Fallow), Stray

    2009-01-01

    Having trouble with geometry? Do Pi, The Pythagorean Theorem, and angle calculations just make your head spin? Relax. With Head First 2D Geometry, you'll master everything from triangles, quads and polygons to the time-saving secrets of similar and congruent angles -- and it'll be quick, painless, and fun. Through entertaining stories and practical examples from the world around you, this book takes you beyond boring problems. You'll actually use what you learn to make real-life decisions, like using angles and parallel lines to crack a mysterious CSI case. Put geometry to work for you, and

  6. Computational 2D Materials Database

    DEFF Research Database (Denmark)

    Rasmussen, Filip Anselm; Thygesen, Kristian Sommer

    2015-01-01

    We present a comprehensive first-principles study of the electronic structure of 51 semiconducting monolayer transition-metal dichalcogenides and -oxides in the 2H and 1T hexagonal phases. The quasiparticle (QP) band structures with spin-orbit coupling are calculated in the G(0)W(0) approximation...... and used as input to a 2D hydrogenic model to estimate exciton binding energies. Throughout the paper we focus on trends and correlations in the electronic structure rather than detailed analysis of specific materials. All the computed data is available in an open database....

  7. Fabrication and Luminescence of Rare Earth Complex/SiO2 Hybrid Nanospheres

    Institute of Scientific and Technical Information of China (English)

    赵丹; 秦伟平; 吴长锋; 张继森; 秦冠仕; 林海燕

    2004-01-01

    The organic rare earth complex was embedded in silica spheres to form inorganic-organic hybrid. Photoactive rare earth complexes with various organic ligands exhibit intense narrow emission band, and the silica is an excellent matrix for inorganic-organic structure. The transmission electron microscope image presents the hybrid nanospheres. The diameter of the hybrid is about 100 nm. The europium complex that incorporated into silica sphere is also proved by the IR spectra, the excitation and emission spectra. The lifetimes of the Eu3+ ions in the hybrid nanospheres and in the pure europium complex were also detected. This hybrid with inhomogeneous compositions exhibits specifically tailored chemical and optical properties, such as perfect thermal and mechanical stability, colorimetric purity and so on. It can be used as luminescent and optical material in EL and PL fields.

  8. CYP2D6 pharmacogenomics

    Directory of Open Access Journals (Sweden)

    Mohanan Geetha Gopisankar

    2017-10-01

    Full Text Available Cytochromes are proteins that catalyze electron transfer reactions of many metabolic pathways. They are involved in drug metabolism and thus determines the therapeutic safety and efficacy of drugs in patients. Cytochrome P450 in mitochondria accounts for 90% of the oxidative metabolism of clinically used drugs during phase 1 reaction. CYP2D6 is a major gene member of this superfamily as it carries out metabolism of 25% of drugs currently available in the market. Contrary to the concept of specificity of enzyme action these can metabolize substrates of different chemistry. Since its discovery, many have intensively studied this unique hemoprotein and contributed to the elucidation of its molecular properties and physiological functions and also the structure-activity relationships of its substrates and inhibitors. Its activity ranges considerably within a population due to genetic polymorphisms which lead to varied responses to drug intake. Studying such polymorphisms which cause a significant impact in the management of patients and helps to achieve the final target of personalizing medicine. This review briefs about history, structure, and function, molecular genetics, substrates, regulators and inhibitors of CYP2D6 and its clinical pharmacogenomics.

  9. Airport runway radar image de-noising based on 2-D shift-invariance hybrid transform%基于移不变二维混合变换的机场雷达噪声抑制

    Institute of Scientific and Technical Information of China (English)

    刘帅奇; 胡绍海; 肖扬; 赵杰; 刘秀玲

    2015-01-01

    Foreign object debris (FOD)detection in airport runway is very important to airplanes′safety, and the airport runway radar image noise suppressing plays a vital role in foreign object detection.Therefore,an airport runway radar image de-noising method based shift invariant hybrid transform is proposed in the range-time dimension.Firstly,the radar image noise in the range dimension is removed by the Wiener filter in discrete Fourier transform(DFT)domain.Secondly,the radar image noise in the time dimension is removed by the adap-tive threshold in hyperanalytic wavelet transform(HWT)domain.Compared with traditional de-noising methods af-ter imaging,the proposed mothod can remove the runway radar image noise effectively and improve the visual effect of images significantly,and most importantly,it can run in real time and be suitable for engineering practice.%机场跑道异物(foreign object debris,FOD)检测对飞行器的安全起降有着非常重要的意义,而机场跑道异物检测的一个关键环节是很好地抑制机场雷达图像的噪声,因此提出一种基于距离时间维的移不变混合变换以抑制机场雷达图像的噪声。首先,在雷达成像时进行离散傅里叶变换(discrete Fourier transform,DFT)和维纳滤波滤除距离维上的噪声。然后,在雷达成像时进行超分析离散小波变换(hyperanalytic wavelet transform, HWT)自适应滤波去除时间维上的噪声。与传统的成像后去噪算法相比,本文的算法可以有效地去除机场雷达图像噪声,显著地改善图像的视觉效果。最重要的是该算法具有很强的实时性,可以很好地应用到工程实践中。

  10. Personalized 2D color maps

    KAUST Repository

    Waldin, Nicholas

    2016-06-24

    2D color maps are often used to visually encode complex data characteristics such as heat or height. The comprehension of color maps in visualization is affected by the display (e.g., a monitor) and the perceptual abilities of the viewer. In this paper we present a novel method to measure a user\\'s ability to distinguish colors of a two-dimensional color map on a given monitor. We show how to adapt the color map to the user and display to optimally compensate for the measured deficiencies. Furthermore, we improve user acceptance of the calibration procedure by transforming the calibration into a game. The user has to sort colors along a line in a 3D color space in a competitive fashion. The errors the user makes in sorting these lines are used to adapt the color map to his perceptual capabilities.

  11. 2D SIMPLIFIED SERVO VALVE

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    A novel pilot stage valve called simplified 2D valve, which utilizes both rotary and linear motions of a single spool, is presented.The rotary motion of the spool incorporating hydraulic resistance bridge, formed by a damper groove and a crescent overlap opening, is utilized as pilot to actuate linear motion of the spool.A criterion for stability is derived from the linear analysis of the valve.Special experiments are designed to acquire the mechanical stiffness, the pilot leakage and the step response.It is shown that the sectional size of the spiral groove affects the dynamic response and the stiffness contradictorily and is also very sensitive to the pilot leakage.Therefore, it is necessary to establish a balance between the static and dynamic characteristics in deciding the structural parameters.Nevertheless, it is possible to sustain the dynamic response at a fairly high level, while keeping the leakage of the pilot stage at an acceptable level.

  12. Quantum coherence selective 2D Raman-2D electronic spectroscopy.

    Science.gov (United States)

    Spencer, Austin P; Hutson, William O; Harel, Elad

    2017-03-10

    Electronic and vibrational correlations report on the dynamics and structure of molecular species, yet revealing these correlations experimentally has proved extremely challenging. Here, we demonstrate a method that probes correlations between states within the vibrational and electronic manifold with quantum coherence selectivity. Specifically, we measure a fully coherent four-dimensional spectrum which simultaneously encodes vibrational-vibrational, electronic-vibrational and electronic-electronic interactions. By combining near-impulsive resonant and non-resonant excitation, the desired fifth-order signal of a complex organic molecule in solution is measured free of unwanted lower-order contamination. A critical feature of this method is electronic and vibrational frequency resolution, enabling isolation and assignment of individual quantum coherence pathways. The vibronic structure of the system is then revealed within an otherwise broad and featureless 2D electronic spectrum. This method is suited for studying elusive quantum effects in which electronic transitions strongly couple to phonons and vibrations, such as energy transfer in photosynthetic pigment-protein complexes.

  13. Surface tensions of multi-component mixed inorganic/organic aqueous systems of atmospheric significance: measurements, model predictions and importance for cloud activation predictions

    Directory of Open Access Journals (Sweden)

    D. O. Topping

    2006-11-01

    Full Text Available In order to predict the physical properties of aerosol particles, it is necessary to adequately capture the behaviour of the ubiquitous complex organic components. One of the key properties which may affect this behaviour is the contribution of the organic components to the surface tension of aqueous particles in the moist atmosphere. Whilst the qualitative effect of organic compounds on solution surface tensions has been widely reported, our quantitative understanding on mixed organic and mixed inorganic/organic systems is limited.  Furthermore, it is unclear whether models that exist in the literature can reproduce the surface tension variability for binary and higher order multi-component organic and mixed inorganic/organic systems of atmospheric significance. The current study aims to resolve both issues to some extent. Surface tensions of single and multiple solute aqueous solutions were measured and compared with predictions from a number of model treatments. On comparison with binary organic systems, two predictive models found in the literature provided a range of values resulting from sensitivity to calculations of pure component surface tensions.  Results indicate that a fitted model can capture the variability of the measured data very well, producing the lowest average percentage deviation for all compounds studied.  The performance of the other models varies with compound and choice of model parameters. The behaviour of ternary mixed inorganic/organic systems was unreliably captured by using a predictive scheme and this was composition dependent. For more "realistic" higher order systems, entirely predictive schemes performed poorly. It was found that use of the binary data in a relatively simple mixing rule, or modification of an existing thermodynamic model with parameters derived from binary data, was able to accurately capture the surface tension variation with concentration. Thus, it would appear that in order to model

  14. 2D transition metal dichalcogenides

    Science.gov (United States)

    Manzeli, Sajedeh; Ovchinnikov, Dmitry; Pasquier, Diego; Yazyev, Oleg V.; Kis, Andras

    2017-08-01

    Graphene is very popular because of its many fascinating properties, but its lack of an electronic bandgap has stimulated the search for 2D materials with semiconducting character. Transition metal dichalcogenides (TMDCs), which are semiconductors of the type MX2, where M is a transition metal atom (such as Mo or W) and X is a chalcogen atom (such as S, Se or Te), provide a promising alternative. Because of its robustness, MoS2 is the most studied material in this family. TMDCs exhibit a unique combination of atomic-scale thickness, direct bandgap, strong spin-orbit coupling and favourable electronic and mechanical properties, which make them interesting for fundamental studies and for applications in high-end electronics, spintronics, optoelectronics, energy harvesting, flexible electronics, DNA sequencing and personalized medicine. In this Review, the methods used to synthesize TMDCs are examined and their properties are discussed, with particular attention to their charge density wave, superconductive and topological phases. The use of TMCDs in nanoelectronic devices is also explored, along with strategies to improve charge carrier mobility, high frequency operation and the use of strain engineering to tailor their properties.

  15. Large pore volume mesoporous copper particles and scaffold microporous carbon material obtained from an inorganic-organic nanohybrid material, copper-succinate-layered hydroxide.

    Science.gov (United States)

    Ghotbi, Mohammad Yeganeh; Bagheri, Narjes; Sadrnezhaad, S K

    2011-10-01

    Copper-succinate-layered hydroxide (CSLH), a new nanohybrid material, was synthesized as an inorganic-organic nanohybrid, in which organic moiety was intercalated between the layers of a single cation layered material, copper hydroxide nitrate. Microporous scaffold carbon material was obtained by thermal decomposition of the nanohybrid at 500 °C under argon atmosphere followed by acid washing process. Furthermore, the heat-treated product of the nanohybrid at 600 °C was ultrafine mesoporous metallic copper particles. The results of this study confirmed the great potential of CSLH to produce the carbon material with large surface area (580 m(2)/g) and high pore volume copper powder (2.04 cm(3)/g).

  16. ELRIS2D: A MATLAB Package for the 2D Inversion of DC Resistivity/IP Data

    OpenAIRE

    Akca Irfan

    2016-01-01

    ELRIS2D is an open source code written in MATLAB for the two-dimensional inversion of direct current resistivity (DCR) and time domain induced polarization (IP) data. The user interface of the program is designed for functionality and ease of use. All available settings of the program can be reached from the main window. The subsurface is discretized using a hybrid mesh generated by the combination of structured and unstructured meshes, which reduces the computational cost of the whole invers...

  17. Copper inorganic-organic hybrid coordination compound as a novel L-cysteine electrochemical sensor: Synthesis, characterization, spectroscopy and crystal structure

    Indian Academy of Sciences (India)

    Zohreh Derikvand; Azadeh Azadbakht

    2015-11-01

    Dinuclear coordination compound of Cu(II), namely, [Cu2(pydc)2(pz)(H2O)2]·2H2O, where pydc = pyridine-2,6-dicarboxylic acid (dipicolinic acid) and pz = pyrazine has been synthesized and characterized by elemental analysis, spectra (IR, UV-Vis), thermal (TG/DTG) analysis, magnetic measurements and single crystal X-ray diffraction. In the dimeric structure, the planar tridentate pyridine-2,6-dicarboxylic acid dianion coordinates to a Cu(II) ion in a meridional fashion and defines the basal plane of the complex. The fourth equatorial coordination site is then occupied by a pyrazine molecule that functions as a linear bidentate ligand bridging two Cu(II) complexes to form a dimer. The axial positions of each Cu(II) complex are occupied by one water molecule to form a distorted square pyramidal geometry. The complicated hydrogen bonding network accompanied with C–O· · · and C–H· · · stacking interactions assemble the crystal structure of 1 into a fascinating supramolecular architecture. Electrochemical behavior of [Cu2(pydc)2(pz)(H2O)2] (Cu-PDAP) on the surface of carbon nanotube (CNTs) glassy carbon electrode (GCE) is described. Oxidation of cysteine on the surface of modified electrode was investigated with cyclic voltammetry and electrochemical impedance spectroscopy (EIS). The results show that the Cu-PDAP/CNTs film displays excellent electrochemical catalytic activities towards L-cysteine oxidation.

  18. Learn Unity for 2D game development

    CERN Document Server

    Thorn, Alan

    2013-01-01

    The only Unity book specifically covering 2D game development Written by Alan Thorn, experience game developer and author of seven books on game programming Hands-on examples of all major aspects of 2D game development using Unity

  19. Organic-inorganic hybrid materials processing and applications

    OpenAIRE

    Schmidt, Helmut K.; Mennig, Martin; Nonninger, Ralph; Oliveira, Peter William de; Schirra, Hermann

    1999-01-01

    Hybrid materials as inorganic-organic nanostructured composites require tailored surface chemistry in order to obtain a homogeneous distribution of the nanoparticles in the matrix. For this reason, nanoparticles with organic functions have been synthesized, first, to provide the desired æ-potential at a given pH value, second, to avoid irreversible agglomeration due to the spacing effect, and third, to provide the appropriate surface chemistry. I could be shown that using this approach, it is...

  20. Photostability of 2D Organic-Inorganic Hybrid Perovskites

    Directory of Open Access Journals (Sweden)

    Yi Wei

    2014-06-01

    Full Text Available We analyze the behavior of a series of newly synthesized (R-NH32PbX4 perovskites and, in particular, discuss the possible reasons which cause their degradation under UV illumination. Experimental results show that the degradation process depends a lot on their molecular components: not only the inorganic part, but also the chemical structure of the organic moieties play an important role in bleaching and photo-chemical reaction processes which tend to destroy perovskites luminescent framework. In addition, we find the spatial arrangement in crystal also influences the photostability course. Following these trends, we propose a plausible mechanism for the photodegradation of the films, and also introduced options for optimized stability.

  1. Thermally stable hydrophobicity in electrospun silica/polydimethylsiloxane hybrid fibers

    Science.gov (United States)

    Wei, Zhonglin; Li, Jianjun; Wang, Chao; Cao, Jungang; Yao, Yongtao; Lu, Haibao; Li, Yibin; He, Xiaodong

    2017-01-01

    In order to improve practical performances of silica-based inorganic/organic hybrid fibers, silica/polydimethylsiloxane hydrophobic fibers were successfully prepared by electrospinning. Silica sol and polydimethylsiloxane can be mixed homogeneously and become stable precursor solution in dichloromethane, which allows the transformation of silica/polydimethylsiloxane precursor solution into ultrafine fibers. Flame can ignite organic groups in polydimethylsiloxane directly and destroy the hydrophobicity of hybrid fibers, but hydrophobic feature may survive if electrospun hybrid membrane is combined with thin stainless-steel-304 gauze of 150 meshes due to its thermally stable hydrophobicity (>600 °C).

  2. Bringing Kano’s Perspective to AHP: The 2D-AHP Decision Model

    Directory of Open Access Journals (Sweden)

    Jung Uk

    2016-12-01

    Full Text Available AHP and the Kano model are such prevalent TQM tools that it may be surprising that a true hybrid decision-making model has so far eluded researchers. The quest for a hybrid approach is complicated by the differing output perspective of each model, namely discrete ranking (AHP versus a multi-dimensional picture (Kano. This paper presents a hybrid model of AHP and Kano model, so called two-dimension AHP (2D-AHP.

  3. Surface tensions of multi-component mixed inorganic/organic aqueous systems of atmospheric significance: measurements, model predictions and importance for cloud activation predictions

    Directory of Open Access Journals (Sweden)

    D. O. Topping

    2007-01-01

    Full Text Available In order to predict the physical properties of aerosol particles, it is necessary to adequately capture the behaviour of the ubiquitous complex organic components. One of the key properties which may affect this behaviour is the contribution of the organic components to the surface tension of aqueous particles in the moist atmosphere. Whilst the qualitative effect of organic compounds on solution surface tensions has been widely reported, our quantitative understanding on mixed organic and mixed inorganic/organic systems is limited. Furthermore, it is unclear whether models that exist in the literature can reproduce the surface tension variability for binary and higher order multi-component organic and mixed inorganic/organic systems of atmospheric significance. The current study aims to resolve both issues to some extent. Surface tensions of single and multiple solute aqueous solutions were measured and compared with predictions from a number of model treatments. On comparison with binary organic systems, two predictive models found in the literature provided a range of values resulting from sensitivity to calculations of pure component surface tensions. Results indicate that a fitted model can capture the variability of the measured data very well, producing the lowest average percentage deviation for all compounds studied. The performance of the other models varies with compound and choice of model parameters. The behaviour of ternary mixed inorganic/organic systems was unreliably captured by using a predictive scheme and this was dependent on the composition of the solutes present. For more atmospherically representative higher order systems, entirely predictive schemes performed poorly. It was found that use of the binary data in a relatively simple mixing rule, or modification of an existing thermodynamic model with parameters derived from binary data, was able to accurately capture the surface tension variation with concentration. Thus

  4. Perspectives for spintronics in 2D materials

    Directory of Open Access Journals (Sweden)

    Wei Han

    2016-03-01

    Full Text Available The past decade has been especially creative for spintronics since the (rediscovery of various two dimensional (2D materials. Due to the unusual physical characteristics, 2D materials have provided new platforms to probe the spin interaction with other degrees of freedom for electrons, as well as to be used for novel spintronics applications. This review briefly presents the most important recent and ongoing research for spintronics in 2D materials.

  5. Bedform characterization through 2D spectral analysis

    DEFF Research Database (Denmark)

    Lefebvre, Alice; Ernstsen, Verner Brandbyge; Winter, Christian

    2011-01-01

    characteristics using twodimensional (2D) spectral analysis is presented and tested on seabed elevation data from the Knudedyb tidal inlet in the Danish Wadden Sea, where large compound bedforms are found. The bathymetric data were divided into 20x20 m areas on which a 2D spectral analysis was applied. The most...... energetic peak of the 2D spectrum was found and its energy, frequency and direction were calculated. A power-law was fitted to the average of slices taken through the 2D spectrum; its slope and y-intercept were calculated. Using these results the test area was morphologically classified into 4 distinct...

  6. Transition metal modified and partially calcined inorganic-organic pillared clays for the adsorption of salicylic acid, clofibric acid, carbamazepine, and caffeine from water.

    Science.gov (United States)

    Cabrera-Lafaurie, Wilman A; Román, Félix R; Hernández-Maldonado, Arturo J

    2012-11-15

    Pharmaceutical and Personal Care Products (PPCPs) are considered emerging contaminants, and their efficient removal from water is going to be a challenging endeavor. Microporous adsorbent materials, including pillared clays, could offer a potential solution if tailored properly. Although pillared clays have been employed previously for the removal of organics, the effective removal of PPCPs will only be possible if their surface and textural properties are manipulated from the bottom-up. This work presents the use of modified inorganic-organic pillared clays (IOCs) for the adsorption of salicylic acid, clofibric acid, carbamazepine, and caffeine. The IOCs have been modified with Co(2+), Cu(2+), or Ni(2+) to induce complexation-like adsorbate-adsorbent interactions at ambient conditions, in an attempt to provide an efficient and yet reversible driving force in the sub-ppm concentration range. Furthermore, the IOCs were partially calcined to increase effective surface area by an order of magnitude while preserving some hydrophobicity. In general, the Ni(2+) IOCs exhibited the greatest interaction with salicylic and clofibric acids, respectively, while the Co(2+) adsorbents excelled at adsorbing caffeine at low concentrations. All of the metal-modified IOCs showed comparable adsorption capacities for the case of carbamazepine, probably due to the lack of availability of particular functional groups in this adsorbate.

  7. Preparation of molecular imprinted microspheres based on inorganic-organic co-functional monomer for miniaturized solid-phase extraction of fluoroquinolones in milk.

    Science.gov (United States)

    Wang, Hui; Wang, Ruiling; Han, Yehong

    2014-02-15

    An inorganic-organic co-functional monomer, methacrylic acid-vinyltriethoxysilan (MAA-VTES) was designed for the synthesis of molecularly imprinted microspheres (MIMs). By virtue of the aqueous suspension polymerization and dummy template (pazufloxacin), the obtained MAA-VTES based MIMs exhibited good recognition and selectivity to fluoroquinolones (FQs), and were successfully applied as selective sorbents of a miniaturized home-made solid phase extraction device for the determination of ofloxacin (OFL), lomefloxacin (LOM) and ciprofloxacin (CIP) in milk samples. Under the optimum conditions of the miniaturized molecularly imprinted solid phase extraction (mini-MISPE) coupled with liquid chromatography-ultraviolet detector (LC-UV), good linearities were obtained for three FQs in a range of 0.2-20.0μgmL(-1) and the average recoveries at three spiked levels were ranged from 87.2% to 106.1% with the relative standard deviation (RSD) less than 5.4%. The presented co-functional monomer based mini-MISPE-LC-UV protocol introduced the rigidity and flexibility of inorganic silicon materials, exhibited excellent extraction performance towards targets, and could be potentially applied to the determination of FQs in milk samples.

  8. Annotated Bibliography of EDGE2D Use

    Energy Technology Data Exchange (ETDEWEB)

    J.D. Strachan and G. Corrigan

    2005-06-24

    This annotated bibliography is intended to help EDGE2D users, and particularly new users, find existing published literature that has used EDGE2D. Our idea is that a person can find existing studies which may relate to his intended use, as well as gain ideas about other possible applications by scanning the attached tables.

  9. Port Adriano, 2D-Model Tests

    DEFF Research Database (Denmark)

    Burcharth, Hans F.; Andersen, Thomas Lykke; Jensen, Palle Meinert

    This report present the results of 2D physical model tests (length scale 1:50) carried out in a waveflume at Dept. of Civil Engineering, Aalborg University (AAU).......This report present the results of 2D physical model tests (length scale 1:50) carried out in a waveflume at Dept. of Civil Engineering, Aalborg University (AAU)....

  10. Structural Theory of 2-d Adinkras

    CERN Document Server

    Iga, Kevin

    2015-01-01

    Adinkras are combinatorial objects developed to study 1-dimensional supersymmetry representations. Recently, 2-d Adinkras have been developed to study 2-dimensional supersymmetry. In this paper, we classify all 2-d Adinkras, confirming a conjecture of T. H\\"ubsch. Along the way, we obtain other structural results, including a simple characterization of H\\"ubsch's even-split doubly even code.

  11. 2-D algebraic test for robust stability of time-delay systems with interval parameters

    Institute of Scientific and Technical Information of China (English)

    Xiao Yang

    2006-01-01

    The robust stability test of time-delay systems with interval parameters can be concluded into the robust stability of the interval quasipolynomials. It has been revealed that the robust stability of the quasipolynomials depends on that of their edge polynomials. This paper transforms the interval quasipolynomials into two-dimensional (2-D) interval polynomials (2-D s-z hybrid polynomials), proves that the robust stability of interval 2-D polynomials are sufficient for the stability of given quasipolynomials. Thus, the stability test of interval quasipolynomials can be completed in 2-D s-z domain instead of classical 1-D s domain. The 2-D s-z hybrid polynomials should have different forms under the time delay properties of given quasipolynomials. The stability test proposed by the paper constructs an edge test set from Kharitonov vertex polynomials to reduce the number of testing edge polynomials. The 2-D algebraic tests are provided for the stability test of vertex 2-D polynomials and edge 2-D polynomials family. To verify the results of the paper to be correct and valid, the simulations based on proposed results and comparison with other presented results are given.

  12. 2D materials for nanophotonic devices

    Science.gov (United States)

    Xu, Renjing; Yang, Jiong; Zhang, Shuang; Pei, Jiajie; Lu, Yuerui

    2015-12-01

    Two-dimensional (2D) materials have become very important building blocks for electronic, photonic, and phononic devices. The 2D material family has four key members, including the metallic graphene, transition metal dichalcogenide (TMD) layered semiconductors, semiconducting black phosphorous, and the insulating h-BN. Owing to the strong quantum confinements and defect-free surfaces, these atomically thin layers have offered us perfect platforms to investigate the interactions among photons, electrons and phonons. The unique interactions in these 2D materials are very important for both scientific research and application engineering. In this talk, I would like to briefly summarize and highlight the key findings, opportunities and challenges in this field. Next, I will introduce/highlight our recent achievements. We demonstrated atomically thin micro-lens and gratings using 2D MoS2, which is the thinnest optical component around the world. These devices are based on our discovery that the elastic light-matter interactions in highindex 2D materials is very strong. Also, I would like to introduce a new two-dimensional material phosphorene. Phosphorene has strongly anisotropic optical response, which creates 1D excitons in a 2D system. The strong confinement in phosphorene also enables the ultra-high trion (charged exciton) binding energies, which have been successfully measured in our experiments. Finally, I will briefly talk about the potential applications of 2D materials in energy harvesting.

  13. Inorganic-organic rubbery scintillators

    CERN Document Server

    Gektin, A V; Pogorelova, N; Neicheva, S; Sysoeva, E; Gavrilyuk, V

    2002-01-01

    Spectral-kinetic luminescence properties of films, containing homogeneously dispersed scintillation particles of CsI, CsI:Tl, CsI:Na, and NaI:Tl in optically transparent organosiloxane matrix, are presented. Material is flexible and rubbery and in consequence the detectors of convenient shapes can be produced. It is found that luminescence spectra of the received films are identical whereas decay times are much shorter compared to the same ones of the corresponding single crystals. Layers with pure CsI demonstrate only the fast UV emission (307 nm, 10 ns) without blue microsecond afterglow typical for crystals. The films containing NaI:Tl are non-hygroscopic and preserve scintillation properties for a long time in humid atmosphere unlike single crystals. Organosiloxane layers with CsI:Tl particles provide high light output with good energy resolution for sup 5 sup 5 Fe, sup 1 sup 0 sup 9 Cd, sup 2 sup 4 sup 1 Am sources, and are capable of detecting both X-rays and alpha-, beta-particles.

  14. Profiling of soil volatile organic compounds after long-term application of inorganic, organic and organic-inorganic mixed fertilizers and their effect on plant growth.

    Science.gov (United States)

    Raza, Waseem; Mei, Xinlan; Wei, Zhong; Ling, Ning; Yuan, Jun; Wang, Jichen; Huang, Qiwei; Shen, Qirong

    2017-12-31

    The complexity of soil processes involved in the production, consumption and accumulation of volatile organic compounds (VOCs) makes hard to access the overall dynamics of VOCs in the soil. In this study, the field soil, applied with inorganic (CF), organic (OF) and inorganic-organic mixed (CFOF) fertilizers for ten years was evaluated for the emission of VOCs at different temperature and moisture levels. We identified 30-50 soil emitted VOCs representing the most common soil VOCs groups by using the solid-phase microextraction (SPME) fiber and gas chromatography-mass spectroscopy. The highest total emission of VOCs was found in OF treatment, but it was non-significantly different with CF treatment. The emission of VOCs was significantly increased with the decrease in moisture contents and increase in the temperature of the soil. Among different fertilizer treatments, the emission of VOCs was significantly higher in OF treatment at 5% moisture, and in CF and OF treatments at 35°C. Further, the VOCs emitted from soil treated with CFOF showed the highest increase in plant growth while CF and OF treatments showed similar results. The VOCs were also extracted from the soil using methanol to better understand the dynamics of VOCs. The abundance of VOCs extracted from the soil was 44-61%, while the richness was 65-70% higher than the VOCs emitted from the soil in different treatments. Taken together the results of emitted and extracted VOCs from the soil, we conclude that the fertilizers are able to discriminate among the VOC patterns of soil. In addition, most of the VOCs are retained in the soil and the emission of VOCs from soil depends on the type of VOCs, soil properties and environmental conditions; however, more research is required to find out better soil VOCs analysis methods. Copyright © 2017. Published by Elsevier B.V.

  15. 2D/3D switchable displays

    Science.gov (United States)

    Dekker, T.; de Zwart, S. T.; Willemsen, O. H.; Hiddink, M. G. H.; IJzerman, W. L.

    2006-02-01

    A prerequisite for a wide market acceptance of 3D displays is the ability to switch between 3D and full resolution 2D. In this paper we present a robust and cost effective concept for an auto-stereoscopic switchable 2D/3D display. The display is based on an LCD panel, equipped with switchable LC-filled lenticular lenses. We will discuss 3D image quality, with the focus on display uniformity. We show that slanting the lenticulars in combination with a good lens design can minimize non-uniformities in our 20" 2D/3D monitors. Furthermore, we introduce fractional viewing systems as a very robust concept to further improve uniformity in the case slanting the lenticulars and optimizing the lens design are not sufficient. We will discuss measurements and numerical simulations of the key optical characteristics of this display. Finally, we discuss 2D image quality, the switching characteristics and the residual lens effect.

  16. Matrix models of 2d gravity

    Energy Technology Data Exchange (ETDEWEB)

    Ginsparg, P.

    1991-01-01

    These are introductory lectures for a general audience that give an overview of the subject of matrix models and their application to random surfaces, 2d gravity, and string theory. They are intentionally 1.5 years out of date.

  17. Matrix models of 2d gravity

    Energy Technology Data Exchange (ETDEWEB)

    Ginsparg, P.

    1991-12-31

    These are introductory lectures for a general audience that give an overview of the subject of matrix models and their application to random surfaces, 2d gravity, and string theory. They are intentionally 1.5 years out of date.

  18. 2D Saturable Absorbers for Fibre Lasers

    Directory of Open Access Journals (Sweden)

    Robert I. Woodward

    2015-11-01

    Full Text Available Two-dimensional (2D nanomaterials are an emergent and promising platform for future photonic and optoelectronic applications. Here, we review recent progress demonstrating the application of 2D nanomaterials as versatile, wideband saturable absorbers for Q-switching and mode-locking fibre lasers. We focus specifically on the family of few-layer transition metal dichalcogenides, including MoS2, MoSe2 and WS2.

  19. Image processing of 2D crystal images.

    Science.gov (United States)

    Arheit, Marcel; Castaño-Díez, Daniel; Thierry, Raphaël; Gipson, Bryant R; Zeng, Xiangyan; Stahlberg, Henning

    2013-01-01

    Electron crystallography of membrane proteins uses cryo-transmission electron microscopy to image frozen-hydrated 2D crystals. The processing of recorded images exploits the periodic arrangement of the structures in the images to extract the amplitudes and phases of diffraction spots in Fourier space. However, image imperfections require a crystal unbending procedure to be applied to the image before evaluation in Fourier space. We here describe the process of 2D crystal image unbending, using the 2dx software system.

  20. Applications of 2D helical vortex dynamics

    DEFF Research Database (Denmark)

    Okulov, Valery; Sørensen, Jens Nørkær

    2010-01-01

    In the paper, we show how the assumption of helical symmetry in the context of 2D helical vortices can be exploited to analyse and to model various cases of rotating flows. From theory, examples of three basic applications of 2D dynamics of helical vortices embedded in flows with helical symmetry...... of the vorticity field are addressed. These included some of the problems related to vortex breakdown, instability of far wakes behind rotors and vortex theory of ideal rotors....

  1. Glitter in a 2D monolayer.

    Science.gov (United States)

    Yang, Li-Ming; Dornfeld, Matthew; Frauenheim, Thomas; Ganz, Eric

    2015-10-21

    We predict a highly stable and robust atomically thin gold monolayer with a hexagonal close packed lattice stabilized by metallic bonding with contributions from strong relativistic effects and aurophilic interactions. We have shown that the framework of the Au monolayer can survive 10 ps MD annealing simulations up to 1400 K. The framework is also able to survive large motions out of the plane. Due to the smaller number of bonds per atom in the 2D layer compared to the 3D bulk we observe significantly enhanced energy per bond (0.94 vs. 0.52 eV per bond). This is similar to the increase in bond strength going from 3D diamond to 2D graphene. It is a non-magnetic metal, and was found to be the global minima in the 2D space. Phonon dispersion calculations demonstrate high kinetic stability with no negative modes. This 2D gold monolayer corresponds to the top monolayer of the bulk Au(111) face-centered cubic lattice. The close-packed lattice maximizes the aurophilic interactions. We find that the electrons are completely delocalized in the plane and behave as 2D nearly free electron gas. We hope that the present work can inspire the experimental fabrication of novel free standing 2D metal systems.

  2. 2d index and surface operators

    Science.gov (United States)

    Gadde, Abhijit; Gukov, Sergei

    2014-03-01

    In this paper we compute the superconformal index of 2d (2, 2) supersymmetric gauge theories. The 2d superconformal index, a.k.a. flavored elliptic genus, is computed by a unitary matrix integral much like the matrix integral that computes the 4d superconformal index. We compute the 2d index explicitly for a number of examples. In the case of abelian gauge theories we see that the index is invariant under flop transition and under CY-LG correspondence. The index also provides a powerful check of the Seiberg-type duality for non-abelian gauge theories discovered by Hori and Tong. In the later half of the paper, we study half-BPS surface operators in = 2 super-conformal gauge theories. They are engineered by coupling the 2d (2, 2) supersymmetric gauge theory living on the support of the surface operator to the 4d = 2 theory, so that different realizations of the same surface operator with a given Levi type are related by a 2d analogue of the Seiberg duality. The index of this coupled system is computed by using the tools developed in the first half of the paper. The superconformal index in the presence of surface defect is expected to be invariant under generalized S-duality. We demonstrate that it is indeed the case. In doing so the Seiberg-type duality of the 2d theory plays an important role.

  3. Air-stable nZVI formation mediated by glutamic acid: solid-state storable material exhibiting 2D chain morphology and high reactivity in aqueous environment

    Energy Technology Data Exchange (ETDEWEB)

    Siskova, Karolina, E-mail: karolina.siskova@upol.cz; Tucek, Jiri; Machala, Libor [Palacky University, Regional Centre of Advanced Technologies and Materials, Faculty of Science (Czech Republic); Otyepkova, Eva [Palacky University, Department of Physical Chemistry, Faculty of Science (Czech Republic); Filip, Jan; Safarova, Klara; Pechousek, Jiri; Zboril, Radek, E-mail: zboril@prfnw.upol.cz [Palacky University, Regional Centre of Advanced Technologies and Materials, Faculty of Science (Czech Republic)

    2012-03-15

    We report a new chemical approach toward air-stable nanoscale zero-valent iron (nZVI). The uniformly sized (approx. 80 nm) particles, formed by the reduction of Fe(II) salt by borohydride in the presence of glutamic acid, are coated by a thin inner shell of amorphous ferric oxide/hydroxide and a secondary shell consisting of glutamic acid. The as-prepared nanoparticles stabilized by the inorganic-organic double shell create 2D chain morphologies. They are storable for several months under ambient atmosphere without the loss of Fe(0) relative content. They show one order of magnitude higher rate constant for trichlorethene decomposition compared with the pristine particles possessing only the inorganic shell as a protective layer. This is the first example of the inorganic-organic (consisting of low-molecular weight species) double-shell stabilized nanoscale zero-valent iron material being safely transportable in solid-state, storable on long-term basis under ambient conditions, environmentally acceptable for in situ applications, and extraordinarily reactive if contacted with reducible pollutants, all in one.

  4. 2-D DOA Estimation Based on 2D-MUSIC%基于2D-MUSIC算法的DOA估计

    Institute of Scientific and Technical Information of China (English)

    康亚芳; 王静; 张清泉; 行小帅

    2014-01-01

    This paper discussed the performance of classical two-dimensional DOA estimation with 2D-MUSIC, based on the mathematical model of planar array and 2D-MUSIC DOA estimation, Taking uniform planar array for example, comput-er simulation experiment was carried for the effect of three kinds of different parameters on 2-D DOA estimation, and the simulation results were analyzed. And also verification test about the corresponding algorithm performance under the differ-ent parameters was discussed.%利用经典的2D-MUSIC算法对二维阵列的DOA估计进行了研究,在平面阵列数学模型以及2D-MUSIC算法的DOA估计模型基础上,以均匀平面阵列为例,对3种不同参数的DOA估计进行了计算机仿真,分析了仿真结果。得出了在不同参数变化趋势下DOA估计的相应变化情况。

  5. Flexible, cathodoluminescent and free standing mesoporous silica films with entrapped quasi-2D perovskites

    Science.gov (United States)

    Vassilakopoulou, Anastasia; Papadatos, Dionysios; Koutselas, Ioannis

    2017-04-01

    The effective entrapment of hybrid organic-inorganic semiconductors (HOIS) into mesoporous polymer-silica hybrid matrices, formed as free standing flexible films, is presented for the first time. A blend of quasi-2D HOIS, simply synthesized by mixing two-dimensional (2D) and three dimensional (3D) HOIS, exhibiting strong photoluminescence, is embedded into porous silica matrices during the sol-gel synthesis, using tetraethylorthosilicate as precursor and Pluronic F-127 triblock copolymer as structure directing agent, under acidic conditions. The final nanostructure hybrid forms flexible, free standing films, presenting high cathodoluminescence and long stable excitonic luminescence, indicating the protective character of the hybrid matrix towards the entrapped perovskite. A significant result is that the photoluminescence of the entrapped HOIS is not affected even after films' prolonged exposure to water.

  6. Character animation fundamentals developing skills for 2D and 3D character animation

    CERN Document Server

    Roberts, Steve

    2012-01-01

    Expand your animation toolkit and remain competitive in the industry with this leading resource for 2D and 3D character animation techniques. Apply the industry's best practices to your own workflows and develop 2D, 3D and hybrid characters with ease. With side by side comparisons of 2D and 3D character design, improve your character animation and master traditional principles and processes including weight and balance, timing and walks. Develop characters inspired by humans, birds, fish, snakes and four legged animals. Breathe life into your character and develop a characters personality w

  7. 2d Index and Surface operators

    CERN Document Server

    Gadde, Abhijit

    2013-01-01

    In this paper we compute the superconformal index of 2d (2,2) supersymmetric gauge theories. The 2d superconformal index, a.k.a. flavored elliptic genus, is computed by a unitary matrix integral much like the matrix integral that computes 4d superconformal index. We compute the 2d index explicitly for a number of examples. In the case of abelian gauge theories we see that the index is invariant under flop transition and CY-LG correspondence. The index also provides a powerful check of the Seiberg-type duality for non-abelian gauge theories discovered by Hori and Tong. In the later half of the paper, we study half-BPS surface operators in N=2 superconformal gauge theories. They are engineered by coupling the 2d (2,2) supersymmetric gauge theory living on the support of the surface operator to the 4d N=2 theory, so that different realizations of the same surface operator with a given Levi type are related by a 2d analogue of the Seiberg duality. The index of this coupled system is computed by using the tools de...

  8. Hybrid silicon nanocrystal-organic light-emitting devices for infrared electroluminescence.

    Science.gov (United States)

    Cheng, Kai-Yuan; Anthony, Rebecca; Kortshagen, Uwe R; Holmes, Russell J

    2010-04-14

    We demonstrate hybrid inorganic-organic light-emitting devices with peak electroluminescence (EL) at a wavelength of 868 nm using silicon nanocrystals (SiNCs). An external quantum efficiency of 0.6% is realized in the forward-emitted direction, with emission originating primarily from the SiNCs. Microscopic characterization indicates that complete coverage of the SiNCs on the conjugated polymer hole-transporting layer is required to observe efficient EL.

  9. Hybrid organic-inorganic polyoxometalates : synthesis and characterisation of organoarsonate and organophosphonate functionalised polyoxovanadate clusters

    OpenAIRE

    Breen, John Michael

    2010-01-01

    This thesis presents a significant contribution of research to the field of hybrid inorganic- organic polyoxometalates. Herein the functionalisation of polyoxovanadate clusters with aryl arsonates and aryl phosphonates is described and the structural and physiochemical properties of the product materials are discussed. Chapter 1 introduces the reader to the field of research, highlights recent significant achievements and puts accomplishments into a broader context. TARA (Trinity’s Access ...

  10. Effective-mass model and magneto-optical properties in hybrid perovskites

    OpenAIRE

    Yu, Z. G.

    2016-01-01

    Hybrid inorganic-organic perovskites have proven to be a revolutionary material for low-cost photovoltaic applications. They also exhibit many other interesting properties, including giant Rashba splitting, large-radius Wannier excitons, and novel magneto-optical effects. Understanding these properties as well as the detailed mechanism of photovoltaics requires a reliable and accessible electronic structure, on which models of transport, excitonic, and magneto-optical properties can be effici...

  11. Role of Microstructure in the Electron-Hole Interaction of Hybrid Lead-Halide Perovskites

    OpenAIRE

    Grancini, Giulia; Srimath Kandada, Ajay Ram; Frost, Jarvist M.; Barker, Alex J; Bastiani, Michele; Gandini, Marina; Marras, Sergio; Lanzani, Guglielmo; Walsh, Aron; Petrozza, Annamaria

    2015-01-01

    Solar cells based on hybrid inorganic-organic halide perovskites have demonstrated high power conversion efficiencies in a range of architectures. The existence and stability of bound electron-hole pairs in these materials, and their role in the exceptional performance of optoelectronic devices, remains a controversial issue. Here we demonstrate, through a combination of optical spectroscopy and multiscale modeling as a function of the degree of polycrystallinity and temperature, that the ele...

  12. Automatic Contour Extraction from 2D Image

    Directory of Open Access Journals (Sweden)

    Panagiotis GIOANNIS

    2011-03-01

    Full Text Available Aim: To develop a method for automatic contour extraction from a 2D image. Material and Method: The method is divided in two basic parts where the user initially chooses the starting point and the threshold. Finally the method is applied to computed tomography of bone images. Results: An interesting method is developed which can lead to a successful boundary extraction of 2D images. Specifically data extracted from a computed tomography images can be used for 2D bone reconstruction. Conclusions: We believe that such an algorithm or part of it can be applied on several other applications for shape feature extraction in medical image analysis and generally at computer graphics.

  13. Orthotropic Piezoelectricity in 2D Nanocellulose

    Science.gov (United States)

    García, Y.; Ruiz-Blanco, Yasser B.; Marrero-Ponce, Yovani; Sotomayor-Torres, C. M.

    2016-10-01

    The control of electromechanical responses within bonding regions is essential to face frontier challenges in nanotechnologies, such as molecular electronics and biotechnology. Here, we present Iβ-nanocellulose as a potentially new orthotropic 2D piezoelectric crystal. The predicted in-layer piezoelectricity is originated on a sui-generis hydrogen bonds pattern. Upon this fact and by using a combination of ab-initio and ad-hoc models, we introduce a description of electrical profiles along chemical bonds. Such developments lead to obtain a rationale for modelling the extended piezoelectric effect originated within bond scales. The order of magnitude estimated for the 2D Iβ-nanocellulose piezoelectric response, ~pm V‑1, ranks this material at the level of currently used piezoelectric energy generators and new artificial 2D designs. Such finding would be crucial for developing alternative materials to drive emerging nanotechnologies.

  14. 2D microwave imaging reflectometer electronics

    Energy Technology Data Exchange (ETDEWEB)

    Spear, A. G.; Domier, C. W., E-mail: cwdomier@ucdavis.edu; Hu, X.; Muscatello, C. M.; Ren, X.; Luhmann, N. C. [Electrical and Computer Engineering, University of California, Davis, California 95616 (United States); Tobias, B. J. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States)

    2014-11-15

    A 2D microwave imaging reflectometer system has been developed to visualize electron density fluctuations on the DIII-D tokamak. Simultaneously illuminated at four probe frequencies, large aperture optics image reflections from four density-dependent cutoff surfaces in the plasma over an extended region of the DIII-D plasma. Localized density fluctuations in the vicinity of the plasma cutoff surfaces modulate the plasma reflections, yielding a 2D image of electron density fluctuations. Details are presented of the receiver down conversion electronics that generate the in-phase (I) and quadrature (Q) reflectometer signals from which 2D density fluctuation data are obtained. Also presented are details on the control system and backplane used to manage the electronics as well as an introduction to the computer based control program.

  15. Assessing 2D electrophoretic mobility spectroscopy (2D MOSY) for analytical applications.

    Science.gov (United States)

    Fang, Yuan; Yushmanov, Pavel V; Furó, István

    2016-12-08

    Electrophoretic displacement of charged entity phase modulates the spectrum acquired in electrophoretic NMR experiments, and this modulation can be presented via 2D FT as 2D mobility spectroscopy (MOSY) spectra. We compare in various mixed solutions the chemical selectivity provided by 2D MOSY spectra with that provided by 2D diffusion-ordered spectroscopy (DOSY) spectra and demonstrate, under the conditions explored, a superior performance of the former method. 2D MOSY compares also favourably with closely related LC-NMR methods. The shape of 2D MOSY spectra in complex mixtures is strongly modulated by the pH of the sample, a feature that has potential for areas such as in drug discovery and metabolomics. Copyright © 2016 The Authors. Magnetic Resonance in Chemistry published by John Wiley & Sons Ltd. StartCopTextCopyright © 2016 The Authors. Magnetic Resonance in Chemistry published by John Wiley & Sons Ltd.

  16. Validity of Mixed 2D and 3D Cadastral Parcels in the Land Administration Domain Model

    NARCIS (Netherlands)

    Thompson, R.J.; Van Oosterom, P.J.M.

    2012-01-01

    In the move towards a 3D Cadastre, many jurisdictions are considering a hybrid 2D/3D database as either a stage of development or as a target in itself (van Oosterom, Stoter, Ploeger, Thompson and Karki 2011). The Land Administration Domain Model (LADM), which is the underlying model for the ISO 191

  17. Aircraft height estimation using 2-D radar

    CSIR Research Space (South Africa)

    Hakl, H

    2010-01-01

    Full Text Available A method to infer height information from an aircraft tracked with a single 2-D search radar is presented. The method assumes level flight in the target aircraft and a good estimate of the speed of the aircraft. The method yields good results...

  18. Canonical structure of 2D black holes

    CERN Document Server

    Navarro-Salas, J; Talavera, C F

    1994-01-01

    We determine the canonical structure of two-dimensional black-hole solutions arising in $2D$ dilaton gravity. By choosing the Cauchy surface appropriately we find that the canonically conjugate variable to the black hole mass is given by the difference of local (Schwarzschild) time translations at right and left spatial infinities. This can be regarded as a generalization of Birkhoff's theorem.

  19. Horns Rev II, 2-D Model Tests

    DEFF Research Database (Denmark)

    Andersen, Thomas Lykke; Frigaard, Peter

    This report present the results of 2D physical model tests carried out in the shallow wave flume at Dept. of Civil Engineering, Aalborg University (AAU), on behalf of Energy E2 A/S part of DONG Energy A/S, Denmark. The objective of the tests was: to investigate the combined influence of the pile...

  20. 2D PIM Simulation Based on COMSOL

    DEFF Research Database (Denmark)

    Wang, Xinbo; Cui, Wanzhao; Wang, Jingyu;

    2011-01-01

    Passive intermodulation (PIM) is a problematic type of nonlinear distortion en- countered in many communication systems. To analyze the PIM distortion resulting from ma- terial nonlinearity, a 2D PIM simulation method based on COMSOL is proposed in this paper. As an example, a rectangular wavegui...

  1. Interface Induced Growth and Transformation of Polymer-Conjugated Proto-Crystalline Phases in Aluminosilicate Hybrids: A Multiple-Quantum (23)Na-(23)Na MAS NMR Correlation Spectroscopy Study.

    Science.gov (United States)

    Brus, Jiri; Kobera, Libor; Urbanova, Martina; Doušová, Barbora; Lhotka, Miloslav; Koloušek, David; Kotek, Jiří; Čuba, Pavel; Czernek, Jiri; Dědeček, Jiří

    2016-03-22

    Nanostructured materials typically offer enhanced physicochemical properties because of their large interfacial area. In this contribution, we present a comprehensive structural characterization of aluminosilicate hybrids with polymer-conjugated nanosized zeolites specifically grown at the organic-inorganic interface. The inorganic amorphous Al-O-Si framework is formed by alkali-activated low-temperature transformation of metakaoline, whereas simultaneous copolymerization of organic comonomers creates a secondary epoxide network covalently bound to the aluminosilicate matrix. This secondary epoxide phase not only enhances the mechanical integrity of the resulting hybrids but also introduces additional binding sites accessible for compensating negative charge on the aluminosilicate framework. This way, the polymer network initiates growth and subsequent transformation of protocrystalline short-range ordered zeolite domains that are located at the organic-inorganic interface. By applying an experimental approach based on 2D (23)Na-(23)Na double-quantum (DQ) MAS NMR spectroscopy, we discovered multiple sodium binding sites in these protocrystalline domains, in which immobilized Na(+) ions form pairs or small clusters. It is further demonstrated that these sites, the local geometry of which allows for the pairing of sodium ions, are preferentially occupied by Pb(2+) ions during the ion exchange. The proposed synthesis protocol thus allows for the preparation of a novel type of geopolymer hybrids with polymer-conjugated zeolite phases suitable for capturing and storage of metal cations. The demonstrated (23)Na-(23)Na DQ MAS NMR combined with DFT calculations represents a suitable approach for understanding the role of Na(+) ions in aluminositicate solids and related inorganic-organic hybrids, particularly their specific arrangement and clustering at interfacial areas.

  2. Application of 2D Non-Graphene Materials and 2D Oxide Nanostructures for Biosensing Technology.

    Science.gov (United States)

    Shavanova, Kateryna; Bakakina, Yulia; Burkova, Inna; Shtepliuk, Ivan; Viter, Roman; Ubelis, Arnolds; Beni, Valerio; Starodub, Nickolaj; Yakimova, Rositsa; Khranovskyy, Volodymyr

    2016-02-06

    The discovery of graphene and its unique properties has inspired researchers to try to invent other two-dimensional (2D) materials. After considerable research effort, a distinct "beyond graphene" domain has been established, comprising the library of non-graphene 2D materials. It is significant that some 2D non-graphene materials possess solid advantages over their predecessor, such as having a direct band gap, and therefore are highly promising for a number of applications. These applications are not limited to nano- and opto-electronics, but have a strong potential in biosensing technologies, as one example. However, since most of the 2D non-graphene materials have been newly discovered, most of the research efforts are concentrated on material synthesis and the investigation of the properties of the material. Applications of 2D non-graphene materials are still at the embryonic stage, and the integration of 2D non-graphene materials into devices is scarcely reported. However, in recent years, numerous reports have blossomed about 2D material-based biosensors, evidencing the growing potential of 2D non-graphene materials for biosensing applications. This review highlights the recent progress in research on the potential of using 2D non-graphene materials and similar oxide nanostructures for different types of biosensors (optical and electrochemical). A wide range of biological targets, such as glucose, dopamine, cortisol, DNA, IgG, bisphenol, ascorbic acid, cytochrome and estradiol, has been reported to be successfully detected by biosensors with transducers made of 2D non-graphene materials.

  3. Application of 2D Non-Graphene Materials and 2D Oxide Nanostructures for Biosensing Technology

    Directory of Open Access Journals (Sweden)

    Kateryna Shavanova

    2016-02-01

    Full Text Available The discovery of graphene and its unique properties has inspired researchers to try to invent other two-dimensional (2D materials. After considerable research effort, a distinct “beyond graphene” domain has been established, comprising the library of non-graphene 2D materials. It is significant that some 2D non-graphene materials possess solid advantages over their predecessor, such as having a direct band gap, and therefore are highly promising for a number of applications. These applications are not limited to nano- and opto-electronics, but have a strong potential in biosensing technologies, as one example. However, since most of the 2D non-graphene materials have been newly discovered, most of the research efforts are concentrated on material synthesis and the investigation of the properties of the material. Applications of 2D non-graphene materials are still at the embryonic stage, and the integration of 2D non-graphene materials into devices is scarcely reported. However, in recent years, numerous reports have blossomed about 2D material-based biosensors, evidencing the growing potential of 2D non-graphene materials for biosensing applications. This review highlights the recent progress in research on the potential of using 2D non-graphene materials and similar oxide nanostructures for different types of biosensors (optical and electrochemical. A wide range of biological targets, such as glucose, dopamine, cortisol, DNA, IgG, bisphenol, ascorbic acid, cytochrome and estradiol, has been reported to be successfully detected by biosensors with transducers made of 2D non-graphene materials.

  4. Spectroscopic properties of multilayered gold nanoparticle 2D sheets.

    Science.gov (United States)

    Yoshida, Akihito; Imazu, Keisuke; Li, Xinheng; Okamoto, Koichi; Tamada, Kaoru

    2012-12-11

    We report the fabrication technique and optical properties of multilayered two-dimensional (2D) gold nanoparticle sheets ("Au nanosheet"). The 2D crystalline monolayer sheet composed of Au nanoparticles shows an absorption peak originating from a localized surface plasmon resonance (LSPR). It was found that the absorption spectra dramatically change when the monolayers are assembled into the multilayers on different substrates (quartz or Au). In the case of the multilayers on Au thin film (d = 200 nm), the LSPR peak is shifted to longer wavelength at the near-IR region by increasing the number of layers. The absorbance also depends on the layer number and shows the nonlinear behavior. On the other hand, the multilayers on quartz substrate show neither such LSPR peak shift nor nonlinear response of absorbance. The layer number dependence on metal surfaces can be interpreted as the combined effects between the near-field coupling of the LSPR and the far-field optics of the stratified metamaterial films, as proposed in our previous study. We also report the spectroscopic properties of hybrid multilayers composed of two kinds of monolayers, i.e., Au nanosheet and Ag nanosheet. The combination of the different metal nanoparticle sheets realizes more flexible plasmonic color tuning.

  5. ELRIS2D: A MATLAB Package for the 2D Inversion of DC Resistivity/IP Data

    Science.gov (United States)

    Akca, Irfan

    2016-04-01

    ELRIS2D is an open source code written in MATLAB for the two-dimensional inversion of direct current resistivity (DCR) and time domain induced polarization (IP) data. The user interface of the program is designed for functionality and ease of use. All available settings of the program can be reached from the main window. The subsurface is discre-tized using a hybrid mesh generated by the combination of structured and unstructured meshes, which reduces the computational cost of the whole inversion procedure. The inversion routine is based on the smoothness constrained least squares method. In order to verify the program, responses of two test models and field data sets were inverted. The models inverted from the synthetic data sets are consistent with the original test models in both DC resistivity and IP cases. A field data set acquired in an archaeological site is also used for the verification of outcomes of the program in comparison with the excavation results.

  6. ELRIS2D: A MATLAB Package for the 2D Inversion of DC Resistivity/IP Data

    Directory of Open Access Journals (Sweden)

    Akca Irfan

    2016-04-01

    Full Text Available ELRIS2D is an open source code written in MATLAB for the two-dimensional inversion of direct current resistivity (DCR and time domain induced polarization (IP data. The user interface of the program is designed for functionality and ease of use. All available settings of the program can be reached from the main window. The subsurface is discretized using a hybrid mesh generated by the combination of structured and unstructured meshes, which reduces the computational cost of the whole inversion procedure. The inversion routine is based on the smoothness constrained least squares method. In order to verify the program, responses of two test models and field data sets were inverted. The models inverted from the synthetic data sets are consistent with the original test models in both DC resistivity and IP cases. A field data set acquired in an archaeological site is also used for the verification of outcomes of the program in comparison with the excavation results.

  7. Schottky diodes from 2D germanane

    Science.gov (United States)

    Sahoo, Nanda Gopal; Esteves, Richard J.; Punetha, Vinay Deep; Pestov, Dmitry; Arachchige, Indika U.; McLeskey, James T.

    2016-07-01

    We report on the fabrication and characterization of a Schottky diode made using 2D germanane (hydrogenated germanene). When compared to germanium, the 2D structure has higher electron mobility, an optimal band-gap, and exceptional stability making germanane an outstanding candidate for a variety of opto-electronic devices. One-atom-thick sheets of hydrogenated puckered germanium atoms have been synthesized from a CaGe2 framework via intercalation and characterized by XRD, Raman, and FTIR techniques. The material was then used to fabricate Schottky diodes by suspending the germanane in benzonitrile and drop-casting it onto interdigitated metal electrodes. The devices demonstrate significant rectifying behavior and the outstanding potential of this material.

  8. Schottky diodes from 2D germanane

    Energy Technology Data Exchange (ETDEWEB)

    Sahoo, Nanda Gopal; Punetha, Vinay Deep [Nanoscience and Nanotechnology Centre, Department of Chemistry, Kumaun University, Nainital, 263001 Uttarakhand (India); Esteves, Richard J; Arachchige, Indika U. [Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284 (United States); Pestov, Dmitry [Nanomaterials Core Characterization Center, Virginia Commonwealth University, Richmond, Virginia 23284 (United States); McLeskey, James T., E-mail: JamesMcLeskey@rmc.edu [Department of Physics, Randolph-Macon College, Ashland, Virginia 23005 (United States)

    2016-07-11

    We report on the fabrication and characterization of a Schottky diode made using 2D germanane (hydrogenated germanene). When compared to germanium, the 2D structure has higher electron mobility, an optimal band-gap, and exceptional stability making germanane an outstanding candidate for a variety of opto-electronic devices. One-atom-thick sheets of hydrogenated puckered germanium atoms have been synthesized from a CaGe{sub 2} framework via intercalation and characterized by XRD, Raman, and FTIR techniques. The material was then used to fabricate Schottky diodes by suspending the germanane in benzonitrile and drop-casting it onto interdigitated metal electrodes. The devices demonstrate significant rectifying behavior and the outstanding potential of this material.

  9. Two-photon polymerization of 3-D zirconium oxide hybrid scaffolds for long-term stem cell growth.

    Science.gov (United States)

    Skoog, Shelby A; Nguyen, Alexander K; Kumar, Girish; Zheng, Jiwen; Goering, Peter L; Koroleva, Anastasia; Chichkov, Boris N; Narayan, Roger J

    2014-06-01

    Two-photon polymerization is a technique that involves simultaneous absorption of two photons from a femtosecond laser for selective polymerization of a photosensitive material. In this study, two-photon polymerization was used for layer-by-layer fabrication of 3-D scaffolds composed of an inorganic-organic zirconium oxide hybrid material. Four types of scaffold microarchitectures were created, which exhibit layers of parallel line features at various orientations as well as pores between the line features. Long-term cell culture studies involving human bone marrow stromal cells were conducted using these 3-D scaffolds. Cellular adhesion and proliferation were demonstrated on all of the scaffold types; tissuelike structure was shown to span the pores. This study indicates that two-photon polymerization may be used to create microstructured scaffolds out of an inorganic-organic zirconium oxide hybrid material for use in 3-D tissue culture systems.

  10. 2D Metals by Repeated Size Reduction.

    Science.gov (United States)

    Liu, Hanwen; Tang, Hao; Fang, Minghao; Si, Wenjie; Zhang, Qinghua; Huang, Zhaohui; Gu, Lin; Pan, Wei; Yao, Jie; Nan, Cewen; Wu, Hui

    2016-10-01

    A general and convenient strategy for manufacturing freestanding metal nanolayers is developed on large scale. By the simple process of repeatedly folding and calendering stacked metal sheets followed by chemical etching, free-standing 2D metal (e.g., Ag, Au, Fe, Cu, and Ni) nanosheets are obtained with thicknesses as small as 1 nm and with sizes of the order of several micrometers.

  11. 2dF mechanical engineering

    Science.gov (United States)

    Smith, Greg; Lankshear, Allan

    1998-07-01

    2dF is a multi-object instrument mounted at prime focus at the AAT capable of spectroscopic analysis of 400 objects in a single 2 degree field. It also prepares a second 2 degree 400 object field while the first field is being observed. At its heart is a high precision robotic positioner that places individual fiber end magnetic buttons on one of two field plates. The button gripper is carried on orthogonal gantries powered by linear synchronous motors and contains a TV camera which precisely locates backlit buttons to allow placement in user defined locations to 10 (mu) accuracy. Fiducial points on both plates can also be observed by the camera to allow repeated checks on positioning accuracy. Field plates rotate to follow apparent sky rotation. The spectrographs both analyze light from the 200 observing fibers each and back- illuminate the 400 fibers being re-positioned during the observing run. The 2dF fiber position and spectrograph system is a large and complex instrument located at the prime focus of the Anglo Australian Telescope. The mechanical design has departed somewhat from the earlier concepts of Gray et al, but still reflects the audacity of those first ideas. The positioner is capable of positioning 400 fibers on a field plate while another 400 fibers on another plate are observing at the focus of the telescope and feeding the twin spectrographs. When first proposed it must have seemed like ingenuity unfettered by caution. Yet now it works, and works wonderfully well. 2dF is a system which functions as the result of the combined and coordinated efforts of the astronomers, the mechanical designers and tradespeople, the electronic designers, the programmers, the support staff at the telescope, and the manufacturing subcontractors. The mechanical design of the 2dF positioner and spectrographs was carried out by the mechanical engineering staff of the AAO and the majority of the manufacture was carried out in the AAO workshops.

  12. 2D-Tasks for Cognitive Rehabilitation

    OpenAIRE

    Caballero Hernandez, Ruth; Martinez Moreno, Jose Maria; García Molina, A.; Ferrer Celma, S.; Solana Sánchez, Javier; Sanchez Carrion, R.; Fernandez Casado, E.; Pérez Rodríguez, Rodrigo; Gomez Pulido, A.; Anglès Tafalla, C.; Cáceres Taladriz, César; Ferre Vergada, M.; Roig Rovira, Teresa; Garcia Lopez, P.; Tormos Muñoz, Josep M.

    2011-01-01

    Neuropsychological Rehabilitation is a complex clinic process which tries to restore or compensate cognitive and behavioral disorders in people suffering from a central nervous system injury. Information and Communication Technologies (ICTs) in Biomedical Engineering play an essential role in this field, allowing improvement and expansion of present rehabilitation programs. This paper presents a set of cognitive rehabilitation 2D-Tasks for patients with Acquired Brain Injury (ABI). These t...

  13. Quasiparticle interference in unconventional 2D systems

    Science.gov (United States)

    Chen, Lan; Cheng, Peng; Wu, Kehui

    2017-03-01

    At present, research of 2D systems mainly focuses on two kinds of materials: graphene-like materials and transition-metal dichalcogenides (TMDs). Both of them host unconventional 2D electronic properties: pseudospin and the associated chirality of electrons in graphene-like materials, and spin-valley-coupled electronic structures in the TMDs. These exotic electronic properties have attracted tremendous interest for possible applications in nanodevices in the future. Investigation on the quasiparticle interference (QPI) in 2D systems is an effective way to uncover these properties. In this review, we will begin with a brief introduction to 2D systems, including their atomic structures and electronic bands. Then, we will discuss the formation of Friedel oscillation due to QPI in constant energy contours of electron bands, and show the basic concept of Fourier-transform scanning tunneling microscopy/spectroscopy (FT-STM/STS), which can resolve Friedel oscillation patterns in real space and consequently obtain the QPI patterns in reciprocal space. In the next two parts, we will summarize some pivotal results in the investigation of QPI in graphene and silicene, in which systems the low-energy quasiparticles are described by the massless Dirac equation. The FT-STM experiments show there are two different interference channels (intervalley and intravalley scattering) and backscattering suppression, which associate with the Dirac cones and the chirality of quasiparticles. The monolayer and bilayer graphene on different substrates (SiC and metal surfaces), and the monolayer and multilayer silicene on a Ag(1 1 1) surface will be addressed. The fifth part will introduce the FT-STM research on QPI in TMDs (monolayer and bilayer of WSe2), which allow us to infer the spin texture of both conduction and valence bands, and present spin-valley coupling by tracking allowed and forbidden scattering channels.

  14. Engineering light outcoupling in 2D materials

    KAUST Repository

    Lien, Derhsien

    2015-02-11

    When light is incident on 2D transition metal dichalcogenides (TMDCs), it engages in multiple reflections within underlying substrates, producing interferences that lead to enhancement or attenuation of the incoming and outgoing strength of light. Here, we report a simple method to engineer the light outcoupling in semiconducting TMDCs by modulating their dielectric surroundings. We show that by modulating the thicknesses of underlying substrates and capping layers, the interference caused by substrate can significantly enhance the light absorption and emission of WSe2, resulting in a ∼11 times increase in Raman signal and a ∼30 times increase in the photoluminescence (PL) intensity of WSe2. On the basis of the interference model, we also propose a strategy to control the photonic and optoelectronic properties of thin-layer WSe2. This work demonstrates the utilization of outcoupling engineering in 2D materials and offers a new route toward the realization of novel optoelectronic devices, such as 2D LEDs and solar cells.

  15. Irreversibility-inversions in 2D turbulence

    Science.gov (United States)

    Bragg, Andrew; de Lillo, Filippo; Boffetta, Guido

    2016-11-01

    We consider a recent theoretical prediction that for inertial particles in 2D turbulence, the nature of the irreversibility of their pair dispersion inverts when the particle inertia exceeds a certain value. In particular, when the particle Stokes number, St , is below a certain value, the forward-in-time (FIT) dispersion should be faster than the backward-in-time (BIT) dispersion, but for St above this value, this should invert so that BIT becomes faster than FIT dispersion. This non-trivial behavior arises because of the competition between two physically distinct irreversibility mechanisms that operate in different regimes of St . In 3D turbulence, both mechanisms act to produce faster BIT than FIT dispersion, but in 2D, the two mechanisms have opposite effects because of the inverse energy cascade in the turbulent velocity field. We supplement the qualitative argument given by Bragg et al. by deriving quantitative predictions of this effect in the short-time dispersion limit. These predictions are then confirmed by results of inertial particle dispersion in a direct numerical simulation of 2D turbulence.

  16. 2D superconductivity by ionic gating

    Science.gov (United States)

    Iwasa, Yoshi

    2D superconductivity is attracting a renewed interest due to the discoveries of new highly crystalline 2D superconductors in the past decade. Superconductivity at the oxide interfaces triggered by LaAlO3/SrTiO3 has become one of the promising routes for creation of new 2D superconductors. Also, the MBE grown metallic monolayers including FeSe are also offering a new platform of 2D superconductors. In the last two years, there appear a variety of monolayer/bilayer superconductors fabricated by CVD or mechanical exfoliation. Among these, electric field induced superconductivity by electric double layer transistor (EDLT) is a unique platform of 2D superconductivity, because of its ability of high density charge accumulation, and also because of the versatility in terms of materials, stemming from oxides to organics and layered chalcogenides. In this presentation, the following issues of electric filed induced superconductivity will be addressed; (1) Tunable carrier density, (2) Weak pinning, (3) Absence of inversion symmetry. (1) Since the sheet carrier density is quasi-continuously tunable from 0 to the order of 1014 cm-2, one is able to establish an electronic phase diagram of superconductivity, which will be compared with that of bulk superconductors. (2) The thickness of superconductivity can be estimated as 2 - 10 nm, dependent on materials, and is much smaller than the in-plane coherence length. Such a thin but low resistance at normal state results in extremely weak pinning beyond the dirty Boson model in the amorphous metallic films. (3) Due to the electric filed, the inversion symmetry is inherently broken in EDLT. This feature appears in the enhancement of Pauli limit of the upper critical field for the in-plane magnetic fields. In transition metal dichalcogenide with a substantial spin-orbit interactions, we were able to confirm the stabilization of Cooper pair due to its spin-valley locking. This work has been supported by Grant-in-Aid for Specially

  17. 2-D Prony-Huang Transform: A New Tool for 2-D Spectral Analysis

    CERN Document Server

    Schmitt, Jérémy; Borgnat, Pierre; Flandrin, Patrick; Condat, Laurent

    2014-01-01

    This work proposes an extension of the 1-D Hilbert Huang transform for the analysis of images. The proposed method consists in (i) adaptively decomposing an image into oscillating parts called intrinsic mode functions (IMFs) using a mode decomposition procedure, and (ii) providing a local spectral analysis of the obtained IMFs in order to get the local amplitudes, frequencies, and orientations. For the decomposition step, we propose two robust 2-D mode decompositions based on non-smooth convex optimization: a "Genuine 2-D" approach, that constrains the local extrema of the IMFs, and a "Pseudo 2-D" approach, which constrains separately the extrema of lines, columns, and diagonals. The spectral analysis step is based on Prony annihilation property that is applied on small square patches of the IMFs. The resulting 2-D Prony-Huang transform is validated on simulated and real data.

  18. Tetraalkylphosphonium polyoxometalate ionic liquids: novel, organic-inorganic hybrid materials.

    Science.gov (United States)

    Rickert, Paul G; Antonio, Mark R; Firestone, Millicent A; Kubatko, Karrie-Ann; Szreder, Tomasz; Wishart, James F; Dietz, Mark L

    2007-05-10

    Pairing of a Keggin or Lindqvist polyoxometalate (POM) anion with an appropriate tetraalkylphosphonium cation is shown to yield the first members of a new family of ionic liquids (ILs). Detailed characterization of one of them, an ambient-temperature "liquid POM" comprising the Lindqvist salt of the trihexyl(tetradecyl) phosphonium cation, by voltammetry, viscometry, conductimetry, and thermal analysis indicates that it exhibits conductivity and viscosity comparable to those of the one previously described inorganic-organic POM-IL hybrid but with substantially improved thermal stability.

  19. Tetraalkylphosphonium polyoxometalate ionic liquids : novel, organic-inorganic hybrid materials.

    Energy Technology Data Exchange (ETDEWEB)

    Rickert, P. G.; Antonio, M. P.; Firestone, M. A.; Kubatko, K.-A.; Szreder, T.; Wishart, J. F.; Dietz, M. L.; Chemistry; Univ. of Notre Dame; BNL

    2007-01-01

    Pairing of a Keggin or Lindqvist polyoxometalate (POM) anion with an appropriate tetraalkylphosphonium cation is shown to yield the first members of a new family of ionic liquids (ILs). Detailed characterization of one of them, an ambient-temperature 'liquid POM' comprising the Lindqvist salt of the trihexyl(tetradecyl) phosphonium cation, by voltammetry, viscometry, conductimetry, and thermal analysis indicates that it exhibits conductivity and viscosity comparable to those of the one previously described inorganic-organic POM-IL hybrid but with substantially improved thermal stability.

  20. GBL-2D Version 1.0: a 2D geometry boolean library.

    Energy Technology Data Exchange (ETDEWEB)

    McBride, Cory L. (Elemental Technologies, American Fort, UT); Schmidt, Rodney Cannon; Yarberry, Victor R.; Meyers, Ray J. (Elemental Technologies, American Fort, UT)

    2006-11-01

    This report describes version 1.0 of GBL-2D, a geometric Boolean library for 2D objects. The library is written in C++ and consists of a set of classes and routines. The classes primarily represent geometric data and relationships. Classes are provided for 2D points, lines, arcs, edge uses, loops, surfaces and mask sets. The routines contain algorithms for geometric Boolean operations and utility functions. Routines are provided that incorporate the Boolean operations: Union(OR), XOR, Intersection and Difference. A variety of additional analytical geometry routines and routines for importing and exporting the data in various file formats are also provided. The GBL-2D library was originally developed as a geometric modeling engine for use with a separate software tool, called SummitView [1], that manipulates the 2D mask sets created by designers of Micro-Electro-Mechanical Systems (MEMS). However, many other practical applications for this type of software can be envisioned because the need to perform 2D Boolean operations can arise in many contexts.

  1. The structures and properties of the new two-dimensional inorganic–organic hybrid materials based on the molybdate chains

    Energy Technology Data Exchange (ETDEWEB)

    Li, Na; Mu, Bao; Cao, Xinyu; Huang, Rudan, E-mail: huangrd@bit.edu.cn

    2014-09-15

    A series of inorganic organic hybrid materials based on polyoxometalates(POMs), namely, [M{sup II}(HL){sub 2}(H{sub 2}O){sub 2}][Mo{sup VI}{sub 6}O{sub 20}] [M=Co (1), Ni (2), Cu (3), Zn (4)], [Mn{sup IV}L{sub 2}(H{sub 2}O){sub 2}][Mo{sup VI}{sub 6}O{sub 20}] (5), and (HL){sub 3}PMO{sub 12}O{sub 40} (6) [L=3-(4-pyridyl)pyrazole], have been synthesized. The compounds have been characterized by elemental analysis, powder X-ray diffraction (PXRD) and single-crystal X-ray diffraction. The results from single-crystal X-ray diffraction indicate that 1–5 are isostructural. It is worth noting that the polyanions are bridged by Mo–O–Mo to form 1D inorganic chains, which are further connected via M ions to form 2D nets. In compound 6, the ligands are used as the positive ions to balance the charge of the compound. Moreover, the magnetic properties of compound 5 have also been investigated in detail. - Graphical abstract: In complex 1, The Co ion is six coordinated by four oxygen atoms from two Mo{sub 6}O{sub 20} and two water molecules, and two N atoms from two different ligand. It is noticeable that there is an one-dimensional chain molybdate, which is combined by O–Mo–O, then the chain parallel with each other, the Mo{sub 6} anion acts as a bidentate ligand providing O7 atoms to bridge CoII ions to form a 2D inorganic layer. Finally every nets become 3D structure by hydrogen bond. - Highlights: • Novel inorganic–organic hybrid materials have been prepared. • Compounds 1–5 contain the 1D molybdate chains composed of (MoO{sub 6}) octahedra. • The 1D chains parallel with each other to form a 2D inorganic layer.

  2. Extrinsic curvature induced 2-d gravity

    CERN Document Server

    Viswanathan, K S

    1993-01-01

    Abtract: 2-dimensional fermions are coupled to extrinsic geometry of a conformally immersed surface in ${\\bf R}^3$ through gauge coupling. By integrating out the fermions, we obtain a WZNW action involving extrinsic curvature of the surface. Restricting the resulting effective action to surfaces of $h\\sqrt g=1$, an explicit form of the action invariant under Virasaro symmetry is obtained. This action is a sum of the geometric action for the Virasaro group and the light-cone action of 2-d gravity plus an interaction term. The central charges of the theory in both the left and right sectors are calculated.

  3. Instant HTMl5 2D platformer

    CERN Document Server

    Temple, Aidan

    2013-01-01

    Filled with practical, step-by-step instructions and clear explanations for the most important and useful tasks. The step-by-step approach taken by this book will show you how to develop a 2D HTML5 platformer-based game that you will be able to publish to multiple devices.This book is great for anyone who has an interest in HTML5 games development, and who already has a basic to intermediate grasp on both the HTML markup and JavaScript programming languages. Therefore, due to this requirement, the book will not discuss the inner workings of either of these languages but will instead attempt to

  4. Robust and resistant 2D shape alignment

    DEFF Research Database (Denmark)

    Larsen, Rasmus; Eiriksson, Hrafnkell

    2001-01-01

    \\_\\$\\backslash\\$infty\\$ norm alignments are formulated as linear programming problems. The linear vector function formulation along with the different norms results in alignment methods that are both resistant from influence from outliers, robust wrt. errors in the annotation and capable of handling missing datapoints......We express the alignment of 2D shapes as the minimization of the norm of a linear vector function. The minimization is done in the \\$l\\_1\\$, \\$l\\_2\\$ and the \\$l\\_\\$\\backslash\\$infty\\$ norms using well known standard numerical methods. In particular, the \\$l\\_1\\$ and the \\$l...

  5. Another solution of 2D Ising model

    Science.gov (United States)

    Vergeles, S. N.

    2009-04-01

    The partition function of the Ising model on a two-dimensional regular lattice is calculated by using the matrix representation of a Clifford algebra (the Dirac algebra), with number of generators equal to the number of lattice sites. It is shown that the partition function over all loops in a 2D lattice including self-intersecting ones is the trace of a polynomial in terms of Dirac matrices. The polynomial is an element of the rotation group in the spinor representation. Thus, the partition function is a function of a character on an orthogonal group of a high degree in the spinor representation.

  6. Target tracking using a 2D radar

    CSIR Research Space (South Africa)

    Kriel, M

    2012-08-01

    Full Text Available is omitted. This can be an important consideration as aircraft altitude limits the attack pro�les a target can��y [1]. 33.2 HEIGHT ESTIMATION The current literature regarding height estimation restricts itself to computations involving two or more 2D... is instrumental in determining the aircraft altitude. The accuracy to which these speeds are known is directly pro- portional to the accuracy to which the altitude can be determined. Knowledge of aircraft speed can be obtained in a variety of ways. For example...

  7. Remarks on thermalization in 2D CFT

    Science.gov (United States)

    de Boer, Jan; Engelhardt, Dalit

    2016-12-01

    We revisit certain aspects of thermalization in 2D conformal field theory (CFT). In particular, we consider similarities and differences between the time dependence of correlation functions in various states in rational and non-rational CFTs. We also consider the distinction between global and local thermalization and explain how states obtained by acting with a diffeomorphism on the ground state can appear locally thermal, and we review why the time-dependent expectation value of the energy-momentum tensor is generally a poor diagnostic of global thermalization. Since all 2D CFTs have an infinite set of commuting conserved charges, generic initial states might be expected to give rise to a generalized Gibbs ensemble rather than a pure thermal ensemble at late times. We construct the holographic dual of the generalized Gibbs ensemble and show that, to leading order, it is still described by a Banados-Teitelboim-Zanelli black hole. The extra conserved charges, while rendering c <1 theories essentially integrable, therefore seem to have little effect on large-c conformal field theories.

  8. Gas sensing in 2D materials

    Science.gov (United States)

    Yang, Shengxue; Jiang, Chengbao; Wei, Su-huai

    2017-06-01

    Two-dimensional (2D) layered inorganic nanomaterials have attracted huge attention due to their unique electronic structures, as well as extraordinary physical and chemical properties for use in electronics, optoelectronics, spintronics, catalysts, energy generation and storage, and chemical sensors. Graphene and related layered inorganic analogues have shown great potential for gas-sensing applications because of their large specific surface areas and strong surface activities. This review aims to discuss the latest advancements in the 2D layered inorganic materials for gas sensors. We first elaborate the gas-sensing mechanisms and introduce various types of gas-sensing devices. Then, we describe the basic parameters and influence factors of the gas sensors to further enhance their performance. Moreover, we systematically present the current gas-sensing applications based on graphene, graphene oxide (GO), reduced graphene oxide (rGO), functionalized GO or rGO, transition metal dichalcogenides, layered III-VI semiconductors, layered metal oxides, phosphorene, hexagonal boron nitride, etc. Finally, we conclude the future prospects of these layered inorganic materials in gas-sensing applications.

  9. Comments on Thermalization in 2D CFT

    CERN Document Server

    de Boer, Jan

    2016-01-01

    We revisit certain aspects of thermalization in 2D CFT. In particular, we consider similarities and differences between the time dependence of correlation functions in various states in rational and non-rational CFTs. We also consider the distinction between global and local thermalization and explain how states obtained by acting with a diffeomorphism on the ground state can appear locally thermal, and we review why the time-dependent expectation value of the energy-momentum tensor is generally a poor diagnostic of global thermalization. Since all 2D CFTs have an infinite set of commuting conserved charges, generic initial states might be expected to give rise to a generalized Gibbs ensemble rather than a pure thermal ensemble at late times. We construct the holographic dual of the generalized Gibbs ensemble and show that, to leading order, it is still described by a BTZ black hole. The extra conserved charges, while rendering $c < 1$ theories essentially integrable, therefore seem to have little effect o...

  10. WFR-2D: an analytical model for PWAS-generated 2D ultrasonic guided wave propagation

    Science.gov (United States)

    Shen, Yanfeng; Giurgiutiu, Victor

    2014-03-01

    This paper presents WaveFormRevealer 2-D (WFR-2D), an analytical predictive tool for the simulation of 2-D ultrasonic guided wave propagation and interaction with damage. The design of structural health monitoring (SHM) systems and self-aware smart structures requires the exploration of a wide range of parameters to achieve best detection and quantification of certain types of damage. Such need for parameter exploration on sensor dimension, location, guided wave characteristics (mode type, frequency, wavelength, etc.) can be best satisfied with analytical models which are fast and efficient. The analytical model was constructed based on the exact 2-D Lamb wave solution using Bessel and Hankel functions. Damage effects were inserted in the model by considering the damage as a secondary wave source with complex-valued directivity scattering coefficients containing both amplitude and phase information from wave-damage interaction. The analytical procedure was coded with MATLAB, and a predictive simulation tool called WaveFormRevealer 2-D was developed. The wave-damage interaction coefficients (WDICs) were extracted from harmonic analysis of local finite element model (FEM) with artificial non-reflective boundaries (NRB). The WFR-2D analytical simulation results were compared and verified with full scale multiphysics finite element models and experiments with scanning laser vibrometer. First, Lamb wave propagation in a pristine aluminum plate was simulated with WFR-2D, compared with finite element results, and verified by experiments. Then, an inhomogeneity was machined into the plate to represent damage. Analytical modeling was carried out, and verified by finite element simulation and experiments. This paper finishes with conclusions and suggestions for future work.

  11. 2-D Model Test of Dolosse Breakwater

    DEFF Research Database (Denmark)

    Burcharth, Hans F.; Liu, Zhou

    1994-01-01

    The rational design diagram for Dolos armour should incorporate both the hydraulic stability and the structural integrity. The previous tests performed by Aalborg University (AU) made available such design diagram for the trunk of Dolos breakwater without superstructures (Burcharth et al. 1992......). To extend the design diagram to cover Dolos breakwaters with superstructure, 2-D model tests of Dolos breakwater with wave wall is included in the project Rubble Mound Breakwater Failure Modes sponsored by the Directorate General XII of the Commission of the European Communities under Contract MAS-CT92...... was on the Dolos breakwater with a high superstructure, where there was almost no overtopping. This case is believed to be the most dangerous one. The test of the Dolos breakwater with a low superstructure was also performed. The objective of the last part of the experiment is to investigate the influence...

  12. Alignment free characterization of 2D gratings

    CERN Document Server

    Madsen, Morten Hannibal; Hansen, Poul-Erik; Jørgensen, Jan Friis

    2015-01-01

    Fast characterization of 2-dimensional gratings is demonstrated using a Fourier lens optical system and a differential optimization algorithm. It is shown that both the grating specific parameters such as the basis vectors and the angle between them and the alignment of the sample, such as the rotation of the sample around the x-, y-, and z-axis, can be deduced from a single measurement. More specifically, the lattice vectors and the angle between them have been measured, while the corrections of the alignment parameters are used to improve the quality of the measurement, and hence reduce the measurement uncertainty. Alignment free characterization is demonstrated on both a 2D hexagonal grating with a period of 700 nm and a checkerboard grating with a pitch of 3000 nm. The method can also be used for both automatic alignment and in-line characterization of gratings.

  13. 2D Cooling of Magnetized Neutron Stars

    CERN Document Server

    Aguilera, Deborah N; Miralles, Juan A

    2007-01-01

    Context: Many thermally emitting isolated neutron stars have magnetic fields larger than 10^{13}G. A realistic cooling model should be reconsidered including the presence of high magnetic fields. Aims: We investigate the effects of anisotropic temperature distribution and Joule heating on the cooling of magnetized neutron stars. Methods: The 2D heat transfer equation with anisotropic thermal conductivity tensor and including all relevant neutrino emission processes is solved for realistic models of the neutron star interior and crust. Results: The presence of the magnetic field affects significantly the thermal surface distribution and the cooling history during both, the early neutrino cooling era and the late photon cooling era. Conclusions: There is a huge effect of the Joule heating on the thermal evolution of strongly magnetized neutron stars. Magnetic fields and Joule heating play a key role in maintaining magnetars warm for a long time. Moreover, this effect is also important for intermediate field neu...

  14. Lie symmetries and 2D Material Physics

    CERN Document Server

    Belhaj, Adil

    2014-01-01

    Inspired from Lie symmetry classification, we establish a correspondence between rank two Lie symmetries and 2D material physics. The material unit cell is accordingly interpreted as the geometry of a root system. The hexagonal cells, appearing in graphene like models, are analyzed in some details and are found to be associated with A_2 and G_2 Lie symmetries. This approach can be applied to Lie supersymmetries associated with fermionic degrees of freedom. It has been suggested that these extended symmetries can offer a new way to deal with doping material geometries. Motivated by Lie symmetry applications in high energy physics, we speculate on a possible connection with (p,q) brane networks used in the string theory compactification on singular Calabi-Yau manifolds.

  15. 2-d Simulations of Test Methods

    DEFF Research Database (Denmark)

    Thrane, Lars Nyholm

    2004-01-01

    approach is presented by showing initial results from 2-d simulations of the empirical test methods slump flow and L-box. This method assumes a homogeneous material, which is expected to correspond to particle suspensions e.g. concrete, when it remains stable. The simulations have been carried out when......One of the main obstacles for the further development of self-compacting concrete is to relate the fresh concrete properties to the form filling ability. Therefore, simulation of the form filling ability will provide a powerful tool in obtaining this goal. In this paper, a continuum mechanical...... using both a Newton and Bingham model for characterisation of the rheological properties of the concrete. From the results, it is expected that both the slump flow and L-box can be simulated quite accurately when the model is extended to 3-d and the concrete is characterised according to the Bingham...

  16. Full revivals in 2D quantum walks

    Energy Technology Data Exchange (ETDEWEB)

    Stefanak, M; Jex, I [Department of Physics, FJFI CVUT v Praze, Brehova 7, 115 19 Praha 1-Stare Mesto (Czech Republic); Kollar, B; Kiss, T, E-mail: martin.stefanak@fjfi.cvut.c [Department of Quantum Optics and Quantum Information, Research Institute for Solid State Physics and Optics, Hungarian Academy of Sciences, Konkoly-Thege M. u. 29-33, H-1121 Budapest (Hungary)

    2010-09-01

    Recurrence of a random walk is described by the Polya number. For quantum walks, recurrence is understood as the return of the walker to the origin, rather than the full revival of its quantum state. Localization for two-dimensional quantum walks is known to exist in the sense of non-vanishing probability distribution in the asymptotic limit. We show, on the example of the 2D Grover walk, that one can exploit the effect of localization to construct stationary solutions. Moreover, we find full revivals of a quantum state with a period of two steps. We prove that there cannot be longer cycles for a four-state quantum walk. Stationary states and revivals result from interference, which has no counterpart in classical random walks.

  17. 2-D Model Test of Dolosse Breakwater

    DEFF Research Database (Denmark)

    Burcharth, Hans F.; Liu, Zhou

    1994-01-01

    The rational design diagram for Dolos armour should incorporate both the hydraulic stability and the structural integrity. The previous tests performed by Aalborg University (AU) made available such design diagram for the trunk of Dolos breakwater without superstructures (Burcharth et al. 1992......). To extend the design diagram to cover Dolos breakwaters with superstructure, 2-D model tests of Dolos breakwater with wave wall is included in the project Rubble Mound Breakwater Failure Modes sponsored by the Directorate General XII of the Commission of the European Communities under Contract MAS-CT92......-0042. Furthermore, Task IA will give the design diagram for Tetrapod breakwaters without a superstructure. The more complete research results on Dolosse can certainly give some insight into the behaviour of Tetrapods armour layer of the breakwaters with superstructure. The main part of the experiment...

  18. 2D Electrostatic Actuation of Microshutter Arrays

    Science.gov (United States)

    Burns, Devin E.; Oh, Lance H.; Li, Mary J.; Jones, Justin S.; Kelly, Daniel P.; Zheng, Yun; Kutyrev, Alexander S.; Moseley, Samuel H.

    2015-01-01

    An electrostatically actuated microshutter array consisting of rotational microshutters (shutters that rotate about a torsion bar) were designed and fabricated through the use of models and experiments. Design iterations focused on minimizing the torsional stiffness of the microshutters, while maintaining their structural integrity. Mechanical and electromechanical test systems were constructed to measure the static and dynamic behavior of the microshutters. The torsional stiffness was reduced by a factor of four over initial designs without sacrificing durability. Analysis of the resonant behavior of the microshutter arrays demonstrates that the first resonant mode is a torsional mode occurring around 3000 Hz. At low vacuum pressures, this resonant mode can be used to significantly reduce the drive voltage necessary for actuation requiring as little as 25V. 2D electrostatic latching and addressing was demonstrated using both a resonant and pulsed addressing scheme.

  19. Fast 2-D Complex Gabor Filter with Kernel Decomposition

    OpenAIRE

    Um, Suhyuk; Kim, Jaeyoon; Min, Dongbo

    2017-01-01

    2-D complex Gabor filtering has found numerous applications in the fields of computer vision and image processing. Especially, in some applications, it is often needed to compute 2-D complex Gabor filter bank consisting of the 2-D complex Gabor filtering outputs at multiple orientations and frequencies. Although several approaches for fast 2-D complex Gabor filtering have been proposed, they primarily focus on reducing the runtime of performing the 2-D complex Gabor filtering once at specific...

  20. Metrology for graphene and 2D materials

    Science.gov (United States)

    Pollard, Andrew J.

    2016-09-01

    The application of graphene, a one atom-thick honeycomb lattice of carbon atoms with superlative properties, such as electrical conductivity, thermal conductivity and strength, has already shown that it can be used to benefit metrology itself as a new quantum standard for resistance. However, there are many application areas where graphene and other 2D materials, such as molybdenum disulphide (MoS2) and hexagonal boron nitride (h-BN), may be disruptive, areas such as flexible electronics, nanocomposites, sensing and energy storage. Applying metrology to the area of graphene is now critical to enable the new, emerging global graphene commercial world and bridge the gap between academia and industry. Measurement capabilities and expertise in a wide range of scientific areas are required to address this challenge. The combined and complementary approach of varied characterisation methods for structural, chemical, electrical and other properties, will allow the real-world issues of commercialising graphene and other 2D materials to be addressed. Here, examples of metrology challenges that have been overcome through a multi-technique or new approach are discussed. Firstly, the structural characterisation of defects in both graphene and MoS2 via Raman spectroscopy is described, and how nanoscale mapping of vacancy defects in graphene is also possible using tip-enhanced Raman spectroscopy (TERS). Furthermore, the chemical characterisation and removal of polymer residue on chemical vapour deposition (CVD) grown graphene via secondary ion mass spectrometry (SIMS) is detailed, as well as the chemical characterisation of iron films used to grow large domain single-layer h-BN through CVD growth, revealing how contamination of the substrate itself plays a role in the resulting h-BN layer. In addition, the role of international standardisation in this area is described, outlining the current work ongoing in both the International Organization of Standardization (ISO) and the

  1. The mouse ruby-eye 2(d) (ru2(d) /Hps5(ru2-d) ) allele inhibits eumelanin but not pheomelanin synthesis.

    Science.gov (United States)

    Hirobe, Tomohisa; Ito, Shosuke; Wakamatsu, Kazumasa

    2013-09-01

    The novel mutation named ru2(d) /Hps5(ru2-d) , characterized by light-colored coats and ruby-eyes, prohibits differentiation of melanocytes by inhibiting tyrosinase (Tyr) activity, expression of Tyr, Tyr-related protein 1 (Tyrp1), Tyrp2, and Kit. However, it is not known whether the ru2(d) allele affects pheomelanin synthesis in recessive yellow (e/Mc1r(e) ) or in pheomelanic stage in agouti (A) mice. In this study, effects of the ru2(d) allele on pheomelanin synthesis were investigated by chemical analysis of melanin present in dorsal hairs of 5-week-old mice from F2 generation between C57BL/10JHir (B10)-co-isogenic ruby-eye 2(d) and B10-congenic recessive yellow or agouti. Eumelanin content was decreased in ruby-eye 2(d) and ruby-eye 2(d) agouti mice, whereas pheomelanin content in ruby-eye 2(d) recessive yellow and ruby-eye 2(d) agouti mice did not differ from the corresponding Ru2(d) /- mice, suggesting that the ru2(d) allele inhibits eumelanin but not pheomelanin synthesis. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. Room-Temperature Optical Tunability and Inhomogeneous Broadening in 2D-Layered Organic-Inorganic Perovskite Pseudobinary Alloys.

    Science.gov (United States)

    Lanty, Gaëtan; Jemli, Khaoula; Wei, Yi; Leymarie, Joël; Even, Jacky; Lauret, Jean-Sébastien; Deleporte, Emmanuelle

    2014-11-20

    We focus here our attention on a particular family of 2D-layered and 3D hybrid perovskite molecular crystals, the mixed perovskites (C6H5-C2H4-NH3)2PbZ4(1-x)Y4x and (CH3-NH3)PbZ3(1-x)Y3x, where Z and Y are halogen ions such as I, Br, and Cl. Studying experimentally the disorder-induced effects on the optical properties of the 2D mixed layered materials, we demonstrate that they can be considered as pseudobinary alloys, exactly like Ga1-xAlxAs, Cd1-xHgxTe inorganic semiconductors, or previously reported 3D mixed hybrid perovskite compounds. 2D-layered and 3D hybrid perovskites afford similar continuous optical tunability at room temperature. Our theoretical analysis allows one to describe the influence of alloying on the excitonic properties of 2D-layered perovskite molecular crystals. This model is further refined by considering different Bohr radii for pure compounds. This study confirms that despite a large binding energy of several 100 meV, the 2D excitons present a Wannier character rather than a Frenkel character. The small inhomogeneous broadening previously reported in 3D hybrid compounds at low temperature is similarly consistent with the Wannier character of free excitons.

  3. Analysis of the IEA 2D test. 2D, 3D, steady or unsteady airflow?

    DEFF Research Database (Denmark)

    Cortes, Ines Olmedo; Nielsen, Peter V.

    The “IEA Annex 20 two-dimensional test case” was defined by proffesor Peter V. Nielsen (1990) and was originally considered two-dimensional and steady flow. However, some recent works considering the case as three dimensional have shown different solutions from the 2D case as well as different so...

  4. Efficient light emission from inorganic and organic semiconductor hybrid structures by energy-level tuning.

    Science.gov (United States)

    Schlesinger, R; Bianchi, F; Blumstengel, S; Christodoulou, C; Ovsyannikov, R; Kobin, B; Moudgil, K; Barlow, S; Hecht, S; Marder, S R; Henneberger, F; Koch, N

    2015-04-15

    The fundamental limits of inorganic semiconductors for light emitting applications, such as holographic displays, biomedical imaging and ultrafast data processing and communication, might be overcome by hybridization with their organic counterparts, which feature enhanced frequency response and colour range. Innovative hybrid inorganic/organic structures exploit efficient electrical injection and high excitation density of inorganic semiconductors and subsequent energy transfer to the organic semiconductor, provided that the radiative emission yield is high. An inherent obstacle to that end is the unfavourable energy level offset at hybrid inorganic/organic structures, which rather facilitates charge transfer that quenches light emission. Here, we introduce a technologically relevant method to optimize the hybrid structure's energy levels, here comprising ZnO and a tailored ladder-type oligophenylene. The ZnO work function is substantially lowered with an organometallic donor monolayer, aligning the frontier levels of the inorganic and organic semiconductors. This increases the hybrid structure's radiative emission yield sevenfold, validating the relevance of our approach.

  5. Intercalation of organic molecules in 2D copper (II) nitroprusside: Intermolecular interactions and magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Osiry, H.; Cano, A.; Lemus-Santana, A.A.; Rodríguez, A. [Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Unidad Legaria, Instituto Politécnico Nacional (Mexico); Carbonio, R.E. [INFIQC-CONICET, Departamento de Físico Química, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, X5000HUA Córdoba (Argentina); Reguera, E., E-mail: edilso.reguera@gmail.com [Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Unidad Legaria, Instituto Politécnico Nacional (Mexico)

    2015-10-15

    This contribution discusses the intercalation of imidazole and its 2-ethyl derivative, and pyridine in 2D copper nitroprusside. In the interlayer region, neighboring molecules remain interacting throu gh their dipole and quadrupole moments, which supports the solid 3D crystal structure. The crystal structure of this series of intercalation compounds was solved and refined from powder X-ray diffraction patterns complemented with spectroscopic information. The intermolecular interactions were studied from the refined crystal structures and low temperature magnetic measurements. Due to strong attractive forces between neighboring molecules, the resulting π–π cloud overlapping enables the ferromagnetic coupling between metal centers on neighboring layers, which was actually observed for the solids containing imidazole and pyridine as intercalated molecules. For these two solids, the magnetic data were properly described with a model of six neighbors. For the solid containing 2-ethylimidazole and for 2D copper nitroprusside, a model of four neighbors in a plane is sufficient to obtain a reliable data fitting. - Highlights: • Intercalation of organic molecules in 2D copper (II) nitroprusside. • Molecular properties of intercalation compounds of 2D copper (II) nitroprusside. • Magnetic properties of hybrid inorganic–organic solids. • Hybrid inorganic–organic 3D framework.

  6. Cascade energy transfer versus charge separation in ladder-type oligo(p-phenylene)/ZnO hybrid structures for light-emitting applications

    Energy Technology Data Exchange (ETDEWEB)

    Bianchi, F.; Sadofev, S.; Schlesinger, R.; Koch, N.; Henneberger, F.; Blumstengel, S., E-mail: sylke.blumstengel@physik.hu-berlin.de [Institut für Physik and IRIS Adlershof, Humboldt-Universität zu Berlin, Newtonstr. 15, 12489 Berlin (Germany); Kobin, B.; Hecht, S. [Institut für Chemie and IRIS Adlershof, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489 Berlin (Germany)

    2014-12-08

    Usability of inorganic/organic semiconductor hybrid structures for light-emitting applications can be intrinsically limited by an unfavorable interfacial energy level alignment causing charge separation and nonradiative deactivation. Introducing cascaded energy transfer funneling away the excitation energy from the interface by transfer to a secondary acceptor molecule enables us to overcome this issue. We demonstrate a substantial recovery of the light output along with high inorganic-to-organic exciton conversion rates up to room temperature.

  7. Synthesis and Characterizaion of a New Inorganic-organic Sulfate Compound--Crystal Structure of [Ni(H2O)6][H2N(C2H4)2NH2](SO4)2

    Institute of Scientific and Technical Information of China (English)

    MENG He; XING Yan; FU Yun-long; SHI Zhan; PANG Wen-qin

    2004-01-01

    [Ni(H2O)6][H2N(C2H4)2NH2](SO4)2 is an inorganic-organic compound with a new open framework synthesized by hydrothermal method, and characterized by means of single-crystal diffraction and spectroscopic data. The compound crystallized in a monoclinic space group P21/n with a=1.29089(2) nm, b=1.06301(3) nm, c=1.33202(4) nm, β=114.0870(10)°, V=1.67127(8) nm3, Z=4, and was solved by using the direct method and the least-squares refinement converged at R=0.0214[I>2σ(I)]. The structure consists of isolated Ni(H2O)6 octahedra and SO4 tetrahedra, with both of them hydrogen-bonded to piperazine cations.

  8. Development of Inorganic-organic Blend Ultrofiltration Membranes Based on Nanomaterials%基于纳米材料有机-无机复合超滤膜的研究进展

    Institute of Scientific and Technical Information of China (English)

    王宗花; 于海容; 夏建飞; 张菲菲; 夏延致; 李延辉

    2012-01-01

    The latest development and application of nanomaterials in inorganic- organic blend ultrafiltration membranes were reviewed, which included blend ultrafiltration membranes based on carbon nanomaterials (carbon nanotube and graphene), metal and nonmetal oxides (A12O3, TiO2, Fe3O4, SiO2) and polymer nanofibers.%综述了近年来纳米材料在有机-无机复合超滤膜方面的最新发展和应用,主要包括基于纳米碳材料(碳纳米管、石墨烯)的复合超滤膜,基于金属、非金属氧化物( Al2O3、TiO2、Fe3O4、SiO2)的复合超滤膜,基于聚合物纳米纤维的复合超滤膜.

  9. Analysis list: Kmt2d [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Kmt2d Adipocyte,Pluripotent stem cell + mm9 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/target/Kmt2d....1.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/target/Kmt2d.5.tsv http://dbarchiv...e.biosciencedbc.jp/kyushu-u/mm9/target/Kmt2d.10.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/colo/Kmt2d....Adipocyte.tsv,http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/colo/Kmt2d.Pluripo

  10. Computing 2D constrained delaunay triangulation using the GPU.

    Science.gov (United States)

    Qi, Meng; Cao, Thanh-Tung; Tan, Tiow-Seng

    2013-05-01

    We propose the first graphics processing unit (GPU) solution to compute the 2D constrained Delaunay triangulation (CDT) of a planar straight line graph (PSLG) consisting of points and edges. There are many existing CPU algorithms to solve the CDT problem in computational geometry, yet there has been no prior approach to solve this problem efficiently using the parallel computing power of the GPU. For the special case of the CDT problem where the PSLG consists of just points, which is simply the normal Delaunay triangulation (DT) problem, a hybrid approach using the GPU together with the CPU to partially speed up the computation has already been presented in the literature. Our work, on the other hand, accelerates the entire computation on the GPU. Our implementation using the CUDA programming model on NVIDIA GPUs is numerically robust, and runs up to an order of magnitude faster than the best sequential implementations on the CPU. This result is reflected in our experiment with both randomly generated PSLGs and real-world GIS data having millions of points and edges.

  11. Applications of advanced hybrid organic-inorganic nanomaterials: from laboratory to market.

    Science.gov (United States)

    Sanchez, Clément; Belleville, Philippe; Popall, Michael; Nicole, Lionel

    2011-02-01

    Today cross-cutting approaches, where molecular engineering and clever processing are synergistically coupled, allow the chemist to tailor complex hybrid systems of various shapes with perfect mastery at different size scales, composition, functionality, and morphology. Hybrid materials with organic-inorganic or bio-inorganic character represent not only a new field of basic research but also, via their remarkable new properties and multifunctional nature, hybrids offer prospects for many new applications in extremely diverse fields. The description and discussion of the major applications of hybrid inorganic-organic (or biologic) materials are the major topic of this critical review. Indeed, today the very large set of accessible hybrid materials span a wide spectrum of properties which yield the emergence of innovative industrial applications in various domains such as optics, micro-electronics, transportation, health, energy, housing, and the environment among others (526 references).

  12. Intermittency in 2D soap film turbulence

    CERN Document Server

    Cerbus, R T

    2013-01-01

    The Reynolds number dependency of intermittency for 2D turbulence is studied in a flowing soap film. The Reynolds number used here is the Taylor microscale Reynolds number R_{\\lambda}, which ranges from 20 to 800. Strong intermittency is found for both the inverse energy and direct enstrophy cascades as measured by (a) the pdf of velocity differences P(\\delta u(r)) at inertial scales r, (b) the kurtosis of P(\\partial_x u), and (c) the scaling of the so-called intermittency exponent \\mu, which is zero if intermittency is absent. Measures (b) and (c) are quantitative, while (a) is qualitative. These measurements are in disagreement with some previous results but not all. The velocity derivatives are nongaussian at all R_{\\lambda} but show signs of becoming gaussian as R_{\\lambda} increases beyond the largest values that could be reached. The kurtosis of P(\\delta u(r)) at various r indicates that the intermittency is scale dependent. The structure function scaling exponents also deviate strongly from the Kraichn...

  13. Competing coexisting phases in 2D water

    Science.gov (United States)

    Zanotti, Jean-Marc; Judeinstein, Patrick; Dalla-Bernardina, Simona; Creff, Gaëlle; Brubach, Jean-Blaise; Roy, Pascale; Bonetti, Marco; Ollivier, Jacques; Sakellariou, Dimitrios; Bellissent-Funel, Marie-Claire

    2016-05-01

    The properties of bulk water come from a delicate balance of interactions on length scales encompassing several orders of magnitudes: i) the Hydrogen Bond (HBond) at the molecular scale and ii) the extension of this HBond network up to the macroscopic level. Here, we address the physics of water when the three dimensional extension of the HBond network is frustrated, so that the water molecules are forced to organize in only two dimensions. We account for the large scale fluctuating HBond network by an analytical mean-field percolation model. This approach provides a coherent interpretation of the different events experimentally (calorimetry, neutron, NMR, near and far infra-red spectroscopies) detected in interfacial water at 160, 220 and 250 K. Starting from an amorphous state of water at low temperature, these transitions are respectively interpreted as the onset of creation of transient low density patches of 4-HBonded molecules at 160 K, the percolation of these domains at 220 K and finally the total invasion of the surface by them at 250 K. The source of this surprising behaviour in 2D is the frustration of the natural bulk tetrahedral local geometry and the underlying very significant increase in entropy of the interfacial water molecules.

  14. Ion Transport in 2-D Graphene Nanochannels

    Science.gov (United States)

    Xie, Quan; Foo, Elbert; Duan, Chuanhua

    2015-11-01

    Graphene membranes have recently attracted wide attention due to its great potential in water desalination and selective molecular sieving. Further developments of these membranes, including enhancing their mass transport rate and/or molecular selectivity, rely on the understanding of fundamental transport mechanisms through graphene membranes, which has not been studied experimentally before due to fabrication and measurement difficulties. Herein we report the fabrication of the basic constituent of graphene membranes, i.e. 2-D single graphene nanochannels (GNCs) and the study of ion transport in these channels. A modified bonding technique was developed to form GNCs with well-defined geometry and uniform channel height. Ion transport in such GNCs was studied using DC conductance measurement. Our preliminary results showed that the ion transport in GNCs is still governed by surface charge at low concentrations (10-6M to 10-4M). However, GNCs exhibits much higher ionic conductances than silica nanochannels with the same geometries in the surface-charge-governed regime. This conductance enhancement can be attributed to the pre-accumulation of charges on graphene surfaces. The work is supported by the Faculty Startup Fund (Boston University, USA).

  15. 2D DIGITAL SIMPLIFIED FLOW VALVE

    Institute of Scientific and Technical Information of China (English)

    Ruan Jian; Li Sheng; Pei Xiang; Burton R; Ukrainetz P; Bitner D

    2004-01-01

    The 2D digital simplified flow valve is composed of a pilot-operated valve designed with both rotary and linear motions of a single spool,and a stepper motor under continual control.How the structural parameters affect the static and dynamic characteristics of the valve is first clarified and a criterion for stability is presented.Experiments are designed to test the performance of the valve.It is necessary to establish a balance between the static and dynamic characteristics in deciding the structural parameters.Nevertheless,it is possible to maintain the dynamic response at a fairly high level,while keeping the leakage of the pilot stage at an acceptable level.One of the features of the digital valve is stage control.In stage control the nonlinearities,such as electromagnetic saturation and hysteresis,are greatly reduced.To a large extent the dynamic response of the valve is decided by the executing cycle of the control algorithm.

  16. 2-D Animation's Not Just for Mickey Mouse.

    Science.gov (United States)

    Weinman, Lynda

    1995-01-01

    Discusses characteristics of two-dimensional (2-D) animation; highlights include character animation, painting issues, and motion graphics. Sidebars present Silicon Graphics animations tools and 2-D animation programs for the desktop computer. (DGM)

  17. Pharm GKB: CYP2D6 [PharmGKB

    Lifescience Database Archive (English)

    Full Text Available el for vortioxetine and CYP2D6 FDA Label for acetaminophen,tramadol and CYP2D6 FDA Label for dextromethorphan... Label for vortioxetine and CYP2D6 European Medicines Agency (EMA) Label for dextromethorphan,quinidine and ...ore of this label. Read more. last updated 10/25/2013 FDA Label for dextromethorphan, quinidine and CYP2D6 O...of NUEDEXTA is a CYP2D6 inhibitor used to increase the plasma availability of dextromethorphan, which is met... 05/02/2014 European Medicines Agency (EMA) Label for dextromethorphan, quinidine

  18. 3D/2D Registration of medical images

    OpenAIRE

    Tomaževič, D.

    2008-01-01

    The topic of this doctoral dissertation is registration of 3D medical images to corresponding projective 2D images, referred to as 3D/2D registration. There are numerous possible applications of 3D/2D registration in image-aided diagnosis and treatment. In most of the applications, 3D/2D registration provides the location and orientation of the structures in a preoperative 3D CT or MR image with respect to intraoperative 2D X-ray images. The proposed doctoral dissertation tries to find origin...

  19. Analysis list: Mef2d [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Mef2d Muscle + mm9 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/target/Mef2d.1.ts...v http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/target/Mef2d.5.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/target/Mef2d....10.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/colo/Mef2d.Muscle.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/colo/Muscle.gml ...

  20. CYP2D7 sequence variation interferes with TaqMan CYP2D6*15 and *35 genotyping

    Directory of Open Access Journals (Sweden)

    Amanda K Riffel

    2016-01-01

    Full Text Available TaqMan™ genotyping assays are widely used to genotype CYP2D6, which encodes a major drug metabolizing enzyme. Assay design for CYP2D6 can be challenging owing to the presence of two pseudogenes, CYP2D7 and CYP2D8, structural and copy number variation and numerous single nucleotide polymorphisms (SNPs some of which reflect the wild-type sequence of the CYP2D7 pseudogene. The aim of this study was to identify the mechanism causing false positive CYP2D6*15 calls and remediate those by redesigning and validating alternative TaqMan genotype assays. Among 13,866 DNA samples genotyped by the CompanionDx® lab on the OpenArray platform, 70 samples were identified as heterozygotes for 137Tins, the key SNP of CYP2D6*15. However, only 15 samples were confirmed when tested with the Luminex xTAG CYP2D6 Kit and sequencing of CYP2D6-specific long range (XL-PCR products. Genotype and gene resequencing of CYP2D6 and CYP2D7-specific XL-PCR products revealed a CC>GT dinucleotide SNP in exon 1 of CYP2D7 that reverts the sequence to CYP2D6 and allows a TaqMan assay PCR primer to bind. Because CYP2D7 also carries a Tins, a false-positive mutation signal is generated. This CYP2D7 SNP was also responsible for generating false-positive signals for rs769258 (CYP2D6*35 which is also located in exon 1. Although alternative CYP2D6*15 and *35 assays resolved the issue, we discovered a novel CYP2D6*15 subvariant in one sample that carries additional SNPs preventing detection with the alternate assay. The frequency of CYP2D6*15 was 0.1% in this ethnically diverse U.S. population sample. In addition, we also discovered linkage between the CYP2D7 CC>GT dinucleotide SNP and the 77G>A (rs28371696 SNP of CYP2D6*43. The frequency of this tentatively functional allele was 0.2%. Taken together, these findings emphasize that regardless of how careful genotyping assays are designed and evaluated before being commercially marketed, rare or unknown SNPs underneath primer and/or probe

  1. Backscattering in a 2D topological insulator and the conductivity of a 2D strip

    Science.gov (United States)

    Magarill, L. I.; Entin, M. V.

    2015-01-01

    A strip of the 2D HgTe topological insulator is studied. The same-spin edge states in an ideal system propagate in opposite directions on different sides of the strip and do not mix by tunneling. Impurities, edge irregularities, and phonons produce transitions between the counterpropagating edge states on different edges. This backscattering determines the conductivity of an infinitely long strip. The conductivity at finite temperature is determined in the framework of the kinetic equation. It is found that the conductivity exponentially grows with the strip width. In the same approximation the nonlocal resistance coefficients of a four-terminal strip are found.

  2. Conductive Hybrid Crystal Composed from Polyoxomolybdate and Deprotonatable Ionic-Liquid Surfactant

    Directory of Open Access Journals (Sweden)

    Jun Kobayashi

    2016-06-01

    Full Text Available A polyoxomolybdate inorganic-organic hybrid crystal was synthesized with deprotonatable ionic-liquid surfactant. 1-dodecylimidazolium cation was employed for its synthesis. The hybrid crystal contained δ-type octamolybdate (Mo8 isomer, and possessed alternate stacking of Mo8 monolayers and interdigitated surfactant bilayers. The crystal structure was compared with polyoxomolybdate hybrid crystals comprising 1-dodecyl-3-methylimidazolium surfactant, which preferred β-type Mo8 isomer. The less bulky hydrophilic moiety of the 1-dodecylimidazolium interacted with the δ-Mo8 anion by N–H···O hydrogen bonds, which presumably induced the formation of the δ-Mo8 anion. Anhydrous conductivity of the hybrid crystal was estimated to be 5.5 × 10−6 S·cm−1 at 443 K by alternating current (AC impedance spectroscopy.

  3. Synthesis, characterizations and electro-optical properties of nonlinear optical polyimide/silica hybrid

    Directory of Open Access Journals (Sweden)

    2007-03-01

    Full Text Available Transparent Nonlinear Optical (NLO inorganic/organic (polyimide/silica hybrid composites with covalent links between the inorganic and the organic networks were prepared by the sol-gel method. The silica content in the hybrid films was varied from 0 to 22.5/wt%. The prepared PI hybrids were characterized by IR, UV-Vis, Thermogravimetric analysis (TGA, X-ray diffraction (XRD, Scanning Electron Microscopy (SEM and Transmission Electron Microscopy (TEM. They exhibited fair good optical transparency. The SiO2 phase was well dispersed in the polymer matrix. DSC and TGA results showed that these hybrid materials had excellent thermal stability. The polymer solutions could be spin coated on the indium-tin-oxide (ITO glass to form optical quality thin films. The electro-optic coefficients (γ33 at the wavelength of 832 nm for polymer thin films poled were in the range of 19-27 pm/V.

  4. Conductive Hybrid Crystal Composed from Polyoxomolybdate and Deprotonatable Ionic-Liquid Surfactant

    Science.gov (United States)

    Kobayashi, Jun; Kawahara, Ryosuke; Uchida, Sayaka; Koguchi, Shinichi; Ito, Takeru

    2016-01-01

    A polyoxomolybdate inorganic-organic hybrid crystal was synthesized with deprotonatable ionic-liquid surfactant. 1-dodecylimidazolium cation was employed for its synthesis. The hybrid crystal contained δ-type octamolybdate (Mo8) isomer, and possessed alternate stacking of Mo8 monolayers and interdigitated surfactant bilayers. The crystal structure was compared with polyoxomolybdate hybrid crystals comprising 1-dodecyl-3-methylimidazolium surfactant, which preferred β-type Mo8 isomer. The less bulky hydrophilic moiety of the 1-dodecylimidazolium interacted with the δ-Mo8 anion by N–H···O hydrogen bonds, which presumably induced the formation of the δ-Mo8 anion. Anhydrous conductivity of the hybrid crystal was estimated to be 5.5 × 10−6 S·cm−1 at 443 K by alternating current (AC) impedance spectroscopy. PMID:27347926

  5. High mobility solution-processed hybrid light emitting transistors

    Energy Technology Data Exchange (ETDEWEB)

    Walker, Bright; Kim, Jin Young [School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology, Ulsan 689-798 (Korea, Republic of); Ullah, Mujeeb; Burn, Paul L.; Namdas, Ebinazar B., E-mail: e.namdas@uq.edu.au, E-mail: seojh@dau.ac.kr [Centre for Organic Photonics and Electronics, University of Queensland, Brisbane, Queensland 4072 (Australia); Chae, Gil Jo [Department of Materials Physics, Dong-A University, Busan 604-714 (Korea, Republic of); Department of Physics and EHSRC, University of Ulsan, Ulsan 680-749 (Korea, Republic of); Cho, Shinuk [Department of Physics and EHSRC, University of Ulsan, Ulsan 680-749 (Korea, Republic of); Seo, Jung Hwa, E-mail: e.namdas@uq.edu.au, E-mail: seojh@dau.ac.kr [Department of Materials Physics, Dong-A University, Busan 604-714 (Korea, Republic of)

    2014-11-03

    We report the design, fabrication, and characterization of high-performance, solution-processed hybrid (inorganic-organic) light emitting transistors (HLETs). The devices employ a high-mobility, solution-processed cadmium sulfide layer as the switching and transport layer, with a conjugated polymer Super Yellow as an emissive material in non-planar source/drain transistor geometry. We demonstrate HLETs with electron mobilities of up to 19.5 cm{sup 2}/V s, current on/off ratios of >10{sup 7}, and external quantum efficiency of 10{sup −2}% at 2100 cd/m{sup 2}. These combined optical and electrical performance exceed those reported to date for HLETs. Furthermore, we provide full analysis of charge injection, charge transport, and recombination mechanism of the HLETs. The high brightness coupled with a high on/off ratio and low-cost solution processing makes this type of hybrid device attractive from a manufacturing perspective.

  6. Residual lens effects in 2D mode of auto-stereoscopic lenticular-based switchable 2D/3D displays

    Science.gov (United States)

    Sluijter, M.; IJzerman, W. L.; de Boer, D. K. G.; de Zwart, S. T.

    2006-04-01

    We discuss residual lens effects in multi-view switchable auto-stereoscopic lenticular-based 2D/3D displays. With the introduction of a switchable lenticular, it is possible to switch between a 2D mode and a 3D mode. The 2D mode displays conventional content, whereas the 3D mode provides the sensation of depth to the viewer. The uniformity of a display in the 2D mode is quantified by the quality parameter modulation depth. In order to reduce the modulation depth in the 2D mode, birefringent lens plates are investigated analytically and numerically, by ray tracing. We can conclude that the modulation depth in the 2D mode can be substantially decreased by using birefringent lens plates with a perfect index match between lens material and lens plate. Birefringent lens plates do not disturb the 3D performance of a switchable 2D/3D display.

  7. Functional characterization of a first avian cytochrome P450 of the CYP2D subfamily (CYP2D49.

    Directory of Open Access Journals (Sweden)

    Hua Cai

    Full Text Available The CYP2D family members are instrumental in the metabolism of 20-25% of commonly prescribed drugs. Although many CYP2D isoforms have been well characterized in other animal models, research concerning the chicken CYP2Ds is limited. In this study, a cDNA encoding a novel CYP2D enzyme (CYP2D49 was cloned from the chicken liver for the first time. The CYP2D49 cDNA contained an open reading frame of 502 amino acids that shared 52%-57% identities with other CYP2Ds. The gene structure and neighboring genes of CYP2D49 are conserved and similar to those of human CYP2D6. Additionally, similar to human CYP2D6, CYP2D49 is un-inducible in the liver and expressed predominantly in the liver, kidney and small intestine, with detectable levels in several other tissues. Metabolic assays of the CYP2D49 protein heterologously expressed in E. coli and Hela cells indicated that CYP2D49 metabolized the human CYP2D6 substrate, bufuralol, but not debrisoquine. Moreover, quinidine, a potent inhibitor of human CYP2D6, only inhibited the bufuralol 1'-hydroxylation activity of CYP2D49 to a negligible degree. All these results indicated that CYP2D49 had functional characteristics similar to those of human CYP2D6 but measurably differed in the debrisoquine 4'-hydroxylation and quinidine inhibitory profile. Further structure-function investigations that employed site-directed mutagenesis and circular dichroism spectroscopy identified the importance of Val-126, Glu-222, Asp-306, Phe-486 and Phe-488 in keeping the enzymatic activity of CYP2D49 toward bufuralol as well as the importance of Asp-306, Phe-486 and Phe-488 in maintaining the conformation of CYP2D49 protein. The current study is only the first step in characterizing the metabolic mechanism of CYP2D49; further studies are still required.

  8. The No-Hair Conjecture in 2D Dilaton Supergravity

    CERN Document Server

    Gamboa-Rios, J

    1993-01-01

    We study two dimensional dilaton gravity and supergravity following hamiltonian methods. Firstly, we consider the structure of constraints of 2D dilaton gravity and then the 2D dilaton supergravity is obtained taking the squere root of the bosonic constraints. We integrate exactly the equations of motion in both cases and we show that the solutions of the equation of motion of 2D dilaton supergravity differs from the solutions of 2D dilaton gravity only by boundary conditions on the fermionic variables, i.e. the black holes of 2D dilaton supergravity theory are exactly the same black holes of 2D bosonic dilaton gravity modulo supersymmetry transformations. This result is the bidimensional analogue of the no-hair theorem for supergravity.

  9. Scalable Fabrication of 2D Semiconducting Crystals for Future Electronics

    Directory of Open Access Journals (Sweden)

    Jiantong Li

    2015-12-01

    Full Text Available Two-dimensional (2D layered materials are anticipated to be promising for future electronics. However, their electronic applications are severely restricted by the availability of such materials with high quality and at a large scale. In this review, we introduce systematically versatile scalable synthesis techniques in the literature for high-crystallinity large-area 2D semiconducting materials, especially transition metal dichalcogenides, and 2D material-based advanced structures, such as 2D alloys, 2D heterostructures and 2D material devices engineered at the wafer scale. Systematic comparison among different techniques is conducted with respect to device performance. The present status and the perspective for future electronics are discussed.

  10. Optimization and practical implementation of ultrafast 2D NMR experiments

    OpenAIRE

    Queiroz Júnior,Luiz H. K.; Antonio G. Ferreira; Patrick Giraudeau

    2013-01-01

    Ultrafast 2D NMR is a powerful methodology that allows recording of a 2D NMR spectrum in a fraction of second. However, due to the numerous non-conventional parameters involved in this methodology its implementation is no trivial task. Here, an optimized experimental protocol is carefully described to ensure efficient implementation of ultrafast NMR. The ultrafast spectra resulting from this implementation are presented based on the example of two widely used 2D NMR experiments, COSY and HSQC...

  11. Híbridos inorgânico-orgânicos derivados da reação de filossicatos com organossilanos Inorganic-organic hybrids derived from the reaction of phyllosilicates with organosilanes

    Directory of Open Access Journals (Sweden)

    Maria Gardênnia da Fonseca

    2003-10-01

    Full Text Available Silylation reactions involving hydroxylated surfaces are an important route for synthesis of new materials that could present selected properties, for application in different areas such as catalysis, chromatography, adsorption and electrochemistry. An overview of many synthetic routes, comprising organosilanes to yield phyllosilicates is now presented.

  12. EXPRESSION PATTERN OF LUNG CANCER RELATED GENES IN MALIGNANT TRANSFORMATION OF BEP2D

    Institute of Scientific and Technical Information of China (English)

    范保星; 张开泰; 李刚; 谢玲; 马淑华; 葛世丽; 项小琼; 胡迎春; 王升启; 周平坤; 吴德昌

    2002-01-01

    Objective: To detect the expression difference of 60 lung cancer associated genes in human bronchial epithelial malignant transformation cell model (BEP2D) induced by alpha-particles. Methods: 60 lung cancer associated genes were collected and micro-arrayed onto the microscope slides using Cartesian PixSys5500 cDNA Microarray machine. Total RNA from BEP2D cells and passage 20 (Rl5H-20), passage 35 (R15H-35) cells derived from BEP2D following 1.5 Gy alpha-particles was extracted and labeled by fluorescent dye. The labeled probe was then hybridized with the cDNA. Results: 40, 47, 20 genes were detected in BEP2D, R15H-20 and R15H-35 respectively. The expression level of tumor suppressor genes decreased greatly in the transformed R15H-35. Most oncogenes decreased slightly in R15H-20. Most growth factors expressed only in R15H-20. Conclusion: In human bronchial epithelial malignant transformed cell model generated by alpha-particles, the loss-function of tumor suppressor genes at initiation stage was dominant, some related oncogenes and growth factors promoted the malignant transformation.

  13. Highly Omnidirectional and Frequency Controllable Carbon/Polyaniline-based 2D and 3D Monopole Antenna

    Science.gov (United States)

    Shin, Keun-Young; Kim, Minkyu; Lee, James S.; Jang, Jyongsik

    2015-09-01

    Highly omnidirectional and frequency controllable carbon/polyaniline (C/PANI)-based, two- (2D) and three-dimensional (3D) monopole antennas were fabricated using screen-printing and a one-step, dimensionally confined hydrothermal strategy, respectively. Solvated C/PANI was synthesized by low-temperature interfacial polymerization, during which strong π-π interactions between graphene and the quinoid rings of PANI resulted in an expanded PANI conformation with enhanced crystallinity and improved mechanical and electrical properties. Compared to antennas composed of pristine carbon or PANI-based 2D monopole structures, 2D monopole antennas composed of this enhanced hybrid material were highly efficient and amenable to high-frequency, omnidirectional electromagnetic waves. The mean frequency of C/PANI fiber-based 3D monopole antennas could be controlled by simply cutting and stretching the antenna. These antennas attained high peak gain (3.60 dBi), high directivity (3.91 dBi) and radiation efficiency (92.12%) relative to 2D monopole antenna. These improvements were attributed the high packing density and aspect ratios of C/PANI fibers and the removal of the flexible substrate. This approach offers a valuable and promising tool for producing highly omnidirectional and frequency-controllable, carbon-based monopole antennas for use in wireless networking communications on industrial, scientific, and medical (ISM) bands.

  14. 3D hydrogel scaffold doped with 2D graphene materials for biosensors and bioelectronics.

    Science.gov (United States)

    Song, Hyun Seok; Kwon, Oh Seok; Kim, Jae-Hong; Conde, João; Artzi, Natalie

    2017-03-15

    Hydrogels consisting of three-dimensional (3D) polymeric networks have found a wide range of applications in biotechnology due to their large water capacity, high biocompatibility, and facile functional versatility. The hydrogels with stimulus-responsive swelling properties have been particularly instrumental to realizing signal transduction in biosensors and bioelectronics. Graphenes are two-dimensional (2D) nanomaterials with unprecedented physical, optical, and electronic properties and have also found many applications in biosensors and bioelectronics. These two classes of materials present complementary strengths and limitations which, when effectively coupled, can result in significant synergism in their electrical, mechanical, and biocompatible properties. This report reviews recent advances made with hydrogel and graphene materials for the development of high-performance bioelectronics devices. The report focuses on the interesting intersection of these materials wherein 2D graphenes are hybridized with 3D hydrogels to develop the next generation biosensors and bioelectronics.

  15. Recent progress in high-mobility thin-film transistors based on multilayer 2D materials

    Science.gov (United States)

    Hong, Young Ki; Liu, Na; Yin, Demin; Hong, Seongin; Kim, Dong Hak; Kim, Sunkook; Choi, Woong; Yoon, Youngki

    2017-04-01

    Two-dimensional (2D) layered semiconductors are emerging as promising candidates for next-generation thin-film electronics because of their high mobility, relatively large bandgap, low-power switching, and the availability of large-area growth methods. Thin-film transistors (TFTs) based on multilayer transition metal dichalcogenides or black phosphorus offer unique opportunities for next-generation electronic and optoelectronic devices. Here, we review recent progress in high-mobility transistors based on multilayer 2D semiconductors. We describe the theoretical background on characterizing methods of TFT performance and material properties, followed by their applications in flexible, transparent, and optoelectronic devices. Finally, we highlight some of the methods used in metal-semiconductor contacts, hybrid structures, heterostructures, and chemical doping to improve device performance.

  16. The band structure of carbonmonoxide on 2-D Au islands on graphene

    KAUST Repository

    Katsiev, Khabiboulakh

    2014-06-01

    The dispersion of the occupied molecular orbitals of carbon monoxide adsorbed on Au 2D islands, vapor-deposited on graphene/Ru(0 0 0 1), is seen to be wave vector dependent, as revealed by angle-resolved photoemission. The band dispersion is similar to CO monolayers adsorbed on many single crystal metal surfaces. Thus not only are the adsorbed gold islands on graphene flat and crystalline, as evident in the dispersion of the Au d-states, but the CO molecular adlayer is both molecular and ordered as well. The experimental angle-resolved photoemission combined with model calculations of the occupied CO band structure, suggest that, in spite of being a very weakly bound adsorbate, the CO adlayer on Au 2D islands on graphene is strongly hybridized to the Au layer. . © 2014 Elsevier B.V. All rights reserved.

  17. 2D and 3D CMOS MAPS with high performance pixel-level signal processing

    Energy Technology Data Exchange (ETDEWEB)

    Traversi, Gianluca, E-mail: gianluca.traversi@unibg.i [University of Bergamo and INFN Pavia, Via Marconi 5, Dalmine 24044 (Italy); Gaioni, Luigi; Manghisoni, Massimo [University of Bergamo and INFN Pavia, Via Marconi 5, Dalmine 24044 (Italy); Ratti, Lodovico [University of Pavia and INFN Pavia (Italy); Re, Valerio [University of Bergamo and INFN Pavia, Via Marconi 5, Dalmine 24044 (Italy)

    2011-02-01

    Deep N-well (DNW) MAPS have been developed in the last few years with the aim of building monolithic sensors with similar functionalities as hybrid pixels systems. These devices have been fabricated in a planar (2D) 130 nm CMOS technology. The triple-well structure available in such an ultra-deep submicron technology is exploited by using the deep N-well as the charge-collecting electrode. This paper intends to discuss the design features and measurement results of the last prototype (Apsel5T chip) recently fabricated in a 2D 130 nm CMOS technology. Recent advances in microelectronics industry have made 3D integrated circuits an option for High Energy Physics experiments. A 3D version of the Apsel5T chip has been designed in a 130 nm CMOS, two-layer, vertically integrated technology. The main features of this new 3D monolithic detector are presented in this paper.

  18. Lithium ion conductive Li1.5Al0.5Ge1.5(PO4)3 based inorganic-organic composite separator with enhanced thermal stability and excellent electrochemical performances in 5 V lithium ion batteries

    Science.gov (United States)

    Shi, Junli; Xia, Yonggao; Han, Shaojie; Fang, Lifeng; Pan, Meizi; Xu, Xiaoxiong; Liu, Zhaoping

    2015-01-01

    Since 5 V lithium ion batteries have attracted more and more attentions and are deemed to be an important tendency in the future, the matched design of the separators has also become a necessary and significant work. In this work, the lithium ionic conducting glass ceramic Li1.5Al0.5Ge1.5(PO4)3-polypropylene (PP) based inorganic-organic composite separator (LAGP-PP) is prepared. Compared with the pristine PP separator, the LAGP-PP separator owns enhanced thermal stability and wettability. Meanwhile, the LAGP-PP separator shows higher ion conductivity than the traditional Al2O3 coated PP separator due to the more facile lithium ion diffusion channels in the coating layer. The superior C-rate capacity and cyclability in the LiNi0.5Mn1.5O4 based 5 V lithium ion batteries indicate that the LAGP-PP separator is a good alternative for the traditional inert inorganic ceramic coated polyolefin separators and is a kind of promising candidate separator for the high voltage lithium ion batteries.

  19. An Incompressible 2D Didactic Model with Singularity and Explicit Solutions of the 2D Boussinesq Equations

    Science.gov (United States)

    Chae, Dongho; Constantin, Peter; Wu, Jiahong

    2014-09-01

    We give an example of a well posed, finite energy, 2D incompressible active scalar equation with the same scaling as the surface quasi-geostrophic equation and prove that it can produce finite time singularities. In spite of its simplicity, this seems to be the first such example. Further, we construct explicit solutions of the 2D Boussinesq equations whose gradients grow exponentially in time for all time. In addition, we introduce a variant of the 2D Boussinesq equations which is perhaps a more faithful companion of the 3D axisymmetric Euler equations than the usual 2D Boussinesq equations.

  20. A new metaheuristic genetic-based placement algorithm for 2D strip packing

    OpenAIRE

    Thomas, Jaya; Chaudhari, Narendra S.

    2014-01-01

    Given a container of fixed width, infinite height and a set of rectangular block, the 2D-strip packing problem consists of orthogonally placing all the rectangles such that the height is minimized. The position is subject to confinement of no overlapping of blocks. The problem is a complex NP-hard combinatorial optimization, thus a heuristic based on genetic algorithm is proposed to solve it. In this paper, we give a hybrid approach which combined genetic encoding and evolution scheme with th...

  1. Controlled Covalent Functionalization of Thermally Reduced Graphene Oxide To Generate Defined Bifunctional 2D Nanomaterials

    Science.gov (United States)

    Faghani, Abbas; Donskyi, Ievgen S.; Fardin Gholami, Mohammad; Ziem, Benjamin; Lippitz, Andreas; Unger, Wolfgang E. S.; Böttcher, Christoph; Rabe, Jürgen P.

    2017-01-01

    Abstract A controlled, reproducible, gram‐scale method is reported for the covalent functionalization of graphene sheets by a one‐pot nitrene [2+1] cycloaddition reaction under mild conditions. The reaction between commercially available 2,4,6‐trichloro‐1,3,5‐triazine and sodium azide with thermally reduced graphene oxide (TRGO) results in defined dichlorotriazine‐functionalized sheets. The different reactivities of the chlorine substituents on the functionalized graphene allow stepwise post‐modification by manipulating the temperature. This new method provides unique access to defined bifunctional 2D nanomaterials, as exemplified by chiral surfaces and multifunctional hybrid architectures. PMID:28165179

  2. 2D multi-objective placement algorithm for free-form components

    CERN Document Server

    Jacquenot, Guillaume; Maisonneuve, Jean-Jacques; Wenger, Philippe

    2009-01-01

    This article presents a generic method to solve 2D multi-objective placement problem for free-form components. The proposed method is a relaxed placement technique combined with an hybrid algorithm based on a genetic algorithm and a separation algorithm. The genetic algorithm is used as a global optimizer and is in charge of efficiently exploring the search space. The separation algorithm is used to legalize solutions proposed by the global optimizer, so that placement constraints are satisfied. A test case illustrates the application of the proposed method. Extensions for solving the 3D problem are given at the end of the article.

  3. New Type of 2-D Laser Doppler Vibrometer

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The fundamentals and method of 2-D laser Doppler vibrometer are introduced.The factors influencing the measuring accuracy are analyzed. Moreover, the circuit for signal processing is designed. The vibrating amplitude and frequency of 2-D vibration in wider range can be measured simultaneously in non-contact means,the measuring results are accurate.

  4. Animación 2D: curriculum vitae animado

    OpenAIRE

    CANTOS BELMONTE, CONSUELO

    2015-01-01

    Trabajo Fin de Grado de animación 2D donde un personaje (alter ego de la animadora) expone, mediante la interación con una Voz en Off y su sombra, el curriclum vitae de la animadora. Cantos Belmonte, C. (2014). Animación 2D: curriculum vitae animado. http://hdl.handle.net/10251/45910. Archivo delegado

  5. Symmetries and solvable models for evaporating 2D black holes

    CERN Document Server

    Cruz, J; Navarro-Salas, J; Talavera, C F

    1997-01-01

    We study the evaporation process of a 2D black hole in thermal equilibrium when the ingoing radiation is switched off suddenly. We also introduce global symmetries of generic 2D dilaton gravity models which generalize the extra symmetry of the CGHS model.

  6. From 2D Lithography to 3D Patterning

    NARCIS (Netherlands)

    Van Zeijl, H.W.; Wei, J.; Shen, C.; Verhaar, T.M.; Sarro, P.M.

    2010-01-01

    Lithography as developed for IC device fabrication is a high volume high accuracy patterning technology with strong 2 dimensional (2D) characteristics. This 2D nature makes it a challenge to integrate this technology in a 3 dimensional (3D) manufacturing environment. This article addresses the perfo

  7. Two-Dimensional Gel Electrophoresis and 2D-DIGE.

    Science.gov (United States)

    Meleady, Paula

    2018-01-01

    Two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) continues to be one of the most versatile and widely used techniques to study the proteome of a biological system. In particular, a modified version of 2D-PAGE, two-dimensional difference gel electrophoresis (2D-DIGE), which uses differential labeling of protein samples with up to three fluorescent tags, offers greater sensitivity and reproducibility over conventional 2D-PAGE gels for differential quantitative analysis of protein expression between experimental groups. Both these methods have distinct advantages in the separation and identification of thousands of individual proteins species including protein isoforms and post-translational modifications. This review will discuss the principles of 2D-PAGE and 2D-DIGE including limitations to the methods. 2D-PAGE and 2D-DIGE continue to be popular methods in bioprocessing-related research (particularly on recombinant Chinese hamster ovary cells), which will also be discussed in the review chapter.

  8. From 2D Lithography to 3D Patterning

    NARCIS (Netherlands)

    Van Zeijl, H.W.; Wei, J.; Shen, C.; Verhaar, T.M.; Sarro, P.M.

    2010-01-01

    Lithography as developed for IC device fabrication is a high volume high accuracy patterning technology with strong 2 dimensional (2D) characteristics. This 2D nature makes it a challenge to integrate this technology in a 3 dimensional (3D) manufacturing environment. This article addresses the

  9. Cascading Constrained 2-D Arrays using Periodic Merging Arrays

    DEFF Research Database (Denmark)

    Forchhammer, Søren; Laursen, Torben Vaarby

    2003-01-01

    We consider a method for designing 2-D constrained codes by cascading finite width arrays using predefined finite width periodic merging arrays. This provides a constructive lower bound on the capacity of the 2-D constrained code. Examples include symmetric RLL and density constrained codes....... Numerical results for the capacities are presented....

  10. Energy Efficiency of D2D Multi-User Cooperation.

    Science.gov (United States)

    Zhang, Zufan; Wang, Lu; Zhang, Jie

    2017-03-28

    The Device-to-Device (D2D) communication system is an important part of heterogeneous networks. It has great potential to improve spectrum efficiency, throughput and energy efficiency cooperation of multiple D2D users with the advantage of direct communication. When cooperating, D2D users expend extraordinary energy to relay data to other D2D users. Hence, the remaining energy of D2D users determines the life of the system. This paper proposes a cooperation scheme for multiple D2D users who reuse the orthogonal spectrum and are interested in the same data by aiming to solve the energy problem of D2D users. Considering both energy availability and the Signal to Noise Ratio (SNR) of each D2D user, the Kuhn-Munkres algorithm is introduced in the cooperation scheme to solve relay selection problems. Thus, the cooperation issue is transformed into a maximum weighted matching (MWM) problem. In order to enhance energy efficiency without the deterioration of Quality of Service (QoS), the link outage probability is derived according to the Shannon Equation by considering the data rate and delay. The simulation studies the relationships among the number of cooperative users, the length of shared data, the number of data packets and energy efficiency.

  11. The relation between Euclidean and Lorentzian 2D quantum gravity

    NARCIS (Netherlands)

    Ambjørn, J.; Correia, J.; Kristjansen, C.; Loll, R.

    2006-01-01

    Starting from 2D Euclidean quantum gravity, we show that one recovers 2D Lorentzian quantum gravity by removing all baby universes. Using a peeling procedure to decompose the discrete, triangulated geometries along a one-dimensional path, we explicitly associate with each Euclidean space-time a (gen

  12. The Diphosphorus Complex [Cp2Mo2(CO)4(η(2)-P2)] as a Building Block for the Synthesis of Mixed-Hybrid Coordination Polymers.

    Science.gov (United States)

    Moussa, Mehdi Elsayed; Attenberger, Bianca; Fleischmann, Martin; Schreiner, Andrea; Scheer, Manfred

    2016-10-01

    The three-component reaction of the tetrahedral diphosphorus complex [Cp2Mo2(CO)4(η(2)-P2)] (1), with Ag[BF4] (2) in the presence of 2,2'-bipyrimidine (3) leads to the formation of the two novel two-dimensional networks 4 and 5. Compound 4 is a new two-dimensional organometallic-organic hybrid polymer, while derivative 5 represents a unique two-dimensional organometallic-inorganic-organic hybrid polymer. These results show the possibility of synthesizing a new class of coordination polymers, which could not be obtained from two-component reactions with organic molecules in addition of metal ions.

  13. Synthesis and chemistry of elemental 2D materials

    Energy Technology Data Exchange (ETDEWEB)

    Mannix, Andrew J.; Kiraly, Brian T.; Hersam, Mark C.; Guisinger, Nathan P.

    2017-01-25

    2D materials have attracted considerable attention in the past decade for their superlative physical properties. These materials consist of atomically thin sheets exhibiting covalent in-plane bonding and weak interlayer and layer-substrate bonding. Following the example of graphene, most emerging 2D materials are derived from structures that can be isolated from bulk phases of layered materials, which form a limited library for new materials discovery. Entirely synthetic 2D materials provide access to a greater range of properties through the choice of constituent elements and substrates. Of particular interest are elemental 2D materials, because they provide the most chemically tractable case for synthetic exploration. In this Review, we explore the progress made in the synthesis and chemistry of synthetic elemental 2D materials, and offer perspectives and challenges for the future of this emerging field.

  14. 2D materials and van der Waals heterostructures.

    Science.gov (United States)

    Novoselov, K S; Mishchenko, A; Carvalho, A; Castro Neto, A H

    2016-07-29

    The physics of two-dimensional (2D) materials and heterostructures based on such crystals has been developing extremely fast. With these new materials, truly 2D physics has begun to appear (for instance, the absence of long-range order, 2D excitons, commensurate-incommensurate transition, etc.). Novel heterostructure devices--such as tunneling transistors, resonant tunneling diodes, and light-emitting diodes--are also starting to emerge. Composed from individual 2D crystals, such devices use the properties of those materials to create functionalities that are not accessible in other heterostructures. Here we review the properties of novel 2D crystals and examine how their properties are used in new heterostructure devices.

  15. A coupled $2\\times2$D Babcock-Leighton solar dynamo model. II. Reference dynamo solutions

    CERN Document Server

    Lemerle, Alexandre

    2016-01-01

    In this paper we complete the presentation of a new hybrid $2\\times2$D flux transport dynamo (FTD) model of the solar cycle based on the Babcock-Leighton mechanism of poloidal magnetic field regeneration via the surface decay of bipolar magnetic regions (BMRs). This hybrid model is constructed by allowing the surface flux transport (SFT) simulation described in Lemerle et al. 2015 to provide the poloidal source term to an axisymmetric FTD simulation defined in a meridional plane, which in turn generates the BMRs required by the SFT. A key aspect of this coupling is the definition of an emergence function describing the probability of BMR emergence as a function of the spatial distribution of the internal axisymmetric magnetic field. We use a genetic algorithm to calibrate this function, together with other model parameters, against observed cycle 21 emergence data. We present a reference dynamo solution reproducing many solar cycle characteristics, including good hemispheric coupling, phase relationship betwe...

  16. Different effects of a cotemplate and [(transition-metal)(1,10-phenanthroline)(m)]2+ (m = 1-3) complex cations on the self-assembly of a series of hybrid selenidostannates showing combined optical properties of organic and inorganic components.

    Science.gov (United States)

    Liu, Guang-Ning; Guo, Guo-Cong; Zhang, Ming-Jian; Guo, Jin-Shuang; Zeng, Hui-Yi; Huang, Jin-Shun

    2011-10-03

    1,10-Phenanthroline (phen) and monoprotonated methylamine molecules were used as a novel cotemplate to direct the formation of a new inorganic-organic hybrid selenidostannate, (CH(3)NH(3))(4)(Sn(2)Se(6))·6phen (1); while the utilization of three types of transition-metal (TM) phen complex cations with the TM/phen ration of 1:1, 1:2, and 1:3 as structure directors affords {[Mn(phen)(2)](2)(μ(2)-Sn(2)Se(6))}·H(2)O (2a), {[Fe(phen)(2)](2)(μ(2)-Sn(2)Se(6))} (2b), {[Mn(phen)](2)(μ(4)-Sn(2)Se(6))}(n) (3), {[Mn(phen)(2)](Sn(2)Se(5))}(n) (4), and [Fe(phen)(3)](n)(Sn(3)Se(7))(n)·1.25nH(2)O (5). These compounds show diverse structures with the selenidostannate anions varying from discrete, μ(2)- and μ(4)- (Sn(2)Se(6))(4-) anions, to one-dimensional (1-D) (1)(∞)(Sn(2)Se(5)(2-)) anionic chains, and two-dimensional (2-D) extended (2)(∞)(Sn(3)Se(7)(2-)) anionic layers, demonstrating different structure-directing abilities of the cotemplate and the three types of TM phen complex cations. This work clearly indicates that the approach of modifying the number of the free coordination sites of unsaturated TM phen complex cations is very exciting as a way to synthesize novel hybrid chalcogenidometalates. Of particular interest, the present compounds exhibit interesting optical properties that reflect the combined effects of both photoluminescence-active organic components and semiconducting inorganic chalcogenidometalate anionic networks.

  17. 2D vs. 3D mammography observer study

    Science.gov (United States)

    Fernandez, James Reza F.; Hovanessian-Larsen, Linda; Liu, Brent

    2011-03-01

    Breast cancer is the most common type of non-skin cancer in women. 2D mammography is a screening tool to aid in the early detection of breast cancer, but has diagnostic limitations of overlapping tissues, especially in dense breasts. 3D mammography has the potential to improve detection outcomes by increasing specificity, and a new 3D screening tool with a 3D display for mammography aims to improve performance and efficiency as compared to 2D mammography. An observer study using a mammography phantom was performed to compare traditional 2D mammography with this ne 3D mammography technique. In comparing 3D and 2D mammography there was no difference in calcification detection, and mass detection was better in 2D as compared to 3D. There was a significant decrease in reading time for masses, calcifications, and normals in 3D compared to 2D, however, as well as more favorable confidence levels in reading normal cases. Given the limitations of the mammography phantom used, however, a clearer picture in comparing 3D and 2D mammography may be better acquired with the incorporation of human studies in the future.

  18. An automated pipeline to screen membrane protein 2D crystallization.

    Science.gov (United States)

    Kim, Changki; Vink, Martin; Hu, Minghui; Love, James; Stokes, David L; Ubarretxena-Belandia, Iban

    2010-06-01

    Electron crystallography relies on electron cryomicroscopy of two-dimensional (2D) crystals and is particularly well suited for studying the structure of membrane proteins in their native lipid bilayer environment. To obtain 2D crystals from purified membrane proteins, the detergent in a protein-lipid-detergent ternary mixture must be removed, generally by dialysis, under conditions favoring reconstitution into proteoliposomes and formation of well-ordered lattices. To identify these conditions a wide range of parameters such as pH, lipid composition, lipid-to-protein ratio, ionic strength and ligands must be screened in a procedure involving four steps: crystallization, specimen preparation for electron microscopy, image acquisition, and evaluation. Traditionally, these steps have been carried out manually and, as a result, the scope of 2D crystallization trials has been limited. We have therefore developed an automated pipeline to screen the formation of 2D crystals. We employed a 96-well dialysis block for reconstitution of the target protein over a wide range of conditions designed to promote crystallization. A 96-position magnetic platform and a liquid handling robot were used to prepare negatively stained specimens in parallel. Robotic grid insertion into the electron microscope and computerized image acquisition ensures rapid evaluation of the crystallization screen. To date, 38 2D crystallization screens have been conducted for 15 different membrane proteins, totaling over 3000 individual crystallization experiments. Three of these proteins have yielded diffracting 2D crystals. Our automated pipeline outperforms traditional 2D crystallization methods in terms of throughput and reproducibility.

  19. Joint 2D and 3D phase processing for quantitative susceptibility mapping: application to 2D echo-planar imaging.

    Science.gov (United States)

    Wei, Hongjiang; Zhang, Yuyao; Gibbs, Eric; Chen, Nan-Kuei; Wang, Nian; Liu, Chunlei

    2017-04-01

    Quantitative susceptibility mapping (QSM) measures tissue magnetic susceptibility and typically relies on time-consuming three-dimensional (3D) gradient-echo (GRE) MRI. Recent studies have shown that two-dimensional (2D) multi-slice gradient-echo echo-planar imaging (GRE-EPI), which is commonly used in functional MRI (fMRI) and other dynamic imaging techniques, can also be used to produce data suitable for QSM with much shorter scan times. However, the production of high-quality QSM maps is difficult because data obtained by 2D multi-slice scans often have phase inconsistencies across adjacent slices and strong susceptibility field gradients near air-tissue interfaces. To address these challenges in 2D EPI-based QSM studies, we present a new data processing procedure that integrates 2D and 3D phase processing. First, 2D Laplacian-based phase unwrapping and 2D background phase removal are performed to reduce phase inconsistencies between slices and remove in-plane harmonic components of the background phase. This is followed by 3D background phase removal for the through-plane harmonic components. The proposed phase processing was evaluated with 2D EPI data obtained from healthy volunteers, and compared against conventional 3D phase processing using the same 2D EPI datasets. Our QSM results were also compared with QSM values from time-consuming 3D GRE data, which were taken as ground truth. The experimental results show that this new 2D EPI-based QSM technique can produce quantitative susceptibility measures that are comparable with those of 3D GRE-based QSM across different brain regions (e.g. subcortical iron-rich gray matter, cortical gray and white matter). This new 2D EPI QSM reconstruction method is implemented within STI Suite, which is a comprehensive shareware for susceptibility imaging and quantification. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  20. 2-D Versus 3-D Magnetotelluric Data Interpretation

    Science.gov (United States)

    Ledo, Juanjo

    2005-09-01

    In recent years, the number of publications dealing with the mathematical and physical 3-D aspects of the magnetotelluric method has increased drastically. However, field experiments on a grid are often impractical and surveys are frequently restricted to single or widely separated profiles. So, in many cases we find ourselves with the following question: is the applicability of the 2-D hypothesis valid to extract geoelectric and geological information from real 3-D environments? The aim of this paper is to explore a few instructive but general situations to understand the basics of a 2-D interpretation of 3-D magnetotelluric data and to determine which data subset (TE-mode or TM-mode) is best for obtaining the electrical conductivity distribution of the subsurface using 2-D techniques. A review of the mathematical and physical fundamentals of the electromagnetic fields generated by a simple 3-D structure allows us to prioritise the choice of modes in a 2-D interpretation of responses influenced by 3-D structures. This analysis is corroborated by numerical results from synthetic models and by real data acquired by other authors. One important result of this analysis is that the mode most unaffected by 3-D effects depends on the position of the 3-D structure with respect to the regional 2-D strike direction. When the 3-D body is normal to the regional strike, the TE-mode is affected mainly by galvanic effects, while the TM-mode is affected by galvanic and inductive effects. In this case, a 2-D interpretation of the TM-mode is prone to error. When the 3-D body is parallel to the regional 2-D strike the TE-mode is affected by galvanic and inductive effects and the TM-mode is affected mainly by galvanic effects, making it more suitable for 2-D interpretation. In general, a wise 2-D interpretation of 3-D magnetotelluric data can be a guide to a reasonable geological interpretation.

  1. Decisive Interactions between the Heterocyclic Moiety and the Cluster Observed in Polyoxometalate-Surfactant Hybrid Crystals

    Directory of Open Access Journals (Sweden)

    Saki Otobe

    2015-04-01

    Full Text Available Inorganic-organic hybrid crystals were successfully obtained as single crystals by using polyoxotungstate anion and cationic dodecylpyridazinium (C12pda and dodecylpyridinium (C12py surfactants. The decatungstate (W10 anion was used as the inorganic component, and the crystal structures were compared. In the crystal comprising C12pda (C12pda-W10, the heterocyclic moiety directly interacted with W10, which contributed to a build-up of the crystal structure. On the other hand, the crystal consisting of C12py (C12py-W10 had similar crystal packing and molecular arrangement to those in the W10 crystal hybridized with other pyridinium surfactants. These results indicate the significance of the heterocyclic moiety of the surfactant to construct hybrid crystals with polyoxometalate anions.

  2. Capillary-force-induced formation of luminescent polystyrene/(rare-earth-doped nanoparticle) hybrid hollow spheres.

    Science.gov (United States)

    Chen, Min; Xie, Lin; Li, Fuyou; Zhou, Shuxue; Wu, Limin

    2010-10-01

    This paper presents a "one-pot" procedure to synthesize polystyrene/(rare-earth-doped nanoparticles) (PS/REDNPs) hybrid hollow spheres via the in situ diffusion of organic core into inorganic shell under strong capillary force. In this approach, when carboxyl-capped PS colloids were deposited by different REDNPs in aqueous medium, such as LaF3:Eu3+, LaF3:Ce3+-Tb3+, and YVO4:Dy3+, PS/REDNPs inorganic-organic hybrid hollow spheres could be directly obtained via the in situ diffusion of core PS chains into the voids between rare-earth-doped nanoparticles through the strong capillary force. Not only is the synthetic procedure versatile and very simple, but also the obtained hybrid hollow spheres are hydrophilic and luminescent and could be directly used in chemical and biological fields.

  3. Decisive interactions between the heterocyclic moiety and the cluster observed in polyoxometalate-surfactant hybrid crystals.

    Science.gov (United States)

    Otobe, Saki; Fujioka, Natsumi; Hirano, Takuro; Ishikawa, Eri; Naruke, Haruo; Fujio, Katsuhiko; Ito, Takeru

    2015-04-16

    Inorganic-organic hybrid crystals were successfully obtained as single crystals by using polyoxotungstate anion and cationic dodecylpyridazinium (C12pda) and dodecylpyridinium (C12py) surfactants. The decatungstate (W10) anion was used as the inorganic component, and the crystal structures were compared. In the crystal comprising C12pda (C12pda-W10), the heterocyclic moiety directly interacted with W10, which contributed to a build-up of the crystal structure. On the other hand, the crystal consisting of C12py (C12py-W10) had similar crystal packing and molecular arrangement to those in the W10 crystal hybridized with other pyridinium surfactants. These results indicate the significance of the heterocyclic moiety of the surfactant to construct hybrid crystals with polyoxometalate anions.

  4. Introduction to game physics with Box2D

    CERN Document Server

    Parberry, Ian

    2013-01-01

    Written by a pioneer of game development in academia, Introduction to Game Physics with Box2D covers the theory and practice of 2D game physics in a relaxed and entertaining yet instructional style. It offers a cohesive treatment of the topics and code involved in programming the physics for 2D video games. Focusing on writing elementary game physics code, the first half of the book helps you grasp the challenges of programming game physics from scratch, without libraries or outside help. It examines the mathematical foundation of game physics and illustrates how it is applied in practice thro

  5. 2D electron cyclotron emission imaging at ASDEX Upgrade (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Classen, I. G. J. [Max Planck Institut fuer Plasmaphysik, 85748 Garching (Germany); FOM-Institute for Plasma Physics, Rijnhuizen, 3430 BE Nieuwegein (Netherlands); Boom, J. E.; Vries, P. C. de [FOM-Institute for Plasma Physics, Rijnhuizen, 3430 BE Nieuwegein (Netherlands); Suttrop, W.; Schmid, E.; Garcia-Munoz, M.; Schneider, P. A. [Max Planck Institut fuer Plasmaphysik, 85748 Garching (Germany); Tobias, B.; Domier, C. W.; Luhmann, N. C. Jr. [University of California at Davis, Davis, California 95616 (United States); Donne, A. J. H. [FOM-Institute for Plasma Physics, Rijnhuizen, 3430 BE Nieuwegein (Netherlands); Eindhoven University of Technology, 5600 MB Eindhoven (Netherlands); Jaspers, R. J. E. [Eindhoven University of Technology, 5600 MB Eindhoven (Netherlands); Park, H. K. [POSTECH, Pohang, Gyeongbuk, 790-784 (Korea, Republic of); Munsat, T. [University of Colorado, Boulder, Colorado 80309 (United States)

    2010-10-15

    The newly installed electron cyclotron emission imaging diagnostic on ASDEX Upgrade provides measurements of the 2D electron temperature dynamics with high spatial and temporal resolution. An overview of the technical and experimental properties of the system is presented. These properties are illustrated by the measurements of the edge localized mode and the reversed shear Alfven eigenmode, showing both the advantage of having a two-dimensional (2D) measurement, as well as some of the limitations of electron cyclotron emission measurements. Furthermore, the application of singular value decomposition as a powerful tool for analyzing and filtering 2D data is presented.

  6. Optimization and practical implementation of ultrafast 2D NMR experiments

    Directory of Open Access Journals (Sweden)

    Luiz H. K. Queiroz Júnior

    2013-01-01

    Full Text Available Ultrafast 2D NMR is a powerful methodology that allows recording of a 2D NMR spectrum in a fraction of second. However, due to the numerous non-conventional parameters involved in this methodology its implementation is no trivial task. Here, an optimized experimental protocol is carefully described to ensure efficient implementation of ultrafast NMR. The ultrafast spectra resulting from this implementation are presented based on the example of two widely used 2D NMR experiments, COSY and HSQC, obtained in 0.2 s and 41 s, respectively.

  7. Spin Waves in 2D ferromagnetic square lattice stripe

    OpenAIRE

    Ahmed, Maher Z.

    2011-01-01

    In this work, the area and edges spin wave calculations were carried out using the Heisenberg Hamiltonian and the tridiagonal method for the 2D ferromagnetic square lattice stripe, where the SW modes are characterized by a 1D in-plane wave vector $q_x$. The results show a general and an unexpected feature that the area and edge spin waves only exist as optic modes. This behavior is also seen in 2D Heisenberg antiferromagnetic square lattice. This absence of the acoustic modes in the 2D square...

  8. Optimization and practical implementation of ultrafast 2D NMR experiments

    Energy Technology Data Exchange (ETDEWEB)

    Queiroz Junior, Luiz H. K., E-mail: professorkeng@gmail.com [Universidade Federal de Sao Carlos (UFSC), SP (Brazil). Departamento de Quimica; Universidade Federal de Goias (UFGO), Goiania, GO (Brazil). Inst. de Quimica; Ferreira, Antonio G. [Universidade Federal de Sao Carlos (UFSC), SP (Brazil). Departamento de Quimica; Giraudeau, Patrick [Universite de Nantes (France). CNRS, Chimie et Interdisciplinarite: Synthese, Analyse, Modelisation

    2013-09-01

    Ultrafast 2D NMR is a powerful methodology that allows recording of a 2D NMR spectrum in a fraction of second. However, due to the numerous non-conventional parameters involved in this methodology its implementation is no trivial task. Here, an optimized experimental protocol is carefully described to ensure efficient implementation of ultrafast NMR. The ultrafast spectra resulting from this implementation are presented based on the example of two widely used 2D NMR experiments, COSY and HSQC, obtained in 0.2 s and 41 s, respectively. (author)

  9. Harvest Survive : Game Mechanics of Unity 2D Game

    OpenAIRE

    2014-01-01

    The purpose of this project was to learn how to create Games in Unity 2D, to see the work-flow and to test if the new Unity 2D feature of the Unity engine was a good alternative for developing 2D games. A further aspect was to learn the different steps and mechanics of the Unity environment. The goal was to create a survival game, in which the player would have to grow plants in order to get food and money to stay alive in a hostile environment. The player has to survive in six different...

  10. Kalman Filter for Generalized 2-D Roesser Models

    Institute of Scientific and Technical Information of China (English)

    SHENG Mei; ZOU Yun

    2007-01-01

    The design problem of the state filter for the generalized stochastic 2-D Roesser models, which appears when both the state and measurement are simultaneously subjected to the interference from white noise, is discussed. The wellknown Kalman filter design is extended to the generalized 2-D Roesser models. Based on the method of "scanning line by line", the filtering problem of generalized 2-D Roesser models with mode-energy reconstruction is solved. The formula of the optimal filtering, which minimizes the variance of the estimation error of the state vectors, is derived. The validity of the designed filter is verified by the calculation steps and the examples are introduced.

  11. Laser-induced defect insertion in DNA-linked 2D colloidal crystal array

    Science.gov (United States)

    Geiss, Erik; Kim, Sejong; Marcus, Harris L.; Papadimitrakopoulos, Fotios

    2009-02-01

    Insertion of vacancies at predetermined sites within the lattice of colloidal crystals is a prerequisite in order to realize high-quality, opaline-based photonic devices. In this contribution, we demonstrate a novel methodology to afford controlled insertion of vacancies within two-dimensional (2D) opaline arrays. These 2D opaline arrays have been substrate-anchored with the help of DNA hybridization. This provides a heat-sensitive ‘adhesive’ between substrate and microspheres within a surrounding aqueous medium that enables tuning the hybridization strength of DNA linker as well as a mechanism to facilitate the removal of unbound microspheres. Focusing a laser beam onto the substrate/microsphere interface induces a localized heating event that detaches the irradiated microspheres, leaving behind vacancies. By repeating this process, line vacancies were successfully obtained. The effects of salt concentration, laser power, light-absorbing dyes, DNA length and refractive-index mismatch were investigated and found to correlate with heat-induced microsphere release.

  12. First Principles Calculations of Electronic Excitations in 2D Materials

    DEFF Research Database (Denmark)

    Rasmussen, Filip Anselm

    -thin electronics and high efficiency solar cells. Contrary to many other nano-materials, methods for large scale fabrication and patterning have already been demonstrated and the first real technological applications have already be showcased. Still the technology is very young and the number of well-studied 2D...... materials are few. However as the list of 2D materials is growing it is necessary to investigate their fundamental structural, electronic and optical properties. These are determined by the atomic and electronic structure of the materials that can quite accurately predicted by computational quantum...... as if it is being screened by the electrons in the material. This method has been very successful for calculating quasiparticle energies of bulk materials but results have been more varying for 2D materials. The reason is that the 2D confined electrons are less able to screen the added charge and some...

  13. Illumination Compensation for 2-D Barcode Recognition Basing Morphologic

    Directory of Open Access Journals (Sweden)

    Jian-Hua Li

    2013-04-01

    Full Text Available Improvement of image quality has been highly demanded in digital imaging systems. This study presents a novel illumination normalization approach for 2-D barcode recognition under varying lighting conditions. MMs (Morphological transformations are employed to original images using big scale multiple SEs (structuring elements. Then we make use of entropy to fuse images. The performance of proposed methodology is illustrated through the processing of images with different kinds of 2-D barcodes under different backgrounds. The experimental results show that this approach can process different kinds of 2-D barcodes under varying lighting conditions adaptively. Compared with other conventional methods, our proposed approach does a better job in processing 2-D barcode under non-uniform illumination.

  14. Emerging and potential opportunities for 2D flexible nanoelectronics

    Science.gov (United States)

    Zhu, Weinan; Park, Saungeun; Akinwande, Deji

    2016-05-01

    The last 10 years have seen the emergence of two-dimensional (2D) nanomaterials such as graphene, transition metal dichalcogenides (TMDs), and black phosphorus (BP) among the growing portfolio of layered van der Waals thin films. Graphene, the prototypical 2D material has advanced rapidly in device, circuit and system studies that has resulted in commercial large-area applications. In this work, we provide a perspective of the emerging and potential translational applications of 2D materials including semiconductors, semimetals, and insulators that comprise the basic material set for diverse nanosystems. Applications include RF transceivers, smart systems, the so-called internet of things, and neurotechnology. We will review the DC and RF electronic performance of graphene and BP thin film transistors. 2D materials at sub-um channel length have so far enabled cut-off frequencies from baseband to 100GHz suitable for low-power RF and sub-THz concepts.

  15. CYP2D6 polymorphism in relation to tramadol metabolism

    DEFF Research Database (Denmark)

    Halling, Jónrit; Weihe, Pál; Brosen, Kim

    2008-01-01

    Several studies have demonstrated the impact of CYP2D6 polymorphism on the pharmacokinetics of tramadol. However, the relationship between the O-demethylation of tramadol and O-desmethyltramadol (M1) and CYP2D6 activity has not previously been investigated with tramadol in multimedicated...... outpatients under steady-state conditions. Hence, the aim of this study was to determine if the well documented pharmacokinetics of tramadol regarding CYP2D6 could be verified in a study including 88 multimedicated Faroese patients, treated with tramadol at steady-state conditions. Further, the study aimed...... collection over 12 hours. Sparteine and its metabolites were assayed by gas chromatography. Genotype analyses for the CYP2D6 3, 4, 6, and 9 alleles were performed by polymerase chain reaction and Taqman technology. Plasma and urinary concentrations of (+/-)-tramadol and (+/-)-M1 were determined by high...

  16. 2D gels still have a niche in proteomics

    DEFF Research Database (Denmark)

    Rogowska-Wrzesinska, Adelina; Le Bihan, Marie-Catherine; Thaysen-Andersen, Morten;

    2013-01-01

    ) alternative detection methods for modification specific proteomics; 3) identification of protein isoforms and modified proteins. With an example of the glycoprotein TIMP-1 protein we illustrate the unique properties of 2D gels for the separation and characterisation of multiply modified proteins. We also show......With the rapid advance of MS-based proteomics one might think that 2D gel-based proteomics is dead. This is far from the truth. Current research has shown that there are still a number of places in the field of protein and molecular biology where 2D gels still play a leading role. The aim...... of this review is to highlight some of these applications. Examples from our own research as well as from other published works are used to illustrate the 2D gel driven research in the areas of: 1) de novo sequencing and protein identification from organisms with no or incomplete genome sequences available; 2...

  17. Orbifold Reduction and 2d (0,2) Gauge Theories

    CERN Document Server

    Franco, Sebastian; Seong, Rak-Kyeong

    2016-01-01

    We introduce Orbifold Reduction, a new method for generating $2d$ $(0,2)$ gauge theories associated to D1-branes probing singular toric Calabi-Yau 4-folds starting from $4d$ $\\mathcal{N}=1$ gauge theories on D3-branes probing toric Calabi-Yau 3-folds. The new procedure generalizes dimensional reduction and orbifolding. In terms of T-dual configurations, it generates brane brick models starting from brane tilings. Orbifold reduction provides an agile approach for generating $2d$ $(0,2)$ theories with a brane realization. We present three practical applications of the new algorithm: the connection between $4d$ Seiberg duality and $2d$ triality, a combinatorial method for generating theories related by triality and a $2d$ $(0,2)$ generalization of the Klebanov-Witten mass deformation.

  18. Proteome analysis of human colorectal cancer tissue using 2-D ...

    African Journals Online (AJOL)

    Jane

    2010-10-11

    Oct 11, 2010 ... Laser capture microdissection and two-dimensional difference gel electrophoresis were used to establish ... As a technique with high-flux and high resolution, pro- teomics ... in which the protein sample was labeled before 2-D.

  19. 2-D electromagnetic simulation of passive microstrip circuits

    CERN Document Server

    Dueñas Jiménez, Alejandro

    2009-01-01

    A reference for circuit design engineers and microwave engineers. It uses a simple 2-D electromagnetic simulation procedure to provide basic knowledge and practical insight into quotidian problems of microstrip passive circuits applied to microwave systems and digital technologies.

  20. Materials science: Screen printing of 2D semiconductors

    Science.gov (United States)

    Kim, Young Duck; Hone, James

    2017-04-01

    Atomically thin semiconductors have been made by transferring the oxide 'skin' of a liquid metal to substrates. This opens the way to the low-cost mass production of 2D semiconductors at the sizes needed for electronics applications.

  1. Use of spatial information in 2D SEMG array decomposition

    NARCIS (Netherlands)

    Smit, C.T.; Kallenberg, L.A.C.; Hermens, Hermanus J.

    2007-01-01

    A new feature extraction/classification method for High Density surface ElectroMyoGraphy (HD sEMG) Motor Unit Aciton Potential (MUAP) decomposition using 2D shape and energy distribution features is presented and experimentally tested.

  2. Sparse Non-negative Matrix Factor 2-D Deconvolution

    DEFF Research Database (Denmark)

    Mørup, Morten; Schmidt, Mikkel N.

    2006-01-01

    We introduce the non-negative matrix factor 2-D deconvolution (NMF2D) model, which decomposes a matrix into a 2-dimensional convolution of two factor matrices. This model is an extension of the non-negative matrix factor deconvolution (NMFD) recently introduced by Smaragdis (2004). We derive...... and prove the convergence of two algorithms for NMF2D based on minimizing the squared error and the Kullback-Leibler divergence respectively. Next, we introduce a sparse non-negative matrix factor 2-D deconvolution model that gives easy interpretable decompositions and devise two algorithms for computing...... this form of factorization. The developed algorithms have been used for source separation and music transcription....

  3. Collins Model and Phase Diagram of 2D Ternary System

    Institute of Scientific and Technical Information of China (English)

    XIE Chuan-Mei; CHEN Li-Rong

    2004-01-01

    The Collins model is introduced into the two-dimensional (2D) alternative ternary system having the Lennard-Jones (L-J) potential. The Gibbs free energy of this ternary system is calculated, and according to thermodynamic theory, a group of equations that determine the solid-liquid diagram of ternary system are derived, some isothermal sectional diagrams of the 2D ternary system are obtained. The results are quite similar to the behavior of three-dimensional substances.

  4. A simultaneous 2D/3D autostereo workstation

    Science.gov (United States)

    Chau, Dennis; McGinnis, Bradley; Talandis, Jonas; Leigh, Jason; Peterka, Tom; Knoll, Aaron; Sumer, Aslihan; Papka, Michael; Jellinek, Julius

    2012-03-01

    We present a novel immersive workstation environment that scientists can use for 3D data exploration and as their everyday 2D computer monitor. Our implementation is based on an autostereoscopic dynamic parallax barrier 2D/3D display, interactive input devices, and a software infrastructure that allows client/server software modules to couple the workstation to scientists' visualization applications. This paper describes the hardware construction and calibration, software components, and a demonstration of our system in nanoscale materials science exploration.

  5. Maximizing the Optical Band Gap in 2D Photonic Crystals

    DEFF Research Database (Denmark)

    Hougaard, Kristian G.; Sigmund, Ole

    Topology optimization is used to find the 2D photonic crystal designs with the largest relative photonic band gaps. Starting points for the topology optimization are found with an exhaustive binary search on a low resolution grid.......Topology optimization is used to find the 2D photonic crystal designs with the largest relative photonic band gaps. Starting points for the topology optimization are found with an exhaustive binary search on a low resolution grid....

  6. New design of 2-D photonic crystal waveguide couplers

    Institute of Scientific and Technical Information of China (English)

    ZHONG Zhi-rong; ZHANG Li-hua; YANG Hong-qin; JIANG Yun-kun

    2006-01-01

    @@ Based on couple wave equation and finite-difference time-domain (FDTD) algorithm,the strong couple characteristic of 2-D photonic crystal couplers is calculated.Theoretical analysis and numerical simulated results indicate that the energy in a 2-D photonic crystal coupler can not be totally transferred between two wave-guides.Compared with the result of weak coupling theory,our result is more accurate.

  7. 2D IR Correlation Spectroscopy in Wood Science

    Directory of Open Access Journals (Sweden)

    Carmen Mihaela Popescu

    2012-10-01

    Full Text Available Generalized 2D correlation spectroscopy is a well-established technique that provides considerable utility and benefit in various spectroscopic studies of polymers. Some of the important features of generalized 2D correlation spectra are simplification of complex spectra consisting of many overlapped peaks, enhancement of spectral resolution by spreading peaks along the second dimension, unambiguous assignments through the correlation of bands selectively coupled by various interaction mechanisms, and determination of the sequence of the spectral peak emergence.

  8. RNA folding pathways and kinetics using 2D energy landscapes.

    Science.gov (United States)

    Senter, Evan; Dotu, Ivan; Clote, Peter

    2015-01-01

    RNA folding pathways play an important role in various biological processes, such as (i) the hok/sok (host-killing/suppression of killing) system in E. coli to check for sufficient plasmid copy number, (ii) the conformational switch in spliced leader (SL) RNA from Leptomonas collosoma, which controls trans splicing of a portion of the '5 exon, and (iii) riboswitches--portions of the 5' untranslated region of messenger RNA that regulate genes by allostery. Since RNA folding pathways are determined by the energy landscape, we describe a novel algorithm, FFTbor2D, which computes the 2D projection of the energy landscape for a given RNA sequence. Given two metastable secondary structures A, B for a given RNA sequence, FFTbor2D computes the Boltzmann probability p(x, y) = Z(x,y)/Z that a secondary structure has base pair distance x from A and distance y from B. Using polynomial interpolationwith the fast Fourier transform,we compute p(x, y) in O(n(5)) time and O(n(2)) space, which is an improvement over an earlier method, which runs in O(n(7)) time and O(n(4)) space. FFTbor2D has potential applications in synthetic biology, where one might wish to design bistable switches having target metastable structures A, B with favorable pathway kinetics. By inverting the transition probability matrix determined from FFTbor2D output, we show that L. collosoma spliced leader RNA has larger mean first passage time from A to B on the 2D energy landscape, than 97.145% of 20,000 sequences, each having metastable structures A, B. Source code and binaries are freely available for download at http://bioinformatics.bc.edu/clotelab/FFTbor2D. The program FFTbor2D is implemented in C++, with optional OpenMP parallelization primitives.

  9. Generating a 2D Representation of a Complex Data Structure

    Science.gov (United States)

    James, Mark

    2006-01-01

    A computer program, designed to assist in the development and debugging of other software, generates a two-dimensional (2D) representation of a possibly complex n-dimensional (where n is an integer >2) data structure or abstract rank-n object in that other software. The nature of the 2D representation is such that it can be displayed on a non-graphical output device and distributed by non-graphical means.

  10. QSAR Models for P-450 (2D6) Substrate Activity

    DEFF Research Database (Denmark)

    Ringsted, Tine; Nikolov, Nikolai Georgiev; Jensen, Gunde Egeskov;

    2009-01-01

    activity relationship (QSAR) modelling systems. They cross validated (leave-groups-out) with concordances of 71%, 81% and 82%, respectively. Discrete organic European Inventory of Existing Commercial Chemical Substances (EINECS) chemicals were screened to predict an approximate percentage of CYP 2D6...... substrates. These chemicals are potentially present in the environment. The biological importance of the CYP 2D6 and the use of the software mentioned above were discussed....

  11. Branch Content in Hybrid Materials using Small-Angle Scattering

    Science.gov (United States)

    Beaucage, Greg

    2005-03-01

    Inorganic/organic hybrid materials often display ramified mass- fractal structures characterized by primary particle size, aggregate size, and mass-fractal dimension. Physical properties, such as mechanical and dynamic mechanical properties and electrical conductivity (in carbon composites for instance), can not be predicted using only these structural features since such properties are intimately tied to the degree and type of branching as shown by Witten [1]. Witten suggested the use of the minimum dimension, or the related connectivity dimension, to calculate mechanical response in these hybrid systems. A viable technique to quantify the minimum dimension and connectivity dimension in hybrid materials has, until recently, been absent from the literature. This presentation will discuss the use of small-angle x-ray and neutron scattering to describe branch content in hybrid materials [2] and will outline an approach to use the minimum dimension and connectivity dimension to predict static and dynamic mechanical properties for hybrid materials based on structure [1, 3]. 1. Witten TA, Rubinstein M, Colby RH Reinforcement of Rubber by Fractal Aggregates J Phys II 3 (3): 367-383 (1993). 2. Beaucage G Determination of branch fraction and minimum dimension of mass-fractal aggregates Phys Rev E 70 (3): art. no. 031401 Part 1 (2004). 3. Kohls DJ, Beaucage G Rational design of reinforced rubber Curr Opin Solid St M 6 (3): 183-194 (2002).

  12. A depth-averaged 2-D model of flow and sediment transport in coastal waters

    Science.gov (United States)

    Sanchez, Alejandro; Wu, Weiming; Beck, Tanya M.

    2016-11-01

    A depth-averaged 2-D model has been developed to simulate unsteady flow and nonuniform sediment transport in coastal waters. The current motion is computed by solving the phase-averaged 2-D shallow water flow equations reformulated in terms of total-flux velocity, accounting for the effects of wave radiation stresses and general diffusion or mixing induced by current, waves, and wave breaking. The cross-shore boundary conditions are specified by assuming fully developed longshore current and wave setup that are determined using the reduced 1-D momentum equations. A 2-D wave spectral transformation model is used to calculate the wave height, period, direction, and radiation stresses, and a surface wave roller model is adopted to consider the effects of surface roller on the nearshore currents. The nonequilibrium transport of nonuniform total-load sediment is simulated, considering sediment entrainment by current and waves, the lag of sediment transport relative to the flow, and the hiding and exposure effect of nonuniform bed material. The flow and sediment transport equations are solved using an implicit finite volume method on a variety of meshes including nonuniform rectangular, telescoping (quadtree) rectangular, and hybrid triangular/quadrilateral meshes. The flow and wave models are integrated through a carefully designed steering process. The model has been tested in three field cases, showing generally good performance.

  13. CYP2D6 variability in populations from Venezuela.

    Science.gov (United States)

    Moreno, Nancy; Flores-Angulo, Carlos; Villegas, Cecilia; Mora, Yuselin

    2016-12-01

    CYP2D6 is an important cytochrome P450 enzyme that plays an important role in the metabolism of about 25% of currently prescribed drugs. The presence of polymorphisms in the CYP2D6 gene may modulate enzyme level and activity, thereby affecting individual responses to pharmacological treatments. The most prevalent diseases in the admixed population from Venezuela are cardiovascular and cancer, whereas viral, bacterial and parasitic diseases, particularly malaria, are prevalent in Amerindian populations; in the treatment of these diseases, several drugs that are metabolized by CYP2D6 are used. In this work, we reviewed the data on CYP2D6 variability and predicted metabolizer phenotypes, in healthy volunteers of two admixed and five Amerindian populations from Venezuela. The Venezuelan population is very heterogeneous as a result of the genetic admixture of three major ethnical components: Europeans, Africans and Amerindians. There are noticeable inter-regional and inter-population differences in the process of mixing of this population. Hitherto, there are few published studies in Venezuela on CYP2D6; therefore, it is necessary to increase research in this regard, in particular to develop studies with a larger sample size. There is a considerable amount of work remaining before CYP2D6 is integrated into clinical practice in Venezuela.

  14. Technique of Embedding Depth Maps into 2D Images

    Institute of Scientific and Technical Information of China (English)

    Kazutake Uehira; Hiroshi Unno; Youichi Takashima

    2014-01-01

    This paper proposes a new technique that is used to embed depth maps into corresponding 2-dimensional (2D) images. Since a 2D image and its depth map are integrated into one type of image format, they can be treated as if they were one 2D image. Thereby, it can reduce the amount of data in 3D images by half and simplify the processes for sending them through networks because the synchronization between images for the left and right eyes becomes unnecessary. We embed depth maps in the quantized discrete cosine transform (DCT) data of 2D images. The key to this technique is whether the depth maps could be embedded into 2D images without perceivably deteriorating their quality. We try to reduce their deterioration by compressing the depth map data by using the differences from the next pixel to the left. We assume that there is only one non-zero pixel at most on one horizontal line in the DCT block because the depth map values change abruptly. We conduct an experiment to evaluate the quality of the 2D images embedded with depth maps and find that satisfactory quality could be achieved.

  15. Studying the mechanism of hybrid nanoparticle EUV photoresists

    KAUST Repository

    Zhang, Ben

    2015-03-23

    This work focuses on the investigation of dual tone patterning mechanism with hybrid inorganic/organic photoresists. Hafnium oxide (HfO2) modified with acrylic acid was prepared and the influence of electrolyte solutions as well as pH on its particle size change was investigated. The average particle size and zeta potential of the nanoparticles in different electrolyte solutions were measured. The results show that addition of different concentrations of electrolytes changed the hydrodynamic diameter of nanoparticles in water. Increased concentration of tetramethyl ammonium hydroxide (TMAH) caused the zeta potential of nanoparticles to change from positive to negative and its hydrodynamic diameter to increase from 40 nm to 165 nm. In addition, increasing concentration of triflic acid led to the decrease of particle size and zeta potential. © (2015) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.

  16. Failure Mechanism of True 2D Granular Flows

    CERN Document Server

    Nguyen, Cuong T; Fukagawa, R

    2015-01-01

    Most previous experimental investigations of two-dimensional (2D) granular column collapses have been conducted using three-dimensional (3D) granular materials in narrow horizontal channels (i.e., quasi-2D condition). Our recent research on 2D granular column collapses by using 2D granular materials (i.e., aluminum rods) has revealed results that differ markedly from those reported in the literature. We assume a 2D column with an initial height of h0 and initial width of d0, a defined as their ratio (a =h0/d0), a final height of h , and maximum run-out distance of d . The experimental data suggest that for the low a regime (a 0.65), the ratio of a to (d-d0)/d0, h0/h , or d/d0 is expressed by power-law relations. In particular, the following power-function ratios (h0/h=1.42a^2/3 and d/d0=4.30a^0.72) are proposed for every a >0.65. In contrast, the ratio (d-d0)/d0=3.25a^0.96 only holds for 0.651.5. In addition, the influence of ground contact surfaces (hard or soft beds) on the final run-out distance and destru...

  17. Twin characterisation using 2D and 3D EBSD

    Institute of Scientific and Technical Information of China (English)

    M. D. NAVE; J. J. L. MULDERS; A. GHOLINIA

    2005-01-01

    Electron backscatter diffraction (EBSD) is a superior technique for twin characterisation due to its ability to provide highly detailed classification (by generation, system and variant) of a significant number of twins in a relatively short time. 2D EBSD is now widely used for twin characterisation and provides quite good estimates of twin volume fractions under many conditions. Nevertheless, its accuracy is limited by assumptions that have to be made due to the 2D nature of the technique. With 3D EBSD, two key assumptions are no longer required, as additional information can be derived from the 3D map. This paper compares the benefits and limitations of 2D and 3D EBSD for twin characterisation. 2D EBSD enables a larger number of twins to be mapped in a given space of time, giving better statistics. 3D EBSD provides more comprehensive twin characterisation and will be a valuable tool for validation of 2D stereological methods and microstructural models of twinning during deformation.

  18. 2D nanostructures for water purification: graphene and beyond.

    Science.gov (United States)

    Dervin, Saoirse; Dionysiou, Dionysios D; Pillai, Suresh C

    2016-08-18

    Owing to their atomically thin structure, large surface area and mechanical strength, 2D nanoporous materials are considered to be suitable alternatives for existing desalination and water purification membrane materials. Recent progress in the development of nanoporous graphene based materials has generated enormous potential for water purification technologies. Progress in the development of nanoporous graphene and graphene oxide (GO) membranes, the mechanism of graphene molecular sieve action, structural design, hydrophilic nature, mechanical strength and antifouling properties and the principal challenges associated with nanopore generation are discussed in detail. Subsequently, the recent applications and performance of newly developed 2D materials such as 2D boron nitride (BN) nanosheets, graphyne, molybdenum disulfide (MoS2), tungsten chalcogenides (WS2) and titanium carbide (Ti3C2Tx) are highlighted. In addition, the challenges affecting 2D nanostructures for water purification are highlighted and their applications in the water purification industry are discussed. Though only a few 2D materials have been explored so far for water treatment applications, this emerging field of research is set to attract a great deal of attention in the near future.

  19. The NH$_2$D hyperfine structure revealed by astrophysical observations

    CERN Document Server

    Daniel, F; Punanova, A; Harju, J; Faure, A; Roueff, E; Sipilä, O; Caselli, P; Güsten, R; Pon, A; Pineda, J E

    2016-01-01

    The 1$_{11}$-1$_{01}$ lines of ortho and para--NH$_2$D (o/p-NH$_2$D), respectively at 86 and 110 GHz, are commonly observed to provide constraints on the deuterium fractionation in the interstellar medium. In cold regions, the hyperfine structure due to the nitrogen ($^{14}$N) nucleus is resolved. To date, this splitting is the only one which is taken into account in the NH$_2$D column density estimates. We investigate how the inclusion of the hyperfine splitting caused by the deuterium (D) nucleus affects the analysis of the rotational lines of NH$_2$D. We present 30m IRAM observations of the above mentioned lines, as well as APEX o/p-NH$_2$D observations of the 1$_{01}$-0$_{00}$ lines at 333 GHz. The hyperfine spectra are first analyzed with a line list that only includes the hyperfine splitting due to the $^{14}$N nucleus. We find inconsistencies between the line widths of the 1$_{01}$-0$_{00}$ and 1$_{11}$-1$_{01}$ lines, the latter being larger by a factor of $\\sim$1.6$\\pm0.3$. Such a large difference is...

  20. New Reductions and Nonlinear Systems for 2D Schrodinger Operators

    CERN Document Server

    Mironov, A

    2010-01-01

    New Completely Integrable (2+1)-System is studied. It is based on the so-called L-A-B-triples $L_t=[H,L]-fL$ where L is a 2D Schrodinger Operator. This approach was invented by S.Manakov and B.Dubrovin, I.Krichever, S.Novikov(DKN) in the works published in 1976. A nonstandard reduction for the 2D Schrodinger Operator (completely different from the one found by S.Novikov and A.Veselov in 1984) compatible with time dynamics of the new Nonlinear System, is studied here. It can be naturally treated as a 2D extension of the famous Burgers System. The Algebro-Geometric (AG) Periodic Solutions here are very specific and unusual (for general and reduced cases). The reduced system is linearizable like Burgers. However, the general one (and probably the reduced one also) certainly lead in the stationary AG case to the nonstandard examples of algebraic curves $\\Gamma\\subset W$ in the full complex 2D manifold of Bloch-Floquet functions W for the periodic elliptic 2D operator H where $H\\psi(x,y,P)=\\lambda(P)\\psi(x,y,P),P\\...

  1. Analysis and design of substrate integrated waveguide using efficient 2D hybrid method

    CERN Document Server

    Wu, Xuan Hui

    2010-01-01

    Substrate integrated waveguide (SIW) is a new type of transmission line. It implements a waveguide on a piece of printed circuit board by emulating the side walls of the waveguide using two rows of metal posts. It inherits the merits both from the microstrip for compact size and easy integration, and from the waveguide for low radiation loss, and thus opens another door to design efficient microwave circuits and antennas at a low cost. This book presents a two-dimensional fullwave analysis method to investigate an SIW circuit composed of metal and dielectric posts. It combines the cylindrical

  2. Application of inorganic-organic composite flocculant on dye wastewater treatment%有机无机复合型混凝剂在印染废水中的应用

    Institute of Scientific and Technical Information of China (English)

    刘桂萍; 祝杏; 王明杰; 王丽多

    2013-01-01

    A new inorganic-organic composite flocculant compounded with chitosan/bauxite was prepared by the simple acid soluble coating method and applied to the dye wastewater treatment. The structure analysis of the complex using SEM and IR indicated that chitosan mainly loaded on the bauxite by simple physical adsorption, but it might be also loaded through chemical absorption with bauxite's aluminum frame. The dosage of flocculant and wastewater pH value were the main factors influencing the results of the wastewater treatment. When flocculant dosage was 3 g/L and pH was 5 , the removal rate of COD and color were above 58% and 87% , respectively, while the removal rate of COD and color of effluent water after A/0 process were above 46% and 83% , respectively.%采用简单的酸溶包覆方法制备了壳聚糖/铝矾土有机无机复合型混凝剂,用于印染废水的处理.通过SEM观察和IR对复合物的结构分析表明,壳聚糖虽然主要以简单的物理吸附方式负载在铝矾土上,但也可能存在壳聚糖与铝矾土中的骨架铝发生化学吸附作用而负载.处理印染废水试验结果表明,混凝剂质量浓度和废水pH值是影响废水处理效果的主要因素.在质量浓度为3 g/L,废水pH =5的条件下,对印染废水COD去除率和色度去除率分别可以达到58%和87%以上;对经A/O工艺处理后沉淀池出水的COD去除率和色度去除率也可达到46%和83%以上.

  3. UPLAND EROSION MODELING WITH CASC2D-SED

    Institute of Scientific and Technical Information of China (English)

    Pierre JULIEN; Rosalía ROJAS

    2002-01-01

    Developed at Colorado State University, CASC2D-SED is a physically-based model simulating the hydrologic response of a watershed to a distributed rainfall field. The time-dependent processes include:precipitation, interception, infiltration, surface runoff and channel routing, upland erosion, transport and sedimentation. CASC2D-SED is applied to Goodwin Creek, Mississippi. The watershed covers 21 km2and has been extensively monitored both at the outlet and at several internal locations by the ARS-NSL at Oxford, MS. The model has been calibrated and validated using rainfall data from 16 meteorological stations, 6 stream gauging stations and 6 sediment gauging stations. Sediment erosion/deposition rates by size fraction are predicted both in space and time. Geovisualization, a powerful data exploration technique based on GIS technology, is used to analyze and display the dynamic output time series generated by the CASC2D-SED model.

  4. Graphene based 2D-materials for supercapacitors

    Science.gov (United States)

    Palaniselvam, Thangavelu; Baek, Jong-Beom

    2015-09-01

    Ever-increasing energy demands and the depletion of fossil fuels are compelling humanity toward the development of suitable electrochemical energy conversion and storage devices to attain a more sustainable society with adequate renewable energy and zero environmental pollution. In this regard, supercapacitors are being contemplated as potential energy storage devices to afford cleaner, environmentally friendly energy. Recently, a great deal of attention has been paid to two-dimensional (2D) nanomaterials, including 2D graphene and its inorganic analogues (transition metal double layer hydroxides, chalcogenides, etc), as potential electrodes for the development of supercapacitors with high electrochemical performance. This review provides an overview of the recent progress in using these graphene-based 2D materials as potential electrodes for supercapacitors. In addition, future research trends including notable challenges and opportunities are also discussed.

  5. Design and Realization of Dynamic Obstacle on URWPSSim2D

    Directory of Open Access Journals (Sweden)

    Xiao Chen

    2013-07-01

    Full Text Available Simulation system is charged with the strategy validation and dual team meets, and as the 2-dimensional simulation platform for underwater robotic fish game, URWPGSim2D is the assigned platform for Chinese underwater robot contest and Robot cup underwater program. By now on URWPGSim2D, there is only static obstacles,thus short of changeableness. In order to improve the changeableness and innovation of robotic fish contest, to extend the space for the programming of contest strategy, and to increase the interest, this paper study the design of dynamic obstacles on URWPGSim2D, and design and implement two kinds of dynamic obstacles, which are the evadible dynamic obstacle and the forcing dribbling obstacle.  

  6. Genetics, genomics, and evolutionary biology of NKG2D ligands.

    Science.gov (United States)

    Carapito, Raphael; Bahram, Seiamak

    2015-09-01

    Human and mouse NKG2D ligands (NKG2DLs) are absent or only poorly expressed by most normal cells but are upregulated by cell stress, hence, alerting the immune system in case of malignancy or infection. Although these ligands are numerous and highly variable (at genetic, genomic, structural, and biochemical levels), they all belong to the major histocompatibility complex class I gene superfamily and bind to a single, invariant, receptor: NKG2D. NKG2D (CD314) is an activating receptor expressed on NK cells and subsets of T cells that have a key role in the recognition and lysis of infected and tumor cells. Here, we review the molecular diversity of NKG2DLs, discuss the increasing appreciation of their roles in a variety of medical conditions, and propose several explanations for the evolutionary force(s) that seem to drive the multiplicity and diversity of NKG2DLs while maintaining their interaction with a single invariant receptor.

  7. Joint 2-D DOA and Noncircularity Phase Estimation Method

    Directory of Open Access Journals (Sweden)

    Wang Ling

    2012-03-01

    Full Text Available Classical joint estimation methods need large calculation quantity and multidimensional search. In order to avoid these shortcoming, a novel joint two-Dimension (2-D Direction Of Arrival (DOA and noncircularity phase estimation method based on three orthogonal linear arrays is proposed. The problem of 3-D parameter estimation can be transformed to three parallel 2-D parameter estimation according to the characteristic of three orthogonal linear arrays. Further more, the problem of 2-D parameter estimation can be transformed to 1-D parameter estimation by using the rotational invariance property among signal subspace and orthogonal property of noise subspace at the same time in every subarray. Ultimately, the algorithm can realize joint estimation and pairing parameters by one eigen-decomposition of extended covariance matrix. The proposed algorithm can be applicable for low SNR and small snapshot scenarios, and can estiame 2(M −1 signals. Simulation results verify that the proposed algorithm is effective.

  8. Applications of Doppler Tomography in 2D and 3D

    Science.gov (United States)

    Richards, M.; Budaj, J.; Agafonov, M.; Sharova, O.

    2010-12-01

    Over the past few years, the applications of Doppler tomography have been extended beyond the usual calculation of 2D velocity images of circumstellar gas flows. This technique has now been used with the new Shellspec spectrum synthesis code to demonstrate the effective modeling of the accretion disk and gas stream in the TT Hya Algol binary. The 2D tomography procedure projects all sources of emission onto a single central (Vx, Vy) velocity plane even though the gas is expected to flow beyond that plane. So, new 3D velocity images were derived with the Radioastronomical Approach method by assuming a grid of Vz values transverse to the central 2D plane. The 3D approach has been applied to the U CrB and RS Vul Algol-type binaries to reveal substantial flow structures beyond the central velocity plane.

  9. Simultaneous 2D Strain Sensing Using Polymer Planar Bragg Gratings

    Directory of Open Access Journals (Sweden)

    Manuel Rosenberger

    2015-02-01

    Full Text Available We demonstrate the application of polymer planar Bragg gratings for multi-axial strain sensing and particularly highlight simultaneous 2D strain measurement. A polymer planar Bragg grating (PPBG fabricated with a single writing step in bulk polymethylmethacrylate is used for measuring both tensile and compressive strain at various angles. It is shown that the sensitivity of the PPBG strongly depends on the angle between the optical waveguide into which the grating is inscribed and the direction along which the mechanical load is applied. Additionally, a 2D PPBG fabricated by writing two Bragg gratings angularly displaced from each other into a single polymer platelet is bonded to a stainless steel plate. The two reflected wavelengths exhibit different sensitivities while tested toward tensile and compressive strain. These characteristics make 2D PPBG suitable for measuring multi-axial tensile and compressive strain.

  10. Maximizing entropy of image models for 2-D constrained coding

    DEFF Research Database (Denmark)

    Forchhammer, Søren; Danieli, Matteo; Burini, Nino

    2010-01-01

    This paper considers estimating and maximizing the entropy of two-dimensional (2-D) fields with application to 2-D constrained coding. We consider Markov random fields (MRF), which have a non-causal description, and the special case of Pickard random fields (PRF). The PRF are 2-D causal finite...... context models, which define stationary probability distributions on finite rectangles and thus allow for calculation of the entropy. We consider two binary constraints and revisit the hard square constraint given by forbidding neighboring 1s and provide novel results for the constraint that no uniform 2...... £ 2 squares contains all 0s or all 1s. The maximum values of the entropy for the constraints are estimated and binary PRF satisfying the constraint are characterized and optimized w.r.t. the entropy. The maximum binary PRF entropy is 0.839 bits/symbol for the no uniform squares constraint. The entropy...

  11. Cluster algebras in Scattering Amplitudes with special 2D kinematics

    CERN Document Server

    Torres, Marcus A C

    2013-01-01

    We study the cluster algebra of the kinematic configuration space $Conf_n(\\mathbb{P}^3)$ of a n-particle scattering amplitude restricted to the special 2D kinematics. We found that the n-points two loop MHV remainder function found in special 2D kinematics depend on a selection of \\XX-coordinates that are part of a special structure of the cluster algebra related to snake triangulations of polygons. This structure forms a necklace of hypercubes beads in the corresponding Stasheff polytope. Furthermore in $n = 12$, the cluster algebra and the selection of \\XX-coordinates in special 2D kinematics replicates the cluster algebra and the selection of \\XX-coordinates of $n=6$ two loop MHV amplitude in 4D kinematics.

  12. Hybrid Baryons

    CERN Document Server

    Page, P R

    2003-01-01

    We review the status of hybrid baryons. The only known way to study hybrids rigorously is via excited adiabatic potentials. Hybrids can be modelled by both the bag and flux-tube models. The low-lying hybrid baryon is N 1/2^+ with a mass of 1.5-1.8 GeV. Hybrid baryons can be produced in the glue-rich processes of diffractive gamma N and pi N production, Psi decays and p pbar annihilation.

  13. Determination of slope failure using 2-D resistivity method

    Science.gov (United States)

    Muztaza, Nordiana Mohd; Saad, Rosli; Ismail, Nur Azwin; Bery, Andy Anderson

    2017-07-01

    Landslides and slope failure may give negative economic effects including the cost to repair structures, loss of property value and medical costs in the event of injury. To avoid landslide, slope failure and disturbance of the ecosystem, good and detailed planning must be done when developing hilly area. Slope failure classification and various factors contributing to the instability using 2-D resistivity survey conducted in Selangor, Malaysia are described. The study on landslide and slope failure was conducted at Site A and Site B, Selangor using 2-D resistivity method. The implications of the anticipated ground conditions as well as the field observation of the actual conditions are discussed. Nine 2-D resistivity survey lines were conducted in Site A and six 2-D resistivity survey lines with 5 m minimum electrode spacing using Pole-dipole array were performed in Site B. The data were processed using Res2Dinv and Surfer10 software to evaluate the subsurface characteristics. 2-D resistivity results from both locations show that the study areas consist of two main zones. The first zone is alluvium or highly weathered with the resistivity of 100-1000 Ωm at 20-70 m depth. This zone consists of saturated area (1-100 Ωm) and boulders with resistivity value of 1200-3000 Ωm. The second zone with resistivity values of > 3000 Ωm was interpreted as granitic bedrock. The study area was characterized by saturated zones, highly weathered zone, highly contain of sand and boulders that will trigger slope failure in the survey area. Based on the results obtained from the study findings, it can be concluded that 2-D resistivity method is useful method in determination of slope failure.

  14. Quantum process tomography by 2D fluorescence spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Pachón, Leonardo A. [Grupo de Física Atómica y Molecular, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín (Colombia); Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138 (United States); Marcus, Andrew H. [Department of Chemistry and Biochemistry, Oregon Center for Optics, Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403 (United States); Aspuru-Guzik, Alán [Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138 (United States)

    2015-06-07

    Reconstruction of the dynamics (quantum process tomography) of the single-exciton manifold in energy transfer systems is proposed here on the basis of two-dimensional fluorescence spectroscopy (2D-FS) with phase-modulation. The quantum-process-tomography protocol introduced here benefits from, e.g., the sensitivity enhancement ascribed to 2D-FS. Although the isotropically averaged spectroscopic signals depend on the quantum yield parameter Γ of the doubly excited-exciton manifold, it is shown that the reconstruction of the dynamics is insensitive to this parameter. Applications to foundational and applied problems, as well as further extensions, are discussed.

  15. Integrability from 2d N=(2,2) Dualities

    CERN Document Server

    Yamazaki, Masahito

    2015-01-01

    We study integrable models in the context of the recently discovered Gauge/YBE correspondence, where the Yang-Baxter equation is promoted to a duality between two supersymmetric gauge theories. We study flavored elliptic genus of 2d $\\mathcal{N}=(2,2)$ quiver gauge theories, which theories are defined from statistical lattices regarded as quiver diagrams. Our R-matrices are written in terms of theta functions, and simplifies considerably when the gauge groups at the quiver nodes are Abelian. We also discuss the modularity properties of the R-matrix, reduction of 2d index to 1d Witten index, and string theory realizations of our theories.

  16. Isotropic 2D quadrangle meshing with size and orientation control

    KAUST Repository

    Pellenard, Bertrand

    2011-12-01

    We propose an approach for automatically generating isotropic 2D quadrangle meshes from arbitrary domains with a fine control over sizing and orientation of the elements. At the heart of our algorithm is an optimization procedure that, from a coarse initial tiling of the 2D domain, enforces each of the desirable mesh quality criteria (size, shape, orientation, degree, regularity) one at a time, in an order designed not to undo previous enhancements. Our experiments demonstrate how well our resulting quadrangle meshes conform to a wide range of input sizing and orientation fields.

  17. 2D-ACAR investigations of PPT aramid fibres

    Energy Technology Data Exchange (ETDEWEB)

    Mijnarends, P.E.; Falub, C.V.; Eijt, S.W.H.; Veen, A. van [Interfaculty Reactor Inst., Delft Univ. of Technology (Netherlands)

    2001-07-01

    2D-ACAR spectra of PPT (poly(p-phenylene terephthalamide)) fibres which contain structural elongated open spaces in the crystallographic unit cell show a p-Ps peak with an elliptical cross-section and side lobes. Peak broadening suggests dimensions of {proportional_to}14-17 by 7-9 A for the open spaces and indicates some penetration of Ps into the interlayer spacing. The side lobes can be related to projected reciprocal lattice points and indicate Ps delocalization. 2D-ACAR has also been used to study the evolution of water release from the open spaces. (orig.)

  18. On the Nonrelativistic 2D Purely Magnetic Supersymmetric Pauli Operator

    OpenAIRE

    Grinevich, P.; Mironov, A.(Lebedev Physics Institute; ITEP, Moscow, Russia); Novikov, S.

    2011-01-01

    The Complete Manifold of Ground State Eigenfunctions for the Purely Magnetic 2D Pauli Operator is considered as a by-product of the new reduction found by the present authors few years ago for the Algebrogeometric Inverse Spectral Data (i.e. Riemann Surfaces and Divisors). This reduction is associated with the (2+1) Soliton Hierarhy containing a 2D analog of the famous "Burgers System". This article contains also exposition of the previous works made since 1980 including the first topological...

  19. EEG simulation by 2D interconnected chaotic oscillators

    Energy Technology Data Exchange (ETDEWEB)

    Kubany, Adam, E-mail: adamku@bgu.ac.i [Department of Industrial Engineering and Management, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105 (Israel); Mhabary, Ziv; Gontar, Vladimir [Department of Industrial Engineering and Management, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105 (Israel)

    2011-01-15

    Research highlights: ANN of 2D interconnected chaotic oscillators is explored for EEG simulation. An inverse problem solution (PRCGA) is proposed. Good matching between the simulated and experimental EEG signals has been achieved. - Abstract: An artificial neuronal network composed by 2D interconnected chaotic oscillators is explored for brain waves (EEG) simulation. For the inverse problem solution a parallel real-coded genetic algorithm (PRCGA) is proposed. In order to conduct thorough comparison between the simulated and target signal characteristics, a spectrum analysis of the signals is undertaken. A good matching between the theoretical and experimental EEG signals has been achieved. Numerical results of calculations are presented and discussed.

  20. Recording 2-D Nutation NQR Spectra by Random Sampling Method.

    Science.gov (United States)

    Glotova, Olga; Sinyavsky, Nikolaj; Jadzyn, Maciej; Ostafin, Michal; Nogaj, Boleslaw

    2010-10-01

    The method of random sampling was introduced for the first time in the nutation nuclear quadrupole resonance (NQR) spectroscopy where the nutation spectra show characteristic singularities in the form of shoulders. The analytic formulae for complex two-dimensional (2-D) nutation NQR spectra (I = 3/2) were obtained and the condition for resolving the spectral singularities for small values of an asymmetry parameter η was determined. Our results show that the method of random sampling of a nutation interferogram allows significant reduction of time required to perform a 2-D nutation experiment and does not worsen the spectral resolution.

  1. 2D fluid simulations of interchange turbulence with ion dynamics

    DEFF Research Database (Denmark)

    Nielsen, Anders Henry; Madsen, Jens; Xu, G. S.

    2013-01-01

    In this paper we present a first principle global two-dimensional fluid model. The HESEL (Hot Edge SOL Electrostatic) model is a 2D numerical fluid code, based on interchange dynamics and includes besides electron also the ion pressure dynamic. In the limit of cold ions the model almost reduces......B vorticity as well as the ion diamagnetic vorticity. The 2D domain includes both open and closed field lines and is located on the out-board midplane of a tokamak. On open field field lines the parallel dynamics are parametrized as sink terms depending on the dynamic quantities; density, electron and ion...

  2. GENERALIZED VARIATIONAL OPTIMAZATION ANALYSIS FOR 2-D FLOW FIELD

    Institute of Scientific and Technical Information of China (English)

    HUANG Si-xun; XU Ding-hua; LAN Wei-ren; TENG Jia-jun

    2005-01-01

    The Variational Optimization Analysis Method (VOAM) for 2-D flow field suggested by Sasaki was reviewed first. It is known that the VOAM can be used efficiently in most cases. However, in the cases where there are high frequency noises in 2-D flow field, it appears to be inefficient. In the present paper, based on Sasaki's VOAM, a Generalized Variational Optimization Analysis Method (GVOAM) was proposed with regularization ideas, which could deal well with flow fields containing high frequency noises. A numerical test shows that observational data can be both variationally optimized and filtered, and therefore the GVOAM is an efficient method.

  3. CH2D+, the Search for the Holy Grail

    CERN Document Server

    Roueff, E; Lis, D C; Wootten, A; Marcelino, N; cernicharo, J; Tercero, B

    2013-01-01

    CH2D+, the singly deuterated counterpart of CH3+, offers an alternative way to mediate formation of deuterated species at temperatures of several tens of K, as compared to the release of deuterated species from grains. We report a longstanding observational search for this molecular ion, whose rotational spectroscopy is not yet completely secure. We summarize the main spectroscopic properties of this molecule and discuss the chemical network leading to the formation of CH2D+, with explicit account of the ortho/para forms of H2, H3+ and CH3+. Astrochemical models support the presence of this molecular ion in moderately warm environments at a marginal level.

  4. Using 2-D arrays for sensing multimodal Lamb waves

    Science.gov (United States)

    Engholm, Marcus; Stepinski, Tadeusz

    2010-04-01

    Monitoring structural integrity of large planar structures requires normally a relatively dense network of uniformly distributed ultrasonic sensors. A 2-D ultrasonic phased array with all azimuth angle coverage would be extremely useful for the structural health monitoring (SHM) of such structures. Known techniques for estimating direction of arriving (DOA) waves cannot efficiently cope with dispersive and multimodal Lamb waves (LWs). In the paper we propose an adaptive spectral estimation technique capable of handling broadband LWs sensed by 2-D arrays, the modified Capon method. Performance of the technique is evaluated using simulated multiple-mode LWs, and verified using experimental data.

  5. Exact computation of scalar 2D aerial imagery

    Science.gov (United States)

    Gordon, Ronald L.

    2002-07-01

    An exact formulation of the problem of imaging a 2D object through a Koehler illumination system is presented; the accurate simulation of a real layout is then not time- limited but memory-limited. The main idea behind the algorithm is that the boundary of the region that comprise a typical TCC Is made up of circular arcs, and therefore the area - which determines the value of the TCC - should be exactly computable in terms of elementary analytical functions. A change to integration around the boundary leads to an expression with minimal dependence on expensive functions such as arctangents and square roots. Numerical comparisons are made for a simple 2D structure.

  6. Implementation of 2D Discrete Wavelet Transform by Number Theoretic Transform and 2D Overlap-Save Method

    Directory of Open Access Journals (Sweden)

    Lina Yang

    2014-01-01

    Full Text Available To reduce the computation complexity of wavelet transform, this paper presents a novel approach to be implemented. It consists of two key techniques: (1 fast number theoretic transform(FNTT In the FNTT, linear convolution is replaced by the circular one. It can speed up the computation of 2D discrete wavelet transform. (2 In two-dimensional overlap-save method directly calculating the FNTT to the whole input sequence may meet two difficulties; namely, a big modulo obstructs the effective implementation of the FNTT and a long input sequence slows the computation of the FNTT down. To fight with such deficiencies, a new technique which is referred to as 2D overlap-save method is developed. Experiments have been conducted. The fast number theoretic transform and 2D overlap-method have been used to implement the dyadic wavelet transform and applied to contour extraction in pattern recognition.

  7. Intercalation assembly of optical hybrid materials based on layered terbium hydroxide hosts and organic sensitizer anions guests

    Institute of Scientific and Technical Information of China (English)

    Liang-Liang Liu; Qin Wang; Dan Xia; Ting-Ting Shen; Ming-Hui Yu; Wei-Sheng Liu; Yu Tang

    2013-01-01

    Optical hybrid materials based on inorganic hosts and organic sensitizer guests hold promise for a virtually unlimited number of applications.In particular,the interaction and the combination of the properties of a defined inorganic matrix and a specific sensitizer could lead to synergistic effects in luminescence enhancing and tuning.The current article focuses on the intercalation assembly of optical hybrid materials based on the layered terbium hydroxide (LTbH) hosts and organic divalent carboxylic sensitizer anion guests by a hydrothermal process.The studies on the interactions between hosts and guests indicate that the type and arrangement of organic guests in the layer spacing of the LTbH hosts can make a difference in the luminescence of the hybrid inorganic-organic materials.

  8. The partition function of 2d string theory

    CERN Document Server

    Dijkgraaf, R; Plesser, R

    1993-01-01

    We derive a compact and explicit expression for the generating functional of all correlation functions of tachyon operators in 2D string theory. This expression makes manifest relations of the $c=1$ system to KP flow and $W_{1+\\infty}$ constraints. Moreover we derive a Kontsevich-Penner integral representation of this generating functional.

  9. The Anglo-Australian Observatory's 2dF Facility

    CERN Document Server

    Lewis, I J; Taylor, K; Glazebrook, K; Bailey, J A; Baldry, I K; Barton, J R; Bridges, T J; Dalton, G B; Farrell, T J; Gray, P M; Lankshear, A; McCowage, C; Parry, I R; Sharples, R M; Shortridge, K; Smith, G A; Stevenson, J; Straede, J O; Waller, L G; Whittard, J D; Wilcox, J K; Willis, K C

    2002-01-01

    The 2dF (Two-degree Field) facility at the prime focus of the Anglo-Australian Telescope provides multiple object spectroscopy over a 2 degree field of view. Up to 400 target fibres can be independently positioned by a complex robot. Two spectrographs provide spectra with resolutions of between 500 and 2000, over wavelength ranges of 440nm and 110nm respectively. The 2dF facility began routine observations in 1997. 2dF was designed primarily for galaxy redshift surveys and has a number of innovative features. The large corrector lens incorporates an atmospheric dispersion compensator, essential for wide wavelength coverage with small diameter fibres. The instrument has two full sets of fibres on separate field plates, so that re-configuring can be done in parallel with observing. The robot positioner places one fibre every 6 seconds, to a precision of 0.3 arcsec (20micron) over the full field. All components of 2dF, including the spectrographs, are mounted on a 5-m diameter telescope top-end ring for ease of ...

  10. Approximate 2D inversion of airborne TEM data

    DEFF Research Database (Denmark)

    Christensen, N.B.; Wolfgram, Peter

    2006-01-01

    We propose an approximate two-dimensional inversion procedure for transient electromagnetic data. The method is a two-stage procedure, where data are first inverted with 1D multi-layer models. The 1D model section is then considered as data for the next inversion stage that produces the 2D model...

  11. Nonlinear excursions of particles in ideal 2D flows

    DEFF Research Database (Denmark)

    Aref, Hassan; Pedersen, Johan Rønby; Stremler, Mark A.;

    2010-01-01

    A number of problems related to particle trajectories in ideal 2D flows are discussed. Both regular particle paths, corresponding to integrable dynamics, and irregular or chaotic paths may arise. Examples of both types are shown. Sometimes, in the same flow, certain particles will follow regular ...

  12. CFD code comparison for 2D airfoil flows

    DEFF Research Database (Denmark)

    Sørensen, Niels N.; Méndez, B.; Muñoz, A.;

    2016-01-01

    The current paper presents the effort, in the EU AVATAR project, to establish the necessary requirements to obtain consistent lift over drag ratios among seven CFD codes. The flow around a 2D airfoil case is studied, for both transitional and fully turbulent conditions at Reynolds numbers of 3 × ...

  13. CANONICAL COMPUTATIONAL FORMS FOR AR 2-D SYSTEMS

    NARCIS (Netherlands)

    ROCHA, P; WILLEMS, JC

    1990-01-01

    A canonical form for AR 2-D systems representations is introduced. This yields a method for computing the system trajectories by means of a line-by-line recursion, and displays some relevant information about the system structure such as the choice of inputs and initial conditions.

  14. The 2D Boussinesq equations with logarithmically supercritical velocities

    CERN Document Server

    Chae, Dongho

    2011-01-01

    This paper investigates the global (in time) regularity of solutions to a system of equations that generalize the vorticity formulation of the 2D Boussinesq-Navier-Stokes equations. The velocity $u$ in this system is related to the vorticity $\\omega$ through the relations $u=\

  15. 2D fluid simulations of interchange turbulence with ion dynamics

    DEFF Research Database (Denmark)

    Nielsen, Anders Henry; Madsen, Jens; Xu, G. S.

    2013-01-01

    In this paper we present a first principle global two-dimensional fluid model. The HESEL (Hot Edge SOL Electrostatic) model is a 2D numerical fluid code, based on interchange dynamics and includes besides electron also the ion pressure dynamic. In the limit of cold ions the model almost reduces...

  16. On the sensitivity of the 2D electromagnetic invisibility cloak

    Energy Technology Data Exchange (ETDEWEB)

    Kaproulias, S. [Department of Physics, University of Patras, 26504 Patras (Greece); Sigalas, M.M., E-mail: sigalas@upatras.gr [Department of Materials Science, University of Patras, 26504 Patras (Greece)

    2012-10-15

    A computational study of the sensitivity of the two dimensional (2D) electromagnetic invisibility cloaks is performed with the finite element method. A circular metallic object is covered with the cloak and the effects of absorption, gain and disorder are examined. Also the effect of covering the cloak with a thin dielectric layer is studied.

  17. Rheological Properties of Quasi-2D Fluids in Microgravity

    Science.gov (United States)

    Stannarius, Ralf; Trittel, Torsten; Eremin, Alexey; Harth, Kirsten; Clark, Noel; Maclennan, Joseph; Glaser, Matthew; Park, Cheol; Hall, Nancy; Tin, Padetha

    2015-01-01

    In recent years, research on complex fluids and fluids in restricted geometries has attracted much attention in the scientific community. This can be attributed not only to the development of novel materials based on complex fluids but also to a variety of important physical phenomena which have barely been explored. One example is the behavior of membranes and thin fluid films, which can be described by two-dimensional (2D) rheology behavior that is quite different from 3D fluids. In this study, we have investigated the rheological properties of freely suspended films of a thermotropic liquid crystal in microgravity experiments. This model system mimics isotropic and anisotropic quasi 2D fluids [46]. We use inkjet printing technology to dispense small droplets (inclusions) onto the film surface. The motion of these inclusions provides information on the rheological properties of the films and allows the study of a variety of flow instabilities. Flat films have been investigated on a sub-orbital rocket flight and curved films (bubbles) have been studied in the ISS project OASIS. Microgravity is essential when the films are curved in order to avoid sedimentation. The experiments yield the mobility of the droplets in the films as well as the mutual mobility of pairs of particles. Experimental results will be presented for 2D-isotropic (smectic-A) and 2D-nematic (smectic-C) phases.

  18. Research Synthesis and Characterization of 2D Conjugated Polymers

    Science.gov (United States)

    2007-07-13

    polythiophene chain on the Scheme should necessarily result in a continuous brick wall 2D structure). Furthermore, the design should eliminate any...Photoelectron Spectroscopy and Ultraviolet Photoelectron Spectroscopy are under way. We have also conducted preliminary experiments on the two other low

  19. 2D InP photonic crystal fabrication process development

    NARCIS (Netherlands)

    Rong, B.; Van der Drift, E.; Van der Heijden, R.W.; Salemink, H.W.M.

    2006-01-01

    We have developed a reliable process to fabricate high quality 2D air-hole and dielectric column InP photonic crystals with a high aspect ratio on a STS production tool using ICP N2+Cl2 plasma. The photonic crystals have a triangular lattice with lattice constant of 400 nm and air-hole and dielectri

  20. Fiber Drawn 2D Polymeric Photonic Crystal THz Filters

    DEFF Research Database (Denmark)

    Stecher, Matthias; Jansen, Christian; Ahmadi-Boroujeni, Mehdi

    2012-01-01

    In this paper, we report on different polymeric 2D photonic crystal filters for THz frequencies which are fabricated by a standard fiber drawing technique. The bandstop filters were simulated and designed by the generalized multipole technique (GMT). The frequency and angle dependent transmission...