WorldWideScience

Sample records for hybrid high erucic

  1. Changes in oil composition after chronic irradiation of winter and spring zero-erucic rape hybrids

    International Nuclear Information System (INIS)

    Fabry, A.; Cerny, J.

    1980-01-01

    Hybrid plants of the F1 generation of erucic-free spring Canadian rape and some winter rape cultivars containing erucic acid were irradiated in a gamma field with doses ranging between 5973 and 329 R during vegetation. Chronic irradiation increased significantly the frequency of zero- or low-erucic genotypes in the segregating F2 generation. Chronic irradiation disturbed the correlations between the contents of the studied fatty acids in the hybrid F1, F2 and F3 progenies. Lines of zero- and low-erucic winter rapes with a reduced content of linolenic acid and increased content of linoleic acid were obtained by selection. (author)

  2. Can we “cultivate” erucic acid in southern Europe?

    Directory of Open Access Journals (Sweden)

    Federica Zanetti

    Full Text Available Over the last fifteen years, considerable progress has been made in the field of “green chemistry”, as regards both research aspects and market development. In particular, extraction of erucic acid (C22:1 from plants and its industrial applications have received increasing attention. At present, known species producing oils yielding large quantities of erucic acid belong, with few exceptions, to the Brassicaceae family. Among these, the two major sources of erucic acid in the world are HEAR (High Erucic Acid Rapeseed, Brassica napus var. oleifera and crambe (Crambe abyssinica, both mainly cultivated in the USA. Their cultivation has also recently been considered and extended to southern Europe, supported by specific research projects. The quantity of erucic acid in Brassicaceae oils ranges greatly, from 55% in Crambe abyssinica to nearly zero in some varieties of Brassica napus var. oleifera. Even more differentiated and peculiar to each species and variety is adaptability to specific climatic and soil conditions. In this regard, the major limitation to the cultivation of some interesting Brassicaceae species, crambe in particular, is their poor tolerance to cold. Among Brassicaceae producing erucic acid, the less frequently cultivated species, such as Brassica juncea and B. carinata, if grown in areas with relatively mild winters, may give yields of seed and oil similar to those of the most productive rapeseed genotypes. Within this framework, in order to achieve high production of erucic acid, it is essential to identify the most productive genotypes, among available species, for each environment. In this report, seed and oil productions of some important Brassicaceae species for extraction of erucic acid, derived from 15 years of field trials in northern Italy, are discussed in relation to the possibility of autumn or spring sowing.

  3. Scientific Opinion on erucic acid in feed and food

    DEFF Research Database (Denmark)

    Petersen, Annette

    Erucic acid is the trivial name of the fatty acid cis-13-docosenoic acid and occurs at high concentrations mainly in the seeds of species of the Brassicaceae (e.g. rape seed or mustard seed). The European Commission requested EFSA to deliver a scientific opinion on the risks for animal and human...

  4. Scientific opinion: Erucic acid in feed and food

    NARCIS (Netherlands)

    Hoogenboom, L.A.P.

    2016-01-01

    Erucic acid is the trivial name of the fatty acid cis-13-docosenoic acid and occurs at high concentrations mainly in the seeds of species of the Brassicaceae (e.g. rape seed or mustard seed). The European Commission requested EFSA to deliver a scientific opinion on the risks for animal and human

  5. Oxidative cleavage of erucic acid for the synthesis of brassylic acid

    Energy Technology Data Exchange (ETDEWEB)

    Mohammed J. Nasrullah; Pooja Thapliyal; Erica N. Pfarr; Nicholas S. Dusek; Kristofer L. Schiele; James A. Bahr

    2010-10-29

    The main focus of this work is to synthesize Brassylic Acid (BA) using oxidative cleavage of Erucic Acid (EA). Crambe (Crambe abyssinica) is an industrial oilseed grown in North Dakota. Crambe has potential as an industrial fatty acid feedstock as a source of Erucic acid (EA). It has approximately 50-60 % of EA, a C{sub 22} monounsaturated fatty acid. Oxidative cleavage of unsaturated fatty acids derived from oilseeds produces long chain (9, 11, and 13 carbon atoms) dibasic and monobasic acids. These acids are known commercial feedstocks for the preparation of nylons, polyesters, waxes, surfactants, and perfumes. Other sources of EA are Rapeseed seed oil which 50-60 % of EA. Rapeseed is grown outside USA. The oxidative cleavage of EA was done using a high throughput parallel pressure reactor system. Kinetics of the reaction shows that BA yields reach a saturation at 12 hours. H{sub 2}WO{sub 4} was found to be the best catalyst for the oxidative cleavage of EA. High yields of BA were obtained at 80 C with bubbling of O{sub 2} or 10 bar of O{sub 2} for 12 hours.

  6. Effects of chronic ethanol intake on metabolic conversions of 14C erucic acid by the livers of rat fed with rapeseed or ground nut oil

    International Nuclear Information System (INIS)

    Lecerf, J.; Bezard, J.

    1975-01-01

    The effects of addition of ethanol to diets containing rapeseed or ground nut oil on the metabolic conversion of 14 14 C erudic and 9-10 3 H oleic acid were studied in the rat liver. Whatever the diet more 14 C than 3 H radioactivity was recovered in liver lipids 2 and 19 hours after injection of labelled fatty acids. Ethanol has little effect on this incorporation. Only small amounts of 3 H oleic acid were converted. In all cases, the metabolic conversion of erucic acid was identical: the main part of 14 C was not recovered as erucic acid but was present in other mono unsaturated fatty acids n-9:oleic acid (18:1), which was the most labelled acid, 16:1, 20:1 and nervonic acid (24:1). The amount of erucic acid converted to shorter chain fatty acids was unchanged by addition of ethanol but the alcohol increased the proportion of 14 C radioactivity recovered as nervonic acid. This latter effect was opposite to the effect of rapeseed oil diet, which consisted in a decrease in the conversion of erucic to nervonic acid. A high amount of 14 C radioactivity was recovered in the F.F.A. fraction of the liver as an unknown compound (13 and 80% of 14 C radioacitivty respectively after 2 and 19h). Its identification is presently under investigation [fr

  7. Biosynthesis of 14C-labelled erucic acid by means of rape plants

    International Nuclear Information System (INIS)

    Meisgeier, G.; Eckert, H.; Mueller, H.

    1991-01-01

    For the biosynthetic preparation of 14 C-erucic adid (C 21 H 41 COOH) by means of rape plants cv. sollux the plants were supplied with 14 CO 2 and additionally fed with 14 C-Sodium acetate after anthesis. After saponification of the extracted lipids the erucic acid was isolated and purified. The substance was identified by gas chromatography. The incorporation of the applied radioactive (34 MBq 14 CO 2 ; 37 MBq 14 C-natrium acetate) into the fatty acids amounted to 1,2 per cent. The erucic acid could be isolated from the fatty acids mixture with a specific radioactivity of 1,001 MBq/mmol and a purity of 97,2 per cent. (orig.) [de

  8. Decreasing erucic acid level by RNAi-mediated silencing of fatty ...

    African Journals Online (AJOL)

    To develop low level of erucic acid in rapeseeds by intron-spliced hairpin RNA, an inverted repeat unit of a partial BnFAE1.1 gene interrupted by a spliceable intron ... In conclusion, the expression of endogenous BnFAE1.1 was efficiently silenced by the designed RNAi silencer, causing a significant down-regulation in the ...

  9. The utilization of the acyl-CoA and the involvement PDAT and DGAT in the biosynthesis of erucic acid-rich triacylglycerols in Crambe seed oil.

    Science.gov (United States)

    Furmanek, Tomasz; Demski, Kamil; Banaś, Walentyna; Haslam, Richard; Napier, Jonathan; Stymne, Sten; Banaś, Antoni

    2014-04-01

    The triacylglycerol of Crambe abyssinica seeds consist of 95% very long chain (>18 carbon) fatty acids (86% erucic acid; 22:1∆13) in the sn-1 and sn-3 positions. This would suggest that C. abyssinica triacylglycerols are not formed by the action of the phospholipid:diacylglycerol acyltransferase (PDAT), but are rather the results of acyl-CoA:diacylglycerol acyltransferase (DGAT) activity. However, measurements of PDAT and DGAT activities in microsomal membranes showed that C. abyssinica has significant PDAT activity, corresponding to about 10% of the DGAT activity during periods of rapid seed oil accumulation. The specific activity of DGAT for erucoyl-CoA had doubled at 19 days after flowering compared to earlier developmental stages, and was, at that stage, the preferred acyl donor, whereas the activities for 16:0-CoA and 18:1-CoA remained constant. This indicates that an expression of an isoform of DGAT with high specificity for erucoyl-CoA is induced at the onset of rapid erucic acid and oil accumulation in the C. abyssinica seeds. Analysis of the composition of the acyl-CoA pool during different stages of seed development showed that the percentage of erucoyl groups in acyl-CoA was much higher than in complex lipids at all stages of seed development except in the desiccation phase. These results are in accordance with published results showing that the rate limiting step in erucic acid accumulation in C. abyssinica oil is the utilization of erucoyl-CoA by the acyltransferases in the glycerol-3-phosphate pathway.

  10. QTL for phytosterol and sinapate ester content in Brassica napus L. collocate with the two erucic acid genes

    Science.gov (United States)

    Amar, Samija; Ecke, Wolfgang; Becker, Heiko C.

    2008-01-01

    Improving oil and protein quality for food and feed purposes is an important goal in rapeseed (Brassica napus L.) breeding programs. Rapeseed contains phytosterols, used to enrich food products, and sinapate esters, which are limiting the utilization of rapeseed proteins in the feed industry. Increasing the phytosterol content of oil and lowering sinapate ester content of meal could increase the value of the oilseed rape crop. The objective of the present study was to identify quantitative trait loci (QTL) for phytosterol and sinapate ester content in a winter rapeseed population of 148 doubled haploid lines, previously found to have a large variation for these two traits. This population also segregated for the two erucic acid genes. A close negative correlation was found between erucic acid and phytosterol content (Spearman’s rank correlation, rs = −0.80**). For total phytosterol content, three QTL were detected, explaining 60% of the genetic variance. The two QTL with the strongest additive effects were mapped on linkage groups N8 and N13 within the confidence intervals of the two erucic acid genes. For sinapate ester content four QTL were detected, explaining 53% of the genetic variance. Again, a close negative correlation was found between erucic acid and sinapate ester content (rs = −0.66**) and the QTL with the strongest additive effects mapped on linkage groups N8 and N13 within the confidence intervals of the two erucic acid genes. The results suggests, that there is a pleiotropic effect of the two erucic acid genes on phytosterol and sinapate ester content; the effect of the alleles for low erucic acid content is to increase phytosterol and sinapate ester content. Possible reasons for this are discussed based on known biosynthetic pathways. Electronic supplementary material The online version of this article (doi:10.1007/s00122-008-0734-2) contains supplementary material, which is available to authorized users. PMID:18335203

  11. Influence of dietary fat on metabolism of (14-14C)erucic acid in the perfused rat liver. Distribution of metabolites in lipid classes

    International Nuclear Information System (INIS)

    Holmer, G.; Ronneberg, R.

    1986-01-01

    Two groups of rats were fed diets containing 20% by weight of either partially hydrogenated marine oil supplemented with sunflower seed oil (PHMO) or palm oil (PO) for 8 wk. Using a liver perfusion system, the effect of dietary long chain monoenoic fatty acids on the uptake and metabolism of [14- 14 C]erucic acid was studied. The perfusion times were 15 and 60 min, respectively. The two groups showed equal ability for erucic acid uptake in the liver but differed in the channeling of the fatty acids into various metabolic pathways. A higher metabolic turnover of 22:1 in the PHMO livers relative to the PO livers was demonstrated by an increased recovery of total [ 14 C]labeling in the triglyceride (TG) and phospholipid (PL) fractions, already evident after 15 min of perfusion. The chain-shortening capacity was highest in the PHMO group, reflected by a higher [ 14 C]18:1 incorporation in both TG and PL, and increasing from 15 to 60 min of perfusion. The amount of [ 14 C]18:1 found in PL and TG after 60 min of perfusion of livers from rats fed PO corresponded to that shown for the PHMO group after 15 min. The PL demonstrated a discrimination against 22:1 compared to TG, and, when available, 18:1 was highly preferred for PL-synthesis. The total fatty acid distribution in the TG, as determined by gas liquid chromatography (GLC), reflected the composition of the dietary fats. In the total liver PL, 22:1 and 20:1 were present in negligible amounts, although the PHMO diet contained 12-13% of both 22:1 and 20:1. In the free fatty acid fraction (FFA), the major part of the radioactivity (approximately 80%) was [14- 14 C]erucic acid, and only small amounts of [ 14 C]18:1 (less than 2%) were present, even after 60 min of perfusion. The shortened-chain 18:1 was readily removed from the FFA pool and preferentially used for lipid esterification

  12. Comparative in vitro metabolism of 1-14C-oleic acid and 1-14C-erucic acid in liver, heart and skeletal muscles of rats

    International Nuclear Information System (INIS)

    Bhatia, I.S.; Sharma, A.K.; Ahuja, S.P.

    1978-01-01

    In vitro oxidation of 14 C-oleic and 1- 14 C-erucic acid and their incorporation into lipids by liver, heart and skeletal muscles from female albino rats were studied. These tissues were obtained from rats maintained for 120 days on low fat diet or diets containing 15% mustard oil or 15% groundnut oil. In all these tissues from rats on different types of diets, the oxidation of 1- 14 C-erucic acid was lower than that 1- 14 C-oleic acid. There was little accumulation of lipids in heart after 120 days of feeding mustard oil. Oxidation of 1- 14 C-erucic acid was enhanced in liver, heart and skeletal muscles of rats conditioned to the mustard oil diet supplying erucic acid. Oxidation of erucic acid was maximum in liver and least in heart, whereas there were no differences in the oxidation of 1- 14 C-oleic acid in these tissues. Incorporation of 1- 14 C-oleic acid into triglycerides and phospholipids was not affected by the type of diet or tissues Incorporation of 1- 14 C-erucic acid was mainly into triglycerides of heart and skeletal muscles of rats not accustomed to mustard oil diet whereas these tissues from rats accustomed to mustard oil diets incorporated 1- 14 C-erucic acid both into the triglycerides and phospholipids. (author)

  13. Running high availability services in hybrid cloud

    OpenAIRE

    Dzekunskas, Karolis

    2018-01-01

    IT infrastructure is now expanding rapidly. Many enterprises are thinking of migration to the cloud to increase the time of service availability. High availability services and advanced technologies let to find flexible and scalable balance between resources and costs. The aim of this work is to prove that high availability services in hybrid cloud are secure, flexible, optimized and available to anyone. This paperwork provides detailed explanation about the imitation of two datacenters with ...

  14. High-density hybrid interconnect methodologies

    International Nuclear Information System (INIS)

    John, J.; Zimmermann, L.; Moor, P.De; Hoof, C.Van

    2003-01-01

    Full text: The presentation gives an overview of the state-of-the-art of hybrid integration and in particular the IMEC technological approaches that will be able to address future hybrid detector needs. The dense hybrid flip-chip integration of an array of detectors and its dedicated readout electronics can be achieved with a variety of solderbump techniques such as pure Indium or Indium alloys, Ph-In, Ni/PbSn, but also conducting polymers... Particularly for cooled applications or ultra-high density applications, Indium solderbump technology (electroplated or evaporated) is the method of choice. The state-of-the-art of solderbump technologies that are to a high degree independent of the underlying detector material will be presented and examples of interconnect densities between 5x1E4cm-2 and 1x1E6 cm-2 will be demonstrated. For several classes of detectors, flip-chip integration is not allowed since the detectors have to be illuminated from the top. This applies to image sensors for EUV applications such as GaN/AlGaN based detectors and to MEMS-based sensors. In such cases, the only viable interconnection method has to be through the (thinned) detector wafer followed by a solderbump-based integration. The approaches for dense and ultra-dense through-the-wafer interconnect 'vias' will be presented and wafer thinning approaches will be shown

  15. High Output Piezo/Triboelectric Hybrid Generator

    Science.gov (United States)

    Jung, Woo-Suk; Kang, Min-Gyu; Moon, Hi Gyu; Baek, Seung-Hyub; Yoon, Seok-Jin; Wang, Zhong-Lin; Kim, Sang-Woo; Kang, Chong-Yun

    2015-03-01

    Recently, piezoelectric and triboelectric energy harvesting devices have been developed to convert mechanical energy into electrical energy. Especially, it is well known that triboelectric nanogenerators have a simple structure and a high output voltage. However, whereas nanostructures improve the output of triboelectric generators, its fabrication process is still complicated and unfavorable in term of the large scale and long-time durability of the device. Here, we demonstrate a hybrid generator which does not use nanostructure but generates much higher output power by a small mechanical force and integrates piezoelectric generator into triboelectric generator, derived from the simultaneous use of piezoelectric and triboelectric mechanisms in one press-and-release cycle. This hybrid generator combines high piezoelectric output current and triboelectric output voltage, which produces peak output voltage of ~370 V, current density of ~12 μA.cm-2, and average power density of ~4.44 mW.cm-2. The output power successfully lit up 600 LED bulbs by the application of a 0.2 N mechanical force and it charged a 10 μF capacitor to 10 V in 25 s. Beyond energy harvesting, this work will provide new opportunities for developing a small, built-in power source in self-powered electronics such as mobile electronics.

  16. High Output Piezo/Triboelectric Hybrid Generator

    Science.gov (United States)

    Jung, Woo-Suk; Kang, Min-Gyu; Moon, Hi Gyu; Baek, Seung-Hyub; Yoon, Seok-Jin; Wang, Zhong-Lin; Kim, Sang-Woo; Kang, Chong-Yun

    2015-01-01

    Recently, piezoelectric and triboelectric energy harvesting devices have been developed to convert mechanical energy into electrical energy. Especially, it is well known that triboelectric nanogenerators have a simple structure and a high output voltage. However, whereas nanostructures improve the output of triboelectric generators, its fabrication process is still complicated and unfavorable in term of the large scale and long-time durability of the device. Here, we demonstrate a hybrid generator which does not use nanostructure but generates much higher output power by a small mechanical force and integrates piezoelectric generator into triboelectric generator, derived from the simultaneous use of piezoelectric and triboelectric mechanisms in one press-and-release cycle. This hybrid generator combines high piezoelectric output current and triboelectric output voltage, which produces peak output voltage of ~370 V, current density of ~12 μA·cm−2, and average power density of ~4.44 mW·cm−2. The output power successfully lit up 600 LED bulbs by the application of a 0.2 N mechanical force and it charged a 10 μF capacitor to 10 V in 25 s. Beyond energy harvesting, this work will provide new opportunities for developing a small, built-in power source in self-powered electronics such as mobile electronics. PMID:25791299

  17. High performance hybrid magnetic structure for biotechnology applications

    Science.gov (United States)

    Humphries, David E [El Cerrito, CA; Pollard, Martin J [El Cerrito, CA; Elkin, Christopher J [San Ramon, CA

    2009-02-03

    The present disclosure provides a high performance hybrid magnetic structure made from a combination of permanent magnets and ferromagnetic pole materials which are assembled in a predetermined array. The hybrid magnetic structure provides means for separation and other biotechnology applications involving holding, manipulation, or separation of magnetic or magnetizable molecular structures and targets. Also disclosed are further improvements to aspects of the hybrid magnetic structure, including additional elements and for adapting the use of the hybrid magnetic structure for use in biotechnology and high throughput processes.

  18. High accuracy FIONA-AFM hybrid imaging

    International Nuclear Information System (INIS)

    Fronczek, D.N.; Quammen, C.; Wang, H.; Kisker, C.; Superfine, R.; Taylor, R.; Erie, D.A.; Tessmer, I.

    2011-01-01

    Multi-protein complexes are ubiquitous and play essential roles in many biological mechanisms. Single molecule imaging techniques such as electron microscopy (EM) and atomic force microscopy (AFM) are powerful methods for characterizing the structural properties of multi-protein and multi-protein-DNA complexes. However, a significant limitation to these techniques is the ability to distinguish different proteins from one another. Here, we combine high resolution fluorescence microscopy and AFM (FIONA-AFM) to allow the identification of different proteins in such complexes. Using quantum dots as fiducial markers in addition to fluorescently labeled proteins, we are able to align fluorescence and AFM information to ≥8 nm accuracy. This accuracy is sufficient to identify individual fluorescently labeled proteins in most multi-protein complexes. We investigate the limitations of localization precision and accuracy in fluorescence and AFM images separately and their effects on the overall registration accuracy of FIONA-AFM hybrid images. This combination of the two orthogonal techniques (FIONA and AFM) opens a wide spectrum of possible applications to the study of protein interactions, because AFM can yield high resolution (5-10 nm) information about the conformational properties of multi-protein complexes and the fluorescence can indicate spatial relationships of the proteins in the complexes. -- Research highlights: → Integration of fluorescent signals in AFM topography with high (<10 nm) accuracy. → Investigation of limitations and quantitative analysis of fluorescence-AFM image registration using quantum dots. → Fluorescence center tracking and display as localization probability distributions in AFM topography (FIONA-AFM). → Application of FIONA-AFM to a biological sample containing damaged DNA and the DNA repair proteins UvrA and UvrB conjugated to quantum dots.

  19. Evaluation of canola seeds of different cultivars with special emphasis on the quantification of erucic acid and glucosinolates

    Directory of Open Access Journals (Sweden)

    Anwar, Farooq

    2009-03-01

    Full Text Available This study reports the characterization of the seeds and seed oils of five locally grown canola cultivars: Zafar-2002, Bulbul (Frontier, Dunkeld, Oscar and Con-11. The oil contents from canola seeds ranged from 34.3 to 39.3%. The levels of protein, fiber, ash and moisture were found to be 22.1-41.0, 12.0-14.0, 3.0-3.5 and 4.0-7.5%, respectively. The glucosinolate (GSL contents in the canola seeds examined ranged from 49.7 to 78.1 mmol g-1. The extracted canola seed oils revealed an iodine value of 118.2-124.6 g of I/100g of oil; refractive index (40 °C, 1.460-1.464; density (24 °C, 0.914-0.919 mg m-1; saponification value, 187-195; unsaponifiable matter, 0.51-1.10%; acidity (% as oleic acid, 0.40-1.40, and color (1-in. cell, 1.35-1.73 R + 21.0-38.0 Y. Peroxide value (meq/ kg of oil and specific extinctions at 232 and 270 nm were determined to be 2.00-7.08, 2.17-3.16 and 0.44-0.91, respectively. The seed oils of the five canola cultivars mainly consisted of oleic (C18:1, linoleic (C18:2 and linolenic (C18:3 acids at levels of 49.16-62.14, 14.61, 23.45 and 6.97-9.10%, respectively. The concentrations of palmitic (C16:0, stearic (C18:0, erucic (C22:1 and gadoleic (C20:1 acids ranged from 3.47 to 6.00, 1.51 to 2.10, traces to 13.03 and 1.30 to 10.63%, respectively. A small amount of arachidic acid (20:0 with a contribution below 1% was also detected. The contents of tocopherols (α, γ, and δ in the canola oils accounted for 77.1-270.3, 191-500, 3.5-15.6 mg kg-1, respectively.The presence of rather high levels of erucic acid and GSL in the present analysis of canola emphasized the need to further reduce the contents of these two antinutritional constituents in the investigated cultivars.Este estudio describe de la caracterización de semillas y de sus aceites de cinco cultivos locales de canola: Zafar2002, Bulbul (Frontier, Dunkeld, Oscar y Con 11. El contenido de aceite de las semillas de canola varió entre un 34.3 y un 39.3%. Los niveles

  20. Palygorskite Hybridized Carbon Nanocomposite as a High ...

    African Journals Online (AJOL)

    NICO

    Pd nanoparticles were deposited on the hybrid support as an electrocatalyst for formic acid oxida- tion. .... synthetic procedure using conventional borohydride reduction .... as Al2O3, CaO and MgO, which may exist in both the tetrahedral.

  1. Hybrid High-Fidelity Auscultation Scope, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — To address the NASA Johnson Space Center's need for a space auscultation capability, Physical Optics Corporation proposes to develop a Hybrid High-Fidelity...

  2. Development of high performance hybrid rocket fuels

    Science.gov (United States)

    Zaseck, Christopher R.

    In this document I discuss paraffin fuel combustion and investigate the effects of additives on paraffin entrainment and regression. In general, hybrid rockets offer an economical and safe alternative to standard liquid and solid rockets. However, slow polymeric fuel regression and low combustion efficiency have limited the commercial use of hybrid rockets. Paraffin is a fast burning fuel that has received significant attention in the 2000's and 2010's as a replacement for standard fuels. Paraffin regresses three to four times faster than polymeric fuels due to the entrainment of a surface melt layer. However, further regression rate enhancement over the base paraffin fuel is necessary for widespread hybrid rocket adoption. I use a small scale opposed flow burner to investigate the effect of additives on the combustion of paraffin. Standard additives such as aluminum combust above the flame zone where sufficient oxidizer levels are present. As a result no heat is generated below the flame itself. In small scale opposed burner experiments the effect of limited heat feedback is apparent. Aluminum in particular does not improve the regression of paraffin in the opposed burner. The lack of heat feedback from additive combustion limits the applicability of the opposed burner. In turn, the results obtained in the opposed burner with metal additive loaded hybrid fuels do not match results from hybrid rocket experiments. In addition, nano-scale aluminum increases melt layer viscosity and greatly slows the regression of paraffin in the opposed flow burner. However, the reactive additives improve the regression rate of paraffin in the opposed burner where standard metals do not. At 5 wt.% mechanically activated titanium and carbon (Ti-C) improves the regression rate of paraffin by 47% in the opposed burner. The mechanically activated Ti C likely reacts in or near the melt layer and provides heat feedback below the flame region that results in faster opposed burner regression

  3. High Energy Batteries for Hybrid Buses

    Energy Technology Data Exchange (ETDEWEB)

    Bruce Lu

    2010-12-31

    EnerDel batteries have already been employed successfully for electric vehicle (EV) applications. Compared to EV applications, hybrid electric vehicle (HEV) bus applications may be less stressful, but are still quite demanding, especially compared to battery applications for consumer products. This program evaluated EnerDel cell and pack system technologies with three different chemistries using real world HEV-Bus drive cycles recorded in three markets covering cold, hot, and mild climates. Cells were designed, developed, and fabricated using each of the following three chemistries: (1) Lithium nickel manganese cobalt oxide (NMC) - hard carbon (HC); (2) Lithium manganese oxide (LMO) - HC; and (3) LMO - lithium titanium oxide (LTO) cells. For each cell chemistry, battery pack systems integrated with an EnerDel battery management system (BMS) were successfully constructed with the following features: real time current monitoring, cell and pack voltage monitoring, cell and pack temperature monitoring, pack state of charge (SOC) reporting, cell balancing, and over voltage protection. These features are all necessary functions for real-world HEV-Bus applications. Drive cycle test data was collected for each of the three cell chemistries using real world drive profiles under hot, mild, and cold climate conditions representing cities like Houston, Seattle, and Minneapolis, respectively. We successfully tested the battery packs using real-world HEV-Bus drive profiles under these various climate conditions. The NMC-HC and LMO-HC based packs successfully completed the drive cycles, while the LMO-LTO based pack did not finish the preliminary testing for the drive cycles. It was concluded that the LMO-HC chemistry is optimal for the hot or mild climates, while the NMC-HC chemistry is optimal for the cold climate. In summary, the objectives were successfully accomplished at the conclusion of the project. This program provided technical data to DOE and the public for assessing

  4. Hybrid nanostructured materials for high-performance electrochemical capacitors

    KAUST Repository

    Yu, Guihua

    2013-03-01

    The exciting development of advanced nanostructured materials has driven the rapid growth of research in the field of electrochemical energy storage (EES) systems which are critical to a variety of applications ranging from portable consumer electronics, hybrid electric vehicles, to large industrial scale power and energy management. Owing to their capability to deliver high power performance and extremely long cycle life, electrochemical capacitors (ECs), one of the key EES systems, have attracted increasing attention in the recent years since they can complement or even replace batteries in the energy storage field, especially when high power delivery or uptake is needed. This review article describes the most recent progress in the development of nanostructured electrode materials for EC technology, with a particular focus on hybrid nanostructured materials that combine carbon based materials with pseudocapacitive metal oxides or conducting polymers for achieving high-performance ECs. This review starts with an overview of EES technologies and the comparison between various EES systems, followed by a brief description of energy storage mechanisms for different types of EC materials. This review emphasizes the exciting development of both hybrid nanomaterials and novel support structures for effective electrochemical utilization and high mass loading of active electrode materials, both of which have brought the energy density of ECs closer to that of batteries while still maintaining their characteristic high power density. Last, future research directions and the remaining challenges toward the rational design and synthesis of hybrid nanostructured electrode materials for next-generation ECs are discussed. © 2012 Elsevier Ltd.

  5. Isolation of low erucic acid-containing genotype of Indian mustard ...

    African Journals Online (AJOL)

    Reciprocal crosses were done between two cultivars; cv. RJ15 and cv. RLM198 of Indian mustard (Brassica juncea). Anther derived lines designated as A1 plants, were raised through anther culture from these F1 hybrid plants. 45% germination was obtained from distinctly shriveled and small A1 seeds and grown along ...

  6. High Gain Hybrid Graphene-Organic Semiconductor Phototransistors

    NARCIS (Netherlands)

    Huisman, Everardus H.; Shulga, Artem G.; Zomer, Paul J.; Tombros, Nikolaos; Bartesaghi, Davide; Bisri, Satria Zulkarnaen; Loi, Maria A.; Koster, L. Jan Anton; van Wees, Bart J.

    2015-01-01

    Hybrid phototransistors of graphene and the organic semiconductor poly(3-hexylthiophene-2,5-diyl) (P3HT) are presented. Two types of phototransistors are demonstrated with a charge carrier transit time that differs by more than 6 orders of magnitude. High transit time devices are fabricated using a

  7. A high performance electrometer amplifier of hybrid design

    International Nuclear Information System (INIS)

    Rao, N.V.; Nazare, C.K.

    1979-01-01

    A high performance, reliable, electrometer amplifier of hybrid design for low current measurements in mass spectrometers has been developed. The short term instability with a 5 x 10 11 ohms input resistor is less than 1 x 10sup(-15) Amp. The drift is better than 1 mV/hour. The design steps are illustrated with a typical amplifier performance details. (auth.)

  8. High Power Factor Hybrid Rectifier | Odeh | Nigerian Journal of ...

    African Journals Online (AJOL)

    This paper presents the analysis of a new single-phase hybrid rectifier with high power factor (PF) and low harmonic distortion current. The proposed rectifier structure is composed of an ordinary single-phase diode rectifier with parallel connection of a switched converter. It is outlined that the switched converter is capable of ...

  9. High mobility solution-processed hybrid light emitting transistors

    International Nuclear Information System (INIS)

    Walker, Bright; Kim, Jin Young; Ullah, Mujeeb; Burn, Paul L.; Namdas, Ebinazar B.; Chae, Gil Jo; Cho, Shinuk; Seo, Jung Hwa

    2014-01-01

    We report the design, fabrication, and characterization of high-performance, solution-processed hybrid (inorganic-organic) light emitting transistors (HLETs). The devices employ a high-mobility, solution-processed cadmium sulfide layer as the switching and transport layer, with a conjugated polymer Super Yellow as an emissive material in non-planar source/drain transistor geometry. We demonstrate HLETs with electron mobilities of up to 19.5 cm 2 /V s, current on/off ratios of >10 7 , and external quantum efficiency of 10 −2 % at 2100 cd/m 2 . These combined optical and electrical performance exceed those reported to date for HLETs. Furthermore, we provide full analysis of charge injection, charge transport, and recombination mechanism of the HLETs. The high brightness coupled with a high on/off ratio and low-cost solution processing makes this type of hybrid device attractive from a manufacturing perspective

  10. Effect of chronic radiation on rape genotype formation

    International Nuclear Information System (INIS)

    Fabry, A.; Hannich, K.; Cerny, J.; Vyvadilova, M.

    1975-01-01

    The F 1 generation of hybrid plants of the Canadian erucic acid-free rape cross-bred with some European winter rape varieties with a high content of erucic acid were chronically irradiated in a gamma-field with doses ranging from 5978 to 329 R er vegetation. In segregating F 2 generations, the irradiation significantly increased the proportion of winter genotypes; a matroclinous influence on the developmental characteristics of plants occurred in irradiated segregating F 2 hybrid populations. As against spring rape, winter rape varieties used as the maternal form during hybridization caused a statistically significant increase in the frequency of winter genotypes. The segregation of half-winter forms in irradiated segregating hybrid populations of the F 2 generation proved the incomplete dominance of the spring habit of oil rape. Chronic irradiation significantly increased erucic-free (0 - 10% of erucic acid) and low-erucic (10 - 20% of erucic acid) genotype frequencies in segregating F 2 generations. Chronic irradiation of the hybrid plants of erucic-free spring rapes and erucic winter rapes with doses ranging from 5978 to 329 R per vegetation, together with the temperature screening of winter forms and with the determination of the fatty acid content, may be considered as an effective method of creating non-erucic and low-erucic winter forms of oil rape. (author)

  11. Hybrid High-Temperature-Superconductor–Semiconductor Tunnel Diode

    Directory of Open Access Journals (Sweden)

    Alex Hayat

    2012-12-01

    Full Text Available We report the demonstration of hybrid high-T_{c}-superconductor–semiconductor tunnel junctions, enabling new interdisciplinary directions in condensed matter research. The devices are fabricated by our newly developed mechanical-bonding technique, resulting in high-T_{c}-superconductor–semiconductor tunnel diodes. Tunneling-spectra characterization of the hybrid junctions of Bi_{2}Sr_{2}CaCu_{2}O_{8+δ} combined with bulk GaAs, or a GaAs/AlGaAs quantum well, exhibits excess voltage and nonlinearity, similarly to spectra obtained in scanning-tunneling microscopy, and is in good agreement with theoretical predictions for a d-wave-superconductor–normal-material junction. Additional junctions are demonstrated using Bi_{2}Sr_{2}CaCu_{2}O_{8+δ} combined with graphite or Bi_{2}Te_{3}. Our results pave the way for new methods in unconventional superconductivity studies, novel materials, and quantum technology applications.

  12. Hybrid RANS-LES using high order numerical methods

    Science.gov (United States)

    Henry de Frahan, Marc; Yellapantula, Shashank; Vijayakumar, Ganesh; Knaus, Robert; Sprague, Michael

    2017-11-01

    Understanding the impact of wind turbine wake dynamics on downstream turbines is particularly important for the design of efficient wind farms. Due to their tractable computational cost, hybrid RANS/LES models are an attractive framework for simulating separation flows such as the wake dynamics behind a wind turbine. High-order numerical methods can be computationally efficient and provide increased accuracy in simulating complex flows. In the context of LES, high-order numerical methods have shown some success in predictions of turbulent flows. However, the specifics of hybrid RANS-LES models, including the transition region between both modeling frameworks, pose unique challenges for high-order numerical methods. In this work, we study the effect of increasing the order of accuracy of the numerical scheme in simulations of canonical turbulent flows using RANS, LES, and hybrid RANS-LES models. We describe the interactions between filtering, model transition, and order of accuracy and their effect on turbulence quantities such as kinetic energy spectra, boundary layer evolution, and dissipation rate. This work was funded by the U.S. Department of Energy, Exascale Computing Project, under Contract No. DE-AC36-08-GO28308 with the National Renewable Energy Laboratory.

  13. Hybrid simulation of electrode plasmas in high-power diodes

    International Nuclear Information System (INIS)

    Welch, Dale R.; Rose, David V.; Bruner, Nichelle; Clark, Robert E.; Oliver, Bryan V.; Hahn, Kelly D.; Johnston, Mark D.

    2009-01-01

    New numerical techniques for simulating the formation and evolution of cathode and anode plasmas have been successfully implemented in a hybrid code. The dynamics of expanding electrode plasmas has long been recognized as a limiting factor in the impedance lifetimes of high-power vacuum diodes and magnetically insulated transmission lines. Realistic modeling of such plasmas is being pursued to aid in understanding the operating characteristics of these devices as well as establishing scaling relations for reliable extrapolation to higher voltages. Here, in addition to kinetic and fluid modeling, a hybrid particle-in-cell technique is described that models high density, thermal plasmas as an inertial fluid which transitions to kinetic electron or ion macroparticles above a prescribed energy. The hybrid technique is computationally efficient and does not require resolution of the Debye length. These techniques are first tested on a simple planar diode then applied to the evolution of both cathode and anode plasmas in a high-power self-magnetic pinch diode. The impact of an intense electron flux on the anode surface leads to rapid heating of contaminant material and diode impedance loss.

  14. A hybrid nanoantenna for highly enhanced directional spontaneous emission

    Energy Technology Data Exchange (ETDEWEB)

    Chou, R. Yuanying; Lu, Guowei, E-mail: guowei.lu@pku.edu.cn; Shen, Hongming; He, Yingbo; Cheng, Yuqing [State Key Laboratory for Mesoscopic Physics, Department of Physics, Peking University, Beijing 100871 (China); Perriat, Pascal [MATEIS, UMR 5510 CNRS, INSA-Lyon, Université de Lyon, Villeurbanne Cedex 69621 (France); Martini, Matteo; Tillement, Olivier [ILM, UMR 5306 CNRS, Université de Lyon, Villeurbanne Cedex 69622 (France); Gong, Qihuang [State Key Laboratory for Mesoscopic Physics, Department of Physics, Peking University, Beijing 100871 (China); Collaborative Innovation Center of Quantum Matter, Beijing 100871 (China)

    2014-06-28

    Spontaneous emission modulated by a hybrid plasmonic nanoantenna has been investigated by employing finite-difference time-domain method. The hybrid nanoantenna configurations constituted by a gap hot-spot and of a plasmonic corrugated grating and a metal reflector sandwiching a SiO{sub 2} thin layer which appears promising for high spontaneous emission enhancement devices. Simulation assays show that the coupling between the gap-antenna and plasmonic corrugations reaches an ultra-high near-field enhancement factor in the excitation process. Moreover, concerning the emission process, the corrugations concentrate the far-field radiated power within a tiny angular volume, offering unprecedented collection efficiency. In the past decades, many kinds of optical antennas have been proposed and optimized to enhance single molecule detection. However, the excitation enhancement effect for single individual or dimmer plasmonic nanostructure is limited due to intrinsic nonradiative decay of the nanoparticle plasmon and quantum tunneling effect. The proposed hybrid configuration overwhelms the enhancement limit of single individual plasmonic structure. The findings provide an insight into spontaneous emission high enhancement through integrating the functions of different metallic nanostructures.

  15. A hybrid nanoantenna for highly enhanced directional spontaneous emission

    International Nuclear Information System (INIS)

    Chou, R. Yuanying; Lu, Guowei; Shen, Hongming; He, Yingbo; Cheng, Yuqing; Perriat, Pascal; Martini, Matteo; Tillement, Olivier; Gong, Qihuang

    2014-01-01

    Spontaneous emission modulated by a hybrid plasmonic nanoantenna has been investigated by employing finite-difference time-domain method. The hybrid nanoantenna configurations constituted by a gap hot-spot and of a plasmonic corrugated grating and a metal reflector sandwiching a SiO 2 thin layer which appears promising for high spontaneous emission enhancement devices. Simulation assays show that the coupling between the gap-antenna and plasmonic corrugations reaches an ultra-high near-field enhancement factor in the excitation process. Moreover, concerning the emission process, the corrugations concentrate the far-field radiated power within a tiny angular volume, offering unprecedented collection efficiency. In the past decades, many kinds of optical antennas have been proposed and optimized to enhance single molecule detection. However, the excitation enhancement effect for single individual or dimmer plasmonic nanostructure is limited due to intrinsic nonradiative decay of the nanoparticle plasmon and quantum tunneling effect. The proposed hybrid configuration overwhelms the enhancement limit of single individual plasmonic structure. The findings provide an insight into spontaneous emission high enhancement through integrating the functions of different metallic nanostructures.

  16. Kinetics study of heterogeneous reactions of ozone with erucic acid using an ATR-IR flow reactor.

    Science.gov (United States)

    Leng, Chunbo; Hiltner, Joseph; Pham, Hai; Kelley, Judas; Mach, Mindy; Zhang, Yunhong; Liu, Yong

    2014-03-07

    The ozone initiated heterogeneous oxidation of erucic acid (EA) thin film was investigated using a flow system combined with attenuated total reflection infrared spectroscopy (ATR-IR) over wide ranges of ozone concentrations (0.25-60 ppm), thin film thickness (0.1-1.0 μm), temperatures (263-298 K), and relative humidities (0-80% RH) for the first time. Pseudo-first-order rate constants, kapp, and overall reactive uptake coefficients, γ, were obtained through changes in the absorbance of C[double bond, length as m-dash]O stretching bands at 1695 cm(-1), which is assigned to the carbonyl group in carboxylic acid. Results showed that the reaction followed the Langmuir-Hinshelwood mechanism and kapp was largely dominated by surface reaction over bulk phase reaction. In addition, both the kapp and the γ values showed very strong temperature dependences (∼two orders of magnitude) over the temperature range; in contrast, they only slightly increased with increasing RH values from 0-80%. According to the kapp values as a function of temperature, the activation energy for the heterogeneous reaction was estimated to be 80.6 kJ mol(-1). Our results have suggested that heterogeneous reactions between ozone and unsaturated solid surfaces likely have a substantially greater temperature dependence than liquid ones. Moreover, the hygroscopic properties of EA thin films before and after exposure to ozone were also studied by measurement of water uptake. Based on the hygroscopicity data, the insignificant RH effect on reaction kinetics was probably due to the relatively weak water uptake by the unreacted and reacted EA thin films.

  17. High Voltage Dielectrophoretic and Magnetophoretic Hybrid Integrated Circuit / Microfluidic Chip

    Science.gov (United States)

    Issadore, David; Franke, Thomas; Brown, Keith A.; Hunt, Thomas P.; Westervelt, Robert M.

    2010-01-01

    A hybrid integrated circuit (IC) / microfluidic chip is presented that independently and simultaneously traps and moves microscopic objects suspended in fluid using both electric and magnetic fields. This hybrid chip controls the location of dielectric objects, such as living cells and drops of fluid, on a 60 × 61 array of pixels that are 30 × 38 μm2 in size, each of which can be individually addressed with a 50 V peak-to-peak, DC to 10 MHz radio frequency voltage. These high voltage pixels produce electric fields above the chip’s surface with a magnitude , resulting in strong dielectrophoresis (DEP) forces . Underneath the array of DEP pixels there is a magnetic matrix that consists of two perpendicular sets of 60 metal wires running across the chip. Each wire can be sourced with 120 mA to trap and move magnetically susceptible objects using magnetophoresis (MP). The DEP pixel array and magnetic matrix can be used simultaneously to apply forces to microscopic objects, such as living cells or lipid vesicles, that are tagged with magnetic nanoparticles. The capabilities of the hybrid IC / microfluidic chip demonstrated in this paper provide important building blocks for a platform for biological and chemical applications. PMID:20625468

  18. High regression rate, high density hybrid fuels, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR program will investigate high energy density novel nanofuels combined with high density binders for use with an N2O oxidizer. Terves has developed...

  19. A Highly Responsive Silicon Nanowire/Amplifier MOSFET Hybrid Biosensor.

    Science.gov (United States)

    Lee, Jieun; Jang, Jaeman; Choi, Bongsik; Yoon, Jinsu; Kim, Jee-Yeon; Choi, Yang-Kyu; Kim, Dong Myong; Kim, Dae Hwan; Choi, Sung-Jin

    2015-07-21

    This study demonstrates a hybrid biosensor comprised of a silicon nanowire (SiNW) integrated with an amplifier MOSFET to improve the current response of field-effect-transistor (FET)-based biosensors. The hybrid biosensor is fabricated using conventional CMOS technology, which has the potential advantage of high density and low noise performance. The biosensor shows a current response of 5.74 decades per pH for pH detection, which is 2.5 × 10(5) times larger than that of a single SiNW sensor. In addition, we demonstrate charged polymer detection using the biosensor, with a high current change of 4.5 × 10(5) with a 500 nM concentration of poly(allylamine hydrochloride). In addition, we demonstrate a wide dynamic range can be obtained by adjusting the liquid gate voltage. We expect that this biosensor will be advantageous and practical for biosensor applications which requires lower noise, high speed, and high density.

  20. A high efficiency hybrid stirling-pulse tube cryocooler

    Directory of Open Access Journals (Sweden)

    Xiaotao Wang

    2015-03-01

    Full Text Available This article presented a hybrid cryocooler which combines the room temperature displacers and the pulse tube in one system. Compared with a traditional pulse tube cryocooler, the system uses the rod-less ambient displacer to recover the expansion work from the pulse tube cold end to improve the efficiency while still keeps the advantage of the pulse tube cryocooler with no moving parts at the cold region. In the meantime, dual-opposed configurations for both the compression pistons and displacers reduce the cooler vibration to a very low level. In the experiments, a lowest no-load temperature of 38.5 K has been obtained and the cooling power at 80K was 26.4 W with an input electric power of 290 W. This leads to an efficiency of 24.2% of Carnot, marginally higher than that of an ordinary pulse tube cryocooler. The hybrid configuration herein provides a very competitive option when a high efficiency, high-reliability and robust cryocooler is desired.

  1. Highly Electrically Conducting Glass-Graphene Nanoplatelets Hybrid Coatings.

    Science.gov (United States)

    Garcia, E; Nistal, A; Khalifa, A; Essa, Y; Martín de la Escalera, F; Osendi, M I; Miranzo, P

    2015-08-19

    Hybrid coatings consisting of a heat resistant Y2O3-Al2O3-SiO2 (YAS) glass containing 2.3 wt % of graphene nanoplatelets (GNPs) were developed by flame spraying homogeneous ceramic powders-GNP granules. Around 40% of the GNPs survived the high spraying temperatures and were distributed along the splat-interfaces, forming a percolated network. These YAS-GNP coatings are potentially interesting in thermal protection systems and electromagnetic interference shields for aerospace applications; therefore silicon carbide (SiC) materials at the forefront of those applications were employed as substrates. Whereas the YAS coatings are nonconductive, the YAS-GNP coatings showed in-plane electrical conductivity (∼10(2) S·m(-1)) for which a low percolation limit (below 3.6 vol %) is inferred. Indentation tests revealed the formation of a highly damaged indentation zone showing multiple shear displacements between adjacent splats probably favored by the graphene sheets location. The indentation radial cracks typically found in brittle glass coatings are not detected in the hybrid coatings that are also more compliant.

  2. Tough hybrid ceramic-based material with high strength

    International Nuclear Information System (INIS)

    Guo, Shuqi; Kagawa, Yutaka; Nishimura, Toshiyuki

    2012-01-01

    This study describes a tough and strong hybrid ceramic material consisting of platelet-like zirconium compounds and metal. A mixture of boron carbide and excess zirconium powder was heated to 1900 °C using a liquid-phase reaction sintering technique to produce a platelet-like ZrB 2 -based hybrid ceramic bonded by a thin zirconium layer. The platelet-like ZrB 2 grains were randomly present in the as-sintered hybrid ceramic. Relative to non-hybrid ceramics, the fracture toughness and flexural strength of the hybrid ceramic increased by approximately 2-fold.

  3. Hybrid carbon nanostructure assemblage for high performance pseudo-capacitors

    Directory of Open Access Journals (Sweden)

    A. K. Mishra

    2012-06-01

    Full Text Available Investigation of novel nanocomposites for pseudo-capacitors with high capacitance and energy density is the spotlight of current energy research. In the present work, hybrid carbon nanostructure assemblage of graphene and multiwalled carbon nanotubes has been used as carbon support to nanostructured RuO2 and polyaniline for high energy supercapacitors. Maximum specific capacitances of 110, 235 and 440 F g−1 at the voltage sweep rate of 10 mV s−1 and maximum energy densities of 7, 12.5 and 20.5 Wh kg−1 were observed for carbon assemblage and its RuO2 and polyanilne decorated nanocomposites, respectively, with 1M H2SO4 as electrolyte.

  4. Hybrid nanomembranes for high power and high energy density supercapacitors and their yarn application.

    Science.gov (United States)

    Lee, Jae Ah; Shin, Min Kyoon; Kim, Shi Hyeong; Kim, Seon Jeong; Spinks, Geoffrey M; Wallace, Gordon G; Ovalle-Robles, Raquel; Lima, Márcio D; Kozlov, Mikhail E; Baughman, Ray H

    2012-01-24

    We report mechanically robust, electrically conductive, free-standing, and transparent hybrid nanomembranes made of densified carbon nanotube sheets that were coated with poly(3,4-ethylenedioxythiophene) using vapor phase polymerization and their performance as supercapacitors. The hybrid nanomembranes with thickness of ~66 nm and low areal density of ~15 μg/cm(2)exhibited high mechanical strength and modulus of 135 MPa and 12.6 GPa, respectively. They also had remarkable shape recovery ability in liquid and at the liquid/air interface unlike previous carbon nanotube sheets. The hybrid nanomembrane attached on a current collector had volumetric capacitance of ~40 F/cm(3) at 100 V s(-1) (~40 and ~80 times larger than that of onion-like carbon measured at 100 V s(-1) and activated carbon measured at 20 V s(-1), respectively), and it showed rectangular shapes of cyclic voltammograms up to ~5 V s(-1). High mechanical strength and flexibility of the hybrid nanomembrane enabled twisting it into microsupercapacitor yarns with diameters of ~30 μm. The yarn supercapacitor showed stable cycling performance without a metal current collector, and its capacitance decrease was only ~6% after 5000 cycles. Volumetric energy and power density of the hybrid nanomembrane was ~70 mWh cm(-3) and ~7910 W cm(-3), and the yarn possessed the energy and power density of ~47 mWh cm(-3) and ~538 W cm(-3). © 2011 American Chemical Society

  5. Hybrid graphene electrodes for supercapacitors of high energy density

    Science.gov (United States)

    Zhang, Feifei; Tang, Jie; Shinya, Norio; Qin, Lu-Chang

    2013-10-01

    We describe a process of co-reduction to reduce dispersed graphene oxide (GO) and single-walled carbon nanotubes (SWNTs) simultaneously for preparation of hybrid electrodes for graphene supercapacitors. The SWNTs are in between the inter-layer space of graphene sheets as a spacer to prevent effectively restacking of graphene that often limits seriously the electrochemical performance of graphene supercapacitors. The SWNTs also act as conductive binders to improve the electrical conduction of the electrode. A high specific capacitance of 261 F g-1 for a single electrode and specific energy density of 123 W h kg-1 measured in the two-electrode configuration have been obtained in ionic liquid (EMI-TFSI). For interpretation of color in Fig. 6, the reader is referred to the web version of this article.

  6. Hybrid High-Impact Pedagogies: Integrating Service-Learning with Three Other High-Impact Pedagogies

    Science.gov (United States)

    Bringle, Robert G.

    2017-01-01

    This article proposes enhancing student learning through civic engagement by considering the advantages of integrating service-learning with study away, research, and internships and pre-professional courses into first-order, second-order, and third-order hybrid high-impact pedagogies. Service-learning contributes numerous attributes to the other…

  7. High-frequency electromagnetic properties of soft magnetic metal-polyimide hybrid thin films

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sang Woo [Nano-Materials Research Center, Korea Institute of Science and Technology, 39-1 Haweoulgog-dong, Sungbuk-gu, Seoul 136-791 (Korea, Republic of)]. E-mail: swkim@kist.re.kr; Yoon, Chong S. [Division of Advanced Materials Science, Hanyang University, Seoul 133-791 (Korea, Republic of)

    2007-09-15

    Although there are a lot of demands for suppression of unwanted high-frequency electromagnetic noise in highly integrated electronic devices such as mobile phones and notebook computers, electromagnetic thin films that effectively work in the high-frequency range have still been underdeveloped. Soft magnetic metal-polyimide (PI) hybrid films with high electrical resistivity were prepared by thermal imidization and selective oxidation between the metal alloy layer and polyamic acid (PAA) layer. Electromagnetic properties of the hybrid thin films in the radio-frequency range were characterized by using the microstrip line method and were correlated with their material parameters. Although anisotropy field of the CoFe/NiFe hybrid film was two times lower than that of the NiFe hybrid film, the saturation magnetization of the CoFe/NiFe hybrid film was three times higher than that of the NiFe hybrid film. The CoFe/NiFe hybrid film showed higher power loss in the frequency range of 3-6 GHz compared to the NiFe hybrid film. The high power loss of the CoFe/NiFe hybrid film was caused by high relative permeability and high ferromagnetic resonance (FMR) frequency due to high saturation magnetization.

  8. High-frequency electromagnetic properties of soft magnetic metal-polyimide hybrid thin films

    International Nuclear Information System (INIS)

    Kim, Sang Woo; Yoon, Chong S.

    2007-01-01

    Although there are a lot of demands for suppression of unwanted high-frequency electromagnetic noise in highly integrated electronic devices such as mobile phones and notebook computers, electromagnetic thin films that effectively work in the high-frequency range have still been underdeveloped. Soft magnetic metal-polyimide (PI) hybrid films with high electrical resistivity were prepared by thermal imidization and selective oxidation between the metal alloy layer and polyamic acid (PAA) layer. Electromagnetic properties of the hybrid thin films in the radio-frequency range were characterized by using the microstrip line method and were correlated with their material parameters. Although anisotropy field of the CoFe/NiFe hybrid film was two times lower than that of the NiFe hybrid film, the saturation magnetization of the CoFe/NiFe hybrid film was three times higher than that of the NiFe hybrid film. The CoFe/NiFe hybrid film showed higher power loss in the frequency range of 3-6 GHz compared to the NiFe hybrid film. The high power loss of the CoFe/NiFe hybrid film was caused by high relative permeability and high ferromagnetic resonance (FMR) frequency due to high saturation magnetization

  9. High resolution hybrid optical and acoustic sea floor maps (Invited)

    Science.gov (United States)

    Roman, C.; Inglis, G.

    2013-12-01

    This abstract presents a method for creating hybrid optical and acoustic sea floor reconstructions at centimeter scale grid resolutions with robotic vehicles. Multibeam sonar and stereo vision are two common sensing modalities with complementary strengths that are well suited for data fusion. We have recently developed an automated two stage pipeline to create such maps. The steps can be broken down as navigation refinement and map construction. During navigation refinement a graph-based optimization algorithm is used to align 3D point clouds created with both the multibeam sonar and stereo cameras. The process combats the typical growth in navigation error that has a detrimental affect on map fidelity and typically introduces artifacts at small grid sizes. During this process we are able to automatically register local point clouds created by each sensor to themselves and to each other where they overlap in a survey pattern. The process also estimates the sensor offsets, such as heading, pitch and roll, that describe how each sensor is mounted to the vehicle. The end results of the navigation step is a refined vehicle trajectory that ensures the points clouds from each sensor are consistently aligned, and the individual sensor offsets. In the mapping step, grid cells in the map are selectively populated by choosing data points from each sensor in an automated manner. The selection process is designed to pick points that preserve the best characteristics of each sensor and honor some specific map quality criteria to reduce outliers and ghosting. In general, the algorithm selects dense 3D stereo points in areas of high texture and point density. In areas where the stereo vision is poor, such as in a scene with low contrast or texture, multibeam sonar points are inserted in the map. This process is automated and results in a hybrid map populated with data from both sensors. Additional cross modality checks are made to reject outliers in a robust manner. The final

  10. Multi-Agent System based Event-Triggered Hybrid Controls for High-Security Hybrid Energy Generation Systems

    DEFF Research Database (Denmark)

    Dou, Chun-Xia; Yue, Dong; Guerrero, Josep M.

    2017-01-01

    This paper proposes multi-agent system based event- triggered hybrid controls for guaranteeing energy supply of a hybrid energy generation system with high security. First, a mul-ti-agent system is constituted by an upper-level central coordi-nated control agent combined with several lower......-level unit agents. Each lower-level unit agent is responsible for dealing with internal switching control and distributed dynamic regula-tion for its unit system. The upper-level agent implements coor-dinated switching control to guarantee the power supply of over-all system with high security. The internal...

  11. Detecting Android Malwares with High-Efficient Hybrid Analyzing Methods

    Directory of Open Access Journals (Sweden)

    Yu Liu

    2018-01-01

    Full Text Available In order to tackle the security issues caused by malwares of Android OS, we proposed a high-efficient hybrid-detecting scheme for Android malwares. Our scheme employed different analyzing methods (static and dynamic methods to construct a flexible detecting scheme. In this paper, we proposed some detecting techniques such as Com+ feature based on traditional Permission and API call features to improve the performance of static detection. The collapsing issue of traditional function call graph-based malware detection was also avoided, as we adopted feature selection and clustering method to unify function call graph features of various dimensions into same dimension. In order to verify the performance of our scheme, we built an open-access malware dataset in our experiments. The experimental results showed that the suggested scheme achieved high malware-detecting accuracy, and the scheme could be used to establish Android malware-detecting cloud services, which can automatically adopt high-efficiency analyzing methods according to the properties of the Android applications.

  12. Hybrid Welding of 45 mm High Strength Steel Sections

    Science.gov (United States)

    Bunaziv, Ivan; Frostevarg, Jan; Akselsen, Odd M.; Kaplan, Alexander F.

    Thick section welding has significant importance for oil and gas industry in low temperature regions. Arc welding is usually employed providing suitable quality joints with acceptable toughness at low temperatures with very limited productivity compared to modern high power laser systems. Laser-arc hybrid welding (LAHW) can enhance the productivity by several times due to higher penetration depth from laser beam and combined advantages of both heat sources. LAHW was applied to join 45 mm high strength steel with double-sided technique and application of metal cored wire. The process was captured by high speed camera, allowing process observation in order to identify the relation of the process stability on weld imperfections and efficiency. Among the results, it was found that both arc power and presence of a gap increased penetration depth, and that higher welding speeds cause unstable processing and limits penetration depth. Over a wide range of heat inputs, the welds where found to consist of large amounts of fine-grained acicular ferrite in the upper 60-75% part of welds. At the root filler wire mixing was less and cooling faster, and thus found to have bainitic transformation. Toughness of deposited welds provided acceptable toughness at -50 °C with some scattering.

  13. A Highly Responsive Silicon Nanowire/Amplifier MOSFET Hybrid Biosensor

    Science.gov (United States)

    2015-07-21

    Hybrid Biosensor Jieun Lee1,2, Jaeman Jang1, Bongsik Choi1, Jinsu Yoon1, Jee-Yeon Kim3, Yang-Kyu Choi3, Dong Myong Kim1, Dae Hwan Kim1 & Sung-Jin Choi1...This study demonstrates a hybrid biosensor comprised of a silicon nanowire (SiNW) integrated with an amplifier MOSFET to improve the current response...of field-effect-transistor (FET)-based biosensors . The hybrid biosensor is fabricated using conventional CMOS technology, which has the potential

  14. High Performance Hybrid Propulsion System for a Small Launch Vehicle, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Physical Sciences Inc. (PSI) proposes to design, develop and demonstrate an innovative high-performance, green, storable hybrid propellant system in a high mass...

  15. How to simultaneously achieve low emissions and high efficiency in a hybrid powertrain

    NARCIS (Netherlands)

    Mourad, S.; Eijnden, E. van den; Foster, D.L.; Helden, M. van; Rondel, M.; Schmal, P.

    2001-01-01

    In order to investigate the possibilities of hybrid driveline architecture and to provide a platform for further technical developments, TNO has designed and prototyped a test platform for a series hybrid powertrain, including a compact, highly advanced generator set. This powertrain is subjected to

  16. 4f-5d hybridization in a high k dielectric

    International Nuclear Information System (INIS)

    Losovyj, Ya.B.; Tang, Jinke; Wang, Wendong; Hong Yuanjia; Palshin, Vadim; Tittsworth, Roland

    2006-01-01

    While intra-atomic f-d hybridization is expected, experimental confirmation of f-d hybridization in the photoemission final state leading to 4f band structure has been limited to 5f systems and compound systems with very shallow 4f levels. We demonstrate that core 4f states can contribute to the valence band structure in a wide band gap dielectric, in this case HfO 2 in the photoemission final state. In spite of the complications of sample charging, we find evidence of symmetry in the shallow 4f levels and wave vector dependent band dispersion, the latter consistent with the crystal structure of HfO 2

  17. Highly specific detection of genetic modification events using an enzyme-linked probe hybridization chip.

    Science.gov (United States)

    Zhang, M Z; Zhang, X F; Chen, X M; Chen, X; Wu, S; Xu, L L

    2015-08-10

    The enzyme-linked probe hybridization chip utilizes a method based on ligase-hybridizing probe chip technology, with the principle of using thio-primers for protection against enzyme digestion, and using lambda DNA exonuclease to cut multiple PCR products obtained from the sample being tested into single-strand chains for hybridization. The 5'-end amino-labeled probe was fixed onto the aldehyde chip, and hybridized with the single-stranded PCR product, followed by addition of a fluorescent-modified probe that was then enzymatically linked with the adjacent, substrate-bound probe in order to achieve highly specific, parallel, and high-throughput detection. Specificity and sensitivity testing demonstrated that enzyme-linked probe hybridization technology could be applied to the specific detection of eight genetic modification events at the same time, with a sensitivity reaching 0.1% and the achievement of accurate, efficient, and stable results.

  18. Multilayered Functional Insulation System (MFIS) for AC Power Transmission in High Voltage Hybrid Electrical Propulsion

    Science.gov (United States)

    Lizcano, Maricela

    2017-01-01

    High voltage hybrid electric propulsion systems are now pushing new technology development efforts for air transportation. A key challenge in hybrid electric aircraft is safe high voltage distribution and transmission of megawatts of power (>20 MW). For the past two years, a multidisciplinary materials research team at NASA Glenn Research Center has investigated the feasibility of distributing high voltage power on future hybrid electric aircraft. This presentation describes the team's approach to addressing this challenge, significant technical findings, and next steps in GRC's materials research effort for MW power distribution on aircraft.

  19. Highly Conductive Graphene/Ag Hybrid Fibers for Flexible Fiber-Type Transistors.

    Science.gov (United States)

    Yoon, Sang Su; Lee, Kang Eun; Cha, Hwa-Jin; Seong, Dong Gi; Um, Moon-Kwang; Byun, Joon-Hyung; Oh, Youngseok; Oh, Joon Hak; Lee, Wonoh; Lee, Jea Uk

    2015-11-09

    Mechanically robust, flexible, and electrically conductive textiles are highly suitable for use in wearable electronic applications. In this study, highly conductive and flexible graphene/Ag hybrid fibers were prepared and used as electrodes for planar and fiber-type transistors. The graphene/Ag hybrid fibers were fabricated by the wet-spinning/drawing of giant graphene oxide and subsequent functionalization with Ag nanoparticles. The graphene/Ag hybrid fibers exhibited record-high electrical conductivity of up to 15,800 S cm(-1). As the graphene/Ag hybrid fibers can be easily cut and placed onto flexible substrates by simply gluing or stitching, ion gel-gated planar transistors were fabricated by using the hybrid fibers as source, drain, and gate electrodes. Finally, fiber-type transistors were constructed by embedding the graphene/Ag hybrid fiber electrodes onto conventional polyurethane monofilaments, which exhibited excellent flexibility (highly bendable and rollable properties), high electrical performance (μh = 15.6 cm(2) V(-1) s(-1), Ion/Ioff > 10(4)), and outstanding device performance stability (stable after 1,000 cycles of bending tests and being exposed for 30 days to ambient conditions). We believe that our simple methods for the fabrication of graphene/Ag hybrid fiber electrodes for use in fiber-type transistors can potentially be applied to the development all-organic wearable devices.

  20. Hybrid orientation technology and strain engineering for ultra-high ...

    Indian Academy of Sciences (India)

    Abstract. We report here RF MOSFET performance in sub-45-nm hybrid orientation CMOS technology. Based ... can provide a greater benefit for hole mobility (Yang et al. 2003). ... types of structures; type-I with p-FET on the (110) SOI and.

  1. Static and Dynamic Behavior of High Modulus Hybrid Boron/Glass/Aluminum Fiber Metal Laminates

    Science.gov (United States)

    Yeh, Po-Ching

    2011-12-01

    This dissertation presents the investigation of a newly developed hybrid fiber metal laminates (FMLs) which contains commingled boron fibers, glass fibers, and 2024-T3 aluminum sheets. Two types of hybrid boron/glass/aluminum FMLs are developed. The first, type I hybrid FMLs, contained a layer of boron fiber prepreg in between two layers of S2-glass fiber prepreg, sandwiched by two aluminum alloy 2024-T3 sheets. The second, type II hybrid FMLs, contained three layer of commingled hybrid boron/glass fiber prepreg layers, sandwiched by two aluminum alloy 2024-T3 sheets. The mechanical behavior and deformation characteristics including blunt notch strength, bearing strength and fatigue behavior of these two types of hybrid boron/glass/aluminum FMLs were investigated. Compared to traditional S2-glass fiber reinforced aluminum laminates (GLARE), the newly developed hybrid boron/glass/aluminum fiber metal laminates possess high modulus, high yielding stress, and good blunt notch properties. From the bearing test result, the hybrid boron/glass/aluminum fiber metal laminates showed outstanding bearing strength. The high fiber volume fraction of boron fibers in type II laminates lead to a higher bearing strength compared to both type I laminates and traditional GLARE. Both types of hybrid FMLs have improved fatigue crack initiation lives and excellent fatigue crack propagation resistance compared to traditional GLARE. The incorporation of the boron fibers improved the Young's modulus of the composite layer in FMLs, which in turn, improved the fatigue crack initiation life and crack propagation rates of the aluminum sheets. Moreover, a finite element model was established to predict and verify the properties of hybrid boron/glass/aluminum FMLs. The simulated results showed good agreement with the experimental results.

  2. Highly Oriented Graphene Sponge Electrode for Ultra High Energy Density Lithium Ion Hybrid Capacitors.

    Science.gov (United States)

    Ahn, Wook; Lee, Dong Un; Li, Ge; Feng, Kun; Wang, Xiaolei; Yu, Aiping; Lui, Gregory; Chen, Zhongwei

    2016-09-28

    Highly oriented rGO sponge (HOG) can be easily synthesized as an effective anode for application in high-capacity lithium ion hybrid capacitors. X-ray diffraction and morphological analyses show that successfully exfoliated rGO sponge on average consists of 4.2 graphene sheets, maintaining its three-dimensional structure with highly oriented morphology even after the thermal reduction procedure. Lithium-ion hybrid capacitors (LIC) are fabricated in this study based on a unique cell configuration which completely eliminates the predoping process of lithium ions. The full-cell LIC consisting of AC/HOG-Li configuration has resulted in remarkably high energy densities of 231.7 and 131.9 Wh kg(-1) obtained at 57 W kg(-1) and 2.8 kW kg(-1). This excellent performance is attributed to the lithium ion diffusivity related to the intercalation reaction of AC/HOG-Li which is 3.6 times higher that of AC/CG-Li. This unique cell design and configuration of LIC presented in this study using HOG as an effective anode is an unprecedented example of performance enhancement and improved energy density of LIC through successful increase in cell operation voltage window.

  3. Modeling and design of a high-performance hybrid actuator

    Science.gov (United States)

    Aloufi, Badr; Behdinan, Kamran; Zu, Jean

    2016-12-01

    This paper presents the model and design of a novel hybrid piezoelectric actuator which provides high active and passive performances for smart structural systems. The actuator is composed of a pair of curved pre-stressed piezoelectric actuators, so-called commercially THUNDER actuators, installed opposite each other using two clamping mechanisms constructed of in-plane fixable hinges, grippers and solid links. A fully mathematical model is developed to describe the active and passive dynamics of the actuator and investigate the effects of its geometrical parameters on the dynamic stiffness, free displacement and blocked force properties. Among the literature that deals with piezoelectric actuators in which THUNDER elements are used as a source of electromechanical power, the proposed study is unique in that it presents a mathematical model that has the ability to predict the actuator characteristics and achieve other phenomena, such as resonances, mode shapes, phase shifts, dips, etc. For model validation, the measurements of the free dynamic response per unit voltage and passive acceleration transmissibility of a particular actuator design are used to check the accuracy of the results predicted by the model. The results reveal that there is a good agreement between the model and experiment. Another experiment is performed to teste the linearity of the actuator system by examining the variation of the output dynamic responses with varying forces and voltages at different frequencies. From the results, it can be concluded that the actuator acts approximately as a linear system at frequencies up to 1000 Hz. A parametric study is achieved here by applying the developed model to analyze the influence of the geometrical parameters of the fixable hinges on the active and passive actuator properties. The model predictions in the frequency range of 0-1000 Hz show that the hinge thickness, radius, and opening angle parameters have great effects on the frequency dynamic

  4. A highly conductive, non-flammable polymer–nanoparticle hybrid electrolyte

    KAUST Repository

    Agrawal, Akanksha; Choudhury, Snehashis; Archer, Lynden A.

    2015-01-01

    liquid media as the electrolyte solvent. Remarkably, we also find that even in highly flammable liquid media, the bidisperse nanoparticle hybrid electrolytes can be formulated to exhibit low or no flammability without compromising their favorable room

  5. High energy density additives for Hybrid Fuel Rockets to Improve Performance and Enhance Safety

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose a conceptual study of prototype strained hydrocarbon molecules as high energy density additives for hybrid rocket fuels to boost the performance of these...

  6. Fatty acid composition of maize germ oil from high-oil hybrids wet-milling processing

    Directory of Open Access Journals (Sweden)

    Jovanović Petar Lj.

    2005-01-01

    Full Text Available Maize germ was obtained by wet-milling laboratory processing of domestic high-oil maize hybrids. After separation, the germ was subjected to extraction of maize oil. Fatty acid composition of maize germ oil was determined by gas chromatography. The results showed very high levels of unsaturated fatty acids and a constant sum of oleic and linoleic acids in oils of different maize hybrids.

  7. Characterization of a silica-PVA hybrid for high density and stable silver dissolution

    Energy Technology Data Exchange (ETDEWEB)

    Dorin, Bryce, E-mail: bryce.dorin@postgrad.manchester.ac.uk [The Photon Science Institute, The University of Manchester, Oxford Road, Manchester, M13 9PL (United Kingdom); School of Chemical Engineering and Analytical Science, The University of Manchester, Oxford Road, Manchester, M13 9PL (United Kingdom); Zhu, Guangyu, E-mail: g.zhu@liverpool.ac.uk [Lairdside Laser Engineering Centre, The University of Liverpool, Campbeltown Road, Merseyside, CH41 9HP (United Kingdom); Parkinson, Patrick, E-mail: patrick.parkinson@manchester.ac.uk [The Photon Science Institute, The University of Manchester, Oxford Road, Manchester, M13 9PL (United Kingdom); School of Physics and Astronomy, The University of Manchester, Oxford Road, Manchester, M13 9PL (United Kingdom); Perrie, Walter, E-mail: wpfemto1@liverpool.ac.uk [Lairdside Laser Engineering Centre, The University of Liverpool, Campbeltown Road, Merseyside, CH41 9HP (United Kingdom); Benyezzar, Med, E-mail: med.benyezzar@manchester.ac.uk [The Photon Science Institute, The University of Manchester, Oxford Road, Manchester, M13 9PL (United Kingdom); Scully, Patricia, E-mail: patricia.scully@manchester.ac.uk [The Photon Science Institute, The University of Manchester, Oxford Road, Manchester, M13 9PL (United Kingdom); School of Chemical Engineering and Analytical Science, The University of Manchester, Oxford Road, Manchester, M13 9PL (United Kingdom)

    2016-07-01

    A silica and polyvinyl alcohol (PVA) hybrid material mixed with a high density of silver ions is synthesised and characterized in this work. The hybrid material can be cast into thick films, which we determined to be homogeneous using Raman spectroscopy. We observed that the silver ions remain stable in the material over time and at temperatures of 100 °C, which represents a marked improvement over previous solid solutions of silver. Differential scanning calorimetry and thermogravimetric analysis indicate the rapid activation of silver at 173 °C, resulting in a dense formation of silver nanoparticles within the hybrid. The activation of silver was also demonstrated in 3-dimensional geometries using femtosecond duration laser pulses. These results illustrate the silica-PVA hybrid is an attractive material for developing silver-insulator composites. - Highlights: • A novel PVA-silica hybrid is developed for silver ion dissolution. • The hybrid exhibits a high silver saturation point and good silver stability. • Heating and laser irradiation are capable of converting the silver ions to metal. • The hybrid material enables the fabrication of 3D metal-insulator composites.

  8. A hybrid plasmonic microresonator with high quality factor and small mode volume

    International Nuclear Information System (INIS)

    Lu, Qijing; Chen, Daru; Wu, Genzhu; Peng, Baojin; Xu, Jiancheng

    2012-01-01

    We propose a novel hybrid plasmonic microcavity which is composed of a silver nanoring and a silica toroidal microcavity. The hybrid mode of the proposed hybrid plasmonic microcavity due to the coupling between the surface plasmon polaritons (SPPs) and the dielectric mode is demonstrated with a high quality factor (>1000) and an ultrasmall mode volume (∼0.8 μm 3 ). This microcavity shows great potential in fundamental studies of nonlinear optics and cavity quantum electrodynamics (cQED) and applications in low-threshold plasmonic microlasers. (paper)

  9. Hybrid AC-High Voltage DC Grid Stability and Controls

    Science.gov (United States)

    Yu, Jicheng

    The growth of energy demands in recent years has been increasing faster than the expansion of transmission facility construction. This tendency cooperating with the continuous investing on the renewable energy resources drives the research, development, and construction of HVDC projects to create a more reliable, affordable, and environmentally friendly power grid. Constructing the hybrid AC-HVDC grid is a significant move in the development of the HVDC techniques; the form of dc system is evolving from the point-to-point stand-alone dc links to the embedded HVDC system and the multi-terminal HVDC (MTDC) system. The MTDC is a solution for the renewable energy interconnections, and the MTDC grids can improve the power system reliability, flexibility in economic dispatches, and converter/cable utilizing efficiencies. The dissertation reviews the HVDC technologies, discusses the stability issues regarding the ac and HVDC connections, proposes a novel power oscillation control strategy to improve system stability, and develops a nonlinear voltage droop control strategy for the MTDC grid. To verify the effectiveness the proposed power oscillation control strategy, a long distance paralleled AC-HVDC transmission test system is employed. Based on the PSCAD/EMTDC platform simulation results, the proposed power oscillation control strategy can improve the system dynamic performance and attenuate the power oscillations effectively. To validate the nonlinear voltage droop control strategy, three droop controls schemes are designed according to the proposed nonlinear voltage droop control design procedures. These control schemes are tested in a hybrid AC-MTDC system. The hybrid AC-MTDC system, which is first proposed in this dissertation, consists of two ac grids, two wind farms and a five-terminal HVDC grid connecting them. Simulation studies are performed in the PSCAD/EMTDC platform. According to the simulation results, all the three design schemes have their unique salient

  10. Graphene/MnO{sub 2} hybrid nanosheets as high performance electrode materials for supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Mondal, Anjon Kumar, E-mail: Anjon.K.Mondal@student.uts.edu.au [Centre for Clean Energy Technology, School of Chemistry and Forensic Science, University of Technology, Sydney, Broadway, Sydney, NSW 2007 (Australia); Wang, Bei; Su, Dawei; Wang, Ying; Chen, Shuangqiang [Centre for Clean Energy Technology, School of Chemistry and Forensic Science, University of Technology, Sydney, Broadway, Sydney, NSW 2007 (Australia); Zhang, Xiaogang [College of Materials Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing (China); Wang, Guoxiu, E-mail: Guoxiu.wang@uts.edu.au [Centre for Clean Energy Technology, School of Chemistry and Forensic Science, University of Technology, Sydney, Broadway, Sydney, NSW 2007 (Australia)

    2014-01-15

    Graphene/MnO{sub 2} hybrid nanosheets were prepared by incorporating graphene and MnO{sub 2} nanosheets in ethylene glycol. Scanning electron microscopy and transmission electron microscopy analyses confirmed nanosheet morphology of the hybrid materials. Graphene/MnO{sub 2} hybrid nanosheets with different ratios were investigated as electrode materials for supercapacitors by cyclic voltammetry (CV) and galvanostatic charge–discharge in 1 M Na{sub 2}SO{sub 4} electrolyte. We found that the graphene/MnO{sub 2} hybrid nanosheets with a weight ratio of 1:4 (graphene:MnO{sub 2}) delivered the highest specific capacitance of 320 F g{sup −1}. Graphene/MnO{sub 2} hybrid nanosheets also exhibited good capacitance retention on 2000 cycles. - Highlights: • Graphene/MnO{sub 2} hybrid nanosheets with different ratios were fabricated. • The specific capacitance is strongly dependent on graphene/MnO{sub 2} ratios. • The graphene/MnO{sub 2} hybrid electrode (1:4) exhibited high specific capacitance. • The electrode retained 84% of the initial specific capacitance after 2000 cycles.

  11. Composite Strain Hardening Properties of High Performance Hybrid Fibre Reinforced Concrete

    Directory of Open Access Journals (Sweden)

    Vikram Jothi Jayakumar

    2014-01-01

    Full Text Available Hybrid fibres addition in concrete proved to be a promising method to improve the composite mechanical properties of the cementitious system. Fibre combinations involving different fibre lengths and moduli were added in high strength slag based concrete to evaluate the strain hardening properties. Influence of hybrid fibres consisting of steel and polypropylene fibres added in slag based cementitious system (50% CRL was explored. Effects of hybrid fibre addition at optimum volume fraction of 2% of steel fibres and 0.5% of PP fibres (long and short steel fibre combinations were observed in improving the postcrack strength properties of concrete. Test results also indicated that the hybrid steel fibre additions in slag based concrete consisting of short steel and polypropylene (PP fibres exhibited a the highest compressive strength of 48.56 MPa. Comparative analysis on the performance of monofibre concrete consisting of steel and PP fibres had shown lower residual strength compared to hybrid fibre combinations. Hybrid fibres consisting of long steel-PP fibres potentially improved the absolute and residual toughness properties of concrete composite up to a maximum of 94.38% compared to monofibre concrete. In addition, the relative performance levels of different hybrid fibres in improving the matrix strain hardening, postcrack toughness, and residual strength capacity of slag based concretes were evaluated systematically.

  12. Graphene/MnO2 hybrid nanosheets as high performance electrode materials for supercapacitors

    International Nuclear Information System (INIS)

    Mondal, Anjon Kumar; Wang, Bei; Su, Dawei; Wang, Ying; Chen, Shuangqiang; Zhang, Xiaogang; Wang, Guoxiu

    2014-01-01

    Graphene/MnO 2 hybrid nanosheets were prepared by incorporating graphene and MnO 2 nanosheets in ethylene glycol. Scanning electron microscopy and transmission electron microscopy analyses confirmed nanosheet morphology of the hybrid materials. Graphene/MnO 2 hybrid nanosheets with different ratios were investigated as electrode materials for supercapacitors by cyclic voltammetry (CV) and galvanostatic charge–discharge in 1 M Na 2 SO 4 electrolyte. We found that the graphene/MnO 2 hybrid nanosheets with a weight ratio of 1:4 (graphene:MnO 2 ) delivered the highest specific capacitance of 320 F g −1 . Graphene/MnO 2 hybrid nanosheets also exhibited good capacitance retention on 2000 cycles. - Highlights: • Graphene/MnO 2 hybrid nanosheets with different ratios were fabricated. • The specific capacitance is strongly dependent on graphene/MnO 2 ratios. • The graphene/MnO 2 hybrid electrode (1:4) exhibited high specific capacitance. • The electrode retained 84% of the initial specific capacitance after 2000 cycles

  13. Regulatory pathway analysis by high-throughput in situ hybridization.

    Directory of Open Access Journals (Sweden)

    Axel Visel

    2007-10-01

    Full Text Available Automated in situ hybridization enables the construction of comprehensive atlases of gene expression patterns in mammals. Such atlases can become Web-searchable digital expression maps of individual genes and thus offer an entryway to elucidate genetic interactions and signaling pathways. Towards this end, an atlas housing approximately 1,000 spatial gene expression patterns of the midgestation mouse embryo was generated. Patterns were textually annotated using a controlled vocabulary comprising >90 anatomical features. Hierarchical clustering of annotations was carried out using distance scores calculated from the similarity between pairs of patterns across all anatomical structures. This process ordered hundreds of complex expression patterns into a matrix that reflects the embryonic architecture and the relatedness of patterns of expression. Clustering yielded 12 distinct groups of expression patterns. Because of the similarity of expression patterns within a group, members of each group may be components of regulatory cascades. We focused on the group containing Pax6, an evolutionary conserved transcriptional master mediator of development. Seventeen of the 82 genes in this group showed a change of expression in the developing neocortex of Pax6-deficient embryos. Electromobility shift assays were used to test for the presence of Pax6-paired domain binding sites. This led to the identification of 12 genes not previously known as potential targets of Pax6 regulation. These findings suggest that cluster analysis of annotated gene expression patterns obtained by automated in situ hybridization is a novel approach for identifying components of signaling cascades.

  14. Engineering three-dimensional hybrid supercapacitors and microsupercapacitors for high-performance integrated energy storage.

    Science.gov (United States)

    El-Kady, Maher F; Ihns, Melanie; Li, Mengping; Hwang, Jee Youn; Mousavi, Mir F; Chaney, Lindsay; Lech, Andrew T; Kaner, Richard B

    2015-04-07

    Supercapacitors now play an important role in the progress of hybrid and electric vehicles, consumer electronics, and military and space applications. There is a growing demand in developing hybrid supercapacitor systems to overcome the energy density limitations of the current generation of carbon-based supercapacitors. Here, we demonstrate 3D high-performance hybrid supercapacitors and microsupercapacitors based on graphene and MnO2 by rationally designing the electrode microstructure and combining active materials with electrolytes that operate at high voltages. This results in hybrid electrodes with ultrahigh volumetric capacitance of over 1,100 F/cm(3). This corresponds to a specific capacitance of the constituent MnO2 of 1,145 F/g, which is close to the theoretical value of 1,380 F/g. The energy density of the full device varies between 22 and 42 Wh/l depending on the device configuration, which is superior to those of commercially available double-layer supercapacitors, pseudocapacitors, lithium-ion capacitors, and hybrid supercapacitors tested under the same conditions and is comparable to that of lead acid batteries. These hybrid supercapacitors use aqueous electrolytes and are assembled in air without the need for expensive "dry rooms" required for building today's supercapacitors. Furthermore, we demonstrate a simple technique for the fabrication of supercapacitor arrays for high-voltage applications. These arrays can be integrated with solar cells for efficient energy harvesting and storage systems.

  15. Rotating-Sleeve Triboelectric-Electromagnetic Hybrid Nanogenerator for High Efficiency of Harvesting Mechanical Energy.

    Science.gov (United States)

    Cao, Ran; Zhou, Tao; Wang, Bin; Yin, Yingying; Yuan, Zuqing; Li, Congju; Wang, Zhong Lin

    2017-08-22

    Currently, a triboelectric nanogenerator (TENG) and an electromagnetic generator (EMG) have been hybridized to effectively scavenge mechanical energy. However, one critical issue of the hybrid device is the limited output power due to the mismatched output impedance between the two generators. In this work, impedance matching between the TENG and EMG is achieved facilely through commercial transformers, and we put forward a highly integrated hybrid device. The rotating-sleeve triboelectric-electromagnetic hybrid nanogenerator (RSHG) is designed by simulating the structure of a common EMG, which ensures a high efficiency in transferring ambient mechanical energy into electric power. The RSHG presents an excellent performance with a short-circuit current of 1 mA and open-circuit voltage of 48 V at a rotation speed of 250 rpm. Systematic measurements demonstrate that the hybrid nanogenerator can deliver the largest output power of 13 mW at a loading resistance of 8 kΩ. Moreover, it is demonstrated that a wind-driven RSHG can light dozens of light-emitting diodes and power an electric watch. The distinctive structure and high output performance promise the practical application of this rotating-sleeve structured hybrid nanogenerator for large-scale energy conversion.

  16. Genetic determination of high productivity in experimental hybrid combinations of sugar beet (Beta vulgaris L.

    Directory of Open Access Journals (Sweden)

    М. О. Корнєєва

    2016-05-01

    Full Text Available Purpose. Creation of experimental sugar beet hybrid combinations of high sugar yield values and defining gene­tic determination of their heterotic effect. Methods. Diallel crossing and topcrossing, genetic analysis of quantitative traits. Results. The authors have studied the frequency of occurrence of sugar beet heterotic hybrid combinations for «sugar yield» trait created on the basis of two pollinator lines to be genetically valuable for productivity elements, CMS lines and single-cross sterile hybrids with the use of diallel and topcrossing system of controlled hybridization. The share of parental components’ effect and their interaction in CMS hybrids variability for productivity was determined. Expediency of heterotic forecasting based on high combining ability lines was substabtiated. Promising high-yielding sugar beet combinations were selected that exceeded the group standard by 4.1–16.3%. Conclusions. The theory of genetic balance by M. V. Turbin was confirmed. Such hybrids as [CMS 5OT 4]MGP 1 (116.3%, [CMS 1OT 2]MGP 1 (112.5% and [CMS 3OT 5]MGP 1 (113.2% were recognized as the best for their productivity, MGP 1 and MGP 2 lines – as the best for their combining ability.

  17. Engineering three-dimensional hybrid supercapacitors and microsupercapacitors for high-performance integrated energy storage

    Science.gov (United States)

    El-Kady, Maher F.; Ihns, Melanie; Li, Mengping; Hwang, Jee Youn; Mousavi, Mir F.; Chaney, Lindsay; Lech, Andrew T.; Kaner, Richard B.

    2015-01-01

    Supercapacitors now play an important role in the progress of hybrid and electric vehicles, consumer electronics, and military and space applications. There is a growing demand in developing hybrid supercapacitor systems to overcome the energy density limitations of the current generation of carbon-based supercapacitors. Here, we demonstrate 3D high-performance hybrid supercapacitors and microsupercapacitors based on graphene and MnO2 by rationally designing the electrode microstructure and combining active materials with electrolytes that operate at high voltages. This results in hybrid electrodes with ultrahigh volumetric capacitance of over 1,100 F/cm3. This corresponds to a specific capacitance of the constituent MnO2 of 1,145 F/g, which is close to the theoretical value of 1,380 F/g. The energy density of the full device varies between 22 and 42 Wh/l depending on the device configuration, which is superior to those of commercially available double-layer supercapacitors, pseudocapacitors, lithium-ion capacitors, and hybrid supercapacitors tested under the same conditions and is comparable to that of lead acid batteries. These hybrid supercapacitors use aqueous electrolytes and are assembled in air without the need for expensive “dry rooms” required for building today’s supercapacitors. Furthermore, we demonstrate a simple technique for the fabrication of supercapacitor arrays for high-voltage applications. These arrays can be integrated with solar cells for efficient energy harvesting and storage systems. PMID:25831542

  18. A novel detection platform for parallel monitoring of DNA hybridization with high sensitivity and specificity

    DEFF Research Database (Denmark)

    Yi, Sun; Perch-Nielsen, Ivan R.; Wang, Zhenyu

    We developed a high-sensitive platform to monior multiple hybridization events in real time. By creating a microoptical array in a polymeric chip, the system combine the excellent discriminative power of supercritical angle fluorescence (SAF) microscopy with high-throughput capabilities of microa......We developed a high-sensitive platform to monior multiple hybridization events in real time. By creating a microoptical array in a polymeric chip, the system combine the excellent discriminative power of supercritical angle fluorescence (SAF) microscopy with high-throughput capabilities...

  19. Organosilica hybrid nanomaterials with a high organic content: syntheses and applications of silsesquioxanes

    KAUST Repository

    Croissant, Jonas G.

    2016-11-07

    Organic-inorganic hybrid materials garner properties from their organic and inorganic matrices as well as synergistic features, and therefore have recently attracted much attention at the nanoscale. Non-porous organosilica hybrid nanomaterials with a high organic content such as silsesquioxanes (R-SiO, with R organic groups) and bridged silsesquioxanes (OSi-R-SiO) are especially attractive hybrids since they provide 20 to 80 weight percent of organic functional groups in addition to the known chemistry and stability of silica. In the organosilica family, silsesquioxanes (R-SiO) stand between silicas (SiO) and silicones (RSiO), and are variously called organosilicas, ormosil (organically-modified silica), polysilsesquioxanes and silica hybrids. Herein, we comprehensively review non-porous silsesquioxane and bridged silsesquioxane nanomaterials and their applications in nanomedicine, electro-optics, and catalysis.

  20. Analysis of the Hybrid Power System for High-Altitude Unmanned Aircraft

    Directory of Open Access Journals (Sweden)

    Kangwen Sun

    2015-01-01

    Full Text Available The application of single solar array on high-altitude unmanned aircraft will waste energy because of its low conversion efficiency. Furthermore, since its energy utilization is limited, the surface temperature of solar array will rise to 70°C due to the waste solar energy, thus reducing the electrical performance of the solar array. In order to reuse the energy converted into heat by solar array, a hybrid power system is presented in this paper. In the hybrid power system, a new electricity-generating method is adopted to spread the photovoltaic cell on the wing surface and arrange photothermal power in the wing box section. Because the temperature on the back of photovoltaic cell is high, it can be used as the high-temperature heat source. The lower wing surface can be a low-temperature cold source. A high-altitude unmanned aircraft was used to analyze the performances of pure solar-powered aircraft and hybrid powered aircraft. The analysis result showed that the hybrid system could reduce the area of wing by 19% and that high-altitude unmanned aircraft with a 35 m or less wingspan could raise the utilization rate of solar energy per unit area after adopting the hybrid power system.

  1. Comparison of Fluorescence In Situ Hybridization and Chromogenic In Situ Hybridization for Low and High Throughput HER2 Genetic Testing

    Science.gov (United States)

    Poulsen, Tim S.; Espersen, Maiken L. M.; Kofoed, Vibeke; Dabetic, Tanja; Høgdall, Estrid; Balslev, Eva

    2013-01-01

    The purpose was to evaluate and compare 5 different HER2 genetic assays with different characteristics that could affect the performance to analyze the human epidermal growth factor 2 (HER2) gene copy number under low and high throughput conditions. The study included 108 tissue samples from breast cancer patients with HER2 immunohistochemistry (IHC) results scored as 0/1+, 2+, and 3+. HER2 genetic status was analysed using chromogenic in situ hybridization (CISH) and fluorescence in situ hybridization (FISH). Scoring results were documented through digital image analysis. The cancer region of interest was identified from a serial H&E stained slide following tissue cores were transferred to a tissue microarrays (TMA). When using TMA in a routine flow, all patients will be tested for HER2 status with IHC followed by CISH or FISH, thereby providing individual HER2 results. In conclusion, our results show that the differences between the HER2 genetic assays do not have an effect on the analytic performance and the CISH technology is superior to high throughput HER2 genetic testing due to scanning speed, while the IQ-FISH may still be a choice for fast low throughput HER2 genetic testing. PMID:24383005

  2. Organic Removal Efficiency of the Nanofiltration and Adsorption Hybrid System in High Strength Wastewater

    Directory of Open Access Journals (Sweden)

    Amir Hessam Hassani

    2011-03-01

    Full Text Available Surface and groundwater resources are increasingly jeopardized by discharges from pharmaceutical, chemical, and detergent plants. The high pollutant load of the effluents from these industries requires specific treatments. The objective of this research was to study and compare the nanofiltration and adsorption hybrid system with the plain nanofiltration system in wastewater treatment.For this purpose, a pilot nanofiltration system with a capacity of 7.6 m3/d using 1 and 5 micron filters and a FILMTEC NF90-4040 membrane was used in the first phase of the study. In the second phase, granular activated carbon cartridges were used. Inluent and effluent discharges as well as the COD removal were measured in both systems under variable times and organic load conditions. The results showed that COD removal efficiency was higher in the hybrid system than in the plain naonofiltration one. In the hybrid system, the Maximum in the hybrid system, the COD removal efficiencies achieved for organic loads of 1000, 2000, and 3000 mg/L were 99%, 95.86%, and 92.93%, respectively. The same values for the plain nanofiltration system were 87.34%, 50%, and 29.41%, respectively. It was found that polarization and membrane fouling decreased both the effluent flow and the COD removal efficiency with time. Fouling of the membrane was, however, lower in the hybrid system compared to the plain nanofiltration; thus, the hybrid system was associated with higher values of COD removal and delayed membrane fouling.

  3. Highly Reproducible Sn-Based Hybrid Perovskite Solar Cells with 9% Efficiency

    NARCIS (Netherlands)

    Shao, Shuyan; Liu, Jian; Portale, Giuseppe; Fang, Hong-Hua; Blake, Graeme R.; ten Brink, Gert H.; Koster, L. Jan Anton; Loi, Maria Antonietta

    2018-01-01

    The low power conversion efficiency (PCE) of tin-based hybrid perovskite solar cells (HPSCs) is mainly attributed to the high background carrier density due to a high density of intrinsic defects such as Sn vacancies and oxidized species (Sn4+) that characterize Sn-based HPSCs. Herein, this study

  4. Hybrid Design Optimization of High Voltage Pulse Transformers for Klystron Modulators

    CERN Document Server

    Sylvain, Candolfi; Davide, Aguglia; Jerome, Cros

    2015-01-01

    This paper presents a hybrid optimization methodology for the design of high voltage pulse transformers used in klystron modulators. The optimization process is using simplified 2D FEA design models of the 3D transformer structure. Each intermediate optimal solution is evaluated by 3D FEA and correction coefficients of the 2D FEA models are derived. A new optimization process using 2D FEA models is then performed. The convergence of this hybrid optimal design methodology is obtained with a limited number of time consuming 3D FEA simulations. The method is applied to the optimal design of a monolithic high voltage pulse transformer for the CLIC klystron modulator.

  5. Hybrid Molten Bed Gasifier for High Hydrogen Syngas Production

    Energy Technology Data Exchange (ETDEWEB)

    Rue, David [Gas Technology Institute, Des Plaines, IL (United States)

    2017-05-23

    The techno-economic analyses of the hybrid molten bed gasification technology and laboratory testing of the HMB process were carried out in this project by the Gas Technology Institute and partner Nexant, Inc. under contract with the US Department of Energy’s National Energy Technology Laboratory. This report includes the results of two complete IGCC and Fischer-Tropsch TEA analyses comparing HMB gasification with the Shell slagging gasification process as a base case. Also included are the results of the laboratory simulation tests of the HMB process using Illinois #6 coal fed along with natural gas, two different syngases, and steam. Work in this 18-month project was carried out in three main Tasks. Task 2 was completed first and involved modeling, mass and energy balances, and gasification process design. The results of this work were provided to Nexant as input to the TEA IGCC and FT configurations studied in detail in Task 3. The results of Task 2 were also used to guide the design of the laboratory-scale testing of the HMB concept in the submerged combustion melting test facility in GTI’s industrial combustion laboratory. All project work was completed on time and budget. A project close-out meeting reviewing project results was conducted on April 1, 2015 at GTI in Des Plaines, IL. The hybrid molten bed gasification process techno-economic analyses found that the HMB process is both technically and economically attractive compared with the Shell entrained flow gasification process. In IGCC configuration, HMB gasification provides both efficiency and cost benefits. In Fischer-Tropsch configuration, HMB shows small benefits, primarily because even at current low natural gas prices, natural gas is more expensive than coal on an energy cost basis. HMB gasification was found in the TEA to improve the overall IGCC economics as compared to the coal only Shell gasification process. Operationally, the HMB process proved to be robust and easy to operate. The burner

  6. Investigation on the effect of thermal resistances on a highly concentrated photovoltaic-thermoelectric hybrid system

    International Nuclear Information System (INIS)

    Zhang, Jin; Xuan, Yimin

    2016-01-01

    Highlights: • The highly concentrated PV-TE hybrid system is studied. • The performances of different cooling systems are analyzed and compared. • Sandwiching a copper plate between the PV and TE can improve the efficiency. • Four thermal design principles of the system are proposed. - Abstract: A thermal analysis of a highly concentrated photovoltaic-thermoelectric (PV-TE) hybrid system is carried out in this paper. Both the output power and the temperature distribution in the hybrid system are calculated by means of a three-dimensional numerical model. Three possible approaches for designing the highly concentrated PV-TE hybrid system are presented by analyzing the thermal resistance of the whole system. First, the sensitivity analysis shows that the thermal resistance between the TE module and the environment has a more great effect on the output power than the thermal resistance between the PV and the TE. The influence of the natural convection and the radiation can be ignored for the highly concentrated PV-TE hybrid system. Second, it is necessary to sandwich a copper plate between the PV and the TE for decreasing the thermal resistance between the PV and the TE. The role of the copper plate is to improve the temperature uniformity. Third, decreasing the area of PV cells can improve the efficiency of the highly concentrated PV-TE hybrid system. It should be pointed out that decreasing the area of PV cells also increases the total thermal resistance, but the raise of the efficiency is caused by the reduction of the heat transfer rate of the system. Therefore, the principle of minimizing the total thermal resistance may not be suitable for optimizing the area of PV cells.

  7. High-performance solid-state supercapacitors based on graphene-ZnO hybrid nanocomposites

    Science.gov (United States)

    Li, Zijiong; Zhou, Zhihua; Yun, Gaoqian; Shi, Kai; Lv, Xiaowei; Yang, Baocheng

    2013-11-01

    In this paper, we report a facile low-cost synthesis of the graphene-ZnO hybrid nanocomposites for solid-state supercapacitors. Structural analysis revealed a homogeneous distribution of ZnO nanorods that are inserted in graphene nanosheets, forming a sandwiched architecture. The material exhibited a high specific capacitance of 156 F g-1 at a scan rate of 5 mV.s-1. The fabricated solid-state supercapacitor device using these graphene-ZnO hybrid nanocomposites exhibits good supercapacitive performance and long-term cycle stability. The improved supercapacitance property of these materials could be ascribed to the increased conductivity of ZnO and better utilization of graphene. These results demonstrate the potential of the graphene-ZnO hybrid nanocomposites as an electrode in high-performance supercapacitors.

  8. High-performance solid-state supercapacitors based on graphene-ZnO hybrid nanocomposites

    Science.gov (United States)

    2013-01-01

    In this paper, we report a facile low-cost synthesis of the graphene-ZnO hybrid nanocomposites for solid-state supercapacitors. Structural analysis revealed a homogeneous distribution of ZnO nanorods that are inserted in graphene nanosheets, forming a sandwiched architecture. The material exhibited a high specific capacitance of 156 F g−1 at a scan rate of 5 mV.s−1. The fabricated solid-state supercapacitor device using these graphene-ZnO hybrid nanocomposites exhibits good supercapacitive performance and long-term cycle stability. The improved supercapacitance property of these materials could be ascribed to the increased conductivity of ZnO and better utilization of graphene. These results demonstrate the potential of the graphene-ZnO hybrid nanocomposites as an electrode in high-performance supercapacitors. PMID:24215772

  9. High Voltage Hybrid Electric Propulsion - Multilayered Functional Insulation System (MFIS) NASA-GRC

    Science.gov (United States)

    Lizcano, M.

    2017-01-01

    High power transmission cables pose a key challenge in future Hybrid Electric Propulsion Aircraft. The challenge arises in developing safe transmission lines that can withstand the unique environment found in aircraft while providing megawatts of power. High voltage AC, variable frequency cables do not currently exist and present particular electrical insulation challenges since electrical arcing and high heating are more prevalent at higher voltages and frequencies. Identifying and developing materials that maintain their dielectric properties at high voltage and frequencies is crucial.

  10. Generalized syntheses of nanocrystal-graphene hybrids in high-boiling-point organic solvents.

    Science.gov (United States)

    Pang, Danny Wei-Ping; Yuan, Fang-Wei; Chang, Yan-Cheng; Li, Guo-An; Tuan, Hsing-Yu

    2012-08-07

    Nanocrystal-graphene have been proposed as a new kind of promising hybrid for a wide range of application areas including catalysts, electronics, sensors, biomedicine, and energy storage, etc. Although a variety of methods have been developed for the preparation of hybrids, a facile and general synthetic approach is still highly required. In this study, nanocrystal-graphene hybrids were successfully synthesized in high-boiling-point organic solvents. Graphene oxide (GO) nanosheets were modified by oleylamine (OLA) to form a OLA-GO complex in order to be readily incorporated into hydrophobic synthesis. A rich library of highly crystalline nanocrystals, with types including noble metal, metal oxide, magnetic material and semiconductor were successfully grown on chemically converted graphene (CCG), which is simultaneously reduced from GO during the synthesis. High boiling-point solvents afford sufficient thermal energy to assure the high-quality crystalline nature of NCs, therefore the post-annealing process is obviated. Controlled experiments revealed that OLA-GO triggers heterogeneous nucleation and serves as excellent nuclei anchorage media. The protocol developed here brings one step closer to achieve "unity in diversity" on the preparation of nanocrystal-graphene hybrids.

  11. A High Resolution Radiation Hybrid Map of Wheat Chromosome 4A

    Czech Academy of Sciences Publication Activity Database

    Balcárková, Barbora; Frenkel, Z.; Škopová, Monika; Abrouk, Michael; Kumar, A.; Chao, S.; Kianian, S. F.; Akhunov, E.; Korol, A.; Doležel, Jaroslav; Valárik, Miroslav

    2017-01-01

    Roč. 7, JAN 10 (2017), č. článku 2063. ISSN 1664-462X R&D Projects: GA MŠk(CZ) LO1204; GA ČR(CZ) GA14-07164S Institutional support: RVO:61389030 Keywords : triticum-aestivum l. * bread wheat * high-density * agronomic traits * tetraploid wheat * hexaploid wheat * polyploid wheat * genetic maps * genomes * recombination * endosperm radiation hybrid panel * radiation hybrid map * wheat chromosome 4A * chromosome deletion bin map * Triticum aestivum * SNP iSelect array Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Plant sciences, botany Impact factor: 4.298, year: 2016

  12. Semiconductive 3-D haloplumbate framework hybrids with high color rendering index white-light emission.

    Science.gov (United States)

    Wang, Guan-E; Xu, Gang; Wang, Ming-Sheng; Cai, Li-Zhen; Li, Wen-Hua; Guo, Guo-Cong

    2015-12-01

    Single-component white light materials may create great opportunities for novel conventional lighting applications and display systems; however, their reported color rendering index (CRI) values, one of the key parameters for lighting, are less than 90, which does not satisfy the demand of color-critical upmarket applications, such as photography, cinematography, and art galleries. In this work, two semiconductive chloroplumbate (chloride anion of lead(ii)) hybrids, obtained using a new inorganic-organic hybrid strategy, show unprecedented 3-D inorganic framework structures and white-light-emitting properties with high CRI values around 90, one of which shows the highest value to date.

  13. Optical Characteristics of a Multichannel Hybrid Integrated Light Source for Ultra-High-Bandwidth Optical Interconnections

    Directory of Open Access Journals (Sweden)

    Takanori Shimizu

    2015-11-01

    Full Text Available The optical characteristics of a multi-channel hybrid integrated light source were described for an optical interconnection with a bandwidth of over 10 Tbit/s. The power uniformity of the relative intensity of a 1000-channel light source was shown, and the minimum standard deviation s of the optical power of the 200 output ports at each 25-channel laser diode (LD array was estimated to be 0.49 dB. This hybrid integrated light source is expected to be easily adaptable to a photonics-electronics convergence system for ultra-high-bandwidth interchip interconnections.

  14. A high performance hybrid battery based on aluminum anode and LiFePO4 cathode.

    Science.gov (United States)

    Sun, Xiao-Guang; Bi, Zhonghe; Liu, Hansan; Fang, Youxing; Bridges, Craig A; Paranthaman, M Parans; Dai, Sheng; Brown, Gilbert M

    2016-01-28

    A novel hybrid battery utilizing an aluminum anode, a LiFePO4 cathode and an acidic ionic liquid electrolyte based on 1-ethyl-3-methylimidazolium chloride (EMImCl) and aluminum trichloride (AlCl3) (EMImCl-AlCl3, 1-1.1 in molar ratio) with or without LiAlCl4 is proposed. The hybrid ion battery delivers an initial high capacity of 160 mA h g(-1) at a current rate of C/5. It also shows good rate capability and cycling performance.

  15. A Triblock Copolymer Design Leads to Robust Hybrid Hydrogels for High-Performance Flexible Supercapacitors.

    Science.gov (United States)

    Zhang, Guangzhao; Chen, Yunhua; Deng, Yonghong; Wang, Chaoyang

    2017-10-18

    We report here an intriguing hybrid conductive hydrogel as electrode for high-performance flexible supercapacitor. The key is using a rationally designed water-soluble ABA triblock copolymer (termed as IAOAI) containing a central poly(ethylene oxide) block (A) and terminal poly(acrylamide) (PAAm) block with aniline moieties randomly incorporated (B), which was synthesized by reversible additional fragment transfer polymerization. The subsequent copolymerization of aniline monomers with the terminated aniline moieties on the IAOAI polymer generates a three-dimensional cross-linking hybrid network. The hybrid hydrogel electrode demonstrates robust mechanical flexibility, remarkable electrochemical capacitance (919 F/g), and cyclic stability (90% capacitance retention after 1000 cycles). Moreover, the flexible supercapacitor based on this hybrid hydrogel electrode presents a large specific capacitance (187 F/g), superior to most reported conductive hydrogel-based supercapacitors. With the demonstrated additional favorable cyclic stability and excellent capacitive and rate performance, this hybrid hydrogel-based supercapacitor holds great promise for flexible energy-storage device.

  16. Hybrid engineered materials with high water-collecting efficiency inspired by Namib Desert beetles.

    Science.gov (United States)

    Zhu, Hai; Guo, Zhiguang

    2016-05-21

    Inspired by Namib Desert beetles, a hybrid superhydrophobic surface was fabricated, showing highly efficient fog harvesting with a water collection rate (WCR) of 1309.9 mg h(-1) cm(-2). And, the surface possessed an excellent robustness and self-cleaning property.

  17. High-response hybrid quantum dots- 2D conductor phototransistors: recent progress and perspectives

    Science.gov (United States)

    Sablon, Kimberly A.; Sergeev, Andrei; Najmaei, Sina; Dubey, Madan

    2017-03-01

    Having been inspired by the tremendous progress in material nanoscience and device nanoengineering, hybrid phototransistors combine solution processed colloidal semiconductor quantum dots (QDs) with graphene or two-dimensional (2D) semiconductor materials. Novel detectors demonstrate ultrahigh photoconductive gain, high and selective photoresponse, low noise, and very high responsivity in visible- and near-infrared ranges. The outstanding performance of phototransistors is primarily due to the strong, selective, and size tunable absorption of QDs and fast charge transfer in 2D high mobility conductors. However, the relatively small mobility of QD nanomaterials was a technological barrier, which limited the operating rate of devices. Very recent innovations in detector design and significant progress in QD ligand engineering provide effective tools for further qualitative improvements. This article reviews the recent progress in material science, nanophysics, and device engineering related to hybrid phototransistors. Detectors based on various QD nanomaterials and several 2D conductors are compared, and advantages and disadvantages of various nanomaterials for applications in hybrid phototransistors are identified. We also benchmark the experimental characteristics with model results that establish interrelations and tradeoffs between detector characteristics, such as responsivity, dark and noise currents, the photocarrier lifetime, response, and noise bandwidths. We have shown that the most recent phototransistors demonstrate performance limited by the fundamental generation recombination noise in high gain devices. Interrelation between the dynamic range of the detector and the detector sensitivity is discussed. The review is concluded with a brief discussion of the remaining challenges and possible significant improvements in the performance of hybrid phototransistors.

  18. Can Ferroelectric Polarization Explain the High Performance of Hybrid Halide Perovskite Solar Cells?

    NARCIS (Netherlands)

    Sherkar, Tejas; Koster, L. Jan Anton

    The power conversion efficiency of photovoltaic cells based on the use of hybrid halide perovskites, CH3NH3PbX3 (X = Cl, Br, I), now exceeds 20%. Recently, it was suggested that this high performance originates from the presence of ferroelectricity in the perovskite, which is hypothesized to lower

  19. Innovative Hybrid CHP systems for high temperature heating plant in existing buildings

    NARCIS (Netherlands)

    de Santoli, Livio; Lo Basso, Gianluigi; Nastasi, B.; d’Ambrosio Alfano, Francesca R.; Mazzarella and Piercarlo, Livio

    2017-01-01

    This paper deals with the potential role of new hybrid CHP systems application providing both electricity and heat which are compatible with the building architectural and landscape limitations. In detail, three different plant layout options for high temperature heat production along with the

  20. Hybrid magnet devices for molecule manipulation and small scale high gradient-field applications

    Science.gov (United States)

    Humphries, David E [El Cerrito, CA; Hong, Seok-Cheol [Seoul, KR; Cozzarelli, legal representative, Linda A.; Pollard, Martin J [El Cerrito, CA; Cozzarelli, Nicholas R [Berkeley, CA

    2009-01-06

    The present disclosure provides a high performance hybrid magnetic structure made from a combination of permanent magnets and ferromagnetic pole materials which are assembled in a predetermined array. The hybrid magnetic structure provides means for separation and other biotechnology applications involving holding, manipulation, or separation of magnetizable molecular structures and targets. Also disclosed are hybrid magnetic tweezers able to exert approximately 1 nN of force to 4.5 .mu.m magnetic bead. The maximum force was experimentally measured to be .about.900 pN which is in good agreement with theoretical estimations and other measurements. In addition, a new analysis scheme that permits fast real-time position measurement in typical geometry of magnetic tweezers has been developed and described in detail.

  1. Hybrid UV Lithography for 3D High-Aspect-Ratio Microstructures

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sungmin; Nam, Gyungmok; Kim, Jonghun; Yoon, Sang-Hee [Inha Univ, Incheon (Korea, Republic of)

    2016-08-15

    Three-dimensional (3D) high-aspect-ratio (HAR) microstructures for biomedical applications (e.g., microneedle, microadhesive, etc.) are microfabricated using the hybrid ultraviolet (UV) lithography in which inclined, rotational, and reverse-side UV exposure processes are combined together. The inclined and rotational UV exposure processes are intended to fabricate tapered axisymmetric HAR microstructures; the reverse-side UV exposure process is designed to sharpen the end tip of the microstructures by suppressing the UV reflection on a bottom substrate which is inevitable in conventional UV lithography. Hybrid UV lithography involves fabricating 3D HAR microstructures with an epoxy-based negative photoresist, SU-8, using our customized UV exposure system. The effects of hybrid UV lithography parameters on the geometry of the 3D HAR microstructures (aspect ratio, radius of curvature of the end tip, etc.) are measured. The dependence of the end-tip shape on SU-8 soft-baking condition is also discussed.

  2. Conceptual design of a fusion-fission hybrid reactor for transmutation of high level nuclear waste

    International Nuclear Information System (INIS)

    Qiu, L.J.; Wu, Y.C.; Yang, Y.W.; Wu, Y.; Luan, G.S.; Xu, Q.; Guo, Z.J.; Xiao, B.J.

    1994-01-01

    To assess the feasibility of the transmutation of long-lived radioactive waste using fusion-fission hybrid reactors, we are studying all the possible types of blanket, including a comparison of the thermal and fast neutron spectrum blankets. Conceptual designs of a small tokamak hybrid blanket with small inventory of actinides and fission products are presented. The small inventory of wastes makes the system safer. The small hybrid reactor system based on a fusion core with experimental parameters to be realized in the near future can effectively transmute actinides and fission products at a neutron wall loading of 1MWm -2 . An innovative energy system is also presented, including a fusion driver, fuel breeder, high level waste transmuter, fission reactor and so on. An optimal combination of all types of reactor is proposed in the system. ((orig.))

  3. Hybrid UV Lithography for 3D High-Aspect-Ratio Microstructures

    International Nuclear Information System (INIS)

    Park, Sungmin; Nam, Gyungmok; Kim, Jonghun; Yoon, Sang-Hee

    2016-01-01

    Three-dimensional (3D) high-aspect-ratio (HAR) microstructures for biomedical applications (e.g., microneedle, microadhesive, etc.) are microfabricated using the hybrid ultraviolet (UV) lithography in which inclined, rotational, and reverse-side UV exposure processes are combined together. The inclined and rotational UV exposure processes are intended to fabricate tapered axisymmetric HAR microstructures; the reverse-side UV exposure process is designed to sharpen the end tip of the microstructures by suppressing the UV reflection on a bottom substrate which is inevitable in conventional UV lithography. Hybrid UV lithography involves fabricating 3D HAR microstructures with an epoxy-based negative photoresist, SU-8, using our customized UV exposure system. The effects of hybrid UV lithography parameters on the geometry of the 3D HAR microstructures (aspect ratio, radius of curvature of the end tip, etc.) are measured. The dependence of the end-tip shape on SU-8 soft-baking condition is also discussed

  4. High-Temperature Hybrid Rotor Support System Developed

    Science.gov (United States)

    Montague, Gerald T.

    2004-01-01

    The Army Research Laboratory Vehicle Technology Directorate and the NASA Glenn Research Center demonstrated a unique high-speed, high-temperature rotor support system in September 2003. Advanced turbomachinery is on its way to surpassing the capabilities of rolling-element bearings and conventional dampers. To meet these demands, gas turbine engines of the future will demand increased efficiency and thrust-to-weight ratio, and reduced specific fuel consumption and noise. The more-electric engine replaces oil-lubricated bearings, dampers, gears, and seals with electrical devices. One such device is the magnetic bearing. The Vehicle Technology Directorate and Glenn have demonstrated the operation of a radial magnetic bearing in combination with a hydrostatic bearing at 1000 F at 31,000 rpm (2.3 MDN1). This unique combination takes advantage of a high-temperature rub surface in the event of electrical power loss or sudden overloads. The hydrostatic bearings allow load sharing with the magnetic bearing. The magnetic-hydrostatic bearing combination eliminates wear and high contact stress from sudden acceleration of the rolling-element bearings and overheating. The magnetic bearing enables high damping, adaptive vibration control, and precise rotor positioning, diagnostics, and health monitoring. A model of the test facility used at Glenn for this technology demonstration is shown. A high-temperature heteropolar radial magnetic bearing is located at the center of gravity of the test rotor. There is a 0.022-in. radial air gap between the rotor and stator. Two rub surface hydrostatic bearings were placed on either side of the magnetic bearing. The rotor is supported by a 0.002-in. hydrostatic air film and the magnetic field. The prototype active magnetic bearing cost $24,000 to design and fabricate and a set of four high temperature, rub-surface, hydrostatic bearings cost $28,000. This work was funded by the Turbine-Based Combined Cycle program.

  5. Comparison of Fluorescence In Situ Hybridization and Chromogenic In Situ Hybridization for Low and High Throughput HER2 Genetic Testing

    DEFF Research Database (Denmark)

    Poulsen, Tim S; Espersen, Maiken Lise Marcker; Kofoed, Vibeke

    2013-01-01

    cancer patients with HER2 immunohistochemistry (IHC) results scored as 0/1+, 2+, and 3+. HER2 genetic status was analysed using chromogenic in situ hybridization (CISH) and fluorescence in situ hybridization (FISH). Scoring results were documented through digital image analysis. The cancer region...

  6. Hybrid High-Fidelity Modeling of Radar Scenarios Using Atemporal, Discrete-Event, and Time-Step Simulation

    Science.gov (United States)

    2016-12-01

    10 Figure 1.8 High-efficiency and high-fidelity radar system simulation flowchart . 15 Figure 1.9...Methodology roadmaps: experimental-design flowchart showing hybrid sensor models integrated from three simulation categories, followed by overall...simulation display and output produced by Java Simkit program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 Figure 4.5 Hybrid

  7. Effect of Hybrid Fibers on the Mechanical Properties of High Strength Concrete

    Directory of Open Access Journals (Sweden)

    Hamid H. Hussein, Saeed K. Rejeb Hayder T. Abd

    2014-04-01

    Full Text Available In this study, high strength concrete of 75 MPa compressive strength was investigated. The experimental program was designed to study the effect of fibers and hybrid fibers (steel and polypropylene fibers on the fresh (workability and wet density and hardened properties (compressive strength, splitting strength, flexural strength and dry density of high strength concrete. Results show that decreases in slump flow of all concrete mixtures containing steel, polypropylene and hybrid fibers compared with control mix (0% fiber. Hybrid high strength concrete with steel and polypropylene fibers showed superior compressive, splitting, flexural strengths over the others concrete without or with single fibers content. The test results indicate that the maximum increase in compressive and flexural strengths are obtains with the hybridization ratio (70%steel + 30% polypropylene and were equal to 14.54% and 23.34% respectively, compared with the control mix. While, the maximum increase in splitting tensile strength with (100% steel fiber + 0 polypropylene is 21.19%. 

  8. Periodic imidazolium-bridged hybrid monolith for high-efficiency capillary liquid chromatography with enhanced selectivity.

    Science.gov (United States)

    Qiao, Xiaoqiang; Zhang, Niu; Han, Manman; Li, Xueyun; Qin, Xinying; Shen, Shigang

    2017-03-01

    A novel periodic imidazolium-bridged hybrid monolithic column was developed. With diene imidazolium ionic liquid 1-allyl-3-vinylimidazolium bromide as both cross-linker and organic functionalized reagent, a new periodic imidazolium-bridged hybrid monolithic column was facilely prepared in capillary with homogeneously distributed cationic imidazolium by a one-step free-radical polymerization with polyhedral oligomeric silsesquioxane methacryl substituted. The successful preparation of the new column was verified by Fourier transform infrared spectroscopy, scanning electron microscopy, elemental analysis, and surface area analysis. Most interestingly, the bonded amount of 1-allyl-3-vinylimidazolium bromide of the new column is three times higher than that of the conventional imidazolium-embedded hybrid monolithic column and the specific surface area of the column reached 478 m 2 /g. The new column exhibited high stability, excellent separation efficiency, and enhanced separation selectivity. The column efficiency reached 151 000 plates/m for alkylbenzenes. Furthermore, the new column was successfully used for separation of highly polar nucleosides and nucleic acid bases with pure water as mobile phase and even bovine serum albumin tryptic digest. All these results demonstrate the periodic imidazolium-bridged hybrid monolithic column is a good separation media and can be used for chromatographic separation of small molecules and complex biological samples with high efficiency. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Implementing Molecular Dynamics for Hybrid High Performance Computers - 1. Short Range Forces

    International Nuclear Information System (INIS)

    Brown, W. Michael; Wang, Peng; Plimpton, Steven J.; Tharrington, Arnold N.

    2011-01-01

    The use of accelerators such as general-purpose graphics processing units (GPGPUs) have become popular in scientific computing applications due to their low cost, impressive floating-point capabilities, high memory bandwidth, and low electrical power requirements. Hybrid high performance computers, machines with more than one type of floating-point processor, are now becoming more prevalent due to these advantages. In this work, we discuss several important issues in porting a large molecular dynamics code for use on parallel hybrid machines - (1) choosing a hybrid parallel decomposition that works on central processing units (CPUs) with distributed memory and accelerator cores with shared memory, (2) minimizing the amount of code that must be ported for efficient acceleration, (3) utilizing the available processing power from both many-core CPUs and accelerators, and (4) choosing a programming model for acceleration. We present our solution to each of these issues for short-range force calculation in the molecular dynamics package LAMMPS. We describe algorithms for efficient short range force calculation on hybrid high performance machines. We describe a new approach for dynamic load balancing of work between CPU and accelerator cores. We describe the Geryon library that allows a single code to compile with both CUDA and OpenCL for use on a variety of accelerators. Finally, we present results on a parallel test cluster containing 32 Fermi GPGPUs and 180 CPU cores.

  10. A hybridized K-means clustering approach for high dimensional ...

    African Journals Online (AJOL)

    International Journal of Engineering, Science and Technology ... Due to incredible growth of high dimensional dataset, conventional data base querying methods are inadequate to extract useful information, so researchers nowadays ... Recently cluster analysis is a popularly used data analysis method in number of areas.

  11. All 2D materials as electrodes for high power hybrid energy storage applications

    Science.gov (United States)

    Kato, Keiko; Sayed, Farheen N.; Babu, Ganguli; Ajayan, Pulickel M.

    2018-04-01

    Achieving both high energy and power densities from energy storage devices is a core strategy to meet the increasing demands of high performance portable electronics and electric transportation systems. Li-ion capacitor is a promising hybrid technology that strategically exploits high energy density from a Li-ion battery electrode and high power density from a supercapacitor electrode. However, the performance and safety of hybrid devices are still major concerns due to the use of graphite anodes which form passivation layers with organic electrolytes at lower potentials. Here, we explore 2D nanosheets as both anode and cathode electrodes to build a high power system without compromising energy density. Owing to the high electrical conductivity and multivalent redox activity at higher potentials, the Li-ion intercalation electrode is capable of maintaining large energy density at higher current rates with less safety risk than conventional systems. Hybrid devices consisting of all in all 2D electrodes deliver energy density as high as 121 Wh g-1 (at 240 W kg-1) and retains 29 Wh g-1 at high power density of 3600 W kg-1.

  12. Hybrid overlay metrology for high order correction by using CDSEM

    Science.gov (United States)

    Leray, Philippe; Halder, Sandip; Lorusso, Gian; Baudemprez, Bart; Inoue, Osamu; Okagawa, Yutaka

    2016-03-01

    Overlay control has become one of the most critical issues for semiconductor manufacturing. Advanced lithographic scanners use high-order corrections or correction per exposure to reduce the residual overlay. It is not enough in traditional feedback of overlay measurement by using ADI wafer because overlay error depends on other process (etching process and film stress, etc.). It needs high accuracy overlay measurement by using AEI wafer. WIS (Wafer Induced Shift) is the main issue for optical overlay, IBO (Image Based Overlay) and DBO (Diffraction Based Overlay). We design dedicated SEM overlay targets for dual damascene process of N10 by i-ArF multi-patterning. The pattern is same as device-pattern locally. Optical overlay tools select segmented pattern to reduce the WIS. However segmentation has limit, especially the via-pattern, for keeping the sensitivity and accuracy. We evaluate difference between the viapattern and relaxed pitch gratings which are similar to optical overlay target at AEI. CDSEM can estimate asymmetry property of target from image of pattern edge. CDSEM can estimate asymmetry property of target from image of pattern edge. We will compare full map of SEM overlay to full map of optical overlay for high order correction ( correctables and residual fingerprints).

  13. Large-eddy simulation/Reynolds-averaged Navier-Stokes hybrid schemes for high speed flows

    Science.gov (United States)

    Xiao, Xudong

    Three LES/RANS hybrid schemes have been proposed for the prediction of high speed separated flows. Each method couples the k-zeta (Enstrophy) BANS model with an LES subgrid scale one-equation model by using a blending function that is coordinate system independent. Two of these functions are based on turbulence dissipation length scale and grid size, while the third one has no explicit dependence on the grid. To implement the LES/RANS hybrid schemes, a new rescaling-reintroducing method is used to generate time-dependent turbulent inflow conditions. The hybrid schemes have been tested on a Mach 2.88 flow over 25 degree compression-expansion ramp and a Mach 2.79 flow over 20 degree compression ramp. A special computation procedure has been designed to prevent the separation zone from expanding upstream to the recycle-plane. The code is parallelized using Message Passing Interface (MPI) and is optimized for running on IBM-SP3 parallel machine. The scheme was validated first for a flat plate. It was shown that the blending function has to be monotonic to prevent the RANS region from appearing in the LES region. In the 25 deg ramp case, the hybrid schemes provided better agreement with experiment in the recovery region. Grid refinement studies demonstrated the importance of using a grid independent blend function and further improvement with experiment in the recovery region. In the 20 deg ramp case, with a relatively finer grid, the hybrid scheme characterized by grid independent blending function well predicted the flow field in both the separation region and the recovery region. Therefore, with "appropriately" fine grid, current hybrid schemes are promising for the simulation of shock wave/boundary layer interaction problems.

  14. Different proportions of C/KCu7S4 hybrid structure for high-performance supercapacitors

    Science.gov (United States)

    Dai, Shuge; Xi, Yi; Hu, Chenguo; Yue, Xule; Cheng, Lu; Wang, Guo

    2014-10-01

    KCu7S4 has the channel structure and minor resistance. Its double larger channels ensure that the ions can well exchange with other's, at the same time, can shorten the ionic diffusion path and improve the ionic and electronic transport. So KCu7S4 shows good electrochemical property. The paper reports a novel and high performance supercapacitor based on hybrid carbon particles and KCu7S4 (C/KCu7S4) electrode. For the hybrid structure with different proportions of C and KCu7S4, the C/KCu7S4 (1:10) hybrid supercapacitor shows preferable electrochemical performance and large specific capacitance (469 mF cm-2) at high charge-discharge rate (2 mA), still retaining ∼95% of the capacitance over 5000 cycles by charge-discharge process at a fixed current of 10 mA. Three supercapacitor units in series can light 50 light-emitting diodes (LEDs) for 2.5 min, 10 LEDs for 4 min, one LED for 5.5 min. The much-increased capacity, rate capability, and cycling stability may be attributed to the superionic conductive KCu7S4 nanowires and C/KCu7S4 hybrid structure, which improve ionic and electronic transport, enhance the kinetics of redox reactions through the electrode system.

  15. High capacity fiber optic sensor networks using hybrid multiplexing techniques and their applications

    Science.gov (United States)

    Sun, Qizhen; Li, Xiaolei; Zhang, Manliang; Liu, Qi; Liu, Hai; Liu, Deming

    2013-12-01

    Fiber optic sensor network is the development trend of fiber senor technologies and industries. In this paper, I will discuss recent research progress on high capacity fiber sensor networks with hybrid multiplexing techniques and their applications in the fields of security monitoring, environment monitoring, Smart eHome, etc. Firstly, I will present the architecture of hybrid multiplexing sensor passive optical network (HSPON), and the key technologies for integrated access and intelligent management of massive fiber sensor units. Two typical hybrid WDM/TDM fiber sensor networks for perimeter intrusion monitor and cultural relics security are introduced. Secondly, we propose the concept of "Microstructure-Optical X Domin Refecltor (M-OXDR)" for fiber sensor network expansion. By fabricating smart micro-structures with the ability of multidimensional encoded and low insertion loss along the fiber, the fiber sensor network of simple structure and huge capacity more than one thousand could be achieved. Assisted by the WDM/TDM and WDM/FDM decoding methods respectively, we built the verification systems for long-haul and real-time temperature sensing. Finally, I will show the high capacity and flexible fiber sensor network with IPv6 protocol based hybrid fiber/wireless access. By developing the fiber optic sensor with embedded IPv6 protocol conversion module and IPv6 router, huge amounts of fiber optic sensor nodes can be uniquely addressed. Meanwhile, various sensing information could be integrated and accessed to the Next Generation Internet.

  16. DNA-dispersed graphene/NiO hybrid materials for highly sensitive non-enzymatic glucose sensor

    International Nuclear Information System (INIS)

    Lv Wei; Jin Fengmin; Guo Quangui; Yang Quanhong; Kang Feiyu

    2012-01-01

    Highlights: ► We investigated the potential of GNS/NiO/DNA hybrid used as a nonenzymatic sensor. ► DNA is a highly efficient disperse agent for GNS/NiO hybrid than ionic surfactants. ► GNS/NiO/DNA hybrid shows fast electron transfer in the electrochemical reaction. ► GNS/NiO/DNA hybrid shows good detection performance towards glucose. - Abstract: We demonstrate graphene nanosheet/NiO hybrids (GNS/NiO) as the active material for high-performance non-enzymatic glucose sensors. Such sensors are fabricated by DNA-dispersed GNS/NiO suspension deposited on glassy carbon electrodes. ss-DNA shows strong dispersing ability for the GNS/NiO hybrid materials resulting in stable water-dispersible GNS/NiO/DNA hybrids with fully separated layers. The GNS/NiO/DNA hybrids show enhanced electron transfer in the electrocatalytic reaction process, and accordingly, such hybrids modified electrodes show good sensing performance towards glucose and are characterized by large detection ranges, short response periods, low detection limit and high sensitivity and stability.

  17. High-Energy Impact Behaviors of Hybrid Composite Plates Strengthened with 3D-UHMWPE Composites

    Directory of Open Access Journals (Sweden)

    Sang-Youl Lee

    2018-01-01

    Full Text Available This study deals with drop-impact effects of new hybrid concrete plates strengthened with an ultrahigh molecular weight polyethylene (UHMWPE. The proposed 3D-UHMWPE results in excellent mechanical properties such as high abrasion resistance, impact strength, and low coefficient of friction. These special properties allow the product to be used in several high-performance applications. In this study, we used two kinds of high-performance materials for the impact reinforcement of a structure made of conventional materials such as a concrete. In particular, the impact mechanism of a fiber-concrete hybrid structure was studied using various parameters. The parametric studies are focused on the various effects of drop-impact on the structural performance. The combined effects of using different fiber-reinforced materials on the impact behavers are also investigated.

  18. High affinity γPNA sandwich hybridization assay for rapid detection of short nucleic acid targets with single mismatch discrimination.

    Science.gov (United States)

    Goldman, Johnathan M; Zhang, Li Ang; Manna, Arunava; Armitage, Bruce A; Ly, Danith H; Schneider, James W

    2013-07-08

    Hybridization analysis of short DNA and RNA targets presents many challenges for detection. The commonly employed sandwich hybridization approach cannot be implemented for these short targets due to insufficient probe-target binding strengths for unmodified DNA probes. Here, we present a method capable of rapid and stable sandwich hybridization detection for 22 nucleotide DNA and RNA targets. Stable hybridization is achieved using an n-alkylated, polyethylene glycol γ-carbon modified peptide nucleic acid (γPNA) amphiphile. The γPNA's exceptionally high affinity enables stable hybridization of a second DNA-based probe to the remaining bases of the short target. Upon hybridization of both probes, an electrophoretic mobility shift is measured via interaction of the n-alkane modification on the γPNA with capillary electrophoresis running buffer containing nonionic surfactant micelles. We find that sandwich hybridization of both probes is stable under multiple binding configurations and demonstrate single base mismatch discrimination. The binding strength of both probes is also stabilized via coaxial stacking on adjacent hybridization to targets. We conclude with a discussion on the implementation of the proposed sandwich hybridization assay as a high-throughput microRNA detection method.

  19. Hybrid metal grid-polymer-carbon nanotube electrodes for high luminance organic light emitting diodes

    International Nuclear Information System (INIS)

    Sam, F Laurent M; Dabera, G Dinesha M R; Lai, Khue T; Mills, Christopher A; Rozanski, Lynn J; Silva, S Ravi P

    2014-01-01

    Organic light emitting diodes (OLEDs) incorporating grid transparent conducting electrodes (TCEs) with wide grid line spacing suffer from an inability to transfer charge carriers across the gaps in the grids to promote light emission in these areas. High luminance OLEDs fabricated using a hybrid TCE composed of poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS PH1000) or regioregular poly(3-hexylthiophene)-wrapped semiconducting single-walled carbon nanotubes (rrP3HT-SWCNT) in combination with a nanometre thin gold grid are reported here. OLEDs fabricated using the hybrid gold grid/PH1000 TCE have a luminance of 18 000 cd m −2 at 9 V; the same as the reference indium tin oxide (ITO) OLED. The gold grid/rrP3HT-SWCNT OLEDs have a lower luminance of 8260 cd m −2 at 9 V, which is likely due to a rougher rrP3HT-SWCNT surface. These results demonstrate that the hybrid gold grid/PH1000 TCE is a promising replacement for ITO in future plastic electronics applications including OLEDs and organic photovoltaics. For applications where surface roughness is not critical, e.g. electrochromic devices or discharge of static electricity, the gold grid/rrP3HT-SWCNT hybrid TCE can be employed. (paper)

  20. Amorphous Mn oxide-ordered mesoporous carbon hybrids as a high performance electrode material for supercapacitors.

    Science.gov (United States)

    Nam, Inho; Kim, Nam Dong; Kim, Gil-Pyo; Park, Junsu; Yi, Jongheop

    2012-07-01

    A supercapacitor has the advantages of both the conventional capacitors and the rechargeable batteries. Mn oxide is generally recognized one of the potential materials that can be used for a supercapacitor, but its low conductivity is a limiting factor for electrode materials. In this study, a hybrid of amorphous Mn oxide (AMO) and ordered mesoporous carbon (OMC) was prepared and characterized using X-ray diffraction, transmission electron microscopy, N2/77 K sorption techniques, and electrochemical analyses. The findings indicate that the electrochemical activities of Mn oxide were facilitated when it was in the hybrid state because OMC acted as a pathway for both the electrolyte ions and the electrons due to the characteristics of the ordered mesoporous structure. The ordered mesoporous structure of OMC was well maintained even after hybridization with amorphous Mn oxide. The electrochemical-activity tests revealed that the AMO/OMC hybrid had a higher specific capacitance and conductivity than pure Mn oxide. In the case where the Mn/C weight ratio was 0.75, the composite showed a high capacitance of 153 F/g, which was much higher than that for pure Mn oxide, due to the structural effects of OMC.

  1. Fuel cell/electrochemical capacitor hybrid for intermittent high power applications

    Energy Technology Data Exchange (ETDEWEB)

    Jarvis, L P; Atwater, T B; Cygan, P J [Army Communications-Electronics Command (CECOM), Fort Monmouth, NJ (United States). Research and Development Center

    1999-05-01

    A hybrid power source was demonstrated to successfully power a simulated power load encountered in portable military electronics and communications equipment. The hybrid system consisted of a 25 W proton exchange membrane fuel cell (PEMFC) stack connected in parallel with a 70 F capacitor bank. The cyclic regime of 18.0 W for 2 min followed by 2.5 W for 18 min was chosen as the baseline for the simulation of power load. The operating potential cut-off voltage for pass/failure was set to 3.0 V. At room temperature (23-25 C), the PEMFC alone could not handle the described baseline regime with the PEMFC operating potential dropping below the cut-off voltage within 10 s. The hybrid, however, continuously powered the same regime for 25 h. Its operating potential never reached the voltage cut-off point, not even during the high load of 18.0 W. The tests with hybrid configuration were aborted after 25 h of operation with no signs of output degradation, suggesting that further extended operation was possible. (orig.)

  2. Behavior of Reinforced Concrete Hybrid Trapezoidal Box Girders Using Ordinary and Highly Strength Concrete

    Directory of Open Access Journals (Sweden)

    Nameer A. Alawsh

    2018-03-01

    Full Text Available In this paper, the general behavior of reinforced concrete hybrid box girders is studied by experimental and numerical investigation. Experimental work is included casting monolithically five specimens of box girders with trapezoidal cross section and testing it as simply supported under two point loading. Two specimens were cast as homogenous box girders (full normal strength concrete (NSC (about 35 MPa and full high strength concrete (HSC (about 55 MPa and three specimens were cast as hybrid box girders (HSC in upper flange only, HSC in upper flange and half depth of webs, and HSC in bottom flange and total depth of webs. Experimental results showed significant effects of concrete hybridization on the structural behavior of box girders specimens such as: cracking loads, cracking patterns, ultimate strengths, and failure modes. The ultimate strength of Hybrid box girders increased by 23% as average when compared with the homogenous box girder (full NSC and decreased by 9% as average when compared with homogenous box girder (full HSC. In numerical investigation, the tested specimens were modeled and analyzed using three dimensional non-linear finite element analysis. The analysis was carried out by using a computer program (ANSYS V16.1. The numerical results showed an acceptable agreement with the experimental work with difference about (3.12% and 9.588% as average for ultimate load and deflection, respectively.

  3. A novel PM motor with hybrid PM excitation and asymmetric rotor structure for high torque performance

    Directory of Open Access Journals (Sweden)

    Gaohong Xu

    2017-05-01

    Full Text Available This paper proposes a novel permanent magnet (PM motor for high torque performance, in which hybrid PM material and asymmetric rotor design are applied. The hybrid PM material is adopted to reduce the consumption of rare-earth PM because ferrite PM is assisted to enhance the torque production. Meanwhile, the rotor structure is designed to be asymmetric by shifting the surface-insert PM (SPM, which is used to improve the torque performance, including average torque and torque ripple. Moreover, the reasons for improvement of the torque performance are explained by evaluation and analysis of the performances of the proposed motor. Compared with SPM motor and V-type motor, the merit of high utilization ratio of rare-earth PM is also confirmed, showing that the proposed motor can offer higher torque density and lower torque ripple simultaneously with less consumption of rare-earth PM.

  4. Very long pulse high-RF power test of a lower hybrid frequency antenna module

    Energy Technology Data Exchange (ETDEWEB)

    Goniche, M; Brossaud, J; Barral, C; Berger-By, G; Bibet, Ph; Poli, S; Rey, G; Tonon, G [Association Euratom-CEA, Centre d` Etudes Nucleaires de Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. de Recherches sur la Fusion Controlee; Seki, M; Obara, K [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment; and others

    1994-03-01

    Outgassing, induced by very long RF waves injection at high power density was studied in a module, able to be used for a lower hybrid frequency antenna. Good RF properties of the module are reported, however, resonance phenomena with strong absorption of RF power (15%) was observed at high temperature (T>400 deg C). A large outgassing data base is provided by the 75 shots cumulating 27 hours of RF injection. The comparison with previous experiments (Tore Supra and TdV prototype modules) confirm the effect of baking and results are consistent. Outgassing increases exponentially with -1/T, and a desorption model with an activation energy Ed {approx} 0.35 eV fits the data up to 400 deg C. In order to design vacuum pumping system for large lower hybrid frequency antenna, outgassing rates are given for different working temperatures. (author). 11 refs., 55 figs.

  5. High-efficiency supercapacitor electrodes of CVD-grown graphenes hybridized with multiwalled carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Kalam, Amir Abul; Bae, Joon Ho [Dept. of Nano-physics, Gachon University, Seongnam (Korea, Republic of); Park, Soo Bin; Seo, Yong Ho [Nanotechnology and Advanced Material Engineering, HMC, and GRI, Sejong University, Seoul (Korea, Republic of)

    2015-08-15

    We demonstrate, for the first time, high-efficiency supercapacitors by utilizing chemical vapor deposition (CVD)-grown graphenes hybridized with multiwalled carbon nanotubes (CNTs). A single-layer graphene was grown by simple CVD growth method, and transferred to polyethylene terephthalate substrates. The bare graphenes were further hybridized with multiwalled CNTs by drop-coating CNTs on graphenes. The supercapacitors using bare graphenes and graphenes with CNTs revealed that graphenes with CNTs resulted in enhanced supercapacitor performances of 2.2- (the mass-specific capacitance) and 4.4-fold (the area-specific capacitance) of those of bare graphenes. Our strategy to improve electrochemical performance of CVD-grown graphenes is advantageous for large-scale graphene electrodes due to high electrical conductivity of CVD-grown graphenes and cost-effectiveness of using multiwalled CNTs as compared to conventional employment of single-walled CNTs.

  6. Hybrid Active-Passive Microwave Photonic Filter with High Quality Factor

    International Nuclear Information System (INIS)

    En-Ming, Xu; Xin-Liang, Zhang; Li-Na, Zhou; Yu, Zhang; De-Xiu, Huang

    2009-01-01

    A hybrid high quality factor (Q-factor) microwave photonic filter with a cascaded active filter and a passive filter is presented and experimentally demonstrated. The active infinite impulse response filter is realized by a recirculating delay line loop with a semiconductor optical amplifier, and a much narrower 3 dB bandwidth of response peaks can be achieved. A passive finite impulse response filter is realized by an unbalance Mach–Zehnder interferometer, and it is cascaded to select the desired filter frequencies and to suppress the intermediate peaks. Compared with the purely active filter scheme, the free spectrum range and the Q-factor of the hybrid structure can be doubled. Stable operation and a high Q-factor of 362 are experimentally demonstrated

  7. Very long pulse high-RF power test of a lower hybrid frequency antenna module

    International Nuclear Information System (INIS)

    Goniche, M.; Brossaud, J.; Barral, C.; Berger-By, G.; Bibet, Ph.; Poli, S.; Rey, G.; Tonon, G.; Seki, M.; Obara, K.

    1994-03-01

    Outgassing, induced by very long RF waves injection at high power density was studied in a module, able to be used for a lower hybrid frequency antenna. Good RF properties of the module are reported, however, resonance phenomena with strong absorption of RF power (15%) was observed at high temperature (T>400 deg C). A large outgassing data base is provided by the 75 shots cumulating 27 hours of RF injection. The comparison with previous experiments (Tore Supra and TdV prototype modules) confirm the effect of baking and results are consistent. Outgassing increases exponentially with -1/T, and a desorption model with an activation energy Ed ∼ 0.35 eV fits the data up to 400 deg C. In order to design vacuum pumping system for large lower hybrid frequency antenna, outgassing rates are given for different working temperatures. (author). 11 refs., 55 figs

  8. High-efficiency supercapacitor electrodes of CVD-grown graphenes hybridized with multiwalled carbon nanotubes

    International Nuclear Information System (INIS)

    Kalam, Amir Abul; Bae, Joon Ho; Park, Soo Bin; Seo, Yong Ho

    2015-01-01

    We demonstrate, for the first time, high-efficiency supercapacitors by utilizing chemical vapor deposition (CVD)-grown graphenes hybridized with multiwalled carbon nanotubes (CNTs). A single-layer graphene was grown by simple CVD growth method, and transferred to polyethylene terephthalate substrates. The bare graphenes were further hybridized with multiwalled CNTs by drop-coating CNTs on graphenes. The supercapacitors using bare graphenes and graphenes with CNTs revealed that graphenes with CNTs resulted in enhanced supercapacitor performances of 2.2- (the mass-specific capacitance) and 4.4-fold (the area-specific capacitance) of those of bare graphenes. Our strategy to improve electrochemical performance of CVD-grown graphenes is advantageous for large-scale graphene electrodes due to high electrical conductivity of CVD-grown graphenes and cost-effectiveness of using multiwalled CNTs as compared to conventional employment of single-walled CNTs

  9. Application of a High-Power Reversible Converter in a Hybrid Traction Power Supply System

    Directory of Open Access Journals (Sweden)

    Gang Zhang

    2017-03-01

    Full Text Available A high-power reversible converter can achieve a variety of functions, such as recovering regenerative braking energy, expanding traction power capacity, and improving an alternating current (AC grid power factor. A new hybrid traction power supply scheme, which consists of a high-power reversible converter and two 12-pulse diode rectifiers, is proposed. A droop control method based on load current feed-forward is adopted to realize the load distribution between the reversible converter and the existing 12-pulse diode rectifiers. The direct current (DC short-circuit characteristics of the reversible converter is studied, then the relationship between the peak fault current and the circuit parameters is obtained from theoretical calculations and validated by computer simulation. The first two sets of 2 MW reversible converters have been successfully applied in Beijing Metro Line 10, the proposed hybrid application scheme and coordinated control strategy are verified, and 11.15% of average energy-savings is reached.

  10. Behavior of hybrid high-strength fiber reinforced concrete slab-column connections under the effect of high tempera

    Directory of Open Access Journals (Sweden)

    Reham H. Ahmed

    2016-04-01

    Full Text Available Concrete can be modified to perform in a more ductile form by the addition of randomly distributed discrete fibers in the concrete matrix. The combined effect of the addition of two types of fibers (steel fiber and polypropylene fiber with different percentages to concrete matrix, which is called hybrid effect is currently under investigation worldwide. The current research work presents the conducted experimental program to observe the behavior of hybrid high strength reinforced concrete slab-column connections under the effect of high temperature. For this purpose, ten slab-column connections were casted and tested. The experimental program was designed to investigate the effect of different variables such as concrete mixture, column location and temperature fighting system. All specimens were exposed to a temperature of 500 °C for duration of two hours. To observe the effect of each variable, specimens were divided into four groups according to the studied parameters. The test results revealed that using hybrid high strength concrete HFHSC produced more strength in punching failure compared with high strength concrete HSC when exposed to elevated temperature. Fighting by air had higher initial crack load compared with that for without fighting and fighting by water. On the other hand, fighting by water decreased the ultimate load.

  11. Graphene/CuS/ZnO hybrid nanocomposites for high performance photocatalytic applications

    International Nuclear Information System (INIS)

    Varghese, Jini; Varghese, K.T.

    2015-01-01

    We herein report a novel, high performance ternary nanocomposite composed of Graphene doped with nano Copper Sulphide and Zinc Oxide nanotubes (GCZ) for photodegradation of organic pollutants. Investigations were made to estimate and compare the Methyl Orange dye (MO) degradation using GCZ, synthesized pristine Graphene (Gr) and Graphene–ZnO hybrid nanocomposite (GZ) under UV light irradiations. The synthesis of nanocomposites involves the simple ultra-sonication and mixing methods. The nanocomposites were characterized using transmission electron microscopy (TEM), high resolution transmission electron microscopy (HR-TEM), X-ray diffraction (XRD), Raman spectroscopy, UV–vis absorption spectroscopy and Brunauer–Emmett–Teller (BET) surface area method. The as synthesized GCZ shows better surface area, porosity and band gap energy than as synthesized Gr and GZ. The photocatalytic degradation of methyl orange dye follows as Gr  > GZ due to the stronger adsorbability, large number of photo induced electrons and highest inhibition of charge carrier's recombination of GCZ. The kinetic investigation demonstrates that dye degradation exhibit the pseudo first order kinetic model with rate constant 0.1322, 0.049 and0.0109 min"−"1 corresponding to GCZ, GZ and Gr. The mechanism of dye degradation in presence of photocatalyst is also discussed. This study confirms that GCZ is a more promising material for high performance catalytic applications especially in the dye waste water purification. - Highlights: • Graphene–CuS–ZnO hybrid composites show better surface area, porosity and adsorbability. • CuS–ZnO hybrid nanostructure highly enhanced the photocatalytic activity of Graphene. • Graphene–CuS–ZnO hybrid composites show superior photocatalytic efficiency, rate constant and quantum yield.

  12. High-response hybrid quantum dots- 2D conductor phototransistors: recent progress and perspectives

    Directory of Open Access Journals (Sweden)

    Sablon Kimberly A.

    2017-03-01

    Full Text Available Having been inspired by the tremendous progress in material nanoscience and device nanoengineering, hybrid phototransistors combine solution processed colloidal semiconductor quantum dots (QDs with graphene or two-dimensional (2D semiconductor materials. Novel detectors demonstrate ultrahigh photoconductive gain, high and selective photoresponse, low noise, and very high responsivity in visible- and near-infrared ranges. The outstanding performance of phototransistors is primarily due to the strong, selective, and size tunable absorption of QDs and fast charge transfer in 2D high mobility conductors. However, the relatively small mobility of QD nanomaterials was a technological barrier, which limited the operating rate of devices. Very recent innovations in detector design and significant progress in QD ligand engineering provide effective tools for further qualitative improvements. This article reviews the recent progress in material science, nanophysics, and device engineering related to hybrid phototransistors. Detectors based on various QD nanomaterials and several 2D conductors are compared, and advantages and disadvantages of various nanomaterials for applications in hybrid phototransistors are identified. We also benchmark the experimental characteristics with model results that establish interrelations and tradeoffs between detector characteristics, such as responsivity, dark and noise currents, the photocarrier lifetime, response, and noise bandwidths. We have shown that the most recent phototransistors demonstrate performance limited by the fundamental generation recombination noise in high gain devices. Interrelation between the dynamic range of the detector and the detector sensitivity is discussed. The review is concluded with a brief discussion of the remaining challenges and possible significant improvements in the performance of hybrid phototransistors.

  13. AN ASSESSMENT OF FLYWHEEL HIGH POWER ENERGY STORAGE TECHNOLOGY FOR HYBRID VEHICLES

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, James Gerald [ORNL

    2012-02-01

    An assessment has been conducted for the DOE Vehicle Technologies Program to determine the state of the art of advanced flywheel high power energy storage systems to meet hybrid vehicle needs for high power energy storage and energy/power management. Flywheel systems can be implemented with either an electrical or a mechanical powertrain. The assessment elaborates upon flywheel rotor design issues of stress, materials and aspect ratio. Twelve organizations that produce flywheel systems submitted specifications for flywheel energy storage systems to meet minimum energy and power requirements for both light-duty and heavy-duty hybrid applications of interest to DOE. The most extensive experience operating flywheel high power energy storage systems in heavy-duty and light-duty hybrid vehicles is in Europe. Recent advances in Europe in a number of vehicle racing venues and also in road car advanced evaluations are discussed. As a frame of reference, nominal weight and specific power for non-energy storage components of Toyota hybrid electric vehicles are summarized. The most effective utilization of flywheels is in providing high power while providing just enough energy storage to accomplish the power assist mission effectively. Flywheels are shown to meet or exceed the USABC power related goals (discharge power, regenerative power, specific power, power density, weight and volume) for HEV and EV batteries and ultracapacitors. The greatest technical challenge facing the developer of vehicular flywheel systems remains the issue of safety and containment. Flywheel safety issues must be addressed during the design and testing phases to ensure that production flywheel systems can be operated with adequately low risk.

  14. Evolution of Durable High-Strength Flowable Mortar Reinforced with Hybrid Fibers

    OpenAIRE

    Dawood, Eethar Thanon; Ramli, Mahyuddin

    2012-01-01

    The production and use of durable materials in construction are considered as one of the most challenging things for the professional engineers. Therefore, this research was conducted to investigate the mechanical properties and the durability by using of different percentages of steel fiber with high-strength flowable mortar (HSFM) and also the use of the hybridization of steel fibers, palm fibers, and synthetic fiber (Barchip). Different experimental tests (compressive strength, splitting t...

  15. Graphene/CuS/ZnO hybrid nanocomposites for high performance photocatalytic applications

    Energy Technology Data Exchange (ETDEWEB)

    Varghese, Jini, E-mail: jini.nano@gmail.com; Varghese, K.T., E-mail: ktvscs@gmail.com

    2015-11-01

    We herein report a novel, high performance ternary nanocomposite composed of Graphene doped with nano Copper Sulphide and Zinc Oxide nanotubes (GCZ) for photodegradation of organic pollutants. Investigations were made to estimate and compare the Methyl Orange dye (MO) degradation using GCZ, synthesized pristine Graphene (Gr) and Graphene–ZnO hybrid nanocomposite (GZ) under UV light irradiations. The synthesis of nanocomposites involves the simple ultra-sonication and mixing methods. The nanocomposites were characterized using transmission electron microscopy (TEM), high resolution transmission electron microscopy (HR-TEM), X-ray diffraction (XRD), Raman spectroscopy, UV–vis absorption spectroscopy and Brunauer–Emmett–Teller (BET) surface area method. The as synthesized GCZ shows better surface area, porosity and band gap energy than as synthesized Gr and GZ. The photocatalytic degradation of methyl orange dye follows as Gr <<< GCZ >> GZ due to the stronger adsorbability, large number of photo induced electrons and highest inhibition of charge carrier's recombination of GCZ. The kinetic investigation demonstrates that dye degradation exhibit the pseudo first order kinetic model with rate constant 0.1322, 0.049 and0.0109 min{sup −1} corresponding to GCZ, GZ and Gr. The mechanism of dye degradation in presence of photocatalyst is also discussed. This study confirms that GCZ is a more promising material for high performance catalytic applications especially in the dye waste water purification. - Highlights: • Graphene–CuS–ZnO hybrid composites show better surface area, porosity and adsorbability. • CuS–ZnO hybrid nanostructure highly enhanced the photocatalytic activity of Graphene. • Graphene–CuS–ZnO hybrid composites show superior photocatalytic efficiency, rate constant and quantum yield.

  16. Solving Problems in Various Domains by Hybrid Models of High Performance Computations

    Directory of Open Access Journals (Sweden)

    Yurii Rogozhin

    2014-03-01

    Full Text Available This work presents a hybrid model of high performance computations. The model is based on membrane system (P~system where some membranes may contain quantum device that is triggered by the data entering the membrane. This model is supposed to take advantages of both biomolecular and quantum paradigms and to overcome some of their inherent limitations. The proposed approach is demonstrated through two selected problems: SAT, and image retrieving.

  17. Chemically Designed Metallic/Insulating Hybrid Nanostructures with Silver Nanocrystals for Highly Sensitive Wearable Pressure Sensors.

    Science.gov (United States)

    Kim, Haneun; Lee, Seung-Wook; Joh, Hyungmok; Seong, Mingi; Lee, Woo Seok; Kang, Min Su; Pyo, Jun Beom; Oh, Soong Ju

    2018-01-10

    With the increase in interest in wearable tactile pressure sensors for e-skin, researches to make nanostructures to achieve high sensitivity have been actively conducted. However, limitations such as complex fabrication processes using expensive equipment still exist. Herein, simple lithography-free techniques to develop pyramid-like metal/insulator hybrid nanostructures utilizing nanocrystals (NCs) are demonstrated. Ligand-exchanged and unexchanged silver NC thin films are used as metallic and insulating components, respectively. The interfaces of each NC layer are chemically engineered to create discontinuous insulating layers, i.e., spacers for improved sensitivity, and eventually to realize fully solution-processed pressure sensors. Device performance analysis with structural, chemical, and electronic characterization and conductive atomic force microscopy study reveals that hybrid nanostructure based pressure sensor shows an enhanced sensitivity of higher than 500 kPa -1 , reliability, and low power consumption with a wide range of pressure sensing. Nano-/micro-hierarchical structures are also designed by combining hybrid nanostructures with conventional microstructures, exhibiting further enhanced sensing range and achieving a record sensitivity of 2.72 × 10 4 kPa -1 . Finally, all-solution-processed pressure sensor arrays with high pixel density, capable of detecting delicate signals with high spatial selectivity much better than the human tactile threshold, are introduced.

  18. High Isolation Dual-Polarized Patch Antenna with Hybrid Ring Feeding

    Directory of Open Access Journals (Sweden)

    Xian-Jing Lin

    2017-01-01

    Full Text Available This paper presents a hybrid ring feeding dual-polarized patch antenna with high isolation in a wide working band. The proposed antenna consists of a circular radiating patch printed on the upper horizontal substrate, two pairs of Γ shaped strips printed on two vertical substrates, and a hybrid ring feeding network printed on the lower two horizontal substrates. The proposed antenna adopts Γ shape strips coupled feeding structure to achieve a wide operating band. Furthermore, a hybrid ring feeding structure with high isolation in a wide bandwidth, which is firstly proposed, is applied as feeding network. When one port is excited, the feeding network can realize twice the power cancellation. Thus, high ports isolation characteristics can be obtained. A prototype of the proposed antenna is fabricated and measured. Measured results show that the 10 dB reflection coefficient bandwidths of the two ports are both about 38.7%, with port isolation higher than 40 dB through most of the band, and the cross-polarizations are below −24 dB.

  19. Hybridized Phosphate with Ultrathin Nanoslices and Single Crystal Microplatelets for High Performance Supercapacitors

    Science.gov (United States)

    Zhao, Yufeng; Chen, Zhaoyang; Xiong, Ding-Bang; Qiao, Yuqing; Tang, Yongfu; Gao, Faming

    2016-01-01

    A novel hybridized phosphate is developed through a mild hydrothermal method to construct high performance asymmetric supercapacitor. Single layered (Ni,Co)3(PO4)2·8H2O nanoslices (∼1 nm) and single crystal (NH4)(Ni,Co)PO4·0.67H2O microplatelets are obtained through a template sacrificial method and dissolution recrystallization approach respectively in one step. This unique hybridized structure delivers a maximum specific capacitance of 1128 F g−1 at current density of 0.5 A g−1. The asymmetric supercapacitor (ASC) based on the hybrid exhibits a high energy density of 35.3 Wh kg−1 at low power density, and still holds 30.9 Wh kg−1 at 4400 W kg−1. Significantly, the ASC manifests very high cycling stability with 95.6% capacitance retention after 5000 cycles. Such excellent electrochemical performance could be attributed to the synergistic effect of the surface redox reaction from the ultrathin nanoslices and ion intercalation from the single crystal bulk structure. This material represents a novel kind of electrode material for the potential application in supercapacitors. PMID:26833204

  20. Hybrid laser-gas metal arc welding (GMAW) of high strength steel gas transmission pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Harris, Ian D.; Norfolk, Mark I. [Edison Welding Institute (EWI), Columbus, Ohio (United States)

    2009-07-01

    Hybrid Laser/arc welding process (HLAW) can complete 5G welds, assure weld soundness, material properties, and an acceptable geometric profile. Combining new lasers and pulsed gas metal arc welding (GMAW-P) has led to important innovations in the HLAW process, increasing travel speed for successful root pass welding. High power Yb fiber lasers allow a 10 kW laser to be built the size of a refrigerator, allowing portability for use on the pipeline right-of-way. The objective was to develop and apply an innovative HLAW system for mechanized welding of high strength, high integrity, pipelines and develop 5G welding procedures for X80 and X100 pipe, including mechanical testing to API 1104. A cost-matched JIP developed a prototype HLAW head based on a commercially available bug and band system (CRC-Evans P450). Under the US Department of Transportation (DOT) project, the subject of this paper, the system was used to advance pipeline girth welding productivity. External hybrid root pass welding achieved full penetration welds with a 4-mm root at a travel speed of 2.3-m/min. Welds were made 'double down' using laser powers up to 10 kW and travel speeds up to 3-m/min. The final objective of the project was to demonstrate the hybrid LBW/GMAW system under simulated field conditions. (author)

  1. High-pressure behavior of methylammonium lead iodide (MAPbI_3) hybrid perovskite

    International Nuclear Information System (INIS)

    Capitani, Francesco; Marini, Carlo; Caramazza, Simone; Postorino, Paolo; Garbarino, Gaston; Hanfland, Michael; Pisanu, Ambra; Quadrelli, Paolo; Malavasi, Lorenzo

    2016-01-01

    In this paper we provide an accurate high-pressure structural and optical study of the MAPbI_3 hybrid perovskite. Structural data show the presence of a phase transition toward an orthorhombic structure around 0.3 GPa followed by full amorphization of the system above 3 GPa. After releasing the pressure, the system keeps the high-pressure orthorhombic phase. The occurrence of these structural transitions is further confirmed by pressure induced variations of the photoluminescence signal at high pressure. These variations clearly indicate that the bandgap value and the electronic structure of MAPI change across the phase transition.

  2. High-pressure behavior of methylammonium lead iodide (MAPbI3) hybrid perovskite

    Science.gov (United States)

    Capitani, Francesco; Marini, Carlo; Caramazza, Simone; Postorino, Paolo; Garbarino, Gaston; Hanfland, Michael; Pisanu, Ambra; Quadrelli, Paolo; Malavasi, Lorenzo

    2016-05-01

    In this paper we provide an accurate high-pressure structural and optical study of the MAPbI3 hybrid perovskite. Structural data show the presence of a phase transition toward an orthorhombic structure around 0.3 GPa followed by full amorphization of the system above 3 GPa. After releasing the pressure, the system keeps the high-pressure orthorhombic phase. The occurrence of these structural transitions is further confirmed by pressure induced variations of the photoluminescence signal at high pressure. These variations clearly indicate that the bandgap value and the electronic structure of MAPI change across the phase transition.

  3. Optimisation of hybrid high-modulus/high-strength carbon fiber reinforced plastic composite drive

    OpenAIRE

    Montagnier, Olivier; Hochard, Christian

    2011-01-01

    International audience; This study deals with the optimisation of hybrid composite drive shafts operating at subcritical or supercritical speeds, using a genetic algorithm. A formulation for the flexural vibrations of a composite drive shaft mounted on viscoelastic supports including shear effects is developed. In particular, an analytic stability criterion is developed to ensure the integrity of the system in the supercritical regime. Then it is shown that the torsional strength can be compu...

  4. Innovative architecture design for high performance organic and hybrid multi-junction solar cells

    Science.gov (United States)

    Li, Ning; Spyropoulos, George D.; Brabec, Christoph J.

    2017-08-01

    The multi-junction concept is especially attractive for the photovoltaic (PV) research community owing to its potential to overcome the Schockley-Queisser limit of single-junction solar cells. Tremendous research interests are now focused on the development of high-performance absorbers and novel device architectures for emerging PV technologies, such as organic and perovskite PVs. It has been predicted that the multi-junction concept is able to boost the organic and perovskite PV technologies approaching the 20% and 30% benchmarks, respectively, showing a bright future of commercialization of the emerging PV technologies. In this contribution, we will demonstrate innovative architecture design for solution-processed, highly functional organic and hybrid multi-junction solar cells. A simple but elegant approach to fabricating organic and hybrid multi-junction solar cells will be introduced. By laminating single organic/hybrid solar cells together through an intermediate layer, the manufacturing cost and complexity of large-scale multi-junction solar cells can be significantly reduced. This smart approach to balancing the photocurrents as well as open circuit voltages in multi-junction solar cells will be demonstrated and discussed in detail.

  5. High photoresponse of individual WS2 nanowire-nanoflake hybrid materials

    Science.gov (United States)

    Asres, Georgies Alene; Järvinen, Topias; Lorite, Gabriela S.; Mohl, Melinda; Pitkänen, Olli; Dombovari, Aron; Tóth, Geza; Spetz, Anita Lloyd; Vajtai, Robert; Ajayan, Pulickel M.; Lei, Sidong; Talapatra, Saikat; Kordas, Krisztian

    2018-06-01

    van der Waals solids have been recognized as highly photosensitive materials that compete conventional Si and compound semiconductor based devices. While 2-dimensional nanosheets of single and multiple layers and 1-dimensional nanowires of molybdenum and tungsten chalcogenides have been studied, their nanostructured derivatives with complex morphologies are not explored yet. Here, we report on the electrical and photosensitive properties of WS2 nanowire-nanoflake hybrid materials we developed lately. We probe individual hybrid nanostructured particles along the structure using focused ion beam deposited Pt contacts. Further, we use conductive atomic force microscopy to analyze electrical behavior across the nanostructure in the transverse direction. The electrical measurements are complemented by in situ laser beam illumination to explore the photoresponse of the nanohybrids in the visible optical spectrum. Photodetectors with responsivity up to ˜0.4 AW-1 are demonstrated outperforming graphene as well as most of the other transition metal dichalcogenide based devices.

  6. Zero- and two-dimensional hybrid carbon phosphors for high colorimetric purity white light-emission.

    Science.gov (United States)

    Ding, Yamei; Chang, Qing; Xiu, Fei; Chen, Yingying; Liu, Zhengdong; Ban, Chaoyi; Cheng, Shuai; Liu, Juqing; Huang, Wei

    2018-03-01

    Carbon nanomaterials are promising phosphors for white light emission. A facile single-step synthesis method has been developed to prepare zero- and two-dimensional hybrid carbon phosphors for the first time. Zero-dimensional carbon dots (C-dots) emit bright blue luminescence under 365 nm UV light and two-dimensional nanoplates improve the dispersity and film forming ability of C-dots. As a proof-of-concept application, the as-prepared hybrid carbon phosphors emit bright white luminescence in the solid state, and the phosphor-coated blue LEDs exhibit high colorimetric purity white light-emission with a color coordinate of (0.3308, 0.3312), potentially enabling the successful application of white emitting phosphors in the LED field.

  7. From hybrid to quadratic inflation with high-scale supersymmetry breaking

    Directory of Open Access Journals (Sweden)

    Constantinos Pallis

    2014-09-01

    Full Text Available Motivated by the reported discovery of inflationary gravity waves by the Bicep2 experiment, we propose an inflationary scenario in supergravity, based on the standard superpotential used in hybrid inflation. The new model yields a tensor-to-scalar ratio r≃0.14 and scalar spectral index ns≃0.964, corresponding to quadratic (chaotic inflation. The important new ingredients are the high-scale, (1.6–10⋅1013 GeV, soft supersymmetry breaking mass for the gauge singlet inflaton field and a shift symmetry imposed on the Kähler potential. The end of inflation is accompanied, as in the earlier hybrid inflation models, by the breaking of a gauge symmetry at (1.2–7.1⋅1016 GeV, comparable to the grand-unification scale.

  8. Highly efficient solid-state neutron scintillators based on hybrid sol-gel nanocomposite materials

    International Nuclear Information System (INIS)

    Kesanli, Banu; Hong, Kunlun; Meyer, Kent; Im, Hee-Jung; Dai, Sheng

    2006-01-01

    This research highlights opportunities in the formulation of neutron scintillators that not only have high scintillation efficiencies but also can be readily cast into two-dimensional detectors. Series of transparent, crack-free monoliths were prepared from hybrid polystyrene-silica nanocomposites in the presence of arene-containing alkoxide precursor through room temperature sol-gel processing. The monoliths also contain lithium-6 salicylate as a target material for neutron-capture reactions and amphiphilic scintillator solution as a fluorescent sensitizer. Polystyrene was functionalized by trimethoxysilyl group in order to enable the covalent incorporation of aromatic functional groups into the inorganic sol-gel matrices for minimizing macroscopic phase segregation and facilitating lithium-6 doping in the sol-gel samples. Neutron and alpha responses of these hybrid polystyrene-silica monoliths were explored

  9. Responses of Yield Characteristics to High Temperature During Flowering Stage in Hybrid Rice Guodao 6

    Directory of Open Access Journals (Sweden)

    Guan-fu FU

    2008-09-01

    Full Text Available By sowing at different dates during 2005 and 2006 both in paddy fields and greenhouse, a super hybrid rice combination Guodao 6 and a conventional hybrid rice combination Xieyou 46 (as control were used to analyze the differences in heat injury index, seed setting rate, grain yield and its components. Guodao 6 showed more stable yield and spikelet fertility, and lower heat injury index than Xieyou 46. Further studies indicated that the spikelet sterility is positively correlated with the average daily temperature and the maximum daily temperature, with the coefficients of 0.8604 and 0.9850 (P<0.05 respectively in Guodao 6. The effect of high temperature injury on seed setting caused by maximum daily temperature was lower than that by average daily temperature during the grain filling stage.

  10. Highly transparent, low-haze, hybrid cellulose nanopaper as electrodes for flexible electronics

    KAUST Repository

    Xu, Xuezhu

    2016-06-01

    Paper is an excellent candidate to replace plastics as a substrate for flexible electronics due to its low cost, renewability and flexibility. Cellulose nanopaper (CNP), a new type of paper made of nanosized cellulose fibers, is a promising substrate material for transparent and flexible electrodes due to its potentially high transparency and high mechanical strength. Although CNP substrates can achieve high transparency, they are still characterized by high diffuse transmittance and small direct transmittance, resulting in high optical haze of the substrates. In this study, we proposed a simple methodology for large-scale production of high-transparency, low-haze CNP comprising both long cellulose nanofibrils (CNFs) and short cellulose nanocrystals (CNCs). By varying the CNC/CNF ratio in the hybrid CNP, we could tailor its total transmittance, direct transmittance and diffuse transmittance. By increasing the CNC content, the optical haze of the hybrid CNP could be decreased and its transparency could be increased. The direct transmittance and optical haze of the CNP were 75.1% and 10.0%, respectively, greatly improved from the values of previously reported CNP (31.1% and 62.0%, respectively). Transparent, flexible electrodes were fabricated by coating the hybrid CNP with silver nanowires (AgNWs). The electrodes showed a low sheet resistance (minimum 1.2 Ω sq-1) and a high total transmittance (maximum of 82.5%). The electrodes were used to make a light emitting diode (LED) assembly to demonstrate their potential use in flexible displays. © 2016 The Royal Society of Chemistry.

  11. A highly conductive, non-flammable polymer–nanoparticle hybrid electrolyte

    KAUST Repository

    Agrawal, Akanksha

    2015-01-01

    © 2015 The Royal Society of Chemistry. We report on the physical properties of lithium-ion conducting nanoparticle-polymer hybrid electrolytes created by dispersing bidisperse mixtures of polyethylene glycol (PEG)-functionalized silica nanoparticles in an aprotic liquid host. At high particle contents, we find that the ionic conductivity is a non-monotonic function of the fraction of larger particles xL in the mixtures, and that for the nearly symmetric case xL ≈ 0.5 (i.e. equal volume fraction of small and large particles), the room temperature ionic conductivity is nearly ten-times larger than in similar nanoparticle hybrid electrolytes comprised of the pure small (xL ≈ 0) or large (xL ≈ 1) particle components. Complementary trends are seen in the activation energy for ion migration and effective tortuosity of the electrolytes, which both exhibit minima near xL ≈ 0.5. Characterization of the electrolytes by dynamic rheology reveals that the maximum conductivity coincides with a distinct transition in soft glassy properties from a jammed to partially jammed and back to jammed state, as the fraction of large particles is increased from 0 to 1. This finding implies that the conductivity enhancement arises from purely entropic loss of correlation between nanoparticle centers arising from particle size dispersity. As a consequence of these physics, it is now possible to create hybrid electrolytes with MPa elastic moduli and mS cm-1 ionic conductivity levels at room temperature using common aprotic liquid media as the electrolyte solvent. Remarkably, we also find that even in highly flammable liquid media, the bidisperse nanoparticle hybrid electrolytes can be formulated to exhibit low or no flammability without compromising their favorable room temperature ionic conductivity and mechanical properties.

  12. Hybrid external fixation in high-energy elbow fractures: a modular system with a promising future.

    Science.gov (United States)

    Lerner, A; Stahl, S; Stein, H

    2000-12-01

    Severe, high-energy, periarticular elbow injuries producing a "floating joint" are a major surgical challenge. Their reconstruction and rehabilitation are not well documented. Therefore, the following reports our experience with treating such injuries caused by war wounds. Seven adults with compound open peri- and intra-articular elbow fractures were treated in hybrid ring tubular fixation frames. After debridement, bone stabilization, and neurovascular reconstructions, early controlled daily movements were started in the affected joint. These seven patients had together seven humeral, five radial, and six ulnar fractures. All fractures united at a median time of 180 days. No deep infection developed. The functional end results assessed by the Khalfayan functional score were excellent in two, good in one, and fair in four of these severely mangled upper extremities. None was amputated. The Mangled Extremity Severity Score has been shown to be unable to provide a reliable assessment for severe high-energy limb injuries surgically managed with the modular hybrid thin wire tubular external fixation system. This hybrid system is a very useful addition to the surgical armamentarium of orthopedic trauma surgeons. It both allows complex surgical reconstructions and reduces the incidence of deep infections in these heavily contaminated injuries. The hybrid circular (thin wire) external fixation system is very modular and may provide secure skeletal stabilization even in cases of severely comminuted juxta-articular fractures on both sides of the elbow joint (floating elbow) with severe damage to soft tissues. This fixation system allows individual fixation of forearm bone fractures, thus allowing the preservation of pronation-supination movements.

  13. High Strength Concrete Columns under Axial Compression Load: Hybrid Confinement Efficiency of High Strength Transverse Reinforcement and Steel Fibers

    Science.gov (United States)

    Perceka, Wisena; Liao, Wen-Cheng; Wang, Yo-de

    2016-01-01

    Addition of steel fibers to high strength concrete (HSC) improves its post-peak behavior and energy absorbing capability, which can be described well in term of toughness. This paper attempts to obtain both analytically and experimentally the efficiency of steel fibers in HSC columns with hybrid confinement of transverse reinforcement and steel fibers. Toughness ratio (TR) to quantify the confinement efficiency of HSC columns with hybrid confinement is proposed through a regression analysis by involving sixty-nine TRs of HSC without steel fibers and twenty-seven TRs of HSC with hybrid of transverse reinforcement and steel fibers. The proposed TR equation was further verified by compression tests of seventeen HSC columns conducted in this study, where twelve specimens were reinforced by high strength rebars in longitudinal and transverse directions. The results show that the efficiency of steel fibers in concrete depends on transverse reinforcement spacing, where the steel fibers are more effective if the spacing transverse reinforcement becomes larger in the range of 0.25–1 effective depth of the section column. Furthermore, the axial load–strain curves were developed by employing finite element software (OpenSees) for simulating the response of the structural system. Comparisons between numerical and experimental axial load–strain curves were carried out. PMID:28773391

  14. Highly Flexible, Fire Resistant HybridSil Foams for Next Generation Fireproofing, Insulation, and Energy Absorption NASA Applications, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of this Phase I STTR program is to adapt NanoSonic's HybridSil™ nanocomposite technology for the creation of next generation highly flexible, fire...

  15. An efficient fast response and high-gain solar-blind flexible ultraviolet photodetector employing hybrid geometry

    Science.gov (United States)

    Hussain, Amreen A.; Pal, Arup R.; Patil, Dinkar S.

    2014-05-01

    We report high performance flexible hybrid ultraviolet photodetector with solar-blind sensitivity using nanocomposite film of plasma polymerized aniline-titanium dioxide. A facile solvent-free plasma technique is used to synthesize superior quality hybrid material with high yield. The hybrid photodetector exhibited high photoconductive gain of the order of ˜105 and fast speed with response and recovery time of 22.87 ms and 34.23 ms. This is an excellent result towards getting a balance in the response speed and photoconductive gain trade-off of the photodetectors reported so far. In addition, the device has the advantages of enhanced photosensitivity ((Ilight - Idark)/Idark) of the order of ˜102 and high responsivity of ˜104 AW-1. All the merits substantiates that, to prepare hybrid material, plasma based method holds potential to be an easy way for realizing large scale nanostructured photodetectors for practical applications.

  16. The high-voltage system for the LHCb RICH hybrid photon detectors

    International Nuclear Information System (INIS)

    Arnaboldi, C.; Bellunato, T.; De Lucia, A.; Fanchini, E.; Perego, D.L.; Pessina, G.

    2009-01-01

    We describe the characterization of the high-voltage (HV) distribution system designed and produced for the pixel hybrid photon detectors of the ring imaging Cherenkov counters of the LHCb experiment. The HV system consists of a series of printed circuit boards with a specific layout designed to prevent any discharge arising from high electric fields. The system has dedicated monitoring and control features to supervise HV set-up during data taking. The full production of the HV system has been now completed and all the boards have been fully characterized and installed in the detector, which is currently being commissioned.

  17. Hybrid centralized-distributed power conditioning system for thermoelectric generator with high energy efficiency

    DEFF Research Database (Denmark)

    Wu, Hongfei; Sun, Kai; Chen, Min

    2013-01-01

    the proposed system, which benefits for implementing high MPPT efficiency and high conversion efficiency simultaneously. A hybrid MPPT control strategy is proposed for this HCD power conditioning system. The characteristics, circuit implementation and operation principles of the proposed system are presented......-distributed (HCD) power conditioning system for TEG and its control strategy are proposed in this paper. The HCD power conditioning system is composed by a centralized power conversion stage and multiple distributed power conversion stages. Most of the power is processed by the centralized power conversion stage...

  18. Design of Jet lower hybrid current drive generator and operation of high power test bed

    International Nuclear Information System (INIS)

    Dobbing, J.A.; Bosia, G.; Brandon, M.; Gammelin, M.; Gormezano, C.; Jacquinot, J.; Jessop, G.; Lennholm, M.; Pain, M.; Sibley, A.

    1989-01-01

    The JET Lower Hybrid Current Drive (LHCD) generator consists of 24 klystrons each rated for 650 KW operating at 3.7 GHz, giving a nominal generator power of 15.6 MW for 10 seconds or 12 MW for 20 seconds. This power will be transmitted through 24 waveguides to a phased array launcher on one of the main ports of the JET machine. In addition, two klystrons are currently being operated on a high power test bed to establish reliable operation of the generators components and test high power microwave components prior to their installation

  19. Hybrid Microscopy: Enabling Inexpensive High-Performance Imaging through Combined Physical and Optical Magnifications.

    Science.gov (United States)

    Zhang, Yu Shrike; Chang, Jae-Byum; Alvarez, Mario Moisés; Trujillo-de Santiago, Grissel; Aleman, Julio; Batzaya, Byambaa; Krishnadoss, Vaishali; Ramanujam, Aishwarya Aravamudhan; Kazemzadeh-Narbat, Mehdi; Chen, Fei; Tillberg, Paul W; Dokmeci, Mehmet Remzi; Boyden, Edward S; Khademhosseini, Ali

    2016-03-15

    To date, much effort has been expended on making high-performance microscopes through better instrumentation. Recently, it was discovered that physical magnification of specimens was possible, through a technique called expansion microscopy (ExM), raising the question of whether physical magnification, coupled to inexpensive optics, could together match the performance of high-end optical equipment, at a tiny fraction of the price. Here we show that such "hybrid microscopy" methods--combining physical and optical magnifications--can indeed achieve high performance at low cost. By physically magnifying objects, then imaging them on cheap miniature fluorescence microscopes ("mini-microscopes"), it is possible to image at a resolution comparable to that previously attainable only with benchtop microscopes that present costs orders of magnitude higher. We believe that this unprecedented hybrid technology that combines expansion microscopy, based on physical magnification, and mini-microscopy, relying on conventional optics--a process we refer to as Expansion Mini-Microscopy (ExMM)--is a highly promising alternative method for performing cost-effective, high-resolution imaging of biological samples. With further advancement of the technology, we believe that ExMM will find widespread applications for high-resolution imaging particularly in research and healthcare scenarios in undeveloped countries or remote places.

  20. Graphene/VO2 hybrid material for high performance electrochemical capacitor

    International Nuclear Information System (INIS)

    Deng, Lingjuan; Zhang, Gaini; Kang, Liping; Lei, Zhibin; Liu, Chunling; Liu, Zong-Huai

    2013-01-01

    Graphical abstract: Graphene/VO 2 hybrid materials are prepared by one-step simultaneous hydrothermal reduction technology. The prepared graphene (1.0)/VO 2 hybrid material shows a specific capacitances of 225 F g −1 in 0.5 mol L −1 K 2 SO 4 solution. Furthermore, an asymmetric electrochemical capacitor with graphene (1.0)/VO 2 as a positive electrode and graphene as a negative electrode is assembled, and it can work in a cell voltage of 1.7 V and show excellent capacitive property. - Highlights: • Graphene/VO 2 hybrid material has been prepared by one-step hydrothermal reduction. • Graphene/VO 2 hybrid material exhibits high specific capacitance. • An asymmetric capacitor working at 1.7 V in aqueous solution is assembled based on graphene/VO 2 electrode. • The asymmetric capacitor exhibits high energy density. - Abstract: Vanadium oxides have attracted significant attention for electrochemical capacitor because of their extensive multifunctional properties. In the present work, graphene/VO 2 (RG/VO 2 ) hybrid materials with different RG amounts are prepared in a mixture of ammonium vanadate, formic acid and graphite oxide (GO) nanosheets by one-step simultaneous hydrothermal reduction technology. The hydrothermal treatment makes the reduction of GO into RG and the formation of VO 2 particles with starfruit morphology. The starfruit-like VO 2 particles are uniformly embedded in the hole constructed by RG nanosheets, which makes the electrode–electrolyte contact better. A high specific capacitance of 225 F g −1 has been achieved for RG(1.0)/VO 2 electrode with RG content of 26 wt% in 0.5 mol L −1 K 2 SO 4 electrolyte. An asymmetrical electrochemical capacitor is assembled by using RG(1.0)/VO 2 as positive electrode and RG as negative electrode, and it can be reversibly charged–discharged at a cell voltage of 1.7 V in 0.5 mol L −1 K 2 SO 4 electrolyte. The asymmetrical capacitor can deliver an energy density of 22.8 Wh kg −1 at a power density

  1. Performance evaluations of hybrid modulation with different optical labels over PDQ in high bit-rate OLS network systems.

    Science.gov (United States)

    Xu, M; Li, Y; Kang, T Z; Zhang, T S; Ji, J H; Yang, S W

    2016-11-14

    Two orthogonal modulation optical label switching(OLS) schemes, which are based on payload of polarization multiplexing-differential quadrature phase shift keying(POLMUX-DQPSK or PDQ) modulated with identifications of duobinary (DB) label and pulse position modulation(PPM) label, are researched in high bit-rate OLS network. The BER performance of hybrid modulation with payload and label signals are discussed and evaluated in theory and simulation. The theoretical BER expressions of PDQ, PDQ-DB and PDQ-PPM are given with analysis method of hybrid modulation encoding in different the bit-rate ratios of payload and label. Theoretical derivation results are shown that the payload of hybrid modulation has a certain gain of receiver sensitivity than payload without label. The sizes of payload BER gain obtained from hybrid modulation are related to the different types of label. The simulation results are consistent with that of theoretical conclusions. The extinction ratio (ER) conflicting between hybrid encoding of intensity and phase types can be compromised and optimized in OLS system of hybrid modulation. The BER analysis method of hybrid modulation encoding in OLS system can be applied to other n-ary hybrid modulation or combination modulation systems.

  2. DETERMINANTS OF SMALLHOLDERS’ PREFERENCE TO HYBRIDS – PROSPECT FOR UPGRADING TO HIGH-VALUE FOOD CHAINS

    Directory of Open Access Journals (Sweden)

    Abebe Ejigu Alemu

    2016-09-01

    Full Text Available Hybrid coordination systems (marketing cooperatives and contracts are in place in agriculture to link smallholder farmers to the global agri-food value chains. With the framework of transaction cost economics, this study, however, is particularly designed to investigate the key determinants pushing dairy farmers to hybrids (marketing cooperatives and contracts, viz. spot market channels in the local food chains. A household survey of 415 smallholder dairy farmers was designed. Data collection was administered using trained enumerators. A multinomial logistic regression model was employed to analyze data and to identify the signifi cant determinants. The results indicate that high transaction costs and resource constraints were found driving farmers to cooperative engagement and contracts, implying that hybrids were found to be a solution to farmers’ constraints of access to information and institutional absence, as well as resource constraints. Policy makers and development partners are advised to strengthen cooperative societies and contract enforcement mechanisms. Providing information and resources to increase smallholders’ capacity with resources appear to be interventions which will enable the agricultural marketing system to properly function by serving smallholders in linking to the global food chains.

  3. Delayed frost formation on hybrid nanostructured surfaces with patterned high wetting contrast

    Science.gov (United States)

    Hou, Youmin; Zhou, Peng; Yao, Shuhuai

    2014-11-01

    Engineering icephobic surfaces that can retard the frost formation and accumulation are important to vehicles, wind turbines, power lines, and HVAC systems. For condensation frosting, superhydrophobic surfaces promote self-removal of condensed droplets before freezing and consequently delay the frost growth. However, a small thermal fluctuation may lead to a Cassie-to-Wenzel transition, and thus dramatically enhance the frost formation and adhesion. In this work, we investigated the heterogeneous ice nucleation on hybrid nanostructured surfaces with patterned high wetting contrast. By judiciously introducing hydrophilic micro-patches into superhydrophobic nanostructured surface, we demonstrated that such a novel hybrid structure can efficiently defer the ice nucleation as compared to a superhydrophobic surface with nanostructures only. We observed efficient droplet jumping and higher coverage of droplets with diameter smaller than 10 μm, both of which suppress frost formation. The hybrid surface avoids the formation of liquid-bridges for Cassie-to-Wenzel transition, therefore eliminating the `bottom-up' droplet freezing from the cold substrate. These findings provide new insights to improve anti-frosting and anti-icing by using heterogeneous wettability in multiscale structures.

  4. Experimental Study on Compression/Absorption High-Temperature Hybrid Heat Pump with Natural Refrigerant Mixture

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ji Young; Park, Seong Ryong; Baik, Young Jin; Chang, Ki Chang; Ra, Ho Sang; Kim, Min Sung [Korea Institute of Energy Research, Daejeon (Korea, Republic of); Kim, Yong Chan [Korea University, Seoul (Korea, Republic of)

    2011-12-15

    This research concerns the development of a compression/absorption high-temperature hybrid heat pump that uses a natural refrigerant mixture. Heat pumps based on the compression/absorption cycle offer various advantages over conventional heat pumps based on the vapor compression cycle, such as large temperature glide, temperature lift, flexible operating range, and capacity control. In this study, a lab-scale prototype hybrid heat pump was constructed with a two-stage compressor, absorber, desorber, desuperheater, solution heat exchanger, solution pump, liquid/vapor separator, and rectifier as the main components. The hybrid heat pump system operated at 10-kW-class heating capacity producing hot water whose temperature was more than 90 .deg. C when the heat source and sink temperatures were 50 .deg. C. Experiments with various NH{sub 3}/H{sub 2}O mass fractions and compressor/pump circulation ratios were performed on the system. From the study, the system performance was optimized at a specific NH{sub 3} concentration.

  5. High energy hadron physics with the FNAL Hybrid bubble chamber system

    International Nuclear Information System (INIS)

    Yamamoto, R.K.

    1980-01-01

    Hadron physics at high energy is described. The kinematic variables and some of the language used in this field, the Fermilab Hybrid Spectrometer, and some results obtained from the Hybrid Spectrometer at about 150 GeV are discussed. Two basic facts underlie hadronic interactions. The transverse momentum of particles produced in one interaction is limited. The number of particles produced in one interaction is far less than that possible from the available energy. Due to these two facts of hadronic nature, the longitudinal momentum of particles produced in one interaction plays a key role in describing an event. Because of this role of the longitudinal momentum, the rapidity variable y and the Feynman scaling variable x will be used for the discussion. Limiting fragmentation and scaling, the finite correlation length hypothesis, and the Mueller-Regge analysis are discussed. The Fermilab Hybrid Spectrometer consists of electronic detectors and a hydrogen bubble chamber to improve the measuring capability of fast particles and the precision of measurement of slower particles. Good test of the target fragmentation hypothesis is performed. The indication of the validity of the hypothesis is obtained. Average multiplicity in the reactions (a + b to X) and (a + b to C + X) is discussed. The charge transferred across a rapidity gap is examined as a function of the gap length. Self-consistent checks are made on the data, based on the Random Charge Model, the Extreme Charge Model, and the Leading Charge Model. (Kato, T.)

  6. Design of a compact high-speed optical modulator based on a hybrid plasmonic nanobeam cavity

    Science.gov (United States)

    Javid, Mohammad Reza; Miri, Mehdi; Zarifkar, Abbas

    2018-03-01

    A hybrid plasmonic electro-optic modulator based on a polymer-filled one dimensional photonic crystal nanobeam (1D PhCNB) cavity is proposed here. In the proposed structure the optical intensity modulation is realized by shifting the resonant wavelength of the cavity through electrically tuning the refractive index of the electro-optic polymer in the hybrid plasmonic waveguide. As a result of the subwavelength light confinement in the hybrid plasmonic waveguide and the compact footprint of the 1D PhCNB cavity, the designed modulator has the small overall footprint of 3 . 6 μm2 and the required wavelength shift can be achieved by applying very small actuating power. Three dimensional finite-difference time-domain (3D-FDTD) simulations show that the modulation depth of 10.9 dB, and insertion loss of 1.14 dB, along with very high modulation speed of 224 GHz can be achieved in the proposed modulator with very low modulation energy of 0.75 fJ/bit. A comparison between the performance parameters of the proposed modulator and those of previously reported PhCNB based modulators reveals the superior performance of the proposed structure in terms of modulation speed, energy consumption and overall footprint.

  7. Preparation and properties of hybrid materials for high-rise constructions

    Directory of Open Access Journals (Sweden)

    Matseevich Tatyana

    2018-01-01

    Full Text Available The theme of the research is important because it allows to use hybrid materials as finishing in the high-rise constructions. The aim of the study was the development of producing coloured hybrid materials based on liquid glass, a polyisocyanate, epoxy resin and 2.4-toluylenediisocyanate. The detailed study of the process of stress relaxation at different temperatures in the range of 20-100°C was provided. The study found that the obtained materials are subject to the simplified technology. The materials easy to turn different colors, and dyes (e.g. Sudan blue G are the catalysts for the curing process of the polymeric precursors. The materials have improved mechanical relaxation properties, possess different color and presentable, can be easily combined with inorganic base (concrete, metal. The limit of compressive strength varies from 32 to 17.5 MPa at a temperature of 20 to 100°C. The values σ∞ are from 20.4 to 7.7 MPa within the temperature range from 20 to 100°C. The physical parameters of materials were evaluated basing on the data of stress relaxation: the initial stress σ0, which occurs at the end of the deformation to a predetermined value; quasi-equilibrium stress σ∞, which persists for a long time relaxation process. Obtained master curves provide prediction relaxation behavior for large durations of relaxation. The study obtained new results. So, the addition of epoxy resin in the composition of the precursor improves the properties of hybrid materials. By the method of IR spectroscopy identified chemical transformations in the course of obtaining the hybrid material. Evaluated mechanical performance of these materials is long-time. Applied modern physically-based memory functions, which perfectly describe the stress relaxation process.

  8. Preparation and properties of hybrid materials for high-rise constructions

    Science.gov (United States)

    Matseevich, Tatyana

    2018-03-01

    The theme of the research is important because it allows to use hybrid materials as finishing in the high-rise constructions. The aim of the study was the development of producing coloured hybrid materials based on liquid glass, a polyisocyanate, epoxy resin and 2.4-toluylenediisocyanate. The detailed study of the process of stress relaxation at different temperatures in the range of 20-100°C was provided. The study found that the obtained materials are subject to the simplified technology. The materials easy to turn different colors, and dyes (e.g. Sudan blue G) are the catalysts for the curing process of the polymeric precursors. The materials have improved mechanical relaxation properties, possess different color and presentable, can be easily combined with inorganic base (concrete, metal). The limit of compressive strength varies from 32 to 17.5 MPa at a temperature of 20 to 100°C. The values σ∞ are from 20.4 to 7.7 MPa within the temperature range from 20 to 100°C. The physical parameters of materials were evaluated basing on the data of stress relaxation: the initial stress σ0, which occurs at the end of the deformation to a predetermined value; quasi-equilibrium stress σ∞, which persists for a long time relaxation process. Obtained master curves provide prediction relaxation behavior for large durations of relaxation. The study obtained new results. So, the addition of epoxy resin in the composition of the precursor improves the properties of hybrid materials. By the method of IR spectroscopy identified chemical transformations in the course of obtaining the hybrid material. Evaluated mechanical performance of these materials is long-time. Applied modern physically-based memory functions, which perfectly describe the stress relaxation process.

  9. Design and RF test result of High Power Hybrid Combiner for Helicon Wave Current Drive in KSTAR Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Park, S. Y.; Kim, H. J.; Wi, H. H.; Wang, S. J.; Kwak, J. G. [NFRI, Daejeon (Korea, Republic of)

    2016-05-15

    200 kW RF power will be injected to plasmas through the traveling wave antenna after combining four klystrons output powers using three hybrid combiners. Each klystron produces 60 kW output at the frequency of 500 MHz. RF power combiners commonly used to divide or combine output powers for various rf and microwave applications. It is divided into several types according to the design type such as Wilkinson combiner, radial and quadrature hybrid combiner. We designed high power hybrid combiners using 6-1/8 inch coaxial line. The power combiner has many advantages such as high isolation, low insertion loss and high power handling capability. In this paper design and rf test results of high power combiners will be described. High power combiners using three coaxial hybrid couplers will be utilized for effectively combining of 500 MHz, 200 kW output powers generated by four klystrons. We have designed, fabricated, and tested a 6-1/8 inch coaxial hybrid combiners at 500 MHz for efficiently off-axis Helicon wave current drive in KSTAR. Simulation and test results of high power coaxial hybrid combiners are good agreement.

  10. A Hybrid Semi-Supervised Anomaly Detection Model for High-Dimensional Data

    Directory of Open Access Journals (Sweden)

    Hongchao Song

    2017-01-01

    Full Text Available Anomaly detection, which aims to identify observations that deviate from a nominal sample, is a challenging task for high-dimensional data. Traditional distance-based anomaly detection methods compute the neighborhood distance between each observation and suffer from the curse of dimensionality in high-dimensional space; for example, the distances between any pair of samples are similar and each sample may perform like an outlier. In this paper, we propose a hybrid semi-supervised anomaly detection model for high-dimensional data that consists of two parts: a deep autoencoder (DAE and an ensemble k-nearest neighbor graphs- (K-NNG- based anomaly detector. Benefiting from the ability of nonlinear mapping, the DAE is first trained to learn the intrinsic features of a high-dimensional dataset to represent the high-dimensional data in a more compact subspace. Several nonparametric KNN-based anomaly detectors are then built from different subsets that are randomly sampled from the whole dataset. The final prediction is made by all the anomaly detectors. The performance of the proposed method is evaluated on several real-life datasets, and the results confirm that the proposed hybrid model improves the detection accuracy and reduces the computational complexity.

  11. Molecular cloning and characterization of a KCS gene from Cardamine graeca and its heterologous expression in Brassica oilseeds to engineer high nervonic acid oils for potential medical and industrial use.

    Science.gov (United States)

    Taylor, David C; Francis, Tammy; Guo, Yiming; Brost, Jennifer M; Katavic, Vesna; Mietkiewska, Elzbieta; Michael Giblin, E; Lozinsky, Sharla; Hoffman, Travis

    2009-12-01

    Nervonic acid 24:1 Delta15 (cis-tetracos-15-enoic acid) is a very long-chain monounsaturated fatty acid and exists in nature as an elongation product of oleic acid. There is an increasing interest in production of high nervonic acid oils for pharmaceutical, nutraceutical and industrial applications. Using a polymerase chain reaction approach, we have isolated a gene from Cardamine graeca L., which encodes a 3-ketoacyl-CoA synthase (KCS), the first component of the elongation complex involved in synthesis of nervonic acid. Expression of the Cardamine KCS in yeast resulted in biosynthesis of nervonic acid, which is not normally present in yeast cells. We transformed Arabidopsis and Brassica carinata with the Cardamine KCS under the control of the seed-specific promoter, napin. The T(3) generations of transgenic Arabidopsis and B. carinata plants expressing the Cardamine KCS showed that seed-specific expression resulted in relatively large comparative increases in nervonic acid proportions in Arabidopsis seed oil, and 15-fold increase in nervonic acid proportions in B. carinata seed oil. The highest nervonic acid level in transgenic B. carinata lines reached 44%, with only 6% of residual erucic acid. In contrast, similar transgenic expression of the Cardamine KCS in high erucic B. napus resulted in 30% nervonic acid but with 20% residual erucic acid. Experiments using the Lunaria KCS gene gave results similar to the latter. In both cases, the erucic acid content is too high for human or animal consumption. Thus, the Cardamine KCS: B. carinata high nervonic/highly reduced erucic transgenic seed oils will be the most suitable for testing in pharmaceutical/nutraceutical applications to improve human and animal health.

  12. A hybrid solar chemical looping combustion system with a high solar share

    International Nuclear Information System (INIS)

    Jafarian, Mehdi; Arjomandi, Maziar; Nathan, Graham J.

    2014-01-01

    Highlights: • A novel hybrid solar chemical looping combustion system is presented. • This hybrid CLC system integrates a CLC plant with a solar thermal energy plant. • The oxygen carrier particles are used for chemical and sensible thermal energy storage. • A solar cavity reactor is proposed for fuel reactor. • The calculations show a total solar share of around 60% can be achieved. - Abstract: A novel hybrid solar chemical looping combustion (Hy-Sol-CLC) is presented, in which the oxygen carrier particles in a CLC system are employed to provide thermal energy storage for concentrated solar thermal energy. This hybrid aims to take advantage of key features of a chemical looping combustion (CLC) system that are desirable for solar energy systems, notably their inherent chemical and sensible energy storage systems, the relatively low temperature of the “fuel” reactor (to which the concentrated solar thermal energy is added in a hybrid) relative to that of the final temperature of the product gas and the potential to operate the fuel reactor at a different pressure to the heated gas stream. By this approach, it is aimed to achieve high efficiency of the solar energy, infrastructure sharing, economic synergy, base load power generation and a high solar fraction of the total energy. In the proposed Hy-Sol-CLC system, a cavity solar receiver has been chosen for fuel reactor while for the storage of the oxygen carrier particles two reservoirs have been added to a conventional CLC. A heat exchanger is also proposed to provide independent control of the temperatures of the storage reservoirs from those of solar fuel and air reactors. The system is simulated using Aspen Plus software for the average diurnal profile of normal irradiance for Port Augusta, South Australia. The operating temperature of the fuel reactor, solar absorption efficiency, solar share, fraction of the solar thermal energy stored within the solar reactor, the fractions of sensible and

  13. Problems and solutions in high-rate multichannel hybrid photodiode design The CMS experience

    CERN Document Server

    Cushman, P B

    2002-01-01

    The unique conditions of the CMS experiment (4 T magnetic field, restricted access, high neutron radiation, and 25-ns bunch-crossings) necessitated the development of a new type of high-rate multichannel hybrid photodiode for the tile/fiber hadronic calorimeter. New complexities arose in the push toward high-rate operation, necessitating design changes in the diode structure and surface treatment. The product is now capable of high-rate operation with low crosstalk and leakage current. Lifetime studies of high-voltage behavior, total charge, and irradiation have shown that the tubes will survive the ten years of CMS running with only a few percent change in gain and manageable leakage current rise. (13 refs).

  14. Synthesis, Characterizations of Superparamagnetic Fe3O4-Ag Hybrid Nanoparticles and Their Application for Highly Effective Bacteria Inactivation.

    Science.gov (United States)

    Tung, Le Minh; Cong, Nguyen Xuan; Huy, Le Thanh; Lan, Nguyen Thi; Phan, Vu Ngoc; Hoa, Nguyen Quang; Vinh, Le Khanh; Thinh, Nguyen Viet; Tai, Le Thanh; Ngo, Duc-The; Mølhave, Kristian; Huy, Tran Quang; Le, Anh-Tuan

    2016-06-01

    In recent years, outbreaks of infectious diseases caused by pathogenic micro-organisms pose a serious threat to public health. In this work, Fe3O4-Ag hybrid nanoparticles were synthesized by simple chemistry method and these prepared nanoparticles were used to investigate their antibacterial properties and mechanism against methicilline-resistant Staphylococcus aureus (MRSA) pathogen. The formation of dimer-like nanostructure of Fe3O4-Ag hybrid NPs was confirmed by X-ray diffraction and High-resolution Transmission Electron Microscopy. Our biological analysis revealed that the Fe3O4-Ag hybrid NPs showed more noticeable bactericidal activity than that of plain Fe3O4 NPs and Ag-NPs. We suggest that the enhancement in bactericidal activity of Fe3O4-Ag hybrid NPs might be likely from main factors such as: (i) enhanced surface area property of hybrid nanoparticles; (ii) the high catalytic activity of Ag-NPs with good dispersion and aggregation stability due to the iron oxide magnetic carrier, and (iii) large direct physical contacts between the bacterial cell membrane and the hybrid nanoparticles. The superparamagnetic hybrid nanoparticles of iron oxide magnetic nanoparticles decorated with silver nanoparticles can be a potential candidate to effectively treat infectious MRSA pathogen with recyclable capability, targeted bactericidal delivery and minimum release into environment.

  15. High-performance hybrid pervaporation membranes with superior hydrothermal and acid stability

    Energy Technology Data Exchange (ETDEWEB)

    Castricum, H.L. [Inorganic Materials Science, MESA Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede (Netherlands); Blank, D.H.A.; Ten Elshof, J.E. [Van ' t Hoff Institute for Molecular Sciences, University of Amsterdam, Nieuwe Achtergracht 166, 1018 WV Amsterdam (Netherlands); Kreiter, R.; Van Veen, H.M.; Vente, J.F. [ECN Efficiency and Infrastructure, Petten (Netherlands)

    2009-05-15

    A new organic-inorganic hybrid membrane has been prepared with exceptional performance in dewatering applications. The only precursor used in the sol-gel synthesis of the selective layer was organically linked 1,2-bis(triethoxysilyl)ethane (BTESE). The microporous structure of this layer enables selective molecular sieving of small molecules from larger ones. In the dehydration of n-butanol with 5% of water, the membrane shows a high separation factor of over 4000 and ultra-fast water transport at a rate of more than 20 kg m{sup -2} h{sup -1} at 150C. This can be related to the high adsorption capacity of the material and the sub-micron thickness of the selective layer. The selectivity has now remained constant over almost one and a half years under continuous process testing conditions. Apart from the hydrothermal stability, the membrane exhibits a high tolerance for acid contamination. A slow performance decline in flux and separation factor is only observed at a pH lower than 2. The high stability and effective separation indicate a broad industrial application potential of the hybrid membrane material.

  16. Active-passive hybrid piezoelectric actuators for high-precision hard disk drive servo systems

    Science.gov (United States)

    Chan, Kwong Wah; Liao, Wei-Hsin

    2006-03-01

    Positioning precision is crucial to today's increasingly high-speed, high-capacity, high data density, and miniaturized hard disk drives (HDDs). The demand for higher bandwidth servo systems that can quickly and precisely position the read/write head on a high track density becomes more pressing. Recently, the idea of applying dual-stage actuators to track servo systems has been studied. The push-pull piezoelectric actuated devices have been developed as micro actuators for fine and fast positioning, while the voice coil motor functions as a large but coarse seeking. However, the current dual-stage actuator design uses piezoelectric patches only without passive damping. In this paper, we propose a dual-stage servo system using enhanced active-passive hybrid piezoelectric actuators. The proposed actuators will improve the existing dual-stage actuators for higher precision and shock resistance, due to the incorporation of passive damping in the design. We aim to develop this hybrid servo system not only to increase speed of track seeking but also to improve precision of track following servos in HDDs. New piezoelectrically actuated suspensions with passive damping have been designed and fabricated. In order to evaluate positioning and track following performances for the dual-stage track servo systems, experimental efforts are carried out to implement the synthesized active-passive suspension structure with enhanced piezoelectric actuators using a composite nonlinear feedback controller.

  17. Multifunctional hybrid diode: Study of photoresponse, high responsivity, and charge injection mechanisms

    Science.gov (United States)

    Singh, Jitendra; Singh, R. G.; Gautam, Subodh K.; Singh, Fouran

    2018-05-01

    A multifunctional hybrid heterojunction diode is developed on porous silicon and its current density-voltage characteristics reveal a good rectification ratio along with other superior parameters such as ideality factor, barrier height and series resistance. The diode also functions as an efficient photodiode to manifest high photosensitivity with high responsivity under illumination with broadband solar light, UV light, and green light. The diode is also carefully scrutinized for its sensitivity and repeatability over many cycles under UV and green light and is found to have a quick response and extremely fast recovery times. The notable responsivity is attributed to the generation of high density of excitons in the depletion region by the absorption of incident photons and their separation by an internal electric field besides an additional photocurrent due to the charging of polymer chains. The mechanisms of generation, injection and transport of charge carriers are explained by developing a schematic energy band diagram. The transport phenomenon of carriers is further investigated from room temperature down to a very low temperature of 10 K. An Arrhenius plot is made to determine the Richardson constant. Various diode parameters as mentioned above are also determined and the dominance of the transport mechanism of charge carriers in different temperature regimes such as diffusion across the junction and/or quantum tunneling through the barriers are explained. The developed multifunction heterojunction hybrid diodes have implications for highly sensitive photodiodes in the UV and visible range of electromagnetic spectrum that can be very promising for efficient optoelectronic devices.

  18. Compressive behaviour of hybrid fiber-reinforced reactive powder concrete after high temperature

    International Nuclear Information System (INIS)

    Zheng, Wenzhong; Li, Haiyan; Wang, Ying

    2012-01-01

    Highlights: ► We complete the high temperature test and compression test of RPC after 20–900 °C. ► The presence of steel fiber and polypropylene fiber can prevent RPC from spalling. ► Compressive strength increases first and then decreases with elevated temperatures. ► Microstructure deterioration is the root cause of macro-properties recession. ► Equations to express the compressive strength change with temperature are proposed. -- Abstract: This study focuses on the compressive properties and microstructures of reactive powder concrete (RPC) mixed with steel fiber and polypropylene fiber after exposure to 20–900 °C. The volume dosage of steel fiber and polypropylene fiber is (2%, 0.1%), (2%, 0.2%) and (1%, 0.2%). The effects of heating temperature, fiber content and specimen size on the compressive properties are analyzed. The microstructures of RPC exposed to different high temperatures are studied by scanning electron microscope (SEM). The results indicate that the compressive strength of hybrid fiber-reinforced RPC increases at first, then decreases with the increasing temperature, and the basic reason for the degradation of macro-mechanical properties is the deterioration of RPC microstructure. Based on the experimental results, equations to express the relationships of the compressive strength with the heating temperatures are established. Compared with normal-strength and high-strength concrete, the hybrid fiber-reinforced RPC has excellent capacity in resistance to high temperature.

  19. [The hybrid operating room. Home of high-end intraoperative imaging].

    Science.gov (United States)

    Gebhard, F; Riepl, C; Richter, P; Liebold, A; Gorki, H; Wirtz, R; König, R; Wilde, F; Schramm, A; Kraus, M

    2012-02-01

    A hybrid operating room must serve the medical needs of different highly specialized disciplines. It integrates interventional techniques for cardiovascular procedures and allows operations in the field of orthopaedic surgery, neurosurgery and maxillofacial surgery. The integration of all steps such as planning, documentation and the procedure itself saves time and precious resources. The best available imaging devices and user interfaces reduce the need for extensive personnel in the OR and facilitate new minimally invasive procedures. The immediate possibility of postoperative control images in CT-like quality enables the surgeon to react to problems during the same procedure without the need for later revision.

  20. Ferromagnetism carried by highly delocalized hybrid states in Sc-doped ZnO thin films

    KAUST Repository

    Benali Kanoun, Mohammed

    2012-05-29

    We present first-principles results for Sc-doped ZnOthin films. Neighboring Sc atoms in the surface and/or subsurface layers are found to be coupled ferromagnetically, where only two of the possible configurations induce spin polarization. In the first configuration, the polarization is carried by the Sc d states as expected for transition metaldoping. However, there is a second configuration which is energetically favorable. It is governed by polarized hybrid states of the Zns, O p, and Sc d orbitals. Such highly delocalized states can be an important ingredient for understanding the magnetism of dopedZnOthin films.

  1. Highly segmented large-area hybrid photodiodes with bialkali photocathodes and enclosed VLSI readout electronics

    CERN Document Server

    Braem, André; Filthaut, Frank; Go, A; Joram, C; Weilhammer, Peter; Wicht, P; Dulinski, W; Séguinot, Jacques; Wenzel, H; Ypsilantis, Thomas

    2000-01-01

    We report on the principles, design, fabrication, and operation of a highly segmented, large-area hybrid photodiode, which is being developed in the framework of the LHCb RICH project. The device consists of a cylindrical, 127 mm diameter vacuum envelope capped with a spherical borosilicate UV-glass entrance window, with an active-to-total-area fraction of 81A fountain-focusing electron optics is used to demagnify the image onto a 50 mm diameter silicon sensor, containing 2048 pads of size 1*1 mm/sup 2/. (10 refs).

  2. Outgassing studies of lower hybrid antenna module during CW high RF power injection

    International Nuclear Information System (INIS)

    Goniche, M.; Brossaud, J.; Berger-By, G.; Bibet, Ph.; Poli, S.; Rey, G.; Tonon, G.; Seki, M.; Obara, K.; Maebara, S.; Ikeda, Y.; Imai, T.; Nagashima, T.

    1994-01-01

    Outgassing, induced by very long RF waves injection (up to 6000s) at high power density, is studied with a module, able to be used for a lower hybrid frequency antenna. A large outgassing data base is provided by 75 shots cumulating 27 hours of RF injection. Outgassing rate is documented after different thermal pre-treatments, and in various conditions of cooling, RF power level. Relevant parameters are identified and values of outgassing rates are given in order to design pumping system for a large antenna. (author) 4 refs.; 7 figs.; 1 tab

  3. Millimeter Wave Hybrid Photonic Wireless Links for High-Speed Wireless Access and Mobile Fronthaul

    DEFF Research Database (Denmark)

    Rommel, Simon

    As the introduction of the fifth generation of mobile services (5G) is set to revolutionize the way people, devices and machines connect, the changes to the underlying networks and technologies are no less drastic. The massive increase in user and data capacity, as well as the decrease in latency...... networks. In summary, the work presented in this thesis has regarded a multitude of aspects of millimeter wave hybrid photonic wireless links, expanding upon the state of the art and showing their feasibility for use in fifth generation mobile and high speed wireless access networks – hopefully bringing...

  4. High capacity of plant regeneration from callus of interspecific hybrids with cultivated barley (Hordeum vulgare L.)

    DEFF Research Database (Denmark)

    Bagger Jørgensen, Rikke; Jensen, C. J.; Andersen, B.

    1986-01-01

    Callus was induced from hybrids between cultivated barley (Hordeum vulgare L. ssp. vulgare) and ten species of wild barley (Hordeum L.) as well as from one backcross line ((H. lechleri .times. H. vulgare) .times. H. vulgare). Successful callus induction and regeneration of plants were achieved from...... explants of young spikes on the barley medium J 25-8. The capacity for plant regeneration was dependent on the wild parental species. In particular, combinations with four related wild species, viz. H. jubatum, H. roshevitzii, H. lechleri, and H. procerum, regenerated high numbers of plants from calli....

  5. Broadband and high-efficiency vortex beam generator based on a hybrid helix array.

    Science.gov (United States)

    Fang, Chaoqun; Wu, Chao; Gong, Zhijie; Zhao, Song; Sun, Anqi; Wei, Zeyong; Li, Hongqiang

    2018-04-01

    The vortex beam which carries the orbital angular momentum has versatile applications, such as high-resolution imaging, optical communications, and particle manipulation. Generating vortex beams with the Pancharatnam-Berry (PB) phase has drawn considerable attention for its unique spin-to-orbital conversion features. Despite the PB phase being frequency independent, an optical element with broadband high-efficiency circular polarization conversion feature is still needed for the broadband high-efficiency vortex beam generation. In this work, a broadband and high-efficiency vortex beam generator based on the PB phase is built with a hybrid helix array. Such devices can generate vortex beams with arbitrary topological charge. Moreover, vortex beams with opposite topological charge can be generated with an opposite handedness incident beam that propagates backward. The measured efficiency of our device is above 65% for a wide frequency range, with the relative bandwidth of 46.5%.

  6. Free-Standing Hybrid Graphene Paper Encapsulating Nanostructures for High Cycle-Life Supercapacitors.

    Science.gov (United States)

    Jiao, Xinyan; Hao, Qingli; Xia, Xifeng; Lei, Wu; Ouyang, Yu; Ye, Haitao; Mandler, Daniel

    2018-03-09

    The incorporation of spacers between graphene sheets has been investigated as an effective method to improve the electrochemical performance of graphene papers (GPs) for supercapacitors. Here, we report the design of free-standing GP@NiO and GP@Ni hybrid GPs in which NiO nanoclusters and Ni nanoparticles are encapsulated into graphene sheets through electrostatic assembly and subsequent vacuum filtration. The encapsulated NiO nanoclusters and Ni nanoparticles can mitigate the restacking of graphene sheets, providing sufficient spaces for high-speed ion diffusion and electron transport. In addition, the spacers strongly bind to graphene sheets, which can efficiently improve the electrochemical stability. Therefore, at a current density of 0.5 A g -1 , the GP@NiO and GP@Ni electrodes exhibit higher specific capacitances of 306.9 and 246.1 F g -1 than the GP electrode (185.7 F g -1 ). The GP@NiO and GP@Ni electrodes exhibit capacitance retention of 98.7 % and 95.6 % after 10000 cycles, demonstrating an outstanding cycling stability. Additionally, the GP@NiO∥GP@Ni delivers excellent cycling stability (93.7 % after 10 000 cycles) and high energy density. These free-standing encapsulated hybrid GPs have great potential as electrode for high-performance supercapacitors. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. An efficient hybrid technique in RCS predictions of complex targets at high frequencies

    Science.gov (United States)

    Algar, María-Jesús; Lozano, Lorena; Moreno, Javier; González, Iván; Cátedra, Felipe

    2017-09-01

    Most computer codes in Radar Cross Section (RCS) prediction use Physical Optics (PO) and Physical theory of Diffraction (PTD) combined with Geometrical Optics (GO) and Geometrical Theory of Diffraction (GTD). The latter approaches are computationally cheaper and much more accurate for curved surfaces, but not applicable for the computation of the RCS of all surfaces of a complex object due to the presence of caustic problems in the analysis of concave surfaces or flat surfaces in the far field. The main contribution of this paper is the development of a hybrid method based on a new combination of two asymptotic techniques: GTD and PO, considering the advantages and avoiding the disadvantages of each of them. A very efficient and accurate method to analyze the RCS of complex structures at high frequencies is obtained with the new combination. The proposed new method has been validated comparing RCS results obtained for some simple cases using the proposed approach and RCS using the rigorous technique of Method of Moments (MoM). Some complex cases have been examined at high frequencies contrasting the results with PO. This study shows the accuracy and the efficiency of the hybrid method and its suitability for the computation of the RCS at really large and complex targets at high frequencies.

  8. Unravelling the High-Pressure Behaviour of Dye-Zeolite L Hybrid Materials

    Directory of Open Access Journals (Sweden)

    Lara Gigli

    2018-02-01

    Full Text Available Self-assembly of chromophores nanoconfined in porous materials such as zeolite L has led to technologically relevant host-guest systems exploited in solar energy harvesting, photonics, nanodiagnostics and information technology. The response of these hybrid materials to compression, which would be crucial to enhance their application range, has never been explored to date. By a joint high-pressure in situ synchrotron X-ray powder diffraction and ab initio molecular dynamics approach, herein we unravel the high-pressure behaviour of hybrid composites of zeolite L with fluorenone dye. High-pressure experiments were performed up to 6 GPa using non-penetrating pressure transmitting media to study the effect of dye loading on the structural properties of the materials under compression. Computational modelling provided molecular-level insight on the response to compression of the confined dye assemblies, evidencing a pressure-induced strengthening of the interaction between the fluorenone carbonyl group and zeolite L potassium cations. Our results reveal an impressive stability of the fluorenone-zeolite L composites at GPa pressures. The remarkable resilience of the supramolecular organization of dye molecules hyperconfined in zeolite L channels may open the way to the realization of optical devices able to maintain their functionality under extreme conditions.

  9. Highly transparent and durable superhydrophobic hybrid nanoporous coatings fabricated from polysiloxane.

    Science.gov (United States)

    Wang, Ding; Zhang, Zongbo; Li, Yongming; Xu, Caihong

    2014-07-09

    Highly transparent and durable superhydrophobic hybrid nanoporous coatings with different surface roughnesses were fabricated via a simple solidification-induced phase-separation method using a liquid polysiloxane (PSO) containing SiH and SiCH═CH2 groups as precursors and methyl-terminated poly(dimethylsiloxane)s (PDMS) as porogens. Owing to the existence of SiCHn units, the hybrid material is intrinsically hydrophobic without modification with expensive fluorinated reagents. The roughness of the coating can be easily controlled at the nanometer scale by changing the viscosity of PDMS to achieve both superhydrophobicity and high transparency. The influence of surface roughness on the transparency and hydrophobicity of the coatings was investigated. The enhancement from hydrophobic to superhydrophobic with increasing surface roughness can be explained by the transition from the Wenzel state to the Cassie state. The optimum performance coating has an average transmittance higher than 85% in the visible-light range (400-780 nm), a water contact angle of 155°, and a slide angle lower than 1°. The coatings also exhibit good thermal and mechanical stability and durable superhydrophobicity, which paves the way for real applications of highly transparent superhydrophobic coatings.

  10. High power experimental studies of hybrid photonic band gap accelerator structures

    Directory of Open Access Journals (Sweden)

    JieXi Zhang

    2016-08-01

    Full Text Available This paper reports the first high power tests of hybrid photonic band gap (PBG accelerator structures. Three hybrid PBG (HPBG structures were designed, built and tested at 17.14 GHz. Each structure had a triangular lattice array with 60 inner sapphire rods and 24 outer copper rods sandwiched between copper disks. The dielectric PBG band gap map allows the unique feature of overmoded operation in a TM_{02} mode, with suppression of both lower order modes, such as the TM_{11} mode, as well as higher order modes. The use of sapphire rods, which have negligible dielectric loss, required inclusion of the dielectric birefringence in the design. The three structures were designed to sequentially reduce the peak surface electric field. Simulations showed relatively high surface fields at the triple point as well as in any gaps between components in the clamped assembly. The third structure used sapphire rods with small pin extensions at each end and obtained the highest gradient of 19  MV/m, corresponding to a surface electric field of 78  MV/m, with a breakdown probability of 5×10^{-1} per pulse per meter for a 100-ns input power pulse. Operation at a gradient above 20  MV/m led to runaway breakdowns with extensive light emission and eventual damage. For all three structures, multipactor light emission was observed at gradients well below the breakdown threshold. This research indicated that multipactor triggered at the triple point limited the operational gradient of the hybrid structure.

  11. Ionocidium ‘Cerrado 101’: intergeneric orchid hybrid with high quality of blooming

    Directory of Open Access Journals (Sweden)

    Jean Carlos Cardoso

    2017-10-01

    Full Text Available Orchids are considered one of the most important potted-flowering in the world. Oncidium genus, as well their hybrids group (OHGs has used for the flower market as pot or cut flower.  However, some horticultural characteristics require improvements, e.g. the production of precocious cultivars, independent-season blooming or easy flowering induction, high quality and durability of flowers and variations in color of flowers, to compete with Phalaenopsis and Dendrobium orchids, as other flower groups. Aiming this purpose there were used hand-crossing pollination between the Oncidium ‘Sweet Sugar’ and Ionopsis utricularioides, a Brazilian wild species, for evaluate the capacity of crossing and to select progenies with interest of use in floriculture as new cultivar. The seeds obtained from this cross were seeded on in vitro conditions, followed by acclimatization and cultivation on greenhouse conditions until de flowering time. One of the plants obtained presented interesting characteristics, as good and rapid vegetative development and high quality of blooming. This hybrid obtained from an intergeneric crossing resulted in a plant with vegetative and flower type characteristics and color similar of Oncidium female parent, but with larger number of ramifications in inflorescence and number of flowers (60% and 219,4%, respectively than Oncidium parent (♀, and with more similarity with Ionopsis (♂. This hybrid cultivar, called Ionocidium ‘Cerrado 101’ is one more option of OHGs in this competitive market and can be used either for pot and also for cut orchid flowers production, main because it longer inflorescence (83 cm.

  12. Highly photoluminescent and photostable CdSe quantum dot-nylon hybrid composites for efficient light conversion applications

    Energy Technology Data Exchange (ETDEWEB)

    Yuan Ying; Riehle, Frank-Stefan [Freiburg Materials Research Centre (FMF), University of Freiburg, Stefan-Meier-Str. 21, D-79104 Freiburg (Germany); Department of Microsystems Engineering (IMTEK), Georg Koehler Allee 103, University of Freiburg, D-79110 Freiburg (Germany); Nitschke, Roland [Life Imaging Center, Centre of Systems Biology, University of Freiburg Habsburgerstr. 49, D-79104 Freiburg (Germany); Centre for Biological Signalling Studies (BIOSS), University of Freiburg (Germany); Krueger, Michael, E-mail: michael.krueger@fmf.uni-freiburg.de [Freiburg Materials Research Centre (FMF), University of Freiburg, Stefan-Meier-Str. 21, D-79104 Freiburg (Germany); Department of Microsystems Engineering (IMTEK), Georg Koehler Allee 103, University of Freiburg, D-79110 Freiburg (Germany)

    2012-02-15

    Highlights: Black-Right-Pointing-Pointer A novel in situ synthesis approach for highly luminescent CdSe core QDs-nylon hybrid materials. Black-Right-Pointing-Pointer Potential applications for light and energy conversion are demonstrated. Black-Right-Pointing-Pointer Three dimensional structures out of this hybrid material are available. - Abstract: Highly photoluminescent hexadecylamine (HDA) capped core CdSe quantum dots (QDs) with fluorescent quantum yields (QYs) up to 60% were synthesized using a hot injection method and directly incorporated into nylon polymer. For the incorporation of crude CdSe QDs into nylon a simple reproducible and upscalable one pot approach was developed without the need of further purification steps. The photoluminescence (PL) properties of the core QDs and the resulting QD-polymer hybrid composites were investigated and compared. Red emitting hybrid materials exhibit a QY of 60% with a high potential for applications in direct light and energy conversion. The hybrid materials could be successfully utilized as LED conversion layers. By avoiding exposure to oxygen the hybrid films can be kept for a month without detecting a significant decrease in luminescence. Various three dimensional structures are easily available opening doors for further applications such as novel materials for fluorescence standard development in laser scanning microscopy (LSM).

  13. Starch degradability of dry and ensiled high-moisture grains of corn hybrids with different textures at different grinding degrees

    Directory of Open Access Journals (Sweden)

    Wagner dos Reis

    2011-02-01

    Full Text Available This research evaluated corn grains with flint and dent texture (ensiled high-moisture or dried, submitted to grinding degrees, using the in situ ruminal degradation technique. Three rumen canulated adult sheeps were used in a complete randomized design, using a factorial outline 2 x 2 x 3, with two corn hybrids (flint and dent texture, two conservation methods (ensiled high-moisture and dry and three grinding degress (whole, coarsely and finely ground, corresponding to the sieve of 12; 10 and 8 mm. Starch soluble fraction (A of the dent hybrid ensiled corn grains was greater comparing to the dry materials and in both conservation forms this fraction was reduced in the flint texture hybrid, while the insoluble fraction potentially degradable (B the opposite occurred. The degradation potential was higher in grains ensiled in two textures. The ensiled allowed more starch effective degradation in relation to dry grain in two textures and the grains dent texture hybrid also increased such degradation in both conservation methods. The dent texture and the ensiled high-moisture grains proved the best option considering the starch degradability. Regardless of the conservation forms, the grains of corn hybrid flint texture should be finely ground, for providing higher ruminal degradation, while for the dent texture hybrid, the coarsely and whole grinding are the most suitable for ensiled and dry grain, respectively.

  14. Lower hybrid current drive at ITER-relevant high plasma densities

    International Nuclear Information System (INIS)

    Cesario, R.; Amicucci, L.; Cardinali, A.; Castaldo, C.; Marinucci, M.; Panaccione, L.; Pericoli-Ridolfini, V.; Tuccillo, A. A.; Tudisco, O.; Calabro, G.

    2009-01-01

    Recent experiments indicated that a further non-inductive current, besides bootstrap, should be necessary for developing advanced scenario for ITER. The lower hybrid current drive (LHCD) should provide such tool, but its effectiveness was still not proved in operations with ITER-relevant density of the plasma column periphery. Progress of the LH deposition modelling is presented, performed considering the wave physics of the edge, and different ITER-relevant edge parameters. Operations with relatively high edge electron temperatures are expected to reduce the LH || spectral broadening and, consequently, enabling the LH power to propagate also in high density plasmas ( || is the wavenumber component aligned to the confinement magnetic field). New results of FTU experiments are presented, performed by following the aforementioned modeling: they indicate that, for the first time, the LHCD conditions are established by operating at ITER-relevant high edge densities.

  15. Low mass hybrid pixel detectors for the high luminosity LHC upgrade

    CERN Document Server

    Gonella, Laura; Desch, Klaus

    2013-11-11

    Reducing material in silicon trackers is of major importance for a good overall detector performance, and poses severe challenges to the design of the tracking system. To match the low mass constraints for trackers in High Energy Physics experiments at high luminosity, dedicated technological developments are required. This dissertation presents three technologies to design low mass hybrid pixel detectors for the high luminosity upgrades of the LHC. The work targets specifically the reduction of the material from the detector services and modules, with novel powering schemes, flip chip and interconnection technologies. A serial powering scheme is prototyped, featuring a new regulator concept, a control and protection element, and AC-coupled data transmission. A modified flip chip technology is developed for thin, large area Front-End chips, and a via last Through Silicon Via process is demonstrated on existing pixel modules. These technologies, their developments, and the achievable material reduction are dis...

  16. High renewable content sandwich structures based on flax-basalt hybrids and biobased epoxy polymers

    Science.gov (United States)

    Colomina, S.; Boronat, T.; Fenollar, O.; Sánchez-Nacher, L.; Balart, R.

    2014-05-01

    In the last years, a growing interest in the development of high environmental efficiency materials has been detected and this situation is more accentuated in the field of polymers and polymer composites. In this work, green composite sandwich structures with high renewable content have been developed with core cork materials. The base resin for composites was a biobased epoxy resin derived from epoxidized vegetable oils. Hybrid basalt-flax fabrics have been used as reinforcements for composites and the influence of the stacking sequence has been evaluated in order to optimize the appropriate laminate structure for the sandwich bases. Core cork materials with different thickness have been used to evaluate performance of sandwich structures thus leading to high renewable content composite sandwich structures. Results show that position of basalt fabrics plays a key role in flexural fracture of sandwich structures due to differences in stiffness between flax and basalt fibers.

  17. Analysis of Chinese women with primary ovarian insufficiency by high resolution array-comparative genomic hybridization.

    Science.gov (United States)

    Liao, Can; Fu, Fang; Yang, Xin; Sun, Yi-Min; Li, Dong-Zhi

    2011-06-01

    Primary ovarian insufficiency (POI) is defined as a primary ovarian defect characterized by absent menarche (primary amenorrhea) or premature depletion of ovarian follicles before the age of 40 years. The etiology of primary ovarian insufficiency in human female patients is still unclear. The purpose of this study is to investigate the potential genetic causes in primary amenorrhea patients by high resolution array based comparative genomic hybridization (array-CGH) analysis. Following the standard karyotyping analysis, genomic DNA from whole blood of 15 primary amenorrhea patients and 15 normal control women was hybridized with Affymetrix cytogenetic 2.7M arrays following the standard protocol. Copy number variations identified by array-CGH were confirmed by real time polymerase chain reaction. All the 30 samples were negative by conventional karyotyping analysis. Microdeletions on chromosome 17q21.31-q21.32 with approximately 1.3 Mb were identified in four patients by high resolution array-CGH analysis. This included the female reproductive secretory pathway related factor N-ethylmaleimide-sensitive factor (NSF) gene. The results of the present study suggest that there may be critical regions regulating primary ovarian insufficiency in women with a 17q21.31-q21.32 microdeletion. This effect might be due to the loss of function of the NSF gene/genes within the deleted region or to effects on contiguous genes.

  18. Conceptual Design of the 45 T Hybrid Magnet at the Nijmegen High Field Magnet Laboratory

    CERN Document Server

    Wiegers, SAJ; Bird, M D; Rook, J; Perenboom, J A A J; Wiegers, S A J; Bonito-Oliva, A; den Ouden, A

    2010-01-01

    A 45 T Hybrid Magnet System is being developed at the Nijmegen High Field Magnet Laboratory as part of the Nijmegen Center for Advanced Spectroscopy. The 45 T Hybrid Magnet System will be used in combination with far-infra-red light produced by a Free Electron Laser under construction directly adjacent to the High Field Magnet Laboratory. The superconducting outsert magnet will consist of three CICC coils wound on a single coil form, using Nb$_{3}$Sn strands. A test program for strand and cable qualification is underway. The CICC will carry 13 kA and the coils will produce 12 T on axis field in a 600 mm warm bore. The nominal operating temperature will be 4.5 K maintained with forced-flow supercritical helium. The insert magnet will produce 33 T at 40 kA in a 32 mm bore consuming 20 MW, and will consist of four coils. The insert magnet will be galvanically and mechanically isolated from the outsert magnet. Complete system availability for users is expected in 2014. In this paper we will report on the conceptu...

  19. Texton-based super-resolution for achieving high spatiotemporal resolution in hybrid camera system

    Science.gov (United States)

    Kamimura, Kenji; Tsumura, Norimichi; Nakaguchi, Toshiya; Miyake, Yoichi

    2010-05-01

    Many super-resolution methods have been proposed to enhance the spatial resolution of images by using iteration and multiple input images. In a previous paper, we proposed the example-based super-resolution method to enhance an image through pixel-based texton substitution to reduce the computational cost. In this method, however, we only considered the enhancement of a texture image. In this study, we modified this texton substitution method for a hybrid camera to reduce the required bandwidth of a high-resolution video camera. We applied our algorithm to pairs of high- and low-spatiotemporal-resolution videos, which were synthesized to simulate a hybrid camera. The result showed that the fine detail of the low-resolution video can be reproduced compared with bicubic interpolation and the required bandwidth could be reduced to about 1/5 in a video camera. It was also shown that the peak signal-to-noise ratios (PSNRs) of the images improved by about 6 dB in a trained frame and by 1.0-1.5 dB in a test frame, as determined by comparison with the processed image using bicubic interpolation, and the average PSNRs were higher than those obtained by the well-known Freeman’s patch-based super-resolution method. Compared with that of the Freeman’s patch-based super-resolution method, the computational time of our method was reduced to almost 1/10.

  20. Fabrication of graphene foam supported carbon nanotube/polyaniline hybrids for high-performance supercapacitor applications

    International Nuclear Information System (INIS)

    Yang, Hongxia; Wang, Nan; Xu, Qun; Chen, Zhimin; Ren, Yumei; Razal, Joselito M; Chen, Jun

    2014-01-01

    A large-scale, high-powered energy storage system is crucial for addressing the energy problem. The development of high-performance materials is a key issue in realizing the grid-scale applications of energy-storage devices. In this work, we describe a simple and scalable method for fabricating hybrids (graphene-pyrrole/carbon nanotube-polyaniline (GPCP)) using graphene foam as the supporting template. Graphene-pyrrole (G-Py) aerogels are prepared via a green hydrothermal route from two-dimensional materials such as graphene sheets, while a carbon nanotube/polyaniline (CNT/PANI) composite dispersion is obtained via the in situ polymerization method. The functional nanohybrid materials of GPCP can be assembled by simply dipping the prepared G-py aerogels into the CNT/PANI dispersion. The morphology of the obtained GPCP is investigated by scanning electron microscopy (SEM) and transmission electron microscopy (TEM), which revealed that the CNT/PANI was uniformly deposited onto the surfaces of the graphene. The as-synthesized GPCP maintains its original three-dimensional hierarchical porous architecture, which favors the diffusion of the electrolyte ions into the inner region of the active materials. Such hybrid materials exhibit significant specific capacitance of up to 350 F g −1 , making them promising in large-scale energy-storage device applications. (paper)

  1. Hybrid III-V on Si grating as a broadband reflector and a high-Q resonator

    DEFF Research Database (Denmark)

    Chung, Il-Sug; Taghizadeh, Alireza; Park, Gyeong Cheol

    2016-01-01

    Hybrid grating (HG) with a high-refractive-index cap layer added onto a high contrast grating (HCG), can provide a high reflectance close 100 % over a broader wavelength range than HCGs, or work as a ultrahigh quality (Q) factor resonator. The reflection and resonance properties of HGs have been...

  2. High luminescent fibers with hybrid SiO2-coated CdTe nanocrystals fabricated by electrospinning technique

    International Nuclear Information System (INIS)

    Cao, Yongqiang; Liu, Ning; Yang, Ping; Shi, Ruixia; Ma, Qian; Zhang, Aiyu; Zhu, Yuanna; Wang, Junpeng; Wang, Jianrong

    2015-01-01

    The polyvinylpyrrolidone (PVP) hybrid luminescent micro-/nanofibers doped with the novel hybrid SiO 2 -coated CdTe nanocrystals (HS-CdTe NCs) have been fabricated for the first time via the electrospinning technique. The morphologies and photoluminescence (PL) emissions of HS-CdTe/PVP micro-/nanofibers prepared by doping the HS-CdTe NCs with the different PL peak wavelength (571, 616, and 643 nm) in PVP fibers were investigated by optical and PL microscope. The results revealed that all the HS-CdTe/PVP hybrid fibers showed an ultralong length for several hundreds of micrometers and a relatively uniform diameter of 1000 ∼ 1200 nm. The hybrid fibers displayed a wavelength-tunable PL emission, determining by the PL of doped HS-CdTe NCs. Moreover, similar to the original PL properties of HS-CdTe NCs before the electrospinning, the HS-CdTe/PVP fibers also showed a series of superior PL properties, such as narrow and symmetry PL spectrum, high, and uniform brightness. For comparison purpose, we also prepared three CdTe/PVP hybrid fibers by doping the 553 nm, 600 nm, and 633 nm PL-emitting CdTe NCs respectively in PVP electrospinning fibers. The characterization results showed that, the obtained three CdTe/PVP hybrid fibers had a basically satisfactory micro-/nanofiber morphology with a long length and relatively uniform diameter, but all the fibers exhibited very weak PL emissions. The enormous contrast in PL properties between HS-CdTe/PVP and CdTe/PVP fibers should mainly be ascribed to the different connection modes of ligands with the NCs and the passivation effect of inert hybrid silica shell on HS-CdTe. It is hopeful that the high luminescent HS-CdTe/PVP micro-/nanofibers with the tunable PL peak wavelength would be a good candidate in the optical sensor, light-emitting devices (LEDs), nanometer-scale waveguides, and the other related photonic materials. - Highlights: • The HS-CdTe/PVP electrospun hybrid fibers were fabricated for the first time. • The

  3. Application of the photoelastic experimental hybrid method with new numerical method to the high stress distribution

    International Nuclear Information System (INIS)

    Hawong, Jai Sug; Lee, Dong Hun; Lee, Dong Ha; Tche, Konstantin

    2004-01-01

    In this research, the photoelastic experimental hybrid method with Hook-Jeeves numerical method has been developed: This method is more precise and stable than the photoelastic experimental hybrid method with Newton-Rapson numerical method with Gaussian elimination method. Using the photoelastic experimental hybrid method with Hook-Jeeves numerical method, we can separate stress components from isochromatics only and stress intensity factors and stress concentration factors can be determined. The photoelastic experimental hybrid method with Hook-Jeeves had better be used in the full field experiment than the photoelastic experimental hybrid method with Newton-Rapson with Gaussian elimination method

  4. Purification of a jojoba embryo fatty acyl-coenzyme A reductase and expression of its cDNA in high erucic acid rapeseed.

    Science.gov (United States)

    Metz, J G; Pollard, M R; Anderson, L; Hayes, T R; Lassner, M W

    2000-03-01

    The jojoba (Simmondsia chinensis) plant produces esters of long-chain alcohols and fatty acids (waxes) as a seed lipid energy reserve. This is in contrast to the triglycerides found in seeds of other plants. We purified an alcohol-forming fatty acyl-coenzyme A reductase (FAR) from developing embryos and cloned the cDNA encoding the enzyme. Expression of a cDNA in Escherichia coli confers FAR activity upon those cells and results in the accumulation of fatty alcohols. The FAR sequence shows significant homology to an Arabidopsis protein of unknown function that is essential for pollen development. When the jojoba FAR cDNA is expressed in embryos of Brassica napus, long-chain alcohols can be detected in transmethylated seed oils. Resynthesis of the gene to reduce its A plus T content resulted in increased levels of alcohol production. In addition to free alcohols, novel wax esters were detected in the transgenic seed oils. In vitro assays revealed that B. napus embryos have an endogenous fatty acyl-coenzyme A: fatty alcohol acyl-transferase activity that could account for this wax synthesis. Thus, introduction of a single cDNA into B. napus results in a redirection of a portion of seed oil synthesis from triglycerides to waxes.

  5. On the development of high temperature ammonia-water hybrid absorption-compression heat pumps

    DEFF Research Database (Denmark)

    Jensen, Jonas Kjær; Markussen, Wiebke Brix; Reinholdt, Lars

    2015-01-01

    Ammonia-water hybrid absorption-compression heat pumps (HACHP) are a promising technology for development of ecient high temperature industrial heat pumps. Using 28 bar components HACHPs up to 100 °C are commercially available. Components developed for 50 bar and 140 bar show that these pressure...... limits may be possible to exceed if needed for actual applications. Feasible heat supply temperatures using these component limits are investigated. A feasible solution is defined as one that satisfies constraints on the COP, low and high pressure, compressor discharge temperature, vapour water content...... and volumetric heat capacity. The ammonia mass fraction and the liquid circulation ratio both influence these constraining parameters. The paper investigates feasible combinations of these parameters through the use of a numerical model. 28 bar components allow temperatures up to 111 °C, 50 bar up to 129°C...

  6. High-Purity Hybrid Organolead Halide Perovskite Nanoparticles Obtained by Pulsed-Laser Irradiation in Liquid

    KAUST Repository

    Amendola, Vincenzo

    2016-11-17

    Nanoparticles of hybrid organic-inorganic perovskites have attracted a great deal of attention due to their variety of optoelectronic properties, their low cost, and their easier integration into devices with complex geometry, compared with microcrystalline, thin-film, or bulk metal halides. Here we present a novel one-step synthesis of organolead bromide perovskite nanocrystals based on pulsed-laser irradiation in a liquid environment (PLIL). Starting from a bulk CHNHPbBr crystal, our PLIL procedure does not involve the use of high-boiling-point polar solvents or templating agents, and runs at room temperature. The resulting nanoparticles are characterized by high crystallinity and are completely free of any microscopic product or organic coating layer. We also demonstrate the straightforward inclusion of laser-generated perovskite nanocrystals in a polymeric matrix to form a nanocomposite with single- and two-photon luminescence properties.

  7. High-Capacity Hybrid Optical Fiber-Wireless Communications Links in Access Networks

    DEFF Research Database (Denmark)

    Pang, Xiaodan

    of broadband services access. To realize the seamless convergence between the two network segments, the lower capacity of wireless systems need to be increased to match the continuously increasing bandwidth of fiber-optic systems. The research works included in this thesis are devoted to experimental...... investigations of photonic-wireless links with record high capacities to fulfill the requirements of next generation hybrid optical fiber-wireless access networks. The main contributions of this thesis have expanded the state-of-the-art in two main areas: high speed millimeter-wave (mm-wave) communication links......Integration between fiber-optic and wireless communications systems in the "last mile" access networks is currently considered as a promising solution for both service providers and users, in terms of minimizing deployment cost, shortening upgrading period and increasing mobility and flexibility...

  8. Hybrid RANS/LES method for high Reynolds numbers, applied to atmospheric flow over complex terrain

    DEFF Research Database (Denmark)

    Bechmann, Andreas; Sørensen, Niels N.; Johansen, Jeppe

    2007-01-01

      The use of Large-Eddy Simulation (LES) to predict wall-bounded flows has presently been limited to low Reynolds number flows. Since the number of computational grid points required to resolve the near-wall turbulent structures increase rapidly with Reynolds number, LES has been unattainable...... for flows at high Reynolds numbers. To reduce the computational cost of traditional LES a hybrid method is proposed in which the near-wall eddies are modelled in a Reynolds-averaged sense. Close to walls the flow is treated with the RANS-equations and this layer act as wall model for the outer flow handled...... by LES. The wellknown high Reynolds number two-equation k - ǫ turbulence model is used in the RANS layer and the model automatically switches to a two-equation k - ǫ subgrid-scale stress model in the LES region. The approach can be used for flow over rough walls. To demonstrate the ability...

  9. A new hybrid protection system for high-field superconducting magnets

    CERN Document Server

    Ravaioli, E; Kirby, G; ten Kate, H H J; Verweij, A P

    2014-01-01

    The new generation of high-field superconducting accelerator magnets poses a challenge concerning the protection of the magnet coil in the case of a quench. The very high stored energy per unit volume requires a fast and efficient quench heating system in order to avoid damage due to overheating. A new protection system for superconducting magnets is presented, comprising a combination of a novel coupling-loss induced quench (CLIQ) system and conventional quench heaters. CLIQ can provoke a very fast transition to the normal state in coil windings by introducing coupling loss and thus heat in the coil's conductor. The advantage of the hybrid protection system is a global transition, resulting in a much faster current decay, a significantly lower hot-spot temperature, and a more homogeneous temperature distribution in the magnet's coil.

  10. Horseradish peroxidase-nanoclay hybrid particles of high functional and colloidal stability.

    Science.gov (United States)

    Pavlovic, Marko; Rouster, Paul; Somosi, Zoltan; Szilagyi, Istvan

    2018-08-15

    Highly stable dispersions of enzyme-clay nanohybrids of excellent horseradish peroxidase activity were developed. Layered double hydroxide nanoclay was synthesized and functionalized with heparin polyelectrolyte to immobilize the horseradish peroxidase enzyme. The formation of a saturated heparin layer on the platelets led to charge inversion of the positively charged bare nanoclay and to highly stable aqueous dispersions. Great affinity of the enzyme to the surface modified platelets resulted in strong horseradish peroxidase adsorption through electrostatic and hydrophobic interactions as well as hydrogen bonding network and prevented enzyme leakage from the obtained material. The enzyme kept its functional integrity upon immobilization and showed excellent activity in decomposition of hydrogen peroxide and oxidation of an aromatic compound in the test reactions. In addition, remarkable long term functional stability of the enzyme-nanoclay hybrid was observed making the developed colloidal system a promising antioxidant candidate in biomedical treatments and industrial processes. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. A Hybrid dasymetric and machine learning approach to high-resolution residential electricity consumption modeling

    Energy Technology Data Exchange (ETDEWEB)

    Morton, April M [ORNL; Nagle, Nicholas N [ORNL; Piburn, Jesse O [ORNL; Stewart, Robert N [ORNL; McManamay, Ryan A [ORNL

    2017-01-01

    As urban areas continue to grow and evolve in a world of increasing environmental awareness, the need for detailed information regarding residential energy consumption patterns has become increasingly important. Though current modeling efforts mark significant progress in the effort to better understand the spatial distribution of energy consumption, the majority of techniques are highly dependent on region-specific data sources and often require building- or dwelling-level details that are not publicly available for many regions in the United States. Furthermore, many existing methods do not account for errors in input data sources and may not accurately reflect inherent uncertainties in model outputs. We propose an alternative and more general hybrid approach to high-resolution residential electricity consumption modeling by merging a dasymetric model with a complementary machine learning algorithm. The method s flexible data requirement and statistical framework ensure that the model both is applicable to a wide range of regions and considers errors in input data sources.

  12. Carbon Nanofiber/3D Nanoporous Silicon Hybrids as High Capacity Lithium Storage Materials.

    Science.gov (United States)

    Park, Hyeong-Il; Sohn, Myungbeom; Kim, Dae Sik; Park, Cheolho; Choi, Jeong-Hee; Kim, Hansu

    2016-04-21

    Carbon nanofiber (CNF)/3D nanoporous (3DNP) Si hybrid materials were prepared by chemical etching of melt-spun Si/Al-Cu-Fe alloy nanocomposites, followed by carbonization using a pitch. CNFs were successfully grown on the surface of 3DNP Si particles using residual Fe impurities after acidic etching, which acted as a catalyst for the growth of CNFs. The resulting CNF/3DNP Si hybrid materials showed an enhanced cycle performance up to 100 cycles compared to that of the pristine Si/Al-Cu-Fe alloy nanocomposite as well as that of bare 3DNP Si particles. These results indicate that CNFs and the carbon coating layer have a beneficial effect on the capacity retention characteristics of 3DNP Si particles by providing continuous electron-conduction pathways in the electrode during cycling. The approach presented here provides another way to improve the electrochemical performances of porous Si-based high capacity anode materials for lithium-ion batteries. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Synergistic Effect of Hybrid Multilayer In2Se3 and Nanodiamonds for Highly Sensitive Photodetectors.

    Science.gov (United States)

    Zheng, Zhaoqiang; Yao, Jiandong; Xiao, Jun; Yang, Guowei

    2016-08-10

    Layered materials have rapidly established themselves as intriguing building blocks for next-generation photodetection platforms in view of their exotic electronic and optical attributes. However, both relatively low mobility and heavier electron effective mass limit layered materials for high-performance applications. Herein, we employed nanodiamonds (NDs) to promote the performance of multilayer In2Se3 photodetectors for the first time. This hybrid NDs-In2Se3 photodetector showed a tremendous promotion of photodetection performance in comparison to pristine In2Se3 ones. This hybrid devices exhibited remarkable detectivity (5.12 × 10(12) jones), fast response speed (less than 16.6 ms), and decent current on/off ratio (∼2285) simultaneously. These parameters are superior to most reported layered materials based photodetectors and even comparable to the state-of-the-art commercial photodetectors. Meanwhile, we attributed this excellent performance to the synergistic effect between NDs and the In2Se3. They can greatly enhance the broad spectrum absorption and promote the injection of photoexcited carrier in NDs to In2Se3. These results actually open up a new scenario for designing and fabricating innovative optoelectronic systems.

  14. A Hybrid Feature Subset Selection Algorithm for Analysis of High Correlation Proteomic Data

    Science.gov (United States)

    Kordy, Hussain Montazery; Baygi, Mohammad Hossein Miran; Moradi, Mohammad Hassan

    2012-01-01

    Pathological changes within an organ can be reflected as proteomic patterns in biological fluids such as plasma, serum, and urine. The surface-enhanced laser desorption and ionization time-of-flight mass spectrometry (SELDI-TOF MS) has been used to generate proteomic profiles from biological fluids. Mass spectrometry yields redundant noisy data that the most data points are irrelevant features for differentiating between cancer and normal cases. In this paper, we have proposed a hybrid feature subset selection algorithm based on maximum-discrimination and minimum-correlation coupled with peak scoring criteria. Our algorithm has been applied to two independent SELDI-TOF MS datasets of ovarian cancer obtained from the NCI-FDA clinical proteomics databank. The proposed algorithm has used to extract a set of proteins as potential biomarkers in each dataset. We applied the linear discriminate analysis to identify the important biomarkers. The selected biomarkers have been able to successfully diagnose the ovarian cancer patients from the noncancer control group with an accuracy of 100%, a sensitivity of 100%, and a specificity of 100% in the two datasets. The hybrid algorithm has the advantage that increases reproducibility of selected biomarkers and able to find a small set of proteins with high discrimination power. PMID:23717808

  15. Hybrid local piezoelectric and conductive functions for high performance airborne sound absorption

    Science.gov (United States)

    Rahimabady, Mojtaba; Statharas, Eleftherios Christos; Yao, Kui; Sharifzadeh Mirshekarloo, Meysam; Chen, Shuting; Tay, Francis Eng Hock

    2017-12-01

    A concept of hybrid local piezoelectric and electrical conductive functions for improving airborne sound absorption is proposed and demonstrated in composite foam made of porous polar polyvinylidene fluoride (PVDF) mixed with conductive single-walled carbon nanotube (SWCNT). According to our hybrid material function design, the local piezoelectric effect in the PVDF matrix with the polar structure and the electrical resistive loss of SWCNT enhanced sound energy conversion to electrical energy and subsequently to thermal energy, respectively, in addition to the other known sound absorption mechanisms in a porous material. It is found that the overall energy conversion and hence the sound absorption performance are maximized when the concentration of the SWCNT is around the conductivity percolation threshold. For the optimal composition of PVDF/5 wt. % SWCNT, a sound reduction coefficient of larger than 0.58 has been obtained, with a high sound absorption coefficient higher than 50% at 600 Hz, showing their great values for passive noise mitigation even at a low frequency.

  16. High peak power picosecond hybrid fiber and solid-state amplifier system

    International Nuclear Information System (INIS)

    Wushouer, X; Yan, P; Yu, H; Liu, Q; Fu, X; Yan, X; Gong, M

    2010-01-01

    We report the high peak power picosecond hybrid fiber and solid-state laser amplifier system. The passively mode-locked solid-state seed source produced an average power of 1.8 W with pulse width of 14 ps and repetition rate of 86 MHz. It was directly coupled into the first Yb-doped polarized photonic crystal fiber amplifier stage. To avoid the nonlinear effects in fiber, the output power from the first stage was merely amplified to 24 W with the narrow spectra broadening of 0.21 nm. For the improvement of the peak power, the dual-end pumped composite Nd:YVO 4 amplifier system has been chosen at the second stage. To reduce the serious thermal effect, the thermally bonded composite YVO 4 – Nd:YVO 4 – YVO 4 rod crystal was used as the gain medium. The 53 W TEM 00 mode with the peak power of 40 kW, beam quality of M 2 < 1.15, corresponding to the optical-optical efficiency of 42.4% was obtained at the hybrid amplifier laser system. The system allows using a low power seed source and demonstrates an increase in the peak power beyond a fiber master oscillator power amplifier's (MOPA's) limit

  17. Uranium-thorium fuel cycle in a very high temperature hybrid system

    International Nuclear Information System (INIS)

    Hernandez, C.R.G.; Oliva, A.M.; Fajardo, L.G.; Garcia, J.A.R.; Curbelo, J.P.; Abadanes, A.

    2011-01-01

    Thorium is a potentially valuable energy source since it is about three to four times as abundant as Uranium. It is also a widely distributed natural resource readily accessible in many countries. Therefore, Thorium fuels can complement Uranium fuels and ensure long term sustainability of nuclear power. The main advantages of the use of a hybrid system formed by a Pebble Bed critical nuclear reactor and two Pebble Bed Accelerator Driven Systems (ADSs) using a Uranium-Thorium (U + Th) fuel cycle are shown in this paper. Once-through and two step U + Th fuel cycle was evaluated. With this goal, a preliminary conceptual design of a hybrid system formed by a Graphite Moderated Gas-Cooled Very High Temperature Reactor and two ADSs is proposed. The main parameters related to the neutronic behavior of the system in a deep burn scheme are optimized. The parameters that describe the nuclear fuel breeding and Minor Actinide stockpile are compared with those of a simple Uranium fuel cycle. (author)

  18. Performance Analysis of High-Speed Deep/Shallow Recessed Hybrid Bearing

    Directory of Open Access Journals (Sweden)

    Lei Wang

    2013-01-01

    Full Text Available The present paper proposes a theoretical analysis of the performance of deep/shallow recessed hybrid bearing. It is intended that, on the basis of the numerical results drawn from this study, appropriate shallow recess depth and width can be determined for use in the bearing design process. By adopting bulk flow theory, the turbulent Reynolds equation and energy equation are modified and solved numerically including concentrated inertia effects at the recess edge with different depth and width of shallow recess. The results indicate that the load capacity, drag torque increases as the depth of shallow recess is shallower and the width ratio (half angle of deep recess versus half angle of shallow recess is smaller. In contrast, the flow rate decreases as the depth of shallow recess is shallower and the width ratio is smaller. Nevertheless, the appropriate design of the depth and width of shallow recess might well induce the performance of high-speed deep/shallow recessed hybrid bearing.

  19. Optical and electrical effects of plasmonic nanoparticles in high-efficiency hybrid solar cells.

    Science.gov (United States)

    Fu, Wei-Fei; Chen, Xiaoqiang; Yang, Xi; Wang, Ling; Shi, Ye; Shi, Minmin; Li, Han-Ying; Jen, Alex K-Y; Chen, Jun-Wu; Cao, Yong; Chen, Hong-Zheng

    2013-10-28

    Plasmonics have been proven to be an effective way to harness more incident light to achieve high efficiency in photovoltaic devices. Herein, we explore the possibility that plasmonics can be utilized to enhance light trapping and power conversion efficiency (PCE) for polymer-quantum dot (QD) hybrid solar cells (HSCs). Based on a low band-gap polymer poly[2,6-(4,4-bis-(2-ethylhexyl)-4H-cyclopenta[2,1-b;3,4-b']-dithiophene)-alt-4,7-(2,1,3-benzothiadiazole)] (PCPDTBT) and a CdSe QD bulk-heterojunction (BHJ) system, gold nanoparticles were doped at different locations of the devices. Successfully, an improved PCE of 3.20 ± 0.22% and 3.16 ± 0.15% was achieved by doping the hole transporting layer and the active layer, respectively, which are among the highest values reported for CdSe QD based HSCs. A detailed study of processing, characterization, microscopy, and device fabrication is conducted to understand the underlying mechanism for the enhanced device performance. The success of this work provides a simple and generally applicable approach to enhance light harnessing of polymer-QD hybrid solar cells.

  20. Hybrid Transverse Polar Navigation for High-Precision and Long-Term INSs.

    Science.gov (United States)

    Wu, Ruonan; Wu, Qiuping; Han, Fengtian; Zhang, Rong; Hu, Peida; Li, Haixia

    2018-05-12

    Transverse navigation has been proposed to help inertial navigation systems (INSs) fill the gap of polar navigation ability. However, as the transverse system does not have the ability of navigate globally, a complicated switch between the transverse and the traditional algorithms is necessary when the system moves across the polar circles. To maintain the inner continuity and consistency of the core algorithm, a hybrid transverse polar navigation is proposed in this research based on a combination of Earth-fixed-frame mechanization and transverse-frame outputs. Furthermore, a thorough analysis of kinematic error characteristics, proper damping technology and corresponding long-term contributions of main error sources is conducted for the high-precision INSs. According to the analytical expressions of the long-term navigation errors in polar areas, the 24-h period symmetrical oscillation with a slowly divergent amplitude dominates the transverse horizontal position errors, and the first-order drift dominates the transverse azimuth error, which results from the gyro drift coefficients that occur in corresponding directions. Simulations are conducted to validate the theoretical analysis and the deduced analytical expressions. The results show that the proposed hybrid transverse navigation can ensure the same accuracy and oscillation characteristics in polar areas as the traditional algorithm in low and mid latitude regions.

  1. Hybrid reactors

    International Nuclear Information System (INIS)

    Moir, R.W.

    1980-01-01

    The rationale for hybrid fusion-fission reactors is the production of fissile fuel for fission reactors. A new class of reactor, the fission-suppressed hybrid promises unusually good safety features as well as the ability to support 25 light-water reactors of the same nuclear power rating, or even more high-conversion-ratio reactors such as the heavy-water type. One 4000-MW nuclear hybrid can produce 7200 kg of 233 U per year. To obtain good economics, injector efficiency times plasma gain (eta/sub i/Q) should be greater than 2, the wall load should be greater than 1 MW.m -2 , and the hybrid should cost less than 6 times the cost of a light-water reactor. Introduction rates for the fission-suppressed hybrid are usually rapid

  2. Stroke maximizing and high efficient hysteresis hybrid modeling for a rhombic piezoelectric actuator

    Science.gov (United States)

    Shao, Shubao; Xu, Minglong; Zhang, Shuwen; Xie, Shilin

    2016-06-01

    Rhombic piezoelectric actuator (RPA), which employs a rhombic mechanism to amplify the small stroke of PZT stack, has been widely used in many micro-positioning machineries due to its remarkable properties such as high displacement resolution and compact structure. In order to achieve large actuation range along with high accuracy, the stroke maximizing and compensation for the hysteresis are two concerns in the use of RPA. However, existing maximization methods based on theoretical model can hardly accurately predict the maximum stroke of RPA because of approximation errors that are caused by the simplifications that must be made in the analysis. Moreover, despite the high hysteresis modeling accuracy of Preisach model, its modeling procedure is trivial and time-consuming since a large set of experimental data is required to determine the model parameters. In our research, to improve the accuracy of theoretical model of RPA, the approximation theory is employed in which the approximation errors can be compensated by two dimensionless coefficients. To simplify the hysteresis modeling procedure, a hybrid modeling method is proposed in which the parameters of Preisach model can be identified from only a small set of experimental data by using the combination of discrete Preisach model (DPM) with particle swarm optimization (PSO) algorithm. The proposed novel hybrid modeling method can not only model the hysteresis with considerable accuracy but also significantly simplified the modeling procedure. Finally, the inversion of hysteresis is introduced to compensate for the hysteresis non-linearity of RPA, and consequently a pseudo-linear system can be obtained.

  3. High Refractive Organic–Inorganic Hybrid Films Prepared by Low Water Sol-Gel and UV-Irradiation Processes

    Directory of Open Access Journals (Sweden)

    Hsiao-Yuan Ma

    2016-03-01

    Full Text Available Organic-inorganic hybrid sols (Ti–O–Si precursor were first synthesized by the sol-gel method at low addition of water, and were then employed to prepare a highly refractive hybrid optical film. This film was obtained by blending the Ti–O–Si precursor with 2-phenylphenoxyethyl acrylate (OPPEA to perform photo-polymerization by ultraviolet (UV irradiation. Results show that the film transparency of poly(Ti–O–Si precursor-co-OPPEA film is higher than that of a pure poly(Ti–O–Si precursor film, and that this poly(Ti–O–Si precursor-co-OPPEA hybrid film exhibits a high transparency of ~93.7% coupled with a high refractive index (n of 1.83 corresponding to a thickness of 2.59 μm.

  4. Distribution of assimilates derived from canopy leaves at different milky stage of intergeneric high-yielding hybrid rice

    International Nuclear Information System (INIS)

    Tang Jianjun

    1997-01-01

    Distribution characteristics of assimilates derived from 14 C-glucose fed on different canopy leaves of the high-yielding intergeneric hybrid rice Yuanyou 1 and GER-1, intra-varietal 3-line hybrid rice Shanyou 63, maternal and paternal parents of intergeneric hybrid rice at various ripening stage from flowering stage to late milky stage were studied with pot experiments under greenhouse in 1993 and 1994 in Guangzhou. The results indicates that there exists a significant difference in exportation of radioactivity from the leaf fed, partitioning of radioactivity exported into different organs and importation accumulation percent of total radioactivity in the rice panicle Yuanyou 1 has a high average exportation percent, importation accumulation percent and a stable and sustainable grain-filling process, which results in a high seed-setting rate with large spikelet population

  5. Investigation of Υ Dor - δ Sct hybrid stars based on high precission space photometry and complementary ground based spectroscopy

    International Nuclear Information System (INIS)

    Hareter, M.

    2013-01-01

    in the gamma Dor regime, but not for stars hotter than the blue border of the gamma Dor instability strip, as the hybrids are. Thus, my finding is an evidence for another driving mechanism, which excites the observed g modes of hybrid stars and gamma Dor candidates beyond the hot border of the gamma Dor instability strip. A comparison to the pulsation periods of delta Sct stars show a discrepancy for p modes as well. For delta Sct stars a temperature - period relation was found but none for hybrids. This finding suggests that the hybrid stars form a different class of pulsating stars and are not merely a mixture of delta Sct and gamma Dor type pulsation. On the other hand the hybrid stars occupy the same area in the Hertzsprung-Russell diagram as delta Sct do and therefore a different stellar structure seems unreasonable. The investigation of constant period spacings of the g modes of the gamma Dor stars yields generally too low values of what is expected from theory. I find spacings that would require l > 3 modes to explain my findings. Such modes, however, suffer from cancellation effects and are hardly detectable even by such a high precision photometer as CoRoT is. As a caveat I mention that based on my data no mode identification can be done which leaves the possi- bility that modes of different l mimic a constant period spacing. To explore a possible connection between the hybrid pulsation and chemical abundance patterns, a detailed abundance analysis was done for two stars. This analysis resulted in one hybrid and Am star, while the other hybrid does not show this kind of chemical peculiarity. Thus, there is no connection be- tween the hybrid phenomenon and hybrid pulsation. (author) [de

  6. Development of Biodegradable Poly(citrate)-Polyhedral Oligomeric Silsesquioxanes Hybrid Elastomers with High Mechanical Properties and Osteogenic Differentiation Activity.

    Science.gov (United States)

    Du, Yuzhang; Yu, Meng; Chen, Xiaofeng; Ma, Peter X; Lei, Bo

    2016-02-10

    Biodegradable elastomeric biomaterials have attracted much attention in tissue engineering due to their biomimetic viscoelastic behavior and biocompatibility. However, the low mechanical stability at hydrated state, fast biodegradation in vivo, and poor osteogenic activity greatly limited bioelastomers applications in bone tissue regeneration. Herein, we develop a series of poly(octanediol citrate)-polyhedral oligomeric silsesquioxanes (POC-POSS) hybrids with highly tunable elastomeric behavior (hydrated state) and biodegradation and osteoblasts biocompatibility through a facile one-pot thermal polymerization strategy. POC-POSS hybrids show significantly improved stiffness and ductility in either dry or hydrated conditions, as well as good antibiodegradation ability (20-50% weight loss in 3 months). POC-POSS hybrids exhibit significantly enhanced osteogenic differentiation through upregulating alkaline phosphatase (ALP) activity, calcium deposition, and expression of osteogenic markers (ALPL, BGLAP, and Runx2). The high mechanical stability at hydrated state and enhanced osteogenic activity make POC-POSS hybrid elastomers promising as scaffolds and nanoscale vehicles for bone tissue regeneration and drug delivery. This study may also provide a new strategy (controlling the stiffness under hydrated condition) to design advanced hybrid biomaterials with high mechanical properties under physiological condition for tissue regeneration applications.

  7. High-Throughput Analysis of Plasma Hybrid Markers for Early Detection of Cancers

    Directory of Open Access Journals (Sweden)

    Jung-hyun Rho

    2014-01-01

    Full Text Available Biomarkers for the early detection of cancer in the general population have to perform with high sensitivity and specificity in order to prevent the costs associated with over-diagnosis. There are only a few current tissue or blood markers that are recommended for generalized cancer screening. Despite the recognition that combinations of multiple biomarkers will likely improve their utility, biomarker panels are usually limited to a single class of molecules. Tissues and body fluids including plasma and serum contain not only proteins, DNA and microRNAs that are differentially expressed in cancers but further cancer specific information might be gleaned by comparing different classes of biomolecules. For example, the level of a certain microRNA might be related to the level of a particular protein in a cancer specific manner. Proteins might have cancer-specific post-translational modifications (e.g., phosphorylation or glycosylation or lead to the generation of autoantibodies. Most currently approved biomarkers are glycoproteins. Autoantibodies can be produced as a host’s early surveillance response to cancer-specific proteins in pre-symptomatic and pre-diagnostic stages of cancer. Thus, measurement of the level of a protein, the level of its glycosylation or phosphorylation and whether autoantibodies are produced to it can yield multi-dimensional information on each protein. We consider specific proteins that show consistent cancer-specific changes in two or three of these measurements to be “hybrid markers”. We hypothesize these markers will suffer less variation between different individuals since one component can act to “standardize” the other measurement. As a proof of principle, a 180 plasma sample set consisting of 120 cases (60 colon cancers and 60 adenomas and 60 controls were analyzed using our high-density antibody array for changes in their protein, IgG-complex and sialyl-Lewis A (SLeA modified proteins. At p < 0

  8. QUASI-OPTICAL 3-dB HYBRID FOR FUTURE HIGH-ENERGY ACCELERATORS

    International Nuclear Information System (INIS)

    Jay L. Hirshfield

    2005-01-01

    Phase-controlled wave combiners-commutators and isolators for protecting rf sources against reflection from the accelerating structure can be built using a 3-dB hybrid built around a metallic grating used in a ''magic-Y'' configuration. Models of the magic-Y were designed and tested, both at 34.272 GHz using the Omega-P Ka-band magnicon, and at 11.424 GHz using the Omega-P/NRL X-band magnicon. All elements of the magic-Y were optimized analytically and numerically. A non-vacuum 34 GHz model of the magic Y was built and tested experimentally at a low power. An engineering design for the high power (vacuum) compressor was configured. Similar steps were taken for the 11-GHz version

  9. High power tests of beryllium oxide windows to the lower hybrid current drive launcher in JET

    International Nuclear Information System (INIS)

    Ekedahl, A.; Brandon, M.; Finburg, P.

    1999-01-01

    The vacuum windows to the 3.70 GHz Lower Hybrid Current Drive (LHCD) system in JET were originally designed to withstand 350 kW for 20 s with VSWR ≤ 1.8. High power RF tests of the windows have been carried out in the LHCD test facility at JET. All windows that were tested could operate at 500 kW for 10 s in a matched load. Two windows passed an endurance test at 250 kW for 20 s with the windows terminated in a short circuit. One window also passed this endurance test without active cooling. The results show that this type of window can be used in a new advanced launcher, as proposed for ITER, in which the output power from each klystron (P ≤ 500 kW) will be transmitted through one waveguide and one vacuum window. (author)

  10. Electrophoretic Deposition for the Fabrication of High-Performance Metal-Ceramic Hybrid Cladding

    International Nuclear Information System (INIS)

    Park, Junghwan; Jung, Yangil; Park, Dongjun; Kim, Hyungil; Park, Jeongyong; Koo, Yanghyun

    2014-01-01

    Metal-ceramic hybrid cladding consisting of a Zr liner and SiC f /SiC composite is one of the candidate systems. To achieve a high-performance metal-ceramic hybrid cladding, it is important to synthesize the SiC f /SiC composites with high flexural strength. The most common interphases, such as pyrolytic carbon (PyC) and boron nitride (BN) coating, have been applied on the surface of SiC fibers by chemical vapor deposition (CVD) or chemical vapor infiltration (CVI). In addition, the SiC matrix phase for SiC f /SiC composites has been commonly formed by CVI and polymer infiltration and pyrolysis (PIP), which are very costly and complicated processes. For this reason, the fabrication process of SiC f /SiC composites that is low-cost and simple has been strongly needed. In this study, weak phase coating using a commercial colloidal carbon black suspension was performed on SiC fibers through electrophoretic deposition (EPD), and carbon-coated SiC f /SiC composites were fabricated by EPD. The mechanical properties at room temperature were evaluated to investigate the effect of the carbon interfacial layer on the mechanical properties of carbon-coated SiC f /SiC composites. In this study, it was concluded that the EPD method is effective for homogeneous carbon black coating on SiC fibers, and that the carbon coating layer on SiC fibers plays an important role in optimizing the interface between fibers and the matrix, and enhances the toughness of carbon-coated SiC f /SiC composites during fracture

  11. High RF power test of a lower hybrid module mock-up in carbon fiber composite

    International Nuclear Information System (INIS)

    Goniche, M.; Bibet, P.; Brossaud, J.; Cano, V.; Froissard, P.; Kazarian, F.; Rey, G.; Maebara, S.; Kiyono, K.; Seki, M.; Suganuma, K.; Ikeda, Y.; Imai, T.

    1999-02-01

    A mock-up module of a Lower Hybrid Current Drive antenna module of a Carbon Fiber Composite (CFC) was fabricated for the development of heat resistive front facing the plasma. This module is made from CFC plates and rods which are copper coated to reduce the RF losses. The withstand-voltage, the RF properties and outgassing rates for long pulses and high RF power were tested at the Lower Hybrid test bed facility of Cadarache. After the short pulse conditioning, long pulses with a power density ranging between 50 and 150 MW/m 2 were performed with no breakdowns. During these tests, the module temperature was increasing from 100-200 deg. C to 400-500 deg. C. It was also checked that high power density, up to 150 MW/m 2 , could be transmitted when the waveguides are filled with H 2 at a pressure of 5 x 10 -2 Pa. No significant change in the reflection coefficient is measured after the long pulse operation. During a long pulse, the power reflection increases during the pulse typically from 0.8% to 1.3%. It is concluded that the outgassing rate of Cu-plated CFC is about 6 times larger than of Dispersion Strengthened Copper (DSC) module at the module temperature of 300 deg. C. No significant increase of the global outgassing of the CFC module was measured after hydrogen pre-filling. After the test, visual inspection revealed that peeling of the copper coating occurred at one end of the module only on a very small area (0.2 cm 2 ). It is assessed that a CFC module is an attractive candidate for the hardening of the tip of the LHCD antenna. (authors)

  12. High RF power test of a lower hybrid module mock-up in Carbon Fiber Composite

    International Nuclear Information System (INIS)

    Maebara, Sunao; Kiyono, Kimihiro; Seki, Masami

    1997-11-01

    A mock-up module of a Lower Hybrid Current Drive antenna module of a Carbon Fiber Composite (CFC) was fabricated for the development of heat resistive front facing the plasma. This module is made from CFC plates and rods which are copper coated to reduce the RF losses. The withstand-voltage, the RF properties and outgassing rates for long pulses and high RF power were tested at the Lower Hybrid test bed facility of Cadarache. After the short pulse conditioning, long pulses with a power density ranging between 50 and 150 MW/m 2 were performed with no breakdowns. During these tests, the module temperature was increasing from 100-200degC to 400-500degC. It was also checked that high power density, up to 150 MW/m 2 , could be transmitted when the waveguides are filled with H 2 at a pressure of 5 x 10 -2 Pa. No significant change in the reflection coefficient is measured after the long pulse operation. During a long pulse, the power reflection increases during the pulse typically from 0.8 % to 1.3 %. It is concluded that the outgassing rate of Cu-plated CFC is about 6-7 times larger than of Dispersion Strengthened Copper (DSC) module at the module temperature of 300degC. No significant increase of the global outgassing of the CFC module was measured after hydrogen prefilling. After the test, visual inspection revealed that peeling of the copper coating occurred at one end of the module only on a very small area (0.2 cm 2 ). It is assessed that a CFC module is an attractive candidate for the hardening of the tip of the LHCD antenna. (author)

  13. Electrophoretic Deposition for the Fabrication of High-Performance Metal-Ceramic Hybrid Cladding

    Energy Technology Data Exchange (ETDEWEB)

    Park, Junghwan; Jung, Yangil; Park, Dongjun; Kim, Hyungil; Park, Jeongyong; Koo, Yanghyun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    Metal-ceramic hybrid cladding consisting of a Zr liner and SiC{sub f}/SiC composite is one of the candidate systems. To achieve a high-performance metal-ceramic hybrid cladding, it is important to synthesize the SiC{sub f}/SiC composites with high flexural strength. The most common interphases, such as pyrolytic carbon (PyC) and boron nitride (BN) coating, have been applied on the surface of SiC fibers by chemical vapor deposition (CVD) or chemical vapor infiltration (CVI). In addition, the SiC matrix phase for SiC{sub f}/SiC composites has been commonly formed by CVI and polymer infiltration and pyrolysis (PIP), which are very costly and complicated processes. For this reason, the fabrication process of SiC{sub f}/SiC composites that is low-cost and simple has been strongly needed. In this study, weak phase coating using a commercial colloidal carbon black suspension was performed on SiC fibers through electrophoretic deposition (EPD), and carbon-coated SiC{sub f}/SiC composites were fabricated by EPD. The mechanical properties at room temperature were evaluated to investigate the effect of the carbon interfacial layer on the mechanical properties of carbon-coated SiC{sub f}/SiC composites. In this study, it was concluded that the EPD method is effective for homogeneous carbon black coating on SiC fibers, and that the carbon coating layer on SiC fibers plays an important role in optimizing the interface between fibers and the matrix, and enhances the toughness of carbon-coated SiC{sub f}/SiC composites during fracture.

  14. New organic-inorganic hybrid molecular systems and highly organized materials in catalysis

    Science.gov (United States)

    Kustov, L. M.

    2015-11-01

    Definitions of hybrid materials are suggested, and applications of these materials are considered. Particular attention is focused on the application of hybrid materials in hydrogenation, partial oxidation, plant biomass conversion, and natural gas reforming, primarily on the use of core-shell nanoparticles and decorated metal nanoparticles in these reactions. Application prospects of various hybrid materials, particularly those of metal-organic frameworks, are discussed.

  15. Design and fabrication of advanced hybrid circuits for high energy physics

    International Nuclear Information System (INIS)

    Haller, G.M.; Moss, J.; Freytag, D.R.; Nelson, D.; Yim, A.; Lo, C.C.

    1987-10-01

    Current design and fabrication techniques of hybrid devices are explained for the Drift Chamber and the Liquid Argon Calorimeter for the Stanford Linear Collider Large Detector (SLD) at SLAC. Methods of developing layouts, ranging from hand-cut templates to advanced designs utilizing CAD tools with special hybrid design software were applied. Physical and electrical design rules for good yield and performance are discussed. Fabrication and assembly of the SLD hybrids are described. 7 refs., 10 figs

  16. Establishment of quality, reliability and design standards for low, medium, and high power microwave hybrid microcircuits

    Science.gov (United States)

    Robinson, E. A.

    1973-01-01

    Quality, reliability, and design standards for microwave hybrid microcircuits were established. The MSFC Standard 85M03926 for hybrid microcircuits was reviewed and modifications were generated for use with microwave hybrid microcircuits. The results for reliability tests of microwave thin film capacitors, transistors, and microwave circuits are presented. Twenty-two microwave receivers were tested for 13,500 unit hours. The result of 111,121 module burn-in and operating hours for an integrated solid state transceiver module is reported.

  17. 3D hybrid-porous carbon derived from carbonization of metal organic frameworks for high performance supercapacitors

    Science.gov (United States)

    Bao, Weizhai; Mondal, Anjon Kumar; Xu, Jing; Wang, Chengyin; Su, Dawei; Wang, Guoxiu

    2016-09-01

    We report a rational design and synthesis of 3D hybrid-porous carbon with a hierarchical pore architecture for high performance supercapacitors. It contains micropores (<2 nm diameter) and mesopores (2-4 nm), derived from carbonization of unique porous metal organic frameworks (MOFs). Owning to the synergistic effect of micropores and mesopores, the hybrid-porous carbon has exceptionally high ion-accessible surface area and low ion diffusion resistance, which is desired for supercapacitor applications. When applied as electrode materials in supercapacitors, 3D hybrid-porous carbon demonstrates a specific capacitance of 332 F g-1 at a constant charge/discharge current of 500 mA g-1. The supercapacitors can endure more than 10,000 cycles without degradation of capacitance.

  18. One-step synthesis of hierarchically porous hybrid TiO2 hollow spheres with high photocatalytic activity

    Science.gov (United States)

    Liu, Ruiping; Ren, Feng; Yang, Jinlin; Su, Weiming; Sun, Zhiming; Zhang, Lei; Wang, Chang-an

    2016-03-01

    Hierarchically porous hybrid TiO2 hollow spheres were solvothermally synthesized successfully by using tetrabutyl titanate as titanium precursor and hydrated metal sulfates as soft templates. The as-prepared TiO2 spheres with hierarchically pore structures and high specific surface area and pore volume consisted of highly crystallized anatase TiO2 nanocrystals hybridized with a small amount of metal oxide from the hydrated sulfate. The proposed hydrated-sulfate assisted solvothermal (HAS) synthesis strategy was demonstrated to be widely applicable to various systems. Evaluation of the hybrid TiO2 hollow spheres for the photo-decomposition of methyl orange (MO) under visible-light irradiation revealed that they exhibited excellent photocatalytic activity and durability.

  19. Comparative study of SOI/Si hybrid substrates fabricated using high-dose and low-dose oxygen implantation

    International Nuclear Information System (INIS)

    Dong Yemin; Chen Meng; Chen Jing; Wang Xiang; Wang Xi

    2004-01-01

    Hybrid substrates comprising both silicon-on-insulator (SOI) and bulk Si regions have been fabricated using the technique of patterned separation by implantation of oxygen (SIMOX) with high-dose (1.5 x 10 18 cm -2 ) and low-dose ((1.5-3.5) x 10 17 cm -2 ) oxygen ions, respectively. Cross-sectional transmission electron microscopy (XTEM) was employed to examine the microstructures of the resulting materials. Experimental results indicate that the SOI/Si hybrid substrate fabricated using high-dose SIMOX is of inferior quality with very large surface height step and heavily damaged transitions between the SOI and bulk regions. However, the quality of the SOI/Si hybrid substrate is enhanced dramatically by reducing the implant dose. The defect density in transitions is reduced considerably. Moreover, the expected surface height difference does not exist and the surface is exceptionally flat. The possible mechanisms responsible for the improvements in quality are discussed

  20. Hierarchically porous silicon–carbon–nitrogen hybrid materials towards highly efficient and selective adsorption of organic dyes

    Science.gov (United States)

    Meng, Lala; Zhang, Xiaofei; Tang, Yusheng; Su, Kehe; Kong, Jie

    2015-01-01

    The hierarchically macro/micro-porous silicon–carbon–nitrogen (Si–C–N) hybrid material was presented with novel functionalities of totally selective and highly efficient adsorption for organic dyes. The hybrid material was conveniently generated by the pyrolysis of commercial polysilazane precursors using polydivinylbenzene microspheres as sacrificial templates. Owing to the Van der Waals force between sp2-hybridized carbon domains and triphenyl structure of dyes, and electrostatic interaction between dyes and Si-C-N matrix, it exhibites high adsorption capacity and good regeneration and recycling ability for the dyes with triphenyl structure, such as methyl blue (MB), acid fuchsin (AF), basic fuchsin and malachite green. The adsorption process is determined by both surface adsorption and intraparticle diffusion. According to the Langmuir model, the adsorption capacity is 1327.7 mg·g−1 and 1084.5 mg·g−1 for MB and AF, respectively, which is much higher than that of many other adsorbents. On the contrary, the hybrid materials do not adsorb the dyes with azo benzene structures, such as methyl orange, methyl red and congro red. Thus, the hierarchically porous Si–C–N hybrid material from a facile and low cost polymer-derived strategy provides a new perspective and possesses a significant potential in the treatment of wastewater with complex organic pollutants. PMID:25604334

  1. High voltage bus and auxiliary heater control system for an electric or hybrid vehicle

    Science.gov (United States)

    Murty, Balarama Vempaty

    2000-01-01

    A control system for an electric or hybrid electric vehicle includes a vehicle system controller and a control circuit having an electric immersion heater. The heater is electrically connected to the vehicle's high voltage bus and is thermally coupled to a coolant loop containing a heater core for the vehicle's climate control system. The system controller responds to cabin heat requests from the climate control system by generating a pulse width modulated signal that is used by the control circuit to operate the heater at a duty cycle appropriate for the amount of cabin heating requested. The control system also uses the heater to dissipate excess energy produced by an auxiliary power unit and to provide electric braking when regenerative braking is not desirable and manual braking is not necessary. The control system further utilizes the heater to provide a safe discharge of a bank of energy storage capacitors following disconnection of the battery or one of the high voltage connectors used to transmit high voltage operating power to the various vehicle systems. The control circuit includes a high voltage clamping circuit that monitors the voltage on the bus and operates the heater to clamp down the bus voltage when it exceeds a pre-selected maximum voltage. The control system can also be used to phase in operation of the heater when the bus voltage exceeds a lower threshold voltage and can be used to phase out the auxiliary power unit charging and regenerative braking when the battery becomes fully charged.

  2. Refractive Index Tuning of Hybrid Materials for Highly Transmissive Luminescent Lanthanide Particle-Polymer Composites.

    Science.gov (United States)

    Kim, Paul; Li, Cheng; Riman, Richard E; Watkins, James

    2018-03-14

    High-refractive-index ZrO 2 nanoparticles were used to tailor the refractive index of a polymer matrix to match that of luminescent lanthanide-ion-doped (La 0.92 Yb 0.075 Er 0.005 F 3 ) light-emitting particles, thereby reducing scattering losses to yield highly transparent emissive composites. Photopolymerization of blends of an amine-modified poly(ether acrylate) oligomer and tailored quantities of ZrO 2 nanoparticles yielded optically transparent composites with tailored refractive indices between 1.49 and 1.69. By matching the refractive index of the matrix to that of La 0.92 Yb 0.075 Er 0.005 F 3 , composites with high transmittance (>85%) and low haze from the visible to infrared regions, bright 1530 nm optical emissions were achieved at solids loadings of La 0.92 Yb 0.075 Er 0.005 F 3 , ranging from 5 to 30 vol %. These optical results suggest that a hybrid matrix approach is a versatile strategy for the fabrication of functional luminescent optical composites of high transparency.

  3. Solar hybrid cooling system for high-tech offices in subtropical climate - Radiant cooling by absorption refrigeration and desiccant dehumidification

    International Nuclear Information System (INIS)

    Fong, K.F.; Chow, T.T.; Lee, C.K.; Lin, Z.; Chan, L.S.

    2011-01-01

    Highlights: → A solar hybrid cooling system is proposed for high-tech offices in subtropical climate. → An integration of radiant cooling, absorption refrigeration and desiccant dehumidification. → Year-round cooling and energy performances were evaluated through dynamic simulation. → Its annual primary energy consumption was lower than conventional system up to 36.5%. → The passive chilled beams were more energy-efficient than the active chilled beams. - Abstract: A solar hybrid cooling design is proposed for high cooling load demand in hot and humid climate. For the typical building cooling load, the system can handle the zone cooling load (mainly sensible) by radiant cooling with the chilled water from absorption refrigeration, while the ventilation load (largely latent) by desiccant dehumidification. This hybrid system utilizes solar energy for driving the absorption chiller and regenerating the desiccant wheel. Since a high chilled water temperature generated from the absorption chiller is not effective to handle the required latent load, desiccant dehumidification is therefore involved. It is an integration of radiant cooling, absorption refrigeration and desiccant dehumidification, which are powered up by solar energy. In this study, the application potential of the solar hybrid cooling system was evaluated for the high-tech offices in the subtropical climate through dynamic simulation. The high-tech offices are featured with relatively high internal sensible heat gains due to the intensive office electric equipment. The key performance indicators included the solar fraction and the primary energy consumption. Comparative study was also carried out for the solar hybrid cooling system using two common types of chilled ceilings, the passive chilled beams and active chilled beams. It was found that the solar hybrid cooling system was technically feasible for the applications of relatively higher cooling load demand. The annual primary energy

  4. Colored ultra-thin hybrid photovoltaics with high quantum efficiency for decorative PV applications (Presentation Recording)

    Science.gov (United States)

    Guo, L. Jay

    2015-10-01

    This talk will describe an approach to create architecturally compatible and decorative thin-film-based hybrid photovoltaics [1]. Most current solar panels are fabricated via complex processes using expensive semiconductor materials, and they are rigid and heavy with a dull, black appearance. As a result of their non-aesthetic appearance and weight, they are primarily installed on rooftops to minimize their negative impact on building appearance. Recently we introduced dual-function solar cells based on ultra-thin dopant-free amorphous silicon embedded in an optical cavity that not only efficiently extract the photogenerated carriers but also display distinctive colors with the desired angle-insensitive appearances [1,2]. The angle-insensitive behavior is the result of an interesting phase cancellation effect in the optical cavity with respect to angle of light propagation [3]. In order to produce the desired optical effect, the semiconductor layer should be ultra-thin and the traditional doped layers need to be eliminated. We adopted the approach of employing charge transport/blocking layers used in organic solar cells to meet this demand. We showed that the ultra-thin (6 to 31 nm) undoped amorphous silicon/organic hybrid solar cell can transmit desired wavelength of light and that most of the absorbed photons in the undoped a-Si layer contributed to the extracted electric charges. This is because the a-Si layer thickness is smaller than the charge diffusion length, therefore the electron-hole recombination is strongly suppressed in such ultra-thin layer. Reflective colored PVs can be made in a similar fashion. Light-energy-harvesting colored signage was demonstrated. Furthermore, a cascaded photovoltaics scheme based on tunable spectrum splitting can be employed to increase power efficiency by absorbing a broader band of light energy. Our work provides a guideline for optimizing a photoactive layer thickness in high efficiency hybrid PV design, which can be

  5. Three-Dimensional Tubular MoS2/PANI Hybrid Electrode for High Rate Performance Supercapacitor.

    Science.gov (United States)

    Ren, Lijun; Zhang, Gaini; Yan, Zhe; Kang, Liping; Xu, Hua; Shi, Feng; Lei, Zhibin; Liu, Zong-Huai

    2015-12-30

    By using three-dimensional (3D) tubular molybdenum disulfide (MoS2) as both an active material in electrochemical reaction and a framework to provide more paths for insertion and extraction of ions, PANI nanowire arrays with a diameter of 10-20 nm can be controllably grown on both the external and internal surface of 3D tubular MoS2 by in situ oxidative polymerization of aniline monomers and 3D tubular MoS2/PANI hybrid materials with different amounts of PANI are prepared. A controllable growth of PANI nanowire arrays on the tubular MoS2 surface provides an opportunity to optimize the capacitive performance of the obtained electrodes. When the loading amount of PANI is 60%, the obtained MoS2/PANI-60 hybrid electrode not only shows a high specific capacitance of 552 F/g at a current density of 0.5 A/g, but also gives excellent rate capability of 82% from 0.5 to 30 A/g. The remarkable rate performance can be mainly attributed to the architecture with synergistic effect between 3D tubular MoS2 and PANI nanowire arrays. Moreover, the MoS2/PANI-60 based symmetric supercapacitor also exhibits the excellent rate performance and good cycling stability. The specific capacitance based on the total mass of the two electrodes is 124 F/g at a current density of 1 A/g and 79% of its initial capacitance is remained after 6000 cycles. The 3D tubular structure provides a good and favorable method for improving the capacitance retention of PANI electrode.

  6. Improved Wetland Classification Using Eight-Band High Resolution Satellite Imagery and a Hybrid Approach

    Directory of Open Access Journals (Sweden)

    Charles R. Lane

    2014-12-01

    Full Text Available Although remote sensing technology has long been used in wetland inventory and monitoring, the accuracy and detail level of wetland maps derived with moderate resolution imagery and traditional techniques have been limited and often unsatisfactory. We explored and evaluated the utility of a newly launched high-resolution, eight-band satellite system (Worldview-2; WV2 for identifying and classifying freshwater deltaic wetland vegetation and aquatic habitats in the Selenga River Delta of Lake Baikal, Russia, using a hybrid approach and a novel application of Indicator Species Analysis (ISA. We achieved an overall classification accuracy of 86.5% (Kappa coefficient: 0.85 for 22 classes of aquatic and wetland habitats and found that additional metrics, such as the Normalized Difference Vegetation Index and image texture, were valuable for improving the overall classification accuracy and particularly for discriminating among certain habitat classes. Our analysis demonstrated that including WV2’s four spectral bands from parts of the spectrum less commonly used in remote sensing analyses, along with the more traditional bandwidths, contributed to the increase in the overall classification accuracy by ~4% overall, but with considerable increases in our ability to discriminate certain communities. The coastal band improved differentiating open water and aquatic (i.e., vegetated habitats, and the yellow, red-edge, and near-infrared 2 bands improved discrimination among different vegetated aquatic and terrestrial habitats. The use of ISA provided statistical rigor in developing associations between spectral classes and field-based data. Our analyses demonstrated the utility of a hybrid approach and the benefit of additional bands and metrics in providing the first spatially explicit mapping of a large and heterogeneous wetland system.

  7. High RF power test of a CFC antenna module for lower hybrid current drive

    International Nuclear Information System (INIS)

    Maebara, S.; Seki, M.; Ikeda, Y.; Kiyono, K.; Suganuma, K.; Imai, T.; Goniche, M.; Bibet, Ph.; Brossaud, J.; Cano, V.; Kazarian-Vibert, F.; Froissard, P.; Rey, G.

    1998-01-01

    A mock-up of a 3.7 GHz Lower Hybrid Current Drive (LHCD) antenna module was fabricated from Carbon Fibre Composite (CFC) for the development of heat resistive low Z front facing the plasma. This 2 divided waveguide module is made from CFC plates and rods which are Cu-plated to reduce the RF losses. The withstand-voltage, the RF properties and the outgassing rates for long pulses and high RF power were tested at the Lower Hybrid test bed facility of Cadarache. A reference module made from Dispersion Strengthened Copper (DSC) was also fabricated. After the short pulse conditioning, long pulses with a power density ranging between 50 and 150 MW/m 2 were performed with no breakdowns on the CFC module. It was also checked that the highest power density, up to 150 MW/m 2 , could be transmitted when the waveguides are filled with H2 at a pressure of 5 x 10 -2 Pa. During a long pulse, the power reflection coefficient remains low in the 0.8-1.3 % range and no significant change in the reflection coefficient is measured after the thermal cycling provided by the long pulse operation. From thermocouple measurements, RF losses of the copper coated CFC and the DSC modules were compared. No significant differences were measured. From pressure measurements, it was found that the outgassing rate of Cu-plated CFC is about 6-7 times larger than of DSC at 300 deg.C. It is concluded that a CFC module is an attractive candidate for the hardening of the tip of the LHCD antenna. (author)

  8. High thermal performance lithium-ion battery pack including hybrid active–passive thermal management system for using in hybrid/electric vehicles

    International Nuclear Information System (INIS)

    Fathabadi, Hassan

    2014-01-01

    In this study, a novel Li-ion battery pack design including hybrid active–passive thermal management system is presented. The battery pack is suitable for using in hybrid/electric vehicles. Active part of the hybrid thermal management system uses distributed thin ducts, air flow and natural convection as cooling media while the passive part utilizes phase change material/expanded graphite composite (PCM/EG) as cooling/heating component to optimize the thermal performance of the proposed battery pack. High melting enthalpy of PCM/EG composite together with melting of PCM/EG composite at the temperature of 58.9 °C remains the temperature distribution of the battery units in the desired temperature range (below 60 °C). The temperature and voltage distributions in the proposed battery pack design consisting of battery units, distributed thin ducts and PCM/EG composite are calculated by numerical solving of the related partial differential equations. Simulation results obtained by writing M-files code in Matlab environment and plotting the numerical data are presented to validate the theoretical results. A comparison between the thermal and physical characteristics of the proposed battery pack and other latest works is presented that explicitly proves the battery pack performance. - Highlights: • Novel Li-ion battery pack including active and passive thermal management systems. • The battery pack has high thermal performance for ambient temperatures until 55 °C. • Uniform temperature and voltage distributions. • The maximum observed temperature in each battery unit is less than other works. • The maximum temperature dispersion in each battery is less than other works

  9. A Hybrid Task Graph Scheduler for High Performance Image Processing Workflows.

    Science.gov (United States)

    Blattner, Timothy; Keyrouz, Walid; Bhattacharyya, Shuvra S; Halem, Milton; Brady, Mary

    2017-12-01

    Designing applications for scalability is key to improving their performance in hybrid and cluster computing. Scheduling code to utilize parallelism is difficult, particularly when dealing with data dependencies, memory management, data motion, and processor occupancy. The Hybrid Task Graph Scheduler (HTGS) improves programmer productivity when implementing hybrid workflows for multi-core and multi-GPU systems. The Hybrid Task Graph Scheduler (HTGS) is an abstract execution model, framework, and API that increases programmer productivity when implementing hybrid workflows for such systems. HTGS manages dependencies between tasks, represents CPU and GPU memories independently, overlaps computations with disk I/O and memory transfers, keeps multiple GPUs occupied, and uses all available compute resources. Through these abstractions, data motion and memory are explicit; this makes data locality decisions more accessible. To demonstrate the HTGS application program interface (API), we present implementations of two example algorithms: (1) a matrix multiplication that shows how easily task graphs can be used; and (2) a hybrid implementation of microscopy image stitching that reduces code size by ≈ 43% compared to a manually coded hybrid workflow implementation and showcases the minimal overhead of task graphs in HTGS. Both of the HTGS-based implementations show good performance. In image stitching the HTGS implementation achieves similar performance to the hybrid workflow implementation. Matrix multiplication with HTGS achieves 1.3× and 1.8× speedup over the multi-threaded OpenBLAS library for 16k × 16k and 32k × 32k size matrices, respectively.

  10. Study on a Highly Stabilized Power Supply for Hybrid-Magnet Superconducting Outsert

    International Nuclear Information System (INIS)

    Wu Jinglin; Long Jiaojiao; Liu Xiaoning

    2014-01-01

    The superconducting outsert of the 40 T hybrid-magnet in High Magnetic Field Laboratory (HMFL) of Chinese Academy of Sciences (CAS) requires a highly stabilized power supply. In this paper, two kinds of power supply design are briefly presented and both advantages and disadvantages are analyzed. In order to overcome the drawbacks of switching power supply, a series regulated active filter is adopted and a new design is proposed which ensures cooperative relationship between the feedback control loops of the switching converter and the series regulated active filter. Besides, unlike the traditional switching power supply, which can generate positive voltage only, this new design can also generate negative voltage which is needed in the quench protection for the superconducting magnet. In order to demonstrate the effectiveness of the methodology, a low-power prototype has been accomplished. The simulation and experiment results show that the power supply achieves high precision under the combined action of two feedback control loops. The peak-to-peak amplitude of the output ripple voltage of the prototype is 0.063%, while the peak-to-peak amplitude of the output ripple current is 120 ppm. (fusion engineering)

  11. A Soft-Switching Inverter for High-Temperature Advanced Hybrid Electric Vehicle Traction Motor Drives

    Energy Technology Data Exchange (ETDEWEB)

    Lai, Jason [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Yu, Wensong [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Sun, Pengwei [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Leslie, Scott [Powerex, Inc., Harrison, OH (United States); Prusia, Duane [Powerex, Inc., Harrison, OH (United States); Arnet, Beat [Azure Dynamics, Oak Park, MI (United States); Smith, Chris [Azure Dynamics, Oak Park, MI (United States); Cogan, Art [Azure Dynamics, Oak Park, MI (United States)

    2012-03-31

    The state-of-the-art hybrid electric vehicles (HEVs) require the inverter cooling system to have a separate loop to avoid power semiconductor junction over temperatures because the engine coolant temperature of 105°C does not allow for much temperature rise in silicon devices. The proposed work is to develop an advanced soft-switching inverter that will eliminate the device switching loss and cut down the power loss so that the inverter can operate at high-temperature conditions while operating at high switching frequencies with small current ripple in low inductance based permanent magnet motors. The proposed tasks also include high-temperature packaging and thermal modeling and simulation to ensure the packaged module can operate at the desired temperature. The developed module will be integrated with the motor and vehicle controller for dynamometer and in-vehicle testing to prove its superiority. This report will describe the detailed technical design of the soft-switching inverters and their test results. The experiments were conducted both in module level for the module conduction and switching characteristics and in inverter level for its efficiency under inductive and dynamometer load conditions. The performance will be compared with the DOE original specification.

  12. Hybridization chain reaction amplification for highly sensitive fluorescence detection of DNA with dextran coated microarrays.

    Science.gov (United States)

    Chao, Jie; Li, Zhenhua; Li, Jing; Peng, Hongzhen; Su, Shao; Li, Qian; Zhu, Changfeng; Zuo, Xiaolei; Song, Shiping; Wang, Lianhui; Wang, Lihua

    2016-07-15

    Microarrays of biomolecules hold great promise in the fields of genomics, proteomics, and clinical assays on account of their remarkably parallel and high-throughput assay capability. However, the fluorescence detection used in most conventional DNA microarrays is still limited by sensitivity. In this study, we have demonstrated a novel universal and highly sensitive platform for fluorescent detection of sequence specific DNA at the femtomolar level by combining dextran-coated microarrays with hybridization chain reaction (HCR) signal amplification. Three-dimensional dextran matrix was covalently coated on glass surface as the scaffold to immobilize DNA recognition probes to increase the surface binding capacity and accessibility. DNA nanowire tentacles were formed on the matrix surface for efficient signal amplification by capturing multiple fluorescent molecules in a highly ordered way. By quantifying microscopic fluorescent signals, the synergetic effects of dextran and HCR greatly improved sensitivity of DNA microarrays, with a detection limit of 10fM (1×10(5) molecules). This detection assay could recognize one-base mismatch with fluorescence signals dropped down to ~20%. This cost-effective microarray platform also worked well with samples in serum and thus shows great potential for clinical diagnosis. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Edge-enriched, porous carbon-based, high energy density supercapacitors for hybrid electric vehicles.

    Science.gov (United States)

    Kim, Yong Jung; Yang, Cheol-Min; Park, Ki Chul; Kaneko, Katsumi; Kim, Yoong Ahm; Noguchi, Minoru; Fujino, Takeshi; Oyama, Shigeki; Endo, Morinobu

    2012-03-12

    Supercapacitors can store and deliver energy by a simple charge separation, and thus they could be an attractive option to meet transient high energy density in operating fuel cells and in electric and hybrid electric vehicles. To achieve such requirements, intensive studies have been carried out to improve the volumetric capacitance in supercapacitors using various types and forms of carbons including carbon nanotubes and graphenes. However, conventional porous carbons are not suitable for use as electrode material in supercapacitors for such high energy density applications. Here, we show that edge-enriched porous carbons are the best electrode material for high energy density supercapacitors to be used in vehicles as an auxiliary powertrain. Molten potassium hydroxide penetrates well-aligned graphene layers vertically and consequently generates both suitable pores that are easily accessible to the electrolyte and a large fraction of electrochemically active edge sites. We expect that our findings will motivate further research related to energy storage devices and also environmentally friendly electric vehicles. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Low mass hybrid pixel detectors for the high luminosity LHC upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Gonella, Laura

    2013-10-15

    Reducing material in silicon trackers is of major importance for a good overall detector performance, and poses severe challenges to the design of the tracking system. To match the low mass constraints for trackers in High Energy Physics experiments at high luminosity, dedicated technological developments are required. This dissertation presents three technologies to design low mass hybrid pixel detectors for the high luminosity upgrades of the LHC. The work targets specifically the reduction of the material from the detector services and modules, with novel powering schemes, flip chip and interconnection technologies. A serial powering scheme is prototyped, featuring a new regulator concept, a control and protection element, and AC-coupled data transmission. A modified flip chip technology is developed for thin, large area Front-End chips, and a via last Through Silicon Via process is demonstrated on existing pixel modules. These technologies, their developments, and the achievable material reduction are discussed using the upgrades of the ATLAS pixel detector as a case study.

  15. Low mass hybrid pixel detectors for the high luminosity LHC upgrade

    International Nuclear Information System (INIS)

    Gonella, Laura

    2013-10-01

    Reducing material in silicon trackers is of major importance for a good overall detector performance, and poses severe challenges to the design of the tracking system. To match the low mass constraints for trackers in High Energy Physics experiments at high luminosity, dedicated technological developments are required. This dissertation presents three technologies to design low mass hybrid pixel detectors for the high luminosity upgrades of the LHC. The work targets specifically the reduction of the material from the detector services and modules, with novel powering schemes, flip chip and interconnection technologies. A serial powering scheme is prototyped, featuring a new regulator concept, a control and protection element, and AC-coupled data transmission. A modified flip chip technology is developed for thin, large area Front-End chips, and a via last Through Silicon Via process is demonstrated on existing pixel modules. These technologies, their developments, and the achievable material reduction are discussed using the upgrades of the ATLAS pixel detector as a case study.

  16. Iron-antimony-based hybrid oxides as high-performance anodes for lithium-ion storage

    Science.gov (United States)

    Nguyen, Tuan Loi; Kim, Doo Soo; Hur, Jaehyun; Park, Min Sang; Yoon, Sukeun; Kim, Il Tae

    2018-06-01

    We report a facile approach to synthesize Fe-Sb-based hybrid oxides nanocomposites consisting of Sb, Sb2O3, and Fe3O4 for use as new anode materials for lithium-ion batteries. The composites are synthesized via galvanic replacement between Fe3+ and Sb at high temperature in triethylene glycol medium. The phase, morphology, and composition changes of the composites involved in the various stages of the replacement reaction are characterized using X-ray diffractometry, high-resolution transmission electron microscopy, and energy dispersive X-ray spectroscopy. The as-prepared composites have different compositions with very small particle sizes (interfacial contact area between the nanocomposite and electrolyte, stable structure of the composites owing to a mixture of inactive phases generated by the conversion reaction between Li+ and oxide metal-whose structure serves as an electron conductor, inhibits agglomeration of Sb particles, and acts as an effective buffer against volume change of Sb during cycling-and high Li+ diffusion ability.

  17. Failure modes in high-power lithium-ion batteries for use in hybrid electric vehicles

    International Nuclear Information System (INIS)

    Kostecki, R.; Zhang, X.; Ross Jr., P.N.; Kong, F.; Sloop, S.; Kerr, J.B.; Striebel, K.; Cairns, E.; McLarnon, F.

    2001-01-01

    The Advanced Technology Development (ATD) Program seeks to aid the development of high-power lithium-ion batteries for hybrid electric vehicles. Nine 18650-size ATD baseline cells were tested under a variety of conditions. The cells consisted of a carbon anode, LiNi 0.8 Co 0.2 O 2 cathode and DEC-EC-LiPF 6 electrolyte, and they were engineered for high-power applications. Selected instrumental techniques such as synchrotron IR microscopy, Raman spectroscopy, scanning electron microscopy, atomic force microscopy, gas chromatography, etc. were used to characterize the anode, cathode, current collectors and electrolyte from these cells. The goal was to identify detrimental processes which lead to battery failure under a high-current cycling regime as well as during storage at elevated temperatures. The diagnostic results suggest that the following factors contribute to the cell power loss: (a) SEI deterioration and non-uniformity on the anode, (b) morphology changes, increase of impedance and phase separation on the cathode, (c) pitting corrosion on the cathode Al current collector, and (d) decomposition of the LiPF 6 salt in the electrolyte at elevated temperature

  18. Toward robust high resolution fluorescence tomography: a hybrid row-action edge preserving regularization

    Science.gov (United States)

    Behrooz, Ali; Zhou, Hao-Min; Eftekhar, Ali A.; Adibi, Ali

    2011-02-01

    Depth-resolved localization and quantification of fluorescence distribution in tissue, called Fluorescence Molecular Tomography (FMT), is highly ill-conditioned as depth information should be extracted from limited number of surface measurements. Inverse solvers resort to regularization algorithms that penalize Euclidean norm of the solution to overcome ill-posedness. While these regularization algorithms offer good accuracy, their smoothing effects result in continuous distributions which lack high-frequency edge-type features of the actual fluorescence distribution and hence limit the resolution offered by FMT. We propose an algorithm that penalizes the total variation (TV) norm of the solution to preserve sharp transitions and high-frequency components in the reconstructed fluorescence map while overcoming ill-posedness. The hybrid algorithm is composed of two levels: 1) An Algebraic Reconstruction Technique (ART), performed on FMT data for fast recovery of a smooth solution that serves as an initial guess for the iterative TV regularization, 2) A time marching TV regularization algorithm, inspired by the Rudin-Osher-Fatemi TV image restoration, performed on the initial guess to further enhance the resolution and accuracy of the reconstruction. The performance of the proposed method in resolving fluorescent tubes inserted in a liquid tissue phantom imaged by a non-contact CW trans-illumination FMT system is studied and compared to conventional regularization schemes. It is observed that the proposed method performs better in resolving fluorescence inclusions at higher depths.

  19. Free-standing 3D polyaniline-CNT/Ni-fiber hybrid electrodes for high-performance supercapacitors

    Science.gov (United States)

    Li, Yuan; Fang, Yuzhu; Liu, Hong; Wu, Xiaoming; Lu, Yong

    2012-04-01

    Free-standing 3D macroscopic polyaniline (PANi)-carbon nanotube (CNT)-nickel fiber hybrids have been developed, and they deliver high specific capacitance (725 F g-1 at 0.5 A g-1) and high energy density at high rates (~22 W h kg-1 at 2000 W kg-1, based on total electrode mass) with good cyclability.Free-standing 3D macroscopic polyaniline (PANi)-carbon nanotube (CNT)-nickel fiber hybrids have been developed, and they deliver high specific capacitance (725 F g-1 at 0.5 A g-1) and high energy density at high rates (~22 W h kg-1 at 2000 W kg-1, based on total electrode mass) with good cyclability. Electronic supplementary information (ESI) available: Experimental details on preparation, characterization, and electrochemical testing; Fig. S1-S8, Schemes S1 and S2. See DOI: 10.1039/c2nr30252g

  20. A highly bioactive poly (amido amine)/70S30C bioactive glass hybrid with photoluminescent and antimicrobial properties for bone regeneration.

    Science.gov (United States)

    Akbari Dourbash, Fakhraddin; Alizadeh, Parvin; Nazari, Shahram; Farasat, Alireza

    2017-09-01

    The field of tissue engineering constantly calls for novel biomaterials that possess intrinsically multifunctional properties such as bioactivity, bioimaging ability and antibacterial properties. In this paper, poly (amido amine) generation 5/bioactive glass inorganic-organic hybrids have been developed through direct hybridization by 3-glycidoxypropyltrimethoxysilane (GPTMS) as coupling agent. Results indicated that the degree of covalent coupling by GPTMS and the weight percent of inorganic and organic constituents highly influence hybrids properties. It was found that nanoscale integration of inorganic and organic chains by GPTMS significantly endows hybrids with high thermal stability. Furthermore, hybrids exhibited photoluminescent ability (emission 400-600nm and 700nm) without incorporating of any organic dyes or quantum dots. In addition, hydrophilicity of our hybrids indicated good cell/material interaction. The biological apatite was formed on the surface of calcium containing hybrids when soaked in simulated body fluid (SBF) for 1week. Hybrids also showed linear biodegradation behavior in SBF that could be controlled by the degree of covalent crosslinking which was indicative of their stable biodegradation ability. High inherent antibacterial properties against Staphylococcus aureus was also observed from poly (amido amine)/silica hybrids. No adverse cytotoxicity for human gingival fibroblast cell lines (HGF) was detected after 4days. It is envisaged that our novel multifunctional hybrid system will confer intriguing potential in advancing the field of tissue engineering. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Highly efficient hybrid photovoltaics based on hyperbranched three-dimensional TiO2 electron transporting materials

    KAUST Repository

    Mahmood, Khalid; Swain, Bhabani Sankar; Amassian, Aram

    2015-01-01

    A 3D hyperbranched TiO2 electron transporting material is demonstrated, which exhibits superior carrier transport and lifetime, as well as excellent infiltration, leading to highly efficient mesostructured hybrid solar cells, such as lead-halide perovskites (15.5%) and dye-sensitized solar cells (11.2%).

  2. Cellulose nanofibril/reduced graphene oxide/carbon nanotube hybrid aerogels for highly flexible and all-solid-state supercapacitors

    Science.gov (United States)

    Qifeng Zheng; Zhiyong Cai; Zhenqiang Ma; Shaoqin Gong

    2015-01-01

    A novel type of highly flexible and all-solid-state supercapacitor that uses cellulose nanofibril (CNF)/reduced graphene oxide (RGO)/carbon nanotube (CNT) hybrid aerogels as electrodes and H2SO4 poly (vinyl alcohol) PVA gel as the electrolyte was developed and is reported here. These flexible solid-state supercapacitors...

  3. Highly efficient hybrid photovoltaics based on hyperbranched three-dimensional TiO2 electron transporting materials

    KAUST Repository

    Mahmood, Khalid

    2015-03-23

    A 3D hyperbranched TiO2 electron transporting material is demonstrated, which exhibits superior carrier transport and lifetime, as well as excellent infiltration, leading to highly efficient mesostructured hybrid solar cells, such as lead-halide perovskites (15.5%) and dye-sensitized solar cells (11.2%).

  4. Static properties and impact resistance of a green Ultra-High Performance Hybrid Fibre Reinforced Concrete (UHPHFRC) : experiments and modeling

    NARCIS (Netherlands)

    Yu, R.; Spiesz, P.R.; Brouwers, H.J.H.

    2014-01-01

    This paper addresses the static properties and impact resistance of a "green" Ultra-High Performance Hybrid Fibre Reinforced Concrete (UHPHFRC). The design of concrete mixtures aims to achieve a densely compacted cementitious matrix, employing the modified Andreasen & Andersen particle packing

  5. Hybrid Complexes of High and Low Molecular Weight Hyaluronans Highly Enhance HASCs Differentiation: Implication for Facial Bioremodelling

    Directory of Open Access Journals (Sweden)

    Antonietta Stellavato

    2017-11-01

    Full Text Available Background/Aims: Adipose-derived Stem Cells (ASCs are used in Regenerative Medicine, including fat grafting, recovery from local tissue ischemia and scar remodeling. The aim of this study was to evaluate hyaluronan based gel effects on ASCs differentiation and proliferation. Methods: Comparative analyses using high (H and low (L molecular weight hyaluronans (HA, hyaluronan hybrid cooperative complexes (HCCs, and high and medium cross-linked hyaluronan based dermal fillers were performed. Human ASCs were characterized by flow cytometry using CD90, CD34, CD105, CD29, CD31, CD45 and CD14 markers. Then, cells were treated for 7, 14 and 21 days with hyaluronans. Adipogenic differentiation was evaluated using Oil red-O staining and expression of leptin, PPAR-γ, LPL and adiponectin using qRT-PCR. Adiponectin was analyzed by immunofluorescence, PPAR-γ and adiponectin were analyzed using western blotting. ELISA assays for adiponectin and leptin were performed. Results: HCCs highly affected ASCs differentiation by up-regulating adipogenic genes and related proteins, that were also secreted in the culture medium. H-HA and L-HA induced a lower level of ASCs differentiation. Conclusion: HCCs-based formulations clearly enhance adipogenic differentiation and proliferation, when compared with linear HA and cross-linked hyaluronans. Injection of HCCs in subdermal fat compartment may recruit and differentiate stem cells in adipocytes, and considerably improving fat tissue renewal.

  6. A new PET detector concept for compact preclinical high-resolution hybrid MR-PET

    Science.gov (United States)

    Berneking, Arne; Gola, Alberto; Ferri, Alessandro; Finster, Felix; Rucatti, Daniele; Paternoster, Giovanni; Jon Shah, N.; Piemonte, Claudio; Lerche, Christoph

    2018-04-01

    This work presents a new PET detector concept for compact preclinical hybrid MR-PET. The detector concept is based on Linearly-Graded SiPM produced with current FBK RGB-HD technology. One 7.75 mm x 7.75 mm large sensor chip is coupled with optical grease to a black coated 8 mm x 8 mm large and 3 mm thick monolithic LYSO crystal. The readout is obtained from four readout channels with the linear encoding based on integrated resistors and the Center of Gravity approach. To characterize the new detector concept, the spatial and energy resolutions were measured. Therefore, the measurement setup was prepared to radiate a collimated beam to 25 different points perpendicular to the monolithic scintillator crystal. Starting in the center point of the crystal at 0 mm / 0 mm and sampling a grid with a pitch of 1.75 mm, all significant points of the detector were covered by the collimator beam. The measured intrinsic spatial resolution (FWHM) was 0.74 +/- 0.01 mm in x- and 0.69 +/- 0.01 mm in the y-direction at the center of the detector. At the same point, the measured energy resolution (FWHM) was 13.01 +/- 0.05 %. The mean intrinsic spatial resolution (FWHM) over the whole detector was 0.80 +/- 0.28 mm in x- and 0.72 +/- 0.19 mm in y-direction. The energy resolution (FWHM) of the detector was between 13 and 17.3 % with an average energy resolution of 15.7 +/- 1.0 %. Due to the reduced thickness, the sensitivity of this gamma detector is low but still higher than pixelated designs with the same thickness due to the monolithic crystals. Combining compact design, high spatial resolution, and high sensitivity, the detector concept is particularly suitable for applications where the scanner bore size is limited and high resolution is required - as is the case in small animal hybrid MR-PET.

  7. Inexpensive sol-gel synthesis of multiwalled carbon nanotube-TiO{sub 2} hybrids for high performance antibacterial materials

    Energy Technology Data Exchange (ETDEWEB)

    Abbas, Nadir; Shao, Godlisten N. [Department of Fusion Chemical Engineering, Hanyang University, 1271 Sa 3-dong, Sangnok-gu, Ansan-si, Gyeonggi-do 426-791 (Korea, Republic of); Haider, M. Salman [Department of Civil and Environmental System Engineering, Hanyang University, 1271 Sa 3-dong, Sangnok-gu, Ansan-si, Gyeonggi-do 426-791 (Korea, Republic of); Imran, Syed Muhammad; Park, Sung Soo; Jeon, Sun-Jeong [Department of Fusion Chemical Engineering, Hanyang University, 1271 Sa 3-dong, Sangnok-gu, Ansan-si, Gyeonggi-do 426-791 (Korea, Republic of); Kim, Hee Taik, E-mail: khtaik@hanyang.ac.kr [Department of Fusion Chemical Engineering, Hanyang University, 1271 Sa 3-dong, Sangnok-gu, Ansan-si, Gyeonggi-do 426-791 (Korea, Republic of)

    2016-11-01

    This study reports an inexpensive sol-gel method to synthesize TiO{sub 2}-CNT hybrid materials. Synthesized TiO{sub 2}-CNT materials show strong antibacterial activity in the absence of light. Cheap TiO{sub 2} source TiOCl{sub 2} is used during synthesis in the absence of high temperatures, high pressures and organic solvents. TiO{sub 2}-CNT materials with 0, 2, 5, 10, 15 and 20 wt% of CNT were synthesized and compared for antibacterial activity, surface area, porosity, crystalline structure, chemical state, and HaCaT cell proliferation. The antibacterial strength of hybrid materials increased significantly with the increase in CNT loading amount, and the TiO{sub 2}-CNT samples with a CNT loading of 10 wt% or more nearly removed all of the E.coli bacteria. HaCaT cell proliferation studies of synthesized hybrid materials illustrated that prepared TiO{sub 2}-CNT systems exhibit minimum cytotoxicity. The characteristics of prepared materials were analyzed by means of XRD, FTIR, Raman spectroscopy, XPS, TEM, and nitrogen gas physisorption studies, compared and discussed. - Highlights: • An inexpensive scheme of preparing TiO{sub 2}-CNT hybrids is presented. • Significant increase in the antibacterial properties of TiO{sub 2} in absence of light • Effects of CNT addition on the physicochemical properties of hybrids are studied. • Antibacterial activity increases with increase in CNT content. • Hybrids show no toxicity towards HaCaT skin cell line.

  8. 3D carbon fiber mats/nano-Fe3O4 hybrid material with high electromagnetic shielding performance

    Science.gov (United States)

    Zhan, Yingqing; Long, Zhihang; Wan, Xinyi; Zhang, Jiemin; He, Shuangjiang; He, Yi

    2018-06-01

    To obtain high-performance electromagnetic shielding materials, structure and morphology are two key factors. We here developed an efficient and facial method to prepare high-performance 3D carbon nanofiber mats (CFM)/Fe3O4 hybrid electromagnetic shielding materials. For this purpose, the CFM were chemically modified by mussel-inspired poly-dopamine coating, which were further used as templates for decoration of Fe3O4 nanoparticles via solvothermal route. It was found that the Fe3O4 nano-spheres with diameters of 200-250 nm were uniformly coated on the surface of 3D carbon nanofibers. More importantly, the morphology and structure of resulting 3D carbon nanofiber mats/Fe3O4 hybrids could be easily controlled by altering the experiment parameters, which were examined by FT-IR, XPS, TGA, XRD, SEM, and TEM. The measured magnetic properties showed that saturation magnetism and coercivity increased from 13.4 to 39.7 emu/g and 85.3 to 104.6 Oe, respectively. The lowest reflectivity of resulting hybrid was calculated to be -47 dB at 10.0 GHz (2.5 mm). In addition, the reflectivity of 3D carbon nanofiber mats/Fe3O4 hybrid was less than -25 dB in the range of 7-13 GHz. Moreover, the resulting 3D carbon nanofiber mats/Fe3O4 hybrid exhibited an EMI shielding performance of -62.6 dB in the frequency range of 8.2-12.4 GHz. Therefore, 3D carbon fiber mats/Fe3O4 hybrids can be ideal EMI materials with strong absorption, low density, and wide absorption range.

  9. High-strength bolt-forming of fine-grained aluminum alloy 6061 with a continuous hybrid process

    International Nuclear Information System (INIS)

    Kim, Ji Hun; Hwang, Sun Kwang; Im, Yong-Taek; Son, Il-Heon; Bae, Chul Min

    2012-01-01

    Highlights: ► Fine-grained AA6061-O was produced by a continuous hybrid process. ► It consists of rolling, ECAP, and drawing. ► High-strength bolt was manufactured with the fine-grained AA6061-O. ► The UTS and micro-hardness of the bolt was increased by 50%. ► The route C was better in making a uniform micro-hardness distribution in the bolt. - Abstract: It is well known that the development of a continuous manufacturing process to apply severe plastic deformation (SPD) is a major challenge for industrial usages to improve the mechanical properties of the material through grain refinement. In this study, fine-grained AA6061-O wire was manufactured by a two-pass hybrid process consisting of drawing, equal channel angular pressing and rolling in a continuous manner to investigate the effects of processing routes for two different routes, A and C, on the variation of ultimate tensile strength (UTS) and micro-hardness distribution. The UTS value (185 MPa) of the specimen processed by the two-pass hybrid process with route A was higher than that of 171 MPa obtained from the two-pass wire-drawing process and was equivalent to the level of 184 MPa processed by the three-pass wire-drawing process. The average micro-hardness value (Hv 58.0) obtained from the two-pass hybrid process through route C was the highest among all the cases. According to transmission electron microscopy, the original grain was subdivided and elongated owing to deformation during the processes. The specimen processed by the two-pass hybrid process through route C showed smaller deformation bands and had potentially higher angle grain boundaries compared to the specimen processed by the two-pass wire-drawing process. Finally, the high-strength bolt was manufactured using the fine-grained AA6061-O wire prepared by the continuous hybrid process to check its formability. A ductile fracture at the first thread right above the jaw was observed in the bolt tension test of the manufactured bolt

  10. Intertwined nanocarbon and manganese oxide hybrid foam for high-energy supercapacitors.

    Science.gov (United States)

    Wang, Wei; Guo, Shirui; Bozhilov, Krassimir N; Yan, Dong; Ozkan, Mihrimah; Ozkan, Cengiz S

    2013-11-11

    Rapid charging and discharging supercapacitors are promising alternative energy storage systems for applications such as portable electronics and electric vehicles. Integration of pseudocapacitive metal oxides with single-structured materials has received a lot of attention recently due to their superior electrochemical performance. In order to realize high energy-density supercapacitors, a simple and scalable method is developed to fabricate a graphene/MWNT/MnO2 nanowire (GMM) hybrid nanostructured foam, via a two-step process. The 3D few-layer graphene/MWNT (GM) architecture is grown on foamed metal foils (nickel foam) via ambient pressure chemical vapor deposition. Hydrothermally synthesized α-MnO2 nanowires are conformally coated onto the GM foam by a simple bath deposition. The as-prepared hierarchical GMM foam yields a monographical graphene foam conformally covered with an intertwined, densely packed CNT/MnO2 nanowire nanocomposite network. Symmetrical electrochemical capacitors (ECs) based on GMM foam electrodes show an extended operational voltage window of 1.6 V in aqueous electrolyte. A superior energy density of 391.7 Wh kg(-1) is obtained for the supercapacitor based on the GMM foam, which is much higher than ECs based on GM foam only (39.72 Wh kg(-1) ). A high specific capacitance (1108.79 F g(-1) ) and power density (799.84 kW kg(-1) ) are also achieved. Moreover, the great capacitance retention (97.94%) after 13 000 charge-discharge cycles and high current handability demonstrate the high stability of the electrodes of the supercapacitor. These excellent performances enable the innovative 3D hierarchical GMM foam to serve as EC electrodes, resulting in energy-storage devices with high stability and power density in neutral aqueous electrolyte. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Novel Carbon Materials in the Cathode Formulation for High Rate Rechargeable Hybrid Aqueous Batteries

    Directory of Open Access Journals (Sweden)

    Xiao Zhu

    2017-11-01

    Full Text Available Novel carbon materials, carbon nanotubes (CNTs and porous graphene (PG, were exploited and used as conductive additives to improve the rate performance of LiMn2O4 cathode for the rechargeable aqueous Zn/LiMn2O4 battery, namely the rechargeable hybrid aqueous battery (ReHAB. Thanks to the long-range conductivity and stable conductive network provided by CNTs, the rate and cycling performances of LiMn2O4 cathode in ReHAB are highly improved—up to about 100 mAh·g−1 capacity is observed at 10 C (1 C = 120 mAh·g−1. Except for CNTs, porous graphene (PG with a high surface area, an abundant porous structure, and an excellent electrical conductivity facilitates the transportation of Li ions and electrons, which can also obviously enhance the rate capability of the ReHAB. This is important because the ReHAB could be charged/discharged in a few minutes, and this leads to potential application of the ReHAB in automobile industry.

  12. Silicon/copper dome-patterned electrodes for high-performance hybrid supercapacitors

    Science.gov (United States)

    Liu, Xuyan; Jung, Hun-Gi; Kim, Sang-Ok; Choi, Ho-Suk; Lee, Sangwha; Moon, Jun Hyuk; Lee, Joong Kee

    2013-12-01

    This study proposes a method for manufacturing high-performance electrode materials in which controlling the shape of the current collector and electrode material for a Li-ion capacitor (LIC). In particular, the proposed LIC manufacturing method maintains the high voltage of a cell by using a microdome-patterned electrode material, allowing for reversible reactions between the Li-ion and the active material for an extended period of time. As a result, the LICs exhibit initial capacities of approximately 42 F g-1, even at 60 A g-1. The LICs also exhibit good cycle performance up to approximately 15,000 cycles. In addition, these advancements allow for a considerably higher energy density than other existing capacitor systems. The energy density of the proposed LICs is approximately nine, two, and 1.5 times higher than those of the electrochemical double layer capacitor (EDLC), AC/LiMn2O4 hybrid capacitor, and intrinsic Si/AC LIC, respectively.

  13. A hybrid plasma-chemical system for high-NOx flue gas treatment

    Science.gov (United States)

    Chmielewski, Andrzej G.; Zwolińska, Ewa; Licki, Janusz; Sun, Yongxia; Zimek, Zbigniew; Bułka, Sylwester

    2018-03-01

    The reduction of high concentrations of NOx and SO2 from simulated flue gas has been studied. Our aim was to optimise energy consumption for NOx and SO2 removal from off-gases from a diesel generator using heavy fuel oil. A hybrid process: electron beam (EB) plasma and wet scrubber has been applied. A much higher efficiency of NOx and SO2 removal was achieved in comparison to dry, ammonia free, electron beam flue gas treatment (EBFGT). A recorded removal from a concentration of 1500 ppm NOx reached 49% at a low dose of 6.5 kGy, while only 2% NOx was removed at the same dose if EB only was applied. For SO2, removal efficiency at a dose of 6.5 kGy increased from 15% (EB only) to 84% when sea water was used as a wet scrubber agent for 700 ppm SO2. The results of this study indicate that EB combined with wet scrubber is a very promising technology to be applied for removal of high concentrations of NOx and SO2 emitted from diesel engines operated e.g. on cargo ships, which are the main sources of SO2 and NOx pollution along their navigation routes.

  14. Nanoporous Hybrid Electrolytes for High-Energy Batteries Based on Reactive Metal Anodes

    Energy Technology Data Exchange (ETDEWEB)

    Tu, Zhengyuan [Department of Materials Science and Engineering, Cornell University, Ithaca NY 14850 USA; Zachman, Michael J. [School of Applied and Engineering Physics, Cornell University, Ithaca NY 14850 USA; Choudhury, Snehashis [School of Chemical Engineering and Biomolecular Engineering, Cornell University, Ithaca NY 14850 USA; Wei, Shuya [School of Chemical Engineering and Biomolecular Engineering, Cornell University, Ithaca NY 14850 USA; Ma, Lin [Department of Materials Science and Engineering, Cornell University, Ithaca NY 14850 USA; Yang, Yuan [Department of Chemistry and Geochemistry, Colorado School of Mines, Golden CO 80401 USA; Kourkoutis, Lena F. [School of Applied and Engineering Physics, Cornell University, Ithaca NY 14850 USA; Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca NY 14853 USA; Archer, Lynden A. [Department of Materials Science and Engineering, Cornell University, Ithaca NY 14850 USA; School of Chemical Engineering and Biomolecular Engineering, Cornell University, Ithaca NY 14850 USA

    2017-01-06

    Successful strategies for stabilizing electrodeposition of reactive metals, including lithium, sodium, and aluminum are a requirement for safe, high-energy electrochemical storage technologies that utilize these metals as anodes. Unstable deposition produces high-surface area dendritic structures at the anode/electrolyte interface, which causes premature cell failure by complex physical and chemical processes that have presented formidable barriers to progress. Here, it is reported that hybrid electrolytes created by infusing conventional liquid electrolytes into nanoporous membranes provide exceptional ability to stabilize Li. Electrochemical cells based on γ-Al2O3 ceramics with pore diameters below a cut-off value above 200 nm exhibit long-term stability even at a current density of 3 mA cm-2. The effect is not limited to ceramics; similar large enhancements in stability are observed for polypropylene membranes with less monodisperse pores below 450 nm. These findings are critically assessed using theories for ion rectification and electrodeposition reactions in porous solids and show that the source of stable electrodeposition in nanoporous electrolytes is fundamental.

  15. E- and W-band high-capacity hybrid fiber-wireless link

    DEFF Research Database (Denmark)

    Vegas Olmos, Juan José; Pang, Xiaodan; Tafur Monroy, Idelfonso

    2014-01-01

    In this paper we summarize the work conducted in our group in the area of E- and W-band optical high-capacity fiber-wireless links. We present performance evaluations of E- and W-band mm-wave signal generation using photonic frequency upconversion employing both VCSELs and ECLs, along with transm...... in mobile backhaul/fronthaul applications, dense distributed antenna systems and fiber-over-radio scenarios.......In this paper we summarize the work conducted in our group in the area of E- and W-band optical high-capacity fiber-wireless links. We present performance evaluations of E- and W-band mm-wave signal generation using photonic frequency upconversion employing both VCSELs and ECLs, along...... with transmission over different type of optical fibers and for a number of values for the wireless link distance. Hybrid wireless-optical links can be composed of mature and resilient technology available off-the-shelf, and provide functionalities that can add value to optical access networks, specifically...

  16. High surface enhanced Raman scattering activity of BN nanosheets–Ag nanoparticles hybrids

    International Nuclear Information System (INIS)

    Yang, Shanshan; Zhang, Zhaochun; Zhao, Jun; Zheng, Houli

    2014-01-01

    Highlights: • Boron nitride–silver nanohybrid was acquired through a liquid-phase reducing route. • The composite shown a high-quality SERS activity. • 2-Mercaptobenzimidazole was chemisorbed on silver surface in vertical orientation. -- Abstract: A facile liquid-phase reducing route was developed to modify boron nitride (BN) nanosheets with silver nanoparticles (AgNPs) in order to fabricate BN–AgNPs hybrids with high surface enhanced Raman scattering (SERS) activity. The layered structure and morphology of BN–AgNPs nanohybrids were characterized by transmission electron microscopy and atomic force microscopy, meanwhile, Fourier transform infrared spectroscopy and ultraviolet–visible were used for studying optical properties and surface plasmon resonance applied to the optical sensor. The SERS of adsorbed 2-mercaptobenzimidazole (MBI) molecule was investigated which shown that the BN–AgNPs substrate exhibited a very strong SERS activity, offering a great potential application in molecular probe sensor. On the basis of the analysis of SERS and the Raman surface selection rules, we could draw a conclusion that the MBI molecule was adsorbed upright on the AgNPs surface through the sulphur and nitrogen atoms. What is more, the cyclic voltammetry experiment indicated the electrochemically irreversible behavior of BN–AgNPs nanohybrids in KCl solution

  17. MYRRHA a multi-purpose hybrid research reactor for high-tech applications

    International Nuclear Information System (INIS)

    Abderrahim, H. A.; Baeten, P.

    2012-01-01

    MYRRHA (Multi-purpose hYbrid Research Reactor for High-tech Applications) is the flexible experimental accelerator driven system (ADS) in development at SCK-CEN. MYRRHA is able to work both in subcritical (ADS) as in critical mode. In this way, MYRRHA will allow fuel developments for innovative reactor systems, material developments for generation IV (GEN IV) systems, material developments for fusion reactors, radioisotope production and industrial applications, such as Si-doping. MYRRHA will also demonstrate the ADS full concept by coupling the three components (accelerator, spallation target and subcritical reactor) at reasonable power level to allow operation feedback, scalable to an industrial demonstrator and allow the study of efficient transmutation of high-level nuclear waste. MYRRHA is based on the heavy liquid metal technology and so it will contribute to the development of lead fast reactor (LFR) technology and in critical mode, MYRRHA will play the role of European technology pilot plant in the roadmap for LFR. In this paper the historical evolution of MYRRHA and the rationale behind the design choices is presented and the latest configuration of the reactor core and primary system is described. (authors)

  18. Nanoporous Hybrid Electrolytes for High-Energy Batteries Based on Reactive Metal Anodes

    KAUST Repository

    Tu, Zhengyuan

    2017-01-06

    Successful strategies for stabilizing electrodeposition of reactive metals, including lithium, sodium, and aluminum are a requirement for safe, high-energy electrochemical storage technologies that utilize these metals as anodes. Unstable deposition produces high-surface area dendritic structures at the anode/electrolyte interface, which causes premature cell failure by complex physical and chemical processes that have presented formidable barriers to progress. Here, it is reported that hybrid electrolytes created by infusing conventional liquid electrolytes into nanoporous membranes provide exceptional ability to stabilize Li. Electrochemical cells based on γ-Al2O3 ceramics with pore diameters below a cut-off value above 200 nm exhibit long-term stability even at a current density of 3 mA cm−2. The effect is not limited to ceramics; similar large enhancements in stability are observed for polypropylene membranes with less monodisperse pores below 450 nm. These findings are critically assessed using theories for ion rectification and electrodeposition reactions in porous solids and show that the source of stable electrodeposition in nanoporous electrolytes is fundamental.

  19. HYBRID SULFUR CYCLE FLOWSHEETS FOR HYDROGEN PRODUCTION USING HIGH-TEMPERATURE GAS-COOLED REACTORS

    Energy Technology Data Exchange (ETDEWEB)

    Gorensek, M.

    2011-07-06

    Two hybrid sulfur (HyS) cycle process flowsheets intended for use with high-temperature gas-cooled reactors (HTGRs) are presented. The flowsheets were developed for the Next Generation Nuclear Plant (NGNP) program, and couple a proton exchange membrane (PEM) electrolyzer for the SO2-depolarized electrolysis step with a silicon carbide bayonet reactor for the high-temperature decomposition step. One presumes an HTGR reactor outlet temperature (ROT) of 950 C, the other 750 C. Performance was improved (over earlier flowsheets) by assuming that use of a more acid-tolerant PEM, like acid-doped poly[2,2'-(m-phenylene)-5,5'-bibenzimidazole] (PBI), instead of Nafion{reg_sign}, would allow higher anolyte acid concentrations. Lower ROT was accommodated by adding a direct contact exchange/quench column upstream from the bayonet reactor and dropping the decomposition pressure. Aspen Plus was used to develop material and energy balances. A net thermal efficiency of 44.0% to 47.6%, higher heating value basis is projected for the 950 C case, dropping to 39.9% for the 750 C case.

  20. Flexible Hybrid Membranes with Ni(OH)2 Nanoplatelets Vertically Grown on Electrospun Carbon Nanofibers for High-Performance Supercapacitors.

    Science.gov (United States)

    Zhang, Longsheng; Ding, Qianwei; Huang, Yunpeng; Gu, Huahao; Miao, Yue-E; Liu, Tianxi

    2015-10-14

    The practical applications of transition metal oxides and hydroxides for supercapacitors are restricted by their intrinsic poor conductivity, large volumetric expansion, and rapid capacitance fading upon cycling, which can be solved by optimizing these materials to nanostructures and confining them within conductive carbonaceous frameworks. In this work, flexible hybrid membranes with ultrathin Ni(OH)2 nanoplatelets vertically and uniformly anchored on the electrospun carbon nanofibers (CNF) have been facilely prepared as electrode materials for supercapacitors. The Ni(OH)2/CNF hybrid membranes with three-dimensional macroporous architectures as well as hierarchical nanostructures can provide open and continuous channels for rapid diffusion of electrolyte to access the electrochemically active Ni(OH)2 nanoplatelets. Moreover, the carbon nanofiber can act both as a conductive core to provide efficient transport of electrons for fast Faradaic redox reactions of the Ni(OH)2 sheath, and as a buffering matrix to mitigate the local volumetric expansion/contraction upon long-term cycling. As a consequence, the optimized Ni(OH)2/CNF hybrid membrane exhibits a high specific capacitance of 2523 F g(-1) (based on the mass of Ni(OH)2, that is 701 F g(-1) based on the total mass) at a scan rate of 5 mV s(-1). The Ni(OH)2/CNF hybrid membranes with high mechanical flexibility, superior electrical conductivity, and remarkably improved electrochemical capacitance are condsidered as promising flexible electrode materials for high-performance supercapacitors.

  1. Development of high-performance alkali-hybrid polarized 3He targets for electron scattering

    Science.gov (United States)

    Singh, Jaideep T.; Dolph, P. A. M.; Tobias, W. A.; Averett, T. D.; Kelleher, A.; Mooney, K. E.; Nelyubin, V. V.; Wang, Yunxiao; Zheng, Yuan; Cates, G. D.

    2015-05-01

    Background: Polarized 3He targets have been used as effective polarized neutron targets for electron scattering experiments for over twenty years. Over the last ten years, the effective luminosity of polarized 3He targets based on spin-exchange optical pumping has increased by over an order of magnitude. This has come about because of improvements in commercially-available lasers and an improved understanding of the physics behind the polarization process. Purpose: We present the development of high-performance polarized 3He targets for use in electron scattering experiments. Improvements in the performance of polarized 3He targets, target properties, and operating parameters are documented. Methods: We utilize the technique of alkali-hybrid spin-exchange optical pumping to polarize the 3He targets. Spectrally narrowed diode lasers used for the optical pumping greatly improved the performance. A simulation of the alkali-hybrid spin-exchange optical pumping process was developed to provide guidance in the design of the targets. Data was collected during the characterization of 24 separate glass target cells, each of which was constructed while preparing for one of four experiments at Jefferson Laboratory in Newport News, Virginia. Results: From the data obtained we made determinations of the so-called X -factors that quantify a temperature-dependent and as-yet poorly understood spin-relaxation mechanism that limits the maximum achievable 3He polarization to well under 100%. The presence of the X -factor spin-relaxation mechanism was clearly evident in our data. Good agreement between the simulation and the actual target performance was obtained by including details such as off-resonant optical pumping. Included in our results is a measurement of the K -3He spin-exchange rate coefficient kseK=(7.46 ±0.62 ) ×10-20cm3/s over the temperature range 503 K to 563 K. Conclusions: In order to achieve high performance under the operating conditions described in this paper

  2. Textured dysprosium and gadolinium poles for high-field, short-period hybrid undulators

    International Nuclear Information System (INIS)

    Murokh, Alex; Solovyov, Vyacheslav; Agustsson, Ron; O'Shea, Finn H.; Chubar, Oleg; Chen, Yung; Grandsaert, Thomas

    2014-01-01

    We discuss the feasibility of enhancement of the gap field in a short-period hybrid undulator by using pole inserts with the saturation inductance B s , over that of iron, 2 T. Dysprosium metal, with the saturation inductance of 3.4 T below 90 K, and Gadolinium with B s =2.7 T, appear as good candidates as the optimized pole material. However, due to the high magnetic anisotropy of Dy, such a high level of magnetization can only be realized when the external field lies in the basal plane. This implies that the pole has to be single-crystalline or highly textured. Considering that growing large, >10mm, Dy single crystals is difficult, we propose secondary recrystallization as a method to induce the required texture in thin Dy and Gd foils. The textured foils can be stacked to produce pole inserts of the desired geometry and orientation. Results of small-scale processing and magnetic measurements of thin (20–60 μ) foils provide evidence that the required texture quality can be achieved by a relatively simple sequence of heat-treatments and cold rolling. The advantage of textured Dy and Gd poles is demonstrated in a several period test undulator. -- Highlights: • Textured rare-earth materials for use as undulator pole materials. • We measure the development of texture in Dy and Gd. • We compare the rare-earth materials with high saturation steel in undulators. • Thin sheets of Dy and Gd materials perform similar to single crystals

  3. Applications of Novel Carbon/AlPO4 Hybrid-Coated H2Ti12O25 as a High-Performance Anode for Cylindrical Hybrid Supercapacitors.

    Science.gov (United States)

    Lee, Jeong-Hyun; Lee, Seung-Hwan

    2016-10-26

    The hybrid supercapacitor using carbon/AlPO 4 hybrid-coated H 2 Ti 12 O 25 /activated carbon is fabricated as a cylindrical cell and investigated against electrochemical performances. The hybrid coating shows that the conductivity for the electron and Li ion is superior and it prevented active material from HF attack. Consequently, carbon/AlPO 4 hybrid-coated H 2 Ti 12 O 25 shows enhanced rate capability and long-term cycle life. Also, the hybrid coating inhibits swelling phenomenon caused by gas generated as decomposition reaction of electrolyte. Therefore, the hybrid supercapacitor using carbon/AlPO 4 hybrid-coated H 2 Ti 12 O 25 /activated carbon can be applied to an energy storage system that requires a long-term life.

  4. High-Purity Hybrid Organolead Halide Perovskite Nanoparticles Obtained by Pulsed-Laser Irradiation in Liquid

    KAUST Repository

    Amendola, Vincenzo; Fortunati, Ilaria; Marega, Carla; Abdelhady, Ahmed L.; Saidaminov, Makhsud I.; Bakr, Osman

    2016-01-01

    Nanoparticles of hybrid organic-inorganic perovskites have attracted a great deal of attention due to their variety of optoelectronic properties, their low cost, and their easier integration into devices with complex geometry, compared

  5. Hybrid Cooling Loop Technology for Robust High Heat Flux Cooling, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Advanced Cooling Technologies, Inc. (ACT) proposes to develop a hybrid cooling loop and cold plate technology for space systems thermal management. The proposed...

  6. Hybrid Computational Model for High-Altitude Aeroassist Vehicles, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — A hybrid continuum/noncontinuum computational model will be developed for analyzing the aerodynamics and heating on aeroassist vehicles. Unique features of this...

  7. Organosilica hybrid nanomaterials with a high organic content: syntheses and applications of silsesquioxanes

    KAUST Repository

    Croissant, Jonas G.; Cattoë n, Xavier; Durand, Jean Olivier; Wong Chi Man, Michel; Khashab, Niveen M.

    2016-01-01

    chemistry and stability of silica. In the organosilica family, silsesquioxanes (R-SiO) stand between silicas (SiO) and silicones (RSiO), and are variously called organosilicas, ormosil (organically-modified silica), polysilsesquioxanes and silica hybrids

  8. Starch degradability of dry and ensiled high-moisture grains of corn hybrids with different textures at different grinding degrees

    OpenAIRE

    Wagner dos Reis; Ciniro Costa; Paulo Roberto de Lima Meirelles; Marina Gabriela Berchiol da Silva; Marco Aurélio Factori; Cristiano Magalhães Pariz; Simony Alves Mendonça; Erikelly Aline Ribeiro de Santana

    2011-01-01

    This research evaluated corn grains with flint and dent texture (ensiled high-moisture or dried), submitted to grinding degrees, using the in situ ruminal degradation technique. Three rumen canulated adult sheeps were used in a complete randomized design, using a factorial outline 2 x 2 x 3, with two corn hybrids (flint and dent texture), two conservation methods (ensiled high-moisture and dry) and three grinding degress (whole, coarsely and finely ground, corresponding to the sieve of 12; 10...

  9. Stannous sulfide/multi-walled carbon nanotube hybrids as high-performance anode materials of lithium-ion batteries

    International Nuclear Information System (INIS)

    Li, Shuankui; Zuo, Shiyong; Wu, Zhiguo; Liu, Ying; Zhuo, Renfu; Feng, Juanjuan; Yan, De; Wang, Jun; Yan, Pengxun

    2014-01-01

    A hybrid of multi-walled carbon nanotubes (MWCNTs) anchored with SnS nanosheets is synthesized through a simple solvothermal method for the first time. Interestingly, SnS can be controllably deposited onto the MWCNTs backbone in the shape of nanosheets or nanoparticles to form two types of SnS/MWCNTs hybrids, SnS NSs/MWCNTs and SnS NPs/MWCNTs. When evaluated as an anode material for lithium-ion batteries, the hybrids exhibit higher lithium storage capacities and better cycling performance compared to pure SnS. It is found that the SnS NSs/MWCNTs hybrid exhibits a large reversible capacity of 620mAhg −1 at a current of 100mAg −1 as an anode material for lithium-ion batteries, which is better than SnS NPs/MWCNTs. The improved performance may be attributed to the ultrathin nanosheet subunits possess short distance for Li + ions diffusion and large electrode-electrolyte contact area for high Li + ions flux across the interface. It is believed that the structural design of electrodes demonstrated in this work will have important implications on the fabrication of high-performance electrode materials for lithium-ion batteries

  10. A self-sustaining high-strength wastewater treatment system using solar-bio-hybrid power generation.

    Science.gov (United States)

    Bustamante, Mauricio; Liao, Wei

    2017-06-01

    This study focuses on system analysis of a self-sustaining high-strength wastewater treatment concept combining solar technologies, anaerobic digestion, and aerobic treatment to reclaim water. A solar bio-hybrid power generation unit was adopted to power the wastewater treatment. Concentrated solar power (CSP) and photovoltaics (PV) were combined with biogas energy from anaerobic digestion. Biogas is also used to store the extra energy generated by the hybrid power unit and ensure stable and continuous wastewater treatment. It was determined from the energy balance analysis that the PV-bio hybrid power unit is the preferred energy unit to realize the self-sustaining high-strength wastewater treatment. With short-term solar energy storage, the PV-bio-hybrid power unit in Phoenix, AZ requires solar collection area (4032m 2 ) and biogas storage (35m 3 ), while the same unit in Lansing, MI needs bigger solar collection area and biogas storage (5821m 2 and 105m 3 , respectively) due to the cold climate. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Development of a High Slip-resistant Footwear Outsole Using a Hybrid Rubber Surface Pattern

    OpenAIRE

    YAMAGUCHI, Takeshi; HOKKIRIGAWA, Kazuo

    2014-01-01

    Abstract: The present study examined whether a new footwear outsole with tread blocks and a hybrid rubber surface pattern, composed of rough and smooth surfaces, could increase slip resistance and reduce the risk of fall while walking on a wet floor surface. A drag test was performed to measure static and dynamic coefficient of friction (SCOF and DCOF, respectively) values for the footwear with the hybrid rubber surface pattern outsole and two types of commercially available boots that are co...

  12. Investigation of DC hybrid circuit breaker based on high-speed switch and arc generator

    Science.gov (United States)

    Wu, Yifei; Rong, Mingzhe; Wu, Yi; Yang, Fei; Li, Mei; Zhong, Jianying; Han, Guohui; Niu, Chunping; Hu, Yang

    2015-02-01

    A new design of DC hybrid circuit breaker based on high-speed switch (HSS) and arc generator (AG), which can drastically profit from low heat loss in normal state and fast current breaking under fault state, is presented and analyzed in this paper. AG is designed according to the magnetic pinch effect of liquid metal. By utilizing the arc voltage generated across AG, the fault current is rapidly commutated from HSS into parallel connected branch. As a consequence, the arcless open of HSS is achieved. The post-arc conducting resume time (Δ tc) of AG and the commutation original voltage (Uc), two key factors in the commutation process, are investigated experimentally. Particularly, influences of the liquid metal channel diameter (Φ) of AG, fault current rate of rise (di/dt) and Uc on Δ tc are focused on. Furthermore, a suitable Uc is determined during the current commutation process, aiming at the reliable arcless open of HSS and short breaking time. Finally, the fault current breaking test is carried out for the current peak value of 11.8 kA, and the validity of the design is confirmed by the experimental results.

  13. Investigation of DC hybrid circuit breaker based on high-speed switch and arc generator.

    Science.gov (United States)

    Wu, Yifei; Rong, Mingzhe; Wu, Yi; Yang, Fei; Li, Mei; Zhong, Jianying; Han, Guohui; Niu, Chunping; Hu, Yang

    2015-02-01

    A new design of DC hybrid circuit breaker based on high-speed switch (HSS) and arc generator (AG), which can drastically profit from low heat loss in normal state and fast current breaking under fault state, is presented and analyzed in this paper. AG is designed according to the magnetic pinch effect of liquid metal. By utilizing the arc voltage generated across AG, the fault current is rapidly commutated from HSS into parallel connected branch. As a consequence, the arcless open of HSS is achieved. The post-arc conducting resume time (Δ tc) of AG and the commutation original voltage (Uc), two key factors in the commutation process, are investigated experimentally. Particularly, influences of the liquid metal channel diameter (Φ) of AG, fault current rate of rise (di/dt) and Uc on Δ tc are focused on. Furthermore, a suitable Uc is determined during the current commutation process, aiming at the reliable arcless open of HSS and short breaking time. Finally, the fault current breaking test is carried out for the current peak value of 11.8 kA, and the validity of the design is confirmed by the experimental results.

  14. Hip-Hop Hamlet: Hybrid Interpretive Discourse in a Suburban High School English Class

    Directory of Open Access Journals (Sweden)

    Joanna L. Anglin

    2014-07-01

    Full Text Available This study investigates the collaborative composing processes of a group of five high school seniors who constructed interpretations of each of the five acts of Shakespeare’s Hamlet through the medium of spoken word performances. The group composing processes were analyzed to identify how the students drew on conventions from the spoken word tradition to phrase and perform their interpretations. Findings indicate that across the five spoken word performances, the retelling of the Hamlet narrative involved a set of decisions that were both constrained and afforded by the rap medium. The students’ discussion of how to rewrite the story in the condensed poetic form of a rap required them to clarify events from Shakespeare’s version and both summarize them and interpret them both in their discussion and in their own text. Their interpretive work involved the incorporation of a variety of rap and other pop culture conventions such that their deliberation regarding word choice and accompanying performative elements necessitated careful consideration of the meaning that they found in Shakespeare’s version of the story, itself an adaptation from extant cultural narratives. The study concludes with a consideration of their spoken word interpretations as comprising a hybrid discourse that enabled exploratory interpretive talk that contributed to their understanding of the drama through the collaborative composition of their own representational text.

  15. Proposed high voltage power supply for the ITER relevant lower hybrid current drive system

    International Nuclear Information System (INIS)

    Sharma, P.K.; Kazarian, F.; Garibaldi, P.; Gassman, T.; Artaud, J.F.; Bae, Y.S.; Belo, J.; Berger-By, G.; Bernard, J.M.; Cara, Ph.; Cardinali, A.; Castaldo, C.; Ceccuzzi, S.; Cesario, R.; Decker, J.; Delpech, L.; Ekedahl, A.; Garcia, J.; Goniche, M.; Guilhem, D.

    2011-01-01

    In the framework of the EFDA task HCD-08-03-01, the ITER lower hybrid current drive (LHCD) system design has been reviewed. The system aims to generate 24 MW of RF power at 5 GHz, of which 20 MW would be coupled to the plasmas. The present state of the art does not allow envisaging a unitary output of the klystrons exceeding 500 kW, so the project is based on 48 klystron units, leaving some margin when the transmission lines losses are taken into account. A high voltage power supply (HVPS), required to operate the klystrons, is proposed. A single HVPS would be used to feed and operate four klystrons in parallel configuration. Based on the above considerations, it is proposed to design and develop twelve HVPS, based on pulse step modulator (PSM) technology, each rated for 90 kV/90 A. This paper describes in details, the typical electrical requirements and the conceptual design of the proposed HVPS for the ITER LHCD system.

  16. Hybrid ZnO/ZnS nanoforests as the electrode materials for high performance supercapacitor application.

    Science.gov (United States)

    Zhang, Siwen; Yin, Bosi; Jiang, He; Qu, Fengyu; Umar, Ahmad; Wu, Xiang

    2015-02-07

    Heterostructured ZnO/ZnS nanoforests are prepared through a simple two-step thermal evaporation method at 650 °C and 1300 °C in a tube furnace under the flow of argon gas, respectively. A metal catalyst (Au) to form a binary alloy has been used in the process. The as-obtained ZnO/ZnS products are characterized by using a series of techniques, including scanning electron microscopy (SEM), X-ray diffraction (XRD), energy dispersion X-ray spectroscopy (EDS), Raman spectroscopy and photoluminescence. A possible growth mechanism is temporarily proposed. The hybrid structures are also directly functionalized as supercapacitor (SC) electrodes without using any ancillary materials such as carbon black or binder. Results show that the as-synthesized ZnO/ZnS heterostructures exhibit a greatly reduced ultraviolet emission and dramatically enhanced green emission compared to pure ZnO nanorods. The SCs data demonstrate high specific capacitance of 217 mF cm(-2) at 1 mA cm(-2) and excellent cyclic performance with 82% capacity retention after 2000 cycles at a current density of 2.0 mA cm(-2).

  17. Neutronic behavior of thorium fuel cycles in a very high temperature hybrid system

    International Nuclear Information System (INIS)

    Rodriguez Garcia, Lorena; Milian Perez, Daniel; Garcia Hernandez, Carlos; Milian Lorenzo, Daniel; Velasco, Abanades

    2013-01-01

    Nuclear energy needs to guarantee four important issues to be successful as a sustainable energy source: nuclear safety, economic competitiveness, proliferation resistance and a minimal production of radioactive waste. Pebble bed reactors (PBR), which are very high temperature systems together with fuel cycles based in Thorium, they could offer the opportunity to meet the sustainability demands. Thorium is a potentially valuable energy source since it is about three to four times as abundant as Uranium. It is also a widely distributed natural resource readily accessible in many countries. This paper shows the main advantages of the use of a hybrid system formed by a Pebble Bed critical nuclear reactor and two Pebble Bed Accelerator Driven Systems (ADSs) using a variety of fuel cycles with Thorium (Th+U 233 , Th+Pu 239 and Th+U). The parameters related to the neutronic behavior like deep burn, nuclear fuel breeding, Minor Actinide stockpile, power density profiles and other are used to compare the fuel cycles using the well-known MCNPX computational code. (author)

  18. A High-Performance Embedded Hybrid Methodology for Uncertainty Quantification With Applications

    Energy Technology Data Exchange (ETDEWEB)

    Iaccarino, Gianluca

    2014-04-01

    Multiphysics processes modeled by a system of unsteady di erential equations are natu- rally suited for partitioned (modular) solution strategies. We consider such a model where probabilistic uncertainties are present in each module of the system and represented as a set of random input parameters. A straightforward approach in quantifying uncertainties in the predicted solution would be to sample all the input parameters into a single set, and treat the full system as a black-box. Although this method is easily parallelizable and requires minimal modi cations to deterministic solver, it is blind to the modular structure of the underlying multiphysical model. On the other hand, using spectral representations polynomial chaos expansions (PCE) can provide richer structural information regarding the dynamics of these uncertainties as they propagate from the inputs to the predicted output, but can be prohibitively expensive to implement in the high-dimensional global space of un- certain parameters. Therefore, we investigated hybrid methodologies wherein each module has the exibility of using sampling or PCE based methods of capturing local uncertainties while maintaining accuracy in the global uncertainty analysis. For the latter case, we use a conditional PCE model which mitigates the curse of dimension associated with intru- sive Galerkin or semi-intrusive Pseudospectral methods. After formalizing the theoretical framework, we demonstrate our proposed method using a numerical viscous ow simulation and benchmark the performance against a solely Monte-Carlo method and solely spectral method.

  19. Performance test of lower hybrid waveguide under long/high-RF power transmission

    International Nuclear Information System (INIS)

    Seki, Masami; Obara, Kenjiro; Maebara, Sunao

    1996-06-01

    Performance tests of a module for lower hybrid waveguides were carried out at the CEA Cadarache RF Test Facility. For the experiments the test module was fabricated by JAERI, the transmission line of the test bed was modified and the connection waveguides were manufactured by CEA. As the results, the thermal treatment by baking at a higher temperature was the most effective for reducing outgassing during injection of high RF power. The outgassing strongly depended on the temperature of the test module, but was independent to initial temperature. The RF injection reduced outgassing. The outgassing rate decreased to a low level of 10 -6 -10 -5 Pa m 3 /sec m 2 (10 -9 -10 -8 Torr 1/sec cm 2 ) at 400degC after 450degC-baking. The gas injection did not affect outgassing before and during RF injection. The baking under H 2 or D 2 gas atmosphere were not so effective for reducing outgassing rate. The outgassing rate did not depend on input RF power densities. The temperature in central part of the test module saturated to be ∼100degC by using of water cooling at a power level of 150 MW/m 2 RF injection, and a neutral gas pressure decreased gradually. In the water cooling case, the outgassing rate was very low less than 10 -7 Pa m 3 /sec m 2 (10 -10 Torr 1/sec cm 2 ). The steady state RF injection was demonstrated with water cooling. (author)

  20. Hybrid High-Order methods for finite deformations of hyperelastic materials

    Science.gov (United States)

    Abbas, Mickaël; Ern, Alexandre; Pignet, Nicolas

    2018-01-01

    We devise and evaluate numerically Hybrid High-Order (HHO) methods for hyperelastic materials undergoing finite deformations. The HHO methods use as discrete unknowns piecewise polynomials of order k≥1 on the mesh skeleton, together with cell-based polynomials that can be eliminated locally by static condensation. The discrete problem is written as the minimization of a broken nonlinear elastic energy where a local reconstruction of the displacement gradient is used. Two HHO methods are considered: a stabilized method where the gradient is reconstructed as a tensor-valued polynomial of order k and a stabilization is added to the discrete energy functional, and an unstabilized method which reconstructs a stable higher-order gradient and circumvents the need for stabilization. Both methods satisfy the principle of virtual work locally with equilibrated tractions. We present a numerical study of the two HHO methods on test cases with known solution and on more challenging three-dimensional test cases including finite deformations with strong shear layers and cavitating voids. We assess the computational efficiency of both methods, and we compare our results to those obtained with an industrial software using conforming finite elements and to results from the literature. The two HHO methods exhibit robust behavior in the quasi-incompressible regime.

  1. Neutronic behavior of thorium fuel cycles in a very high temperature hybrid system

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez Garcia, Lorena; Milian Perez, Daniel; Garcia Hernandez, Carlos; Milian Lorenzo, Daniel, E-mail: dperez@instec.cu, E-mail: cgh@instec.cu, E-mail: dmilian@instec.cu [Higher Institute of Technologies and Applied Sciences, Havana (Cuba); Velasco, Abanades, E-mail: abanades@etsii.upm.es [Department of Simulation of Thermo Energy Systems, Polytechnic University of Madrid (Spain)

    2013-07-01

    Nuclear energy needs to guarantee four important issues to be successful as a sustainable energy source: nuclear safety, economic competitiveness, proliferation resistance and a minimal production of radioactive waste. Pebble bed reactors (PBR), which are very high temperature systems together with fuel cycles based in Thorium, they could offer the opportunity to meet the sustainability demands. Thorium is a potentially valuable energy source since it is about three to four times as abundant as Uranium. It is also a widely distributed natural resource readily accessible in many countries. This paper shows the main advantages of the use of a hybrid system formed by a Pebble Bed critical nuclear reactor and two Pebble Bed Accelerator Driven Systems (ADSs) using a variety of fuel cycles with Thorium (Th+U{sup 233}, Th+Pu{sup 239} and Th+U). The parameters related to the neutronic behavior like deep burn, nuclear fuel breeding, Minor Actinide stockpile, power density profiles and other are used to compare the fuel cycles using the well-known MCNPX computational code. (author)

  2. Hybrid Life Cycle Assessment of Low, Mid and High-Rise Multi-Family Dwellings

    Directory of Open Access Journals (Sweden)

    Kimberly Bawden

    2015-04-01

    Full Text Available We undertake Life Cycle Assessment (LCA of the cumulative energy demand (CED and global warming potential (GWP for a portfolio of 10 multi-family residences in the U.S. We argue that prior LCA studies of buildings use an inconsistent boundary for processes to be included in the supply chain: The operational phase includes all energy use in a building, but supply chains for the production of appliances, equipment and consumables associated with activities done in the building are neglected. We correct this by starting the analysis with an explicit definition of a functional unit, providing climate controlled space, and including processes associated with this functional unit. Using a hybrid LCA approach, the CED for low, mid and high-rise multi-family residences is found to increase from 30, 34, to 39 GJ/m2, respectively. This increase is due to the need for energy-intensive structural materials such as concrete and steel in taller buildings. With our approach, the share of materials and construction of total life cycle energy doubles to 26%, compared with a 13% share that would be obtained with inconsistent system boundaries used in prior studies. We thus argue that explicit definition of functional unit leads to an increase in the contribution of supply chains to building energy life cycles.

  3. Feasibility of Thorium Fuel Cycles in a Very High Temperature Pebble-Bed Hybrid System

    Directory of Open Access Journals (Sweden)

    L.P. Rodriguez

    2015-08-01

    Full Text Available Nuclear energy presents key challenges to be successful as a sustainable energy source. Currently, the viability of the use thorium-based fuel cycles in an innovative nuclear energy generation system is being investigated in order to solve these key challenges. In this work, the feasibility of three thorium-based fuel cycles (232Th-233U, 232Th-239Pu, and 232Th-U in a hybrid system formed by a Very High Temperature Pebble-Bed Reactor (VHTR and two Pebble-Bed Accelerator Driven Systems (ADSs was evaluated using parameters related to the neutronic behavior such as nuclear fuel breeding, minor actinide stockpile, the energetic contribution of each fissile isotope, and the radiotoxicity of the long lived wastes. These parameters were used to compare the fuel cycles using the well-known MCNPX ver. 2.6e computational code. The results obtained confirm that the 232Th-233U fuel cycle is the best cycle for minimizing the production of plutonium isotopes and minor actinides. Moreover, the inclusion of the second stage in the ADSs demonstrated the possibility of extending the burnup cycle duration and reducing the radiotoxicity of the discharged fuel from the VHTR.

  4. Demonstration of a high speed hybrid electrical and optical sensing system for next generation launcher applications

    Science.gov (United States)

    Ibrahim, Selwan K.; O'Dowd, John A.; Honniball, Arthur; Bessler, Vivian; Farnan, Martin; O'Connor, Peter; Melicher, Milos; Gleeson, Danny

    2017-09-01

    The Future Launchers Preparatory Programme (FLPP) supported by the European Space Agency (ESA) has a goal of developing various launch vehicle system concepts and identifying the technologies required for the design of Europe's Next-Generation Launcher (NGL) while maintaining competitiveness on the commercial market. Avionics fiber optic sensing technology was investigated as part of the FLPP programme. Here we demonstrate and evaluate a high speed hybrid electrical/optical data acquisition system based on commercial off the shelf (COTS) technology capable of acquiring data from traditional electrical sensors and optical Fibre Bragg Grating (FBG) sensors. The proposed system consists of the KAM-500 data acquisition system developed by Curtis-Wright and the I4 tunable laser based fiber optic sensor interrogator developed by FAZ Technology. The key objective was to demonstrate the capability of the hybrid system to acquire data from traditional electrical sensors used in launcher applications e.g. strain, temperature and pressure in combination with optical FBG sensors, as well as data delivery to spacecraft avionics systems. The KAM-500 was configured as the main acquisition unit (MAU) and provided a 1 kHz sampling clock to the I4 interrogator that was configured as the secondary acquisition unit (SAU) to synchronize the data acquisition sample rate between both systems. The SAU acquired data from an array of optical FBG sensors, while the MAU data acquisition system acquired data from the electrical sensors. Data acquired from the optical sensors was processed by the FAZ I4 interrogation system and then encapsulated into UDP/IP packets and transferred to the KAM-500. The KAM-500 encapsulated the optical sensor data together with the data acquired from electrical sensors and transmitted the data over MIL-STD-1553 and Ethernet data interface. The temperature measurements resulted in the optical and electrical sensors performing on a par with each other, with all

  5. Optimizing hill seeding density for high-yielding hybrid rice in a single rice cropping system in South China.

    Directory of Open Access Journals (Sweden)

    Danying Wang

    Full Text Available Mechanical hill direct seeding of hybrid rice could be the way to solve the problems of high seeding rates and uneven plant establishment now faced in direct seeded rice; however, it is not clear what the optimum hill seeding density should be for high-yielding hybrid rice in the single-season rice production system. Experiments were conducted in 2010 and 2011 to determine the effects of hill seeding density (25 cm×15 cm, 25 cm×17 cm, 25 cm×19 cm, 25 cm×21 cm, and 25 cm×23 cm; three to five seeds per hill on plant growth and grain yield of a hybrid variety, Nei2you6, in two fields with different fertility (soil fertility 1 and 2. In addition, in 2012 and 2013, comparisons among mechanical hill seeding, broadcasting, and transplanting were conducted with three hybrid varieties to evaluate the optimum seeding density. With increases in seeding spacing from 25 cm×15 cm to 25 cm×23 cm, productive tillers per hill increased by 34.2% and 50.0% in soil fertility 1 and 2. Panicles per m2 declined with increases in seeding spacing in soil fertility 1. In soil fertility 2, no difference in panicles per m2 was found at spacing ranging from 25 cm×17 cm to 25 cm×23 cm, while decreases in the area of the top three leaves and aboveground dry weight per shoot at flowering were observed. Grain yield was the maximum at 25 cm×17 cm spacing in both soil fertility fields. Our results suggest that a seeding density of 25 cm×17 cm was suitable for high-yielding hybrid rice. These results were verified through on-farm demonstration experiments, in which mechanical hill-seeded rice at this density had equal or higher grain yield than transplanted rice.

  6. Targeted and untargeted high resolution mass approach for a putative profiling of glycosylated simple phenols in hybrid grapes.

    Science.gov (United States)

    Barnaba, Chiara; Dellacassa, Eduardo; Nicolini, Giorgio; Giacomelli, Mattia; Roman Villegas, Tomas; Nardin, Tiziana; Larcher, Roberto

    2017-08-01

    Vitis vinifera is one of the most widespread grapevines around the world representing the raw material for high quality wine production. The availability of more resistant interspecific hybrid vine varieties, developed from crosses between Vitis vinifera and other Vitis species, has generated much interest, also due to the low environmental effect of production. However, hybrid grape wine composition and varietal differences between interspecific hybrids have not been well defined, particularly for the simple phenols profile. The dynamic of these phenols in wines, where the glycosylated forms can be transformed into the free ones during winemaking, also raises an increasing health interest by their role as antoxidants in wine consumers. In this work an on-line SPE clean-up device, to reduce matrix interference, was combined with ultra-high liquid chromatography-high resolution mass spectrometry in order to increase understanding of the phenolic composition of hybrid grape varieties. Specifically, the phenolic composition of 4 hybrid grape varieties (red, Cabernet Cantor and Prior; white, Muscaris and Solaris) and 2 European grape varieties (red, Merlot; white, Chardonnay) was investigated, focusing on free and glycosidically bound simple phenols and considering compound distribution in pulp, skin, seeds and wine. Using a targeted approach 53 free simple phenols and 7 glycosidic precursors were quantified with quantification limits ranging from 0.001 to 2mgKg -1 and calibration R 2 of 0.99 for over 86% of compounds. The untargeted approach made it possible to tentatively identify 79 glycosylated precursors of selected free simple phenols in the form of -hexoside (N=30), -pentoside (21), -hexoside-hexoside (17), -hexoside-pentoside (4), -pentoside-hexoside (5) and -pentoside-pentoside (2) derivatives on the basis of accurate mass, isotopic pattern and MS/MS fragmentation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Thermally fabricated MoS{sub 2}-graphene hybrids as high performance anode in lithium ion battery

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, S.K., E-mail: sunil111954@yahoo.co.uk [Department of Chemistry, Indian Institute of Technology, Kharagpur, 721302 (India); Kartick, B. [Department of Chemistry, Indian Institute of Technology, Kharagpur, 721302 (India); Choudhury, S. [Department of Nanostructured Materials, Leibniz-Institut für Polymerforschung Dresden e.V. (IPF Dresden), Hohe Strasse 6, 01069, Dresden (Germany); Stamm, M. [Department of Nanostructured Materials, Leibniz-Institut für Polymerforschung Dresden e.V. (IPF Dresden), Hohe Strasse 6, 01069, Dresden (Germany); Technische Universität Dresden, Physical Chemistry of Polymer Materials, 01062, Dresden (Germany)

    2016-11-01

    MoS{sub 2}-reduced graphene oxide (MoS{sub 2}-rGO: where rGO = 0, 1, 3, 5, 7 and 10 wt%) hybrids have been fabricated using (NH{sub 4}){sub 2}MoS{sub 4} and graphite oxide as single source precursors of MoS{sub 2} and thermally exfoliated reduced graphene oxide respectively. These individual precursors were initially subjected to grinding for 30 min followed by heating at 1200 °C for 15 min and characterized. X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and high resolution transmission electron microscopy (HRTEM) confirmed co-dispersion of MoS{sub 2} on thermally exfoliated graphite oxide. Electrochemical studies of these hybrids as anode materials showed that MoS{sub 2}-rGO (7 wt%) exhibited superior reversible capacity, cycling stability, enhanced rate performance (780 mAhg{sup −1}) and rate capability (880 mAhg{sup −1}) over pristine MoS{sub 2} and other hybrids. - Highlights: • MoS{sub 2}-graphene hybrids are synthesized by high temperature from individual precursors. • These hybrids have been used as anode material in LIB. • MoS{sub 2}-graphene (7 wt%) exhibited superior reversible capacity and cycling stability. • It showed high rate performance (780 mA h g{sup −1}) and rate capability (880 mA h g{sup −1}). • Enhanced performance at lower graphene makes it most attractive anode material in LIB.

  8. Nano-Structured Bio-Inorganic Hybrid Material for High Performing Oxygen Reduction Catalyst.

    Science.gov (United States)

    Jiang, Rongzhong; Tran, Dat T; McClure, Joshua P; Chu, Deryn

    2015-08-26

    In this study, we demonstrate a non-Pt nanostructured bioinorganic hybrid (BIH) catalyst for catalytic oxygen reduction in alkaline media. This catalyst was synthesized through biomaterial hemin, nanostructured Ag-Co alloy, and graphene nano platelets (GNP) by heat-treatment and ultrasonically processing. This hybrid catalyst has the advantages of the combined features of these bio and inorganic materials. A 10-fold improvement in catalytic activity (at 0.8 V vs RHE) is achieved in comparison of pure Ag nanoparticles (20-40 nm). The hybrid catalyst reaches 80% activity (at 0.8 V vs RHE) of the state-of-the-art catalyst (containing 40% Pt and 60% active carbon). Comparable catalytic stability for the hybrid catalyst with the Pt catalyst is observed by chronoamperometric experiment. The hybrid catalyst catalyzes 4-electron oxygen reduction to produce water with fast kinetic rate. The rate constant obtained from the hybrid catalyst (at 0.6 V vs RHE) is 4 times higher than that of pure Ag/GNP catalyst. A catalytic model is proposed to explain the oxygen reduction reaction at the BIH catalyst.

  9. Hybrid brain-computer interfaces and hybrid neuroprostheses for restoration of upper limb functions in individuals with high-level spinal cord injury.

    Science.gov (United States)

    Rohm, Martin; Schneiders, Matthias; Müller, Constantin; Kreilinger, Alex; Kaiser, Vera; Müller-Putz, Gernot R; Rupp, Rüdiger

    2013-10-01

    The bilateral loss of the grasp function associated with a lesion of the cervical spinal cord severely limits the affected individuals' ability to live independently and return to gainful employment after sustaining a spinal cord injury (SCI). Any improvement in lost or limited grasp function is highly desirable. With current neuroprostheses, relevant improvements can be achieved in end users with preserved shoulder and elbow, but missing hand function. The aim of this single case study is to show that (1) with the support of hybrid neuroprostheses combining functional electrical stimulation (FES) with orthoses, restoration of hand, finger and elbow function is possible in users with high-level SCI and (2) shared control principles can be effectively used to allow for a brain-computer interface (BCI) control, even if only moderate BCI performance is achieved after extensive training. The individual in this study is a right-handed 41-year-old man who sustained a traumatic SCI in 2009 and has a complete motor and sensory lesion at the level of C4. He is unable to generate functionally relevant movements of the elbow, hand and fingers on either side. He underwent extensive FES training (30-45min, 2-3 times per week for 6 months) and motor imagery (MI) BCI training (415 runs in 43 sessions over 12 months). To meet individual needs, the system was designed in a modular fashion including an intelligent control approach encompassing two input modalities, namely an MI-BCI and shoulder movements. After one year of training, the end user's MI-BCI performance ranged from 50% to 93% (average: 70.5%). The performance of the hybrid system was evaluated with different functional assessments. The user was able to transfer objects of the grasp-and-release-test and he succeeded in eating a pretzel stick, signing a document and eating an ice cream cone, which he was unable to do without the system. This proof-of-concept study has demonstrated that with the support of hybrid FES

  10. Aqueous Hybrids of Silica Nanoparticles and Hydrophobically Associating Hydrolyzed Polyacrylamide Used for EOR in High-Temperature and High-Salinity Reservoirs

    Directory of Open Access Journals (Sweden)

    Dingwei Zhu

    2014-06-01

    Full Text Available Water-soluble polymers are known to be used in chemically enhanced oil recovery (EOR processes, but their applications are limited in high-temperature and high-salinity oil reservoirs because of their inherent poor salt tolerance and weak thermal stability. Hydrophobic association of partially hydrolyzed polyacryamide (HAHPAM complexed with silica nanoparticles to prepare nano-hybrids is reported in this work. The rheological and enhanced oil recovery (EOR properties of such hybrids were studied in comparison with HAHPAM under simulated high-temperature and high-salinity oil reservoir conditions (T: 85 °C; total dissolved solids: 32,868 mg∙L−1; [Ca2+] + [Mg2+]: 873 mg∙L−1. It was found that the apparent viscosity and elastic modulus of HAHPAM solutions increased with addition of silica nanoparticles, and HAHPAM/silica hybrids exhibit better shear resistance and long-term thermal stability than HAHPAM in synthetic brine. Moreover, core flooding tests show that HAHPAM/silica hybrid has a higher oil recovery factor than HAHPAM solution.

  11. Evaluation of two hybrid poplar clones as constructed wetland plant species for treating saline water high in boron and selenium, or waters only high in boron

    Science.gov (United States)

    Wetland mesocosms were constructed to assess two salt- and B-tolerant hybrid poplar clones (Populus trichocarpa ×P. deltoides×P. nigra '345-1' and '347-14') for treating saline water high in boron (B) and selenium (Se). In addition, a hydroponic experiment was performed to test the B tolerance and B...

  12. Characteristics Analysis and Comparison of High-Speed 4/2 and Hybrid 4/4 Poles Switched Reluctance Motor

    Directory of Open Access Journals (Sweden)

    Grace Firsta Lukman

    2018-01-01

    Full Text Available This paper presents a characteristics analysis and performance comparison of high-speed two-phase 4/2 and hybrid single-phase 4/4 switched reluctance motors (SRMs. Although the motors are advantageous as high-speed drives, both conventional structures have high torque ripple as a result of the presence of the torque dead zone. In this paper, solutions to the torque dead zone problem for each motor are discussed. For the 4/2 SRM, a wide-rotor stepper-type is adopted, while for the 4/4 SRM, the structure is changed to a hybrid by adding permanent magnets (PMs. Both motors have a non-uniform air gap to modify their inductance profile, which leads to the elimination of the torque dead zone. A finite-element method was used to analyze the characteristics of each motor. Then, the manufactured motors were tested through experiments, and lastly, their performance was compared.

  13. Hybrid NiS/CoO mesoporous nanosheet arrays on Ni foam for high-rate supercapacitors

    Science.gov (United States)

    Wu, Jianghong; Ouyang, Canbin; Dou, Shuo; Wang, Shuangyin

    2015-08-01

    A new hybrid of NiS/CoO porous nanosheets was synthesized on Ni foam by one-step electrodeposition method and used as an electrode for high-performance pseudocapacitance. The as-synthesized NiS/CoO porous nanosheets hybrid shows a high specific capacitance of 1054 F g-1 at a high current density of 6 A g-1, a good rate capability even at high current density (760 F g-1 at 20 A g-1) and a good long-term cycling stability (91.7% of the maximum specific capacitance after 3000 cycles). These excellent properties can be mainly attributed to the unique hierarchical porous structure with large surface area and interspaces which facilitate charge transfer and redox reaction. The enhancement in the interface contact between active material and substrate results in excellent conductivity of the electrode and a strong synergistic effect of NiS and CoO as individual constituents contributed to high capacitance of the hybrid electrode.

  14. High Field Side Lower Hybrid Current Drive Launcher Design for DIII-D

    Science.gov (United States)

    Wallace, G. M.; Leccacori, R.; Doody, J.; Vieira, R.; Shiraiwa, S.; Wukitch, S. J.; Holcomb, C.; Pinsker, R. I.

    2017-10-01

    Efficient off-axis current drive scalable to reactors is a key enabling technology for a steady-state tokamak. Simulations of DIII-D discharges have identified high performance scenarios with excellent lower hybrid (LH) wave penetration, single pass absorption and high current drive efficiency. The strategy was to adapt known launching technology utilized in previous experiments on C-Mod (poloidal splitter) and Tore Supra (bi-junction) and remain within power density limits established in JET and Tore Supra. For a 2 MW source power antenna, the launcher consists of 32 toroidal apertures and 4 poloidal rows. The aperture is 60 mm x 5 mm with 1 mm septa and the peak n| | is 2.7+/-0.2 for 90□ phasing. Eight WR187 waveguides are routed from the R-1 port down under the lower cryopump, under the existing divertor, and up the central column with the long waveguide dimension along the vacuum vessel. Above the inner strike point region, each waveguide is twisted to orient the long dimension perpendicular to the vacuum vessel and splits into 4 toroidal apertures via bi-junctions. To protect the waveguide, the inner wall radius will need to increase by 2.5 cm. RF, disruption, and thermal analysis of the latest design will be presented. Work supported by the U.S. Department of Energy, Office of Science, Office of Fusion Energy Sciences, using User Facility DIII-D, under Award Number DE-FC02-04ER54698 and by MIT PSFC cooperative agreement DE-SC0014264.

  15. Global Hybrid Simulations of The Magnetopause Boundary Layers In Low- and High-latitude Magnetic Reconnections

    Science.gov (United States)

    Lin, Y.; Perez, J. D.

    A 2-D global hybrid simulation is carried out to study the structure of the dayside mag- netopause in the noon-midnight meridian plane associated with magnetic reconnec- tion. In the simulation the bow shock, magnetosheath, and magnetopause are formed self-consistently by supersonic solar wind passing the geomagnetic field. The recon- nection events at high- and low-latitudes are simulated for various IMF conditions. The following results will be presented. (1) Large-amplitude rotational discontinuities and Alfvén waves are present in the quasi-steady reconnection layer. (2) The rotational discontinuity possesses an electron sense, or right-hand polarization in the magnetic field as the discontinuity forms from the X line. Later, however, the rotational dis- continuity tends to evolve to a structure with a smallest field rotational angle and thus may reverse its sense of the field rotation. The Walén relation is tested for elec- tron and ion flows in the magnetopause rotational discontinuities with left-hand and right-hand polarizations. (3) The structure of the magnetopause discontinuities and that of the accelerated/decelerated flows are modified significantly by the presence of the local magnetosheath flow. (4) Field-aligned currents are generated in the magne- topause rotational discontinuities. Part of the magnetopause currents propagate with Alfvén waves along the field lines into the polar ionosphere, contributing to the field- aligned current system in the high latitudes. The generation of the parallel currents under northward and southward IMF conditions is investigated. (5) Finally, typical ion velocity distributions will be shown at various locations across the magnetopause northward and southward of the X lines. The ion distributions associated with single or multiple X lines will be discussed.

  16. High-Strength Hybrid Textile Composites with Carbon, Kevlar, and E-Glass Fibers for Impact-Resistant Structures. A Review.

    Science.gov (United States)

    Priyanka, P.; Dixit, A.; Mali, H. S.

    2017-11-01

    The paper reviews the characterization of high-performance hybrid textile composites and their hybridization effects of composite's behavior. Considered are research works based on the finite-element modeling, simulation, and experimental characterization of various mechanical properties of such composites.

  17. Fabrication and characterization of high impact hybrid matrix composites from thermoset resin and dyneema-glass fabric reinforcement

    Science.gov (United States)

    Patel, R. H.; Sharma, S.; Pansuriya, T.; Malgani, E. V.; Sevkani, V.

    2018-05-01

    Hybrid composites have been fabricated by hand lay-up technique with epoxy resin and diethylene tri amine as a hardener for high impact energy absorption with sandwich stacking of different reinforcements of dyneema and glass fabric. High impact grade composites are nowadays gaining a lot of importance in the field of high mechanical load bearing applications, ballistics and bulletproofing. The present work emphases on the fabrication and mechanical properties of the hybrid composites of cut resistant dyneema fabric along with glass fabric reinforced in the thermosetting resin. i.e. epoxy. The prime importance while fabricating such materials have been given to the processing along with selection of the raw materials. High impact resistive materials with low density and henceforth low weight have been manufactured and characterized by IZOD impact tester, UTM, Archimedes density meter and SEM. Throughout the work, satisfactory results have been obtained. Impact resistance was observed to be boosted three times as that of the reference sample of glass fabric and epoxy. The density of the hybrid composite is observed to be 25% as that of the reference sample.

  18. A bottom-up approach for the synthesis of highly ordered fullerene-intercalated graphene hybrids

    Directory of Open Access Journals (Sweden)

    Dimitrios eGournis

    2015-02-01

    Full Text Available Much of the research effort on graphene focuses on its use as a building block for the development of new hybrid nanostructures with well-defined dimensions and properties suitable for applications such as gas storage, heterogeneous catalysis, gas/liquid separations, nanosensing and biomedicine. Towards this aim, here we describe a new bottom-up approach, which combines self-assembly with the Langmuir Schaefer deposition technique to synthesize graphene-based layered hybrid materials hosting fullerene molecules within the interlayer space. Our film preparation consists in a bottom-up layer-by-layer process that proceeds via the formation of a hybrid organo-graphene oxide Langmuir film. The structure and composition of these hybrid fullerene-containing thin multilayers deposited on hydrophobic substrates were characterized by a combination of X-ray diffraction, Raman and X-ray photoelectron spectroscopies, atomic force microscopy and conductivity measurements. The latter revealed that the presence of C60 within the interlayer spacing leads to an increase in electrical conductivity of the hybrid material as compared to the organo-graphene matrix alone.

  19. Proposal and Development of a High Voltage Variable Frequency Alternating Current Power System for Hybrid Electric Aircraft

    Science.gov (United States)

    Sadey, David J.; Taylor, Linda M.; Beach, Raymond F.

    2017-01-01

    The development of ultra-efficient commercial vehicles and the transition to low-carbon emission propulsion are seen as strategic thrust paths within NASA Aeronautics. A critical enabler to these paths comes in the form of hybrid electric propulsion systems. For megawatt-class systems, the best power system topology for these hybrid electric propulsion systems is debatable. Current proposals within NASA and the Aero community suggest using a combination of alternating current (AC) and direct current (DC) for power generation, transmission, and distribution. This paper proposes an alternative to the current thought model through the use of a primarily high voltage AC power system, supported by the Convergent Aeronautics Solutions (CAS) Project. This system relies heavily on the use of doubly-fed induction machines (DFIMs), which provide high power densities, minimal power conversion, and variable speed operation. The paper presents background on the activity along with the system architecture, development status, and preliminary results.

  20. Highly sensitive and rapid bacteria detection using molecular beacon-Au nanoparticles hybrid nanoprobes.

    Science.gov (United States)

    Cao, Jing; Feng, Chao; Liu, Yan; Wang, Shouyu; Liu, Fei

    2014-07-15

    Since many diseases are caused by pathogenic bacterial infections, accurate and rapid detection of pathogenic bacteria is in urgent need to timely apply appropriate treatments and to reduce economic costs. To end this, we designed molecular beacon-Au nanoparticle hybrid nanoprobes to improve the bacterial detection efficiency and sensitivity. Here, we show that the designed molecular beacon modified Au nanoparticles could specifically recognize synthetic DNAs targets and can readily detect targets in clinical samples. Moreover, the hybrid nanoprobes can recognize Escherichia coli within an hour at a concentration of 10(2) cfu/ml, which is 1000-folds sensitive than using molecular beacon directly. Our results show that the molecular beacon-Au nanoparticle hybrid nanoprobes have great potential in medical and biological applications. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Hybrid Heat Pipes for Lunar and Martian Surface and High Heat Flux Space Applications

    Science.gov (United States)

    Ababneh, Mohammed T.; Tarau, Calin; Anderson, William G.; Farmer, Jeffery T.; Alvarez-Hernandez, Angel R.

    2016-01-01

    Novel hybrid wick heat pipes are developed to operate against gravity on planetary surfaces, operate in space carrying power over long distances and act as thermosyphons on the planetary surface for Lunar and Martian landers and rovers. These hybrid heat pipes will be capable of operating at the higher heat flux requirements expected in NASA's future spacecraft and on the next generation of polar rovers and equatorial landers. In addition, the sintered evaporator wicks mitigate the start-up problems in vertical gravity aided heat pipes because of large number of nucleation sites in wicks which will allow easy boiling initiation. ACT, NASA Marshall Space Flight Center, and NASA Johnson Space Center, are working together on the Advanced Passive Thermal experiment (APTx) to test and validate the operation of a hybrid wick VCHP with warm reservoir and HiK"TM" plates in microgravity environment on the ISS.

  2. High rate particle tracking and ultra-fast timing with a thin hybrid silicon pixel detector

    Science.gov (United States)

    Fiorini, M.; Aglieri Rinella, G.; Carassiti, V.; Ceccucci, A.; Cortina Gil, E.; Cotta Ramusino, A.; Dellacasa, G.; Garbolino, S.; Jarron, P.; Kaplon, J.; Kluge, A.; Marchetto, F.; Mapelli, A.; Martin, E.; Mazza, G.; Morel, M.; Noy, M.; Nuessle, G.; Perktold, L.; Petagna, P.; Petrucci, F.; Poltorak, K.; Riedler, P.; Rivetti, A.; Statera, M.; Velghe, B.

    2013-08-01

    The Gigatracker (GTK) is a hybrid silicon pixel detector designed for the NA62 experiment at CERN. The beam spectrometer, made of three GTK stations, has to sustain high and non-uniform particle rate (∼ 1 GHz in total) and measure momentum and angles of each beam track with a combined time resolution of 150 ps. In order to reduce multiple scattering and hadronic interactions of beam particles, the material budget of a single GTK station has been fixed to 0.5% X0. The expected fluence for 100 days of running is 2 ×1014 1 MeV neq /cm2, comparable to the one foreseen in the inner trackers of LHC detectors during 10 years of operation. To comply with these requirements, an efficient and very low-mass (< 0.15 %X0) cooling system is being constructed, using a novel microchannel cooling silicon plate. Two complementary read-out architectures have been produced as small-scale prototypes: one is based on a Time-over-Threshold circuit followed by a TDC shared by a group of pixels, while the other makes use of a constant-fraction discriminator followed by an on-pixel TDC. The read-out ASICs are produced in 130 nm IBM CMOS technology and will be thinned down to 100 μm or less. An overview of the Gigatracker detector system will be presented. Experimental results from laboratory and beam tests of prototype bump-bonded assemblies will be described as well. These results show a time resolution of about 170 ps for single hits from minimum ionizing particles, using 200 μm thick silicon sensors.

  3. Performance test of lower hybrid waveguide under long/high-RF power transmission

    Energy Technology Data Exchange (ETDEWEB)

    Seki, Masami; Obara, Kenjiro; Maebara, Sunao [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment; and others

    1996-06-01

    Performance tests of a module for lower hybrid waveguides were carried out at the CEA Cadarache RF Test Facility. For the experiments the test module was fabricated by JAERI, the transmission line of the test bed was modified and the connection waveguides were manufactured by CEA. As the results, the thermal treatment by baking at a higher temperature was the most effective for reducing outgassing during injection of high RF power. The outgassing strongly depended on the temperature of the test module, but was independent to initial temperature. The RF injection reduced outgassing. The outgassing rate decreased to a low level of 10{sup -6}-10{sup -5} Pa m{sup 3}/sec m{sup 2} (10{sup -9}-10{sup -8} Torr 1/sec cm{sup 2}) at 400degC after 450degC-baking. The gas injection did not affect outgassing before and during RF injection. The baking under H{sub 2} or D{sub 2} gas atmosphere were not so effective for reducing outgassing rate. The outgassing rate did not depend on input RF power densities. The temperature in central part of the test module saturated to be {approx}100degC by using of water cooling at a power level of 150 MW/m{sup 2} RF injection, and a neutral gas pressure decreased gradually. In the water cooling case, the outgassing rate was very low less than 10{sup -7} Pa m{sup 3}/sec m{sup 2} (10{sup -10} Torr 1/sec cm{sup 2}). The steady state RF injection was demonstrated with water cooling. (author).

  4. Detection of High Frequency Oscillations by Hybrid Depth Electrodes in Standard Clinical Intracranial EEG Recordings

    Directory of Open Access Journals (Sweden)

    Efstathios D Kondylis

    2014-08-01

    Full Text Available High frequency oscillations (HFOs have been proposed as a novel marker for epileptogenic tissue, spurring tremendous research interest into the characterization of these transient events. A wealth of continuously recorded intracranial electroencephalographic (iEEG data is currently available from patients undergoing invasive monitoring for the surgical treatment of epilepsy. In contrast to data recorded on research-customized recording systems, data from clinical acquisition systems remain an underutilized resource for HFO detection in most centers. The effective and reliable use of this clinically obtained data would be an important advance in the ongoing study of HFOs and their relationship to ictogenesis. The diagnostic utility of HFOs ultimately will be limited by the ability of clinicians to detect these brief, sporadic, and low amplitude events in an electrically noisy clinical environment. Indeed, one of the most significant factors limiting the use of such clinical recordings for research purposes is their low signal to noise ratio, especially in the higher frequency bands. In order to investigate the presence of HFOs in clinical data, we first obtained continuous intracranial recordings in a typical clinical environment using a commercially available, commonly utilized data acquisition system and off the shelf hybrid macro/micro depth electrodes. This data was then inspected for the presence of HFOs using semi-automated methods and expert manual review. With targeted removal of noise frequency content, HFOs were detected on both macro- and micro-contacts, and preferentially localized to seizure onset zones. HFOs detected by the offline, semi-automated method were also validated in the clinical viewer, demonstrating that 1 this clinical system allows for the visualization of HFOs, and 2 with effective signal processing, clinical recordings can yield valuable information for offline analysis.

  5. Silver Nanowire/MnO2 Nanowire Hybrid Polymer Nanocomposites: Materials with High Dielectric Permittivity and Low Dielectric Loss.

    Science.gov (United States)

    Zeraati, Ali Shayesteh; Arjmand, Mohammad; Sundararaj, Uttandaraman

    2017-04-26

    This study reports the fabrication of hybrid nanocomposites based on silver nanowire/manganese dioxide nanowire/poly(methyl methacrylate) (AgNW/MnO 2 NW/PMMA), using a solution casting technique, with outstanding dielectric permittivity and low dielectric loss. AgNW was synthesized using the hard-template technique, and MnO 2 NW was synthesized employing a hydrothermal method. The prepared AgNW:MnO 2 NW (2.0:1.0 vol %) hybrid nanocomposite showed a high dielectric permittivity (64 at 8.2 GHz) and low dielectric loss (0.31 at 8.2 GHz), which are among the best reported values in the literature in the X-band frequency range (8.2-12.4 GHz). The superior dielectric properties of the hybrid nanocomposites were attributed to (i) dimensionality match between the nanofillers, which increased their synergy, (ii) better dispersion state of AgNW in the presence of MnO 2 NW, (iii) positioning of ferroelectric MnO 2 NW in between AgNWs, which increased the dielectric permittivity of nanodielectrics, thereby increasing dielectric permittivity of the hybrid nanocomposites, (iv) barrier role of MnO 2 NW, i.e., cutting off the contact spots of AgNWs and leading to lower dielectric loss, and (v) AgNW aligned structure, which increased the effective surface area of AgNWs, as nanoelectrodes. Comparison of the dielectric properties of the developed hybrid nanocomposites with the literature highlights their great potential for flexible capacitors.

  6. Combined Confocal and Wide-Field High-Resolution Cytometry of Fluorescent In Situ Hybridization-Stained Cells

    Czech Academy of Sciences Publication Activity Database

    Kozubek, Michal; Kozubek, Stanislav; Lukášová, Emilie; Bártová, Eva; Skalníková, M.; Matula, Pa.; Matula, Pe.; Jirsová, Pavla; Cafourková, Alena; Koutná, Irena

    2001-01-01

    Roč. 45, č. 1 (2001), s. 1-12 ISSN 0196-4763 R&D Projects: GA MŠk VS97031; GA ČR GA202/99/P008; GA AV ČR IBS5004010 Institutional research plan: CEZ:AV0Z5004920 Keywords : high-resolution cytometry * fluorescence in situ hybridization * interphase nuclei Subject RIV: BO - Biophysics Impact factor: 2.220, year: 2001

  7. Advanced RESTART method for the estimation of the probability of failure of highly reliable hybrid dynamic systems

    International Nuclear Information System (INIS)

    Turati, Pietro; Pedroni, Nicola; Zio, Enrico

    2016-01-01

    The efficient estimation of system reliability characteristics is of paramount importance for many engineering applications. Real world system reliability modeling calls for the capability of treating systems that are: i) dynamic, ii) complex, iii) hybrid and iv) highly reliable. Advanced Monte Carlo (MC) methods offer a way to solve these types of problems, which are feasible according to the potentially high computational costs. In this paper, the REpetitive Simulation Trials After Reaching Thresholds (RESTART) method is employed, extending it to hybrid systems for the first time (to the authors’ knowledge). The estimation accuracy and precision of RESTART highly depend on the choice of the Importance Function (IF) indicating how close the system is to failure: in this respect, proper IFs are here originally proposed to improve the performance of RESTART for the analysis of hybrid systems. The resulting overall simulation approach is applied to estimate the probability of failure of the control system of a liquid hold-up tank and of a pump-valve subsystem subject to degradation induced by fatigue. The results are compared to those obtained by standard MC simulation and by RESTART with classical IFs available in the literature. The comparison shows the improvement in the performance obtained by our approach. - Highlights: • We consider the issue of estimating small failure probabilities in dynamic systems. • We employ the RESTART method to estimate the failure probabilities. • New Importance Functions (IFs) are introduced to increase the method performance. • We adopt two dynamic, hybrid, highly reliable systems as case studies. • A comparison with literature IFs proves the effectiveness of the new IFs.

  8. High-performance hybrid white organic light-emitting devices without interlayer between fluorescent and phosphorescent emissive regions.

    Science.gov (United States)

    Sun, Ning; Wang, Qi; Zhao, Yongbiao; Chen, Yonghua; Yang, Dezhi; Zhao, Fangchao; Chen, Jiangshan; Ma, Dongge

    2014-03-12

    By using mixed hosts with bipolar transport properties for blue emissive layers, a novel phosphorescence/fluorescence hybrid white OLED without using an interlayer between the fluorescent and phosphorescent regions is demonstrated. The peak EQE of the device is 19.0% and remains as high as 17.0% at the practical brightness of 1000 cd m(-2) . © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. PLUG-IN HYBRID ELECTRIC VEHICLE AND HYBRID ELECTRIC VEHICLE EMISSIONS UNDER FTP AND US06 CYCLES AT HIGH, AMBIENT, AND LOW TEMPERATURES

    Energy Technology Data Exchange (ETDEWEB)

    Seidman, M.R.; Markel, T.

    2008-01-01

    The concept of a Plug-in Hybrid Electric Vehicle (PHEV) is to displace consumption of gasoline by using electricity from the vehicle’s large battery pack to power the vehicle as much as possible with minimal engine operation. This paper assesses the PHEV emissions and operation. Currently, testing of vehicle emissions is done using the federal standard FTP4 cycle on a dynamometer at ambient (75°F) temperatures. Research was also completed using the US06 cycle. Furthermore, research was completed at high (95°F) and low (20°F) temperatures. Initial dynamometer testing was performed on a stock Toyota Prius under the standard FTP4 cycle, and the more demanding US06 cycle. Each cycle was run at 95°F, 75°F, and 20°F. The testing was repeated with the same Prius retrofi tted with an EnergyCS Plug-in Hybrid Electric system. The results of the testing confi rm that the stock Prius meets Super-Ultra Low Emission Vehicle requirements under current testing procedures, while the PHEV Prius under current testing procedures were greater than Super-Ultra Low Emission Vehicle requirements, but still met Ultra Low Emission Vehicle requirements. Research points to the catalyst temperature being a critical factor in meeting emission requirements. Initial engine emissions pass through with minimal conversion until the catalyst is heated to typical operating temperatures of 300–400°C. PHEVs also have trouble maintaining the minimum catalyst temperature throughout the entire test because the engine is turned off when the battery can support the load. It has been observed in both HEVs and PHEVs that the catalyst is intermittently unable to reduce nitrogen oxide emissions, which causes further emission releases. Research needs to be done to combat the initial emission spikes caused by a cold catalyst. Research also needs to be done to improve the reduction of nitrogen oxides by the catalyst system.

  10. Mode conversion of lower hybrid waves at high ion cyclotron harmonics. Appendix F

    International Nuclear Information System (INIS)

    Swanson, D.G.; Cho, S.

    1985-05-01

    The problem of ion cyclotron harmonic absorption for a lower hybrid wave is shown to be a mode conversion problem. A new form of the dispersion relation is developed and then expanded to get a differential equation identical to that for the second harmonic problem. The validity of this model is restricted to the region far from the lower hybrid resonance layer. It is shown that mode couplings occur among the incident cold wave and two other waves, and the tunneling factor becomes singular there

  11. New class of two-dimensional bimetallic nanoplatelets for high energy density and electrochemically stable hybrid supercapacitors

    DEFF Research Database (Denmark)

    Liu, Zhiting; Ma, Peng; Ulstrup, Jens

    2017-01-01

    Currently, the application of supercapacitors (SCs) in portable electronic devices and vehicles is limited by their low energy density. Developing high-energy density SCs without sacrificing their advantages, such as their long-term stability and high power density, has thus become an increasing...... and a 96.1% retention of the initial capacitance over 5,000 cycles. We exploited the novel 2D nanoplatelets as cathode materials to assemble a hybrid SC for full-cell tests. The resulting SCs operated in a wide potential window of 0 - 1.7 V, exhibited a high energy density over 50 Wh·kg-1, and sustained...

  12. Pedestrian hybrid beacon crosswalk system (PHB) or high-intensity activated crosswalk (HAWK).

    Science.gov (United States)

    2014-11-01

    The Pedestrian Hybrid Beacon Crosswalk (PHB) is a type of traffic control system, used to aid : pedestrians safely crossing the street and to regulate traffic flow. This study examines the : success of the first PHB installed in the state of Vermont....

  13. High performance technique for database applicationsusing a hybrid GPU/CPU platform

    KAUST Repository

    Zidan, Mohammed A.; Bonny, Talal; Salama, Khaled N.

    2012-01-01

    Hybrid GPU/CPU platform. In particular, our technique solves the problem of the low efficiency result- ing from running short-length sequences in a database on a GPU. To verify our technique, we applied it to the widely used Smith-Waterman algorithm

  14. A novel hybrid catalyst for the esterification of high FFA in Jatropha oil for biodiesel production

    International Nuclear Information System (INIS)

    Mushtaq, M.; Tan, I.M.; Sagir, M.; Suleman Tahir, M.; Pervaiz, M.

    2016-01-01

    The synthesis and application of a hybrid catalyst for the esterification of free fatty acids (FFA) in Jatropha oil is reported. Three catalysts, namely silica sulfuric acid, silica supported boron trifluoride and a combination of the two in the weight ratio of 1:1, the hybrid catalyst, were investigated. Jatropha oil samples with a wide range of FFA values i.e. 6.64 to 45.64% were prepared and utilized for the experimental work. This study revealed that silica sulfuric acid and silica supported boron trifluoride were not very effective when used independently. However, a strong synergistic effect was noted in the catalytic activity of the hybrid catalyst which reduced the FFA value from 45.64 to 0.903% with a conversion efficiency of 98%. Reusability of the catalyst was also tested and the results were promising in up to three cycles of use when used with lower amounts of FFA (6.64%) in the oil. Under the influence of the catalyst, the reaction was found to follow first order kinetics. Activation energy was calculated to be 45.42 KJ·mol−1 for 2 wt.% of hybrid catalyst. The products were analyzed by FT-IR and NMR spectroscopic techniques and the results are reported. [es

  15. High-performance aqueous asymmetric electrochemical capacitor based on graphene oxide/cobalt(II)-tetrapyrazinoporphyrazine hybrids

    CSIR Research Space (South Africa)

    Lekitima, JN

    2013-01-01

    Full Text Available AEC falls within the range usually observed for nickel metal hydride (NiMH) batteries (30–100 W h kg−1), but more importantly, shows better power performance than NiMH batteries (0.25–1 kW kg−1) widely used in hybrid vehicles such as Toyota Prius...

  16. Fe3O4/carbon hybrid nanoparticle electrodes for high-capacity electrochemical capacitors.

    Science.gov (United States)

    Lee, Jun Seop; Shin, Dong Hoon; Jun, Jaemoon; Lee, Choonghyeon; Jang, Jyongsik

    2014-06-01

    Fe3O4/carbon hybrid nanoparticles (FeCHNPs) were fabricated using dual-nozzle electrospraying, vapor deposition polymerization (VDP), and carbonization. FeOOH nanoneedles decorated with polypyrrole (PPy) nanoparticles (FePNPs) were fabricated by electrospraying pristine PPy mixed with FeCl3 solution, followed by heating stirring reaction. A PPy coating was then formed on the FeOOH nanoneedles through a VDP process. FeCHNPs were produced through carbonization of PPy and FeOOH phase transitions. These hybrid carbon nanoparticles (NPs) were used to build electrodes of electrochemical capacitors. The specific capacitance of the FeCHNPs was 455 F g(-1), which is larger than that of pristine PPy NPs (105 F g(-1)) or other hybrid PPy NPs. Furthermore, the FeCHNP-based capacitors exhibited better cycle stability during charge-discharge cycling than other hybrid NP capacitors. This is because the carbon layer on the Fe3 O4 surface formed a protective coating, preventing damage to the electrode materials during the charge-discharge processes. This fabrication technique is an effective approach for forming stable carbon/metal oxide nanostructures for energy storage applications. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. VALVE TURBO-ALTERNATOR AS ADDITIONAL HYBRID CAR DEVICE FOR THE HIGH-VOLTAGE BATTERY CHARGE

    Directory of Open Access Journals (Sweden)

    S. Kolesnikov

    2009-01-01

    Full Text Available The description of the hybrid car, its drive components and method of the solution of the problem with moving period of the car on electric pulling by means of valve turbo-alternator is given in this article.

  18. A scalable hybrid multi-robot SLAM method for highly detailed maps

    NARCIS (Netherlands)

    Pfingsthorn, M.; Slamet, B.; Visser, A.

    2008-01-01

    Recent successful SLAM methods employ hybrid map representations combining the strengths of topological maps and occupancy grids. Such representations often facilitate multi-agent mapping. In this paper, a successful SLAM method is presented, which is inspired by the manifold data structure by

  19. High Efficiency and Long Life Hybrid Photovoltaic Research for Space Applications

    National Research Council Canada - National Science Library

    Su, Wei-Fang

    2007-01-01

    ...)/metal oxide hybrid materials by solution processes at low temperature. An array of large ZnO nanorods with a larger size of 50 nm in diameter and 150 nm in length are grown to act as tree trunks for efficient charge collection...

  20. Development of a High Slip-resistant Footwear Outsole Using a Hybrid Rubber Surface Pattern

    Science.gov (United States)

    YAMAGUCHI, Takeshi; HOKKIRIGAWA, Kazuo

    2014-01-01

    Abstract: The present study examined whether a new footwear outsole with tread blocks and a hybrid rubber surface pattern, composed of rough and smooth surfaces, could increase slip resistance and reduce the risk of fall while walking on a wet floor surface. A drag test was performed to measure static and dynamic coefficient of friction (SCOF and DCOF, respectively) values for the footwear with the hybrid rubber surface pattern outsole and two types of commercially available boots that are conventionally used in food factories and restaurant kitchens with respect to a stainless steel floor covered with glycerol solution. Gait trials were conducted with 14 participants who wore the footwear on the wet stainless steel floor. The drag test results indicated that the hybrid rubber surface pattern sole exhibited higher SCOF (≥0.44) and DCOF (≥0.39) values than the soles of the comparative footwear (pfootwear with the hybrid rubber surface pattern outsole were significantly lower than those for the comparative footwear, which resulted in no falls during trials. PMID:25055846

  1. mm-Wave Hybrid Photonic Wireless Links for Ultra-High Speed Wireless Transmissions

    DEFF Research Database (Denmark)

    Rommel, Simon; Vegas Olmos, Juan José; Tafur Monroy, Idelfonso

    Hybrid photonic-wireless transmission schemes in the mm-wave frequency range are promising candidates to enable the multi-gigabit per second data communications required from wireless and mobile networks of the 5th and future generations. Large FCC spectrum allocations for wireless transmission...

  2. Molecular Cytogenetics in Artificial Hybrid and Highly Polyploid Sturgeons: An Evolutionary Story Narrated by Repetitive Sequences

    Czech Academy of Sciences Publication Activity Database

    Symonová, Radka; Flajšhans, M.; Sember, Alexandr; Havelka, M.; Gela, D.; Kořínková, Tereza; Rodina, M.; Rábová, Marie; Ráb, Petr

    2013-01-01

    Roč. 141, 2-3 (2013), s. 153-162 ISSN 1424-8581 R&D Projects: GA ČR GA523/08/0824; GA ČR(CZ) GPP506/11/P596 Institutional support: RVO:67985904 Keywords : Acipenser * GISH * Hybridization * Macrochromosomes Subject RIV: EG - Zoology Impact factor: 1.905, year: 2013

  3. Multiple Origins and Nested Cycles of Hybridization Result in High Tetraploid Diversity in the Monocot Prospero.

    Science.gov (United States)

    Jang, Tae-Soo; Parker, John S; Emadzade, Khatere; Temsch, Eva M; Leitch, Andrew R; Weiss-Schneeweiss, Hanna

    2018-01-01

    Polyploidy is a major driving force in angiosperm evolution, but our understanding of establishment and early diversification processes following allo- vs. auto-polyploidy is limited. An excellent system to address such questions is the monocot plant Prospero autumnale , as it comprises several genomically and chromosomally distinct diploid cytotypes and their auto- and allotetraploid derivatives. To infer origins and evolutionary trajectories of the tetraploids, we use genome size data, in situ hybridization with parental genomic DNAs and specific probes (satDNA, rDNAs), as well as molecular-phylogenetic analyses. Thus, we demonstrate that an astounding range of allotetraploid lineages has been formed recurrently by chromosomal re-patterning, interactions of chromosomally variable parental genomes and nested cycles of extensive hybridization, whereas autotetraploids have originated at least twice and are cytologically stable. During the recurrent formation and establishment across wide geographic areas hybridization in some populations could have inhibited lineage diversification and nascent speciation of such a hybrid swarm. However, cytotypes that became fixed in populations enhanced the potential for species diversification, possibly exploiting the extended allelic base, and fixed heterozygosity that polyploidy confers. The time required for polyploid cytotype fixation may in part reflect the lag phase reported for polyploids between their formation and species diversification.

  4. Multiple Origins and Nested Cycles of Hybridization Result in High Tetraploid Diversity in the Monocot Prospero

    Directory of Open Access Journals (Sweden)

    Tae-Soo Jang

    2018-04-01

    Full Text Available Polyploidy is a major driving force in angiosperm evolution, but our understanding of establishment and early diversification processes following allo- vs. auto-polyploidy is limited. An excellent system to address such questions is the monocot plant Prospero autumnale, as it comprises several genomically and chromosomally distinct diploid cytotypes and their auto- and allotetraploid derivatives. To infer origins and evolutionary trajectories of the tetraploids, we use genome size data, in situ hybridization with parental genomic DNAs and specific probes (satDNA, rDNAs, as well as molecular-phylogenetic analyses. Thus, we demonstrate that an astounding range of allotetraploid lineages has been formed recurrently by chromosomal re-patterning, interactions of chromosomally variable parental genomes and nested cycles of extensive hybridization, whereas autotetraploids have originated at least twice and are cytologically stable. During the recurrent formation and establishment across wide geographic areas hybridization in some populations could have inhibited lineage diversification and nascent speciation of such a hybrid swarm. However, cytotypes that became fixed in populations enhanced the potential for species diversification, possibly exploiting the extended allelic base, and fixed heterozygosity that polyploidy confers. The time required for polyploid cytotype fixation may in part reflect the lag phase reported for polyploids between their formation and species diversification.

  5. A Short-Term and High-Resolution System Load Forecasting Approach Using Support Vector Regression with Hybrid Parameters Optimization

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Huaiguang [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-08-25

    This work proposes an approach for distribution system load forecasting, which aims to provide highly accurate short-term load forecasting with high resolution utilizing a support vector regression (SVR) based forecaster and a two-step hybrid parameters optimization method. Specifically, because the load profiles in distribution systems contain abrupt deviations, a data normalization is designed as the pretreatment for the collected historical load data. Then an SVR model is trained by the load data to forecast the future load. For better performance of SVR, a two-step hybrid optimization algorithm is proposed to determine the best parameters. In the first step of the hybrid optimization algorithm, a designed grid traverse algorithm (GTA) is used to narrow the parameters searching area from a global to local space. In the second step, based on the result of the GTA, particle swarm optimization (PSO) is used to determine the best parameters in the local parameter space. After the best parameters are determined, the SVR model is used to forecast the short-term load deviation in the distribution system.

  6. Evaluation of hybrid polymers for high-precision manufacturing of 3D optical interconnects by two-photon absorption lithography

    Science.gov (United States)

    Schleunitz, A.; Klein, J. J.; Krupp, A.; Stender, B.; Houbertz, R.; Gruetzner, G.

    2017-02-01

    The fabrication of optical interconnects has been widely investigated for the generation of optical circuit boards. Twophoton absorption (TPA) lithography (or high-precision 3D printing) as an innovative production method for direct manufacture of individual 3D photonic structures gains more and more attention when optical polymers are employed. In this regard, we have evaluated novel ORMOCER-based hybrid polymers tailored for the manufacture of optical waveguides by means of high-precision 3D printing. In order to facilitate future industrial implementation, the processability was evaluated and the optical performance of embedded waveguides was assessed. The results illustrate that hybrid polymers are not only viable consumables for industrial manufacture of polymeric micro-optics using generic processes such as UV molding. They also are potential candidates to fabricate optical waveguide systems down to the chip level where TPA-based emerging manufacturing techniques are engaged. Hence, it is shown that hybrid polymers continue to meet the increasing expectations of dynamically growing markets of micro-optics and optical interconnects due to the flexibility of the employed polymer material concept.

  7. Improved Hybrid Fireworks Algorithm-Based Parameter Optimization in High-Order Sliding Mode Control of Hypersonic Vehicles

    Directory of Open Access Journals (Sweden)

    Xiaomeng Yin

    2018-01-01

    Full Text Available With respect to the nonlinear hypersonic vehicle (HV dynamics, achieving a satisfactory tracking control performance under uncertainties is always a challenge. The high-order sliding mode control (HOSMC method with strong robustness has been applied to HVs. However, there are few methods for determining suitable HOSMC parameters for an efficacious control of HV, given that the uncertainties are randomly distributed. In this study, we introduce a hybrid fireworks algorithm- (FWA- based parameter optimization into HV control design to satisfy the design requirements with high probability. First, the complex relation between design parameters and the cost function that evaluates the likelihood of system instability and violation of design requirements is modeled via stochastic robustness analysis. Subsequently, we propose an efficient hybrid FWA to solve the complex optimization problem concerning the uncertainties. The efficiency of the proposed hybrid FWA-based optimization method is demonstrated in the search of the optimal HV controller, in which the proposed method exhibits a better performance when compared with other algorithms.

  8. High adhesion transparent conducting films using graphene oxide hybrid carbon nanotubes

    International Nuclear Information System (INIS)

    Da, Shi-Xun; Wang, Jie; Geng, Hong-Zhang; Jia, Song-Lin; Xu, Chun-Xia; Li, Lin-Ge; Shi, Pei-Pei; Li, Guangfen

    2017-01-01

    Graphical abstract: The GO hybrid CNTs to fabricate TCFs could dramatically enhance the conductivity, adhesion, flatness, and wettability of the films, all these improvements are advantageous for optoelectronic applications. - Highlights: • TCFs were fabricated using GO/CNT hybrid inks by a simple spray method. • Conductivity of TCFs was improved through the hybrid of GO/CNT, sheet resistance of TCFs was 146 Ω/sq at the transmittance of 86.0% when the ratio of GO/CNT got 1.5:1.0. • The flatness and wettability of TCFs were improved dramatically, which is advantageous for the solution-based processing of organic electronics for spraying and printing. • The adhesion of the TCFs increased dramatically with the raise of the ratio GO/CNT hybrid. - Abstract: Flexible transparent conducting films (TCFs) with carbon nanotubes (CNTs) have attracted more and more attention for their wide range of potential applications. While, there are still some problems to be solved on several aspects. In this study, a graphene oxide/carbon nanotube (GO/CNT) hybrid TCF was fabricated through the simple spray coating method. GO sheets were introduced to form new electron transporting channels. It was found that the best optoelectronic property films were fabricated when the ratio of GO/CNT is 1.5:1.0, which the sheet resistance of the film was found to be 146 Ω/sq at the transmittance of 86.0%. Due to the two-dimensional structure and the oxidation groups of GO sheets, flatness and wettability of the electrode surface was improved obviously. Adhesion factor of the TCFs was calculated by the change of transparent and sheet resistance after trial test, the addition of GO sheets enhanced the adhesion dramatically and the mechanism was analyzed. Improvements of conductivity, flatness, wettability and adhesion above are all advantageous for the solution-based processing of organic electronics for spraying and printing.

  9. High adhesion transparent conducting films using graphene oxide hybrid carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Da, Shi-Xun; Wang, Jie; Geng, Hong-Zhang, E-mail: genghz@tjpu.edu.cn; Jia, Song-Lin; Xu, Chun-Xia; Li, Lin-Ge; Shi, Pei-Pei; Li, Guangfen

    2017-01-15

    Graphical abstract: The GO hybrid CNTs to fabricate TCFs could dramatically enhance the conductivity, adhesion, flatness, and wettability of the films, all these improvements are advantageous for optoelectronic applications. - Highlights: • TCFs were fabricated using GO/CNT hybrid inks by a simple spray method. • Conductivity of TCFs was improved through the hybrid of GO/CNT, sheet resistance of TCFs was 146 Ω/sq at the transmittance of 86.0% when the ratio of GO/CNT got 1.5:1.0. • The flatness and wettability of TCFs were improved dramatically, which is advantageous for the solution-based processing of organic electronics for spraying and printing. • The adhesion of the TCFs increased dramatically with the raise of the ratio GO/CNT hybrid. - Abstract: Flexible transparent conducting films (TCFs) with carbon nanotubes (CNTs) have attracted more and more attention for their wide range of potential applications. While, there are still some problems to be solved on several aspects. In this study, a graphene oxide/carbon nanotube (GO/CNT) hybrid TCF was fabricated through the simple spray coating method. GO sheets were introduced to form new electron transporting channels. It was found that the best optoelectronic property films were fabricated when the ratio of GO/CNT is 1.5:1.0, which the sheet resistance of the film was found to be 146 Ω/sq at the transmittance of 86.0%. Due to the two-dimensional structure and the oxidation groups of GO sheets, flatness and wettability of the electrode surface was improved obviously. Adhesion factor of the TCFs was calculated by the change of transparent and sheet resistance after trial test, the addition of GO sheets enhanced the adhesion dramatically and the mechanism was analyzed. Improvements of conductivity, flatness, wettability and adhesion above are all advantageous for the solution-based processing of organic electronics for spraying and printing.

  10. High-capacity optical long data memory based on enhanced Young's modulus in nanoplasmonic hybrid glass composites.

    Science.gov (United States)

    Zhang, Qiming; Xia, Zhilin; Cheng, Yi-Bing; Gu, Min

    2018-03-22

    Emerging as an inevitable outcome of the big data era, long data are the massive amount of data that captures changes in the real world over a long period of time. In this context, recording and reading the data of a few terabytes in a single storage device repeatedly with a century-long unchanged baseline is in high demand. Here, we demonstrate the concept of optical long data memory with nanoplasmonic hybrid glass composites. Through the sintering-free incorporation of nanorods into the earth abundant hybrid glass composite, Young's modulus is enhanced by one to two orders of magnitude. This discovery, enabling reshaping control of plasmonic nanoparticles of multiple-length allows for continuous multi-level recording and reading with a capacity over 10 terabytes with no appreciable change of the baseline over 600 years, which opens new opportunities for long data memory that affects the past and future.

  11. Effect of high-voltage pulsed electric field (HPEF pretreatment on biogas production rates of hybrid Pennisetum by anaerobic fermentation

    Directory of Open Access Journals (Sweden)

    Baijuan Wang

    2018-02-01

    Full Text Available In this paper, the raw materials of hybrid Pennisetum were pretreated in different conditions of high voltage pulsed electric field (HPEF to improve its material utilization ratios and biogas production rates of anaerobic fermentation. Then, anaerobic digestion experiments were conducted within 32 days at moderate temperature (35 °C with TS mass fraction (6%, inoculation rate (20% and initial pH (7.0. It is indicated that compared with the control group, 9 groups of hybrid Pennisetum pretreated by HPEF are obviously superior in gas production efficiency of anaerobic fermentation, and higher in cumulative gas production, peak daily gas production and maximum methane concentration; that the most remarkable stimulation occurs in the HPEF condition of 15 kV/120 Hz/60 min, in that situation, the cumulative gas production in the fermentation period of 32 days is up to 9587 mL, 26.95% higher than that of the control group, the peak daily gas production increases and the range of peak period extends. It is demonstrated that the optimal HPEF pretreatment time is 60 min and three HPEF parameters have a better effect on gas production in the order of voltage > time > frequency; and that the effect degree of treatment parameters on peak daily gas production is voltage, frequency and time in turn. It is concluded that HPEF can improve material utilization ratio and gas production rate of hybrid Pennisetum by anaerobic fermentation and shorten the gas production cycle. By virtue of this physical pretreatment method, the resource of Pennisetum is utilized sufficiently and the classes of energy plants are enlarged effectively. Keywords: Hybrid Pennisetum, Anaerobic fermentation, High voltage pulsed electric field (HPEF, Biogas, Material utilization ratio, Gas generation rate, Model, Stimulation

  12. Integrated hybrid vibration isolator with feedforward compensation for fast high-precision positioning X/Y tables

    International Nuclear Information System (INIS)

    Yan, T H; Li, Q; Xu, C; Pu, H Y; Chen, X D

    2010-01-01

    The design, realization and control technologies of a high-performance hybrid microvibration isolator for ultra-high-precision high-speed moving X/Y tables are presented in this paper—the novel isolator with integrated passive–active high level of damping. The passive damping was implemented using air-springs in both vertical and horizontal directions, with parallel linear motors in two directions to realize the active damping and the positioning functions. It is an actual hybrid isolation system because its air-spring can also be controlled through the pneumatic loop. The isolation servo system also has fast positioning capability via the feedforward compensation for the moving tables. Compared with the conventional filtered reference type control algorithms that rely on the assumption for the adaptive filter and the controlled system, in which the disturbance is estimated from the residual signal, the feedforward compensation here shows high effectiveness of vibration isolation and high-precision positioning performance for its platform. The performance of feedforward compensation has been enhanced via an efficient state estimation adaptive algorithm, the fast Kalman filter. Finally, experimental demonstration has been shown for the prototype system and the results have verified the effectiveness of the proposed isolator system design and the adaptive control algorithm for substantially enhanced damping of the platform system with the moving X/Y tables

  13. RF design and tests on a broadband, high-power coaxial quadrature hybrid applicable to ITER ICRF transmission line system for load-resilient operations

    International Nuclear Information System (INIS)

    Kim, Hae Jin; Wang, Son Jong; Park, Byoung Ho; Kwak, Jong-Gu; Hillairet, Julien; Choi, Jin Joo

    2015-01-01

    Highlights: • Amplitude balanced 3 dB coaxial hybrid splitter has been designed and rf tested. • The proposed hybrid is applicable to ITER ICRF transmission line for load resilience. • Two-section, broadband coaxial hybrid can be tunable by changing dielectric insulator. - Abstract: RF design and network analyzer tests of broadband, amplitude-balanced coaxial hybrid junctions are presented. We have designed two 3 dB hybrid splitters with 9 and 12 in. coaxial transmission lines applicable to ITER ICRF for load-resilient operations using ANSYS HFSS. Amplitude-balanced broadband responses were obtained with the combination of impedance reductions of longitudinal and transverse branches in unequal proportion, length change of 50 Ω lines and diameter change of high impedance lines connected transversely to the T-section of the hybrid splitter, respectively. We have fabricated and RF tested the 9 in. coaxial hybrid coupler. We obtained an excellent coupling flatness of −3.2 ± 0.2 dB, phase difference of 4 degrees and return loss of 16 dB in 40–55 MHz. The measured data of 9 in. hybrid splitter is highly consistent with HFSS simulations. We found that the proposed 3 dB hybrid splitter can be tunable with amplitude-balanced, broadband response by changing dielectric insulators to keep the inner and outer conductors of coaxial line apart. The proposed 3 dB hybrid splitter can be utilized for load-resilient operations in a wide range of antenna load variations due to mode transitions or edge localized modes (ELMs) in fusion plasmas.

  14. RF design and tests on a broadband, high-power coaxial quadrature hybrid applicable to ITER ICRF transmission line system for load-resilient operations

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hae Jin, E-mail: haejin@nfri.re.kr [National Fusion Research Institute, Daejeon (Korea, Republic of); Wang, Son Jong; Park, Byoung Ho; Kwak, Jong-Gu [National Fusion Research Institute, Daejeon (Korea, Republic of); Hillairet, Julien [CEA/IRFM, Saint-lez-Durance (France); Choi, Jin Joo [Kwangwoon University, Seoul (Korea, Republic of)

    2015-10-15

    Highlights: • Amplitude balanced 3 dB coaxial hybrid splitter has been designed and rf tested. • The proposed hybrid is applicable to ITER ICRF transmission line for load resilience. • Two-section, broadband coaxial hybrid can be tunable by changing dielectric insulator. - Abstract: RF design and network analyzer tests of broadband, amplitude-balanced coaxial hybrid junctions are presented. We have designed two 3 dB hybrid splitters with 9 and 12 in. coaxial transmission lines applicable to ITER ICRF for load-resilient operations using ANSYS HFSS. Amplitude-balanced broadband responses were obtained with the combination of impedance reductions of longitudinal and transverse branches in unequal proportion, length change of 50 Ω lines and diameter change of high impedance lines connected transversely to the T-section of the hybrid splitter, respectively. We have fabricated and RF tested the 9 in. coaxial hybrid coupler. We obtained an excellent coupling flatness of −3.2 ± 0.2 dB, phase difference of 4 degrees and return loss of 16 dB in 40–55 MHz. The measured data of 9 in. hybrid splitter is highly consistent with HFSS simulations. We found that the proposed 3 dB hybrid splitter can be tunable with amplitude-balanced, broadband response by changing dielectric insulators to keep the inner and outer conductors of coaxial line apart. The proposed 3 dB hybrid splitter can be utilized for load-resilient operations in a wide range of antenna load variations due to mode transitions or edge localized modes (ELMs) in fusion plasmas.

  15. High performance technique for database applicationsusing a hybrid GPU/CPU platform

    KAUST Repository

    Zidan, Mohammed A.

    2012-07-28

    Many database applications, such as sequence comparing, sequence searching, and sequence matching, etc, process large database sequences. we introduce a novel and efficient technique to improve the performance of database applica- tions by using a Hybrid GPU/CPU platform. In particular, our technique solves the problem of the low efficiency result- ing from running short-length sequences in a database on a GPU. To verify our technique, we applied it to the widely used Smith-Waterman algorithm. The experimental results show that our Hybrid GPU/CPU technique improves the average performance by a factor of 2.2, and improves the peak performance by a factor of 2.8 when compared to earlier implementations. Copyright © 2011 by ASME.

  16. Activated carbon/manganese dioxide hybrid electrodes for high performance thin film supercapacitors

    Science.gov (United States)

    Jang, Yunseok; Jo, Jeongdai; Jang, Hyunjung; Kim, Inyoung; Kang, Dongwoo; Kim, Kwang-Young

    2014-06-01

    We combine the activated carbon (AC) and the manganese dioxide (MnO2) in a AC/MnO2 hybrid electrode to overcome the low capacitance of activated carbon and MnO2 by exploiting the large surface area of AC and the fast reversible redox reaction of MnO2. An aqueous permanganate (MnO4 -) is converted to MnO2 on the surface of the AC electrode by dipping the AC electrode into an aqueous permanganate solution. The AC/MnO2 hybrid electrode is found to display superior specific capacitance of 290 F/g. This shows that supercapacitors classified as electric double layer capacitors and pseudocapacitors can be combined together.

  17. Gel spinning of PVA composite fibers with high content of multi-walled carbon nanotubes and graphene oxide hybrids

    International Nuclear Information System (INIS)

    Wei, Yizhe; Lai, Dengpan; Zou, Liming; Ling, Xinlong; Lu, Hongwei; Xu, Yongjing

    2015-01-01

    In this report, poly (vinyl alcohol) (PVA) composite fibers with high content of multi-walled carbon nanotubes and graphene oxide (MWCNTs-GO) hybrids were prepared by gel spinning, and were characterized by TGA, DSC, SEM, XL-2 yarn strength tester and electrical conductivity measurement. The total content of MWCNTs-GO hybrids in the PVA composite fibers, which is up to 25 wt%, was confirmed by TGA analysis. The DSC measurement shows that the melting and crystallization peaks decreased after the addition of nano-fillers. This is due to the reason that the motion of PVA chains is completely confined by strong hydrogen bonding interaction between PVA and nano-fillers. After the addtion of GO, the dispersibility of MWCNTs in composite fibers improved slightly. And the tensile strength and Young's modulus increased by 38% and 67%, respectively. This is caused by the increased hydrogen bonding interaction and synergistic effect through hybridization of MWCNTs and GO. More significantly, the electrical conductivity of PVA/MWCNTs/GO composite fibers enhanced by three orders of magnitude with the addition of GO. (paper)

  18. Highly selective GaN-nanowire/TiO2-nanocluster hybrid sensors for detection of benzene and related environment pollutants

    International Nuclear Information System (INIS)

    Aluri, Geetha S; Motayed, Abhishek; Davydov, Albert V; Oleshko, Vladimir P; Bertness, Kris A; Sanford, Norman A; Rao, Mulpuri V

    2011-01-01

    Nanowire-nanocluster hybrid chemical sensors were realized by functionalizing gallium nitride (GaN) nanowires (NWs) with titanium dioxide (TiO 2 ) nanoclusters for selectively sensing benzene and other related aromatic compounds. Hybrid sensor devices were developed by fabricating two-terminal devices using individual GaN NWs followed by the deposition of TiO 2 nanoclusters using RF magnetron sputtering. The sensor fabrication process employed standard microfabrication techniques. X-ray diffraction and high-resolution analytical transmission electron microscopy using energy-dispersive x-ray and electron energy-loss spectroscopies confirmed the presence of the anatase phase in TiO 2 clusters after post-deposition anneal at 700 deg. C. A change of current was observed for these hybrid sensors when exposed to the vapors of aromatic compounds (benzene, toluene, ethylbenzene, xylene and chlorobenzene mixed with air) under UV excitation, while they had no response to non-aromatic organic compounds such as methanol, ethanol, isopropanol, chloroform, acetone and 1,3-hexadiene. The sensitivity range for the noted aromatic compounds except chlorobenzene were from 1% down to 50 parts per billion (ppb) at room temperature. By combining the enhanced catalytic properties of the TiO 2 nanoclusters with the sensitive transduction capability of the nanowires, an ultra-sensitive and selective chemical sensing architecture is demonstrated. We have proposed a mechanism that could qualitatively explain the observed sensing behavior.

  19. High-performance metal mesh/graphene hybrid films using prime-location and metal-doped graphene.

    Science.gov (United States)

    Min, Jung-Hong; Jeong, Woo-Lim; Kwak, Hoe-Min; Lee, Dong-Seon

    2017-08-31

    We introduce high-performance metal mesh/graphene hybrid transparent conductive layers (TCLs) using prime-location and metal-doped graphene in near-ultraviolet light-emitting diodes (NUV LEDs). Despite the transparency and sheet resistance values being similar for hybrid TCLs, there were huge differences in the NUV LEDs' electrical and optical properties depending on the location of the graphene layer. We achieved better physical stability and current spreading when the graphene layer was located beneath the metal mesh, in direct contact with the p-GaN layer. We further improved the contact properties by adding a very thin Au mesh between the thick Ag mesh and the graphene layer to produce a dual-layered metal mesh. The Au mesh effectively doped the graphene layer to create a p-type electrode. Using Raman spectra, work function variations, and the transfer length method (TLM), we verified the effect of doping the graphene layer after depositing a very thin metal layer on the graphene layers. From our results, we suggest that the nature of the contact is an important criterion for improving the electrical and optical performance of hybrid TCLs, and the method of doping graphene layers provides new opportunities for solving contact issues in other semiconductor devices.

  20. An induction/synchronous motor with high temperature superconductor/normal conductor hybrid double-cage rotor windings

    International Nuclear Information System (INIS)

    Nakamura, T; Nagao, K; Nishimura, T; Matsumura, K

    2009-01-01

    We propose hybrid double-cage rotor windings that consist of a high temperature superconductor (HTS) and a normal conductor, which are introduced into an HTS induction/synchronous motor (HTS-ISM). The motor rotates as a conventional induction motor when the operating temperature of the hybrid rotor is above the critical temperature of the HTS bars, i.e., in the normal conducting state. On the other hand, the HTS-ISM rotates as a synchronous motor when the temperature is below the critical temperature, i.e., in the superconducting (zero resistance) state. In other words, we do not always need to take care of the cooling conditions, if the HTS-ISM is automatically, as well as appropriately, controlled, depending upon the rotation mode. Namely, the above-mentioned hybrid double-cage HTS-ISM is possibly a breakthrough in solving the cooling problems of HTS rotating machines, especially for industrial applications. The experimental results of the aforementioned motor are reported. An example of an operation flowchart of the motor is also presented and discussed.

  1. Highly reliable photosensitive organic-inorganic hybrid passivation layers for a-InGaZnO thin-film transistors

    Science.gov (United States)

    Bermundo, Juan Paolo; Ishikawa, Yasuaki; Yamazaki, Haruka; Nonaka, Toshiaki; Fujii, Mami N.; Uraoka, Yukiharu

    2015-07-01

    We report the fabrication of a photosensitive hybrid passivation material on amorphous InGaZnO (a-IGZO) thin-film transistors (TFTs) that greatly enhance its stability and improve its electrical characteristics. The hybrid passivation based on polysilsesquioxane is transparent and fabricated using a simple solution process. Because the passivation is photosensitive, dry etching was never performed during TFT fabrication. TFTs passivated with this material had a small threshold voltage shift of 0.5 V during positive bias stress, 0.5 V during negative bias stress, and -2.5 V during negative bias illumination stress. Furthermore, TFTs passivated by this layer were stable after being subjected to high relative humidity stress — confirming the superb barrier ability of the passivation. Analysis of secondary ion mass spectrometry showed that a large amount of hydrogen, carbon, and fluorine can be found in the channel region. We show that both hydrogen and fluorine reduced oxygen vacancies and that fluorine stabilized weak oxygen and hydroxide bonds. These results demonstrate the large potential of photosensitive hybrid passivation layers as effective passivation materials.

  2. High-performance Cu nanoparticles/three-dimensional graphene/Ni foam hybrid for catalytic and sensing applications

    Science.gov (United States)

    Zhu, Long; Guo, Xinli; Liu, Yuanyuan; Chen, Zhongtao; Zhang, Weijie; Yin, Kuibo; Li, Long; Zhang, Yao; Wang, Zengmei; Sun, Litao; Zhao, Yuhong

    2018-04-01

    A novel hybrid of Cu nanoparticles/three-dimensional graphene/Ni foam (Cu NPs/3DGr/NiF) was prepared by chemical vapor deposition, followed by a galvanic displacement reaction in Ni- and Cu-ion-containing salt solution through a one-step reaction. The as-prepared Cu NPs/3DGr/NiF hybrid is uniform, stable, recyclable and exhibits an extraordinarily high catalytic efficiency for the reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) with a reduction rate constant K = 0.056 15 s-1, required time ˜30 s and excellent sensing properties for the non-enzymatic amperometric hydrogen peroxide (H2O2) with a linear range ˜50 μM-9.65 mM, response time ˜3 s, detection limit ˜1 μM. The results indicate that the as-prepared Cu NPs/3DGr/NiF hybrid can be used to replace expensive noble metals in catalysis and sensing applications.

  3. Two-dimensional MoS2-graphene hybrid nanosheets for high gravimetric and volumetric lithium storage

    Science.gov (United States)

    Deng, Yakai; Ding, Lixin; Liu, Qixing; Zhan, Liang; Wang, Yanli; Yang, Shubin

    2018-04-01

    Two-dimensional (2D) MoS2-graphene (MoS2-G) hybrid is fabricated simultaneously and scalablely with an efficient electrochemical exfoliation approach from the combined bulk MoS2-graphite wafer. The as-prepared 2D MoS2-G hybrid is tightly covered with each other with lateral sizes of 600 nm to few micrometers and can be directly assembled to flexible films for lithium storage. When used as anode material for lithium ion battery, the resultant MoS2-G hybrid film exhibits both high gravimetric (750 mA h g-1 at 50 mA g-1) and volumetric capacities (1200 mA h cm-3 at 0.1 mA cm-2). Such excellent electrochemical performance should attributed to the unique 2D structure and good conductive graphene network, which not only facilitates the diffusion of lithium ions, but also improves the fast transfer of electrons, satisfying the kinetics requirements for rapid lithium storage.

  4. Neutronic Analysis on Coolant Options in a Hybrid Reactor System for High Level Waste Transmutation

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Seong Hee; Kim, Myung Hyun [Kyung Hee University, Seoul (Korea, Republic of)

    2014-10-15

    A fusion-fission hybrid reactor (FFHR) which is a combination of plasma fusion tokamak as a fast neutron source and a fission reactor as of fusion blanket is another potential candidate. In FFHR, fusion plasma machine can supply high neutron-rich and energetic 14.1MeV (D, T) neutrons compared to other options. Therefore it has better capability in HLW incineration. While, it has lower requirements compared to pure fusion. Much smaller-sized tokamak can be achievable in a near term because it needs relatively low plasma condition. FFHR has also higher safety potential than fast reactors just as ADSR because it is subcritical reactor system. FFHR proposed up to this time has many design concepts depending on the design purpose. FFHR may also satisfy many design requirement such as energy multiplication, tritium production, radiation shielding for magnets, fissile breeding for self-sustain ability also waste transmutation. Many types of fuel compositions and coolant options have been studied. Effect of choices for fuel and coolant was studied for the transmutation purpose FFHR by our team. In this study LiPb coolant was better than pure Li coolant both for neutron multiplication and tritium breeding. However, performance of waste transmutation was reduced with increased neutron absorption at coolant caused by tritium breeding. Also, LiPb as metal coolant has a problem of massive MHD pressure drop in coolant channels. Therefore, in a previous study, waste transmutation performance was evaluated with light water coolant option which may be a realistic choice. In this study, a neutronic analysis was done for the various coolant options with a detailed computation. One of solutions suggested is to use the pressure tubes inside of first wall and second wall In this work, performance of radioactive waste transmutation was compared with various coolant options. On the whole, keff increases with all coolants except for FLiBe, therefore required fusion power is decreased. In

  5. Novel high dielectric constant hybrid elastomers based on glycerol-insilicone emulsions

    DEFF Research Database (Denmark)

    Mazurek, Piotr Stanislaw; Skov, Anne Ladegaard

    2016-01-01

    Novel hybrid elastomers were prepared by speedmixing of two virtually immiscible liquids – glycerol and polydimethylsiloxane (PDMS) prepolymer. Upon crosslinking ofthe PDMS phase of the resulting glycerol-in-silicone emulsion freestanding films were obtained. In this way glycerol became uniformly...... elastomeractuators. Conductivities of samples based on various PDMS compositions with different loadings of embedded glycerol were thoroughly investigated providing useful information about the dielectric behavior....

  6. Performance Analysis of High-Speed Deep/Shallow Recessed Hybrid Bearing

    OpenAIRE

    Lei Wang; Shuyun Jiang

    2013-01-01

    The present paper proposes a theoretical analysis of the performance of deep/shallow recessed hybrid bearing. It is intended that, on the basis of the numerical results drawn from this study, appropriate shallow recess depth and width can be determined for use in the bearing design process. By adopting bulk flow theory, the turbulent Reynolds equation and energy equation are modified and solved numerically including concentrated inertia effects at the recess edge with different depth and widt...

  7. Fabrication and materials properties of high-density polyethylene (HDPE)/biphasic calcium phosphate (BCP) hybrid bone plates

    International Nuclear Information System (INIS)

    Jo, Sun Young; Youn, Min Ho; Lim, Youn Mook; Gwon, Hui Jeong; Park, Jong Seok; Nho, Young Chang

    2010-01-01

    Biphasic calcium phosphate-reinforced high-density polyethylene (BCP/HDPE) hybrid composite is a new orthopedic biomaterial, which was made to simulate a natural bone composition. Calcium phosphate systems and HDPE hybrid composites have been used in biomedical applications without any inflammatory response. Differences in natural bone of both materials have motivated the use of coupling agents to improve their interfacial interfacial interactions. The composites were prepared using medical grade BCP powder and granular polyethylene. This material was produced by replacing the mineral component and collagen soft tissue of the bone with BCP and HDPE, respectively. As expected, increased volume fraction of either reinforcement type over 0 ∼ 50 vol.% resulted in a increased Vickers hardness and Young's modulus. Thus, BCP particle-reinforced HDPE composites possessed improved material and mechanical properties. BCP particles-reinforced composites were anisotropic due to an alignment of the particles in the matrix during a processing. On the other hand, bending and tensile strength was dramatically changed in the matrix. To change the material and mechanical properties of HDPE/BCP composites, the process of a blending was used, and its effect on the microstructure and mechanical proprieties of HDPE/BCP composites were investigated by means of FT-IR/ATR spectroscopy, XRD, FE-SEM, Vickers Hardness Testing Machine, Universal Testing Machine, Mercury Porosimeter and Ultrasonic Flaw Detector at room temperature. For the evaluation of the cell viability and proliferation onto the external surface of HDPE/BCP hybrid plates with a HaCaT cell line, which is a multipotent cell line able to differentiate towards different phenotypes under the action of biological factors, has been evaluated with in vitro studies and quantified by colormetric assays. These findings indicate that the HDPE/BCP hybrid plates are biocompatible and non-toxic

  8. Progress report on the use of hybrid silicon pin diode arrays in high energy physics

    International Nuclear Information System (INIS)

    Shapiro, S.L.; Jernigan, J.G.; Arens, J.F.

    1990-05-01

    We report on the successful effort to develop hybrid PIN diode arrays and to demonstrate their potential as components of vertex detectors. Hybrid pixel arrays have been fabricated by the Hughes Aircraft Co. by bump-bonding readout chips developed by Hughes to an array of PIN diodes manufactured by Micron Semiconductor Inc. These hybrid pixel arrays were constructed in two configurations. One array format has 10 x 64 pixels, each 120 μm square; and the other format has 256 x 156 pixels, each 30 μm square. In both cases, the thickness of the PIN diode layer is 300 μm. Measurements of detector performance show that excellent position resolution can be achieved by interpolation. By determining the centroid of the charge cloud which spreads charge into a number of neighboring pixels, a spatial resolution of a few microns has been attained. The noise has been measured to be about 300 electrons (rms) at room temperature, as expected from KTC and dark current considerations, yielding a signal-to-noise ratio of about 100 for minimum ionizing particles. 4 refs., 17 figs

  9. Fabrication and Characterization of Polyimide-CNTs hybrid membrane to enhance high performance CO2 separation

    Directory of Open Access Journals (Sweden)

    Tutuk Djoko Kusworo

    2015-03-01

    Full Text Available This study investigates the CO2 separation performance of a hybrid membranes flat sheet based on polyimide incorporated with carbon nanotubes (CNTs particles. CNTs was selected and its loading were a 1 wt% in total solid. The hybrid composite membranes were fabricated in order to increase their separation performance for the gaseous mixture of CO2 and CH4. Hybrid Composite  membrane incorporated carbon nanotubes were mannufactured  by the dry-wet phase inversion technique using flat sheet membrane casting machine system,  in which the CNTs were embedded into the polyimide membrane and the resulting membranes were characterized. The results from the FESEM, DSC and FTIR analysis confirmed that chemical modification on carbon nanotubes surface had taken place. Sieve-in-a-cage’ morphology observed shows the poor adhesion between polymer and unmodified CNT. The results revealed that the good multi-wall carbon nanotubes dispersion leads to enhanced gas permeation properties. It is also concluded that addition of carbon nanotubes particles into the matrix of Polyimide polymer has significant effect on the membrane structure and properties.

  10. Epoxy-silica hybrid organic–inorganic electrolytes with a high Li-ion conductivity

    International Nuclear Information System (INIS)

    Vélez, J.F.; Procaccini, R.A.; Aparicio, M.; Mosa, J.

    2013-01-01

    Organic–inorganic hybrid electrolytes were prepared by co-hydrolysis and co-condensation of 3-glycidoxipropyltrimethoxysilane (GPTMS) and tetraethyl orthosilicate (TEOS) doped with lithium acetate as self-supported materials and thin-films. The effects of the relative molar content of LiAc on the physicochemical properties of electrolytes, such as morphology, thermal, chemical and electrochemical properties were investigated. Two and four probes test cells were designed for comparative studies of ionic conductivity of hybrid electrolytes using electrochemical impedance spectroscopy (EIS). Similar ionic conductivities were obtained using both measurement methods, reaching a maximum ionic conductivity value of around 10 −6 S/cm at 25 °C. The conductivity mechanism presents Arrehenius behavior with the increase of the temperature from 25 °C to 120 °C. The electrochemical stability window is found to be in the range of 0–5 V, which ensures that hybrid organic–inorganic materials are potential electrolytes for solid-state rechargeable lithium ion batteries

  11. Nano-Sized Structurally Disordered Metal Oxide Composite Aerogels as High-Power Anodes in Hybrid Supercapacitors.

    Science.gov (United States)

    Huang, Haijian; Wang, Xing; Tervoort, Elena; Zeng, Guobo; Liu, Tian; Chen, Xi; Sologubenko, Alla; Niederberger, Markus

    2018-03-27

    A general method for preparing nano-sized metal oxide nanoparticles with highly disordered crystal structure and their processing into stable aqueous dispersions is presented. With these nanoparticles as building blocks, a series of nanoparticles@reduced graphene oxide (rGO) composite aerogels are fabricated and directly used as high-power anodes for lithium-ion hybrid supercapacitors (Li-HSCs). To clarify the effect of the degree of disorder, control samples of crystalline nanoparticles with similar particle size are prepared. The results indicate that the structurally disordered samples show a significantly enhanced electrochemical performance compared to the crystalline counterparts. In particular, structurally disordered Ni x Fe y O z @rGO delivers a capacity of 388 mAh g -1 at 5 A g -1 , which is 6 times that of the crystalline sample. Disordered Ni x Fe y O z @rGO is taken as an example to study the reasons for the enhanced performance. Compared with the crystalline sample, density functional theory calculations reveal a smaller volume expansion during Li + insertion for the structurally disordered Ni x Fe y O z nanoparticles, and they are found to exhibit larger pseudocapacitive effects. Combined with an activated carbon (AC) cathode, full-cell tests of the lithium-ion hybrid supercapacitors are performed, demonstrating that the structurally disordered metal oxide nanoparticles@rGO||AC hybrid systems deliver high energy and power densities within the voltage range of 1.0-4.0 V. These results indicate that structurally disordered nanomaterials might be interesting candidates for exploring high-power anodes for Li-HSCs.

  12. Microwave exfoliated graphene oxide/TiO{sub 2} nanowire hybrid for high performance lithium ion battery

    Energy Technology Data Exchange (ETDEWEB)

    Ishtiaque Shuvo, Mohammad Arif; Rodriguez, Gerardo; Karim, Hasanul; Lin, Yirong [Department of Mechanical Engineering, University of Texas at El Paso, El Paso, Texas 79968 (United States); Islam, Md Tariqul; Noveron, Juan C. [Department of Chemistry, University of Texas at El Paso, El Paso, Texas 79968 (United States); Ramabadran, Navaneet [Department of Chemical Engineering, University of California at Santa Barbara, California 93106 (United States)

    2015-09-28

    Lithium ion battery (LIB) is a key solution to the demand of ever-improving, high energy density, clean-alternative energy systems. In LIB, graphite is the most commonly used anode material; however, lithium-ion intercalation in graphite is limited, hindering the battery charge rate and capacity. To date, one of the approaches in LIB performance improvement is by using porous carbon (PC) to replace graphite as anode material. PC's pore structure facilitates ion transport and has been proven to be an excellent anode material candidate in high power density LIBs. In addition, to overcome the limited lithium-ion intercalation obstacle, nanostructured anode assembly has been extensively studied to increase the lithium-ion diffusion rate. Among these approaches, high specific surface area metal oxide nanowires connecting nanostructured carbon materials accumulation have shown promising results for enhanced lithium-ion intercalation. Herein, we demonstrate a hydrothermal approach of growing TiO{sub 2} nanowires (TON) on microwave exfoliated graphene oxide (MEGO) to further improve LIB performance over PC. This MEGO-TON hybrid not only uses the high surface area of MEGO but also increases the specific surface area for electrode–electrolyte interaction. Therefore, this new nanowire/MEGO hybrid anode material enhances both the specific capacity and charge–discharge rate. Scanning electron microscopy and X-ray diffraction were used for materials characterization. Battery analyzer was used for measuring the electrical performance of the battery. The testing results have shown that MEGO-TON hybrid provides up to 80% increment of specific capacity compared to PC anode.

  13. Highly atom-economic synthesis of graphene/Mn3O4 hybrid composites for electrochemical supercapacitors

    Science.gov (United States)

    Jiangying, Qu; Feng, Gao; Quan, Zhou; Zhiyu, Wang; Han, Hu; Beibei, Li; Wubo, Wan; Xuzhen, Wang; Jieshan, Qiu

    2013-03-01

    A highly atom-economic procedure for the preparation of reduced graphene oxide/Mn3O4 (rGO/Mn3O4) composites is reported. Pristine graphene oxide/manganese sulfate (GO/MnSO4) suspension produced by modified Hummers method is utilized with high efficiency, which has been in situ converted into GO/Mn3O4 hybrid composite by air oxidation, then into rGO/Mn3O4 composite by means of dielectric barrier discharge (DBD) plasma-assisted deoxygenation. The Mn3O4 content of the rGO/Mn3O4 composites can be readily tailored. It is observed that Mn3O4 nanoparticles of 15-24 nm are well-dispersed on graphene sheets with Mn3O4 loading as high as 90%. The specific capacitance of the as-prepared rGO/Mn3O4 hybrids with 90% Mn3O4 reaches 193 F g-1 when employed as the electrode material in neutral Na2SO4 electrolyte solutions (76 F g-1 for pristine graphene and 95 F g-1 for pure Mn3O4), which indicates the positive synergetic effects from both graphene and attached Mn3O4. The method developed in this study should offer a new technique for the large scale and highly atom-economic production of graphene/MnOx composites for many applications.

  14. Facile fabrication of ultrathin hybrid membrane for highly flexible supercapacitors via in-situ phase separation of polyethersulfone

    Science.gov (United States)

    Zhao, Xiaoning; Ran, Fen; Shen, Kuiwen; Yang, Yunlong; Wu, Jiayu; Niu, Xiaoqin; Kong, Lingbin; Kang, Long; Chen, Shaowei

    2016-10-01

    In this article, a facile method based on in-situ phase-separation was developed for the fabrication of ultrathin hybrid membranes for highly flexible supercapacitors. The structures and morphologies of the prepared electrodes were characterized by scanning electron microscopy (SEM), Fourier-transformed infrared spectroscopy (FTIR), and thermogravimetric analysis (TGA) measurements; and the electrochemical behaviors were examined in 2 M KOH solution. SEM and FTIR characterizations reveal that activated carbon was imbedded into the polymer membrane of polyethersulfone to form a uniform and flexible hybrid membrane. When the thin polymer-carbon membrane (PCM) was used as an electrode material for supercapacitor, a high specific capacitance of 169.4 Fg-1 was obtained at a current density of 0.5 Ag-1 along with good long-term cycle life of 94.6% capacity retention after 2000 charging-discharging cycles. Benefiting from these merits, the as-fabricated PCM//PCM cell shows an excellent electrochemical property. These results suggest a promising route towards the fabrication of highly flexible electrodes for high-performance supercapacitors.

  15. Pseudocapacitive organic catechol derivative-functionalized three-dimensional graphene aerogel hybrid electrodes for high-performance supercapacitors

    Science.gov (United States)

    Choi, Jaewon; Yang, MinHo; Kim, Sung-Kon

    2017-11-01

    Bio-inspired and environmentally friendly chemical functionalization is a successful way to a new class of hybrid electrode materials for applications in energy storage. Quinone (Q)-hydroquinone (QH2) couples, a prototypical example of organic redox systems, provide fast and reversible proton-coupled electron-transfer reactions which lead to increased capacity. To achieve high capacitance and rate performance, constructing three-dimensional (3D) continuous porous structure is highly desirable. Here we report the hybrid electrodes (GA-C) consisting of 3D graphene aerogel (GA) functionalized with organic redox-active material, catechol derivative, for application to high-performance supercapacitors. The catechol derivative is adsorbed on the surface of GA through non-covalent interactions and promotes fast and reversible Q/QH2 faradaic reactions, providing large specific capacitance of 188 F g-1 at a current of 1 A g-1 and a specific energy of ∼25 Wh kg-1 at a specific power of ∼18,000 W kg-1. 3D continuous porous structure of GA electrode facilitates ion and electron transports, resulting in high rate performance (∼140 F g-1 at a current of 10 A g-1).

  16. Ultrathin two-dimensional MnO2/graphene hybrid nanostructures for high-performance, flexible planar supercapacitors.

    Science.gov (United States)

    Peng, Lele; Peng, Xu; Liu, Borui; Wu, Changzheng; Xie, Yi; Yu, Guihua

    2013-05-08

    Planar supercapacitors have recently attracted much attention owing to their unique and advantageous design for 2D nanomaterials based energy storage devices. However, improving the electrochemical performance of planar supercapacitors still remains a great challenge. Here we report for the first time a novel, high-performance in-plane supercapacitor based on hybrid nanostructures of quasi-2D ultrathin MnO2/graphene nanosheets. Specifically, the planar structures based on the δ-MnO2 nanosheets integrated on graphene sheets not only introduce more electrochemically active surfaces for absorption/desorption of electrolyte ions, but also bring additional interfaces at the hybridized interlayer areas to facilitate charge transport during charging/discharging processes. The unique structural design for planar supercapacitors enables great performance enhancements compared to graphene-only devices, exhibiting high specific capacitances of 267 F/g at current density of 0.2 A/g and 208 F/g at 10 A/g and excellent rate capability and cycling stability with capacitance retention of 92% after 7000 charge/discharge cycles. Moreover, the high planar malleability of planar supercapacitors makes possible superior flexibility and robust cyclability, yielding capacitance retention over 90% after 1000 times of folding/unfolding. Ultrathin 2D nanomaterials represent a promising material platform to realize highly flexible planar energy storage devices as the power back-ups for stretchable/flexible electronic devices.

  17. High Performance Lithium-Ion Hybrid Capacitors Employing Fe3O4-Graphene Composite Anode and Activated Carbon Cathode.

    Science.gov (United States)

    Zhang, Shijia; Li, Chen; Zhang, Xiong; Sun, Xianzhong; Wang, Kai; Ma, Yanwei

    2017-05-24

    Lithium-ion capacitors (LICs) are considered as promising energy storage devices to realize excellent electrochemical performance, with high energy-power output. In this work, we employed a simple method to synthesize a composite electrode material consisting of Fe 3 O 4 nanocrystallites mechanically anchored among the layers of three-dimensional arrays of graphene (Fe 3 O 4 -G), which exhibits several advantages compared with other traditional electrode materials, such as high Li storage capacity (820 mAh g -1 at 0.1 A g -1 ), high electrical conductivity, and improved electrochemical stability. Furthermore, on the basis of the appropriated charge balance between cathode and anode, we successfully fabricated Fe 3 O 4 -G//activated carbon (AC) soft-packaging LICs with a high energy density of 120.0 Wh kg -1 , an outstanding power density of 45.4 kW kg -1 (achieved at 60.5 Wh kg -1 ), and an excellent capacity retention of up to 94.1% after 1000 cycles and 81.4% after 10 000 cycles. The energy density of the Fe 3 O 4 -G//AC hybrid device is comparable with Ni-metal hydride batteries, and its capacitive power capability and cycle life is on par with supercapacitors (SCs). Therefore, this lithium-ion hybrid capacitor is expected to bridge the gap between Li-ion battery and SCs and gain bright prospects in next-generation energy storage fields.

  18. Development of a Highly Efficient Hybrid White Organic-Light-Emitting Diode with a Single Emission Layer by Solution Processing.

    Science.gov (United States)

    Wu, Jun-Yi; Chen, Show-An

    2018-02-07

    We use a mixed host, 2,6-bis[3-(carbazol-9-yl)phenyl]pyridine blended with 20 wt % tris(4-carbazoyl-9-ylphenyl)amine, to lower the hole-injection barrier, along with the bipolar and high-photoluminescence-quantum-yield (Φ p = 84%), blue thermally activated delay fluorescence (TADF) material of 9,9-dimethyl-9,10-dihydroacridine-2,4,6-triphenyl-1,3,5-triazine (DMAC-TRZ) as a blue dopant to compose the emission layer for the fabrication of a TADF blue organic-light-emitting diode (BOLED). The device is highly efficient with the following performance parameters: maximum brightness (B max ) = 57586 cd/m 2 , maximum current efficiency (CE max ) = 35.3 cd/A, maximum power efficiency (PE max ) = 21.4 lm/W, maximum external quantum efficiency (EQE max ) = 14.1%, and CIE coordinates (0.18, 0.42). This device has the best performance recorded among the reported solution-processed TADF BOLEDs and has a low efficiency roll-off: at brightness values of 1000 and 5000 cd/m 2 , its CEs are close, being 35.1 and 30.1 cd/A, respectively. Upon further doping of the red phosphor Ir(dpm)PQ 2 (emission peak λ max = 595 nm) into the blue emission layer, we obtained a TADF-phosphor hybrid white organic-light-emitting diode (T-P hybrid WOLED) with high performance: B max = 43594 cd/m 2 , CE max = 28.8 cd/A, PE max = 18.1 lm/W, and CIE coordinates (0.38, 0.44). This B max = 43594 cd/m 2 is better than that of the vacuum-deposited WOLED with a blue TADF emitter, 10000 cd/m 2 . This is also the first report on a T-P hybrid WOLED with a solution-processed emitting layer.

  19. Functional Carbon Nanotube/Mesoporous Carbon/MnO2 Hybrid Network for High-Performance Supercapacitors

    Directory of Open Access Journals (Sweden)

    Tao Tao

    2014-01-01

    Full Text Available A functional carbon nanotube/mesoporous carbon/MnO2 hybrid network has been developed successfully through a facile route. The resulting composites exhibited a high specific capacitance of 351 F/g at 1 A g−1, with intriguing charge/discharge rate performance and cycling stability due to a synergistic combination of large surface area and excellent electron-transport capabilities of MnO2 with the good conductivity of the carbon nanotube/mesoporous carbon networks. Such composite shows great potential to be used as electrodes for supercapacitors.

  20. High-performance hybrid complementary logic inverter through monolithic integration of a MEMS switch and an oxide TFT.

    Science.gov (United States)

    Song, Yong-Ha; Ahn, Sang-Joon Kenny; Kim, Min-Wu; Lee, Jeong-Oen; Hwang, Chi-Sun; Pi, Jae-Eun; Ko, Seung-Deok; Choi, Kwang-Wook; Park, Sang-Hee Ko; Yoon, Jun-Bo

    2015-03-25

    A hybrid complementary logic inverter consisting of a microelectromechanical system switch as a promising alternative for the p-type oxide thin film transistor (TFT) and an n-type oxide TFT is presented for ultralow power integrated circuits. These heterogeneous microdevices are monolithically integrated. The resulting logic device shows a distinctive voltage transfer characteristic curve, very low static leakage, zero-short circuit current, and exceedingly high voltage gain. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Development of a 14-inch ID High-Pressure Hybrid Riser for SBOP Drilling Développement d’un riser hybride 14”ID haute pression pour le forage SBOP

    Directory of Open Access Journals (Sweden)

    Persent E.

    2009-11-01

    Full Text Available This paper discusses the development of a 14-inch ID high-pressure hybrid riser (10 000 psi for surface BOP drilling in ultra-deep water (10 000 ft. The high-pressure hybrid riser system is obtained by adapting and combining two existing technologies, previously developed by the IFP for other applications: – the Clip connector, a double breech-block type connector to provide a quick and safe connection for riser joints; – hybrid pipe technology, a steel pipe hoop-wound with tapes of carbon fibers impregnated with polyamide thermoplastic resin. IFP has developed a new 14-inch ID HP Clip connector for the hybrid riser application. The connector is capable of withstanding a 2.8 million pound tension and a 10 000 psi operating pressure. In addition, a 16-inch nominal OD hybrid riser pipe has been designed to replace the steel riser pipe with a thinnerwalled hoop-wound steel pipe. The significant weight savings that can be achieved with the hybrid riser pipe make it possible to design an effective riser architecture to withstand the high pressure and deep water requirements. Pursuant to design studies, a 14-inch ID prototype assembly consisting of two hybrid riser pipe sections with a high-pressure Clip connector was manufactured. A test program, including burst and collapse tests as well as cyclic fatigue testing, was formulated and carried out to qualify the performance of the Clip connector and hybrid riser pipe system. Completion of hybrid pipe additional fatigue testing and realization of a scale-one field testing of the hybrid riser are considered as the next steps of the project. To date, the main test results (burst, collapse, fatigue resistance confirm that the Clip connector and the hybrid pipe technologies are well suited for ultra-deep sea drilling with a surface BOP. However, the fatigue resistance of hybrid riser pipes still needs to be better characterized. Cet article présente le développement d’un riser hybride 14”ID haute

  2. Piezoresistive Sensor with High Elasticity Based on 3D Hybrid Network of Sponge@CNTs@Ag NPs.

    Science.gov (United States)

    Zhang, Hui; Liu, Nishuang; Shi, Yuling; Liu, Weijie; Yue, Yang; Wang, Siliang; Ma, Yanan; Wen, Li; Li, Luying; Long, Fei; Zou, Zhengguang; Gao, Yihua

    2016-08-31

    Pressure sensors with high elasticity are in great demand for the realization of intelligent sensing, but there is a need to develope a simple, inexpensive, and scalable method for the manufacture of the sensors. Here, we reported an efficient, simple, facile, and repeatable "dipping and coating" process to manufacture a piezoresistive sensor with high elasticity, based on homogeneous 3D hybrid network of carbon nanotubes@silver nanoparticles (CNTs@Ag NPs) anchored on a skeleton sponge. Highly elastic, sensitive, and wearable sensors are obtained using the porous structure of sponge and the synergy effect of CNTs/Ag NPs. Our sensor was also tested for over 2000 compression-release cycles, exhibiting excellent elasticity and cycling stability. Sensors with high performance and a simple fabrication process are promising devices for commercial production in various electronic devices, for example, sport performance monitoring and man-machine interfaces.

  3. New approaches to the development of hybrid nanocomposites: from structural materials to high-tech applications

    International Nuclear Information System (INIS)

    Gerasin, V A; Antipov, Evgenii M; Karbushev, V V; Kulichikhin, Valerii G; Karpacheva, Galina P; Talroze, Raisa V; Kudryavtsev, Y V

    2013-01-01

    Current challenges in the development of various polymer nanocomposites and in the study of their properties are considered. Results of studying hybrid structural (polymer–layered silicates, polymer–nanodiamonds) and functional (based on conducting or liquid-crystalline polymers) nanomaterials are presented. Methods of modification of nanoparticles and their dispersion in a polymer matrix, and the role of interactions between a polymer matrix and fillers, as well as of nanoparticle morphology realized in the course of processing, are discussed. The bibliography includes 453 references.

  4. Hybrid high solar share gas turbine systems with innovative gas turbine cycles

    OpenAIRE

    Puppe, Michael; Giuliano, Stefano; Buck, Reiner; Krüger, Michael; Lammel, Oliver; Boje, Sven; Saidi, Karim; Gampe, Uwe; Felsmann, Christian; Freimark, Manfred; Langnickel, Ulrich

    2015-01-01

    In this paper results from an ongoing research project (HYGATE) are presented, which is performed to reduce the levelized cost of electricity (LCOE) and to increase the CO2 reduction potential of the solar-hybrid gas turbine plant concept (SHGT). Key improvements are the integration of thermal energy storage and the reduction of the operating temperature of the gas turbine to 950°C. As a result the solar receiver can provide the necessary temperature for solar-only operation of the plant at d...

  5. A high energy and power sodium-ion hybrid capacitor based on nitrogen-doped hollow carbon nanowires anode

    Science.gov (United States)

    Li, Dongdong; Ye, Chao; Chen, Xinzhi; Wang, Suqing; Wang, Haihui

    2018-04-01

    The sodium ion hybrid capacitor (SHC) has been attracting much attention. However, the SHC's power density is significantly confined to a low level due to the sluggish ion diffusion in the anode. Herein, we propose to use an electrode with a high double layer capacitance as the anode in the SHC instead of insertion anodes. To this aim, nitrogen doped hollow carbon nanowires (N-HCNWs) with a high specific surface area are prepared, and the high capacitive contribution during the sodium ion storage process is confirmed by a series of electrochemical measurements. A new SHC consisting of a N-HCNW anode and a commercial active carbon (AC) cathode is fabricated for the first time. Due to the hybrid charge storage mechanism combining ion insertion and capacitive process, the as-fabricated SHC strikes a balance between the energy density and power density, a energy density of 108 Wh kg-1 and a power density of 9 kW kg-1 can be achieved, which overwhelms the electrochemical performances of most reported AC-based SHCs.

  6. High-Performance Doping-Free Hybrid White OLEDs Based on Blue Aggregation-Induced Emission Luminogens.

    Science.gov (United States)

    Liu, Baiquan; Nie, Han; Lin, Gengwei; Hu, Shiben; Gao, Dongyu; Zou, Jianhua; Xu, Miao; Wang, Lei; Zhao, Zujin; Ning, Honglong; Peng, Junbiao; Cao, Yong; Tang, Ben Zhong

    2017-10-04

    Doping-free white organic light-emitting diodes (DF-WOLEDs) have aroused research interest because of their simple properties. However, to achieve doping-free hybrid WOLEDs (DFH-WOLEDs), avoiding aggregation-caused quenching is challenging. Herein, blue luminogens with aggregation-induced emission (AIE) characteristics, for the first time, have been demonstrated to develop DFH-WOLEDs. Unlike previous DFH-WOLEDs, both thin (10 nm) AIE luminogen (AIEgen) can be used for devices, enhancing the flexibility. Two-color devices show (i) pure-white emission, (ii) high CRI (85), and (iii) high efficiency. Particularly, 19.0 lm W 1- is the highest for pure-white DF-WOLEDs, while 35.0 lm W 1- is the best for two-color hybrid WOLEDs with CRI ≥ 80. A three-color DFH-WOLED shows broad color-correlated temperature span (2301-11628 K), (i) the first sunlight-like OLED (2500-8000 K) operating at low voltages, (ii) the broadest span among sunlight-like OLED, and (iii) possesses comparable efficiency with the best doping counterpart. Another three-color DFH-WOLED exhibits CRI > 90 at ≥3000 cd m -2 , (i) the first DF-WOLED with CRI ≥ 90 at high luminances, and (ii) the CRI (92.8) is not only the highest among AIE-based WOLEDs but also the highest among DF-WOLEDs. Such findings may unlock an alternative concept to develop DFH-WOLEDs.

  7. Mn 3 O 4 −Graphene Hybrid as a High-Capacity Anode Material for Lithium Ion Batteries

    KAUST Repository

    Wang, Hailiang

    2010-10-13

    We developed two-step solution-phase reactions to form hybrid materials of Mn3O4 nanoparticles on reduced graphene oxide (RGO) sheets for lithium ion battery applications. Selective growth of Mn3O 4 nanoparticles on RGO sheets, in contrast to free particle growth in solution, allowed for the electrically insulating Mn3O4 nanoparticles to be wired up to a current collector through the underlying conducting graphene network. The Mn3O4 nanoparticles formed on RGO show a high specific capacity up to ∼900 mAh/g, near their theoretical capacity, with good rate capability and cycling stability, owing to the intimate interactions between the graphene substrates and the Mn 3O4 nanoparticles grown atop. The Mn3O 4/RGO hybrid could be a promising candidate material for a high-capacity, low-cost, and environmentally friendly anode for lithium ion batteries. Our growth-on-graphene approach should offer a new technique for the design and synthesis of battery electrodes based on highly insulating materials. © 2010 American Chemical Society.

  8. Hybrid approach for transcatheter paravalvular leak closure of mitral prosthesis in high-risk patients through transapical access.

    Science.gov (United States)

    Davidavicius, Giedrius; Rucinskas, Kestutis; Drasutiene, Agne; Samalavicius, Robertas; Bilkis, Valdas; Zakarkaite, Diana; Aidietis, Audrius

    2014-11-01

    To report "hybrid" procedure feasibility and the clinical success of transcatheter paravalvular leak closure through apical access. Seven patients (73.6±6.1 years; 4 men) with severe mitral prosthesis paravalvular leak were selected. All patients were at high risk for open surgery because of severe comorbidities and heart failure (New York Heart Association class III-IV). The defect size was 25±7.8 mm in the long axis and 9.3±2 mm in the short axis. Two defects were detected in 2 patients. The transapical procedure was performed in a "hybrid" surgery room using minithoracotomy and general anesthesia. Three-dimensional transesophageal echocardiography and fluoroscopy were used for imaging. A total of 19 Amplatzer Vascular Plug III devices (St Jude Medical) were implanted in 7 patients, 2.7/patient and 1 to 3/fistula. The procedure time was 150.7±66.8 minutes. In 6 of 7 patients (85.7%), the paravalvular leak was successfully closed, resulting in no or mild residual regurgitation. One patient had moderate regurgitation despite deployment of 3 Amplatzer Vascular Plug III devices. Two patients required blood transfusion related to procedural blood loss. The patients were discharged at 15.3±6.5 days and followed up at 215.7±138.6 days. All but 1 patient reported symptomatic improvement by ≥1 New York Heart Association class at follow-up. One patient died 216 days postoperatively. A "hybrid approach" for transcatheter paravalvular leak closure of mitral prosthesis from the apical route is effective in reducing the regurgitation grade and improving functional capacity in high-risk patients. Complete closure of the defect was maintained at follow-up in most patients. Copyright © 2014 The American Association for Thoracic Surgery. Published by Elsevier Inc. All rights reserved.

  9. Preparation and flammability of high density polyethylene/paraffin/organophilic montmorillonite hybrids as a form stable phase change material

    International Nuclear Information System (INIS)

    Cai, Yibing; Hu, Yuan; Song, Lei; Kong, Qinghong; Yang, Rui; Zhang, Yinping; Chen, Zuyao; Fan, Weicheng

    2007-01-01

    A kind of form stable phase change material (PCM) based on high density polyethylene (HDPE), paraffin, organophilic montmorillonite (OMT) and intumescent flame retardant (IFR) hybrids is prepared by using a twin screw extruder technique. This kind of form stable PCM is made of paraffin as a dispersed phase change material and HDPE as a supporting material. The structure of the montmorillonite (MMT) and OMT is characterized by X-ray diffraction (XRD) and high resolution electron microscopy (HREM). The analysis indicates that the MMT is a kind of lamellar structure, and the structure does not change after organic modification. However, the structure of the hybrid is evidenced by the XRD and scanning electronic microscope (SEM). Its thermal stability, latent heat and flame retardant properties are given by the Thermogravimetry analysis (TGA), differential scanning calorimeter (DSC) method and cone calorimeter, respectively. Synergy is observed between the OMT and IFR. The XRD result indicates that the paraffin intercalates into the silicate layers of the OMT, thus forming a typically intercalated hybrid. The SEM investigation and DSC result show that the additives of OMT and IFR have hardly any effect on the HDPE/paraffin three dimensional netted structure and the latent heat. In TGA curves, although the onset of weight loss of flame-retardant form stable PCMs occur at a lower temperature than that of form stable PCM, flame-retardant form stable PCMs produce a large amount of char residue at 700 o C. The synergy between OMT and IFR leads to the decrease of the heat release rate (HRR), contributing to improvement of the flammability performance

  10. Controllable self-induced passivation of hybrid lead iodide perovskites toward high performance solar cells.

    Science.gov (United States)

    Chen, Qi; Zhou, Huanping; Song, Tze-Bin; Luo, Song; Hong, Ziruo; Duan, Hsin-Sheng; Dou, Letian; Liu, Yongsheng; Yang, Yang

    2014-07-09

    To improve the performance of the polycrystalline thin film devices, it requires a delicate control of its grain structures. As one of the most promising candidates among current thin film photovoltaic techniques, the organic/inorganic hybrid perovskites generally inherit polycrystalline nature and exhibit compositional/structural dependence in regard to their optoelectronic properties. Here, we demonstrate a controllable passivation technique for perovskite films, which enables their compositional change, and allows substantial enhancement in corresponding device performance. By releasing the organic species during annealing, PbI2 phase is presented in perovskite grain boundaries and at the relevant interfaces. The consequent passivation effects and underlying mechanisms are investigated with complementary characterizations, including scanning electron microscopy (SEM), X-ray diffraction (XRD), time-resolved photoluminescence decay (TRPL), scanning Kelvin probe microscopy (SKPM), and ultraviolet photoemission spectroscopy (UPS). This controllable self-induced passivation technique represents an important step to understand the polycrystalline nature of hybrid perovskite thin films and contributes to the development of perovskite solar cells judiciously.

  11. Silver nanowire-graphene hybrid transparent conductive electrodes for highly efficient inverted organic solar cells

    Science.gov (United States)

    Ye, Neng; Yan, Jielin; Xie, Shuang; Kong, Yuhan; Liang, Tao; Chen, Hongzheng; Xu, Mingsheng

    2017-07-01

    Silver nanowires (AgNWs) and graphene are both promising candidates as a transparent conductive electrode (TCE) to replace expensive and fragile indium tin oxide (ITO) TCE. A synergistically optimized performance is expected when the advantages of AgNWs and graphene are combined. In this paper, the AgNW-graphene hybrid electrode is constructed by depositing a graphene layer on top of the network of AgNWs. Compared with the pristine AgNWs electrode, the AgNW-graphene TCE exhibits reduced sheet resistance, lower surface roughness, excellent long-term stability, and corrosion resistance in corrosive liquids. The graphene layer covering the AgNWs provides additional conduction pathways for electron transport and collection by the electrode. Benefiting from these advantages of the hybrid electrodes, we achieve a power conversion efficiency of 8.12% of inverted organic solar cells using PTB7:PC71BM as the active layer, which is compared to that of the solar cells based on standard ITO TCE but about 10% higher than that based on AgNWs TCE.

  12. A new hybrid scheme for simulations of highly collisional RF-driven plasmas

    International Nuclear Information System (INIS)

    Eremin, Denis; Hemke, Torben; Mussenbrock, Thomas

    2016-01-01

    This work describes a new 1D hybrid approach for modeling atmospheric pressure discharges featuring complex chemistry. In this approach electrons are described fully kinetically using particle-in-cell/Monte-Carlo (PIC/MCC) scheme, whereas the heavy species are modeled within a fluid description. Validity of the popular drift-diffusion approximation is verified against a ‘full’ fluid model accounting for the ion inertia and a fully kinetic PIC/MCC code for ions as well as electrons. The fluid models require knowledge of the momentum exchange frequency and dependence of the ion mobilities on the electric field when the ions are in equilibrium with the latter. To this end an auxiliary Monte-Carlo scheme is constructed. It is demonstrated that the drift-diffusion approximation can overestimate ion transport in simulations of RF-driven discharges with heavy ion species operated in the γ mode at the atmospheric pressure or in all discharge simulations for lower pressures. This can lead to exaggerated plasma densities and incorrect profiles provided by the drift-diffusion models. Therefore, the hybrid code version featuring the full ion fluid model should be favored against the more popular drift-diffusion model, noting that the suggested numerical scheme for the former model implies only a small additional computational cost. (paper)

  13. Flexible graphene/carbon nanotube hybrid papers chemical-reduction-tailored by gallic acid for high-performance electrochemical capacitive energy storages

    Science.gov (United States)

    Yao, Lu; Zhou, Chao; Hu, Nantao; Hu, Jing; Hong, Min; Zhang, Liying; Zhang, Yafei

    2018-03-01

    Mechanically robust graphene papers with both high gravimetric and volumetric capacitances are desired for high-performance energy storages. However, it's still a challenge to tailor the structure of graphene papers in order to meet this requirement. In this work, a kind of chemical-reduction-tailored mechanically-robust reduced graphene oxide/carbon nanotube hybrid paper has been reported for high-performance electrochemical capacitive energy storages. Gallic acid (GA), as an excellent reducing agent, was used to reduce graphene oxide. Through vacuum filtration of gallic acid reduced graphene oxide (GA-rGO) and carboxylic multiwalled carbon nanotubes (MWCNTs) aqueous suspensions, mechanically robust GA-rGO/MWCNTs hybrid papers were obtained. The resultant hybrid papers showed high gravimetric capacitance of 337.6 F g-1 (0.5 A g-1) and volumetric capacitance of 151.2 F cm-3 (0.25 A cm-3). In addition, the assembled symmetric device based on the hybrid papers exhibited high gravimetric capacitance of 291.6 F g-1 (0.5 A g-1) and volumetric capacitance of 136.6 F cm-3 (0.25 A cm-3). Meanwhile, it exhibited excellent rate capability and cycling stability. Above all, this chemical reduction tailoring technique and the resultant high-performance GA-rGO/MWCNTs hybrid papers give an insight for designing high-performance electrodes and hold a great potential in the field of energy storages.

  14. A hybrid MAC protocol design for energy-efficient very-high-throughput millimeter wave, wireless sensor communication networks

    Science.gov (United States)

    Jian, Wei; Estevez, Claudio; Chowdhury, Arshad; Jia, Zhensheng; Wang, Jianxin; Yu, Jianguo; Chang, Gee-Kung

    2010-12-01

    This paper presents an energy-efficient Medium Access Control (MAC) protocol for very-high-throughput millimeter-wave (mm-wave) wireless sensor communication networks (VHT-MSCNs) based on hybrid multiple access techniques of frequency division multiplexing access (FDMA) and time division multiplexing access (TDMA). An energy-efficient Superframe for wireless sensor communication network employing directional mm-wave wireless access technologies is proposed for systems that require very high throughput, such as high definition video signals, for sensing, processing, transmitting, and actuating functions. Energy consumption modeling for each network element and comparisons among various multi-access technologies in term of power and MAC layer operations are investigated for evaluating the energy-efficient improvement of proposed MAC protocol.

  15. Highly efficient hybrid energy generator: coupled organic photovoltaic device and randomly oriented electrospun poly(vinylidene fluoride) nanofiber.

    Science.gov (United States)

    Park, Boongik; Lee, Kihwan; Park, Jongjin; Kim, Jongmin; Kim, Ohyun

    2013-03-01

    A hybrid architecture consisting of an inverted organic photovoltaic device and a randomly-oriented electrospun PVDF piezoelectric device was fabricated as a highly-efficient energy generator. It uses the inverted photovoltaic device with coupled electrospun PVDF nanofibers as tandem structure to convert solar and mechanical vibrations energy to electricity simultaneously or individually. The power conversion efficiency of the photovoltaic device was also significantly improved up to 4.72% by optimized processes such as intrinsic ZnO, MoO3 and active layer. A simple electrospinning method with the two electrode technique was adopted to achieve a high voltage of - 300 mV in PVDF piezoelectric fibers. Highly-efficient HEG using voltage adder circuit provides the conceptual possibility of realizing multi-functional energy generator whenever and wherever various energy sources are available.

  16. Fluorescence photooxidation with eosin: a method for high resolution immunolocalization and in situ hybridization detection for light and electron microscopy

    Science.gov (United States)

    1994-01-01

    A simple method is described for high-resolution light and electron microscopic immunolocalization of proteins in cells and tissues by immunofluorescence and subsequent photooxidation of diaminobenzidine tetrahydrochloride into an insoluble osmiophilic polymer. By using eosin as the fluorescent marker, a substantial improvement in sensitivity is achieved in the photooxidation process over other conventional fluorescent compounds. The technique allows for precise correlative immunolocalization studies on the same sample using fluorescence, transmitted light and electron microscopy. Furthermore, because eosin is smaller in size than other conventional markers, this method results in improved penetration of labeling reagents compared to gold or enzyme based procedures. The improved penetration allows for three-dimensional immunolocalization using high voltage electron microscopy. Fluorescence photooxidation can also be used for high resolution light and electron microscopic localization of specific nucleic acid sequences by in situ hybridization utilizing biotinylated probes followed by an eosin-streptavidin conjugate. PMID:7519623

  17. Highly active bidirectional electron transfer by a self-assembled electroactive reduced-graphene-oxide-hybridized biofilm.

    Science.gov (United States)

    Yong, Yang-Chun; Yu, Yang-Yang; Zhang, Xinhai; Song, Hao

    2014-04-22

    Low extracellular electron transfer performance is often a bottleneck in developing high-performance bioelectrochemical systems. Herein, we show that the self-assembly of graphene oxide and Shewanella oneidensis MR-1 formed an electroactive, reduced-graphene-oxide-hybridized, three-dimensional macroporous biofilm, which enabled highly efficient bidirectional electron transfers between Shewanella and electrodes owing to high biomass incorporation and enhanced direct contact-based extracellular electron transfer. This 3D electroactive biofilm delivered a 25-fold increase in the outward current (oxidation current, electron flux from bacteria to electrodes) and 74-fold increase in the inward current (reduction current, electron flux from electrodes to bacteria) over that of the naturally occurring biofilms. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Thermally Stable Siloxane Hybrid Matrix with Low Dielectric Loss for Copper-Clad Laminates for High-Frequency Applications.

    Science.gov (United States)

    Kim, Yong Ho; Lim, Young-Woo; Kim, Yun Hyeok; Bae, Byeong-Soo

    2016-04-06

    We report vinyl-phenyl siloxane hybrid material (VPH) that can be used as a matrix for copper-clad laminates (CCLs) for high-frequency applications. The CCLs, with a VPH matrix fabricated via radical polymerization of resin blend consisting of sol-gel-derived linear vinyl oligosiloxane and bulky siloxane monomer, phenyltris(trimethylsiloxy)silane, achieve low dielectric constant (Dk) and dissipation factor (Df). The CCLs with the VPH matrix exhibit excellent dielectric performance (Dk = 2.75, Df = 0.0015 at 1 GHz) with stability in wide frequency range (1 MHz to 10 GHz) and at high temperature (up to 275 °C). Also, the VPH shows good flame resistance without any additives. These results suggest the potential of the VPH for use in high-speed IC boards.

  19. Hybrid nanocomposites based on electroactive hydrogels and cellulose nanocrystals for high-sensitivity electro-mechanical underwater actuation

    Science.gov (United States)

    Santaniello, Tommaso; Migliorini, Lorenzo; Locatelli, Erica; Monaco, Ilaria; Yan, Yunsong; Lenardi, Cristina; Comes Franchini, Mauro; Milani, Paolo

    2017-08-01

    We report the synthesis, fabrication and characterization of a hybrid hydrogel/cellulose nanocomposite, which exhibits high-performance electro-mechanical underwater actuation and high sensitivity in response to electrical stimuli below the standard potential of water electrolysis. The macromolecular structure of the material is constituted by an electroactive hydrogel, obtained through a photo-polymerization reaction with the use of three vinylic co-monomers: Na-4-vinylbenzenesulfonate, 2-hydroxyethylmethacrylate, and acrylonitrile. Different amounts (from 0.1% to 1.4% w/w) of biodegradable cellulose nanocrystals (CNCs) with sulfonate surface groups, obtained through the acidic hydrolysis of sulphite pulp lapsheets, are physically incorporated into the gel matrix during the synthesis step. Freestanding thin films of the nanocomposites are molded, and their swelling, mechanical and responsive properties are fully characterized. We observed that the embedding of the CNCs enhanced both the material Young’s modulus and its sensitivity to the applied electric field in the sub-volt regime (down to 5 mV cm-1). A demonstrator integrating multiple actuators that cooperatively bend together, mimicking the motion of an electro-valve, is also prototyped and tested. The presented nanocomposite is suitable for the development of soft smart components for bio-robotic applications and cells-based and bio-hybrid fluidic devices fabrication.

  20. Hybrid Robust Control Law with Disturbance Observer for High-Frequency Response Electro-Hydraulic Servo Loading System

    Directory of Open Access Journals (Sweden)

    Zhiqing Sheng

    2016-04-01

    Full Text Available Addressing the simulating issue of the helicopter-manipulating booster aerodynamic load with high-frequency dynamic load superimposed on a large static load, this paper studies the design of the robust controller for the electro-hydraulic loading system to realize the simulation of this kind of load. Firstly, the equivalent linear model of the electro-hydraulic loading system under assumed parameter uncertainty is established. Then, a hybrid control scheme is proposed for the loading system. This control scheme consists of a constant velocity feed-forward compensator, a robust inner loop compensator based on disturbance observer and a robust outer loop feedback controller. The constant velocity compensator eliminates most of the extraneous force at first, and then the double-loop cascade composition control strategy is employed to design the compensated system. The disturbance observer–based inner loop compensator further restrains the disturbances including the remaining extraneous force, and makes the actual plant tracking a nominal model approximately in a certain frequency range. The robust outer loop controller achieves the desired force-tracking performance, and guarantees system robustness in the high frequency region. The optimized low-pass filter Q(s is designed by using the H∞ mixed sensitivity optimization method. The simulation results show that the proposed hybrid control scheme and controller can effectively suppress the extraneous force and improve the robustness of the electro-hydraulic loading system.

  1. Fluorescent silica hybrid materials containing benzimidazole dyes obtained by sol-gel method and high pressure processing

    International Nuclear Information System (INIS)

    Hoffmann, Helena Sofia; Stefani, Valter; Benvenutti, Edilson Valmir; Costa, Tania Maria Haas; Gallas, Marcia Russman

    2011-01-01

    Research highlights: → Sol-gel technique was used to obtain silica based hybrid materials containing benzimidazole dyes. → The sol-gel catalysts, HF and NaF, produce xerogels with different optical and textural characteristics. → High pressure technique (6.0 GPa) was used to produce fluorescent and transparent silica compacts with the dyes entrapped in closed pores, maintaining their optical properties. → The excited state intramolecular proton transfer (ESIPT) mechanism of benzimidazole dyes was studied by steady-state fluorescence spectroscopy for the monoliths, powders, and compacts. - Abstract: New silica hybrid materials were obtained by incorporation of two benzimidazole dyes in the silica network by sol-gel technique, using tetraethylorthosilicate (TEOS) as inorganic precursor. Several syntheses were performed with two catalysts (HF and NaF) producing powders and monoliths with different characteristics. The dye 2-(2'-hydroxy-5'-aminophenyl)benzimidazole was dispersed and physically adsorbed in the matrix, and the dye 2'(5'-N-(3-triethoxysilyl)propylurea-2'-hydroxyphenyl)benzimidazole was silylated, becoming chemically bonded to the silica network. High pressure technique was used to produce fluorescent and transparent silica compacts with the silylated and incorporated dye, at 6.0 GPa and room temperature. The excited state intramolecular proton transfer (ESIPT) mechanism of benzimidazole dyes was studied by steady-state fluorescence spectroscopy for the monoliths, powders, and compacts. The influence of the syntheses conditions was investigated by textural analysis using nitrogen adsorption isotherms.

  2. Production of Biodiesel from High Acid Value Waste Cooking Oil Using an Optimized Lipase Enzyme/Acid-Catalyzed Hybrid Process

    Directory of Open Access Journals (Sweden)

    N. Saifuddin

    2009-01-01

    Full Text Available The present study is aimed at developing an enzymatic/acid-catalyzed hybrid process for biodiesel production using waste cooking oil with high acid value (poor quality as feedstock. Tuned enzyme was prepared using a rapid drying technique of microwave dehydration (time required around 15 minutes. Further enhancement was achieved by three phase partitioning (TPP method. The results on the lipase enzyme which was subjected to pH tuning and TPP, indicated remarkable increase in the initial rate of transesterification by 3.8 times. Microwave irradiation was found to increase the initial reaction rates by further 1.6 times, hence giving a combined increase in activity of about 5.4 times. The optimized enzyme was used for hydrolysis and 88% of the oil taken initially was hydrolyzed by the lipase. The hydrolysate was further used in acid-catalyzed esterification for biodiesel production. By using a feedstock to methanol molar ratio of 1:15 and a sulphuric acid concentration of 2.5%, a biodiesel conversion of 88% was obtained at 50 °C for an hour reaction time. This hybrid process may open a way for biodiesel production using unrefined and used oil with high acid value as feedstock.

  3. Development of an extraction type magnetometer under high pressure and high magnetic fields over 200 kOe in the hybrid magnet

    International Nuclear Information System (INIS)

    Koyama, K; Miura, S; Okada, H; Watanabe, K

    2006-01-01

    An extraction-type magnetometer has been developed, which is performed under pressures up to 12 kbar using a miniature high-pressure clamp-cell, in magnetic fields up to 270 kOe using our hybrid magnet and at the temperature range from 1.5 to 300 K. Magnetization curves can be measured for absolute value over 0.04 emu. We confirmed that resolution is about ±0.01 emu under high pressures and high magnetic fields if a sample has the magnetic moment of about 3 emu. For demonstrating the ability of the instrument, high field magnetization curves for SmMn 2 Ge 2 under high pressures are presented

  4. Transmutation performance analysis on coolant options in a hybrid reactor system design for high level waste incineration

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Seong-Hee; Siddique, Muhammad Tariq; Kim, Myung Hyun, E-mail: mhkim@khu.ac.kr

    2015-11-15

    Highlights: • Waste transmutation performance was compared and analyzed for seven different coolant options. • Reactions of fission and capture showed big differences depending on coolant options. • Moderation effect significantly affects on energy multiplication, tritium breeding and waste transmutation. • Reduction of radio-toxicities of TRUs showed different trend to coolant choice from performance of waste transmutation. - Abstract: A fusion–fission hybrid reactor (FFHR) is one of the most attractive candidates for high level waste transmutation. The selection of coolant affects the transmutation performance of a FFHR. LiPb coolant, as a conventional coolant for a FFHR, has problems such as reduction in neutron economic and magneto-hydro dynamics (MHD) pressure drop. Therefore, in this work, transmutation performance is evaluated and compared for various coolant options such as LiPb, H{sub 2}O, D{sub 2}O, Na, PbBi, LiF-BeF{sub 2} and NaF-BeF{sub 2} applicable to a hybrid reactor for waste transmutation (Hyb-WT). Design parameters measuring performance of a hybrid reactor were evaluated by MCNPX. They are k{sub eff}, energy multiplication factor, neutron absorption ratio, tritium breeding ratio, waste transmutation ratio, support ratio and radiotoxicity reduction. Compared to LiPb, H{sub 2}O and D{sub 2}O are not suitable for waste transmutation because of neutron moderation effect. Waste transmutation performances with Na and PbBi are similar to each other and not different much from LiPb. Even though molten salt such as LiF-BeF{sub 2} and NaF-BeF{sub 2} is good for avoiding MHD pressure drop problem, waste transmutation performance is dropped compared with LiPb.

  5. White emitting CdS quantum dot nanoluminophores hybridized on near-ultraviolet LEDs for high-quality white light generation and tuning

    International Nuclear Information System (INIS)

    Nizamoglu, Sedat; Mutlugun, Evren; Akyuz, Ozgun; Perkgoz, Nihan Kosku; Demir, Hilmi Volkan; Liebscher, Lydia; Sapra, Sameer; Gaponik, Nikolai; Eychmueller, Alexander

    2008-01-01

    To generate white light using semiconductor nanocrystal (NC) quantum dots integrated on light emitting diodes (LEDs), multiple hybrid device parameters (emission wavelengths of the NCs and the excitation platform, order of the NCs with different sizes, amount of the different types of NCs, etc) need to be carefully designed and properly implemented. In this study, we introduce and demonstrate white LEDs based on simple device hybridization using only a single type of white emitting CdS quantum dot nanoluminophores on near-ultraviolet LEDs. Here we present their design, synthesis-growth, fabrication and characterization. With these hybrid devices, we achieve high color rendering index (>70), despite using only a single NC type. Furthermore, we conveniently tune their photometric properties including the chromaticity coordinates, correlated color temperature, and color rendering index with the number of hybridized nanoluminophores in a controlled manner

  6. A novel hybrid catalyst for the esterification of high FFA in Jatropha oil for biodiesel production

    Directory of Open Access Journals (Sweden)

    Mushtaq, M.

    2016-09-01

    Full Text Available The synthesis and application of a hybrid catalyst for the esterification of free fatty acids (FFA in Jatropha oil is reported. Three catalysts, namely silica sulfuric acid, silica supported boron trifluoride and a combination of the two in the weight ratio of 1:1, the hybrid catalyst, were investigated. Jatropha oil samples with a wide range of FFA values i.e. 6.64 to 45.64% were prepared and utilized for the experimental work. This study revealed that silica sulfuric acid and silica supported boron trifluoride were not very effective when used independently. However, a strong synergistic effect was noted in the catalytic activity of the hybrid catalyst which reduced the FFA value from 45.64 to 0.903% with a conversion efficiency of 98%. Reusability of the catalyst was also tested and the results were promising in up to three cycles of use when used with lower amounts of FFA (6.64% in the oil. Under the influence of the catalyst, the reaction was found to follow first order kinetics. Activation energy was calculated to be 45.42 KJ·mol-1 for 2 wt.% of hybrid catalyst. The products were analyzed by FT-IR and NMR spectroscopic techniques and the results are reported.Se aborda la síntesis mediante el uso de un catalizador híbrido en la esterificación de ácidos grasos libres (AGL de aceites de Jatrofa. Se investigaron tres catalizadores: ácido sulfúrico sobre sílica, trifluoruro de boro sobre sílice y un catalizador híbrido, combinación de los dos anteriores en una relación 1:1en peso. Muestras de aceites de Jatrofa con una amplia gama de valores de FFA: desde 6,64 a 45,64% se prepararon y se utilizaron en la parte experimental de este trabajo. Este estudio mostró que los soportes de ácido sulfúrico sobre sílica y el de trifluoruro de boro sobre sílice no eran muy eficaces cuando se utilizan de forma independiente. Sin embargo, un fuerte efecto sinérgico se observó en la actividad catalítica del catalizador híbrido que reduce el

  7. Hybrid Fluid/Kinetic Modeling Of Magnetized High Energy Density Plasmas

    Science.gov (United States)

    Hansen, David; Held, Eric; King, Jacob; Stoltz, Peter; Masti, Robert; Srinivasan, Bhuvana

    2017-10-01

    MHD modeling with an equation of state (EOS) of the Rayleigh-Taylor (RT) instabily in Z indicates that it is seeded by the electro-thermal instability. Large thermodynamic drives associated with gradients at the interface between the liner and the coronal regions distort distribution functions and likely lead to non-local transport effects in a plasma which varies from weakly to strongly coupled. In this work, we discuss using effective potential theory along with a Chapman-Ensksog-like (CEL) formalism to develop hybrid fluid/kinetic modeling capabilities for these plasmas. Effective potential theory addresses the role of Coulomb collisions on transport across coupling regimes and the CEL approach bridges the gap between full-blow kinetic simulations and the EOS tables, which only depend locally on density and temperature. Quantitative results on the Spitzer problem across coupling coupling regimes will be presented as a first step. DOE Grant No. DE-SC0016525.

  8. Covalently Bonded Graphene-Carbon Nanotube Hybrid for High-Performance Thermal Interfaces

    DEFF Research Database (Denmark)

    Chen, Jie; Walther, Jens H.; Koumoutsakos, Petros

    2015-01-01

    The remarkable thermal properties of graphene and carbon nanotubes (CNTs) have been the subject of intensive investigations for the thermal management of integrated circuits. However, the small contact area of CNTs and the large anisotropic heat conduction of graphene have hindered...... their applications as effective thermal interface materials (TIMs). Here, a covalently bonded graphene–CNT (G-CNT) hybrid is presented that multiplies the axial heat transfer capability of individual CNTs through their parallel arrangement, while at the same time it provides a large contact area for efficient heat...... extraction. Through computer simulations, it is demonstrated that the G-CNT outperforms few-layer graphene by more than 2 orders of magnitude for the c-axis heat transfer, while its thermal resistance is 3 orders of magnitude lower than the state-of-the-art TIMs. We show that heat can be removed from the G...

  9. Carbon hybridized halloysite nanotubes for high-performance hydrogen storage capacities

    Science.gov (United States)

    Jin, Jiao; Fu, Liangjie; Yang, Huaming; Ouyang, Jing

    2015-01-01

    Hybrid nanotubes of carbon and halloysite nanotubes (HNTs) with different carbon:HNTs ratio were hydrothermally synthesized from natural halloysite and sucrose. The samples display uniformly cylindrical hollow tubular structure with different morphologies. These hybrid nanotubes were concluded to be promising medium for physisorption-based hydrogen storage. The hydrogen adsorption capacity of pristine HNTs was 0.35% at 2.65 MPa and 298 K, while that of carbon coated HNTs with the pre-set carbon:HNTs ratio of 3:1 (3C-HNTs) was 0.48% under the same condition. This carbon coated method could offer a new pattern for increasing the hydrogen adsorption capacity. It was also possible to enhance the hydrogen adsorption capacity through the spillover mechanism by incorporating palladium (Pd) in the samples of HNTs (Pd-HNTs) and 3C-HNTs (Pd-3C-HNTs and 3C-Pd-HNTs are the samples with different location of Pd nanoparticles). The hydrogen adsorption capacity of the Pd-HNTs was 0.50% at 2.65 MPa and 298 K, while those of Pd-3C-HNTs and 3C-Pd-HNTs were 0.58% and 0.63%, respectively. In particular, for this spillover mechanism of Pd-carbon-HNTs ternary system, the bidirectional transmission of atomic and molecular hydrogen (3C-Pd-HNTs) was concluded to be more effective than the unidirectional transmission (Pd-3C-HNTs) in this work for the first time. PMID:26201827

  10. AgI/Ag3PO4 hybrids with highly efficient visible-light driven photocatalytic activity

    International Nuclear Information System (INIS)

    Katsumata, Hideyuki; Hayashi, Takahiro; Taniguchi, Masanao; Suzuki, Tohru; Kaneco, Satoshi

    2015-01-01

    Highlights: • AgI/Ag 3 PO 4 hybrid was prepared via an in situ anion-exchange method. • AgI/Ag 3 PO 4 displays the excellent photocatalytic activity under visible light. • AgI/Ag 3 PO 4 readily transforms to be Ag@AgI/Ag 3 PO 4 system. • h + and O 2 ·− play the major role in the AO 7 decolorization over AgI/Ag 3 PO 4 . • The activity enhancement is ascribed to a Z-scheme system composed of Ag 3 PO 4 , Ag and AgI. - Abstract: Highly efficient visible-light-driven AgI/Ag 3 PO 4 hybrid photocatalysts with different mole ratios of AgI were prepared via an in situ anion-exchange method and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), UV–vis diffuse reflectance spectroscopy (DRS) and photoluminescence (PL) technique. Under visible light irradiation (>420 nm), the AgI/Ag 3 PO 4 photocatalysts displayed the higher photocatalytic activity than pure Ag 3 PO 4 and AgI for the decolorization of acid orange 7 (AO 7). Among the hybrid photocatalysts, AgI/Ag 3 PO 4 with 80% of AgI exhibited the highest photocatalytic activity for the decolorization of AO 7. X-ray photoelectron spectroscopy (XPS) results revealed that AgI/Ag 3 PO 4 readily transformed to be Ag@AgI/Ag 3 PO 4 system while the photocatalytic activity of AgI/Ag 3 PO 4 remained after 5 recycling runs. In addition, the quenching effects of different scavengers displayed that the reactive h + and O 2 ·− play the major role in the AO 7 decolorization. The photocatalytic activity enhancement of AgI/Ag 3 PO 4 hybrids can be ascribed to the efficient separation of electron–hole pairs through a Z-scheme system composed of Ag 3 PO 4 , Ag and AgI, in which Ag nanoparticles act as the charge separation center

  11. Hybridization of tensor-optimized and high-momentum antisymmetrized molecular dynamics for light nuclei with bare interaction

    Science.gov (United States)

    Lyu, Mengjiao; Isaka, Masahiro; Myo, Takayuki; Toki, Hiroshi; Ikeda, Kiyomi; Horiuchi, Hisashi; Suhara, Tadahiro; Yamada, Taiichi

    2018-01-01

    Many-body correlations play an essential role in the ab initio description of nuclei with nuclear bare interactions. We propose a new framework to describe light nuclei by the hybridization of the tensor-optimized antisymmetrized molecular dynamics (TOAMD) and the high-momentum AMD (HM-AMD), which we call "HM-TOAMD." In this framework, we describe the many-body correlations in terms of not only the correlation functions in TOAMD, but also the high-momentum pairs in the AMD wave function. With the bare nucleon-nucleon interaction AV8^', we sufficiently reproduce the energy and radius of the {^3}H nucleus in HM-TOAMD. The effects of tensor force and short-range repulsion in the bare interaction are nicely described in this new framework. We also discuss the convergence in calculation and flexibility of the model space for this new method.

  12. Highly sensitive piezo-resistive graphite nanoplatelet-carbon nanotube hybrids/polydimethylsilicone composites with improved conductive network construction.

    Science.gov (United States)

    Zhao, Hang; Bai, Jinbo

    2015-05-13

    The constructions of internal conductive network are dependent on microstructures of conductive fillers, determining various electrical performances of composites. Here, we present the advanced graphite nanoplatelet-carbon nanotube hybrids/polydimethylsilicone (GCHs/PDMS) composites with high piezo-resistive performance. GCH particles were synthesized by the catalyst chemical vapor deposition approach. The synthesized GCHs can be well dispersed in the matrix through the mechanical blending process. Due to the exfoliated GNP and aligned CNTs coupling structure, the flexible composite shows an ultralow percolation threshold (0.64 vol %) and high piezo-resistive sensitivity (gauge factor ∼ 10(3) and pressure sensitivity ∼ 0.6 kPa(-1)). Slight motions of finger can be detected and distinguished accurately using the composite film as a typical wearable sensor. These results indicate that designing the internal conductive network could be a reasonable strategy to improve the piezo-resistive performance of composites.

  13. Novel thermal management system using boiling cooling for high-powered lithium-ion battery packs for hybrid electric vehicles

    Science.gov (United States)

    Al-Zareer, Maan; Dincer, Ibrahim; Rosen, Marc A.

    2017-09-01

    A thermal management system is necessary to control the operating temperature of the lithium ion batteries in battery packs for electrical and hybrid electrical vehicles. This paper proposes a new battery thermal management system based on one type of phase change material for the battery packs in hybrid electrical vehicles and develops a three dimensional electrochemical thermal model. The temperature distributions of the batteries are investigated under various operating conditions for comparative evaluations. The proposed system boils liquid propane to remove the heat generated by the batteries, and the propane vapor is used to cool the part of the battery that is not covered with liquid propane. The effect on the thermal behavior of the battery pack of the height of the liquid propane inside the battery pack, relative to the height of the battery, is analyzed. The results show that the propane based thermal management system provides good cooling control of the temperature of the batteries under high and continuous charge and discharge cycles at 7.5C.

  14. A hybrid molecularly imprinted polymer coated quantum dot nanocomposite optosensor for highly sensitive and selective determination of salbutamol in animal feeds and meat samples.

    Science.gov (United States)

    Raksawong, Phannika; Chullasat, Kochaporn; Nurerk, Piyaluk; Kanatharana, Proespichaya; Davis, Frank; Bunkoed, Opas

    2017-08-01

    A hybrid molecularly imprinted polymer (MIP)-coated quantum dot (QD) nanocomposite was synthesized and applied as a fluorescence probe for the highly sensitive and selective determination of salbutamol. The hybrid MIP-coated QD nanocomposite was synthesized via a copolymerization process in the presence of thioglycolic acid capped CdTe QDs with salbutamol as a template, 3-aminopropyltriethoxysilane as the functional monomer, and tetraethyl orthosilicate as a cross-linker. The optimum molar ratio of template, monomer, and cross-linker was 1:6:20. The fluorescence intensity of the hybrid MIP-coated QDs was efficiently quenched after salbutamol rebound to the recognition sites, as a result of charge transfer from QDs to salbutamol. The synthesized hybrid MIP-coated QD nanocomposite showed high sensitivity and good selectivity toward salbutamol. Under the optimal recognition conditions, the fluorescence intensity was quenched linearly with increasing concentration of salbutamol in the range from 0.10 to 25.0 μg L -1 , with a detection limit of 0.034 μg L -1 . The hybrid optosensor developed was successfully applied in the determination of salbutamol in animal feeds and meat samples. Satisfactory recoveries were obtained in the range from 85% to 98%, with a standard deviation of less than 8%. Furthermore, the accuracy of the hybrid MIP-coated QD nanocomposite was investigated by comparison with a conventional high-performance liquid chromatography method, with the results obtained with two methods agreeing well with each other. The advantages of this sensing method are simplicity, rapidity, cost-effectiveness, high sensitivity, and good selectivity. Graphical Abstract The synthesis of hybrid MIP-coated QDs nanocomposite.

  15. New high expansion ratio gasoline engine for the TOYOTA hybrid system. Improving engine efficiency with high expansion ratio cycle; Hybrid system yo kobochohi gasoline engine. Kobochohi cycle ni yoru engine no kokoritsuka

    Energy Technology Data Exchange (ETDEWEB)

    Hirose, K; Takaoka, T; Ueda, T; Kobayashi, Y [Toyota Motor Corp., Aichi (Japan)

    1997-10-01

    50% reduction of CO2 and fuel consumption have been achieved with the newly developed gasoline engine for the Toyota Hybrid System. This is achieved due to the combination of electric motors and the internal combustion engine which is optimized in the size, swept volume and heat cycle. By delaying the intake valve close timing a high expansion ratio (13.5:1) cycle has been realized. Electricmotor assist enable to cut the maximum engine speed, and friction loss. A best fuel consumption figure better than 230 g/kWh has been achieved. Elimination of lightload firing, motor assisted quick start and improvement of catalyst warm up makes to achieve the clean emission level such as 1/10 of Japanese `78 regulation limit. 10 refs., 16 figs., 1 tab.

  16. Marine Fish Hybridization

    KAUST Repository

    He, Song

    2017-04-01

    Natural hybridization is reproduction (without artificial influence) between two or more species/populations which are distinguishable from each other by heritable characters. Natural hybridizations among marine fishes were highly underappreciated due to limited research effort; it seems that this phenomenon occurs more often than is commonly recognized. As hybridization plays an important role in biodiversity processes in the marine environment, detecting hybridization events and investigating hybridization is important to understand and protect biodiversity. The first chapter sets the framework for this disseration study. The Cohesion Species Concept was selected as the working definition of a species for this study as it can handle marine fish hybridization events. The concept does not require restrictive species boundaries. A general history and background of natural hybridization in marine fishes is reviewed during in chapter as well. Four marine fish hybridization cases were examed and documented in Chapters 2 to 5. In each case study, at least one diagnostic nuclear marker, screened from among ~14 candidate markers, was found to discriminate the putative hybridizing parent species. To further investigate genetic evidence to support the hybrid status for each hybrid offspring in each case, haploweb analysis on diagnostic markers (nuclear and/or mitochondrial) and the DAPC/PCA analysis on microsatellite data were used. By combining the genetic evidences, morphological traits, and ecological observations together, the potential reasons that triggered each hybridization events and the potential genetic/ecology effects could be discussed. In the last chapter, sequences from 82 pairs of hybridizing parents species (for which COI barcoding sequences were available either on GenBank or in our lab) were collected. By comparing the COI fragment p-distance between each hybridizing parent species, some general questions about marine fish hybridization were discussed: Is

  17. Nanoscale Organic Hybrid Electrolytes

    KAUST Repository

    Nugent, Jennifer L.

    2010-08-20

    Nanoscale organic hybrid electrolytes are composed of organic-inorganic hybrid nanostructures, each with a metal oxide or metallic nanoparticle core densely grafted with an ion-conducting polyethylene glycol corona - doped with lithium salt. These materials form novel solvent-free hybrid electrolytes that are particle-rich, soft glasses at room temperature; yet manifest high ionic conductivity and good electrochemical stability above 5V. © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Nanoscale Organic Hybrid Electrolytes

    KAUST Repository

    Nugent, Jennifer L.; Moganty, Surya S.; Archer, Lynden A.

    2010-01-01

    Nanoscale organic hybrid electrolytes are composed of organic-inorganic hybrid nanostructures, each with a metal oxide or metallic nanoparticle core densely grafted with an ion-conducting polyethylene glycol corona - doped with lithium salt. These materials form novel solvent-free hybrid electrolytes that are particle-rich, soft glasses at room temperature; yet manifest high ionic conductivity and good electrochemical stability above 5V. © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Flexible and freestanding supercapacitor based on nanostructured poly(m-aminophenol)/carbon nanofiber hybrid mats with high energy and power densities

    Science.gov (United States)

    Choudhury, Arup; Dey, Baban; Sinha Mahapatra, Susanta; Kim, Doo-Won; Yang, Kap-Seung; Yang, Duck-Joo

    2018-04-01

    Nanostructured poly(m-aminophenol) (PmAP) coated freestanding carbon nanofiber (CNF) mats were fabricated through simple in situ rapid-mixing polymerization of m-aminophenol in the presence of a CNF mat for flexible solid-state supercapacitors. The surface compositions, morphology and pore structure of the hybrid mats were characterized by using various techniques, e.g., FTIR, Raman, XRD, FE-SEM, TEM, and N2 absorption. The results show that the PmAP nanoparticles were homogeneously deposited on CNF surfaces and formed a thin flexible hybrid mat, which were directly used to made electrodes for electrochemical analysis without using any binders or conductive additives. The electrochemical performances of the hybrid mats were easily tailored by varying the PmAP loading on a hybrid electrode. The PmAP/CNF-10 hybrid electrode with a relatively low PmAP loading (> 42 wt%) showed a high specific capacitance of 325.8 F g-1 and a volumetric capacitance of 273.6 F cm-3 at a current density of 0.5 A g-1, together with a specific capacitance retention of 196.2 F g-1 at 20 A g-1. The PmAP/CNF-10 hybrid electrode showed good cycling stability with 88.2% capacitance retention after 5000 cycles. A maximum energy density of 45.2 Wh kg-1 and power density of 20.4 kW kg-1 were achieved for the PmAP/CNF-10 hybrid electrode. This facile and cost-effective synthesis of a flexible binder-free PmAP/CNF hybrid mat with excellent capacitive performances encourages its possible commercial exploitation.

  20. Study on lower hybrid current drive efficiency at high density towards long-pulse regimes in Experimental Advanced Superconducting Tokamak

    International Nuclear Information System (INIS)

    Li, M. H.; Ding, B. J.; Zhang, J. Z.; Gan, K. F.; Wang, H. Q.; Zhang, L.; Wei, W.; Li, Y. C.; Wu, Z. G.; Ma, W. D.; Jia, H.; Chen, M.; Yang, Y.; Feng, J. Q.; Wang, M.; Xu, H. D.; Shan, J. F.; Liu, F. K.; Peysson, Y.

    2014-01-01

    Significant progress on both L- and H-mode long-pulse discharges has been made recently in Experimental Advanced Superconducting Tokamak (EAST) with lower hybrid current drive (LHCD) [J. Li et al., Nature Phys. 9, 817 (2013) And B. N. Wan et al., Nucl. Fusion 53, 104006 (2013).]. In this paper, LHCD experiments at high density in L-mode plasmas have been investigated in order to explore possible methods of improving current drive (CD) efficiency, thus to extend the operational space in long-pulse and high performance plasma regime. It is observed that the normalized bremsstrahlung emission falls much more steeply than 1/n e-av (line-averaged density) above n e-av  = 2.2 × 10 19  m −3 indicating anomalous loss of CD efficiency. A large broadening of the operating line frequency (f = 2.45 GHz), measured by a radio frequency (RF) probe located outside the EAST vacuum vessel, is generally observed during high density cases, which is found to be one of the physical mechanisms resulting in the unfavorable CD efficiency. Collisional absorption of lower hybrid wave in the scrape off layer (SOL) may be another cause, but this assertion needs more experimental evidence and numerical analysis. It is found that plasmas with strong lithiation can improve CD efficiency largely, which should be benefited from the changes of edge parameters. In addition, several possible methods are proposed to recover good efficiency in future experiments for EAST

  1. Compositional engineering of acceptors for highly efficient bulk heterojunction hybrid organic solar cells.

    Science.gov (United States)

    Amber Yousaf, S; Ikram, M; Ali, S

    2018-10-01

    The wet chemical synthesis of chromium oxide (Cr 2 O 3 ) nanoparticles (NPs) and its application in active layer of inverted bulk heterojunction organic solar cells is documented in this research. Chromium oxide NPs of 10-30 nm size range having a band gap of 2.9 eV were successfully synthesized. These NPs were used in inverted organic solar cells in amalgamation with P3HT:PCBM and PTB7:PCBM polymers. The fabricated hybrid devices improves PCE significantly for P3HT:PCBM and PTB7:PCBM systems. The photophysical energy levels, optoelectrical properties and microscopic images have been systematically studied for the fabricated devices. The introduction of Cr 2 O 3 nanoparticles (NPs) enhances light harvesting and tunes energy levels into improved electrical parameters. A clear red shift and improved absorption have been observed for ternary blended devices compared to that observed with controlled organic solar cells. Apparently, when the amount of NPs in the binary polymer blend exceeds the required optimum level, there is a breakdown of the bulk heterojunction leading to lowering of the optical and electrical performance of the devices. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. High performance 3D neutron transport on peta scale and hybrid architectures within APOLLO3 code

    International Nuclear Information System (INIS)

    Jamelot, E.; Dubois, J.; Lautard, J-J.; Calvin, C.; Baudron, A-M.

    2011-01-01

    APOLLO3 code is a common project of CEA, AREVA and EDF for the development of a new generation system for core physics analysis. We present here the parallelization of two deterministic transport solvers of APOLLO3: MINOS, a simplified 3D transport solver on structured Cartesian and hexagonal grids, and MINARET, a transport solver based on triangular meshes on 2D and prismatic ones in 3D. We used two different techniques to accelerate MINOS: a domain decomposition method, combined with an accelerated algorithm using GPU. The domain decomposition is based on the Schwarz iterative algorithm, with Robin boundary conditions to exchange information. The Robin parameters influence the convergence and we detail how we optimized the choice of these parameters. MINARET parallelization is based on angular directions calculation using explicit message passing. Fine grain parallelization is also available for each angular direction using shared memory multithreaded acceleration. Many performance results are presented on massively parallel architectures using more than 103 cores and on hybrid architectures using some tens of GPUs. This work contributes to the HPC development in reactor physics at the CEA Nuclear Energy Division. (author)

  3. A Scalable and Highly Configurable Cache-Aware Hybrid Flash Translation Layer

    Directory of Open Access Journals (Sweden)

    Jalil Boukhobza

    2014-03-01

    Full Text Available This paper presents a cache-aware configurable hybrid flash translation layer (FTL, named CACH-FTL. It was designed based on the observation that most state-of­­-the-art flash-specific cache systems above FTLs flush groups of pages belonging to the same data block. CACH-FTL relies on this characteristic to optimize flash write operations placement, as large groups of pages are flushed to a block-mapped region, named BMR, whereas small groups are buffered into a page-mapped region, named PMR. Page group placement is based on a configurable threshold defining the limit under which it is more cost-effective to use page mapping (PMR and wait for grouping more pages before flushing to the BMR. CACH-FTL is scalable in terms of mapping table size and flexible in terms of Input/Output (I/O workload support. CACH-FTL performs very well, as the performance difference with the ideal page-mapped FTL is less than 15% in most cases and has a mean of 4% for the best CACH-FTL configurations, while using at least 78% less memory for table mapping storage on RAM.

  4. SEMICONDUCTOR INTEGRATED CIRCUITS: A high performance 90 nm CMOS SAR ADC with hybrid architecture

    Science.gov (United States)

    Xingyuan, Tong; Jianming, Chen; Zhangming, Zhu; Yintang, Yang

    2010-01-01

    A 10-bit 2.5 MS/s SAR A/D converter is presented. In the circuit design, an R-C hybrid architecture D/A converter, pseudo-differential comparison architecture and low power voltage level shifters are utilized. Design challenges and considerations are also discussed. In the layout design, each unit resistor is sided by dummies for good matching performance, and the capacitors are routed with a common-central symmetry method to reduce the nonlin-earity error. This proposed converter is implemented based on 90 nm CMOS logic process. With a 3.3 V analog supply and a 1.0 V digital supply, the differential and integral nonlinearity are measured to be less than 0.36 LSB and 0.69 LSB respectively. With an input frequency of 1.2 MHz at 2.5 MS/s sampling rate, the SFDR and ENOB are measured to be 72.86 dB and 9.43 bits respectively, and the power dissipation is measured to be 6.62 mW including the output drivers. This SAR A/D converter occupies an area of 238 × 214 μm2. The design results of this converter show that it is suitable for multi-supply embedded SoC applications.

  5. A high performance 90 nm CMOS SAR ADC with hybrid architecture

    International Nuclear Information System (INIS)

    Tong Xingyuan; Zhu Zhangming; Yang Yintang; Chen Jianming

    2010-01-01

    A 10-bit 2.5 MS/s SAR A/D converter is presented. In the circuit design, an R-C hybrid architecture D/A converter, pseudo-differential comparison architecture and low power voltage level shifters are utilized. Design challenges and considerations are also discussed. In the layout design, each unit resistor is sided by dummies for good matching performance, and the capacitors are routed with a common-central symmetry method to reduce the nonlin-earity error. This proposed converter is implemented based on 90 nm CMOS logic process. With a 3.3 V analog supply and a 1.0 V digital supply, the differential and integral nonlinearity are measured to be less than 0.36 LSB and 0.69 LSB respectively. With an input frequency of 1.2 MHz at 2.5 MS/s sampling rate, the SFDR and ENOB are measured to be 72.86 dB and 9.43 bits respectively, and the power dissipation is measured to be 6.62 mW including the output drivers. This SAR A/D converter occupies an area of 238 x 214 μm 2 . The design results of this converter show that it is suitable for multi-supply embedded SoC applications. (semiconductor integrated circuits)

  6. Silver/carbon nanotube hybrids: A novel conductive network for high-rate lithium ion batteries

    International Nuclear Information System (INIS)

    Zhou, Fangdong; Qiu, Kehui; Peng, Gongchang; Xia, Li

    2015-01-01

    LiNi 1/3 Co 1/3 Mn 1/3 O 2 /Ag composite cathodes are synthesized by a thermal decomposition method and multi-walled carbon nanotubes are uniformly introduced into the composites through ball mixing. A composite electrically conductive network consisting of CNTs and Ag is obtained to improve the conductivity of LiNi 1/3 Co 1/3 Mn 1/3 O 2 material. By comparing with the pure LiNi 1/3 Co 1/3 Mn 1/3 O 2 and cathode modified by CNTs or Ag, the as-obtained LiNi 1/3 Co 1/3 Mn 1/3 O 2 –CNT/Ag electrode exhibits the best rate capability (120.6 mAh/g at 5C) and cycle performance (134.2 mAh/g at 1C with a capacity retention of 94.4% over 100 cycles). With the construction of 3D spatial conductive network, the novel hybrid CNT/Ag demonstrates itself a promising strategy to improve Li storage performance for lithium ion batteries

  7. Helminths of wild hybrid marmosets (Callithrix sp. living in an environment with high human activity

    Directory of Open Access Journals (Sweden)

    Alexandre de Oliveira Tavela

    Full Text Available The objective of this study was to identify the helminth fauna in hybrid, non-native marmosets, through analysis of fecal samples. The study involved 51 marmosets (genus Callithrix from five groups living in places with levels of human impact in Viçosa-MG. The marmosets were caught using a multiple-entrance trap and were anaesthetized. Feces were collected, refrigerated and analyzed by means of the sedimentation technique (Hoffmann-Pons-Janner. Eggs and parasites were identified, but not counted. Most of the marmosets (86% were parasitized by at least one genus of helminths. Among the infected marmosets, 37% presented co-infection. The intestinal helminths comprised four different taxa: Primasubulura jacchi, Ancylostomatidae, Prosthenorchis sp. and Dilepididae.P. jacchi and Ancylostomatidae had higher prevalences (> 80% and > 40%, respectively and were found in all marmoset groups. Dilepididae species were found in almost all the groups, but only accounted for around 30% of the marmosets. Prosthenorchis sp. showed a relatively low prevalence (< 10% and was only found in one group. Although two parasites are commonly found in marmosets and other primates (P. jacchi and Prosthenorchis sp., our study is the first record for Ancylostomatidae and Dilepididae. Factors like marmosets' feeding behavior and their contact with humans and other species of nonhuman primates seem to be determinants of infection among marmosets.

  8. Assembling high activity phosphotriesterase composites using hybrid nanoparticle peptide-DNA scaffolded architectures

    Science.gov (United States)

    Breger, Joyce C.; Buckhout-White, Susan; Walper, Scott A.; Oh, Eunkeu; Susumu, Kimihiro; Ancona, Mario G.; Medintz, Igor L.

    2017-06-01

    Nanoparticle (NP) display potentially offers a new way to both stabilize and, in many cases, enhance enzyme activity over that seen for native protein in solution. However, the large, globular and sometimes multimeric nature of many enzymes limits their ability to attach directly to the surface of NPs, especially when the latter are colloidally stabilized with bulky PEGylated ligands. Engineering extended protein linkers into the enzymes to achieve direct attachment through the PEG surface often detrimentally alters the enzymes catalytic ability. Here, we demonstrate an alternate, hybrid biomaterials-based approach to achieving directed enzyme assembly on PEGylated NPs. We self-assemble a unique architecture consisting of a central semiconductor quantum dot (QD) scaffold displaying controlled ratios of extended peptide-DNA linkers which penetrate through the PEG surface to directly couple enzymes to the QD surface. As a test case, we utilize phosphotriesterase (PTE), an enzyme of bio-defense interest due to its ability to hydrolyze organophosphate nerve agents. Moreover, this unique approach still allows PTE to maintain enhanced activity while also suggesting the ability of DNA to enhance enzyme activity in and of itself.

  9. Mechanical Properties of High Volume Fly Ash Concrete Reinforced with Hybrid Fibers

    Directory of Open Access Journals (Sweden)

    Rooban Chakravarthy

    2016-01-01

    Full Text Available Fly ash substitution to cement is a well-recognized approach to reduce CO2 emissions. Although fly ash concrete is prone to brittle behavior, researchers have shown that addition of fibers could reduce brittle behavior. Previous research efforts seem to have utlised a single type of fiber or two types of fibers. In this research, three types of fibers, steel, polypropylene, and basalt as 0%, 0.50%, 0.75%, and 1% by volume of concrete, were mixed in varying proportions with concrete specimens substituted with 50% fly ash (class F. All specimens were tested for compressive strength, indirect tensile strength, and flexural strength over a period of 3 to 56 days of curing. Test results showed that significant improvement in mechanical properties could be obtained by a particular hybrid fiber reinforcement combination (1% steel fiber, 0.75% polypropylene fiber, and 0.75% basalt fiber. The strength values were observed to exceed previous research results. Workability of concrete was affected when the fiber combination exceeded 3%. Thus a limiting value for adding fibers and the combination to achieve maximum strengths have been identified in this research.

  10. Overview of ERA Integrated Technology Demonstration (ITD) 51A Ultra-High Bypass (UHB) Integration for Hybrid Wing Body (HWB)

    Science.gov (United States)

    Flamm, Jeffrey D.; James, Kevin D.; Bonet, John T.

    2016-01-01

    The NASA Environmentally Responsible Aircraft Project (ERA) was a ve year project broken into two phases. In phase II, high N+2 Technical Readiness Level demonstrations were grouped into Integrated Technology Demonstrations (ITD). This paper describes the work done on ITD-51A: the Vehicle Systems Integration, Engine Airframe Integration Demonstration. Refinement of a Hybrid Wing Body (HWB) aircraft from the possible candidates developed in ERA Phase I was continued. Scaled powered, and unpowered wind- tunnel testing, with and without acoustics, in the NASA LARC 14- by 22-foot Subsonic Tunnel, the NASA ARC Unitary Plan Wind Tunnel, and the 40- by 80-foot test section of the National Full-Scale Aerodynamics Complex (NFAC) in conjunction with very closely coupled Computational Fluid Dynamics was used to demonstrate the fuel burn and acoustic milestone targets of the ERA Project.

  11. Solid-State High Performance Flexible Supercapacitors Based on Polypyrrole-MnO2-Carbon Fiber Hybrid Structure

    Science.gov (United States)

    Tao, Jiayou; Liu, Nishuang; Ma, Wenzhen; Ding, Longwei; Li, Luying; Su, Jun; Gao, Yihua

    2013-07-01

    A solid-state flexible supercapacitor (SC) based on organic-inorganic composite structure was fabricated through an ``in situ growth for conductive wrapping'' and an electrode material of polypyrrole (PPy)-MnO2 nanoflakes-carbon fiber (CF) hybrid structure was obtained. The conductive organic material of PPy greatly improved the electrochemical performance of the device. With a high specific capacitance of 69.3 F cm-3 at a discharge current density of 0.1 A cm-3 and an energy density of 6.16 × 10-3 Wh cm-3 at a power density of 0.04 W cm-3, the device can drive a commercial liquid crystal display (LCD) after being charged. The organic-inorganic composite active materials have enormous potential in energy management and the ``in situ growth for conductive wrapping'' method might be generalized to open up new strategies for designing next-generation energy storage devices.

  12. Hybrid endovascular treatment of an aortic root and thoracoabdominal aneurysm in a high-risk patient with Marfan syndrome.

    Science.gov (United States)

    Gelpi, Guido; Mazzaccaro, Daniela; Romagnoni, Claudia; Contino, Monica; Antona, Carlo

    2013-05-01

    This report describes the hybrid endovascular treatment of an aortic root dilatation and a thoracoabdominal aneurysm in a high-risk patient with Marfan syndrome. A 50-year-old male, in hemodialysis for polycystic kidney and polycystic liver, was referred to our department for aortic root dilatation of 5 cm and a 6.3-cm thoracoabdominal aneurysm . He already underwent surgical repair of abdominal aortic aneurysm 10 years ago, complicated by pseudoaneurysm of the proximal anastomosis that had been treated in another center, with an endoprosthesis. The patient underwent aortic root replacement, aortic valve sparing operation, and rerouting of the superior mesenteric artery and celiac trunk to the ascending aorta. The thoracoabdominal aneurysm was excluded with an endoprosthesis few days after the surgical step. The 12-month computed tomography scan confirmed the complete exclusion of the thoracoabdominal aneurysm.

  13. Ultrathin Two-Dimensional Organic-Inorganic Hybrid Perovskite Nanosheets with Bright, Tunable Photoluminescence and High Stability.

    Science.gov (United States)

    Yang, Shuang; Niu, Wenxin; Wang, An-Liang; Fan, Zhanxi; Chen, Bo; Tan, Chaoliang; Lu, Qipeng; Zhang, Hua

    2017-04-03

    Two-dimensional (2D) organic-inorganic hybrid perovskite nanosheets (NSs) are attracting increasing research interest due to their unique properties and promising applications. Here, for the first time, we report the facile synthesis of single- and few-layer free-standing phenylethylammonium lead halide perovskite NSs, that is, (PEA) 2 PbX 4 (PEA=C 8 H 9 NH 3 , X=Cl, Br, I). Importantly, their lateral size can be tuned by changing solvents. Moreover, these ultrathin 2D perovskite NSs exhibit highly efficient and tunable photoluminescence, as well as superior stability. Our study provides a simple and general method for the controlled synthesis of 2D perovskite NSs, which may offer a new avenue for their fundamental studies and optoelectronic applications. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Bioelectrochemistry of heme peptide at seamless three-dimensional carbon nanotubes/graphene hybrid films for highly sensitive electrochemical biosensing.

    Science.gov (United States)

    Komori, Kikuo; Terse-Thakoor, Trupti; Mulchandani, Ashok

    2015-02-18

    A seamless three-dimensional hybrid film consisting of carbon nanotubes grown at the graphene surface (CNTs/G) is a promising material for the application to highly sensitive enzyme-based electrochemical biosensors. The CNTs/G film was used as a conductive nanoscaffold for enzymes. The heme peptide (HP) was immobilized on the surface of the CNTs/G film for amperometric sensing of H2O2. Compared with flat graphene electrodes modified with HP, the catalytic current for H2O2 reduction at the HP-modified CNTs/G electrode increased due to the increase in the surface coverage of HP. In addition, microvoids in the CNTs/G film contributed to diffusion of H2O2 to modified HP, resulting in the enhancement of the catalytic cathodic currents. The kinetics of the direct electron transfer from the CNTs/G electrode to compound I and II of modified HP was also analyzed.

  15. Few-layered MnO2/SWCNT hybrid in-plane supercapacitor with high energy density

    Science.gov (United States)

    Dutta, Shibsankar; Pal, Shreyasi; De, Sukanta

    2018-05-01

    In this present work we have synthesized few layered MnO2 nanosheets by mixed solvent exfoliation process for the application as electrode material of in-plane supercapacitor. The Structure and surface morphology of the as prepared samples are characterized by Raman, Transmission electron microscopy and Scanning electron microscopy. The patterns of the hybrids were directly fabricated by (50: 50 wt %) mixture of MnO2 and SWCNT dispersions with the help of a customized mask, and directly transferred onto a flexible PET substrate. Remarkably, the prepared in-plane supercapacitors deliver high energy density of 2.62mWh/cm2. Furthermore, our supercapacitors shows exceptional flexibility and stable performance under bending conditions

  16. NiCoBP-doped carbon nanotube hybrid: A novel oxidase mimetic system for highly efficient electrochemical immunoassay

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Bing; He, Yu; Liu, Bingqian; Tang, Dianping, E-mail: dianping.tang@fzu.edu.cn

    2014-12-03

    Highlights: • We report a new oxidase mimetic system for highly efficient electrochemical immunoassay. • NiCoBP-doped carbon nanotube hybrids were used as the nanocatalysts. • NiCoBP-doped carbon nanotube hybrids were used as the mimic oxidase. - Abstract: NiCoBP-doped multi-walled carbon nanotube (NiCoBP–MWCNT) was first synthesized by using induced electroless-plating method and functionalized with the biomolecules for highly efficient electrochemical immunoassay of prostate-specific antigen (PSA, used as a model analyte). We discovered that the as-synthesized NiCoBP–MWCNT had the ability to catalyze the glucose oxidization with a stable and well-defined redox peak. The catalytic current increased with the increment of the immobilized NiCoBP–MWCNT on the electrode. Transmission electron microscope (TEM) and energy dispersive X-ray spectrometry (EDX) were employed to characterize the as-prepared NiCoBP–MWCNT. Using the NiCoBP–MWCNT-conjugated anti-PSA antibody as the signal-transduction tag, a new enzyme-free electrochemical immunoassay protocol could be designed for the detection of target PSA on the capture antibody-functionalized immunosensing interface. Experimental results revealed that the designed immunoassay system could exhibit good electrochemical responses toward target PSA, and allowed the detection of PSA at a concentration as low as 0.035 ng mL{sup −1}. More importantly, the NiCoBP-MWCNT-based oxidase mimetic system could be further extended for the monitoring of other low-abundance proteins or disease-related biomarkers by tuning the target antibody.

  17. Composition design of Ti–Cr–Mn–Fe alloys for hybrid high-pressure metal hydride tanks

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Zhijie [School of Materials Science and Engineering, Key Laboratory of Advanced Energy Storage Materials of Guangdong Province, South China University of Technology, Guangzhou 510641 (China); China-Australia Joint Laboratory for Energy & Environmental Materials, South China University of Technology, Guangzhou 510641 (China); Ouyang, Liuzhang, E-mail: meouyang@scut.edu.cn [School of Materials Science and Engineering, Key Laboratory of Advanced Energy Storage Materials of Guangdong Province, South China University of Technology, Guangzhou 510641 (China); China-Australia Joint Laboratory for Energy & Environmental Materials, South China University of Technology, Guangzhou 510641 (China); Key Laboratory for Fuel Cell Technology in Guangdong Province, Guangzhou 510641 (China); Wang, Hui; Liu, Jiangwen [School of Materials Science and Engineering, Key Laboratory of Advanced Energy Storage Materials of Guangdong Province, South China University of Technology, Guangzhou 510641 (China); China-Australia Joint Laboratory for Energy & Environmental Materials, South China University of Technology, Guangzhou 510641 (China); Sun, Lixian [Guangxi Collaborative Innovation Center of Structure and Property for New Energy and Materials, Guilin 541004 (China); Zhu, Min, E-mail: memzhu@scut.edu.cn [School of Materials Science and Engineering, Key Laboratory of Advanced Energy Storage Materials of Guangdong Province, South China University of Technology, Guangzhou 510641 (China); China-Australia Joint Laboratory for Energy & Environmental Materials, South China University of Technology, Guangzhou 510641 (China)

    2015-08-05

    Highlights: • New non-stoichiometric Ti–Cr–Mn–Fe alloys are prepared for the hybrid tank. • (Ti{sub 0.85}Zr{sub 0.15}){sub 1.1}Cr{sub 0.925}MnFe{sub 0.075} has the best overall properties. • The desorption pressure at 0 °C is 10.6 atm. • The reversible gravimetric density remains as a high value of 1.49 wt%. - Abstract: (Ti{sub 0.85}Zr{sub 0.15}){sub 1.1}Cr{sub 1−x}MnFe{sub x} (x = 0, 0.05, 0.075, 0.1, 0.15) alloys with a C14-type Laves structure have been investigated for potential application in hybrid high-pressure metal hydride tanks used for fuel cell vehicles. The effects of the partial substitution of Cr with Fe on the hydrogen storage properties of (Ti{sub 0.85}Zr{sub 0.15}){sub 1.1}CrMn have been systematically investigated. Results show that the desorption plateau pressure increases with increasing the Fe content in (Ti{sub 0.85}Zr{sub 0.15}){sub 1.1}Cr{sub 1−x}MnFe{sub x} alloys, whereas the hydrogen capacity decreases. Among these alloys, (Ti{sub 0.85}Zr{sub 0.15}){sub 1.1}Cr{sub 0.925}MnFe{sub 0.075} has the best overall properties, with a hydrogen desorption pressure of 10.6 atm and a reversible capacity of 1.54 wt% at 0 °C under the pressure range between 0.1 atm and 120 atm.

  18. Flexible Nb2O5 nanowires/graphene film electrode for high-performance hybrid Li-ion supercapacitors

    Science.gov (United States)

    Song, Hao; Fu, Jijiang; Ding, Kang; Huang, Chao; Wu, Kai; Zhang, Xuming; Gao, Biao; Huo, Kaifu; Peng, Xiang; Chu, Paul K.

    2016-10-01

    The hybrid Li-ion electrochemical supercapacitor (Li-HSC) combining the battery-like anode with capacitive cathode is a promising energy storage device boasting large energy and power densities. Orthorhombic Nb2O5 is a good anode material in Li-HSCs because of its large pseudocapacitive Li-ion intercalation capacity. Herein, we report a high-performance, binder-free and flexible anode consisting of long Nb2O5 nanowires and graphene (L-Nb2O5 NWs/rGO). The paper-like L-Nb2O5 NWs/rGO film electrode has a large mass loading of Nb2O5 of 93.5 wt% as well as short solid-state ion diffusion length, and enhanced conductivity (5.1 S cm-1). The hybrid L-Nb2O5 NWs/rGO paper electrode shows a high reversible specific capacity of 160 mA h g-1 at a current density of 0.2 A g-1, superior rate capability with capacitance retention of 60% when the current density increases from 0.2 to 5 A g-1, as well as excellent cycle stability. The Li-HSC device based on the L-Nb2O5/rGO anode and the cathode of biomass-derived carbon nanosheets delivers an energy density of 106 Wh kg-1 at 580 W kg-1 and 32 Wh kg-1 at a large power density of 14 kW kg-1. Moreover, the Li-HSC device exhibits excellent cycling performance without obvious capacitance decay after 1000 cycles.

  19. Composition design of Ti–Cr–Mn–Fe alloys for hybrid high-pressure metal hydride tanks

    International Nuclear Information System (INIS)

    Cao, Zhijie; Ouyang, Liuzhang; Wang, Hui; Liu, Jiangwen; Sun, Lixian; Zhu, Min

    2015-01-01

    Highlights: • New non-stoichiometric Ti–Cr–Mn–Fe alloys are prepared for the hybrid tank. • (Ti 0.85 Zr 0.15 ) 1.1 Cr 0.925 MnFe 0.075 has the best overall properties. • The desorption pressure at 0 °C is 10.6 atm. • The reversible gravimetric density remains as a high value of 1.49 wt%. - Abstract: (Ti 0.85 Zr 0.15 ) 1.1 Cr 1−x MnFe x (x = 0, 0.05, 0.075, 0.1, 0.15) alloys with a C14-type Laves structure have been investigated for potential application in hybrid high-pressure metal hydride tanks used for fuel cell vehicles. The effects of the partial substitution of Cr with Fe on the hydrogen storage properties of (Ti 0.85 Zr 0.15 ) 1.1 CrMn have been systematically investigated. Results show that the desorption plateau pressure increases with increasing the Fe content in (Ti 0.85 Zr 0.15 ) 1.1 Cr 1−x MnFe x alloys, whereas the hydrogen capacity decreases. Among these alloys, (Ti 0.85 Zr 0.15 ) 1.1 Cr 0.925 MnFe 0.075 has the best overall properties, with a hydrogen desorption pressure of 10.6 atm and a reversible capacity of 1.54 wt% at 0 °C under the pressure range between 0.1 atm and 120 atm

  20. Zn/V2O5 Aqueous Hybrid-Ion Battery with High Voltage Platform and Long Cycle Life.

    Science.gov (United States)

    Hu, Ping; Yan, Mengyu; Zhu, Ting; Wang, Xuanpeng; Wei, Xiujuan; Li, Jiantao; Zhou, Liang; Li, Zhaohuai; Chen, Lineng; Mai, Liqiang

    2017-12-13

    Aqueous zinc-ion batteries attract increasing attention due to their low cost, high safety, and potential application in stationary energy storage. However, the simultaneous realization of high cycling stability and high energy density remains a major challenge. To tackle the above-mentioned challenge, we develop a novel Zn/V 2 O 5 rechargeable aqueous hybrid-ion battery system by using porous V 2 O 5 as the cathode and metallic zinc as the anode. The V 2 O 5 cathode delivers a high discharge capacity of 238 mAh g -1 at 50 mA g -1 . 80% of the initial discharge capacity can be retained after 2000 cycles at a high current density of 2000 mA g -1 . Meanwhile, the application of a "water-in-salt" electrolyte results in the increase of discharge platform from 0.6 to 1.0 V. This work provides an effective strategy to simultaneously enhance the energy density and cycling stability of aqueous zinc ion-based batteries.

  1. Generation and amplification of a high-order sideband induced by two-level atoms in a hybrid optomechanical system

    Science.gov (United States)

    Liu, Zeng-Xing; Xiong, Hao; Wu, Ying

    2018-01-01

    It is quite important to enhance and control the optomechanically induced high-order sideband generation to achieve low-power optical comb and high-sensitivity sensing with an integrable structure. Here we present and analyze a proposal for enhancement and manipulation of optical nonlinearity and high-order sideband generation in a hybrid atom-cavity optomechanical system that is coherently driven by a bichromatic input field consisting of a control field and a probe field and that works beyond the perturbative regime. Our numerical analysis with experimentally achievable parameters confirms that robust high-order sideband generation and typical spectral structures with nonperturbative features can be created even under weak driven fields. The dependence of the high-order sideband generation on the atomic parameters are also discussed in detail, including the decay rate of the atoms and the coupling parameter between the atoms and the cavity field. We show that the cutoff order as well as the amplitude of the higher-order sidebands can be well tuned by the atomic coupling strength and the atomic decay rate. The proposed mechanism of enhancing optical nonlinearity is quite general and can be adopted to optomechanical systems with different types of cavity.

  2. Evaluation of External Memory Access Performance on a High-End FPGA Hybrid Computer

    Directory of Open Access Journals (Sweden)

    Konstantinos Kalaitzis

    2016-10-01

    Full Text Available The motivation of this research was to evaluate the main memory performance of a hybrid super computer such as the Convey HC-x, and ascertain how the controller performs in several access scenarios, vis-à-vis hand-coded memory prefetches. Such memory patterns are very useful in stencil computations. The theoretical bandwidth of the memory of the Convey is compared with the results of our measurements. The accurate study of the memory subsystem is particularly useful for users when they are developing their application-specific personality. Experiments were performed to measure the bandwidth between the coprocessor and the memory subsystem. The experiments aimed mainly at measuring the reading access speed of the memory from Application Engines (FPGAs. Different ways of accessing data were used in order to find the most efficient way to access memory. This way was proposed for future work in the Convey HC-x. When performing a series of accesses to memory, non-uniform latencies occur. The Memory Controller of the Convey HC-x in the coprocessor attempts to cover this latency. We measure memory efficiency as a ratio of the number of memory accesses and the number of execution cycles. The result of this measurement converges to one in most cases. In addition, we performed experiments with hand-coded memory accesses. The analysis of the experimental results shows how the memory subsystem and Memory Controllers work. From this work we conclude that the memory controllers do an excellent job, largely because (transparently to the user they seem to cache large amounts of data, and hence hand-coding is not needed in most situations.

  3. A comprehensive hybridization model allows whole HERV transcriptome profiling using high density microarray.

    Science.gov (United States)

    Becker, Jérémie; Pérot, Philippe; Cheynet, Valérie; Oriol, Guy; Mugnier, Nathalie; Mommert, Marine; Tabone, Olivier; Textoris, Julien; Veyrieras, Jean-Baptiste; Mallet, François

    2017-04-08

    Human endogenous retroviruses (HERVs) have received much attention for their implications in the etiology of many human diseases and their profound effect on evolution. Notably, recent studies have highlighted associations between HERVs expression and cancers (Yu et al., Int J Mol Med 32, 2013), autoimmunity (Balada et al., Int Rev Immunol 29:351-370, 2010) and neurological (Christensen, J Neuroimmune Pharmacol 5:326-335, 2010) conditions. Their repetitive nature makes their study particularly challenging, where expression studies have largely focused on individual loci (De Parseval et al., J Virol 77:10414-10422, 2003) or general trends within families (Forsman et al., J Virol Methods 129:16-30, 2005; Seifarth et al., J Virol 79:341-352, 2005; Pichon et al., Nucleic Acids Res 34:e46, 2006). To refine our understanding of HERVs activity, we introduce here a new microarray, HERV-V3. This work was made possible by the careful detection and annotation of genomic HERV/MaLR sequences as well as the development of a new hybridization model, allowing the optimization of probe performances and the control of cross-reactions. RESULTS: HERV-V3 offers an almost complete coverage of HERVs and their ancestors (mammalian apparent LTR-retrotransposons, MaLRs) at the locus level along with four other repertoires (active LINE-1 elements, lncRNA, a selection of 1559 human genes and common infectious viruses). We demonstrate that HERV-V3 analytical performances are comparable with commercial Affymetrix arrays, and that for a selection of tissue/pathological specific loci, the patterns of expression measured on HERV-V3 is consistent with those reported in the literature. Given its large HERVs/MaLRs coverage and additional repertoires, HERV-V3 opens the door to multiple applications such as enhancers and alternative promoters identification, biomarkers identification as well as the characterization of genes and HERVs/MaLRs modulation caused by viral infection.

  4. High quality proton beams from hybrid integrated laser-driven ion acceleration systems

    Energy Technology Data Exchange (ETDEWEB)

    Sinigardi, Stefano, E-mail: sinigardi@bo.infn.it [Dipartimento di Fisica e Astronomia, Università di Bologna and INFN Sezione di Bologna, Via Irnerio 46, I-40126 Bologna (Italy); Turchetti, Giorgio; Rossi, Francesco; Londrillo, Pasquale [Dipartimento di Fisica e Astronomia, Università di Bologna and INFN Sezione di Bologna, Via Irnerio 46, I-40126 Bologna (Italy); Giove, Dario; De Martinis, Carlo [Dipartimento di Fisica, Università di Milano and INFN Sezione di Milano, Via F.lli Cervi 201, I-20090 Segrate (Italy); Bolton, Paul R. [Kansai Photon Science Institute (JAEA), Umemidai 8-1-7, Kizugawa-shi, Kyoto 619-0215 (Japan)

    2014-03-11

    We consider a hybrid acceleration scheme for protons where the laser generated beam is selected in energy and angle and injected into a compact linac, which raises the energy from 30 to 60 MeV. The laser acceleration regime is TNSA and the energy spectrum is determined by the cutoff energy and proton temperature. The dependence of the spectrum on the target properties and the incidence angle is investigated with 2D PIC simulations. We base our work on widely available technologies and on laser with a short pulse, having in mind a facility whose cost is approximately 15M€. Using a recent experiment as the reference, we choose the laser pulse and target so that the energy spectrum obtained from the 3D PIC simulation is close to the one observed, whose cutoff energy was estimated to be over 50 MeV. Laser accelerated protons in the TNSA regime have wide energy spectrum and broad divergence. In this paper we compare three transport lines, designed to perform energy selection and beam collimation. They are based on a solenoid, a quadruplet of permanent magnetic quadrupoles and a chicane. To increase the maximum available energy, which is actually seen as an upper limit due to laser properties and available targets, we propose to inject protons into a small linac for post-acceleration. The number of selected and injected protons is the highest with the solenoid and lower by one and two orders of magnitude with the quadrupoles and the chicane respectively. Even though only the solenoid enables achieving to reach a final intensity at the threshold required for therapy with the highest beam quality, the other systems will be very likely used in the first experiments. Realistic start-to-end simulations, as the ones reported here, are relevant for the design of such experiments.

  5. High quality proton beams from hybrid integrated laser-driven ion acceleration systems

    Science.gov (United States)

    Sinigardi, Stefano; Turchetti, Giorgio; Rossi, Francesco; Londrillo, Pasquale; Giove, Dario; De Martinis, Carlo; Bolton, Paul R.

    2014-03-01

    We consider a hybrid acceleration scheme for protons where the laser generated beam is selected in energy and angle and injected into a compact linac, which raises the energy from 30 to 60 MeV. The laser acceleration regime is TNSA and the energy spectrum is determined by the cutoff energy and proton temperature. The dependence of the spectrum on the target properties and the incidence angle is investigated with 2D PIC simulations. We base our work on widely available technologies and on laser with a short pulse, having in mind a facility whose cost is approximately 15 M €. Using a recent experiment as the reference, we choose the laser pulse and target so that the energy spectrum obtained from the 3D PIC simulation is close to the one observed, whose cutoff energy was estimated to be over 50 MeV. Laser accelerated protons in the TNSA regime have wide energy spectrum and broad divergence. In this paper we compare three transport lines, designed to perform energy selection and beam collimation. They are based on a solenoid, a quadruplet of permanent magnetic quadrupoles and a chicane. To increase the maximum available energy, which is actually seen as an upper limit due to laser properties and available targets, we propose to inject protons into a small linac for post-acceleration. The number of selected and injected protons is the highest with the solenoid and lower by one and two orders of magnitude with the quadrupoles and the chicane respectively. Even though only the solenoid enables achieving to reach a final intensity at the threshold required for therapy with the highest beam quality, the other systems will be very likely used in the first experiments. Realistic start-to-end simulations, as the ones reported here, are relevant for the design of such experiments.

  6. High quality proton beams from hybrid integrated laser-driven ion acceleration systems

    International Nuclear Information System (INIS)

    Sinigardi, Stefano; Turchetti, Giorgio; Rossi, Francesco; Londrillo, Pasquale; Giove, Dario; De Martinis, Carlo; Bolton, Paul R.

    2014-01-01

    We consider a hybrid acceleration scheme for protons where the laser generated beam is selected in energy and angle and injected into a compact linac, which raises the energy from 30 to 60 MeV. The laser acceleration regime is TNSA and the energy spectrum is determined by the cutoff energy and proton temperature. The dependence of the spectrum on the target properties and the incidence angle is investigated with 2D PIC simulations. We base our work on widely available technologies and on laser with a short pulse, having in mind a facility whose cost is approximately 15M€. Using a recent experiment as the reference, we choose the laser pulse and target so that the energy spectrum obtained from the 3D PIC simulation is close to the one observed, whose cutoff energy was estimated to be over 50 MeV. Laser accelerated protons in the TNSA regime have wide energy spectrum and broad divergence. In this paper we compare three transport lines, designed to perform energy selection and beam collimation. They are based on a solenoid, a quadruplet of permanent magnetic quadrupoles and a chicane. To increase the maximum available energy, which is actually seen as an upper limit due to laser properties and available targets, we propose to inject protons into a small linac for post-acceleration. The number of selected and injected protons is the highest with the solenoid and lower by one and two orders of magnitude with the quadrupoles and the chicane respectively. Even though only the solenoid enables achieving to reach a final intensity at the threshold required for therapy with the highest beam quality, the other systems will be very likely used in the first experiments. Realistic start-to-end simulations, as the ones reported here, are relevant for the design of such experiments

  7. High Efficiency Hybrid Energy Storage Utilizing High Power Density Ultracapacitors For Long Duration Balloon Flights, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — FastCAP proposes to develop an ultra-high power density and high frequency ultracapacitor capable of surviving over the wide temperature range of -60C to 130C and...

  8. High-Performance and Simply-Synthesized Ladder-Like Structured Methacrylate Siloxane Hybrid Material for Flexible Hard Coating

    Directory of Open Access Journals (Sweden)

    Yun Hyeok Kim

    2018-04-01

    Full Text Available A high performance ladder-like structured methacrylate siloxane hybrid material (LMSH was fabricated via simple hydrolytic sol–gel reaction, followed by free-radical polymerization. A structurally ordered siloxane backbone, the ladder-like structure, which is an essential factor for high performance, could be achieved by a short period of sol–gel reaction in only 4 h. This results in superior optical (Transmittance > 90% at 550 nm, thermal (T5 wt % decomposition > 400 ℃ , mechanical properties(elastic recovery = 0.86, hardness = 0.6 GPa compared to the random- and even commercialized cage-structured silsesquioxane, which also has ordered structure. It was investigated that the fabricated ladder-like structured MSH showed the highest overall density of organic/inorganic co-networks that are originated from highly ordered siloxane network, along with high conversion rate of polymerizable methacrylate groups. Our findings suggest a potential of the ladder-like structured MSH as a powerful alternative for the methacrylate polysilsesquioxane, which can be applied to thermally stable and flexible optical coatings, even with an easier and simpler preparation process.

  9. Ordered Mesoporous Titania/Carbon Hybrid Monoliths for Lithium-ion Battery Anodes with High Areal and Volumetric Capacity.

    Science.gov (United States)

    Dörr, Tobias S; Fleischmann, Simon; Zeiger, Marco; Grobelsek, Ingrid; de Oliveira, Peter W; Presser, Volker

    2018-04-25

    Free-standing, binder-free, and conductive additive-free mesoporous titanium dioxide/carbon hybrid electrodes were prepared from co-assembly of a poly(isoprene)-block-poly(styrene)-block-poly(ethylene oxide) block copolymer and a titanium alkoxide. By tailoring an optimized morphology, we prepared macroscopic mechanically stable 300 μm thick monoliths that were directly employed as lithium-ion battery electrodes. High areal mass loading of up to 26.4 mg cm -2 and a high bulk density of 0.88 g cm -3 were obtained. This resulted in a highly increased volumetric capacity of 155 mAh cm -3 , compared to cast thin film electrodes. Further, the areal capacity of 4.5 mAh cm -2 represented a 9-fold increase compared to conventionally cast electrodes. These attractive performance metrics are related to the superior electrolyte transport and shortened diffusion lengths provided by the interconnected mesoporous nature of the monolith material, assuring superior rate handling, even at high cycling rates. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Organic-inorganic hybrid optical foils with strong visible reflection, excellent near infrared-shielding ability and high transparency

    Science.gov (United States)

    Zhou, Yijie; Huang, Aibin; Zhou, Huaijuan; Ji, Shidong; Jin, Ping

    2018-03-01

    Research on functional flexible films has recently been attracting widespread attention especially with regards to foils, which can be designed artificially on the basis of the practical requirements. In this work, a foil with high visible reflection and a strong near infrared shielding efficiency was prepared by a simple wet chemical method. In the process of making this kind of optical foil, emulsion polymerization was first introduced to synthesize polymer opals, which were further compressed between two pieces of polyethylene terephthalate (PET) foil under polymer melting temperature to obtain a photonic crystal film with a strong reflection in the visible region to block blue rays. The following step was to coat a layer of the inorganic nano paint, which was synthesized by dispersing Cs-doped WO3 (CWO) nanoparticles homogenously into organic resin on the surface of the PET to achieve a high near infrared shielding ability. The final composite foil exhibited unique optical properties such as high visible reflectance (23.9%) to block blue rays, and excellent near infrared shielding efficiency (98.0%), meanwhile it still maintained a high transparency meaning that this foil could potentially be applied in energy-saving window films. To sum up, this study provides new insight into devising flexible hybrid films with novel optical properties, which could be further extended to prepare other optical films for potential use in automobile, architectural and other decorative fields.

  11. Hybridization in geese

    NARCIS (Netherlands)

    Ottenburghs, Jente; Hooft, van Pim; Wieren, van Sipke E.; Ydenberg, Ronald C.; Prins, Herbert H.T.

    2016-01-01

    The high incidence of hybridization in waterfowl (ducks, geese and swans) makes this bird group an excellent study system to answer questions related to the evolution and maintenance of species boundaries. However, knowledge on waterfowl hybridization is biased towards ducks, with a large

  12. A high resolution radiation hybrid map of bovine chromosome 14 identifies scaffold rearrangement in the latest bovine assembly

    Directory of Open Access Journals (Sweden)

    Wang Zhiquan

    2007-07-01

    Full Text Available Abstract Background Radiation hybrid (RH maps are considered to be a tool of choice for fine mapping closely linked loci, considering that the resolution of linkage maps is determined by the number of informative meiosis and recombination events which may require very large mapping populations. Accurately defining the marker order on chromosomes is crucial for correct identification of quantitative trait loci (QTL, haplotype map construction and refinement of candidate gene searches. Results A 12 k Radiation hybrid map of bovine chromosome 14 was constructed using 843 single nucleotide polymorphism markers. The resulting map was aligned with the latest version of the bovine assembly (Btau_3.1 as well as other previously published RH maps. The resulting map identified distinct regions on Bovine chromosome 14 where discrepancies between this RH map and the bovine assembly occur. A major region of discrepancy was found near the centromere involving the arrangement and order of the scaffolds from the assembly. The map further confirms previously published conserved synteny blocks with human chromosome 8. As well, it identifies an extra breakpoint and conserved synteny block previously undetected due to lower marker density. This conserved synteny block is in a region where markers between the RH map presented here and the latest sequence assembly are in very good agreement. Conclusion The increase of publicly available markers shifts the rate limiting step from marker discovery to the correct identification of their order for further use by the research community. This high resolution map of bovine chromosome 14 will facilitate identification of regions in the sequence assembly where additional information is required to resolve marker ordering.

  13. Mesoporous Co3O4 nanosheets-3D graphene networks hybrid materials for high-performance lithium ion batteries

    International Nuclear Information System (INIS)

    Sun, Hongyu; Liu, Yanguo; Yu, Yanlong; Ahmad, Mashkoor; Nan, Ding; Zhu, Jing

    2014-01-01

    Graphical abstract: - Highlights: • The mesoporous Co 3 O 4 nanosheets-3D graphene networks have been found to display better LIB performance as compare with Co 3 O 4 /CNT and Co 3 O 4 structures. • Electrochemical impedance spectroscopy shows that the addition of 3DGN largely enhanced the electrochemical activity of Co 3 O 4 during the cycling processes. • The large specific surface area and porous nature of the Co 3 O 4 nanosheets are very convenient and accessible for electrolyte diffusion and intercalation of Li + ions into the active phases. - Abstract: Mesoporous Co 3 O 4 nanosheets-3D graphene networks (3DGN) hybrid materials have been synthesized by combining chemical vapor deposition (CVD) and hydrothermal method and investigated as anode materials for Li-ion batteries (LIBs). Microscopic characterizations have been performed to confirm the 3DGN and mesoporous Co 3 O 4 nanostructures. The specific surface area and pore size of the hybrid structures have been found ∼ 34.5 m 2 g −1 and ∼ 3.8 nm respectively. It has been found that the Co 3 O 4 /3DGNs composite displays better LIB performance with enhanced reversible capacity, good cyclic performance and rate capability as compare with Co 3 O 4 /CNT and Co 3 O 4 structures. Electrochemical impedance spectroscopy (EIS) results show that the addition of 3DGN not only preserves high conductivity of the composite electrode, but also largely enhanced the electrochemical activity of Co 3 O 4 during the cycling processes. The improved electrochemical performance is considered due to the addition of 3DGNs which prevent the cracking of electrode. In addition, the large specific surface area and porous nature of the Co 3 O 4 nanosheets are also very convenient and accessible for electrolyte diffusion and intercalation of Li + ions into the active phases. Therefore, this combination can be considered to be an attractive candidate as an anode material for LIBs

  14. Microwave-Assisted Rapid Synthesis of Self-Assembled T-Nb2 O5 Nanowires for High-Energy Hybrid Supercapacitors.

    Science.gov (United States)

    Yang, Huiling; Xu, Henghui; Wang, Libin; Zhang, Lei; Huang, Yunhui; Hu, Xianluo

    2017-03-23

    Recently ion-intercalation hybrid supercapacitors, with high energy density at high power density, have been widely investigated to meet ever-increasing practical demands. Here, a unique hybrid supercapacitor has been designed and fabricated using self-assembled orthorhombic-phase niobium oxide@carbon (T-Nb 2 O 5 @C) nanowires as an anode and commercially available activated carbon as a cathode. The 3D-interconnected T-Nb 2 O 5 @C nanowires have been synthesized through a highly efficient microwave-solvothermal method, combined with subsequent thermal treatment. The experimental parameters (e.g., time and temperature) can be easily programmed, and the synthesis time can be significantly shortened, thus enabling the buildup of abundant recipes for the engineering of scaled-up production. The Li-ion intercalation pseudocapacitance electrode, made from the as-formed self-assembled T-Nb 2 O 5 @C nanowires, shows excellent charge storage and transfer capability. When assembled into a hybrid supercapacitor with a cathode of activated carbon, a high energy density of 60.6 Wh kg -1 and a high power density of 8.5 kW kg -1 with outstanding stability are achieved. In virtue of easy optimization and programmability of the synthetic strategy, and the remarkable electrochemical performance, the self-assembled T-Nb 2 O 5 @C nanowires offer a promising anode for asymmetric hybrid supercapacitors. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. High Performance Hybrid Upper Stage for NanoLaunch Vehicles, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Parabilis Space Technologies, Inc. (Parabilis), in collaboration with Utah State University (USU), proposes a low cost, high performance launch vehicle upper stage...

  16. Controllable preparation of multi-dimensional hybrid materials of nickel-cobalt layered double hydroxide nanorods/nanosheets on electrospun carbon nanofibers for high-performance supercapacitors

    International Nuclear Information System (INIS)

    Lai, Feili; Huang, Yunpeng; Miao, Yue-E; Liu, Tianxi

    2015-01-01

    Graphical Abstract: Multi-dimensional hybrid materials of nickel-cobalt layered double hydroxide nanorods/nanosheets grown on electrospun carbon nanofiber membranes were prepared via electrospinning combined with solution co-deposition for high-performance supercapacitor electrodes. - Highlights: • Ni-Co LDH@CNFhybridswerepreparedbyelectrospinningandsolutionco-deposition. • Ni-Co LDH@CNF hybrids show high electrochemical performance for supercapacitors. • This method can be extended to other bimetallic@CNF hybrids for electrode materials. - Abstract: Hybrid nanomaterials with hierarchical structures have been considered as one kind of the most promising electrode materials for high-performance supercapacitors with high capacity and long cycle lifetime. In this work, multi-dimensional hybrid materials of nickel-cobalt layered double hydroxide (Ni-Co LDH) nanorods/nanosheets on carbon nanofibers (CNFs) were prepared by electrospinning technique combined with one-step solution co-deposition method. Carbon nanofiber membranes were obtained by electrospinning of polyacrylonitrile (PAN) followed by pre-oxidation and carbonization. The successful growth of Ni-Co LDH with different morphologies on CNF membrane by using two kinds of auxiliary agents reveals the simplicity and universality of this method. The uniform and immense growth of Ni-Co LDH on CNFs significantly improves its dispersion and distribution. Meanwhile the hierarchical structure of carbon nanofiber@nickel-cobalt layered double hydroxide nanorods/nanosheets (CNF@Ni-Co LDH NR/NS) hybrid membranes provide not only more active sites for electrochemical reaction but also more efficient pathways for electron transport. Galvanostatic charge-discharge measurements reveal high specific capacitances of 1378.2 F g −1 and 1195.4 F g −1 (based on Ni-Co LDH mass) at 1 A g −1 for CNF@Ni-Co LDH NR and CNF@Ni-Co LDH NS hybrid membranes, respectively. Moreover, cycling stabilities for both hybrid membranes are

  17. A new hybrid protection system for high-field superconducting magnets

    NARCIS (Netherlands)

    Ravaioli, Emanuele; Datskov, V.I.; Kirby, G.; ten Kate, Herman H.J.; Verweij, A.P.

    2014-01-01

    The new generation of high-field superconducting accelerator magnets poses a challenge concerning the protection of the magnet coil in the case of a quench. The very high stored energy per unit volume requires a fast and efficient quench heating system in order to avoid damage due to overheating. A

  18. Highly transparent, low-haze, hybrid cellulose nanopaper as electrodes for flexible electronics

    Science.gov (United States)

    Xuezhu Xu; Jian Zhou; Long Jiang; Gilles Lubineau; Tienkhee Ng; Boon S. Ooi; Hsien-Yu Liao; Chao Shen; Long Chen; Junyong Zhu

    2016-01-01

    Paper is an excellent candidate to replace plastics as a substrate for flexible electronics due to its low cost, renewability and flexibility. Cellulose nanopaper (CNP), a new type of paper made of nanosized cellulose fibers, is a promising substrate material for transparent and flexible electrodes due to its potentially high transparency and high mechanical strength....

  19. Adaptability and performance of short-season maize hybrids in the southern high plains

    Science.gov (United States)

    Drought incidences change with year and location, and are prevalent in the Southern High Plains where annual rainfall is low and highly variable and most maize and other crops are irrigated. The low rainfall and groundwater overuse are leading to shortages of water for crop irrigation in this regio...

  20. Fusion-fission hybrid reactors

    International Nuclear Information System (INIS)

    Greenspan, E.

    1984-01-01

    This chapter discusses the range of characteristics attainable from hybrid reactor blankets; blanket design considerations; hybrid reactor designs; alternative fuel hybrid reactors; multi-purpose hybrid reactors; and hybrid reactors and the energy economy. Hybrid reactors are driven by a fusion neutron source and include fertile and/or fissile material. The fusion component provides a copious source of fusion neutrons which interact with a subcritical fission component located adjacent to the plasma or pellet chamber. Fissile fuel and/or energy are the main products of hybrid reactors. Topics include high F/M blankets, the fissile (and tritium) breeding ratio, effects of composition on blanket properties, geometrical considerations, power density and first wall loading, variations of blanket properties with irradiation, thermal-hydraulic and mechanical design considerations, safety considerations, tokamak hybrid reactors, tandem-mirror hybrid reactors, inertial confinement hybrid reactors, fusion neutron sources, fissile-fuel and energy production ability, simultaneous production of combustible and fissile fuels, fusion reactors for waste transmutation and fissile breeding, nuclear pumped laser hybrid reactors, Hybrid Fuel Factories (HFFs), and scenarios for hybrid contribution. The appendix offers hybrid reactor fundamentals. Numerous references are provided

  1. Surface Modifier-Free Organic-Inorganic Hybridization To Produce Optically Transparent and Highly Refractive Bulk Materials Composed of Epoxy Resins and ZrO2 Nanoparticles.

    Science.gov (United States)

    Enomoto, Kazushi; Kikuchi, Moriya; Narumi, Atsushi; Kawaguchi, Seigou

    2018-04-25

    Surface modifier-free hybridization of ZrO 2 nanoparticles (NPs) with epoxy-based polymers is demonstrated for the first time to afford highly transparent and refractive bulk materials. This is achieved by a unique and versatile hybridization via the one-pot direct phase transfer of ZrO 2 NPs from water to epoxy monomers without any aggregation followed by curing with anhydride. Three types of representative epoxy monomers, bisphenol A diglycidyl ether (BADGE), 3,4-epoxycyclohexylmethyl-3',4'-epoxycyclohexane carboxylate (CEL), and 1,3,5-tris(3-(oxiran-2-yl)propyl)-1,3,5-triazinane-2,4,6-trione (TEPIC), are used to produce transparent viscous dispersions. The resulting ZrO 2 NPs are thoroughly characterized using dynamic light scattering (DLS), transmission electron microscopy (TEM), Fourier transform infrared (FT-IR), and solid-state 13 C CP/MAS NMR measurements. The results from DLS and TEM analyses indicate nanodispersion of ZrO 2 into epoxy monomers as a continuous medium. A surface modification mechanism and the binding fashion during phase transfer are proposed based on the FT-IR and solid-state 13 C CP/MAS NMR measurements. Epoxy-based hybrid materials with high transparency and refractive index are successfully fabricated by heat curing or polymerizing a mixture of monomers containing epoxy-functionalized ZrO 2 NPs and methylhexahydrophthalic anhydride in the presence of a phosphoric catalyst. The TEM and small-angle X-ray scattering measurements of the hybrids show a nanodispersion of ZrO 2 in the epoxy networks. The refractive index at 594 nm ( n 594 ) increases up to 1.765 for BADGE-based hybrids, 1.667 for CEL-based hybrids, and 1.693 for TEPIC-based hybrids. Their refractive indices and Abbe's numbers are quantitatively described by the Lorentz-Lorenz effective medium expansion theory. Their transmissivity is also reasonably explained using Fresnel refraction, Rayleigh scattering, and the Lambert-Beer theories. This surface modifier-free hybridization

  2. Hybrid shipping for inland navigation : loss analysis of an aluminum direct-drive high performance 11,OOONm permanent magnet machine

    NARCIS (Netherlands)

    Paulides, J.J.H.; Djukic, N.; Encica, L.

    2015-01-01

    Hybrid electric ship propulsions are becoming a leading/emerging area of research, prompting investigation in hybrid propulsion system design and demonstration of concept vessels. With respect to ship design and operation, minimizing costs associated with fuel consumption and maintenance are key

  3. Cellulose nanofibril/reduced graphene oxide/carbon nanotube hybrid aerogels for highly flexible and all-solid-state supercapacitors.

    Science.gov (United States)

    Zheng, Qifeng; Cai, Zhiyong; Ma, Zhenqiang; Gong, Shaoqin

    2015-02-11

    A novel type of highly flexible and all-solid-state supercapacitor that uses cellulose nanofibril (CNF)/reduced graphene oxide (RGO)/carbon nanotube (CNT) hybrid aerogels as electrodes and H2SO4/poly(vinyl alcohol) (PVA) gel as the electrolyte was developed and is reported here. These flexible solid-state supercapacitors were fabricated without any binders, current collectors, or electroactive additives. Because of the porous structure of the CNF/RGO/CNT aerogel electrodes and the excellent electrolyte absorption properties of the CNFs present in the aerogel electrodes, the resulting flexible supercapacitors exhibited a high specific capacitance (i.e., 252 F g(-1) at a discharge current density of 0.5 A g(-1)) and a remarkable cycle stability (i.e., more than 99.5% of the capacitance was retained after 1000 charge-discharge cycles at a current density of 1 A g(-1)). Furthermore, the supercapacitors also showed extremely high areal capacitance, areal power density, and energy density (i.e., 216 mF cm(-2), 9.5 mW cm(-2), and 28.4 μWh cm(-2), respectively). In light of its excellent electrical performance, low cost, ease of large-scale manufacturing, and environmental friendliness, the CNF/RGO/CNT aerogel electrodes may have a promising application in the development of flexible energy-storage devices.

  4. Design of High-Voltage Switch-Mode Power Amplifier Based on Digital-Controlled Hybrid Multilevel Converter

    Directory of Open Access Journals (Sweden)

    Yanbin Hou

    2016-01-01

    Full Text Available Compared with conventional Class-A, Class-B, and Class-AB amplifiers, Class-D amplifier, also known as switching amplifier, employs pulse width modulation (PWM technology and solid-state switching devices, capable of achieving much higher efficiency. However, PWM-based switching amplifier is usually designed for low-voltage application, offering a maximum output voltage of several hundred Volts. Therefore, a step-up transformer is indispensably adopted in PWM-based Class-D amplifier to produce high-voltage output. In this paper, a switching amplifier without step-up transformer is developed based on digital pulse step modulation (PSM and hybrid multilevel converter. Under the control of input signal, cascaded power converters with separate DC sources operate in PSM switch mode to directly generate high-voltage and high-power output. The relevant topological structure, operating principle, and design scheme are introduced. Finally, a prototype system is built, which can provide power up to 1400 Watts and peak voltage up to ±1700 Volts. And the performance, including efficiency, linearity, and distortion, is evaluated by experimental tests.

  5. Toronto hybrid taxi pilot

    Energy Technology Data Exchange (ETDEWEB)

    Stevens, M. [CrossChasm Technologies, Cambridge, ON (Canada); Marans, B. [Toronto Atmospheric Fund, ON (Canada)

    2009-10-15

    This paper provided details of a hybrid taxi pilot program conducted to compare the on-road performance of Toyota Camry hybrid vehicles against conventional vehicles over a 1-year period in order to determine the business case and air emission reductions associated with the use of hybrid taxi cabs. Over 750,000 km worth of fuel consumption was captured from 10 Toyota Camry hybrids, a Toyota Prius, and 5 non-hybrid Camry vehicles over an 18-month period. The average real world fuel consumption for the taxis demonstrated that the Toyota Prius has the lowest cost of ownership, while the non-hybrid Camry has the highest cost of ownership. Carbon dioxide (CO{sub 2}) reductions associated with the 10 Camry hybrid taxis were calculated at 236 tonnes over a 7-year taxi service life. Results suggested that the conversion of Toronto's 5680 taxis would yield annual CO{sub 2} emission reductions of over 19,000 tonnes. All hybrid purchasers identified themselves as highly likely to purchase a hybrid again. 5 tabs., 9 figs.

  6. Toronto hybrid taxi pilot

    International Nuclear Information System (INIS)

    Stevens, M.; Marans, B.

    2009-10-01

    This paper provided details of a hybrid taxi pilot program conducted to compare the on-road performance of Toyota Camry hybrid vehicles against conventional vehicles over a 1-year period in order to determine the business case and air emission reductions associated with the use of hybrid taxi cabs. Over 750,000 km worth of fuel consumption was captured from 10 Toyota Camry hybrids, a Toyota Prius, and 5 non-hybrid Camry vehicles over an 18-month period. The average real world fuel consumption for the taxis demonstrated that the Toyota Prius has the lowest cost of ownership, while the non-hybrid Camry has the highest cost of ownership. Carbon dioxide (CO 2 ) reductions associated with the 10 Camry hybrid taxis were calculated at 236 tonnes over a 7-year taxi service life. Results suggested that the conversion of Toronto's 5680 taxis would yield annual CO 2 emission reductions of over 19,000 tonnes. All hybrid purchasers identified themselves as highly likely to purchase a hybrid again. 5 tabs., 9 figs.

  7. Development of a WRF-RTFDDA-based high-resolution hybrid data-assimilation and forecasting system toward to operation in the Middle East

    Science.gov (United States)

    Liu, Y.; Wu, W.; Zhang, Y.; Kucera, P. A.; Liu, Y.; Pan, L.

    2012-12-01

    Weather forecasting in the Middle East is challenging because of its complicated geographical nature including massive coastal area and heterogeneous land, and regional spare observational network. Strong air-land-sea interactions form multi-scale weather regimes in the area, which require a numerical weather prediction model capable of properly representing multi-scale atmospheric flow with appropriate initial conditions. The WRF-based Real-Time Four Dimensional Data Assimilation (RTFDDA) system is one of advanced multi-scale weather analysis and forecasting facilities developed at the Research Applications Laboratory (RAL) of NCAR. The forecasting system is applied for the Middle East with careful configuration. To overcome the limitation of the very sparsely available conventional observations in the region, we develop a hybrid data assimilation algorithm combining RTFDDA and WRF-3DVAR, which ingests remote sensing data from satellites and radar. This hybrid data assimilation blends Newtonian nudging FDDA and 3DVAR technology to effectively assimilate both conventional observations and remote sensing measurements and provide improved initial conditions for the forecasting system. For brevity, the forecasting system is called RTF3H (RTFDDA-3DVAR Hybrid). In this presentation, we will discuss the hybrid data assimilation algorithm, and its implementation, and the applications for high-impact weather events in the area. Sensitivity studies are conducted to understand the strength and limitations of this hybrid data assimilation algorithm.

  8. Reducing Stiffness and Electrical Losses of High Channel Hybrid Nerve Cuff Electrodes

    National Research Council Canada - National Science Library

    Schuettler, M

    2001-01-01

    .... Interconnection lines were made of only 300 nm of sputtered gold, which led to high line drops. Cold electroplating was used to thicken the lines to 3 microns, which reduced the mean track resistance from 480 ohms to 10 ohms...

  9. High Performance Hybrid Upper Stage for NanoLaunch Vehicles, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Parabilis Space Technologies, Inc (Parabilis), in collaboration with Utah State University (USU), proposes further development of a low-cost, high-performance launch...

  10. Development of X-Y servo pneumatic-piezoelectric hybrid actuators for position control with high response, large stroke and nanometer accuracy.

    Science.gov (United States)

    Chiang, Mao-Hsiung

    2010-01-01

    This study aims to develop a X-Y dual-axial intelligent servo pneumatic-piezoelectric hybrid actuator for position control with high response, large stroke (250 mm, 200 mm) and nanometer accuracy (20 nm). In each axis, the rodless pneumatic actuator serves to position in coarse stroke and the piezoelectric actuator compensates in fine stroke. Thus, the overall control systems of the single axis become a dual-input single-output (DISO) system. Although the rodless pneumatic actuator has relatively larger friction force, it has the advantage of mechanism for multi-axial development. Thus, the X-Y dual-axial positioning system is developed based on the servo pneumatic-piezoelectric hybrid actuator. In addition, the decoupling self-organizing fuzzy sliding mode control is developed as the intelligent control strategies. Finally, the proposed novel intelligent X-Y dual-axial servo pneumatic-piezoelectric hybrid actuators are implemented and verified experimentally.

  11. Development of X-Y Servo Pneumatic-Piezoelectric Hybrid Actuators for Position Control with High Response, Large Stroke and Nanometer Accuracy

    Directory of Open Access Journals (Sweden)

    Mao-Hsiung Chiang

    2010-03-01

    Full Text Available This study aims to develop a X-Y dual-axial intelligent servo pneumatic-piezoelectric hybrid actuator for position control with high response, large stroke (250 mm, 200 mm and nanometer accuracy (20 nm. In each axis, the rodless pneumatic actuator serves to position in coarse stroke and the piezoelectric actuator compensates in fine stroke. Thus, the overall control systems of the single axis become a dual-input single-output (DISO system. Although the rodless pneumatic actuator has relatively larger friction force, it has the advantage of mechanism for multi-axial development. Thus, the X-Y dual-axial positioning system is developed based on the servo pneumatic-piezoelectric hybrid actuator. In addition, the decoupling self-organizing fuzzy sliding mode control is developed as the intelligent control strategies. Finally, the proposed novel intelligent X-Y dual-axial servo pneumatic-piezoelectric hybrid actuators are implemented and verified experimentally.

  12. Combining ability analysis in Brassica juncea L. for oil quality traits

    African Journals Online (AJOL)

    USER

    2010-06-28

    Jun 28, 2010 ... the SCA effects for glucosinolate, erucic acid and protein content. The parental genotypes NUM009,. NUM123, NUM105 and NUM117 and their hybrids NUM009x NUM123, NUM103x NUM105, NUM113x. NUM124 and NUM103x NUM120 had high GCA and SCA effects, respectively and therefore these ...

  13. In vitro propagation of Ethiopian mustard ( Brassica carinata A ...

    African Journals Online (AJOL)

    Brassica carinata (A. Braun) is an amphi-diploid species that originated from interspecific hybridization between Brassica nigra and Brassica oleracea in the highlands of Ethiopia. The crop has many desirable agronomic traits but with oil quality constraints like high erucic acid and glucosinolate contents. In this study, two ...

  14. Three-dimensional bicontinuous nanoporous Au/polyaniline hybrid films for high-performance electrochemical supercapacitors

    Science.gov (United States)

    Lang, Xingyou; Zhang, Ling; Fujita, Takeshi; Ding, Yi; Chen, Mingwei

    2012-01-01

    We report three-dimensional bicontinuous nanoporous Au/polyaniline (PANI) composite films made by one-step electrochemical polymerization of PANI shell onto dealloyed nanoporous gold (NPG) skeletons for the applications in electrochemical supercapacitors. The NPG/PANI based supercapacitors exhibit ultrahigh volumetric capacitance (∼1500 F cm-3) and energy density (∼0.078 Wh cm-3), which are seven and four orders of magnitude higher than these of electrolytic capacitors, with the same power density up to ∼190 W cm-3. The outstanding capacitive performances result from a novel nanoarchitecture in which pseudocapacitive PANI shells are incorporated into pore channels of highly conductive NPG, making them promising candidates as electrode materials in supercapacitor devices combing high-energy storage densities with high-power delivery.

  15. A hybrid CPU-GPU accelerated framework for fast mapping of high-resolution human brain connectome.

    Directory of Open Access Journals (Sweden)

    Yu Wang

    Full Text Available Recently, a combination of non-invasive neuroimaging techniques and graph theoretical approaches has provided a unique opportunity for understanding the patterns of the structural and functional connectivity of the human brain (referred to as the human brain connectome. Currently, there is a very large amount of brain imaging data that have been collected, and there are very high requirements for the computational capabilities that are used in high-resolution connectome research. In this paper, we propose a hybrid CPU-GPU framework to accelerate the computation of the human brain connectome. We applied this framework to a publicly available resting-state functional MRI dataset from 197 participants. For each subject, we first computed Pearson's Correlation coefficient between any pairs of the time series of gray-matter voxels, and then we constructed unweighted undirected brain networks with 58 k nodes and a sparsity range from 0.02% to 0.17%. Next, graphic properties of the functional brain networks were quantified, analyzed and compared with those of 15 corresponding random networks. With our proposed accelerating framework, the above process for each network cost 80∼150 minutes, depending on the network sparsity. Further analyses revealed that high-resolution functional brain networks have efficient small-world properties, significant modular structure, a power law degree distribution and highly connected nodes in the medial frontal and parietal cortical regions. These results are largely compatible with previous human brain network studies. Taken together, our proposed framework can substantially enhance the applicability and efficacy of high-resolution (voxel-based brain network analysis, and have the potential to accelerate the mapping of the human brain connectome in normal and disease states.

  16. High-Fidelity Battery Model for Model Predictive Control Implemented into a Plug-In Hybrid Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Nicolas Sockeel

    2017-04-01

    Full Text Available Power management strategies have impacts on fuel economy, greenhouse gasses (GHG emission, as well as effects on the durability of power-train components. This is why different off-line and real-time optimal control approaches are being developed. However, real-time control seems to be more attractive than off-line control because it can be directly implemented for managing power and energy flows inside an actual vehicle. One interesting illustration of these power management strategies is the model predictive control (MPC based algorithm. Inside a MPC, a cost function is optimized while system constraints are validated in real time. The MPC algorithm relies on dynamic models of the vehicle and the battery. The complexity and accuracy of the battery model are usually neglected to benefit the development of new cost functions or better MPC algorithms. The contribution of this manuscript consists of developing and evaluating a high-fidelity battery model of a plug-in hybrid electric vehicle (PHEV that has been used for MPC. Via empirical work and simulation, the impact of a high-fidelity battery model has been evaluated and compared to a simpler model in the context of MPC. It is proven that the new battery model reduces the absolute voltage, state of charge (SoC, and battery power loss error by a factor of 3.2, 1.9 and 2.1 on average respectively, compared to the simpler battery model.

  17. Scalable High-Performance Ultraminiature Graphene Micro-Supercapacitors by a Hybrid Technique Combining Direct Writing and Controllable Microdroplet Transfer.

    Science.gov (United States)

    Shen, Daozhi; Zou, Guisheng; Liu, Lei; Zhao, Wenzheng; Wu, Aiping; Duley, Walter W; Zhou, Y Norman

    2018-02-14

    Miniaturization of energy storage devices can significantly decrease the overall size of electronic systems. However, this miniaturization is limited by the reduction of electrode dimensions and the reproducible transfer of small electrolyte drops. This paper reports first a simple scalable direct writing method for the production of ultraminiature microsupercapacitor (MSC) electrodes, based on femtosecond laser reduced graphene oxide (fsrGO) interlaced pads. These pads, separated by 2 μm spacing, are 100 μm long and 8 μm wide. A second stage involves the accurate transfer of an electrolyte microdroplet on top of each individual electrode, which can avoid any interference of the electrolyte with other electronic components. Abundant in-plane mesopores in fsrGO induced by a fs laser together with ultrashort interelectrode spacing enables MSCs to exhibit a high specific capacitance (6.3 mF cm -2 and 105 F cm -3 ) and ∼100% retention after 1000 cycles. An all graphene resistor-capacitor (RC) filter is also constructed by combining the MSC and a fsrGO resistor, which is confirmed to exhibit highly enhanced performance characteristics. This new hybrid technique combining fs laser direct writing and precise microdroplet transfer easily enables scalable production of ultraminiature MSCs, which is believed to be significant for practical application of micro-supercapacitor microelectronic systems.

  18. Highly efficient orange and warm white phosphorescent OLEDs based on a host material with a carbazole-fluorenyl hybrid.

    Science.gov (United States)

    Du, Xiaoyang; Huang, Yun; Tao, Silu; Yang, Xiaoxia; Wu, Chuan; Wei, Huaixin; Chan, Mei-Yee; Yam, Vivian Wing-Wah; Lee, Chun-Sing

    2014-06-01

    A new carbazole-fluorenyl hybrid compound, 3,3'(2,7-di(naphthaline-2-yl)-9H-fluorene-9,9-diyl)bis(9-phenyl-9H-carbazole) (NFBC) was synthesized and characterized. The compound exhibits blue-violet emission both in solution and in film, with peaks centered at 404 and 420 nm. In addition to the application as a blue emitter, NFBC is demonstrated to be a good host for phosphorescent dopants. By doping Ir(2-phq)3 in NFBC, a highly efficient orange organic light-emitting diode (OLED) with a maximum efficiency of 32 cd A(-1) (26.5 Lm W(-1)) was obtained. Unlike most phosphorescent OLEDs, the device prepared in our study shows little efficiency roll-off at high brightness and maintains current efficiencies of 31.9 and 26.8 cd A(-1) at a luminance of 1000 and 10,000 cd m(-2), respectively. By using NFBC simultaneously as a blue fluorescence emitter and as a host for a phosphorescent dopant, a warm white OLED with a maximum efficiency of 22.9 Lm W(-1) (21.9 cd A(-1)) was also obtained. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. High Field Side Lower Hybrid Current Drive Simulations for Off- axis Current Drive in DIII-D

    Directory of Open Access Journals (Sweden)

    Wukitch S.J.

    2017-01-01

    Full Text Available Efficient off-axis current drive scalable to reactors is a key enabling technology for developing economical, steady state tokamak. Previous studies have focussed on high field side (HFS launch of lower hybrid current drive (LHCD in double null configurations in reactor grade plasmas and found improved wave penetration and high current drive efficiency with driven current profile peaked near a normalized radius, ρ, of 0.6-0.8, consistent with advanced tokamak scenarios. Further, HFS launch potentially mitigates plasma material interaction and coupling issues. For this work, we sought credible HFS LHCD scenario for DIII-D advanced tokamak discharges through utilizing advanced ray tracing and Fokker Planck simulation tools (GENRAY+CQL3D constrained by experimental considerations. For a model and existing discharge, HFS LHCD scenarios with excellent wave penetration and current drive were identified. The LHCD is peaked off axis, ρ∼0.6-0.8, with FWHM Δρ=0.2 and driven current up to 0.37 MA/MW coupled. For HFS near mid plane launch, wave penetration is excellent and have access to single pass absorption scenarios for variety of plasmas for n||=2.6-3.4. These DIII-D discharge simulations indicate that HFS LHCD has potential to demonstrate efficient off axis current drive and current profile control in DIII-D existing and model discharge.

  20. High-efficiency and conveniently recyclable photo-catalysts for dye degradation based on urchin-like CuO microparticle/polymer hybrid composites

    Science.gov (United States)

    Liu, Xiong; Cheng, Yuming; Li, Xuefeng; Dong, Jinfeng

    2018-05-01

    In this work, we developed a new type of photo-catalysts composed of the urchin-like cupric oxide (CuO) microparticle and polyvinylidene fluoride (PVDF) hybrid composites by the convenient organic-inorganic hybrid strategy, which show high-efficiency and conveniently recyclable for dye degradation including methylene blue (MB), Congo red (CR), and malachite green (MG) by visible light irradiation. The micro-structural characteristics of urchin-like CuO microparticles are crucial and dominant over the photo-degrading efficiency of hybrid catalyst because of their highly exposed {0 0 2} facet and larger specific surface area. Simultaneously, the intrinsic porous framework of PVDF membrane not only remains the excellent photo-catalytic activity of urchin-like CuO microparticles but also facilitates the enrichment of dyes on the membrane, and thereby synergistically contributing to the photo-catalytic efficiency. The microstructures of both urchin-like CuO microparticles and hybrid catalysts are systematically characterized by various techniques including scanning electron microscopy (SEM), transmission electron microscope (TEM), high-resolution transmission electron microscope (HRTEM), powder X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR), and nitrogen adsorption/desorption isotherms, which evidently support the mentioned mechanism.

  1. Highly fluorescent and morphology-controllable graphene quantum dots-chitosan hybrid xerogels for in vivo imaging and pH-sensitive drug carrier

    Energy Technology Data Exchange (ETDEWEB)

    Lv, Ouyang; Tao, Yongxin; Qin, Yong [Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164 (China); Chen, Chuanxiang [School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003 (China); Pan, Yan; Deng, Linhong [Institute of Biomedical Engineering and Health Sciences, Changzhou University, Changzhou 213164 (China); Liu, Li [School of pharmaceutical Engineering & Life Science, Changzhou University, Changzhou 213164 (China); Kong, Yong, E-mail: yzkongyong@126.com [Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164 (China)

    2016-10-01

    Highly fluorescent graphene quantum dots (GQDs)-chitosan (CS) hybrid xerogels (GQDs-CS) were facilely synthesized, and the morphology of GQDs-CS was controllable by varying the content of GQDs in the xerogel. The GQDs-CS exhibited a porous and three-dimensional (3D) network structure when the content of GQDs reached 43% (wt%) in the xerogel, which was beneficial for drug loading and sustained release. The as-prepared GQDs-CS could also be applied for in vivo imaging since it showed strong blue, green and red luminescence under excitation of varying wavelengths. Moreover, the pH-induced protonation/deprotonation of the –NH{sub 2} groups on CS chains can result in a pH-dependent drug delivery behavior of the GQDs-CS hybrid xerogel. - Graphical abstract: Highly fluorescent and morphology-controllable graphene quantum dots-chitosan hybrid xerogels for in vivo imaging and pH-sensitive drug carrier. Display Omitted - Highlights: • Highly fluorescent GQDs-CS hybrid xerogels were facilely synthesized. • The as-made xerogels exhibited various morphologies with different GQDs contents. • The GQDs-CS exhibited a porous and 3D network when the content of GQDs reached 43%. • The GQDs-CS could be applied for in vivo imaging since it showed strong luminescence. • The protonation/deprotonation of –NH{sub 2} on CS result in a pH-dependent drug delivery.

  2. Highly fluorescent and morphology-controllable graphene quantum dots-chitosan hybrid xerogels for in vivo imaging and pH-sensitive drug carrier

    International Nuclear Information System (INIS)

    Lv, Ouyang; Tao, Yongxin; Qin, Yong; Chen, Chuanxiang; Pan, Yan; Deng, Linhong; Liu, Li; Kong, Yong

    2016-01-01

    Highly fluorescent graphene quantum dots (GQDs)-chitosan (CS) hybrid xerogels (GQDs-CS) were facilely synthesized, and the morphology of GQDs-CS was controllable by varying the content of GQDs in the xerogel. The GQDs-CS exhibited a porous and three-dimensional (3D) network structure when the content of GQDs reached 43% (wt%) in the xerogel, which was beneficial for drug loading and sustained release. The as-prepared GQDs-CS could also be applied for in vivo imaging since it showed strong blue, green and red luminescence under excitation of varying wavelengths. Moreover, the pH-induced protonation/deprotonation of the –NH_2 groups on CS chains can result in a pH-dependent drug delivery behavior of the GQDs-CS hybrid xerogel. - Graphical abstract: Highly fluorescent and morphology-controllable graphene quantum dots-chitosan hybrid xerogels for in vivo imaging and pH-sensitive drug carrier. Display Omitted - Highlights: • Highly fluorescent GQDs-CS hybrid xerogels were facilely synthesized. • The as-made xerogels exhibited various morphologies with different GQDs contents. • The GQDs-CS exhibited a porous and 3D network when the content of GQDs reached 43%. • The GQDs-CS could be applied for in vivo imaging since it showed strong luminescence. • The protonation/deprotonation of –NH_2 on CS result in a pH-dependent drug delivery.

  3. High-quality bulk hybrid perovskite single crystals within minutes by inverse temperature crystallization

    KAUST Repository

    Saidaminov, Makhsud I.; Abdelhady, Ahmed L.; Banavoth, Murali; Alarousu, Erkki; Burlakov, Victor M.; Peng, Wei; Dursun, Ibrahim; Wang, Lingfei; He, Yao; Maculan, Giacomo; Goriely, Alain; Wu, Tao; Mohammed, Omar F.; Bakr, Osman

    2015-01-01

    Single crystals of methylammonium lead trihalide perovskites (MAPbX3; MA=CH3NH3+, X=Br− or I−) have shown remarkably low trap density and charge transport properties; however, growth of such high-quality semiconductors is a time-consuming process

  4. Application of Inkjet Printing in High-Density Pixelated RGB Quantum Dot-Hybrid LEDs

    KAUST Repository

    Haverinen, Hanna; Jabbour, Ghassan E.

    2012-01-01

    to fabricate high-density, pixelated (quarter video graphics array (QVGA) format), monochromatic and RGB quantum dots light-emitting diodes (QDLEDs), where inkjet printing is used to deposit the light-emitting layer of QDs. It shows some of the factors

  5. Hip-Hop Hamlet: Hybrid Interpretive Discourse in a Suburban High School English Class

    Science.gov (United States)

    Anglin, Joanna L.; Smagorinsky, Peter

    2014-01-01

    This study investigates the collaborative composing processes of a group of five high school seniors who constructed interpretations of each of the five acts of Shakespeare's Hamlet through the medium of spoken word performances. The group composing processes were analyzed to identify how the students drew on conventions from the spoken word…

  6. PBT,PBO-Based Hybrid Polymers with Nonlinear Optical Properties or High Electrical Conductivity

    Science.gov (United States)

    1988-08-29

    standing. Experiments with stronger oxidizing agents such as nitrosonium salts (e.g., NO+Br4, NO+PF6) and high-potential quinones (e.g., DDQ...several unique possibilities. First, the ionic structure should raise Tg. Second, electrophoretic ion migration under the influence of the poling field

  7. Studies on High Energy Density Reactions for Development of Nanostructured Hybrid Supercapacitors

    Science.gov (United States)

    2015-09-25

    supercapacitors (SCs), also known as electrochemical capacitors, have attracted considerable attention over the past decade due to their high power...gel was heated for 1 h at 55 °C on a magnetic stirrer to form the paste which gradually became light blue in colour . The resulting gel was aged for 2-3

  8. High Efficiency Flexible Battery Based on Graphene-carbon Nanotube Hybrid Structure

    Science.gov (United States)

    2015-02-26

    Choi, Carbon 77 1065(2014) 2. Hierarchical NiCo2O4@nickel-sulfide nanoplate arrays for high-performance supercapacitors , Chu Q, Wang W, Wang X...Graphene:Synthesis and Applications, CRC Press ISBN-10: 1439861870 | ISBN-13: 978-1439861875 | Publication Date: October 11, 2011 Handbook of Nanomaterials ...Properties, Carbon Nanomaterials : a review, Nitin Choudhary, Sookhyun Hwang, Wonbong Choi, Springer (2013) 15. Santanu Das and Wonbong Choi, Graphene

  9. Facile synthesis of hybrid CNTs/NiCo2S4 composite for high performance supercapacitors

    Science.gov (United States)

    Li, Delong; Gong, Youning; Pan, Chunxu

    2016-07-01

    In this work, a novel carbon nanotubes (CNTs)/NiCo2S4 composite for high performance supercapacitors was prepared via a simple chemical bath deposition combined with a post-anion exchange reaction. The morphologies and phase structures of the composites were characterized using scanning electron microscopy (SEM), X-ray diffraction (XRD), Raman spectroscopy (Raman), X-ray photoelectron spectroscopy (XPS) and low-temperature sorption of nitrogen (BET). The electro-chemical tests revealed that the CNT/NiCo2S4 composite exhibited high electrochemical performance, because the CNTs were used as a conductive network for the NiCo2S4 hexagonal nanoplates. Compared with pure NiCo2S4 and the mechanically mixed CNTs/NiCo2S4 composite, the CNTs/NiCo2S4 composite electrode material exhibited excellent supercapacitive performance, such as a high specific capacitance up to 1537 F/g (discharge current density of 1 A/g) and an outstanding rate capability of 78.1% retention as the discharge current density increased to 100 A/g. It is therefore expected to be a promising alternative material in the area of energy storage.

  10. Rational hybrid modulation of P, N dual-doped holey graphene for high-performance supercapacitors

    Science.gov (United States)

    Nazarian-Samani, Masoud; Haghighat-Shishavan, Safa; Nazarian-Samani, Mahboobeh; Kim, Myeong-Seong; Cho, Byung-Won; Oh, Si-Hyoung; Kashani-Bozorg, Seyed Farshid; Kim, Kwang-Bum

    2017-12-01

    A P, N dual-doped holey graphene (PNHG) material is prepared by a scalable, facile synthetic approach, using a mixture of glucose, dicyandiamide (DCDA), and phosphoric acid (H3PO4). H3PO4 successfully functions as an "acid catalyst" to encourage the uniform breakage of C=C bonds to create large, localized perforations over the graphene monolith. Further acid treatment and annealing introduce in-plane holes. The correlation between the capacitance of the PNHG and its structural parameters during the fabrication process is comprehensively evaluated. A thermally induced sp2→sp3 transformation occurs at high temperatures because of the substantial loss of graphitic sp2-type carbons, together with a dramatic reduction in capacitance. The target PNHG-400 electrode material delivers exceptionally high gravimetric capacitance (235.5 F g-1 at 0.5 A g-1), remarkable rate capability (84.8% at 70 A g-1), superior capacitance retention (93.2 and 92.7% at 10 and 50 A g-1 over 25000 cycles, respectively), and acceptable volumetric capacitance due to moderate density, when it is used with organic electrolytes in the voltage range between 0 and 3 V. These results suggest a pioneering defect-engineered strategy to fabricate dual-doped holey graphene with valuable structural properties for high-performance electric double layer supercapacitors, which could be used in next-generation energy storage applications.

  11. Facile synthesis of hybrid CNTs/NiCo2S4 composite for high performance supercapacitors.

    Science.gov (United States)

    Li, Delong; Gong, Youning; Pan, Chunxu

    2016-07-11

    In this work, a novel carbon nanotubes (CNTs)/NiCo2S4 composite for high performance supercapacitors was prepared via a simple chemical bath deposition combined with a post-anion exchange reaction. The morphologies and phase structures of the composites were characterized using scanning electron microscopy (SEM), X-ray diffraction (XRD), Raman spectroscopy (Raman), X-ray photoelectron spectroscopy (XPS) and low-temperature sorption of nitrogen (BET). The electro-chemical tests revealed that the CNT/NiCo2S4 composite exhibited high electrochemical performance, because the CNTs were used as a conductive network for the NiCo2S4 hexagonal nanoplates. Compared with pure NiCo2S4 and the mechanically mixed CNTs/NiCo2S4 composite, the CNTs/NiCo2S4 composite electrode material exhibited excellent supercapacitive performance, such as a high specific capacitance up to 1537 F/g (discharge current density of 1 A/g) and an outstanding rate capability of 78.1% retention as the discharge current density increased to 100 A/g. It is therefore expected to be a promising alternative material in the area of energy storage.

  12. Simple single-emitting layer hybrid white organic light emitting with high color stability

    Science.gov (United States)

    Nguyen, C.; Lu, Z. H.

    2017-10-01

    Simultaneously achieving a high efficiency and color quality at luminance levels required for solid-state lighting has been difficult for white organic light emitting diodes (OLEDs). Single-emitting layer (SEL) white OLEDs, in particular, exhibit a significant tradeoff between efficiency and color stability. Furthermore, despite the simplicity of SEL white OLEDs being its main advantage, the reported device structures are often complicated by the use of multiple blocking layers. In this paper, we report a highly simplified three-layered white OLED that achieves a low turn-on voltage of 2.7 V, an external quantum efficiency of 18.9% and power efficiency of 30 lm/W at 1000 cd/cm2. This simple white OLED also shows good color quality with a color rendering index of 75, CIE coordinates (0.42, 0.46), and little color shifting at high luminance. The device consists of a SEL sandwiched between a hole transport layer and an electron transport layer. The SEL comprises a thermally activated delayer fluorescent molecule having dual functions as a blue emitter and as a host for other lower energy emitters. The improved color stability and efficiency in such a simple device structure is explained as due to the elimination of significant energy barriers at various organic-organic interfaces in the traditional devices having multiple blocking layers.

  13. Prediction of broadband ground-motion time histories: Hybrid low/high-frequency method with correlated random source parameters

    Science.gov (United States)

    Liu, P.; Archuleta, R.J.; Hartzell, S.H.

    2006-01-01

    We present a new method for calculating broadband time histories of ground motion based on a hybrid low-frequency/high-frequency approach with correlated source parameters. Using a finite-difference method we calculate low- frequency synthetics (structure. We also compute broadband synthetics in a 1D velocity model using a frequency-wavenumber method. The low frequencies from the 3D calculation are combined with the high frequencies from the 1D calculation by using matched filtering at a crossover frequency of 1 Hz. The source description, common to both the 1D and 3D synthetics, is based on correlated random distributions for the slip amplitude, rupture velocity, and rise time on the fault. This source description allows for the specification of source parameters independent of any a priori inversion results. In our broadband modeling we include correlation between slip amplitude, rupture velocity, and rise time, as suggested by dynamic fault modeling. The method of using correlated random source parameters is flexible and can be easily modified to adjust to our changing understanding of earthquake ruptures. A realistic attenuation model is common to both the 3D and 1D calculations that form the low- and high-frequency components of the broadband synthetics. The value of Q is a function of the local shear-wave velocity. To produce more accurate high-frequency amplitudes and durations, the 1D synthetics are corrected with a randomized, frequency-dependent radiation pattern. The 1D synthetics are further corrected for local site and nonlinear soil effects by using a 1D nonlinear propagation code and generic velocity structure appropriate for the site’s National Earthquake Hazards Reduction Program (NEHRP) site classification. The entire procedure is validated by comparison with the 1994 Northridge, California, strong ground motion data set. The bias and error found here for response spectral acceleration are similar to the best results that have been published by

  14. A hybrid approach identifies metabolic signatures of high-producers for chinese hamster ovary clone selection and process optimization.

    Science.gov (United States)

    Popp, Oliver; Müller, Dirk; Didzus, Katharina; Paul, Wolfgang; Lipsmeier, Florian; Kirchner, Florian; Niklas, Jens; Mauch, Klaus; Beaucamp, Nicola

    2016-09-01

    In-depth characterization of high-producer cell lines and bioprocesses is vital to ensure robust and consistent production of recombinant therapeutic proteins in high quantity and quality for clinical applications. This requires applying appropriate methods during bioprocess development to enable meaningful characterization of CHO clones and processes. Here, we present a novel hybrid approach for supporting comprehensive characterization of metabolic clone performance. The approach combines metabolite profiling with multivariate data analysis and fluxomics to enable a data-driven mechanistic analysis of key metabolic traits associated with desired cell phenotypes. We applied the methodology to quantify and compare metabolic performance in a set of 10 recombinant CHO-K1 producer clones and a host cell line. The comprehensive characterization enabled us to derive an extended set of clone performance criteria that not only captured growth and product formation, but also incorporated information on intracellular clone physiology and on metabolic changes during the process. These criteria served to establish a quantitative clone ranking and allowed us to identify metabolic differences between high-producing CHO-K1 clones yielding comparably high product titers. Through multivariate data analysis of the combined metabolite and flux data we uncovered common metabolic traits characteristic of high-producer clones in the screening setup. This included high intracellular rates of glutamine synthesis, low cysteine uptake, reduced excretion of aspartate and glutamate, and low intracellular degradation rates of branched-chain amino acids and of histidine. Finally, the above approach was integrated into a workflow that enables standardized high-content selection of CHO producer clones in a high-throughput fashion. In conclusion, the combination of quantitative metabolite profiling, multivariate data analysis, and mechanistic network model simulations can identify metabolic

  15. High capacity hybrid optical fiber-wireless links in 75–300GHz band

    DEFF Research Database (Denmark)

    Cavalcante, Lucas Costa Pereira; Vegas Olmos, Juan José; Tafur Monroy, Idelfonso

    2014-01-01

    Seamless convergence of fiber-optic and the wireless networks is of great interest for enabling transparent delivery of broadband services to users in different locations, including both metropolitan and rural areas. Current demand of bandwidth by end-users, especially using mobile devices......, is seeding the need to use bands located at the millimeter-wave region (30–300 GHz), mainly because of its inherent broadband nature. In our lab, we have conducted extensive research on high-speed photonic-wireless links in the W-band (75–110GHz). In this paper, we will present our latest findings...

  16. High performance hybrid silicon micropillar solar cell based on light trapping characteristics of Cu nanoparticles

    Directory of Open Access Journals (Sweden)

    Yulong Zhang

    2018-05-01

    Full Text Available High performance silicon combined structure (micropillar with Cu nanoparticles solar cell has been synthesized from N-type silicon substrates based on the micropillar array. The combined structure solar cell exhibited higher short circuit current rather than the silicon miropillar solar cell, which the parameters of micropillar array are the same. Due to the Cu nanoparticles were decorated on the surface of silicon micropillar array, the photovoltaic properties of cells have been improved. In addition, the optimal efficiency of 11.5% was measured for the combined structure solar cell, which is better than the silicon micropillar cell.

  17. High performance hybrid silicon micropillar solar cell based on light trapping characteristics of Cu nanoparticles

    Science.gov (United States)

    Zhang, Yulong; Fan, Zhiqiang; Zhang, Weijia; Ma, Qiang; Jiang, Zhaoyi; Ma, Denghao

    2018-05-01

    High performance silicon combined structure (micropillar with Cu nanoparticles) solar cell has been synthesized from N-type silicon substrates based on the micropillar array. The combined structure solar cell exhibited higher short circuit current rather than the silicon miropillar solar cell, which the parameters of micropillar array are the same. Due to the Cu nanoparticles were decorated on the surface of silicon micropillar array, the photovoltaic properties of cells have been improved. In addition, the optimal efficiency of 11.5% was measured for the combined structure solar cell, which is better than the silicon micropillar cell.

  18. Development of high stability hot mix asphalt concrete with hybrid binder

    Directory of Open Access Journals (Sweden)

    Toshiaki Hirato

    2014-12-01

    Full Text Available Cost reduction of public works projects has been desired due to severe financial circumstances. Therefore, asphalt pavement has been requested to extend its life. Semi-flexible pavement or epoxy asphalt pavement, which has high rutting resistance and oil resistance, may be applied to the place where these performances ae demanded. However, special technique is required in manufacturing and construction. In addition, these materials have also raised a problem that they cannot be recycled. Meanwhile, conventional asphalt pavement has several drawbacks. It is vulnerable to rutting caused by traffic load and damage caused by petroleum oils such as gasoline or motor oil. The materials used in asphalt mixtures were studied for improving the durability of asphalt mixture. A high stability asphalt concrete was developed which has equal or superior performance to semi-flexible pavement and epoxy asphalt pavement. In this paper, the process of selecting the substance and the characteristics evaluation of the developed mixtures ae described. Furthermore, an inspection result as well as follow-up survey of the performance of the developed mixtures obtained from trial and actual construction is shown.

  19. Highly anisotropic black phosphorous-graphene hybrid architecture for ultrassensitive plasmonic biosensing: Theoretical insight

    Science.gov (United States)

    Yuan, Yufeng; Yu, Xiantong; Ouyang, Qingling; Shao, Yonghong; Song, Jun; Qu, Junle; Yong, Ken-Tye

    2018-04-01

    This study proposed a novel highly anisotropic surface plasmon resonance (SPR) biosensor employing emerging 2D black phosphorus (BP) and graphene atomic layers. Light absorption and energy loss were well balanced by optimizing gold film thickness and number of BP layers to generate the strongest SPR excitation. The proposed SPR biosensor was designed by the phase-modulation approach and is more sensitive to biomolecule bindings, providing 3 orders of magnitude higher sensitivity than the red-shift in SPR angle. Our results show the optimized configuration was 48 nm Au film coated with 4-layer BP crystal to produce the sharpest phase variation (up to 89.8975°), and lowest minimum reflectivity (1.9119  ×  10-7). Detection sensitivity up to 7.4914  ×  104 degree/refractive index unit is almost 4.5 times enhanced compared to monolayer graphene-based SPR sensors with 48 nm Au film. The anisotropic BP layers act as a polarizer, so the proposed SPR biosensor would exhibit optically tunable detection sensitivity, making it a promising candidate for exploring highly anisotropic platforms in biosensing.

  20. Highly Flexible Hybrid CMOS Inverter Based on Si Nanomembrane and Molybdenum Disulfide.

    Science.gov (United States)

    Das, Tanmoy; Chen, Xiang; Jang, Houk; Oh, Il-Kwon; Kim, Hyungjun; Ahn, Jong-Hyun

    2016-11-01

    2D semiconductor materials are being considered for next generation electronic device application such as thin-film transistors and complementary metal-oxide-semiconductor (CMOS) circuit due to their unique structural and superior electronics properties. Various approaches have already been taken to fabricate 2D complementary logics circuits. However, those CMOS devices mostly demonstrated based on exfoliated 2D materials show the performance of a single device. In this work, the design and fabrication of a complementary inverter is experimentally reported, based on a chemical vapor deposition MoS 2 n-type transistor and a Si nanomembrane p-type transistor on the same substrate. The advantages offered by such CMOS configuration allow to fabricate large area wafer scale integration of high performance Si technology with transition-metal dichalcogenide materials. The fabricated hetero-CMOS inverters which are composed of two isolated transistors exhibit a novel high performance air-stable voltage transfer characteristic with different supply voltages, with a maximum voltage gain of ≈16, and sub-nano watt power consumption. Moreover, the logic gates have been integrated on a plastic substrate and displayed reliable electrical properties paving a realistic path for the fabrication of flexible/transparent CMOS circuits in 2D electronics. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.