A HYBRID HEURISTIC ALGORITHM FOR THE CLUSTERED TRAVELING SALESMAN PROBLEM
Directory of Open Access Journals (Sweden)
Mário Mestria
2016-04-01
Full Text Available ABSTRACT This paper proposes a hybrid heuristic algorithm, based on the metaheuristics Greedy Randomized Adaptive Search Procedure, Iterated Local Search and Variable Neighborhood Descent, to solve the Clustered Traveling Salesman Problem (CTSP. Hybrid Heuristic algorithm uses several variable neighborhood structures combining the intensification (using local search operators and diversification (constructive heuristic and perturbation routine. In the CTSP, the vertices are partitioned into clusters and all vertices of each cluster have to be visited contiguously. The CTSP is -hard since it includes the well-known Traveling Salesman Problem (TSP as a special case. Our hybrid heuristic is compared with three heuristics from the literature and an exact method. Computational experiments are reported for different classes of instances. Experimental results show that the proposed hybrid heuristic obtains competitive results within reasonable computational time.
Directory of Open Access Journals (Sweden)
Nadeem Javaid
2017-03-01
Full Text Available In recent years, demand side management (DSM techniques have been designed for residential, industrial and commercial sectors. These techniques are very effective in flattening the load profile of customers in grid area networks. In this paper, a heuristic algorithms-based energy management controller is designed for a residential area in a smart grid. In essence, five heuristic algorithms (the genetic algorithm (GA, the binary particle swarm optimization (BPSO algorithm, the bacterial foraging optimization algorithm (BFOA, the wind-driven optimization (WDO algorithm and our proposed hybrid genetic wind-driven (GWD algorithm are evaluated. These algorithms are used for scheduling residential loads between peak hours (PHs and off-peak hours (OPHs in a real-time pricing (RTP environment while maximizing user comfort (UC and minimizing both electricity cost and the peak to average ratio (PAR. Moreover, these algorithms are tested in two scenarios: (i scheduling the load of a single home and (ii scheduling the load of multiple homes. Simulation results show that our proposed hybrid GWD algorithm performs better than the other heuristic algorithms in terms of the selected performance metrics.
A hybrid heuristic algorithm for the open-pit-mining operational planning problem.
Souza, Marcone Jamilson Freitas; Coelho, Igor Machado; Ribas, Sabir; Santos, Haroldo Gambini; Merschmann, Luiz Henrique de Campos
2010-01-01
This paper deals with the Open-Pit-Mining Operational Planning problem with dynamic truck allocation. The objective is to optimize mineral extraction in the mines by minimizing the number of mining trucks used to meet production goals and quality requirements. According to the literature, this problem is NPhard, so a heuristic strategy is justified. We present a hybrid algorithm that combines characteristics of two metaheuristics: Greedy Randomized Adaptive Search Procedures and General Varia...
A HYBRID HEURISTIC ALGORITHM FOR SOLVING THE RESOURCE CONSTRAINED PROJECT SCHEDULING PROBLEM (RCPSP
Directory of Open Access Journals (Sweden)
Juan Carlos Rivera
Full Text Available The Resource Constrained Project Scheduling Problem (RCPSP is a problem of great interest for the scientific community because it belongs to the class of NP-Hard problems and no methods are known that can solve it accurately in polynomial processing times. For this reason heuristic methods are used to solve it in an efficient way though there is no guarantee that an optimal solution can be obtained. This research presents a hybrid heuristic search algorithm to solve the RCPSP efficiently, combining elements of the heuristic Greedy Randomized Adaptive Search Procedure (GRASP, Scatter Search and Justification. The efficiency obtained is measured taking into account the presence of the new elements added to the GRASP algorithm taken as base: Justification and Scatter Search. The algorithms are evaluated using three data bases of instances of the problem: 480 instances of 30 activities, 480 of 60, and 600 of 120 activities respectively, taken from the library PSPLIB available online. The solutions obtained by the developed algorithm for the instances of 30, 60 and 120 are compared with results obtained by other researchers at international level, where a prominent place is obtained, according to Chen (2011.
A new hybrid meta-heuristic algorithm for optimal design of large-scale dome structures
Kaveh, A.; Ilchi Ghazaan, M.
2018-02-01
In this article a hybrid algorithm based on a vibrating particles system (VPS) algorithm, multi-design variable configuration (Multi-DVC) cascade optimization, and an upper bound strategy (UBS) is presented for global optimization of large-scale dome truss structures. The new algorithm is called MDVC-UVPS in which the VPS algorithm acts as the main engine of the algorithm. The VPS algorithm is one of the most recent multi-agent meta-heuristic algorithms mimicking the mechanisms of damped free vibration of single degree of freedom systems. In order to handle a large number of variables, cascade sizing optimization utilizing a series of DVCs is used. Moreover, the UBS is utilized to reduce the computational time. Various dome truss examples are studied to demonstrate the effectiveness and robustness of the proposed method, as compared to some existing structural optimization techniques. The results indicate that the MDVC-UVPS technique is a powerful search and optimization method for optimizing structural engineering problems.
Tavakkoli-Moghaddam, Reza; Alinaghian, Mehdi; Salamat-Bakhsh, Alireza; Norouzi, Narges
2012-05-01
A vehicle routing problem is a significant problem that has attracted great attention from researchers in recent years. The main objectives of the vehicle routing problem are to minimize the traveled distance, total traveling time, number of vehicles and cost function of transportation. Reducing these variables leads to decreasing the total cost and increasing the driver's satisfaction level. On the other hand, this satisfaction, which will decrease by increasing the service time, is considered as an important logistic problem for a company. The stochastic time dominated by a probability variable leads to variation of the service time, while it is ignored in classical routing problems. This paper investigates the problem of the increasing service time by using the stochastic time for each tour such that the total traveling time of the vehicles is limited to a specific limit based on a defined probability. Since exact solutions of the vehicle routing problem that belong to the category of NP-hard problems are not practical in a large scale, a hybrid algorithm based on simulated annealing with genetic operators was proposed to obtain an efficient solution with reasonable computational cost and time. Finally, for some small cases, the related results of the proposed algorithm were compared with results obtained by the Lingo 8 software. The obtained results indicate the efficiency of the proposed hybrid simulated annealing algorithm.
Exact and Heuristic Algorithms for Runway Scheduling
Malik, Waqar A.; Jung, Yoon C.
2016-01-01
This paper explores the Single Runway Scheduling (SRS) problem with arrivals, departures, and crossing aircraft on the airport surface. Constraints for wake vortex separations, departure area navigation separations and departure time window restrictions are explicitly considered. The main objective of this research is to develop exact and heuristic based algorithms that can be used in real-time decision support tools for Air Traffic Control Tower (ATCT) controllers. The paper provides a multi-objective dynamic programming (DP) based algorithm that finds the exact solution to the SRS problem, but may prove unusable for application in real-time environment due to large computation times for moderate sized problems. We next propose a second algorithm that uses heuristics to restrict the search space for the DP based algorithm. A third algorithm based on a combination of insertion and local search (ILS) heuristics is then presented. Simulation conducted for the east side of Dallas/Fort Worth International Airport allows comparison of the three proposed algorithms and indicates that the ILS algorithm performs favorably in its ability to find efficient solutions and its computation times.
Directory of Open Access Journals (Sweden)
Fanrong Kong
2017-09-01
Full Text Available To alleviate the emission of greenhouse gas and the dependence on fossil fuel, Plug-in Hybrid Electrical Vehicles (PHEVs have gained an increasing popularity in current decades. Due to the fluctuating electricity prices in the power market, a charging schedule is very influential to driving cost. Although the next-day electricity prices can be obtained in a day-ahead power market, a driving plan is not easily made in advance. Although PHEV owners can input a next-day plan into a charging system, e.g., aggregators, day-ahead, it is a very trivial task to do everyday. Moreover, the driving plan may not be very accurate. To address this problem, in this paper, we analyze energy demands according to a PHEV owner’s historical driving records and build a personalized statistic driving model. Based on the model and the electricity spot prices, a rolling optimization strategy is proposed to help make a charging decision in the current time slot. On one hand, by employing a heuristic algorithm, the schedule is made according to the situations in the following time slots. On the other hand, however, after the current time slot, the schedule will be remade according to the next tens of time slots. Hence, the schedule is made by a dynamic rolling optimization, but it only decides the charging decision in the current time slot. In this way, the fluctuation of electricity prices and driving routine are both involved in the scheduling. Moreover, it is not necessary for PHEV owners to input a day-ahead driving plan. By the optimization simulation, the results demonstrate that the proposed method is feasible to help owners save charging costs and also meet requirements for driving.
HEURISTIC OPTIMIZATION AND ALGORITHM TUNING APPLIED TO SORPTIVE BARRIER DESIGN
While heuristic optimization is applied in environmental applications, ad-hoc algorithm configuration is typical. We use a multi-layer sorptive barrier design problem as a benchmark for an algorithm-tuning procedure, as applied to three heuristics (genetic algorithms, simulated ...
Gene selection heuristic algorithm for nutrigenomics studies.
Valour, D; Hue, I; Grimard, B; Valour, B
2013-07-15
Large datasets from -omics studies need to be deeply investigated. The aim of this paper is to provide a new method (LEM method) for the search of transcriptome and metabolome connections. The heuristic algorithm here described extends the classical canonical correlation analysis (CCA) to a high number of variables (without regularization) and combines well-conditioning and fast-computing in "R." Reduced CCA models are summarized in PageRank matrices, the product of which gives a stochastic matrix that resumes the self-avoiding walk covered by the algorithm. Then, a homogeneous Markov process applied to this stochastic matrix converges the probabilities of interconnection between genes, providing a selection of disjointed subsets of genes. This is an alternative to regularized generalized CCA for the determination of blocks within the structure matrix. Each gene subset is thus linked to the whole metabolic or clinical dataset that represents the biological phenotype of interest. Moreover, this selection process reaches the aim of biologists who often need small sets of genes for further validation or extended phenotyping. The algorithm is shown to work efficiently on three published datasets, resulting in meaningfully broadened gene networks.
International Nuclear Information System (INIS)
Sadjadi, Seyed Jafar; Soltani, R.
2009-01-01
We present a heuristic approach to solve a general framework of serial-parallel redundancy problem where the reliability of the system is maximized subject to some general linear constraints. The complexity of the redundancy problem is generally considered to be NP-Hard and the optimal solution is not normally available. Therefore, to evaluate the performance of the proposed method, a hybrid genetic algorithm is also implemented whose parameters are calibrated via Taguchi's robust design method. Then, various test problems are solved and the computational results indicate that the proposed heuristic approach could provide us some promising reliabilities, which are fairly close to optimal solutions in a reasonable amount of time.
Petri nets SM-cover-based on heuristic coloring algorithm
Tkacz, Jacek; Doligalski, Michał
2015-09-01
In the paper, coloring heuristic algorithm of interpreted Petri nets is presented. Coloring is used to determine the State Machines (SM) subnets. The present algorithm reduces the Petri net in order to reduce the computational complexity and finds one of its possible State Machines cover. The proposed algorithm uses elements of interpretation of Petri nets. The obtained result may not be the best, but it is sufficient for use in rapid prototyping of logic controllers. Found SM-cover will be also used in the development of algorithms for decomposition, and modular synthesis and implementation of parallel logic controllers. Correctness developed heuristic algorithm was verified using Gentzen formal reasoning system.
Hybrid Experiential-Heuristic Cognitive Radio Engine Architecture and Implementation
Directory of Open Access Journals (Sweden)
Ashwin Amanna
2012-01-01
Full Text Available The concept of cognitive radio (CR focuses on devices that can sense their environment, adapt configuration parameters, and learn from past behaviors. Architectures tend towards simplified decision-making algorithms inspired by human cognition. Initial works defined cognitive engines (CEs founded on heuristics, such as genetic algorithms (GAs, and case-based reasoning (CBR experiential learning algorithms. This hybrid architecture enables both long-term learning, faster decisions based on past experience, and capability to still adapt to new environments. This paper details an autonomous implementation of a hybrid CBR-GA CE architecture on a universal serial radio peripheral (USRP software-defined radio focused on link adaptation. Details include overall process flow, case base structure/retrieval method, estimation approach within the GA, and hardware-software lessons learned. Unique solutions to realizing the concept include mechanisms for combining vector distance and past fitness into an aggregate quantification of similarity. Over-the-air performance under several interference conditions is measured using signal-to-noise ratio, packet error rate, spectral efficiency, and throughput as observable metrics. Results indicate that the CE is successfully able to autonomously change transmit power, modulation/coding, and packet size to maintain the link while a non-cognitive approach loses connectivity. Solutions to existing shortcomings are proposed for improving case-base searching and performance estimation methods.
A Direct Heuristic Algorithm for Linear Programming
Indian Academy of Sciences (India)
Abstract. An (3) mathematically non-iterative heuristic procedure that needs no artificial variable is presented for solving linear programming problems. An optimality test is included. Numerical experiments depict the utility/scope of such a procedure.
Evolutionary algorithm based heuristic scheme for nonlinear heat transfer equations.
Ullah, Azmat; Malik, Suheel Abdullah; Alimgeer, Khurram Saleem
2018-01-01
In this paper, a hybrid heuristic scheme based on two different basis functions i.e. Log Sigmoid and Bernstein Polynomial with unknown parameters is used for solving the nonlinear heat transfer equations efficiently. The proposed technique transforms the given nonlinear ordinary differential equation into an equivalent global error minimization problem. Trial solution for the given nonlinear differential equation is formulated using a fitness function with unknown parameters. The proposed hybrid scheme of Genetic Algorithm (GA) with Interior Point Algorithm (IPA) is opted to solve the minimization problem and to achieve the optimal values of unknown parameters. The effectiveness of the proposed scheme is validated by solving nonlinear heat transfer equations. The results obtained by the proposed scheme are compared and found in sharp agreement with both the exact solution and solution obtained by Haar Wavelet-Quasilinearization technique which witnesses the effectiveness and viability of the suggested scheme. Moreover, the statistical analysis is also conducted for investigating the stability and reliability of the presented scheme.
Evolutionary algorithm based heuristic scheme for nonlinear heat transfer equations.
Directory of Open Access Journals (Sweden)
Azmat Ullah
Full Text Available In this paper, a hybrid heuristic scheme based on two different basis functions i.e. Log Sigmoid and Bernstein Polynomial with unknown parameters is used for solving the nonlinear heat transfer equations efficiently. The proposed technique transforms the given nonlinear ordinary differential equation into an equivalent global error minimization problem. Trial solution for the given nonlinear differential equation is formulated using a fitness function with unknown parameters. The proposed hybrid scheme of Genetic Algorithm (GA with Interior Point Algorithm (IPA is opted to solve the minimization problem and to achieve the optimal values of unknown parameters. The effectiveness of the proposed scheme is validated by solving nonlinear heat transfer equations. The results obtained by the proposed scheme are compared and found in sharp agreement with both the exact solution and solution obtained by Haar Wavelet-Quasilinearization technique which witnesses the effectiveness and viability of the suggested scheme. Moreover, the statistical analysis is also conducted for investigating the stability and reliability of the presented scheme.
Heuristic and algorithmic processing in English, mathematics, and science education.
Sharps, Matthew J; Hess, Adam B; Price-Sharps, Jana L; Teh, Jane
2008-01-01
Many college students experience difficulties in basic academic skills. Recent research suggests that much of this difficulty may lie in heuristic competency--the ability to use and successfully manage general cognitive strategies. In the present study, the authors evaluated this possibility. They compared participants' performance on a practice California Basic Educational Skills Test and on a series of questions in the natural sciences with heuristic and algorithmic performance on a series of mathematics and reading comprehension exercises. Heuristic competency in mathematics was associated with better scores in science and mathematics. Verbal and algorithmic skills were associated with better reading comprehension. These results indicate the importance of including heuristic training in educational contexts and highlight the importance of a relatively domain-specific approach to questions of cognition in higher education.
Heuristic Scheduling Algorithm Oriented Dynamic Tasks for Imaging Satellites
Directory of Open Access Journals (Sweden)
Maocai Wang
2014-01-01
Full Text Available Imaging satellite scheduling is an NP-hard problem with many complex constraints. This paper researches the scheduling problem for dynamic tasks oriented to some emergency cases. After the dynamic properties of satellite scheduling were analyzed, the optimization model is proposed in this paper. Based on the model, two heuristic algorithms are proposed to solve the problem. The first heuristic algorithm arranges new tasks by inserting or deleting them, then inserting them repeatedly according to the priority from low to high, which is named IDI algorithm. The second one called ISDR adopts four steps: insert directly, insert by shifting, insert by deleting, and reinsert the tasks deleted. Moreover, two heuristic factors, congestion degree of a time window and the overlapping degree of a task, are employed to improve the algorithm’s performance. Finally, a case is given to test the algorithms. The results show that the IDI algorithm is better than ISDR from the running time point of view while ISDR algorithm with heuristic factors is more effective with regard to algorithm performance. Moreover, the results also show that our method has good performance for the larger size of the dynamic tasks in comparison with the other two methods.
Seismic active control by a heuristic-based algorithm
International Nuclear Information System (INIS)
Tang, Yu.
1996-01-01
A heuristic-based algorithm for seismic active control is generalized to permit consideration of the effects of control-structure interaction and actuator dynamics. Control force is computed at onetime step ahead before being applied to the structure. Therefore, the proposed control algorithm is free from the problem of time delay. A numerical example is presented to show the effectiveness of the proposed control algorithm. Also, two indices are introduced in the paper to assess the effectiveness and efficiency of control laws
A novel heuristic algorithm for capacitated vehicle routing problem
Kır, Sena; Yazgan, Harun Reşit; Tüncel, Emre
2017-09-01
The vehicle routing problem with the capacity constraints was considered in this paper. It is quite difficult to achieve an optimal solution with traditional optimization methods by reason of the high computational complexity for large-scale problems. Consequently, new heuristic or metaheuristic approaches have been developed to solve this problem. In this paper, we constructed a new heuristic algorithm based on the tabu search and adaptive large neighborhood search (ALNS) with several specifically designed operators and features to solve the capacitated vehicle routing problem (CVRP). The effectiveness of the proposed algorithm was illustrated on the benchmark problems. The algorithm provides a better performance on large-scaled instances and gained advantage in terms of CPU time. In addition, we solved a real-life CVRP using the proposed algorithm and found the encouraging results by comparison with the current situation that the company is in.
DEFF Research Database (Denmark)
Kong, Fanrong; Jiang, Jianhui; Ding, Zhigang
2017-01-01
To alleviate the emission of greenhouse gas and the dependence on fossil fuel, Plug-in Hybrid Electrical Vehicles (PHEVs) have gained an increasing popularity in current decades. Due to the fluctuating electricity prices in the power market, a charging schedule is very influential to driving cost...
A Heuristics Approach for Classroom Scheduling Using Genetic Algorithm Technique
Ahmad, Izah R.; Sufahani, Suliadi; Ali, Maselan; Razali, Siti N. A. M.
2018-04-01
Reshuffling and arranging classroom based on the capacity of the audience, complete facilities, lecturing time and many more may lead to a complexity of classroom scheduling. While trying to enhance the productivity in classroom planning, this paper proposes a heuristic approach for timetabling optimization. A new algorithm was produced to take care of the timetabling problem in a university. The proposed of heuristics approach will prompt a superior utilization of the accessible classroom space for a given time table of courses at the university. Genetic Algorithm through Java programming languages were used in this study and aims at reducing the conflicts and optimizes the fitness. The algorithm considered the quantity of students in each class, class time, class size, time accessibility in each class and lecturer who in charge of the classes.
Directory of Open Access Journals (Sweden)
Orhan TÜRKBEY
2002-02-01
Full Text Available Memetic algorithms, which use local search techniques, are hybrid structured algorithms like genetic algorithms among evolutionary algorithms. In this study, for Quadratic Assignment Problem (QAP, a memetic structured algorithm using a local search heuristic like 2-opt is developed. Developed in the algorithm, a crossover operator that has not been used before for QAP is applied whereas, Eshelman procedure is used in order to increase thesolution variability. The developed memetic algorithm is applied on test problems taken from QAP-LIB, the results are compared with the present techniques in the literature.
Nuclear fuel management optimization using adaptive evolutionary algorithms with heuristics
International Nuclear Information System (INIS)
Axmann, J.K.; Van de Velde, A.
1996-01-01
Adaptive Evolutionary Algorithms in combination with expert knowledge encoded in heuristics have proved to be a robust and powerful optimization method for the design of optimized PWR fuel loading pattern. Simple parallel algorithmic structures coupled with a low amount of communications between computer processor units in use makes it possible for workstation clusters to be employed efficiently. The extension of classic evolution strategies not only by new and alternative methods but also by the inclusion of heuristics with effects on the exchange probabilities of the fuel assemblies at specific core positions leads to the RELOPAT optimization code of the Technical University of Braunschweig. In combination with the new, neutron-physical 3D nodal core simulator PRISM developed by SIEMENS the PRIMO loading pattern optimization system has been designed. Highly promising results in the recalculation of known reload plans for German PWR's new lead to a commercially usable program. (author)
A NEW HEURISTIC ALGORITHM FOR MULTIPLE TRAVELING SALESMAN PROBLEM
Directory of Open Access Journals (Sweden)
F. NURIYEVA
2017-06-01
Full Text Available The Multiple Traveling Salesman Problem (mTSP is a combinatorial optimization problem in NP-hard class. The mTSP aims to acquire the minimum cost for traveling a given set of cities by assigning each of them to a different salesman in order to create m number of tours. This paper presents a new heuristic algorithm based on the shortest path algorithm to find a solution for the mTSP. The proposed method has been programmed in C language and its performance analysis has been carried out on the library instances. The computational results show the efficiency of this method.
Identifying multiple influential spreaders by a heuristic clustering algorithm
Energy Technology Data Exchange (ETDEWEB)
Bao, Zhong-Kui [School of Mathematical Science, Anhui University, Hefei 230601 (China); Liu, Jian-Guo [Data Science and Cloud Service Research Center, Shanghai University of Finance and Economics, Shanghai, 200133 (China); Zhang, Hai-Feng, E-mail: haifengzhang1978@gmail.com [School of Mathematical Science, Anhui University, Hefei 230601 (China); Department of Communication Engineering, North University of China, Taiyuan, Shan' xi 030051 (China)
2017-03-18
The problem of influence maximization in social networks has attracted much attention. However, traditional centrality indices are suitable for the case where a single spreader is chosen as the spreading source. Many times, spreading process is initiated by simultaneously choosing multiple nodes as the spreading sources. In this situation, choosing the top ranked nodes as multiple spreaders is not an optimal strategy, since the chosen nodes are not sufficiently scattered in networks. Therefore, one ideal situation for multiple spreaders case is that the spreaders themselves are not only influential but also they are dispersively distributed in networks, but it is difficult to meet the two conditions together. In this paper, we propose a heuristic clustering (HC) algorithm based on the similarity index to classify nodes into different clusters, and finally the center nodes in clusters are chosen as the multiple spreaders. HC algorithm not only ensures that the multiple spreaders are dispersively distributed in networks but also avoids the selected nodes to be very “negligible”. Compared with the traditional methods, our experimental results on synthetic and real networks indicate that the performance of HC method on influence maximization is more significant. - Highlights: • A heuristic clustering algorithm is proposed to identify the multiple influential spreaders in complex networks. • The algorithm can not only guarantee the selected spreaders are sufficiently scattered but also avoid to be “insignificant”. • The performance of our algorithm is generally better than other methods, regardless of real networks or synthetic networks.
Identifying multiple influential spreaders by a heuristic clustering algorithm
International Nuclear Information System (INIS)
Bao, Zhong-Kui; Liu, Jian-Guo; Zhang, Hai-Feng
2017-01-01
The problem of influence maximization in social networks has attracted much attention. However, traditional centrality indices are suitable for the case where a single spreader is chosen as the spreading source. Many times, spreading process is initiated by simultaneously choosing multiple nodes as the spreading sources. In this situation, choosing the top ranked nodes as multiple spreaders is not an optimal strategy, since the chosen nodes are not sufficiently scattered in networks. Therefore, one ideal situation for multiple spreaders case is that the spreaders themselves are not only influential but also they are dispersively distributed in networks, but it is difficult to meet the two conditions together. In this paper, we propose a heuristic clustering (HC) algorithm based on the similarity index to classify nodes into different clusters, and finally the center nodes in clusters are chosen as the multiple spreaders. HC algorithm not only ensures that the multiple spreaders are dispersively distributed in networks but also avoids the selected nodes to be very “negligible”. Compared with the traditional methods, our experimental results on synthetic and real networks indicate that the performance of HC method on influence maximization is more significant. - Highlights: • A heuristic clustering algorithm is proposed to identify the multiple influential spreaders in complex networks. • The algorithm can not only guarantee the selected spreaders are sufficiently scattered but also avoid to be “insignificant”. • The performance of our algorithm is generally better than other methods, regardless of real networks or synthetic networks.
A Modularity Degree Based Heuristic Community Detection Algorithm
Directory of Open Access Journals (Sweden)
Dongming Chen
2014-01-01
Full Text Available A community in a complex network can be seen as a subgroup of nodes that are densely connected. Discovery of community structures is a basic problem of research and can be used in various areas, such as biology, computer science, and sociology. Existing community detection methods usually try to expand or collapse the nodes partitions in order to optimize a given quality function. These optimization function based methods share the same drawback of inefficiency. Here we propose a heuristic algorithm (MDBH algorithm based on network structure which employs modularity degree as a measure function. Experiments on both synthetic benchmarks and real-world networks show that our algorithm gives competitive accuracy with previous modularity optimization methods, even though it has less computational complexity. Furthermore, due to the use of modularity degree, our algorithm naturally improves the resolution limit in community detection.
A New Approach to Tuning Heuristic Parameters of Genetic Algorithms
Czech Academy of Sciences Publication Activity Database
Holeňa, Martin
2006-01-01
Roč. 3, č. 3 (2006), s. 562-569 ISSN 1790-0832. [AIKED'06. WSEAS International Conference on Artificial Intelligence , Knowledge Engineering and Data Bases. Madrid, 15.02.2006-17.02.2006] R&D Projects: GA ČR(CZ) GA201/05/0325; GA ČR(CZ) GA201/05/0557 Institutional research plan: CEZ:AV0Z10300504 Keywords : evolutionary optimization * genetic algorithms * heuristic parameters * parameter tuning * artificial neural networks * convergence speed * population diversity Subject RIV: IN - Informatics, Computer Science
A Heuristic Task Scheduling Algorithm for Heterogeneous Virtual Clusters
Directory of Open Access Journals (Sweden)
Weiwei Lin
2016-01-01
Full Text Available Cloud computing provides on-demand computing and storage services with high performance and high scalability. However, the rising energy consumption of cloud data centers has become a prominent problem. In this paper, we first introduce an energy-aware framework for task scheduling in virtual clusters. The framework consists of a task resource requirements prediction module, an energy estimate module, and a scheduler with a task buffer. Secondly, based on this framework, we propose a virtual machine power efficiency-aware greedy scheduling algorithm (VPEGS. As a heuristic algorithm, VPEGS estimates task energy by considering factors including task resource demands, VM power efficiency, and server workload before scheduling tasks in a greedy manner. We simulated a heterogeneous VM cluster and conducted experiment to evaluate the effectiveness of VPEGS. Simulation results show that VPEGS effectively reduced total energy consumption by more than 20% without producing large scheduling overheads. With the similar heuristic ideology, it outperformed Min-Min and RASA with respect to energy saving by about 29% and 28%, respectively.
Fast prediction of RNA-RNA interaction using heuristic algorithm.
Montaseri, Soheila
2015-01-01
Interaction between two RNA molecules plays a crucial role in many medical and biological processes such as gene expression regulation. In this process, an RNA molecule prohibits the translation of another RNA molecule by establishing stable interactions with it. Some algorithms have been formed to predict the structure of the RNA-RNA interaction. High computational time is a common challenge in most of the presented algorithms. In this context, a heuristic method is introduced to accurately predict the interaction between two RNAs based on minimum free energy (MFE). This algorithm uses a few dot matrices for finding the secondary structure of each RNA and binding sites between two RNAs. Furthermore, a parallel version of this method is presented. We describe the algorithm's concurrency and parallelism for a multicore chip. The proposed algorithm has been performed on some datasets including CopA-CopT, R1inv-R2inv, Tar-Tar*, DIS-DIS, and IncRNA54-RepZ in Escherichia coli bacteria. The method has high validity and efficiency, and it is run in low computational time in comparison to other approaches.
Public Transport Route Finding using a Hybrid Genetic Algorithm
Liviu Adrian COTFAS; Andreea DIOSTEANU
2011-01-01
In this paper we present a public transport route finding solution based on a hybrid genetic algorithm. The algorithm uses two heuristics that take into consideration the number of trans-fers and the remaining distance to the destination station in order to improve the convergence speed. The interface of the system uses the latest web technologies to offer both portability and advanced functionality. The approach has been evaluated using the data for the Bucharest public transport network.
Public Transport Route Finding using a Hybrid Genetic Algorithm
Directory of Open Access Journals (Sweden)
Liviu Adrian COTFAS
2011-01-01
Full Text Available In this paper we present a public transport route finding solution based on a hybrid genetic algorithm. The algorithm uses two heuristics that take into consideration the number of trans-fers and the remaining distance to the destination station in order to improve the convergence speed. The interface of the system uses the latest web technologies to offer both portability and advanced functionality. The approach has been evaluated using the data for the Bucharest public transport network.
Solving SAT problem by heuristic polarity decision-making algorithm
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
This paper presents a heuristic polarity decision-making algorithm for solving Boolean satisfiability (SAT). The algorithm inherits many features of the current state-of-the-art SAT solvers, such as fast BCP, clause recording, restarts, etc. In addition, a preconditioning step that calculates the polarities of variables according to the cover distribution of Karnaugh map is introduced into DPLL procedure, which greatly reduces the number of conflicts in the search process. The proposed approach is implemented as a SAT solver named DiffSat. Experiments show that DiffSat can solve many "real-life" instances in a reasonable time while the best existing SAT solvers, such as Zchaff and MiniSat, cannot. In particular, DiffSat can solve every instance of Bart benchmark suite in less than 0.03 s while Zchaff and MiniSat fail under a 900 s time limit. Furthermore, DiffSat even outperforms the outstanding incomplete algorithm DLM in some instances.
Runway Operations Planning: A Two-Stage Heuristic Algorithm
Anagnostakis, Ioannis; Clarke, John-Paul
2003-01-01
The airport runway is a scarce resource that must be shared by different runway operations (arrivals, departures and runway crossings). Given the possible sequences of runway events, careful Runway Operations Planning (ROP) is required if runway utilization is to be maximized. From the perspective of departures, ROP solutions are aircraft departure schedules developed by optimally allocating runway time for departures given the time required for arrivals and crossings. In addition to the obvious objective of maximizing throughput, other objectives, such as guaranteeing fairness and minimizing environmental impact, can also be incorporated into the ROP solution subject to constraints introduced by Air Traffic Control (ATC) procedures. This paper introduces a two stage heuristic algorithm for solving the Runway Operations Planning (ROP) problem. In the first stage, sequences of departure class slots and runway crossings slots are generated and ranked based on departure runway throughput under stochastic conditions. In the second stage, the departure class slots are populated with specific flights from the pool of available aircraft, by solving an integer program with a Branch & Bound algorithm implementation. Preliminary results from this implementation of the two-stage algorithm on real-world traffic data are presented.
Cost optimization model and its heuristic genetic algorithms
International Nuclear Information System (INIS)
Liu Wei; Wang Yongqing; Guo Jilin
1999-01-01
Interest and escalation are large quantity in proportion to the cost of nuclear power plant construction. In order to optimize the cost, the mathematics model of cost optimization for nuclear power plant construction was proposed, which takes the maximum net present value as the optimization goal. The model is based on the activity networks of the project and is an NP problem. A heuristic genetic algorithms (HGAs) for the model was introduced. In the algorithms, a solution is represented with a string of numbers each of which denotes the priority of each activity for assigned resources. The HGAs with this encoding method can overcome the difficulty which is harder to get feasible solutions when using the traditional GAs to solve the model. The critical path of the activity networks is figured out with the concept of predecessor matrix. An example was computed with the HGAP programmed in C language. The results indicate that the model is suitable for the objectiveness, the algorithms is effective to solve the model
Heuristic hybrid game approach for fleet condition-based maintenance planning
International Nuclear Information System (INIS)
Feng, Qiang; Bi, Xiong; Zhao, Xiujie; Chen, Yiran; Sun, Bo
2017-01-01
The condition-based maintenance (CBM) method is commonly used to select appropriate maintenance opportunities according to equipment status over a period of time. The CBM of aircraft fleets is a fleet maintenance planning problem. In this problem, mission requirements, resource constraints, and aircraft statuses are considered to find an optimal strategy set. Given that the maintenance strategies for each aircraft are finite, fleet CBM can be treated as a combinatorial optimization problem. In this study, the process of making a decision on the CBM of military fleets is analyzed. The fleet CBM problem is treated as a two-stage dynamic decision-making problem. Aircraft are divided into dispatch and standby sets; thus, the problem scale is significantly reduced. A heuristic hybrid game (HHG) approach comprising a competition game and a cooperative game is proposed on the basis of heuristic rule. In the dispatch set, a competition game approach is proposed to search for a local optimal strategy matrix. A cooperative game method for the two sets is also proposed to ensure global optimization. Finally, a case study regarding a fleet comprising 20 aircraft is conducted, with the results proving that the approach efficiently generates outcomes that meet the mission risk-oriented schedule requirement. - Highlights: • A new heuristic hybrid game method for fleet condition-based maintenance is proposed. • The problem is simplified by hierarchical solving based on dispatch and standby set. • The local optimal solution is got by competition game algorithm for dispatch set. • The global optimal solution is got by cooperative game algorithm between two sets.
SIMPLE HEURISTIC ALGORITHM FOR DYNAMIC VM REALLOCATION IN IAAS CLOUDS
Directory of Open Access Journals (Sweden)
Nikita A. Balashov
2018-03-01
Full Text Available The rapid development of cloud technologies and its high prevalence in both commercial and academic areas have stimulated active research in the domain of optimal cloud resource management. One of the most active research directions is dynamic virtual machine (VM placement optimization in clouds build on Infrastructure-as-a-Service model. This kind of research may pursue different goals with energy-aware optimization being the most common goal as it aims at a urgent problem of green cloud computing - reducing energy consumption by data centers. In this paper we present a new heuristic algorithm of dynamic reallocation of VMs based on an approach presented in one of our previous works. In the algorithm we apply a 2-rank strategy to classify VMs and servers corresponding to the highly and lowly active VMs and solve four tasks: VM classification, host classification, forming a VM migration map and VMs migration. Dividing all of the VMs and servers into two classes we attempt to implement the possibility of risk reduction in case of hardware overloads under overcommitment conditions and to reduce the influence of the occurring overloads on the performance of the cloud VMs. Presented algorithm was developed based on the workload profile of the JINR cloud (a scientific private cloud with the goal of maximizing its usage, but it can also be applied in both public and private commercial clouds to organize the simultaneous use of different SLA and QoS levels in the same cloud environment by giving each VM rank its own level of overcommitment.
Madni, Syed Hamid Hussain; Abd Latiff, Muhammad Shafie; Abdullahi, Mohammed; Usman, Mohammed Joda
2017-01-01
Cloud computing infrastructure is suitable for meeting computational needs of large task sizes. Optimal scheduling of tasks in cloud computing environment has been proved to be an NP-complete problem, hence the need for the application of heuristic methods. Several heuristic algorithms have been developed and used in addressing this problem, but choosing the appropriate algorithm for solving task assignment problem of a particular nature is difficult since the methods are developed under different assumptions. Therefore, six rule based heuristic algorithms are implemented and used to schedule autonomous tasks in homogeneous and heterogeneous environments with the aim of comparing their performance in terms of cost, degree of imbalance, makespan and throughput. First Come First Serve (FCFS), Minimum Completion Time (MCT), Minimum Execution Time (MET), Max-min, Min-min and Sufferage are the heuristic algorithms considered for the performance comparison and analysis of task scheduling in cloud computing. PMID:28467505
Madni, Syed Hamid Hussain; Abd Latiff, Muhammad Shafie; Abdullahi, Mohammed; Abdulhamid, Shafi'i Muhammad; Usman, Mohammed Joda
2017-01-01
Cloud computing infrastructure is suitable for meeting computational needs of large task sizes. Optimal scheduling of tasks in cloud computing environment has been proved to be an NP-complete problem, hence the need for the application of heuristic methods. Several heuristic algorithms have been developed and used in addressing this problem, but choosing the appropriate algorithm for solving task assignment problem of a particular nature is difficult since the methods are developed under different assumptions. Therefore, six rule based heuristic algorithms are implemented and used to schedule autonomous tasks in homogeneous and heterogeneous environments with the aim of comparing their performance in terms of cost, degree of imbalance, makespan and throughput. First Come First Serve (FCFS), Minimum Completion Time (MCT), Minimum Execution Time (MET), Max-min, Min-min and Sufferage are the heuristic algorithms considered for the performance comparison and analysis of task scheduling in cloud computing.
Directory of Open Access Journals (Sweden)
D. A. Viattchenin
2009-01-01
Full Text Available A method for constructing a subset of labeled objects which is used in a heuristic algorithm of possible clusterization with partial training is proposed in the paper. The method is based on data preprocessing by the heuristic algorithm of possible clusterization using a transitive closure of a fuzzy tolerance. Method efficiency is demonstrated by way of an illustrative example.
Françoise Benz
2004-01-01
ACADEMIC TRAINING LECTURE REGULAR PROGRAMME 1, 2, 3 and 4 June From 11:00 hrs to 12:00 hrs - Main Auditorium bldg. 500 Evolutionary Heuristic Optimization: Genetic Algorithms and Estimation of Distribution Algorithms V. Robles Forcada and M. Perez Hernandez / Univ. de Madrid, Spain In the real world, there exist a huge number of problems that require getting an optimum or near-to-optimum solution. Optimization can be used to solve a lot of different problems such as network design, sets and partitions, storage and retrieval or scheduling. On the other hand, in nature, there exist many processes that seek a stable state. These processes can be seen as natural optimization processes. Over the last 30 years several attempts have been made to develop optimization algorithms, which simulate these natural optimization processes. These attempts have resulted in methods such as Simulated Annealing, based on natural annealing processes or Evolutionary Computation, based on biological evolution processes. Geneti...
Françoise Benz
2004-01-01
ENSEIGNEMENT ACADEMIQUE ACADEMIC TRAINING Françoise Benz 73127 academic.training@cern.ch ACADEMIC TRAINING LECTURE REGULAR PROGRAMME 1, 2, 3 and 4 June From 11:00 hrs to 12:00 hrs - Main Auditorium bldg. 500 Evolutionary Heuristic Optimization: Genetic Algorithms and Estimation of Distribution Algorithms V. Robles Forcada and M. Perez Hernandez / Univ. de Madrid, Spain In the real world, there exist a huge number of problems that require getting an optimum or near-to-optimum solution. Optimization can be used to solve a lot of different problems such as network design, sets and partitions, storage and retrieval or scheduling. On the other hand, in nature, there exist many processes that seek a stable state. These processes can be seen as natural optimization processes. Over the last 30 years several attempts have been made to develop optimization algorithms, which simulate these natural optimization processes. These attempts have resulted in methods such as Simulated Annealing, based on nat...
A genetic algorithm selection perturbative hyper-heuristic for solving ...
African Journals Online (AJOL)
Table 1: A summary of the characteristics of the artificial school timetabling problems. ..... One of the disadvantages of hyper-heuristics is the higher runtimes as a result .... 455–464 in AI 2002: Advances in Artificial Intelligence, Springer Berlin ...
A comparative study of the A* heuristic search algorithm used to solve efficiently a puzzle game
Iordan, A. E.
2018-01-01
The puzzle game presented in this paper consists in polyhedra (prisms, pyramids or pyramidal frustums) which can be moved using the free available spaces. The problem requires to be found the minimum number of movements in order the game reaches to a goal configuration starting from an initial configuration. Because the problem is enough complex, the principal difficulty in solving it is given by dimension of search space, that leads to necessity of a heuristic search. The improving of the search method consists into determination of a strong estimation by the heuristic function which will guide the search process to the most promising side of the search tree. The comparative study is realized among Manhattan heuristic and the Hamming heuristic using A* search algorithm implemented in Java. This paper also presents the necessary stages in object oriented development of a software used to solve efficiently this puzzle game. The modelling of the software is achieved through specific UML diagrams representing the phases of analysis, design and implementation, the system thus being described in a clear and practical manner. With the purpose to confirm the theoretical results which demonstrates that Manhattan heuristic is more efficient was used space complexity criterion. The space complexity was measured by the number of generated nodes from the search tree, by the number of the expanded nodes and by the effective branching factor. From the experimental results obtained by using the Manhattan heuristic, improvements were observed regarding space complexity of A* algorithm versus Hamming heuristic.
A Computational Investigation of Heuristic Algorithms for 2-Edge-Connectivity Augmentation
DEFF Research Database (Denmark)
Bang-Jensen, Jørgen; Chiarandini, Marco; Morling, Peter
2010-01-01
an equivalent set covering formulation. The results indicate that exact solutions by means of a basic integer programming model can be obtained in reasonably short time even on networks with 800 vertices and around 287,000 edges. Alternatively, an advanced heuristic algorithm based on subgradient...... programming, simple construction heuristics and metaheuristics. As part of the design of heuristics, we consider different neighborhood structures for local search, among which is a very large scale neighborhood. In all cases, we exploit approaches through the graph formulation as well as through...
Directory of Open Access Journals (Sweden)
Stanimirović Ivan
2009-01-01
Full Text Available We introduce a heuristic method for the single resource constrained project scheduling problem, based on the dynamic programming solution of the knapsack problem. This method schedules projects with one type of resources, in the non-preemptive case: once started an activity is not interrupted and runs to completion. We compare the implementation of this method with well-known heuristic scheduling method, called Minimum Slack First (known also as Gray-Kidd algorithm, as well as with Microsoft Project.
A heuristic algorithm for computing the Poincar\\'e series of the invariants of binary forms
Djoković, Dragomir Ž.
2006-01-01
We propose a heuristic algorithm for fast computation of the Poincar\\'{e} series $P_n(t)$ of the invariants of binary forms of degree $n$, viewed as rational functions. The algorithm is based on certain polynomial identities which remain to be proved rigorously. By using it, we have computed the $P_n(t)$ for $n\\le30$.
Directory of Open Access Journals (Sweden)
Maryam Ashouri
2017-07-01
Full Text Available Vehicle routing problem (VRP is a Nondeterministic Polynomial Hard combinatorial optimization problem to serve the consumers from central depots and returned back to the originated depots with given vehicles. Furthermore, two of the most important extensions of the VRPs are the open vehicle routing problem (OVRP and VRP with simultaneous pickup and delivery (VRPSPD. In OVRP, the vehicles have not return to the depot after last visit and in VRPSPD, customers require simultaneous delivery and pick-up service. The aim of this paper is to present a combined effective ant colony optimization (CEACO which includes sweep and several local search algorithms which is different with common ant colony optimization (ACO. An extensive numerical experiment is performed on benchmark problem instances addressed in the literature. The computational result shows that suggested CEACO approach not only presented a very satisfying scalability, but also was competitive with other meta-heuristic algorithms in the literature for solving VRP, OVRP and VRPSPD problems. Keywords: Meta-heuristic algorithms, Vehicle Routing Problem, Open Vehicle Routing Problem, Simultaneously Pickup and Delivery, Ant Colony Optimization.
Shiangjen, Kanokwatt; Chaijaruwanich, Jeerayut; Srisujjalertwaja, Wijak; Unachak, Prakarn; Somhom, Samerkae
2018-02-01
This article presents an efficient heuristic placement algorithm, namely, a bidirectional heuristic placement, for solving the two-dimensional rectangular knapsack packing problem. The heuristic demonstrates ways to maximize space utilization by fitting the appropriate rectangle from both sides of the wall of the current residual space layer by layer. The iterative local search along with a shift strategy is developed and applied to the heuristic to balance the exploitation and exploration tasks in the solution space without the tuning of any parameters. The experimental results on many scales of packing problems show that this approach can produce high-quality solutions for most of the benchmark datasets, especially for large-scale problems, within a reasonable duration of computational time.
A Heuristic and Hybrid Method for the Tank Allocation Problem in Maritime Bulk Shipping
DEFF Research Database (Denmark)
Vilhelmsen, Charlotte; Larsen, Jesper; Lusby, Richard Martin
Many bulk ships have multiple tanks and can thereby carry multiple inhomogeneous products at a time. A major challenge when operating such ships is how to best allocate cargoes to available tanks while taking tank capacity, safety restrictions, ship stability and strength as well as other...... ship route. We have developed a randomised heuristic for eciently nding feasible allocations and computational results show that it can solve 99% of the considered instances within 0.5 seconds and all of them if allowed longer time. The heuristic is designed to work as an ecient subproblem solver...... and in such a setting with running times below e.g. 5 seconds, the heuristic clearly outperforms an earlier method by consistently solving more instances and eectively cutting 84% of the average running time. Furthermore, we have combined our heuristic with a modied version of the earlier method to derive a hybrid...
A Hybrid Genetic Algorithm for the Multiple Crossdocks Problem
Directory of Open Access Journals (Sweden)
Zhaowei Miao
2012-01-01
Full Text Available We study a multiple crossdocks problem with supplier and customer time windows, where any violation of time windows will incur a penalty cost and the flows through the crossdock are constrained by fixed transportation schedules and crossdock capacities. We prove this problem to be NP-hard in the strong sense and therefore focus on developing efficient heuristics. Based on the problem structure, we propose a hybrid genetic algorithm (HGA integrating greedy technique and variable neighborhood search method to solve the problem. Extensive experiments under different scenarios were conducted, and results show that HGA outperforms CPLEX solver, providing solutions in realistic timescales.
A hybrid artificial bee colony algorithm for numerical function optimization
Alqattan, Zakaria N.; Abdullah, Rosni
2015-02-01
Artificial Bee Colony (ABC) algorithm is one of the swarm intelligence algorithms; it has been introduced by Karaboga in 2005. It is a meta-heuristic optimization search algorithm inspired from the intelligent foraging behavior of the honey bees in nature. Its unique search process made it as one of the most competitive algorithm with some other search algorithms in the area of optimization, such as Genetic algorithm (GA) and Particle Swarm Optimization (PSO). However, the ABC performance of the local search process and the bee movement or the solution improvement equation still has some weaknesses. The ABC is good in avoiding trapping at the local optimum but it spends its time searching around unpromising random selected solutions. Inspired by the PSO, we propose a Hybrid Particle-movement ABC algorithm called HPABC, which adapts the particle movement process to improve the exploration of the original ABC algorithm. Numerical benchmark functions were used in order to experimentally test the HPABC algorithm. The results illustrate that the HPABC algorithm can outperform the ABC algorithm in most of the experiments (75% better in accuracy and over 3 times faster).
A Hybrid Chaotic Quantum Evolutionary Algorithm
DEFF Research Database (Denmark)
Cai, Y.; Zhang, M.; Cai, H.
2010-01-01
A hybrid chaotic quantum evolutionary algorithm is proposed to reduce amount of computation, speed up convergence and restrain premature phenomena of quantum evolutionary algorithm. The proposed algorithm adopts the chaotic initialization method to generate initial population which will form a pe...... tests. The presented algorithm is applied to urban traffic signal timing optimization and the effect is satisfied....
Directory of Open Access Journals (Sweden)
Suresh K. Damodaran
2018-02-01
Full Text Available Hydro-thermal-wind generation scheduling (HTWGS with economic and environmental factors is a multi-objective complex nonlinear power system optimization problem with many equality and inequality constraints. The objective of the problem is to generate an hour-by-hour optimum schedule of hydro-thermal-wind power plants to attain the least emission of pollutants from thermal plants and a reduced generation cost of thermal and wind plants for a 24-h period, satisfying the system constraints. The paper presents a detailed framework of the HTWGS problem and proposes a modified particle swarm optimization (MPSO algorithm for evolving a solution. The competency of selected heuristic algorithms, representing different heuristic groups, viz. the binary coded genetic algorithm (BCGA, particle swarm optimization (PSO, improved harmony search (IHS, and JAYA algorithm, for searching for an optimal solution to HTWGS considering economic and environmental factors was investigated in a trial system consisting of a multi-stream cascaded system with four reservoirs, three thermal plants, and two wind plants. Appropriate mathematical models were used for representing the water discharge, generation cost, and pollutant emission of respective power plants incorporated in the system. Statistical analysis was performed to check the consistency and reliability of the proposed algorithm. The simulation results indicated that the proposed MPSO algorithm provided a better solution to the problem of HTWGS, with a reduced generation cost and the least emission, when compared with the other heuristic algorithms considered.
A Hybrid Tabu Search Heuristic for a Bilevel Competitive Facility Location Model
Küçükaydın, Hande; Aras, Necati; Altınel, I. Kuban
We consider a problem in which a firm or franchise enters a market by locating new facilities where there are existing facilities belonging to a competitor. The firm aims at finding the location and attractiveness of each facility to be opened so as to maximize its profit. The competitor, on the other hand, can react by adjusting the attractiveness of its existing facilities, opening new facilities and/or closing existing ones with the objective of maximizing its own profit. The demand is assumed to be aggregated at certain points in the plane and the facilities of the firm can be located at prespecified candidate sites. We employ Huff's gravity-based rule in modeling the behavior of the customers where the fraction of customers at a demand point that visit a certain facility is proportional to the facility attractiveness and inversely proportional to the distance between the facility site and demand point. We formulate a bilevel mixed-integer nonlinear programming model where the firm entering the market is the leader and the competitor is the follower. In order to find a feasible solution of this model, we develop a hybrid tabu search heuristic which makes use of two exact methods as subroutines: a gradient ascent method and a branch-and-bound algorithm with nonlinear programming relaxation.
The theory of hybrid stochastic algorithms
International Nuclear Information System (INIS)
Duane, S.; Kogut, J.B.
1986-01-01
The theory of hybrid stochastic algorithms is developed. A generalized Fokker-Planck equation is derived and is used to prove that the correct equilibrium distribution is generated by the algorithm. Systematic errors following from the discrete time-step used in the numerical implementation of the scheme are computed. Hybrid algorithms which simulate lattice gauge theory with dynamical fermions are presented. They are optimized in computer simulations and their systematic errors and efficiencies are studied. (orig.)
A heuristic algorithm for a multi-product four-layer capacitated location-routing problem
Directory of Open Access Journals (Sweden)
Mohsen Hamidi
2014-01-01
Full Text Available The purpose of this study is to solve a complex multi-product four-layer capacitated location-routing problem (LRP in which two specific constraints are taken into account: 1 plants have limited production capacity, and 2 central depots have limited capacity for storing and transshipping products. The LRP represents a multi-product four-layer distribution network that consists of plants, central depots, regional depots, and customers. A heuristic algorithm is developed to solve the four-layer LRP. The heuristic uses GRASP (Greedy Randomized Adaptive Search Procedure and two probabilistic tabu search strategies of intensification and diversification to tackle the problem. Results show that the heuristic solves the problem effectively.
Heuristic Artificial Bee Colony Algorithm for Uncovering Community in Complex Networks
Directory of Open Access Journals (Sweden)
Yuquan Guo
2017-01-01
Full Text Available Community structure is important for us to understand the functions and structure of the complex networks. In this paper, Heuristic Artificial Bee Colony (HABC algorithm based on swarm intelligence is proposed for uncovering community. The proposed HABC includes initialization, employed bee searching, onlooker searching, and scout bee searching. In initialization stage, the nectar sources with simple community structure are generated through network dynamic algorithm associated with complete subgraph. In employed bee searching and onlooker searching stages, the searching function is redefined to address the community problem. The efficiency of searching progress can be improved by a heuristic function which is an average agglomerate probability of two neighbor communities. Experiments are carried out on artificial and real world networks, and the results demonstrate that HABC will have better performance in terms of comparing with the state-of-the-art algorithms.
Estimation of electricity demand of Iran using two heuristic algorithms
International Nuclear Information System (INIS)
Amjadi, M.H.; Nezamabadi-pour, H.; Farsangi, M.M.
2010-01-01
This paper deals with estimation of electricity demand of Iran based on economic indicators using Particle Swarm Optimization (PSO) Algorithm. The estimation is based on Gross Domestic Product (GDP), population, number of customers and average price electricity by developing two different estimation models: a linear model and a non-linear model. The proposed models are obtained based upon available actual data of 21 years; since 1980-2000. Then the models obtained are used to estimate the electricity demand of the target years; for a period of time e.g. 2001-2006 and the results obtained are compared with the actual demand during this period. Furthermore, to validate the results obtained by PSO, genetic algorithm (GA) is applied to solve the problem. The results show that the PSO is a useful optimization tool for solving the problem using two developed models and can be used as an alternative solution to estimate the future electricity demand.
A Heuristic Algorithm for Solving Triangle Packing Problem
Directory of Open Access Journals (Sweden)
Ruimin Wang
2013-01-01
Full Text Available The research on the triangle packing problem has important theoretic significance, which has broad application prospects in material processing, network resource optimization, and so forth. Generally speaking, the orientation of the triangle should be limited in advance, since the triangle packing problem is NP-hard and has continuous properties. For example, the polygon is not allowed to rotate; then, the approximate solution can be obtained by optimization method. This paper studies the triangle packing problem by a new kind of method. Such concepts as angle region, corner-occupying action, corner-occupying strategy, and edge-conjoining strategy are presented in this paper. In addition, an edge-conjoining and corner-occupying algorithm is designed, which is to obtain an approximate solution. It is demonstrated that the proposed algorithm is highly efficient, and by the time complexity analysis and the analogue experiment result is found.
Expert System and Heuristics Algorithm for Cloud Resource Scheduling
Directory of Open Access Journals (Sweden)
Mamatha E
2017-03-01
Full Text Available Rule-based scheduling algorithms have been widely used on cloud computing systems and there is still plenty of room to improve their performance. This paper proposes to develop an expert system to allocate resources in cloud by using Rule based Algorithm, thereby measuring the performance of the system by letting the system adapt new rules based on the feedback. Here performance of the action helps to make better allocation of the resources to improve quality of services, scalability and flexibility. The performance measure is based on how the allocation of the resources is dynamically optimized and how the resources are utilized properly. It aims to maximize the utilization of the resources. The data and resource are given to the algorithm which allocates the data to resources and an output is obtained based on the action occurred. Once the action is completed, the performance of every action is measured that contains how the resources are allocated and how efficiently it worked. In addition to performance, resource allocation in cloud environment is also considered.
Heuristic algorithms for the minmax regret flow-shop problem with interval processing times.
Ćwik, Michał; Józefczyk, Jerzy
2018-01-01
An uncertain version of the permutation flow-shop with unlimited buffers and the makespan as a criterion is considered. The investigated parametric uncertainty is represented by given interval-valued processing times. The maximum regret is used for the evaluation of uncertainty. Consequently, the minmax regret discrete optimization problem is solved. Due to its high complexity, two relaxations are applied to simplify the optimization procedure. First of all, a greedy procedure is used for calculating the criterion's value, as such calculation is NP-hard problem itself. Moreover, the lower bound is used instead of solving the internal deterministic flow-shop. The constructive heuristic algorithm is applied for the relaxed optimization problem. The algorithm is compared with previously elaborated other heuristic algorithms basing on the evolutionary and the middle interval approaches. The conducted computational experiments showed the advantage of the constructive heuristic algorithm with regards to both the criterion and the time of computations. The Wilcoxon paired-rank statistical test confirmed this conclusion.
Application of Fuzzy Sets for the Improvement of Routing Optimization Heuristic Algorithms
Directory of Open Access Journals (Sweden)
Mattas Konstantinos
2016-12-01
Full Text Available The determination of the optimal circular path has become widely known for its difficulty in producing a solution and for the numerous applications in the scope of organization and management of passenger and freight transport. It is a mathematical combinatorial optimization problem for which several deterministic and heuristic models have been developed in recent years, applicable to route organization issues, passenger and freight transport, storage and distribution of goods, waste collection, supply and control of terminals, as well as human resource management. Scope of the present paper is the development, with the use of fuzzy sets, of a practical, comprehensible and speedy heuristic algorithm for the improvement of the ability of the classical deterministic algorithms to identify optimum, symmetrical or non-symmetrical, circular route. The proposed fuzzy heuristic algorithm is compared to the corresponding deterministic ones, with regard to the deviation of the proposed solution from the best known solution and the complexity of the calculations needed to obtain this solution. It is shown that the use of fuzzy sets reduced up to 35% the deviation of the solution identified by the classical deterministic algorithms from the best known solution.
Optimal Control of Complex Systems Based on Improved Dual Heuristic Dynamic Programming Algorithm
Directory of Open Access Journals (Sweden)
Hui Li
2017-01-01
Full Text Available When applied to solving the data modeling and optimal control problems of complex systems, the dual heuristic dynamic programming (DHP technique, which is based on the BP neural network algorithm (BP-DHP, has difficulty in prediction accuracy, slow convergence speed, poor stability, and so forth. In this paper, a dual DHP technique based on Extreme Learning Machine (ELM algorithm (ELM-DHP was proposed. Through constructing three kinds of network structures, the paper gives the detailed realization process of the DHP technique in the ELM. The controller designed upon the ELM-DHP algorithm controlled a molecular distillation system with complex features, such as multivariability, strong coupling, and nonlinearity. Finally, the effectiveness of the algorithm is verified by the simulation that compares DHP and HDP algorithms based on ELM and BP neural network. The algorithm can also be applied to solve the data modeling and optimal control problems of similar complex systems.
Directory of Open Access Journals (Sweden)
Muhammad Farhan Ausaf
2015-12-01
Full Text Available Process planning and scheduling are two important components of a manufacturing setup. It is important to integrate them to achieve better global optimality and improved system performance. To find optimal solutions for integrated process planning and scheduling (IPPS problem, numerous algorithm-based approaches exist. Most of these approaches try to use existing meta-heuristic algorithms for solving the IPPS problem. Although these approaches have been shown to be effective in optimizing the IPPS problem, there is still room for improvement in terms of quality of solution and algorithm efficiency, especially for more complicated problems. Dispatching rules have been successfully utilized for solving complicated scheduling problems, but haven’t been considered extensively for the IPPS problem. This approach incorporates dispatching rules with the concept of prioritizing jobs, in an algorithm called priority-based heuristic algorithm (PBHA. PBHA tries to establish job and machine priority for selecting operations. Priority assignment and a set of dispatching rules are simultaneously used to generate both the process plans and schedules for all jobs and machines. The algorithm was tested for a series of benchmark problems. The proposed algorithm was able to achieve superior results for most complex problems presented in recent literature while utilizing lesser computational resources.
A heuristic approach to possibilistic clustering algorithms and applications
Viattchenin, Dmitri A
2013-01-01
The present book outlines a new approach to possibilistic clustering in which the sought clustering structure of the set of objects is based directly on the formal definition of fuzzy cluster and the possibilistic memberships are determined directly from the values of the pairwise similarity of objects. The proposed approach can be used for solving different classification problems. Here, some techniques that might be useful at this purpose are outlined, including a methodology for constructing a set of labeled objects for a semi-supervised clustering algorithm, a methodology for reducing analyzed attribute space dimensionality and a methods for asymmetric data processing. Moreover, a technique for constructing a subset of the most appropriate alternatives for a set of weak fuzzy preference relations, which are defined on a universe of alternatives, is described in detail, and a method for rapidly prototyping the Mamdani’s fuzzy inference systems is introduced. This book addresses engineers, scientist...
Heuristic and Exact Algorithms for the Two-Machine Just in Time Job Shop Scheduling Problem
Directory of Open Access Journals (Sweden)
Mohammed Al-Salem
2016-01-01
Full Text Available The problem addressed in this paper is the two-machine job shop scheduling problem when the objective is to minimize the total earliness and tardiness from a common due date (CDD for a set of jobs when their weights equal 1 (unweighted problem. This objective became very significant after the introduction of the Just in Time manufacturing approach. A procedure to determine whether the CDD is restricted or unrestricted is developed and a semirestricted CDD is defined. Algorithms are introduced to find the optimal solution when the CDD is unrestricted and semirestricted. When the CDD is restricted, which is a much harder problem, a heuristic algorithm is proposed to find approximate solutions. Through computational experiments, the heuristic algorithms’ performance is evaluated with problems up to 500 jobs.
Design of application for graph's handling with heuristic algorithms of analysis
López, Carlos Andrés; Ardila Urueña, William
2008-01-01
El siguiente artículo muestra la manera de desarrollar una sencilla aplicación de entorno grafico sobre la cual se puede experimentar diversas técnicas, desde algoritmos de resolución de grafos hasta heurísticas empleadas en inteligencia artificial. The next section shows how to develop a simple graphical application environment on which to experiment with various techniques, from algorithms resolution graph until heuristics used in artificial intelligence.
Hybrid employment recommendation algorithm based on Spark
Li, Zuoquan; Lin, Yubei; Zhang, Xingming
2017-08-01
Aiming at the real-time application of collaborative filtering employment recommendation algorithm (CF), a clustering collaborative filtering recommendation algorithm (CCF) is developed, which applies hierarchical clustering to CF and narrows the query range of neighbour items. In addition, to solve the cold-start problem of content-based recommendation algorithm (CB), a content-based algorithm with users’ information (CBUI) is introduced for job recommendation. Furthermore, a hybrid recommendation algorithm (HRA) which combines CCF and CBUI algorithms is proposed, and implemented on Spark platform. The experimental results show that HRA can overcome the problems of cold start and data sparsity, and achieve good recommendation accuracy and scalability for employment recommendation.
The theory of hybrid stochastic algorithms
International Nuclear Information System (INIS)
Kennedy, A.D.
1989-01-01
These lectures introduce the family of Hybrid Stochastic Algorithms for performing Monte Carlo calculations in Quantum Field Theory. After explaining the basic concepts of Monte Carlo integration we discuss the properties of Markov processes and one particularly useful example of them: the Metropolis algorithm. Building upon this framework we consider the Hybrid and Langevin algorithms from the viewpoint that they are approximate versions of the Hybrid Monte Carlo method; and thus we are led to consider Molecular Dynamics using the Leapfrog algorithm. The lectures conclude by reviewing recent progress in these areas, explaining higher-order integration schemes, the asymptotic large-volume behaviour of the various algorithms, and some simple exact results obtained by applying them to free field theory. It is attempted throughout to give simple yet correct proofs of the various results encountered. 38 refs
Bakar, Sumarni Abu; Ibrahim, Milbah
2017-08-01
The shortest path problem is a popular problem in graph theory. It is about finding a path with minimum length between a specified pair of vertices. In any network the weight of each edge is usually represented in a form of crisp real number and subsequently the weight is used in the calculation of shortest path problem using deterministic algorithms. However, due to failure, uncertainty is always encountered in practice whereby the weight of edge of the network is uncertain and imprecise. In this paper, a modified algorithm which utilized heuristic shortest path method and fuzzy approach is proposed for solving a network with imprecise arc length. Here, interval number and triangular fuzzy number in representing arc length of the network are considered. The modified algorithm is then applied to a specific example of the Travelling Salesman Problem (TSP). Total shortest distance obtained from this algorithm is then compared with the total distance obtained from traditional nearest neighbour heuristic algorithm. The result shows that the modified algorithm can provide not only on the sequence of visited cities which shown to be similar with traditional approach but it also provides a good measurement of total shortest distance which is lesser as compared to the total shortest distance calculated using traditional approach. Hence, this research could contribute to the enrichment of methods used in solving TSP.
Non-uniform cosine modulated filter banks using meta-heuristic algorithms in CSD space
Directory of Open Access Journals (Sweden)
Shaeen Kalathil
2015-11-01
Full Text Available This paper presents an efficient design of non-uniform cosine modulated filter banks (CMFB using canonic signed digit (CSD coefficients. CMFB has got an easy and efficient design approach. Non-uniform decomposition can be easily obtained by merging the appropriate filters of a uniform filter bank. Only the prototype filter needs to be designed and optimized. In this paper, the prototype filter is designed using window method, weighted Chebyshev approximation and weighted constrained least square approximation. The coefficients are quantized into CSD, using a look-up-table. The finite precision CSD rounding, deteriorates the filter bank performances. The performances of the filter bank are improved using suitably modified meta-heuristic algorithms. The different meta-heuristic algorithms which are modified and used in this paper are Artificial Bee Colony algorithm, Gravitational Search algorithm, Harmony Search algorithm and Genetic algorithm and they result in filter banks with less implementation complexity, power consumption and area requirements when compared with those of the conventional continuous coefficient non-uniform CMFB.
ENHANCED HYBRID PSO – ACO ALGORITHM FOR GRID SCHEDULING
Directory of Open Access Journals (Sweden)
P. Mathiyalagan
2010-07-01
Full Text Available Grid computing is a high performance computing environment to solve larger scale computational demands. Grid computing contains resource management, task scheduling, security problems, information management and so on. Task scheduling is a fundamental issue in achieving high performance in grid computing systems. A computational GRID is typically heterogeneous in the sense that it combines clusters of varying sizes, and different clusters typically contains processing elements with different level of performance. In this, heuristic approaches based on particle swarm optimization and ant colony optimization algorithms are adopted for solving task scheduling problems in grid environment. Particle Swarm Optimization (PSO is one of the latest evolutionary optimization techniques by nature. It has the better ability of global searching and has been successfully applied to many areas such as, neural network training etc. Due to the linear decreasing of inertia weight in PSO the convergence rate becomes faster, which leads to the minimal makespan time when used for scheduling. To make the convergence rate faster, the PSO algorithm is improved by modifying the inertia parameter, such that it produces better performance and gives an optimized result. The ACO algorithm is improved by modifying the pheromone updating rule. ACO algorithm is hybridized with PSO algorithm for efficient result and better convergence in PSO algorithm.
Directory of Open Access Journals (Sweden)
AYAS, S.
2018-02-01
Full Text Available Image thresholding is the most crucial step in microscopic image analysis to distinguish bacilli objects causing of tuberculosis disease. Therefore, several bi-level thresholding algorithms are widely used to increase the bacilli segmentation accuracy. However, bi-level microscopic image thresholding problem has not been solved using optimization algorithms. This paper introduces a novel approach for the segmentation problem using heuristic algorithms and presents visual and quantitative comparisons of heuristic and state-of-art thresholding algorithms. In this study, well-known heuristic algorithms such as Firefly Algorithm, Particle Swarm Optimization, Cuckoo Search, Flower Pollination are used to solve bi-level microscopic image thresholding problem, and the results are compared with the state-of-art thresholding algorithms such as K-Means, Fuzzy C-Means, Fast Marching. Kapur's entropy is chosen as the entropy measure to be maximized. Experiments are performed to make comparisons in terms of evaluation metrics and execution time. The quantitative results are calculated based on ground truth segmentation. According to the visual results, heuristic algorithms have better performance and the quantitative results are in accord with the visual results. Furthermore, experimental time comparisons show the superiority and effectiveness of the heuristic algorithms over traditional thresholding algorithms.
Directory of Open Access Journals (Sweden)
DOGAN, A.
2018-02-01
Full Text Available Image thresholding is the most crucial step in microscopic image analysis to distinguish bacilli objects causing of tuberculosis disease. Therefore, several bi-level thresholding algorithms are widely used to increase the bacilli segmentation accuracy. However, bi-level microscopic image thresholding problem has not been solved using optimization algorithms. This paper introduces a novel approach for the segmentation problem using heuristic algorithms and presents visual and quantitative comparisons of heuristic and state-of-art thresholding algorithms. In this study, well-known heuristic algorithms such as Firefly Algorithm, Particle Swarm Optimization, Cuckoo Search, Flower Pollination are used to solve bi-level microscopic image thresholding problem, and the results are compared with the state-of-art thresholding algorithms such as K-Means, Fuzzy C-Means, Fast Marching. Kapur's entropy is chosen as the entropy measure to be maximized. Experiments are performed to make comparisons in terms of evaluation metrics and execution time. The quantitative results are calculated based on ground truth segmentation. According to the visual results, heuristic algorithms have better performance and the quantitative results are in accord with the visual results. Furthermore, experimental time comparisons show the superiority and effectiveness of the heuristic algorithms over traditional thresholding algorithms.
Directory of Open Access Journals (Sweden)
T.A. Yakovleva
2011-05-01
Full Text Available This paper is dealing with the vehicle routing problem, where different types of vehicles are managing to deliver different types of products. Three step heuristic with genetic algorithm is proposed for solving the problem.
Fitting PAC spectra with a hybrid algorithm
Energy Technology Data Exchange (ETDEWEB)
Alves, M. A., E-mail: mauro@sepn.org [Instituto de Aeronautica e Espaco (Brazil); Carbonari, A. W., E-mail: carbonar@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (Brazil)
2008-01-15
A hybrid algorithm (HA) that blends features of genetic algorithms (GA) and simulated annealing (SA) was implemented for simultaneous fits of perturbed angular correlation (PAC) spectra. The main characteristic of the HA is the incorporation of a selection criterion based on SA into the basic structure of GA. The results obtained with the HA compare favorably with fits performed with conventional methods.
Jafari, Hamed; Salmasi, Nasser
2015-09-01
The nurse scheduling problem (NSP) has received a great amount of attention in recent years. In the NSP, the goal is to assign shifts to the nurses in order to satisfy the hospital's demand during the planning horizon by considering different objective functions. In this research, we focus on maximizing the nurses' preferences for working shifts and weekends off by considering several important factors such as hospital's policies, labor laws, governmental regulations, and the status of nurses at the end of the previous planning horizon in one of the largest hospitals in Iran i.e., Milad Hospital. Due to the shortage of available nurses, at first, the minimum total number of required nurses is determined. Then, a mathematical programming model is proposed to solve the problem optimally. Since the proposed research problem is NP-hard, a meta-heuristic algorithm based on simulated annealing (SA) is applied to heuristically solve the problem in a reasonable time. An initial feasible solution generator and several novel neighborhood structures are applied to enhance performance of the SA algorithm. Inspired from our observations in Milad hospital, random test problems are generated to evaluate the performance of the SA algorithm. The results of computational experiments indicate that the applied SA algorithm provides solutions with average percentage gap of 5.49 % compared to the upper bounds obtained from the mathematical model. Moreover, the applied SA algorithm provides significantly better solutions in a reasonable time than the schedules provided by the head nurses.
Directory of Open Access Journals (Sweden)
Yahong Zheng
2014-05-01
Full Text Available Purpose: This paper focuses on a classic optimization problem in operations research, the flexible job shop scheduling problem (FJSP, to discuss the method to deal with uncertainty in a manufacturing system.Design/methodology/approach: In this paper, condition based maintenance (CBM, a kind of preventive maintenance, is suggested to reduce unavailability of machines. Different to the simultaneous scheduling algorithm (SSA used in the previous article (Neale & Cameron,1979, an inserting algorithm (IA is applied, in which firstly a pre-schedule is obtained through heuristic algorithm and then maintenance tasks are inserted into the pre-schedule scheme.Findings: It is encouraging that a new better solution for an instance in benchmark of FJSP is obtained in this research. Moreover, factually SSA used in literature for solving normal FJSPPM (FJSP with PM is not suitable for the dynamic FJSPPM. Through application in the benchmark of normal FJSPPM, it is found that although IA obtains inferior results compared to SSA used in literature, it performs much better in executing speed.Originality/value: Different to traditional scheduling of FJSP, uncertainty of machines is taken into account, which increases the complexity of the problem. An inserting algorithm (IA is proposed to solve the dynamic scheduling problem. It is stated that the quality of the final result depends much on the quality of the pre-schedule obtained during the procedure of solving a normal FJSP. In order to find the best solution of FJSP, a comparative study of three heuristics is carried out, the integrated GA, ACO and ABC. In the comparative study, we find that GA performs best in the three heuristic algorithms. Meanwhile, a new better solution for an instance in benchmark of FJSP is obtained in this research.
Hybrid Cryptosystem Using Tiny Encryption Algorithm and LUC Algorithm
Rachmawati, Dian; Sharif, Amer; Jaysilen; Andri Budiman, Mohammad
2018-01-01
Security becomes a very important issue in data transmission and there are so many methods to make files more secure. One of that method is cryptography. Cryptography is a method to secure file by writing the hidden code to cover the original file. Therefore, if the people do not involve in cryptography, they cannot decrypt the hidden code to read the original file. There are many methods are used in cryptography, one of that method is hybrid cryptosystem. A hybrid cryptosystem is a method that uses a symmetric algorithm to secure the file and use an asymmetric algorithm to secure the symmetric algorithm key. In this research, TEA algorithm is used as symmetric algorithm and LUC algorithm is used as an asymmetric algorithm. The system is tested by encrypting and decrypting the file by using TEA algorithm and using LUC algorithm to encrypt and decrypt the TEA key. The result of this research is by using TEA Algorithm to encrypt the file, the cipher text form is the character from ASCII (American Standard for Information Interchange) table in the form of hexadecimal numbers and the cipher text size increase by sixteen bytes as the plaintext length is increased by eight characters.
A hybrid nested partitions algorithm for banking facility location problems
Xia, Li
2010-07-01
The facility location problem has been studied in many industries including banking network, chain stores, and wireless network. Maximal covering location problem (MCLP) is a general model for this type of problems. Motivated by a real-world banking facility optimization project, we propose an enhanced MCLP model which captures the important features of this practical problem, namely, varied costs and revenues, multitype facilities, and flexible coverage functions. To solve this practical problem, we apply an existing hybrid nested partitions algorithm to the large-scale situation. We further use heuristic-based extensions to generate feasible solutions more efficiently. In addition, the upper bound of this problem is introduced to study the quality of solutions. Numerical results demonstrate the effectiveness and efficiency of our approach. © 2010 IEEE.
A meta-heuristic method for solving scheduling problem: crow search algorithm
Adhi, Antono; Santosa, Budi; Siswanto, Nurhadi
2018-04-01
Scheduling is one of the most important processes in an industry both in manufacturingand services. The scheduling process is the process of selecting resources to perform an operation on tasks. Resources can be machines, peoples, tasks, jobs or operations.. The selection of optimum sequence of jobs from a permutation is an essential issue in every research in scheduling problem. Optimum sequence becomes optimum solution to resolve scheduling problem. Scheduling problem becomes NP-hard problem since the number of job in the sequence is more than normal number can be processed by exact algorithm. In order to obtain optimum results, it needs a method with capability to solve complex scheduling problems in an acceptable time. Meta-heuristic is a method usually used to solve scheduling problem. The recently published method called Crow Search Algorithm (CSA) is adopted in this research to solve scheduling problem. CSA is an evolutionary meta-heuristic method which is based on the behavior in flocks of crow. The calculation result of CSA for solving scheduling problem is compared with other algorithms. From the comparison, it is found that CSA has better performance in term of optimum solution and time calculation than other algorithms.
Directory of Open Access Journals (Sweden)
Qi Hu
2013-04-01
Full Text Available State-of-the-art heuristic algorithms to solve the vehicle routing problem with time windows (VRPTW usually present slow speeds during the early iterations and easily fall into local optimal solutions. Focusing on solving the above problems, this paper analyzes the particle encoding and decoding strategy of the particle swarm optimization algorithm, the construction of the vehicle route and the judgment of the local optimal solution. Based on these, a hybrid chaos-particle swarm optimization algorithm (HPSO is proposed to solve VRPTW. The chaos algorithm is employed to re-initialize the particle swarm. An efficient insertion heuristic algorithm is also proposed to build the valid vehicle route in the particle decoding process. A particle swarm premature convergence judgment mechanism is formulated and combined with the chaos algorithm and Gaussian mutation into HPSO when the particle swarm falls into the local convergence. Extensive experiments are carried out to test the parameter settings in the insertion heuristic algorithm and to evaluate that they are corresponding to the data’s real-distribution in the concrete problem. It is also revealed that the HPSO achieves a better performance than the other state-of-the-art algorithms on solving VRPTW.
Xu, Zhenzhen; Zou, Yongxing; Kong, Xiangjie
2015-01-01
To our knowledge, this paper investigates the first application of meta-heuristic algorithms to tackle the parallel machines scheduling problem with weighted late work criterion and common due date ([Formula: see text]). Late work criterion is one of the performance measures of scheduling problems which considers the length of late parts of particular jobs when evaluating the quality of scheduling. Since this problem is known to be NP-hard, three meta-heuristic algorithms, namely ant colony system, genetic algorithm, and simulated annealing are designed and implemented, respectively. We also propose a novel algorithm named LDF (largest density first) which is improved from LPT (longest processing time first). The computational experiments compared these meta-heuristic algorithms with LDF, LPT and LS (list scheduling), and the experimental results show that SA performs the best in most cases. However, LDF is better than SA in some conditions, moreover, the running time of LDF is much shorter than SA.
A hybrid adaptive large neighborhood search heuristic for lot-sizing with setup times
DEFF Research Database (Denmark)
Muller, Laurent Flindt; Spoorendonk, Simon; Pisinger, David
2012-01-01
This paper presents a hybrid of a general heuristic framework and a general purpose mixed-integer programming (MIP) solver. The framework is based on local search and an adaptive procedure which chooses between a set of large neighborhoods to be searched. A mixed integer programming solver and its......, and the upper bounds found by the commercial MIP solver ILOG CPLEX using state-of-the-art MIP formulations. Furthermore, we improve the best known solutions on 60 out of 100 and improve the lower bound on all 100 instances from the literature...
Structure optimization by heuristic algorithm in a coarse-grained off-lattice model
International Nuclear Information System (INIS)
Jing-Fa, Liu
2009-01-01
A heuristic algorithm is presented for a three-dimensional off-lattice AB model consisting of hydrophobic (A) and hydrophilic (B) residues in Fibonacci sequences. By incorporating extra energy contributions into the original potential function, we convert the constrained optimization problem of AB model into an unconstrained optimization problem which can be solved by the gradient method. After the gradient minimization leads to the basins of the local energy minima, the heuristic off-trap strategy and subsequent neighborhood search mechanism are then proposed to get out of local minima and search for the lower-energy configurations. Furthermore, in order to improve the efficiency of the proposed algorithm, we apply the improved version called the new PERM with importance sampling (nPERMis) of the chain-growth algorithm, pruned-enriched-Rosenbluth method (PERM), to face-centered-cubic (FCC)-lattice to produce the initial configurations. The numerical results show that the proposed methods are very promising for finding the ground states of proteins. In several cases, we found the ground state energies are lower than the best values reported in the present literature
Availability Allocation of Networked Systems Using Markov Model and Heuristics Algorithm
Directory of Open Access Journals (Sweden)
Ruiying Li
2014-01-01
Full Text Available It is a common practice to allocate the system availability goal to reliability and maintainability goals of components in the early design phase. However, the networked system availability is difficult to be allocated due to its complex topology and multiple down states. To solve these problems, a practical availability allocation method is proposed. Network reliability algebraic methods are used to derive the availability expression of the networked topology on the system level, and Markov model is introduced to determine that on the component level. A heuristic algorithm is proposed to obtain the reliability and maintainability allocation values of components. The principles applied in the AGREE reliability allocation method, proposed by the Advisory Group on Reliability of Electronic Equipment, and failure rate-based maintainability allocation method persist in our allocation method. A series system is used to verify the new algorithm, and the result shows that the allocation based on the heuristic algorithm is quite accurate compared to the traditional one. Moreover, our case study of a signaling system number 7 shows that the proposed allocation method is quite efficient for networked systems.
Robot navigation in unknown terrains: Introductory survey of non-heuristic algorithms
Energy Technology Data Exchange (ETDEWEB)
Rao, N.S.V. [Oak Ridge National Lab., TN (US); Kareti, S.; Shi, Weimin [Old Dominion Univ., Norfolk, VA (US). Dept. of Computer Science; Iyengar, S.S. [Louisiana State Univ., Baton Rouge, LA (US). Dept. of Computer Science
1993-07-01
A formal framework for navigating a robot in a geometric terrain by an unknown set of obstacles is considered. Here the terrain model is not a priori known, but the robot is equipped with a sensor system (vision or touch) employed for the purpose of navigation. The focus is restricted to the non-heuristic algorithms which can be theoretically shown to be correct within a given framework of models for the robot, terrain and sensor system. These formulations, although abstract and simplified compared to real-life scenarios, provide foundations for practical systems by highlighting the underlying critical issues. First, the authors consider the algorithms that are shown to navigate correctly without much consideration given to the performance parameters such as distance traversed, etc. Second, they consider non-heuristic algorithms that guarantee bounds on the distance traversed or the ratio of the distance traversed to the shortest path length (computed if the terrain model is known). Then they consider the navigation of robots with very limited computational capabilities such as finite automata, etc.
A Hybrid Ant Colony Optimization Algorithm for the Extended Capacitated Arc Routing Problem.
Li-Ning Xing; Rohlfshagen, P; Ying-Wu Chen; Xin Yao
2011-08-01
The capacitated arc routing problem (CARP) is representative of numerous practical applications, and in order to widen its scope, we consider an extended version of this problem that entails both total service time and fixed investment costs. We subsequently propose a hybrid ant colony optimization (ACO) algorithm (HACOA) to solve instances of the extended CARP. This approach is characterized by the exploitation of heuristic information, adaptive parameters, and local optimization techniques: Two kinds of heuristic information, arc cluster information and arc priority information, are obtained continuously from the solutions sampled to guide the subsequent optimization process. The adaptive parameters ease the burden of choosing initial values and facilitate improved and more robust results. Finally, local optimization, based on the two-opt heuristic, is employed to improve the overall performance of the proposed algorithm. The resulting HACOA is tested on four sets of benchmark problems containing a total of 87 instances with up to 140 nodes and 380 arcs. In order to evaluate the effectiveness of the proposed method, some existing capacitated arc routing heuristics are extended to cope with the extended version of this problem; the experimental results indicate that the proposed ACO method outperforms these heuristics.
International Nuclear Information System (INIS)
Vaitheeswaran, Ranganathan; Sathiya Narayanan, V.K.; Bhangle, Janhavi R.; Nirhali, Amit; Kumar, Namita; Basu, Sumit; Maiya, Vikram
2011-01-01
The study aims to introduce a hybrid optimization algorithm for anatomy-based intensity modulated radiotherapy (AB-IMRT). Our proposal is that by integrating an exact optimization algorithm with a heuristic optimization algorithm, the advantages of both the algorithms can be combined, which will lead to an efficient global optimizer solving the problem at a very fast rate. Our hybrid approach combines Gaussian elimination algorithm (exact optimizer) with fast simulated annealing algorithm (a heuristic global optimizer) for the optimization of beam weights in AB-IMRT. The algorithm has been implemented using MATLAB software. The optimization efficiency of the hybrid algorithm is clarified by (i) analysis of the numerical characteristics of the algorithm and (ii) analysis of the clinical capabilities of the algorithm. The numerical and clinical characteristics of the hybrid algorithm are compared with Gaussian elimination method (GEM) and fast simulated annealing (FSA). The numerical characteristics include convergence, consistency, number of iterations and overall optimization speed, which were analyzed for the respective cases of 8 patients. The clinical capabilities of the hybrid algorithm are demonstrated in cases of (a) prostate and (b) brain. The analyses reveal that (i) the convergence speed of the hybrid algorithm is approximately three times higher than that of FSA algorithm (ii) the convergence (percentage reduction in the cost function) in hybrid algorithm is about 20% improved as compared to that in GEM algorithm (iii) the hybrid algorithm is capable of producing relatively better treatment plans in terms of Conformity Index (CI) (∼ 2% - 5% improvement) and Homogeneity Index (HI) (∼ 4% - 10% improvement) as compared to GEM and FSA algorithms (iv) the sparing of organs at risk in hybrid algorithm-based plans is better than that in GEM-based plans and comparable to that in FSA-based plans; and (v) the beam weights resulting from the hybrid algorithm are
Virtual machine consolidation enhancement using hybrid regression algorithms
Directory of Open Access Journals (Sweden)
Amany Abdelsamea
2017-11-01
Full Text Available Cloud computing data centers are growing rapidly in both number and capacity to meet the increasing demands for highly-responsive computing and massive storage. Such data centers consume enormous amounts of electrical energy resulting in high operating costs and carbon dioxide emissions. The reason for this extremely high energy consumption is not just the quantity of computing resources and the power inefficiency of hardware, but rather lies in the inefficient usage of these resources. VM consolidation involves live migration of VMs hence the capability of transferring a VM between physical servers with a close to zero down time. It is an effective way to improve the utilization of resources and increase energy efficiency in cloud data centers. VM consolidation consists of host overload/underload detection, VM selection and VM placement. Most of the current VM consolidation approaches apply either heuristic-based techniques, such as static utilization thresholds, decision-making based on statistical analysis of historical data; or simply periodic adaptation of the VM allocation. Most of those algorithms rely on CPU utilization only for host overload detection. In this paper we propose using hybrid factors to enhance VM consolidation. Specifically we developed a multiple regression algorithm that uses CPU utilization, memory utilization and bandwidth utilization for host overload detection. The proposed algorithm, Multiple Regression Host Overload Detection (MRHOD, significantly reduces energy consumption while ensuring a high level of adherence to Service Level Agreements (SLA since it gives a real indication of host utilization based on three parameters (CPU, Memory, Bandwidth utilizations instead of one parameter only (CPU utilization. Through simulations we show that our approach reduces power consumption by 6 times compared to single factor algorithms using random workload. Also using PlanetLab workload traces we show that MRHOD improves
Directory of Open Access Journals (Sweden)
Farahmand-Mehr Mohammad
2014-01-01
Full Text Available In this paper, a hybrid flow shop scheduling problem with a new approach considering time lags and sequence-dependent setup time in realistic situations is presented. Since few works have been implemented in this field, the necessity of finding better solutions is a motivation to extend heuristic or meta-heuristic algorithms. This type of production system is found in industries such as food processing, chemical, textile, metallurgical, printed circuit board, and automobile manufacturing. A mixed integer linear programming (MILP model is proposed to minimize the makespan. Since this problem is known as NP-Hard class, a meta-heuristic algorithm, named Genetic Algorithm (GA, and three heuristic algorithms (Johnson, SPTCH and Palmer are proposed. Numerical experiments of different sizes are implemented to evaluate the performance of presented mathematical programming model and the designed GA in compare to heuristic algorithms and a benchmark algorithm. Computational results indicate that the designed GA can produce near optimal solutions in a short computational time for different size problems.
Exact and Heuristic Algorithms for Routing AGV on Path with Precedence Constraints
Directory of Open Access Journals (Sweden)
Liang Xu
2016-01-01
Full Text Available A new problem arises when an automated guided vehicle (AGV is dispatched to visit a set of customers, which are usually located along a fixed wire transmitting signal to navigate the AGV. An optimal visiting sequence is desired with the objective of minimizing the total travelling distance (or time. When precedence constraints are restricted on customers, the problem is referred to as traveling salesman problem on path with precedence constraints (TSPP-PC. Whether or not it is NP-complete has no answer in the literature. In this paper, we design dynamic programming for the TSPP-PC, which is the first polynomial-time exact algorithm when the number of precedence constraints is a constant. For the problem with number of precedence constraints, part of the input can be arbitrarily large, so we provide an efficient heuristic based on the exact algorithm.
Heuristic rules embedded genetic algorithm to solve VVER loading pattern optimization problem
International Nuclear Information System (INIS)
Fatih, Alim; Kostandi, Ivanov
2006-01-01
Full text: Loading Pattern (LP) optimization is one of the most important aspects of the operation of nuclear reactors. A genetic algorithm (GA) code GARCO (Genetic Algorithm Reactor Optimization Code) has been developed with embedded heuristic techniques to perform optimization calculations for in-core fuel management tasks. GARCO is a practical tool that includes a unique methodology applicable for all types of Pressurized Water Reactor (PWR) cores having different geometries with an unlimited number of FA types in the inventory. GARCO was developed by modifying the classical representation of the genotype. Both the genotype representation and the basic algorithm have been modified to incorporate the in-core fuel management heuristics rules so as to obtain the best results in a shorter time. GARCO has three modes. Mode 1 optimizes the locations of the fuel assemblies (FAs) in the nuclear reactor core, Mode 2 optimizes the placement of the burnable poisons (BPs) in a selected LP, and Mode 3 optimizes simultaneously both the LP and the BP placement in the core. This study describes the basic algorithm for Mode 1. The GARCO code is applied to the VVER-1000 reactor hexagonal geometry core in this study. The M oby-Dick i s used as reactor physics code to deplete FAs in the core. It was developed to analyze the VVER reactors by SKODA Inc. To use these rules for creating the initial population with GA operators, the worth definition application is developed. Each FA has a worth value for each location. This worth is between 0 and 1. If worth of any FA for a location is larger than 0.5, this FA in this location is a good choice. When creating the initial population of LPs, a subroutine provides a percent of individuals, which have genes with higher than the 0.5 worth. The percentage of the population to be created without using worth definition is defined in the GARCO input. And also age concept has been developed to accelerate the GA calculation process in reaching the
Directory of Open Access Journals (Sweden)
Suheel Abdullah Malik
Full Text Available In this paper, a new heuristic scheme for the approximate solution of the generalized Burgers'-Fisher equation is proposed. The scheme is based on the hybridization of Exp-function method with nature inspired algorithm. The given nonlinear partial differential equation (NPDE through substitution is converted into a nonlinear ordinary differential equation (NODE. The travelling wave solution is approximated by the Exp-function method with unknown parameters. The unknown parameters are estimated by transforming the NODE into an equivalent global error minimization problem by using a fitness function. The popular genetic algorithm (GA is used to solve the minimization problem, and to achieve the unknown parameters. The proposed scheme is successfully implemented to solve the generalized Burgers'-Fisher equation. The comparison of numerical results with the exact solutions, and the solutions obtained using some traditional methods, including adomian decomposition method (ADM, homotopy perturbation method (HPM, and optimal homotopy asymptotic method (OHAM, show that the suggested scheme is fairly accurate and viable for solving such problems.
Malik, Suheel Abdullah; Qureshi, Ijaz Mansoor; Amir, Muhammad; Malik, Aqdas Naveed; Haq, Ihsanul
2015-01-01
In this paper, a new heuristic scheme for the approximate solution of the generalized Burgers'-Fisher equation is proposed. The scheme is based on the hybridization of Exp-function method with nature inspired algorithm. The given nonlinear partial differential equation (NPDE) through substitution is converted into a nonlinear ordinary differential equation (NODE). The travelling wave solution is approximated by the Exp-function method with unknown parameters. The unknown parameters are estimated by transforming the NODE into an equivalent global error minimization problem by using a fitness function. The popular genetic algorithm (GA) is used to solve the minimization problem, and to achieve the unknown parameters. The proposed scheme is successfully implemented to solve the generalized Burgers'-Fisher equation. The comparison of numerical results with the exact solutions, and the solutions obtained using some traditional methods, including adomian decomposition method (ADM), homotopy perturbation method (HPM), and optimal homotopy asymptotic method (OHAM), show that the suggested scheme is fairly accurate and viable for solving such problems.
A Hybrid Algorithm for Optimizing Multi- Modal Functions
Institute of Scientific and Technical Information of China (English)
Li Qinghua; Yang Shida; Ruan Youlin
2006-01-01
A new genetic algorithm is presented based on the musical performance. The novelty of this algorithm is that a new genetic algorithm, mimicking the musical process of searching for a perfect state of harmony, which increases the robustness of it greatly and gives a new meaning of it in the meantime, has been developed. Combining the advantages of the new genetic algorithm, simplex algorithm and tabu search, a hybrid algorithm is proposed. In order to verify the effectiveness of the hybrid algorithm, it is applied to solving some typical numerical function optimization problems which are poorly solved by traditional genetic algorithms. The experimental results show that the hybrid algorithm is fast and reliable.
Foroughi Pour, Ali; Dalton, Lori A
2018-03-21
Many bioinformatics studies aim to identify markers, or features, that can be used to discriminate between distinct groups. In problems where strong individual markers are not available, or where interactions between gene products are of primary interest, it may be necessary to consider combinations of features as a marker family. To this end, recent work proposes a hierarchical Bayesian framework for feature selection that places a prior on the set of features we wish to select and on the label-conditioned feature distribution. While an analytical posterior under Gaussian models with block covariance structures is available, the optimal feature selection algorithm for this model remains intractable since it requires evaluating the posterior over the space of all possible covariance block structures and feature-block assignments. To address this computational barrier, in prior work we proposed a simple suboptimal algorithm, 2MNC-Robust, with robust performance across the space of block structures. Here, we present three new heuristic feature selection algorithms. The proposed algorithms outperform 2MNC-Robust and many other popular feature selection algorithms on synthetic data. In addition, enrichment analysis on real breast cancer, colon cancer, and Leukemia data indicates they also output many of the genes and pathways linked to the cancers under study. Bayesian feature selection is a promising framework for small-sample high-dimensional data, in particular biomarker discovery applications. When applied to cancer data these algorithms outputted many genes already shown to be involved in cancer as well as potentially new biomarkers. Furthermore, one of the proposed algorithms, SPM, outputs blocks of heavily correlated genes, particularly useful for studying gene interactions and gene networks.
An Efficient Meta Heuristic Algorithm to Solve Economic Load Dispatch Problems
Directory of Open Access Journals (Sweden)
R Subramanian
2013-12-01
Full Text Available The Economic Load Dispatch (ELD problems in power generation systems are to reduce the fuel cost by reducing the total cost for the generation of electric power. This paper presents an efficient Modified Firefly Algorithm (MFA, for solving ELD Problem. The main objective of the problems is to minimize the total fuel cost of the generating units having quadratic cost functions subjected to limits on generator true power output and transmission losses. The MFA is a stochastic, Meta heuristic approach based on the idealized behaviour of the flashing characteristics of fireflies. This paper presents an application of MFA to ELD for six generator test case system. MFA is applied to ELD problem and compared its solution quality and computation efficiency to Genetic algorithm (GA, Differential Evolution (DE, Particle swarm optimization (PSO, Artificial Bee Colony optimization (ABC, Biogeography-Based Optimization (BBO, Bacterial Foraging optimization (BFO, Firefly Algorithm (FA techniques. The simulation result shows that the proposed algorithm outperforms previous optimization methods.
Shrimp Feed Formulation via Evolutionary Algorithm with Power Heuristics for Handling Constraints
Directory of Open Access Journals (Sweden)
Rosshairy Abd. Rahman
2017-01-01
Full Text Available Formulating feed for shrimps represents a challenge to farmers and industry partners. Most previous studies selected from only a small number of ingredients due to cost pressures, even though hundreds of potential ingredients could be used in the shrimp feed mix. Even with a limited number of ingredients, the best combination of the most appropriate ingredients is still difficult to obtain due to various constraint requirements, such as nutrition value and cost. This paper proposes a new operator which we call Power Heuristics, as part of an Evolutionary Algorithm (EA, which acts as a constraint handling technique for the shrimp feed or diet formulation. The operator is able to choose and discard certain ingredients by utilising a specialized search mechanism. The aim is to achieve the most appropriate combination of ingredients. Power Heuristics are embedded in the EA at the early stage of a semirandom initialization procedure. The resulting combination of ingredients, after fulfilling all the necessary constraints, shows that this operator is useful in discarding inappropriate ingredients when a crucial constraint is violated.
Directory of Open Access Journals (Sweden)
MANAR Y. KASHMOLA
2012-06-01
Full Text Available The development of hybrid algorithms for solving complex optimization problems focuses on enhancing the strengths and compensating for the weakness of two or more complementary approaches. The goal is to intelligently combine the key elements of these approaches to find superior solutions to solve optimization problems. Optimal routing in communication network is considering a complex optimization problem. In this paper we propose a hybrid Hopfield Neural Network (HNN and Tabu Search (TS algorithm, this algorithm called hybrid HNN-TS algorithm. The paradigm of this hybridization is embedded. We embed the short-term memory and tabu restriction features from TS algorithm in the HNN model. The short-term memory and tabu restriction control the neuron selection process in the HNN model in order to get around the local minima problem and find an optimal solution using the HNN model to solve complex optimization problem. The proposed algorithm is intended to find the optimal path for packet transmission in the network which is fills in the field of routing problem. The optimal path that will be selected is depending on 4-tuples (delay, cost, reliability and capacity. Test results show that the propose algorithm can find path with optimal cost and a reasonable number of iterations. It also shows that the complexity of the network model won’t be a problem since the neuron selection is done heuristically.
International Nuclear Information System (INIS)
Tahani, Mojtaba; Babayan, Narek; Astaraei, Fatemeh Razi; Moghadam, Ali
2015-01-01
Highlights: • The performance of four different Meta heuristic optimization algorithms was studied. • Power coefficient and produced torque on stationary blade were selected as objective functions. • Chord and twist distributions were selected as decision variables. • All optimization algorithms were combined with blade element momentum theory. • The best Pareto front was obtained by multi objective flower pollination algorithm for HATCTs. - Abstract: The performance of horizontal axis tidal current turbines (HATCT) strongly depends on their geometry. According to this fact, the optimum performance will be achieved by optimized geometry. In this research study, the multi objective optimization of the HATCT is carried out by using four different multi objective optimization algorithms and their performance is evaluated in combination with blade element momentum theory (BEM). The second version of non-dominated sorting genetic algorithm (NSGA-II), multi objective particle swarm optimization algorithm (MOPSO), multi objective cuckoo search algorithm (MOCS) and multi objective flower pollination algorithm (MOFPA) are the selected algorithms. The power coefficient and the produced torque on stationary blade are selected as objective functions and chord and twist distributions along the blade span are selected as decision variables. These algorithms are combined with the blade element momentum (BEM) theory for the purpose of achieving the best Pareto front. The obtained Pareto fronts are compared with each other. Different sets of experiments are carried out by considering different numbers of iterations, population size and tip speed ratios. The Pareto fronts which are achieved by MOFPA and NSGA-II have better quality in comparison to MOCS and MOPSO, but on the other hand a detail comparison between the first fronts of MOFPA and NSGA-II indicated that MOFPA algorithm can obtain the best Pareto front and can maximize the power coefficient up to 4.3% and the
Meta-heuristic cuckoo search algorithm for the correction of faulty array antenna
International Nuclear Information System (INIS)
Khan, S.U.; Qureshi, I.M.
2015-01-01
In this article, we introduce a CSA (Cuckoo Search Algorithm) for compensation of faulty array antenna. It is assumed that the faulty elemental location is also known. When the sensor fails, it disturbs the power pattern, owing to which its SLL (Sidelobe Level) raises and nulls are shifted from their required positions. In this approach, the CSA optimizes the weights of the active elements for the reduction of SLL and null position in the desired direction. The meta-heuristic CSA is used for the control of SLL and steering of nulls at their required positions. The CSA is based on the necessitated kids bloodsucking behavior of cuckoo sort in arrangement with the Levy flight manners. The fitness function is used to reduce the error between the preferred and probable pattern along with null constraints. Imitational consequences for various scenarios are given to exhibit the validity and presentation of the proposed method. (author)
Hybrid Bee Ant Colony Algorithm for Effective Load Balancing And ...
African Journals Online (AJOL)
PROF. OLIVER OSUAGWA
Ant Colony algorithm is used in this hybrid Bee Ant Colony algorithm to solve load balancing issues ... Genetic Algorithm (MO-GA) for dynamic job scheduling that .... Information Networking and Applications Workshops. [7]. M. Dorigo & T.
A Heuristic Scheduling Algorithm for Minimizing Makespan and Idle Time in a Nagare Cell
Directory of Open Access Journals (Sweden)
M. Muthukumaran
2012-01-01
Full Text Available Adopting a focused factory is a powerful approach for today manufacturing enterprise. This paper introduces the basic manufacturing concept for a struggling manufacturer with limited conventional resources, providing an alternative solution to cell scheduling by implementing the technique of Nagare cell. Nagare cell is a Japanese concept with more objectives than cellular manufacturing system. It is a combination of manual and semiautomatic machine layout as cells, which gives maximum output flexibility for all kind of low-to-medium- and medium-to-high- volume productions. The solution adopted is to create a dedicated group of conventional machines, all but one of which are already available on the shop floor. This paper focuses on the development of heuristic scheduling algorithm in step-by-step method. The algorithm states that the summation of processing time of all products on each machine is calculated first and then the sum of processing time is sorted by the shortest processing time rule to get the assignment schedule. Based on the assignment schedule Nagare cell layout is arranged for processing the product. In addition, this algorithm provides steps to determine the product ready time, machine idle time, and product idle time. And also the Gantt chart, the experimental analysis, and the comparative results are illustrated with five (1×8 to 5×8 scheduling problems. Finally, the objective of minimizing makespan and idle time with greater customer satisfaction is studied through.
Directory of Open Access Journals (Sweden)
Jeng-Fung Chen
2018-02-01
Full Text Available Electricity load forecasting plays a paramount role in capacity planning, scheduling, and the operation of power systems. Reliable and accurate planning and prediction of electricity load are therefore vital. In this study, a novel approach for forecasting monthly electricity demands by wavelet transform and a neuro-fuzzy system is proposed. Firstly, the most appropriate inputs are selected and a dataset is constructed. Then, Haar wavelet transform is utilized to decompose the load data and eliminate noise. In the model, a hierarchical adaptive neuro-fuzzy inference system (HANFIS is suggested to solve the curse-of-dimensionality problem. Several heuristic algorithms including Gravitational Search Algorithm (GSA, Cuckoo Optimization Algorithm (COA, and Cuckoo Search (CS are utilized to optimize the clustering parameters which help form the rule base, and adaptive neuro-fuzzy inference system (ANFIS optimize the parameters in the antecedent and consequent parts of each sub-model. The proposed approach was applied to forecast the electricity load of Hanoi, Vietnam. The constructed models have shown high forecasting performances based on the performance indices calculated. The results demonstrate the validity of the approach. The obtained results were also compared with those of several other well-known methods including autoregressive integrated moving average (ARIMA and multiple linear regression (MLR. In our study, the wavelet CS-HANFIS model outperformed the others and provided more accurate forecasting.
A Hybrid Parallel Preconditioning Algorithm For CFD
Barth,Timothy J.; Tang, Wei-Pai; Kwak, Dochan (Technical Monitor)
1995-01-01
A new hybrid preconditioning algorithm will be presented which combines the favorable attributes of incomplete lower-upper (ILU) factorization with the favorable attributes of the approximate inverse method recently advocated by numerous researchers. The quality of the preconditioner is adjustable and can be increased at the cost of additional computation while at the same time the storage required is roughly constant and approximately equal to the storage required for the original matrix. In addition, the preconditioning algorithm suggests an efficient and natural parallel implementation with reduced communication. Sample calculations will be presented for the numerical solution of multi-dimensional advection-diffusion equations. The matrix solver has also been embedded into a Newton algorithm for solving the nonlinear Euler and Navier-Stokes equations governing compressible flow. The full paper will show numerous examples in CFD to demonstrate the efficiency and robustness of the method.
Energy Technology Data Exchange (ETDEWEB)
Pholdee, Nantiwat; Bureerat, Su Jin [Khon Kaen University, Khon Kaen (Thailand); Baek, Hyun Moo [DTaQ, Changwon (Korea, Republic of); Im, Yong Taek [KAIST, Daejeon (Korea, Republic of)
2015-08-15
Process optimization of a Non-circular drawing (NCD) sequence of a pearlitic steel wire was performed to improve the mechanical properties of a drawn wire based on surrogate assisted meta-heuristic algorithms. The objective function was introduced to minimize inhomogeneity of effective strain distribution at the cross-section of the drawn wire, which could deteriorate delamination characteristics of the drawn wires. The design variables introduced were die geometry and reduction of area of the NCD sequence. Several surrogate models and their combinations with the weighted sum technique were utilized. In the process optimization of the NCD sequence, the surrogate models were used to predict effective strain distributions at the cross-section of the drawn wire. Optimization using Differential evolution (DE) algorithm was performed, while the objective function was calculated from the predicted effective strains. The accuracy of all surrogate models was investigated, while optimum results were compared with the previous study available in the literature. It was found that hybrid surrogate models can improve prediction accuracy compared to a single surrogate model. The best result was obtained from the combination of Kriging (KG) and Support vector regression (SVR) models, while the second best was obtained from the combination of four surrogate models: Polynomial response surface (PRS), Radial basic function (RBF), KG, and SVR. The optimum results found in this study showed better effective strain homogeneity at the cross-section of the drawn wire with the same total reduction of area of the previous work available in the literature for fewer number of passes. The multi-surrogate models with the weighted sum technique were found to be powerful in improving the delamination characteristics of the drawn wire and reducing the production cost.
A HYBRID ALGORITHM FOR THE ROBUST GRAPH COLORING PROBLEM
Directory of Open Access Journals (Sweden)
Román Anselmo Mora Gutiérrez
2016-08-01
Full Text Available A hybridalgorithm which combines mathematical programming techniques (Kruskal’s algorithm and the strategy of maintaining arc consistency to solve constraint satisfaction problem “CSP” and heuristic methods (musical composition method and DSATUR to resolve the robust graph coloring problem (RGCP is proposed in this paper. Experimental result shows that this algorithm is better than the other algorithms presented on the literature.
Hybrid Microgrid Configuration Optimization with Evolutionary Algorithms
Lopez, Nicolas
This dissertation explores the Renewable Energy Integration Problem, and proposes a Genetic Algorithm embedded with a Monte Carlo simulation to solve large instances of the problem that are impractical to solve via full enumeration. The Renewable Energy Integration Problem is defined as finding the optimum set of components to supply the electric demand to a hybrid microgrid. The components considered are solar panels, wind turbines, diesel generators, electric batteries, connections to the power grid and converters, which can be inverters and/or rectifiers. The methodology developed is explained as well as the combinatorial formulation. In addition, 2 case studies of a single objective optimization version of the problem are presented, in order to minimize cost and to minimize global warming potential (GWP) followed by a multi-objective implementation of the offered methodology, by utilizing a non-sorting Genetic Algorithm embedded with a monte Carlo Simulation. The method is validated by solving a small instance of the problem with known solution via a full enumeration algorithm developed by NREL in their software HOMER. The dissertation concludes that the evolutionary algorithms embedded with Monte Carlo simulation namely modified Genetic Algorithms are an efficient form of solving the problem, by finding approximate solutions in the case of single objective optimization, and by approximating the true Pareto front in the case of multiple objective optimization of the Renewable Energy Integration Problem.
Optimized LTE cell planning for multiple user density subareas using meta-heuristic algorithms
Ghazzai, Hakim
2014-09-01
Base station deployment in cellular networks is one of the most fundamental problems in network design. This paper proposes a novel method for the cell planning problem for the fourth generation 4G-LTE cellular networks using meta heuristic algorithms. In this approach, we aim to satisfy both coverage and cell capacity constraints simultaneously by formulating a practical optimization problem. We start by performing a typical coverage and capacity dimensioning to identify the initial required number of base stations. Afterwards, we implement a Particle Swarm Optimization algorithm or a recently-proposed Grey Wolf Optimizer to find the optimal base station locations that satisfy both problem constraints in the area of interest which can be divided into several subareas with different user densities. Subsequently, an iterative approach is executed to eliminate eventual redundant base stations. We have also performed Monte Carlo simulations to study the performance of the proposed scheme and computed the average number of users in outage. Results show that our proposed approach respects in all cases the desired network quality of services even for large-scale dimension problems.
Directory of Open Access Journals (Sweden)
I Gusti Made Panji Indrawinatha
2016-12-01
Full Text Available Virus komputer merupakan perangkat lunak berbahaya yang dapat merusak data dan menggandakan diri pada sistem komputer. Untuk mendeteksi dan membersihkan virus dari sistem komputer, maka dibuatlah aplikasi antivirus. Dalam mendeteksi berbagai jenis virus sebuah aplikasi antivirus biasanya menggunakan beberapa metode. Pada penelitian ini akan membahas perancangan sebuah aplikasi antivirus menggunakan metode Secure Hash Algorithm 1 (SHA1 dan heuristic string sebagai metode pendeteksian virus. Dari pengujian yang dilakukan diperoleh hasil dimana saat tidak menggunakan heuristic, antivirus hanya mendeteksi 12 file dari 34 file sample virus atau memiliki tingkat akurasi pendeteksian sebesar 35%. sedangkan saat menggunakan heuristic, antivirus berhasil mendeteksi 31 file dari 34 file sample virus atau memiliki tingkat akurasi pendeteksian sebesar 91%.
Directory of Open Access Journals (Sweden)
Igor Stojanović
2017-01-01
Full Text Available The continuous planar facility location problem with the connected region of feasible solutions bounded by arcs is a particular case of the constrained Weber problem. This problem is a continuous optimization problem which has a nonconvex feasible set of constraints. This paper suggests appropriate modifications of four metaheuristic algorithms which are defined with the aim of solving this type of nonconvex optimization problems. Also, a comparison of these algorithms to each other as well as to the heuristic algorithm is presented. The artificial bee colony algorithm, firefly algorithm, and their recently proposed improved versions for constrained optimization are appropriately modified and applied to the case study. The heuristic algorithm based on modified Weiszfeld procedure is also implemented for the purpose of comparison with the metaheuristic approaches. Obtained numerical results show that metaheuristic algorithms can be successfully applied to solve the instances of this problem of up to 500 constraints. Among these four algorithms, the improved version of artificial bee algorithm is the most efficient with respect to the quality of the solution, robustness, and the computational efficiency.
Heuristics of the algorithm: Big Data, user interpretation and institutional translation
Directory of Open Access Journals (Sweden)
Göran Bolin
2015-10-01
Full Text Available Intelligence on mass media audiences was founded on representative statistical samples, analysed by statisticians at the market departments of media corporations. The techniques for aggregating user data in the age of pervasive and ubiquitous personal media (e.g. laptops, smartphones, credit cards/swipe cards and radio-frequency identification build on large aggregates of information (Big Data analysed by algorithms that transform data into commodities. While the former technologies were built on socio-economic variables such as age, gender, ethnicity, education, media preferences (i.e. categories recognisable to media users and industry representatives alike, Big Data technologies register consumer choice, geographical position, web movement, and behavioural information in technologically complex ways that for most lay people are too abstract to appreciate the full consequences of. The data mined for pattern recognition privileges relational rather than demographic qualities. We argue that the agency of interpretation at the bottom of market decisions within media companies nevertheless introduces a ‘heuristics of the algorithm’, where the data inevitably becomes translated into social categories. In the paper we argue that although the promise of algorithmically generated data is often implemented in automated systems where human agency gets increasingly distanced from the data collected (it is our technological gadgets that are being surveyed, rather than us as social beings, one can observe a felt need among media users and among industry actors to ‘translate back’ the algorithmically produced relational statistics into ‘traditional’ social parameters. The tenacious social structures within the advertising industries work against the techno-economically driven tendencies within the Big Data economy.
A Hybrid Genetic Programming Algorithm for Automated Design of Dispatching Rules.
Nguyen, Su; Mei, Yi; Xue, Bing; Zhang, Mengjie
2018-06-04
Designing effective dispatching rules for production systems is a difficult and timeconsuming task if it is done manually. In the last decade, the growth of computing power, advanced machine learning, and optimisation techniques has made the automated design of dispatching rules possible and automatically discovered rules are competitive or outperform existing rules developed by researchers. Genetic programming is one of the most popular approaches to discovering dispatching rules in the literature, especially for complex production systems. However, the large heuristic search space may restrict genetic programming from finding near optimal dispatching rules. This paper develops a new hybrid genetic programming algorithm for dynamic job shop scheduling based on a new representation, a new local search heuristic, and efficient fitness evaluators. Experiments show that the new method is effective regarding the quality of evolved rules. Moreover, evolved rules are also significantly smaller and contain more relevant attributes.
Hybrid Firefly Variants Algorithm for Localization Optimization in WSN
Directory of Open Access Journals (Sweden)
P. SrideviPonmalar
2017-01-01
Full Text Available Localization is one of the key issues in wireless sensor networks. Several algorithms and techniques have been introduced for localization. Localization is a procedural technique of estimating the sensor node location. In this paper, a novel three hybrid algorithms based on firefly is proposed for localization problem. Hybrid Genetic Algorithm-Firefly Localization Algorithm (GA-FFLA, Hybrid Differential Evolution-Firefly Localization Algorithm (DE-FFLA and Hybrid Particle Swarm Optimization -Firefly Localization Algorithm (PSO-FFLA are analyzed, designed and implemented to optimize the localization error. The localization algorithms are compared based on accuracy of estimation of location, time complexity and iterations required to achieve the accuracy. All the algorithms have hundred percent estimation accuracy but with variations in the number of firefliesr requirements, variation in time complexity and number of iteration requirements. Keywords: Localization; Genetic Algorithm; Differential Evolution; Particle Swarm Optimization
Opposition-Based Memetic Algorithm and Hybrid Approach for Sorting Permutations by Reversals.
Soncco-Álvarez, José Luis; Muñoz, Daniel M; Ayala-Rincón, Mauricio
2018-02-21
Sorting unsigned permutations by reversals is a difficult problem; indeed, it was proved to be NP-hard by Caprara (1997). Because of its high complexity, many approximation algorithms to compute the minimal reversal distance were proposed until reaching the nowadays best-known theoretical ratio of 1.375. In this article, two memetic algorithms to compute the reversal distance are proposed. The first one uses the technique of opposition-based learning leading to an opposition-based memetic algorithm; the second one improves the previous algorithm by applying the heuristic of two breakpoint elimination leading to a hybrid approach. Several experiments were performed with one-hundred randomly generated permutations, single benchmark permutations, and biological permutations. Results of the experiments showed that the proposed OBMA and Hybrid-OBMA algorithms achieve the best results for practical cases, that is, for permutations of length up to 120. Also, Hybrid-OBMA showed to improve the results of OBMA for permutations greater than or equal to 60. The applicability of our proposed algorithms was checked processing permutations based on biological data, in which case OBMA gave the best average results for all instances.
Gamshadzaei, Mohammad Hossein; Rahimzadegan, Majid
2017-10-01
Identification of water extents in Landsat images is challenging due to surfaces with similar reflectance to water extents. The objective of this study is to provide stable and accurate methods for identifying water extents in Landsat images based on meta-heuristic algorithms. Then, seven Landsat images were selected from various environmental regions in Iran. Training of the algorithms was performed using 40 water pixels and 40 nonwater pixels in operational land imager images of Chitgar Lake (one of the study regions). Moreover, high-resolution images from Google Earth were digitized to evaluate the results. Two approaches were considered: index-based and artificial intelligence (AI) algorithms. In the first approach, nine common water spectral indices were investigated. AI algorithms were utilized to acquire coefficients of optimal band combinations to extract water extents. Among the AI algorithms, the artificial neural network algorithm and also the ant colony optimization, genetic algorithm, and particle swarm optimization (PSO) meta-heuristic algorithms were implemented. Index-based methods represented different performances in various regions. Among AI methods, PSO had the best performance with average overall accuracy and kappa coefficient of 93% and 98%, respectively. The results indicated the applicability of acquired band combinations to extract accurately and stably water extents in Landsat imagery.
Event based neutron activation spectroscopy and analysis algorithm using MLE and meta-heuristics
International Nuclear Information System (INIS)
Wallace, B.
2014-01-01
Techniques used in neutron activation analysis are often dependent on the experimental setup. In the context of developing a portable and high efficiency detection array, good energy resolution and half-life discrimination are difficult to obtain with traditional methods given the logistic and financial constraints. An approach different from that of spectrum addition and standard spectroscopy analysis was needed. The use of multiple detectors prompts the need for a flexible storage of acquisition data to enable sophisticated post processing of information. Analogously to what is done in heavy ion physics, gamma detection counts are stored as two-dimensional events. This enables post-selection of energies and time frames without the need to modify the experimental setup. This method of storage also permits the use of more complex analysis tools. Given the nature of the problem at hand, a light and efficient analysis code had to be devised. A thorough understanding of the physical and statistical processes involved was used to create a statistical model. Maximum likelihood estimation was combined with meta-heuristics to produce a sophisticated curve-fitting algorithm. Simulated and experimental data were fed into the analysis code prompting positive results in terms of half-life discrimination, peak identification and noise reduction. The code was also adapted to other fields of research such as heavy ion identification of the quasi-target (QT) and quasi-particle (QP). The approach used seems to be able to translate well into other fields of research. (author)
A heuristic algorithm to approximate dynamic program of a novel new product development process
Directory of Open Access Journals (Sweden)
Hamed Fazlollahtabar
2016-01-01
Full Text Available We are concerned with a new product development (NPD network in digital environment in which the aim is to find integrated attributes for value added purposes. Different views exist for new product development. Here, the effective factors are categorized into customers, competitors and the company’s own past experience. Also, various attributes are considered for the development of a product. Thus, using digital data of attributes, the optimal set of attributes is chosen for user in the new product development. Regarding the multi stage decision making process of the customer, competitor and company’s own past experience, we develop a multi-dimensional dynamic program as a useful tool for multi stage decision making. To counteract the dynamism of the digital data in different time periods, two concepts of state and policy direction are introduced to determine the cost of moving through the stages of the proposed NPD digital network. Since the space requirements and value function computations become impractical for even moderate size, we approximate the optimal value function developing a heuristic algorithm.
Roozitalab, Ali; Asgharizadeh, Ezzatollah
2013-12-01
Warranty is now an integral part of each product. Since its length is directly related to the cost of production, it should be set in such a way that it would maximize revenue generation and customers' satisfaction. Furthermore, based on the behavior of customers, it is assumed that increasing the warranty period to earn the trust of more customers leads to more sales until the market is saturated. We should bear in mind that different groups of consumers have different consumption behaviors and that performance of the product has a direct impact on the failure rate over the life of the product. Therefore, the optimum duration for every group is different. In fact, we cannot present different warranty periods for various customer groups. In conclusion, using cuckoo meta-heuristic optimization algorithm, we try to find a common period for the entire population. Results with high convergence offer a term length that will maximize the aforementioned goals simultaneously. The study was tested using real data from Appliance Company. The results indicate a significant increase in sales when the optimization approach was applied; it provides a longer warranty through increased revenue from selling, not only reducing profit margins but also increasing it.
Traffic sharing algorithms for hybrid mobile networks
Arcand, S.; Murthy, K. M. S.; Hafez, R.
1995-01-01
In a hybrid (terrestrial + satellite) mobile personal communications networks environment, a large size satellite footprint (supercell) overlays on a large number of smaller size, contiguous terrestrial cells. We assume that the users have either a terrestrial only single mode terminal (SMT) or a terrestrial/satellite dual mode terminal (DMT) and the ratio of DMT to the total terminals is defined gamma. It is assumed that the call assignments to and handovers between terrestrial cells and satellite supercells take place in a dynamic fashion when necessary. The objectives of this paper are twofold, (1) to propose and define a class of traffic sharing algorithms to manage terrestrial and satellite network resources efficiently by handling call handovers dynamically, and (2) to analyze and evaluate the algorithms by maximizing the traffic load handling capability (defined in erl/cell) over a wide range of terminal ratios (gamma) given an acceptable range of blocking probabilities. Two of the algorithms (G & S) in the proposed class perform extremely well for a wide range of gamma.
Heuristics for the Variable Sized Bin Packing Problem Using a Hybrid P-System and CUDA Architecture
AlEnezi, Qadha'a; AboElFotoh, Hosam; AlBdaiwi, Bader; AlMulla, Mohammad Ali
2016-01-01
The Variable Sized Bin Packing Problem has a wide range of application areas including packing, scheduling, and manufacturing. Given a list of items and variable sized bin types, the objective is to minimize the total size of the used bins. This problem is known to be NP-hard. In this article, we present two new heuristics for solving the problem using a new variation of P systems with active membranes, which we call a hybrid P system, implemented in CUDA. Our hybrid P-system model allows usi...
BiCluE - Exact and heuristic algorithms for weighted bi-cluster editing of biomedical data
DEFF Research Database (Denmark)
Sun, Peng; Guo, Jiong; Baumbach, Jan
2013-01-01
to solve the weighted bi-cluster editing problem. It implements (1) an exact algorithm based on fixed-parameter tractability and (2) a polynomial-time greedy heuristics based on solving the hardest part, edge deletions, first. We evaluated its performance on artificial graphs. Afterwards we exemplarily...... problem. BiCluE as well as the supplementary results are available online at http://biclue.mpi-inf.mpg.de webcite....
Directory of Open Access Journals (Sweden)
Qingyang Zhang
2015-02-01
Full Text Available Bird Mating Optimizer (BMO is a novel meta-heuristic optimization algorithm inspired by intelligent mating behavior of birds. However, it is still insufficient in convergence of speed and quality of solution. To overcome these drawbacks, this paper proposes a hybrid algorithm (TLBMO, which is established by combining the advantages of Teaching-learning-based optimization (TLBO and Bird Mating Optimizer (BMO. The performance of TLBMO is evaluated on 23 benchmark functions, and compared with seven state-of-the-art approaches, namely BMO, TLBO, Artificial Bee Bolony (ABC, Particle Swarm Optimization (PSO, Fast Evolution Programming (FEP, Differential Evolution (DE, Group Search Optimization (GSO. Experimental results indicate that the proposed method performs better than other existing algorithms for global numerical optimization.
Directory of Open Access Journals (Sweden)
Chunfeng Liu
2013-01-01
Full Text Available The paper presents a novel hybrid genetic algorithm (HGA for a deterministic scheduling problem where multiple jobs with arbitrary precedence constraints are processed on multiple unrelated parallel machines. The objective is to minimize total tardiness, since delays of the jobs may lead to punishment cost or cancellation of orders by the clients in many situations. A priority rule-based heuristic algorithm, which schedules a prior job on a prior machine according to the priority rule at each iteration, is suggested and embedded to the HGA for initial feasible schedules that can be improved in further stages. Computational experiments are conducted to show that the proposed HGA performs well with respect to accuracy and efficiency of solution for small-sized problems and gets better results than the conventional genetic algorithm within the same runtime for large-sized problems.
Heuristic rules embedded genetic algorithm for in-core fuel management optimization
Alim, Fatih
The objective of this study was to develop a unique methodology and a practical tool for designing loading pattern (LP) and burnable poison (BP) pattern for a given Pressurized Water Reactor (PWR) core. Because of the large number of possible combinations for the fuel assembly (FA) loading in the core, the design of the core configuration is a complex optimization problem. It requires finding an optimal FA arrangement and BP placement in order to achieve maximum cycle length while satisfying the safety constraints. Genetic Algorithms (GA) have been already used to solve this problem for LP optimization for both PWR and Boiling Water Reactor (BWR). The GA, which is a stochastic method works with a group of solutions and uses random variables to make decisions. Based on the theories of evaluation, the GA involves natural selection and reproduction of the individuals in the population for the next generation. The GA works by creating an initial population, evaluating it, and then improving the population by using the evaluation operators. To solve this optimization problem, a LP optimization package, GARCO (Genetic Algorithm Reactor Code Optimization) code is developed in the framework of this thesis. This code is applicable for all types of PWR cores having different geometries and structures with an unlimited number of FA types in the inventory. To reach this goal, an innovative GA is developed by modifying the classical representation of the genotype. To obtain the best result in a shorter time, not only the representation is changed but also the algorithm is changed to use in-core fuel management heuristics rules. The improved GA code was tested to demonstrate and verify the advantages of the new enhancements. The developed methodology is explained in this thesis and preliminary results are shown for the VVER-1000 reactor hexagonal geometry core and the TMI-1 PWR. The improved GA code was tested to verify the advantages of new enhancements. The core physics code
New MPPT algorithm based on hybrid dynamical theory
Elmetennani, Shahrazed
2014-11-01
This paper presents a new maximum power point tracking algorithm based on the hybrid dynamical theory. A multiceli converter has been considered as an adaptation stage for the photovoltaic chain. The proposed algorithm is a hybrid automata switching between eight different operating modes, which has been validated by simulation tests under different working conditions. © 2014 IEEE.
New MPPT algorithm based on hybrid dynamical theory
Elmetennani, Shahrazed; Laleg-Kirati, Taous-Meriem; Benmansour, K.; Boucherit, M. S.; Tadjine, M.
2014-01-01
This paper presents a new maximum power point tracking algorithm based on the hybrid dynamical theory. A multiceli converter has been considered as an adaptation stage for the photovoltaic chain. The proposed algorithm is a hybrid automata switching between eight different operating modes, which has been validated by simulation tests under different working conditions. © 2014 IEEE.
Optimized LTE cell planning for multiple user density subareas using meta-heuristic algorithms
Ghazzai, Hakim; Yaacoub, Elias E.; Alouini, Mohamed-Slim
2014-01-01
Base station deployment in cellular networks is one of the most fundamental problems in network design. This paper proposes a novel method for the cell planning problem for the fourth generation 4G-LTE cellular networks using meta heuristic
FC-TLBO: fully constrained meta-heuristic algorithm for abundance ...
Indian Academy of Sciences (India)
Omprakash Tembhurne
hyperspectral unmixing; meta-heuristic approach; teaching-learning-based optimisation (TLBO). 1. ... area of research due to its real-time applications. Satellite .... describes the detailed methodology of proposed FC-TLBO. Section 4 contains ...
Directory of Open Access Journals (Sweden)
Vikram Kumar Kamboj
2016-04-01
Full Text Available In recent years, global warming and carbon dioxide (CO2 emission reduction have become important issues in India, as CO2 emission levels are continuing to rise in accordance with the increased volume of Indian national energy consumption under the pressure of global warming, it is crucial for Indian government to impose the effective policy to promote CO2 emission reduction. Challenge of supplying the nation with high quality and reliable electrical energy at a reasonable cost, converted government policy into deregulation and restructuring environment. This research paper presents aims to presents an effective solution for energy and environmental problems of electric power using an efficient and powerful hybrid optimization algorithm: Hybrid Harmony search-random search algorithm. The proposed algorithm is tested for standard IEEE-14 bus, -30 bus and -56 bus system. The effectiveness of proposed hybrid algorithm is compared with others well known evolutionary, heuristics and meta-heuristics search algorithms. For multi-objective unit commitment, it is found that as there are conflicting relationship between cost and emission, if the performance in cost criterion is improved, performance in the emission is seen to deteriorate.
Directory of Open Access Journals (Sweden)
Jianhua Wang
2014-10-01
Full Text Available Purpose: The stable relationship of one-supplier-one-customer is replaced by a dynamic relationship of multi-supplier-multi-customer in current market gradually, and efficient scheduling techniques are important tools of the dynamic supply chain relationship establishing process. This paper studies the optimization of the integrated planning and scheduling problem of a two-stage supply chain with multiple manufacturers and multiple retailers to obtain a minimum supply chain operating cost, whose manufacturers have different production capacities, holding and producing cost rates, transportation costs to retailers.Design/methodology/approach: As a complex task allocation and scheduling problem, this paper sets up an INLP model for it and designs a Unit Cost Adjusting (UCA heuristic algorithm that adjust the suppliers’ supplying quantity according to their unit costs step by step to solve the model.Findings: Relying on the contrasting analysis between the UCA and the Lingo solvers for optimizing many numerical experiments, results show that the INLP model and the UCA algorithm can obtain its near optimal solution of the two-stage supply chain’s planning and scheduling problem within very short CPU time.Research limitations/implications: The proposed UCA heuristic can easily help managers to optimizing the two-stage supply chain scheduling problems which doesn’t include the delivery time and batch of orders. For two-stage supply chains are the most common form of actual commercial relationships, so to make some modification and study on the UCA heuristic should be able to optimize the integrated planning and scheduling problems of a supply chain with more reality constraints.Originality/value: This research proposes an innovative UCA heuristic for optimizing the integrated planning and scheduling problem of two-stage supply chains with the constraints of suppliers’ production capacity and the orders’ delivering time, and has a great
Solving SAT Problem Based on Hybrid Differential Evolution Algorithm
Liu, Kunqi; Zhang, Jingmin; Liu, Gang; Kang, Lishan
Satisfiability (SAT) problem is an NP-complete problem. Based on the analysis about it, SAT problem is translated equally into an optimization problem on the minimum of objective function. A hybrid differential evolution algorithm is proposed to solve the Satisfiability problem. It makes full use of strong local search capacity of hill-climbing algorithm and strong global search capability of differential evolution algorithm, which makes up their disadvantages, improves the efficiency of algorithm and avoids the stagnation phenomenon. The experiment results show that the hybrid algorithm is efficient in solving SAT problem.
Testing a Fourier Accelerated Hybrid Monte Carlo Algorithm
Catterall, S.; Karamov, S.
2001-01-01
We describe a Fourier Accelerated Hybrid Monte Carlo algorithm suitable for dynamical fermion simulations of non-gauge models. We test the algorithm in supersymmetric quantum mechanics viewed as a one-dimensional Euclidean lattice field theory. We find dramatic reductions in the autocorrelation time of the algorithm in comparison to standard HMC.
Directory of Open Access Journals (Sweden)
Mei-Shiang Chang
2013-01-01
Full Text Available The facility layout problem is a typical combinational optimization problem. In this research, a slicing tree representation and a quadratically constrained program model are combined with harmony search to develop a heuristic method for solving the unequal-area block layout problem. Because of characteristics of slicing tree structure, we propose a regional structure of harmony memory to memorize facility layout solutions and two kinds of harmony improvisation to enhance global search ability of the proposed heuristic method. The proposed harmony search based heuristic is tested on 10 well-known unequal-area facility layout problems from the literature. The results are compared with the previously best-known solutions obtained by genetic algorithm, tabu search, and ant system as well as exact methods. For problems O7, O9, vC10Ra, M11*, and Nug12, new best solutions are found. For other problems, the proposed approach can find solutions that are very similar to previous best-known solutions.
International Nuclear Information System (INIS)
Lu Youlin; Zhou Jianzhong; Qin Hui; Wang Ying; Zhang Yongchuan
2011-01-01
Research highlights: → Multi-objective optimization model of short-term environmental/economic hydrothermal scheduling. → A hybrid multi-objective cultural algorithm (HMOCA) is presented. → New heuristic constraint handling methods are proposed. → Better quality solutions by reducing fuel cost and emission effects simultaneously are obtained. -- Abstract: The short-term environmental/economic hydrothermal scheduling (SEEHS) with the consideration of multiple objectives is a complicated non-linear constrained optimization problem with non-smooth and non-convex characteristics. In this paper, a multi-objective optimization model of SEEHS is proposed to consider the minimal of fuel cost and emission effects synthetically, and the transmission loss, the water transport delays between connected reservoirs as well as the valve-point effects of thermal plants are taken into consideration to formulate the problem precisely. Meanwhile, a hybrid multi-objective cultural algorithm (HMOCA) is presented to deal with SEEHS problem by optimizing both two objectives simultaneously. The proposed method integrated differential evolution (DE) algorithm into the framework of cultural algorithm model to implement the evolution of population space, and two knowledge structures in belief space are redefined according to the characteristics of DE and SEEHS problem to avoid premature convergence effectively. Moreover, in order to deal with the complicated constraints effectively, new heuristic constraint handling methods without any penalty factor settings are proposed in this paper. The feasibility and effectiveness of the proposed HMOCA method are demonstrated by two case studies of a hydrothermal power system. The simulation results reveal that, compared with other methods established recently, HMOCA can get better quality solutions by reducing fuel cost and emission effects simultaneously.
Directory of Open Access Journals (Sweden)
Yu Lin
2015-01-01
Full Text Available High frequency and small lot size are characteristics of milk runs and are often used to implement the just-in-time (JIT strategy in logistical systems. The common frequency problem, which simultaneously involves planning of the route and frequency, has been extensively researched in milk run systems. In addition, vehicle type choice in the milk run system also has a significant influence on the operating cost. Therefore, in this paper, we simultaneously consider vehicle routing planning, frequency planning, and vehicle type choice in order to optimize the sum of the cost of transportation, inventory, and dispatch. To this end, we develop a mathematical model to describe the common frequency problem with vehicle type choice. Since the problem is NP hard, we develop a two-phase heuristic algorithm to solve the model. More specifically, an initial satisfactory solution is first generated through a greedy heuristic algorithm to maximize the ratio of the superior arc frequency to the inferior arc frequency. Following this, a tabu search (TS with limited search scope is used to improve the initial satisfactory solution. Numerical examples with different sizes establish the efficacy of our model and our proposed algorithm.
Directory of Open Access Journals (Sweden)
Zhang Ziran
2018-01-01
Full Text Available In the study, context-creativity of Teresa M. Amabile was used as The foundation to apply it in the bags & luggage design course. Moreover, the sectional creative training education mode of prior heuristic task and postpositional algorithmic task was proposed. 26 junior students in product design were used as the trial objects. The Consensual Technique for Creativity (CAT was considered as the scoring standard of creative performance. In the end, the sectional theoretical framework of effective creative training in product design was finally proposed.
A NEW HYBRID GENETIC ALGORITHM FOR VERTEX COVER PROBLEM
UĞURLU, Onur
2015-01-01
The minimum vertex cover problem belongs to the class of NP-compl ete graph theoretical problems. This paper presents a hybrid genetic algorithm to solve minimum ver tex cover problem. In this paper, it has been shown that when local optimization technique is added t o genetic algorithm to form hybrid genetic algorithm, it gives more quality solution than simple genet ic algorithm. Also, anew mutation operator has been developed especially for minimum verte...
Multimodal Logistics Network Design over Planning Horizon through a Hybrid Meta-Heuristic Approach
Shimizu, Yoshiaki; Yamazaki, Yoshihiro; Wada, Takeshi
Logistics has been acknowledged increasingly as a key issue of supply chain management to improve business efficiency under global competition and diversified customer demands. This study aims at improving a quality of strategic decision making associated with dynamic natures in logistics network optimization. Especially, noticing an importance to concern with a multimodal logistics under multiterms, we have extended a previous approach termed hybrid tabu search (HybTS). The attempt intends to deploy a strategic planning more concretely so that the strategic plan can link to an operational decision making. The idea refers to a smart extension of the HybTS to solve a dynamic mixed integer programming problem. It is a two-level iterative method composed of a sophisticated tabu search for the location problem at the upper level and a graph algorithm for the route selection at the lower level. To keep efficiency while coping with the resulting extremely large-scale problem, we invented a systematic procedure to transform the original linear program at the lower-level into a minimum cost flow problem solvable by the graph algorithm. Through numerical experiments, we verified the proposed method outperformed the commercial software. The results indicate the proposed approach can make the conventional strategic decision much more practical and is promising for real world applications.
Directory of Open Access Journals (Sweden)
Ali Akbar Hasani
2016-11-01
Full Text Available In this paper, a comprehensive model is proposed to design a network for multi-period, multi-echelon, and multi-product inventory controlled the supply chain. Various marketing strategies and guerrilla marketing approaches are considered in the design process under the static competition condition. The goal of the proposed model is to efficiently respond to the customers’ demands in the presence of the pre-existing competitors and the price inelasticity of demands. The proposed optimization model considers multiple objectives that incorporate both market share and total profit of the considered supply chain network, simultaneously. To tackle the proposed multi-objective mixed-integer nonlinear programming model, an efficient hybrid meta-heuristic algorithm is developed that incorporates a Taguchi-based non-dominated sorting genetic algorithm-II and a particle swarm optimization. A variable neighborhood decomposition search is applied to enhance a local search process of the proposed hybrid solution algorithm. Computational results illustrate that the proposed model and solution algorithm are notably efficient in dealing with the competitive pressure by adopting the proper marketing strategies.
A heuristic and hybrid method for the tank allocation problem in maritime bulk shipping
DEFF Research Database (Denmark)
Vilhelmsen, Charlotte; Larsen, Jesper; Lusby, Richard Martin
2016-01-01
In bulk shipping, ships often have multiple tanks and carry multiple inhomogeneous products at a time. When operating such ships it is therefore a major challenge to decide how to best allocate cargoes to available tanks while taking into account tank capacity, safety restrictions, ship stability...... finding a feasible solution. We have developed a heuristic that can efficiently find feasible cargo allocations. Computational results show that it can solve 99 % of the considered instances within 0.4 s and all of them if allowed longer time. We have also modified an optimality based method from...... the literature. The heuristic is much faster than this modified method on the vast majority of considered instances. However, the heuristic struggles on two instances which are relatively quickly solved by the modified optimality based method. These two methods therefore complement each other nicely and so, we...
A Heuristic and Hybrid Method for the Tank Allocation Problem in Maritime Bulk Shipping
DEFF Research Database (Denmark)
Vilhelmsen, Charlotte; Larsen, Jesper; Lusby, Richard Martin
In bulk shipping, ships often have multiple tanks and carry multiple inhomogeneous products at a time. When operating such ships it is therefore a major challenge to decide how to best allocate cargoes to available tanks while taking into account tank capacity, safety restrictions, ship stability...... finding a feasible solution. We have developed a heuristic that can efficiently find feasible cargo allocations. Computational results show that it can solve 99% of the considered instances within 0.4 seconds and all of them if allowed longer time. We have also modified an optimality based method from...... the literature. The heuristic is much faster than this modified method on the vast majority of considered instances. However, the heuristic struggles on two instances which are relatively quickly solved by the modified optimality based method. These two methods therefore complement each other nicely and so, we...
Higher-Order Hybrid Gaussian Kernel in Meshsize Boosting Algorithm
African Journals Online (AJOL)
In this paper, we shall use higher-order hybrid Gaussian kernel in a meshsize boosting algorithm in kernel density estimation. Bias reduction is guaranteed in this scheme like other existing schemes but uses the higher-order hybrid Gaussian kernel instead of the regular fixed kernels. A numerical verification of this scheme ...
A novel hybrid algorithm of GSA with Kepler algorithm for numerical optimization
Directory of Open Access Journals (Sweden)
Soroor Sarafrazi
2015-07-01
Full Text Available It is now well recognized that pure algorithms can be promisingly improved by hybridization with other techniques. One of the relatively new metaheuristic algorithms is Gravitational Search Algorithm (GSA which is based on the Newton laws. In this paper, to enhance the performance of GSA, a novel algorithm called “Kepler”, inspired by the astrophysics, is introduced. The Kepler algorithm is based on the principle of the first Kepler law. The hybridization of GSA and Kepler algorithm is an efficient approach to provide much stronger specialization in intensification and/or diversification. The performance of GSA–Kepler is evaluated by applying it to 14 benchmark functions with 20–1000 dimensions and the optimal approximation of linear system as a practical optimization problem. The results obtained reveal that the proposed hybrid algorithm is robust enough to optimize the benchmark functions and practical optimization problems.
Hybridizing Evolutionary Algorithms with Opportunistic Local Search
DEFF Research Database (Denmark)
Gießen, Christian
2013-01-01
There is empirical evidence that memetic algorithms (MAs) can outperform plain evolutionary algorithms (EAs). Recently the first runtime analyses have been presented proving the aforementioned conjecture rigorously by investigating Variable-Depth Search, VDS for short (Sudholt, 2008). Sudholt...
Improved hybrid optimization algorithm for 3D protein structure prediction.
Zhou, Changjun; Hou, Caixia; Wei, Xiaopeng; Zhang, Qiang
2014-07-01
A new improved hybrid optimization algorithm - PGATS algorithm, which is based on toy off-lattice model, is presented for dealing with three-dimensional protein structure prediction problems. The algorithm combines the particle swarm optimization (PSO), genetic algorithm (GA), and tabu search (TS) algorithms. Otherwise, we also take some different improved strategies. The factor of stochastic disturbance is joined in the particle swarm optimization to improve the search ability; the operations of crossover and mutation that are in the genetic algorithm are changed to a kind of random liner method; at last tabu search algorithm is improved by appending a mutation operator. Through the combination of a variety of strategies and algorithms, the protein structure prediction (PSP) in a 3D off-lattice model is achieved. The PSP problem is an NP-hard problem, but the problem can be attributed to a global optimization problem of multi-extremum and multi-parameters. This is the theoretical principle of the hybrid optimization algorithm that is proposed in this paper. The algorithm combines local search and global search, which overcomes the shortcoming of a single algorithm, giving full play to the advantage of each algorithm. In the current universal standard sequences, Fibonacci sequences and real protein sequences are certified. Experiments show that the proposed new method outperforms single algorithms on the accuracy of calculating the protein sequence energy value, which is proved to be an effective way to predict the structure of proteins.
Evaluation of models generated via hybrid evolutionary algorithms ...
African Journals Online (AJOL)
2016-04-02
Apr 2, 2016 ... Evaluation of models generated via hybrid evolutionary algorithms for the prediction of Microcystis ... evolutionary algorithms (HEA) proved to be highly applica- ble to the hypertrophic reservoirs of South Africa. .... discovered and optimised using a large-scale parallel computational device and relevant soft-.
Directory of Open Access Journals (Sweden)
Dawid Połap
2017-09-01
Full Text Available In the proposed article, we present a nature-inspired optimization algorithm, which we called Polar Bear Optimization Algorithm (PBO. The inspiration to develop the algorithm comes from the way polar bears hunt to survive in harsh arctic conditions. These carnivorous mammals are active all year round. Frosty climate, unfavorable to other animals, has made polar bears adapt to the specific mode of exploration and hunting in large areas, not only over ice but also water. The proposed novel mathematical model of the way polar bears move in the search for food and hunt can be a valuable method of optimization for various theoretical and practical problems. Optimization is very similar to nature, similarly to search for optimal solutions for mathematical models animals search for optimal conditions to develop in their natural environments. In this method. we have used a model of polar bear behaviors as a search engine for optimal solutions. Proposed simulated adaptation to harsh winter conditions is an advantage for local and global search, while birth and death mechanism controls the population. Proposed PBO was evaluated and compared to other meta-heuristic algorithms using sample test functions and some classical engineering problems. Experimental research results were compared to other algorithms and analyzed using various parameters. The analysis allowed us to identify the leading advantages which are rapid recognition of the area by the relevant population and efficient birth and death mechanism to improve global and local search within the solution space.
A hybrid adaptive large neighborhood search algorithm applied to a lot-sizing problem
DEFF Research Database (Denmark)
Muller, Laurent Flindt; Spoorendonk, Simon
This paper presents a hybrid of a general heuristic framework that has been successfully applied to vehicle routing problems and a general purpose MIP solver. The framework uses local search and an adaptive procedure which choses between a set of large neighborhoods to be searched. A mixed integer...... of a solution and to investigate the feasibility of elements in such a neighborhood. The hybrid heuristic framework is applied to the multi-item capacitated lot sizing problem with dynamic lot sizes, where experiments have been conducted on a series of instances from the literature. On average the heuristic...
Elsheikh, Ahmed H.; Wheeler, Mary Fanett; Hoteit, Ibrahim
2014-01-01
A Hybrid Nested Sampling (HNS) algorithm is proposed for efficient Bayesian model calibration and prior model selection. The proposed algorithm combines, Nested Sampling (NS) algorithm, Hybrid Monte Carlo (HMC) sampling and gradient estimation using
Directory of Open Access Journals (Sweden)
Hosseinali Salemi
2016-04-01
Full Text Available Facility location models are observed in many diverse areas such as communication networks, transportation, and distribution systems planning. They play significant role in supply chain and operations management and are one of the main well-known topics in strategic agenda of contemporary manufacturing and service companies accompanied by long-lasting effects. We define a new approach for solving stochastic single source capacitated facility location problem (SSSCFLP. Customers with stochastic demand are assigned to set of capacitated facilities that are selected to serve them. It is demonstrated that problem can be transformed to deterministic Single Source Capacitated Facility Location Problem (SSCFLP for Poisson demand distribution. A hybrid algorithm which combines Lagrangian heuristic with adjusted mixture of Ant colony and Genetic optimization is proposed to find lower and upper bounds for this problem. Computational results of various instances with distinct properties indicate that proposed solving approach is efficient.
Directory of Open Access Journals (Sweden)
Jeng-Fung Chen
2014-10-01
Full Text Available Predicting student academic performance with a high accuracy facilitates admission decisions and enhances educational services at educational institutions. This raises the need to propose a model that predicts student performance, based on the results of standardized exams, including university entrance exams, high school graduation exams, and other influential factors. In this study, an approach to the problem based on the artificial neural network (ANN with the two meta-heuristic algorithms inspired by cuckoo birds and their lifestyle, namely, Cuckoo Search (CS and Cuckoo Optimization Algorithm (COA is proposed. In particular, we used previous exam results and other factors, such as the location of the student’s high school and the student’s gender as input variables, and predicted the student academic performance. The standard CS and standard COA were separately utilized to train the feed-forward network for prediction. The algorithms optimized the weights between layers and biases of the neuron network. The simulation results were then discussed and analyzed to investigate the prediction ability of the neural network trained by these two algorithms. The findings demonstrated that both CS and COA have potential in training ANN and ANN-COA obtained slightly better results for predicting student academic performance in this case. It is expected that this work may be used to support student admission procedures and strengthen the service system in educational institutions.
Hebbar, Ullhas; Krishnan, Abilash; Kadoli, Ravikiran
2017-11-01
This work studied linear aspects of flow induced oscillations in cantilever pipes, with an emphasis on the numerical method of solution adopted for the system of governing equations. The complex frequencies of vibration of the different characteristic modes of the system were computed as a function of the flow velocity, wherein multi-variable minimization was performed using the popular Nelder-Mead heuristic algorithm. Results for a canonical fluid-to-pipe mass ratio (β) were validated with literature, and the evolution of frequencies was studied for different mass ratios. Additionally, the numerical scheme was implemented to compute critical conditions of stability for the cantilever system as a function of β. Finally, interesting aspects of the dynamics of the system were analyzed: the supposed `mode exchange' behavior, and an explanation for discontinuities observed in the critical conditions plotted as a function of β. In conclusion, the heuristic optimization based solution used in this study can be used to analyze various aspects of linear stability in pipes conveying fluid. Part of the submitted work was completed at the author's previous affiliation - National Institute of Technology Karnataka, India.
Hybrid Algorithms for Fuzzy Reverse Supply Chain Network Design
Che, Z. H.; Chiang, Tzu-An; Kuo, Y. C.
2014-01-01
In consideration of capacity constraints, fuzzy defect ratio, and fuzzy transport loss ratio, this paper attempted to establish an optimized decision model for production planning and distribution of a multiphase, multiproduct reverse supply chain, which addresses defects returned to original manufacturers, and in addition, develops hybrid algorithms such as Particle Swarm Optimization-Genetic Algorithm (PSO-GA), Genetic Algorithm-Simulated Annealing (GA-SA), and Particle Swarm Optimization-Simulated Annealing (PSO-SA) for solving the optimized model. During a case study of a multi-phase, multi-product reverse supply chain network, this paper explained the suitability of the optimized decision model and the applicability of the algorithms. Finally, the hybrid algorithms showed excellent solving capability when compared with original GA and PSO methods. PMID:24892057
Directory of Open Access Journals (Sweden)
Narong Wichapa
2018-01-01
Full Text Available Infectious waste disposal remains one of the most serious problems in the medical, social and environmental domains of almost every country. Selection of new suitable locations and finding the optimal set of transport routes for a fleet of vehicles to transport infectious waste material, location routing problem for infectious waste disposal, is one of the major problems in hazardous waste management. Determining locations for infectious waste disposal is a difficult and complex process, because it requires combining both intangible and tangible factors. Additionally, it depends on several criteria and various regulations. This facility location problem for infectious waste disposal is complicated, and it cannot be addressed using any stand-alone technique. Based on a case study, 107 hospitals and 6 candidate municipalities in Upper-Northeastern Thailand, we considered criteria such as infrastructure, geology and social & environmental criteria, evaluating global priority weights using the fuzzy analytical hierarchy process (Fuzzy AHP. After that, a new multi-objective facility location problem model which hybridizes fuzzy AHP and goal programming (GP, namely the HGP model, was tested. Finally, the vehicle routing problem (VRP for a case study was formulated, and it was tested using a hybrid genetic algorithm (HGA which hybridizes the push forward insertion heuristic (PFIH, genetic algorithm (GA and three local searches including 2-opt, insertion-move and interexchange-move. The results show that both the HGP and HGA can lead to select new suitable locations and to find the optimal set of transport routes for vehicles delivering infectious waste material. The novelty of the proposed methodologies, HGP, is the simultaneous combination of relevant factors that are difficult to interpret and cost factors in order to determine new suitable locations, and HGA can be applied to determine the transport routes which provide a minimum number of vehicles
Zhou, Hui; Ji, Ning; Samuel, Oluwarotimi Williams; Cao, Yafei; Zhao, Zheyi; Chen, Shixiong; Li, Guanglin
2016-10-01
Real-time detection of gait events can be applied as a reliable input to control drop foot correction devices and lower-limb prostheses. Among the different sensors used to acquire the signals associated with walking for gait event detection, the accelerometer is considered as a preferable sensor due to its convenience of use, small size, low cost, reliability, and low power consumption. Based on the acceleration signals, different algorithms have been proposed to detect toe off (TO) and heel strike (HS) gait events in previous studies. While these algorithms could achieve a relatively reasonable performance in gait event detection, they suffer from limitations such as poor real-time performance and are less reliable in the cases of up stair and down stair terrains. In this study, a new algorithm is proposed to detect the gait events on three walking terrains in real-time based on the analysis of acceleration jerk signals with a time-frequency method to obtain gait parameters, and then the determination of the peaks of jerk signals using peak heuristics. The performance of the newly proposed algorithm was evaluated with eight healthy subjects when they were walking on level ground, up stairs, and down stairs. Our experimental results showed that the mean F1 scores of the proposed algorithm were above 0.98 for HS event detection and 0.95 for TO event detection on the three terrains. This indicates that the current algorithm would be robust and accurate for gait event detection on different terrains. Findings from the current study suggest that the proposed method may be a preferable option in some applications such as drop foot correction devices and leg prostheses.
Proposal of Heuristic Algorithm for Scheduling of Print Process in Auto Parts Supplier
Matsumoto, Shimpei; Okuhara, Koji; Ueno, Nobuyuki; Ishii, Hiroaki
We are interested in the print process on the manufacturing processes of auto parts supplier as an actual problem. The purpose of this research is to apply our scheduling technique developed in university to the actual print process in mass customization environment. Rationalization of the print process is depending on the lot sizing. The manufacturing lead time of the print process is long, and in the present method, production is done depending on worker’s experience and intuition. The construction of an efficient production system is urgent problem. Therefore, in this paper, in order to shorten the entire manufacturing lead time and to reduce the stock, we reexamine the usual method of the lot sizing rule based on heuristic technique, and we propose the improvement method which can plan a more efficient schedule.
International Nuclear Information System (INIS)
Zhang Huifeng; Zhou Jianzhong; Zhang Yongchuan; Lu Youlin; Wang Yongqiang
2013-01-01
Highlights: ► Culture belief is integrated into multi-objective differential evolution. ► Chaotic sequence is imported to improve evolutionary population diversity. ► The priority of convergence rate is proved in solving hydrothermal problem. ► The results show the quality and potential of proposed algorithm. - Abstract: A culture belief based multi-objective hybrid differential evolution (CB-MOHDE) is presented to solve short term hydrothermal optimal scheduling with economic emission (SHOSEE) problem. This problem is formulated for compromising thermal cost and emission issue while considering its complicated non-linear constraints with non-smooth and non-convex characteristics. The proposed algorithm integrates a modified multi-objective differential evolutionary algorithm into the computation model of culture algorithm (CA) as well as some communication protocols between population space and belief space, three knowledge structures in belief space are redefined according to these problem-solving characteristics, and in the differential evolution a chaotic factor is embedded into mutation operator for avoiding the premature convergence by enlarging the search scale when the search trajectory reaches local optima. Furthermore, a new heuristic constraint-handling technique is utilized to handle those complex equality and inequality constraints of SHOSEE problem. After the application on hydrothermal scheduling system, the efficiency and stability of the proposed CB-MOHDE is verified by its more desirable results in comparison to other method established recently, and the simulation results also reveal that CB-MOHDE can be a promising alternative for solving SHOSEE.
Hybrid algorithm for rotor angle security assessment in power systems
Directory of Open Access Journals (Sweden)
D. Prasad Wadduwage
2015-08-01
Full Text Available Transient rotor angle stability assessment and oscillatory rotor angle stability assessment subsequent to a contingency are integral components of dynamic security assessment (DSA in power systems. This study proposes a hybrid algorithm to determine whether the post-fault power system is secure due to both transient rotor angle stability and oscillatory rotor angle stability subsequent to a set of known contingencies. The hybrid algorithm first uses a new security measure developed based on the concept of Lyapunov exponents (LEs to determine the transient security of the post-fault power system. Later, the transient secure power swing curves are analysed using an improved Prony algorithm which extracts the dominant oscillatory modes and estimates their damping ratios. The damping ratio is a security measure about the oscillatory security of the post-fault power system subsequent to the contingency. The suitability of the proposed hybrid algorithm for DSA in power systems is illustrated using different contingencies of a 16-generator 68-bus test system and a 50-generator 470-bus test system. The accuracy of the stability conclusions and the acceptable computational burden indicate that the proposed hybrid algorithm is suitable for real-time security assessment with respect to both transient rotor angle stability and oscillatory rotor angle stability under multiple contingencies of the power system.
A new hybrid metaheuristic algorithm for wind farm micrositing
International Nuclear Information System (INIS)
Massan, S.U.R.; Wagan, A.I.; Shaikh, M.M.
2017-01-01
This work focuses on proposing a new algorithm, referred as HMA (Hybrid Metaheuristic Algorithm) for the solution of the WTO (Wind Turbine Optimization) problem. It is well documented that turbines located behind one another face a power loss due to the obstruction of the wind due to wake loss. It is required to reduce this wake loss by the effective placement of turbines using a new HMA. This HMA is derived from the two basic algorithms i.e. DEA (Differential Evolution Algorithm) and the FA (Firefly Algorithm). The function of optimization is undertaken on the N.O. Jensen model. The blending of DEA and FA into HMA are discussed and the new algorithm HMA is implemented maximize power and minimize the cost in a WTO problem. The results by HMA have been compared with GA (Genetic Algorithm) used in some previous studies. The successfully calculated total power produced and cost per unit turbine for a wind farm by using HMA and its comparison with past approaches using single algorithms have shown that there is a significant advantage of using the HMA as compared to the use of single algorithms. The first time implementation of a new algorithm by blending two single algorithms is a significant step towards learning the behavior of algorithms and their added advantages by using them together. (author)
A New Hybrid Metaheuristic Algorithm for Wind Farm Micrositing
Directory of Open Access Journals (Sweden)
SHAFIQ-UR-REHMAN MASSAN
2017-07-01
Full Text Available This work focuses on proposing a new algorithm, referred as HMA (Hybrid Metaheuristic Algorithm for the solution of the WTO (Wind Turbine Optimization problem. It is well documented that turbines located behind one another face a power loss due to the obstruction of the wind due to wake loss. It is required to reduce this wake loss by the effective placement of turbines using a new HMA. This HMA is derived from the two basic algorithms i.e. DEA (Differential Evolution Algorithm and the FA (Firefly Algorithm. The function of optimization is undertaken on the N.O. Jensen model. The blending of DEA and FA into HMA are discussed and the new algorithm HMA is implemented maximize power and minimize the cost in a WTO problem. The results by HMA have been compared with GA (Genetic Algorithm used in some previous studies. The successfully calculated total power produced and cost per unit turbine for a wind farm by using HMA and its comparison with past approaches using single algorithms have shown that there is a significant advantage of using the HMA as compared to the use of single algorithms. The first time implementation of a new algorithm by blending two single algorithms is a significant step towards learning the behavior of algorithms and their added advantages by using them together.
Hybrid SOA-SQP algorithm for dynamic economic dispatch with valve-point effects
Energy Technology Data Exchange (ETDEWEB)
Sivasubramani, S.; Swarup, K.S. [Department of Electrical Engineering, Indian Institute of Technology Madras, Chennai 600036 (India)
2010-12-15
This paper proposes a hybrid technique combining a new heuristic algorithm named seeker optimization algorithm (SOA) and sequential quadratic programming (SQP) method for solving dynamic economic dispatch problem with valve-point effects. The SOA is based on the concept of simulating the act of human searching, where the search direction is based on the empirical gradient (EG) by evaluating the response to the position changes and the step length is based on uncertainty reasoning by using a simple fuzzy rule. In this paper, SOA is used as a base level search, which can give a good direction to the optimal global region and SQP as a local search to fine tune the solution obtained from SOA. Thus SQP guides SOA to find optimal or near optimal solution in the complex search space. Two test systems i.e., 5 unit with losses and 10 unit without losses, have been taken to validate the efficiency of the proposed hybrid method. Simulation results clearly show that the proposed method outperforms the existing method in terms of solution quality. (author)
A Hybrid Backtracking Search Optimization Algorithm with Differential Evolution
Directory of Open Access Journals (Sweden)
Lijin Wang
2015-01-01
Full Text Available The backtracking search optimization algorithm (BSA is a new nature-inspired method which possesses a memory to take advantage of experiences gained from previous generation to guide the population to the global optimum. BSA is capable of solving multimodal problems, but it slowly converges and poorly exploits solution. The differential evolution (DE algorithm is a robust evolutionary algorithm and has a fast convergence speed in the case of exploitive mutation strategies that utilize the information of the best solution found so far. In this paper, we propose a hybrid backtracking search optimization algorithm with differential evolution, called HBD. In HBD, DE with exploitive strategy is used to accelerate the convergence by optimizing one worse individual according to its probability at each iteration process. A suit of 28 benchmark functions are employed to verify the performance of HBD, and the results show the improvement in effectiveness and efficiency of hybridization of BSA and DE.
The hybrid Monte Carlo Algorithm and the chiral transition
International Nuclear Information System (INIS)
Gupta, R.
1987-01-01
In this talk the author describes tests of the Hybrid Monte Carlo Algorithm for QCD done in collaboration with Greg Kilcup and Stephen Sharpe. We find that the acceptance in the glubal Metropolis step for Staggered fermions can be tuned and kept large without having to make the step-size prohibitively small. We present results for the finite temperature transition on 4 4 and 4 x 6 3 lattices using this algorithm
A Novel Hybrid Firefly Algorithm for Global Optimization.
Directory of Open Access Journals (Sweden)
Lina Zhang
Full Text Available Global optimization is challenging to solve due to its nonlinearity and multimodality. Traditional algorithms such as the gradient-based methods often struggle to deal with such problems and one of the current trends is to use metaheuristic algorithms. In this paper, a novel hybrid population-based global optimization algorithm, called hybrid firefly algorithm (HFA, is proposed by combining the advantages of both the firefly algorithm (FA and differential evolution (DE. FA and DE are executed in parallel to promote information sharing among the population and thus enhance searching efficiency. In order to evaluate the performance and efficiency of the proposed algorithm, a diverse set of selected benchmark functions are employed and these functions fall into two groups: unimodal and multimodal. The experimental results show better performance of the proposed algorithm compared to the original version of the firefly algorithm (FA, differential evolution (DE and particle swarm optimization (PSO in the sense of avoiding local minima and increasing the convergence rate.
DEFF Research Database (Denmark)
Ju, Suquan; Clausen, Jens
2004-01-01
The ELDSP problem is a combined lot sizing and sequencing problem. A supplier produces and delivers components of different component types to a consumer in batches. The task is to determine the cycle time, i.e. that time between deliveries, which minimizes the total cost per time unit. This incl......The ELDSP problem is a combined lot sizing and sequencing problem. A supplier produces and delivers components of different component types to a consumer in batches. The task is to determine the cycle time, i.e. that time between deliveries, which minimizes the total cost per time unit....... This includes the determination of the production sequence of the component types within each cycle. We investigate the computational behavior of two published algorithms, a heuristic and an optimal algorithm. With large number of component types, the optimal algorithm has long running times. We devise a hybrid...
Intelligent System Design Using Hyper-Heuristics
Directory of Open Access Journals (Sweden)
Nelishia Pillay
2015-07-01
Full Text Available Determining the most appropriate search method or artificial intelligence technique to solve a problem is not always evident and usually requires implementation of the different approaches to ascertain this. In some instances a single approach may not be sufficient and hybridization of methods may be needed to find a solution. This process can be time consuming. The paper proposes the use of hyper-heuristics as a means of identifying which method or combination of approaches is needed to solve a problem. The research presented forms part of a larger initiative aimed at using hyper-heuristics to develop intelligent hybrid systems. As an initial step in this direction, this paper investigates this for classical artificial intelligence uninformed and informed search methods, namely depth first search, breadth first search, best first search, hill-climbing and the A* algorithm. The hyper-heuristic determines the search or combination of searches to use to solve the problem. An evolutionary algorithm hyper-heuristic is implemented for this purpose and its performance is evaluated in solving the 8-Puzzle, Towers of Hanoi and Blocks World problems. The hyper-heuristic employs a generational evolutionary algorithm which iteratively refines an initial population using tournament selection to select parents, which the mutation and crossover operators are applied to for regeneration. The hyper-heuristic was able to identify a search or combination of searches to produce solutions for the twenty 8-Puzzle, five Towers of Hanoi and five Blocks World problems. Furthermore, admissible solutions were produced for all problem instances.
Heuristic space diversity management in a meta-hyper-heuristic framework
CSIR Research Space (South Africa)
Grobler, J
2014-07-01
Full Text Available This paper introduces the concept of heuristic space diversity and investigates various strategies for the management of heuristic space diversity within the context of a meta-hyper-heuristic algorithm. Evaluation on a diverse set of floating...
Heuristic space diversity control for improved meta-hyper-heuristic performance
CSIR Research Space (South Africa)
Grobler, J
2015-04-01
Full Text Available This paper expands on the concept of heuristic space diversity and investigates various strategies for the management of heuristic space diversity within the context of a meta-hyper-heuristic algorithm in search of greater performance benefits...
Directory of Open Access Journals (Sweden)
Nihat Kasap
2017-01-01
Full Text Available In this research, we study a cost minimization problem for a firm that acquires capacity from providers to accomplish daily operations on telecommunication networks. We model the related optimization problem considering quality of service and capacity requirements and offer a solution approach based on genetic algorithm (GA. Our model reckons the tradeoff between the network capacity acquisition cost and opportunity cost arise when data transmission quality for real-time tasks manifested at undesired levels. To better represent the related features and complexities, we model both capacity and loss probability requirements explicitly, and then, formulate delay and jitter requirements as level matching constraints. Using an experimental framework, we analyze how optimal behavior of the firm is affected by different price schemes, transmission quality and task distributions. We also compare three GA based heuristic solution approaches and comment on the suitability of them on resource selection and task allocation problems.
A Simulated Annealing-Based Heuristic Algorithm for Job Shop Scheduling to Minimize Lateness
Directory of Open Access Journals (Sweden)
Rui Zhang
2013-04-01
Full Text Available A decomposition-based optimization algorithm is proposed for solving large job shop scheduling problems with the objective of minimizing the maximum lateness. First, we use the constraint propagation theory to derive the orientation of a portion of disjunctive arcs. Then we use a simulated annealing algorithm to find a decomposition policy which satisfies the maximum number of oriented disjunctive arcs. Subsequently, each subproblem (corresponding to a subset of operations as determined by the decomposition policy is successively solved with a simulated annealing algorithm, which leads to a feasible solution to the original job shop scheduling problem. Computational experiments are carried out for adapted benchmark problems, and the results show the proposed algorithm is effective and efficient in terms of solution quality and time performance.
An Efficient Combined Meta-Heuristic Algorithm for Solving the Traveling Salesman Problem
Directory of Open Access Journals (Sweden)
Majid Yousefikhoshbakht
2016-08-01
Full Text Available The traveling salesman problem (TSP is one of the most important NP-hard Problems and probably the most famous and extensively studied problem in the field of combinatorial optimization. In this problem, a salesman is required to visit each of n given nodes once and only once, starting from any node and returning to the original place of departure. This paper presents an efficient evolutionary optimization algorithm developed through combining imperialist competitive algorithm and lin-kernighan algorithm called (MICALK in order to solve the TSP. The MICALK is tested on 44 TSP instances involving from 24 to 1655 nodes from the literature so that 26 best known solutions of the benchmark problem are also found by our algorithm. Furthermore, the performance of MICALK is compared with several metaheuristic algorithms, including GA, BA, IBA, ICA, GSAP, ABO, PSO and BCO on 32 instances from TSPLIB. The results indicate that the MICALK performs well and is quite competitive with the above algorithms.
An Automatic Multilevel Image Thresholding Using Relative Entropy and Meta-Heuristic Algorithms
Directory of Open Access Journals (Sweden)
Josue R. Cuevas
2013-06-01
Full Text Available Multilevel thresholding has been long considered as one of the most popular techniques for image segmentation. Multilevel thresholding outputs a gray scale image in which more details from the original picture can be kept, while binary thresholding can only analyze the image in two colors, usually black and white. However, two major existing problems with the multilevel thresholding technique are: it is a time consuming approach, i.e., finding appropriate threshold values could take an exceptionally long computation time; and defining a proper number of thresholds or levels that will keep most of the relevant details from the original image is a difficult task. In this study a new evaluation function based on the Kullback-Leibler information distance, also known as relative entropy, is proposed. The property of this new function can help determine the number of thresholds automatically. To offset the expensive computational effort by traditional exhaustive search methods, this study establishes a procedure that combines the relative entropy and meta-heuristics. From the experiments performed in this study, the proposed procedure not only provides good segmentation results when compared with a well known technique such as Otsu’s method, but also constitutes a very efficient approach.
Heuristics for the economic dispatch problem
Energy Technology Data Exchange (ETDEWEB)
Flores, Benjamin Carpio [Centro Nacional de Controle de Energia (CENACE), Mexico, D.F. (Mexico). Dept. de Planificacion Economica de Largo Plazo], E-mail: benjamin.carpo@cfe.gob.mx; Laureano Cruces, A L; Lopez Bracho, R; Ramirez Rodriguez, J. [Universidad Autonoma Metropolitana (UAM), Mexico, D.F. (Brazil). Dept. de Sistemas], Emails: clc@correo.azc.uam.mx, rlb@correo.azc.uam.mx, jararo@correo.azc.uam.mx
2009-07-01
This paper presents GRASP (Greedy Randomized Adaptive Search Procedure), Simulated Annealing (SAA), Genetic (GA), and Hybrid Genetic (HGA) Algorithms for the economic dispatch problem (EDP), considering non-convex cost functions and dead zones the only restrictions, showing the results obtained. We also present parameter settings that are specifically applicable to the EDP, and a comparative table of results for each heuristic. It is shown that these methods outperform the classical methods without the need to assume convexity of the target function. (author)
A Survey on Evolutionary Algorithm Based Hybrid Intelligence in Bioinformatics
Directory of Open Access Journals (Sweden)
Shan Li
2014-01-01
Full Text Available With the rapid advance in genomics, proteomics, metabolomics, and other types of omics technologies during the past decades, a tremendous amount of data related to molecular biology has been produced. It is becoming a big challenge for the bioinformatists to analyze and interpret these data with conventional intelligent techniques, for example, support vector machines. Recently, the hybrid intelligent methods, which integrate several standard intelligent approaches, are becoming more and more popular due to their robustness and efficiency. Specifically, the hybrid intelligent approaches based on evolutionary algorithms (EAs are widely used in various fields due to the efficiency and robustness of EAs. In this review, we give an introduction about the applications of hybrid intelligent methods, in particular those based on evolutionary algorithm, in bioinformatics. In particular, we focus on their applications to three common problems that arise in bioinformatics, that is, feature selection, parameter estimation, and reconstruction of biological networks.
H-PoP and H-PoPG: heuristic partitioning algorithms for single individual haplotyping of polyploids.
Xie, Minzhu; Wu, Qiong; Wang, Jianxin; Jiang, Tao
2016-12-15
Some economically important plants including wheat and cotton have more than two copies of each chromosome. With the decreasing cost and increasing read length of next-generation sequencing technologies, reconstructing the multiple haplotypes of a polyploid genome from its sequence reads becomes practical. However, the computational challenge in polyploid haplotyping is much greater than that in diploid haplotyping, and there are few related methods. This article models the polyploid haplotyping problem as an optimal poly-partition problem of the reads, called the Polyploid Balanced Optimal Partition model. For the reads sequenced from a k-ploid genome, the model tries to divide the reads into k groups such that the difference between the reads of the same group is minimized while the difference between the reads of different groups is maximized. When the genotype information is available, the model is extended to the Polyploid Balanced Optimal Partition with Genotype constraint problem. These models are all NP-hard. We propose two heuristic algorithms, H-PoP and H-PoPG, based on dynamic programming and a strategy of limiting the number of intermediate solutions at each iteration, to solve the two models, respectively. Extensive experimental results on simulated and real data show that our algorithms can solve the models effectively, and are much faster and more accurate than the recent state-of-the-art polyploid haplotyping algorithms. The experiments also show that our algorithms can deal with long reads and deep read coverage effectively and accurately. Furthermore, H-PoP might be applied to help determine the ploidy of an organism. https://github.com/MinzhuXie/H-PoPG CONTACT: xieminzhu@hotmail.comSupplementary information: Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Pashaei, Elnaz; Pashaei, Elham; Aydin, Nizamettin
2018-04-14
In cancer classification, gene selection is an important data preprocessing technique, but it is a difficult task due to the large search space. Accordingly, the objective of this study is to develop a hybrid meta-heuristic Binary Black Hole Algorithm (BBHA) and Binary Particle Swarm Optimization (BPSO) (4-2) model that emphasizes gene selection. In this model, the BBHA is embedded in the BPSO (4-2) algorithm to make the BPSO (4-2) more effective and to facilitate the exploration and exploitation of the BPSO (4-2) algorithm to further improve the performance. This model has been associated with Random Forest Recursive Feature Elimination (RF-RFE) pre-filtering technique. The classifiers which are evaluated in the proposed framework are Sparse Partial Least Squares Discriminant Analysis (SPLSDA); k-nearest neighbor and Naive Bayes. The performance of the proposed method was evaluated on two benchmark and three clinical microarrays. The experimental results and statistical analysis confirm the better performance of the BPSO (4-2)-BBHA compared with the BBHA, the BPSO (4-2) and several state-of-the-art methods in terms of avoiding local minima, convergence rate, accuracy and number of selected genes. The results also show that the BPSO (4-2)-BBHA model can successfully identify known biologically and statistically significant genes from the clinical datasets. Copyright © 2018 Elsevier Inc. All rights reserved.
Heuristic algorithms for solving of the tool routing problem for CNC cutting machines
Chentsov, P. A.; Petunin, A. A.; Sesekin, A. N.; Shipacheva, E. N.; Sholohov, A. E.
2015-11-01
The article is devoted to the problem of minimizing the path of the cutting tool to shape cutting machines began. This problem can be interpreted as a generalized traveling salesman problem. Earlier version of the dynamic programming method to solve this problem was developed. Unfortunately, this method allows to process an amount not exceeding thirty circuits. In this regard, the task of constructing quasi-optimal route becomes relevant. In this paper we propose options for quasi-optimal greedy algorithms. Comparison of the results of exact and approximate algorithms is given.
ANOMALY DETECTION IN NETWORKING USING HYBRID ARTIFICIAL IMMUNE ALGORITHM
Directory of Open Access Journals (Sweden)
D. Amutha Guka
2012-01-01
Full Text Available Especially in today’s network scenario, when computers are interconnected through internet, security of an information system is very important issue. Because no system can be absolutely secure, the timely and accurate detection of anomalies is necessary. The main aim of this research paper is to improve the anomaly detection by using Hybrid Artificial Immune Algorithm (HAIA which is based on Artificial Immune Systems (AIS and Genetic Algorithm (GA. In this research work, HAIA approach is used to develop Network Anomaly Detection System (NADS. The detector set is generated by using GA and the anomalies are identified using Negative Selection Algorithm (NSA which is based on AIS. The HAIA algorithm is tested with KDD Cup 99 benchmark dataset. The detection rate is used to measure the effectiveness of the NADS. The results and consistency of the HAIA are compared with earlier approaches and the results are presented. The proposed algorithm gives best results when compared to the earlier approaches.
Directory of Open Access Journals (Sweden)
Markowski Marcin
2017-09-01
Full Text Available In recent years elastic optical networks have been perceived as a prospective choice for future optical networks due to better adjustment and utilization of optical resources than is the case with traditional wavelength division multiplexing networks. In the paper we investigate the elastic architecture as the communication network for distributed data centers. We address the problems of optimization of routing and spectrum assignment for large-scale computing systems based on an elastic optical architecture; particularly, we concentrate on anycast user to data center traffic optimization. We assume that computational resources of data centers are limited. For this offline problems we formulate the integer linear programming model and propose a few heuristics, including a meta-heuristic algorithm based on a tabu search method. We report computational results, presenting the quality of approximate solutions and efficiency of the proposed heuristics, and we also analyze and compare some data center allocation scenarios.
Multimodal optimization by using hybrid of artificial bee colony algorithm and BFGS algorithm
Anam, S.
2017-10-01
Optimization has become one of the important fields in Mathematics. Many problems in engineering and science can be formulated into optimization problems. They maybe have many local optima. The optimization problem with many local optima, known as multimodal optimization problem, is how to find the global solution. Several metaheuristic methods have been proposed to solve multimodal optimization problems such as Particle Swarm Optimization (PSO), Genetics Algorithm (GA), Artificial Bee Colony (ABC) algorithm, etc. The performance of the ABC algorithm is better than or similar to those of other population-based algorithms with the advantage of employing a fewer control parameters. The ABC algorithm also has the advantages of strong robustness, fast convergence and high flexibility. However, it has the disadvantages premature convergence in the later search period. The accuracy of the optimal value cannot meet the requirements sometimes. Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm is a good iterative method for finding a local optimum. Compared with other local optimization methods, the BFGS algorithm is better. Based on the advantages of the ABC algorithm and the BFGS algorithm, this paper proposes a hybrid of the artificial bee colony algorithm and the BFGS algorithm to solve the multimodal optimization problem. The first step is that the ABC algorithm is run to find a point. In the second step is that the point obtained by the first step is used as an initial point of BFGS algorithm. The results show that the hybrid method can overcome from the basic ABC algorithm problems for almost all test function. However, if the shape of function is flat, the proposed method cannot work well.
DEFF Research Database (Denmark)
Tsakonas, Athanasios; Dounias, Georgios; Jantzen, Jan
2001-01-01
The paper suggests the combined use of different computational intelligence (CI) techniques in a hybrid scheme, as an effective approach to medical diagnosis. Getting to know the advantages and disadvantages of each computational intelligence technique in the recent years, the time has come...
Energy Technology Data Exchange (ETDEWEB)
Perusquia del Cueto, R.; Montes T, J. L.; Ortiz S, J. J.; Castillo M, A., E-mail: raul.perusquia@inin.gob.mx [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)
2011-11-15
At present the techniques of evolution al computation receive an increasing attention in the scientific and technological areas. This situation is due to its enormous potential in the optimization applied to problems of discussed computational complexity. In the nuclear area these techniques are used in diverse problems of combinatory optimization related with designing cores of power reactors. A distinctive characteristic of the evolution al and/or meta-heuristic algorithms is that appeal in each one from their applications to an adjustment function, fitness or of quality. This function allows to discriminate or to evaluate potentials solutions of the problem to solve. The definition of this situation is very important since it allows following the search of the algorithm toward different regions of the search space. In this work the impact that has the election of this function in the quality of the found solution is shown. The optimization technique by ant colonies or Acs (ant colony system) was used applied to the radial design of fuel cells for a boiling water power reactor. The notable results of the Acs allowed to propose the adjustment method of the importance and with this to obtain adjustment functions that guide the search of solutions of collective algorithms efficiently, basic capacity to develop the proposal of emulation of the natural selection and to investigate the possibility that on order of specify goals, to obtain the corresponding decision variables. A variety of re tro-exit (re tro-out) complementary process of feedback (re tro-in) that opens extended application perspectives of be feasible. (Author)
Directory of Open Access Journals (Sweden)
Abdallah A. Hassan
2014-12-01
Full Text Available Optimizing autonomous vehicle movements through roadway intersections is a challenging problem. It has been demonstrated in the literature that traditional traffic control, such as traffic signal and stop sign control are not optimal especially for heavy traffic demand levels. Alternatively, centralized autonomous vehicle control strategies are costly and not scalable given that the ability of a central controller to track and schedule the movement of hundreds of vehicles in real-time is questionable. Consequently, in this paper a fully distributed algorithm is proposed where vehicles in the vicinity of an intersection continuously cooperate with each other to develop a schedule that allows them to safely proceed through the intersection while incurring minimum delay. Unlike other distributed approaches described in the literature, the wireless communication constraints are considered in the design of the control algorithm. Specifically, the proposed algorithm requires vehicles heading to an intersection to communicate only with neighboring vehicles, while the lead vehicles on each approach lane share information to develop a complete intersection utilization schedule. The scheduling rotates between vehicles to identify higher traffic volumes and favor vehicles coming from heavier lanes to minimize the overall intersection delay. The simulated experiments show significant reductions in the average delay using the proposed approach compared to other methods reported in the literature and reduction in the maximum delay experienced by a vehicle especially in cases of heavy traffic demand levels.
Wang, Wenrui; Wu, Yaohua; Wu, Yingying
2016-05-01
E-commerce, as an emerging marketing mode, has attracted more and more attention and gradually changed the way of our life. However, the existing layout of distribution centers can't fulfill the storage and picking demands of e-commerce sufficiently. In this paper, a modified miniload automated storage/retrieval system is designed to fit these new characteristics of e-commerce in logistics. Meanwhile, a matching problem, concerning with the improvement of picking efficiency in new system, is studied in this paper. The problem is how to reduce the travelling distance of totes between aisles and picking stations. A multi-stage heuristic algorithm is proposed based on statement and model of this problem. The main idea of this algorithm is, with some heuristic strategies based on similarity coefficients, minimizing the transportations of items which can not arrive in the destination picking stations just through direct conveyors. The experimental results based on the cases generated by computers show that the average reduced rate of indirect transport times can reach 14.36% with the application of multi-stage heuristic algorithm. For the cases from a real e-commerce distribution center, the order processing time can be reduced from 11.20 h to 10.06 h with the help of the modified system and the proposed algorithm. In summary, this research proposed a modified system and a multi-stage heuristic algorithm that can reduce the travelling distance of totes effectively and improve the whole performance of e-commerce distribution center.
A Hybrid Genetic Algorithm Approach for Optimal Power Flow
Directory of Open Access Journals (Sweden)
Sydulu Maheswarapu
2011-08-01
Full Text Available This paper puts forward a reformed hybrid genetic algorithm (GA based approach to the optimal power flow. In the approach followed here, continuous variables are designed using real-coded GA and discrete variables are processed as binary strings. The outcomes are compared with many other methods like simple genetic algorithm (GA, adaptive genetic algorithm (AGA, differential evolution (DE, particle swarm optimization (PSO and music based harmony search (MBHS on a IEEE30 bus test bed, with a total load of 283.4 MW. Its found that the proposed algorithm is found to offer lowest fuel cost. The proposed method is found to be computationally faster, robust, superior and promising form its convergence characteristics.
Artificial root foraging optimizer algorithm with hybrid strategies
Directory of Open Access Journals (Sweden)
Yang Liu
2017-02-01
Full Text Available In this work, a new plant-inspired optimization algorithm namely the hybrid artificial root foraging optimizion (HARFO is proposed, which mimics the iterative root foraging behaviors for complex optimization. In HARFO model, two innovative strategies were developed: one is the root-to-root communication strategy, which enables the individual exchange information with each other in different efficient topologies that can essentially improve the exploration ability; the other is co-evolution strategy, which can structure the hierarchical spatial population driven by evolutionary pressure of multiple sub-populations that ensure the diversity of root population to be well maintained. The proposed algorithm is benchmarked against four classical evolutionary algorithms on well-designed test function suites including both classical and composition test functions. Through the rigorous performance analysis that of all these tests highlight the significant performance improvement, and the comparative results show the superiority of the proposed algorithm.
Huseyin Turan, Hasan; Kasap, Nihat; Savran, Huseyin
2014-03-01
Nowadays, every firm uses telecommunication networks in different amounts and ways in order to complete their daily operations. In this article, we investigate an optimisation problem that a firm faces when acquiring network capacity from a market in which there exist several network providers offering different pricing and quality of service (QoS) schemes. The QoS level guaranteed by network providers and the minimum quality level of service, which is needed for accomplishing the operations are denoted as fuzzy numbers in order to handle the non-deterministic nature of the telecommunication network environment. Interestingly, the mathematical formulation of the aforementioned problem leads to the special case of a well-known two-dimensional bin packing problem, which is famous for its computational complexity. We propose two different heuristic solution procedures that have the capability of solving the resulting nonlinear mixed integer programming model with fuzzy constraints. In conclusion, the efficiency of each algorithm is tested in several test instances to demonstrate the applicability of the methodology.
An Interactive Personalized Recommendation System Using the Hybrid Algorithm Model
Directory of Open Access Journals (Sweden)
Yan Guo
2017-10-01
Full Text Available With the rapid development of e-commerce, the contradiction between the disorder of business information and customer demand is increasingly prominent. This study aims to make e-commerce shopping more convenient, and avoid information overload, by an interactive personalized recommendation system using the hybrid algorithm model. The proposed model first uses various recommendation algorithms to get a list of original recommendation results. Combined with the customer’s feedback in an interactive manner, it then establishes the weights of corresponding recommendation algorithms. Finally, the synthetic formula of evidence theory is used to fuse the original results to obtain the final recommendation products. The recommendation performance of the proposed method is compared with that of traditional methods. The results of the experimental study through a Taobao online dress shop clearly show that the proposed method increases the efficiency of data mining in the consumer coverage, the consumer discovery accuracy and the recommendation recall. The hybrid recommendation algorithm complements the advantages of the existing recommendation algorithms in data mining. The interactive assigned-weight method meets consumer demand better and solves the problem of information overload. Meanwhile, our study offers important implications for e-commerce platform providers regarding the design of product recommendation systems.
Multiphase Return Trajectory Optimization Based on Hybrid Algorithm
Directory of Open Access Journals (Sweden)
Yi Yang
2016-01-01
Full Text Available A hybrid trajectory optimization method consisting of Gauss pseudospectral method (GPM and natural computation algorithm has been developed and utilized to solve multiphase return trajectory optimization problem, where a phase is defined as a subinterval in which the right-hand side of the differential equation is continuous. GPM converts the optimal control problem to a nonlinear programming problem (NLP, which helps to improve calculation accuracy and speed of natural computation algorithm. Through numerical simulations, it is found that the multiphase optimal control problem could be solved perfectly.
2015-01-01
solution approach that combines heuristic search and integer programming. Boudia et al. (2007) solved an SDVRP instance using a memetic algorithm with...Boudia, M., Prins, C., Reghioui, M., 2007. An effective memetic algorithm with population management for the split delivery vehicle routing problem
Directory of Open Access Journals (Sweden)
Chao-Chih Lin
2017-10-01
Full Text Available A new transient-based hybrid heuristic approach is developed to optimize a transient generation process and to detect leaks in pipe networks. The approach couples the ordinal optimization approach (OOA and the symbiotic organism search (SOS to solve the optimization problem by means of iterations. A pipe network analysis model (PNSOS is first used to determine steady-state head distribution and pipe flow rates. The best transient generation point and its relevant valve operation parameters are optimized by maximizing the objective function of transient energy. The transient event is created at the chosen point, and the method of characteristics (MOC is used to analyze the transient flow. The OOA is applied to sift through the candidate pipes and the initial organisms with leak information. The SOS is employed to determine the leaks by minimizing the sum of differences between simulated and computed head at the observation points. Two synthetic leaking scenarios, a simple pipe network and a water distribution network (WDN, are chosen to test the performance of leak detection ordinal symbiotic organism search (LDOSOS. Leak information can be accurately identified by the proposed approach for both of the scenarios. The presented technique makes a remarkable contribution to the success of leak detection in the pipe networks.
Optimization of Antennas using a Hybrid Genetic-Algorithm Space-Mapping Algorithm
DEFF Research Database (Denmark)
Pantoja, M.F.; Bretones, A.R.; Meincke, Peter
2006-01-01
A hybrid global-local optimization technique for the design of antennas is presented. It consists of the subsequent application of a Genetic Algorithm (GA) that employs coarse models in the simulations and a space mapping (SM) that refines the solution found in the previous stage. The technique...
A novel method for retinal optic disc detection using bat meta-heuristic algorithm.
Abdullah, Ahmad S; Özok, Yasa Ekşioğlu; Rahebi, Javad
2018-05-09
Normally, the optic disc detection of retinal images is useful during the treatment of glaucoma and diabetic retinopathy. In this paper, the novel preprocessing of a retinal image with a bat algorithm (BA) optimization is proposed to detect the optic disc of the retinal image. As the optic disk is a bright area and the vessels that emerge from it are dark, these facts lead to the selected segments being regions with a great diversity of intensity, which does not usually happen in pathological regions. First, in the preprocessing stage, the image is fully converted into a gray image using a gray scale conversion, and then morphological operations are implemented in order to remove dark elements such as blood vessels, from the images. In the next stage, a bat algorithm (BA) is used to find the optimum threshold value for the optic disc location. In order to improve the accuracy and to obtain the best result for the segmented optic disc, the ellipse fitting approach was used in the last stage to enhance and smooth the segmented optic disc boundary region. The ellipse fitting is carried out using the least square distance approach. The efficiency of the proposed method was tested on six publicly available datasets, MESSIDOR, DRIVE, DIARETDB1, DIARETDB0, STARE, and DRIONS-DB. The optic disc segmentation average overlaps and accuracy was in the range of 78.5-88.2% and 96.6-99.91% in these six databases. The optic disk of the retinal images was segmented in less than 2.1 s per image. The use of the proposed method improved the optic disc segmentation results for healthy and pathological retinal images in a low computation time. Graphical abstract ᅟ.
Helaers, Raphaël; Milinkovitch, Michel C
2010-07-15
The development, in the last decade, of stochastic heuristics implemented in robust application softwares has made large phylogeny inference a key step in most comparative studies involving molecular sequences. Still, the choice of a phylogeny inference software is often dictated by a combination of parameters not related to the raw performance of the implemented algorithm(s) but rather by practical issues such as ergonomics and/or the availability of specific functionalities. Here, we present MetaPIGA v2.0, a robust implementation of several stochastic heuristics for large phylogeny inference (under maximum likelihood), including a Simulated Annealing algorithm, a classical Genetic Algorithm, and the Metapopulation Genetic Algorithm (metaGA) together with complex substitution models, discrete Gamma rate heterogeneity, and the possibility to partition data. MetaPIGA v2.0 also implements the Likelihood Ratio Test, the Akaike Information Criterion, and the Bayesian Information Criterion for automated selection of substitution models that best fit the data. Heuristics and substitution models are highly customizable through manual batch files and command line processing. However, MetaPIGA v2.0 also offers an extensive graphical user interface for parameters setting, generating and running batch files, following run progress, and manipulating result trees. MetaPIGA v2.0 uses standard formats for data sets and trees, is platform independent, runs in 32 and 64-bits systems, and takes advantage of multiprocessor and multicore computers. The metaGA resolves the major problem inherent to classical Genetic Algorithms by maintaining high inter-population variation even under strong intra-population selection. Implementation of the metaGA together with additional stochastic heuristics into a single software will allow rigorous optimization of each heuristic as well as a meaningful comparison of performances among these algorithms. MetaPIGA v2.0 gives access both to high
Directory of Open Access Journals (Sweden)
Milinkovitch Michel C
2010-07-01
Full Text Available Abstract Background The development, in the last decade, of stochastic heuristics implemented in robust application softwares has made large phylogeny inference a key step in most comparative studies involving molecular sequences. Still, the choice of a phylogeny inference software is often dictated by a combination of parameters not related to the raw performance of the implemented algorithm(s but rather by practical issues such as ergonomics and/or the availability of specific functionalities. Results Here, we present MetaPIGA v2.0, a robust implementation of several stochastic heuristics for large phylogeny inference (under maximum likelihood, including a Simulated Annealing algorithm, a classical Genetic Algorithm, and the Metapopulation Genetic Algorithm (metaGA together with complex substitution models, discrete Gamma rate heterogeneity, and the possibility to partition data. MetaPIGA v2.0 also implements the Likelihood Ratio Test, the Akaike Information Criterion, and the Bayesian Information Criterion for automated selection of substitution models that best fit the data. Heuristics and substitution models are highly customizable through manual batch files and command line processing. However, MetaPIGA v2.0 also offers an extensive graphical user interface for parameters setting, generating and running batch files, following run progress, and manipulating result trees. MetaPIGA v2.0 uses standard formats for data sets and trees, is platform independent, runs in 32 and 64-bits systems, and takes advantage of multiprocessor and multicore computers. Conclusions The metaGA resolves the major problem inherent to classical Genetic Algorithms by maintaining high inter-population variation even under strong intra-population selection. Implementation of the metaGA together with additional stochastic heuristics into a single software will allow rigorous optimization of each heuristic as well as a meaningful comparison of performances among these
Directory of Open Access Journals (Sweden)
Laxmi A. Bewoor
2017-10-01
Full Text Available The no-wait flow shop is a flowshop in which the scheduling of jobs is continuous and simultaneous through all machines without waiting for any consecutive machines. The scheduling of a no-wait flow shop requires finding an appropriate sequence of jobs for scheduling, which in turn reduces total processing time. The classical brute force method for finding the probabilities of scheduling for improving the utilization of resources may become trapped in local optima, and this problem can hence be observed as a typical NP-hard combinatorial optimization problem that requires finding a near optimal solution with heuristic and metaheuristic techniques. This paper proposes an effective hybrid Particle Swarm Optimization (PSO metaheuristic algorithm for solving no-wait flow shop scheduling problems with the objective of minimizing the total flow time of jobs. This Proposed Hybrid Particle Swarm Optimization (PHPSO algorithm presents a solution by the random key representation rule for converting the continuous position information values of particles to a discrete job permutation. The proposed algorithm initializes population efficiently with the Nawaz-Enscore-Ham (NEH heuristic technique and uses an evolutionary search guided by the mechanism of PSO, as well as simulated annealing based on a local neighborhood search to avoid getting stuck in local optima and to provide the appropriate balance of global exploration and local exploitation. Extensive computational experiments are carried out based on Taillard’s benchmark suite. Computational results and comparisons with existing metaheuristics show that the PHPSO algorithm outperforms the existing methods in terms of quality search and robustness for the problem considered. The improvement in solution quality is confirmed by statistical tests of significance.
M. Omidvari; M. R. Gharmaroudi
2015-01-01
Introduction: Occupational accidents are of the main issues in industries. It is necessary to identify the main root causes of accidents for their control. Several models have been proposed for determining the accidents root causes. FTA is one of the most widely used models which could graphically establish the root causes of accidents. The non-linear function is one of the main challenges in FTA compliance and in order to obtain the exact number, the meta-heuristic algorithms can be used. ...
Meta-Heuristics in Short Scale Construction: Ant Colony Optimization and Genetic Algorithm.
Schroeders, Ulrich; Wilhelm, Oliver; Olaru, Gabriel
2016-01-01
The advent of large-scale assessment, but also the more frequent use of longitudinal and multivariate approaches to measurement in psychological, educational, and sociological research, caused an increased demand for psychometrically sound short scales. Shortening scales economizes on valuable administration time, but might result in inadequate measures because reducing an item set could: a) change the internal structure of the measure, b) result in poorer reliability and measurement precision, c) deliver measures that cannot effectively discriminate between persons on the intended ability spectrum, and d) reduce test-criterion relations. Different approaches to abbreviate measures fare differently with respect to the above-mentioned problems. Therefore, we compare the quality and efficiency of three item selection strategies to derive short scales from an existing long version: a Stepwise COnfirmatory Factor Analytical approach (SCOFA) that maximizes factor loadings and two metaheuristics, specifically an Ant Colony Optimization (ACO) with a tailored user-defined optimization function and a Genetic Algorithm (GA) with an unspecific cost-reduction function. SCOFA compiled short versions were highly reliable, but had poor validity. In contrast, both metaheuristics outperformed SCOFA and produced efficient and psychometrically sound short versions (unidimensional, reliable, sensitive, and valid). We discuss under which circumstances ACO and GA produce equivalent results and provide recommendations for conditions in which it is advisable to use a metaheuristic with an unspecific out-of-the-box optimization function.
Transport energy modeling with meta-heuristic harmony search algorithm, an application to Turkey
Energy Technology Data Exchange (ETDEWEB)
Ceylan, Huseyin; Ceylan, Halim; Haldenbilen, Soner; Baskan, Ozgur [Department of Civil Engineering, Engineering Faculty, Pamukkale University, Muh. Fak. Denizli 20017 (Turkey)
2008-07-15
This study proposes a new method for estimating transport energy demand using a harmony search (HS) approach. HArmony Search Transport Energy Demand Estimation (HASTEDE) models are developed taking population, gross domestic product and vehicle kilometers as an input. The HASTEDE models are in forms of linear, exponential and quadratic mathematical expressions and they are applied to Turkish Transportation sector energy consumption. Optimum or near-optimum values of the HS parameters are obtained with sensitivity analysis (SA). Performance of all models is compared with the Ministry of Energy and Natural Resources (MENR) projections. Results showed that HS algorithm may be used for energy modeling, but SA is required to obtain best values of the HS parameters. The quadratic form of HASTEDE will overestimate transport sector energy consumption by about 26% and linear and exponential forms underestimate by about 21% when they are compared with the MENR projections. This may happen due to the modeling procedure and selected parameters for models, but determining the upper and lower values of transportation sector energy consumption will provide a framework and flexibility for setting up energy policies. (author)
The use of meta-heuristics for airport gate assignment
DEFF Research Database (Denmark)
Cheng, Chun-Hung; Ho, Sin C.; Kwan, Cheuk-Lam
2012-01-01
proposed to generate good solutions within a reasonable timeframe. In this work, we attempt to assess the performance of three meta-heuristics, namely, genetic algorithm (GA), tabu search (TS), simulated annealing (SA) and a hybrid approach based on SA and TS. Flight data from Incheon International Airport...... are collected to carry out the computational comparison. Although the literature has documented these algorithms, this work may be a first attempt to evaluate their performance using a set of realistic flight data....
Two-phase hybrid cryptography algorithm for wireless sensor networks
Directory of Open Access Journals (Sweden)
Rawya Rizk
2015-12-01
Full Text Available For achieving security in wireless sensor networks (WSNs, cryptography plays an important role. In this paper, a new security algorithm using combination of both symmetric and asymmetric cryptographic techniques is proposed to provide high security with minimized key maintenance. It guarantees three cryptographic primitives, integrity, confidentiality and authentication. Elliptical Curve Cryptography (ECC and Advanced Encryption Standard (AES are combined to provide encryption. XOR-DUAL RSA algorithm is considered for authentication and Message Digest-5 (MD5 for integrity. The results show that the proposed hybrid algorithm gives better performance in terms of computation time, the size of cipher text, and the energy consumption in WSN. It is also robust against different types of attacks in the case of image encryption.
A hybrid frame concealment algorithm for H.264/AVC.
Yan, Bo; Gharavi, Hamid
2010-01-01
In packet-based video transmissions, packets loss due to channel errors may result in the loss of the whole video frame. Recently, many error concealment algorithms have been proposed in order to combat channel errors; however, most of the existing algorithms can only deal with the loss of macroblocks and are not able to conceal the whole missing frame. In order to resolve this problem, in this paper, we have proposed a new hybrid motion vector extrapolation (HMVE) algorithm to recover the whole missing frame, and it is able to provide more accurate estimation for the motion vectors of the missing frame than other conventional methods. Simulation results show that it is highly effective and significantly outperforms other existing frame recovery methods.
A Hybrid Optimization Algorithm for Low RCS Antenna Design
Directory of Open Access Journals (Sweden)
W. Shao
2012-12-01
Full Text Available In this article, a simple and efficient method is presented to design low radar cross section (RCS patch antennas. This method consists of a hybrid optimization algorithm, which combines a genetic algorithm (GA with tabu search algorithm (TSA, and electromagnetic field solver. The TSA, embedded into the GA frame, defines the acceptable neighborhood region of parameters and screens out the poor-scoring individuals. Thus, the repeats of search are avoided and the amount of time-consuming electromagnetic simulations is largely reduced. Moreover, the whole design procedure is auto-controlled by programming the VBScript language. A slot patch antenna example is provided to verify the accuracy and efficiency of the proposed method.
A hybrid Jaya algorithm for reliability-redundancy allocation problems
Ghavidel, Sahand; Azizivahed, Ali; Li, Li
2018-04-01
This article proposes an efficient improved hybrid Jaya algorithm based on time-varying acceleration coefficients (TVACs) and the learning phase introduced in teaching-learning-based optimization (TLBO), named the LJaya-TVAC algorithm, for solving various types of nonlinear mixed-integer reliability-redundancy allocation problems (RRAPs) and standard real-parameter test functions. RRAPs include series, series-parallel, complex (bridge) and overspeed protection systems. The search power of the proposed LJaya-TVAC algorithm for finding the optimal solutions is first tested on the standard real-parameter unimodal and multi-modal functions with dimensions of 30-100, and then tested on various types of nonlinear mixed-integer RRAPs. The results are compared with the original Jaya algorithm and the best results reported in the recent literature. The optimal results obtained with the proposed LJaya-TVAC algorithm provide evidence for its better and acceptable optimization performance compared to the original Jaya algorithm and other reported optimal results.
Hybrid Genetic Algorithm Optimization for Case Based Reasoning Systems
International Nuclear Information System (INIS)
Mohamed, A.H.
2008-01-01
The success of a CBR system largely depen ds on an effective retrieval of useful prior case for the problem. Nearest neighbor and induction are the main CBR retrieval algorithms. Each of them can be more suitable in different situations. Integrated the two retrieval algorithms can catch the advantages of both of them. But, they still have some limitations facing the induction retrieval algorithm when dealing with a noisy data, a large number of irrelevant features, and different types of data. This research utilizes a hybrid approach using genetic algorithms (GAs) to case-based induction retrieval of the integrated nearest neighbor - induction algorithm in an attempt to overcome these limitations and increase the overall classification accuracy. GAs can be used to optimize the search space of all the possible subsets of the features set. It can deal with the irrelevant and noisy features while still achieving a significant improvement of the retrieval accuracy. Therefore, the proposed CBR-GA introduces an effective general purpose retrieval algorithm that can improve the performance of CBR systems. It can be applied in many application areas. CBR-GA has proven its success when applied for different problems in real-life
Development of hybrid artificial intelligent based handover decision algorithm
Directory of Open Access Journals (Sweden)
A.M. Aibinu
2017-04-01
Full Text Available The possibility of seamless handover remains a mirage despite the plethora of existing handover algorithms. The underlying factor responsible for this has been traced to the Handover decision module in the Handover process. Hence, in this paper, the development of novel hybrid artificial intelligent handover decision algorithm has been developed. The developed model is made up of hybrid of Artificial Neural Network (ANN based prediction model and Fuzzy Logic. On accessing the network, the Received Signal Strength (RSS was acquired over a period of time to form a time series data. The data was then fed to the newly proposed k-step ahead ANN-based RSS prediction system for estimation of prediction model coefficients. The synaptic weights and adaptive coefficients of the trained ANN was then used to compute the k-step ahead ANN based RSS prediction model coefficients. The predicted RSS value was later codified as Fuzzy sets and in conjunction with other measured network parameters were fed into the Fuzzy logic controller in order to finalize handover decision process. The performance of the newly developed k-step ahead ANN based RSS prediction algorithm was evaluated using simulated and real data acquired from available mobile communication networks. Results obtained in both cases shows that the proposed algorithm is capable of predicting ahead the RSS value to about ±0.0002 dB. Also, the cascaded effect of the complete handover decision module was also evaluated. Results obtained show that the newly proposed hybrid approach was able to reduce ping-pong effect associated with other handover techniques.
Babaveisi, Vahid; Paydar, Mohammad Mahdi; Safaei, Abdul Sattar
2017-07-01
This study aims to discuss the solution methodology for a closed-loop supply chain (CLSC) network that includes the collection of used products as well as distribution of the new products. This supply chain is presented on behalf of the problems that can be solved by the proposed meta-heuristic algorithms. A mathematical model is designed for a CLSC that involves three objective functions of maximizing the profit, minimizing the total risk and shortages of products. Since three objective functions are considered, a multi-objective solution methodology can be advantageous. Therefore, several approaches have been studied and an NSGA-II algorithm is first utilized, and then the results are validated using an MOSA and MOPSO algorithms. Priority-based encoding, which is used in all the algorithms, is the core of the solution computations. To compare the performance of the meta-heuristics, random numerical instances are evaluated by four criteria involving mean ideal distance, spread of non-dominance solution, the number of Pareto solutions, and CPU time. In order to enhance the performance of the algorithms, Taguchi method is used for parameter tuning. Finally, sensitivity analyses are performed and the computational results are presented based on the sensitivity analyses in parameter tuning.
Directory of Open Access Journals (Sweden)
Cenk Demirkır
2014-04-01
Full Text Available Plywood, which is one of the most important wood based panels, has many usage areas changing from traffic signs to building constructions in many countries. It is known that the high quality plywood panel manufacturing has been achieved with a good bonding under the optimum pressure conditions depending on adhesive type. This is a study of determining the using possibilities of modern meta-heuristic hybrid artificial intelligence techniques such as IKE and AANN methods for prediction of bonding strength of plywood panels. This study has composed of two main parts as experimental and analytical. Scots pine, maritime pine and European black pine logs were used as wood species. The pine veneers peeled at 32°C and 50°C were dried at 110°C, 140°C and 160°C temperatures. Phenol formaldehyde and melamine urea formaldehyde resins were used as adhesive types. EN 314-1 standard was used to determine the bonding shear strength values of plywood panels in experimental part of this study. Then the intuitive k-nearest neighbor estimator (IKE and adaptive artificial neural network (AANN were used to estimate bonding strength of plywood panels. The best estimation performance was obtained from MA metric for k-value=10. The most effective factor on bonding strength was determined as adhesive type. Error rates were determined less than 5% for both of the IKE and AANN. It may be recommended that proposed methods could be used in applying to estimation of bonding strength values of plywood panels.
Optimal control of hybrid qubits: Implementing the quantum permutation algorithm
Rivera-Ruiz, C. M.; de Lima, E. F.; Fanchini, F. F.; Lopez-Richard, V.; Castelano, L. K.
2018-03-01
The optimal quantum control theory is employed to determine electric pulses capable of producing quantum gates with a fidelity higher than 0.9997, when noise is not taken into account. Particularly, these quantum gates were chosen to perform the permutation algorithm in hybrid qubits in double quantum dots (DQDs). The permutation algorithm is an oracle based quantum algorithm that solves the problem of the permutation parity faster than a classical algorithm without the necessity of entanglement between particles. The only requirement for achieving the speedup is the use of a one-particle quantum system with at least three levels. The high fidelity found in our results is closely related to the quantum speed limit, which is a measure of how fast a quantum state can be manipulated. Furthermore, we model charge noise by considering an average over the optimal field centered at different values of the reference detuning, which follows a Gaussian distribution. When the Gaussian spread is of the order of 5 μ eV (10% of the correct value), the fidelity is still higher than 0.95. Our scheme also can be used for the practical realization of different quantum algorithms in DQDs.
International Nuclear Information System (INIS)
Kıran, Mustafa Servet; Özceylan, Eren; Gündüz, Mesut; Paksoy, Turan
2012-01-01
Highlights: ► PSO and ACO algorithms are hybridized for forecasting energy demands of Turkey. ► Linear and quadratic forms are developed to meet the fluctuations of indicators. ► GDP, population, export and import have significant impacts on energy demand. ► Quadratic form provides better fit solution than linear form. ► Proposed approach gives lower estimation error than ACO and PSO, separately. - Abstract: This paper proposes a new hybrid method (HAP) for estimating energy demand of Turkey using Particle Swarm Optimization (PSO) and Ant Colony Optimization (ACO). Proposed energy demand model (HAPE) is the first model which integrates two mentioned meta-heuristic techniques. While, PSO, developed for solving continuous optimization problems, is a population based stochastic technique; ACO, simulating behaviors between nest and food source of real ants, is generally used for discrete optimizations. Hybrid method based PSO and ACO is developed to estimate energy demand using gross domestic product (GDP), population, import and export. HAPE is developed in two forms which are linear (HAPEL) and quadratic (HAPEQ). The future energy demand is estimated under different scenarios. In order to show the accuracy of the algorithm, a comparison is made with ACO and PSO which are developed for the same problem. According to obtained results, relative estimation errors of the HAPE model are the lowest of them and quadratic form (HAPEQ) provides better-fit solutions due to fluctuations of the socio-economic indicators.
An Aircraft Service Staff Rostering using a Hybrid GRASP Algorithm
Directory of Open Access Journals (Sweden)
W.H. Ip
2009-10-01
Full Text Available The aircraft ground service company is responsible for carrying out the regular tasks to aircraft maintenace between their arrival at and departure from the airport. This paper presents the application of a hybrid approach based upon greedy randomized adaptive search procedure (GRASP for rostering technical staff such that they are assigned predefined shift patterns. The rostering of staff is posed as an optimization problem with an aim of minimizing the violations of hard and soft constraints. The proposed algorithm iteratively constructs a set of solutions by GRASP. Furthermore, with multi-agent techniques, we efficiently identify an optimal roster with minimal constraint violations and fair to employees. Experimental results are included to demonstrate the effectiveness of the proposed algorithm.
Directory of Open Access Journals (Sweden)
Johan Soewanda
2007-01-01
Full Text Available This paper discusses the application of Robust Hybrid Genetic Algorithm to solve a flow-shop scheduling problem. The proposed algorithm attempted to reach minimum makespan. PT. FSCM Manufacturing Indonesia Plant 4's case was used as a test case to evaluate the performance of the proposed algorithm. The proposed algorithm was compared to Ant Colony, Genetic-Tabu, Hybrid Genetic Algorithm, and the company's algorithm. We found that Robust Hybrid Genetic produces statistically better result than the company's, but the same as Ant Colony, Genetic-Tabu, and Hybrid Genetic. In addition, Robust Hybrid Genetic Algorithm required less computational time than Hybrid Genetic Algorithm
Directory of Open Access Journals (Sweden)
Ali Gerami Matin
2017-10-01
Full Text Available Optimized road maintenance planning seeks for solutions that can minimize the life-cycle cost of a road network and concurrently maximize pavement condition. Aiming at proposing an optimal set of road maintenance solutions, robust meta-heuristic algorithms are used in research. Two main optimization techniques are applied including single-objective and multi-objective optimization. Genetic algorithms (GA, particle swarm optimization (PSO, and combination of genetic algorithm and particle swarm optimization (GAPSO as single-objective techniques are used, while the non-domination sorting genetic algorithm II (NSGAII and multi-objective particle swarm optimization (MOPSO which are sufficient for solving computationally complex large-size optimization problems as multi-objective techniques are applied and compared. A real case study from the rural transportation network of Iran is employed to illustrate the sufficiency of the optimum algorithm. The formulation of the optimization model is carried out in such a way that a cost-effective maintenance strategy is reached by preserving the performance level of the road network at a desirable level. So, the objective functions are pavement performance maximization and maintenance cost minimization. It is concluded that multi-objective algorithms including non-domination sorting genetic algorithm II (NSGAII and multi-objective particle swarm optimization performed better than the single objective algorithms due to the capability to balance between both objectives. And between multi-objective algorithms the NSGAII provides the optimum solution for the road maintenance planning.
Effective pathfinding for four-wheeled robot based on combining Theta* and hybrid A* algorithms
Directory of Open Access Journals (Sweden)
Віталій Геннадійович Михалько
2016-07-01
Full Text Available Effective pathfinding algorithm based on Theta* and Hybrid A* algorithms was developed for four-wheeled robot. Pseudocode for algorithm was showed and explained. Algorithm and simulator for four-wheeled robot were implemented using Java programming language. Algorithm was tested on U-obstacles, complex maps and for parking problem
Generation of Compliant Mechanisms using Hybrid Genetic Algorithm
Sharma, D.; Deb, K.
2014-10-01
Compliant mechanism is a single piece elastic structure which can deform to perform the assigned task. In this work, compliant mechanisms are evolved using a constraint based bi-objective optimization formulation which requires one user defined parameter ( η). This user defined parameter limits a gap between a desired path and an actual path traced by the compliant mechanism. The non-linear and discrete optimization problems are solved using the hybrid Genetic Algorithm (GA) wherein domain specific initialization, two-dimensional crossover operator and repairing techniques are adopted. A bit-wise local search method is used with elitist non-dominated sorting genetic algorithm to further refine the compliant mechanisms. Parallel computations are performed on the master-slave architecture to reduce the computation time. A parametric study is carried out for η value which suggests a range to evolve topologically different compliant mechanisms. The applied and boundary conditions to the compliant mechanisms are considered the variables that are evolved by the hybrid GA. The post-analysis of results unveils that the complaint mechanisms are always supported at unique location that can evolve the non-dominated solutions.
Directory of Open Access Journals (Sweden)
Mário Mestria
2013-08-01
Full Text Available The Clustered Traveling Salesman Problem (CTSP is a generalization of the Traveling Salesman Problem (TSP in which the set of vertices is partitioned into disjoint clusters and objective is to find a minimum cost Hamiltonian cycle such that the vertices of each cluster are visited contiguously. The CTSP is NP-hard and, in this context, we are proposed heuristic methods for the CTSP using GRASP, Path Relinking and Variable Neighborhood Descent (VND. The heuristic methods were tested using Euclidean instances with up to 2000 vertices and clusters varying between 4 to 150 vertices. The computational tests were performed to compare the performance of the heuristic methods with an exact algorithm using the Parallel CPLEX software. The computational results showed that the hybrid heuristic method using VND outperforms other heuristic methods.
Hybrid genetic algorithm for minimizing non productive machining ...
African Journals Online (AJOL)
user
The movement of tool is synchronized with the help of these CNC codes. Total ... Lot of work has been reported for minimizing the productive time by ..... Optimal path for automated drilling operations by a new heuristic approach using particle.
Hybrid Reduced Order Modeling Algorithms for Reactor Physics Calculations
Bang, Youngsuk
hybrid ROM algorithms which can be readily integrated into existing methods and offer higher computational efficiency and defendable accuracy of the reduced models. For example, the snapshots ROM algorithm is hybridized with the range finding algorithm to render reduction in the state space, e.g. the flux in reactor calculations. In another implementation, the perturbation theory used to calculate first order derivatives of responses with respect to parameters is hybridized with a forward sensitivity analysis approach to render reduction in the parameter space. Reduction at the state and parameter spaces can be combined to render further reduction at the interface between different physics codes in a multi-physics model with the accuracy quantified in a similar manner to the single physics case. Although the proposed algorithms are generic in nature, we focus here on radiation transport models used in support of the design and analysis of nuclear reactor cores. In particular, we focus on replacing the traditional assembly calculations by ROM models to facilitate the generation of homogenized cross-sections for downstream core calculations. The implication is that assembly calculations could be done instantaneously therefore precluding the need for the expensive evaluation of the few-group cross-sections for all possible core conditions. Given the generic natures of the algorithms, we make an effort to introduce the material in a general form to allow non-nuclear engineers to benefit from this work.
National Research Council Canada - National Science Library
Homaifar, Abdollah; Esterline, Albert; Kimiaghalam, Bahram
2005-01-01
The Hybrid Projected Gradient-Evolutionary Search Algorithm (HPGES) algorithm uses a specially designed evolutionary-based global search strategy to efficiently create candidate solutions in the solution space...
Evaluation of hybrids algorithms for mass detection in digitalized mammograms
International Nuclear Information System (INIS)
Cordero, Jose; Garzon Reyes, Johnson
2011-01-01
The breast cancer remains being a significant public health problem, the early detection of the lesions can increase the success possibilities of the medical treatments. The mammography is an image modality effective to early diagnosis of abnormalities, where the medical image is obtained of the mammary gland with X-rays of low radiation, this allows detect a tumor or circumscribed mass between two to three years before that it was clinically palpable, and is the only method that until now achieved reducing the mortality by breast cancer. In this paper three hybrids algorithms for circumscribed mass detection on digitalized mammograms are evaluated. In the first stage correspond to a review of the enhancement and segmentation techniques used in the processing of the mammographic images. After a shape filtering was applied to the resulting regions. By mean of a Bayesian filter the survivors regions were processed, where the characteristics vector for the classifier was constructed with few measurements. Later, the implemented algorithms were evaluated by ROC curves, where 40 images were taken for the test, 20 normal images and 20 images with circumscribed lesions. Finally, the advantages and disadvantages in the correct detection of a lesion of every algorithm are discussed.
Application of fermionic marginal constraints to hybrid quantum algorithms
Rubin, Nicholas C.; Babbush, Ryan; McClean, Jarrod
2018-05-01
Many quantum algorithms, including recently proposed hybrid classical/quantum algorithms, make use of restricted tomography of the quantum state that measures the reduced density matrices, or marginals, of the full state. The most straightforward approach to this algorithmic step estimates each component of the marginal independently without making use of the algebraic and geometric structure of the marginals. Within the field of quantum chemistry, this structure is termed the fermionic n-representability conditions, and is supported by a vast amount of literature on both theoretical and practical results related to their approximations. In this work, we introduce these conditions in the language of quantum computation, and utilize them to develop several techniques to accelerate and improve practical applications for quantum chemistry on quantum computers. As a general result, we demonstrate how these marginals concentrate to diagonal quantities when measured on random quantum states. We also show that one can use fermionic n-representability conditions to reduce the total number of measurements required by more than an order of magnitude for medium sized systems in chemistry. As a practical demonstration, we simulate an efficient restoration of the physicality of energy curves for the dilation of a four qubit diatomic hydrogen system in the presence of three distinct one qubit error channels, providing evidence these techniques are useful for pre-fault tolerant quantum chemistry experiments.
Directory of Open Access Journals (Sweden)
Erfan Babaee Tirkolaee
2018-04-01
Full Text Available Greenhouse gases (GHG are the main reason for the global warming during the past decades. On the other hand, establishing a well-structured transportation system will yield to create least cost-pollution. This paper addresses a novel model for the multi-trip Green Capacitated Arc Routing Problem (G-CARP with the aim of minimizing total cost including the cost of generation and emission of greenhouse gases, the cost of vehicle usage and routing cost. The cost of generation and emission of greenhouse gases is based on the calculation of the amount of carbon dioxide emitted from vehicles, which depends on such factors as the vehicle speed, weather conditions, load on the vehicle and traveled distance. The main applications of this problem are in municipalities for urban waste collection, road surface marking and so forth. Due to NP-hardness of the problem, a Hybrid Genetic Algorithm (HGA is developed, wherein a heuristic and simulated annealing algorithm are applied to generate initial solutions and a Genetic Algorithm (GA is then used to generate the best possible solution. The obtained numerical results indicate that the proposed algorithm could present desirable performance within a suitable computational run time. Finally, a sensitivity analysis is implemented on the maximum available time of the vehicles in order to determine the optimal policy.
Evaluation of Edge Assembly Crossover for Hybrid GA
Yoshihara, Ikuo; Sato, Masakazu; Nguyen, Hung Dinh; Yamanori, Kunihito
2004-01-01
Abstract ###Traveling Salesman Problem (TSP) is one of the representative combinatorial optimization prob-###lems. The promising approach to solve TSP is Genetic Algorithm (GA). GA has global search ability, ###and heuristic is used in order to compensate local search ability, because GA is lack of local search abil-###ity. Hybrid (GA (HGA) combined with heuristics can be expected to obtain high quality solutions.We ###employ Lin-Kernighan heuristics which is very effective in TSP. Because cr...
Wang, Yan; Huang, Song; Ji, Zhicheng
2017-07-01
This paper presents a hybrid particle swarm optimization and gravitational search algorithm based on hybrid mutation strategy (HGSAPSO-M) to optimize economic dispatch (ED) including distributed generations (DGs) considering market-based energy pricing. A daily ED model was formulated and a hybrid mutation strategy was adopted in HGSAPSO-M. The hybrid mutation strategy includes two mutation operators, chaotic mutation, Gaussian mutation. The proposed algorithm was tested on IEEE-33 bus and results show that the approach is effective for this problem.
An enhanced DWBA algorithm in hybrid WDM/TDM EPON networks with heterogeneous propagation delays
Li, Chengjun; Guo, Wei; Jin, Yaohui; Sun, Weiqiang; Hu, Weisheng
2011-12-01
An enhanced dynamic wavelength and bandwidth allocation (DWBA) algorithm in hybrid WDM/TDM PON is proposed and experimentally demonstrated. In addition to the fairness of bandwidth allocation, this algorithm also considers the varying propagation delays between ONUs and OLT. The simulation based on MATLAB indicates that the improved algorithm has a better performance compared with some other algorithms.
A hybrid algorithm for parallel molecular dynamics simulations
Mangiardi, Chris M.; Meyer, R.
2017-10-01
This article describes algorithms for the hybrid parallelization and SIMD vectorization of molecular dynamics simulations with short-range forces. The parallelization method combines domain decomposition with a thread-based parallelization approach. The goal of the work is to enable efficient simulations of very large (tens of millions of atoms) and inhomogeneous systems on many-core processors with hundreds or thousands of cores and SIMD units with large vector sizes. In order to test the efficiency of the method, simulations of a variety of configurations with up to 74 million atoms have been performed. Results are shown that were obtained on multi-core systems with Sandy Bridge and Haswell processors as well as systems with Xeon Phi many-core processors.
Hybrid Monte Carlo algorithm with fat link fermion actions
International Nuclear Information System (INIS)
Kamleh, Waseem; Leinweber, Derek B.; Williams, Anthony G.
2004-01-01
The use of APE smearing or other blocking techniques in lattice fermion actions can provide many advantages. There are many variants of these fat link actions in lattice QCD currently, such as flat link irrelevant clover (FLIC) fermions. The FLIC fermion formalism makes use of the APE blocking technique in combination with a projection of the blocked links back into the special unitary group. This reunitarization is often performed using an iterative maximization of a gauge invariant measure. This technique is not differentiable with respect to the gauge field and thus prevents the use of standard Hybrid Monte Carlo simulation algorithms. The use of an alternative projection technique circumvents this difficulty and allows the simulation of dynamical fat link fermions with standard HMC and its variants. The necessary equations of motion for FLIC fermions are derived, and some initial simulation results are presented. The technique is more general however, and is straightforwardly applicable to other smearing techniques or fat link actions
Directory of Open Access Journals (Sweden)
Hyo Seon Park
2014-01-01
Full Text Available Since genetic algorithm-based optimization methods are computationally expensive for practical use in the field of structural optimization, a resizing technique-based hybrid genetic algorithm for the drift design of multistory steel frame buildings is proposed to increase the convergence speed of genetic algorithms. To reduce the number of structural analyses required for the convergence, a genetic algorithm is combined with a resizing technique that is an efficient optimal technique to control the drift of buildings without the repetitive structural analysis. The resizing technique-based hybrid genetic algorithm proposed in this paper is applied to the minimum weight design of three steel frame buildings. To evaluate the performance of the algorithm, optimum weights, computational times, and generation numbers from the proposed algorithm are compared with those from a genetic algorithm. Based on the comparisons, it is concluded that the hybrid genetic algorithm shows clear improvements in convergence properties.
A hybrid neural network – world cup optimization algorithm for melanoma detection
Directory of Open Access Journals (Sweden)
Razmjooy Navid
2018-03-01
Full Text Available One of the most dangerous cancers in humans is Melanoma. However, early detection of melanoma can help us to cure it completely. This paper presents a new efficient method to detect malignancy in melanoma via images. At first, the extra scales are eliminated by using edge detection and smoothing. Afterwards, the proposed method can be utilized to segment the cancer images. Finally, the extra information is eliminated by morphological operations and used to focus on the area which melanoma boundary potentially exists. To do this, World Cup Optimization algorithm is utilized to optimize an MLP neural Networks (ANN. World Cup Optimization algorithm is a new meta-heuristic algorithm which is recently presented and has a good performance in some optimization problems. WCO is a derivative-free, Meta-Heuristic algorithm, mimicking the world’s FIFA competitions. World cup Optimization algorithm is a global search algorithm while gradient-based back propagation method is local search. In this proposed algorithm, multi-layer perceptron network (MLP employs the problem’s constraints and WCO algorithm attempts to minimize the root mean square error. Experimental results show that the proposed method can develop the performance of the standard MLP algorithm significantly.
A hybrid multiview stereo algorithm for modeling urban scenes.
Lafarge, Florent; Keriven, Renaud; Brédif, Mathieu; Vu, Hoang-Hiep
2013-01-01
We present an original multiview stereo reconstruction algorithm which allows the 3D-modeling of urban scenes as a combination of meshes and geometric primitives. The method provides a compact model while preserving details: Irregular elements such as statues and ornaments are described by meshes, whereas regular structures such as columns and walls are described by primitives (planes, spheres, cylinders, cones, and tori). We adopt a two-step strategy consisting first in segmenting the initial meshbased surface using a multilabel Markov Random Field-based model and second in sampling primitive and mesh components simultaneously on the obtained partition by a Jump-Diffusion process. The quality of a reconstruction is measured by a multi-object energy model which takes into account both photo-consistency and semantic considerations (i.e., geometry and shape layout). The segmentation and sampling steps are embedded into an iterative refinement procedure which provides an increasingly accurate hybrid representation. Experimental results on complex urban structures and large scenes are presented and compared to state-of-the-art multiview stereo meshing algorithms.
Genetic algorithm and neural network hybrid approach for job-shop scheduling
Zhao, Kai; Yang, Shengxiang; Wang, Dingwei
1998-01-01
Copyright @ 1998 ACTA Press This paper proposes a genetic algorithm (GA) and constraint satisfaction adaptive neural network (CSANN) hybrid approach for job-shop scheduling problems. In the hybrid approach, GA is used to iterate for searching optimal solutions, CSANN is used to obtain feasible solutions during the iteration of genetic algorithm. Simulations have shown the valid performance of the proposed hybrid approach for job-shop scheduling with respect to the quality of solutions and ...
Optimum Performance-Based Seismic Design Using a Hybrid Optimization Algorithm
Directory of Open Access Journals (Sweden)
S. Talatahari
2014-01-01
Full Text Available A hybrid optimization method is presented to optimum seismic design of steel frames considering four performance levels. These performance levels are considered to determine the optimum design of structures to reduce the structural cost. A pushover analysis of steel building frameworks subject to equivalent-static earthquake loading is utilized. The algorithm is based on the concepts of the charged system search in which each agent is affected by local and global best positions stored in the charged memory considering the governing laws of electrical physics. Comparison of the results of the hybrid algorithm with those of other metaheuristic algorithms shows the efficiency of the hybrid algorithm.
International Nuclear Information System (INIS)
Li Guoli; Song Gang; Wu Yican
2007-01-01
Inverse treatment planning for radiation therapy is a multi-objective optimization process. The hybrid multi-objective optimization algorithm is studied by combining the simulated annealing(SA) and genetic algorithm(GA). Test functions are used to analyze the efficiency of algorithms. The hybrid multi-objective optimization SA algorithm, which displacement is based on the evolutionary strategy of GA: crossover and mutation, is implemented in inverse planning of external beam radiation therapy by using two kinds of objective functions, namely the average dose distribution based and the hybrid dose-volume constraints based objective functions. The test calculations demonstrate that excellent converge speed can be achieved. (authors)
Ayvaz, M. Tamer
2007-11-01
This study proposes an inverse solution algorithm through which both the aquifer parameters and the zone structure of these parameters can be determined based on a given set of observations on piezometric heads. In the zone structure identification problem fuzzy c-means ( FCM) clustering method is used. The association of the zone structure with the transmissivity distribution is accomplished through an optimization model. The meta-heuristic harmony search ( HS) algorithm, which is conceptualized using the musical process of searching for a perfect state of harmony, is used as an optimization technique. The optimum parameter zone structure is identified based on three criteria which are the residual error, parameter uncertainty, and structure discrimination. A numerical example given in the literature is solved to demonstrate the performance of the proposed algorithm. Also, a sensitivity analysis is performed to test the performance of the HS algorithm for different sets of solution parameters. Results indicate that the proposed solution algorithm is an effective way in the simultaneous identification of aquifer parameters and their corresponding zone structures.
Identification of chaotic systems by neural network with hybrid learning algorithm
International Nuclear Information System (INIS)
Pan, S.-T.; Lai, C.-C.
2008-01-01
Based on the genetic algorithm (GA) and steepest descent method (SDM), this paper proposes a hybrid algorithm for the learning of neural networks to identify chaotic systems. The systems in question are the logistic map and the Duffing equation. Different identification schemes are used to identify both the logistic map and the Duffing equation, respectively. Simulation results show that our hybrid algorithm is more efficient than that of other methods
International Nuclear Information System (INIS)
Xu, Meng; Droguett, Enrique López; Lins, Isis Didier; Chagas Moura, Márcio das
2017-01-01
The q-Weibull model is based on the Tsallis non-extensive entropy and is able to model various behaviors of the hazard rate function, including bathtub curves, by using a single set of parameters. Despite its flexibility, the q-Weibull has not been widely used in reliability applications partly because of the complicated parameters estimation. In this work, the parameters of the q-Weibull are estimated by the maximum likelihood (ML) method. Due to the intricate system of nonlinear equations, derivative-based optimization methods may fail to converge. Thus, the heuristic optimization method of artificial bee colony (ABC) is used instead. To deal with the slow convergence of ABC, it is proposed an adaptive hybrid ABC (AHABC) algorithm that dynamically combines Nelder-Mead simplex search method with ABC for the ML estimation of the q-Weibull parameters. Interval estimates for the q-Weibull parameters, including confidence intervals based on the ML asymptotic theory and on bootstrap methods, are also developed. The AHABC is validated via numerical experiments involving the q-Weibull ML for reliability applications and results show that it produces faster and more accurate convergence when compared to ABC and similar approaches. The estimation procedure is applied to real reliability failure data characterized by a bathtub-shaped hazard rate. - Highlights: • Development of an Adaptive Hybrid ABC (AHABC) algorithm for q-Weibull distribution. • AHABC combines local Nelder-Mead simplex method with ABC to enhance local search. • AHABC efficiently finds the optimal solution for the q-Weibull ML problem. • AHABC outperforms ABC and self-adaptive hybrid ABC in accuracy and convergence speed. • Useful model for reliability data with non-monotonic hazard rate.
International Nuclear Information System (INIS)
Aghajani, Afshin; Kazemzadeh, Rasool; Ebrahimi, Afshin
2016-01-01
Highlights: • Proposing a novel hybrid method for short-term prediction of wind farms with high accuracy. • Investigating the prediction accuracy for proposed method in comparison with other methods. • Investigating the effect of six types of parameters as input data on predictions. • Comparing results for 6 & 4 types of the input parameters – addition of pressure and air humidity. - Abstract: This paper proposes a novel hybrid approach to forecast electric power production in wind farms. Wavelet transform (WT) is employed to filter input data of wind power, while radial basis function (RBF) neural network is utilized for primary prediction. For better predictions the main forecasting engine is comprised of three multilayer perceptron (MLP) neural networks by different learning algorithms of Levenberg–Marquardt (LM), Broyden–Fletcher–Goldfarb–Shanno (BFGS), and Bayesian regularization (BR). Meta-heuristic technique Imperialist Competitive Algorithm (ICA) is used to optimize neural networks’ weightings in order to escape from local minima. In the forecast process, the real data of wind farms located in the southern part of Alberta, Canada, are used to train and test the proposed model. The data are a complete set of six meteorological and technical characteristics, including wind speed, wind power, wind direction, temperature, pressure, and air humidity. In order to demonstrate the efficiency of the proposed method, it is compared with several other wind power forecast techniques. Results of optimizations indicate the superiority of the proposed method over the other mentioned techniques; and, forecasting error is remarkably reduced. For instance, the average normalized root mean square error (NRMSE) and average mean absolute percentage error (MAPE) are respectively 11% and 14% lower for the proposed method in 1-h-ahead forecasts over a 24-h period with six types of input than those for the best of the compared models.
Application of Hybrid Optimization Algorithm in the Synthesis of Linear Antenna Array
Directory of Open Access Journals (Sweden)
Ezgi Deniz Ülker
2014-01-01
Full Text Available The use of hybrid algorithms for solving real-world optimization problems has become popular since their solution quality can be made better than the algorithms that form them by combining their desirable features. The newly proposed hybrid method which is called Hybrid Differential, Particle, and Harmony (HDPH algorithm is different from the other hybrid forms since it uses all features of merged algorithms in order to perform efficiently for a wide variety of problems. In the proposed algorithm the control parameters are randomized which makes its implementation easy and provides a fast response. This paper describes the application of HDPH algorithm to linear antenna array synthesis. The results obtained with the HDPH algorithm are compared with three merged optimization techniques that are used in HDPH. The comparison shows that the performance of the proposed algorithm is comparatively better in both solution quality and robustness. The proposed hybrid algorithm HDPH can be an efficient candidate for real-time optimization problems since it yields reliable performance at all times when it gets executed.
Zhang, Aizhu; Sun, Genyun; Wang, Zhenjie
2015-12-01
The serious information redundancy in hyperspectral images (HIs) cannot contribute to the data analysis accuracy, instead it require expensive computational resources. Consequently, to identify the most useful and valuable information from the HIs, thereby improve the accuracy of data analysis, this paper proposed a novel hyperspectral band selection method using the hybrid genetic algorithm and gravitational search algorithm (GA-GSA). In the proposed method, the GA-GSA is mapped to the binary space at first. Then, the accuracy of the support vector machine (SVM) classifier and the number of selected spectral bands are utilized to measure the discriminative capability of the band subset. Finally, the band subset with the smallest number of spectral bands as well as covers the most useful and valuable information is obtained. To verify the effectiveness of the proposed method, studies conducted on an AVIRIS image against two recently proposed state-of-the-art GSA variants are presented. The experimental results revealed the superiority of the proposed method and indicated that the method can indeed considerably reduce data storage costs and efficiently identify the band subset with stable and high classification precision.
A hybrid intelligent algorithm for portfolio selection problem with fuzzy returns
Li, Xiang; Zhang, Yang; Wong, Hau-San; Qin, Zhongfeng
2009-11-01
Portfolio selection theory with fuzzy returns has been well developed and widely applied. Within the framework of credibility theory, several fuzzy portfolio selection models have been proposed such as mean-variance model, entropy optimization model, chance constrained programming model and so on. In order to solve these nonlinear optimization models, a hybrid intelligent algorithm is designed by integrating simulated annealing algorithm, neural network and fuzzy simulation techniques, where the neural network is used to approximate the expected value and variance for fuzzy returns and the fuzzy simulation is used to generate the training data for neural network. Since these models are used to be solved by genetic algorithm, some comparisons between the hybrid intelligent algorithm and genetic algorithm are given in terms of numerical examples, which imply that the hybrid intelligent algorithm is robust and more effective. In particular, it reduces the running time significantly for large size problems.
Wang, Qianqian; Zhao, Jing; Gong, Yong; Hao, Qun; Peng, Zhong
2017-11-20
A hybrid artificial bee colony (ABC) algorithm inspired by the best-so-far solution and bacterial chemotaxis was introduced to optimize the parameters of the five-parameter bidirectional reflectance distribution function (BRDF) model. To verify the performance of the hybrid ABC algorithm, we measured BRDF of three kinds of samples and simulated the undetermined parameters of the five-parameter BRDF model using the hybrid ABC algorithm and the genetic algorithm, respectively. The experimental results demonstrate that the hybrid ABC algorithm outperforms the genetic algorithm in convergence speed, accuracy, and time efficiency under the same conditions.
Directory of Open Access Journals (Sweden)
Narinder Singh
2018-03-01
Full Text Available The quest for an efficient nature-inspired optimization technique has continued over the last few decades. In this paper, a hybrid nature-inspired optimization technique has been proposed. The hybrid algorithm has been constructed using Mean Grey Wolf Optimizer (MGWO and Whale Optimizer Algorithm (WOA. We have utilized the spiral equation of Whale Optimizer Algorithm for two procedures in the Hybrid Approach GWO (HAGWO algorithm: (i firstly, we used the spiral equation in Grey Wolf Optimizer algorithm for balance between the exploitation and the exploration process in the new hybrid approach; and (ii secondly, we also applied this equation in the whole population in order to refrain from the premature convergence and trapping in local minima. The feasibility and effectiveness of the hybrid algorithm have been tested by solving some standard benchmarks, XOR, Baloon, Iris, Breast Cancer, Welded Beam Design, Pressure Vessel Design problems and comparing the results with those obtained through other metaheuristics. The solutions prove that the newly existing hybrid variant has higher stronger stability, faster convergence rate and computational accuracy than other nature-inspired metaheuristics on the maximum number of problems and can successfully resolve the function of constrained nonlinear optimization in reality.
Energy Technology Data Exchange (ETDEWEB)
Sheng, Zheng, E-mail: 19994035@sina.com [College of Meteorology and Oceanography, PLA University of Science and Technology, Nanjing 211101 (China); Wang, Jun; Zhou, Bihua [National Defense Key Laboratory on Lightning Protection and Electromagnetic Camouflage, PLA University of Science and Technology, Nanjing 210007 (China); Zhou, Shudao [College of Meteorology and Oceanography, PLA University of Science and Technology, Nanjing 211101 (China); Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing 210044 (China)
2014-03-15
This paper introduces a novel hybrid optimization algorithm to establish the parameters of chaotic systems. In order to deal with the weaknesses of the traditional cuckoo search algorithm, the proposed adaptive cuckoo search with simulated annealing algorithm is presented, which incorporates the adaptive parameters adjusting operation and the simulated annealing operation in the cuckoo search algorithm. Normally, the parameters of the cuckoo search algorithm are kept constant that may result in decreasing the efficiency of the algorithm. For the purpose of balancing and enhancing the accuracy and convergence rate of the cuckoo search algorithm, the adaptive operation is presented to tune the parameters properly. Besides, the local search capability of cuckoo search algorithm is relatively weak that may decrease the quality of optimization. So the simulated annealing operation is merged into the cuckoo search algorithm to enhance the local search ability and improve the accuracy and reliability of the results. The functionality of the proposed hybrid algorithm is investigated through the Lorenz chaotic system under the noiseless and noise condition, respectively. The numerical results demonstrate that the method can estimate parameters efficiently and accurately in the noiseless and noise condition. Finally, the results are compared with the traditional cuckoo search algorithm, genetic algorithm, and particle swarm optimization algorithm. Simulation results demonstrate the effectiveness and superior performance of the proposed algorithm.
International Nuclear Information System (INIS)
Sheng, Zheng; Wang, Jun; Zhou, Bihua; Zhou, Shudao
2014-01-01
This paper introduces a novel hybrid optimization algorithm to establish the parameters of chaotic systems. In order to deal with the weaknesses of the traditional cuckoo search algorithm, the proposed adaptive cuckoo search with simulated annealing algorithm is presented, which incorporates the adaptive parameters adjusting operation and the simulated annealing operation in the cuckoo search algorithm. Normally, the parameters of the cuckoo search algorithm are kept constant that may result in decreasing the efficiency of the algorithm. For the purpose of balancing and enhancing the accuracy and convergence rate of the cuckoo search algorithm, the adaptive operation is presented to tune the parameters properly. Besides, the local search capability of cuckoo search algorithm is relatively weak that may decrease the quality of optimization. So the simulated annealing operation is merged into the cuckoo search algorithm to enhance the local search ability and improve the accuracy and reliability of the results. The functionality of the proposed hybrid algorithm is investigated through the Lorenz chaotic system under the noiseless and noise condition, respectively. The numerical results demonstrate that the method can estimate parameters efficiently and accurately in the noiseless and noise condition. Finally, the results are compared with the traditional cuckoo search algorithm, genetic algorithm, and particle swarm optimization algorithm. Simulation results demonstrate the effectiveness and superior performance of the proposed algorithm
Ensemble of hybrid genetic algorithm for two-dimensional phase unwrapping
Balakrishnan, D.; Quan, C.; Tay, C. J.
2013-06-01
The phase unwrapping is the final and trickiest step in any phase retrieval technique. Phase unwrapping by artificial intelligence methods (optimization algorithms) such as hybrid genetic algorithm, reverse simulated annealing, particle swarm optimization, minimum cost matching showed better results than conventional phase unwrapping methods. In this paper, Ensemble of hybrid genetic algorithm with parallel populations is proposed to solve the branch-cut phase unwrapping problem. In a single populated hybrid genetic algorithm, the selection, cross-over and mutation operators are applied to obtain new population in every generation. The parameters and choice of operators will affect the performance of the hybrid genetic algorithm. The ensemble of hybrid genetic algorithm will facilitate to have different parameters set and different choice of operators simultaneously. Each population will use different set of parameters and the offspring of each population will compete against the offspring of all other populations, which use different set of parameters. The effectiveness of proposed algorithm is demonstrated by phase unwrapping examples and advantages of the proposed method are discussed.
Application of Hybrid Genetic Algorithm Routine in Optimizing Food and Bioengineering Processes
Directory of Open Access Journals (Sweden)
Jaya Shankar Tumuluru
2016-11-01
Full Text Available Optimization is a crucial step in the analysis of experimental results. Deterministic methods only converge on local optimums and require exponentially more time as dimensionality increases. Stochastic algorithms are capable of efficiently searching the domain space; however convergence is not guaranteed. This article demonstrates the novelty of the hybrid genetic algorithm (HGA, which combines both stochastic and deterministic routines for improved optimization results. The new hybrid genetic algorithm developed is applied to the Ackley benchmark function as well as case studies in food, biofuel, and biotechnology processes. For each case study, the hybrid genetic algorithm found a better optimum candidate than reported by the sources. In the case of food processing, the hybrid genetic algorithm improved the anthocyanin yield by 6.44%. Optimization of bio-oil production using HGA resulted in a 5.06% higher yield. In the enzyme production process, HGA predicted a 0.39% higher xylanase yield. Hybridization of the genetic algorithm with a deterministic algorithm resulted in an improved optimum compared to statistical methods.
Directory of Open Access Journals (Sweden)
M. Omidvari
2015-09-01
Full Text Available Introduction: Occupational accidents are of the main issues in industries. It is necessary to identify the main root causes of accidents for their control. Several models have been proposed for determining the accidents root causes. FTA is one of the most widely used models which could graphically establish the root causes of accidents. The non-linear function is one of the main challenges in FTA compliance and in order to obtain the exact number, the meta-heuristic algorithms can be used. Material and Method: The present research was done in power plant industries in construction phase. In this study, a pattern for the analysis of human error in work-related accidents was provided by combination of neural network algorithms and FTA analytical model. Finally, using this pattern, the potential rate of all causes was determined. Result: The results showed that training, age, and non-compliance with safety principals in the workplace were the most important factors influencing human error in the occupational accident. Conclusion: According to the obtained results, it can be concluded that human errors can be greatly reduced by training, right choice of workers with regard to the type of occupations, and provision of appropriate safety conditions in the work place.
Asaithambi, Sasikumar; Rajappa, Muthaiah
2018-05-01
In this paper, an automatic design method based on a swarm intelligence approach for CMOS analog integrated circuit (IC) design is presented. The hybrid meta-heuristics optimization technique, namely, the salp swarm algorithm (SSA), is applied to the optimal sizing of a CMOS differential amplifier and the comparator circuit. SSA is a nature-inspired optimization algorithm which mimics the navigating and hunting behavior of salp. The hybrid SSA is applied to optimize the circuit design parameters and to minimize the MOS transistor sizes. The proposed swarm intelligence approach was successfully implemented for an automatic design and optimization of CMOS analog ICs using Generic Process Design Kit (GPDK) 180 nm technology. The circuit design parameters and design specifications are validated through a simulation program for integrated circuit emphasis simulator. To investigate the efficiency of the proposed approach, comparisons have been carried out with other simulation-based circuit design methods. The performances of hybrid SSA based CMOS analog IC designs are better than the previously reported studies.
Hybridizing Differential Evolution with a Genetic Algorithm for Color Image Segmentation
Directory of Open Access Journals (Sweden)
R. V. V. Krishna
2016-10-01
Full Text Available This paper proposes a hybrid of differential evolution and genetic algorithms to solve the color image segmentation problem. Clustering based color image segmentation algorithms segment an image by clustering the features of color and texture, thereby obtaining accurate prototype cluster centers. In the proposed algorithm, the color features are obtained using the homogeneity model. A new texture feature named Power Law Descriptor (PLD which is a modification of Weber Local Descriptor (WLD is proposed and further used as a texture feature for clustering. Genetic algorithms are competent in handling binary variables, while differential evolution on the other hand is more efficient in handling real parameters. The obtained texture feature is binary in nature and the color feature is a real value, which suits very well the hybrid cluster center optimization problem in image segmentation. Thus in the proposed algorithm, the optimum texture feature centers are evolved using genetic algorithms, whereas the optimum color feature centers are evolved using differential evolution.
International Nuclear Information System (INIS)
Elsheikh, Ahmed H.; Wheeler, Mary F.; Hoteit, Ibrahim
2014-01-01
A Hybrid Nested Sampling (HNS) algorithm is proposed for efficient Bayesian model calibration and prior model selection. The proposed algorithm combines, Nested Sampling (NS) algorithm, Hybrid Monte Carlo (HMC) sampling and gradient estimation using Stochastic Ensemble Method (SEM). NS is an efficient sampling algorithm that can be used for Bayesian calibration and estimating the Bayesian evidence for prior model selection. Nested sampling has the advantage of computational feasibility. Within the nested sampling algorithm, a constrained sampling step is performed. For this step, we utilize HMC to reduce the correlation between successive sampled states. HMC relies on the gradient of the logarithm of the posterior distribution, which we estimate using a stochastic ensemble method based on an ensemble of directional derivatives. SEM only requires forward model runs and the simulator is then used as a black box and no adjoint code is needed. The developed HNS algorithm is successfully applied for Bayesian calibration and prior model selection of several nonlinear subsurface flow problems
Energy Technology Data Exchange (ETDEWEB)
Elsheikh, Ahmed H., E-mail: aelsheikh@ices.utexas.edu [Institute for Computational Engineering and Sciences (ICES), University of Texas at Austin, TX (United States); Institute of Petroleum Engineering, Heriot-Watt University, Edinburgh EH14 4AS (United Kingdom); Wheeler, Mary F. [Institute for Computational Engineering and Sciences (ICES), University of Texas at Austin, TX (United States); Hoteit, Ibrahim [Department of Earth Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal (Saudi Arabia)
2014-02-01
A Hybrid Nested Sampling (HNS) algorithm is proposed for efficient Bayesian model calibration and prior model selection. The proposed algorithm combines, Nested Sampling (NS) algorithm, Hybrid Monte Carlo (HMC) sampling and gradient estimation using Stochastic Ensemble Method (SEM). NS is an efficient sampling algorithm that can be used for Bayesian calibration and estimating the Bayesian evidence for prior model selection. Nested sampling has the advantage of computational feasibility. Within the nested sampling algorithm, a constrained sampling step is performed. For this step, we utilize HMC to reduce the correlation between successive sampled states. HMC relies on the gradient of the logarithm of the posterior distribution, which we estimate using a stochastic ensemble method based on an ensemble of directional derivatives. SEM only requires forward model runs and the simulator is then used as a black box and no adjoint code is needed. The developed HNS algorithm is successfully applied for Bayesian calibration and prior model selection of several nonlinear subsurface flow problems.
A Simple Sizing Algorithm for Stand-Alone PV/Wind/Battery Hybrid Microgrids
Directory of Open Access Journals (Sweden)
Jing Li
2012-12-01
Full Text Available In this paper, we develop a simple algorithm to determine the required number of generating units of wind-turbine generator and photovoltaic array, and the associated storage capacity for stand-alone hybrid microgrid. The algorithm is based on the observation that the state of charge of battery should be periodically invariant. The optimal sizing of hybrid microgrid is given in the sense that the life cycle cost of system is minimized while the given load power demand can be satisfied without load rejection. We also report a case study to show the efficacy of the developed algorithm.
Series Hybrid Electric Vehicle Power System Optimization Based on Genetic Algorithm
Zhu, Tianjun; Li, Bin; Zong, Changfu; Wu, Yang
2017-09-01
Hybrid electric vehicles (HEV), compared with conventional vehicles, have complex structures and more component parameters. If variables optimization designs are carried on all these parameters, it will increase the difficulty and the convergence of algorithm program, so this paper chooses the parameters which has a major influence on the vehicle fuel consumption to make it all work at maximum efficiency. First, HEV powertrain components modelling are built. Second, taking a tandem hybrid structure as an example, genetic algorithm is used in this paper to optimize fuel consumption and emissions. Simulation results in ADVISOR verify the feasibility of the proposed genetic optimization algorithm.
Öhrmalm, Christina; Jobs, Magnus; Eriksson, Ronnie; Golbob, Sultan; Elfaitouri, Amal; Benachenhou, Farid; Strømme, Maria; Blomberg, Jonas
2010-01-01
One of the main problems in nucleic acid-based techniques for detection of infectious agents, such as influenza viruses, is that of nucleic acid sequence variation. DNA probes, 70-nt long, some including the nucleotide analog deoxyribose-Inosine (dInosine), were analyzed for hybridization tolerance to different amounts and distributions of mismatching bases, e.g. synonymous mutations, in target DNA. Microsphere-linked 70-mer probes were hybridized in 3M TMAC buffer to biotinylated single-stranded (ss) DNA for subsequent analysis in a Luminex® system. When mismatches interrupted contiguous matching stretches of 6 nt or longer, it had a strong impact on hybridization. Contiguous matching stretches are more important than the same number of matching nucleotides separated by mismatches into several regions. dInosine, but not 5-nitroindole, substitutions at mismatching positions stabilized hybridization remarkably well, comparable to N (4-fold) wobbles in the same positions. In contrast to shorter probes, 70-nt probes with judiciously placed dInosine substitutions and/or wobble positions were remarkably mismatch tolerant, with preserved specificity. An algorithm, NucZip, was constructed to model the nucleation and zipping phases of hybridization, integrating both local and distant binding contributions. It predicted hybridization more exactly than previous algorithms, and has the potential to guide the design of variation-tolerant yet specific probes. PMID:20864443
Comparison Of Hybrid Sorting Algorithms Implemented On Different Parallel Hardware Platforms
Directory of Open Access Journals (Sweden)
Dominik Zurek
2013-01-01
Full Text Available Sorting is a common problem in computer science. There are lot of well-known sorting algorithms created for sequential execution on a single processor. Recently, hardware platforms enable to create wide parallel algorithms. We have standard processors consist of multiple cores and hardware accelerators like GPU. The graphic cards with their parallel architecture give new possibility to speed up many algorithms. In this paper we describe results of implementation of a few different sorting algorithms on GPU cards and multicore processors. Then hybrid algorithm will be presented which consists of parts executed on both platforms, standard CPU and GPU.
Detection of Defective Sensors in Phased Array Using Compressed Sensing and Hybrid Genetic Algorithm
Directory of Open Access Journals (Sweden)
Shafqat Ullah Khan
2016-01-01
Full Text Available A compressed sensing based array diagnosis technique has been presented. This technique starts from collecting the measurements of the far-field pattern. The system linking the difference between the field measured using the healthy reference array and the field radiated by the array under test is solved using a genetic algorithm (GA, parallel coordinate descent (PCD algorithm, and then a hybridized GA with PCD algorithm. These algorithms are applied for fully and partially defective antenna arrays. The simulation results indicate that the proposed hybrid algorithm outperforms in terms of localization of element failure with a small number of measurements. In the proposed algorithm, the slow and early convergence of GA has been avoided by combining it with PCD algorithm. It has been shown that the hybrid GA-PCD algorithm provides an accurate diagnosis of fully and partially defective sensors as compared to GA or PCD alone. Different simulations have been provided to validate the performance of the designed algorithms in diversified scenarios.
Hybrid Modeling KMeans – Genetic Algorithms in the Health Care Data
Directory of Open Access Journals (Sweden)
Tessy Badriyah
2013-06-01
Full Text Available K-Means is one of the major algorithms widely used in clustering due to its good computational performance. However, K-Means is very sensitive to the initially selected points which randomly selected, and therefore it does not always generate optimum solutions. Genetic algorithm approach can be applied to solve this problem. In this research we examine the potential of applying hybrid GA- KMeans with focus on the area of health care data. We proposed a new technique using hybrid method combining KMeans Clustering and Genetic Algorithms, called the “Hybrid K-Means Genetic Algorithms” (HKGA. HKGA combines the power of Genetic Algorithms and the efficiency of K-Means Clustering. We compare our results with other conventional algorithms and also with other published research as well. Our results demonstrate that the HKGA achieves very good results and in some cases superior to other methods. Keywords: Machine Learning, K-Means, Genetic Algorithms, Hybrid KMeans Genetic Algorithm (HGKA.
A New Hybrid Algorithm to Solve Winner Determination Problem in Multiunit Double Internet Auction
Directory of Open Access Journals (Sweden)
Mourad Ykhlef
2015-01-01
Full Text Available Solving winner determination problem in multiunit double auction has become an important E-business task. The main issue in double auction is to improve the reward in order to match the ideal prices and quantity and make the best profit for sellers and buyers according to their bids and predefined quantities. There are many algorithms introduced for solving winner in multiunit double auction. Conventional algorithms can find the optimal solution but they take a long time, particularly when they are applied to large dataset. Nowadays, some evolutionary algorithms, such as particle swarm optimization and genetic algorithm, were proposed and have been applied. In order to improve the speed of evolutionary algorithms convergence, we will propose a new kind of hybrid evolutionary algorithm that combines genetic algorithm (GA with particle swarm optimization (PSO to solve winner determination problem in multiunit double auction; we will refer to this algorithm as AUC-GAPSO.
Directory of Open Access Journals (Sweden)
2009-03-01
Full Text Available We define a special case for the vehicle routing problem with stochastic demands (SC-VRPSD where customer demands are normally distributed. We propose a new linear model for computing the expected length of a tour in SC-VRPSD. The proposed model is based on the integration of the “Traveling Salesman Problem” (TSP and the Assignment Problem. For large-scale problems, we also use an Iterated Local Search (ILS algorithm in order to reach an effective solution.
A Location-Aware Vertical Handoff Algorithm for Hybrid Networks
Mehbodniya, Abolfazl
2010-07-01
One of the main objectives of wireless networking is to provide mobile users with a robust connection to different networks so that they can move freely between heterogeneous networks while running their computing applications with no interruption. Horizontal handoff, or generally speaking handoff, is a process which maintains a mobile user\\'s active connection as it moves within a wireless network, whereas vertical handoff (VHO) refers to handover between different types of networks or different network layers. Optimizing VHO process is an important issue, required to reduce network signalling and mobile device power consumption as well as to improve network quality of service (QoS) and grade of service (GoS). In this paper, a VHO algorithm in multitier (overlay) networks is proposed. This algorithm uses pattern recognition to estimate user\\'s position, and decides on the handoff based on this information. For the pattern recognition algorithm structure, the probabilistic neural network (PNN) which has considerable simplicity and efficiency over existing pattern classifiers is used. Further optimization is proposed to improve the performance of the PNN algorithm. Performance analysis and comparisons with the existing VHO algorithm are provided and demonstrate a significant improvement with the proposed algorithm. Furthermore, incorporating the proposed algorithm, a structure is proposed for VHO from the medium access control (MAC) layer point of view. © 2010 ACADEMY PUBLISHER.
Directory of Open Access Journals (Sweden)
Santosh Kumar Singh
2017-06-01
Full Text Available This paper presents a new hybrid method based on Gravity Search Algorithm (GSA and Recursive Least Square (RLS, known as GSA-RLS, to solve the harmonic estimation problems in the case of time varying power signals in presence of different noises. GSA is based on the Newton’s law of gravity and mass interactions. In the proposed method, the searcher agents are a collection of masses that interact with each other using Newton’s laws of gravity and motion. The basic GSA algorithm strategy is combined with RLS algorithm sequentially in an adaptive way to update the unknown parameters (weights of the harmonic signal. Simulation and practical validation are made with the experimentation of the proposed algorithm with real time data obtained from a heavy paper industry. A comparative performance of the proposed algorithm is evaluated with other recently reported algorithms like, Differential Evolution (DE, Particle Swarm Optimization (PSO, Bacteria Foraging Optimization (BFO, Fuzzy-BFO (F-BFO hybridized with Least Square (LS and BFO hybridized with RLS algorithm, which reveals that the proposed GSA-RLS algorithm is the best in terms of accuracy, convergence and computational time.
HYBRID CHRIPTOGRAPHY STREAM CIPHER AND RSA ALGORITHM WITH DIGITAL SIGNATURE AS A KEY
Directory of Open Access Journals (Sweden)
Grace Lamudur Arta Sihombing
2017-03-01
Full Text Available Confidentiality of data is very important in communication. Many cyber crimes that exploit security holes for entry and manipulation. To ensure the security and confidentiality of the data, required a certain technique to encrypt data or information called cryptography. It is one of the components that can not be ignored in building security. And this research aimed to analyze the hybrid cryptography with symmetric key by using a stream cipher algorithm and asymmetric key by using RSA (Rivest Shamir Adleman algorithm. The advantages of hybrid cryptography is the speed in processing data using a symmetric algorithm and easy transfer of key using asymmetric algorithm. This can increase the speed of transaction processing data. Stream Cipher Algorithm using the image digital signature as a keys, that will be secured by the RSA algorithm. So, the key for encryption and decryption are different. Blum Blum Shub methods used to generate keys for the value p, q on the RSA algorithm. It will be very difficult for a cryptanalyst to break the key. Analysis of hybrid cryptography stream cipher and RSA algorithms with digital signatures as a key, indicates that the size of the encrypted file is equal to the size of the plaintext, not to be larger or smaller so that the time required for encryption and decryption process is relatively fast.
Model of Wagons’ Placing-In and Taking-Out Problem in a Railway Station and Its Heuristic Algorithm
Directory of Open Access Journals (Sweden)
Chuijiang Guo
2014-01-01
Full Text Available Placing-in and taking-out wagons timely can decrease wagons’ dwell time in railway stations, improve the efficiency of railway transportation, and reduce the cost of goods transportation. We took the locomotive running times between goods operation sites as weights, so the wagons’ placing-in and taking-out problem could be regarded as a single machine scheduling problem, 1pijCmax, which could be transformed into the shortest circle problem in a Hamilton graph whose relaxation problem was an assignment problem. We used a Hungarian algorithm to calculate the optimal solution of the assignment problem. Then we applied a broken circle and connection method, whose computational complexity was O(n2, to find the available satisfactory order of wagons’ placing-in and taking-out. Complex problems, such as placing-in and transferring combined, taking-out and transferring combined, placing-in and taking-out combined, or placing-in, transferring, and taking-out combined, could also be resolved with the extended algorithm. A representative instance was given to illustrate the reliability and efficiency of our results.
Jough, Fooad Karimi Ghaleh; Şensoy, Serhan
2016-12-01
Different performance levels may be obtained for sideway collapse evaluation of steel moment frames depending on the evaluation procedure used to handle uncertainties. In this article, the process of representing modelling uncertainties, record to record (RTR) variations and cognitive uncertainties for moment resisting steel frames of various heights is discussed in detail. RTR uncertainty is used by incremental dynamic analysis (IDA), modelling uncertainties are considered through backbone curves and hysteresis loops of component, and cognitive uncertainty is presented in three levels of material quality. IDA is used to evaluate RTR uncertainty based on strong ground motion records selected by the k-means algorithm, which is favoured over Monte Carlo selection due to its time saving appeal. Analytical equations of the Response Surface Method are obtained through IDA results by the Cuckoo algorithm, which predicts the mean and standard deviation of the collapse fragility curve. The Takagi-Sugeno-Kang model is used to represent material quality based on the response surface coefficients. Finally, collapse fragility curves with the various sources of uncertainties mentioned are derived through a large number of material quality values and meta variables inferred by the Takagi-Sugeno-Kang fuzzy model based on response surface method coefficients. It is concluded that a better risk management strategy in countries where material quality control is weak, is to account for cognitive uncertainties in fragility curves and the mean annual frequency.
Directory of Open Access Journals (Sweden)
Eric Z. Chen
2015-01-01
Full Text Available Error control codes have been widely used in data communications and storage systems. One central problem in coding theory is to optimize the parameters of a linear code and construct codes with best possible parameters. There are tables of best-known linear codes over finite fields of sizes up to 9. Recently, there has been a growing interest in codes over $\\mathbb{F}_{13}$ and other fields of size greater than 9. The main purpose of this work is to present a database of best-known linear codes over the field $\\mathbb{F}_{13}$ together with upper bounds on the minimum distances. To find good linear codes to establish lower bounds on minimum distances, an iterative heuristic computer search algorithm is employed to construct quasi-twisted (QT codes over the field $\\mathbb{F}_{13}$ with high minimum distances. A large number of new linear codes have been found, improving previously best-known results. Tables of $[pm, m]$ QT codes over $\\mathbb{F}_{13}$ with best-known minimum distances as well as a table of lower and upper bounds on the minimum distances for linear codes of length up to 150 and dimension up to 6 are presented.
A Dynamic Multistage Hybrid Swarm Intelligence Optimization Algorithm for Function Optimization
Directory of Open Access Journals (Sweden)
Daqing Wu
2012-01-01
Full Text Available A novel dynamic multistage hybrid swarm intelligence optimization algorithm is introduced, which is abbreviated as DM-PSO-ABC. The DM-PSO-ABC combined the exploration capabilities of the dynamic multiswarm particle swarm optimizer (PSO and the stochastic exploitation of the cooperative artificial bee colony algorithm (CABC for solving the function optimization. In the proposed hybrid algorithm, the whole process is divided into three stages. In the first stage, a dynamic multiswarm PSO is constructed to maintain the population diversity. In the second stage, the parallel, positive feedback of CABC was implemented in each small swarm. In the third stage, we make use of the particle swarm optimization global model, which has a faster convergence speed to enhance the global convergence in solving the whole problem. To verify the effectiveness and efficiency of the proposed hybrid algorithm, various scale benchmark problems are tested to demonstrate the potential of the proposed multistage hybrid swarm intelligence optimization algorithm. The results show that DM-PSO-ABC is better in the search precision, and convergence property and has strong ability to escape from the local suboptima when compared with several other peer algorithms.
A new hybrid imperialist competitive algorithm on data clustering
Indian Academy of Sciences (India)
Modified imperialist competitive algorithm; simulated annealing; ... Clustering is one of the unsupervised learning branches where a set of patterns, usually vectors ..... machine classification is based on design, operation, and/or purpose.
A hybrid multi-objective evolutionary algorithm approach for ...
Indian Academy of Sciences (India)
V K MANUPATI
for handling sequence- and machine-dependent set-up times ... algorithm has been compared to that of multi-objective particle swarm optimization (MOPSO) and conventional ..... position and cognitive learning factor are considered for.
RELAXATION HEURISTICS FOR THE SET COVERING PROBLEM
Umetani, Shunji; Yagiura, Mutsunori; 柳浦, 睦憲
2007-01-01
The set covering problem (SCP) is one of representative combinatorial optimization problems, which has many practical applications. The continuous development of mathematical programming has derived a number of impressive heuristic algorithms as well as exact branch-and-bound algorithms, which can solve huge SCP instances of bus, railway and airline crew scheduling problems. We survey heuristic algorithms for SCP focusing mainly on contributions of mathematical programming techniques to heuri...
Hybrid and dependent task scheduling algorithm for on-board system software
Institute of Scientific and Technical Information of China (English)
魏振华; 洪炳熔; 乔永强; 蔡则苏; 彭俊杰
2003-01-01
In order to solve the hybrid and dependent task scheduling and critical source allocation problems, atask scheduling algorithm has been developed by first presenting the tasks, and then describing the hybrid anddependent scheduling algorithm and deriving the predictable schedulability condition. The performance of thisagorithm was evaluated through simulation, and it is concluded from the evaluation results that the hybrid taskscheduling subalgorithm based on the comparison factor can be used to solve the problem of aperiodic task beingblocked by periodic task in the traditional operating system for a very long time, which results in poor schedu-ling predictability; and the resource allocation subalgorithm based on schedulability analysis can be used tosolve the problems of critical section conflict, ceiling blocking and priority inversion; and the scheduling algo-rithm is nearest optimal when the abortable critical section is 0.6.
DEFF Research Database (Denmark)
Wang, Yong; Cai, Zixing; Zhou, Yuren
2009-01-01
A novel approach to deal with numerical and engineering constrained optimization problems, which incorporates a hybrid evolutionary algorithm and an adaptive constraint-handling technique, is presented in this paper. The hybrid evolutionary algorithm simultaneously uses simplex crossover and two...... mutation operators to generate the offspring population. Additionally, the adaptive constraint-handling technique consists of three main situations. In detail, at each situation, one constraint-handling mechanism is designed based on current population state. Experiments on 13 benchmark test functions...... and four well-known constrained design problems verify the effectiveness and efficiency of the proposed method. The experimental results show that integrating the hybrid evolutionary algorithm with the adaptive constraint-handling technique is beneficial, and the proposed method achieves competitive...
A Hybrid Neural Network-Genetic Algorithm Technique for Aircraft Engine Performance Diagnostics
Kobayashi, Takahisa; Simon, Donald L.
2001-01-01
In this paper, a model-based diagnostic method, which utilizes Neural Networks and Genetic Algorithms, is investigated. Neural networks are applied to estimate the engine internal health, and Genetic Algorithms are applied for sensor bias detection and estimation. This hybrid approach takes advantage of the nonlinear estimation capability provided by neural networks while improving the robustness to measurement uncertainty through the application of Genetic Algorithms. The hybrid diagnostic technique also has the ability to rank multiple potential solutions for a given set of anomalous sensor measurements in order to reduce false alarms and missed detections. The performance of the hybrid diagnostic technique is evaluated through some case studies derived from a turbofan engine simulation. The results show this approach is promising for reliable diagnostics of aircraft engines.
Active Noise Control Using Modified FsLMS and Hybrid PSOFF Algorithm
Directory of Open Access Journals (Sweden)
Ranjan Walia
2018-04-01
Full Text Available Active noise control is an efficient technique for noise cancellation of the system, which has been defined in this paper with the aid of Modified Filtered-s Least Mean Square (MFsLMS algorithm. The Hybrid Particle Swarm Optimization and Firefly (HPSOFF algorithm are used to identify the stability factor of the MFsLMS algorithm. The computational difficulty of the modified algorithm is reduced when compared with the original Filtered-s Least Mean Square (FsLMS algorithm. The noise sources are removed from the signal and it is compared with the existing FsLMS algorithm. The performance of the system is established with the normalized mean square error for two different types of noises. The proposed method has also been compared with the existing algorithms for the same purposes.
Hybrid fuzzy charged system search algorithm based state estimation in distribution networks
Directory of Open Access Journals (Sweden)
Sachidananda Prasad
2017-06-01
Full Text Available This paper proposes a new hybrid charged system search (CSS algorithm based state estimation in radial distribution networks in fuzzy framework. The objective of the optimization problem is to minimize the weighted square of the difference between the measured and the estimated quantity. The proposed method of state estimation considers bus voltage magnitude and phase angle as state variable along with some equality and inequality constraints for state estimation in distribution networks. A rule based fuzzy inference system has been designed to control the parameters of the CSS algorithm to achieve better balance between the exploration and exploitation capability of the algorithm. The efficiency of the proposed fuzzy adaptive charged system search (FACSS algorithm has been tested on standard IEEE 33-bus system and Indian 85-bus practical radial distribution system. The obtained results have been compared with the conventional CSS algorithm, weighted least square (WLS algorithm and particle swarm optimization (PSO for feasibility of the algorithm.
Directory of Open Access Journals (Sweden)
Jafar Jallad
2018-05-01
Full Text Available In a radial distribution network integrated with distributed generation (DG, frequency and voltage instability could occur due to grid disconnection, which would result in an islanded network. This paper proposes an optimal load shedding scheme to balance the electricity demand and the generated power of DGs. The integration of the Firefly Algorithm and Particle Swarm Optimization (FAPSO is proposed for the application of the planned load shedding and under frequency load shedding (UFLS scheme. In planning mode, the hybrid optimization maximizes the amount of load remaining and improves the voltage profile of load buses within allowable limits. Moreover, the hybrid optimization can be used in UFLS scheme to identify the optimal combination of loads that need to be shed from a network in operation mode. In order to assess the capabilities of the hybrid optimization, the IEEE 33-bus radial distribution system and part of the Malaysian distribution network with different types of DGs were used. The response of the proposed optimization method in planning and operation were compared with other optimization techniques. The simulation results confirmed the effectiveness of the proposed hybrid optimization in planning mode and demonstrated that the proposed UFLS scheme is quick enough to restore the system frequency without overshooting in less execution time.
Manifold absolute pressure estimation using neural network with hybrid training algorithm.
Directory of Open Access Journals (Sweden)
Mohd Taufiq Muslim
Full Text Available In a modern small gasoline engine fuel injection system, the load of the engine is estimated based on the measurement of the manifold absolute pressure (MAP sensor, which took place in the intake manifold. This paper present a more economical approach on estimating the MAP by using only the measurements of the throttle position and engine speed, resulting in lower implementation cost. The estimation was done via two-stage multilayer feed-forward neural network by combining Levenberg-Marquardt (LM algorithm, Bayesian Regularization (BR algorithm and Particle Swarm Optimization (PSO algorithm. Based on the results found in 20 runs, the second variant of the hybrid algorithm yields a better network performance than the first variant of hybrid algorithm, LM, LM with BR and PSO by estimating the MAP closely to the simulated MAP values. By using a valid experimental training data, the estimator network that trained with the second variant of the hybrid algorithm showed the best performance among other algorithms when used in an actual retrofit fuel injection system (RFIS. The performance of the estimator was also validated in steady-state and transient condition by showing a closer MAP estimation to the actual value.
Ozmutlu, H. Cenk
2014-01-01
We developed mixed integer programming (MIP) models and hybrid genetic-local search algorithms for the scheduling problem of unrelated parallel machines with job sequence and machine-dependent setup times and with job splitting property. The first contribution of this paper is to introduce novel algorithms which make splitting and scheduling simultaneously with variable number of subjobs. We proposed simple chromosome structure which is constituted by random key numbers in hybrid genetic-local search algorithm (GAspLA). Random key numbers are used frequently in genetic algorithms, but it creates additional difficulty when hybrid factors in local search are implemented. We developed algorithms that satisfy the adaptation of results of local search into the genetic algorithms with minimum relocation operation of genes' random key numbers. This is the second contribution of the paper. The third contribution of this paper is three developed new MIP models which are making splitting and scheduling simultaneously. The fourth contribution of this paper is implementation of the GAspLAMIP. This implementation let us verify the optimality of GAspLA for the studied combinations. The proposed methods are tested on a set of problems taken from the literature and the results validate the effectiveness of the proposed algorithms. PMID:24977204
Eroglu, Duygu Yilmaz; Ozmutlu, H Cenk
2014-01-01
We developed mixed integer programming (MIP) models and hybrid genetic-local search algorithms for the scheduling problem of unrelated parallel machines with job sequence and machine-dependent setup times and with job splitting property. The first contribution of this paper is to introduce novel algorithms which make splitting and scheduling simultaneously with variable number of subjobs. We proposed simple chromosome structure which is constituted by random key numbers in hybrid genetic-local search algorithm (GAspLA). Random key numbers are used frequently in genetic algorithms, but it creates additional difficulty when hybrid factors in local search are implemented. We developed algorithms that satisfy the adaptation of results of local search into the genetic algorithms with minimum relocation operation of genes' random key numbers. This is the second contribution of the paper. The third contribution of this paper is three developed new MIP models which are making splitting and scheduling simultaneously. The fourth contribution of this paper is implementation of the GAspLAMIP. This implementation let us verify the optimality of GAspLA for the studied combinations. The proposed methods are tested on a set of problems taken from the literature and the results validate the effectiveness of the proposed algorithms.
Manifold absolute pressure estimation using neural network with hybrid training algorithm.
Muslim, Mohd Taufiq; Selamat, Hazlina; Alimin, Ahmad Jais; Haniff, Mohamad Fadzli
2017-01-01
In a modern small gasoline engine fuel injection system, the load of the engine is estimated based on the measurement of the manifold absolute pressure (MAP) sensor, which took place in the intake manifold. This paper present a more economical approach on estimating the MAP by using only the measurements of the throttle position and engine speed, resulting in lower implementation cost. The estimation was done via two-stage multilayer feed-forward neural network by combining Levenberg-Marquardt (LM) algorithm, Bayesian Regularization (BR) algorithm and Particle Swarm Optimization (PSO) algorithm. Based on the results found in 20 runs, the second variant of the hybrid algorithm yields a better network performance than the first variant of hybrid algorithm, LM, LM with BR and PSO by estimating the MAP closely to the simulated MAP values. By using a valid experimental training data, the estimator network that trained with the second variant of the hybrid algorithm showed the best performance among other algorithms when used in an actual retrofit fuel injection system (RFIS). The performance of the estimator was also validated in steady-state and transient condition by showing a closer MAP estimation to the actual value.
A new hybrid genetic algorithm for optimizing the single and multivariate objective functions
Energy Technology Data Exchange (ETDEWEB)
Tumuluru, Jaya Shankar [Idaho National Laboratory; McCulloch, Richard Chet James [Idaho National Laboratory
2015-07-01
In this work a new hybrid genetic algorithm was developed which combines a rudimentary adaptive steepest ascent hill climbing algorithm with a sophisticated evolutionary algorithm in order to optimize complex multivariate design problems. By combining a highly stochastic algorithm (evolutionary) with a simple deterministic optimization algorithm (adaptive steepest ascent) computational resources are conserved and the solution converges rapidly when compared to either algorithm alone. In genetic algorithms natural selection is mimicked by random events such as breeding and mutation. In the adaptive steepest ascent algorithm each variable is perturbed by a small amount and the variable that caused the most improvement is incremented by a small step. If the direction of most benefit is exactly opposite of the previous direction with the most benefit then the step size is reduced by a factor of 2, thus the step size adapts to the terrain. A graphical user interface was created in MATLAB to provide an interface between the hybrid genetic algorithm and the user. Additional features such as bounding the solution space and weighting the objective functions individually are also built into the interface. The algorithm developed was tested to optimize the functions developed for a wood pelleting process. Using process variables (such as feedstock moisture content, die speed, and preheating temperature) pellet properties were appropriately optimized. Specifically, variables were found which maximized unit density, bulk density, tapped density, and durability while minimizing pellet moisture content and specific energy consumption. The time and computational resources required for the optimization were dramatically decreased using the hybrid genetic algorithm when compared to MATLAB's native evolutionary optimization tool.
Adaptive selection of heuristics for improving exam timetables
Burke, Edmund; Qu, Rong; Soghier, Amr
2014-01-01
This paper presents a hyper-heuristic approach which hybridises low-level heuristic moves to improve timetables. Exams which cause a soft-constraint violation in the timetable are ordered and rescheduled to produce a better timetable. It is observed that both the order in which exams are rescheduled and the heuristic moves used to reschedule the exams and improve the timetable affect the quality of the solution produced. After testing different combinations in a hybrid hyper-heuristic approac...
Strong Convergence of Hybrid Algorithm for Asymptotically Nonexpansive Mappings in Hilbert Spaces
Directory of Open Access Journals (Sweden)
Juguo Su
2012-01-01
Full Text Available The hybrid algorithms for constructing fixed points of nonlinear mappings have been studied extensively in recent years. The advantage of this methods is that one can prove strong convergence theorems while the traditional iteration methods just have weak convergence. In this paper, we propose two types of hybrid algorithm to find a common fixed point of a finite family of asymptotically nonexpansive mappings in Hilbert spaces. One is cyclic Mann's iteration scheme, and the other is cyclic Halpern's iteration scheme. We prove the strong convergence theorems for both iteration schemes.
Hybrid Approach To Steganography System Based On Quantum Encryption And Chaos Algorithms
Directory of Open Access Journals (Sweden)
ZAID A. ABOD
2018-01-01
Full Text Available A hybrid scheme for secretly embedding image into a dithered multilevel image is presented. This work inputs both a cover image and secret image, which are scrambling and divided into groups to embedded together based on multiple chaos algorithms (Lorenz map, Henon map and Logistic map respectively. Finally, encrypt the embedded images by using one of the quantum cryptography mechanisms, which is quantum one time pad. The experimental results show that the proposed hybrid system successfully embedded images and combine with the quantum cryptography algorithms and gives high efficiency for secure communication.
An Aircraft Service Staff Rostering using a Hybrid GRASP Algorithm
Cho, Vincent; Wu, Gene Pak Kit; Ip, W.H.
2009-01-01
The aircraft ground service company is responsible for carrying out the regular tasks to aircraft maintenace between their arrival at and departure from the airport. This paper presents the application of a hybrid approach based upon greedy randomized adaptive search procedure (GRASP) for rostering technical staff such that they are assigned predefined shift patterns. The rostering of staff is posed as an optimization problem with an aim of minimizing the violations of hard and soft constrain...
Face recognition: database acquisition, hybrid algorithms, and human studies
Gutta, Srinivas; Huang, Jeffrey R.; Singh, Dig; Wechsler, Harry
1997-02-01
One of the most important technologies absent in traditional and emerging frontiers of computing is the management of visual information. Faces are accessible `windows' into the mechanisms that govern our emotional and social lives. The corresponding face recognition tasks considered herein include: (1) Surveillance, (2) CBIR, and (3) CBIR subject to correct ID (`match') displaying specific facial landmarks such as wearing glasses. We developed robust matching (`classification') and retrieval schemes based on hybrid classifiers and showed their feasibility using the FERET database. The hybrid classifier architecture consist of an ensemble of connectionist networks--radial basis functions-- and decision trees. The specific characteristics of our hybrid architecture include (a) query by consensus as provided by ensembles of networks for coping with the inherent variability of the image formation and data acquisition process, and (b) flexible and adaptive thresholds as opposed to ad hoc and hard thresholds. Experimental results, proving the feasibility of our approach, yield (i) 96% accuracy, using cross validation (CV), for surveillance on a data base consisting of 904 images (ii) 97% accuracy for CBIR tasks, on a database of 1084 images, and (iii) 93% accuracy, using CV, for CBIR subject to correct ID match tasks on a data base of 200 images.
An efficient algorithm for the stochastic simulation of the hybridization of DNA to microarrays
Directory of Open Access Journals (Sweden)
Laurenzi Ian J
2009-12-01
Full Text Available Abstract Background Although oligonucleotide microarray technology is ubiquitous in genomic research, reproducibility and standardization of expression measurements still concern many researchers. Cross-hybridization between microarray probes and non-target ssDNA has been implicated as a primary factor in sensitivity and selectivity loss. Since hybridization is a chemical process, it may be modeled at a population-level using a combination of material balance equations and thermodynamics. However, the hybridization reaction network may be exceptionally large for commercial arrays, which often possess at least one reporter per transcript. Quantification of the kinetics and equilibrium of exceptionally large chemical systems of this type is numerically infeasible with customary approaches. Results In this paper, we present a robust and computationally efficient algorithm for the simulation of hybridization processes underlying microarray assays. Our method may be utilized to identify the extent to which nucleic acid targets (e.g. cDNA will cross-hybridize with probes, and by extension, characterize probe robustnessusing the information specified by MAGE-TAB. Using this algorithm, we characterize cross-hybridization in a modified commercial microarray assay. Conclusions By integrating stochastic simulation with thermodynamic prediction tools for DNA hybridization, one may robustly and rapidly characterize of the selectivity of a proposed microarray design at the probe and "system" levels. Our code is available at http://www.laurenzi.net.
Energy Technology Data Exchange (ETDEWEB)
Narasimhadhan, A.V.; Rajgopal, Kasi
2011-07-01
This paper presents a new hybrid filtered backprojection (FBP) algorithm for fan-beam and cone-beam scan. The hybrid reconstruction kernel is the sum of the ramp and Hilbert filters. We modify the redundancy weighting function to reduce the inverse square distance weighting in the backprojection to inverse distance weight. The modified weight also eliminates the derivative associated with the Hilbert filter kernel. Thus, the proposed reconstruction algorithm has the advantages of the inverse distance weight in the backprojection. We evaluate the performance of the new algorithm in terms of the magnitude level and uniformity in noise for the fan-beam geometry. The computer simulations show that the spatial resolution is nearly identical to the standard fan-beam ramp filtered algorithm while the noise is spatially uniform and the noise variance is reduced. (orig.)
Hybrid Genetic Algorithm with Multiparents Crossover for Job Shop Scheduling Problems
Directory of Open Access Journals (Sweden)
Noor Hasnah Moin
2015-01-01
Full Text Available The job shop scheduling problem (JSSP is one of the well-known hard combinatorial scheduling problems. This paper proposes a hybrid genetic algorithm with multiparents crossover for JSSP. The multiparents crossover operator known as extended precedence preservative crossover (EPPX is able to recombine more than two parents to generate a single new offspring distinguished from common crossover operators that recombine only two parents. This algorithm also embeds a schedule generation procedure to generate full-active schedule that satisfies precedence constraints in order to reduce the search space. Once a schedule is obtained, a neighborhood search is applied to exploit the search space for better solutions and to enhance the GA. This hybrid genetic algorithm is simulated on a set of benchmarks from the literatures and the results are compared with other approaches to ensure the sustainability of this algorithm in solving JSSP. The results suggest that the implementation of multiparents crossover produces competitive results.
An Improved Iris Recognition Algorithm Based on Hybrid Feature and ELM
Wang, Juan
2018-03-01
The iris image is easily polluted by noise and uneven light. This paper proposed an improved extreme learning machine (ELM) based iris recognition algorithm with hybrid feature. 2D-Gabor filters and GLCM is employed to generate a multi-granularity hybrid feature vector. 2D-Gabor filter and GLCM feature work for capturing low-intermediate frequency and high frequency texture information, respectively. Finally, we utilize extreme learning machine for iris recognition. Experimental results reveal our proposed ELM based multi-granularity iris recognition algorithm (ELM-MGIR) has higher accuracy of 99.86%, and lower EER of 0.12% under the premise of real-time performance. The proposed ELM-MGIR algorithm outperforms other mainstream iris recognition algorithms.
Hybrid Robust Multi-Objective Evolutionary Optimization Algorithm
2009-03-10
xfar by xint. Else, generate a new individual, using the Sobol pseudo- random sequence generator within the upper and lower bounds of the variables...12. Deb, K., Multi-Objective Optimization Using Evolutionary Algorithms, John Wiley & Sons. 2002. 13. Sobol , I. M., "Uniformly Distributed Sequences
Directory of Open Access Journals (Sweden)
C. Fernandez-Lozano
2013-01-01
Full Text Available Given the background of the use of Neural Networks in problems of apple juice classification, this paper aim at implementing a newly developed method in the field of machine learning: the Support Vector Machines (SVM. Therefore, a hybrid model that combines genetic algorithms and support vector machines is suggested in such a way that, when using SVM as a fitness function of the Genetic Algorithm (GA, the most representative variables for a specific classification problem can be selected.
A Hybrid Adaptive Routing Algorithm for Event-Driven Wireless Sensor Networks
Figueiredo, Carlos M. S.; Nakamura, Eduardo F.; Loureiro, Antonio A. F.
2009-01-01
Routing is a basic function in wireless sensor networks (WSNs). For these networks, routing algorithms depend on the characteristics of the applications and, consequently, there is no self-contained algorithm suitable for every case. In some scenarios, the network behavior (traffic load) may vary a lot, such as an event-driven application, favoring different algorithms at different instants. This work presents a hybrid and adaptive algorithm for routing in WSNs, called Multi-MAF, that adapts its behavior autonomously in response to the variation of network conditions. In particular, the proposed algorithm applies both reactive and proactive strategies for routing infrastructure creation, and uses an event-detection estimation model to change between the strategies and save energy. To show the advantages of the proposed approach, it is evaluated through simulations. Comparisons with independent reactive and proactive algorithms show improvements on energy consumption. PMID:22423207
International Nuclear Information System (INIS)
Niknam, Taher; Azadfarsani, Ehsan; Jabbari, Masoud
2012-01-01
Highlights: ► Network reconfiguration is a very important way to save the electrical energy. ► This paper proposes a new algorithm to solve the DFR. ► The algorithm combines NFAPSO with NM. ► The proposed algorithm is tested on two distribution test feeders. - Abstract: Network reconfiguration for loss reduction in distribution system is a very important way to save the electrical energy. This paper proposes a new hybrid evolutionary algorithm to solve the Distribution Feeder Reconfiguration problem (DFR). The algorithm is based on combination of a New Fuzzy Adaptive Particle Swarm Optimization (NFAPSO) and Nelder–Mead simplex search method (NM) called NFAPSO–NM. In the proposed algorithm, a new fuzzy adaptive particle swarm optimization includes two parts. The first part is Fuzzy Adaptive Binary Particle Swarm Optimization (FABPSO) that determines the status of tie switches (open or close) and second part is Fuzzy Adaptive Discrete Particle Swarm Optimization (FADPSO) that determines the sectionalizing switch number. In other side, due to the results of binary PSO(BPSO) and discrete PSO(DPSO) algorithms highly depends on the values of their parameters such as the inertia weight and learning factors, a fuzzy system is employed to adaptively adjust the parameters during the search process. Moreover, the Nelder–Mead simplex search method is combined with the NFAPSO algorithm to improve its performance. Finally, the proposed algorithm is tested on two distribution test feeders. The results of simulation show that the proposed method is very powerful and guarantees to obtain the global optimization.
Three hybridization models based on local search scheme for job shop scheduling problem
Balbi Fraga, Tatiana
2015-05-01
This work presents three different hybridization models based on the general schema of Local Search Heuristics, named Hybrid Successive Application, Hybrid Neighborhood, and Hybrid Improved Neighborhood. Despite similar approaches might have already been presented in the literature in other contexts, in this work these models are applied to analyzes the solution of the job shop scheduling problem, with the heuristics Taboo Search and Particle Swarm Optimization. Besides, we investigate some aspects that must be considered in order to achieve better solutions than those obtained by the original heuristics. The results demonstrate that the algorithms derived from these three hybrid models are more robust than the original algorithms and able to get better results than those found by the single Taboo Search.
Hybrid sparse blind deconvolution: an implementation of SOOT algorithm to real data
Pakmanesh, Parvaneh; Goudarzi, Alireza; Kourki, Meisam
2018-06-01
Getting information of seismic data depends on deconvolution as an important processing step; it provides the reflectivity series by signal compression. This compression can be obtained by removing the wavelet effects on the traces. The recently blind deconvolution has provided reliable performance for sparse signal recovery. In this study, two deconvolution methods have been implemented to the seismic data; the convolution of these methods provides a robust spiking deconvolution approach. This hybrid deconvolution is applied using the sparse deconvolution (MM algorithm) and the Smoothed-One-Over-Two algorithm (SOOT) in a chain. The MM algorithm is based on the minimization of the cost function defined by standards l1 and l2. After applying the two algorithms to the seismic data, the SOOT algorithm provided well-compressed data with a higher resolution than the MM algorithm. The SOOT algorithm requires initial values to be applied for real data, such as the wavelet coefficients and reflectivity series that can be achieved through the MM algorithm. The computational cost of the hybrid method is high, and it is necessary to be implemented on post-stack or pre-stack seismic data of complex structure regions.
Energy-Efficient Scheduling Problem Using an Effective Hybrid Multi-Objective Evolutionary Algorithm
Directory of Open Access Journals (Sweden)
Lvjiang Yin
2016-12-01
Full Text Available Nowadays, manufacturing enterprises face the challenge of just-in-time (JIT production and energy saving. Therefore, study of JIT production and energy consumption is necessary and important in manufacturing sectors. Moreover, energy saving can be attained by the operational method and turn off/on idle machine method, which also increases the complexity of problem solving. Thus, most researchers still focus on small scale problems with one objective: a single machine environment. However, the scheduling problem is a multi-objective optimization problem in real applications. In this paper, a single machine scheduling model with controllable processing and sequence dependence setup times is developed for minimizing the total earliness/tardiness (E/T, cost, and energy consumption simultaneously. An effective multi-objective evolutionary algorithm called local multi-objective evolutionary algorithm (LMOEA is presented to tackle this multi-objective scheduling problem. To accommodate the characteristic of the problem, a new solution representation is proposed, which can convert discrete combinational problems into continuous problems. Additionally, a multiple local search strategy with self-adaptive mechanism is introduced into the proposed algorithm to enhance the exploitation ability. The performance of the proposed algorithm is evaluated by instances with comparison to other multi-objective meta-heuristics such as Nondominated Sorting Genetic Algorithm II (NSGA-II, Strength Pareto Evolutionary Algorithm 2 (SPEA2, Multiobjective Particle Swarm Optimization (OMOPSO, and Multiobjective Evolutionary Algorithm Based on Decomposition (MOEA/D. Experimental results demonstrate that the proposed LMOEA algorithm outperforms its counterparts for this kind of scheduling problems.
A Hybrid Harmony Search Algorithm Approach for Optimal Power Flow
Directory of Open Access Journals (Sweden)
Mimoun YOUNES
2012-08-01
Full Text Available Optimal Power Flow (OPF is one of the main functions of Power system operation. It determines the optimal settings of generating units, bus voltage, transformer tap and shunt elements in Power System with the objective of minimizing total production costs or losses while the system is operating within its security limits. The aim of this paper is to propose a novel methodology (BCGAs-HSA that solves OPF including both active and reactive power dispatch It is based on combining the binary-coded genetic algorithm (BCGAs and the harmony search algorithm (HSA to determine the optimal global solution. This method was tested on the modified IEEE 30 bus test system. The results obtained by this method are compared with those obtained with BCGAs or HSA separately. The results show that the BCGAs-HSA approach can converge to the optimum solution with accuracy compared to those reported recently in the literature.
Logic hybrid simulation-optimization algorithm for distillation design
Caballero Suárez, José Antonio
2014-01-01
In this paper, we propose a novel algorithm for the rigorous design of distillation columns that integrates a process simulator in a generalized disjunctive programming formulation. The optimal distillation column, or column sequence, is obtained by selecting, for each column section, among a set of column sections with different number of theoretical trays. The selection of thermodynamic models, properties estimation etc., are all in the simulation environment. All the numerical issues relat...
Algorithm of constructing hybrid effective modules for elastic isotropic composites
Svetashkov, A. A.; Miciński, J.; Kupriyanov, N. A.; Barashkov, V. N.; Lushnikov, A. V.
2017-02-01
The algorithm of constructing of new effective elastic characteristics of two-component composites based on the superposition of the models of Reiss and Voigt, Hashin and Strikman, as well as models of the geometric average for effective modules. These effective characteristics are inside forks Voigt and Reiss. Additionally, the calculations of the stress-strain state of composite structures with new effective characteristics give more accurate prediction than classical models do.
2015-01-01
How can we advance knowledge? Which methods do we need in order to make new discoveries? How can we rationally evaluate, reconstruct and offer discoveries as a means of improving the ‘method’ of discovery itself? And how can we use findings about scientific discovery to boost funding policies, thus fostering a deeper impact of scientific discovery itself? The respective chapters in this book provide readers with answers to these questions. They focus on a set of issues that are essential to the development of types of reasoning for advancing knowledge, such as models for both revolutionary findings and paradigm shifts; ways of rationally addressing scientific disagreement, e.g. when a revolutionary discovery sparks considerable disagreement inside the scientific community; frameworks for both discovery and inference methods; and heuristics for economics and the social sciences.
A Hybrid Genetic-Algorithm Space-Mapping Tool for the Optimization of Antennas
DEFF Research Database (Denmark)
Pantoja, Mario Fernández; Meincke, Peter; Bretones, Amelia Rubio
2007-01-01
A hybrid global-local optimization technique for the design of antennas is presented. It consists of the subsequent application of a genetic algorithm (GA) that employs coarse models in the simulations and a space mapping (SM) that refines the solution found in the previous stage. The technique...
DEFF Research Database (Denmark)
Riaz, M. Tahir; Gutierrez Lopez, Jose Manuel; Pedersen, Jens Myrup
2011-01-01
The paper presents a hybrid Genetic and Simulated Annealing algorithm for implementing Chordal Ring structure in optical backbone network. In recent years, topologies based on regular graph structures gained a lot of interest due to their good communication properties for physical topology of the...
Accelerating staggered-fermion dynamics with the rational hybrid Monte Carlo algorithm
International Nuclear Information System (INIS)
Clark, M. A.; Kennedy, A. D.
2007-01-01
Improved staggered-fermion formulations are a popular choice for lattice QCD calculations. Historically, the algorithm used for such calculations has been the inexact R algorithm, which has systematic errors that only vanish as the square of the integration step size. We describe how the exact rational hybrid Monte Carlo (RHMC) algorithm may be used in this context, and show that for parameters corresponding to current state-of-the-art computations it leads to a factor of approximately seven decrease in cost as well as having no step-size errors
Improved Fractal Space Filling Curves Hybrid Optimization Algorithm for Vehicle Routing Problem.
Yue, Yi-xiang; Zhang, Tong; Yue, Qun-xing
2015-01-01
Vehicle Routing Problem (VRP) is one of the key issues in optimization of modern logistics system. In this paper, a modified VRP model with hard time window is established and a Hybrid Optimization Algorithm (HOA) based on Fractal Space Filling Curves (SFC) method and Genetic Algorithm (GA) is introduced. By incorporating the proposed algorithm, SFC method can find an initial and feasible solution very fast; GA is used to improve the initial solution. Thereafter, experimental software was developed and a large number of experimental computations from Solomon's benchmark have been studied. The experimental results demonstrate the feasibility and effectiveness of the HOA.
Mundher Yaseen, Zaher; Abdulmohsin Afan, Haitham; Tran, Minh-Tung
2018-04-01
Scientifically evidenced that beam-column joints are a critical point in the reinforced concrete (RC) structure under the fluctuation loads effects. In this novel hybrid data-intelligence model developed to predict the joint shear behavior of exterior beam-column structure frame. The hybrid data-intelligence model is called genetic algorithm integrated with deep learning neural network model (GA-DLNN). The genetic algorithm is used as prior modelling phase for the input approximation whereas the DLNN predictive model is used for the prediction phase. To demonstrate this structural problem, experimental data is collected from the literature that defined the dimensional and specimens’ properties. The attained findings evidenced the efficitveness of the hybrid GA-DLNN in modelling beam-column joint shear problem. In addition, the accurate prediction achived with less input variables owing to the feasibility of the evolutionary phase.
Ahmed, Irfan; Khammari, Hedi; Shahid, Adnan
2017-01-01
This paper presents a study on joint radio resource allocation and hybrid precoding in multicarrier massive multiple-input multiple-output communications for 5G cellular networks. In this paper, we present the resource allocation algorithm to maximize the proportional fairness (PF) spectral efficiency under the per subchannel power and the beamforming rank constraints. Two heuristic algorithms are designed. The proportional fairness hybrid beamforming algorithm provides the transmit precoder ...
Directory of Open Access Journals (Sweden)
Changyun Liu
2017-01-01
Full Text Available A multisensor scheduling algorithm based on the hybrid task decomposition and modified binary particle swarm optimization (MBPSO is proposed. Firstly, aiming at the complex relationship between sensor resources and tasks, a hybrid task decomposition method is presented, and the resource scheduling problem is decomposed into subtasks; then the sensor resource scheduling problem is changed into the match problem of sensors and subtasks. Secondly, the resource match optimization model based on the sensor resources and tasks is established, which considers several factors, such as the target priority, detecting benefit, handover times, and resource load. Finally, MBPSO algorithm is proposed to solve the match optimization model effectively, which is based on the improved updating means of particle’s velocity and position through the doubt factor and modified Sigmoid function. The experimental results show that the proposed algorithm is better in terms of convergence velocity, searching capability, solution accuracy, and efficiency.
A hybrid reliability algorithm using PSO-optimized Kriging model and adaptive importance sampling
Tong, Cao; Gong, Haili
2018-03-01
This paper aims to reduce the computational cost of reliability analysis. A new hybrid algorithm is proposed based on PSO-optimized Kriging model and adaptive importance sampling method. Firstly, the particle swarm optimization algorithm (PSO) is used to optimize the parameters of Kriging model. A typical function is fitted to validate improvement by comparing results of PSO-optimized Kriging model with those of the original Kriging model. Secondly, a hybrid algorithm for reliability analysis combined optimized Kriging model and adaptive importance sampling is proposed. Two cases from literatures are given to validate the efficiency and correctness. The proposed method is proved to be more efficient due to its application of small number of sample points according to comparison results.
Directory of Open Access Journals (Sweden)
Anupon Boriboon
2016-07-01
Full Text Available The HSBQ algorithm is the one of active queue management algorithms, which orders to avoid high packet loss rates and control stable stream queue. That is the problem of calculation of the drop probability for both queue length stability and bandwidth fairness. This paper proposes the HSBQ, which drop the packets before the queues overflow at the gateways, so that the end nodes can respond to the congestion before queue overflow. This algorithm uses the change of the average queue length to adjust the amount by which the mark (or drop probability is changed. Moreover it adjusts the queue weight, which is used to estimate the average queue length, based on the rate. The results show that HSBQ algorithm could maintain control stable stream queue better than group of congestion metric without flow information algorithm as the rate of hybrid satellite network changing dramatically, as well as the presented empiric evidences demonstrate that the use of HSBQ algorithm offers a better quality of service than the traditionally queue control mechanisms used in hybrid satellite network.
Workflow Scheduling Using Hybrid GA-PSO Algorithm in Cloud Computing
Directory of Open Access Journals (Sweden)
Ahmad M. Manasrah
2018-01-01
Full Text Available Cloud computing environment provides several on-demand services and resource sharing for clients. Business processes are managed using the workflow technology over the cloud, which represents one of the challenges in using the resources in an efficient manner due to the dependencies between the tasks. In this paper, a Hybrid GA-PSO algorithm is proposed to allocate tasks to the resources efficiently. The Hybrid GA-PSO algorithm aims to reduce the makespan and the cost and balance the load of the dependent tasks over the heterogonous resources in cloud computing environments. The experiment results show that the GA-PSO algorithm decreases the total execution time of the workflow tasks, in comparison with GA, PSO, HSGA, WSGA, and MTCT algorithms. Furthermore, it reduces the execution cost. In addition, it improves the load balancing of the workflow application over the available resources. Finally, the obtained results also proved that the proposed algorithm converges to optimal solutions faster and with higher quality compared to other algorithms.
Parameter identification of PEMFC model based on hybrid adaptive differential evolution algorithm
International Nuclear Information System (INIS)
Sun, Zhe; Wang, Ning; Bi, Yunrui; Srinivasan, Dipti
2015-01-01
In this paper, a HADE (hybrid adaptive differential evolution) algorithm is proposed for the identification problem of PEMFC (proton exchange membrane fuel cell). Inspired by biological genetic strategy, a novel adaptive scaling factor and a dynamic crossover probability are presented to improve the adaptive and dynamic performance of differential evolution algorithm. Moreover, two kinds of neighborhood search operations based on the bee colony foraging mechanism are introduced for enhancing local search efficiency. Through testing the benchmark functions, the proposed algorithm exhibits better performance in convergent accuracy and speed. Finally, the HADE algorithm is applied to identify the nonlinear parameters of PEMFC stack model. Through experimental comparison with other identified methods, the PEMFC model based on the HADE algorithm shows better performance. - Highlights: • We propose a hybrid adaptive differential evolution algorithm (HADE). • The search efficiency is enhanced in low and high dimension search space. • The effectiveness is confirmed by testing benchmark functions. • The identification of the PEMFC model is conducted by adopting HADE.
Elsheikh, Ahmed H.
2014-02-01
A Hybrid Nested Sampling (HNS) algorithm is proposed for efficient Bayesian model calibration and prior model selection. The proposed algorithm combines, Nested Sampling (NS) algorithm, Hybrid Monte Carlo (HMC) sampling and gradient estimation using Stochastic Ensemble Method (SEM). NS is an efficient sampling algorithm that can be used for Bayesian calibration and estimating the Bayesian evidence for prior model selection. Nested sampling has the advantage of computational feasibility. Within the nested sampling algorithm, a constrained sampling step is performed. For this step, we utilize HMC to reduce the correlation between successive sampled states. HMC relies on the gradient of the logarithm of the posterior distribution, which we estimate using a stochastic ensemble method based on an ensemble of directional derivatives. SEM only requires forward model runs and the simulator is then used as a black box and no adjoint code is needed. The developed HNS algorithm is successfully applied for Bayesian calibration and prior model selection of several nonlinear subsurface flow problems. © 2013 Elsevier Inc.
New MPPT algorithm for PV applications based on hybrid dynamical approach
Elmetennani, Shahrazed
2016-10-24
This paper proposes a new Maximum Power Point Tracking (MPPT) algorithm for photovoltaic applications using the multicellular converter as a stage of power adaptation. The proposed MPPT technique has been designed using a hybrid dynamical approach to model the photovoltaic generator. The hybrid dynamical theory has been applied taking advantage of the particular topology of the multicellular converter. Then, a hybrid automata has been established to optimize the power production. The maximization of the produced solar energy is achieved by switching between the different operative modes of the hybrid automata, which is conditioned by some invariance and transition conditions. These conditions have been validated by simulation tests under different conditions of temperature and irradiance. Moreover, the performance of the proposed algorithm has been then evaluated by comparison with standard MPPT techniques numerically and by experimental tests under varying external working conditions. The results have shown the interesting features that the hybrid MPPT technique presents in terms of performance and simplicity for real time implementation.
New MPPT algorithm for PV applications based on hybrid dynamical approach
Elmetennani, Shahrazed; Laleg-Kirati, Taous-Meriem; Djemai, M.; Tadjine, M.
2016-01-01
This paper proposes a new Maximum Power Point Tracking (MPPT) algorithm for photovoltaic applications using the multicellular converter as a stage of power adaptation. The proposed MPPT technique has been designed using a hybrid dynamical approach to model the photovoltaic generator. The hybrid dynamical theory has been applied taking advantage of the particular topology of the multicellular converter. Then, a hybrid automata has been established to optimize the power production. The maximization of the produced solar energy is achieved by switching between the different operative modes of the hybrid automata, which is conditioned by some invariance and transition conditions. These conditions have been validated by simulation tests under different conditions of temperature and irradiance. Moreover, the performance of the proposed algorithm has been then evaluated by comparison with standard MPPT techniques numerically and by experimental tests under varying external working conditions. The results have shown the interesting features that the hybrid MPPT technique presents in terms of performance and simplicity for real time implementation.
Applications of hybrid genetic algorithms in seismic tomography
Soupios, Pantelis; Akca, Irfan; Mpogiatzis, Petros; Basokur, Ahmet T.; Papazachos, Constantinos
2011-11-01
Almost all earth sciences inverse problems are nonlinear and involve a large number of unknown parameters, making the application of analytical inversion methods quite restrictive. In practice, most analytical methods are local in nature and rely on a linearized form of the problem equations, adopting an iterative procedure which typically employs partial derivatives in order to optimize the starting (initial) model by minimizing a misfit (penalty) function. Unfortunately, especially for highly non-linear cases, the final model strongly depends on the initial model, hence it is prone to solution-entrapment in local minima of the misfit function, while the derivative calculation is often computationally inefficient and creates instabilities when numerical approximations are used. An alternative is to employ global techniques which do not rely on partial derivatives, are independent of the misfit form and are computationally robust. Such methods employ pseudo-randomly generated models (sampling an appropriately selected section of the model space) which are assessed in terms of their data-fit. A typical example is the class of methods known as genetic algorithms (GA), which achieves the aforementioned approximation through model representation and manipulations, and has attracted the attention of the earth sciences community during the last decade, with several applications already presented for several geophysical problems. In this paper, we examine the efficiency of the combination of the typical regularized least-squares and genetic methods for a typical seismic tomography problem. The proposed approach combines a local (LOM) and a global (GOM) optimization method, in an attempt to overcome the limitations of each individual approach, such as local minima and slow convergence, respectively. The potential of both optimization methods is tested and compared, both independently and jointly, using the several test models and synthetic refraction travel-time date sets
A Design of a Hybrid Non-Linear Control Algorithm
Directory of Open Access Journals (Sweden)
Farinaz Behrooz
2017-11-01
Full Text Available One of the high energy consuming devices in the buildings is the air-conditioning system. Designing a proper controller to consider the thermal comfort and simultaneously control the energy usage of the device will impact on the system energy efficiency and its performance. The aim of this study was to design a Multiple-Input and Multiple-Output (MIMO, non-linear, and intelligent controller on direct expansion air-conditioning system The control algorithm uses the Fuzzy Cognitive Map method as a main controller and the Generalized Predictive Control method is used for assigning the initial weights of the main controller. The results of the proposed controller shows that the controller was successfully designed and works in set point tracking and under disturbance rejection tests. The obtained results of the Generalized Predictive Control-Fuzzy Cognitive Map controller are compared with the previous MIMO Linear Quadratic Gaussian control design on the same direct expansion air-conditioning system under the same conditions. The comparative results indicate energy savings would be achieved with the proposed controller with long-term usage. Energy efficiency and thermal comfort conditions are achieved by the proposed controller.
A hybrid algorithm for solving inverse problems in elasticity
Directory of Open Access Journals (Sweden)
Barabasz Barbara
2014-12-01
Full Text Available The paper offers a new approach to handling difficult parametric inverse problems in elasticity and thermo-elasticity, formulated as global optimization ones. The proposed strategy is composed of two phases. In the first, global phase, the stochastic hp-HGS algorithm recognizes the basins of attraction of various objective minima. In the second phase, the local objective minimizers are closer approached by steepest descent processes executed singly in each basin of attraction. The proposed complex strategy is especially dedicated to ill-posed problems with multimodal objective functionals. The strategy offers comparatively low computational and memory costs resulting from a double-adaptive technique in both forward and inverse problem domains. We provide a result on the Lipschitz continuity of the objective functional composed of the elastic energy and the boundary displacement misfits with respect to the unknown constitutive parameters. It allows common scaling of the accuracy of solving forward and inverse problems, which is the core of the introduced double-adaptive technique. The capability of the proposed method of finding multiple solutions is illustrated by a computational example which consists in restoring all feasible Young modulus distributions minimizing an objective functional in a 3D domain of a photo polymer template obtained during step and flash imprint lithography.
Rational hybrid Monte Carlo algorithm for theories with unknown spectral bounds
International Nuclear Information System (INIS)
Kogut, J. B.; Sinclair, D. K.
2006-01-01
The Rational Hybrid Monte Carlo (RHMC) algorithm extends the Hybrid Monte Carlo algorithm for lattice QCD simulations to situations involving fractional powers of the determinant of the quadratic Dirac operator. This avoids the updating increment (dt) dependence of observables which plagues the Hybrid Molecular-dynamics (HMD) method. The RHMC algorithm uses rational approximations to fractional powers of the quadratic Dirac operator. Such approximations are only available when positive upper and lower bounds to the operator's spectrum are known. We apply the RHMC algorithm to simulations of 2 theories for which a positive lower spectral bound is unknown: lattice QCD with staggered quarks at finite isospin chemical potential and lattice QCD with massless staggered quarks and chiral 4-fermion interactions (χQCD). A choice of lower bound is made in each case, and the properties of the RHMC simulations these define are studied. Justification of our choices of lower bounds is made by comparing measurements with those from HMD simulations, and by comparing different choices of lower bounds
Application of hybrid artificial fish swarm algorithm based on similar fragments in VRP
Che, Jinnuo; Zhou, Kang; Zhang, Xueyu; Tong, Xin; Hou, Lingyun; Jia, Shiyu; Zhen, Yiting
2018-03-01
Focused on the issue that the decrease of convergence speed and the precision of calculation at the end of the process in Artificial Fish Swarm Algorithm(AFSA) and instability of results, a hybrid AFSA based on similar fragments is proposed. Traditional AFSA enjoys a lot of obvious advantages in solving complex optimization problems like Vehicle Routing Problem(VRP). AFSA have a few limitations such as low convergence speed, low precision and instability of results. In this paper, two improvements are introduced. On the one hand, change the definition of the distance for artificial fish, as well as increase vision field of artificial fish, and the problem of speed and precision can be improved when solving VRP. On the other hand, mix artificial bee colony algorithm(ABC) into AFSA - initialize the population of artificial fish by the ABC, and it solves the problem of instability of results in some extend. The experiment results demonstrate that the optimal solution of the hybrid AFSA is easier to approach the optimal solution of the standard database than the other two algorithms. In conclusion, the hybrid algorithm can effectively solve the problem that instability of results and decrease of convergence speed and the precision of calculation at the end of the process.
An Effective Hybrid Firefly Algorithm with Harmony Search for Global Numerical Optimization
Directory of Open Access Journals (Sweden)
Lihong Guo
2013-01-01
Full Text Available A hybrid metaheuristic approach by hybridizing harmony search (HS and firefly algorithm (FA, namely, HS/FA, is proposed to solve function optimization. In HS/FA, the exploration of HS and the exploitation of FA are fully exerted, so HS/FA has a faster convergence speed than HS and FA. Also, top fireflies scheme is introduced to reduce running time, and HS is utilized to mutate between fireflies when updating fireflies. The HS/FA method is verified by various benchmarks. From the experiments, the implementation of HS/FA is better than the standard FA and other eight optimization methods.
Directory of Open Access Journals (Sweden)
Narinder Singh
2017-01-01
Full Text Available A newly hybrid nature inspired algorithm called HPSOGWO is presented with the combination of Particle Swarm Optimization (PSO and Grey Wolf Optimizer (GWO. The main idea is to improve the ability of exploitation in Particle Swarm Optimization with the ability of exploration in Grey Wolf Optimizer to produce both variants’ strength. Some unimodal, multimodal, and fixed-dimension multimodal test functions are used to check the solution quality and performance of HPSOGWO variant. The numerical and statistical solutions show that the hybrid variant outperforms significantly the PSO and GWO variants in terms of solution quality, solution stability, convergence speed, and ability to find the global optimum.
Genetic algorithm based optimization on modeling and design of hybrid renewable energy systems
International Nuclear Information System (INIS)
Ismail, M.S.; Moghavvemi, M.; Mahlia, T.M.I.
2014-01-01
Highlights: • Solar data was analyzed in the location under consideration. • A program was developed to simulate operation of the PV hybrid system. • Genetic algorithm was used to optimize the sizes of the hybrid system components. • The costs of the pollutant emissions were considered in the optimization. • It is cost effective to power houses in remote areas with such hybrid systems. - Abstract: A sizing optimization of a hybrid system consisting of photovoltaic (PV) panels, a backup source (microturbine or diesel), and a battery system minimizes the cost of energy production (COE), and a complete design of this optimized system supplying a small community with power in the Palestinian Territories is presented in this paper. A scenario that depends on a standalone PV, and another one that depends on a backup source alone were analyzed in this study. The optimization was achieved via the usage of genetic algorithm. The objective function minimizes the COE while covering the load demand with a specified value for the loss of load probability (LLP). The global warming emissions costs have been taken into account in this optimization analysis. Solar radiation data is firstly analyzed, and the tilt angle of the PV panels is then optimized. It was discovered that powering a small rural community using this hybrid system is cost-effective and extremely beneficial when compared to extending the utility grid to supply these remote areas, or just using conventional sources for this purpose. This hybrid system decreases both operating costs and the emission of pollutants. The hybrid system that realized these optimization purposes is the one constructed from a combination of these sources
Directory of Open Access Journals (Sweden)
Mohamed Zellagui
2017-09-01
Full Text Available The paper presents a new hybrid global optimization algorithm based on Chemical Reaction based Optimization (CRO and Di¤erential evolution (DE algorithm for nonlinear constrained optimization problems. This approach proposed for the optimal coordination and setting relays of directional overcurrent relays in complex power systems. In protection coordination problem, the objective function to be minimized is the sum of the operating time of all main relays. The optimization problem is subject to a number of constraints which are mainly focused on the operation of the backup relay, which should operate if a primary relay fails to respond to the fault near to it, Time Dial Setting (TDS, Plug Setting (PS and the minimum operating time of a relay. The hybrid global proposed optimization algorithm aims to minimize the total operating time of each protection relay. Two systems are used as case study to check the effeciency of the optimization algorithm which are IEEE 4-bus and IEEE 6-bus models. Results are obtained and presented for CRO and DE and hybrid CRO-DE algorithms. The obtained results for the studied cases are compared with those results obtained when using other optimization algorithms which are Teaching Learning-Based Optimization (TLBO, Chaotic Differential Evolution Algorithm (CDEA and Modiffied Differential Evolution Algorithm (MDEA, and Hybrid optimization algorithms (PSO-DE, IA-PSO, and BFOA-PSO. From analysing the obtained results, it has been concluded that hybrid CRO-DO algorithm provides the most optimum solution with the best convergence rate.
Energy Technology Data Exchange (ETDEWEB)
Wichapa, Narong; Khokhajaikiat, Porntep
2017-07-01
Disposal of infectious waste remains one of the most serious problems in the social and environmental domains of almost every nation. Selection of new suitable locations and finding the optimal set of transport routes to transport infectious waste, namely location routing problem for infectious waste disposal, is one of the major problems in hazardous waste management. Design/methodology/approach: Due to the complexity of this problem, location routing problem for a case study, forty hospitals and three candidate municipalities in sub-Northeastern Thailand, was divided into two phases. The first phase is to choose suitable municipalities using hybrid fuzzy goal programming model which hybridizes the fuzzy analytic hierarchy process and fuzzy goal programming. The second phase is to find the optimal routes for each selected municipality using hybrid genetic algorithm which hybridizes the genetic algorithm and local searches including 2-Opt-move, Insertion-move and ?-interchange-move. Findings: The results indicate that the hybrid fuzzy goal programming model can guide the selection of new suitable municipalities, and the hybrid genetic algorithm can provide the optimal routes for a fleet of vehicles effectively. Originality/value: The novelty of the proposed methodologies, hybrid fuzzy goal programming model, is the simultaneous combination of both intangible and tangible factors in order to choose new suitable locations, and the hybrid genetic algorithm can be used to determine the optimal routes which provide a minimum number of vehicles and minimum transportation cost under the actual situation, efficiently.
International Nuclear Information System (INIS)
Wichapa, Narong; Khokhajaikiat, Porntep
2017-01-01
Disposal of infectious waste remains one of the most serious problems in the social and environmental domains of almost every nation. Selection of new suitable locations and finding the optimal set of transport routes to transport infectious waste, namely location routing problem for infectious waste disposal, is one of the major problems in hazardous waste management. Design/methodology/approach: Due to the complexity of this problem, location routing problem for a case study, forty hospitals and three candidate municipalities in sub-Northeastern Thailand, was divided into two phases. The first phase is to choose suitable municipalities using hybrid fuzzy goal programming model which hybridizes the fuzzy analytic hierarchy process and fuzzy goal programming. The second phase is to find the optimal routes for each selected municipality using hybrid genetic algorithm which hybridizes the genetic algorithm and local searches including 2-Opt-move, Insertion-move and ?-interchange-move. Findings: The results indicate that the hybrid fuzzy goal programming model can guide the selection of new suitable municipalities, and the hybrid genetic algorithm can provide the optimal routes for a fleet of vehicles effectively. Originality/value: The novelty of the proposed methodologies, hybrid fuzzy goal programming model, is the simultaneous combination of both intangible and tangible factors in order to choose new suitable locations, and the hybrid genetic algorithm can be used to determine the optimal routes which provide a minimum number of vehicles and minimum transportation cost under the actual situation, efficiently.
Directory of Open Access Journals (Sweden)
Narong Wichapa
2017-11-01
Originality/value: The novelty of the proposed methodologies, hybrid fuzzy goal programming model, is the simultaneous combination of both intangible and tangible factors in order to choose new suitable locations, and the hybrid genetic algorithm can be used to determine the optimal routes which provide a minimum number of vehicles and minimum transportation cost under the actual situation, efficiently.
International Nuclear Information System (INIS)
Sedighizadeh, Mostafa; Esmaili, Masoud; Esmaeili, Mobin
2014-01-01
In this paper, a multi-objective framework is proposed for simultaneous optimal network reconfiguration and DG (distributed generation) power allocation. The proposed method encompasses objective functions of power losses, voltage stability, DG cost, and greenhouse gas emissions and it is optimized subject to power system operational and technical constraints. In order to solve the optimization problem, the HBB-BC (Hybrid Big Bang-Big Crunch) algorithm as one of the most recent heuristic tools is modified and employed here by introducing a mutation operator to enhance its exploration capability. To resolve the scaling problem of differently-scaled objective functions, a fuzzy membership is used to bring them into a same scale and then, the fuzzy fitness of the final objective function is utilized to measure the satisfaction level of the obtained solution. The proposed method is tested on balanced and unbalanced test systems and its results are comprehensively compared with previous methods considering different scenarios. According to results, the proposed method not only offers an enhanced exploration capability but also has a better converge rate compared with previous methods. In addition, the simultaneous network reconfiguration and DG power allocation leads to a more optimal result than separately doing tasks of reconfiguration and DG power allocation. - Highlights: • Hybrid Big Bang-Big Crunch algorithm is applied to network reconfiguration problem. • Joint reconfiguration and DG power allocation leads to a more optimal solution. • A mutation operator is used to improve the exploration capability of HBB-BC method. • The HBB-BC has a better convergence rate than the compared algorithms
Directory of Open Access Journals (Sweden)
Ailian Jiang
2018-03-01
Full Text Available Low cost, high reliability and easy maintenance are key criteria in the design of routing protocols for wireless sensor networks (WSNs. This paper investigates the existing ant colony optimization (ACO-based WSN routing algorithms and the minimum hop count WSN routing algorithms by reviewing their strengths and weaknesses. We also consider the critical factors of WSNs, such as energy constraint of sensor nodes, network load balancing and dynamic network topology. Then we propose a hybrid routing algorithm that integrates ACO and a minimum hop count scheme. The proposed algorithm is able to find the optimal routing path with minimal total energy consumption and balanced energy consumption on each node. The algorithm has unique superiority in terms of searching for the optimal path, balancing the network load and the network topology maintenance. The WSN model and the proposed algorithm have been implemented using C++. Extensive simulation experimental results have shown that our algorithm outperforms several other WSN routing algorithms on such aspects that include the rate of convergence, the success rate in searching for global optimal solution, and the network lifetime.
Directory of Open Access Journals (Sweden)
Hao Yin
2014-01-01
Full Text Available For SLA-aware service composition problem (SSC, an optimization model for this algorithm is built, and a hybrid multiobjective discrete particle swarm optimization algorithm (HMDPSO is also proposed in this paper. According to the characteristic of this problem, a particle updating strategy is designed by introducing crossover operator. In order to restrain particle swarm’s premature convergence and increase its global search capacity, the swarm diversity indicator is introduced and a particle mutation strategy is proposed to increase the swarm diversity. To accelerate the process of obtaining the feasible particle position, a local search strategy based on constraint domination is proposed and incorporated into the proposed algorithm. At last, some parameters in the algorithm HMDPSO are analyzed and set with relative proper values, and then the algorithm HMDPSO and the algorithm HMDPSO+ incorporated by local search strategy are compared with the recently proposed related algorithms on different scale cases. The results show that algorithm HMDPSO+ can solve the SSC problem more effectively.
Polynomial hybrid Monte Carlo algorithm for lattice QCD with an odd number of flavors
International Nuclear Information System (INIS)
Aoki, S.; Burkhalter, R.; Ishikawa, K-I.; Tominaga, S.; Fukugita, M.; Hashimoto, S.; Kaneko, T.; Kuramashi, Y.; Okawa, M.; Tsutsui, N.; Yamada, N.; Ishizuka, N.; Iwasaki, Y.; Kanaya, K.; Ukawa, A.; Yoshie, T.; Onogi, T.
2002-01-01
We present a polynomial hybrid Monte Carlo (PHMC) algorithm for lattice QCD with odd numbers of flavors of O(a)-improved Wilson quark action. The algorithm makes use of the non-Hermitian Chebyshev polynomial to approximate the inverse square root of the fermion matrix required for an odd number of flavors. The systematic error from the polynomial approximation is removed by a noisy Metropolis test for which a new method is developed. Investigating the property of our PHMC algorithm in the N f =2 QCD case, we find that it is as efficient as the conventional HMC algorithm for a moderately large lattice size (16 3 x48) with intermediate quark masses (m PS /m V ∼0.7-0.8). We test our odd-flavor algorithm through extensive simulations of two-flavor QCD treated as an N f =1+1 system, and comparing the results with those of the established algorithms for N f =2 QCD. These tests establish that our PHMC algorithm works on a moderately large lattice size with intermediate quark masses (16 3 x48,m PS /m V ∼0.7-0.8). Finally we experiment with the (2+1)-flavor QCD simulation on small lattices (4 3 x8 and 8 3 x16), and confirm the agreement of our results with those obtained with the R algorithm and extrapolated to a zero molecular dynamics step size
Hybrid phase retrieval algorithm for solving the twin image problem in in-line digital holography
Zhao, Jie; Wang, Dayong; Zhang, Fucai; Wang, Yunxin
2010-10-01
For the reconstruction in the in-line digital holography, there are three terms overlapping with each other on the image plane, named the zero order term, the real image and the twin image respectively. The unwanted twin image degrades the real image seriously. A hybrid phase retrieval algorithm is presented to address this problem, which combines the advantages of two popular phase retrieval algorithms. One is the improved version of the universal iterative algorithm (UIA), called the phase flipping-based UIA (PFB-UIA). The key point of this algorithm is to flip the phase of the object iteratively. It is proved that the PFB-UIA is able to find the support of the complicated object. Another one is the Fienup algorithm, which is a kind of well-developed algorithm and uses the support of the object as the constraint among the iteration procedure. Thus, by following the Fienup algorithm immediately after the PFB-UIA, it is possible to produce the amplitude and the phase distributions of the object with high fidelity. The primary simulated results showed that the proposed algorithm is powerful for solving the twin image problem in the in-line digital holography.
Energy Technology Data Exchange (ETDEWEB)
Niknam, Taher [Electronic and Electrical Engineering Department, Shiraz University of Technology, Shiraz (Iran)
2009-08-15
This paper introduces a robust searching hybrid evolutionary algorithm to solve the multi-objective Distribution Feeder Reconfiguration (DFR). The main objective of the DFR is to minimize the real power loss, deviation of the nodes' voltage, the number of switching operations, and balance the loads on the feeders. Because of the fact that the objectives are different and no commensurable, it is difficult to solve the problem by conventional approaches that may optimize a single objective. This paper presents a new approach based on norm3 for the DFR problem. In the proposed method, the objective functions are considered as a vector and the aim is to maximize the distance (norm2) between the objective function vector and the worst objective function vector while the constraints are met. Since the proposed DFR is a multi objective and non-differentiable optimization problem, a new hybrid evolutionary algorithm (EA) based on the combination of the Honey Bee Mating Optimization (HBMO) and the Discrete Particle Swarm Optimization (DPSO), called DPSO-HBMO, is implied to solve it. The results of the proposed reconfiguration method are compared with the solutions obtained by other approaches, the original DPSO and HBMO over different distribution test systems. (author)
Directory of Open Access Journals (Sweden)
Jianwen Guo
2016-01-01
Full Text Available All equipment must be maintained during its lifetime to ensure normal operation. Maintenance is one of the critical roles in the success of manufacturing enterprises. This paper proposed a preventive maintenance period optimization model (PMPOM to find an optimal preventive maintenance period. By making use of the advantages of particle swarm optimization (PSO and cuckoo search (CS algorithm, a hybrid optimization algorithm of PSO and CS is proposed to solve the PMPOM problem. The test functions show that the proposed algorithm exhibits more outstanding performance than particle swarm optimization and cuckoo search. Experiment results show that the proposed algorithm has advantages of strong optimization ability and fast convergence speed to solve the PMPOM problem.
Zeng, Fa; Tan, Qiaofeng; Yan, Yingbai; Jin, Guofan
2007-10-01
Study of phase retrieval technology is quite meaningful, for its wide applications related to many domains, such as adaptive optics, detection of laser quality, precise measurement of optical surface, and so on. Here a hybrid iterative phase retrieval algorithm is proposed, based on fusion of the intensity information in three defocused planes. First the conjugate gradient algorithm is adapted to achieve a coarse solution of phase distribution in the input plane; then the iterative angular spectrum method is applied in succession for better retrieval result. This algorithm is still applicable even when the exact shape and size of the aperture in the input plane are unknown. Moreover, this algorithm always exhibits good convergence, i.e., the retrieved results are insensitive to the chosen positions of the three defocused planes and the initial guess of complex amplitude in the input plane, which has been proved by both simulations and further experiments.
Advanced hybrid query tree algorithm based on slotted backoff mechanism in RFID
Directory of Open Access Journals (Sweden)
XIE Xiaohui
2013-12-01
Full Text Available The merits of performance quality for a RFID system are determined by the effectiveness of tag anti-collision algorithm.Many algorithms for RFID system of tag identification have been proposed,but they all have obvious weaknesses,such as slow speed of identification,unstable and so on.The existing algorithms can be divided into two groups,one is based on ALOHA and another is based on query tree.This article is based on the hybrid query tree algorithm,combined with a slotted backoff mechanism and a specific encoding (Manchester encoding.The number of value“1” in every three consecutive bits of tags is used to determine the tag response time slots,which will greatly reduce the time slot of the collision and improve the recognition efficiency.
A new hybrid model optimized by an intelligent optimization algorithm for wind speed forecasting
International Nuclear Information System (INIS)
Su, Zhongyue; Wang, Jianzhou; Lu, Haiyan; Zhao, Ge
2014-01-01
Highlights: • A new hybrid model is developed for wind speed forecasting. • The model is based on the Kalman filter and the ARIMA. • An intelligent optimization method is employed in the hybrid model. • The new hybrid model has good performance in western China. - Abstract: Forecasting the wind speed is indispensable in wind-related engineering studies and is important in the management of wind farms. As a technique essential for the future of clean energy systems, reducing the forecasting errors related to wind speed has always been an important research subject. In this paper, an optimized hybrid method based on the Autoregressive Integrated Moving Average (ARIMA) and Kalman filter is proposed to forecast the daily mean wind speed in western China. This approach employs Particle Swarm Optimization (PSO) as an intelligent optimization algorithm to optimize the parameters of the ARIMA model, which develops a hybrid model that is best adapted to the data set, increasing the fitting accuracy and avoiding over-fitting. The proposed method is subsequently examined on the wind farms of western China, where the proposed hybrid model is shown to perform effectively and steadily
Halliwell, George R.
Vertical coordinate and vertical mixing algorithms included in the HYbrid Coordinate Ocean Model (HYCOM) are evaluated in low-resolution climatological simulations of the Atlantic Ocean. The hybrid vertical coordinates are isopycnic in the deep ocean interior, but smoothly transition to level (pressure) coordinates near the ocean surface, to sigma coordinates in shallow water regions, and back again to level coordinates in very shallow water. By comparing simulations to climatology, the best model performance is realized using hybrid coordinates in conjunction with one of the three available differential vertical mixing models: the nonlocal K-Profile Parameterization, the NASA GISS level 2 turbulence closure, and the Mellor-Yamada level 2.5 turbulence closure. Good performance is also achieved using the quasi-slab Price-Weller-Pinkel dynamical instability model. Differences among these simulations are too small relative to other errors and biases to identify the "best" vertical mixing model for low-resolution climate simulations. Model performance deteriorates slightly when the Kraus-Turner slab mixed layer model is used with hybrid coordinates. This deterioration is smallest when solar radiation penetrates beneath the mixed layer and when shear instability mixing is included. A simulation performed using isopycnic coordinates to emulate the Miami Isopycnic Coordinate Ocean Model (MICOM), which uses Kraus-Turner mixing without penetrating shortwave radiation and shear instability mixing, demonstrates that the advantages of switching from isopycnic to hybrid coordinates and including more sophisticated turbulence closures outweigh the negative numerical effects of maintaining hybrid vertical coordinates.
Autumn Algorithm-Computation of Hybridization Networks for Realistic Phylogenetic Trees.
Huson, Daniel H; Linz, Simone
2018-01-01
A minimum hybridization network is a rooted phylogenetic network that displays two given rooted phylogenetic trees using a minimum number of reticulations. Previous mathematical work on their calculation has usually assumed the input trees to be bifurcating, correctly rooted, or that they both contain the same taxa. These assumptions do not hold in biological studies and "realistic" trees have multifurcations, are difficult to root, and rarely contain the same taxa. We present a new algorithm for computing minimum hybridization networks for a given pair of "realistic" rooted phylogenetic trees. We also describe how the algorithm might be used to improve the rooting of the input trees. We introduce the concept of "autumn trees", a nice framework for the formulation of algorithms based on the mathematics of "maximum acyclic agreement forests". While the main computational problem is hard, the run-time depends mainly on how different the given input trees are. In biological studies, where the trees are reasonably similar, our parallel implementation performs well in practice. The algorithm is available in our open source program Dendroscope 3, providing a platform for biologists to explore rooted phylogenetic networks. We demonstrate the utility of the algorithm using several previously studied data sets.
Yang, Xiaoxia; Wang, Jia; Sun, Jun; Liu, Rong
2015-01-01
Protein-nucleic acid interactions are central to various fundamental biological processes. Automated methods capable of reliably identifying DNA- and RNA-binding residues in protein sequence are assuming ever-increasing importance. The majority of current algorithms rely on feature-based prediction, but their accuracy remains to be further improved. Here we propose a sequence-based hybrid algorithm SNBRFinder (Sequence-based Nucleic acid-Binding Residue Finder) by merging a feature predictor SNBRFinderF and a template predictor SNBRFinderT. SNBRFinderF was established using the support vector machine whose inputs include sequence profile and other complementary sequence descriptors, while SNBRFinderT was implemented with the sequence alignment algorithm based on profile hidden Markov models to capture the weakly homologous template of query sequence. Experimental results show that SNBRFinderF was clearly superior to the commonly used sequence profile-based predictor and SNBRFinderT can achieve comparable performance to the structure-based template methods. Leveraging the complementary relationship between these two predictors, SNBRFinder reasonably improved the performance of both DNA- and RNA-binding residue predictions. More importantly, the sequence-based hybrid prediction reached competitive performance relative to our previous structure-based counterpart. Our extensive and stringent comparisons show that SNBRFinder has obvious advantages over the existing sequence-based prediction algorithms. The value of our algorithm is highlighted by establishing an easy-to-use web server that is freely accessible at http://ibi.hzau.edu.cn/SNBRFinder.
A novel hybrid genetic algorithm for optimal design of IPM machines for electric vehicle
Wang, Aimeng; Guo, Jiayu
2017-12-01
A novel hybrid genetic algorithm (HGA) is proposed to optimize the rotor structure of an IPM machine which is used in EV application. The finite element (FE) simulation results of the HGA design is compared with the genetic algorithm (GA) design and those before optimized. It is shown that the performance of the IPMSM is effectively improved by employing the GA and HGA, especially by HGA. Moreover, higher flux-weakening capability and less magnet usage are also obtained. Therefore, the validity of HGA method in IPMSM optimization design is verified.
Directory of Open Access Journals (Sweden)
Valentin Potapov
2016-12-01
Full Text Available Purpose: This work presents a method of diagnosing the technical condition of turbofan engines using hybrid neural network algorithm based on software developed for the analysis of data obtained in the aircraft life. Methods: allows the engine diagnostics with deep recognition to the structural assembly in the presence of single structural damage components of the engine running and the multifaceted damage. Results: of the optimization of neural network structure to solve the problems of evaluating technical state of the bypass turbofan engine, when used with genetic algorithms.
Hybrid cryptosystem for image file using elgamal and double playfair cipher algorithm
Hardi, S. M.; Tarigan, J. T.; Safrina, N.
2018-03-01
In this paper, we present an implementation of an image file encryption using hybrid cryptography. We chose ElGamal algorithm to perform asymmetric encryption and Double Playfair for the symmetric encryption. Our objective is to show that these algorithms are capable to encrypt an image file with an acceptable running time and encrypted file size while maintaining the level of security. The application was built using C# programming language and ran as a stand alone desktop application under Windows Operating System. Our test shows that the system is capable to encrypt an image with a resolution of 500×500 to a size of 976 kilobytes with an acceptable running time.
Bayesian estimation of realized stochastic volatility model by Hybrid Monte Carlo algorithm
International Nuclear Information System (INIS)
Takaishi, Tetsuya
2014-01-01
The hybrid Monte Carlo algorithm (HMCA) is applied for Bayesian parameter estimation of the realized stochastic volatility (RSV) model. Using the 2nd order minimum norm integrator (2MNI) for the molecular dynamics (MD) simulation in the HMCA, we find that the 2MNI is more efficient than the conventional leapfrog integrator. We also find that the autocorrelation time of the volatility variables sampled by the HMCA is very short. Thus it is concluded that the HMCA with the 2MNI is an efficient algorithm for parameter estimations of the RSV model
Directory of Open Access Journals (Sweden)
Mohammad Taghi Ameli
2012-01-01
Full Text Available Transmission Network Expansion Planning (TNEP is a basic part of power network planning that determines where, when and how many new transmission lines should be added to the network. So, the TNEP is an optimization problem in which the expansion purposes are optimized. Artificial Intelligence (AI tools such as Genetic Algorithm (GA, Simulated Annealing (SA, Tabu Search (TS and Artificial Neural Networks (ANNs are methods used for solving the TNEP problem. Today, by using the hybridization models of AI tools, we can solve the TNEP problem for large-scale systems, which shows the effectiveness of utilizing such models. In this paper, a new approach to the hybridization model of Probabilistic Neural Networks (PNNs and Harmony Search Algorithm (HSA was used to solve the TNEP problem. Finally, by considering the uncertain role of the load based on a scenario technique, this proposed model was tested on the Garver’s 6-bus network.
Directory of Open Access Journals (Sweden)
Amir Salehipour
2012-01-01
Full Text Available This paper presents a novel application of operations research to support decision making in blood distribution management. The rapid and dynamic increasing demand, criticality of the product, storage, handling, and distribution requirements, and the different geographical locations of hospitals and medical centers have made blood distribution a complex and important problem. In this study, a real blood distribution problem containing 24 hospitals was tackled by the authors, and an exact approach was presented. The objective of the problem is to distribute blood and its products among hospitals and medical centers such that the total waiting time of those requiring the product is minimized. Following the exact solution, a hybrid heuristic algorithm is proposed. Computational experiments showed the optimal solutions could be obtained for medium size instances, while for larger instances the proposed hybrid heuristic is very competitive.
Energy Technology Data Exchange (ETDEWEB)
Delbem, Alexandre C.B.; Bretas, Newton G. [Sao Paulo Univ., Sao Carlos, SP (Brazil). Dept. de Engenharia Eletrica; Carvalho, Andre C.P.L.F. [Sao Paulo Univ., Sao Carlos, SP (Brazil). Dept. de Ciencias de Computacao e Estatistica
1996-11-01
A search approach using fuzzy heuristics and a neural network parameter was developed for service restoration of a distribution system. The goal was to restore energy for an un-faulted zone after a fault had been identified and isolated. The restoration plan must be carried out in a very short period. However, the combinatorial feature of the problem constrained the application of automatic energy restoration planners. To overcome this problem, an heuristic search approach using fuzzy heuristics was proposed. As a result, a genetic algorithm approach was developed to achieve the optimal energy restoration plan. The effectiveness of these approaches were tested in a simplified distribution system based on the complex distribution system of Sao Carlos city, Sao Paulo State - southeast Brazil. It was noticed that the genetic algorithm provided better performance than the fuzzy heuristic search in this problem. 11 refs., 10 figs.
Revision of an automated microseismic location algorithm for DAS - 3C geophone hybrid array
Mizuno, T.; LeCalvez, J.; Raymer, D.
2017-12-01
Application of distributed acoustic sensing (DAS) has been studied in several areas in seismology. One of the areas is microseismic reservoir monitoring (e.g., Molteni et al., 2017, First Break). Considering the present limitations of DAS, which include relatively low signal-to-noise ratio (SNR) and no 3C polarization measurements, a DAS - 3C geophone hybrid array is a practical option when using a single monitoring well. Considering the large volume of data from distributed sensing, microseismic event detection and location using a source scanning type algorithm is a reasonable choice, especially for real-time monitoring. The algorithm must handle both strain rate along the borehole axis for DAS and particle velocity for 3C geophones. Only a small quantity of large SNR events will be detected throughout a large aperture encompassing the hybrid array; therefore, the aperture is to be optimized dynamically to eliminate noisy channels for a majority of events. For such hybrid array, coalescence microseismic mapping (CMM) (Drew et al., 2005, SPE) was revised. CMM forms a likelihood function of location of event and its origin time. At each receiver, a time function of event arrival likelihood is inferred using an SNR function, and it is migrated to time and space to determine hypocenter and origin time likelihood. This algorithm was revised to dynamically optimize such a hybrid array by identifying receivers where a microseismic signal is possibly detected and using only those receivers to compute the likelihood function. Currently, peak SNR is used to select receivers. To prevent false results due to small aperture, a minimum aperture threshold is employed. The algorithm refines location likelihood using 3C geophone polarization. We tested this algorithm using a ray-based synthetic dataset. Leaney (2014, PhD thesis, UBC) is used to compute particle velocity at receivers. Strain rate along the borehole axis is computed from particle velocity as DAS microseismic
Fuzzy-Based Hybrid Control Algorithm for the Stabilization of a Tri-Rotor UAV.
Ali, Zain Anwar; Wang, Daobo; Aamir, Muhammad
2016-05-09
In this paper, a new and novel mathematical fuzzy hybrid scheme is proposed for the stabilization of a tri-rotor unmanned aerial vehicle (UAV). The fuzzy hybrid scheme consists of a fuzzy logic controller, regulation pole-placement tracking (RST) controller with model reference adaptive control (MRAC), in which adaptive gains of the RST controller are being fine-tuned by a fuzzy logic controller. Brushless direct current (BLDC) motors are installed in the triangular frame of the tri-rotor UAV, which helps maintain control on its motion and different altitude and attitude changes, similar to rotorcrafts. MRAC-based MIT rule is proposed for system stability. Moreover, the proposed hybrid controller with nonlinear flight dynamics is shown in the presence of translational and rotational velocity components. The performance of the proposed algorithm is demonstrated via MATLAB simulations, in which the proposed fuzzy hybrid controller is compared with the existing adaptive RST controller. It shows that our proposed algorithm has better transient performance with zero steady-state error, and fast convergence towards stability.
Comparison of Heuristics for Inhibitory Rule Optimization
Alsolami, Fawaz; Chikalov, Igor; Moshkov, Mikhail
2014-01-01
Friedman test with Nemenyi post-hoc are used to compare the greedy algorithms statistically against each other for length and coverage. The experiments are carried out on real datasets from UCI Machine Learning Repository. For leading heuristics, the constructed rules are compared with optimal ones obtained based on dynamic programming approach. The results seem to be promising for the best heuristics: the average relative difference between length (coverage) of constructed and optimal rules is at most 2.27% (7%, respectively). Furthermore, the quality of classifiers based on sets of inhibitory rules constructed by the considered heuristics are compared against each other, and the results show that the three best heuristics from the point of view classification accuracy coincides with the three well-performed heuristics from the point of view of rule length minimization.
Trust Based Algorithm for Candidate Node Selection in Hybrid MANET-DTN
Directory of Open Access Journals (Sweden)
Jan Papaj
2014-01-01
Full Text Available The hybrid MANET - DTN is a mobile network that enables transport of the data between groups of the disconnected mobile nodes. The network provides benefits of the Mobile Ad-Hoc Networks (MANET and Delay Tolerant Network (DTN. The main problem of the MANET occurs if the communication path is broken or disconnected for some short time period. On the other side, DTN allows sending data in the disconnected environment with respect to higher tolerance to delay. Hybrid MANET - DTN provides optimal solution for emergency situation in order to transport information. Moreover, the security is the critical factor because the data are transported by mobile devices. In this paper, we investigate the issue of secure candidate node selection for transportation of the data in a disconnected environment for hybrid MANET- DTN. To achieve the secure selection of the reliable mobile nodes, the trust algorithm is introduced. The algorithm enables select reliable nodes based on collecting routing information. This algorithm is implemented to the simulator OPNET modeler.
A Two-Phase Coverage-Enhancing Algorithm for Hybrid Wireless Sensor Networks
Directory of Open Access Journals (Sweden)
Qingguo Zhang
2017-01-01
Full Text Available Providing field coverage is a key task in many sensor network applications. In certain scenarios, the sensor field may have coverage holes due to random initial deployment of sensors; thus, the desired level of coverage cannot be achieved. A hybrid wireless sensor network is a cost-effective solution to this problem, which is achieved by repositioning a portion of the mobile sensors in the network to meet the network coverage requirement. This paper investigates how to redeploy mobile sensor nodes to improve network coverage in hybrid wireless sensor networks. We propose a two-phase coverage-enhancing algorithm for hybrid wireless sensor networks. In phase one, we use a differential evolution algorithm to compute the candidate’s target positions in the mobile sensor nodes that could potentially improve coverage. In the second phase, we use an optimization scheme on the candidate’s target positions calculated from phase one to reduce the accumulated potential moving distance of mobile sensors, such that the exact mobile sensor nodes that need to be moved as well as their final target positions can be determined. Experimental results show that the proposed algorithm provided significant improvement in terms of area coverage rate, average moving distance, area coverage–distance rate and the number of moved mobile sensors, when compare with other approaches.
PS-FW: A Hybrid Algorithm Based on Particle Swarm and Fireworks for Global Optimization
Chen, Shuangqing; Wei, Lixin; Guan, Bing
2018-01-01
Particle swarm optimization (PSO) and fireworks algorithm (FWA) are two recently developed optimization methods which have been applied in various areas due to their simplicity and efficiency. However, when being applied to high-dimensional optimization problems, PSO algorithm may be trapped in the local optima owing to the lack of powerful global exploration capability, and fireworks algorithm is difficult to converge in some cases because of its relatively low local exploitation efficiency for noncore fireworks. In this paper, a hybrid algorithm called PS-FW is presented, in which the modified operators of FWA are embedded into the solving process of PSO. In the iteration process, the abandonment and supplement mechanism is adopted to balance the exploration and exploitation ability of PS-FW, and the modified explosion operator and the novel mutation operator are proposed to speed up the global convergence and to avoid prematurity. To verify the performance of the proposed PS-FW algorithm, 22 high-dimensional benchmark functions have been employed, and it is compared with PSO, FWA, stdPSO, CPSO, CLPSO, FIPS, Frankenstein, and ALWPSO algorithms. Results show that the PS-FW algorithm is an efficient, robust, and fast converging optimization method for solving global optimization problems. PMID:29675036
An Efficient ABC_DE_Based Hybrid Algorithm for Protein–Ligand Docking
Directory of Open Access Journals (Sweden)
Boxin Guan
2018-04-01
Full Text Available Protein–ligand docking is a process of searching for the optimal binding conformation between the receptor and the ligand. Automated docking plays an important role in drug design, and an efficient search algorithm is needed to tackle the docking problem. To tackle the protein–ligand docking problem more efficiently, An ABC_DE_based hybrid algorithm (ADHDOCK, integrating artificial bee colony (ABC algorithm and differential evolution (DE algorithm, is proposed in the article. ADHDOCK applies an adaptive population partition (APP mechanism to reasonably allocate the computational resources of the population in each iteration process, which helps the novel method make better use of the advantages of ABC and DE. The experiment tested fifty protein–ligand docking problems to compare the performance of ADHDOCK, ABC, DE, Lamarckian genetic algorithm (LGA, running history information guided genetic algorithm (HIGA, and swarm optimization for highly flexible protein–ligand docking (SODOCK. The results clearly exhibit the capability of ADHDOCK toward finding the lowest energy and the smallest root-mean-square deviation (RMSD on most of the protein–ligand docking problems with respect to the other five algorithms.
Hooke–Jeeves Method-used Local Search in a Hybrid Global Optimization Algorithm
Directory of Open Access Journals (Sweden)
V. D. Sulimov
2014-01-01
Full Text Available Modern methods for optimization investigation of complex systems are based on development and updating the mathematical models of systems because of solving the appropriate inverse problems. Input data desirable for solution are obtained from the analysis of experimentally defined consecutive characteristics for a system or a process. Causal characteristics are the sought ones to which equation coefficients of mathematical models of object, limit conditions, etc. belong. The optimization approach is one of the main ones to solve the inverse problems. In the main case it is necessary to find a global extremum of not everywhere differentiable criterion function. Global optimization methods are widely used in problems of identification and computation diagnosis system as well as in optimal control, computing to-mography, image restoration, teaching the neuron networks, other intelligence technologies. Increasingly complicated systems of optimization observed during last decades lead to more complicated mathematical models, thereby making solution of appropriate extreme problems significantly more difficult. A great deal of practical applications may have the problem con-ditions, which can restrict modeling. As a consequence, in inverse problems the criterion functions can be not everywhere differentiable and noisy. Available noise means that calculat-ing the derivatives is difficult and unreliable. It results in using the optimization methods without calculating the derivatives.An efficiency of deterministic algorithms of global optimization is significantly restrict-ed by their dependence on the extreme problem dimension. When the number of variables is large they use the stochastic global optimization algorithms. As stochastic algorithms yield too expensive solutions, so this drawback restricts their applications. Developing hybrid algo-rithms that combine a stochastic algorithm for scanning the variable space with deterministic local search
Hybrid particle swarm optimization algorithm and its application in nuclear engineering
International Nuclear Information System (INIS)
Liu, C.Y.; Yan, C.Q.; Wang, J.J.
2014-01-01
Highlights: • We propose a hybrid particle swarm optimization algorithm (HPSO). • Modified Nelder–Mead simplex search method is applied in HPSO. • The algorithm has a high search precision and rapidly calculation speed. • HPSO can be used in the nuclear engineering optimization design problems. - Abstract: A hybrid particle swarm optimization algorithm with a feasibility-based rule for solving constrained optimization problems has been developed in this research. Firstly, the global optimal solution zone can be obtained through particle swarm optimization process, and then the refined search of the global optimal solution will be achieved through the modified Nelder–Mead simplex algorithm. Simulations based on two well-studied benchmark problems demonstrate the proposed algorithm will be an efficient alternative to solving constrained optimization problems. The vertical electrical heating pressurizer is one of the key components in reactor coolant system. The mathematical model of pressurizer has been established in steady state. The optimization design of pressurizer weight has been carried out through HPSO algorithm. The results show the pressurizer weight can be reduced by 16.92%. The thermal efficiencies of conventional PWR nuclear power plants are about 31–35% so far, which are much lower than fossil fueled plants based in a steam cycle as PWR. The thermal equilibrium mathematic model for nuclear power plant secondary loop has been established. An optimization case study has been conducted to improve the efficiency of the nuclear power plant with the proposed algorithm. The results show the thermal efficiency is improved by 0.5%
Hybrid feature selection algorithm using symmetrical uncertainty and a harmony search algorithm
Salameh Shreem, Salam; Abdullah, Salwani; Nazri, Mohd Zakree Ahmad
2016-04-01
Microarray technology can be used as an efficient diagnostic system to recognise diseases such as tumours or to discriminate between different types of cancers in normal tissues. This technology has received increasing attention from the bioinformatics community because of its potential in designing powerful decision-making tools for cancer diagnosis. However, the presence of thousands or tens of thousands of genes affects the predictive accuracy of this technology from the perspective of classification. Thus, a key issue in microarray data is identifying or selecting the smallest possible set of genes from the input data that can achieve good predictive accuracy for classification. In this work, we propose a two-stage selection algorithm for gene selection problems in microarray data-sets called the symmetrical uncertainty filter and harmony search algorithm wrapper (SU-HSA). Experimental results show that the SU-HSA is better than HSA in isolation for all data-sets in terms of the accuracy and achieves a lower number of genes on 6 out of 10 instances. Furthermore, the comparison with state-of-the-art methods shows that our proposed approach is able to obtain 5 (out of 10) new best results in terms of the number of selected genes and competitive results in terms of the classification accuracy.
Sheikhan, Mansour; Abbasnezhad Arabi, Mahdi; Gharavian, Davood
2015-10-01
Artificial neural networks are efficient models in pattern recognition applications, but their performance is dependent on employing suitable structure and connection weights. This study used a hybrid method for obtaining the optimal weight set and architecture of a recurrent neural emotion classifier based on gravitational search algorithm (GSA) and its binary version (BGSA), respectively. By considering the features of speech signal that were related to prosody, voice quality, and spectrum, a rich feature set was constructed. To select more efficient features, a fast feature selection method was employed. The performance of the proposed hybrid GSA-BGSA method was compared with similar hybrid methods based on particle swarm optimisation (PSO) algorithm and its binary version, PSO and discrete firefly algorithm, and hybrid of error back-propagation and genetic algorithm that were used for optimisation. Experimental tests on Berlin emotional database demonstrated the superior performance of the proposed method using a lighter network structure.
Arabzadeh, Vida; Niaki, S. T. A.; Arabzadeh, Vahid
2017-10-01
One of the most important processes in the early stages of construction projects is to estimate the cost involved. This process involves a wide range of uncertainties, which make it a challenging task. Because of unknown issues, using the experience of the experts or looking for similar cases are the conventional methods to deal with cost estimation. The current study presents data-driven methods for cost estimation based on the application of artificial neural network (ANN) and regression models. The learning algorithms of the ANN are the Levenberg-Marquardt and the Bayesian regulated. Moreover, regression models are hybridized with a genetic algorithm to obtain better estimates of the coefficients. The methods are applied in a real case, where the input parameters of the models are assigned based on the key issues involved in a spherical tank construction. The results reveal that while a high correlation between the estimated cost and the real cost exists; both ANNs could perform better than the hybridized regression models. In addition, the ANN with the Levenberg-Marquardt learning algorithm (LMNN) obtains a better estimation than the ANN with the Bayesian-regulated learning algorithm (BRNN). The correlation between real data and estimated values is over 90%, while the mean square error is achieved around 0.4. The proposed LMNN model can be effective to reduce uncertainty and complexity in the early stages of the construction project.
A Hybrid Feature Subset Selection Algorithm for Analysis of High Correlation Proteomic Data
Kordy, Hussain Montazery; Baygi, Mohammad Hossein Miran; Moradi, Mohammad Hassan
2012-01-01
Pathological changes within an organ can be reflected as proteomic patterns in biological fluids such as plasma, serum, and urine. The surface-enhanced laser desorption and ionization time-of-flight mass spectrometry (SELDI-TOF MS) has been used to generate proteomic profiles from biological fluids. Mass spectrometry yields redundant noisy data that the most data points are irrelevant features for differentiating between cancer and normal cases. In this paper, we have proposed a hybrid feature subset selection algorithm based on maximum-discrimination and minimum-correlation coupled with peak scoring criteria. Our algorithm has been applied to two independent SELDI-TOF MS datasets of ovarian cancer obtained from the NCI-FDA clinical proteomics databank. The proposed algorithm has used to extract a set of proteins as potential biomarkers in each dataset. We applied the linear discriminate analysis to identify the important biomarkers. The selected biomarkers have been able to successfully diagnose the ovarian cancer patients from the noncancer control group with an accuracy of 100%, a sensitivity of 100%, and a specificity of 100% in the two datasets. The hybrid algorithm has the advantage that increases reproducibility of selected biomarkers and able to find a small set of proteins with high discrimination power. PMID:23717808
Directory of Open Access Journals (Sweden)
Aydin Azizi
2017-01-01
Full Text Available Recent advances in modern manufacturing industries have created a great need to track and identify objects and parts by obtaining real-time information. One of the main technologies which has been utilized for this need is the Radio Frequency Identification (RFID system. As a result of adopting this technology to the manufacturing industry environment, RFID Network Planning (RNP has become a challenge. Mainly RNP deals with calculating the number and position of antennas which should be deployed in the RFID network to achieve full coverage of the tags that need to be read. The ultimate goal of this paper is to present and evaluate a way of modelling and optimizing nonlinear RNP problems utilizing artificial intelligence (AI techniques. This effort has led the author to propose a novel AI algorithm, which has been named “hybrid AI optimization technique,” to perform optimization of RNP as a hard learning problem. The proposed algorithm is composed of two different optimization algorithms: Redundant Antenna Elimination (RAE and Ring Probabilistic Logic Neural Networks (RPLNN. The proposed hybrid paradigm has been explored using a flexible manufacturing system (FMS, and results have been compared with Genetic Algorithm (GA that demonstrates the feasibility of the proposed architecture successfully.
A Hybrid Fuzzy Genetic Algorithm for an Adaptive Traffic Signal System
Directory of Open Access Journals (Sweden)
S. M. Odeh
2015-01-01
Full Text Available This paper presents a hybrid algorithm that combines Fuzzy Logic Controller (FLC and Genetic Algorithms (GAs and its application on a traffic signal system. FLCs have been widely used in many applications in diverse areas, such as control system, pattern recognition, signal processing, and forecasting. They are, essentially, rule-based systems, in which the definition of these rules and fuzzy membership functions is generally based on verbally formulated rules that overlap through the parameter space. They have a great influence over the performance of the system. On the other hand, the Genetic Algorithm is a metaheuristic that provides a robust search in complex spaces. In this work, it has been used to adapt the decision rules of FLCs that define an intelligent traffic signal system, obtaining a higher performance than a classical FLC-based control. The simulation results yielded by the hybrid algorithm show an improvement of up to 34% in the performance with respect to a standard traffic signal controller, Conventional Traffic Signal Controller (CTC, and up to 31% in the comparison with a traditional logic controller, FLC.
Parameter estimation of Lorenz chaotic system using a hybrid swarm intelligence algorithm
International Nuclear Information System (INIS)
Lazzús, Juan A.; Rivera, Marco; López-Caraballo, Carlos H.
2016-01-01
A novel hybrid swarm intelligence algorithm for chaotic system parameter estimation is present. For this purpose, the parameters estimation on Lorenz systems is formulated as a multidimensional problem, and a hybrid approach based on particle swarm optimization with ant colony optimization (PSO–ACO) is implemented to solve this problem. Firstly, the performance of the proposed PSO–ACO algorithm is tested on a set of three representative benchmark functions, and the impact of the parameter settings on PSO–ACO efficiency is studied. Secondly, the parameter estimation is converted into an optimization problem on a three-dimensional Lorenz system. Numerical simulations on Lorenz model and comparisons with results obtained by other algorithms showed that PSO–ACO is a very powerful tool for parameter estimation with high accuracy and low deviations. - Highlights: • PSO–ACO combined particle swarm optimization with ant colony optimization. • This study is the first research of PSO–ACO to estimate parameters of chaotic systems. • PSO–ACO algorithm can identify the parameters of the three-dimensional Lorenz system with low deviations. • PSO–ACO is a very powerful tool for the parameter estimation on other chaotic system.
A Hybrid Swarm Intelligence Algorithm for Intrusion Detection Using Significant Features
Directory of Open Access Journals (Sweden)
P. Amudha
2015-01-01
Full Text Available Intrusion detection has become a main part of network security due to the huge number of attacks which affects the computers. This is due to the extensive growth of internet connectivity and accessibility to information systems worldwide. To deal with this problem, in this paper a hybrid algorithm is proposed to integrate Modified Artificial Bee Colony (MABC with Enhanced Particle Swarm Optimization (EPSO to predict the intrusion detection problem. The algorithms are combined together to find out better optimization results and the classification accuracies are obtained by 10-fold cross-validation method. The purpose of this paper is to select the most relevant features that can represent the pattern of the network traffic and test its effect on the success of the proposed hybrid classification algorithm. To investigate the performance of the proposed method, intrusion detection KDDCup’99 benchmark dataset from the UCI Machine Learning repository is used. The performance of the proposed method is compared with the other machine learning algorithms and found to be significantly different.
Parameter estimation of Lorenz chaotic system using a hybrid swarm intelligence algorithm
Energy Technology Data Exchange (ETDEWEB)
Lazzús, Juan A., E-mail: jlazzus@dfuls.cl; Rivera, Marco; López-Caraballo, Carlos H.
2016-03-11
A novel hybrid swarm intelligence algorithm for chaotic system parameter estimation is present. For this purpose, the parameters estimation on Lorenz systems is formulated as a multidimensional problem, and a hybrid approach based on particle swarm optimization with ant colony optimization (PSO–ACO) is implemented to solve this problem. Firstly, the performance of the proposed PSO–ACO algorithm is tested on a set of three representative benchmark functions, and the impact of the parameter settings on PSO–ACO efficiency is studied. Secondly, the parameter estimation is converted into an optimization problem on a three-dimensional Lorenz system. Numerical simulations on Lorenz model and comparisons with results obtained by other algorithms showed that PSO–ACO is a very powerful tool for parameter estimation with high accuracy and low deviations. - Highlights: • PSO–ACO combined particle swarm optimization with ant colony optimization. • This study is the first research of PSO–ACO to estimate parameters of chaotic systems. • PSO–ACO algorithm can identify the parameters of the three-dimensional Lorenz system with low deviations. • PSO–ACO is a very powerful tool for the parameter estimation on other chaotic system.
Optimal Solution for VLSI Physical Design Automation Using Hybrid Genetic Algorithm
Directory of Open Access Journals (Sweden)
I. Hameem Shanavas
2014-01-01
Full Text Available In Optimization of VLSI Physical Design, area minimization and interconnect length minimization is an important objective in physical design automation of very large scale integration chips. The objective of minimizing the area and interconnect length would scale down the size of integrated chips. To meet the above objective, it is necessary to find an optimal solution for physical design components like partitioning, floorplanning, placement, and routing. This work helps to perform the optimization of the benchmark circuits with the above said components of physical design using hierarchical approach of evolutionary algorithms. The goal of minimizing the delay in partitioning, minimizing the silicon area in floorplanning, minimizing the layout area in placement, minimizing the wirelength in routing has indefinite influence on other criteria like power, clock, speed, cost, and so forth. Hybrid evolutionary algorithm is applied on each of its phases to achieve the objective. Because evolutionary algorithm that includes one or many local search steps within its evolutionary cycles to obtain the minimization of area and interconnect length. This approach combines a hierarchical design like genetic algorithm and simulated annealing to attain the objective. This hybrid approach can quickly produce optimal solutions for the popular benchmarks.
Hybrid real-code ant colony optimisation for constrained mechanical design
Pholdee, Nantiwat; Bureerat, Sujin
2016-01-01
This paper proposes a hybrid meta-heuristic based on integrating a local search simplex downhill (SDH) method into the search procedure of real-code ant colony optimisation (ACOR). This hybridisation leads to five hybrid algorithms where a Monte Carlo technique, a Latin hypercube sampling technique (LHS) and a translational propagation Latin hypercube design (TPLHD) algorithm are used to generate an initial population. Also, two numerical schemes for selecting an initial simplex are investigated. The original ACOR and its hybrid versions along with a variety of established meta-heuristics are implemented to solve 17 constrained test problems where a fuzzy set theory penalty function technique is used to handle design constraints. The comparative results show that the hybrid algorithms are the top performers. Using the TPLHD technique gives better results than the other sampling techniques. The hybrid optimisers are a powerful design tool for constrained mechanical design problems.
DEFF Research Database (Denmark)
Awasthi, Abhishek; Venkitusamy, Karthikeyan; Padmanaban, Sanjeevikumar
2017-01-01
India's ever increasing population has made it necessary to develop alternative modes of transportation with electric vehicles being the most preferred option. The major obstacle is the deteriorating impact on the utility distribution system brought about by improper setup of these charging...... stations. This paper deals with the optimal planning (siting and sizing) of charging station infrastructure in the city of Allahabad, India. This city is one of the upcoming smart cities, where electric vehicle transportation pilot project is going on under Government of India initiative. In this context......, a hybrid algorithm based on genetic algorithm and improved version of conventional particle swarm optimization is utilized for finding optimal placement of charging station in the Allahabad distribution system. The particle swarm optimization algorithm re-optimizes the received sub-optimal solution (site...
International Nuclear Information System (INIS)
Shayanfar, H.A.; Lahiji, A. Saliminia; Aghaei, J.; Rabiee, A.
2009-01-01
Unlike the traditional policy, Generation Expansion Planning (GEP) problem in competitive framework is complicated. In the new policy, each Generation Company (GENCO) decides to invest in such a way that obtains as much profit as possible. This paper presents a new hybrid algorithm to determine GEP in a Pool market. The proposed algorithm is divided in two programming levels: master and slave. In the master level a Modified Game Theory (MGT) is proposed to evaluate the contrast of GENCOs by the Independent System Operator (ISO). In the slave level, an Improved Genetic Algorithm (IGA) method is used to find the best solution of each GENCO for decision-making of investment. The validity of the proposed method is examined in the case study including three GENCOs with multi-type of power plants. The results show that the presented method is both satisfactory and consistent with expectation. (author)
Trajectory generation algorithm for smooth movement of a hybrid-type robot Rocker-Pillar
Energy Technology Data Exchange (ETDEWEB)
Jung, Seung Min; Choi, Dong Kyu; Kim, Jong Won [School of Mechanical and Aerospace Engineering, Seoul National University, Seoul (Korea, Republic of); Kim, Hwa Soo [Dept. of Mechanical System Engineering, Kyonggi University, Suwon (Korea, Republic of)
2016-11-15
While traveling on rough terrain, smooth movement of a mobile robot plays an important role in carrying out the given tasks successfully. This paper describes the trajectory generation algorithm for smooth movement of hybrid-type mobile robot Rocker-Pillar by adjusting the angular velocity of its caterpillar as well as each wheel velocity in such a manner to minimize a proper index for smoothness. To this end, a new Smoothness index (SI) is first suggested to evaluate the smoothness of movement of Rocker-Pillar. Then, the trajectory generation algorithm is proposed to reduce the undesired oscillations of its Center of mass (CoM). The experiment are performed to examine the movement of Rocker-Pillar climbing up the step whose height is twice larger than its wheel radius. It is verified that the resulting SI is improved by more than 40 % so that the movement of Rocker-Pillar becomes much smoother by the proposed trajectory algorithm.
A hybrid GA-TS algorithm for open vehicle routing optimization of coal mines material
Energy Technology Data Exchange (ETDEWEB)
Yu, S.W.; Ding, C.; Zhu, K.J. [China University of Geoscience, Wuhan (China)
2011-08-15
In the open vehicle routing problem (OVRP), the objective is to minimize the number of vehicles and the total distance (or time) traveled. This study primarily focuses on solving an open vehicle routing problem (OVRP) by applying a novel hybrid genetic algorithm and the Tabu search (GA-TS), which combines the GA's parallel computing and global optimization with TS's Tabu search skill and fast local search. Firstly, the proposed algorithm uses natural number coding according to the customer demands and the captivity of the vehicle for globe optimization. Secondly, individuals of population do TS local search with a certain degree of probability, namely, do the local routing optimization of all customer sites belong to one vehicle. The mechanism not only improves the ability of global optimization, but also ensures the speed of operation. The algorithm was used in Zhengzhou Coal Mine and Power Supply Co., Ltd.'s transport vehicle routing optimization.
Directory of Open Access Journals (Sweden)
Xinli Xu
2013-01-01
Full Text Available A two-level batch chromosome coding scheme is proposed to solve the lot splitting problem with equipment capacity constraints in flexible job shop scheduling, which includes a lot splitting chromosome and a lot scheduling chromosome. To balance global search and local exploration of the differential evolution algorithm, a hybrid discrete differential evolution algorithm (HDDE is presented, in which the local strategy with dynamic random searching based on the critical path and a random mutation operator is developed. The performance of HDDE was experimented with 14 benchmark problems and the practical dye vat scheduling problem. The simulation results showed that the proposed algorithm has the strong global search capability and can effectively solve the practical lot splitting problems with equipment capacity constraints.
Comparison of Heuristics for Inhibitory Rule Optimization
Alsolami, Fawaz
2014-09-13
Knowledge representation and extraction are very important tasks in data mining. In this work, we proposed a variety of rule-based greedy algorithms that able to obtain knowledge contained in a given dataset as a series of inhibitory rules containing an expression “attribute ≠ value” on the right-hand side. The main goal of this paper is to determine based on rule characteristics, rule length and coverage, whether the proposed rule heuristics are statistically significantly different or not; if so, we aim to identify the best performing rule heuristics for minimization of rule length and maximization of rule coverage. Friedman test with Nemenyi post-hoc are used to compare the greedy algorithms statistically against each other for length and coverage. The experiments are carried out on real datasets from UCI Machine Learning Repository. For leading heuristics, the constructed rules are compared with optimal ones obtained based on dynamic programming approach. The results seem to be promising for the best heuristics: the average relative difference between length (coverage) of constructed and optimal rules is at most 2.27% (7%, respectively). Furthermore, the quality of classifiers based on sets of inhibitory rules constructed by the considered heuristics are compared against each other, and the results show that the three best heuristics from the point of view classification accuracy coincides with the three well-performed heuristics from the point of view of rule length minimization.
An Efficient Hybrid DSMC/MD Algorithm for Accurate Modeling of Micro Gas Flows
Liang, Tengfei
2013-01-01
Aiming at simulating micro gas flows with accurate boundary conditions, an efficient hybrid algorithmis developed by combining themolecular dynamics (MD) method with the direct simulationMonte Carlo (DSMC)method. The efficiency comes from the fact that theMD method is applied only within the gas-wall interaction layer, characterized by the cut-off distance of the gas-solid interaction potential, to resolve accurately the gas-wall interaction process, while the DSMC method is employed in the remaining portion of the flow field to efficiently simulate rarefied gas transport outside the gas-wall interaction layer. A unique feature about the present scheme is that the coupling between the two methods is realized by matching the molecular velocity distribution function at the DSMC/MD interface, hence there is no need for one-toone mapping between a MD gas molecule and a DSMC simulation particle. Further improvement in efficiency is achieved by taking advantage of gas rarefaction inside the gas-wall interaction layer and by employing the "smart-wall model" proposed by Barisik et al. The developed hybrid algorithm is validated on two classical benchmarks namely 1-D Fourier thermal problem and Couette shear flow problem. Both the accuracy and efficiency of the hybrid algorithm are discussed. As an application, the hybrid algorithm is employed to simulate thermal transpiration coefficient in the free-molecule regime for a system with atomically smooth surface. Result is utilized to validate the coefficients calculated from the pure DSMC simulation with Maxwell and Cercignani-Lampis gas-wall interaction models. ©c 2014 Global-Science Press.
A novel hybrid chaotic ant swarm algorithm for heat exchanger networks synthesis
International Nuclear Information System (INIS)
Zhang, Chunwei; Cui, Guomin; Peng, Fuyu
2016-01-01
Highlights: • The chaotic ant swarm algorithm is proposed to avoid trapping into a local optimum. • The organization variables update strategy makes full use of advantages of the chaotic search. • The structure evolution strategy is developed to handle integer variables optimization. • Overall three cases taken form the literatures are investigated with better optima. - Abstract: The heat exchanger networks synthesis (HENS) still remains an open problem due to its combinatorial nature, which can easily result in suboptimal design and unacceptable calculation effort. In this paper, a novel hybrid chaotic ant swarm algorithm is proposed. The presented algorithm, which consists of a combination of chaotic ant swarm (CAS) algorithm, structure evolution strategy, local optimization strategy and organization variables update strategy, can simultaneously optimize continuous variables and integer variables. The CAS algorithm chaotically searches and generates new solutions in the given space, and subsequently the structure evolution strategy evolves the structures represented by the solutions and limits the search space. Furthermore, the local optimizing strategy and the organization variables update strategy are introduced to enhance the performance of the algorithm. The study of three different cases, found in the literature, revealed special search abilities in both structure space and continuous variable space.
Abdul Rani, Khairul Najmy; Abdulmalek, Mohamedfareq; A Rahim, Hasliza; Siew Chin, Neoh; Abd Wahab, Alawiyah
2017-04-20
This research proposes the various versions of modified cuckoo search (MCS) metaheuristic algorithm deploying the strength Pareto evolutionary algorithm (SPEA) multiobjective (MO) optimization technique in rectangular array geometry synthesis. Precisely, the MCS algorithm is proposed by incorporating the Roulette wheel selection operator to choose the initial host nests (individuals) that give better results, adaptive inertia weight to control the positions exploration of the potential best host nests (solutions), and dynamic discovery rate to manage the fraction probability of finding the best host nests in 3-dimensional search space. In addition, the MCS algorithm is hybridized with the particle swarm optimization (PSO) and hill climbing (HC) stochastic techniques along with the standard strength Pareto evolutionary algorithm (SPEA) forming the MCSPSOSPEA and MCSHCSPEA, respectively. All the proposed MCS-based algorithms are examined to perform MO optimization on Zitzler-Deb-Thiele's (ZDT's) test functions. Pareto optimum trade-offs are done to generate a set of three non-dominated solutions, which are locations, excitation amplitudes, and excitation phases of array elements, respectively. Overall, simulations demonstrates that the proposed MCSPSOSPEA outperforms other compatible competitors, in gaining a high antenna directivity, small half-power beamwidth (HPBW), low average side lobe level (SLL) suppression, and/or significant predefined nulls mitigation, simultaneously.
A hybrid genetic algorithm for the distributed permutation flowshop scheduling problem
Directory of Open Access Journals (Sweden)
Jian Gao
2011-08-01
Full Text Available Distributed Permutation Flowshop Scheduling Problem (DPFSP is a newly proposed scheduling problem, which is a generalization of classical permutation flow shop scheduling problem. The DPFSP is NP-hard in general. It is in the early stages of studies on algorithms for solving this problem. In this paper, we propose a GA-based algorithm, denoted by GA_LS, for solving this problem with objective to minimize the maximum completion time. In the proposed GA_LS, crossover and mutation operators are designed to make it suitable for the representation of DPFSP solutions, where the set of partial job sequences is employed. Furthermore, GA_LS utilizes an efficient local search method to explore neighboring solutions. The local search method uses three proposed rules that move jobs within a factory or between two factories. Intensive experiments on the benchmark instances, extended from Taillard instances, are carried out. The results indicate that the proposed hybrid genetic algorithm can obtain better solutions than all the existing algorithms for the DPFSP, since it obtains better relative percentage deviation and differences of the results are also statistically significant. It is also seen that best-known solutions for most instances are updated by our algorithm. Moreover, we also show the efficiency of the GA_LS by comparing with similar genetic algorithms with the existing local search methods.
A hybrid search algorithm for swarm robots searching in an unknown environment.
Li, Shoutao; Li, Lina; Lee, Gordon; Zhang, Hao
2014-01-01
This paper proposes a novel method to improve the efficiency of a swarm of robots searching in an unknown environment. The approach focuses on the process of feeding and individual coordination characteristics inspired by the foraging behavior in nature. A predatory strategy was used for searching; hence, this hybrid approach integrated a random search technique with a dynamic particle swarm optimization (DPSO) search algorithm. If a search robot could not find any target information, it used a random search algorithm for a global search. If the robot found any target information in a region, the DPSO search algorithm was used for a local search. This particle swarm optimization search algorithm is dynamic as all the parameters in the algorithm are refreshed synchronously through a communication mechanism until the robots find the target position, after which, the robots fall back to a random searching mode. Thus, in this searching strategy, the robots alternated between two searching algorithms until the whole area was covered. During the searching process, the robots used a local communication mechanism to share map information and DPSO parameters to reduce the communication burden and overcome hardware limitations. If the search area is very large, search efficiency may be greatly reduced if only one robot searches an entire region given the limited resources available and time constraints. In this research we divided the entire search area into several subregions, selected a target utility function to determine which subregion should be initially searched and thereby reduced the residence time of the target to improve search efficiency.
Forecasting solar radiation using an optimized hybrid model by Cuckoo Search algorithm
International Nuclear Information System (INIS)
Wang, Jianzhou; Jiang, He; Wu, Yujie; Dong, Yao
2015-01-01
Due to energy crisis and environmental problems, it is very urgent to find alternative energy sources nowadays. Solar energy, as one of the great potential clean energies, has widely attracted the attention of researchers. In this paper, an optimized hybrid method by CS (Cuckoo Search) on the basis of the OP-ELM (Optimally Pruned Extreme Learning Machine), called CS-OP-ELM, is developed to forecast clear sky and real sky global horizontal radiation. First, MRSR (Multiresponse Sparse Regression) and LOO-CV (leave-one-out cross-validation) can be applied to rank neurons and prune the possibly meaningless neurons of the FFNN (Feed Forward Neural Network), respectively. Then, Direct strategy and Direct-Recursive strategy based on OP-ELM are introduced to build a hybrid model. Furthermore, CS (Cuckoo Search) optimized algorithm is employed to determine the proper weight coefficients. In order to verify the effectiveness of the developed method, hourly solar radiation data from six sites of the United States has been collected, and methods like ARMA (Autoregression moving average), BP (Back Propagation) neural network and OP-ELM can be compared with CS-OP-ELM. Experimental results show the optimized hybrid method CS-OP-ELM has the best forecasting performance. - Highlights: • An optimized hybrid method called CS-OP-ELM is proposed to forecast solar radiation. • CS-OP-ELM adopts multiple variables dataset as input variables. • Direct and Direct-Recursive strategy are introduced to build a hybrid model. • CS (Cuckoo Search) algorithm is used to determine the optimal weight coefficients. • The proposed method has the best performance compared with other methods
Directory of Open Access Journals (Sweden)
Shin'ya Nakano
2014-05-01
Full Text Available A hybrid algorithm that combines the ensemble transform Kalman filter (ETKF and the importance sampling approach is proposed. Since the ETKF assumes a linear Gaussian observation model, the estimate obtained by the ETKF can be biased in cases with nonlinear or non-Gaussian observations. The particle filter (PF is based on the importance sampling technique, and is applicable to problems with nonlinear or non-Gaussian observations. However, the PF usually requires an unrealistically large sample size in order to achieve a good estimation, and thus it is computationally prohibitive. In the proposed hybrid algorithm, we obtain a proposal distribution similar to the posterior distribution by using the ETKF. A large number of samples are then drawn from the proposal distribution, and these samples are weighted to approximate the posterior distribution according to the importance sampling principle. Since the importance sampling provides an estimate of the probability density function (PDF without assuming linearity or Gaussianity, we can resolve the bias due to the nonlinear or non-Gaussian observations. Finally, in the next forecast step, we reduce the sample size to achieve computational efficiency based on the Gaussian assumption, while we use a relatively large number of samples in the importance sampling in order to consider the non-Gaussian features of the posterior PDF. The use of the ETKF is also beneficial in terms of the computational simplicity of generating a number of random samples from the proposal distribution and in weighting each of the samples. The proposed algorithm is not necessarily effective in case that the ensemble is located distant from the true state. However, monitoring the effective sample size and tuning the factor for covariance inflation could resolve this problem. In this paper, the proposed hybrid algorithm is introduced and its performance is evaluated through experiments with non-Gaussian observations.
de Jong, Menno D.T.; van der Geest, Thea
2000-01-01
This article is intended to make Web designers more aware of the qualities of heuristics by presenting a framework for analyzing the characteristics of heuristics. The framework is meant to support Web designers in choosing among alternative heuristics. We hope that better knowledge of the
A hybrid metaheuristic DE/CS algorithm for UCAV three-dimension path planning.
Wang, Gaige; Guo, Lihong; Duan, Hong; Wang, Heqi; Liu, Luo; Shao, Mingzhen
2012-01-01
Three-dimension path planning for uninhabited combat air vehicle (UCAV) is a complicated high-dimension optimization problem, which primarily centralizes on optimizing the flight route considering the different kinds of constrains under complicated battle field environments. A new hybrid metaheuristic differential evolution (DE) and cuckoo search (CS) algorithm is proposed to solve the UCAV three-dimension path planning problem. DE is applied to optimize the process of selecting cuckoos of the improved CS model during the process of cuckoo updating in nest. The cuckoos can act as an agent in searching the optimal UCAV path. And then, the UCAV can find the safe path by connecting the chosen nodes of the coordinates while avoiding the threat areas and costing minimum fuel. This new approach can accelerate the global convergence speed while preserving the strong robustness of the basic CS. The realization procedure for this hybrid metaheuristic approach DE/CS is also presented. In order to make the optimized UCAV path more feasible, the B-Spline curve is adopted for smoothing the path. To prove the performance of this proposed hybrid metaheuristic method, it is compared with basic CS algorithm. The experiment shows that the proposed approach is more effective and feasible in UCAV three-dimension path planning than the basic CS model.
Nonlinear inversion of potential-field data using a hybrid-encoding genetic algorithm
Chen, C.; Xia, J.; Liu, J.; Feng, G.
2006-01-01
Using a genetic algorithm to solve an inverse problem of complex nonlinear geophysical equations is advantageous because it does not require computer gradients of models or "good" initial models. The multi-point search of a genetic algorithm makes it easier to find the globally optimal solution while avoiding falling into a local extremum. As is the case in other optimization approaches, the search efficiency for a genetic algorithm is vital in finding desired solutions successfully in a multi-dimensional model space. A binary-encoding genetic algorithm is hardly ever used to resolve an optimization problem such as a simple geophysical inversion with only three unknowns. The encoding mechanism, genetic operators, and population size of the genetic algorithm greatly affect search processes in the evolution. It is clear that improved operators and proper population size promote the convergence. Nevertheless, not all genetic operations perform perfectly while searching under either a uniform binary or a decimal encoding system. With the binary encoding mechanism, the crossover scheme may produce more new individuals than with the decimal encoding. On the other hand, the mutation scheme in a decimal encoding system will create new genes larger in scope than those in the binary encoding. This paper discusses approaches of exploiting the search potential of genetic operations in the two encoding systems and presents an approach with a hybrid-encoding mechanism, multi-point crossover, and dynamic population size for geophysical inversion. We present a method that is based on the routine in which the mutation operation is conducted in the decimal code and multi-point crossover operation in the binary code. The mix-encoding algorithm is called the hybrid-encoding genetic algorithm (HEGA). HEGA provides better genes with a higher probability by a mutation operator and improves genetic algorithms in resolving complicated geophysical inverse problems. Another significant
Hybrid Swarm Intelligence Energy Efficient Clustered Routing Algorithm for Wireless Sensor Networks
Directory of Open Access Journals (Sweden)
Rajeev Kumar
2016-01-01
Full Text Available Currently, wireless sensor networks (WSNs are used in many applications, namely, environment monitoring, disaster management, industrial automation, and medical electronics. Sensor nodes carry many limitations like low battery life, small memory space, and limited computing capability. To create a wireless sensor network more energy efficient, swarm intelligence technique has been applied to resolve many optimization issues in WSNs. In many existing clustering techniques an artificial bee colony (ABC algorithm is utilized to collect information from the field periodically. Nevertheless, in the event based applications, an ant colony optimization (ACO is a good solution to enhance the network lifespan. In this paper, we combine both algorithms (i.e., ABC and ACO and propose a new hybrid ABCACO algorithm to solve a Nondeterministic Polynomial (NP hard and finite problem of WSNs. ABCACO algorithm is divided into three main parts: (i selection of optimal number of subregions and further subregion parts, (ii cluster head selection using ABC algorithm, and (iii efficient data transmission using ACO algorithm. We use a hierarchical clustering technique for data transmission; the data is transmitted from member nodes to the subcluster heads and then from subcluster heads to the elected cluster heads based on some threshold value. Cluster heads use an ACO algorithm to discover the best route for data transmission to the base station (BS. The proposed approach is very useful in designing the framework for forest fire detection and monitoring. The simulation results show that the ABCACO algorithm enhances the stability period by 60% and also improves the goodput by 31% against LEACH and WSNCABC, respectively.
A general heuristic for genome rearrangement problems.
Dias, Ulisses; Galvão, Gustavo Rodrigues; Lintzmayer, Carla Négri; Dias, Zanoni
2014-06-01
In this paper, we present a general heuristic for several problems in the genome rearrangement field. Our heuristic does not solve any problem directly, it is rather used to improve the solutions provided by any non-optimal algorithm that solve them. Therefore, we have implemented several algorithms described in the literature and several algorithms developed by ourselves. As a whole, we implemented 23 algorithms for 9 well known problems in the genome rearrangement field. A total of 13 algorithms were implemented for problems that use the notions of prefix and suffix operations. In addition, we worked on 5 algorithms for the classic problem of sorting by transposition and we conclude the experiments by presenting results for 3 approximation algorithms for the sorting by reversals and transpositions problem and 2 approximation algorithms for the sorting by reversals problem. Another algorithm with better approximation ratio can be found for the last genome rearrangement problem, but it is purely theoretical with no practical implementation. The algorithms we implemented in addition to our heuristic lead to the best practical results in each case. In particular, we were able to improve results on the sorting by transpositions problem, which is a very special case because many efforts have been made to generate algorithms with good results in practice and some of these algorithms provide results that equal the optimum solutions in many cases. Our source codes and benchmarks are freely available upon request from the authors so that it will be easier to compare new approaches against our results.
Directory of Open Access Journals (Sweden)
Xiaoxia Yang
Full Text Available Protein-nucleic acid interactions are central to various fundamental biological processes. Automated methods capable of reliably identifying DNA- and RNA-binding residues in protein sequence are assuming ever-increasing importance. The majority of current algorithms rely on feature-based prediction, but their accuracy remains to be further improved. Here we propose a sequence-based hybrid algorithm SNBRFinder (Sequence-based Nucleic acid-Binding Residue Finder by merging a feature predictor SNBRFinderF and a template predictor SNBRFinderT. SNBRFinderF was established using the support vector machine whose inputs include sequence profile and other complementary sequence descriptors, while SNBRFinderT was implemented with the sequence alignment algorithm based on profile hidden Markov models to capture the weakly homologous template of query sequence. Experimental results show that SNBRFinderF was clearly superior to the commonly used sequence profile-based predictor and SNBRFinderT can achieve comparable performance to the structure-based template methods. Leveraging the complementary relationship between these two predictors, SNBRFinder reasonably improved the performance of both DNA- and RNA-binding residue predictions. More importantly, the sequence-based hybrid prediction reached competitive performance relative to our previous structure-based counterpart. Our extensive and stringent comparisons show that SNBRFinder has obvious advantages over the existing sequence-based prediction algorithms. The value of our algorithm is highlighted by establishing an easy-to-use web server that is freely accessible at http://ibi.hzau.edu.cn/SNBRFinder.
Hybrid wavefront sensing and image correction algorithm for imaging through turbulent media
Wu, Chensheng; Robertson Rzasa, John; Ko, Jonathan; Davis, Christopher C.
2017-09-01
It is well known that passive image correction of turbulence distortions often involves using geometry-dependent deconvolution algorithms. On the other hand, active imaging techniques using adaptive optic correction should use the distorted wavefront information for guidance. Our work shows that a hybrid hardware-software approach is possible to obtain accurate and highly detailed images through turbulent media. The processing algorithm also takes much fewer iteration steps in comparison with conventional image processing algorithms. In our proposed approach, a plenoptic sensor is used as a wavefront sensor to guide post-stage image correction on a high-definition zoomable camera. Conversely, we show that given the ground truth of the highly detailed image and the plenoptic imaging result, we can generate an accurate prediction of the blurred image on a traditional zoomable camera. Similarly, the ground truth combined with the blurred image from the zoomable camera would provide the wavefront conditions. In application, our hybrid approach can be used as an effective way to conduct object recognition in a turbulent environment where the target has been significantly distorted or is even unrecognizable.
Clustering and Genetic Algorithm Based Hybrid Flowshop Scheduling with Multiple Operations
Directory of Open Access Journals (Sweden)
Yingfeng Zhang
2014-01-01
Full Text Available This research is motivated by a flowshop scheduling problem of our collaborative manufacturing company for aeronautic products. The heat-treatment stage (HTS and precision forging stage (PFS of the case are selected as a two-stage hybrid flowshop system. In HTS, there are four parallel machines and each machine can process a batch of jobs simultaneously. In PFS, there are two machines. Each machine can install any module of the four modules for processing the workpeices with different sizes. The problem is characterized by many constraints, such as batching operation, blocking environment, and setup time and working time limitations of modules, and so forth. In order to deal with the above special characteristics, the clustering and genetic algorithm is used to calculate the good solution for the two-stage hybrid flowshop problem. The clustering is used to group the jobs according to the processing ranges of the different modules of PFS. The genetic algorithm is used to schedule the optimal sequence of the grouped jobs for the HTS and PFS. Finally, a case study is used to demonstrate the efficiency and effectiveness of the designed genetic algorithm.
Lim, Wee Loon; Wibowo, Antoni; Desa, Mohammad Ishak; Haron, Habibollah
2016-01-01
The quadratic assignment problem (QAP) is an NP-hard combinatorial optimization problem with a wide variety of applications. Biogeography-based optimization (BBO), a relatively new optimization technique based on the biogeography concept, uses the idea of migration strategy of species to derive algorithm for solving optimization problems. It has been shown that BBO provides performance on a par with other optimization methods. A classical BBO algorithm employs the mutation operator as its diversification strategy. However, this process will often ruin the quality of solutions in QAP. In this paper, we propose a hybrid technique to overcome the weakness of classical BBO algorithm to solve QAP, by replacing the mutation operator with a tabu search procedure. Our experiments using the benchmark instances from QAPLIB show that the proposed hybrid method is able to find good solutions for them within reasonable computational times. Out of 61 benchmark instances tested, the proposed method is able to obtain the best known solutions for 57 of them.
Directory of Open Access Journals (Sweden)
JingRui Zhang
2015-03-01
Full Text Available In this article, we focus on safe and effective completion of a rendezvous and docking task by looking at planning approaches and control with fuel-optimal rendezvous for a target spacecraft running on a near-circular reference orbit. A variety of existent practical path constraints are considered, including the constraints of field of view, impulses, and passive safety. A rendezvous approach is calculated by using a hybrid genetic algorithm with those constraints. Furthermore, a control method of trajectory tracking is adopted to overcome the external disturbances. Based on Clohessy–Wiltshire equations, we first construct the mathematical model of optimal planning approaches of multiple impulses with path constraints. Second, we introduce the principle of hybrid genetic algorithm with both stronger global searching ability and local searching ability. We additionally explain the application of this algorithm in the problem of trajectory planning. Then, we give three-impulse simulation examples to acquire an optimal rendezvous trajectory with the path constraints presented in this article. The effectiveness and applicability of the tracking control method are verified with the optimal trajectory above as control objective through the numerical simulation.
Lim, Wee Loon; Wibowo, Antoni; Desa, Mohammad Ishak; Haron, Habibollah
2016-01-01
The quadratic assignment problem (QAP) is an NP-hard combinatorial optimization problem with a wide variety of applications. Biogeography-based optimization (BBO), a relatively new optimization technique based on the biogeography concept, uses the idea of migration strategy of species to derive algorithm for solving optimization problems. It has been shown that BBO provides performance on a par with other optimization methods. A classical BBO algorithm employs the mutation operator as its diversification strategy. However, this process will often ruin the quality of solutions in QAP. In this paper, we propose a hybrid technique to overcome the weakness of classical BBO algorithm to solve QAP, by replacing the mutation operator with a tabu search procedure. Our experiments using the benchmark instances from QAPLIB show that the proposed hybrid method is able to find good solutions for them within reasonable computational times. Out of 61 benchmark instances tested, the proposed method is able to obtain the best known solutions for 57 of them. PMID:26819585
Wang, Li; Li, Feng; Xing, Jian
2017-10-01
In this paper, a hybrid artificial bee colony (ABC) algorithm and pattern search (PS) method is proposed and applied for recovery of particle size distribution (PSD) from spectral extinction data. To be more useful and practical, size distribution function is modelled as the general Johnson's ? function that can overcome the difficulty of not knowing the exact type beforehand encountered in many real circumstances. The proposed hybrid algorithm is evaluated through simulated examples involving unimodal, bimodal and trimodal PSDs with different widths and mean particle diameters. For comparison, all examples are additionally validated by the single ABC algorithm. In addition, the performance of the proposed algorithm is further tested by actual extinction measurements with real standard polystyrene samples immersed in water. Simulation and experimental results illustrate that the hybrid algorithm can be used as an effective technique to retrieve the PSDs with high reliability and accuracy. Compared with the single ABC algorithm, our proposed algorithm can produce more accurate and robust inversion results while taking almost comparative CPU time over ABC algorithm alone. The superiority of ABC and PS hybridization strategy in terms of reaching a better balance of estimation accuracy and computation effort increases its potentials as an excellent inversion technique for reliable and efficient actual measurement of PSD.
Qyyum, Muhammad Abdul; Long, Nguyen Van Duc; Minh, Le Quang; Lee, Moonyong
2018-01-01
Design optimization of the single mixed refrigerant (SMR) natural gas liquefaction (LNG) process involves highly non-linear interactions between decision variables, constraints, and the objective function. These non-linear interactions lead to an irreversibility, which deteriorates the energy efficiency of the LNG process. In this study, a simple and highly efficient hybrid modified coordinate descent (HMCD) algorithm was proposed to cope with the optimization of the natural gas liquefaction process. The single mixed refrigerant process was modeled in Aspen Hysys® and then connected to a Microsoft Visual Studio environment. The proposed optimization algorithm provided an improved result compared to the other existing methodologies to find the optimal condition of the complex mixed refrigerant natural gas liquefaction process. By applying the proposed optimization algorithm, the SMR process can be designed with the 0.2555 kW specific compression power which is equivalent to 44.3% energy saving as compared to the base case. Furthermore, in terms of coefficient of performance (COP), it can be enhanced up to 34.7% as compared to the base case. The proposed optimization algorithm provides a deep understanding of the optimization of the liquefaction process in both technical and numerical perspectives. In addition, the HMCD algorithm can be employed to any mixed refrigerant based liquefaction process in the natural gas industry.
An Enhanced Hybrid Social Based Routing Algorithm for MANET-DTN
Directory of Open Access Journals (Sweden)
Martin Matis
2016-01-01
Full Text Available A new routing algorithm for mobile ad hoc networks is proposed in this paper: an Enhanced Hybrid Social Based Routing (HSBR algorithm for MANET-DTN as optimal solution for well-connected multihop mobile networks (MANET and/or worse connected MANET with small density of the nodes and/or due to mobility fragmented MANET into two or more subnetworks or islands. This proposed HSBR algorithm is fully decentralized combining main features of both Dynamic Source Routing (DSR and Social Based Opportunistic Routing (SBOR algorithms. The proposed scheme is simulated and evaluated by replaying real life traces which exhibit this highly dynamic topology. Evaluation of new proposed HSBR algorithm was made by comparison with DSR and SBOR. All methods were simulated with different levels of velocity. The results show that HSBR has the highest success of packet delivery, but with higher delay in comparison with DSR, and much lower in comparison with SBOR. Simulation results indicate that HSBR approach can be applicable in networks, where MANET or DTN solutions are separately useless or ineffective. This method provides delivery of the message in every possible situation in areas without infrastructure and can be used as backup method for disaster situation when infrastructure is destroyed.
A Hybrid CPU/GPU Pattern-Matching Algorithm for Deep Packet Inspection.
Directory of Open Access Journals (Sweden)
Chun-Liang Lee
Full Text Available The large quantities of data now being transferred via high-speed networks have made deep packet inspection indispensable for security purposes. Scalable and low-cost signature-based network intrusion detection systems have been developed for deep packet inspection for various software platforms. Traditional approaches that only involve central processing units (CPUs are now considered inadequate in terms of inspection speed. Graphic processing units (GPUs have superior parallel processing power, but transmission bottlenecks can reduce optimal GPU efficiency. In this paper we describe our proposal for a hybrid CPU/GPU pattern-matching algorithm (HPMA that divides and distributes the packet-inspecting workload between a CPU and GPU. All packets are initially inspected by the CPU and filtered using a simple pre-filtering algorithm, and packets that might contain malicious content are sent to the GPU for further inspection. Test results indicate that in terms of random payload traffic, the matching speed of our proposed algorithm was 3.4 times and 2.7 times faster than those of the AC-CPU and AC-GPU algorithms, respectively. Further, HPMA achieved higher energy efficiency than the other tested algorithms.
Algorithms for Academic Search and Recommendation Systems
DEFF Research Database (Denmark)
Amolochitis, Emmanouil
2014-01-01
are part of a developed Movie Recommendation system, the first such system to be commercially deployed in Greece by a major Triple Play services provider. In the third part of the work we present the design of a quantitative association rule mining algorithm. The introduced mining algorithm processes......In this work we present novel algorithms for academic search, recommendation and association rules mining. In the first part of the work we introduce a novel hierarchical heuristic scheme for re-ranking academic publications. The scheme is based on the hierarchical combination of a custom...... implementation of the term frequency heuristic, a time-depreciated citation score and a graph-theoretic computed score that relates the paper’s index terms with each other. On the second part we describe the design of hybrid recommender ensemble (user, item and content based). The newly introduced algorithms...
A Multi-Stage Reverse Logistics Network Problem by Using Hybrid Priority-Based Genetic Algorithm
Lee, Jeong-Eun; Gen, Mitsuo; Rhee, Kyong-Gu
Today remanufacturing problem is one of the most important problems regarding to the environmental aspects of the recovery of used products and materials. Therefore, the reverse logistics is gaining become power and great potential for winning consumers in a more competitive context in the future. This paper considers the multi-stage reverse Logistics Network Problem (m-rLNP) while minimizing the total cost, which involves reverse logistics shipping cost and fixed cost of opening the disassembly centers and processing centers. In this study, we first formulate the m-rLNP model as a three-stage logistics network model. Following for solving this problem, we propose a Genetic Algorithm pri (GA) with priority-based encoding method consisting of two stages, and introduce a new crossover operator called Weight Mapping Crossover (WMX). Additionally also a heuristic approach is applied in the 3rd stage to ship of materials from processing center to manufacturer. Finally numerical experiments with various scales of the m-rLNP models demonstrate the effectiveness and efficiency of our approach by comparing with the recent researches.
Heuristic approach to Satellite Range Scheduling with Bounds using Lagrangian Relaxation.
Energy Technology Data Exchange (ETDEWEB)
Brown, Nathanael J. K.; Arguello, Bryan; Nozick, Linda Karen; Xu, Ningxiong [Cornell
2017-03-01
This paper focuses on scheduling antennas to track satellites using a heuristic method. In order to validate the performance of the heuristic, bounds are developed using Lagrangian relaxation. The performance of the algorithm is established using several illustrative problems.
Optimised operation of an off-grid hybrid wind-diesel-battery system using genetic algorithm
International Nuclear Information System (INIS)
Gan, Leong Kit; Shek, Jonathan K.H.; Mueller, Markus A.
2016-01-01
Highlights: • Diesel generator’s operation is optimised in a hybrid wind-diesel-battery system. • Optimisation is performed using wind speed and load demand forecasts. • The objective is to maximise wind energy utilisation with limited battery storage. • Physical modelling approach (Simscape) is used to verify mathematical model. • Sensitivity analyses are performed with synthesised wind and load forecast errors. - Abstract: In an off-grid hybrid wind-diesel-battery system, the diesel generator is often not utilised efficiently, therefore compromising its lifetime. In particular, the general rule of thumb of running the diesel generator at more than 40% of its rated capacity is often unmet. This is due to the variation in power demand and wind speed which needs to be supplied by the diesel generator. In addition, the frequent start-stop of the diesel generator leads to additional mechanical wear and fuel wastage. This research paper proposes a novel control algorithm which optimises the operation of a diesel generator, using genetic algorithm. With a given day-ahead forecast of local renewable energy resource and load demand, it is possible to optimise the operation of a diesel generator, subjected to other pre-defined constraints. Thus, the utilisation of the renewable energy sources to supply electricity can be maximised. Usually, the optimisation studies of a hybrid system are being conducted through simple analytical modelling, coupled with a selected optimisation algorithm to seek the optimised solution. The obtained solution is not verified using a more realistic system model, for instance the physical modelling approach. This often led to the question of the applicability of such optimised operation being used in reality. In order to take a step further, model-based design using Simulink is employed in this research to perform a comparison through a physical modelling approach. The Simulink model has the capability to incorporate the electrical
Stochastic Primal-Dual Hybrid Gradient Algorithm with Arbitrary Sampling and Imaging Application
Chambolle, Antonin; Ehrhardt, Matthias J.; Richtarik, Peter; Schö nlieb, Carola-Bibiane
2017-01-01
We propose a stochastic extension of the primal-dual hybrid gradient algorithm studied by Chambolle and Pock in 2011 to solve saddle point problems that are separable in the dual variable. The analysis is carried out for general convex-concave saddle point problems and problems that are either partially smooth / strongly convex or fully smooth / strongly convex. We perform the analysis for arbitrary samplings of dual variables, and obtain known deterministic results as a special case. Several variants of our stochastic method significantly outperform the deterministic variant on a variety of imaging tasks.
Optimization of Wind-Marine Hybrid Power System Configuration Based on Genetic Algorithm
Institute of Scientific and Technical Information of China (English)
SHI Hongda; LI Linna; ZHAO Chenyu
2017-01-01
Multi-energy power systems can use energy generated from various sources to improve power generation reliability.This paper presents a cost-power generation model of a wind-tide-wave energy hybrid power system for use on a remote island,where the configuration is optimized using a genetic algorithm.A mixed integer programming model is used and a novel object function,including cost and power generation,is proposed to solve the boundary problem caused by existence of two goals.Using this model,the final optimized result is found to have a good fit with local resources.
Stochastic Primal-Dual Hybrid Gradient Algorithm with Arbitrary Sampling and Imaging Application
Chambolle, Antonin
2017-06-15
We propose a stochastic extension of the primal-dual hybrid gradient algorithm studied by Chambolle and Pock in 2011 to solve saddle point problems that are separable in the dual variable. The analysis is carried out for general convex-concave saddle point problems and problems that are either partially smooth / strongly convex or fully smooth / strongly convex. We perform the analysis for arbitrary samplings of dual variables, and obtain known deterministic results as a special case. Several variants of our stochastic method significantly outperform the deterministic variant on a variety of imaging tasks.
Directory of Open Access Journals (Sweden)
Ambarish Panda
2016-09-01
Full Text Available A new evolutionary hybrid algorithm (HA has been proposed in this work for environmental optimal power flow (EOPF problem. The EOPF problem has been formulated in a nonlinear constrained multi objective optimization framework. Considering the intermittency of available wind power a cost model of the wind and thermal generation system is developed. Suitably formed objective function considering the operational cost, cost of emission, real power loss and cost of installation of FACTS devices for maintaining a stable voltage in the system has been optimized with HA and compared with particle swarm optimization algorithm (PSOA to prove its effectiveness. All the simulations are carried out in MATLAB/SIMULINK environment taking IEEE30 bus as the test system.
Gigerenzer, Gerd; Gaissmaier, Wolfgang
2011-01-01
As reflected in the amount of controversy, few areas in psychology have undergone such dramatic conceptual changes in the past decade as the emerging science of heuristics. Heuristics are efficient cognitive processes, conscious or unconscious, that ignore part of the information. Because using heuristics saves effort, the classical view has been that heuristic decisions imply greater errors than do "rational" decisions as defined by logic or statistical models. However, for many decisions, the assumptions of rational models are not met, and it is an empirical rather than an a priori issue how well cognitive heuristics function in an uncertain world. To answer both the descriptive question ("Which heuristics do people use in which situations?") and the prescriptive question ("When should people rely on a given heuristic rather than a complex strategy to make better judgments?"), formal models are indispensable. We review research that tests formal models of heuristic inference, including in business organizations, health care, and legal institutions. This research indicates that (a) individuals and organizations often rely on simple heuristics in an adaptive way, and (b) ignoring part of the information can lead to more accurate judgments than weighting and adding all information, for instance for low predictability and small samples. The big future challenge is to develop a systematic theory of the building blocks of heuristics as well as the core capacities and environmental structures these exploit.
Pei, Jun; Liu, Xinbao; Pardalos, Panos M.; Fan, Wenjuan; Wang, Ling; Yang, Shanlin
2016-03-01
Motivated by applications in manufacturing industry, we consider a supply chain scheduling problem, where each job is characterised by non-identical sizes, different release times and unequal processing times. The objective is to minimise the makespan by making batching and sequencing decisions. The problem is formalised as a mixed integer programming model and proved to be strongly NP-hard. Some structural properties are presented for both the general case and a special case. Based on these properties, a lower bound is derived, and a novel two-phase heuristic (TP-H) is developed to solve the problem, which guarantees to obtain a worst case performance ratio of ?. Computational experiments with a set of different sizes of random instances are conducted to evaluate the proposed approach TP-H, which is superior to another two heuristics proposed in the literature. Furthermore, the experimental results indicate that TP-H can effectively and efficiently solve large-size problems in a reasonable time.
Aeon: Synthesizing Scheduling Algorithms from High-Level Models
Monette, Jean-Noël; Deville, Yves; van Hentenryck, Pascal
This paper describes the aeon system whose aim is to synthesize scheduling algorithms from high-level models. A eon, which is entirely written in comet, receives as input a high-level model for a scheduling application which is then analyzed to generate a dedicated scheduling algorithm exploiting the structure of the model. A eon provides a variety of synthesizers for generating complete or heuristic algorithms. Moreover, synthesizers are compositional, making it possible to generate complex hybrid algorithms naturally. Preliminary experimental results indicate that this approach may be competitive with state-of-the-art search algorithms.
Length-Bounded Hybrid CPU/GPU Pattern Matching Algorithm for Deep Packet Inspection
Directory of Open Access Journals (Sweden)
Yi-Shan Lin
2017-01-01
Full Text Available Since frequent communication between applications takes place in high speed networks, deep packet inspection (DPI plays an important role in the network application awareness. The signature-based network intrusion detection system (NIDS contains a DPI technique that examines the incoming packet payloads by employing a pattern matching algorithm that dominates the overall inspection performance. Existing studies focused on implementing efficient pattern matching algorithms by parallel programming on software platforms because of the advantages of lower cost and higher scalability. Either the central processing unit (CPU or the graphic processing unit (GPU were involved. Our studies focused on designing a pattern matching algorithm based on the cooperation between both CPU and GPU. In this paper, we present an enhanced design for our previous work, a length-bounded hybrid CPU/GPU pattern matching algorithm (LHPMA. In the preliminary experiment, the performance and comparison with the previous work are displayed, and the experimental results show that the LHPMA can achieve not only effective CPU/GPU cooperation but also higher throughput than the previous method.
A hybrid algorithm for flexible job-shop scheduling problem with setup times
Directory of Open Access Journals (Sweden)
Ameni Azzouz
2017-01-01
Full Text Available Job-shop scheduling problem is one of the most important fields in manufacturing optimization where a set of n jobs must be processed on a set of m specified machines. Each job consists of a specific set of operations, which have to be processed according to a given order. The Flexible Job Shop problem (FJSP is a generalization of the above-mentioned problem, where each operation can be processed by a set of resources and has a processing time depending on the resource used. The FJSP problems cover two difficulties, namely, machine assignment problem and operation sequencing problem. This paper addresses the flexible job-shop scheduling problem with sequence-dependent setup times to minimize two kinds of objectives function: makespan and bi-criteria objective function. For that, we propose a hybrid algorithm based on genetic algorithm (GA and variable neighbourhood search (VNS to solve this problem. To evaluate the performance of our algorithm, we compare our results with other methods existing in literature. All the results show the superiority of our algorithm against the available ones in terms of solution quality.
Directory of Open Access Journals (Sweden)
Weidong Lei
2017-01-01
Full Text Available We aim at solving the cyclic scheduling problem with a single robot and flexible processing times in a robotic flow shop, which is a well-known optimization problem in advanced manufacturing systems. The objective of the problem is to find an optimal robot move sequence such that the throughput rate is maximized. We propose a hybrid algorithm based on the Quantum-Inspired Evolutionary Algorithm (QEA and genetic operators for solving the problem. The algorithm integrates three different decoding strategies to convert quantum individuals into robot move sequences. The Q-gate is applied to update the states of Q-bits in each individual. Besides, crossover and mutation operators with adaptive probabilities are used to increase the population diversity. A repairing procedure is proposed to deal with infeasible individuals. Comparison results on both benchmark and randomly generated instances demonstrate that the proposed algorithm is more effective in solving the studied problem in terms of solution quality and computational time.
A hybrid niched-island genetic algorithm applied to a nuclear core optimization problem
International Nuclear Information System (INIS)
Pereira, Claudio M.N.A.
2005-01-01
Diversity maintenance is a key-feature in most genetic-based optimization processes. The quest for such characteristic, has been motivating improvements in the original genetic algorithm (GA). The use of multiple populations (called islands) has demonstrating to increase diversity, delaying the genetic drift. Island Genetic Algorithms (IGA) lead to better results, however, the drift is only delayed, but not avoided. An important advantage of this approach is the simplicity and efficiency for parallel processing. Diversity can also be improved by the use of niching techniques. Niched Genetic Algorithms (NGA) are able to avoid the genetic drift, by containing evolution in niches of a single-population GA, however computational cost is increased. In this work it is investigated the use of a hybrid Niched-Island Genetic Algorithm (NIGA) in a nuclear core optimization problem found in literature. Computational experiments demonstrate that it is possible to take advantage of both, performance enhancement due to the parallelism and drift avoidance due to the use of niches. Comparative results shown that the proposed NIGA demonstrated to be more efficient and robust than an IGA and a NGA for solving the proposed optimization problem. (author)
New hybrid genetic particle swarm optimization algorithm to design multi-zone binary filter.
Lin, Jie; Zhao, Hongyang; Ma, Yuan; Tan, Jiubin; Jin, Peng
2016-05-16
The binary phase filters have been used to achieve an optical needle with small lateral size. Designing a binary phase filter is still a scientific challenge in such fields. In this paper, a hybrid genetic particle swarm optimization (HGPSO) algorithm is proposed to design the binary phase filter. The HGPSO algorithm includes self-adaptive parameters, recombination and mutation operations that originated from the genetic algorithm. Based on the benchmark test, the HGPSO algorithm has achieved global optimization and fast convergence. In an easy-to-perform optimizing procedure, the iteration number of HGPSO is decreased to about a quarter of the original particle swarm optimization process. A multi-zone binary phase filter is designed by using the HGPSO. The long depth of focus and high resolution are achieved simultaneously, where the depth of focus and focal spot transverse size are 6.05λ and 0.41λ, respectively. Therefore, the proposed HGPSO can be applied to the optimization of filter with multiple parameters.
Heuristics for no-wait flow shop scheduling problem
Directory of Open Access Journals (Sweden)
Kewal Krishan Nailwal
2016-09-01
Full Text Available No-wait flow shop scheduling refers to continuous flow of jobs through different machines. The job once started should have the continuous processing through the machines without wait. This situation occurs when there is a lack of an intermediate storage between the processing of jobs on two consecutive machines. The problem of no-wait with the objective of minimizing makespan in flow shop scheduling is NP-hard; therefore the heuristic algorithms are the key to solve the problem with optimal solution or to approach nearer to optimal solution in simple manner. The paper describes two heuristics, one constructive and an improvement heuristic algorithm obtained by modifying the constructive one for sequencing n-jobs through m-machines in a flow shop under no-wait constraint with the objective of minimizing makespan. The efficiency of the proposed heuristic algorithms is tested on 120 Taillard’s benchmark problems found in the literature against the NEH under no-wait and the MNEH heuristic for no-wait flow shop problem. The improvement heuristic outperforms all heuristics on the Taillard’s instances by improving the results of NEH by 27.85%, MNEH by 22.56% and that of the proposed constructive heuristic algorithm by 24.68%. To explain the computational process of the proposed algorithm, numerical illustrations are also given in the paper. Statistical tests of significance are done in order to draw the conclusions.
A Hybrid alldifferent-Tabu Search Algorithm for Solving Sudoku Puzzles
Directory of Open Access Journals (Sweden)
Ricardo Soto
2015-01-01
Full Text Available The Sudoku problem is a well-known logic-based puzzle of combinatorial number-placement. It consists in filling a n2 × n2 grid, composed of n columns, n rows, and n subgrids, each one containing distinct integers from 1 to n2. Such a puzzle belongs to the NP-complete collection of problems, to which there exist diverse exact and approximate methods able to solve it. In this paper, we propose a new hybrid algorithm that smartly combines a classic tabu search procedure with the alldifferent global constraint from the constraint programming world. The alldifferent constraint is known to be efficient for domain filtering in the presence of constraints that must be pairwise different, which are exactly the kind of constraints that Sudokus own. This ability clearly alleviates the work of the tabu search, resulting in a faster and more robust approach for solving Sudokus. We illustrate interesting experimental results where our proposed algorithm outperforms the best results previously reported by hybrids and approximate methods.
Luo, Yugong; Chen, Tao; Li, Keqiang
2015-12-01
The paper presents a novel active distance control strategy for intelligent hybrid electric vehicles (IHEV) with the purpose of guaranteeing an optimal performance in view of the driving functions, optimum safety, fuel economy and ride comfort. Considering the complexity of driving situations, the objects of safety and ride comfort are decoupled from that of fuel economy, and a hierarchical control architecture is adopted to improve the real-time performance and the adaptability. The hierarchical control structure consists of four layers: active distance control object determination, comprehensive driving and braking torque calculation, comprehensive torque distribution and torque coordination. The safety distance control and the emergency stop algorithms are designed to achieve the safety and ride comfort goals. The optimal rule-based energy management algorithm of the hybrid electric system is developed to improve the fuel economy. The torque coordination control strategy is proposed to regulate engine torque, motor torque and hydraulic braking torque to improve the ride comfort. This strategy is verified by simulation and experiment using a forward simulation platform and a prototype vehicle. The results show that the novel control strategy can achieve the integrated and coordinated control of its multiple subsystems, which guarantees top performance of the driving functions and optimum safety, fuel economy and ride comfort.
Boonjing, Veera; Intakosum, Sarun
2016-01-01
This study investigated the use of Artificial Neural Network (ANN) and Genetic Algorithm (GA) for prediction of Thailand's SET50 index trend. ANN is a widely accepted machine learning method that uses past data to predict future trend, while GA is an algorithm that can find better subsets of input variables for importing into ANN, hence enabling more accurate prediction by its efficient feature selection. The imported data were chosen technical indicators highly regarded by stock analysts, each represented by 4 input variables that were based on past time spans of 4 different lengths: 3-, 5-, 10-, and 15-day spans before the day of prediction. This import undertaking generated a big set of diverse input variables with an exponentially higher number of possible subsets that GA culled down to a manageable number of more effective ones. SET50 index data of the past 6 years, from 2009 to 2014, were used to evaluate this hybrid intelligence prediction accuracy, and the hybrid's prediction results were found to be more accurate than those made by a method using only one input variable for one fixed length of past time span. PMID:27974883
Chen, Yunjie; Kale, Seyit; Weare, Jonathan; Dinner, Aaron R; Roux, Benoît
2016-04-12
A multiple time-step integrator based on a dual Hamiltonian and a hybrid method combining molecular dynamics (MD) and Monte Carlo (MC) is proposed to sample systems in the canonical ensemble. The Dual Hamiltonian Multiple Time-Step (DHMTS) algorithm is based on two similar Hamiltonians: a computationally expensive one that serves as a reference and a computationally inexpensive one to which the workload is shifted. The central assumption is that the difference between the two Hamiltonians is slowly varying. Earlier work has shown that such dual Hamiltonian multiple time-step schemes effectively precondition nonlinear differential equations for dynamics by reformulating them into a recursive root finding problem that can be solved by propagating a correction term through an internal loop, analogous to RESPA. Of special interest in the present context, a hybrid MD-MC version of the DHMTS algorithm is introduced to enforce detailed balance via a Metropolis acceptance criterion and ensure consistency with the Boltzmann distribution. The Metropolis criterion suppresses the discretization errors normally associated with the propagation according to the computationally inexpensive Hamiltonian, treating the discretization error as an external work. Illustrative tests are carried out to demonstrate the effectiveness of the method.
Directory of Open Access Journals (Sweden)
Yuliang Su
2015-04-01
Full Text Available A turning machine tool is a kind of new type of machine tool that is equipped with more than one spindle and turret. The distinctive simultaneous and parallel processing abilities of turning machine tool increase the complexity of process planning. The operations would not only be sequenced and satisfy precedence constraints, but also should be scheduled with multiple objectives such as minimizing machining cost, maximizing utilization of turning machine tool, and so on. To solve this problem, a hybrid genetic algorithm was proposed to generate optimal process plans based on a mixed 0-1 integer programming model. An operation precedence graph is used to represent precedence constraints and help generate a feasible initial population of hybrid genetic algorithm. Encoding strategy based on data structure was developed to represent process plans digitally in order to form the solution space. In addition, a local search approach for optimizing the assignments of available turrets would be added to incorporate scheduling with process planning. A real-world case is used to prove that the proposed approach could avoid infeasible solutions and effectively generate a global optimal process plan.
Heuristics Miner for E-Commerce Visitor Access Pattern Representation
Kartina Diah Kesuma Wardhani; Wawan Yunanto
2017-01-01
E-commerce click stream data can form a certain pattern that describe visitor behavior while surfing the e-commerce website. This pattern can be used to initiate a design to determine alternative access sequence on the website. This research use heuristic miner algorithm to determine the pattern. σ-Algorithm and Genetic Mining are methods used for pattern recognition with frequent sequence item set approach. Heuristic Miner is an evolved form of those methods. σ-Algorithm assume that an activ...
International Nuclear Information System (INIS)
Hedayat, Afshin; Davilu, Hadi; Barfrosh, Ahmad Abdollahzadeh; Sepanloo, Kamran
2009-01-01
To successfully carry out material irradiation experiments and radioisotope productions, a high thermal neutron flux at irradiation box over a desired life time of a core configuration is needed. On the other hand, reactor safety and operational constraints must be preserved during core configuration selection. Two main objectives and two safety and operational constraints are suggested to optimize reactor core configuration design. Suggested parameters and conditions are considered as two separate fitness functions composed of two main objectives and two penalty functions. This is a constrained and combinatorial type of a multi-objective optimization problem. In this paper, a fast and effective hybrid artificial intelligence algorithm is introduced and developed to reach a Pareto optimal set. The hybrid algorithm is composed of a fast and elitist multi-objective genetic algorithm (GA) and a fast fitness function evaluating system based on the cascade feed forward artificial neural networks (ANNs). A specific GA representation of core configuration and also special GA operators are introduced and used to overcome the combinatorial constraints of this optimization problem. A software package (Core Pattern Calculator 1) is developed to prepare and reform required data for ANNs training and also to revise the optimization results. Some practical test parameters and conditions are suggested to adjust main parameters of the hybrid algorithm. Results show that introduced ANNs can be trained and estimate selected core parameters of a research reactor very quickly. It improves effectively optimization process. Final optimization results show that a uniform and dense diversity of Pareto fronts are gained over a wide range of fitness function values. To take a more careful selection of Pareto optimal solutions, a revision system is introduced and used. The revision of gained Pareto optimal set is performed by using developed software package. Also some secondary operational
Energy Technology Data Exchange (ETDEWEB)
Hedayat, Afshin, E-mail: ahedayat@aut.ac.i [Department of Nuclear Engineering and Physics, Amirkabir University of Technology (Tehran Polytechnic), 424 Hafez Avenue, P.O. Box 15875-4413, Tehran (Iran, Islamic Republic of); Reactor Research and Development School, Nuclear Science and Technology Research Institute (NSTRI), End of North Karegar Street, P.O. Box 14395-836, Tehran (Iran, Islamic Republic of); Davilu, Hadi [Department of Nuclear Engineering and Physics, Amirkabir University of Technology (Tehran Polytechnic), 424 Hafez Avenue, P.O. Box 15875-4413, Tehran (Iran, Islamic Republic of); Barfrosh, Ahmad Abdollahzadeh [Department of Computer Engineering, Amirkabir University of Technology (Tehran Polytechnic), 424 Hafez Avenue, P.O. Box 15875-4413, Tehran (Iran, Islamic Republic of); Sepanloo, Kamran [Reactor Research and Development School, Nuclear Science and Technology Research Institute (NSTRI), End of North Karegar Street, P.O. Box 14395-836, Tehran (Iran, Islamic Republic of)
2009-12-15
To successfully carry out material irradiation experiments and radioisotope productions, a high thermal neutron flux at irradiation box over a desired life time of a core configuration is needed. On the other hand, reactor safety and operational constraints must be preserved during core configuration selection. Two main objectives and two safety and operational constraints are suggested to optimize reactor core configuration design. Suggested parameters and conditions are considered as two separate fitness functions composed of two main objectives and two penalty functions. This is a constrained and combinatorial type of a multi-objective optimization problem. In this paper, a fast and effective hybrid artificial intelligence algorithm is introduced and developed to reach a Pareto optimal set. The hybrid algorithm is composed of a fast and elitist multi-objective genetic algorithm (GA) and a fast fitness function evaluating system based on the cascade feed forward artificial neural networks (ANNs). A specific GA representation of core configuration and also special GA operators are introduced and used to overcome the combinatorial constraints of this optimization problem. A software package (Core Pattern Calculator 1) is developed to prepare and reform required data for ANNs training and also to revise the optimization results. Some practical test parameters and conditions are suggested to adjust main parameters of the hybrid algorithm. Results show that introduced ANNs can be trained and estimate selected core parameters of a research reactor very quickly. It improves effectively optimization process. Final optimization results show that a uniform and dense diversity of Pareto fronts are gained over a wide range of fitness function values. To take a more careful selection of Pareto optimal solutions, a revision system is introduced and used. The revision of gained Pareto optimal set is performed by using developed software package. Also some secondary operational
Directory of Open Access Journals (Sweden)
I PUTU SUDANA
2011-01-01
Full Text Available Prinsip heuristics tidak dapat dikatakan sebagai sebuah pendekatanpengambilan keputusan yang non-rasional, karena penerapan atau penggunaanyang unconscious atau subtle mind tidak dapat dianggap sebagai tindakanyang irrational. Dengan alasan tersebut, terdapat cukup alasan untukmenyatakan bahwa pengklasifikasian pendekatan-pendekatan keputusansemestinya menggunakan terminologi analytical dan experiential, dan bukanmemakai istilah rational dan non-rational seperti yang umumnya diikuti.Penerapan pendekatan heuristics dapat ditemukan pada berbagai disiplin,termasuk bisnis dan akuntansi. Topik heuristics semestinya mendapatperhatian yang cukup luas dari para periset di bidang akuntansi. Bidangbehavioral research in accounting menawarkan banyak kemungkinan untukdikaji, karena prinsip heuristics bertautan erat dengan aspek manusia sebagaipelaku dalam pengambilan keputusan.
A new hybrid bee pollinator flower pollination algorithm for solar PV parameter estimation
International Nuclear Information System (INIS)
Ram, J. Prasanth; Babu, T. Sudhakar; Dragicevic, Tomislav; Rajasekar, N.
2017-01-01
Highlights: • A new Bee Pollinator Flower Pollination Algorithm (BPFPA) is proposed for Solar PV Parameter extraction. • Standard RTC France data is used for the experimentation of BPFPA algorithm. • Four different PV modules are successfully tested via double diode model. • The BPFPA method is highly convincing in accuracy to convergence at faster rate. • The proposed BPFPA provides the best performance among the other recent techniques. - Abstract: The inaccurate I-V curve generation in solar PV modeling introduces less efficiency and on the other hand, accurate simulation of PV characteristics becomes a mandatory obligation before experimental validation. Although many optimization methods in literature have attempted to extract accurate PV parameters, all of these methods do not guarantee their convergence to the global optimum. Hence, the authors of this paper have proposed a new hybrid Bee pollinator Flower Pollination Algorithm (BPFPA) for the PV parameter extraction problem. The PV parameters for both single diode and double diode are extracted and tested under different environmental conditions. For brevity, the I_0_1, I_0_2, I_p_v for double diode and I_0_,I_p_v for single diode models are calculated analytically where the remaining parameters ‘R_s, R_p, a_1, a_2’ are optimized using BPFPA method. It is found that, the proposed Bee Pollinator method has all the scope to create exploration and exploitation in the control variable to yield a less RMSE value even under lower irradiated conditions. Further for performance validation, the parameters arrived via BPFPA method is compared with Genetic Algorithm (GA), Pattern Search (PS), Harmony Search (HS), Flower Pollination Algorithm (FPA) and Artificial Bee Swarm Optimization (ABSO). In addition, various outcomes of PV modeling and different parameters influencing the accurate PV modeling are critically analyzed.
International Nuclear Information System (INIS)
Bathke, C.
1978-03-01
A description is presented of a general algorithm for locating the extremum of a multi-dimensional constrained function. The algorithm employs a series of techniques dominated by random shrinkage, steepest descent, and adaptive creeping. A discussion follows of the algorithm's application to a ''real world'' problem, namely the optimization of the price of electricity, P/sub eh/, from a hybrid fusion-fission reactor. Upon the basis of comparisons with other optimization schemes of a survey nature, the algorithm is concluded to yield a good approximation to the location of a function's optimum
Directory of Open Access Journals (Sweden)
Yalin Wang
2013-01-01
Full Text Available The grinding-classification is the prerequisite process for full recovery of the nonrenewable minerals with both production quality and quantity objectives concerned. Its natural formulation is a constrained multiobjective optimization problem of complex expression since the process is composed of one grinding machine and two classification machines. In this paper, a hybrid differential evolution (DE algorithm with multi-population is proposed. Some infeasible solutions with better performance are allowed to be saved, and they participate randomly in the evolution. In order to exploit the meaningful infeasible solutions, a functionally partitioned multi-population mechanism is designed to find an optimal solution from all possible directions. Meanwhile, a simplex method for local search is inserted into the evolution process to enhance the searching strategy in the optimization process. Simulation results from the test of some benchmark problems indicate that the proposed algorithm tends to converge quickly and effectively to the Pareto frontier with better distribution. Finally, the proposed algorithm is applied to solve a multiobjective optimization model of a grinding and classification process. Based on the technique for order performance by similarity to ideal solution (TOPSIS, the satisfactory solution is obtained by using a decision-making method for multiple attributes.
Application of Matrix Pencil Algorithm to Mobile Robot Localization Using Hybrid DOA/TOA Estimation
Directory of Open Access Journals (Sweden)
Lan Anh Trinh
2012-12-01
Full Text Available Localization plays an important role in robotics for the tasks of monitoring, tracking and controlling a robot. Much effort has been made to address robot localization problems in recent years. However, despite many proposed solutions and thorough consideration, in terms of developing a low-cost and fast processing method for multiple-source signals, the robot localization problem is still a challenge. In this paper, we propose a solution for robot localization with regards to these concerns. In order to locate the position of a robot, both the coordinate and the orientation of a robot are necessary. We develop a localization method using the Matrix Pencil (MP algorithm for hybrid detection of direction of arrival (DOA and time of arrival (TOA. TOA of the signal is estimated for computing the distance between the mobile robot and a base station (BS. Based on the distance and the estimated DOA, we can estimate the mobile robot's position. The characteristics of the algorithm are examined through analysing simulated experiments and the results demonstrate the advantages of our method over previous works in dealing with the above challenges. The method is constructed based on the low-cost infrastructure of radio frequency devices; the DOA/TOA estimation is performed with just single value decomposition for fast processing. Finally, the MP algorithm combined with tracking using a Kalman filter allows our proposed method to locate the positions of multiple source signals.
Parallel genetic algorithms with migration for the hybrid flow shop scheduling problem
Directory of Open Access Journals (Sweden)
K. Belkadi
2006-01-01
Full Text Available This paper addresses scheduling problems in hybrid flow shop-like systems with a migration parallel genetic algorithm (PGA_MIG. This parallel genetic algorithm model allows genetic diversity by the application of selection and reproduction mechanisms nearer to nature. The space structure of the population is modified by dividing it into disjoined subpopulations. From time to time, individuals are exchanged between the different subpopulations (migration. Influence of parameters and dedicated strategies are studied. These parameters are the number of independent subpopulations, the interconnection topology between subpopulations, the choice/replacement strategy of the migrant individuals, and the migration frequency. A comparison between the sequential and parallel version of genetic algorithm (GA is provided. This comparison relates to the quality of the solution and the execution time of the two versions. The efficiency of the parallel model highly depends on the parameters and especially on the migration frequency. In the same way this parallel model gives a significant improvement of computational time if it is implemented on a parallel architecture which offers an acceptable number of processors (as many processors as subpopulations.
Feature Reduction Based on Genetic Algorithm and Hybrid Model for Opinion Mining
Directory of Open Access Journals (Sweden)
P. Kalaivani
2015-01-01
Full Text Available With the rapid growth of websites and web form the number of product reviews is available on the sites. An opinion mining system is needed to help the people to evaluate emotions, opinions, attitude, and behavior of others, which is used to make decisions based on the user preference. In this paper, we proposed an optimized feature reduction that incorporates an ensemble method of machine learning approaches that uses information gain and genetic algorithm as feature reduction techniques. We conducted comparative study experiments on multidomain review dataset and movie review dataset in opinion mining. The effectiveness of single classifiers Naïve Bayes, logistic regression, support vector machine, and ensemble technique for opinion mining are compared on five datasets. The proposed hybrid method is evaluated and experimental results using information gain and genetic algorithm with ensemble technique perform better in terms of various measures for multidomain review and movie reviews. Classification algorithms are evaluated using McNemar’s test to compare the level of significance of the classifiers.
Directory of Open Access Journals (Sweden)
Kiran Teeparthi
2017-04-01
Full Text Available In this paper, a new low level with teamwork heterogeneous hybrid particle swarm optimization and artificial physics optimization (HPSO-APO algorithm is proposed to solve the multi-objective security constrained optimal power flow (MO-SCOPF problem. Being engaged with the environmental and total production cost concerns, wind energy is highly penetrating to the main grid. The total production cost, active power losses and security index are considered as the objective functions. These are simultaneously optimized using the proposed algorithm for base case and contingency cases. Though PSO algorithm exhibits good convergence characteristic, fails to give near optimal solution. On the other hand, the APO algorithm shows the capability of improving diversity in search space and also to reach a near global optimum point, whereas, APO is prone to premature convergence. The proposed hybrid HPSO-APO algorithm combines both individual algorithm strengths, to get balance between global and local search capability. The APO algorithm is improving diversity in the search space of the PSO algorithm. The hybrid optimization algorithm is employed to alleviate the line overloads by generator rescheduling during contingencies. The standard IEEE 30-bus and Indian 75-bus practical test systems are considered to evaluate the robustness of the proposed method. The simulation results reveal that the proposed HPSO-APO method is more efficient and robust than the standard PSO and APO methods in terms of getting diverse Pareto optimal solutions. Hence, the proposed hybrid method can be used for the large interconnected power system to solve MO-SCOPF problem with integration of wind and thermal generators.
Directory of Open Access Journals (Sweden)
Luman Zhao
2015-01-01
Full Text Available A thrust allocation method was proposed based on a hybrid optimization algorithm to efficiently and dynamically position a semisubmersible drilling rig. That is, the thrust allocation was optimized to produce the generalized forces and moment required while at the same time minimizing the total power consumption under the premise that forbidden zones should be taken into account. An optimization problem was mathematically formulated to provide the optimal thrust allocation by introducing the corresponding design variables, objective function, and constraints. A hybrid optimization algorithm consisting of a genetic algorithm and a sequential quadratic programming (SQP algorithm was selected and used to solve this problem. The proposed method was evaluated by applying it to a thrust allocation problem for a semisubmersible drilling rig. The results indicate that the proposed method can be used as part of a cost-effective strategy for thrust allocation of the rig.
A Hybrid Three Layer Architecture for Fire Agent Management in Rescue Simulation Environment
Directory of Open Access Journals (Sweden)
Alborz Geramifard
2008-11-01
Full Text Available This paper presents a new architecture called FAIS for imple- menting intelligent agents cooperating in a special Multi Agent environ- ment, namely the RoboCup Rescue Simulation System. This is a layered architecture which is customized for solving fire extinguishing problem. Structural decision making algorithms are combined with heuristic ones in this model, so it's a hybrid architecture.
A Hybrid Three Layer Architecture for Fire Agent Management in Rescue Simulation Environment
Directory of Open Access Journals (Sweden)
Alborz Geramifard
2005-06-01
Full Text Available This paper presents a new architecture called FAIS for implementing intelligent agents cooperating in a special Multi Agent environment, namely the RoboCup Rescue Simulation System. This is a layered architecture which is customized for solving fire extinguishing problem. Structural decision making algorithms are combined with heuristic ones in this model, so it's a hybrid architecture.
Bansal, Shonak; Singh, Arun Kumar; Gupta, Neena
2017-02-01
In real-life, multi-objective engineering design problems are very tough and time consuming optimization problems due to their high degree of nonlinearities, complexities and inhomogeneity. Nature-inspired based multi-objective optimization algorithms are now becoming popular for solving multi-objective engineering design problems. This paper proposes original multi-objective Bat algorithm (MOBA) and its extended form, namely, novel parallel hybrid multi-objective Bat algorithm (PHMOBA) to generate shortest length Golomb ruler called optimal Golomb ruler (OGR) sequences at a reasonable computation time. The OGRs found their application in optical wavelength division multiplexing (WDM) systems as channel-allocation algorithm to reduce the four-wave mixing (FWM) crosstalk. The performances of both the proposed algorithms to generate OGRs as optical WDM channel-allocation is compared with other existing classical computing and nature-inspired algorithms, including extended quadratic congruence (EQC), search algorithm (SA), genetic algorithms (GAs), biogeography based optimization (BBO) and big bang-big crunch (BB-BC) optimization algorithms. Simulations conclude that the proposed parallel hybrid multi-objective Bat algorithm works efficiently as compared to original multi-objective Bat algorithm and other existing algorithms to generate OGRs for optical WDM systems. The algorithm PHMOBA to generate OGRs, has higher convergence and success rate than original MOBA. The efficiency improvement of proposed PHMOBA to generate OGRs up to 20-marks, in terms of ruler length and total optical channel bandwidth (TBW) is 100 %, whereas for original MOBA is 85 %. Finally the implications for further research are also discussed.
International Nuclear Information System (INIS)
Sánchez-Oro, J.; Duarte, A.; Salcedo-Sanz, S.
2016-01-01
Highlights: • The total energy demand in Spain is estimated with a Variable Neighborhood algorithm. • Socio-economic variables are used, and one year ahead prediction horizon is considered. • Improvement of the prediction with an Extreme Learning Machine network is considered. • Experiments are carried out in real data for the case of Spain. - Abstract: Energy demand prediction is an important problem whose solution is evaluated by policy makers in order to take key decisions affecting the economy of a country. A number of previous approaches to improve the quality of this estimation have been proposed in the last decade, the majority of them applying different machine learning techniques. In this paper, the performance of a robust hybrid approach, composed of a Variable Neighborhood Search algorithm and a new class of neural network called Extreme Learning Machine, is discussed. The Variable Neighborhood Search algorithm is focused on obtaining the most relevant features among the set of initial ones, by including an exponential prediction model. While previous approaches consider that the number of macroeconomic variables used for prediction is a parameter of the algorithm (i.e., it is fixed a priori), the proposed Variable Neighborhood Search method optimizes both: the number of variables and the best ones. After this first step of feature selection, an Extreme Learning Machine network is applied to obtain the final energy demand prediction. Experiments in a real case of energy demand estimation in Spain show the excellent performance of the proposed approach. In particular, the whole method obtains an estimation of the energy demand with an error lower than 2%, even when considering the crisis years, which are a real challenge.
Heuristic thinking makes a chemist smart.
Graulich, Nicole; Hopf, Henning; Schreiner, Peter R
2010-05-01
We focus on the virtually neglected use of heuristic principles in understanding and teaching of organic chemistry. As human thinking is not comparable to computer systems employing factual knowledge and algorithms--people rarely make decisions through careful considerations of every possible event and its probability, risks or usefulness--research in science and teaching must include psychological aspects of the human decision making processes. Intuitive analogical and associative reasoning and the ability to categorize unexpected findings typically demonstrated by experienced chemists should be made accessible to young learners through heuristic concepts. The psychology of cognition defines heuristics as strategies that guide human problem-solving and deciding procedures, for example with patterns, analogies, or prototypes. Since research in the field of artificial intelligence and current studies in the psychology of cognition have provided evidence for the usefulness of heuristics in discovery, the status of heuristics has grown into something useful and teachable. In this tutorial review, we present a heuristic analysis of a familiar fundamental process in organic chemistry--the cyclic six-electron case, and we show that this approach leads to a more conceptual insight in understanding, as well as in teaching and learning.
Heuristics as Bayesian inference under extreme priors.
Parpart, Paula; Jones, Matt; Love, Bradley C
2018-05-01
Simple heuristics are often regarded as tractable decision strategies because they ignore a great deal of information in the input data. One puzzle is why heuristics can outperform full-information models, such as linear regression, which make full use of the available information. These "less-is-more" effects, in which a relatively simpler model outperforms a more complex model, are prevalent throughout cognitive science, and are frequently argued to demonstrate an inherent advantage of simplifying computation or ignoring information. In contrast, we show at the computational level (where algorithmic restrictions are set aside) that it is never optimal to discard information. Through a formal Bayesian analysis, we prove that popular heuristics, such as tallying and take-the-best, are formally equivalent to Bayesian inference under the limit of infinitely strong priors. Varying the strength of the prior yields a continuum of Bayesian models with the heuristics at one end and ordinary regression at the other. Critically, intermediate models perform better across all our simulations, suggesting that down-weighting information with the appropriate prior is preferable to entirely ignoring it. Rather than because of their simplicity, our analyses suggest heuristics perform well because they implement strong priors that approximate the actual structure of the environment. We end by considering how new heuristics could be derived by infinitely strengthening the priors of other Bayesian models. These formal results have implications for work in psychology, machine learning and economics. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Thiruvenkadam, T; Karthikeyani, V
2014-01-01
Mapping the virtual machines to the physical machines cluster is called the VM placement. Placing the VM in the appropriate host is necessary for ensuring the effective resource utilization and minimizing the datacenter cost as well as power. Here we present an efficient hybrid genetic based host load aware algorithm for scheduling and optimization of virtual machines in a cluster of Physical hosts. We developed the algorithm based on two different methods, first initial VM packing is done by...
Directory of Open Access Journals (Sweden)
Javid Jouzdani
2016-01-01
Full Text Available With the constantly increasing pressure of the competitive environment, supply chain (SC decision makers are forced to consider several aspects of business climate. More specifically, they should take into account the endogenous features (e.g., available means of transportation, and the variety of products and exogenous criteria (e.g., the environmental uncertainty, and transportation system conditions. In this paper, a mixed integer nonlinear programming (MINLP model for dynamic design of a supply chain network is proposed. In this model, multiple products and multiple transportation modes, the time value of money, traffic congestion, and both supply-side and demand-side uncertainties are considered. Due to the complexity of such models, conventional solution methods are not applicable; therefore, two hybrid Electromagnetism-Like Algorithms (EMA are designed and discussed for tackling the problem. The numerical results show the applicability of the proposed model and the capabilities of the solution approaches to the MINLP problem.
HWDA: A coherence recognition and resolution algorithm for hybrid web data aggregation
Guo, Shuhang; Wang, Jian; Wang, Tong
2017-09-01
Aiming at the object confliction recognition and resolution problem for hybrid distributed data stream aggregation, a distributed data stream object coherence solution technology is proposed. Firstly, the framework was defined for the object coherence conflict recognition and resolution, named HWDA. Secondly, an object coherence recognition technology was proposed based on formal language description logic and hierarchical dependency relationship between logic rules. Thirdly, a conflict traversal recognition algorithm was proposed based on the defined dependency graph. Next, the conflict resolution technology was prompted based on resolution pattern matching including the definition of the three types of conflict, conflict resolution matching pattern and arbitration resolution method. At last, the experiment use two kinds of web test data sets to validate the effect of application utilizing the conflict recognition and resolution technology of HWDA.
Multi-Objective Optimization Design for a Hybrid Energy System Using the Genetic Algorithm
Directory of Open Access Journals (Sweden)
Myeong Jin Ko
2015-04-01
Full Text Available To secure a stable energy supply and bring renewable energy to buildings within a reasonable cost range, a hybrid energy system (HES that integrates both fossil fuel energy systems (FFESs and new and renewable energy systems (NRESs needs to be designed and applied. This paper presents a methodology to optimize a HES consisting of three types of NRESs and six types of FFESs while simultaneously minimizing life cycle cost (LCC, maximizing penetration of renewable energy and minimizing annual greenhouse gas (GHG emissions. An elitist non-dominated sorting genetic algorithm is utilized for multi-objective optimization. As an example, we have designed the optimal configuration and sizing for a HES in an elementary school. The evolution of Pareto-optimal solutions according to the variation in the economic, technical and environmental objective functions through generations is discussed. The pair wise trade-offs among the three objectives are also examined.
Directory of Open Access Journals (Sweden)
Srikanta Mahapatra
2014-12-01
Full Text Available In this paper, a novel hybrid Firefly Algorithm and Pattern Search (h-FAPS technique is proposed for a Static Synchronous Series Compensator (SSSC-based power oscillation damping controller design. The proposed h-FAPS technique takes the advantage of global search capability of FA and local search facility of PS. In order to tackle the drawback of using the remote signal that may impact reliability of the controller, a modified signal equivalent to the remote speed deviation signal is constructed from the local measurements. The performances of the proposed controllers are evaluated in SMIB and multi-machine power system subjected to various transient disturbances. To show the effectiveness and robustness of the proposed design approach, simulation results are presented and compared with some recently published approaches such as Differential Evolution (DE and Particle Swarm Optimization (PSO. It is observed that the proposed approach yield superior damping performance compared to some recently reported approaches.
A Genetic-Firefly Hybrid Algorithm to Find the Best Data Location in a Data Cube
Directory of Open Access Journals (Sweden)
M. Faridi Masouleh
2016-10-01
Full Text Available Decision-based programs include large-scale complex database queries. If the response time is short, query optimization is critical. Users usually observe data as a multi-dimensional data cube. Each data cube cell displays data as an aggregation in which the number of cells depends on the number of other cells in the cube. At any given time, a powerful query optimization method can visualize part of the cells instead of calculating results from raw data. Business systems use different approaches and positioning of data in the data cube. In the present study, the data is trained by a neural network and a genetic-firefly hybrid algorithm is proposed for finding the best position for the data in the cube.
Directory of Open Access Journals (Sweden)
Yu-Huei Cheng
2017-11-01
Full Text Available The control strategy is a major unit in hybrid electric vehicles (HEVs. In order to provide suitable control parameters for reducing fuel consumptions and engine emissions while maintaining vehicle performance requirements, the genetic algorithm (GA with small population size is applied to search for feasible control parameters in parallel HEVs. The electric assist control strategy (EACS is used as the fundamental control strategy of parallel HEVs. The dynamic performance requirements stipulated in the Partnership for a New Generation of Vehicles (PNGV is considered to maintain the vehicle performance. The known ADvanced VehIcle SimulatOR (ADVISOR is used to simulate a specific parallel HEV with urban dynamometer driving schedule (UDDS. Five population sets with size 5, 10, 15, 20, and 25 are used in the GA. The experimental results show that the GA with population size of 25 is the best for selecting feasible control parameters in parallel HEVs.
Empirical Analysis of Stochastic Volatility Model by Hybrid Monte Carlo Algorithm
International Nuclear Information System (INIS)
Takaishi, Tetsuya
2013-01-01
The stochastic volatility model is one of volatility models which infer latent volatility of asset returns. The Bayesian inference of the stochastic volatility (SV) model is performed by the hybrid Monte Carlo (HMC) algorithm which is superior to other Markov Chain Monte Carlo methods in sampling volatility variables. We perform the HMC simulations of the SV model for two liquid stock returns traded on the Tokyo Stock Exchange and measure the volatilities of those stock returns. Then we calculate the accuracy of the volatility measurement using the realized volatility as a proxy of the true volatility and compare the SV model with the GARCH model which is one of other volatility models. Using the accuracy calculated with the realized volatility we find that empirically the SV model performs better than the GARCH model.
Zeng, Xiang-Yang; Wang, Shu-Guang; Gao, Li-Ping
2010-09-01
As the basic data for virtual auditory technology, head-related transfer function (HRTF) has many applications in the areas of room acoustic modeling, spatial hearing and multimedia. How to individualize HRTF fast and effectively has become an opening problem at present. Based on the similarity and relativity of anthropometric structures, a hybrid HRTF customization algorithm, which has combined the method of principal component analysis (PCA), multiple linear regression (MLR) and database matching (DM), has been presented in this paper. The HRTFs selected by both the best match and the worst match have been applied into obtaining binaurally auralized sounds, which are then used for subjective listening experiments and the results are compared. For the area in the horizontal plane, the localization results have shown that the selection of HRTFs can enhance the localization accuracy and can also abate the problem of front-back confusion.
A Hybrid Differential Evolution and Tree Search Algorithm for the Job Shop Scheduling Problem
Directory of Open Access Journals (Sweden)
Rui Zhang
2011-01-01
Full Text Available The job shop scheduling problem (JSSP is a notoriously difficult problem in combinatorial optimization. In terms of the objective function, most existing research has been focused on the makespan criterion. However, in contemporary manufacturing systems, due-date-related performances are more important because they are essential for maintaining a high service reputation. Therefore, in this study we aim at minimizing the total weighted tardiness in JSSP. Considering the high complexity, a hybrid differential evolution (DE algorithm is proposed for the problem. To enhance the overall search efficiency, a neighborhood property of the problem is discovered, and then a tree search procedure is designed and embedded into the DE framework. According to the extensive computational experiments, the proposed approach is efficient in solving the job shop scheduling problem with total weighted tardiness objective.
A hybrid algorithm for coupling partial differential equation and compartment-based dynamics.
Harrison, Jonathan U; Yates, Christian A
2016-09-01
Stochastic simulation methods can be applied successfully to model exact spatio-temporally resolved reaction-diffusion systems. However, in many cases, these methods can quickly become extremely computationally intensive with increasing particle numbers. An alternative description of many of these systems can be derived in the diffusive limit as a deterministic, continuum system of partial differential equations (PDEs). Although the numerical solution of such PDEs is, in general, much more efficient than the full stochastic simulation, the deterministic continuum description is generally not valid when copy numbers are low and stochastic effects dominate. Therefore, to take advantage of the benefits of both of these types of models, each of which may be appropriate in different parts of a spatial domain, we have developed an algorithm that can be used to couple these two types of model together. This hybrid coupling algorithm uses an overlap region between the two modelling regimes. By coupling fluxes at one end of the interface and using a concentration-matching condition at the other end, we ensure that mass is appropriately transferred between PDE- and compartment-based regimes. Our methodology gives notable reductions in simulation time in comparison with using a fully stochastic model, while maintaining the important stochastic features of the system and providing detail in appropriate areas of the domain. We test our hybrid methodology robustly by applying it to several biologically motivated problems including diffusion and morphogen gradient formation. Our analysis shows that the resulting error is small, unbiased and does not grow over time. © 2016 The Authors.
Multi-Stage Hybrid Rocket Conceptual Design for Micro-Satellites Launch using Genetic Algorithm
Kitagawa, Yosuke; Kitagawa, Koki; Nakamiya, Masaki; Kanazaki, Masahiro; Shimada, Toru
The multi-objective genetic algorithm (MOGA) is applied to the multi-disciplinary conceptual design problem for a three-stage launch vehicle (LV) with a hybrid rocket engine (HRE). MOGA is an optimization tool used for multi-objective problems. The parallel coordinate plot (PCP), which is a data mining method, is employed in the post-process in MOGA for design knowledge discovery. A rocket that can deliver observing micro-satellites to the sun-synchronous orbit (SSO) is designed. It consists of an oxidizer tank containing liquid oxidizer, a combustion chamber containing solid fuel, a pressurizing tank and a nozzle. The objective functions considered in this study are to minimize the total mass of the rocket and to maximize the ratio of the payload mass to the total mass. To calculate the thrust and the engine size, the regression rate is estimated based on an empirical model for a paraffin (FT-0070) propellant. Several non-dominated solutions are obtained using MOGA, and design knowledge is discovered for the present hybrid rocket design problem using a PCP analysis. As a result, substantial knowledge on the design of an LV with an HRE is obtained for use in space transportation.
Hyper-heuristics with low level parameter adaptation.
Ren, Zhilei; Jiang, He; Xuan, Jifeng; Luo, Zhongxuan
2012-01-01
Recent years have witnessed the great success of hyper-heuristics applying to numerous real-world applications. Hyper-heuristics raise the generality of search methodologies by manipulating a set of low level heuristics (LLHs) to solve problems, and aim to automate the algorithm design process. However, those LLHs are usually parameterized, which may contradict the domain independent motivation of hyper-heuristics. In this paper, we show how to automatically maintain low level parameters (LLPs) using a hyper-heuristic with LLP adaptation (AD-HH), and exemplify the feasibility of AD-HH by adaptively maintaining the LLPs for two hyper-heuristic models. Furthermore, aiming at tackling the search space expansion due to the LLP adaptation, we apply a heuristic space reduction (SAR) mechanism to improve the AD-HH framework. The integration of the LLP adaptation and the SAR mechanism is able to explore the heuristic space more effectively and efficiently. To evaluate the performance of the proposed algorithms, we choose the p-median problem as a case study. The empirical results show that with the adaptation of the LLPs and the SAR mechanism, the proposed algorithms are able to achieve competitive results over the three heterogeneous classes of benchmark instances.
Directory of Open Access Journals (Sweden)
Montri Inthachot
2016-01-01
Full Text Available This study investigated the use of Artificial Neural Network (ANN and Genetic Algorithm (GA for prediction of Thailand’s SET50 index trend. ANN is a widely accepted machine learning method that uses past data to predict future trend, while GA is an algorithm that can find better subsets of input variables for importing into ANN, hence enabling more accurate prediction by its efficient feature selection. The imported data were chosen technical indicators highly regarded by stock analysts, each represented by 4 input variables that were based on past time spans of 4 different lengths: 3-, 5-, 10-, and 15-day spans before the day of prediction. This import undertaking generated a big set of diverse input variables with an exponentially higher number of possible subsets that GA culled down to a manageable number of more effective ones. SET50 index data of the past 6 years, from 2009 to 2014, were used to evaluate this hybrid intelligence prediction accuracy, and the hybrid’s prediction results were found to be more accurate than those made by a method using only one input variable for one fixed length of past time span.
Modeling of Energy Demand in the Greenhouse Using PSO-GA Hybrid Algorithms
Directory of Open Access Journals (Sweden)
Jiaoliao Chen
2015-01-01
Full Text Available Modeling of energy demand in agricultural greenhouse is very important to maintain optimum inside environment for plant growth and energy consumption decreasing. This paper deals with the identification parameters for physical model of energy demand in the greenhouse using hybrid particle swarm optimization and genetic algorithms technique (HPSO-GA. HPSO-GA is developed to estimate the indistinct internal parameters of greenhouse energy model, which is built based on thermal balance. Experiments were conducted to measure environment and energy parameters in a cooling greenhouse with surface water source heat pump system, which is located in mid-east China. System identification experiments identify model parameters using HPSO-GA such as inertias and heat transfer constants. The performance of HPSO-GA on the parameter estimation is better than GA and PSO. This algorithm can improve the classification accuracy while speeding up the convergence process and can avoid premature convergence. System identification results prove that HPSO-GA is reliable in solving parameter estimation problems for modeling the energy demand in the greenhouse.
Design and implementation of a hybrid MPI-CUDA model for the Smith-Waterman algorithm.
Khaled, Heba; Faheem, Hossam El Deen Mostafa; El Gohary, Rania
2015-01-01
This paper provides a novel hybrid model for solving the multiple pair-wise sequence alignment problem combining message passing interface and CUDA, the parallel computing platform and programming model invented by NVIDIA. The proposed model targets homogeneous cluster nodes equipped with similar Graphical Processing Unit (GPU) cards. The model consists of the Master Node Dispatcher (MND) and the Worker GPU Nodes (WGN). The MND distributes the workload among the cluster working nodes and then aggregates the results. The WGN performs the multiple pair-wise sequence alignments using the Smith-Waterman algorithm. We also propose a modified implementation to the Smith-Waterman algorithm based on computing the alignment matrices row-wise. The experimental results demonstrate a considerable reduction in the running time by increasing the number of the working GPU nodes. The proposed model achieved a performance of about 12 Giga cell updates per second when we tested against the SWISS-PROT protein knowledge base running on four nodes.
Modeling Self-Healing of Concrete Using Hybrid Genetic Algorithm-Artificial Neural Network.
Ramadan Suleiman, Ahmed; Nehdi, Moncef L
2017-02-07
This paper presents an approach to predicting the intrinsic self-healing in concrete using a hybrid genetic algorithm-artificial neural network (GA-ANN). A genetic algorithm was implemented in the network as a stochastic optimizing tool for the initial optimal weights and biases. This approach can assist the network in achieving a global optimum and avoid the possibility of the network getting trapped at local optima. The proposed model was trained and validated using an especially built database using various experimental studies retrieved from the open literature. The model inputs include the cement content, water-to-cement ratio (w/c), type and dosage of supplementary cementitious materials, bio-healing materials, and both expansive and crystalline additives. Self-healing indicated by means of crack width is the model output. The results showed that the proposed GA-ANN model is capable of capturing the complex effects of various self-healing agents (e.g., biochemical material, silica-based additive, expansive and crystalline components) on the self-healing performance in cement-based materials.
Simulation of modified hybrid noise reduction algorithm to enhance the speech quality
International Nuclear Information System (INIS)
Waqas, A.; Muhammad, T.; Jamal, H.
2013-01-01
Speech is the most essential method of correspondence of humankind. Cell telephony, portable hearing assistants and, hands free are specific provisions in this respect. The performance of these communication devices could be affected because of distortions which might augment them. There are two essential sorts of distortions that might be recognized, specifically: convolutive and additive noises. These mutilations contaminate the clean speech and make it unsatisfactory to human audiences i.e. perceptual value and intelligibility of speech signal diminishes. The objective of speech upgrade systems is to enhance the quality and understandability of speech to make it more satisfactory to audiences. This paper recommends a modified hybrid approach for single channel devices to process the noisy signals considering only the effect of background noises. It is a mixture of pre-processing relative spectral amplitude (RASTA) filter, which is approximated by a straight forward 4th order band-pass filter, and conventional minimum mean square error short time spectral amplitude (MMSE STSA85) estimator. To analyze the performance of the algorithm an objective parameter called Perceptual estimation of speech quality (PESQ) is measured. The results show that the modified algorithm performs well to remove the background noises. SIMULINK implementation is also performed and its profile report has been generated to observe the execution time. (author)
Directory of Open Access Journals (Sweden)
A. A. Heidari
2017-09-01
Full Text Available Yin-Yang-pair optimization (YYPO is one of the latest metaheuristic algorithms (MA proposed in 2015 that tries to inspire the philosophy of balance between conflicting concepts. Particle swarm optimizer (PSO is one of the first population-based MA inspired by social behaviors of birds. In spite of PSO, the YYPO is not a nature inspired optimizer. It has a low complexity and starts with only two initial positions and can produce more points with regard to the dimension of target problem. Due to unique advantages of these methodologies and to mitigate the immature convergence and local optima (LO stagnation problems in PSO, in this work, a continuous hybrid strategy based on the behaviors of PSO and YYPO is proposed to attain the suboptimal solutions of uncapacitated warehouse location (UWL problems. This efficient hierarchical PSO-based optimizer (PSOYPO can improve the effectiveness of PSO on spatial optimization tasks such as the family of UWL problems. The performance of the proposed PSOYPO is verified according to some UWL benchmark cases. These test cases have been used in several works to evaluate the efficacy of different MA. Then, the PSOYPO is compared to the standard PSO, genetic algorithm (GA, harmony search (HS, modified HS (OBCHS, and evolutionary simulated annealing (ESA. The experimental results demonstrate that the PSOYPO can reveal a better or competitive efficacy compared to the PSO and other MA.
a New Hybrid Yin-Yang Swarm Optimization Algorithm for Uncapacitated Warehouse Location Problems
Heidari, A. A.; Kazemizade, O.; Hakimpour, F.
2017-09-01
Yin-Yang-pair optimization (YYPO) is one of the latest metaheuristic algorithms (MA) proposed in 2015 that tries to inspire the philosophy of balance between conflicting concepts. Particle swarm optimizer (PSO) is one of the first population-based MA inspired by social behaviors of birds. In spite of PSO, the YYPO is not a nature inspired optimizer. It has a low complexity and starts with only two initial positions and can produce more points with regard to the dimension of target problem. Due to unique advantages of these methodologies and to mitigate the immature convergence and local optima (LO) stagnation problems in PSO, in this work, a continuous hybrid strategy based on the behaviors of PSO and YYPO is proposed to attain the suboptimal solutions of uncapacitated warehouse location (UWL) problems. This efficient hierarchical PSO-based optimizer (PSOYPO) can improve the effectiveness of PSO on spatial optimization tasks such as the family of UWL problems. The performance of the proposed PSOYPO is verified according to some UWL benchmark cases. These test cases have been used in several works to evaluate the efficacy of different MA. Then, the PSOYPO is compared to the standard PSO, genetic algorithm (GA), harmony search (HS), modified HS (OBCHS), and evolutionary simulated annealing (ESA). The experimental results demonstrate that the PSOYPO can reveal a better or competitive efficacy compared to the PSO and other MA.
Fast Construction of Near Parsimonious Hybridization Networks for Multiple Phylogenetic Trees.
Mirzaei, Sajad; Wu, Yufeng
2016-01-01
Hybridization networks represent plausible evolutionary histories of species that are affected by reticulate evolutionary processes. An established computational problem on hybridization networks is constructing the most parsimonious hybridization network such that each of the given phylogenetic trees (called gene trees) is "displayed" in the network. There have been several previous approaches, including an exact method and several heuristics, for this NP-hard problem. However, the exact method is only applicable to a limited range of data, and heuristic methods can be less accurate and also slow sometimes. In this paper, we develop a new algorithm for constructing near parsimonious networks for multiple binary gene trees. This method is more efficient for large numbers of gene trees than previous heuristics. This new method also produces more parsimonious results on many simulated datasets as well as a real biological dataset than a previous method. We also show that our method produces topologically more accurate networks for many datasets.
Hybrid Genetic Algorithm - Local Search Method for Ground-Water Management
Chiu, Y.; Nishikawa, T.; Martin, P.
2008-12-01
Ground-water management problems commonly are formulated as a mixed-integer, non-linear programming problem (MINLP). Relying only on conventional gradient-search methods to solve the management problem is computationally fast; however, the methods may become trapped in a local optimum. Global-optimization schemes can identify the global optimum, but the convergence is very slow when the optimal solution approaches the global optimum. In this study, we developed a hybrid optimization scheme, which includes a genetic algorithm and a gradient-search method, to solve the MINLP. The genetic algorithm identifies a near- optimal solution, and the gradient search uses the near optimum to identify the global optimum. Our methodology is applied to a conjunctive-use project in the Warren ground-water basin, California. Hi- Desert Water District (HDWD), the primary water-manager in the basin, plans to construct a wastewater treatment plant to reduce future septic-tank effluent from reaching the ground-water system. The treated wastewater instead will recharge the ground-water basin via percolation ponds as part of a larger conjunctive-use strategy, subject to State regulations (e.g. minimum distances and travel times). HDWD wishes to identify the least-cost conjunctive-use strategies that control ground-water levels, meet regulations, and identify new production-well locations. As formulated, the MINLP objective is to minimize water-delivery costs subject to constraints including pump capacities, available recharge water, water-supply demand, water-level constraints, and potential new-well locations. The methodology was demonstrated by an enumerative search of the entire feasible solution and comparing the optimum solution with results from the branch-and-bound algorithm. The results also indicate that the hybrid method identifies the global optimum within an affordable computation time. Sensitivity analyses, which include testing different recharge-rate scenarios, pond
A hybrid reconstruction algorithm for fast and accurate 4D cone-beam CT imaging.
Yan, Hao; Zhen, Xin; Folkerts, Michael; Li, Yongbao; Pan, Tinsu; Cervino, Laura; Jiang, Steve B; Jia, Xun
2014-07-01
on the clinically standard 1-min 3D CBCT scanning protocol is feasible via the proposed hybrid reconstruction algorithm.
A hybrid reconstruction algorithm for fast and accurate 4D cone-beam CT imaging
Energy Technology Data Exchange (ETDEWEB)
Yan, Hao; Folkerts, Michael; Jiang, Steve B., E-mail: xun.jia@utsouthwestern.edu, E-mail: steve.jiang@UTSouthwestern.edu; Jia, Xun, E-mail: xun.jia@utsouthwestern.edu, E-mail: steve.jiang@UTSouthwestern.edu [Department of Radiation Oncology, The University of Texas, Southwestern Medical Center, Dallas, Texas 75390 (United States); Zhen, Xin [Department of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong 510515 (China); Li, Yongbao [Department of Radiation Oncology, The University of Texas, Southwestern Medical Center, Dallas, Texas 75390 and Department of Engineering Physics, Tsinghua University, Beijing 100084 (China); Pan, Tinsu [Department of Imaging Physics, The University of Texas, MD Anderson Cancer Center, Houston, Texas 77030 (United States); Cervino, Laura [Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California 92093 (United States)
2014-07-15
. Conclusions: High-quality 4D-CBCT imaging based on the clinically standard 1-min 3D CBCT scanning protocol is feasible via the proposed hybrid reconstruction algorithm.
DEFF Research Database (Denmark)
Sousa, Tiago; Morais, Hugo; Castro, Rui
2016-01-01
vehicles. The proposed algorithms proved to present results very close to the optimal with a small difference between 0.1%. A deterministic technique is used as comparison and it took around 26 h to obtain the optimal one. On the other hand, the simulated annealing was able of obtaining results around 1...
Directory of Open Access Journals (Sweden)
K. Lenin
2014-04-01
Full Text Available This paper presents Hybrid Biogeography algorithm for solving the multi-objective reactive power dispatch problem in a power system. Real Power Loss minimization and maximization of voltage stability margin are taken as the objectives. Artificial bee colony optimization (ABC is quick and forceful algorithm for global optimization. Biogeography-Based Optimization (BBO is a new-fangled biogeography inspired algorithm. It mainly utilizes the biogeography-based relocation operator to share the information among solutions. In this work, a hybrid algorithm with BBO and ABC is projected, and named as HBBABC (Hybrid Biogeography based Artificial Bee Colony Optimization, for the universal numerical optimization problem. HBBABC merge the searching behavior of ABC with that of BBO. Both the algorithms have different solution probing tendency like ABC have good exploration probing tendency while BBO have good exploitation probing tendency. HBBABC used to solve the reactive power dispatch problem and the proposed technique has been tested in standard IEEE30 bus test system.
International Nuclear Information System (INIS)
Berrazouane, S.; Mohammedi, K.
2014-01-01
Highlights: • Optimized fuzzy logic controller (FLC) for operating a standalone hybrid power system based on cuckoo search algorithm. • Comparison between optimized fuzzy logic controller based on cuckoo search and swarm intelligent. • Loss of power supply probability and levelized energy cost are introduced. - Abstract: This paper presents the development of an optimized fuzzy logic controller (FLC) for operating a standalone hybrid power system based on cuckoo search algorithm. The FLC inputs are batteries state of charge (SOC) and net power flow, FLC outputs are the power rate of batteries, photovoltaic and diesel generator. Data for weekly solar irradiation, ambient temperature and load profile are used to tune the proposed controller by using cuckoo search algorithm. The optimized FLC is able to minimize loss of power supply probability (LPSP), excess energy (EE) and levelized energy cost (LEC). Moreover, the results of CS optimization are better than of particle swarm optimization PSO for fuzzy system controller
Sun, Yong; Li, Liang; Yan, Bingjie; Yang, Chao; Tang, Gongyou
2016-02-01
This paper proposes a novel hybrid algorithm for simultaneously estimating the vehicle mass and road grade for hybrid electric bus (HEB). First, the road grade in current step is estimated using extended Kalman filter (EKF) with the initial state including velocity and engine torque. Second, the vehicle mass is estimated twice, one with EKF and the other with recursive least square (RLS) using the estimated road grade. A more accurate value of the estimated mass is acquired by weighting the trade-off between EKF and RLS. Finally, the road grade and vehicle mass thus obtained are used as the initial states for the next step, and two variables could be decoupled from the nonlinear vehicle dynamics by performing the above procedure repeatedly. Simulation results show that in different starting conditions, the proposed algorithm provides higher accuracy and faster convergence speed, compared with the results using EKF or RLS alone.
Pitfalls in Teaching Judgment Heuristics
Shepperd, James A.; Koch, Erika J.
2005-01-01
Demonstrations of judgment heuristics typically focus on how heuristics can lead to poor judgments. However, exclusive focus on the negative consequences of heuristics can prove problematic. We illustrate the problem with the representativeness heuristic and present a study (N = 45) that examined how examples influence understanding of the…
Indian Academy of Sciences (India)
polynomial) division have been found in Vedic Mathematics which are dated much before Euclid's algorithm. A programming language Is used to describe an algorithm for execution on a computer. An algorithm expressed using a programming.
Efficient heuristics for maximum common substructure search.
Englert, Péter; Kovács, Péter
2015-05-26
Maximum common substructure search is a computationally hard optimization problem with diverse applications in the field of cheminformatics, including similarity search, lead optimization, molecule alignment, and clustering. Most of these applications have strict constraints on running time, so heuristic methods are often preferred. However, the development of an algorithm that is both fast enough and accurate enough for most practical purposes is still a challenge. Moreover, in some applications, the quality of a common substructure depends not only on its size but also on various topological features of the one-to-one atom correspondence it defines. Two state-of-the-art heuristic algorithms for finding maximum common substructures have been implemented at ChemAxon Ltd., and effective heuristics have been developed to improve both their efficiency and the relevance of the atom mappings they provide. The implementations have been thoroughly evaluated and compared with existing solutions (KCOMBU and Indigo). The heuristics have been found to greatly improve the performance and applicability of the algorithms. The purpose of this paper is to introduce the applied methods and present the experimental results.
Directory of Open Access Journals (Sweden)
M. Abdul-Niby
2016-04-01
Full Text Available The Traveling Salesman Problem (TSP is an integer programming problem that falls into the category of NP-Hard problems. As the problem become larger, there is no guarantee that optimal tours will be found within reasonable computation time. Heuristics techniques, like genetic algorithm and simulating annealing, can solve TSP instances with different levels of accuracy. Choosing which algorithm to use in order to get a best solution is still considered as a hard choice. This paper suggests domain reduction as a tool to be combined with any meta-heuristic so that the obtained results will be almost the same. The hybrid approach of combining domain reduction with any meta-heuristic encountered the challenge of choosing an algorithm that matches the TSP instance in order to get the best results.
International Nuclear Information System (INIS)
Kauffman, L.H.
1990-01-01
This paper gives a heuristic derivation of the skein relation for the Homfly polynomial in an integral formalism. The derivation is formally correct but highly simplified. In the light of Witten's proposal for invariants of links via functional integrals, it is useful to have a formal pattern to compare with the complexities of the full approach. The formalism is a heuristic. However, it is closely related to the actual structure of the Witten functional integral
Ghinita, Gabriel; Kalnis, Panos; Kantarcioǧlu, Murâ t; Bertino, Elisa
2010-01-01
Mobile devices with global positioning capabilities allow users to retrieve points of interest (POI) in their proximity. To protect user privacy, it is important not to disclose exact user coordinates to un-trusted entities that provide location-based services. Currently, there are two main approaches to protect the location privacy of users: (i) hiding locations inside cloaking regions (CRs) and (ii) encrypting location data using private information retrieval (PIR) protocols. Previous work focused on finding good trade-offs between privacy and performance of user protection techniques, but disregarded the important issue of protecting the POI dataset D. For instance, location cloaking requires large-sized CRs, leading to excessive disclosure of POIs (O({pipe}D{pipe}) in the worst case). PIR, on the other hand, reduces this bound to O(√{pipe}D{pipe}), but at the expense of high processing and communication overhead. We propose hybrid, two-step approaches for private location-based queries which provide protection for both the users and the database. In the first step, user locations are generalized to coarse-grained CRs which provide strong privacy. Next, a PIR protocol is applied with respect to the obtained query CR. To protect against excessive disclosure of POI locations, we devise two cryptographic protocols that privately evaluate whether a point is enclosed inside a rectangular region or a convex polygon. We also introduce algorithms to efficiently support PIR on dynamic POI sub-sets. We provide solutions for both approximate and exact NN queries. In the approximate case, our method discloses O(1) POI, orders of magnitude fewer than CR- or PIR-based techniques. For the exact case, we obtain optimal disclosure of a single POI, although with slightly higher computational overhead. Experimental results show that the hybrid approaches are scalable in practice, and outperform the pure-PIR approach in terms of computational and communication overhead. © 2010
Ghinita, Gabriel
2010-12-15
Mobile devices with global positioning capabilities allow users to retrieve points of interest (POI) in their proximity. To protect user privacy, it is important not to disclose exact user coordinates to un-trusted entities that provide location-based services. Currently, there are two main approaches to protect the location privacy of users: (i) hiding locations inside cloaking regions (CRs) and (ii) encrypting location data using private information retrieval (PIR) protocols. Previous work focused on finding good trade-offs between privacy and performance of user protection techniques, but disregarded the important issue of protecting the POI dataset D. For instance, location cloaking requires large-sized CRs, leading to excessive disclosure of POIs (O({pipe}D{pipe}) in the worst case). PIR, on the other hand, reduces this bound to O(√{pipe}D{pipe}), but at the expense of high processing and communication overhead. We propose hybrid, two-step approaches for private location-based queries which provide protection for both the users and the database. In the first step, user locations are generalized to coarse-grained CRs which provide strong privacy. Next, a PIR protocol is applied with respect to the obtained query CR. To protect against excessive disclosure of POI locations, we devise two cryptographic protocols that privately evaluate whether a point is enclosed inside a rectangular region or a convex polygon. We also introduce algorithms to efficiently support PIR on dynamic POI sub-sets. We provide solutions for both approximate and exact NN queries. In the approximate case, our method discloses O(1) POI, orders of magnitude fewer than CR- or PIR-based techniques. For the exact case, we obtain optimal disclosure of a single POI, although with slightly higher computational overhead. Experimental results show that the hybrid approaches are scalable in practice, and outperform the pure-PIR approach in terms of computational and communication overhead. © 2010
International Nuclear Information System (INIS)
Masoud, Masih Tehrani; Mohammad Reza, Ha'iri Yazdi; Esfahanian, Vahid; Sagha, Hossein
2012-01-01
In this paper, a hybrid energy storage sizing algorithm for electric vehicles is developed to achieve a semi optimum cost effective design. Using the developed algorithm, a driving cycle is divided into its micro-trips and the power and energy demands in each micro trip are determined. The battery size is estimated because the battery fulfills the power demands. Moreover, the ultra capacitor (UC) energy (or the number of UC modules) is assessed because the UC delivers the maximum energy demands of the different micro trips of a driving cycle. Finally, a design factor, which shows the power of the hybrid energy storage control strategy, is utilized to evaluate the newly designed control strategies. Using the developed algorithm, energy saving loss, driver satisfaction criteria, and battery life criteria are calculated using a feed forward dynamic modeling software program and are utilized for comparison among different energy storage candidates. This procedure is applied to the hybrid energy storage sizing of a series hybrid electric city bus in Manhattan and to the Tehran driving cycle. Results show that a higher aggressive driving cycle (Manhattan) requires more expensive energy storage system and more sophisticated energy management strategy
Using tree diversity to compare phylogenetic heuristics.
Sul, Seung-Jin; Matthews, Suzanne; Williams, Tiffani L
2009-04-29
Evolutionary trees are family trees that represent the relationships between a group of organisms. Phylogenetic heuristics are used to search stochastically for the best-scoring trees in tree space. Given that better tree scores are believed to be better approximations of the true phylogeny, traditional evaluation techniques have used tree scores to determine the heuristics that find the best scores in the fastest time. We develop new techniques to evaluate phylogenetic heuristics based on both tree scores and topologies to compare Pauprat and Rec-I-DCM3, two popular Maximum Parsimony search algorithms. Our results show that although Pauprat and Rec-I-DCM3 find the trees with the same best scores, topologically these trees are quite different. Furthermore, the Rec-I-DCM3 trees cluster distinctly from the Pauprat trees. In addition to our heatmap visualizations of using parsimony scores and the Robinson-Foulds distance to compare best-scoring trees found by the two heuristics, we also develop entropy-based methods to show the diversity of the trees found. Overall, Pauprat identifies more diverse trees than Rec-I-DCM3. Overall, our work shows that there is value to comparing heuristics beyond the parsimony scores that they find. Pauprat is a slower heuristic than Rec-I-DCM3. However, our work shows that there is tremendous value in using Pauprat to reconstruct trees-especially since it finds identical scoring but topologically distinct trees. Hence, instead of discounting Pauprat, effort should go in improving its implementation. Ultimately, improved performance measures lead to better phylogenetic heuristics and will result in better approximations of the true evolutionary history of the organisms of interest.
Impact of heuristics in clustering large biological networks.
Shafin, Md Kishwar; Kabir, Kazi Lutful; Ridwan, Iffatur; Anannya, Tasmiah Tamzid; Karim, Rashid Saadman; Hoque, Mohammad Mozammel; Rahman, M Sohel
2015-12-01
Traditional clustering algorithms often exhibit poor performance for large networks. On the contrary, greedy algorithms are found to be relatively efficient while uncovering functional modules from large biological networks. The quality of the clusters produced by these greedy techniques largely depends on the underlying heuristics employed. Different heuristics based on different attributes and properties perform differently in terms of the quality of the clusters produced. This motivates us to design new heuristics for clustering large networks. In this paper, we have proposed two new heuristics and analyzed the performance thereof after incorporating those with three different combinations in a recently celebrated greedy clustering algorithm named SPICi. We have extensively analyzed the effectiveness of these new variants. The results are found to be promising. Copyright © 2015 Elsevier Ltd. All rights reserved.
Abdullahi, Mohammed; Ngadi, Md Asri
2016-01-01
Cloud computing has attracted significant attention from research community because of rapid migration rate of Information Technology services to its domain. Advances in virtualization technology has made cloud computing very popular as a result of easier deployment of application services. Tasks are submitted to cloud datacenters to be processed on pay as you go fashion. Task scheduling is one the significant research challenges in cloud computing environment. The current formulation of task scheduling problems has been shown to be NP-complete, hence finding the exact solution especially for large problem sizes is intractable. The heterogeneous and dynamic feature of cloud resources makes optimum task scheduling non-trivial. Therefore, efficient task scheduling algorithms are required for optimum resource utilization. Symbiotic Organisms Search (SOS) has been shown to perform competitively with Particle Swarm Optimization (PSO). The aim of this study is to optimize task scheduling in cloud computing environment based on a proposed Simulated Annealing (SA) based SOS (SASOS) in order to improve the convergence rate and quality of solution of SOS. The SOS algorithm has a strong global exploration capability and uses fewer parameters. The systematic reasoning ability of SA is employed to find better solutions on local solution regions, hence, adding exploration ability to SOS. Also, a fitness function is proposed which takes into account the utilization level of virtual machines (VMs) which reduced makespan and degree of imbalance among VMs. CloudSim toolkit was used to evaluate the efficiency of the proposed method using both synthetic and standard workload. Results of simulation showed that hybrid SOS performs better than SOS in terms of convergence speed, response time, degree of imbalance, and makespan.
Directory of Open Access Journals (Sweden)
Mohammed Abdullahi
Full Text Available Cloud computing has attracted significant attention from research community because of rapid migration rate of Information Technology services to its domain. Advances in virtualization technology has made cloud computing very popular as a result of easier deployment of application services. Tasks are submitted to cloud datacenters to be processed on pay as you go fashion. Task scheduling is one the significant research challenges in cloud computing environment. The current formulation of task scheduling problems has been shown to be NP-complete, hence finding the exact solution especially for large problem sizes is intractable. The heterogeneous and dynamic feature of cloud resources makes optimum task scheduling non-trivial. Therefore, efficient task scheduling algorithms are required for optimum resource utilization. Symbiotic Organisms Search (SOS has been shown to perform competitively with Particle Swarm Optimization (PSO. The aim of this study is to optimize task scheduling in cloud computing environment based on a proposed Simulated Annealing (SA based SOS (SASOS in order to improve the convergence rate and quality of solution of SOS. The SOS algorithm has a strong global exploration capability and uses fewer parameters. The systematic reasoning ability of SA is employed to find better solutions on local solution regions, hence, adding exploration ability to SOS. Also, a fitness function is proposed which takes into account the utilization level of virtual machines (VMs which reduced makespan and degree of imbalance among VMs. CloudSim toolkit was used to evaluate the efficiency of the proposed method using both synthetic and standard workload. Results of simulation showed that hybrid SOS performs better than SOS in terms of convergence speed, response time, degree of imbalance, and makespan.
Directory of Open Access Journals (Sweden)
Maryam Mousavi
Full Text Available Flexible manufacturing system (FMS enhances the firm's flexibility and responsiveness to the ever-changing customer demand by providing a fast product diversification capability. Performance of an FMS is highly dependent upon the accuracy of scheduling policy for the components of the system, such as automated guided vehicles (AGVs. An AGV as a mobile robot provides remarkable industrial capabilities for material and goods transportation within a manufacturing facility or a warehouse. Allocating AGVs to tasks, while considering the cost and time of operations, defines the AGV scheduling process. Multi-objective scheduling of AGVs, unlike single objective practices, is a complex and combinatorial process. In the main draw of the research, a mathematical model was developed and integrated with evolutionary algorithms (genetic algorithm (GA, particle swarm optimization (PSO, and hybrid GA-PSO to optimize the task scheduling of AGVs with the objectives of minimizing makespan and number of AGVs while considering the AGVs' battery charge. Assessment of the numerical examples' scheduling before and after the optimization proved the applicability of all the three algorithms in decreasing the makespan and AGV numbers. The hybrid GA-PSO produced the optimum result and outperformed the other two algorithms, in which the mean of AGVs operation efficiency was found to be 69.4, 74, and 79.8 percent in PSO, GA, and hybrid GA-PSO, respectively. Evaluation and validation of the model was performed by simulation via Flexsim software.
Mousavi, Maryam; Yap, Hwa Jen; Musa, Siti Nurmaya; Tahriri, Farzad; Md Dawal, Siti Zawiah
2017-01-01
Flexible manufacturing system (FMS) enhances the firm's flexibility and responsiveness to the ever-changing customer demand by providing a fast product diversification capability. Performance of an FMS is highly dependent upon the accuracy of scheduling policy for the components of the system, such as automated guided vehicles (AGVs). An AGV as a mobile robot provides remarkable industrial capabilities for material and goods transportation within a manufacturing facility or a warehouse. Allocating AGVs to tasks, while considering the cost and time of operations, defines the AGV scheduling process. Multi-objective scheduling of AGVs, unlike single objective practices, is a complex and combinatorial process. In the main draw of the research, a mathematical model was developed and integrated with evolutionary algorithms (genetic algorithm (GA), particle swarm optimization (PSO), and hybrid GA-PSO) to optimize the task scheduling of AGVs with the objectives of minimizing makespan and number of AGVs while considering the AGVs' battery charge. Assessment of the numerical examples' scheduling before and after the optimization proved the applicability of all the three algorithms in decreasing the makespan and AGV numbers. The hybrid GA-PSO produced the optimum result and outperformed the other two algorithms, in which the mean of AGVs operation efficiency was found to be 69.4, 74, and 79.8 percent in PSO, GA, and hybrid GA-PSO, respectively. Evaluation and validation of the model was performed by simulation via Flexsim software.
International Nuclear Information System (INIS)
Xiao, Liye; Qian, Feng; Shao, Wei
2017-01-01
Highlights: • Propose a hybrid architecture based on a modified bat algorithm for multi-step wind speed forecasting. • Improve the accuracy of multi-step wind speed forecasting. • Modify bat algorithm with CG to improve optimized performance. - Abstract: As one of the most promising sustainable energy sources, wind energy plays an important role in energy development because of its cleanliness without causing pollution. Generally, wind speed forecasting, which has an essential influence on wind power systems, is regarded as a challenging task. Analyses based on single-step wind speed forecasting have been widely used, but their results are insufficient in ensuring the reliability and controllability of wind power systems. In this paper, a new forecasting architecture based on decomposing algorithms and modified neural networks is successfully developed for multi-step wind speed forecasting. Four different hybrid models are contained in this architecture, and to further improve the forecasting performance, a modified bat algorithm (BA) with the conjugate gradient (CG) method is developed to optimize the initial weights between layers and thresholds of the hidden layer of neural networks. To investigate the forecasting abilities of the four models, the wind speed data collected from four different wind power stations in Penglai, China, were used as a case study. The numerical experiments showed that the hybrid model including the singular spectrum analysis and general regression neural network with CG-BA (SSA-CG-BA-GRNN) achieved the most accurate forecasting results in one-step to three-step wind speed forecasting.
Directory of Open Access Journals (Sweden)
Jianzhong Zhou
2018-04-01
Full Text Available With the fast development of artificial intelligence techniques, data-driven modeling approaches are becoming hotspots in both academic research and engineering practice. This paper proposes a novel data-driven T-S fuzzy model to precisely describe the complicated dynamic behaviors of pumped storage generator motor (PSGM. In premise fuzzy partition of the proposed T-S fuzzy model, a novel variable-length tree-seed algorithm based competitive agglomeration (VTSA-CA algorithm is presented to determine the optimal number of clusters automatically and improve the fuzzy clustering performances. Besides, in order to promote modeling accuracy of PSGM, the input and output formats in the T-S fuzzy model are selected by an economical parameter controlled auto-regressive (CAR model derived from a high-order transfer function of PSGM considering the distributed components in the water diversion system of the power plant. The effectiveness and superiority of the T-S fuzzy model for PSGM under different working conditions are validated by performing comparative studies with both practical data and the conventional mechanistic model.
Directory of Open Access Journals (Sweden)
Jingxian Hao
2016-11-01
Full Text Available The rule-based logic threshold control strategy has been frequently used in energy management strategies for hybrid electric vehicles (HEVs owing to its convenience in adjusting parameters, real-time performance, stability, and robustness. However, the logic threshold control parameters cannot usually ensure the best vehicle performance at different driving cycles and conditions. For this reason, the optimization of key parameters is important to improve the fuel economy, dynamic performance, and drivability. In principle, this is a multiparameter nonlinear optimization problem. The logic threshold energy management strategy for an all-wheel-drive HEV is comprehensively analyzed and developed in this study. Seven key parameters to be optimized are extracted. The optimization model of key parameters is proposed from the perspective of fuel economy. The global optimization method, DIRECT algorithm, which has good real-time performance, low computational burden, rapid convergence, is selected to optimize the extracted key parameters globally. The results show that with the optimized parameters, the engine operates more at the high efficiency range resulting into a fuel savings of 7% compared with non-optimized parameters. The proposed method can provide guidance for calibrating the parameters of the vehicle energy management strategy from the perspective of fuel economy.
Directory of Open Access Journals (Sweden)
Mohammad Hemati
2012-04-01
Full Text Available Successful organizations share some identical factors that pave the way for their success. Among these factors, strategic management is the key to success for organizations to contribute more to the competitive world market of today. In this respect, the pivotal role of outsourcing cannot be denied. This research parallelizes the criteria affecting the outsourcing success as presented in Elmuti model with the Balanced score card method in the Tose'e Ta'avon Bank. In this research, questionnaires and interviews with experts helped determine the strategic goals at four perspectives of balanced score card method (at Tose'e Ta'avon Bank and the relative weights were computed for each of balance score card (BSC perspectives by using AHP method. As the next step, the indexes were prioritized by applying the quality function development(QFD technique and considering strategic goals at four perspectives in section "WHAT" and the outsourcing success criteria of Elmuti model in section "HOW". At the end of algorithm, the results are compared with the Elmuti method. Based on the results, the hybrid proposed technique seems to perform better than Elmuti.
A simple model based magnet sorting algorithm for planar hybrid undulators
International Nuclear Information System (INIS)
Rakowsky, G.
2010-01-01
Various magnet sorting strategies have been used to optimize undulator performance, ranging from intuitive pairing of high- and low-strength magnets, to full 3D FEM simulation with 3-axis Helmholtz coil magnet data. In the extreme, swapping magnets in a full field model to minimize trajectory wander and rms phase error can be time consuming. This paper presents a simpler approach, extending the field error signature concept to obtain trajectory displacement, kick angle and phase error signatures for each component of magnetization error from a Radia model of a short hybrid-PM undulator. We demonstrate that steering errors and phase errors are essentially decoupled and scalable from measured X, Y and Z components of magnetization. Then, for any given sequence of magnets, rms trajectory and phase errors are obtained from simple cumulative sums of the scaled displacements and phase errors. The cost function (a weighted sum of these errors) is then minimized by swapping magnets, using one's favorite optimization algorithm. This approach was applied recently at NSLS to a short in-vacuum undulator, which required no subsequent trajectory or phase shimming. Trajectory and phase signatures are also obtained for some mechanical errors, to guide 'virtual shimming' and specifying mechanical tolerances. Some simple inhomogeneities are modeled to assess their error contributions.
A hybrid quantum-inspired genetic algorithm for multiobjective flow shop scheduling.
Li, Bin-Bin; Wang, Ling
2007-06-01
This paper proposes a hybrid quantum-inspired genetic algorithm (HQGA) for the multiobjective flow shop scheduling problem (FSSP), which is a typical NP-hard combinatorial optimization problem with strong engineering backgrounds. On the one hand, a quantum-inspired GA (QGA) based on Q-bit representation is applied for exploration in the discrete 0-1 hyperspace by using the updating operator of quantum gate and genetic operators of Q-bit. Moreover, random-key representation is used to convert the Q-bit representation to job permutation for evaluating the objective values of the schedule solution. On the other hand, permutation-based GA (PGA) is applied for both performing exploration in permutation-based scheduling space and stressing exploitation for good schedule solutions. To evaluate solutions in multiobjective sense, a randomly weighted linear-sum function is used in QGA, and a nondominated sorting technique including classification of Pareto fronts and fitness assignment is applied in PGA with regard to both proximity and diversity of solutions. To maintain the diversity of the population, two trimming techniques for population are proposed. The proposed HQGA is tested based on some multiobjective FSSPs. Simulation results and comparisons based on several performance metrics demonstrate the effectiveness of the proposed HQGA.
A HYBRID GENETIC ALGORITHM-NEURAL NETWORK APPROACH FOR PRICING CORES AND REMANUFACTURED CORES
Directory of Open Access Journals (Sweden)
M. Seidi
2012-01-01
Full Text Available
ENGLISH ABSTRACT:Sustainability has become a major issue in most economies, causing many leading companies to focus on product recovery and reverse logistics. Remanufacturing is an industrial process that makes used products reusable. One of the important aspects in both reverse logistics and remanufacturing is the pricing of returned and remanufactured products (called cores. In this paper, we focus on pricing the cores and remanufactured cores. First we present a mathematical model for this purpose. Since this model does not satisfy our requirements, we propose a simulation optimisation approach. This approach consists of a hybrid genetic algorithm based on a neural network employed as the fitness function. We use automata learning theory to obtain the learning rate required for training the neural network. Numerical results demonstrate that the optimal value of the acquisition price of cores and price of remanufactured cores is obtained by this approach.
AFRIKAANSE OPSOMMING: Volhoubaarheid het ‘n belangrike saak geword in die meeste ekonomieë, wat verskeie maatskappye genoop het om produkherwinning en omgekeerde logistiek te onder oë te neem. Hervervaardiging is ‘n industriële proses wat gebruikte produkte weer bruikbaar maak. Een van die belangrike aspekte in beide omgekeerde logistiek en hervervaardiging is die prysbepaling van herwinne en hervervaardigde produkte. Hierdie artikel fokus op die prysbepalingsaspekte by wyse van ‘n wiskundige model.
Directory of Open Access Journals (Sweden)
A. Anny Leema
2013-07-01
Full Text Available The RFID technology has penetrated the healthcare sector due to its increased functionality, low cost, high reliability, and easy-to-use capabilities. It is being deployed for various applications and the data captured by RFID readers increase according to timestamp resulting in an enormous volume of data duplication, false positive, and false negative. The dirty data stream generated by the RFID readers is one of the main factors limiting the widespread adoption of RFID technology. In order to provide reliable data to RFID application, it is necessary to clean the collected data and this should be done in an effective manner before they are subjected to warehousing. The existing approaches to deal with anomalies are physical, middleware, and deferred approach. The shortcomings of existing approaches are analyzed and found that robust RFID system can be built by integrating the middleware and deferred approach. Our proposed algorithms based on hybrid approach are tested in the healthcare environment which predicts false positive, false negative, and redundant data. In this paper, healthcare environment is simulated using RFID and the data observed by RFID reader consist of anomalies false positive, false negative, and duplication. Experimental evaluation shows that our cleansing methods remove errors in RFID data more accurately and efficiently. Thus, with the aid of the planned data cleaning technique, we can bring down the healthcare costs, optimize business processes, streamline patient identification processes, and improve patient safety.
International Nuclear Information System (INIS)
Bunyamin, Muhammad Afif; Yap, Keem Siah; Aziz, Nur Liyana Afiqah Abdul; Tiong, Sheih Kiong; Wong, Shen Yuong; Kamal, Md Fauzan
2013-01-01
This paper presents a new approach of gas emission estimation in power generation plant using a hybrid Genetic Algorithm (GA) and Linear Regression (LR) (denoted as GA-LR). The LR is one of the approaches that model the relationship between an output dependant variable, y, with one or more explanatory variables or inputs which denoted as x. It is able to estimate unknown model parameters from inputs data. On the other hand, GA is used to search for the optimal solution until specific criteria is met causing termination. These results include providing good solutions as compared to one optimal solution for complex problems. Thus, GA is widely used as feature selection. By combining the LR and GA (GA-LR), this new technique is able to select the most important input features as well as giving more accurate prediction by minimizing the prediction errors. This new technique is able to produce more consistent of gas emission estimation, which may help in reducing population to the environment. In this paper, the study's interest is focused on nitrous oxides (NOx) prediction. The results of the experiment are encouraging.
He, Chenlong; Feng, Zuren; Ren, Zhigang
2018-01-01
In this paper, we propose a connectivity-preserving flocking algorithm for multi-agent systems in which the neighbor set of each agent is determined by the hybrid metric-topological distance so that the interaction topology can be represented as the range-limited Delaunay graph, which combines the properties of the commonly used disk graph and Delaunay graph. As a result, the proposed flocking algorithm has the following advantages over the existing ones. First, range-limited Delaunay graph is sparser than the disk graph so that the information exchange among agents is reduced significantly. Second, some links irrelevant to the connectivity can be dynamically deleted during the evolution of the system. Thus, the proposed flocking algorithm is more flexible than existing algorithms, where links are not allowed to be disconnected once they are created. Finally, the multi-agent system spontaneously generates a regular quasi-lattice formation without imposing the constraint on the ratio of the sensing range of the agent to the desired distance between two adjacent agents. With the interaction topology induced by the hybrid distance, the proposed flocking algorithm can still be implemented in a distributed manner. We prove that the proposed flocking algorithm can steer the multi-agent system to a stable flocking motion, provided the initial interaction topology of multi-agent systems is connected and the hysteresis in link addition is smaller than a derived upper bound. The correctness and effectiveness of the proposed algorithm are verified by extensive numerical simulations, where the flocking algorithms based on the disk and Delaunay graph are compared.
Directory of Open Access Journals (Sweden)
Chenlong He
Full Text Available In this paper, we propose a connectivity-preserving flocking algorithm for multi-agent systems in which the neighbor set of each agent is determined by the hybrid metric-topological distance so that the interaction topology can be represented as the range-limited Delaunay graph, which combines the properties of the commonly used disk graph and Delaunay graph. As a result, the proposed flocking algorithm has the following advantages over the existing ones. First, range-limited Delaunay graph is sparser than the disk graph so that the information exchange among agents is reduced significantly. Second, some links irrelevant to the connectivity can be dynamically deleted during the evolution of the system. Thus, the proposed flocking algorithm is more flexible than existing algorithms, where links are not allowed to be disconnected once they are created. Finally, the multi-agent system spontaneously generates a regular quasi-lattice formation without imposing the constraint on the ratio of the sensing range of the agent to the desired distance between two adjacent agents. With the interaction topology induced by the hybrid distance, the proposed flocking algorithm can still be implemented in a distributed manner. We prove that the proposed flocking algorithm can steer the multi-agent system to a stable flocking motion, provided the initial interaction topology of multi-agent systems is connected and the hysteresis in link addition is smaller than a derived upper bound. The correctness and effectiveness of the proposed algorithm are verified by extensive numerical simulations, where the flocking algorithms based on the disk and Delaunay graph are compared.
Advances in heuristic signal processing and applications
Chatterjee, Amitava; Siarry, Patrick
2013-01-01
There have been significant developments in the design and application of algorithms for both one-dimensional signal processing and multidimensional signal processing, namely image and video processing, with the recent focus changing from a step-by-step procedure of designing the algorithm first and following up with in-depth analysis and performance improvement to instead applying heuristic-based methods to solve signal-processing problems. In this book the contributing authors demonstrate both general-purpose algorithms and those aimed at solving specialized application problems, with a spec
Directory of Open Access Journals (Sweden)
Weizhen Rao
2016-01-01
Full Text Available The classical model of vehicle routing problem (VRP generally minimizes either the total vehicle travelling distance or the total number of dispatched vehicles. Due to the increased importance of environmental sustainability, one variant of VRPs that minimizes the total vehicle fuel consumption has gained much attention. The resulting fuel consumption VRP (FCVRP becomes increasingly important yet difficult. We present a mixed integer programming model for the FCVRP, and fuel consumption is measured through the degree of road gradient. Complexity analysis of FCVRP is presented through analogy with the capacitated VRP. To tackle the FCVRP’s computational intractability, we propose an efficient two-objective hybrid local search algorithm (TOHLS. TOHLS is based on a hybrid local search algorithm (HLS that is also used to solve FCVRP. Based on the Golden CVRP benchmarks, 60 FCVRP instances are generated and tested. Finally, the computational results show that the proposed TOHLS significantly outperforms the HLS.
Ant colony system (ACS with hybrid local search to solve vehicle routing problems
Directory of Open Access Journals (Sweden)
Suphan Sodsoon
2016-02-01
Full Text Available This research applied an Ant Colony System algorithm with a Hybrid Local Search to solve Vehicle Routing Problems (VRP from a single depot when the customers’ requirements are known. VRP is an NP-hard optimization problem and has usually been successfully solved optimum by heuristics. A fleet of vehicles of a specific capacity are used to serve a number of customers at minimum cost, without violating the constraints of vehicle capacity. There are meta-heuristic approaches to solve these problems, such as Simulated Annealing, Genetic Algorithm, Tabu Search and the Ant Colony System algorithm. In this case a hybrid local search was used (Cross-Exchange, Or-Opt and 2-Opt algorithm with an Ant Colony System algorithm. The Experimental Design was tested on 7 various problems from the data set online in the OR-Library. There are five different problems in which customers are randomly distributed with the depot in an approximately central location. The customers were grouped into clusters. The results are evaluated in terms of optimal routes using optimal distances. The experimental results are compared with those obtained from meta-heuristics and they show that the proposed method outperforms six meta-heuristics in the literature.
A Causal and Real-Time Capable Power Management Algorithm for Off-Highway Hybrid Propulsion Systems
Directory of Open Access Journals (Sweden)
Johannes Schalk
2016-12-01
Full Text Available Hybrid propulsion systems allow for a reduction of fuel consumption and pollutant emissions of future off-highway applications. A challenging aspect of a hybridization is the larger number of system components that further increases both the complexity and the diversification of such systems. Hence, beside a standardization on the hardware side for off-highway systems, a high flexibility and modularity of the control schemes is required to employ them in as many different applications as possible. In this paper, a causal optimization-based power management algorithm is introduced to control the power split between engine and electric machine in a hybrid powertrain. The algorithm optimizes the power split to achieve the maximum power supply efficiency and, thereby, considers the energy cost for maintaining the battery charge. Furthermore, the power management provides an optional function to control the battery state of charge in such a way that a target value is attained. In a simulation case study, the potential and the benefits of the proposed power management for the hybrid powertrain—aiming at a reduction of the fuel consumption of a DMU (diesel multiple unit train operated on a representative track—will be shown.
Indian Academy of Sciences (India)
to as 'divide-and-conquer'. Although there has been a large effort in realizing efficient algorithms, there are not many universally accepted algorithm design paradigms. In this article, we illustrate algorithm design techniques such as balancing, greedy strategy, dynamic programming strategy, and backtracking or traversal of ...
International Nuclear Information System (INIS)
Khoshahval, F.; Fadaei, A.
2012-01-01
Highlights: ► The performance of GA, HNN and combination of them in BPP optimization in PWR core are adequate. ► It seems HNN + GA arrives to better final parameter value in comparison with the two other methods. ► The computation time for HNN + GA is higher than GA and HNN. Thus a trade-off is necessary. - Abstract: In the last decades genetic algorithm (GA) and Hopfield Neural Network (HNN) have attracted considerable attention for the solution of optimization problems. In this paper, a hybrid optimization method based on the combination of the GA and HNN is introduced and applied to the burnable poison placement (BPP) problem to increase the quality of the results. BPP in a nuclear reactor core is a combinatorial and complicated problem. Arrangement and the worth of the burnable poisons (BPs) has an impressive effect on the main control parameters of a nuclear reactor. Improper design and arrangement of the BPs can be dangerous with respect to the nuclear reactor safety. In this paper, increasing BP worth along with minimizing the radial power peaking are considered as objective functions. Three optimization algorithms, genetic algorithm, Hopfield neural network optimization and a hybrid optimization method, are applied to the BPP problem and their efficiencies are compared. The hybrid optimization method gives better result in finding a better BP arrangement.
Joint User Scheduling and MU-MIMO Hybrid Beamforming Algorithm for mmWave FDMA Massive MIMO System
Directory of Open Access Journals (Sweden)
Jing Jiang
2016-01-01
Full Text Available The large bandwidth and multipath in millimeter wave (mmWave cellular system assure the existence of frequency selective channels; it is necessary that mmWave system remains with frequency division multiple access (FDMA and user scheduling. But for the hybrid beamforming system, the analog beamforming is implemented by the same phase shifts in the entire frequency band, and the wideband phase shifts may not be harmonious with all users scheduled in frequency resources. This paper proposes a joint user scheduling and multiuser hybrid beamforming algorithm for downlink massive multiple input multiple output (MIMO orthogonal frequency division multiple access (OFDMA systems. In the first step of user scheduling, the users with identical optimal beams form an OFDMA user group and multiplex the entire frequency resource. Then base station (BS allocates the frequency resources for each member of OFDMA user group. An OFDMA user group can be regarded as a virtual user; thus it can support arbitrary MU-MIMO user selection and beamforming algorithms. Further, the analog beamforming vectors employ the best beam of each selected MU-MIMO user and the digital beamforming algorithm is solved by weight MMSE to acquire the best performance gain and mitigate the interuser inference. Simulation results show that hybrid beamforming together with user scheduling can greatly improve the performance of mmWave OFDMA massive MU-MIMO system.
Hybrid-optimization algorithm for the management of a conjunctive-use project and well field design
Chiu, Yung-Chia; Nishikawa, Tracy; Martin, Peter
2012-01-01
Hi-Desert Water District (HDWD), the primary water-management agency in the Warren Groundwater Basin, California, plans to construct a waste water treatment plant to reduce future septic-tank effluent from reaching the groundwater system. The treated waste water will be reclaimed by recharging the groundwater basin via recharge ponds as part of a larger conjunctive-use strategy. HDWD wishes to identify the least-cost conjunctiveuse strategies for managing imported surface water, reclaimed water, and local groundwater. As formulated, the mixed-integer nonlinear programming (MINLP) groundwater-management problem seeks to minimize water delivery costs subject to constraints including potential locations of the new pumping wells, California State regulations, groundwater-level constraints, water-supply demand, available imported water, and pump/recharge capacities. In this study, a hybrid-optimization algorithm, which couples a genetic algorithm and successive-linear programming, is developed to solve the MINLP problem. The algorithm was tested by comparing results to the enumerative solution for a simplified version of the HDWD groundwater-management problem. The results indicate that the hybrid-optimization algorithm can identify the global optimum. The hybrid-optimization algorithm is then applied to solve a complex groundwater-management problem. Sensitivity analyses were also performed to assess the impact of varying the new recharge pond orientation, varying the mixing ratio of reclaimed water and pumped water, and varying the amount of imported water available. The developed conjunctive management model can provide HDWD water managers with information that will improve their ability to manage their surface water, reclaimed water, and groundwater resources.
Hybrid-optimization algorithm for the management of a conjunctive-use project and well field design.
Chiu, Yung-Chia; Nishikawa, Tracy; Martin, Peter
2012-01-01
Hi-Desert Water District (HDWD), the primary water-management agency in the Warren Groundwater Basin, California, plans to construct a waste water treatment plant to reduce future septic-tank effluent from reaching the groundwater system. The treated waste water will be reclaimed by recharging the groundwater basin via recharge ponds as part of a larger conjunctive-use strategy. HDWD wishes to identify the least-cost conjunctive-use strategies for managing imported surface water, reclaimed water, and local groundwater. As formulated, the mixed-integer nonlinear programming (MINLP) groundwater-management problem seeks to minimize water-delivery costs subject to constraints including potential locations of the new pumping wells, California State regulations, groundwater-level constraints, water-supply demand, available imported water, and pump/recharge capacities. In this study, a hybrid-optimization algorithm, which couples a genetic algorithm and successive-linear programming, is developed to solve the MINLP problem. The algorithm was tested by comparing results to the enumerative solution for a simplified version of the HDWD groundwater-management problem. The results indicate that the hybrid-optimization algorithm can identify the global optimum. The hybrid-optimization algorithm is then applied to solve a complex groundwater-management problem. Sensitivity analyses were also performed to assess the impact of varying the new recharge pond orientation, varying the mixing ratio of reclaimed water and pumped water, and varying the amount of imported water available. The developed conjunctive management model can provide HDWD water managers with information that will improve their ability to manage their surface water, reclaimed water, and groundwater resources. Ground Water © 2011, National Ground Water Association. This article is a U.S. Government work and is in the public domain in the USA.