WorldWideScience

Sample records for hybrid gel composite

  1. Gel spinning of PVA composite fibers with high content of multi-walled carbon nanotubes and graphene oxide hybrids

    International Nuclear Information System (INIS)

    Wei, Yizhe; Lai, Dengpan; Zou, Liming; Ling, Xinlong; Lu, Hongwei; Xu, Yongjing

    2015-01-01

    In this report, poly (vinyl alcohol) (PVA) composite fibers with high content of multi-walled carbon nanotubes and graphene oxide (MWCNTs-GO) hybrids were prepared by gel spinning, and were characterized by TGA, DSC, SEM, XL-2 yarn strength tester and electrical conductivity measurement. The total content of MWCNTs-GO hybrids in the PVA composite fibers, which is up to 25 wt%, was confirmed by TGA analysis. The DSC measurement shows that the melting and crystallization peaks decreased after the addition of nano-fillers. This is due to the reason that the motion of PVA chains is completely confined by strong hydrogen bonding interaction between PVA and nano-fillers. After the addtion of GO, the dispersibility of MWCNTs in composite fibers improved slightly. And the tensile strength and Young's modulus increased by 38% and 67%, respectively. This is caused by the increased hydrogen bonding interaction and synergistic effect through hybridization of MWCNTs and GO. More significantly, the electrical conductivity of PVA/MWCNTs/GO composite fibers enhanced by three orders of magnitude with the addition of GO. (paper)

  2. Hybrid composites

    CSIR Research Space (South Africa)

    Jacob John, Maya

    2009-04-01

    Full Text Available mixed short sisal/glass hybrid fibre reinforced low density polyethylene composites was investigated by Kalaprasad et al [25].Chemical surface modifications such as alkali, acetic anhydride, stearic acid, permanganate, maleic anhydride, silane...

  3. Sol-gel approach to the novel organic-inorganic hybrid composite films with ternary europium complex covalently bonded with silica matrix

    International Nuclear Information System (INIS)

    Dong Dewen; Yang Yongsheng; Jiang Bingzheng

    2006-01-01

    Novel organic-inorganic hybrid composite films with ternary lanthanide complex covalently bonded with silica matrix were prepared in situ via co-ordination of N-(3-propyltriethoxysilane)-4-carboxyphthalimide (TAT) and 1,10-phenanthroline (Phen) with europium ion (Eu 3+ ) during a sol-gel approach and characterized by the means of spectrofluorimeter, phosphorimeter and infrared spectrophotometer (FTIR). The resulting transparent films showed improved photophysical properties, i.e. increased luminescence intensity and longer luminescence lifetime, compared with the corresponding binary composite films without Phen. All the results revealed that the intense luminescence of the composite film was attributed to the efficient energy transfer from ligands, especially Phen, to chelated Eu 3+ and the reduced non-radiation through the rigid silica matrix and 'site isolation'

  4. Hybrid sol-gel optical materials

    Science.gov (United States)

    Zeigler, John M.

    1992-01-01

    Hybrid sol-gel materials comprise silicate sols cross-linked with linear polysilane, polygermane, or poly(silane-germane). The sol-gel materials are useful as optical identifiers in tagging and verification applications and, in a different aspect, as stable, visible light transparent non-linear optical materials. Methyl or phenyl silicones, polyaryl sulfides, polyaryl ethers, and rubbery polysilanes may be used in addition to the linear polysilane. The linear polymers cross-link with the sol to form a matrix having high optical transparency, resistance to thermooxidative aging, adherence to a variety of substrates, brittleness, and a resistance to cracking during thermal cycling.

  5. Functionalization of sol-gel zirconia composites with europium complexes

    International Nuclear Information System (INIS)

    Danchova, Nina; Gutzov, Stoyan

    2014-01-01

    Different sol-gel strategies based on functionalization of ZrO 2 :Eu microparticles with 1,10-phenanthroline (phen) and incorporation of colloidal Eu(phen) 2 (NO 3 ) 3 into zirconia have been used to obtain hybrid sol-gel composites with controlled optical properties. The process leads to materials with quantum yields of about 48 % monitoring the 615 nm emission line at 350 nm excitation. Excitation/luminescence spectroscopy, diffuse reflectance spectroscopy and X-ray diffraction have been used to characterize the hybrid zirconia composites. (orig.)

  6. Carbon Redox-Polymer-Gel Hybrid Supercapacitors

    Science.gov (United States)

    Vlad, A.; Singh, N.; Melinte, S.; Gohy, J.-F.; Ajayan, P.M.

    2016-01-01

    Energy storage devices that provide high specific power without compromising on specific energy are highly desirable for many electric-powered applications. Here, we demonstrate that polymer organic radical gel materials support fast bulk-redox charge storage, commensurate to surface double layer ion exchange at carbon electrodes. When integrated with a carbon-based electrical double layer capacitor, nearly ideal electrode properties such as high electrical and ionic conductivity, fast bulk redox and surface charge storage as well as excellent cycling stability are attained. Such hybrid carbon redox-polymer-gel electrodes support unprecedented discharge rate of 1,000C with 50% of the nominal capacity delivered in less than 2 seconds. Devices made with such electrodes hold the potential for battery-scale energy storage while attaining supercapacitor-like power performances. PMID:26917470

  7. Synthesis of organic/inorganic hybrid gel with acid activated clay after γ-ray radiation.

    Science.gov (United States)

    Kim, Donghyun; Lee, Hoik; Sohn, Daewon

    2014-08-01

    A hybrid gel was prepared from acid activated clay (AA clay) and acrylic acid by gamma ray irradiation. Irradiated inorganic particles which have peroxide groups act as initiator because it generates oxide radicals by increasing temperature. Inorganic nanoparticles which are rigid part in hybrid gel also contribute to increase the mechanical property as a crosslinker. We prepared two hybrid gels to compare the effect of acid activated treatment of clay; one is synthesized with raw clay particles and another is synthesized with AA clay particles. The composition and structure of AA clay particles and raw clay particles were confirmed by X-ray diffraction (XRD), X-ray fluorescence instrument and surface area analyzer. And chemical and physical property of hybrid gel with different ratios of acrylic acid and clay particle was tested by Raman spectroscope and universal testing machine (UTM). The synthesized hydrogel with 76% gel contents can elongated approximately 1000% of its original size.

  8. Hybrid carrageenans: isolation, chemical structure, and gel properties.

    Science.gov (United States)

    Hilliou, Loic

    2014-01-01

    Hybrid carrageenan is a special class of carrageenan with niche application in food industry. This polysaccharide is extracted from specific species of seaweeds belonging to the Gigartinales order. This chapter focuses on hybrid carrageenan showing the ability to form gels in water, which is known in the food industry as weak kappa or kappa-2 carrageenan. After introducing the general chemical structure defining hybrid carrageenan, the isolation of the polysaccharide will be discussed focusing on the interplay between seaweed species, extraction parameters, and the hybrid carrageenan chemistry. Then, the rheological experiments used to determine the small and large deformation behavior of gels will be detailed before reviewing the relationships between gel properties and hybrid carrageenan chemistry. © 2014 Elsevier Inc. All rights reserved.

  9. Effects of 35% Carbamide Peroxide Gel on Surface Roughness and Hardness of Composite Resins

    Directory of Open Access Journals (Sweden)

    F. Sharafeddin

    2010-03-01

    Full Text Available Objective: Bleaching agents may not be safe for dental materials. The purpose of this invitro study was to evaluate the effects of Opalescent Quick "in-office bleaching gel" containing 35% carbamide peroxide on the surface roughness and hardness of microfilled(Heliomolar and hybride (Spectrum TPH composite resins.Materials and Methods: Twenty specimens of Spectrum TPH composite resins and twenty Heliomolar composite resins were fabricated using a metallic ring (6.5 mm diameter and 2.5 mm thickness and light cured, then their surfaces were polished. Specimens of each composite resin were divided into two equal groups. Ten specimens of each type of composite were stored in water at 37°C as the control groups and 35% carbamide peroxide gel (Opalescence Quick as the other group for 30 minutes a week for 3 weeks. Then the specimens were subject to roughness and hardness tests.Results: This study revealed that using 35% carbamide peroxide bleaching gels had no significant effect on the surface roughness of Spectrum TPH "hybrid" and Heliomolar "microfilled" composite resins. The surface hardness of Spectrum TPH composite treated with the subject gel significantly increased compared to heliomolar, which had no significant change after treatment with this bleaching gel.Conclusion: If tooth color matching of the composite had been satisfactory after office bleaching with 35% carbamide peroxide gel, this material would have been acceptable because it has no adverse effect on Heliomolar and Spectrum TPH composite resins.

  10. Luminescent hybrid porphyrinosilica obtained by sol gel chemistry

    Directory of Open Access Journals (Sweden)

    Neri Cláudio Roberto

    2003-01-01

    Full Text Available The sol-gel process is a methodology used to obtain organic-inorganic hybrid solids, which open new possibilities in the field of material science. The sol-gel technique offers a low temperature attractive approach for introducing organic molecules into amorphous materials. In order to introduce tetrakis (2-hydroxy-5-nitrophenylporphyrin covalently bounded to a silicate matrix, the inorganic precursor 3-isocyanatopropyltriethoxysilane was added (molar ratio 2:1 to the porphyrin solution in anhydrous dimethylformamide and triethylamine. The isolated porphyrin and the hybrid porphyrinosilica have excitation maximum centred at 400 nm and 424 nm, respectively and the emission spectra for both materials has bands centred at 650 nm and 713 nm. The formation of hybrid matrix was investigated by FTIR.

  11. Novel hybrid sol-gel coatings for corrosion protection of AZ31B magnesium alloy

    International Nuclear Information System (INIS)

    Lamaka, S.V.; Montemor, M.F.; Galio, A.F.; Zheludkevich, M.L.; Trindade, C.; Dick, L.F.; Ferreira, M.G.S.

    2008-01-01

    This work aims to develop and study new anticorrosion films for AZ31B magnesium alloy based on the sol-gel coating approach. Hybrid organic-inorganic sols were synthesized by copolymerization of epoxy-siloxane and titanium or zirconium alkoxides. Tris(trimethylsilyl) phosphate was also used as additive to confer additional corrosion protection to magnesium-based alloy. A sol-gel coating, about 5-μm thick, shows good adhesion to the metal substrate and prevents corrosion attack in 0.005 M NaCl solution for 2 weeks. The sol-gel coating system doped with tris(trimethylsilyl)-phosphate revealed improved corrosion protection of the magnesium alloy due to formation of hydrolytically stable Mg-O-P chemical bonds. The structure and the thickness of the sol-gel film were characterized by transmission electron microscopy (TEM) and scanning electron microscopy (SEM). The corrosion behaviour of AZ31B substrates pre-treated with the sol-gel derived hybrid coatings was tested by electrochemical impedance spectroscopy (EIS). The chemical composition of the silylphosphate-containing sol-gel film at different depths was investigated by X-ray photoelectron spectroscopy (XPS) with depth profiling

  12. Effects of 35% Carbamide Peroxide Gel on Surface Roughness and Hardness of Composite Resins

    OpenAIRE

    Sharafeddin, F.; Jamalipour, GR.

    2010-01-01

    Objective: Bleaching agents may not be safe for dental materials. The purpose of this in-vitro study was to evaluate the effects of Opalescent Quick ?in-office bleaching gel? containing 35% carbamide peroxide on the surface roughness and hardness of microfilled (Heliomolar) and hybride (Spectrum TPH) composite resins. Materials and Methods: Twenty specimens of Spectrum TPH composite resins and twenty Heliomolar composite resins were fabricated using a metallic ring (6.5 mm diameter and 2.5 mm...

  13. Epoxy-silica hybrids by nonaqueous sol-gel process

    Czech Academy of Sciences Publication Activity Database

    Ponyrko, Sergii; Kobera, Libor; Brus, Jiří; Matějka, Libor

    2013-01-01

    Roč. 54, č. 23 (2013), s. 6271-6282 ISSN 0032-3861 R&D Projects: GA ČR GAP108/12/1459 Grant - others:AV ČR(CZ) M200500903 Institutional support: RVO:61389013 Keywords : epoxy-silica hybrid * nonaqueous sol-gel process * gelation Subject RIV: CD - Macromolecular Chemistry Impact factor: 3.766, year: 2013

  14. Polymer sol-gel composite inverse opal structures.

    Science.gov (United States)

    Zhang, Xiaoran; Blanchard, G J

    2015-03-25

    We report on the formation of composite inverse opal structures where the matrix used to form the inverse opal contains both silica, formed using sol-gel chemistry, and poly(ethylene glycol), PEG. We find that the morphology of the inverse opal structure depends on both the amount of PEG incorporated into the matrix and its molecular weight. The extent of organization in the inverse opal structure, which is characterized by scanning electron microscopy and optical reflectance data, is mediated by the chemical bonding interactions between the silica and PEG constituents in the hybrid matrix. Both polymer chain terminus Si-O-C bonding and hydrogen bonding between the polymer backbone oxygens and silanol functionalities can contribute, with the polymer mediating the extent to which Si-O-Si bonds can form within the silica regions of the matrix due to hydrogen-bonding interactions.

  15. Hybrid and hierarchical composite materials

    CERN Document Server

    Kim, Chang-Soo; Sano, Tomoko

    2015-01-01

    This book addresses a broad spectrum of areas in both hybrid materials and hierarchical composites, including recent development of processing technologies, structural designs, modern computer simulation techniques, and the relationships between the processing-structure-property-performance. Each topic is introduced at length with numerous  and detailed examples and over 150 illustrations.   In addition, the authors present a method of categorizing these materials, so that representative examples of all material classes are discussed.

  16. Compositional Modelling of Stochastic Hybrid Systems

    NARCIS (Netherlands)

    Strubbe, S.N.

    2005-01-01

    In this thesis we present a modelling framework for compositional modelling of stochastic hybrid systems. Hybrid systems consist of a combination of continuous and discrete dynamics. The state space of a hybrid system is hybrid in the sense that it consists of a continuous component and a discrete

  17. Shape Memory Composite Hybrid Hinge

    Science.gov (United States)

    Fang, Houfei; Im, Eastwood; Lin, John; Scarborough, Stephen

    2012-01-01

    There are two conventional types of hinges for in-space deployment applications. The first type is mechanically deploying hinges. A typical mechanically deploying hinge is usually composed of several tens of components. It is complicated, heavy, and bulky. More components imply higher deployment failure probability. Due to the existence of relatively moving components among a mechanically deploying hinge, it unavoidably has microdynamic problems. The second type of conventional hinge relies on strain energy for deployment. A tape-spring hinge is a typical strain energy hinge. A fundamental problem of a strain energy hinge is that its deployment dynamic is uncontrollable. Usually, its deployment is associated with a large impact, which is unacceptable for many space applications. Some damping technologies have been experimented with to reduce the impact, but they increased the risks of an unsuccessful deployment. Coalescing strain energy components with shape memory composite (SMC) components to form a hybrid hinge is the solution. SMCs are well suited for deployable structures. A SMC is created from a high-performance fiber and a shape memory polymer resin. When the resin is heated to above its glass transition temperature, the composite becomes flexible and can be folded or packed. Once cooled to below the glass transition temperature, the composite remains in the packed state. When the structure is ready to be deployed, the SMC component is reheated to above the glass transition temperature, and it returns to its as-fabricated shape. A hybrid hinge is composed of two strain energy flanges (also called tape-springs) and one SMC tube. Two folding lines are placed on the SMC tube to avoid excessive strain on the SMC during folding. Two adapters are used to connect the hybrid hinge to its adjacent structural components. While the SMC tube is heated to above its glass transition temperature, a hybrid hinge can be folded and stays at folded status after the temperature

  18. Development of an injectable chitosan/marine collagen composite gel

    International Nuclear Information System (INIS)

    Wang Wei; Itoh, Soichiro; Aizawa, Tomoyasu; Demura, Makoto; Okawa, Atsushi; Sakai, Katsuyoshi; Ohkuma, Tsuneo

    2010-01-01

    A chitosan/marine-originated collagen composite has been developed. This composite gel was characterized and its biocompatibility, as well as an inflammatory reaction, was observed. The chitosan gel including N-3-carboxypropanoil-6-O-(carboxymethyl) chitosan of 3 mol%, 6-O-(carboxymethyl) chitosan of 62 mol% and 6-O-(carboxymethyl) chitin of 35 mol% was prepared and compounded with the salmon atelocollagen (SA) gel at different mixture ratios. The composite gels were injected subcutaneously in to the back of rats. The specimens were harvested for a histological survey as well as a tumor necrosis factor-alpha (TNF-α) assay by ELISA. The inflammatory cell infiltration and release of TNF-α were successively controlled low with the ratio of SA to chitosan at 10:90 or 20:80. The SA gel first, within 2 weeks, and then chitosan in the composite gel were slowly absorbed after implantation, followed by soft tissue formation. It is expected that this composite gel will be available as a carrier for tissue filler and drug delivery systems.

  19. Sol-gel coatings on carbon/carbon composites

    International Nuclear Information System (INIS)

    Sim, S.M.; Krabill, R.M.; Dalzell, W.J. Jr.; Chu, P.Y.; Clark, D.E.

    1986-01-01

    The need for structural materials that can withstand severe environments up to 4000 0 F has promulgated the investigation of sol-gel derived ceramic and composite coatings on carbon/carbon composite materials. Alumina and zirconia sols have been deposited via thermophoresis on carbon/carbon substrates

  20. On the development of an intrinsic hybrid composite

    International Nuclear Information System (INIS)

    Kießling, R; Ihlemann, J; Riemer, M; Drossel, W-G; Scharf, I; Lampke, T; Sharafiev, S; Pouya, M; Wagner, M F-X

    2016-01-01

    Hybrid parts, which combine low weight with high strength, are moving into the focus of the automotive industry, due to their high potential for usage in the field of crash-relevant structures. In this contribution, the development of an intrinsic hybrid composite is presented, with a focus on the manufacturing process, complex simulations of the material behaviour and material testing. The hybrid composite is made up of a continuous fibre- reinforced plastic (FRP), in which a metallic insert is integrated. The mechanical behaviour of the individual components is characterised. For material modelling, an approach is pointed out that enables modelling at large strains by directly connected rheological elements. The connection between the FRP and the metallic insert is realised by a combination of form fit and adhesive bonds. On the one hand, adhesive bonds are generated within a sol gel process. On the other hand, local form elements of the metallic insert are pressed into the FRP. We show how these form elements are generated during the macroscopic forming process. In addition, the applied sol gel process is explained. Finally, we consider design concepts for a specimen type for high strain testing of the resulting interfaces. (paper)

  1. Synthesis and characterization of cds-p (nipam-co-maa) hybrid micro gels

    International Nuclear Information System (INIS)

    Khan, M.S.; Khan, G.T.; Khan, A.

    2014-01-01

    Copolymer containing both pH and thermo sensitive properties are very much interesting due to their broad nature to various stimuli. Further, the incorporation of inorganic nanoparticles into stimuli responsive copolymers enhances their utility in different applied nature properties. In the present work such an attempt is made to synthesize copolymer of N-isopropyl acrylamide (NIPAM) and Methacrylic acid (MAA) with CdS nanoparticles. The copolymer of N-isopropyl acrylamide (NIPAM) and Methacrylic acid (MAA) was prepared through emulsion polymerization technique with various compositions and characterized by Fourier transform infrared spectroscopy (FTIR). The microspheres thus prepared were employed as micro-reactors for the deposition of semiconductor cadmium sulfide (CdS) nanoparticles. The obtained composite was characterized using optical, structural and thermal techniques. The micro gels were found to be stable up to 200 degree C. The crystal structure and grain size of Cadmium sulfide-poly (isopropylacrylamide-co-methacrylic acid) (CdS-P(NIPAM-co-MAA)) hybrid micro gels was studied by using X - ray Diffraction. UV Visible spectroscopy and photoluminescence spectroscopy was engaged to get the optical properties of the samples. It was found that the synthesized nanoparticles have a blue shift (higher energy) at about 360 nm which may be due to the typical quantum confinement effects. (author)

  2. Biodegradable and adjustable sol-gel glass based hybrid scaffolds from multi-armed oligomeric building blocks.

    Science.gov (United States)

    Kascholke, Christian; Hendrikx, Stephan; Flath, Tobias; Kuzmenka, Dzmitry; Dörfler, Hans-Martin; Schumann, Dirk; Gressenbuch, Mathias; Schulze, F Peter; Schulz-Siegmund, Michaela; Hacker, Michael C

    2017-11-01

    Biodegradability is a crucial characteristic to improve the clinical potential of sol-gel-derived glass materials. To this end, a set of degradable organic/inorganic class II hybrids from a tetraethoxysilane(TEOS)-derived silica sol and oligovalent cross-linker oligomers containing oligo(d,l-lactide) domains was developed and characterized. A series of 18 oligomers (Mn: 1100-3200Da) with different degrees of ethoxylation and varying length of oligoester units was established and chemical composition was determined. Applicability of an established indirect rapid prototyping method enabled fabrication of a total of 85 different hybrid scaffold formulations from 3-isocyanatopropyltriethoxysilane-functionalized macromers. In vitro degradation was analyzed over 12months and a continuous linear weight loss (0.2-0.5wt%/d) combined with only moderate material swelling was detected which was controlled by oligo(lactide) content and matrix hydrophilicity. Compressive strength (2-30MPa) and compressive modulus (44-716MPa) were determined and total content, oligo(ethylene oxide) content, oligo(lactide) content and molecular weight of the oligomeric cross-linkers as well as material porosity were identified as the main factors determining hybrid mechanics. Cytocompatibility was assessed by cell culture experiments with human adipose tissue-derived stem cells (hASC). Cell migration into the entire scaffold pore network was indicated and continuous proliferation over 14days was found. ALP activity linearly increased over 2weeks indicating osteogenic differentiation. The presented glass-based hybrid concept with precisely adjustable material properties holds promise for regenerative purposes. Adaption of degradation kinetics toward physiological relevance is still an unmet challenge of (bio-)glass engineering. We therefore present a glass-derived hybrid material with adjustable degradation. A flexible design concept based on degradable multi-armed oligomers was combined with an

  3. Hybrid Simulation of Composite Structures

    DEFF Research Database (Denmark)

    Høgh, Jacob Herold

    experiment. The technique has primarily been used within earthquake engineering but many other fields of engineering have utilized the method with benefit. However, these previous efforts have focused on structures with a simple boundary between the numerical and physical substructure i.e. few degrees...... the transfer system and the control and monitoring techniques in the shared boundary is therefore a key issue in this type of hybrid simulation. During the research, hybrid simulation platforms have been programmed capable of running on different time scales with advanced control and monitoring techniques...

  4. Preparation and characterization of silk/silica hybrid biomaterials by sol-gel crosslinking process

    Energy Technology Data Exchange (ETDEWEB)

    Hou Aiqin, E-mail: aiqinhou@dhu.edu.c [National Engineering Research Center for Dyeing and Finishing of Textiles, Donghua University, 3H, 2999 North Renmin Road, Songjiang, Shanghai 201620 (China); Chen Huawei [National Engineering Research Center for Dyeing and Finishing of Textiles, Donghua University, 3H, 2999 North Renmin Road, Songjiang, Shanghai 201620 (China)

    2010-03-15

    The silk/silica hybrid biomaterials are synthesized by sol-gel crosslinking process. The chemical and morphological structures of silk/silica hybrids are investigated with micro-FT-IR spectra, X-ray diffraction, SEM, AFM, and DSC. The results show that the crosslinking reactions among inorganic nano-particles, fibroin and 2,4,6-tri[(2-epihydrin-3-bimethyl-ammonium)propyl]-1,3,5-triazine chloride (Tri-EBAC) take place during sol-gel process. The silk/silica hybrids form new molecular structures containing not only organic fibroin but also inorganic nano-silica particles. The inorganic particles are bounded to the fibroin through covalent bonds. The silk/silica hybrids can form excellent film with very even nanometer particles. The thermal properties of organic/inorganic hybrid are improved.

  5. Preparation and characterization of silk/silica hybrid biomaterials by sol-gel crosslinking process

    International Nuclear Information System (INIS)

    Hou Aiqin; Chen Huawei

    2010-01-01

    The silk/silica hybrid biomaterials are synthesized by sol-gel crosslinking process. The chemical and morphological structures of silk/silica hybrids are investigated with micro-FT-IR spectra, X-ray diffraction, SEM, AFM, and DSC. The results show that the crosslinking reactions among inorganic nano-particles, fibroin and 2,4,6-tri[(2-epihydrin-3-bimethyl-ammonium)propyl]-1,3,5-triazine chloride (Tri-EBAC) take place during sol-gel process. The silk/silica hybrids form new molecular structures containing not only organic fibroin but also inorganic nano-silica particles. The inorganic particles are bounded to the fibroin through covalent bonds. The silk/silica hybrids can form excellent film with very even nanometer particles. The thermal properties of organic/inorganic hybrid are improved.

  6. Hybrid Ceramic Matrix Fibrous Composites: an Overview

    Science.gov (United States)

    Naslain, R.

    2011-10-01

    Ceramic-Matrix Composites (CMCs) consist of a ceramic fiber architecture in a ceramic matrix, bonded together through a thin interphase. The present contribution is limited to non-oxide CMCs. Their constituents being oxidation-prone, they are protected by external coatings. We state here that CMCs display a hybrid feature, when at least one of their components is not homogeneous from a chemical or microstructural standpoint. Hybrid fiber architectures are used to tailor the mechanical or thermal CMC-properties whereas hybrid interphases, matrices and coatings to improve CMC resistance to aggressive environments.

  7. Hybrid Ceramic Matrix Fibrous Composites: an Overview

    International Nuclear Information System (INIS)

    Naslain, R

    2011-01-01

    Ceramic-Matrix Composites (CMCs) consist of a ceramic fiber architecture in a ceramic matrix, bonded together through a thin interphase. The present contribution is limited to non-oxide CMCs. Their constituents being oxidation-prone, they are protected by external coatings. We state here that CMCs display a hybrid feature, when at least one of their components is not homogeneous from a chemical or microstructural standpoint. Hybrid fiber architectures are used to tailor the mechanical or thermal CMC-properties whereas hybrid interphases, matrices and coatings to improve CMC resistance to aggressive environments.

  8. Development of novel biocompatible hybrid nanocomposites based on polyurethane-silica prepared by sol gel process

    Energy Technology Data Exchange (ETDEWEB)

    Rashti, Ali [Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Yahyaei, Hossein [Department of Polymer Engineering and Color Technology, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Firoozi, Saman [Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Ramezani, Sara [Department of Neuroscience, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Rahiminejad, Ali [Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Karimi, Roya [Department of Tissue Engineering and Applied Cell Science, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Farzaneh, Khadijeh [Tehran Heart Center, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Mohseni, Mohsen [Department of Polymer Engineering and Color Technology, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of); Ghanbari, Hossein, E-mail: hghanbari@tums.ac.ir [Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Tehran Heart Center, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Medical Biomaterials Research Center, Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of)

    2016-12-01

    Due to high biocompatibility, polyurethane has found many applications, particularly in development of biomedical devices. A new nanocomposite based on thermoset polyurethane and silica nanoparticles was synthesized using sol-gel method. Sol-gel process was fulfilled in two acidic and basic conditions by using tetraethylorthosilicate (TEOS) and trimethoxyisocyanatesilane as precursors. The hybrid films characterized for mechanical and surface properties using tensile strength, contact angle, ATR-FTIR and scanning electron microscopy. Biocompatibility and cytotoxicity of the hybrids were assessed using standard MTT, LDH and TUNEL assays. The results revealed that incorporation of silica nanoparticles was significantly improved tensile strength and mechanical properties of the hybrids. Based on the contact angle results, silica nanoparticles increased hydrophilicity of the hybrids. Biocompatibility by using human lung epithelial cell line (MRC-5) demonstrated that the hybrids were significantly less cytotoxic compared to pristine polymer as tested by MTT and LDH assays. TUNEL assay revealed no signs of apoptosis in all tested samples. The results of this study demonstrated that incorporation of silica nanoparticles into polyurethane lead to the enhancement of biocompatibility, indicating that these hybrids could potentially be used in biomedical field in particular as a new coating for medical implants. - Highlights: • Nanocomposites based on polyurethane and nanosilica prepared by sol-gel method fabricated • Addition of inorganic phase improved mechanical properties. • Nanosilica prepared by sol-gel method increased hydrophilicity. • By adding nanosilica to polyurethane biocompatibility increased significantly.

  9. Tunable Optical Properties of Metal Nanoparticle Sol-Gel Composites

    Science.gov (United States)

    Smith, David D.; Snow, Lanee A.; Sibille, Laurent; Ignont, Erica

    2001-01-01

    We demonstrate that the linear and non-linear optical properties of sol-gels containing metal nanoparticles are highly tunable with porosity. Moreover, we extend the technique of immersion spectroscopy to inhomogeneous hosts, such as aerogels, and determine rigorous bounds for the average fractional composition of each component, i.e., the porosity of the aerogel, or equivalently, for these materials, the catalytic dispersion. Sol-gels containing noble metal nanoparticles were fabricated and a significant blue-shift in the surface plasmon resonance (SPR) was observed upon formation of an aerogel, as a result of the decrease in the dielectric constant of the matrix upon supercritical extraction of the solvent. However, as a result of chemical interface damping and aggregation this blue-shift does not strictly obey standard effective medium theories. Mitigation of these complications is achieved by avoiding the use of alcohol and by annealing the samples in a reducing atmosphere.

  10. TiO2/PCL hybrid materials synthesized via sol–gel technique for biomedical applications

    International Nuclear Information System (INIS)

    Catauro, M.; Bollino, F.; Papale, F.; Marciano, S.; Pacifico, S.

    2015-01-01

    The aim of the present work has been the synthesis of organic/inorganic hybrid materials based on titanium dioxide and poly(ε-caprolactone) (PCL) to be used in the biomedical field. Several materials have been synthesized using sol–gel methods by adding different amounts of polymer to the inorganic sol. The obtained gels have been characterized using Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM) and atomic force microscopy (AFM). The FT-IR data allowed us to hypothesize that the structure formed was that of an interpenetrating network, realized by hydrogen bonds between Ti-OH groups in the sol–gel intermediate species and carbonyl groups in the polymer repeating units. SEM and AFM analyses highlighted that the obtained materials were nanostructurated hybrids. To evaluate the biological properties of the hybrids, their bioactivity and cytotoxicity were investigated as a function of the PCL amount. The bioactivity of the synthesized systems was proven by the formation of a hydroxyapatite layer on the surface of samples soaked in a fluid simulating human blood plasma (SBF). MTT cytotoxicity tests and Trypan Blue dye exclusion tests were carried out exposing NIH-3T3 mouse embryonic fibroblasts for 24 and 48 h to extracts from the investigated hybrid materials. The results showed that all the hybrids had a non-cytotoxic effect on target cells. - Highlights: • TiO 2 /PCL hybrids were obtained by the sol–gel process for biomedical applications. • Synthesized materials were found to be first-class hybrid nanocomposites. • Hybrids appear to be bioactive, a fundamental characteristic for osseointegration. • MTT and Trypan Blue viability test show that the materials are biocompatible. • The organic phase is able to modulate the biocompatibility of the materials

  11. Design of Hybrid Gels Based on Gellan-Cholesterol Derivative and P90G Liposomes for Drug Depot Applications

    Directory of Open Access Journals (Sweden)

    Nicole Zoratto

    2017-05-01

    Full Text Available Gels are extensively studied in the drug delivery field because of their potential benefits in therapeutics. Depot gel systems fall in this area, and the interest in their development has been focused on long-lasting, biocompatible, and resorbable delivery devices. The present work describes a new class of hybrid gels that stem from the interaction between liposomes based on P90G phospholipid and the cholesterol derivative of the polysaccharide gellan. The mechanical properties of these gels and the delivery profiles of the anti-inflammatory model drug diclofenac embedded in such systems confirmed the suitability of these hybrid gels as a good candidate for drug depot applications.

  12. Porous olivine composites synthesized by sol-gel technique

    Energy Technology Data Exchange (ETDEWEB)

    Dominko, R.; Bele, M.; Gaberscek, M.; Jamnik, J. [National Institute of Chemistry, P.O. Box 660, SI-1001 Ljubljana (Slovenia); Remskar, M.; Hanzel, D. [Jozef Stefan Institute, Jamova 39, SI-1000 Ljubljana (Slovenia); Goupil, J.M. [ENSICAEN, UMR CNRS 6506, Catalyse and Spectrochimie Lab, F-14050 Caen (France); Pejovnik, S. [Faculty of Chemistry and Chemical Technology, University of Ljubljana, Askerceva 5, SI-1000 Ljubljana (Slovenia)

    2006-02-28

    Porous LiMPO{sub 4}/C composites (where M stands for Fe and/or Mn) with micro-sized particles were synthesised by sol-gel technique. Particles porosity is discussed in terms of qualitative results obtained from SEM micrographs and in terms of quantitative results obtained from N{sub 2} adsorption isotherms. Porous particles could be described as an inverse picture of nanoparticulate arrangement, where the pores serve as channels for lithium supply and the distance between the pores determines the materials kinetics. Tests show that the electrochemical behaviour of porous LiMPO{sub 4}/C composite is comparable with the results from the literature. The best electrochemical results were obtained with a LiFePO{sub 4}/C composite (over 140mAhg{sup -1} at C/2 rate during continuous cycling). The capacity obtained with LiMnPO{sub 4}/C composite is much lower (40mAhg{sup -1} at C/20 rate), although the textural properties are similar to those observed in the LiFePO{sub 4}/C composite. (author)

  13. Highly efficient solid-state neutron scintillators based on hybrid sol-gel nanocomposite materials

    International Nuclear Information System (INIS)

    Kesanli, Banu; Hong, Kunlun; Meyer, Kent; Im, Hee-Jung; Dai, Sheng

    2006-01-01

    This research highlights opportunities in the formulation of neutron scintillators that not only have high scintillation efficiencies but also can be readily cast into two-dimensional detectors. Series of transparent, crack-free monoliths were prepared from hybrid polystyrene-silica nanocomposites in the presence of arene-containing alkoxide precursor through room temperature sol-gel processing. The monoliths also contain lithium-6 salicylate as a target material for neutron-capture reactions and amphiphilic scintillator solution as a fluorescent sensitizer. Polystyrene was functionalized by trimethoxysilyl group in order to enable the covalent incorporation of aromatic functional groups into the inorganic sol-gel matrices for minimizing macroscopic phase segregation and facilitating lithium-6 doping in the sol-gel samples. Neutron and alpha responses of these hybrid polystyrene-silica monoliths were explored

  14. Non-hydrolytic sol-gel synthesis of epoxysilane-based inorganic-organic hybrid resins

    International Nuclear Information System (INIS)

    Jana, Sunirmal; Lim, Mi Ae; Baek, In Chan; Kim, Chang Hae; Seok, Sang Il

    2008-01-01

    A silica-based inorganic-organic hybrid resins (IOHR) were synthesized by non-hydrolytic sol-gel process from 3-glycidoxypropyltrimethoxysilane (GLYMO) and diphenylsilanediol (DPSD) at a fixed amount of (20 mol%) phenyltrimethoxysilane using barium hydroxide as a catalyst. The confirmation of condensation reaction in the IOHR was done by liquid state 29 Si NMR (Nuclear Magnetic Resonance) spectroscopy, measurement of viscosity as well as weight average molecular weight (W m ) of the IOHR. The W m of the IOHR was varied from 1091 to 2151, depending upon the DPSD content. Fourier transform infrared (FTIR) spectroscopic measurements were performed to investigate the details of vibrational absorption bands in the IOHR. It was seen that up to 50 mol% of DPSD there were no absorption peaks in the region of 3000-3600 cm -1 responsible for O-H groups and it reappeared at 60 mol% of DPSD due to some unreacted OH groups present in the resin. The IOHR at all the compositions was oily transparent liquid, miscible with various organic solvents like toluene, cyclohexanone, chloroform, tehrahydrofuran (THF), etc., and also commercial epoxy resins but immiscible with water. The color of the IOHR was pale yellow, which lightened with increasing DPSD content. The IOHR having 40-50 mol% of DPSD were storable. The refractive index at 632.8 nm of the resin films varied from 1.556 to 1.588, depending upon the resin composition. Physico-chemical properties such as the thermal stability, visible transparency, etc. after curing were investigated as a function of the chemical composition

  15. Uncoupling the Impact of Fracture Properties and Composition on Sensory Perception of Emulsion-Filled Gels

    NARCIS (Netherlands)

    Devezeaux de Lavergne, Marine; Strijbosch, V.M.G.; Broek, Van den A.W.M.; Velde, Van de Fred; Stieger, Markus

    2016-01-01

    The aim of the study is to investigate the effect of fracture properties and composition of emulsion-filled gels on dynamic texture perception. Twelve emulsion-filled gels varying in fracture stress (High/Low) and strain (High/Low) were prepared from three binary gel mixtures. Mechanical

  16. Hybrid Nano composite Membranes for PEMFC Applications

    International Nuclear Information System (INIS)

    Niepceron, F.

    2008-03-01

    This work aims at validating a new concept of hybrid materials for the realization of proton exchange membranes, an essential constituent of PEM fuel cells. The originality of this nano-composite hybrid concept corresponds to a separation of the membrane's properties. We investigated the preparation of composite materials based on an inert, relatively low cost, polymer matrix (PVDF-HFP) providing the mechanical stability embedding inorganic fillers providing the necessary properties o f proton-conduction and water retention. The first step of this work consisted in the modification of fumed silica to obtain a proton-conducting filler. An ionic exchange capacity (CEI) equal to 3 meq/g was obtained by the original grafting of sodium poly(styrene-sulfonate) chains from the surface of particles. Nano-composite hybrid membranes PVDF-HFP/functionalized silica were accomplished by a film casting process. The coupling of the morphological and physicochemical analyses validated the percolation of the inorganic phase for 30 wt.% of particles. Beyond 40 % of loading, measured protonic conductivity is higher than the reference membrane Nafion 112. Finally, these membranes presented high performances, above 0.8 W/cm 2 , in single-cell fuel cell tests. A compromise is necessary according to the rate of loading between performances in fuel cell and mechanical properties of the membrane. 50 % appeared as best choice with, until 90 C, a remarkable thermal stability of the performances. (author)

  17. Sol-gel Process in Preparation of Organic-inorganic Hybrid Materials

    Directory of Open Access Journals (Sweden)

    Macan, J

    2008-07-01

    Full Text Available Organic-inorganic hybrid materials are a sort of nanostructured material in which the organic and inorganic phases are mixed at molecular level. The inorganic phase in hybrid materials is formed by the sol-gel process, which consists of reactions of hydrolysis and condensation of metal (usually silicon alkoxides. Flexibility of sol-gel process enables creation of hybrid materials with varying organic and inorganic phases in different ratios, and consequently fine-tuning of their properties. In order to obtain true hybrid materials, contact between the phases should be at molecular level, so phase separation between thermodynamically incompatible organic and inorganic phases has to be prevented. Phase interaction can be improved by formation of hydrogen or covalent bonds between them during preparation of hybrid materials. Covalent bond can be introduced by organically modified silicon alkoxides containing a reactive organic group (substituent capable of reacting with the organic phase. In order to obtain hybrid materials with desired structures, a detailed knowledge of hydrolysis and condensation mechanism is necessary. The choice of catalyst, whether acid or base, has the most significant influence on the structure of the inorganic phase. Other important parameters are alkoxide concentration, water: alkoxide ratio, type of alkoxide groups, solvent used, temperature, purity of chemicals used, etc. Hydrolysis and condensation of organically modified silicon alkoxides are additionally influenced by nature and size of the organic supstituent.

  18. Effects of gel composition on the radiation induced density change in PAG polymer gel dosimeters: a model and experimental investigations

    International Nuclear Information System (INIS)

    Hilts, M; Jirasek, A; Duzenli, C

    2004-01-01

    Due to a density change that occurs in irradiated polyacrylamide gel (PAG), x-ray computed tomography (CT) has emerged as a feasible method of performing polymer gel dosimetry. However, applicability of the technique is currently limited by low sensitivity of the density change to dose. This work investigates the effect of PAG composition on the radiation induced density change and provides direction for future work in improving the sensitivity of CT polymer gel dosimetry. A model is developed that describes the PAG density change (Δρ gel ) as a function of both polymer yield (%P) and an intrinsic density change, per unit polymer yield, that occurs on conversion of monomer to polymer (Δρ polymer ). %P is a function of the fraction of monomer consumed and the weight fraction of monomer in the unirradiated gel (%T). Applying the model to experimental CT and Raman spectroscopic data, two important fundamental properties of the response of PAG density to dose (Δρ gel dose response) are discovered. The first property is that Δρ polymer depends on PAG %C (cross-linking fraction of total monomer) such that low and high %C PAGs exhibit a higher Δρ polymer than do more intermediate %C PAGs. This relationship is opposite to the relationship of polymer yield to %C and is explained by the effect of %C on the type of polymer formed. The second property is that the Δρ gel dose response is linearly dependent on %T. From the model, the inference is that, at least for %T≤12%, monomer consumption and Δρ polymer depend solely on %C. In terms of optimizing CT polymer gel dosimetry for high sensitivity, these results indicate that Δρ polymer can be expected to vary with each polymer gel system and thus should be considered when choosing a polymer gel for CT gel dosimetry. However, Δρ polymer and %P cannot be maximized simultaneously and maximizing %P, by choosing gels with intermediate %C and high %T, is found to have the greatest impact on increasing the

  19. Control and design of volumetric composition in pultruded hybrid fibre composites

    DEFF Research Database (Denmark)

    Madsen, Bo; Hashemi, Fariborz; Tahir, Paridah

    2016-01-01

    composition (i.e. volume fractions of fibres, matrix and porosity) in hybrid fibre composites. The model is based on a constant local fibre volume fraction criterion. Good agreement is found between model predictions and experimental data of pultruded hybrid kenaf/glass fibre composites with variable hybrid...... fibre weight mixing ratios. To demonstrate the suitability of the model, simulations are performed for four different cases of volumetric composition in hybrid kenaf/glass composites....

  20. Biological evaluation of zirconia/PEG hybrid materials synthesized via sol–gel technique

    Energy Technology Data Exchange (ETDEWEB)

    Catauro, M., E-mail: michelina.catauro@unina2.it [Department of Industrial and Information Engineering, Second University of Naples, Via Roma 29, 81031 Aversa (Italy); Papale, F.; Bollino, F. [Department of Industrial and Information Engineering, Second University of Naples, Via Roma 29, 81031 Aversa (Italy); Gallicchio, M.; Pacifico, S. [Department Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, Via Vivaldi 43, 81100 Caserta (Italy)

    2014-07-01

    The objective of the following study has been the synthesis via sol–gel and the characterization of novel organic–inorganic hybrid materials to be used in biomedical field. The prepared materials consist of an inorganic zirconia matrix containing as organic component the polyethylene glycol (PEG), a water-soluble polymer used in medical and pharmaceutical fields. Various hybrids have been synthesized changing the molar ratio between the organic and inorganic parts. Fourier transform spectroscopy suggests that the structure of the interpenetrating network is realized by hydrogen bonds between the Zr-OH group in the sol–gel intermediate species and both the terminal alcoholic group and ethereal oxygen atoms in the repeating units of polymer The amorphous nature of the gels has been ascertained by X-ray diffraction analysis. The morphology observation has been carried out by using the Scanning Electron Microscope and has confirmed that the obtained materials are nanostructurated hybrids. The bioactivity of the synthesized system has been shown by the formation of a hydroxyapatite layer on the surface of samples soaked in a fluid simulating the human blood plasma. The potential biocompatibility of hybrids has been assessed as performing indirect MTT cytotoxicity assay towards 3T3 cell line at 24, 48, and 72 h exposure times. - Highlights: • ZrO{sub 2}/PEG amorphous class I organic–inorganic hybrid synthesis via sol–gel • Bioactivity evaluation of materials by the formation of apatite on surface in SBF • Biocompatibility test with indirect MTT cytotoxicity assay on NHI 3T3 cell line.

  1. Biological evaluation of zirconia/PEG hybrid materials synthesized via sol–gel technique

    International Nuclear Information System (INIS)

    Catauro, M.; Papale, F.; Bollino, F.; Gallicchio, M.; Pacifico, S.

    2014-01-01

    The objective of the following study has been the synthesis via sol–gel and the characterization of novel organic–inorganic hybrid materials to be used in biomedical field. The prepared materials consist of an inorganic zirconia matrix containing as organic component the polyethylene glycol (PEG), a water-soluble polymer used in medical and pharmaceutical fields. Various hybrids have been synthesized changing the molar ratio between the organic and inorganic parts. Fourier transform spectroscopy suggests that the structure of the interpenetrating network is realized by hydrogen bonds between the Zr-OH group in the sol–gel intermediate species and both the terminal alcoholic group and ethereal oxygen atoms in the repeating units of polymer The amorphous nature of the gels has been ascertained by X-ray diffraction analysis. The morphology observation has been carried out by using the Scanning Electron Microscope and has confirmed that the obtained materials are nanostructurated hybrids. The bioactivity of the synthesized system has been shown by the formation of a hydroxyapatite layer on the surface of samples soaked in a fluid simulating the human blood plasma. The potential biocompatibility of hybrids has been assessed as performing indirect MTT cytotoxicity assay towards 3T3 cell line at 24, 48, and 72 h exposure times. - Highlights: • ZrO 2 /PEG amorphous class I organic–inorganic hybrid synthesis via sol–gel • Bioactivity evaluation of materials by the formation of apatite on surface in SBF • Biocompatibility test with indirect MTT cytotoxicity assay on NHI 3T3 cell line

  2. Indirect rapid prototyping of sol-gel hybrid glass scaffolds for bone regeneration - Effects of organic crosslinker valence, content and molecular weight on mechanical properties.

    Science.gov (United States)

    Hendrikx, Stephan; Kascholke, Christian; Flath, Tobias; Schumann, Dirk; Gressenbuch, Mathias; Schulze, F Peter; Hacker, Michael C; Schulz-Siegmund, Michaela

    2016-04-15

    We present a series of organic/inorganic hybrid sol-gel derived glasses, made from a tetraethoxysilane-derived silica sol (100% SiO2) and oligovalent organic crosslinkers functionalized with 3-isocyanatopropyltriethoxysilane. The material was susceptible to heat sterilization. The hybrids were processed into pore-interconnected scaffolds by an indirect rapid prototyping method, described here for the first time for sol-gel glass materials. A large panel of polyethylene oxide-derived 2- to 4-armed crosslinkers of molecular weights ranging between 170 and 8000Da were incorporated and their effect on scaffold mechanical properties was investigated. By multiple linear regression, 'organic content' and the 'content of ethylene oxide units in the hybrid' were identified as the main factors that determined compressive strength and modulus, respectively. In general, 3- and 4-armed crosslinkers performed better than linear molecules. Compression tests and cell culture experiments with osteoblast-like SaOS-2 cells showed that macroporous scaffolds can be produced with compressive strengths of up to 33±2MPa and with a pore structure that allows cells to grow deep into the scaffolds and form mineral deposits. Compressive moduli between 27±7MPa and 568±98MPa were obtained depending on the hybrid composition and problems associated with the inherent brittleness of sol-gel glass materials could be overcome. SaOS-2 cells showed cytocompatibility on hybrid glass scaffolds and mineral accumulation started as early as day 7. On day 14, we also found mineral accumulation on control hybrid glass scaffolds without cells, indicating a positive effect of the hybrid glass on mineral accumulation. We produced a hybrid sol-gel glass material with significantly improved mechanical properties towards an application in bone regeneration and processed the material into macroporous scaffolds of controlled architecture by indirect rapid prototyping. We were able to produce macroporous materials

  3. Synthesis of biocompatible hydrophobic silica-gelatin nano-hybrid by sol-gel process.

    Science.gov (United States)

    Smitha, S; Shajesh, P; Mukundan, P; Nair, T D R; Warrier, K G K

    2007-03-15

    Silica-biopolymer hybrid has been synthesised using colloidal silica as the precursor for silica and gelatin as the biopolymer counterpart. The surface modification of the hybrid material has been done with methyltrimethoxysilane leading to the formation of biocompatible hydrophobic silica-gelatin hybrid. Here we are reporting hydrophobic silica-gelatin hybrid and coating precursor for the first time. The hybrid gel has been evaluated for chemical modification, thermal degradation, hydrophobicity, particle size, transparency under the UV-visible region and morphology. FTIR spectroscopy has been used to verify the presence of CH(3) groups which introduce hydrophobicity to the SiO2-MTMS-gelatin hybrids. The hydrophobic property has also been tailored by varying the concentration of methyltrimethoxysilane. Contact angle by Wilhelmy plate method of transparent hydrophobic silica-gelatin coatings has been found to be as high as approximately 95 degrees . Oxidation of the organic group which induces the hydrophobic character occurs at 530 degrees C which indicates that the surface hydrophobicity is retained up to that temperature. Optical transmittance of SiO2-MTMS-gelatin hybrid coatings on glass substrates has been found to be close to 100% which will enable the hybrid for possible optical applications and also for preparation of transparent biocompatible hydrophobic coatings on biological substrates such as leather.

  4. Resin infusion of layered metal/composite hybrid and resulting metal/composite hybrid laminate

    Science.gov (United States)

    Cano, Roberto J. (Inventor); Grimsley, Brian W. (Inventor); Weiser, Erik S. (Inventor); Jensen, Brian J. (Inventor)

    2009-01-01

    A method of fabricating a metal/composite hybrid laminate is provided. One or more layered arrangements are stacked on a solid base to form a layered structure. Each layered arrangement is defined by a fibrous material and a perforated metal sheet. A resin in its liquid state is introduced along a portion of the layered structure while a differential pressure is applied across the laminate structure until the resin permeates the fibrous material of each layered arrangement and fills perforations in each perforated metal sheet. The resin is cured thereby yielding a metal/composite hybrid laminate.

  5. Thermal stability of octadecylsilane hybrid silicas prepared by grafting and sol-gel methods

    International Nuclear Information System (INIS)

    Brambilla, Rodrigo; Santos, Joao H.Z. dos; Miranda, Marcia S.L.; Frost, Ray L.

    2008-01-01

    Hybrid silicas bearing octadecylsilane groups were prepared by grafting and sol-gel (SG) methods. The effect of the preparative route on the thermal stability was evaluated by means of thermal gravimetric analysis (TGA), infrared emission spectroscopy (IRES) and, complementary, by 13 C solid-state nuclear magnetic resonance ( 13 C NMR) and matrix assisted laser deionization time of flight mass spectroscopy (MALDI-TOF-MS). Silicas prepared by the grafting route seem to be slightly more stable than those produced by the sol-gel method. This behavior seems to be associated to the preparative route, since grafting affords a liquid-like conformation, while in the case of sol-gel a highly organized crystalline chain conformation was observed

  6. Hybrid Thin Film Organosilica Sol-Gel Coatings To Support Neuronal Growth and Limit Astrocyte Growth.

    Science.gov (United States)

    Capeletti, Larissa Brentano; Cardoso, Mateus Borba; Dos Santos, João Henrique Zimnoch; He, Wei

    2016-10-07

    Thin films of silica prepared by a sol-gel process are becoming a feasible coating option for surface modification of implantable neural sensors without imposing adverse effects on the devices' electrical properties. In order to advance the application of such silica-based coatings in the context of neural interfacing, the characteristics of silica sol-gel are further tailored to gain active control of interactions between cells and the coating materials. By incorporating various readily available organotrialkoxysilanes carrying distinct organic functional groups during the sol-gel process, a library of hybrid organosilica coatings is developed and investigated. In vitro neural cultures using PC12 cells and primary cortical neurons both reveal that, among these different types of hybrid organosilica, the introduction of aminopropyl groups drastically transforms the silica into robust neural permissive substrate, supporting neuron adhesion and neurite outgrowth. Moreover, when this organosilica is cultured with astrocytes, a key type of glial cells responsible for glial scar response toward neural implants, such cell growth promoting effect is not observed. These findings highlight the potential of organo-group-bearing silica sol-gel to function as advanced coating materials to selectively modulate cell response and promote neural integration with implantable sensing devices.

  7. Composite gel polymer electrolyte for lithium ion batteries

    Science.gov (United States)

    Naderi, Roya

    Composite gel polymer electrolyte (CGPE) films, consisting of poly (vinylidene fluoride-hexafluoropropylene) (PVdF-HFP) as the membrane, DMF and PC as solvent and plasticizing agent, mixture of charge modified TiO2 and SiO 2 nano particles as ionic conductors, and LiClO4+LiPF 6 as lithium salts were fabricated. Following the work done by Li et al., CGPE was coated on an O2-plasma treated trilayer polypropylene-polyethylene-polypropylene membrane separator using solution casting technique in order to improve the adhesive properties of gel polymer electrolyte to the separator membrane and its respective ionic conductivity due to decreasing the bulk resistance. In acidic CGPE with, the mixture of acid treated TiO2 and neutral SiO2 nano particles played the role of the charge modified nano fillers with enhanced hydroxyl groups. Likely, the mixture of neutral TiO 2 nano particles with basic SiO2 prepared through the hydrolization of tetraethyl orthosilicate (TEOS) provided a more basic environment due to the residues of NH4OH (Ammonium hydroxide) catalyst. The O2 plasma treated separator was coated with the solution of PVDF-HFP: modified nano fillers: Organic solvents with the mixture ratio of 0.1:0.01:1. After the evaporation of the organic solvents, the dried coated separator was soaked in PC-LiClO4+LiPF6 in EC: DMC:DEC (4:2:4 in volume) solution (300% wt. of PVDF-HFP) to form the final CGPE. Lim et al. has reported the enhanced ionic conductivity of 9.78*10-5 Scm-1 in an acidic composite polystyrene-Al2O3 solid electrolyte system with compared to that of basic and neutral in which the ionic conductivity undergoes an ion hopping process in solid interface rather than a segmental movement of ions through the plasticized polymer chain . Half-cells with graphite anode and Li metal as reference electrode were then assembled and the electrochemical measurements and morphology examinations were successfully carried out. Half cells demonstrated a considerable change in their

  8. Preparation of gold nanoparticles-agarose gel composite and its application in SERS detection

    Science.gov (United States)

    Ma, Xiaoyuan; Xia, Yu; Ni, Lili; Song, Liangjing; Wang, Zhouping

    2014-03-01

    Agarose gel/gold nanoparticles hybrid was prepared by adding gold nanoparticles to preformed agarose gel. Nanocomposite structures and properties were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), and UV-Vis-NIR absorption spectroscopy. Based on the swelling-contraction characteristics of agarose gel and the adjustable localized surface plasmon resonance (LSPR) of the gold nanoparticles, the nanocomposites were used as surface enhanced Raman scattering (SERS) substrate to detect the Raman signal molecules (NBA, MBA, 1NAT). Results revealed that the porous structure of the agarose gel provided a good carrier for the enrichment of the gold nanoparticles. The gold nanoparticles dynamic hot-spot effect arising from the agarose gel contraction loss of water in the air greatly enhanced the Raman signal. Furthermore, the gel could be cleaned with washing solution and recycling could be achieved for Raman detection.

  9. Composite Biomaterials Based on Sol-Gel Mesoporous Silicate Glasses: A Review

    Science.gov (United States)

    Baino, Francesco; Fiorilli, Sonia; Vitale-Brovarone, Chiara

    2017-01-01

    Bioactive glasses are able to bond to bone and stimulate the growth of new tissue while dissolving over time, which makes them ideal materials for regenerative medicine. The advent of mesoporous glasses, which are typically synthesized via sol-gel routes, allowed researchers to develop a broad and versatile class of novel biomaterials that combine superior bone regenerative potential (compared to traditional melt-derived glasses) with the ability of incorporating drugs and various biomolecules for targeted therapy in situ. Mesoporous glass particles can be directly embedded as a bioactive phase within a non-porous (e.g., microspheres), porous (3D scaffolds) or injectable matrix, or be processed to manufacture a surface coating on inorganic or organic (macro)porous substrates, thereby obtaining hierarchical structures with multiscale porosity. This review provides a picture of composite systems and coatings based on mesoporous glasses and highlights the challenges for the future, including the great potential of inorganic–organic hybrid sol-gel biomaterials. PMID:28952496

  10. Modification of gel architecture and TBE/TAE buffer composition to minimize heating during agarose gel electrophoresis.

    Science.gov (United States)

    Sanderson, Brian A; Araki, Naoko; Lilley, Jennifer L; Guerrero, Gilberto; Lewis, L Kevin

    2014-06-01

    Agarose gel electrophoresis of DNA and RNA is routinely performed using buffers containing either Tris, acetate, and EDTA (TAE) or Tris, borate, and EDTA (TBE). Gels are run at a low, constant voltage (∼10 V/cm) to minimize current and asymmetric heating effects, which can induce band artifacts and poor resolution. In this study, alterations of gel structure and conductive media composition were analyzed to identify factors causing higher electrical currents during horizontal slab gel electrophoresis. Current was reduced when thinner gels and smaller chamber buffer volumes were used, but was not influenced by agarose concentration or the presence of ethidium bromide. Current was strongly dependent on the amount and type of EDTA used and on the concentrations of the major acid-base components of each buffer. Interestingly, resolution and the mobilities of circular versus linear plasmid DNAs were also affected by the chemical form and amount of EDTA. With appropriate modifications to gel structure and buffer constituents, electrophoresis could be performed at high voltages (20-25 V/cm), reducing run times by up to 3-fold. The most striking improvements were observed with small DNAs and RNAs (10-100 bp): high voltages and short run times produced sharper bands and higher resolution. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Enhanced emission of nile red fluorescent nanoparticles embedded in hybrid sol-gel glasses.

    Science.gov (United States)

    Ferrer, Maria L; del Monte, Francisco

    2005-01-13

    Highly fluorescent Nile Red (NR) nanoparticles embedded in a hybrid sol-gel glass are reported. The crystallite growth within the confined system created by the porous hybrid matrix results in NR nanoparticles of averaged dimensions below 36 nm. The preparation process allows for the control of both the conformation adopted by single NR molecules prior to aggregation (e.g., near planar) and the configuration of the aggregates (e.g., oblique with phi architecture which ultimately forms the nanoparticles. The full preservation of the fluorescent configuration of the aggregates in the nanoparticles is confirmed through the application of the exciton theory, and it is responsible for the significant increase of the fluorescence emission intensity (e.g., up to 525- and 70-fold as compared to that obtained for single NR molecules embedded in pure and hybrid silica glasses, respectively).

  12. PP composites with Hybrid Nanofillers: NTC phenomenon

    International Nuclear Information System (INIS)

    Sarlin, Juha; Immonen, Kirsi

    2010-01-01

    Electric conductive plastic composites have a wide potential for commercial applications, some examples are EMI shielding housings and components in automotive industry and in consumer electronics, equipments in health care sector and fuel cell components. A phenomenon in conductive composites, especially in composites with carbon based fillers, is change of thermal induced change in conductivity as a result of morphological transitions. Usually the observed changes are practically irreversible. The phenomenon may cause increasing resistivity, usually called as 'positive temperature coefficient' (PTC) or decreasing resistivity, called 'negative temperature coefficient' (NTC), where the new morphology created by heat treatment is more favorable for electric conductivity compared to the original state. The existence of NTC is a sing of the lost potential in material design and processing. Therefore detailed information about the phenomenon gives us tools to develop high performance conductive materials. It this paper we discuss about NTC phenomenon observed in PP composites with CNT or in-situ synthesized CNT-PANi hybrid nanofiller with an amphiphilic dispersing agent. The goal of the paper is not to present a comprehensive model of this phenomenon; we present some experimental results which may be related to polymer-filler interactions. These details are a part of this complicated phenomenon.

  13. Preparation of supramolecular hydrogel-enzyme hybrids exhibiting biomolecule-responsive gel degradation.

    Science.gov (United States)

    Shigemitsu, Hajime; Fujisaku, Takahiro; Onogi, Shoji; Yoshii, Tatsuyuki; Ikeda, Masato; Hamachi, Itaru

    2016-09-01

    Hydrogelators are small, self-assembling molecules that form supramolecular nanofiber networks that exhibit unique dynamic properties. Development of supramolecular hydrogels that degrade in response to various biomolecules could potentially be used for applications in areas such as drug delivery and diagnostics. Here we provide a synthetic procedure for preparing redox-responsive supramolecular hydrogelators that are used to create hydrogels that degrade in response to oxidizing or reducing conditions. The synthesis takes ∼2-4 d, and it can potentially be carried out in parallel to prepare multiple hydrogelator candidates. This described solid-phase peptide synthesis protocol can be used to produce previously described hydrogelators or to construct a focused molecular library to efficiently discover and optimize new hydrogelators. In addition, we describe the preparation of redox-responsive supramolecular hydrogel-enzyme hybrids that are created by mixing aqueous solutions of hydrogelators and enzymes, which requires 2 h for completion. The resultant supramolecular hydrogel-enzyme hybrids exhibit gel degradation in response to various biomolecules, and can be rationally designed by connecting the chemical reactions of the hydrogelators with enzymatic reactions. Gel degradation in response to biomolecules as triggers occurs within a few hours. We also describe the preparation of hydrogel-enzyme hybrids arrayed on flat glass slides, enabling high-throughput analysis of biomolecules such as glucose, uric acid, lactate and so on by gel degradation, which is detectable by the naked eye. The protocol requires ∼6 h to prepare the hydrogel-enzyme hybrid array and to complete the biomolecule assay.

  14. A systematic approach to determine optimal composition of gel used in radiation therapy

    International Nuclear Information System (INIS)

    Chang, Yuan-Jen; Hsieh, Bor-Tsung; Liang, Ji-An

    2011-01-01

    The design of experiment was used to find the optimal composition of N-isopropyl acrylamide (NIPAM) gel. Optical computed tomography was used to scan the polymer gel dosimeter, which was irradiated from 0 to 20 Gy. The study was conducted following a statistical method using a two-level fractional factorial plan involving four variables (gelatin-5% and 6%, NIPAM-3% and 5%, Bis-2.5% and 3%, and THPC-5 and 10 mM). We produced three batches of gels of the same composition to replicate the experiments. Based on the statistical analysis, a regression model was built. The optimal gel composition for the dose range 0-15 Gy with linearity up to 1.000 is as follows: gelatin (5.67%), NIPAM (5%), Bis (2.56%), and THPC (10 mM). The dose response of the NIPAM polymer gel attains stability about 24 h after irradiation and remains stable up to 3 months.

  15. Thixotropic gel-like composition and sterile blood-collecting and separating device

    International Nuclear Information System (INIS)

    Semersky, F.E.

    1980-01-01

    A thixotropic gel-like composition comprising liquid polybutadiene and an inorganic inert filler dispersed therein is adapted for use as a sealing barrier between separated phases of differing densities of a fluid in which said composition has at rest a density intermediate said differing densities, said gel-like composition being substantially resistant to sterilizing radiation. There is also disclosed a pre-packaged blood collecting and separating device which contains a mixture of liquid polybutadiene and an inorganic, inert filler, such as silica, as a thixotropic gel adapted at rest to form a sealing barrier between separated blood phases. The device and gel are subjected to sterilizing radiation to form a substantially sterile device, substantially free of backflow contamination without degradation of the physical properties of the gel. (author)

  16. Boron/aluminum graphite/resin advanced fiber composite hybrids

    Science.gov (United States)

    Chamis, C. C.; Lark, R. F.; Sullivan, T. L.

    1975-01-01

    Fabrication feasibility and potential of an adhesively bonded metal and resin matrix fiber-composite hybrid are determined as an advanced material for aerospace and other structural applications. The results show that using this hybrid concept makes possible a composite design which, when compared with nonhybrid composites, has greater transverse strength, transverse stiffness, and impact resistance with only a small penalty on density and longitudinal properties. The results also show that laminate theory is suitable for predicting the structural response of such hybrids. The sequence of fracture modes indicates that these types of hybrids can be readily designed to meet fail-safe requirements.

  17. Characterization of Polylactic Acid/ Microcrystalline Cellulose/ Montmorillonite Hybrid Composites

    International Nuclear Information System (INIS)

    Reza Arjmandi; Azman Hassan; Haafiz, M.K.M.; Zainoha Zakaria; Inuwa, I.M.

    2014-01-01

    The objective of this study is to investigate the effect of montmorillonite (MMT)/ microcrystalline cellulose (MCC) hybrid fillers on mechanical properties and morphological characteristics of polylactic acid (PLA) composites. PLA/ MMT nano composites and PLA/ MMT/ MCC hybrid composites were prepared by solution casting method. Morphology and tensile properties of PLA composites were investigated using Field emission scanning electron microscopy and Instron tensile testing machine. The maximum tensile strength of PLA/ MMT nano composites was obtained with 5 phr contents of MMT, which corresponding to 30.75 MPa. Based on optimized formulation of PLA/ MMT nano composites (5 phr MMT contents), various amounts of MCC (0 to 7 phr) were added into optimum formulation of PLA/ MMT in order to produce PLA/ MMT/ MCC hybrid composites. Fourier transform infrared spectroscopy revealed some level of interaction between PLA and both MMT and MCC in the hybrid composites. However, the percent elongation at break of the hybrid composites was generally higher than PLA/ MMT nano composites. Additionally, Young's modulus of the PLA/ MMT/ MCC hybrid composites increased gradually with increasing of MCC contents and was higher than PLA/ MMT at all compositions. The present results are the first among a series of experiments that have been designed in order to probe the effect of MMT and MCC in the PLA. (author)

  18. Chitosan gel-embedded moxifloxacin niosomes: An efficient antimicrobial hybrid system for burn infection.

    Science.gov (United States)

    Sohrabi, Shohreh; Haeri, Azadeh; Mahboubi, Arash; Mortazavi, Alireza; Dadashzadeh, Simin

    2016-04-01

    The purpose of this study was to prepare and characterize a hybrid system of moxifloxacin loaded niosomes incorporated into chitosan gel as a potential carrier for topical antimicrobial delivery. The prepared system was characterized regarding entrapment efficiency, particle size, zeta potential, in vitro drug release kinetics, morphology, FTIR analysis, bioadhesive strength and rheological behavior. The effect of different formulation parameters (surfactant type, surfactant to drug ratio, cholesterol percentage and loading methodology) on moxifloxacin entrapment and drug release was evaluated. The antibacterial effectiveness of various formulations was also assessed by measuring the minimal inhibitory concentrations, minimal bactericidal concentrations and agar diffusion assay using Pseudomonas aeruginosa and Staphylococcus aureus as model pathogens. The optimized niosomal formulation showed 73% drug entrapment, 47% drug release in 8h and was ∼290 nm in particle diameter and negatively charged (ζ∼-23 mV). The gel-embedded niosomes exhibited pseudo-plastic flow behavior and more sustained drug release profile compared to niosomes. The niosomal formulation of moxifloxacin was the most efficient system against P. aeruginosa, while gel based formulations were superior against S. aureus. Taken together, moxifloxacin-in-niosomes-in-gels hold great promise for topical microbial infections. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Innovative Formulation Combining Al, Zr and Si Precursors to Obtain Anticorrosion Hybrid Sol-Gel Coating

    Directory of Open Access Journals (Sweden)

    Clément Genet

    2018-05-01

    Full Text Available The aim of our study is to improve the aluminium alloy corrosion resistance with Organic-Inorganic Hybrid (OIH sol-gel coating. Coatings are obtained from unusual formulation with precursors mixing: glycidoxypropyltrimethoxysilane (GPTMS, zirconium (IV propoxide (TPOZ and aluminium tri-sec-butoxide (ASB. This formulation was characterized and compared with sol formulations GPTMS/TPOZ and GPTMS/ASB. In each formulation, a corrosion inhibitor, cerium (III nitrate hexahydrate, is employed to improve the corrosion performance. Coatings obtained from sol based on GPTMS/TPOZ/ASB have good anti-corrosion performances with Natural Salt Spray (NSS resistance of 500 h for a thickness lower than 4 µm. Contact angle measurement showed a coating hydrophobic behaviour. To understand these performances, nuclear magnetic resonance (NMR analyses were performed, results make sol-gel coating condensation evident and are in very good agreement with previous results.

  20. Innovative Formulation Combining Al, Zr and Si Precursors to Obtain Anticorrosion Hybrid Sol-Gel Coating.

    Science.gov (United States)

    Genet, Clément; Menu, Marie-Joëlle; Gavard, Olivier; Ansart, Florence; Gressier, Marie; Montpellaz, Robin

    2018-05-10

    The aim of our study is to improve the aluminium alloy corrosion resistance with Organic-Inorganic Hybrid (OIH) sol-gel coating. Coatings are obtained from unusual formulation with precursors mixing: glycidoxypropyltrimethoxysilane (GPTMS), zirconium (IV) propoxide (TPOZ) and aluminium tri-sec-butoxide (ASB). This formulation was characterized and compared with sol formulations GPTMS/TPOZ and GPTMS/ASB. In each formulation, a corrosion inhibitor, cerium (III) nitrate hexahydrate, is employed to improve the corrosion performance. Coatings obtained from sol based on GPTMS/TPOZ/ASB have good anti-corrosion performances with Natural Salt Spray (NSS) resistance of 500 h for a thickness lower than 4 µm. Contact angle measurement showed a coating hydrophobic behaviour. To understand these performances, nuclear magnetic resonance (NMR) analyses were performed, results make sol-gel coating condensation evident and are in very good agreement with previous results.

  1. Gel electrolytes based on poly(acrylonitrile)/sulpholane with hybrid TiO2/SiO2 filler for advanced lithium polymer batteries

    International Nuclear Information System (INIS)

    Kurc, Beata

    2014-01-01

    Highlights: • Paper describes properties of gel electrolyte based on PAN with TMS and TiO 2 -SiO 2 . • The TiO 2 -SiO 2 oxide composite was precipitated in the emulsion system and used as the fillers. • The capacity of the graphite anode depends on the current rate and the amount of TiO 2 -SiO 2 . • For PE3 electrolyte was obtained practical capacity more than 90% of the theoretical capacity. - Abstract: This paper describes the synthesis and properties of a new type of ceramic fillers for composite polymer gel electrolytes. Hybrid TiO 2 -SiO 2 ceramic powders have been obtained by co-precipitation from titanium(IV) sulfate solution using sodium silicate as the precipitating agent. The resulting submicron-size powders have been applied as fillers for composite polymer gel electrolytes for Li-ion batteries based on polyacrylonitrile (PAN) membranes. The powders and gel electrolytes have been examined structurally and electrochemically, showing favorable properties in terms of electrolyte uptake and electrochemical characteristics in Li-ion cells

  2. Evaluation of hybrid sol-gel incorporated with nanoparticles as nano paint

    International Nuclear Information System (INIS)

    Jameel, Zainab N.; Haider, Adawiya J.; Taha, Samar Y.; Gangopadhyay, Shubhra; Bok, Sangho

    2016-01-01

    A coating with self-cleaning characteristics has been developed using a TiO_2/SiO_2 hybrid sol-gel, TiO_2 nanoparticles and organosilicate nanoparticles (OSNP). A patented technology of the hybrid sol-gel and OSNP was combined with TiO_2 nanoparticles to create the surface chemistry for self-cleaning. Two synthesis methods have been developed to prepare TiO_2 nanoparticles (NPs), resulting in the enhancement of local paint by the addition of anatase and rutile TiO_2 phases. The NPs size as determined by Dynamic Light Scattering (DLS) ranges within of (3-4) and (20-42) nm, which was also confirmed by Scanning Electron Microscopy (SEM). The nanoparticles showed surface charge (zeta-potential, ζ) of +35 and +25.62 mV for the methods, respectively, and ζ values of +41.31 and 34.02 mV for anatase and rutile phases, respectively. The NPs were mixed with the coating solution (i.e., hybrid sol-gel and OSNP) in different concentrations and thin films were prepared by spin coating. Self-cleaning tests were performed using Rhodamine B (RhB) as a pollution indicator. The effect of UV-irradiation on the films was also studied. Anatase and rutile incorporated as a mixture with different ratios in local paint and washability as well as a contrast ratio tests were performed. It was found that the addition of TiO_2 NPs in combination with irradiation show a great enhancement of RhB degradation (1%) wt. with a decrease in contact angle and improved washability.

  3. Evaluation of hybrid sol-gel incorporated with nanoparticles as nano paint

    Energy Technology Data Exchange (ETDEWEB)

    Jameel, Zainab N., E-mail: zeinb76-alrekbe@yahoo.com; Haider, Adawiya J., E-mail: adawiyahaider@yahoo.com [Nanotechnology and Advanced Materials Research Center, The University of Technology, Baghdad (Iraq); Taha, Samar Y., E-mail: samarjam2002@yahoo.com [College of Science for Women, University of Baghdad, Baghdad (Iraq); Gangopadhyay, Shubhra, E-mail: gangopadhyays@missouri.edu; Bok, Sangho, E-mail: BokSa@missouri.edu [Department of Electrical and Computer, University of Missouri, Engineering, Building West, Columbia, Missouri 65211 (United States)

    2016-07-25

    A coating with self-cleaning characteristics has been developed using a TiO{sub 2}/SiO{sub 2} hybrid sol-gel, TiO{sub 2} nanoparticles and organosilicate nanoparticles (OSNP). A patented technology of the hybrid sol-gel and OSNP was combined with TiO{sub 2} nanoparticles to create the surface chemistry for self-cleaning. Two synthesis methods have been developed to prepare TiO{sub 2} nanoparticles (NPs), resulting in the enhancement of local paint by the addition of anatase and rutile TiO{sub 2} phases. The NPs size as determined by Dynamic Light Scattering (DLS) ranges within of (3-4) and (20-42) nm, which was also confirmed by Scanning Electron Microscopy (SEM). The nanoparticles showed surface charge (zeta-potential, ζ) of +35 and +25.62 mV for the methods, respectively, and ζ values of +41.31 and 34.02 mV for anatase and rutile phases, respectively. The NPs were mixed with the coating solution (i.e., hybrid sol-gel and OSNP) in different concentrations and thin films were prepared by spin coating. Self-cleaning tests were performed using Rhodamine B (RhB) as a pollution indicator. The effect of UV-irradiation on the films was also studied. Anatase and rutile incorporated as a mixture with different ratios in local paint and washability as well as a contrast ratio tests were performed. It was found that the addition of TiO{sub 2} NPs in combination with irradiation show a great enhancement of RhB degradation (1%) wt. with a decrease in contact angle and improved washability.

  4. Applications and Properties of Ionic Liquid- Based Gels and Soft Solid Composites

    Science.gov (United States)

    Voss, Bret Alan McGinness

    2011-12-01

    Solid-liquid composites (gels) have a combination of properties that afford new material applications in which high solute diffusion is desirable. These composites have a soft-solid mechanical integrity and will not flow under gravity, but entrain a liquid matrix (i.e. 60-98 mass %) which allows for high diffusion and high reactivity. Room temperature ionic liquid (RTILs) are molten organic salts with a melting point below room temperature and negligible vapor pressure. If the RTILs are used as the liquid component of a gel, then the gel matrix will not evaporate (unlike other organic solvents) and may be used for long term applications. This thesis research applies RTIL gels for two new applications; carbon dioxide/nitrogen separation and chemical warfare agent (CWA) barrier and decontamination. Separating CO2 from the flue gas of coal and gas fired power-plants is an increasingly economically and environmentally important gas separation. In this first study, RTIL gels are cast in a supported membrane and gas permeability and ideal selectivity are measured. The RTIL matrix has an inherent affinity for CO2 and provides a high diffusion, hence high permeability (i.e. 500-700 barrer). The solidifying component is a low molecular-weight organic gelator (LMOG) which through physical bonding interactions (i.e. hydrogen bonding, pi-pi stacking and van der Walls forces) forms an entangled network which provides mechanical stability (i.e. increase trans-membrane pressure required to expel selective material from the support). In these studies two LMOGs and five RTILs are used to make supported gel membranes and determine gas permeability and temperature dependent trends. The second application for RTIL gels is a decontaminating barrier for CWAs and toxic industrial compounds (TICs). In these studies a layer of RTIL gel is applied on top of a substrate contaminated with a CWA simulant (i.e. chloroethylethylsulfide, CEES). The gel performs well as a barrier, preventing CEES

  5. Synthesis of hybrid sol-gel coatings for corrosion protection of we54-ae magnesium alloy

    International Nuclear Information System (INIS)

    Hernández-Barrios, C A; Peña, D Y; Coy, A E; Duarte, N Z; Hernández, L M; Viejo, F

    2013-01-01

    The present work shows some preliminary results related to the synthesis, characterization and corrosion evaluation of different hybrid sol-gel coatings applied on the WE54-AE magnesium alloy attending to the two experimental variables, i.e. the precursors ratio and the aging time, which may affect the quality and the electrochemical properties of the coatings resultant. The experimental results confirmed that, under some specific experimental conditions, it was possible to obtain homogeneous and uniform, porous coatings with good corrosion resistance that also permit to accommodate corrosion inhibitors

  6. Optimal Design for Hybrid Ratio of Carbon/Basalt Hybrid Fiber Reinforced Resin Matrix Composites

    Directory of Open Access Journals (Sweden)

    XU Hong

    2017-08-01

    Full Text Available The optimum hybrid ratio range of carbon/basalt hybrid fiber reinforced resin composites was studied. Hybrid fiber composites with nine different hybrid ratios were prepared before tensile test.According to the structural features of plain weave, the unit cell's performance parameters were calculated. Finite element model was established by using SHELL181 in ANSYS. The simulated values of the sample stiffness in the model were approximately similar to the experimental ones. The stress nephogram shows that there is a critical hybrid ratio which divides the failure mechanism of HFRP into single failure state and multiple failure state. The tensile modulus, strength and limit tensile strain of HFRP with 45% resin are simulated by finite element method. The result shows that the tensile modulus of HFRP with 60% hybrid ratio increases by 93.4% compared with basalt fiber composites (BFRP, and the limit tensile strain increases by 11.3% compared with carbon fiber composites(CFRP.

  7. Hybrid fiber and nanopowder reinforced composites for wind turbine blades

    Directory of Open Access Journals (Sweden)

    Nikoloz M. Chikhradze

    2015-01-01

    Full Text Available The results of an investigation into the production of wind turbine blades manufactured using polymer composites reinforced by hybrid (carbon, basalt, glass fibers and strengthened by various nanopowders (oxides, carbides, borides are presented. The hybrid fiber-reinforced composites (HFRC were manufactured with prepreg technology by molding pre-saturated epoxy-strengthened matrix-reinforced fabric. Performance of the manufactured composites was estimated with values of the coefficient of operating condition (COC at a moderate and elevated temperature.

  8. Hybrid Bridge Structures Made of Frp Composite and Concrete

    Science.gov (United States)

    Rajchel, Mateusz; Siwowski, Tomasz

    2017-09-01

    Despite many advantages over the conventional construction materials, the contemporary development of FRP composites in bridge engineering is limited due to high initial cost, low stiffness (in case of glass fibers) and sudden composite failure mode. In order to reduce the given limitations, mixed (hybrid) solutions connecting the FRP composites and conventional construction materials, including concrete, have been tested in many countries for 20 years. Shaping the hybrid structures based on the attributes of particular materials, aims to increase stiffness and reduce cost without losing the carrying capacity, lightness and easiness of bridges that includes such hybrid girders, and to avoid the sudden dangerous failure mode. In the following article, the authors described examples of hybrid road bridges made of FRP composite and concrete within the time of 20 years and presented the first Polish hybrid FRP-concrete road bridge. Also, the directions of further research, necessary to spread these innovative, advanced and sustainable bridge structures were indicated.

  9. Synthesis of hybrid chitosan/calcium aluminosilicate using a sol-gel method for optical applications

    Energy Technology Data Exchange (ETDEWEB)

    Elnahrawy, Amany Mohamed [Department of Solid State, Physics Division, National Research Center (NRC), Giza 12622, Cairo (Egypt); Kim, Yong Soo, E-mail: yskim2@ulsan.ac.kr [Department of Physics and Energy Harvest-Storage Research Center (EHSRC), University of Ulsan, Ulsan 44610 (Korea, Republic of); Ali, Ahmed I., E-mail: Ahmed_ali_2010@helwan.edu.eg [Department of Physics and Energy Harvest-Storage Research Center (EHSRC), University of Ulsan, Ulsan 44610 (Korea, Republic of); Basic Science Department, Faculty of Industrial Education & Technology, Helwan University, Cairo 11281 (Egypt)

    2016-08-15

    Hybrid chitosan (CS)/calcium aluminosilicate nanocomposites thin films and membranes were prepared using a sol–gel method with three different concentrations of Al{sub 2}O{sub 3} (5, 7 and 10 mol. %). The prepared nanocomposites were characterized by transmission electron microscopy, X-ray diffraction and Fourier Transform Infrared spectroscopy. The optical properties of the prepared samples were analyzed by UV/Vis spectrophotometry and photoluminescence (PL) spectroscopy. The optical parameters revealed an increase in both the refractive index and band gap of the nanocomposites with increasing Al concentration. In addition, the PL spectra revealed a blue shift that was consistent with an increase in the optical band gap. These results suggest that CS/calcium aluminosilicate in two different forms can be a good candidate for optical sensors applications. - Highlights: • We show a large specific surface area of hybrid CS/calcium aluminosilicate thin films and membranes using sol-gel method. • Inorganic SiO{sub 2}-based phase are perfectly embedded onto chitosan matrix has a reliable stability. • CS/calcium aluminosilicate could be usable for optical sensors, planar waveguide, and bio-sensing.

  10. Northern blots: capillary transfer of RNA from agarose gels and filter hybridization using standard stringency conditions.

    Science.gov (United States)

    Rio, Donald C

    2015-03-02

    In this protocol, an RNA sample, fractionated by gel electrophoresis, is transferred from the gel onto a membrane by capillary transfer. Short-wave UV light is used to fix the transferred RNA to the membrane. The membrane is then pretreated to block nonspecific probe-binding sites, and hybridization of the immobilized RNA to a (32)P-labeled DNA or RNA probe specific for the mRNA of interest is performed. Finally, the membrane is washed and subjected to autoradiography or phosphorimaging. Because exposure to UV cross-links the RNA to the membrane, the membrane can be stripped and hybridized with other probes. The procedure is suitable for detecting poly(A)(+)-selected mRNA or mRNA in total cellular RNA if the target transcript is relatively abundant. Using DNA or RNA probes labeled to 1 × 10(8)-10 × 10(8) cpm/µg, it should be possible to detect ∼5 pg of a specific RNA. © 2015 Cold Spring Harbor Laboratory Press.

  11. Hybrid titanium dioxide/PS-b-PEO block copolymer nanocomposites based on sol-gel synthesis

    International Nuclear Information System (INIS)

    Gutierrez, J; Tercjak, A; Garcia, I; Peponi, L; Mondragon, I

    2008-01-01

    The poly(styrene)-b-poly(ethylene oxide) (SEO) amphiphilic block copolymer, with two different molecular weights, has been used as a structure directing agent for generating nanocomposites of TiO 2 /SEO via the sol-gel process. SEO amphiphilic block copolymers are designed with a hydrophilic PEO-block which can interact with inorganic molecules, as well as a hydrophobic PS-block which builds the matrix. The addition of different amounts of sol-gel provokes strong variations in the self-assembled morphology of TiO 2 /SEO nanocomposites with respect to the neat block copolymer. As confirmed by atomic force microscopy (AFM), TiO 2 /PEO-block micelles get closer, forming well-ordered spherical domains, in which TiO 2 nanoparticles constitute the core surrounded by a corona of PEO-blocks. Moreover, for 20 vol% sol-gel the generated morphology changes to a hexagonally ordered structure for both block copolymers. The cylindrical structure of these nanocomposites has been confirmed by the two-dimensional Fourier transform power spectrum of the corresponding AFM height images. Affinity between titanium dioxide precursor and PEO-block of SEO allows us to generate hybrid inorganic/organic nanocomposites, which retain the optical properties of TiO 2 , as evaluated by UV-vis spectroscopy

  12. Perspective for Fibre-Hybrid Composites in Wind Energy Applications

    Science.gov (United States)

    2017-01-01

    Increasing the efficiency of wind turbines will be vital for the wind energy sector to continue growing. The drive for increased efficiency is pushing turbine manufacturers to shift from glass fibre composite blades towards carbon/glass fibre-hybrid composite blades. This shift brings significant challenges in terms of optimising the design and understanding the failure of these new blade materials. This review therefore surveys the literature on fibre-hybrid composites, with an emphasis on aspects that are relevant for turbine blade materials. The literature on tensile, flexural, compressive, and fatigue performance is critically assessed and areas for future research are identified. Numerical simulations of fibre-hybrid composites have reached a reasonable maturity for tensile failure, but significant progress is required for flexural, compressive, and fatigue failure. Fatigue failure of fibre-hybrid composites in particular, requires more careful attention from both a modelling and experimental point of view. PMID:29117126

  13. Perspective for Fibre-Hybrid Composites in Wind Energy Applications

    Directory of Open Access Journals (Sweden)

    Yentl Swolfs

    2017-11-01

    Full Text Available Increasing the efficiency of wind turbines will be vital for the wind energy sector to continue growing. The drive for increased efficiency is pushing turbine manufacturers to shift from glass fibre composite blades towards carbon/glass fibre-hybrid composite blades. This shift brings significant challenges in terms of optimising the design and understanding the failure of these new blade materials. This review therefore surveys the literature on fibre-hybrid composites, with an emphasis on aspects that are relevant for turbine blade materials. The literature on tensile, flexural, compressive, and fatigue performance is critically assessed and areas for future research are identified. Numerical simulations of fibre-hybrid composites have reached a reasonable maturity for tensile failure, but significant progress is required for flexural, compressive, and fatigue failure. Fatigue failure of fibre-hybrid composites in particular, requires more careful attention from both a modelling and experimental point of view.

  14. Perspective for Fibre-Hybrid Composites in Wind Energy Applications.

    Science.gov (United States)

    Swolfs, Yentl

    2017-11-08

    Increasing the efficiency of wind turbines will be vital for the wind energy sector to continue growing. The drive for increased efficiency is pushing turbine manufacturers to shift from glass fibre composite blades towards carbon/glass fibre-hybrid composite blades. This shift brings significant challenges in terms of optimising the design and understanding the failure of these new blade materials. This review therefore surveys the literature on fibre-hybrid composites, with an emphasis on aspects that are relevant for turbine blade materials. The literature on tensile, flexural, compressive, and fatigue performance is critically assessed and areas for future research are identified. Numerical simulations of fibre-hybrid composites have reached a reasonable maturity for tensile failure, but significant progress is required for flexural, compressive, and fatigue failure. Fatigue failure of fibre-hybrid composites in particular, requires more careful attention from both a modelling and experimental point of view.

  15. Process of forming a sol-gel/metal hydride composite

    Science.gov (United States)

    Congdon, James W [Aiken, SC

    2009-03-17

    An external gelation process is described which produces granules of metal hydride particles contained within a sol-gel matrix. The resulting granules are dimensionally stable and are useful for applications such as hydrogen separation and hydrogen purification. An additional coating technique for strengthening the granules is also provided.

  16. Hybrid filler composition optimization for tensile strength of jute fibre

    Indian Academy of Sciences (India)

    https://www.ias.ac.in/article/fulltext/boms/039/05/1223-1231 ... The developed composite consists of natural jute fibre as reinforcement and unsaturated ... The effect of weight content of bagasse fibre, carbon black and calcium carbonate ... of pultruded jute fibre polymer composite at the optimum composition of hybrid filler.

  17. Development of novel hybrid materials based on poly(2-aminophenyl disulfide)/silica gel: Preparation, characterization and electrochemical studies

    Science.gov (United States)

    Benyakhou, S.; Belmokhtar, A.; Zehhaf, A.; Benyoucef, A.

    2017-12-01

    Hydrochloric acid functionalized silica gel (SiO2) has been successfully used for the grafting of poly(2-Aminophenyl disulfide) (poly(2APhS)) moieties through in-situ polymerization in the presence of ammonium peroxodisulfate (APS) as oxidant. The organic-inorganic hybrid (poly(2APhS)/SiO2 with different amounts of SiO2: 0.5 g, 1.5 g and 2 g) were thoroughly characterized through powder X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA) and ultraviolet spectroscopy (UV) measurements. The results confirm the successful formation of the poly(2APhS)/SiO2 composite. The surface morphology of the samples was characterized by transmission electron microscopy (TEM). The obtained images show the formation of poly(2APhS) on surface of silica gel. Although the incorporation of SiO2 nanoparticles reduces the electric conductivity of the poly(2APhS), the resulting samples still keep high conductivities, ranging between 8.2 × 10-4 to 1.1 × 10-6 S cm-1. The electrochemical properties of the composite were characterized by the cyclic voltammetry. The comparison between the different samples shows that the electrochemical activity is significantly depending on the amount of added SiO2. There is a clear and good electroactivity for poly(2APhS)/SiO2 with amounts of SiO2: 0.5 g and 1.5 g, respectively, compared to that observed in materials nanocomposite with amounts of SiO2: 2.0 g. However, that effect may be explained by a decrease of polymer in surface area with increase amount of SiO2 nanoparticle.

  18. Carboxylated nitrile butadiene rubber/hybrid filler composites

    Directory of Open Access Journals (Sweden)

    Ahmad Mousa

    2012-08-01

    Full Text Available The surface properties of the OSW and NLS are measured with the dynamic contact-angle technique. The x-ray photoelectron spectroscopy (XPS of the OSW reveals that the OSW possesses various reactive functional groups namely hydroxyl groups (OH. Hybrid filler from NLS and OSW were incorporated into carboxylated nitrile rubber (XNBR to produce XNBR hybrid composites. The reaction of OH groups from the OSW with COOH of the XNBR is checked by attenuated total reflectance spectra (ATR-IR of the composites. The degree of curing ΔM (maximum torque-minimum torque as a function of hybrid filler as derived from moving die rheometer (MDR is reported. The stress-strain behavior of the hybrid composites as well as the dynamic mechanical thermal analysis (DMTA is studied. Bonding quality and dispersion of the hybrid filler with and in XNBR are examined using scanning-transmission electron microscopy (STEM in SEM.

  19. Cell-Based Fabrication of Organic/Inorganic Composite Gel Material

    Directory of Open Access Journals (Sweden)

    Takayoshi Nakano

    2011-01-01

    Full Text Available Biomaterials containing components similar to the native biological tissue would have benefits as an implantable scaffold material. To obtain such biomimetic materials, cells may be great contributors because of their crucial roles in synthetic organics. In addition, the synthesized organics—especially those derived from osteogenic differentiated cells—become a place where mineral crystals nucleate and grow even in vitro. Therefore to fabricate an organic/inorganic composite material, which is similar to the biological osteoid tissue, bone marrow derived mesenchymal stem cells (BMSCs were cultured in a 3D fibrin gel in this study. BMSCs secreted bone-related proteins that enhanced the biomineralization within the gel when the cells were cultured with an osteogenic differentiation medium. The compositions of both synthesized matrices and precipitated minerals in the obtained materials altered depending on the cell culture period. The mineral obtained in the 3D gel showed low crystalline hydroxyapatite. The composite materials also showed excellent osteoconductivity with new bone formation when implanted in mice tibiae. Thus, we demonstrated the contributions of cells for fabricating implantable organic/inorganic composite gel materials and a method for controlling the material composition in the gel. This cell-based material fabrication method would be a novel method to fabricate organic/inorganic composite biomimetic materials for bone tissue engineering.

  20. Multifunctional nano-hydroxyapatite and alginate/gelatin based sticky gel composites for potential bone regeneration

    International Nuclear Information System (INIS)

    Cai, Yurong; Yu, Juhong; Kundu, Subhas C.; Yao, Juming

    2016-01-01

    To improve the fixations of the implant and implant-bone integration after joint arthroplasty from locally preventing inflammation and promoting the bone regeneration, we design a multifunctional biomaterial consisting of recombinant human bone morphogenetic protein 2 (rhBMP-2) and antibiotic loaded nano-hydroxyapatite with an alginate/gelatin sticky gel. We investigate its role for the prevention of the inflammation and possibility of inducing a new bone growth along with its adhesive ability. The stickiness exists in the composite, which may help to fix itself on the bone fracture surface. The composite sustains the antibacterial effect and promotes the proliferation and differentiation of MG63 cells in vitro. In vivo experimentation also shows that the composite gel has a role for the reduction of inflammation. It enhances the formation of new bone and blood vessels compared to both the sole rhBMP-2 and non-rhBMP-2/antibiotic loaded composite gels. The multifunctional composite provides a promising material for the prosthetic and bone tissue regeneration. - Highlights: • Multifunctional nanohydroxyapatite composite is fabricated. • The composite consists of nHAP, growth factor, antibiotic and alginate/gelatin gel. • The composite shows antibacterial effect and good cytocompatibility. • No adverse effect to the cells tested in vitro and in vivo.

  1. Multifunctional nano-hydroxyapatite and alginate/gelatin based sticky gel composites for potential bone regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Yurong; Yu, Juhong [The Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, National Engineering Lab of Textile Fiber Materials & Processing Technology, College of Materials and Textile, Zhejiang Sci-Tech University, Hangzhou 310018 (China); Kundu, Subhas C. [Department of Biotechnology, Indian Institute of Technology (IIT) Kharagpur, West Bengal 721302 (India); Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 330-714 (Korea, Republic of); Yao, Juming, E-mail: yaoj@zstu.edu.cn [The Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, National Engineering Lab of Textile Fiber Materials & Processing Technology, College of Materials and Textile, Zhejiang Sci-Tech University, Hangzhou 310018 (China)

    2016-09-15

    To improve the fixations of the implant and implant-bone integration after joint arthroplasty from locally preventing inflammation and promoting the bone regeneration, we design a multifunctional biomaterial consisting of recombinant human bone morphogenetic protein 2 (rhBMP-2) and antibiotic loaded nano-hydroxyapatite with an alginate/gelatin sticky gel. We investigate its role for the prevention of the inflammation and possibility of inducing a new bone growth along with its adhesive ability. The stickiness exists in the composite, which may help to fix itself on the bone fracture surface. The composite sustains the antibacterial effect and promotes the proliferation and differentiation of MG63 cells in vitro. In vivo experimentation also shows that the composite gel has a role for the reduction of inflammation. It enhances the formation of new bone and blood vessels compared to both the sole rhBMP-2 and non-rhBMP-2/antibiotic loaded composite gels. The multifunctional composite provides a promising material for the prosthetic and bone tissue regeneration. - Highlights: • Multifunctional nanohydroxyapatite composite is fabricated. • The composite consists of nHAP, growth factor, antibiotic and alginate/gelatin gel. • The composite shows antibacterial effect and good cytocompatibility. • No adverse effect to the cells tested in vitro and in vivo.

  2. Sol-gel coatings of ceramic fibres for composites with ceramic matrix

    International Nuclear Information System (INIS)

    Maier, B.; Grathwohl, G.; Spallek, M.; Pannhorst, W.

    1992-01-01

    The aim of this work was to show the feasibility in principle of sol-gel coating of ceramic reinforcement components for composites from technical aspects as well. The complexity of the coating task rises with the transition from individual fibres to bundles of fibres of different thickness to weaves, and finally to composites. (orig.) [de

  3. Hybrid manganese oxide films for supercapacitor application prepared by sol-gel technique

    International Nuclear Information System (INIS)

    Chen, Chin-Yi; Wang, Sheng-Chang; Tien, Yue-Han; Tsai, Wen-Ta; Lin, Chung-Kwei

    2009-01-01

    Hybrid films were prepared by adding various concentrations of meso-carbon microbeads (MCMB) during sol-gel processing of manganese oxide films. The heat-treated films were characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD). In addition, electrochemical performance of the MCMB-added Mn-oxide hybrid coatings was evaluated by cyclic voltammetry (CV) and compared with its unadded counterpart. Experimental results showed that Mn-oxide films exhibited a mixture of Mn 2 O 3 and Mn 3 O 4 phases. The higher the heat-treatment temperature, the more Mn 2 O 3 can be observed. The specific capacitance of the unadded Mn-oxide electrodes is 209 F/g. Because the MCMB particles provide more interfacial surface area for electrochemical reactions, a significant improvement can be noticed by adding MCMB in Mn-oxide coatings. The 300 o C heat-treated hybrid Mn-oxide coating with a Mn/MCMB ratio of 10/1 exhibits the highest value of 350 F/g, showing a ∼ 170% increase in specific capacitance.

  4. TiO{sub 2}/PCL hybrid materials synthesized via sol–gel technique for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Catauro, M., E-mail: michelina.catauro@unina2.it [Department of Industrial and Information Engineering, Second University of Naples, Via Roma 29, 81031 Aversa (Italy); Bollino, F.; Papale, F. [Department of Industrial and Information Engineering, Second University of Naples, Via Roma 29, 81031 Aversa (Italy); Marciano, S.; Pacifico, S. [Department Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, Via Vivaldi 43, 81100 Caserta (Italy)

    2015-02-01

    The aim of the present work has been the synthesis of organic/inorganic hybrid materials based on titanium dioxide and poly(ε-caprolactone) (PCL) to be used in the biomedical field. Several materials have been synthesized using sol–gel methods by adding different amounts of polymer to the inorganic sol. The obtained gels have been characterized using Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM) and atomic force microscopy (AFM). The FT-IR data allowed us to hypothesize that the structure formed was that of an interpenetrating network, realized by hydrogen bonds between Ti-OH groups in the sol–gel intermediate species and carbonyl groups in the polymer repeating units. SEM and AFM analyses highlighted that the obtained materials were nanostructurated hybrids. To evaluate the biological properties of the hybrids, their bioactivity and cytotoxicity were investigated as a function of the PCL amount. The bioactivity of the synthesized systems was proven by the formation of a hydroxyapatite layer on the surface of samples soaked in a fluid simulating human blood plasma (SBF). MTT cytotoxicity tests and Trypan Blue dye exclusion tests were carried out exposing NIH-3T3 mouse embryonic fibroblasts for 24 and 48 h to extracts from the investigated hybrid materials. The results showed that all the hybrids had a non-cytotoxic effect on target cells. - Highlights: • TiO{sub 2}/PCL hybrids were obtained by the sol–gel process for biomedical applications. • Synthesized materials were found to be first-class hybrid nanocomposites. • Hybrids appear to be bioactive, a fundamental characteristic for osseointegration. • MTT and Trypan Blue viability test show that the materials are biocompatible. • The organic phase is able to modulate the biocompatibility of the materials.

  5. Swelling pressure induced phase-volume transition in hybrid biopolymer gels caused by unfolding of folded crosslinks: A model

    Czech Academy of Sciences Publication Activity Database

    Dušek, Karel; Dušková, Miroslava; Ilavský, Michal; Steward, R.; Kopeček, J.

    2003-01-01

    Roč. 4, č. 6 (2003), s. 1818-1826 ISSN 1525-7797 R&D Projects: GA AV ČR KSK4050111 Keywords : thermodynamic model * swelling transitions * hybrid gels Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.824, year: 2003

  6. Modular bioink for 3D printing of biocompatible hydrogels : sol-gel polymerization of hybrid peptides and polymers

    NARCIS (Netherlands)

    Echalier, C.; Levato, R.; Mateos-Timoneda, Miguel A; Castaño, O.; Déjean, S.; Garric, X.; Pinese, C.; Noël, D.; Engel, E.; Martinez, J.; Mehdi, A.; Subra, G.

    2017-01-01

    An unprecedented generic system allowing the 3D printing of peptide-functionalized hydrogels by soft sol-gel inorganic polymerization is presented. Hybrid silylated inorganic/bioorganic blocks are mixed in biological buffer in an appropriate ratio, to yield a multicomponent bioink that can be

  7. FTIR and morphology of liquid epoxidized natural rubber acrylate (LENRA)/silica hybrid composites

    International Nuclear Information System (INIS)

    Eda Yuhana Ariffin; Azizan Ahmad; Dahlan Mohd; Mahathir Mohamed

    2009-01-01

    Synthesis of organic-inorganic hybrid composites was carried out by combination of liquid epoxidized natural rubber acrylate (LENRA) and silica. Silica was introduce to the matrix by sol gel technique. The sol-gel technique was employed to prepare silica using tetraethyorthosilicate (TEOS) as precursor. HDDA and irga cure 184 were added to the formulations as reactive diluents and photosensitizer, respectively. The chemical modification was studied by Fourier Transform Infrared (FTIR) and energy dispersive X-ray analysis (EDAX). The morphological studies were conducted by the optical and scanning electron microscopes (SEM). It shows that silica was dispersed very well in the matrix for lower concentration of TEOS while agglomeration occurs at the higher concentration. The average particles size of silica were less than 100 nm. (Author)

  8. Fabrication of superhydrophobic sol-gel composite films using hydrophobically modified colloidal zinc hydroxide.

    Science.gov (United States)

    Lakshmi, R V; Basu, Bharathibai J

    2009-11-15

    A superhydrophobic sol-gel composite film was fabricated by incorporating hydrophobically modified colloidal zinc hydroxide (CZH) in sol-gel matrix. CZH was prepared by controlled precipitation and modified by treatment with stearic acid. The concentration of stearic acid and stirring time were optimized to obtain modified CZH with very high water contact angle (WCA) of 165 degrees and sliding angle (SA)superhydrophobic surfaces. FTIR spectrum also confirmed the presence of zinc stearate in the composite film. The method is simple and cost-effective and does not involve any expensive chemicals or equipments.

  9. Synthesis and Gas Transport Properties of Hyperbranched Polyimide–Silica Hybrid/Composite Membranes

    Directory of Open Access Journals (Sweden)

    Masako Miki

    2013-12-01

    Full Text Available Hyperbranched polyimide–silica hybrids (HBPI–silica HBDs and hyperbranched polyimide–silica composites (HBPI–silica CPTs were prepared, and their general and gas transport properties were investigated to clarify the effect of silica sources and preparation methods. HBPI–silica HBDs and HBPI–silica CPTs were synthesized by two-step polymerization of A2 + B3 monomer system via polyamic acid as precursor, followed by hybridizing or blending silica sources. Silica components were incorporated by the sol-gel reaction with tetramethoxysilane (TMOS or the addition of colloidal silica. In HBPI-silica HBDs, the aggregation of silica components is controlled because of the high affinity of HBPI and silica caused by the formation of covalent bonds between HBPI and silica. Consequently, HBPI-silica HBDs had good film formability, transparency, and mechanical properties compared with HBPI-silica CPTs. HBPI-silica HBD and CPT membranes prepared via the sol-gel reaction with TMOS showed specific gas permeabilities and permselectivities for CO2/CH4 separation, that is, both CO2 permeability and CO2/CH4 selectivity increased with increasing silica content. This result suggests that gas transport can occur through a molecular sieving effect of the porous silica network derived from the sol-gel reaction and/or through the narrow interfacial region between the silica networks and the organic matrix.

  10. Multifunctional Hybrid Carbon Nanotube/Carbon Fiber Polymer Composites

    Science.gov (United States)

    Kang, Jin Ho; Cano, Roberto J.; Ratcliffe, James G.; Luong, Hoa; Grimsley, Brian W.; Siochi, Emilie J.

    2016-01-01

    For aircraft primary structures, carbon fiber reinforced polymer (CFRP) composites possess many advantages over conventional aluminum alloys due to their light weight, higher strengthand stiffness-to-weight ratio, and low life-cycle maintenance costs. However, the relatively low electrical and thermal conductivities of CFRP composites fail to provide structural safety in certain operational conditions such as lightning strikes. Despite several attempts to solve these issues with the addition of carbon nanotubes (CNT) into polymer matrices, and/or by interleaving CNT sheets between conventional carbon fiber (CF) composite layers, there are still interfacial problems that exist between CNTs (or CF) and the resin. In this study, hybrid CNT/CF polymer composites were fabricated by interleaving layers of CNT sheets with Hexcel® IM7/8852 prepreg. Resin concentrations from 1 wt% to 50 wt% were used to infuse the CNT sheets prior to composite fabrication. The interlaminar properties of the resulting hybrid composites were characterized by mode I and II fracture toughness testing (double cantilever beam and end-notched flexure test). Fractographical analysis was performed to study the effect of resin concentration. In addition, multi-directional physical properties like thermal conductivity of the orthotropic hybrid polymer composite were evaluated. Interleaving CNT sheets significantly improved the in-plane (axial and perpendicular direction of CF alignment) thermal conductivity of the hybrid composite laminates by 50 - 400%.

  11. Immobilization of Mo(IV) complex in hybrid matrix obtained via sol-gel technique

    Energy Technology Data Exchange (ETDEWEB)

    Marques, C.; Sousa, A.M.; Freire, C.; Neves, I.C.; Fonseca, A.M.; Silva, C.J.R

    2003-10-06

    A molybdenum(IV) complex, trans-bis-[1,2-bis(diphenylphosphino)ethane]-fluoro-(diazopropano) -molybdenum tetraphenylborate, [MoF(DIAZO)(dppe){sub 2}][BPh{sub 4}], was prepared and immobilized in a hybrid matrix synthesized by the sol-gel process. The host matrix, designated as U(500), is an organic-inorganic network material, classed as ureasil, that combines a reticulated siliceous backbone linked by short polyether-based segments. Urea bridges make the link between these two components, and the polymerization of silicate substituted terminal groups generates the inorganic network. The free Mo(IV) complex and all new materials were characterized by spectroscopic techniques (FT-IR and UV-Vis) and thermal analysis (DSC). The ionic conductivity of the resulting material was also studied. The results indicate that immobilized Mo(IV) complex has kept its solid-state structure, although there is evidence of inter-molecular interactions between the Mo(IV) complex and some groups/atoms of the hybrid host matrix.

  12. Impact strength on fiber-reinforced hybrid composite

    International Nuclear Information System (INIS)

    Firdaus, S M; Nurdina; Ariff, M Azmil

    2013-01-01

    Acrylonitrile-Butadiene-Styrene (ABS) has been well known composite in automotive players to have light weight with high impact strength material compared to sheet metal material which has high impact strength but heavy in weight. In this project, the impact strength properties of fabricated pure ABS were compared to the eight samples of hybrid ABS composite with different weight percentages of short fibers and particle sizes of ground rubber. The objective was to improve the impact strength in addition of short fibers and ground rubber particles. These samples were then characterized using an un-notched Izod impact test. Results show that the increasing of filler percentage yielded an adverse effect on the impact strength of the hybrid composite. The effect of the ground rubber particulate sizes however are deemed to be marginal than the effect of varying filler percentage based on the collected impact strength data from all physically tested hybrid composites

  13. Construction of chitin/PVA composite hydrogels with jellyfish gel-like structure and their biocompatibility.

    Science.gov (United States)

    He, Meng; Wang, Zhenggang; Cao, Yan; Zhao, Yanteng; Duan, Bo; Chen, Yun; Xu, Min; Zhang, Lina

    2014-09-08

    High strength chitin/poly(vinyl alcohol) (PVA) composite hydrogels (RCP) were constructed by adding PVA into chitin dissolved in a NaOH/urea aqueous solution, and then by cross-linking with epichlorohydrin (ECH) and freezing-thawing process. The RCP hydrogels were characterized by field emission scanning electron microscopy, FTIR, differential scanning calorimetry, solid-state (13)C NMR, wide-angle X-ray diffraction, and compressive test. The results revealed that the repeated freezing/thawing cycles induced the bicrosslinked networks consisted of chitin and PVA crystals in the composite gels. Interestingly, a jellyfish gel-like structure occurred in the RCP75 gel with 25 wt % PVA content in which the amorphous and crystalline PVA were immobilized tightly in the chitin matrix through hydrogen bonding interaction. The freezing/thawing cycles played an important role in the formation of the layered porous PVA networks and the tight combining of PVA with the pore wall of chitin. The mechanical properties of RCP75 were much higher than the other RCP gels, and the compressive strength was 20× higher than that of pure chitin gels, as a result of broadly dispersing stress caused by the orderly multilayered networks. Furthermore, the cell culture tests indicated that the chitin/PVA composite hydrogels exhibited excellent biocompatibility and safety, showing potential applications in the field of tissue engineering.

  14. Study of flax hybrid preforms reinforced epoxy composites

    International Nuclear Information System (INIS)

    Muralidhar, B. A

    2013-01-01

    Highlights: • We examine the thermal, viscoelastic and mechanical behaviour of flax preform hybrid composites. • The thermal stability of the matrix decrease with increasing volume fraction of flax preforms. • The effect of number of preform layers and the lay-up architecture were studied.. • Morphological study on the fractured surface of the composite laminate is carried out. - Abstracts: This study investigates the thermal, mechanical and thermomechanical properties of flax hybrid preform reinforced epoxy composites. Flax plain weave fabric and 1 × 1 weft rib knitted structures were together used as reinforcements and the composites were produced using hand lay-up technique. Specimen preparation and testing were carried out as per ASTM standards. Thermogravimetric analysis (TGA) indicates a decrease in thermal stability of the matrix polymer with the incorporation of flax hybrid preform. The dynamic mechanical analysis revealed a shift in the T g with the addition of flax hybrid preforms. Mechanical data obtained showed that tensile strength and stiffness is a product of the fibre/matrix synergy, whereas the compressive strength and stiffness are contributed by the reinforcing matrix. Additionally, investigation show that laminate with knitted preform as skin layer exhibits superior mechanical properties. However, improved tensile properties at lower fibre volume fraction, reinforces the opinion that hybrid preform composites can offer significant benefits in terms of performance, weight and overall cost. The failure mechanism was analysed, by scanning electron microscope (SEM)

  15. Drug Release Profile from Calcium-Induced Alginate-Phosphate Composite Gel Beads

    Directory of Open Access Journals (Sweden)

    Yoshifumi Murata

    2009-01-01

    Full Text Available Calcium-induced alginate-phosphate composite gel beads were prepared, and model drug release profiles were investigated in vitro. The formation of calcium phosphate in the alginate gel matrix was observed and did not affect the rheological properties of the hydrogel beads. X-ray diffraction patterns showed that the calcium phosphate does not exist in crystalline form in the matrix. The initial release amount and release rate of a water-soluble drug, diclofenac, from the alginate gel beads could be controlled by modifying the composition of the matrix with calcium phosphate. In contrast, the release profile was not affected by the modification for hydrocortisone, a drug only slightly soluble in water.

  16. Relative biocompatibility of micro-hybrid and nano-hybrid light-activated composite resins.

    Science.gov (United States)

    Olabisi Arigbede, Abiodun; Folasade Adeyemi, Bukola; Femi-Akinlosotu, Omowumi

    2017-01-01

    Background. In vitro studies have revealed a direct association between resin content and cytotoxicity of composite resins; however, implantation studies in this regard are sparse. This study investigates the relationship between filler content of composite resins and biocompatibility. Methods. This research employed twelve 180‒200-gr male Wistar rats, 1 nano-hybrid (Prime-Dent Inc.) and 1 micro-hybrid (Medental Inc.) composite resins containing 74% and 80‒90% filler content, respectively. The samples were assessed on the 2nd, 14th and 90th day of implantation. Four rats were allocated to each day in this experimental study. A section of 1.5mm long cured nano-hybrid and micro-hybrid materials were implanted into the right and left upper and lower limbs of the rats, respectively. Eight samples were generated on each day of observation. Inflammation was graded according to the criteria suggested by Orstavik and Major. Pearson's chi-squared test was employed to determine the relationship between the tissue responses of the two materials. Statistical significance was set at P resin had a score of 3.0 for cellular inflammation. On the 14th day, the micro-hybrid resin also exhibited a lower average grade for cellular inflammation. On the 90th day, the micro-hybrid resin had a higher grade of inflammation (0.9) compared to 0.3 recorded for nano-hybrid. The composite resins with higher filler content elicited a significantly lower grade of inflammation irrespective of the duration (χ=20.000, df=8, P=0.010) while the composite resins with lower filler content elicited a significantly lower inflammatory response on the 90th day (χ=4.000, df=1, P=0.046). Conclusion. The composite resins with higher filler content generally elicited significantly lower grades of inflammation, and the composite resins with lower filler content exhibited significantly lower inflammatory response on the 90th day of implantation.

  17. Ceria nanoparticles vis-à-vis cerium nitrate as corrosion inhibitors for silica-alumina hybrid sol-gel coating

    Energy Technology Data Exchange (ETDEWEB)

    Lakshmi, R.V. [Surface Engineering Division, Council of Scientific and Industrial Research – National Aerospace Laboratories, HAL Airport Road, Kodihalli, Bengaluru 560017 (India); Aruna, S.T., E-mail: staruna194@gmail.com [Surface Engineering Division, Council of Scientific and Industrial Research – National Aerospace Laboratories, HAL Airport Road, Kodihalli, Bengaluru 560017 (India); Sampath, S. [Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bengaluru 560012 (India)

    2017-01-30

    Highlights: • Corrosion protection efficiency comparison of ceria nanoparticles and cerium nitrate. • Silica-alumina hybrid coating exhibited good barrier protection. • Detailed XPS study confirm the hybrid structure and presence of Ce species in coating. • Loss of cerium ions not prevalent in ceria doped coating unlike that of cerium nitrate. • Ceria increased the coating integrity, corrosion inhibition and barrier protection. - Abstract: The present work provides a comparative study on the corrosion protection efficiency of defect free sol-gel hybrid coating containing ceria nanoparticles and cerium nitrate ions as corrosion inhibitors. Less explored organically modified alumina-silica hybrid sol-gel coatings are synthesized from 3-glycidoxypropyltrimethoxysilane and aluminium-tri-sec-butoxide. The microemulsion derived nanoparticles and the hybrid coatings are characterized and compared with coatings containing cerium nitrate. Corrosion inhibiting capability is assessed using electrochemical impedance spectroscopy. Scanning Kelvin probe measurements are also conducted on the coatings for identifying the apparent corrosion prone regions. Detailed X-ray photoelectron spectroscopy (XPS) analysis is carried out to comprehend the bonding and corrosion protection rendered by the hybrid coatings.

  18. Silica–polyethylene glycol hybrids synthesized by sol–gel: Biocompatibility improvement of titanium implants by coating

    Energy Technology Data Exchange (ETDEWEB)

    Catauro, M., E-mail: michelina.catauro@unina2.it [Department of Industrial and Information Engineering, Second University of Naples, Via Roma 21, 81031 Aversa (Italy); Bollino, F.; Papale, F. [Department of Industrial and Information Engineering, Second University of Naples, Via Roma 21, 81031 Aversa (Italy); Ferrara, C.; Mustarelli, P. [Department of Chemistry, University of Pavia and INSTM, Via Taramelli 12, 27100 Pavia (Italy)

    2015-10-01

    Although metallic implants are the most used in dental and orthopaedic fields, they can early fail due to low tissue tolerance or osseointegration ability. To overcome this drawback, functional coatings can be applied on the metallic surface to provide a firm fixation of the implants. The objective of the present study was twofold: to synthesize and to characterize silica/polyethylene glycol (PEG) hybrid materials using sol–gel technique and to investigate their capability to dip-coat titanium grade 4 (Ti-gr4) substrates to improve their biological properties. Various hybrid systems have been synthesized by changing the ratio between the organic and inorganic phases in order to study the influence of the polymer amount on the structure and, thus, on the properties of the coatings. Fourier transform infrared (FTIR) spectroscopy and solid state Nuclear Magnetic Resonance (NMR) allowed us to detect the formation of hydrogen bonds between the inorganic sol–gel matrix and the organic component. SEM analysis showed that high PEG content enables to obtain crack free-coating. Moreover, the effective improvement in biological properties of Ti-gr4 implants has been evaluated by performing in vitro tests. The bioactivity of the hybrid coatings has been showed by the hydroxyapatite formation on the surface of SiO{sub 2}/PEG coated Ti-gr4 substrates after soaking in a simulated body fluid and the lack of cytotoxicity by the WST-8 Assay. The results showed that the coated substrates are more bioactive and biocompatible than the uncoated ones and that the bioactivity is not significantly affected by PEG amount whereas its addition makes the films more biocompatible. - Highlights: • SiO{sub 2}/PEG hybrid biomaterials synthesized by sol–gel method at various PEG percentages • Hybrid coating of titanium substrate with dip-coating technology • Chemical and morphological characterization of hybrids and coating • Biocompatibility improvement of coated titanium with high

  19. Synthesis and characterization of hybrid silicon based complexing materials: extraction of transuranic elements from high level liquid waste; Synthese et caracterisation de gels hybrides de silice a proprietes complexantes: applications a l'extraction des transuraniens des effluents aqueux

    Energy Technology Data Exchange (ETDEWEB)

    Conocar, O

    1999-07-01

    Hybrid organic/inorganic silica compounds with extractive properties have been developed under an enhanced decontamination program for radioactive aqueous nitric acid waste in nuclear facilities. The materials were obtained by the sol-gel process through hydrolysis and poly-condensation of complexing organo-tri-alkoxy-silanes with the corresponding tetra-alkoxy-silane. Hybrid silica compounds were initially synthesized and characterized from mono- and bis-silyl precursors with malonamide or ethylenediamine patterns. Solids with different specific areas and pore diameters were obtained depending on the nature of the precursor, its functionality and its concentration in the tetra-alkoxy-silane. These compounds were then considered and assessed for use in plutonium and americium extraction. Excellent results-partitioning coefficients and capacities have been obtained with malonamide hybrid silica. The comparison with silica compounds impregnated or grafted with the same type of organic group is significant in this respect. Much of the improved performance obtained with hybrid silica may be attributed to the large quantity of complexing groups that can be incorporated in these materials. The effect of the solid texture on the extraction performance was also studied. Although the capacity increased with the specific area, little effect was observed on the distribution coefficients -notably for americium- indicating that the most favorable complexation sites are found on the outer surface. Macroporous malonamide hybrid silica compounds were synthesized to study the effects of the pore diameter, but the results have been inconclusive to date because of the unexpected molecular composition of the materials. (author)

  20. A lightweight scalable agarose-gel-synthesized thermoelectric composite

    Science.gov (United States)

    Kim, Jin Ho; Fernandes, Gustavo E.; Lee, Do-Joong; Hirst, Elizabeth S.; Osgood, Richard M., III; Xu, Jimmy

    2018-03-01

    Electronic devices are now advancing beyond classical, rigid systems and moving into lighweight flexible regimes, enabling new applications such as body-wearables and ‘e-textiles’. To support this new electronic platform, composite materials that are highly conductive yet scalable, flexible, and wearable are needed. Materials with high electrical conductivity often have poor thermoelectric properties because their thermal transport is made greater by the same factors as their electronic conductivity. We demonstrate, in proof-of-principle experiments, that a novel binary composite can disrupt thermal (phononic) transport, while maintaining high electrical conductivity, thus yielding promising thermoelectric properties. Highly conductive Multi-Wall Carbon Nanotube (MWCNT) composites are combined with a low-band gap semiconductor, PbS. The work functions of the two materials are closely matched, minimizing the electrical contact resistance within the composite. Disparities in the speed of sound in MWCNTs and PbS help to inhibit phonon propagation, and boundary layer scattering at interfaces between these two materials lead to large Seebeck coefficient (> 150 μV/K) (Mott N F and Davis E A 1971 Electronic Processes in Non-crystalline Materials (Oxford: Clarendon), p 47) and a power factor as high as 10 μW/(K2 m). The overall fabrication process is not only scalable but also conformal and compatible with large-area flexible hosts including metal sheets, films, coatings, possibly arrays of fibers, textiles and fabrics. We explain the behavior of this novel thermoelectric material platform in terms of differing length scales for electrical conductivity and phononic heat transfer, and explore new material configurations for potentially lightweight and flexible thermoelectric devices that could be networked in a textile.

  1. Silk-fibrin/hyaluronic acid composite gels for nucleus pulposus tissue regeneration.

    Science.gov (United States)

    Park, Sang-Hyug; Cho, Hongsik; Gil, Eun Seok; Mandal, Biman B; Min, Byoung-Hyun; Kaplan, David L

    2011-12-01

    Scaffold designs are critical for in vitro culture of tissue-engineered cartilage in three-dimensional environments to enhance cellular differentiation for tissue engineering and regenerative medicine. In the present study we demonstrated silk and fibrin/hyaluronic acid (HA) composite gels as scaffolds for nucleus pulposus (NP) cartilage formation, providing both biochemical support for NP outcomes as well as fostering the retention of size of the scaffold during culture due to the combined features of the two proteins. Passage two (P2) human chondrocytes cultured in 10% serum were encapsulated within silk-fibrin/HA gels. Five study groups with fibrin/HA gel culture (F/H) along with varying silk concentrations (2% silk gel only, fibrin/HA gel culture with 1% silk [F/H+1S], 1.5% silk [F/H+1.5S], and 2% silk [F/H+2S]) were cultured in serum-free chondrogenic defined media (CDM) for 4 weeks. Histological examination with alcian blue showed a defined chondrogenic area at 1 week in all groups that widened homogenously until 4 weeks. In particular, chondrogenic differentiation observed in the F/H+1.5S had no reduction in size throughout the culture period. The results of biochemical and molecular biological evaluations supported observations made during histological examination. Mechanical strength measurements showed that the silk mixed gels provided stronger mechanical properties for NP tissue than fibrin/HA composite gels in CDM. This effect could potentially be useful in the study of in vitro NP tissue engineering as well as for clinical implications for NP tissue regeneration.

  2. Electrochemical corrosion behavior of composite MAO/sol-gel coatings on magnesium alloy AZ91D using combined micro-arc oxidation and sol-gel technique

    International Nuclear Information System (INIS)

    Shang Wei; Chen Baizhen; Shi Xichang; Chen Ya; Xiao Xiang

    2009-01-01

    Protective composite coatings were obtained on a magnesium alloy by micro-arc oxidation (MAO) and sol-gel technique. The coatings consisted of a MAO layer and a sol-gel layer. The microstructure and composition of the MAO coating and the composite coatings were analyzed by scanning electron microscopy (SEM) and energy dispersive X-rays (EDX). Potentiodynamic polarization, electrochemical impedance spectroscopy (EIS) and total immersion tests were used to evaluate the corrosion behavior of these coatings in a 3.5 wt.% NaCl solution. The results show that the sol-gel layer provides corrosion protection by physically sealing the pores in the MAO coating and acting as a barrier. The composite coatings can suppress the corrosion process by preventing the corrosive ions from transferring or diffusing to the magnesium alloy substrate. This enhances the corrosion resistance of the magnesium alloy AZ91D significantly

  3. Hybrid fiber reinforcement and crack formation in Cementitious Composite Materials

    DEFF Research Database (Denmark)

    Pereira, E.B.; Fischer, Gregor; Barros, J.A.O.

    2011-01-01

    reinforcement systems. The research described in this paper shows that the multi-scale conception of cracking and the use of hybrid fiber reinforcements do not necessarily result in an improved tensile behavior of the composite. Particular material design requirements may nevertheless justify the use of hybrid......- to the macroscale. In this study, the performance of different fiber reinforced cementitious composites is assessed in terms of their tensile stress-crack opening behavior. The results obtained from this investigation allow a direct quantitative comparison of the behavior obtained from the different fiber...

  4. Hybrid Composite Structures : Multifunctionality through Metal Fibres

    NARCIS (Netherlands)

    Ahmed, T.

    2009-01-01

    The introduction of fibre reinforced polymer composites into the wings and fuselages of the newest aircraft are changing the design and manufacturing approach. Composites provide greater freedom to designers who want to improve aircraft performance in an affordable way. In this quest, researchers

  5. Injectable biocompatible and biodegradable pH-responsive hollow particle gels containing poly(acrylic acid): the effect of copolymer composition on gel properties.

    Science.gov (United States)

    Halacheva, Silvia S; Adlam, Daman J; Hendow, Eseelle K; Freemont, Tony J; Hoyland, Judith; Saunders, Brian R

    2014-05-12

    The potential of various pH-responsive alkyl (meth)acrylate ester- and (meth)acrylic acid-based copolymers, including poly(methyl methacrylate-co-acrylic acid) (PMMA-AA) and poly(n-butyl acrylate-co-methacrylic acid) (PBA-MAA), to form pH-sensitive biocompatible and biodegradable hollow particle gel scaffolds for use in non-load-bearing soft tissue regeneration have been explored. The optimal copolymer design criteria for preparation of these materials have been established. Physical gels which are both pH- and redox-sensitive were formed only from PMMA-AA copolymers. MMA is the optimal hydrophobic monomer, whereas the use of various COOH-containing monomers, e.g., MAA and AA, will always induce a pH-triggered physical gelation. The PMMA-AA gels were prepared at physiological pH range from concentrated dispersions of swollen, hollow, polymer-based particles cross-linked with either cystamine (CYS) or 3,3'-dithiodipropionic acid dihydrazide (DTP). A linear relationship between particle swelling ratios, gel elasticity, and ductility was observed. The PMMA-AA gels with lower AA contents feature lower swelling ratios, mechanical strengths, and ductilities. Increasing the swelling ratio (e.g., through increasing AA content) decreased the intraparticle elasticity; however, intershell contact and gel elasticity were found to increase. The mechanical properties and performance of the gels were tuneable upon varying the copolymers' compositions and the structure of the cross-linker. Compared to PMMA-AA/CYS, the PMMA-AA/DTP gels were more elastic and ductile. The biodegradability and cytotoxicity of the new hollow particle gels were tested for the first time and related to their composition, mechanical properties, and morphology. The new PMMA-AA/CYS and PMMA-AA/DTP gels have shown good biocompatibility, biodegradability, strength, and interconnected porosity and therefore have good potential as a tissue repair agent.

  6. Morphology and properties of silica/novolac hybrid xerogels synthesized using sol–gel polymerization at solvent vapor-saturated atmosphere

    International Nuclear Information System (INIS)

    Seraji, Mohamad Mehdi; Seifi, Azadeh; Bahramian, Ahmad Reza

    2015-01-01

    Highlights: • Sol–gel polymerization in vapor of solvent saturated atmosphere is developed. • Highly porous novolac–silica hybrid xerogels are successfully synthesized. • Novolac–silica hybrid gel was dried in ambient condition with low shrinkage. • Required time for preparation of gel reduced from 5 days to about 5 h. • By incorporation of silica into the novolac xerogel structure, the pore size decreases. - Abstract: Highly porous novolac–silica hybrid xerogels were successfully synthesized via the novel method of sol–gel polymerization in solvent vapor-saturated atmosphere. This method removes the need for supercritical drying and yields the hybrid xerogels with reduced shrinkage in comparison with conventional sol–gel process. Tetraethoxysilane (TEOS) was used as the precursor of silica-based inorganic phase. The chemical and structural characterization of the prepared hybrid xerogels were performed by Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) analysis, respectively. Thermal and mechanical properties of the hybrid samples were investigated by differential scanning calorimetry (DSC), and compressive strength analysis. The resultant hybrid xerogels show a nanostructured colloidal hybrid network with high porosity (above 80%) and low density (below 0.25 g cm −3 ). Si mapping images shows the good distribution of silica phase throughout the hybrid structure

  7. Investigations on mechanical properties of aluminum hybrid composites

    Directory of Open Access Journals (Sweden)

    Dora Siva Prasad

    2014-01-01

    Full Text Available A double stir casting process was used to fabricate aluminum composites reinforced with various volume fractions of 2, 4, 6, and 8 wt% RHA and SiC particulates in equal proportions. Properties such as hardness, density, porosity and mechanical behavior of the unreinforced and Al/x%RHA/x%SiC (x = 2, 4, 6, and 8 wt% reinforced hybrid composites were examined. Scanning electron microscope (model JSM-6610LV was used to study the microstructural characterization of the composites. It was observed that the hardness and porosity of the hybrid composite increased with increasing reinforcement volume fraction and density decreased with increasing particle content. It was also observed that the UTS and yield strength increase with an increase in the percent weight fraction of the reinforcement particles, whereas elongation decreases with the increase in reinforcement. The increase in strength of the hybrid composites is probably due to the increase in dislocation density. A systematic study of the base alloy and composites was done using the Brinell hardness measurement and the corresponding age hardening curves were obtained. It was observed that in comparison to that of the base aluminum alloy, the precipitation kinetics of the composites were accelerated by adding the reinforcement. This effectively reduced the time for obtaining the maximum hardness by the aging heat treatment.

  8. Cast Hybrid Composites Designated for Air Compressor Pistons

    Directory of Open Access Journals (Sweden)

    Dolata A. J.

    2016-06-01

    Full Text Available The main purpose of the investigations was to develop the phase composition of the composite assuming that the component selection criterion will be the formability of piston work surfaces during the machining. Wear resistance under the friction conditions was assumed as the additional parameter for the assessment of composite material. In the study were used AlSi7Mg/SiC+Cg and AlSi7Mg/SiC+GR hybrid composites prepared by the stir casting method.

  9. Sol-gel Derived Warfarin - Silica Composites for Controlled Drug Release.

    Science.gov (United States)

    Dolinina, Ekaterina S; Parfenyuk, Elena V

    2017-01-01

    Warfarin, commonly used anticoagulant in clinic, has serious shortcomings due to its unsatisfactory pharmacodynamics. One of the efficient ways for the improvement of pharmacological and consumer properties of drugs is the development of optimal drug delivery systems. The aim of this work is to synthesize novel warfarin - silica composites and to study in vitro the drug release kinetics to obtain the composites with controlled release. The composites of warfarin with unmodified (UMS) and mercaptopropyl modified silica (MPMS) were synthesized by sol-gel method. The composite formation was confirmed by FTIR spectra. The concentrations of warfarin released to media with pH 1.6, 6.8 and 7.4 were measured using UV spectroscopy. The drug release profiles from the solid composites were described by a series of kinetic models which includes zero order kinetics, first order kinetics, the modified Korsmeyer-Peppas model and Hixson-Crowell model. The synthesized sol-gel composites have different kinetic behavior in the studied media. In contrast to the warfarin composite with unmodified silica, the drug release from the composite with mercaptopropyl modified silica follows zero order kinetics for 24 h irrespective to the release medium pH due to mixed mechanism (duffusion + degradation and/or disintegration of silica matrix). The obtained results showed that warfarin - silica sol-gel composites have a potential application for the development of novel oral formulation of the drug with controlled delivery. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  10. Biocompatibility of sol-gel hydroxyapatite-titania composite and bilayer coatings

    International Nuclear Information System (INIS)

    Sidane, D.; Rammal, H.; Beljebbar, A.; Gangloff, S.C.; Chicot, D.; Velard, F.; Khireddine, H.

    2017-01-01

    Titania-Hydroxyapatite (TiO 2 /HAP) reinforced coatings are proposed to enhance the bioactivity and corrosion resistance of 316L stainless steel (316L SS). Herein, spin- and dip-coating sol-gel processes were investigated to construct two kinds of coatings: TiO 2 /HAP composite and TiO 2 /HAP bilayer. Physicochemical characterization highlighted the bioactivity response of the TiO 2 /HAP composite once incubated in physiological conditions for 7 days whereas the TiO 2 /HAP bilayer showed instability and dissolution. Biological analysis revealed a failure in human stem cells adhesion on TiO 2 /HAP bilayer whereas on TiO 2 /HAP composite the presence of polygonal shaped cells, possessing good behaviour attested a good biocompatibility of the composite coating. Finally, TiO 2 /HAP composite with hardness up to 0.6 GPa and elastic modulus up to 18 GPa, showed an increased corrosion resistance of 316L SS. In conclusion, the user-friendly sol-gel processes led to bioactive TiO 2 /HAP composite buildup suitable for biomedical applications. - Highlights: • 316L SS implant TiO 2 reinforced HAP coatings were investigated and compared. • TiO 2 /HAP composite had better structural features and biocompatible properties. • Improvement of 316L SS implants corrosion resistance. • TiO 2 /HAP composite mechanical properties close to bone tissue • Low cost and desired material for hard tissue applications

  11. The Effect of Poly (Glycerol Sebacate) Incorporation within Hybrid Chitin-Lignin Sol-Gel Nanofibrous Scaffolds.

    Science.gov (United States)

    Abudula, Tuerdimaimaiti; Gzara, Lassaad; Simonetti, Giovanna; Alshahrie, Ahmed; Salah, Numan; Morganti, Pierfrancesco; Chianese, Angelo; Fallahi, Afsoon; Tamayol, Ali; Bencherif, Sidi A; Memic, Adnan

    2018-03-19

    Chitin and lignin primarily accumulate as bio-waste resulting from byproducts of crustacean crusts and plant biomass. Recently, their use has been proposed for diverse and unique bioengineering applications, amongst others. However, their weak mechanical properties need to be improved in order to facilitate their industrial utilization. In this paper, we fabricated hybrid fibers composed of a chitin-lignin (CL)-based sol-gel mixture and elastomeric poly (glycerol sebacate) (PGS) using a standard electrospinning approach. Obtained results showed that PGS could be coherently blended with the sol-gel mixture to form a nanofibrous scaffold exhibiting remarkable mechanical performance and improved antibacterial and antifungal activity. The developed hybrid fibers showed promising potential in advanced biomedical applications such as wound care products. Ultimately, recycling these sustainable biopolymers and other bio-wastes alike could propel a "greener" economy.

  12. The Effect of Poly (Glycerol Sebacate) Incorporation within Hybrid Chitin–Lignin Sol–Gel Nanofibrous Scaffolds

    Science.gov (United States)

    Abudula, Tuerdimaimaiti; Gzara, Lassaad; Simonetti, Giovanna; Alshahrie, Ahmed; Salah, Numan; Morganti, Pierfrancesco; Chianese, Angelo; Fallahi, Afsoon; Tamayol, Ali; Memic, Adnan

    2018-01-01

    Chitin and lignin primarily accumulate as bio-waste resulting from byproducts of crustacean crusts and plant biomass. Recently, their use has been proposed for diverse and unique bioengineering applications, amongst others. However, their weak mechanical properties need to be improved in order to facilitate their industrial utilization. In this paper, we fabricated hybrid fibers composed of a chitin–lignin (CL)-based sol–gel mixture and elastomeric poly (glycerol sebacate) (PGS) using a standard electrospinning approach. Obtained results showed that PGS could be coherently blended with the sol–gel mixture to form a nanofibrous scaffold exhibiting remarkable mechanical performance and improved antibacterial and antifungal activity. The developed hybrid fibers showed promising potential in advanced biomedical applications such as wound care products. Ultimately, recycling these sustainable biopolymers and other bio-wastes alike could propel a “greener” economy. PMID:29562729

  13. The Effect of Poly (Glycerol Sebacate Incorporation within Hybrid Chitin–Lignin Sol–Gel Nanofibrous Scaffolds

    Directory of Open Access Journals (Sweden)

    Tuerdimaimaiti Abudula

    2018-03-01

    Full Text Available Chitin and lignin primarily accumulate as bio-waste resulting from byproducts of crustacean crusts and plant biomass. Recently, their use has been proposed for diverse and unique bioengineering applications, amongst others. However, their weak mechanical properties need to be improved in order to facilitate their industrial utilization. In this paper, we fabricated hybrid fibers composed of a chitin–lignin (CL-based sol–gel mixture and elastomeric poly (glycerol sebacate (PGS using a standard electrospinning approach. Obtained results showed that PGS could be coherently blended with the sol–gel mixture to form a nanofibrous scaffold exhibiting remarkable mechanical performance and improved antibacterial and antifungal activity. The developed hybrid fibers showed promising potential in advanced biomedical applications such as wound care products. Ultimately, recycling these sustainable biopolymers and other bio-wastes alike could propel a “greener” economy.

  14. Experimental investigation of cyclic hygrothermal aging of hybrid composite

    KAUST Repository

    El Yagoubi, Jalal

    2013-04-05

    This work provides an experimental investigation of the cyclic hygrothermal aging of a hybrid composites. We aimed to propose a general framework in the view to further optimize polymer-based composites. It reports experimental data and relevant observations collected during an aging campaign (up to 2000 cycles) where anhydride-cured epoxy samples as well as composites samples are exposed to environmental conditions. The data gathered during the whole campaign reveals that (1) the polymer displays a non-classical sorption behavior (2) the volume change is correlated to the mass uptake (3) the elastic modulus is correlated to the glass transition temperature. Matrix and interface degradation of the hybrid composite is monitored by means of microstructural observations. © 2013 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved.

  15. Experimental investigation of cyclic hygrothermal aging of hybrid composite

    KAUST Repository

    El Yagoubi, Jalal; Lubineau, Gilles; Saghir, Shahid; Selvakumaran, Lakshmi; Askari, Abe H.; Brown, Arlene M.

    2013-01-01

    This work provides an experimental investigation of the cyclic hygrothermal aging of a hybrid composites. We aimed to propose a general framework in the view to further optimize polymer-based composites. It reports experimental data and relevant observations collected during an aging campaign (up to 2000 cycles) where anhydride-cured epoxy samples as well as composites samples are exposed to environmental conditions. The data gathered during the whole campaign reveals that (1) the polymer displays a non-classical sorption behavior (2) the volume change is correlated to the mass uptake (3) the elastic modulus is correlated to the glass transition temperature. Matrix and interface degradation of the hybrid composite is monitored by means of microstructural observations. © 2013 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved.

  16. Full color stop bands in hybrid organic/inorganic block copolymer photonic gels by swelling-freezing.

    Science.gov (United States)

    Kang, Changjoon; Kim, Eunjoo; Baek, Heeyoel; Hwang, Kyosung; Kwak, Dongwoo; Kang, Youngjong; Thomas, Edwin L

    2009-06-10

    We report a facile way of fabricating hybrid organic/inorganic photonic gels by selective swelling and subsequent infiltration of SiO(2) into one type of lamellar microdomain previously self-assembled from modest-molecular-weight block copolymers. Transparent, in-plane lamellar films were first prepared by assembly of polystyrene-block-poly(2-vinylpyridine) (PS-b-P2VP), and subsequently the P2VP domains were swollen with a selective solvent, methanol. The swollen structures were then fixated by synthesizing SiO(2) nanoparticles within P2VP domains. The resulting frozen photonic gels (f-photonic gels) exhibited strong reflective colors with stop bands across the visible region of wavelengths.

  17. Fabrication of lithium titanate/graphene composites with high rate capability as electrode materials for hybrid electrochemical supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Xue, Rong, E-mail: xuerongsmile@qq.com; Yan, Jingwang, E-mail: yanjw@dicp.ac.cn; Jiang, Liang, E-mail: jiangliang@dicp.ac.cn; Yi, Baolian, E-mail: blyi@dicp.ac.cn

    2015-06-15

    A lithium titanate (Li{sub 4}Ti{sub 5}O{sub 12})/graphene composite (LTO/graphene) is fabricated with a one-pot sol–gel method. Graphite oxide is dispersed in an aqueous solution of lithium acetate and tetrabutyl titanate followed by heat treatment in H{sub 2}/Ar. The LTO/graphene composite with reduced aggregation and improved homogeneity is investigated as an anode material for electrochemical capacitors. Electron transport is improved by the conductive graphene network in the insulating Li{sub 4}Ti{sub 5}O{sub 12} particles. The charge transfer resistance at the particle/electrolyte interface is reduced from 83.1 Ω to 55.4 Ω. The specific capacity of LTO/graphene composite is 126 mAh g{sup −1} at 20C. The energy density and power density of a hybrid electrochemical supercapacitor with a LTO/graphene negative electrode and an activated carbon positive electrode are 120.8 Wh kg{sup −1} and 1.5 kW kg{sup −1}, respectively, which is comparable to that of conventional electrochemical double layer capacitors (EDLCs). The LTO/graphene composite fabricated by the one-pot sol–gel method is a promising anode material for hybrid electrochemical supercapacitors. - Highlights: • A Li{sub 4}Ti{sub 5}O{sub 12}/graphene composite was fabricated with a one-pot sol–gel method. • The Li{sub 4}Ti{sub 5}O{sub 12}/graphene composite showed a reduced aggregation and an improved homogeneity. • The Li{sub 4}Ti{sub 5}O{sub 12}/graphene based hybrid supercapacitor exhibited higher energy and power densities.

  18. Fabrication of lithium titanate/graphene composites with high rate capability as electrode materials for hybrid electrochemical supercapacitors

    International Nuclear Information System (INIS)

    Xue, Rong; Yan, Jingwang; Jiang, Liang; Yi, Baolian

    2015-01-01

    A lithium titanate (Li 4 Ti 5 O 12 )/graphene composite (LTO/graphene) is fabricated with a one-pot sol–gel method. Graphite oxide is dispersed in an aqueous solution of lithium acetate and tetrabutyl titanate followed by heat treatment in H 2 /Ar. The LTO/graphene composite with reduced aggregation and improved homogeneity is investigated as an anode material for electrochemical capacitors. Electron transport is improved by the conductive graphene network in the insulating Li 4 Ti 5 O 12 particles. The charge transfer resistance at the particle/electrolyte interface is reduced from 83.1 Ω to 55.4 Ω. The specific capacity of LTO/graphene composite is 126 mAh g −1 at 20C. The energy density and power density of a hybrid electrochemical supercapacitor with a LTO/graphene negative electrode and an activated carbon positive electrode are 120.8 Wh kg −1 and 1.5 kW kg −1 , respectively, which is comparable to that of conventional electrochemical double layer capacitors (EDLCs). The LTO/graphene composite fabricated by the one-pot sol–gel method is a promising anode material for hybrid electrochemical supercapacitors. - Highlights: • A Li 4 Ti 5 O 12 /graphene composite was fabricated with a one-pot sol–gel method. • The Li 4 Ti 5 O 12 /graphene composite showed a reduced aggregation and an improved homogeneity. • The Li 4 Ti 5 O 12 /graphene based hybrid supercapacitor exhibited higher energy and power densities

  19. Hybrid laser technology for composite coating and medical applications

    Czech Academy of Sciences Publication Activity Database

    Jelínek, Miroslav; Kocourek, Tomáš; Písařík, Petr; Mikšovský, Jan; Remsa, Jan; Mihailescu, I. N.; Kopeček, Jaromír

    2014-01-01

    Roč. 10, č. 1 (2014), s. 1-8 ISSN 1823-3430 R&D Projects: GA ČR(CZ) GA101/09/0702; GA MŠk LD12069 Institutional support: RVO:68378271 Keywords : hybrid technology * pulsed laser deposition * biocompatible composites * doped coating * composite coating Subject RIV: BM - Solid Matter Physics ; Magnetism http://web.usm.my/jes/pastIssue.html

  20. Composite materials with ionic conductivity: from inorganic composites to hybrid membranes

    Energy Technology Data Exchange (ETDEWEB)

    Yaroslavtsev, Andrei B [N.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow (Russian Federation)

    2009-11-30

    Information on composite materials with ionic conductivity including inorganic composites and hybrid polymeric ion exchange membranes containing inorganic or polymeric nanoparticles is generalized. The nature of the effect of increase in the ionic conductivity in this type of materials and the key approaches used for theoretical estimation of the conductivity are considered. Data on the ionic conductivity and some other important properties of composites and membrane materials are presented. Prospects for utilization of composite materials and hybrid membranes in hydrogen power engineering are briefly outlined.

  1. Synthesis and characterization of insulin/zirconium phosphate@TiO2 hybrid composites for enhanced oral insulin delivery applications.

    Science.gov (United States)

    Safari, Mostafa; Kamari, Younes; Ghiaci, Mehran; Sadeghi-Aliabadi, Hojjat; Mirian, Mina

    2017-05-01

    In this work, a series of composites of insulin (Ins)/zirconium phosphate (ZrP) were synthesized by intercalation method, then, these composites were coated with TiO 2 by sol-gel method to prepare Ins/ZrP@TiO 2 hybrid composites and the drug release of the composites was investigated by using UV-Vis spectroscopy. Ins/ZrP (10, 30, 60 wt%) composites were prepared by intercalation of insulin into the ZrP layers in water. Then Ins/ZrP composites were coated with different amounts of TiO 2 (30, 50, 100 wt %) by using titanium tetra n-butoxide, as precursor. Formation of intercalated Ins/ZrP and Ins/ZrP@TiO 2 hybrid composites was characterized by FT-IR, FE-SEM, BET and XRD analysis. Zeta potential of the optimized Ins/ZrP@TiO 2 hybrid composite was determined -27.2 mV. Cytotoxic effects of the optimized Ins/ZrP@TiO 2 hybrid composite against HeLa and Hek293T cell lines were evaluated using MTT assay and the results showed that designed drug delivery system was not toxic in biological environment. Compared to the Ins/ZrP composites, incorporation of TiO 2 coating enhanced the drug entrapment considerably, and reduced the drug release. The Ins/ZrP composites without TiO 2 coating released the whole drug after 30 min in pH 7.4 (phosphate buffer solution) while the TiO 2 -coated composites released the entrapped drug after 20 h. In addition to increasing the shelf life of hormone, this nanoencapsulation and nanocoating method can convert the insulin utilization from injection to oral and present a painless and more comfortable treatment for diabetics.

  2. Sol-gel derived polymer composites for energy storage and conversion

    Science.gov (United States)

    Han, Kuo

    Sol-gel process is a simple chemistry to convert the small precursor molecules into an inorganic polymer, which could be applied to synthesize inorganic materials, modify the interface of materials, bridge the organic and inorganic materials, etc. In this dissertation, novel sol-gel derived composites have been developed for high dielectric breakdown capacitors, low high frequency loss capacitors and flexible piezoelectrics. Numerous efforts have been made in the past decades to improve the energy storage capability of composite materials by incorporating nanometer scale ceramic addictives with high dielectric permittivity into dielectric polymers with high breakdown strength. However, most composites suffer from the low breakdown strength and make the potential gain in energy density small. Here, a new chemical strategy is proposed that, through sol-gel reactions between ceramic precursors and functional groups at the end of the functionalized Poly(vinylidene fluoride -co-chlorotrifluoroethylene) chains, amorphous low permittivity ceramics was in-situ generated in the polymer matrix and cross-linked the polymer chains simultaneously. By carefully tuning precursors, the polymer/precursors feeding ratios, a series of nanocomposites were systematically designed. All the samples are comprehensively characterized and the structure-property correlations are well investigated. The optimal samples exhibit higher breakdown strength than the pristine polymer. The enhanced breakdown strength ascribed to low contrast in permittivity, great dispersion and improved electrical and mechanical properties. This newly developed approach has shown great promise for new composite capacitors. The percolative polymer composites have recently exhibited great potential in energy storage due to their high dielectric permittivities at the neighborhood of the percolation threshold. Yet high energy dissipation and poor voltage endurance of the percolative composites resulted from electrical

  3. Evaluation of Impact Strength of Epoxy Based Hybrid Composites Reinforced with E-Glass/Kevlar 49

    OpenAIRE

    Jogi , Subhan Ali; Moazam Baloch , Muhammad; Chandio , Ali ,; Memon , Iftikhar Ahmed; Chandio , Ghulaqm Sarwar

    2017-01-01

    International audience; In hybridization different fibers are stacked layer by layer to produce laminates have specific strength and stiffness and employed in light weight high strength applications. Physically mean fabricated hybrid composites used in aerospace, under water, body armors and armed forces establishment. In present work drop-weight impact response of hybrid composites were investigated by making laminates of hybrid composites. In Hybridization layers of E-glass (roving) and Kev...

  4. Marginal microleakage of class V composite restorations before and after AFP gel application

    Directory of Open Access Journals (Sweden)

    Davari Abdolrahim

    2015-01-01

    Full Text Available   Background and Aims: The most effective preventing tooth decay method is fluoride compounds applications. Some studies suggested that APF gels caused changes on the superficial physical properties of composite. Therefore, the purpose of this study was to evaluate the marginal microleakage of class V composite restorations before and after AFP gel application.   Materials and Methods: The class V cavities in buccal surfaces of 45 molar teeth were made in such a way that occlusal margin was placed in enamel and cervical margin in cement. In group 1, at first fluoride-therapy and then cavity preparation and restoration by composite resin was done. In group 2, at first the class V cavities were prepared and restored, then fluoride-therapy was carried out. In group 3, cavities were prepared and restored with no fluoride-therapy. The dye penetration rate in occlusal and cervical margins was examined by stereomicroscope. Data were statistically analyzed using Kruskal-Wallis and Mann-Whitney test.   Results: There was no statistically significant difference between groups ( P=0.975.   Conclusion: Fluoride-therapy using AFP gel before and after class V composite restorations, had no significant effect on the microleakage of dentin and enamel margins.

  5. Structure and magnetic properties of SiO{sub 2}/PCL novel sol–gel organic–inorganic hybrid materials

    Energy Technology Data Exchange (ETDEWEB)

    Catauro, Michelina, E-mail: michelina.catauro@unina2.it [Department of Industrial and Information Engineering, Second University of Naples, Via Roma 29, 81031 Aversa (Italy); Bollino, Flavia [Department of Industrial and Information Engineering, Second University of Naples, Via Roma 29, 81031 Aversa (Italy); Cristina Mozzati, Maria [Department of Physics, CNISM and INSTM, University of Pavia, Via Bassi 6, 27100 Pavia (Italy); Ferrara, Chiara; Mustarelli, Piercarlo [Department of Chemistry, Section of Physical Chemistry, University of Pavia and INSTM, Via Taramelli 16, 27100 Pavia (Italy)

    2013-07-15

    Organic–inorganic nanocomposite materials have been synthesized via sol–gel. They consist of an inorganic SiO{sub 2} matrix, in which different percentages of poly(ε-caprolactone) (PCL) have been incorporated. The formation of H-bonds among the carbonyl groups of the polymer chains and Si–OH group of the inorganic matrix has been proved by means of Fourier transform infrared spectroscopy (FT-IR) analysis and has been confirmed by solid-state nuclear magnetic resonance (NMR). X-Ray diffraction (XRD) analysis highlighted the amorphous nature of the synthesized materials. Scanning electron microscope (SEM) micrograph and atomic force microscope (AFM) topography showed their homogeneous morphology and nanostructure nature. Considering the opportunity to synthesize these hybrid materials under microgravity conditions by means of magnetic levitation, superconducting quantum interference device (SQUID) magnetometry has been used to quantify their magnetic susceptibility. This measure has shown that the SiO{sub 2}/PCL hybrid materials are diamagnetic and that their diamagnetic susceptibility is independent of temperature and increases with the PCL amount. - Graphical abstract: Characterization and magnetic properties of SiO{sub 2}/PCL organic–inorganic hybrid materials synthesized via sol–gel. FT-IR, Fourier transform infrared spectroscopy; solid-state NMR: solid-state nuclear magnetic resonance; SQUID: superconducting quantum interference device. - Highlights: • Sol–gel synthesis of SiO{sub 2}/PCL amorphous class I organic–inorganic hybrid materials. • FT-IR and NMR analyses show the hydrogen bonds formation between SiO{sub 2} and PCL. • AFM and SEM analyses confirm that the SiO{sub 2}/PCL are homogenous hybrid materials. • The SQUID measures show that the simples are diamagnetic. • Diamagnetic susceptibility of SiO{sub 2}/PCL materials increases with the PCL amount.

  6. Shear-bond-strength of orthodontic brackets to aged nano-hybrid composite-resin surfaces using different surface preparation.

    Science.gov (United States)

    Demirtas, Hatice Kubra; Akin, Mehmet; Ileri, Zehra; Basciftci, Faruk Ayhan

    2015-01-01

    The aim of this study was to evaluate the effects of different surface preparation methods on the shear bond strength (SBS) of orthodontic metal brackets to aged nano-hybrid resin composite surfaces in vitro. A total of 100 restorative composite resin discs, 6 mm in diameter and 3 mm thick, were obtained and treated with an ageing procedure. After ageing, the samples were randomly divided as follows according to surface preparation methods: (1)Control, (2)37% phosphoric acid gel, (3)Sandblasting, (4)Diamond bur, (5)Air-flow and 20 central incisor teeth were used for the control etched group. SBS test were applied on bonded metal brackets to all samples. SBS values and residual adhesives were evaluated. Analysis of variance showed a significant difference (porthodontic metal brackets to nano-hybrid composite resin surfaces.

  7. Synthesis of a hybrid MIL-101(Cr)/ZTC composite for hydrogen storage applications

    CSIR Research Space (South Africa)

    Musyoka, Nicholas M

    2016-06-01

    Full Text Available Metal–organic frameworks (MOFs) hybrid composites have recently attracted considerable attention in hydrogen storage applications. In this study a hybrid composite of zeolite templated carbon (ZTC) and Cr-based MOF (MIL-101) was synthesised...

  8. Novel hybrid coatings with controlled wettability by composite nanoparticle aggregation

    Energy Technology Data Exchange (ETDEWEB)

    Hritcu, Doina, E-mail: dhritcu@ch.tuiasi.ro; Dodi, Gianina; Iordache, Mirabela L.; Draganescu, Dan; Sava, Elena; Popa, Marcel I.

    2016-11-30

    Highlights: • Magnetite-grafted chitosan composite nanoparticles were synthesized. • The particles are able to assemble under the influence of a silane derivative. • Thin films containing composites, chitosan and hydrolyzed silane were optimized. • The novel hybrid coatings show hierarchical roughness and high wetting angle. - Abstract: The aim of this study is to evaluate novel hybrid materials as potential candidates for producing coatings with hierarchical roughness and controlled wetting behaviour. Magnetite (Fe{sub 3}O{sub 4}) nanoparticles obtained by co-precipitation were embedded in matrices synthesized by radical graft co-polymerization of butyl acrylate (BA), butyl methacrylate (BMA), hexyl acrylate (HA) or styrene (ST) with ethylene glycol di-methacrylate (EGDMA) onto previously modified chitosan bearing surface vinyl groups. The resulting composite particles were characterized regarding their average size, composition and magnetic properties. Hybrid thin films containing suspension of composite particles in ethanol and pre-hydrolysed hexadecyltrimethoxysilane (HDTS) as a coupling/crosslinking agent were deposited by spin coating or spraying. The films were cured by heating and subsequently characterized regarding their morphology (scanning electron microscopy), contact angle with water and adhesion to substrate (scratch test). The structure-property relationship is discussed.

  9. Influence of staining solutions and whitening procedures on discoloration of hybrid composite resins.

    Science.gov (United States)

    Garoushi, Sufyan; Lassila, Lippo; Hatem, Marwa; Shembesh, Muneim; Baady, Lugane; Salim, Ziad; Vallittu, Pekka

    2013-01-01

    The aim was to evaluate the color stability and water uptake of two hybrid composite resins polymerized in two different conditions after exposure to commonly consumed beverages. In addition, the effect of repolishing and bleaching on the stained composite was evaluated. Eighty specimens (12 mm × 12 mm × 3 mm) were made from two hybrid composite resins of shade A2. Forty specimens of each composite were divided into two groups (n = 20 per each) according to the curing method used (hand light cure HLC or oven light cure OLC). Then each group (HLC or OLC) was sub-divided randomly into four sub-groups (n = 5), which were immersed for 60 days in different beverages (distal water, coffee, tea and pepsi) and incubated at 37°C. Water uptake was measured during this time and followed by measurement of color difference (ΔE) by using a spectrophotometer. After complete staining, repolishing (grit 4000 FEPA at 300 rpm under water) and bleaching (40% hydrogen peroxide bleaching gel) were conducted. The repolished and bleached specimens were submitted to new color measurements. Color value of the specimens immersed in tea displayed the highest statistically significant (p pepsi was significantly lower than the others. After staining of the composite resins, both the bleaching and repolishing were able to reduce the ΔE value. All beverages used affected the color stability of tested composite resins. The effect of beverages on color change of composites depends on type of beverage and water uptake value of resins used. A superior whitening effect was obtained with repolishing technique compared to bleaching.

  10. Analysis of composition and microstructural uniformity of hybrid glass/carbon fibre composites

    Energy Technology Data Exchange (ETDEWEB)

    Beauson, J.; Markussen, C.M.; Madsen, Bo

    2013-09-01

    In hybrid fibre composites, the intermixing of the two types of fibres imposes challenges to obtain materials with a well-defined and uniform microstructure. In the present paper, the composition and the microstructural uniformity of hybrid glass/carbon fibre composites mixed at the fibre bundle level are investigated. The different levels of compositions in the composites are defined and experimentally determined. The composite volume fractions are determined using an image analysis based procedure. The global fibre volume fractions are determined using a gravimetrical based method. The local fibre volume fractions are determined using volumetric calculations. A model is presented to predict the interrelation of volume fractions in hybrid fibre composites. The microstructural uniformity of the composites is analysed by the determined variation in composite volume fractions. Two analytical methods, a standard deviation based method and a fast Fourier transform method, are used to quantify the difference in microstructural uniformity between composites, and to detect and quantify any repeating pattern in the composite microstructure. (Author)

  11. Mechanical performance of oil palm empty fruit bunches/jute fibres reinforced epoxy hybrid composites

    Energy Technology Data Exchange (ETDEWEB)

    Jawaid, M. [School of Industrial Technology, Universiti Sains Malaysia, 11800 Penang (Malaysia); Abdul Khalil, H.P.S., E-mail: akhalilhps@gmail.com [School of Industrial Technology, Universiti Sains Malaysia, 11800 Penang (Malaysia); Abu Bakar, A. [School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang (Malaysia)

    2010-11-15

    Research highlights: {yields} Hybrid composites constituents of natural fibres show good mechanical performances. {yields} Hybridization with 20% jute fibre gives rise to sufficient modulus to composites. {yields} Outer or core material affect mechanical performance of hybrid composites. {yields} Impact strength of pure EFB composite is higher than hybrid composites. - Abstract: Oil palm empty fruit bunches (EFB)/jute fibre reinforced epoxy hybrid composites with different sequence of fibre mat arrangement such as EFB/jute/EFB and jute/EFB/jute were fabricated by hand lay-up method. The effect of layering patterns on the mechanical performance of the composites was studied. The hybrid composites are intended for engineering applications as an alternative to synthetic fibre composites. Mechanical performance of hybrid composites were evaluated and compared with the pure EFB, pure jute composites and neat epoxy using flexural and impact testing. The flexural properties of hybrid composite is higher than that of pure EFB composite with respect to the weight fraction of fibre, where as the impact strength of pure EFB composite is much higher than those of hybrid composites. The flexural results were interpreted using sandwich theory. The fracture surface morphology of the impact testing samples of the hybrid composites was performed by scanning electron microscopy (SEM).

  12. Mechanical performance of oil palm empty fruit bunches/jute fibres reinforced epoxy hybrid composites

    International Nuclear Information System (INIS)

    Jawaid, M.; Abdul Khalil, H.P.S.; Abu Bakar, A.

    2010-01-01

    Research highlights: → Hybrid composites constituents of natural fibres show good mechanical performances. → Hybridization with 20% jute fibre gives rise to sufficient modulus to composites. → Outer or core material affect mechanical performance of hybrid composites. → Impact strength of pure EFB composite is higher than hybrid composites. - Abstract: Oil palm empty fruit bunches (EFB)/jute fibre reinforced epoxy hybrid composites with different sequence of fibre mat arrangement such as EFB/jute/EFB and jute/EFB/jute were fabricated by hand lay-up method. The effect of layering patterns on the mechanical performance of the composites was studied. The hybrid composites are intended for engineering applications as an alternative to synthetic fibre composites. Mechanical performance of hybrid composites were evaluated and compared with the pure EFB, pure jute composites and neat epoxy using flexural and impact testing. The flexural properties of hybrid composite is higher than that of pure EFB composite with respect to the weight fraction of fibre, where as the impact strength of pure EFB composite is much higher than those of hybrid composites. The flexural results were interpreted using sandwich theory. The fracture surface morphology of the impact testing samples of the hybrid composites was performed by scanning electron microscopy (SEM).

  13. Fabrication of high strength PVA/SWCNT composite fibers by gel spinning

    OpenAIRE

    Xu, Xuezhu; Uddin, Ahmed Jalal; Aoki, Kenta; Gotoh, Yasuo; Saito, Takeshi; Yumura, Motoo

    2010-01-01

    High-strength composite fibers were prepared from polyvinyl alcohol (PVA) (Degree of polymerization: 1500) reinforced by single-walled carbon nanotubes (SWCNTs) containing few defects. The SWCNTs were dispersed in a 10 wt.% PVA/dimethylsulfoxide solution using a mechanical homogenizer that reduced the size of SWCNT aggregations to smaller bundles. The macroscopically homogeneous dispersion was extruded into cold methanol to form fibers by gel spinning followed by a hot-drawing. The tensile st...

  14. High Refractive Organic–Inorganic Hybrid Films Prepared by Low Water Sol-Gel and UV-Irradiation Processes

    Directory of Open Access Journals (Sweden)

    Hsiao-Yuan Ma

    2016-03-01

    Full Text Available Organic-inorganic hybrid sols (Ti–O–Si precursor were first synthesized by the sol-gel method at low addition of water, and were then employed to prepare a highly refractive hybrid optical film. This film was obtained by blending the Ti–O–Si precursor with 2-phenylphenoxyethyl acrylate (OPPEA to perform photo-polymerization by ultraviolet (UV irradiation. Results show that the film transparency of poly(Ti–O–Si precursor-co-OPPEA film is higher than that of a pure poly(Ti–O–Si precursor film, and that this poly(Ti–O–Si precursor-co-OPPEA hybrid film exhibits a high transparency of ~93.7% coupled with a high refractive index (n of 1.83 corresponding to a thickness of 2.59 μm.

  15. Crystallization behaviour of nanostructured hybrid SiO2-TiO2 gel glasses to nanocomposites.

    Science.gov (United States)

    Tsvetelina, Gerganova; Yordanka, Ivanova; Yuliya, Vueva; Miranda, Salvado Isabel M; Helena, Fernandes Maria

    2010-04-01

    The crystallization behaviour of hybrid SiO2-TiO2 nanocomposites derived from titanosiloxanes by sol-gel method has been investigated depending on the type of siloxane precursor and the pirolysis temperature. The resulting hybrid titanosiloxanes, crosslinked with trimethylsilil isocyanate (nitrogen-modified) or methyltrietoxisilane (carbon-modified), were pirolyzed in an inert atmosphere in the temperature range between 600 to 1100 degrees C in order to form C-(N)-Si-O-TiO2 nanocomposites. By means of XRD, FTIR, 29Si NMR, SEM, TEM and AFM investigations have been established that the transformation of the nanostructured SiO2-TiO2 hybrid materials into nanocomposites as well as the crystalline size depend on the titanium content and the type of cross-linking agents used in the synthesizes.

  16. Fabrication and Crystal Structure of Sol-Gel Deposited BST Thin Films with Compositional Gradient

    Directory of Open Access Journals (Sweden)

    Czekaj D.

    2017-06-01

    Full Text Available In the present research technology of compositionally graded barium strontium titanate Ba1-xSrxTiO3 thin films deposited on stainless steel substrates by sol-gel spin coating followed with thermal annealing at T = 650°C is reported. Results of thermal behavior of the sol-gel derived powders with compositions used for fabrication of graded structure (i.e. with Sr mole fraction x = 0.5, 0.4 and 0.3 are described. X-ray diffraction studies of the phase composition and crystal structure of such complex thin film configuration are given. It was found that gel powders exhibited a large total weight loss of about Δm ≈ 44-47%. Three stages of weight loss took place at temperature ranges: below T ≈ 300°C, at ΔT ≈ 300-500°C and between T = 600°C and T = 800°C. Phase analysis has shown that the dominating phase is Ba0.67Sr0.33TiO3 compound while the second phase is Ba0.7Sr0.3TiO3 or Ba0.5Sr0.5TiO3 for “up-graded” and “down-graded” structure, respectively.

  17. Luminescent Eosin Y–SiO{sub 2} hybrid nano and microrods prepared by sol–gel template method

    Energy Technology Data Exchange (ETDEWEB)

    Secu, M., E-mail: msecu@infim.ro [National Institute for Materials Physics, P.O. Box MG-7, Bucharest–Magurele, 077125 (Romania); Secu, C.E.; Sima, M.; Negrea, R.F.; Bartha, C. [National Institute for Materials Physics, P.O. Box MG-7, Bucharest–Magurele, 077125 (Romania); Dinescu, M.; Damian, V. [National Institute for Laser, Plasma and Radiation, P.O. Box MG-36, Bucharest–Magurele 077125 (Romania)

    2013-11-15

    Sol–gel chemistry within the pores of a polycarbonate template membrane was used for the preparation of Eosin Y–SiO{sub 2} hybrid nano- and microrods, using tetraethylorthosilicate [TEOS, Si(OC{sub 2}H{sub 5}){sub 4}] as the precursor in the presence of trifluoroacetic acid (TFA) catalyst. The ethanolic solution of Eosin-Y was added to the silica sol to trap dye molecules inside the SiO{sub 2} gel network during the gelation. Structural and morphological characterization using scanning electron microscopy (SEM) and luminescence microscopy have shown the formation of rods with 200 nm and 1.2 μm diameter and about 30 μm length, exhibiting luminescence properties. Spectroscopic characterization has shown that the luminescence is due to Eosin-Y molecule in the xerogel porous network, surrounded by a solvation shell given mainly by the water. -- Highlights: • Sol–gel template method was used to prepare Eosin Y–SiO{sub 2} hybrid rods-type structures. • Morphological characterization has shown nano- and microrods with luminescent properties. • Luminescence is due to Eosin-Y molecule surrounded by a solvation shell given by water.

  18. Luminescent Eosin Y–SiO2 hybrid nano and microrods prepared by sol–gel template method

    International Nuclear Information System (INIS)

    Secu, M.; Secu, C.E.; Sima, M.; Negrea, R.F.; Bartha, C.; Dinescu, M.; Damian, V.

    2013-01-01

    Sol–gel chemistry within the pores of a polycarbonate template membrane was used for the preparation of Eosin Y–SiO 2 hybrid nano- and microrods, using tetraethylorthosilicate [TEOS, Si(OC 2 H 5 ) 4 ] as the precursor in the presence of trifluoroacetic acid (TFA) catalyst. The ethanolic solution of Eosin-Y was added to the silica sol to trap dye molecules inside the SiO 2 gel network during the gelation. Structural and morphological characterization using scanning electron microscopy (SEM) and luminescence microscopy have shown the formation of rods with 200 nm and 1.2 μm diameter and about 30 μm length, exhibiting luminescence properties. Spectroscopic characterization has shown that the luminescence is due to Eosin-Y molecule in the xerogel porous network, surrounded by a solvation shell given mainly by the water. -- Highlights: • Sol–gel template method was used to prepare Eosin Y–SiO 2 hybrid rods-type structures. • Morphological characterization has shown nano- and microrods with luminescent properties. • Luminescence is due to Eosin-Y molecule surrounded by a solvation shell given by water

  19. Fluorescent silica hybrid materials containing benzimidazole dyes obtained by sol-gel method and high pressure processing

    International Nuclear Information System (INIS)

    Hoffmann, Helena Sofia; Stefani, Valter; Benvenutti, Edilson Valmir; Costa, Tania Maria Haas; Gallas, Marcia Russman

    2011-01-01

    Research highlights: → Sol-gel technique was used to obtain silica based hybrid materials containing benzimidazole dyes. → The sol-gel catalysts, HF and NaF, produce xerogels with different optical and textural characteristics. → High pressure technique (6.0 GPa) was used to produce fluorescent and transparent silica compacts with the dyes entrapped in closed pores, maintaining their optical properties. → The excited state intramolecular proton transfer (ESIPT) mechanism of benzimidazole dyes was studied by steady-state fluorescence spectroscopy for the monoliths, powders, and compacts. - Abstract: New silica hybrid materials were obtained by incorporation of two benzimidazole dyes in the silica network by sol-gel technique, using tetraethylorthosilicate (TEOS) as inorganic precursor. Several syntheses were performed with two catalysts (HF and NaF) producing powders and monoliths with different characteristics. The dye 2-(2'-hydroxy-5'-aminophenyl)benzimidazole was dispersed and physically adsorbed in the matrix, and the dye 2'(5'-N-(3-triethoxysilyl)propylurea-2'-hydroxyphenyl)benzimidazole was silylated, becoming chemically bonded to the silica network. High pressure technique was used to produce fluorescent and transparent silica compacts with the silylated and incorporated dye, at 6.0 GPa and room temperature. The excited state intramolecular proton transfer (ESIPT) mechanism of benzimidazole dyes was studied by steady-state fluorescence spectroscopy for the monoliths, powders, and compacts. The influence of the syntheses conditions was investigated by textural analysis using nitrogen adsorption isotherms.

  20. Thermal and Mechanical Properties of Novolac-Silica Hybrid Aerogels Prepared by Sol-Gel Polymerization in Solvent-Saturated Vapor Atmosphere

    Directory of Open Access Journals (Sweden)

    Mohamad Mehdi Seraji1, Seraji

    2015-05-01

    Full Text Available Nowadays organic–inorganic hybrid aerogel materials have attracted increasing interests due to improved thermal and mechanical properties. In the present research, initially, novolac type phenolic resin-silica hybrid gels with different solid concentrations were synthesized using sol-gel polymerization in solvent-saturatedvapor atmosphere. The hybrid gels were dried at air atmosphere through ambient drying process. This method removed the need for costly and risky supercritical drying process. The yields of the obtained hybrid aerogels increased with less shrinkage in comparison with conventional sol-gel process. The precursor of silica phase in this study was tetraethoxysilane and inexpensive novolac resin was used as a reinforcing phase. The results of FTIR analysis confirmed the simultaneous formation of silica and novolac gels in the hybrid systems. The resultant hybrid aerogels showed a nanostructure hybrid network with high porosity (above 80% and low density (below 0.25 g/cm3. Nonetheless, higher content of silica resulted in more shrinkage in the hybrid aerogel structure due to the tendency of the silica network to shrink more during gelation and drying process. The SEM images of samples exhibited a continuous network of interconnected colloidal particles formed during sol-gel polymerization with mean particle size of less than 100 nanometers. Si mapping analysis showed good distribution of silica phase throughout the hybrid structure. The results demonstrated improvements in insulation properties and thermal stability of novolac-silica aerogel with increasing the silica content. The results of compressive strength showed that the mechanical properties of samples declined with increasing the silica content.

  1. Thermal behavior of La2O3/Nio composite prepared by sol-gel method

    International Nuclear Information System (INIS)

    Sakallioglu, M.

    2005-01-01

    The La 2 O 3 /NiO composite was prepared by sol-gel method by using transition metal oxides (La 2 O 3 /NiO). The variation of specific heat capacity Cp with temperature for La2O3/NiO composite was investigated by DSC. The heat capacity curve was taken with a heating rate of 20 degrees/min between 0-100 degrees. The variation of specific heat capacity was found by PKI Muse Standard Analysis Program. The thermal stability of the La 2 O 3 /NiO composite was investigated by thermogravimetric analysis (TG) in air atmosphere at a heating rate of 20 degrees/min. The weight loss of La 2 O 3 /NiO composite was determined by the variation of temperature

  2. Bio sorption process for uranium (VI) by using algae-yeast-silica gel composite adsorbent

    International Nuclear Information System (INIS)

    Turkozu, D. A.; Aytas, S.

    2006-01-01

    Many yeast, algae, bacteria and various aquatic flora are known to be capable of concentrating metal species from dilute aqueous solution. Many researcher have found that non-living biomaterials can be used to accumulate metal ions from environment. In recent studies, mainly two process are used in biosorption experiments. These are the use of free cells and the use of immobilized cells on a solid support. A variety of inert supports have been used to immobilize biomaterials either by adsorption or physical entrapment. This uptake is often considerable and frequently selective, and occurs via a variety of mechanisms including active transport, ion exchange or complexation, and adsorption or inorganic precipitation. Biosorbent may be used as an ion exchange material. Adsorption occurs through interaction of the metal ions with functional groups that are found in the cell wall biopolymers of either living or dead organisms. In this study, the algae-yeast-silica gel composite adsorbent was tested for its ability to recover U(VI) from diluted aqueous solutions. Macro marine algae (Jania rubens.), yeast (Saccharomyces cerevisiae) and silica gel were used to prepare composite adsorbent. The ability of the composite biosorbent to adsorb uranium (VI) from aqueous solution has been studied at different optimized conditions of pH, concentration of U(VI), temperature, contact time and matrix ion effect was also investigated. The adsorption patterns of uranium on the composite biosorbent were investigated by the Langmuir, Freundlich and Dubinin-Radushkhevic isotherms. The thermodynamic parameters such as variation of enthalpy ΔH, variation of entropy ΔS and variation of Gibbs free energy ΔG were calculated. The results suggested that the macro algae-yeast-silica gel composite sorbent is suitable as a new biosorbent material for removal of uranium ions from aqueous solutions

  3. Biocompatibility of sol-gel hydroxyapatite-titania composite and bilayer coatings

    Energy Technology Data Exchange (ETDEWEB)

    Sidane, D., E-mail: dj.sidane@yahoo.fr [Laboratoire de Génie de l' Environnement (LGE), Faculté de Technologie, Université de Bejaia, 06000, Bejaia (Algeria); Rammal, H. [Equipe d' Accueil 4691 Biomatériaux et Inflammation en Site Osseux, SFR-CAP Santé (FED 4231), Université de Reims Champagne Ardenne, 1 Avenue du Maréchal Juin, 51100 Reims (France); Beljebbar, A. [UMR CNRS 7369, Equipe MéDIAN Biophotonique et Technologies pour la Santé, UFR de Pharmacie, SFR-CAP Santé (FED 4231), Université de Reims Champagne Ardenne, 51 rue Cognacq-Jay, 51096 Reims (France); Gangloff, S.C. [Equipe d' Accueil 4691 Biomatériaux et Inflammation en Site Osseux, SFR-CAP Santé (FED 4231), Université de Reims Champagne Ardenne, 1 Avenue du Maréchal Juin, 51100 Reims (France); Chicot, D. [FRE 3723 - LML - Laboratoire de Mécanique de Lille, Univ. Lille, 59000 Lille (France); Velard, F. [Equipe d' Accueil 4691 Biomatériaux et Inflammation en Site Osseux, SFR-CAP Santé (FED 4231), Université de Reims Champagne Ardenne, 1 Avenue du Maréchal Juin, 51100 Reims (France); Khireddine, H. [Laboratoire de Génie de l' Environnement (LGE), Faculté de Technologie, Université de Bejaia, 06000, Bejaia (Algeria); and others

    2017-03-01

    Titania-Hydroxyapatite (TiO{sub 2}/HAP) reinforced coatings are proposed to enhance the bioactivity and corrosion resistance of 316L stainless steel (316L SS). Herein, spin- and dip-coating sol-gel processes were investigated to construct two kinds of coatings: TiO{sub 2}/HAP composite and TiO{sub 2}/HAP bilayer. Physicochemical characterization highlighted the bioactivity response of the TiO{sub 2}/HAP composite once incubated in physiological conditions for 7 days whereas the TiO{sub 2}/HAP bilayer showed instability and dissolution. Biological analysis revealed a failure in human stem cells adhesion on TiO{sub 2}/HAP bilayer whereas on TiO{sub 2}/HAP composite the presence of polygonal shaped cells, possessing good behaviour attested a good biocompatibility of the composite coating. Finally, TiO{sub 2}/HAP composite with hardness up to 0.6 GPa and elastic modulus up to 18 GPa, showed an increased corrosion resistance of 316L SS. In conclusion, the user-friendly sol-gel processes led to bioactive TiO{sub 2}/HAP composite buildup suitable for biomedical applications. - Highlights: • 316L SS implant TiO{sub 2} reinforced HAP coatings were investigated and compared. • TiO{sub 2}/HAP composite had better structural features and biocompatible properties. • Improvement of 316L SS implants corrosion resistance. • TiO{sub 2}/HAP composite mechanical properties close to bone tissue • Low cost and desired material for hard tissue applications.

  4. THE SYNERGISTIC EFFECT OF HYBRID FLAME RETARDANTS ON PYROLYSIS BEHAVIOUR OF HYBRID COMPOSITE MATERIALS

    Directory of Open Access Journals (Sweden)

    M. T. ALBDIRY

    2012-06-01

    Full Text Available The aim of this investigation is to comprehensively understand the polymeric composite behavior under direct fire sources. The synergistic effects of hybrid flame retardant material on inhabiting the pyrolysis of hybrid reinforced fibers, woven roving (0°- 45° carbon and kevlar (50/50 wt/wt, and an araldite resin composites were studied. The composites were synthesised and coated primarily by zinc borate (2ZnO.3B2O3.3.5H2O and modified by antimony trioxide (Sb2O3 with different amounts (10-30 wt% of flame retardant materials. In the experiments, the composite samples were exposed to a direct flame source generated by oxyacetylene flame (~3000ºC at variable exposure distances of 10-20 mm. The synergic flame retardants role of antimony trioxide and zinc borate on the composite surface noticeably improves the flame resistance of the composite which is attributed to forming a protective mass and heat barrier on the composite surface and increasing the melt viscosity.

  5. Study on erosion behaviour of hybrid aluminium composite

    Science.gov (United States)

    Vishwas, D. K.; Chandrappa, C. N.; Venkatesh, Shreyas

    2018-04-01

    The origin of the light metals, as compared to other metals in this century, is noticeable and an exciting area of expansion for innovation. Light metals, are need of the day in engineering, among them application of aluminium and its alloys is enormous. we observe that these metals tend to have a progressive loss of metal from having contact surface with other metals. Erosion is one such wear process, where damage occurs by the repeated application of high localised stresses. Erosion due to impact of solid particle, is a significant problem. In the present work, the erosion behaviour of hybrid aluminium composite is studied. AL 6061 is used as the base alloy. AL 6061 alloy has excellent corrosion resistance but poor wear resistance. So, in order to have improved properties, it is reinforced with Tungsten Chromium Nickel powder in varied proportions by the method of stir casting. The results are compared with the as-cast Al-alloy to determine the improvement in mechanical properties. The tests were conducted in ASTM G76 setup, to determine solid particle erosion behaviour and the results of the hybrid composite were compared with that of as-cast AL 6061 alloy. It was evident that mass loss was maximum at 300 inclinations, which is a characteristic of ductile materials. It was observed that upon increasing the percentages of reinforcement (wt.%), the wear resistance of the hybrid composite increased significantly. It was also observed that the inclusion of tungsten-chromium-nickel powder increased the hardness of the hybrid composite significantly.

  6. Novel kaolin/polysiloxane based organic-inorganic hybrid materials: Sol-gel synthesis, characterization and photocatalytic properties

    Science.gov (United States)

    dos Reis, Glaydson Simões; Lima, Eder Cláudio; Sampaio, Carlos Hoffmann; Rodembusch, Fabiano Severo; Petter, Carlos Otávio; Cazacliu, Bogdan Grigore; Dotto, Guillherme Luiz; Hidalgo, Gelsa Edith Navarro

    2018-04-01

    New hybrid materials using kaolin and the organosilicas methyl-polysiloxane (MK), methyl-phenyl-polysiloxane (H44), tetraethyl-ortho-silicate (TEOS) and 3-amino-propyl-triethoxysilane (APTES) were obtained by sol-gel process. These materials presented specific surfaces areas (SBET) in the range of 20-530 m2 g-1. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) showed remarkable differences between the kaolin and hybrid structures. Thermogravimetric analysis (TGA) revealed that the hybrid materials presented higher thermal stability when compared with their precursors. The electronic properties of the materials were also studied by Ultraviolet-Visible Diffuse Reflectance Absorption (DRUV) and Diffuse Reflectance spectroscopy (DR), where a new absorption band was observed located around 400-660 nm. In addition, these materials exhibit a decrease in DR from 30% to 70% in the blue-cyan green region and are significantly more transparent in the UV region than the kaolin, which could be useful for photocatalysis applications. These results show that the electronic structure of the final material was changed, indicating a significant interaction between the kaolin and the respective silica derivative. These findings support the main idea of the hybridization afforded by pyrolysis between kaolin and organosilica precursors. In addition, as a proof of concept, these hybrid materials were successfully employed as photocatalyst in the photoreduction of Cr(VI) to Cr(III).

  7. Aqueous sulfomethylated melamine gel-forming compositions and methods of use

    Energy Technology Data Exchange (ETDEWEB)

    Meltz, C.N.; Guetzmacher, G.D.; Chang, P.W.

    1989-04-18

    A method is described for the selective modification of the permeability of the strata of a subterranean bydrocarbon-containing reservoir consisting of introducing into a well in, communication with the reservoir; an aqueous gel-forming composition, comprising a 1.0-60.0 weight percent sulfomethylated melamine polymer solution. The solution is prepared with a 1.0 molar equivalent of a malemine, reacted with 3.0-6.7 molar equivalents of formaldehyde or a 2-6 carbon atom containing dialdehyde; 0.25-1.25 molar equivalents of an alkali metal or ammonium salt of surfurous acid; and 0.01-1.5 molar equivalents of a gel-modifying agent.

  8. Fabrication and adsorption properties of hybrid fly ash composites

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Mengfan [Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi' an710119, Shaanxi (China); Ma, Qingliang, E-mail: maqingliang@tyut.edu.cn [Key Laboratory of Coal Science and Technology, Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan, 030024 (China); Lin, Qingwen; Chang, Jiali [Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi' an710119, Shaanxi (China); Ma, Hongzhu, E-mail: hzmachem@snnu.edu.cn [Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi' an710119, Shaanxi (China)

    2017-02-28

    Highlights: • Hybrid hydrophilic/hydrophobic FA composites was constructed. • 99.2% O-II removal was obtained with MF/P(DMDAAC-co-AAM). • MF/KH-570 showed better hydrophobic property. • The possible mechanism of FA composite fabrication was studied. • The Freundlich isotherm and pseudo-second-order kinetic model fit better with kerosene adsorption. - Abstract: In order to realize the utilization of fly ash (FA) as industrial solid waste better, high-efficient inorganic/organic hybrid composite adsorbents derived from (Ca(OH){sub 2}/Na{sub 2}FeO{sub 4}) modified FA (MF) was fabricated. The hydrophilic cationic polymer (P(DMDAAC-co-AAM) or hydrophobic modifier (calcium-570) were used. The prepared composites were characterized by X-ray fluorescence spectroscopy, energy dispersive spectroscopy, scanning electron microscopy, Brunauer-Emmett-Teller, Fourier transform infrared spectroscopy, thermogravimetry, and contact angle test. The adsorption of cationic composites MF/P(DMDAAC-co-AAM) towards Orange II in wastewater was investigated. The results show that: adsorption amount of 24.8 mg/g with 2000 mg/L of composites, 50 mg/L Orange II, original pH (6–8), at 40 min and room temperature, was obtained. Meanwhile, oil adsorption ratio Q(g/g) of hydrophobic composites MF/KH-570 was also evaluated. The maximum Q of 17.2 g/g to kerosene was obtained at 40 min. The isotherm and kinetics of these two adsorption processes were also studied. The results showed that the fabricated MF composites modified with hydrophilic or hydrophobic group can be used to adsorb dye in wastewater or oil effectively.

  9. Sol-gel derived C-SiC composites and protective coatings for sustained durability in the space environment

    Science.gov (United States)

    Haruvy, Yair; Liedtke, Volker

    2003-09-01

    Composites and coatings were produced via the fast sol-gel process of a mixture of alkoxysilane precursors. The composites were comprised of carbon fibers, fabrics, or their precursors as reinforcement, and sol-gel-derived silicon carbide as matrix, aiming at high-temperature stable ceramics that can be utilized for re-entry structures. The protective coatings were comprised of fluorine-rich sol-gel derived resins, which exhibit high flexibility and coherence to provide sustained ATOX protection necessary for LEO space-exposed elements. For producing the composites, the sol-gel-derived resin is cast onto the reinforcement fibers/fabrics mat (carbon or its precursors) to produce a 'green' composite that is being cured. The 'green' composite is converted into a C-SiC composite via a gradual heat-pressure process under inert atmosphere, during which the organic substituents on the silicon atoms undergo internal oxidative pyrolysis via the schematic reaction: (SiRO3/2)n -> SiC + CO2 + H2O. The composition of the resultant silicon-oxi-carbide is tailorable via modifying the composition of the sol-gel reactants. The reinforcement, when made of carbon precursors, is converted into carbon during the heat-and-pressure processing as well. The C-SiC composites thus derived exhibit superior thermal stability and comparable thermal conductivity, combined with good mechanical strength features and failure resistance, which render them greatly applicable for re-entry shielding, heat-exchange pipes, and the like. Fluorine rich sol-gel derived coatings were developed as well, via the use of HF rich sol-gel process. These coatings provide oxidation-protection via the silica formation process, together with flexibility that allows 18,000 repetitive folding of the coating without cracking.

  10. Sol-gel synthesis and characterization of hybrid inorganic-organic Tb(III)-terephthalate containing layered double hydroxides

    Science.gov (United States)

    Smalenskaite, A.; Salak, A. N.; Ferreira, M. G. S.; Skaudzius, R.; Kareiva, A.

    2018-06-01

    Mg3/Al1 and Mg3Al1-xTbx layered double hydroxides (LDHs) intercalated with terephthalate anion were synthesized using sol-gel method. The obtained materials were characterized by X-ray diffraction (XRD) analysis, infrared (FTIR) spectroscopy, fluorescence spectroscopy (FLS) and scanning electron microscopy (SEM). The Tb3+ substitution effects in the Mg3Al1-xTbx LDHs were investigated by changing the Tb3+ concentration in the cation layers. The study indicates that the organic guest-terephthalate in the interlayer spacing of the LDH host influences the luminescence of the hybrid inorganic-organic materials.

  11. Synthesis, Consolidation and Characterization of Sol-gel Derived Tantalum-Tungsten Oxide Thermite Composites

    Energy Technology Data Exchange (ETDEWEB)

    Cervantes, O [Univ. of California, Davis, CA (United States)

    2010-06-01

    Energetic composite powders consisting of sol-gel (SG) derived nanostructured tungsten oxide were produced with various amounts of micrometer-scale tantalum fuel metal. Such energetic composite powders were ignition-tested and results show that the powders are not sensitive to friction, spark and/or impact ignition. Initial consolidation experiments, using the High Pressure Spark Plasma Sintering (HPSPS) technique, on the SG derived nanostructured tungsten oxide produced samples with higher relative density than can be achieved with commercially available tungsten oxide. The SG derived nanostructured tungsten oxide with immobilized tantalum fuel metal (Ta - WO3) energetic composite was consolidated to a density of 9.17 g·cm-3 or 93% relative density. In addition, those samples were consolidated without significant pre-reaction of the constituents, thus retaining their stored chemical energy.

  12. Vapour-phase method in the synthesis of polymer-ibuprofen sodium-silica gel composites.

    Science.gov (United States)

    Kierys, Agnieszka; Krasucka, Patrycja; Grochowicz, Marta

    2017-11-01

    The study discusses the synthesis of polymer-silica composites comprising water soluble drug (ibuprofen sodium, IBS). The polymers selected for this study were poly(TRIM) and poly(HEMA- co -TRIM) produced in the form of permanently porous beads via the suspension-emulsion polymerization method. The acid and base set ternary composites were prepared by the saturation of the solid dispersions of drug (poly(TRIM)-IBS and/or poly(HEMA- co -TRIM)-IBS) with TEOS, and followed by their exposition to the vapour mixture of water and ammonia, or water and hydrochloric acid, at autogenous pressure. The conducted analyses reveal that the internal structure and total porosity of the resulting composites strongly depend on the catalyst which was used for silica precursor gelation. The parameters characterizing the porosity of both of the acid set composites are much lower than the parameters of the base set composites. Moreover, the basic catalyst supplied in the vapour phase does not affect the ibuprofen sodium molecules, whereas the acid one causes transformation of the ibuprofen sodium into the sodium chloride and a derivative of propanoic acid, which is poorly water soluble. The release profiles of ibuprofen sodium from composites demonstrate that there are differences in the rate and efficiency of drug desorption from them. They are mainly affected by the chemical character of the polymeric carrier but are also associated with the restricted swelling of the composites in the buffer solution after precipitation of silica gel.

  13. Vapour-phase method in the synthesis of polymer-ibuprofen sodium-silica gel composites

    Directory of Open Access Journals (Sweden)

    Agnieszka Kierys

    2017-11-01

    Full Text Available The study discusses the synthesis of polymer-silica composites comprising water soluble drug (ibuprofen sodium, IBS. The polymers selected for this study were poly(TRIM and poly(HEMA-co-TRIM produced in the form of permanently porous beads via the suspension-emulsion polymerization method. The acid and base set ternary composites were prepared by the saturation of the solid dispersions of drug (poly(TRIM-IBS and/or poly(HEMA-co-TRIM-IBS with TEOS, and followed by their exposition to the vapour mixture of water and ammonia, or water and hydrochloric acid, at autogenous pressure. The conducted analyses reveal that the internal structure and total porosity of the resulting composites strongly depend on the catalyst which was used for silica precursor gelation. The parameters characterizing the porosity of both of the acid set composites are much lower than the parameters of the base set composites. Moreover, the basic catalyst supplied in the vapour phase does not affect the ibuprofen sodium molecules, whereas the acid one causes transformation of the ibuprofen sodium into the sodium chloride and a derivative of propanoic acid, which is poorly water soluble. The release profiles of ibuprofen sodium from composites demonstrate that there are differences in the rate and efficiency of drug desorption from them. They are mainly affected by the chemical character of the polymeric carrier but are also associated with the restricted swelling of the composites in the buffer solution after precipitation of silica gel.

  14. Woven hybrid composites: Tensile and flexural properties of oil palm-woven jute fibres based epoxy composites

    Energy Technology Data Exchange (ETDEWEB)

    Jawaid, M. [School of Industrial Technology, Universiti Sains Malaysia, 11800 Penang (Malaysia); Abdul Khalil, H.P.S., E-mail: akhalilhps@gmail.com [School of Industrial Technology, Universiti Sains Malaysia, 11800 Penang (Malaysia); Abu Bakar, A. [School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang (Malaysia)

    2011-06-15

    Highlights: {yields} Woven hybrid composites show good tensile and flexural properties. {yields} Hybridization with 20% woven jute gives rise to sufficient modulus to composites. {yields} Layering pattern affect mechanical properties of hybrid composites. {yields} Statistical analysis shows that there is significant difference between composites. - Abstract: In this research, tensile and flexural performance of tri layer oil palm empty fruit bunches (EFB)/woven jute (Jw) fibre reinforced epoxy hybrid composites subjected to layering pattern has been experimentally investigated. Sandwich composites were fabricated by hand lay-up technique in a mould and cured with 105 deg. C temperatures for 1 h by using hot press. Pure EFB and woven jute composites were also fabricate for comparison purpose. Results showed that tensile and flexural properties of pure EFB composite can be improved by hybridization with woven jute fibre as extreme woven jute fibre mat. It was found that tensile and flexural properties of hybrid composite is higher than that of EFB composite but less than woven jute composite. Statistical analysis of composites done by ANOVA-one way, it showed significant differences between the results obtained. The fracture surface morphology of the tensile samples of the hybrid composites was performed by using scanning electron microscopy.

  15. Woven hybrid composites: Tensile and flexural properties of oil palm-woven jute fibres based epoxy composites

    International Nuclear Information System (INIS)

    Jawaid, M.; Abdul Khalil, H.P.S.; Abu Bakar, A.

    2011-01-01

    Highlights: → Woven hybrid composites show good tensile and flexural properties. → Hybridization with 20% woven jute gives rise to sufficient modulus to composites. → Layering pattern affect mechanical properties of hybrid composites. → Statistical analysis shows that there is significant difference between composites. - Abstract: In this research, tensile and flexural performance of tri layer oil palm empty fruit bunches (EFB)/woven jute (Jw) fibre reinforced epoxy hybrid composites subjected to layering pattern has been experimentally investigated. Sandwich composites were fabricated by hand lay-up technique in a mould and cured with 105 deg. C temperatures for 1 h by using hot press. Pure EFB and woven jute composites were also fabricate for comparison purpose. Results showed that tensile and flexural properties of pure EFB composite can be improved by hybridization with woven jute fibre as extreme woven jute fibre mat. It was found that tensile and flexural properties of hybrid composite is higher than that of EFB composite but less than woven jute composite. Statistical analysis of composites done by ANOVA-one way, it showed significant differences between the results obtained. The fracture surface morphology of the tensile samples of the hybrid composites was performed by using scanning electron microscopy.

  16. Hybrid nanocellulose/nanoclay composites for food packaging applications

    DEFF Research Database (Denmark)

    Trifol Guzman, Jon

    ™ 30B) were prepared and evaluated for use in food packaging. It was determined that composites with CNF or CNC and clay led to a great reduction in the oxygen transmission rate (OTR)and the water vapour transmission rate (WVTR) (up to a 90% reduction in the OTR and 76% in theWVTR for PLA/CNF 5%/C30B 5...... to larger spherulite sizes, which had a more significant impacton water diffusion and transparency reduction but also showed an increased water sorption. Finally, it was found that cellulose nanofibers reduced water diffusion to an extent similar to C30B (21% vs.27%), while hybrid composites showed 49......% decrease, albeit CNF based composites showed increased water sorption (7% for PLA/CNF 1% composite and 9% for PLA/CNF 1%/C30B 1% when compared with neat PLA).The reduced diffusivity of the hybrid nanocomposites suggested that the material was promising for active packaging, since low diffusivity leads...

  17. Development of fluorocarbon/silica composites via sol/gel process

    International Nuclear Information System (INIS)

    Ferreira, Max P.; Maria, Daniel A.; Gomes, Luiza M.F.

    2009-01-01

    Fluorocarbon/silica composites have interesting physical-chemical properties, combining the great resistance to chemical products, the electric insulation, and the thermal stability of fluorine polymers with the optical, magnetic, and dielectric properties of silica. Due to the unique mechanical, thermal, and dielectric properties of fluorocarbon and silica composites, there is interest in their application in the development of fuel cells, the production of integrated circuit boards (ICB), and packages for the transportation of integrated circuits. The sol-gel process is a chemical route to prepare ceramic materials with specific properties that are hard or impossible to obtain by conventional methods. Fluorocarbon/silica composites were obtained by the sol-gel method from tetramethoxysilane - TMOS and fluorinated hydrocarbons with low molecular weight and main chains with 10 - 20 carbon atoms previously obtained from PTFE scraps irradiated with a 60 Co γ source in oxygen atmosphere with a dose of 1 MGy. Syntheses were performed in 125-mL reaction flasks in basic medium at 35 deg C and in acid medium at 60 deg C with N-N dimethylformamide as a chemical additive for drying control. After synthesis, the material was thermally treated in an oven with electronic temperature control. The monoliths obtained were characterized by Fourier transform infrared spectroscopy (FTIR), electron microprobe and by a standard nitrogen adsorption-desorption technique. (author)

  18. Carbon nanotube reinforced hybrid composites: Computational modeling of environmental fatigue and usability for wind blades

    DEFF Research Database (Denmark)

    Dai, Gaoming; Mishnaevsky, Leon

    2015-01-01

    The potential of advanced carbon/glass hybrid reinforced composites with secondary carbon nanotube reinforcement for wind energy applications is investigated here with the use of computational experiments. Fatigue behavior of hybrid as well as glass and carbon fiber reinforced composites...... with the secondary CNT reinforcements (especially, aligned tubes) present superior fatigue performances than those without reinforcements, also under combined environmental and cyclic mechanical loading. This effect is stronger for carbon composites, than for hybrid and glass composites....

  19. Surface modification of quartz fibres for dental composites through a sol-gel process.

    Science.gov (United States)

    Wang, Yazi; Wang, Renlin; Habib, Eric; Wang, Ruili; Zhang, Qinghong; Sun, Bin; Zhu, Meifang

    2017-05-01

    In this study, quartz fibres (QFs) surface modification using a sol-gel method was proposed and dental posts reinforced with modified QFs were produced. A silica sol (SS) was prepared using tetraethoxysilane (TEOS) and 3-methacryloxypropyltrimethoxysilane (γ-MPS) as precursors. The amount of γ-MPS in the sol-gel system was varied from 0 to 24wt.% with a constant molar ratio of TEOS, ethanol, deionized water, and HCl. Thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FT-IR), and contact angle (CA) measurements were used to characterize the modified QFs, which confirmed that SS had successfully coated the surface of QFs. SEM images showed good interfacial bonding between the modified QFs and the resin matrix. The results of three-point bending tests of the fibre reinforced composite (FRC) posts showed that the QFs modified by SS with 12wt.% γ-MPS presented the best mechanical properties, demonstrating improvements of 108.3% and 89.6% for the flexural strength and flexural modulus, respectively, compared with untreated QFs. Furthermore, the sorption and solubility of the prepared dental posts were also studied by immersing the posts in artificial saliva (AS) for 4weeks, and yielded favourable results. This sol-gel surface modification method promises to resolve interfacial bonding issues of fibres with the resin matrix, and produce FRC posts with excellent properties. Copyright © 2017. Published by Elsevier B.V.

  20. In-vitro starch hydrolysis of chitosan incorporating whey protein and wheat starch composite gels

    Directory of Open Access Journals (Sweden)

    Natasha Yang

    2017-10-01

    Full Text Available The study examined the influence of chitosan, incorporated into whey protein and wheat starch thermo gels, on the in-vitro hydrolysis of the polysaccharide. Gels were subjected to the following external conditions containing α-amylase at constant incubation temperature of 37 °C: In the first procedure, they were immersed in phosphate buffer (0.05 M and maintained at pH 6.9 throughout the entire digestion. In the second instance, they were introduced into a salt solution, with pH and total volume adjusted at times in sync with the human gastrointestinal tract. Results indicate that low and medium molecular weight chitosan, in combination with whey protein, were effective at enhancing the protective barrier against starch degradation. Less maltose was liberated from gels containing medium molecular weight chitosan, as opposed to the low molecular weight counterpart, and results compare favorably with the outcome of the in-vitro digestion of binary whey protein and wheat starch composites. Keywords: Food science

  1. Fabrication of Mesoporous Silica/Alumina Hybrid Membrane Film Nanocomposites using Template Sol-Gel Synthesis of Amphiphilic Triphenylene

    Science.gov (United States)

    Lintang, H. O.; Jalani, M. A.; Yuliati, L.; Salleh, M. M.

    2017-05-01

    Herein we reported that by introducing a one-dimensional (1D) substrate with a porous structure such as anodic aluminum oxide (AAO) membrane, mesoporous silica/alumina hybrid nanocomposites were successfully fabricated by using amphiphilic triphenylene (TPC10TEG) as a template in sol-gel synthesis (TPC10TEG/silicahex). For the optical study of the nanocomposites, TPC10TEG/silicahex showed absorption peak at 264 nm due to the ordered and long-range π-π stacking of the disc-like aromatic triphenylene core. Moreover, the hexagonal arrangement of TPC10TEG/silicahex was proven based on their diffraction peaks of d 100 and d 200 at 2θ = 2.52° and 5.04° and images of transmission electron microscopy (TEM), respectively. For fabrication of mesoporous silica/alumina hybrid membrane, TPC10TEG/silicahex was drop-casted onto AAO membrane for penetration into the porous structure via gravity. X-ray diffraction (XRD) analysis on the resulted hybrid nanocomposites showed that the diffraction peaks of d 100 and d 200 of TPC10TEG/silicahex were still preserved, indicating that the hexagonal arrangements of mesoporous silica were maintained even on AAO substrate. The morphology study on the hybrid nanocomposites using TEM, scanning electron microscope (SEM) and field emission scanning electron microscope (FE-SEM) showed the successful filling of most AAO channels with the TPC10TEG/silicahex nanocomposites.

  2. Gel/Space Ratio Evolution in Ternary Composite System Consisting of Portland Cement, Silica Fume, and Fly Ash.

    Science.gov (United States)

    Wu, Mengxue; Li, Chen; Yao, Wu

    2017-01-11

    In cement-based pastes, the relationship between the complex phase assemblage and mechanical properties is usually described by the "gel/space ratio" descriptor. The gel/space ratio is defined as the volume ratio of the gel to the available space in the composite system, and it has been widely studied in the cement unary system. This work determines the gel/space ratio in the cement-silica fume-fly ash ternary system (C-SF-FA system) by measuring the reaction degrees of the cement, SF, and FA. The effects that the supplementary cementitious material (SCM) replacements exert on the evolution of the gel/space ratio are discussed both theoretically and practically. The relationship between the gel/space ratio and compressive strength is then explored, and the relationship disparities for different mix proportions are analyzed in detail. The results demonstrate that the SCM replacements promote the gel/space ratio evolution only when the SCM reaction degree is higher than a certain value, which is calculated and defined as the critical reaction degree (CRD). The effects of the SCM replacements can be predicted based on the CRD, and the theological predictions agree with the test results quite well. At low gel/space ratios, disparities in the relationship between the gel/space ratio and the compressive strength are caused by porosity, which has also been studied in cement unary systems. The ratio of cement-produced gel to SCM-produced gel ( G C to G S C M ratio) is introduced for use in analyzing high gel/space ratios, in which it plays a major role in creating relationship disparities.

  3. Gel/Space Ratio Evolution in Ternary Composite System Consisting of Portland Cement, Silica Fume, and Fly Ash

    Directory of Open Access Journals (Sweden)

    Mengxue Wu

    2017-01-01

    Full Text Available In cement-based pastes, the relationship between the complex phase assemblage and mechanical properties is usually described by the “gel/space ratio” descriptor. The gel/space ratio is defined as the volume ratio of the gel to the available space in the composite system, and it has been widely studied in the cement unary system. This work determines the gel/space ratio in the cement-silica fume-fly ash ternary system (C-SF-FA system by measuring the reaction degrees of the cement, SF, and FA. The effects that the supplementary cementitious material (SCM replacements exert on the evolution of the gel/space ratio are discussed both theoretically and practically. The relationship between the gel/space ratio and compressive strength is then explored, and the relationship disparities for different mix proportions are analyzed in detail. The results demonstrate that the SCM replacements promote the gel/space ratio evolution only when the SCM reaction degree is higher than a certain value, which is calculated and defined as the critical reaction degree (CRD. The effects of the SCM replacements can be predicted based on the CRD, and the theological predictions agree with the test results quite well. At low gel/space ratios, disparities in the relationship between the gel/space ratio and the compressive strength are caused by porosity, which has also been studied in cement unary systems. The ratio of cement-produced gel to SCM-produced gel ( G C to G S C M ratio is introduced for use in analyzing high gel/space ratios, in which it plays a major role in creating relationship disparities.

  4. Inexpensive sol-gel synthesis of multiwalled carbon nanotube-TiO{sub 2} hybrids for high performance antibacterial materials

    Energy Technology Data Exchange (ETDEWEB)

    Abbas, Nadir; Shao, Godlisten N. [Department of Fusion Chemical Engineering, Hanyang University, 1271 Sa 3-dong, Sangnok-gu, Ansan-si, Gyeonggi-do 426-791 (Korea, Republic of); Haider, M. Salman [Department of Civil and Environmental System Engineering, Hanyang University, 1271 Sa 3-dong, Sangnok-gu, Ansan-si, Gyeonggi-do 426-791 (Korea, Republic of); Imran, Syed Muhammad; Park, Sung Soo; Jeon, Sun-Jeong [Department of Fusion Chemical Engineering, Hanyang University, 1271 Sa 3-dong, Sangnok-gu, Ansan-si, Gyeonggi-do 426-791 (Korea, Republic of); Kim, Hee Taik, E-mail: khtaik@hanyang.ac.kr [Department of Fusion Chemical Engineering, Hanyang University, 1271 Sa 3-dong, Sangnok-gu, Ansan-si, Gyeonggi-do 426-791 (Korea, Republic of)

    2016-11-01

    This study reports an inexpensive sol-gel method to synthesize TiO{sub 2}-CNT hybrid materials. Synthesized TiO{sub 2}-CNT materials show strong antibacterial activity in the absence of light. Cheap TiO{sub 2} source TiOCl{sub 2} is used during synthesis in the absence of high temperatures, high pressures and organic solvents. TiO{sub 2}-CNT materials with 0, 2, 5, 10, 15 and 20 wt% of CNT were synthesized and compared for antibacterial activity, surface area, porosity, crystalline structure, chemical state, and HaCaT cell proliferation. The antibacterial strength of hybrid materials increased significantly with the increase in CNT loading amount, and the TiO{sub 2}-CNT samples with a CNT loading of 10 wt% or more nearly removed all of the E.coli bacteria. HaCaT cell proliferation studies of synthesized hybrid materials illustrated that prepared TiO{sub 2}-CNT systems exhibit minimum cytotoxicity. The characteristics of prepared materials were analyzed by means of XRD, FTIR, Raman spectroscopy, XPS, TEM, and nitrogen gas physisorption studies, compared and discussed. - Highlights: • An inexpensive scheme of preparing TiO{sub 2}-CNT hybrids is presented. • Significant increase in the antibacterial properties of TiO{sub 2} in absence of light • Effects of CNT addition on the physicochemical properties of hybrids are studied. • Antibacterial activity increases with increase in CNT content. • Hybrids show no toxicity towards HaCaT skin cell line.

  5. Effect of Molecular Weight on the Properties of Liquid Epoxidized Natural Rubber Acrylate (LENRA)/ Silica Hybrid Composites

    International Nuclear Information System (INIS)

    Eda Yuhana Ariffin; Azizan Ahmad; Dahlan Mohd; Mahathir Mohamed

    2011-01-01

    This paper reports on the effect of molecular weight on the morphological and mechanical properties of liquid epoxidized natural rubber acrylate (LENRA)/ silica hybrid composites prepared by sol-gel technique. The sol-gel reaction was conducted at different concentration of tetraethyl orthosilicate (TEOS), used as a precursor of silica. TEOS were introduced in 10, 20, 30, 40 and 50 parts per hundred rubber (phr) in the composites. Two different molecular weights of ENR were used to study the effect of molecular weight on the mechanical and morphological properties of the compounds. These compounds were cured by ultraviolet (UV) irradiation. The mechanical properties were studied through pendulum hardness and scratch tests. Higher molecular weight of ENR showed better mechanical properties than lower molecular weight. Transmission electron microscope was used to determine the silica size and to study the distribution and dispersion of the silica particles. High molecular weight showed greater distribution and dispersion of silica particles with diameter of 13 - 256 nm. Morphological and mechanical properties of LENRA/ silica hybrid composites were improved by using high molecular weight of ENR. (author)

  6. Effect of Opalescence(®) bleaching gels on the elution of bulk-fill composite components.

    Science.gov (United States)

    Schuster, Lena; Reichl, Franz-Xaver; Rothmund, Lena; He, Xiuli; Yang, Yang; Van Landuyt, Kirsten L; Kehe, Kai; Polydorou, Olga; Hickel, Reinhard; Högg, Christof

    2016-02-01

    Bleaching treatments can affect release of components from conventional composites. In this continuing study the influence of two different bleaching gels on the elution of bulk-fill composite components was investigated. The composites Tetric EvoCeram(®) Bulk Fill, QuiXFil™ and X-tra fil were treated with the bleaching gels Opalescence PF 15% (PF 15%) for 5 h and PF 35% (PF 35%) for 30 min and then stored in methanol and water for 24 h and 7 d. The eluates were analyzed by gas chromatography/mass spectrometry (GC/MS). Unbleached specimens were used as control group. A total of 7 different elutable substances have been identified from the investigated composites after bleaching-treatment. Three of them were methacrylates: 2-hydroxyethyl methacrylate (HEMA), triethylene glycol dimethacrylate (TEGDMA) and trimethylolpropane trimethacrylate (TMPTMA). Compared to the unbleached controls an increase in elution after PF 15%-treatment of following compounds was found: HEMA (Tetric EvoCeram(®) Bulk Fill), TEGDMA (QuiXFil™, X-tra fil) and 4-N,N-dimethylaminobenzoic acid butyl ethoxy ester (DMABEE) (Tetric EvoCeram(®) Bulk Fill, QuiXFil™, X-tra fil). Following compounds showed a reduction in elution after PF 35%-treatment compared to controls: TEGDMA (QuiXFil™) and DMABEE (Tetric EvoCeram(®) Bulk Fill). The highest concentration of HEMA was 0.22 mmol/l (Tetric EvoCeram(®) Bulk Fill, methanol, 7 d, PF 15%), the highest concentration of TEGDMA was 0.3 mmol/l (X-tra fil, water, 7 d, PF 15%) and the highest concentration of DMABEE was 0.05 mmol/l (QuiXFil™, water, 7 d, PF 35%). PF 15% and PF 35% can lead to reduced and/or increased elution of some bulk-fill components, compared to unbleached bulk-fill composites. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  7. Manufacturing and Machining Challenges of Hybrid Aluminium Metal Matix Composites

    Science.gov (United States)

    Baburaja, Kammuluri; Sainadh Teja, S.; Karthik Sri, D.; Kuldeep, J.; Gowtham, V.

    2017-08-01

    Manufacturing which involves material removal processes or material addition processes or material transformation processes. One or all the processes to obtain the final desired properties for a material with desired shape which meets the required precision and accuracy values for the expected service life of a material in working conditions. Researchers found the utility of aluminium to be the second largest after steel. Aluminium and its metal matrix composite possess wide applications in various applications in aerospace industry, automobile industry, Constructions and even in kitchen utensils. Hybrid Al-MMCconsist of two different materials, and one will be from organic origin along with the base material. In this paper an attempt is made to bring out the importance of utilization of aluminium and the challenges concerned in manufacturing and machining of hybrid aluminium MMC.

  8. Sol-gel hybrid materials for aerospace applications: Chemical characterization and comparative investigation of the magnetic properties

    Science.gov (United States)

    Catauro, Michelina; Mozzati, Maria Cristina; Bollino, Flavia

    2015-12-01

    In the material science field, weightless conditions can be successfully used to understand the relationship between manufacturing process, structure and properties of the obtained materials. Aerogels with controlled microstructure could be obtained by sol-gel methods in microgravity environment, simulated using magnetic levitation if they are diamagnetic. In the present work, a sol-gel route was used to synthesize class I, organic-inorganic nanocomposite materials. Two different formulations were prepared: the former consisted in a SiO2 matrix in which different percentages of polyethylene glycol (PEG) were incorporated, the latter was a ZrO2 matrix entrapping different amounts of poly (ε-caprolactone) (PCL). Fourier Transform Infrared Spectroscopy (FT-IR) detected that the organic and the inorganic components in both the formulation interact by means of hydrogen bonds. X-ray diffraction (XRD) analysis highlighted the amorphous nature of the synthesized materials and Scanning Electron Microscope (SEM) showed that they have homogeneous morphology and are nanocomposites. Superconducting Quantum Interference Device (SQUID) magnetometry confirmed the expected diamagnetic character of those hybrid systems. The obtained results were compared to those achieved in previous studies regarding the influence of the polymer amount on the magnetic properties of SiO2/PCL and ZiO2/PEG hybrids, in order to understand how the diamagnetic susceptibility is influenced by variation of both the inorganic matrix and organic component.

  9. Hybrid Composites for LH2 Fuel Tank Structure

    Science.gov (United States)

    Grimsley, Brian W.; Cano, Roberto J.; Johnston, Norman J.; Loos, Alfred C.; McMahon, William M.

    2001-01-01

    The application of lightweight carbon fiber reinforced plastics (CFRP) as structure for cryogenic fuel tanks is critical to the success of the next generation of Reusable Launch Vehicles (RLV). The recent failure of the X-33 composite fuel tank occurred in part due to microcracking of the polymer matrix, which allowed cryogen to permeate through the inner skin to the honeycomb core. As part of an approach to solve these problems, NASA Langley Research Center (LaRC) and Marshall Space Flight Center (MSFC) are working to develop and investigate polymer films that will act as a barrier to the permeation of LH2 through the composite laminate. In this study two commercially available films and eleven novel LaRC films were tested in an existing cryogenics laboratory at MSFC to determine the permeance of argon at room temperature. Several of these films were introduced as a layer in the composite to form an interleaved, or hybrid, composite to determine the effects on permeability. In addition, the effects of the interleaved layer thickness, number, and location on the mechanical properties of the composite laminate were investigated. In this initial screening process, several of the films were found to exhibit lower permeability to argon than the composite panels tested.

  10. A Comparison of gel point for a Glass/Epoxy Composite and a Neat Epoxy Material during Isothermal Curing

    DEFF Research Database (Denmark)

    Jakobsen, Johnny; Andreasen, Jens H.; Thomsen, Ole Thybo

    2014-01-01

    Determination of gel point is important for a modelling assessment of residual stresses developed during curing of composite materials. Residual stresses in a composite structure may have a detrimental effect on its mechanical performance and compromise its integrity. In this article, the evoluti...

  11. New Functionalized Sol-Gel Hybrid Sorbent Coating for Stir Bar Sorptive Extraction of Selected Non-Steroidal Anti Inflammatory Drugs in Human Urine Samples

    International Nuclear Information System (INIS)

    Mashkurah Abd Rahim; Wan Aini Wan Ibrahim; Zainab Ramli; Mohd Marsin Sanagi

    2015-01-01

    A new sol-gel hybrid material, methyltrimethoxysilane-cyanopropyltriethoxysilane (MTMOS-CNPrTEOS) was successfully synthesized and used as a coating material in stir bar sorptive extraction (SBSE) of selected non-steroidal anti-inflammatory drugs (NSAIDs) in urine samples. The MTMOS-CNPrTEOS hybrid was synthesized by hydrolysis and condensation of MTMOS and CNPrTEOS in the presence of trifluoroacetic acid as catalyst via sol-gel method. Several factors influencing the synthesized sol-gel hybrid MTMOS-CNPrTEOS process such as mole ratio of MTMOS-CNPrTEOS, NaOH concentrations as etching solution, etching time, coating time and water content were investigated and optimized in this study. The optimum synthesis conditions obtained were 1:1 mol ratio of MTMOS-CNPrTEOS, 1 M NaOH as etching solution, 60 min etching time, 2 h coating time and 6 mmol water. The sol-gel hybrid MTMOS-CNPrTEOS synthesized under the optimum conditions was used to determine selected NSAIDs in human urine samples using normal stacking mode capillary electrophoresis with ultraviolet detection. MTMOS-CNPrTEOS SBSE method demonstrated good linearity (60 to 20,000 μg L -1 ) with excellent coefficient of determination (r 2 > 0.9990). The sol-gel hybrid MTMOS-CNPrTEOS SBSE method showed low limit of detection (35 - 41 μg L -1 ) with good precision (RSD < 6 %, n = 3) and excellent extraction recoveries (83.5 - 98.9 %) for the selected NSAIDs. The sol-gel hybrid MTMOS-CNPrTEOS SBSE method demonstrated good potential as an alternative sorbent in SBSE method for NSAIDs. (author)

  12. Preparation of Photocrosslinked Fish Elastin Polypeptide/Microfibrillated Cellulose Composite Gels with Elastic Properties for Biomaterial Applications

    Directory of Open Access Journals (Sweden)

    Shinya Yano

    2015-01-01

    Full Text Available Photocrosslinked hydrogels reinforced by microfibrillated cellulose (MFC were prepared from a methacrylate-functionalized fish elastin polypeptide and MFC dispersed in dimethylsulfoxide (DMSO. First, a water-soluble elastin peptide with a molecular weight of ca. 500 g/mol from the fish bulbus arteriosus was polymerized by N,N′-dicyclohexylcarbodiimide (DCC, a condensation reagent, and then modified with 2-isocyanatoethyl methacrylate (MOI to yield a photocrosslinkable fish elastin polypeptide. The product was dissolved in DMSO and irradiated with UV light in the presence of a radical photoinitiator. We obtained hydrogels successfully by substitution of DMSO with water. The composite gel with MFC was prepared by UV irradiation of the photocrosslinkable elastin polypeptide mixed with dispersed MFC in DMSO, followed by substitution of DMSO with water. The tensile test of the composite gels revealed that the addition of MFC improved the tensile properties, and the shape of the stress–strain curve of the composite gel became more similar to the typical shape of an elastic material with an increase of MFC content. The rheology measurement showed that the elastic modulus of the composite gel increased with an increase of MFC content. The cell proliferation test on the composite gel showed no toxicity.

  13. Studies of gel metal-oxide composite samples as filling materials for W-188/Re-188 generator column

    Czech Academy of Sciences Publication Activity Database

    Iller, E.; Polkowska-Motrenko, H.; Lada, W.; Wawszczak, D.; Sypula, M.; Doner, K.; Konior, M.; Milczarek, J.; Zoladek, J.; Ráliš, Jan

    2009-01-01

    Roč. 281, č. 1 (2009), s. 83-86 ISSN 0236-5731. [9th International Conference on Nuclear Analytical Methods in the Life Sciences. Lisbon, 07.09.2008-12.09.2008] Institutional research plan: CEZ:AV0Z10480505 Keywords : W-188/Re-188 generator * W-Zr gels * W-Zr composites * Sol-gel process Subject RIV: CH - Nuclear ; Quantum Chemistry Impact factor: 0.631, year: 2009

  14. Determination of arsenate in water by anion selective membrane electrode using polyurethane–silica gel fibrous anion exchanger composite

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Asif Ali, E-mail: asifkhan42003@yahoo.com; Shaheen, Shakeeba, E-mail: shakeebashaheen@ymail.com

    2014-01-15

    Highlights: • PU–Si gel is new anion exchanger material synthesized and characterized. • This material used as anion exchange membrane is applied for electroanalytical studies. • The method for detection and determination of AsO{sub 4}{sup 3−} in traces amounts discussed. • The results are also verified from arsenic analyzer. -- Abstract: Polyurethane (PU)–silica (Si gel) based fibrous anion exchanger composites were prepared by solid–gel polymerization of polyurethane in the presence of different amounts of silica gel. The formation of PU–Si gel fibrous anion exchanger composite was characterized by Fourier transform infra-red spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetric analysis (TGA-DTA), scanning electron microscopy (SEM) and elemental analysis. The membrane having a composition of 5:3 (PU:Si gel) shows best results for water content, porosity, thickness and swelling. Our studies show that the present ion selective membrane electrode is selective for arsenic, having detection limit (1 × 10{sup −8} M to 1 × 10{sup −1} M), response time (45 s) and working pH range (5–8). The selectivity coefficient values for interfering ions indicate good selectivity for arsenate (AsO{sub 4}{sup 3−}) over interfering anions. The accuracy of the detection limit results was compared by PCA-Arsenomat.

  15. Silica- and germania-based dual-ligand sol-gel organic-inorganic hybrid sorbents combining superhydrophobicity and π-π interaction. The role of inorganic substrate in sol-gel capillary microextraction.

    Science.gov (United States)

    Seyyal, Emre; Malik, Abdul

    2017-04-29

    Principles of sol-gel chemistry were utilized to create silica- and germania-based dual-ligand surface-bonded sol-gel coatings providing enhanced performance in capillary microextraction (CME) through a combination of ligand superhydrophobicity and π-π interaction. These organic-inorganic hybrid coatings were prepared using sol-gel precursors with bonded perfluorododecyl (PF-C 12 ) and phenethyl (PhE) ligands. Here, the ability of the PF-C 12 ligand to provide enhanced hydrophobic interaction was advantageously combined with π-π interaction capability of the PhE moiety to attain the desired sorbent performance in CME. The effect of the inorganic sorbent component on microextraction performance of was explored by comparing microextraction characteristics of silica- and germania-based sol-gel sorbents. The germania-based dual-ligand sol-gel sorbent demonstrated superior CME performance compared to its silica-based counterpart. Thermogravimetric analysis (TGA) of the created silica- and germania-based dual-ligand sol-gel sorbents suggested higher carbon loading on the germania-based sorbent. This might be indicative of more effective condensation of the organic ligand-bearing sol-gel-active chemical species to the germania-based sol-gel network (than to its silica-based counterpart) evolving in the sol solution. The type and concentration of the organic ligands were varied in the sol-gel sorbents to fine-tune extraction selectivity toward different classes of analytes. Specific extraction (SE) values were used for an objective comparison of the prepared sol-gel CME sorbents. The sorbents with higher content of PF-C 12 showed remarkable affinity for aliphatic hydrocarbons. Compared to their single-ligand sol-gel counterparts, the dual-ligand sol-gel coatings demonstrated significantly superior CME performance in the extraction of alkylbenzenes, providing up to ∼65.0% higher SE values. The prepared sol-gel CME coatings provided low ng L -1 limit of detections (LOD

  16. Preparation and morphological and optical characterization of azo-polymer-based SiO2 sonogel hybrid composites

    International Nuclear Information System (INIS)

    Morales-Saavedra, Omar G; Ontiveros-Barrera, Fernando G; Torres-Zúñiga, Vicente; Guadalupe-Bañuelos, José; Ortega-Martínez, Roberto; Rivera, Ernesto; García, Tonatiuh

    2009-01-01

    The well-established catalyst-free sonogel route was successfully implemented to fabricate highly pure, optically active, solid state polymeric azo- dye/SiO 2 -based hybrid composites. Bulk samples exhibit controllable geometrical shapes and monolithic structure with variable dopant concentrations. Since the implemented azo-dye chromophores exhibit a push–pull structure, hybrid film samples were spin-coated on ITO-covered glass substrates; molecular alignment was then performed via electrical poling in order to explore the quadratic nonlinear optical performance of this kind of composite. Comprehensive morphological, spectroscopic and optical characterization of the samples were performed with several experimental techniques: atomic force microscopy, x-ray diffraction and infrared, Raman, photoluminescent and ultraviolet–visible spectroscopies. The linear refractive indices of both bulk and thin film samples were measured according to the Brewster angle technique and a numerical analysis of the transmission spectral data, respectively. Regardless of the low glass transition temperatures of the studied polymers, some hybrid film samples were able to display stable nonlinear optical activity such as second harmonic generation. Results show that the chromophores were satisfactorily embedded into the highly pure SiO 2 sonogel network without significant guest–host molecular interactions, thus preserving their optical properties and producing sol–gel hybrid glasses suitable for optical applications

  17. Property Relationship in Organosilanes and Nanotubes Filled Polypropylene Hybrid Composites

    Directory of Open Access Journals (Sweden)

    Alejandra J. Monsiváis-Barrón

    2014-10-01

    Full Text Available Polypropylene composites with different filler contents were prepared by creating a masterbatch containing 3 wt%. filler. A variety of silanol groups were used to synthetized three compounds in different media trough a sol-gel process with acetic acid, formic acid and ammonium hydroxide as catalysts. Besides, four different nanotubular fillers were also used to analyze their behavior and compare it with the effect caused by the silanol groups. These tubular structures comprise: unmodified halloysite, carbon nanotubes and functionalized halloysite and carbon nanotubes. Morphological characterization in SEM and STEM/TEM showed dispersion in the polypropylene matrix. According to TGA and DSC measurements thermal behavior remain similar for all the composites. Mechanical test in tension demonstrate that modulus of the composites increases for all samples with a major impact for materials containing silanol groups synthetized in formic acid. Rheological measurements show a significantly increment in viscosity for samples containing unmodified and modified carbon nanotubes. No difference was found for samples containing silanol groups and halloysite when compared to neat polypropylene. Finally, the oxygen transmission rate increased for all samples showing high barrier properties only for samples containing natural and functionalized halloysite nanotubes.

  18. Property Relationship in Organosilanes and Nanotubes Filled Polypropylene Hybrid Composites.

    Science.gov (United States)

    Monsiváis-Barrón, Alejandra J; Bonilla-Rios, Jaime; Sánchez-Fernández, Antonio

    2014-10-20

    Polypropylene composites with different filler contents were prepared by creating a masterbatch containing 3 wt%. filler. A variety of silanol groups were used to synthetized three compounds in different media trough a sol-gel process with acetic acid, formic acid and ammonium hydroxide as catalysts. Besides, four different nanotubular fillers were also used to analyze their behavior and compare it with the effect caused by the silanol groups. These tubular structures comprise: unmodified halloysite, carbon nanotubes and functionalized halloysite and carbon nanotubes. Morphological characterization in SEM and STEM/TEM showed dispersion in the polypropylene matrix. According to TGA and DSC measurements thermal behavior remain similar for all the composites. Mechanical test in tension demonstrate that modulus of the composites increases for all samples with a major impact for materials containing silanol groups synthetized in formic acid. Rheological measurements show a significantly increment in viscosity for samples containing unmodified and modified carbon nanotubes. No difference was found for samples containing silanol groups and halloysite when compared to neat polypropylene. Finally, the oxygen transmission rate increased for all samples showing high barrier properties only for samples containing natural and functionalized halloysite nanotubes.

  19. Advanced Ceramic Matrix Composites with Multifunctional and Hybrid Structures

    Science.gov (United States)

    Singh, Mrityunjay; Morscher, Gregory N.

    2004-01-01

    Ceramic matrix composites are leading candidate materials for a number of applications in aeronautics, space, energy, and nuclear industries. Potential composite applications differ in their requirements for thickness. For example, many space applications such as "nozzle ramps" or "heat exchangers" require very thin (structures whereas turbine blades would require very thick parts (> or = 1 cm). Little is known about the effect of thickness on stress-strain behavior or the elevated temperature tensile properties controlled by oxidation diffusion. In this study, composites consisting of woven Hi-Nicalon (trademark) fibers a carbon interphase and CVI SiC matrix were fabricated with different numbers of plies and thicknesses. The effect of thickness on matrix crack formation, matrix crack growth and diffusion kinetics will be discussed. In another approach, hybrid fiber-lay up concepts have been utilized to "alloy" desirable properties of different fiber types for mechanical properties, thermal stress management, and oxidation resistance. Such an approach has potential for the C(sub I)-SiC and SiC(sub f)-SiC composite systems. CVI SiC matrix composites with different stacking sequences of woven C fiber (T300) layers and woven SiC fiber (Hi-Nicalon (trademark)) layers were fabricated. The results will be compared to standard C fiber reinforced CVI SiC matrix and Hi-Nicalon reinforced CVI SiC matrix composites. In addition, shear properties of these composites at different temperatures will also be presented. Other design and implementation issues will be discussed along with advantages and benefits of using these materials for various components in high temperature applications.

  20. SERS of semiconducting nanoparticles (TIO{sub 2} hybrid composites).

    Energy Technology Data Exchange (ETDEWEB)

    Rajh, T.; Musumeci, A.; Gosztola, D.; Schiller, T.; Dimitrijevic, N. M.; Mujica, V.; Martin, D.; Center for Nanoscale Materials

    2009-05-06

    Raman scattering of molecules adsorbed on the surface of TiO{sub 2} nanoparticles was investigated. We find strong enhancement of Raman scattering in hybrid composites that exhibit charge transfer absorption with TiO{sub 2} nanoparticles. An enhancement factor up to {approx}10{sup 3} was observed in the solutions containing TiO{sub 2} nanoparticles and biomolecules, including the important class of neurotransmitters such as dopamine and dopac (3,4-dihydroxy-phenylacetic acid). Only selected vibrations are enhanced, indicating molecular specificity due to distinct binding and orientation of the biomolecules coupled to the TiO{sub 2} surface. All enhanced modes are associated with the asymmetric vibrations of attached molecules that lower the symmetry of the charge transfer complex. The intensity and the energy of selected vibrations are dependent on the size and shape of nanoparticle support. Moreover, we show that localization of the charge in quantized nanoparticles (2 nm), demonstrated as the blue shift of particle absorption, diminishes SERS enhancement. Importantly, the smallest concentration of adsorbed molecules shows the largest Raman enhancements suggesting the possibility for high sensitivity of this system in the detection of biomolecules that form a charge transfer complex with metal oxide nanoparticles. The wavelength-dependent properties of a hybrid composite suggest a Raman resonant state. Adsorbed molecules that do not show a charge transfer complex show weak enhancements probably due to the dielectric cavity effect.

  1. Sol-gel synthesis and characterization of SiO{sub 2}/PEG hybrid materials containing quercetin as implants with antioxidant properties

    Energy Technology Data Exchange (ETDEWEB)

    Catauro, Michelina; Bollino, Flavia [Department of Industrial and Information Engineering, Second University of Naples, Via Roma 21, 81031 Aversa (Italy); Gloria, Antonio [Institute of Polymers, Composites and Biomaterials - National Research Council of Italy, V.le J. F. Kennedy 54 - Mostra d’Oltremare Pad. 20, 80125 Naples (Italy)

    2016-05-18

    In the present work, Silica/Polyethylene glycol (PEG) hybrid nanocomposites containing an antioxidant agent, the quercetin, were synthesized via sol-gel to be used as implants with antioxidant properties. Fourier transform infrared (FT-IR) analysis proved that a modification of both polymer and quercetin occurs due to synthesis process. Scanning electron microscope (SEM) showed that the proposed materials were hybrid nanocomposites. The bioactivity was ascertained by soaking the samples in a simulated body fluid (SBF).

  2. Effect of layering sequence and chemical treatment on the mechanical properties of woven kenaf–aramid hybrid laminated composites

    International Nuclear Information System (INIS)

    Yahaya, R.; Sapuan, S.M.; Jawaid, M.; Leman, Z.; Zainudin, E.S.

    2015-01-01

    Highlights: • The mechanical properties of woven kenaf/Kevlar hybrid composites were analysed. • The layering sequences affect the mechanical properties of hybrid composites. • Treated kenaf improves the mechanical properties of hybrid composites. - Abstract: This work aims to evaluate the effect of layering sequence and chemical treatment on mechanical properties of woven kenaf–Kevlar composites. Woven kenaf–aramid hybrid laminated composites fabricated through hand lay-up techniques by arranging woven kenaf and Kevlar fabrics in different layering sequences and by using treated kenaf mat. To evaluate the effect of chemical treatment on hybrid composites, the woven kenaf mat was treated with 6% sodium hydroxide (NaOH) diluted solution and compared mechanical properties with untreated kenaf hybrid composites. Results shows that the tensile properties of hybrid composites improved in 3-layer composites compared to 4-layer composites. Hybrid composite with Kevlar as outer layers display a better mechanical properties as compared to other hybrid composites. Tensile and flexural properties of treated hybrid composites are better than non-treated hybrid composites. The fractured surface of hybrid composites was investigated by scanning electron microscopy. This study is a part of exploration of potential application of the hybrid composite in high velocity impact application

  3. Hybrid Composite Material and Solid Particle Erosion Studies

    Science.gov (United States)

    Chellaganesh, D.; Khan, M. Adam; Ashif, A. Mohamed; Ragul Selvan, T.; Nachiappan, S.; Winowlin Jappes, J. T.

    2018-04-01

    Composite is one of the predominant material for most challenging engineering components. Most of the components are in the place of automobile structure, aircraft structures, and wind turbine blade and so on. At the same all the components are indulged to mechanical loading. Recent research on composite material are machinability, wear, tear and corrosion studies. One of the major issue on recent research was solid particle air jet erosion. In this paper hybrid composite material with and without filler. The fibre are in the combination of hemp – kevlar (60:40 wt.%) as reinforcement using epoxy as a matrix. The natural material palm and coconut shell are used as filler materials in the form of crushed powder. The process parameter involved are air jet velocity, volume of erodent and angle of impingement. Experiment performed are in eight different combinations followed from 2k (k = 3) factorial design. From the investigation surface morphology was studied using electron microscope. Mass change with respect to time are used to calculate wear rate and the influence of the process parameters. While solid particle erosion the hard particle impregnates in soft matrix material. Influence of filler material has reduced the wear and compared to plain natural composite material.

  4. Adaptive, Active and Multifunctional Composite and Hybrid Materials Program: Composite and Hybrid Materials ERA

    Science.gov (United States)

    2014-04-01

    590 . SMASIS2011-4934. L. D. Peel, J. Baur, D. Phillips, and A. McClung, “The Effect of Scaling on the Performance of Elastomer Composite Actuators...fragility of the fibers it was also not possible to extract some of them from their adhesive paper mountings without breakage. For Raman ... Raman spectroscopy and microscopy (SEM), the nanocomposites were evaluated for their thermal analytical properties using TGA. Electrical

  5. The Influence of the Polymer Amount on the Biological Properties of PCL/ZrO2 Hybrid Materials Synthesized via Sol-Gel Technique

    Directory of Open Access Journals (Sweden)

    Michelina Catauro

    2017-10-01

    Full Text Available Organic/inorganic hybrid materials are attracting considerable attention in the biomedical area. The sol-gel process provides a convenient way to produce many bioactive organic–inorganic hybrids. Among those, poly(e-caprolactone/zirconia (PCL/ZrO2 hybrids have proved to be bioactive with no toxic materials. The aim of this study was to investigate the effects of these materials on the cellular response as a function of the PCL content, in order to evaluate their potential use in the biomedical field. For this purpose, PCL/ZrO2 hybrids containing 6, 12, 24, and 50 wt % of PCL were synthesized by the sol-gel method. The effects of their presence on the NIH-3T3 fibroblast cell line carrying out direct cell number counting, MTT, cell damage assays, flow cytometry-based analysis of cell-cycle progression, and immunoblotting experiments. The results confirm and extend the findings that PCL/ZrO2 hybrids are free from toxicity. The hybrids containing 12 and 24 wt % PCL, (more than 6 and 50 wt % ones enhance cell proliferation when compared to pure ZrO2 by affecting cell cycle progression. The finding that the content of PCL in PCL/ZrO2 hybrids differently supports cell proliferation suggests that PCL/ZrO2 hybrids could be useful tools with different potential clinical applications.

  6. The Influence of the Polymer Amount on the Biological Properties of PCL/ZrO2 Hybrid Materials Synthesized via Sol-Gel Technique

    Science.gov (United States)

    Tranquillo, Elisabetta; Illiano, Michela; Sapio, Luigi; Spina, Annamaria; Naviglio, Silvio

    2017-01-01

    Organic/inorganic hybrid materials are attracting considerable attention in the biomedical area. The sol-gel process provides a convenient way to produce many bioactive organic–inorganic hybrids. Among those, poly(e-caprolactone)/zirconia (PCL/ZrO2) hybrids have proved to be bioactive with no toxic materials. The aim of this study was to investigate the effects of these materials on the cellular response as a function of the PCL content, in order to evaluate their potential use in the biomedical field. For this purpose, PCL/ZrO2 hybrids containing 6, 12, 24, and 50 wt % of PCL were synthesized by the sol-gel method. The effects of their presence on the NIH-3T3 fibroblast cell line carrying out direct cell number counting, MTT, cell damage assays, flow cytometry-based analysis of cell-cycle progression, and immunoblotting experiments. The results confirm and extend the findings that PCL/ZrO2 hybrids are free from toxicity. The hybrids containing 12 and 24 wt % PCL, (more than 6 and 50 wt % ones) enhance cell proliferation when compared to pure ZrO2 by affecting cell cycle progression. The finding that the content of PCL in PCL/ZrO2 hybrids differently supports cell proliferation suggests that PCL/ZrO2 hybrids could be useful tools with different potential clinical applications. PMID:29039803

  7. Porphyrinosilica and metalloporphyrinosilica: hybrid organic-inorganic materials prepared by sol-gel processing

    Science.gov (United States)

    Iamamoto; Sacco; Biazzotto; Ciuffi; Serra

    2000-01-01

    New materials porphyrinosilica and metalloporphyrinosilica template have been obtained by a sol-gel processing where functionalyzed porphyrins and metalloporphyrins "building blocks" were assembled into a three-dimensional silicate network. The optimized conditions for preparation of these materials are revised. The monomer precursors porphyrinopropylsilyl and metalloporphyrinopropylsilyl preparation reactions and subsequent one pot sol-gel processing with tetraethoxysilane are discussed. In the case of metalloporphyrins the nitrogen base coordinates to the central metal and acts as a template in the molecular imprinting technique. UV-visible absorption spectroscopy, thermogravimetric analysis, electron paramagnetic resonance, nuclear magnetic spectra, infrared spectra, luminescence spectra, surface area and electron spectroscopy imaging of the materials are used to characterize the prepared materials. The catalytic activities of these metalloporphyrinosilica-template are compared.

  8. Porphyrinosilica and metalloporphyrinosilica: hybrid organic-inorganic materials prepared by sol-gel processing

    Directory of Open Access Journals (Sweden)

    YASSUKO IAMAMOTO

    2000-03-01

    Full Text Available New materials porphyrinosilica and metalloporphyrinosilica template have been obtained by a sol-gel processing where functionalyzed porphyrins and metalloporphyrins "building blocks" were assembled into a three-dimensional silicate network. The optimized conditions for preparation of these materials are revised. The monomer precursors porphyrinopropylsilyl and metalloporphyrinopropylsilyl preparation reactions and subsequent one pot sol-gel processing with tetraethoxysilane are discussed. In the case of metalloporphyrins the nitrogen base coordinates to the central metal and acts as a template in the molecular imprinting technique. UV-visible absorption spectroscopy, thermogravimetric analysis, electron paramagnetic resonance, nuclear magnetic spectra, infrared spectra, luminescence spectra, surface area and electron spectroscopy imaging of the materials are used to characterize the prepared materials. The catalytic activities of these metalloporphyrinosilica- template are compared.

  9. Solvent-Assisted Gel Printing for Micropatterning Thin Organic-Inorganic Hybrid Perovskite Films.

    Science.gov (United States)

    Jeong, Beomjin; Hwang, Ihn; Cho, Sung Hwan; Kim, Eui Hyuk; Cha, Soonyoung; Lee, Jinseong; Kang, Han Sol; Cho, Suk Man; Choi, Hyunyong; Park, Cheolmin

    2016-09-27

    While tremendous efforts have been made for developing thin perovskite films suitable for a variety of potential photoelectric applications such as solar cells, field-effect transistors, and photodetectors, only a few works focus on the micropatterning of a perovskite film which is one of the most critical issues for large area and uniform microarrays of perovskite-based devices. Here we demonstrate a simple but robust method of micropatterning a thin perovskite film with controlled crystalline structure which guarantees to preserve its intrinsic photoelectric properties. A variety of micropatterns of a perovskite film are fabricated by either microimprinting or transfer-printing a thin spin-coated precursor film in soft-gel state with a topographically prepatterned elastomeric poly(dimethylsiloxane) (PDMS) mold, followed by thermal treatment for complete conversion of the precursor film to a perovskite one. The key materials development of our solvent-assisted gel printing is to prepare a thin precursor film with a high-boiling temperature solvent, dimethyl sulfoxide. The residual solvent in the precursor gel film makes the film moldable upon microprinting with a patterned PDMS mold, leading to various perovskite micropatterns in resolution of a few micrometers over a large area. Our nondestructive micropatterning process does not harm the intrinsic photoelectric properties of a perovskite film, which allows for realizing arrays of parallel-type photodetectors containing micropatterns of a perovskite film with reliable photoconduction performance. The facile transfer of a micropatterned soft-gel precursor film on other substrates including mechanically flexible plastics can further broaden its applications to flexible photoelectric systems.

  10. Post-Impact and Open Hole Tensile Of Kenaf Hybrid Composites

    Science.gov (United States)

    Yunus, S.; Salleh, Z.; Masdek, N. R. N. M.; Taib, Y. M.; Azhar, I. I. S.; Hyie, K. M.

    2018-03-01

    Nowadays, kenaf hybrid glass composites has been used for a vast field of study throughout the globe. There are several compositions and orientation of kenaf hybrid glass composites that has been studied. With regards to the study that has been done, this study will be focussing on a 90FG/0/90/90/0/90FG orientation of kenaf hybrid glass composites. Polyester resin is used as a matrix to these hybrid composites. Impacted and open hole specimens were then analyzed through tensile test. All specimens were fabricated by using the cold press hand lay-up technique. The results revealed that the hybrid composites were hardly affected by the impact up to 6J. After 6J the impacted specimens experienced a significant damage for both strength and modulus. The same goes to open hole specimens where the same trend of tensile properties were observed as impacted specimens.

  11. Experimental and theoretical assessment of flexural properties of hybrid natural fibre composites

    DEFF Research Database (Denmark)

    Raghavalu Thirumalai, Durai Prabhakaran; Toftegaard, Helmuth Langmaack; Markussen, Christen Malte

    2014-01-01

    The concept of hybridization of natural fibre composites with synthetic fibres is attracting increasing scientific attention. The present study addresses the flexural properties of hybrid flax/glass/epoxy composites to demonstrate the potential benefits of hybridization. The study covers both...... experimental and theoretical assessments. Composite laminates with different hybrid fibre mixing ratios and different layer configurations were manufactured, and their volumetric composition and flexural properties were measured. The relationship between volume fractions in the composites is shown to be well...... predicted as a function of the hybrid fibre mixing ratio. The flexural modulus of the composites is theoretically assessed by using micromechanical models and laminate theory. The model predictions are compared with the experimentally determined flexural properties. Both approaches show that the flexural...

  12. Mechanical Properties, Cytocompatibility and Manufacturability of Chitosan:PEGDA Hybrid-Gel Scaffolds by Stereolithography.

    Science.gov (United States)

    Morris, Viola B; Nimbalkar, Siddharth; Younesi, Mousa; McClellan, Phillip; Akkus, Ozan

    2017-01-01

    Extracellular matrix mimetic hydrogels which hybridize synthetic and natural polymers offer molecularly-tailored, bioactive properties and tunable mechanical strength. In addition, 3D bioprinting by stereolithography allows fabrication of internal pores and defined macroscopic shapes. In this study, we formulated a hybrid biocompatible resin using natural and synthetic polymers (chitosan and polyethylene glycol diacrylate (PEGDA), respectively) by controlling molecular weight of chitosan, feed-ratios, and photo-initiator concentration. Ear-shaped, hybrid scaffolds were fabricated by a stereolithographic method using a 405 nm laser. Hybrid hydrogel scaffolds of chitosan (50-190 kDa) and PEGDA (575 Da) were mixed at varying feed-ratios. Some of the cationic, amino groups of chitosan were neutralized by dialysis in acidic solution containing chitosan in excess of sodium acetate solution to inhibit quenching of newly formed photoradicals. A feed-ratio of 1:7.5 was found to be the most appropriate of the formulations considered in this study in terms of mechanical properties, cell adhesion, and printability. The biofabricated hybrid scaffold showed interconnected, homogeneous pores with a nominal pore size of 50 µm and an elastic modulus of ~400 kPa. Moreover, long-term cell viability and cell spreading was observed via actin filament staining. Printability of the biocompatible resin was confirmed by printing thresholded MR images of an ear and the feed ratio of 1:7.5 provided the most faithful reproduction of the shape. To the best of our knowledge, this is the first report of stereolithographic printing hybridizing cell-adhesive properties of chitosan with mechanical robustness of PEG in scaffolds suitable for repair of complex tissue geometries, such as those of the human ear.

  13. Hybrid carbon/glass fiber composites: Micromechanical analysis of structure–damage resistance relationships

    DEFF Research Database (Denmark)

    Mishnaevsky, Leon; Dai, Gaoming

    2014-01-01

    A computational study of the effect of microstructure of hybrid carbon/glass fiber composites on their strength is presented. Unit cells with hundreds of randomly located and misaligned fibers of various properties and arrangements are subject to tensile and compression loading, and the evolution...... strength than pure composites, while the strength of hybrid composites under inform force loading increases steadily with increasing the volume content of carbon fibers....... of fiber damages is analyzed in numerical experiments. The effects of fiber clustering, matrix properties, nanoreinforcement, load sharing rules on the strength and damage resistance of composites are studied. It was observed that hybrid composites under uniform displacement loading might have lower...

  14. Mechanical Characterization of Baslat Based Natural Hybrid Composites for Aerospace Applications

    Science.gov (United States)

    Alexander, J.; Elphej Churchill, S. J.

    2017-05-01

    Advanced composites have attracted aircraft designers due to its high strength to weight ratio, high stiffness to weight ratio, tailoring properties, hybridization of opposites etc. Moreover the cost reduction is also another important requirement of structural components. Basalt fibers are new entry in structural field which has excellent properties more or less equivalent to GFRP composites. Using these basalt fibres, new hybrid composites were developed by combining basalt fibres with natural fibres. The mechanical and thermal properties were determined and compared with BFRP and GFRP composites. Results proved that hybrid composites have some good qualities.

  15. Microstructural characterization of hybrid CFRP/SiC composites

    International Nuclear Information System (INIS)

    Von Dollinger, C.F.A.; Pardini, L.C.; Alves, S.C.N.

    2016-01-01

    In present work a hybrid matrix C-C/SiC composites were produced. Carbon fiber fabric was impregnated with phenolic resin mixed with powder Si in proportions of 5%, 10%, 15% e 20%wt. Optical microscopy under reflected light and polarized light were used in order to characterize samples in the as molded condition and after carbonization at 1000°C, and heat treatment 1600°C in order to react carbon and liquid silicon in order to form in situ SiC . The pore volume fraction ranges from 33% to 41% for composites after heat treatment at 1600°C due to volatiles released specially during carbonization process. Complementary analyses were done by Scanning Electron microscopy (SEM) and X-Ray diffraction to confirm in situ conversion of SiC. The results showed that the impregnation of a carbon fabric with phenolic resin added with silicon proved to be an alternative route to produce CFRP/SiC composites. (author)

  16. Fatigue Life Analysis of Tapered Hybrid Composite Flexbeams

    Science.gov (United States)

    Murri, Gretchen B.; Schaff, Jeffery R.; Dobyns, Alan L.

    2002-01-01

    Nonlinear-tapered flexbeam laminates from a full-size composite helicopter rotor hub flexbeam were tested under combined constant axial tension and cyclic bending loads. The two different graphite/glass hybrid configurations tested under cyclic loading failed by delamination in the tapered region. A 2-D finite element model was developed which closely approximated the flexbeam geometry, boundary conditions, and loading. The analysis results from two geometrically nonlinear finite element codes, ANSYS and ABAQUS, are presented and compared. Strain energy release rates (G) obtained from the above codes using the virtual crack closure technique (VCCT) at a resin crack location in the flexbeams are presented for both hybrid material types. These results compare well with each other and suggest that the initial delamination growth from the resin crack toward the thick region of the flexbeam is strongly mode II. The peak calculated G values were used with material characterization data to calculate fatigue life curves and compared with test data. A curve relating maximum surface strain to number of loading cycles at delamination onset compared reasonably well with the test results.

  17. Characterisation of metal–thermoplastic composite hybrid joints by means of a mandrel peel test

    NARCIS (Netherlands)

    Su, Yibo; de Rooij, Matthias B.; Grouve, Wouter Johannes Bernardus; Warnet, Laurent

    2016-01-01

    Fastener free metal–carbon fibre reinforced thermoplastic composite hybrid joints show potential for application in aerospace structures. The strength of the metal–thermoplastic composite interface is crucial for the performance of the entire hybrid joint. Optimisation of the interface requires an

  18. Tensile properties of interwoven hemp/PET (Polyethylene Terephthalate) epoxy hybrid composites

    Science.gov (United States)

    Ahmad, M. A. A.; Majid, M. S. A.; Ridzuan, M. J. M.; Firdaus, A. Z. A.; Amin, N. A. M.

    2017-10-01

    This paper describes the experimental investigation of the tensile properties of interwoven Hemp/PET hybrid composites. The effect of hybridization of hemp (warp) with PET fibres (weft) on tensile properties was of interest. Hemp and PET fibres were selected as the reinforcing material while epoxy resin was chosen as the matrix. The interwoven Hemp/PET fabric was used to produce hybrid composite using a vacuum infusion process. The tensile test was conducted using Universal Testing Machine in accordance to the ASTM D638. The tensile properties of the interwoven Hemp/PET hybrid composite were then compared with the neat woven hemp/epoxy composite. The results show that the strength of hemp/PET with the warp direction was increased by 8% compared to the neat woven hemp composite. This enhancement of tensile strength was due to the improved interlocking structure of interwoven Hemp/PET hybrid fabric.

  19. Effect of Opalescence® bleaching gels on the elution of dental composite components.

    Science.gov (United States)

    Schuster, Lena; Rothmund, Lena; He, Xiuli; Van Landuyt, Kirsten L; Schweikl, Helmut; Hellwig, Elmar; Carell, Thomas; Hickel, Reinhard; Reichl, Franz-Xaver; Högg, Christof

    2015-06-01

    Bleaching treatments can affect on the polymer network of dental composites. This study was performed to evaluate the influence of different bleaching treatments on the elution of composite components. The composites Tetric EvoCeram(®), CLEARFIL™ AP-X, Tetric EvoFlow(®), Filtek™ Supreme XT, Ceram X(®) mono+, Admira and Filtek™ Silorane were treated with the bleaching gels Opalescence PF 15% (PF 15%) for 5h and PF 35% (PF 35%) for 30 min and then stored in methanol and water for 24h and 7 d. The eluates were analyzed by gas chromatography/mass spectrometry (GC/MS). Unbleached specimens were used as control group. A total of 16 different elutable substances have been identified from the investigated composites after bleaching-treatment. Six of them were methacrylates: 1,10-decandioldimethacrylate (DDDMA), 1,12-dodekandioldimethacrylate (DODDMA), ethylenglycoldimethacrylate (EGDMA), 2-hydroxyethylmethacrylate (HEMA), triethylenglycoldimethacrylate (TEGDMA) and urethandimethacrylate (UDMA). Compared with the unbleached controls the composites Tetric EvoCeram(®), CLEARFIL™ AP-X and Tetric EvoFlow(®) showed a reduced elution of UDMA, TEGDMA and HEMA after bleaching-treatment. Compared with the unbleached controls an increase elution of UDMA, DMABEE, BPA and TEGDMA for the composites Filtek™ Supreme XT, Ceram X(®) mono+, Admira and Filtek™ Silorane after bleaching-treatment has been detected. The highest concentration of UDMA was 0.01 mmol/l (Tetric EvoCeram(®), water, 24h, controls), the highest concentration of TEGDMA was 0.28 mmol/l (CLEARFIL™ AP-X, water, 7 d, controls), the highest concentration of HEMA was 0.74 mmol/l (Tetric EvoFlow(®), methanol, 7 d, PF 35%), the highest concentration of DMABEE was 0.10 mmol/l (Ceram X(®) mono+, water, 7 d, PF 35%) and the highest concentration of BPA was 0.01 mmol/l (Admira, methanol, 7 d, controls). Bleaching treatments can lead to a reduced or an increased elution of substances from the dental composites

  20. Effects of composition interactions on the response of a turnbull blue radiochromic gel dosimeter

    International Nuclear Information System (INIS)

    Shieh, Jiunn-I; Cheng, Kai-Yuan; Shyu, Huey-Lih; Yu, Yi-Chen; Hsieh, Ling-Ling

    2014-01-01

    In this study, the Taguchi statistical method was used to design experiments for investigating the effects of interactions among compositions on the performance of a Turnbull blue gel (TBG) radiochromic dosimeter. Four parameters were considered as the design factors: (A) concentration of ferric chloride, (B) concentration of potassium ferricyanide, (C) concentration of sulfuric acid, and (D) amount of gelling agent added. Two levels were selected for each factor. The change in optical absorbance at 695 nm under UVA exposures was monitored to determine the response of the dosimeters. The results showed that the contributions of factors A–D on the absorbance were 20.01%, 23.16%, 27.03%, and 0.49%, respectively. The contributions of significant interaction effects were AC (8.60%), BC (5.61%), and ABC (10.56%). This finding indicated that sulfuric acid (C) was the most influential factor, whereas gelling agent (D) was the least influential factor. Sulfuric acid had an important function in two two-way interactions and one three-way interaction in the response of TBG to UV exposure. - Highlights: • Analysis of the composition that influence TBG dosimeters via the design of experiments. • Cross interactions between factors in the TBG dosimeters through multi-factor ANOVA. • Two two-way interactions and one three-way interaction in the TBG dosimeters are significant

  1. Tailor-made cell patterning using a near-infrared-responsive composite gel composed of agarose and carbon nanotubes

    International Nuclear Information System (INIS)

    Koga, Haruka; Nakazawa, Kohji; Sada, Takao; Fujigaya, Tsuyohiko; Nakashima, Naotoshi

    2013-01-01

    Micropatterning is useful for regulating culture environments. We developed a highly efficient near-infrared-(NIR)-responsive gel and established a new technique that enables cell patterning by NIR irradiation. As a new culture substratum, we designed a tissue culture plate that was coated with a composite gel composed of agarose and carbon nanotubes (CNTs). A culture plate coated with agarose only showed no response to NIR irradiation. In contrast, NIR laser irradiation induced heat generation by CNTs; this permitted local solation of the CNT/agarose gel, and consequently, selective cell-adhesive regions were exposed on the tissue culture plate. The solation area was controlled by the NIR intensity, magnification of the object lens and CNT concentration in the gel. Furthermore, we formed circular patterns of HeLa cells and linear patterns of 3T3 cells on the same culture plate through selective and stepwise NIR irradiation of the CNT/agarose gel, and we also demonstrated that individual 3T3 cells migrated along a linear path formed on the CNT/agarose gel by NIR irradiation. These results indicate that our technique is useful for tailor-made cell patterning of stepwise and/or complex cell patterns, which has various biological applications such as stepwise co-culture and the study of cell migration. (paper)

  2. Structural, vibrational, and gasochromic properties of porous WO sub 3 films templated with a sol-gel organic-inorganic hybrid

    CERN Document Server

    Opara-Krasovec, U; Orel, B; Grdadolnik, J; Drazic, G

    2002-01-01

    The structure and the gasochromic properties of sol-gel-derived WO sub 3 films with a monoclinic structure (m-WO sub 3) were studied by focusing attention on the size of the monoclinic grains. The size of the m-WO sub 3 grains is modified by the addition of an organic-inorganic hybrid to the initial peroxopolytungstic acid (W-PTA) sols which are based on chemically bonded poly-(propylene glycol) to triethoxysilane end-capping groups (ICS-PPG). The results obtained with scanning electron microscopy (SEM) and transmission electron microscopy (TEM) show that the heat treatment (500 sup o C) of WO sub 3 /ICS- IPG (0.5, 1, 2, 5, and 10 mol%) composite films results in a change of their morphology, and nanodimensional pores are formed between the grains. High-resolution TEM (HRTEM) analysis revealed the presence of an amorphous phase on the outside of the m-WO sub 3 grains, whereas energy-dispersive x-ray spectra (EDXS) showed that this amorphous phase contained W and Si. Impregnation of the WO sub 3 /ICS-PPG film ...

  3. The Effect of Cerium Ions on the Structure, Porosity and Electrochemical Properties of Si/Zr-Based Hybrid Sol-Gel Coatings Deposited on Aluminum

    Directory of Open Access Journals (Sweden)

    Peter Rodič

    2018-04-01

    Full Text Available This study was focused on the synthesis and characterization of Si/Zr-based hybrid sol-gel coatings with and without the addition of cerium(III ions. The coatings were deposited on aluminum aiming to act as an effective and ecologically harmless alternative to toxic chromate coatings. The chemical composition, structure, thermal properties and porosity of the non-doped and Ce-doped coatings containing various Zr contents were examined by Raman spectroscopy and photothermal beam deflection spectroscopy. The corrosion properties of the coated aluminum substrates were studied using AC and DC electrochemical methods in 0.1 M NaCl electrolyte solution. Barrier and protecting properties of the coatings were monitored upon long-term immersion in chloride solution using electrochemical impedance spectroscopy. The effect of cerium ions was two-fold: on the formation of a more condensed Si−O−Zr network structure and on the formation of Ce-based deposits, which diminish the rate of cathodic reaction at the coating/metal interface. These effects acted synergistically and resulted in the creation of the coatings with effective barrier and active corrosion protection.

  4. Bonding performance of self-adhesive flowable composites to enamel, dentin and a nano-hybrid composite.

    Science.gov (United States)

    Peterson, Jana; Rizk, Marta; Hoch, Monika; Wiegand, Annette

    2018-04-01

    This study aimed to analyze bond strengths of self-adhesive flowable composites on enamel, dentin and nano-hybrid composite. Enamel, dentin and nano-hybrid composite (Venus Diamond, Heraeus Kulzer, Germany) specimens were prepared. Three self-adhesive composites (Constic, DMG, Germany; Fusio Liquid Dentin, Pentron Clinical, USA; Vertise Flow, Kerr Dental, Italy) or a conventional flowable composite (Venus Diamond Flow, Heraeus Kulzer, Germany, etch&rinse technique) were applied to enamel and dentin. Nano-hybrid composite specimens were initially aged by thermal cycling (5000 cycles, 5-55 °C). Surfaces were left untreated or pretreated by mechanical roughening, Al 2 O 3 air abrasion or silica coating/silanization. In half of the composite specimens, an adhesive (Optibond FL, Kerr Dental, Italy) was used prior to the application of the flowable composites. Following thermal cycling (5000 cycles, 5-55 °C) of all specimens, shear bond strengths (SBS) and failure modes were analyzed (each subgroup n = 16). Statistical analysis was performed by ANOVAs/Bonferroni post hoc tests, Weibull statistics and χ 2 -tests (p composites on enamel and dentin were significantly lower (enamel: composite (enamel: 13.0 ± 5.1, dentin: 11.2 ± 6.3), and merely adhesive failures could be observed. On the nano-hybrid composite, SBS were significantly related to the pretreatment. Adhesive application improved SBS of the conventional, but not of the self-adhesive composites. The self-adhesive composite groups showed less cohesive failures than the reference group; the occurence of cohesive failures increased after surface pretreatment. Bonding of self-adhesive flowable composites to enamel and dentin is lower than bonding to a nano-hybrid composite.

  5. The effect of two in-office and home bleaching gels on microhardness of composite resin

    Directory of Open Access Journals (Sweden)

    Alizadeh Oskoee P.

    2007-07-01

    Full Text Available Background and Aim: Bleaching products as chemical materials can exert side effects on soft and hard tissues and existing restorative materials with oxidizing mechanism. The aim of this study was to evaluate the effect of 15% and 35% carbamide peroxide gels as home and in-office bleaching agents respectively, on microhardness and surface topography of composite resin.Materials and Methods: In this in vitro study, a total of 75 disc shaped specimens were prepared from Z100  composite resin (3M and randomly divided into three groups with following treatment designs: group 1, 370C distilled water, group 2, 15% carbamide peroxide, 6 hours/day for 3 weeks, group 3, 35% carbamide peroxide 30 minutes/week for 3 weeks. The microhardness (Vickers hardness of samples was measured using Shimadzu set on three different points of each sample. 8 samples of each group were selected randomly to be assessed by scanning electron microscopy (SEM for probable changes in surface topography. Data were analyzed using one way ANOVA and Duncan tests with p<0.05 as the level of significance. Results: 15% carbamide peroxide group had the maximum amount of microhardness (84.59±1.87 and 35% carbamide peroxide group had the minimum (76. 14±1.77. Only the difference between home bleaching and control group was not statistically significant (P=0.24. The SEM assessing revealed no changes in surface topography.Conclusion: Based on the results of this study, in-office bleaching may decrease the microhardness of composite resin.

  6. Influence of the polymer amount on bioactivity and biocompatibility of SiO{sub 2}/PEG hybrid materials synthesized by sol–gel technique

    Energy Technology Data Exchange (ETDEWEB)

    Catauro, M., E-mail: michelina.catauro@unina2.it [Department of Industrial and Information Engineering, Second University of Naples, Via Roma 29, 81031 Aversa (Italy); Bollino, F.; Papale, F. [Department of Industrial and Information Engineering, Second University of Naples, Via Roma 29, 81031 Aversa (Italy); Gallicchio, M.; Pacifico, S. [Department of Environmental Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, Via Vivaldi 43, 81100 Caserta (Italy)

    2015-03-01

    SiO{sub 2}/PEG organic–inorganic hybrid materials, which differ in polyethylene glycol (PEG) content, were synthesized by sol–gel technique and the characterization of their structure and biological properties was carried out in order to evaluate the possible use in biomedical field. FT-IR spectroscopy detected that the two components of the hybrids (SiO{sub 2} and PEG) are linked by hydrogen bonds between the Si–OH groups of the inorganic phase and the terminal alcoholic groups and/or the ethereal oxygen atoms in the repeating units of polymer. X-ray diffraction analysis ascertained the amorphous nature of the gels and the observation of their morphology by SEM microscopy confirmed that the interpenetration of the two phases (organic and inorganic) occurs on nanometric scale. The biological characterization was carried out as a function of the polymer amount to study its influence on material behavior. The results showed that the synthesized materials were bioactive and biocompatible. The formation of a hydroxyapatite layer, indeed, was observed on their surface by SEM/EDX analysis after soaking in simulated body fluid. Moreover, the biocompatibility of SiO{sub 2}/PEG hybrids was assessed performing MTT and SRB cytotoxicity tests on fibroblast cell NIH 3T3 after 24 and 48 h of exposure, as well as Trypan Blue dye exclusion test. The response to the presence of the investigated materials was positive. The cell growth and proliferation showed dependence on polymer amount and time of exposure to the material extracts. Therefore, the obtained results are encouraging for the use of the obtained hybrids in dental or orthopedic applications. - Highlights: • SiO{sub 2}/PEG hybrid biomaterials synthesized by sol–gel method at various PEG percentages • Chemical and morphological characterization of hybrid materials • Chemical interactions between inorganic and organic components • Biological characterizations with MTT and SRB cytotoxicity tests

  7. Nonhydrolytic sol-gel approach to facile creation of surface-bonded zirconia organic-inorganic hybrid coatings for sample preparation. Ι. Capillary microextraction of catecholamine neurotransmitters.

    Science.gov (United States)

    Alhendal, Abdullah; Mengis, Stephanie; Matthews, Jacob; Malik, Abdul

    2016-10-14

    Nonhydrolytic sol-gel (NHSG) route was used for the creation of novel zirconia-polypropylene oxide (ZrO 2 -PPO) sol-gel hybrid sorbents in the form of surface coatings for the extraction and preconcentration of catecholamine neurotransmitters and molecules structurally related to their deaminated metabolites. In comparison to other sorbents made of inorganic transition metal oxides, the presented hybrid organic-inorganic sorbents facilitated reversible sorption properties that allowed for efficient desorption of the extracted analytes by LC-MS compatible mobile phases. The presented sol-gel hybrid sorbents effectively overcame the major drawbacks of traditional silica- or polymer-based sorbents by providing superior pH stability (pH range: 0-14), and a variety of intermolecular interactions. Nonaqueous sol-gel treatment of PPO with ZrCl 4 was employed for the derivatization of the terminal hydroxyl groups on PPO, providing zirconium trichloride-containing end groups characterized by enhanced sol-gel reactivity. NHSG ZrO 2 -PPO sorbent provided excellent microextraction performance for catecholamines, low detection limits (5.6-9.6pM), high run-to-run reproducibility (RSD 0.6-5.1%), high desorption efficiency (95.0-99.5%) and high enrichment factors (∼1480-2650) for dopamine and epinephrine, respectively, extracted from synthetic urine samples. The presented sol-gel sorbents provided effective alternative to conventional extraction media providing unique physicochemical characteristics and excellent extraction capability. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Hybrid polymer composite membrane for an electromagnetic (EM) valveless micropump

    Science.gov (United States)

    Said, Muzalifah Mohd; Yunas, Jumril; Bais, Badariah; Azlan Hamzah, Azrul; Yeop Majlis, Burhanuddin

    2017-07-01

    In this paper, we report on a hybrid membrane used as an actuator in an electromagnetically driven valveless micropump developed using MEMS processes. The membrane structure consists of the combination of a magnetic polymer composite membrane and an attached bulk permanent magnet which is expected to have a compact structure and a strong magnetic force with maintained membrane flexibility. A soft polymeric material made of polydimethylsiloxane (PDMS) is initially mixed with neodymium magnetic particles (NdFeB) to form a magnetic polymer composite membrane. The membrane is then bonded with the PDMS based microfluidic part, developed using soft lithography process. The developed micropump was tested in terms of the actuator membrane deflection capability and the fluidic flow of the injected fluid sample through the microfluidic channel. The experimental results show that the magnetic composite actuator membrane with an attached bulk permanent magnet is capable of producing a maximum membrane deflection of up to 106 µm. The functionality test of the electromagnetic (EM) actuator for fluid pumping purposes was done by supplying an AC voltage with various amplitudes, signal waves and frequencies. A wide range of sample injection rates from a few µl min-1 to tens of nl min-1 was achieved with a maximum flow rate of 6.6 µl min-1. The injection flow rate of the EM micropump can be controlled by adjusting the voltage amplitude and frequency supplied to the EM coil, to control the membrane deflection in the pump chamber. The designed valveless EM micropump has a very high potential to enhance the drug delivery system capability in biomedical applications.

  9. Development of durable self-cleaning coatings using organic–inorganic hybrid sol–gel method

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Divya [School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Wu, Xinghua [School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Energy Research Institute at NTU - ERI@N, 1 CleanTech Loop, #06-04, CleanTech One, Singapore 637141 (Singapore); Fu, Qitao [School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Ho, Jeffrey Weng Chye [School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Energy Research Institute at NTU - ERI@N, 1 CleanTech Loop, #06-04, CleanTech One, Singapore 637141 (Singapore); Kanhere, Pushkar D. [Energy Research Institute at NTU - ERI@N, 1 CleanTech Loop, #06-04, CleanTech One, Singapore 637141 (Singapore); Li, Lin [School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Chen, Zhong, E-mail: ASZChen@ntu.edu.sg [School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Energy Research Institute at NTU - ERI@N, 1 CleanTech Loop, #06-04, CleanTech One, Singapore 637141 (Singapore)

    2015-07-30

    Highlights: • A facile method to produce sol–gel based self-cleaning coatings is described. • Effect of filler size and content is evaluated via contact angle, sliding angle, and surface morphology. • Coating with 15 wt.% nano-sized silica fillers exhibits the best self-cleaning performance. • The coatings are resistant to UV radiation and retain the functionality after the abrasion test. • A self-cleaning test and scheme to quantify the self-cleaning efficiency are described in this work. - Abstract: Self-cleaning coatings with excellent water-repellence and good mechanical properties are in high demand. However, producing such coatings with resistance to mechanical abrasion and environmental weathering remains a key challenge. Mechanically robust coatings based on tetraethylorthosilicate (TEOS) and glycidoxypropyltriethoxysilane (Glymo) have been prepared using a sol–gel method. Emphasis is given to the addition of Glymo, an epoxy silane which creates an organic matrix that blends with the inorganic Si−O−Si matrix formed from the TEOS. The combination of the blended matrix produced coatings with good adhesion to substrates and improved mechanical properties. Fluoroalkylsilane (FAS) and silica fillers were introduced to increase the hydrophobicity of the coating. It was found that the water contact angle (CA) of these coatings increases from 115° to 164° upon decreasing filler size from 1–5 μm to 10–20 nm. The sliding angle (SA) for coatings with 15 wt.% loading of 10–20 nm silica is around 2°. UV weathering does not show significant effect on the properties of the coatings. Mechanical properties and performances including hardness, Young's modulus, coating adhesion and abrasion resistance were systematically analyzed. In the current work, a simple self-cleaning test, which measures the extent of dirt accumulation and subsequent removal by water spray, was performed. The coatings with 15 wt.% loading of 10–20 nm silica particles

  10. Magnetic iron oxide nanoparticles (MIONs) cross-linked natural polymer-based hybrid gel beads: Controlled nano anti-TB drug delivery application.

    Science.gov (United States)

    Kesavan, Mookkandi Palsamy; Ayyanaar, Srinivasan; Vijayakumar, Vijayaparthasarathi; Dhaveethu Raja, Jeyaraj; Annaraj, Jamespandi; Sakthipandi, Kathiresan; Rajesh, Jegathalaprathaban

    2018-04-01

    The nanosized rifampicin (RIF) has been prepared to increase the solubility in aqueous solution, which leads to remarkable enhancement of its bioavailability and their convenient delivery system studied by newly produced nontoxic, biodegradable magnetic iron oxide nanoparticles (MIONs) cross-linked polyethylene glycol hybrid chitosan (mCS-PEG) gel beads. The functionalization of both nano RIF and mCS-PEG gel beads were studied using various spectroscopic and microscopic techniques. The size of prepared nano RIF was found to be 70.20 ± 3.50 nm. The mechanical stability and swelling ratio of the magnetic gel beads increased by the addition of PEG with a maximum swelling ratio of 38.67 ± 0.29 g/g. Interestingly, this magnetic gel bead has dual responsive assets in the nano drug delivery application (pH and the magnetic field). As we expected, magnetic gel beads show higher nano drug releasing efficacy at acidic medium (pH = 5.0) with maximum efficiency of 71.00 ± 0.87%. This efficacy may also be tuned by altering the external magnetic field and the weight percentage (wt%) of PEG. These results suggest that such a dual responsive magnetic gel beads can be used as a potential system in the nano drug delivery applications. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 1039-1050, 2018. © 2017 Wiley Periodicals, Inc.

  11. Sol-gel synthesis of magnesium oxide-silicon dioxide glass compositions

    Science.gov (United States)

    Bansal, Narottam P.

    1988-01-01

    MgO-SiO2 glasses containing up to 15 mol pct MgO, which could not have been prepared by the conventional glass melting method due to the presence of stable liquid-liquid immiscibility, were synthesized by the sol-gel technique. Clear and transparent gels were obtained from the hydrolysis and polycondensation of silicon tetraethoxide (TEOS) and magnesium nitrate hexahydrate when the water/TEOS mole ratio was four or more. The gelling time decreased with increase in magnesium content, water/TEOS ratio, and reaction temperature. Magnesium nitrate hexahydrate crystallized out of the gels containing 15 and 20 mol pct MgO on slow drying. This problem was partially alleviated by drying the gels quickly at higher temperatures. Monolithic gel samples were prepared using glycerol as the drying control additive. The gels were subjected to various thermal treatments and characterized by several methods. No organic groups could be detected in the glasses after heat treatments to approx. 800 C, but trace amounts of hydroxyl groups were still present. No crystalline phase was found from X-ray diffraction in the gel samples to approx. 890 C. At higher temperatures, alpha quartz precipitated out as the crystalline phase in gels containing up to 10 mol pct MgO. The overall activation energy for gel formation in 10MgO-90SiO2 (mol pct) system for water/TEOS mole ratio of 7.5 was calculated to be 58.7 kJ/mol.

  12. Fracture resistance of teeth restored with packable and hybrid composites

    Directory of Open Access Journals (Sweden)

    Ghavam M

    2006-06-01

    Full Text Available Background and Aim: With recent introduction of packable composites, it is claimed that they apply less stress on tooth structure because of reduced polymerization shrinkage, and similarity of coefficient of thermal expansion to tooth structure. However, the high viscosity may in turn cause less adaptation, so it is not clearly known whether these materials strengthen tooth structure or not. The aim of this study was to evaluate fracture resistance of maxillary premolars, receiving hybrid or packable composite restorations with different methods of application and curing. Materials and Methods: In this experimental study, seventy five intact premolars were randomly assigned to five groups of 15 teeth each. One group was maintained intact as the control group. Similar MOD cavities were prepared in the other teeth. The teeth in group two were restored with Spectrum in incremental layers and light cured with 500 mw/cm2 intensity. The third group were filled with Surefil and cured with light intensity of 500 mw/cm2. The groups four and five were restored with Surefil in bulk technique with two different modes: 500 mw/cm2 intensity and a ramp mode (100-900 mw/cm2 respectively. After thermocycling, force to fracture was assessed and degree of conversion (DC at the bottom of cavities was evaluated for different modes and methods. The curing and placement methods in groups tested for DC (A to D were the same as fracture resistance groups (2 to 5. Data were analyzed using one way ANOVA and Tukey HSD tests with p<0.05 as the limit of significance. Results: All the restored groups showed significantly less fracture resistance than the control group, but had no significant difference among themselves. DC of Spectrum was higher than Surefil. Bulk method with 500 mw/cm2 light intensity, significantly decreased DC. DC in bulk method with high light intensity was not significantly different from incremental method with 500 mw/cm2 light intensity. Conclusion

  13. ADSORPSI ION SIANIDA DALAM LARUTAN MENGGUNAKAN ADSORBEN HIBRIDA AMINOPROPIL SILIKA GEL DARI SEKAM PADI TERIMPREGNASI ALUMINIUM (Adsorption of Cyanide Ions in Solution Using a Hybrid Adsorbent Aminopropyl Silica Gel from Rice Husks of Impregnated With

    Directory of Open Access Journals (Sweden)

    Amaria Amaria

    2012-03-01

    Full Text Available ABSTRAK Telah dibuat dua macam adsorben hibrida aminopropil silika gel yang terimpregnasi aluminium (APSG-Al dan silika gel terimpregnasi aluminium (SG-Al dari silika gel sekam padi sebagai bahan untuk adsorpsi ion sianida dalam larutan. Interaksi antara adsorben dengan ion sianida dalam larutan dilakukan dalam sistem batch. Parameter-parameter yang dikaji dalam penelitian ini adalah pengaruh pH medium, pengaruh waktu interaksi dan pengaruh konsentrasi awal ion sianida terhadap kemampuan adsorpsi adsorben hibrida amino silika gel terimpregnasi aluminium. Analisis kuantitatif ion-ion sianida yang tersisa di dalam filtrat diuji dengan alat elektroda selektif ion. Data hasil pengaruh waktu interaksi dianalisis dengan model kinetika adsorpsi, data hasil pengaruh konsentrasi ion sianida dianalisis dengan model isoterm adsorpsi Langmuir dan Freundlich. Di samping itu gugus fungsional yang diperkirakan terlibat dalam adsorpsi diidentifikasi dengan spektrofotometer infra merah dan kristalinitas adsorben diuji dengan defraksi sinar X. Hasil penelitian menunjukkan bahwa hasil identifikasi spektroskopi infra merah menunjukkan adsorben APSG-Al memiliki gugus silanol (Si-OH, siloksil (Si-O-Si, gugus amina primer, NH2. Hasil analisis XRD nilai 2θ pada 65,51 menunjukkan bahwa aluminium yang terimpregnasi pada silika berbentuk alumina Al2¬O3. Hasil adsorpsi ion sianida oleh hibrida aminopropil silika gel terimpregnasi aluminium (APSG-Al menunjukkan adsorpsi sianida terjadi maksimum pada pH 5 sebesar 67,62 %, sedangkan SG-Al mengadsorpsi sianida secara maksimum pada pH 8 sebesar 51,11%. Kajian kinetika dari pengaruh waktu interaksi menunjukkan bahwa adsorben APSG-Al maupun SG-Al memiliki konstanta laju adsorpsi k1 masing-masing adalah 2,7. 10-3 dan 1,9.10-3 min-1. Data kapasitas adsorpsi menunjukkan bahwa adsorben APSG-Al dan SG-Al cenderung mengikuti model isoterm adsorpsi Freundlich. ABSTRACT This research has made two kinds of adsorbents, namely hybrid

  14. Physical properties of coir and pineapple leaf fibre reinforced polylactic acid hybrid composites

    Science.gov (United States)

    Siakeng, R.; Jawaid, M.; Ariffin, H.; Sapuan, S. M.

    2018-01-01

    This study examined the physical behaviour of Coir fibres (CF)/Pineapple leaf fibres (PALF)/Poly lactic acid (PLA) composites. In this research, coir and PALF reinforced PLA hybrid composites were fabricated by hand lay-up process and hot press. The aim of this work is to do comparative study on density, water absorption (WA) and thickness swelling (TS) of untreated CF/PALF reinforced PLA composites and hybrid composites. The effect of different fibre ratios in hybridization on density, WA and TS of CF/PALF hybrid composites were also analyzed and C7P3 showed highest density while P30 had lowest. The results indicated that the density varies on different fibre ratio. WA and TS of CF/PALF composites and hybrid composites vary with fibres ratio and soaking duration. WA and TS of untreated CF/PALF hybrid composites were increased by increasing coir fibre ratio so, C30 showed highest WA and TS whereas P30 and C1P1 showed least WA and TS respectively apart from neat PLA.

  15. Fatigue Life Methodology for Tapered Hybrid Composite Flexbeams

    Science.gov (United States)

    urri, Gretchen B.; Schaff, Jeffery R.

    2006-01-01

    Nonlinear-tapered flexbeam specimens from a full-size composite helicopter rotor hub flexbeam were tested under combined constant axial tension and cyclic bending loads. Two different graphite/glass hybrid configurations tested under cyclic loading failed by delamination in the tapered region. A 2-D finite element model was developed which closely approximated the flexbeam geometry, boundary conditions, and loading. The analysis results from two geometrically nonlinear finite element codes, ANSYS and ABAQUS, are presented and compared. Strain energy release rates (G) associated with simulated delamination growth in the flexbeams are presented from both codes. These results compare well with each other and suggest that the initial delamination growth from the tip of the ply-drop toward the thick region of the flexbeam is strongly mode II. The peak calculated G values were used with material characterization data to calculate fatigue life curves for comparison with test data. A curve relating maximum surface strain to number of loading cycles at delamination onset compared well with the test results.

  16. Effect of cerium on structure modifications of a hybrid sol–gel coating, its mechanical properties and anti-corrosion behavior

    International Nuclear Information System (INIS)

    Cambon, Jean-Baptiste; Esteban, Julien; Ansart, Florence; Bonino, Jean-Pierre; Turq, Viviane; Santagneli, S.H.; Santilli, C.V.; Pulcinelli, S.H.

    2012-01-01

    Highlights: ► New sol–gel routes to replace chromates for corrosion protection of aluminum. ► Effect of cerium concentration on the microstructure of xerogel. ► Electrochemical and mechanical performances of hybrid coating with different cerium contents. ► Good correlation between the different results with an optimal cerium content of 0.01 M. -- Abstract: An organic–inorganic hybrid coating was developed to improve the corrosion resistance of the aluminum alloy AA 2024-T3. Organic and inorganic coatings derived from glycidoxypropyl-trimethoxysilane (GPTMS) and aluminum tri-sec-butoxide Al(O s Bu) 3 , with different cerium contents, were deposited onto aluminum by dip-coating process. Corrosion resistance and mechanical properties were investigated by electrochemical impedance measurements and nano-indentation respectively. An optimal cerium concentration of 0.01 M was evidenced. To correlate and explain the hybrid coating performances in relation to the cerium content, NMR experiments were performed. It has been shown that when the cerium concentration in the hybrid is higher than 0.01 M there are important modifications in the hybrid structure that account for the mechanical properties and anti-corrosion behavior of the sol–gel coating.

  17. Influence of crosslinker structure on performance of functionalised organic-inorganic hybrid sol-gel coating

    Science.gov (United States)

    Vasiljević, J.; Zorko, M.; Štular, D.; Tomšič, B.; Jerman, I.; Orel, B.; Medved, J.; Simončič, B.

    2017-10-01

    This research aimed to investigate the influence of the co-condensation of the three different organofunctional trialkoxysilane precursors with two different crosslinkers, i.e. tetraethoxysilane or organocyclotetrasiloxane on the performance and the washing fastness of this multicomponent multifunctional sol-gel coating on cellulose fibres. To this aim, a three-component equimolar sol mixture (MC), which included 1H,1H,2H,2H-perfluorooctyltriethoxysilane (SiF), 3-(trimethoxysilyl)-propyldimethyloctadecyl ammonium chloride (SiQ) and P,P-diphenyl-N-(3-(trimethoxysilyl)propyl) phosphinic amide (SiP) in combination with two different concentrations of TEOS (T and 3T) or organocyclotetrasiloxane 2,4,6,8-tetrakis(2-(diethoxy(methyl)silyl)ethyl)-2,4,6,8-tetramethyl-cyclotetrasiloxane (T4) as crosslinkers, was applied to the cotton fibres by a pad-dry-cure process. The functional properties of the coated samples before and after repeated washing were investigated by the water θ (W) and n-hexadecane θ (C16) static contact angle as well as water sliding (roll-off) (α) angle measurements. The inclusion of both TEOS and T4 into the MC sol increased the hydrophobic affect and simultaneously decreased the oleophobic effect of the MC coating. These phenomena were more pronounced for higher concentration of TEOS and T4 crosslinker. The inclusion of T4 into the MC sol improved the coating washing fastness to a significantly higher extent than the inclusion of TEOS, with respect to the applied concentrations.

  18. Novel decellularized liver matrix-alginate hybrid gel beads for the 3D culture of hepatocellular carcinoma cells.

    Science.gov (United States)

    Sun, Dongsheng; Liu, Yang; Wang, Huihui; Deng, Fei; Zhang, Ying; Zhao, Shan; Ma, Xiaojun; Wu, Huijian; Sun, Guangwei

    2018-04-01

    Developing reliable three-dimensional (3D) cell culture systems that can mimic native tumor microenvironments is necessary for investigating the mechanism of hepatocellular carcinoma (HCC) metastasis and screen therapeutic drugs. In the present study, we developed decellularized liver matrix-alginate (DLM-ALG) hybrid gel beads. DLM powder was prepared by optimized decellularization methods and liquid nitrogen grinding. DLM-ALG beads were generated by dropping alginate solution containing DLM powder into a gelling bath. DLM powder concentration in alginate solution was ≤1% (w/v) and had no effect on the sphericity and mechanical stability of the beads. In addition, HCCLM3 cells cultured in 1% (w/v) DLM-ALG beads presented gradually enhanced viability during in vitro culture. The protein expression of urokinase plasminogen activator system and activity of matrix metalloproteinases (MMPs) of HCCLM3 cells, including MMP2 and MMP9, were more significantly promoted in DLM-ALG beads compared with that in conventional ALG beads without DLM powder. Moreover, the dose-dependent increase in HCCLM3 cell MMP activities was observed along with the DLM powder concentration in 0.5% and 1% DLM-ALG groups. Therefore, DLM-ALG beads might serve as a novel 3D culture system for exploring the mechanisms of HCC metastasis and screening therapeutic drugs. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Response of SAOS-2 cells to simulated microgravity and effect of biocompatible sol-gel hybrid coatings

    Science.gov (United States)

    Catauro, M.; Bollino, F.; Papale, F.

    2016-05-01

    The health of astronauts, during space flight, is threatened by bone loss induced by microgravity, mainly attributed to an imbalance in the bone remodeling process. In the present work, the response to the microgravity of bone cells has been studied using the SAOS-2 cell line grown under the condition of weightlessness, simulated by means of a Random Positioning Machine (RPM). Cell viability after 72 h of rotation has been evaluated by means of WST-8 assay and compared to that of control cells. Although no significant difference between the two cell groups has been observed in terms of viability, F-actin staining showed that microgravity environment induces cell apoptosis and altered F-actin organization. To investigate the possibility of hindering the trend of the cells towards the death, after 72 h of rotation the cells have been seeded onto biocompatible ZrO2/PCL hybrid coatings, previously obtained using a sol-gel dip coating procedure. WST-8 assay, carried out after 24 h, showed that the materials are able to inhibit the pro-apoptotic effect of microgravity on cells.

  20. Preparation of zeolite-A/chitosan hybrid composites and their bioactivities and antimicrobial activities.

    Science.gov (United States)

    Yu, Liang; Gong, Jie; Zeng, Changfeng; Zhang, Lixiong

    2013-10-01

    Zeolite-A/chitosan hybrid composites with zeolite contents of 20-55 wt.% were prepared by in situ transformation of silica/chitosan mixtures in a sodium aluminate alkaline solution through impregnation-gelation-hydrothermal synthesis. The products were characterized by X-ray diffraction, diffuse reflectance infrared Fourier transform spectroscopy, scanning electron microscopy, thermogravimetric analysis, and mercury penetration porosimetry. Their in vitro bioactivities were examined using as-synthesized and Ca(2+)-exchanged hybrid composites in simulated body fluid (SBF) for hydroxyapatite (HAP) growth. Their antimicrobial activities for Escherichia coli (E. coli) in trypticase soy broth (TSB) were evaluated using Ag(+)-exchanged hybrid composites. The zeolite-A/chitosan hybrid composites could be prepared as various shapes, including cylinders, plates and thin films. They possessed macropores with pore sizes ranging from 100 to 300 μm and showed compressive mechanical strength as high as 3.2 MPa when the zeolite content was 35 wt.%. Fast growth on the Ca(2+)-exchanged hybrid composites was observed with the highest weight gain of 51.4% in 30 days. The 35 wt.% Ag(+)-exchanged hybrid composite showed the highest antimicrobial activity, which could reduce the 9×10(6) CFU mL(-1)E. coli concentration to zero within 4h of incubation time with the Ag(+)-exchanged hybrid composite amount of 0.4 g L(-1). The bioactivity and antimicrobial activity could be combined by ion-exchanging the composites first with Ca(2+) and then with Ag(+). These zeolite-A/chitosan hybrid composites have potential applications on tissue engineering and antimicrobial food packaging. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Preparation of zeolite-A/chitosan hybrid composites and their bioactivities and antimicrobial activities

    International Nuclear Information System (INIS)

    Yu, Liang; Gong, Jie; Zeng, Changfeng; Zhang, Lixiong

    2013-01-01

    Zeolite-A/chitosan hybrid composites with zeolite contents of 20–55 wt.% were prepared by in situ transformation of silica/chitosan mixtures in a sodium aluminate alkaline solution through impregnation–gelation–hydrothermal synthesis. The products were characterized by X-ray diffraction, diffuse reflectance infrared Fourier transform spectroscopy, scanning electron microscopy, thermogravimetric analysis, and mercury penetration porosimetry. Their in vitro bioactivities were examined using as-synthesized and Ca 2+ -exchanged hybrid composites in simulated body fluid (SBF) for hydroxyapatite (HAP) growth. Their antimicrobial activities for Escherichia coli (E. coli) in trypticase soy broth (TSB) were evaluated using Ag + -exchanged hybrid composites. The zeolite-A/chitosan hybrid composites could be prepared as various shapes, including cylinders, plates and thin films. They possessed macropores with pore sizes ranging from 100 to 300 μm and showed compressive mechanical strength as high as 3.2 MPa when the zeolite content was 35 wt.%. Fast growth on the Ca 2+ -exchanged hybrid composites was observed with the highest weight gain of 51.4% in 30 days. The 35 wt.% Ag + -exchanged hybrid composite showed the highest antimicrobial activity, which could reduce the 9 × 10 6 CFU mL −1 E. coli concentration to zero within 4 h of incubation time with the Ag + -exchanged hybrid composite amount of 0.4 g L −1 . The bioactivity and antimicrobial activity could be combined by ion-exchanging the composites first with Ca 2+ and then with Ag + . These zeolite-A/chitosan hybrid composites have potential applications on tissue engineering and antimicrobial food packaging. - Graphical abstract: Zeolite A/chitosan hybrid composites were prepared by in situ transformation of precursors in the chitosan matrix, which possess macroporous structures and exhibit superior bioactivity and antimicrobial activity and potential biomedical application. Highlights: • Zeolite A

  2. Preparation of zeolite-A/chitosan hybrid composites and their bioactivities and antimicrobial activities

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Liang; Gong, Jie [State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemistry and Chemical Engineering, Nanjing University of Technology, Nanjing 210009 (China); Zeng, Changfeng [College of Mechanic and Power Engineering, Nanjing University of Technology, Nanjing 210009 (China); Zhang, Lixiong, E-mail: lixiongzhang@yahoo.com [State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemistry and Chemical Engineering, Nanjing University of Technology, Nanjing 210009 (China)

    2013-10-15

    Zeolite-A/chitosan hybrid composites with zeolite contents of 20–55 wt.% were prepared by in situ transformation of silica/chitosan mixtures in a sodium aluminate alkaline solution through impregnation–gelation–hydrothermal synthesis. The products were characterized by X-ray diffraction, diffuse reflectance infrared Fourier transform spectroscopy, scanning electron microscopy, thermogravimetric analysis, and mercury penetration porosimetry. Their in vitro bioactivities were examined using as-synthesized and Ca{sup 2+}-exchanged hybrid composites in simulated body fluid (SBF) for hydroxyapatite (HAP) growth. Their antimicrobial activities for Escherichia coli (E. coli) in trypticase soy broth (TSB) were evaluated using Ag{sup +}-exchanged hybrid composites. The zeolite-A/chitosan hybrid composites could be prepared as various shapes, including cylinders, plates and thin films. They possessed macropores with pore sizes ranging from 100 to 300 μm and showed compressive mechanical strength as high as 3.2 MPa when the zeolite content was 35 wt.%. Fast growth on the Ca{sup 2+}-exchanged hybrid composites was observed with the highest weight gain of 51.4% in 30 days. The 35 wt.% Ag{sup +}-exchanged hybrid composite showed the highest antimicrobial activity, which could reduce the 9 × 10{sup 6} CFU mL{sup −1}E. coli concentration to zero within 4 h of incubation time with the Ag{sup +}-exchanged hybrid composite amount of 0.4 g L{sup −1}. The bioactivity and antimicrobial activity could be combined by ion-exchanging the composites first with Ca{sup 2+} and then with Ag{sup +}. These zeolite-A/chitosan hybrid composites have potential applications on tissue engineering and antimicrobial food packaging. - Graphical abstract: Zeolite A/chitosan hybrid composites were prepared by in situ transformation of precursors in the chitosan matrix, which possess macroporous structures and exhibit superior bioactivity and antimicrobial activity and potential biomedical

  3. Hybrid Testing of Composite Structures with Single-Axis Control

    DEFF Research Database (Denmark)

    Waldbjørn, Jacob Paamand; Høgh, Jacob Herold; Stang, Henrik

    2013-01-01

    Correlation (DIC) is therefore implemented for displacement control of the experimental setup. The hybrid testing setup was verified on a multicomponent structure consisting of a beam loaded in three point bending and a numerical structure of a frame. Furthermore, the stability of the hybrid testing loop......Hybrid testing is a substructuring technique where a structure is emulated by modelling a part of it in a numerical model while testing the remainder experimentally. Previous research in hybrid testing has been performed on multi-component structures e.g. damping fixtures, however in this paper...... a hybrid testing platform is introduced for single-component hybrid testing. In this case, the boundary between the numerical model and experimental setup is defined by multiple Degrees-Of-Freedoms (DOFs) which highly complicate the transferring of response between the two substructures. Digital Image...

  4. A comparative study of bulk-fill composites: degree of conversion, post-gel shrinkage and cytotoxicity

    Directory of Open Access Journals (Sweden)

    Flávia Gonçalves

    2018-03-01

    Full Text Available Abstract: Bulk-fill composites are claimed to be restorative materials used in deep preparations and effectively photoactivated in layers up to 4 mm. The aim of the present study was to evaluate the degree of conversion, post-gel volumetric shrinkage, and cytotoxicity of six bulk-fill and two conventional composites. Degree of conversion was determined by FTIR spectroscopy; post-gel volumetric shrinkage was determined using the strain gauge method; and cytotoxicity in human fibroblasts was evaluated indirectly by the MTT assay. Data were subjected to one-way ANOVA/Tukey's test (α = 0.05. All materials, including bulk-fill and conventional composites, were classified as non-toxic, with cell viability higher than 70%. Bulk-fill composites exhibited volumetric shrinkage similar to or lower (1.4 to 0.4% than that of conventional composites (1.7–2.1%. However, only four of the bulk-fill composites were able to sustain a homogeneous conversion at the 4-mm depth. Despite their non-toxicity and shrinkage similar to that of conventional materials, not all commercial bulk-fill materials were able to maintain a conversion as high as 80% of the superficial layer, at the 4-mm depth, indicating some failure in the bulk-fill design of some commercial brands. Therefore, the use of bulk-fill materials in dental practice is advantageous, but special attention should be given to the selection and correct use of the materials.

  5. Morphology and Structural Properties of Novel Short Linear Glucan/Protein Hybrid Nanoparticles and Their Influence on the Rheological Properties of Starch Gel.

    Science.gov (United States)

    Li, Xiaojing; Ji, Na; Li, Man; Zhang, Shuangling; Xiong, Liu; Sun, Qingjie

    2017-09-13

    Starch nanoparticles were potential texture modifiers. However, they have strong tendency to aggregate and poor water dispersibility, which limited their application. The interaction between glucan (prepared from starch by enzymatic modification) and protein could significantly improve the dispersity of starch nanoparticles and, thus, enhance the rheological properties of food gels. In this work, glucan/protein hybrid nanoparticles were successfully developed for the first time using short linear glucan (SLG) and edible proteins [soy protein isolate (SPI), rice protein (RP), and whey protein isolate (WPI)]. The results showed that the SLG/SPI hybrid nanoparticles exhibited hollow structures, of which the smallest size was approximately 10-20 nm when the SLG/SPI ratio was 10:5. In contrast, SLG/RP nanoparticles displayed flower-like superstructures, and SLG/WPI nanoparticles presented stacked lamellar nanostructures with a width of 5-10 nm and a length of 50-70 nm. In comparison to bare SLG nanoparticles, SLG/SPI and SLG/WPI hybrid nanoparticles had higher melting temperatures. The addition of all nanoparticles greatly increased the storage modulus of corn starch gels and decreased loss tangent values. Importantly, the G' value of starch gels increased by 567% with the addition of flower-like SLG/RP superstructures.

  6. Mechanical Properties of Graphene Nanoplatelet/Carbon Fiber/Epoxy Hybrid Composites: Multiscale Modeling and Experiments

    Science.gov (United States)

    Hadden, C. M.; Klimek-McDonald, D. R.; Pineda, E. J.; King, J. A.; Reichanadter, A. M.; Miskioglu, I.; Gowtham, S.; Odegard, G. M.

    2015-01-01

    Because of the relatively high specific mechanical properties of carbon fiber/epoxy composite materials, they are often used as structural components in aerospace applications. Graphene nanoplatelets (GNPs) can be added to the epoxy matrix to improve the overall mechanical properties of the composite. The resulting GNP/carbon fiber/epoxy hybrid composites have been studied using multiscale modeling to determine the influence of GNP volume fraction, epoxy crosslink density, and GNP dispersion on the mechanical performance. The hierarchical multiscale modeling approach developed herein includes Molecular Dynamics (MD) and micromechanical modeling, and it is validated with experimental testing of the same hybrid composite material system. The results indicate that the multiscale modeling approach is accurate and provides physical insight into the composite mechanical behavior. Also, the results quantify the substantial impact of GNP volume fraction and dispersion on the transverse mechanical properties of the hybrid composite, while the effect on the axial properties is shown to be insignificant.

  7. Mechanical Properties of Graphene Nanoplatelet Carbon Fiber Epoxy Hybrid Composites: Multiscale Modeling and Experiments

    Science.gov (United States)

    Hadden, Cameron M.; Klimek-McDonald, Danielle R.; Pineda, Evan J.; King, Julie A.; Reichanadter, Alex M.; Miskioglu, Ibrahim; Gowtham, S.; Odegard, Gregory M.

    2015-01-01

    Because of the relatively high specific mechanical properties of carbon fiber/epoxy composite materials, they are often used as structural components in aerospace applications. Graphene nanoplatelets (GNPs) can be added to the epoxy matrix to improve the overall mechanical properties of the composite. The resulting GNP/carbon fiber/epoxy hybrid composites have been studied using multiscale modeling to determine the influence of GNP volume fraction, epoxy crosslink density, and GNP dispersion on the mechanical performance. The hierarchical multiscale modeling approach developed herein includes Molecular Dynamics (MD) and micromechanical modeling, and it is validated with experimental testing of the same hybrid composite material system. The results indicate that the multiscale modeling approach is accurate and provides physical insight into the composite mechanical behavior. Also, the results quantify the substantial impact of GNP volume fraction and dispersion on the transverse mechanical properties of the hybrid composite, while the effect on the axial properties is shown to be insignificant.

  8. Experimental Investigation on Mechanical Properties of Hemp/E-Glass Fabric Reinforced Polyester Hybrid Composites

    Directory of Open Access Journals (Sweden)

    M R SANJAY

    2016-09-01

    Full Text Available This research work has been focusing on Hemp fibers has an alternative reinforcement for fiber reinforced polymer composites due to its eco-friendly and biodegradable characteristics. This work has been carried out to evaluate the mechanical properties of hemp/E-glass fabrics reinforced polyester hybrid composites. Vacuum bagging method was used for the preparation of six different kinds of hemp/glass fabrics reinforced polyester composite laminates as per layering sequences. The tensile, flexural, impact and water absorption tests of these hybrid composites were carried out experimentally according to ASTM standards. It reveals that an addition of E-glass fabrics with hemp fabrics can increase the mechanical properties of composites and decrease the water absorption of the hybrid composites.

  9. Thermo-mechanical characterization of siliconized E-glass fiber/hematite particles reinforced epoxy resin hybrid composite

    Energy Technology Data Exchange (ETDEWEB)

    Arun Prakash, V.R., E-mail: vinprakash101@gmail.com; Rajadurai, A., E-mail: rajadurai@annauniv.edu.in

    2016-10-30

    Highlights: • Particles dimension have reduced using Ball milling process. • Importance of surface modification was explored. • Surface modification has been done to improve adhesion of fiber/particles with epoxy. • Mechanical properties has been increased by adding modified fiber and particles. • Thermal properties have been increased. - Abstract: In this present work hybrid polymer (epoxy) matrix composite has been strengthened with surface modified E-glass fiber and iron(III) oxide particles with varying size. The particle sizes of 200 nm and <100 nm has been prepared by high energy ball milling and sol-gel methods respectively. To enhance better dispersion of particles and improve adhesion of fibers and fillers with epoxy matrix surface modification process has been done on both fiber and filler by an amino functional silane 3-Aminopropyltrimethoxysilane (APTMS). Crystalline and functional groups of siliconized iron(III) oxide particles were characterized by XRD and FTIR spectroscopy analysis. Fixed quantity of surface treated 15 vol% E-glass fiber was laid along with 0.5 and 1.0 vol% of iron(III) oxide particles into the matrix to fabricate hybrid composites. The composites were cured by an aliphatic hardener Triethylenetetramine (TETA). Effectiveness of surface modified particles and fibers addition into the resin matrix were revealed by mechanical testing like tensile testing, flexural testing, impact testing, inter laminar shear strength and hardness. Thermal behavior of composites was evaluated by TGA, DSC and thermal conductivity (Lee’s disc). The scanning electron microscopy was employed to found shape and size of iron(III) oxide particles adhesion quality of fiber with epoxy matrix. Good dispersion of fillers in matrix was achieved with surface modifier APTMS. Tensile, flexural, impact and inter laminar shear strength of composites was improved by reinforcing surface modified fiber and filler. Thermal stability of epoxy resin was improved

  10. Benefit Analysis of Hybrid CNT/CFRP Composites in Future Aircraft Structures, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — During Phase I, Aurora Flight Sciences and N12 Technologies propose to conduct a comprehensive analysis of the benefits of hybrid composites in future aircraft...

  11. Quality control and in-service inspection technology for hybrid-composite girder bridges.

    Science.gov (United States)

    2014-08-01

    This report describes efforts to develop quality control tools and in-service inspection technologies for the fabrication and construction of Hybrid Composite Beams (HCBs). HCBs are a new bridge technology currently being evaluated by the Missouri De...

  12. Dynamic mechanical and dielectric behavior of banana–glass hybrid fiber reinforced polyester composites.

    CSIR Research Space (South Africa)

    Pothan, LA

    2009-01-01

    Full Text Available Hybrid composites of glass and banana fiber (obtained from the pseudo stem of Musa sapientum) in polyester matrix, are subjected to dynamic mechanical analysis over a range of temperature and three different frequencies. The effect of temperature...

  13. Mechanical analysis of CFRP-steel hybrid composites considering the interfacial adhesion

    Science.gov (United States)

    Jang, Jinhyeok; Sung, Minchang; Han, Sungjin; Shim, Wonbo; Yu, Woong-Ryeol

    2017-10-01

    Recently, hybrid composites of carbon fiber reinforced plastics (CFRP) and steel have attracted great attention from automotive engineers due to their high potential for lightweight and multi-materials structures. Interestingly, such hybrid composites have demonstrated increased breaking strain, i.e., the breaking strain of CFRP in the hybrid was larger than that of single CFRP. As such the mechanical properties of hybrid composites could not be calculated using the rule of mixture. In addition, such increase is strongly dependent on the adhesion between CFRP and steel. In this study, a numerical analysis model was built to investigate the mechanism behind increased breaking strain of CFRP in the hybrid structure. Using cohesive zone model, the adhesion between CFRP and steel was effectively considered. The numerical results showed that the simulated mechanical behavior of the hybrid composites did not change as much as observed in experimental as the interfacial adhesion varied. We will investigate this discrepancy in detail and will report new analysis method suitable for CFRP and steel hybrid composites.

  14. Hybrid Fiber Layup and Fiber-Reinforced Polymeric Composites Produced Therefrom

    Science.gov (United States)

    Barnell, Thomas J. (Inventor); Garrigan, Sean P. (Inventor); Rauscher, Michael D. (Inventor); Dietsch, Benjamin A. (Inventor); Cupp, Gary N. (Inventor)

    2018-01-01

    Embodiments of a hybrid fiber layup used to form a fiber-reinforced polymeric composite, and a fiber-reinforced polymeric composite produced therefrom are disclosed. The hybrid fiber layup comprises one or more dry fiber strips and one or more prepreg fiber strips arranged side by side within each layer, wherein the prepreg fiber strips comprise fiber material impregnated with polymer resin and the dry fiber strips comprise fiber material without impregnated polymer resin.

  15. Characterization and enhanced nonlinear optical limiting response in carbon nanodots dispersed in solid-state hybrid organically modified silica gel glasses

    Science.gov (United States)

    Huang, Li; Zheng, Chan; Guo, Qiaohang; Huang, Dongdong; Wu, Xiukai; Chen, Ling

    2018-02-01

    Freely dispersed carbon nanodots (CNDs) were introduced into a 3-glycidoxy-propyltrimethoxysilane modified silicate gel glass (i.e. an organically modified silica or ORMOSIL) by a highly efficient and simple sol-gel process, which could be easily extended to prepare functional molecules/nanoparticles solid state optoelectronic devices. Scanning electron microscope imaging, Fourier transform infrared spectroscopy, pore structure measurements, ultraviolet-visible spectroscopy, and fluorescence spectroscopy were used to investigate the surface characteristics, structure, texture, and linear optical properties of the CND/SiO2 ORMOSIL gel glasses. Images and UV/Vis spectra confirmed the successful dispersion of CNDs in the ORMOSIL gel glass. The surface characteristics and pore structure of the host SiO2 matrix were markedly changed through the introduction of the CNDs. The linear optical properties of the guest CNDs were also affected by the sol-gel procedure. The nonlinear optical (NLO) properties of the CNDs were investigated by a nanosecond open-aperture Z-scan technique at 532 nm both in liquid and solid matrices. We found that the NLO response of the CNDs was considerably improved after their incorporation into the ORMOSIL gel glasses. Possible enhancement mechanisms were also explored. The nonlinear extinction coefficient gradually increased while the optical limiting (OL) threshold decreased as the CND doping level was increased. This result suggests that the NLO and OL properties of the composite gel glasses can be optimized by tuning the concentration of CNDs in the gel glass matrix. Our findings show that CND/SiO2 ORMOSIL gel glasses are promising candidates for optical limiters to protect sensitive instruments and human eyes from damage caused by high power lasers.

  16. Influence of Experimental Parameters Using the Dip-Coating Method on the Barrier Performance of Hybrid Sol-Gel Coatings in Strong Alkaline Environments

    Directory of Open Access Journals (Sweden)

    Rita B. Figueira

    2015-04-01

    Full Text Available Previous studies have shown that the barrier effect and the performance of organic-inorganic hybrid (OIH sol-gel coatings are highly dependent on the coating deposition method as well as on the processing conditions. However, studies on how the coating deposition method influences the barrier properties in alkaline environments are scarce. The aim of this experimental research was to study the influence of experimental parameters using the dip-coating method on the barrier performance of an OIH sol-gel coating in contact with simulated concrete pore solutions (SCPS. The influence of residence time (Rt, a curing step between each dip step and the number of layers of sol-gel OIH films deposited on hot-dip galvanized steel to prevent corrosion in highly alkaline environments was studied. The barrier performance of these OIH sol-gel coatings, named U(400, was assessed in the first instants of contact with SCPS, using electrochemical impedance spectroscopy and potentiodynamic methods. The durability and stability of the OIH coatings in SCPS was monitored during eight days by macrocell current density. The morphological characterization of the surface was performed by Scanning Electronic Microscopy before and after exposure to SCPS. Glow Discharge Optical Emission Spectroscopy was used to investigate the thickness of the U(400 sol-gel coatings as a function of the number of layers deposited with and without Rt in the coatings thickness.

  17. Hybrid and hierarchical nanoreinforced polymer composites: Computational modelling of structure–properties relationships

    DEFF Research Database (Denmark)

    Mishnaevsky, Leon; Dai, Gaoming

    2014-01-01

    by using computational micromechanical models. It is shown that while glass/carbon fibers hybrid composites clearly demonstrate higher stiffness and lower weight with increasing the carbon content, they can have lower strength as compared with usual glass fiber polymer composites. Secondary...... nanoreinforcement can drastically increase the fatigue lifetime of composites. Especially, composites with the nanoplatelets localized in the fiber/matrix interface layer (fiber sizing) ensure much higher fatigue lifetime than those with the nanoplatelets in the matrix....

  18. Fatigue of hybrid glass/carbon composites: 3D computational studies

    DEFF Research Database (Denmark)

    Dai, Gaoming; Mishnaevsky, Leon

    2014-01-01

    3D computational simulations of fatigue of hybrid carbon/glass fiber reinforced composites is carried out using X-FEM and multifiber unit cell models. A new software code for the automatic generation of unit cell multifiber models of composites with randomly misaligned fibers of various properties...... and geometrical parameters is developed. With the use of this program code and the X-FEM method, systematic investigations of the effect of microstructure of hybrid composites (fraction of carbon versus glass fibers, misalignment, and interface strength) and the loading conditions (tensile versus compression...... cyclic loading effects) on fatigue behavior of the materials are carried out. It was demonstrated that the higher fraction of carbon fibers in hybrid composites is beneficial for the fatigue lifetime of the composites under tension-tension cyclic loading, but might have negative effect on the lifetime...

  19. Development of sugar palm yarn/glass fibre reinforced unsaturated polyester hybrid composites

    Science.gov (United States)

    Nurazzi, N. Mohd; Khalina, A.; Sapuan, S. Mohd; Rahmah, M.

    2018-04-01

    This study investigates the effect of fibre hybridization for sugar palm yarn fibre with glass fibre reinforced with unsaturated polyester composites. In this work, unsaturated polyester resin are reinforced with fibre at a ratio of 70:30 wt% and 60:40 wt%. The hybrid composites were characterized in terms of physical (density and water absorption), mechanical (tensile, flexural and compression) and thermal properties through thermal gravimetry analysis (TGA). Density determination showed that density increased with higher wt% of glass fibre. The inherently higher density of glass fibre increased the density of hybrid composite. Resistance to water absorption is improved upon the incorporation of glass fibre and the hybrid composites were found to reach equilibrium absorption at days 4 and 5. As for mechanical performance, the highest tensile strength, tensile modulus, flexural strength, flexural modulus and compression strength were obtained from 40 wt% of fibres reinforcement with ratio of 50:50 wt% of sugar palm yarn fibre and glass fibre reinforced unsaturated polyester composites. The increase of glass fibre loading had a synergistic effect on the mechanical properties to the composites structure due to its superior strength and modulus. The thermal stability of hybrid composites was improved by the increase of onset temperature and the reduction of residues upon increase in temperature.

  20. Properties of CF/PA6 friction spun hybrid yarns for textile reinforced thermoplastic composites

    Science.gov (United States)

    Hasan, MMB; Nitsche, S.; Abdkader, A.; Cherif, Ch

    2017-10-01

    Due to their excellent strength, rigidity and damping properties as well as low weight, carbon fibre reinforced composites (CFRC) are widely being used for load bearing structures. On the other hand, with an increased demand und usage of CFRCs, effective methods to re-use waste carbon fibre (CF) materials, which are recoverable either from the process scraps or from the end-of-life components are attracting increased attention. In this paper, hybrid yarns consisting of staple CF and polyamide 6 (PA 6) are manufactured on a DREF-3000 friction spinning machine with various machine parameters such as spinning drum speed and suction air pressure. The relationship between different textile physical properties of the hybrid yarns, such as tensile strength and elongation with different spinning parameters and CF content of hybrid yarn is investigated. Furthermore, the tensile properties of uni-directional (UD) composites manufactured from the developed hybrid yarn shows 80% of the UD composite strength made from CF filament yarn.

  1. Vibration and Operational Characteristics of a Composite-Steel (Hybrid) Gear

    Science.gov (United States)

    Handschuh, Robert F.; LaBerge, Kelsen E.; DeLuca, Samuel; Pelagalli, Ryan

    2014-01-01

    Hybrid gears have been tested consisting of metallic gear teeth and shafting connected by composite web. Both free vibration and dynamic operation tests were completed at the NASA Glenn Spur Gear Fatigue Test Facility, comparing these hybrid gears to their steel counterparts. The free vibration tests indicated that the natural frequency of the hybrid gear was approximately 800 Hz lower than the steel test gear. The dynamic vibration tests were conducted at five different rotational speeds and three levels of torque in a four square test configuration. The hybrid gears were tested both as fabricated (machined, composite layup, then composite cure) and after regrinding the gear teeth to the required aerospace tolerance. The dynamic vibration tests indicated that the level of vibration for either type of gearing was sensitive to the level of load and rotational speed.

  2. The Effect of 3% Phosphate Ascorbyl Gel on Bond Strength of Composite Resin to Enamel treated with 35% Hydrogen Peroxide.

    Science.gov (United States)

    de Castro, Milena de Fátima Schalcher; Silva, Alice Carvalho; Franco, Marcela Mayana Pereira; Silva, Ana Paula Brito; Bramante, Fausto da Silva; da Silva, Monica Barros; Lima, Darlon Martins; Pereira, Adriana de Fátima Vasconcelos

    2015-05-01

    To evaluate the effect of 3% phosphate ascorbyl gel (PA) in different times onto the microshear bond strength of composite resin (CR) to bovine enamel treated with 35% hydrogen peroxide (HP). Thirty enamel blocks of bovine incisors were made and divided into 5 groups (n = 6) with three specimens per group (n = 18), according to treatment: G1= No bleaching + CR; G2 = HP + CR after 15d; G3 = HP + CR after 24 hours; G4 = HP + PA (15 min) + CR after 24 hours; G5 = HP + PA (2 hours) + CR after 24 hours. The resin cylinders were made by Tygon matrices. Microshear bond strength test was performed using universal testing machine with a 50N load at a speed of 0.5 mm/min. Fracture modes were assessed by a stereomicroscope 40 ×. Microshear bond strength values were submitted to the analysis of variance (ANOVA) one-way and Tukey test (p 0.05). Failure modes were categorized into adhesive (90%) and mixed (10%). The use of 3% phosphate ascorbyl gel for 15 minutes was able to improve bond strength of composite resin to bleached bovine enamel, but when 3% phosphate ascorbyl gel was applied during 40 minutes it negatively interfered in the adhesion of the resin to bleached bovine enamel.

  3. One-pot synthesis of hybrid gel by use of tributylstannyl ester of polymeric silicic acid, chlorosilane and organic monomer; Keisan no toribuchiru sutanniru esuteru kobuntai, kuroroshiran oyobi yuki monoma wo mochiita haiburiddo geru no ichidankai gosei

    Energy Technology Data Exchange (ETDEWEB)

    Moriya, O. [National Defense Academy, Kanagawa (Japan). Dept. of Chemistry; Sugisaki, T. [Lintec Co. Ltd., Saitama (Japan); Tomono, M.; Oikawa, M.; Kageyama, T. [Kanto-Gakuin Univ., Kanagawa (Japan)

    1999-12-10

    Organic-inorganic hybrid gels were obtained efficiently by one-pot procedure from tributylstannyl ester of polymeric silicic acid (PTBS), chloro (3-methacryloyloxypropyl) dimethylsilane (1a), and common monomers such as styrene, acrylonitrile, and methyl methacrylate. In the reaction system, substitution of tributylstannyl groups of PTBS by silyl groups of 1a and copolymerization of methacryloyloxy group of 1a with a monomer proceeded simultaneously under UV irradiation at room temperature. The resulting gel should be consisted of covalently bonded three components an regarded as a nanocomposite material The use of another chlorosilane 1b, which had cyanopropyl group, with 1a led to formation of a multifunctional hybrid gel. (author)

  4. MnO-carbon hybrid nanofiber composites as superior anode materials for lithium-ion batteries

    International Nuclear Information System (INIS)

    Wang, Jian-Gan; Yang, Ying; Huang, Zheng-Hong; Kang, Feiyu

    2015-01-01

    MnO-carbon hybrid nanofiber composites are fabricated by electrospinning polyimide/manganese acetylacetonate precursor and a subsequent carbonization process. The composition, phase structure and morphology of the composites are characterized by scanning and transmission electron microscopy, X-ray diffraction and thermogravimetric analysis. The results indicate that the composites exhibit good nanofibrous morphology with MnO nanoparticles uniformly encapsulated by carbon nanofibers. The hybrid nanofiber composites are used directly as freestanding anodes for lithium-ion batteries to evaluate their electrochemical properties. It is found that the optimized MnO-carbon nanofiber composite can deliver a high reversible capacity of 663 mAh g −1 , along with excellent cycling stability and good rate capability. The superior performance enables the composites to be promising candidates as an anode alternative for high-performance lithium-ion batteries

  5. Preparation and characterization of composites of ultrasonic gel and copper sulphate for using as magnetic resonance body simulator

    International Nuclear Information System (INIS)

    Cardoso, Gabriela P.; Soares, Sidney S.; Gontijo, Rodrigo M.G.; Batista, Adriana S.M.; Pereira, Esther Lorrayne M.

    2017-01-01

    The use of magnetic resonance (MRI) body simulators has application in both equipment control and didactics, providing training to new professionals, regarding the manipulation of parameters related to image weights. For this, it is necessary to simulate longitudinal (T1) and transverse (T2) relaxation times in order to control the extrinsic echo time (TE) and repetition time (TR) parameters in obtaining images with different contrasts. For this purpose, composites with different proportions of ultrasonic gel and copper sulphate were prepared for submission to MRI for the characterization of the times T1 and T2. The selection of copper sulphate, paramagnetic material, was conducted considering relaxation times similar to the different body tissues in order to reproduce images of suitable contrasts. Copper sulphate powder was characterized by the X-Ray Diffraction (XRD) technique which showed characteristic peaks of copper and sulfate group. The composite was evaluated using Fourier Transform Infrared Spectrometry (FTIR) and Visible Ultraviolet Spectrometry (UV-Vis) techniques, demonstrating composite stability for future imaging tests. In the UV-Vis analyzes the peak centered at 725 nm was monitored by the overlap of the peaks at wavelengths between 200 - 450 nm, gel and copper. FTIR of the copper sulphate powder was used for comparison with composite spectrum

  6. Interactions of protein content and globulin subunit composition of soybean proteins in relation to tofu gel properties.

    Science.gov (United States)

    James, Andrew T; Yang, Aijun

    2016-03-01

    The content and globulin subunit composition of soybean proteins are known to affect tofu quality and food-grade soybeans usually have higher levels of proteins. We studied the tofu quality of soybeans with high (44.8%) or low (39.1%) protein content and with or without the 11S globulin polypeptide, 11SA4. Both protein content and 11SA4 significantly affected tofu gel properties. Soybeans containing more protein had smaller seeds which produced significantly firmer (0.663 vs.0.557 N, pseed size, tofu hardness and water holding capacity and led to significant changes to the profile of storage protein subunits, which may have contributed to the improvement in tofu gel properties. These results suggest that, in combination with higher protein content, certain protein subunits or their polypeptides can also be targeted in selecting soybeans to further improve soy food quality. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Biological response of human mesenchymal stromal cells to titanium grade 4 implants coated with PCL/ZrO2 hybrid materials synthesized by sol–gel route: in vitro evaluation

    International Nuclear Information System (INIS)

    Catauro, M.; Bollino, F.; Papale, F.; Mozetic, P.; Rainer, A.; Trombetta, M.

    2014-01-01

    The surface modification of implantable materials in order to improve their biological proprieties, including tissue tolerance and osseointegration ability, by means of functional coating deposition is a promising strategy to provide a firm fixation of the implants. In this study, organic/inorganic hybrid materials consisting of an inorganic zirconia-based matrix, in which a biocompatible polymer, poly(ε-caprolactone) (PCL), has been incorporated at different percentages, have been synthesized via sol–gel route. Developed materials have been used to coat titanium grade 4 substrates by means of dip coating technique. Scanning electron microscopy (SEM) analysis of the obtained coatings has shown that films crack-free can be obtained for high levels of PCL. Chemical composition and interactions between organic and inorganic moieties have been studied by Attenuated Total Reflectance Fourier Transform InfraRed spectroscopy. The bone-bonding capability of the nanocomposite films has been evaluated in vitro by examining the appearance of an apatite layer on their surface when soaked in a simulated body fluid by means of SEM equipped with EDS microanalysis. In vitro biocompatibility assessment was performed in combination with human mesenchymal stromal cells (hMSCs). Materials were found to be non-toxic and supporting cell proliferation. Additionally, the coating material was not hampering the differentiation of hMSCs in an osteogenic medium. - Highlights: • ZrO 2 /PCL hybrid coatings on Ti grade 4 were obtained by sol–gel dip coating process. • The PCL acts as a plasticizer and allows us to prepare crack-free coatings. • Independent of PCL amount, the films improve the titanium substrates' bioactivity. • The coatings are non-toxic and supportive of cell proliferation at all compositions. • The coatings don't hamper hMSC differentiation in an osteogenic medium

  8. Biological response of human mesenchymal stromal cells to titanium grade 4 implants coated with PCL/ZrO{sub 2} hybrid materials synthesized by sol–gel route: in vitro evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Catauro, M., E-mail: michelina.catauro@unina2.it [Department of Industrial and Information Engineering, Second University of Naples, Via Roma 29, 81031 Aversa (Italy); Bollino, F.; Papale, F. [Department of Industrial and Information Engineering, Second University of Naples, Via Roma 29, 81031 Aversa (Italy); Mozetic, P.; Rainer, A.; Trombetta, M. [Tissue Engineering Lab, Center for Integrated Research, “Università Campus Bio-Medico di Roma”, via Alvaro del Portillo, 00128 Rome (Italy)

    2014-12-01

    The surface modification of implantable materials in order to improve their biological proprieties, including tissue tolerance and osseointegration ability, by means of functional coating deposition is a promising strategy to provide a firm fixation of the implants. In this study, organic/inorganic hybrid materials consisting of an inorganic zirconia-based matrix, in which a biocompatible polymer, poly(ε-caprolactone) (PCL), has been incorporated at different percentages, have been synthesized via sol–gel route. Developed materials have been used to coat titanium grade 4 substrates by means of dip coating technique. Scanning electron microscopy (SEM) analysis of the obtained coatings has shown that films crack-free can be obtained for high levels of PCL. Chemical composition and interactions between organic and inorganic moieties have been studied by Attenuated Total Reflectance Fourier Transform InfraRed spectroscopy. The bone-bonding capability of the nanocomposite films has been evaluated in vitro by examining the appearance of an apatite layer on their surface when soaked in a simulated body fluid by means of SEM equipped with EDS microanalysis. In vitro biocompatibility assessment was performed in combination with human mesenchymal stromal cells (hMSCs). Materials were found to be non-toxic and supporting cell proliferation. Additionally, the coating material was not hampering the differentiation of hMSCs in an osteogenic medium. - Highlights: • ZrO{sub 2}/PCL hybrid coatings on Ti grade 4 were obtained by sol–gel dip coating process. • The PCL acts as a plasticizer and allows us to prepare crack-free coatings. • Independent of PCL amount, the films improve the titanium substrates' bioactivity. • The coatings are non-toxic and supportive of cell proliferation at all compositions. • The coatings don't hamper hMSC differentiation in an osteogenic medium.

  9. Optical and structural properties of ZnO/ZnMgO composite thin films prepared by sol–gel technique

    International Nuclear Information System (INIS)

    Xu, Linhua; Su, Jing; Chen, Yulin; Zheng, Gaige; Pei, Shixin; Sun, Tingting; Wang, Junfeng; Lai, Min

    2013-01-01

    Highlights: ► ZnMgO thin film and ZnO/ZnMgO composite thin film have been prepared by sol–gel method. ► The intensity of ultraviolet emission of ZnMgO thin film is enhanced two times compared with that of pure ZnO thin film. ► Compared with ZnMgO thin film, ZnO/ZnMgO composite thin film shows better crystallization and optical properties. ► ZnO/ZnMgO composite thin films prepared by sol–gel method have potential applications in many optoelectronic devices. - Abstract: In this study, pure ZnO thin film, Mg-doped ZnO (ZnMgO) thin film, ZnO/ZnMgO and ZnMgO/ZnO composite thin films were prepared by sol–gel technique. The structural and optical properties of the samples were analyzed by X-ray diffraction, scanning electron microscopy, UV–visible spectrophotometer, ellipsometer and photoluminescence spectra, respectively. The results showed that the incorporation of Mg increased the strain, broadened the optical bandgap, and improved the intensity of ultraviolet emission of ZnO thin film. The full width at half maximum (FWHM) of the ultraviolet emission peak was also increased due to Mg-doping at the same time. Compared with pure ZnO and ZnMgO thin films, the ZnO/ZnMgO thin film showed better crystalline quality and ultraviolet emission performance, smaller strains and higher transmittance in the visible range.

  10. New sol-gel bioactive glass and titania composites with enhanced physico-chemical and biological properties.

    Science.gov (United States)

    Pawlik, Justyna; Widziołek, Magdalena; Cholewa-Kowalska, Katarzyna; Łączka, Maria; Osyczka, Anna Maria

    2014-07-01

    We developed TiO2 matrix composites modified by sol-gel bioactive glasses (SBG) of either high CaO content (A2) or high SiO2 content (S2). The latter were mixed with titanium dioxide (TiO2) at 75:25, 50:50, and 25:75 weight ratios and sintered at 1250°C for 2 h. We examined the effects of various types (A2 or S2) and compositional TiO2 :SBG ratios on the mechanical properties of resulting composites, their bioactivity and human bone marrow mesenchymal stem cells (MSC) response. The chemistry of SBGs influenced the phase composition, mechanical and biological properties of the composites. Rutile and titanite prevailed in A2-TiO2 composites, and rutile and crystobalite in S2-TiO2 composites. Compressive strength increased significantly for 25A2-TiO2 composites (140 MPa) compared to matrix TiO2 (58 MPa). Composites containing 50-75 wt % of either SBG displayed bioactive properties as determined by simulated body fluid test. Compared to TiO2, human bone marrow stromal cell (BMSC) viability was enhanced on the composites containing 25 wt % of either SBG, whereas the composites modified by 25 wt % of S2 enhanced alkaline phosphatase activity and mineralization in cultures treated with osteogenic inducers-dexamethasone (Dex) or bone morphogenetic protein. Increasing amounts of A2 in TiO2 matrix decreased cell viability but increased collagen deposition and mineralized matrix production by BMSC. Considering the physico-chemical and biological properties of the presented composites, the modification of TiO2 with SBG may prove useful strategy in several bone tissue related regeneration strategies. © 2013 Wiley Periodicals, Inc.

  11. Free vibration response of a multilayer smart hybrid composite plate with embedded SMA wires

    Directory of Open Access Journals (Sweden)

    K. Malekzadeh

    Full Text Available In this paper, free vibration response of a hybrid composite plate was studied. Effects of some geometrical, physical and material parameters on response of the composite plates embedded with shape memory alloy (SMA wires were investigated, which have not been reported in the literature thus far. Some of these parameters included important factors affecting free vibration response of the smart hybrid composite plates. The SMA wires were embedded within the layers of the composite laminate. First-order shear deformation theory (FSDT was utilized to obtain the governing equations of hybrid composite plates. Transverse shear and rotary inertia effects of the plate were taken into consideration. For simply-supported boundary conditions, systematic closed form solutions were obtained by Navier's technique. It was established that dynamic behavior of the smart hybrid composite plate depended on various parameters such as volume fraction, temperature dependent recovery stress and tensile pre-strain of SMA wires and aspect ratio of the laminated hybrid plate.

  12. Evaluation of mechanical properties of hybrid fiber (hemp, jute, kevlar) reinforced composites

    Science.gov (United States)

    Suresha, K. V.; Shivanand, H. K.; Amith, A.; Vidyasagar, H. N.

    2018-04-01

    In today's world composites play wide role in all the engineering fields. The reinforcement of composites decides the properties of the material. Natural fiber composites compared to synthetic fiber possesses poor mechanical properties. The solution for this problem is to use combination of natural fiber and synthetic fiber. Hybridization helps to improve the overall mechanical properties of the material. In this study, hybrid reinforced composites of Hemp fabric/Kevlar fabric/Epoxy and Jute fabric/ Kevlar fabric/Epoxy composites are fabricated using Simple hand layup technique followed by Vacuum bagging process. Appropriate test methods as per standards and guidelines are followed to analyze mechanical behavior of the composites. The mechanical characteristics like tensile, compression and flexural properties of the hybrid reinforced composites are tested as per the ASTM standards by series of tensile test; compression test and three point bending tests were conducted on the hybrid composites. A quantitative relationship between the Hemp fabric/Kevlar fabric/Epoxy and Jute/ Kevlar fabric/Epoxy has been established with constant thickness.

  13. Tensile and Compressive Properties of Woven Kenaf/Glass Sandwich Hybrid Composites

    Directory of Open Access Journals (Sweden)

    Mohaiman J. Sharba

    2016-01-01

    Full Text Available Monotonic (tensile and compression properties of woven kenaf/glass reinforced unsaturated polyester sandwich hybrid composites have been experimentally investigated. Five types of composites laminates were fabricated using a combination of hand lay-up and cold press techniques, postcured for two hours at 80°C and left for 48 hours at room temperature. The hybrid composites contained fixed six layers of glass as a shell, three on each side, whereas the number of core kenaf layers was changed in three stages to get S1, S2, and S3 hybrid composites. Composites specimens with pure glass and kenaf were also fabricated for comparison. It was found that one kenaf layer replaced about 20% of total fiber weight fraction of the composite; this leads to reducing the density of final hybrid composite by 13%. Besides, in mechanical properties perspective, there are less than 1% reduction in compression strength and 40% in tensile strength when compared to pure glass composite. Generally, the results revealed that the best performance was observed in S1, which showed a good balance of all mechanical properties determined in this work.

  14. Porous Aromatic Framework 48/Gel Hybrid Material Coated Solid-Phase Microextraction Fiber for the Determination of the Migration of Styrene from Polystyrene Food Contact Materials.

    Science.gov (United States)

    Jin, Yuanyuan; Li, Zhongyue; Yang, Lei; Xu, Jun; Zhao, Le; Li, Zhonghao; Niu, Jiajia

    2017-01-17

    A novel solid-phase microextraction (SPME) fiber was fabricated by a porous aromatic framework 48 (PAF-48)/gel hybrid material through a sol-gel process. PAF-48 is a porous organic framework (POF) material that was polymerized from 1,3,5-triphenylbenzene. The uniform pore structure, high surface area, continuous conjugate network, and hydrophobicity make PAF-48 expected to have special abilities to absorb and extract styrene as well as some other harmful volatile aromatic compounds (VACs). The PAF-48/gel-coated fiber was explored for the extraction of styrene and six VACs (benzene, toluene, ethylbenzene, and xylenes) from aqueous food simulants followed by gas chromatography (GC) separation. The fiber was found to be very sensitive for the determination of the target molecules with wide linear ranges (0.1-200 or 500 μg·kg -1 ), low limits of detection (LODs, 0.003-0.060 μg·kg -1 ), acceptable precisions (intraday relative standard deviation, RSD 200 times). Particularly for styrene, the PAF-48/gel-coated fiber exhibited a much lower LOD (0.006 μg·kg -1 ) compared with most of the reported fibers. Moreover, the PAF-48/gel-coated fiber had a high extraction selectivity for styrene and VACs over alcohols, phenols, aromatic amines, and alkanes and show a molecular sieving effect for the different molecule sizes. Finally, the PAF-48/gel-coated SPME fiber was successfully applied in GC for the determination of the specific migrations of styrene and VACs from polystyrene (PS) plastic food contact materials (FCMs).

  15. Kenaf/Synthetic and Kevlar®/Cellulosic Fiber-Reinforced Hybrid Composites: A Review

    Directory of Open Access Journals (Sweden)

    Suhad D. Salman

    2015-08-01

    Full Text Available This paper reviews the published and ongoing research work on kenaf/synthetic and Kevlar®/cellulosic fiber-reinforced composite materials. The combination of natural fibers with synthetic fibers in hybrid composites has become increasingly applied in several different fields of technology and engineering. As a result, a better balance between performance and cost is expected to be achieved by 2015, through appropriate material design. This review is intended to provide an outline of the essential outcomes of those hybrid composite materials currently utilized, focusing on processing and mechanical and structural properties.

  16. Performance Investigation of a Full-Scale Hybrid Composite Bull Gear

    Science.gov (United States)

    LaBerge, Kelsen; Handschuh, Robert; Roberts, Gary; Thorp, Scott

    2016-01-01

    Hybrid composite gears have been investigated as a weight saving technology for rotorcraft transmissions. These gears differ from conventional steel gears in that the structural material between the shaft interface and the gear rim is replaced with a lightweight carbon fiber composite. The work discussed here is an extension of previous coupon level hybrid gear tests to a full-scale bull gear. The NASA Glenn Research Center High-Speed Helical Gear Rig was modified for this program allowing several hybrid gear web configurations to be tested while utilizing the same gear rim. Testing was performed on both a baseline (steel) web configuration and a hybrid (steel-composite)configuration. Vibration, orbit and temperature data were recorded and compared between configurations. Vibration levels did not differ greatly between the hybrid and steel configurations, nor did temperature differential between inlet and outlet. While orbit shape displayed differences between the hybrid and baseline configurations, the general overall amplitude was comparable. The hybrid configuration discussed here successfully ran at 3300 hp(2,460 kW), however, progressive growth of the orbit while running at this test condition discontinued the test. Researchers continue to search for the cause of this orbit shift.

  17. Processing and mechanical behavior of Nicalon{reg_sign}/SiC composites with sol-gel derived oxide interfacial coatings

    Energy Technology Data Exchange (ETDEWEB)

    Shanmugham, S.; Liaw, P.K. [Tennessee Univ., Knoxville, TN (United States). Dept. of Materials Science and Engineering

    1996-10-01

    Recent analytical and finite element modeling studies have indicated that low modulus interface materials are desirable for obtaining Nicalon/SiC composites with good toughness. Two oxides, Al titanate and mullite, were chosen on this basis as interface materials. The oxide and C coatings were deposited by sol-gel and CVD, respectively. Nicalon/SiC composites with oxide/C and C/oxide/C interfaces were fabricated and evaluated for flexure strength in the as-processed and oxidized conditions. Composites with C/oxide/C interfaces retained considerable strength and damage-tolerant behavior even after 500 h oxidation at 1000 C in air. The C/oxide/C interface shows promise as a viable oxidation-resistant interface alternative to C or BN interfaces.

  18. Characterization of hybrid aluminum matrix composites for advanced applications – A review

    Directory of Open Access Journals (Sweden)

    Jaswinder Singh

    2016-04-01

    Full Text Available Hybrid aluminum matrix composites (HAMCs are the second generation of composites that have potential to substitute single reinforced composites due to improved properties. This paper investigates the feasibility and viability of developing low cost-high performance hybrid composites for automotive and aerospace applications. Further, the fabrication characteristics and mechanical behavior of HAMCs fabricated by stir casting route have also been reviewed. The optical micrographs of the HAMCs indicate that the reinforcing particles are fairly distributed in the matrix alloy and the porosity levels have been found to be acceptable for the casted composites. The density, hardness, tensile behavior and fracture toughness of these composites have been found to be either comparable or superior to the ceramic reinforced composites. It has been observed from the literature that the direct strengthening of composites occurs due to the presence of hard ceramic phase, while the indirect strengthening arises from the thermal mismatch between the matrix alloy and reinforcing phase during solidification. Based on the database for material properties, the application area of HAMCs has been proposed in the present review. It has been concluded that the hybrid composites offer more flexibility and reliability in the design of possible components depending upon the reinforcement's combination and composition.

  19. Chitosan-doped-hybrid/TiO2 nanocomposite based sol-gel coating for the corrosion resistance of aluminum metal in 3.5% NaCl medium.

    Science.gov (United States)

    J, Balaji; M G, Sethuraman

    2017-11-01

    The study outlines the role of chitosan, a biopolymer on corrosion behavior of Hy/nano-TiO 2 based sol-gel coating over aluminum metal. In this study organic-inorganic hybrid sols were synthesized through hydrolysis and condensation of 3-glycidoxypropyltrimethoxy silane (GPTMS), tetraethoxysilane (TEOS) and titanium (IV) isopropoxide (TIP) in acidic solution. Chitosan was doped into sol-gel matrix and self-assembled over aluminum substrate. The resultant chitosan-doped-Hy/nano-TiO 2 sol-gel coating was characterized by Fourier Transform Infrared (FT-IR) spectra, Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM) and Energy-Dispersive X-ray Spectroscopy (EDX) analyses. The as-tailored aluminum substrate was evaluated for corrosion resistance in neutral medium. The protection ability of these coatings was evaluated by electrochemical impedance studies (EIS) and potentiodynamic polarization (PP) measurements in 3.5% NaCl medium. The EIS and PP results showed that chitosan-doped- Hy/nano-TiO 2 sol-gel coating exhibited better protection from corrosion than the undoped Hy/TiO 2 nanocomposite coating. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. On the healing mechanism of sol-gel derived hybrid materials containing dynamic di-sulfide bonds

    NARCIS (Netherlands)

    AbdolahZadeh, M.; Esteves, A.C.C.; Van der Zwaag, S.; Garcia Espallargas, S.J.

    2013-01-01

    Sol-gel technology is increasingly being used in coatings for corrosion protection and adhesion improvement. So far, the self-healing concept in sol-gel coatings has only been approached from extrinsic healing perspective (i.e. use of nano and micro carriers of corrosion inhibitors) [1]. Despite the

  1. Preparation and characterization of hybrid materials of epoxy resin type bisphenol a with silicon and titanium oxides by sol-gel process

    Energy Technology Data Exchange (ETDEWEB)

    Carrillo C, A.; Osuna A, J. G., E-mail: acc.carrillo@gmail.com [Universidad Autonoma de Coahuila, Facultad de Ciencias Quimicas, Blvd. Venustiano Carranza y Jose Cardenas Valdes, 25000 Saltillo, Coahuila (Mexico)

    2011-07-01

    Hybrid materials were synthesized from epoxy resins as a result bisphenol type A-silicon oxide and epoxy resin bisphenol type A-titanium oxide were obtained. The synthesis was done by sol-gel process using tetraethyl orthosilicate (Teos) and titanium isopropoxide (I Ti) as inorganic precursors. The molar ratio of bisphenol A to the inorganic precursors was the studied variable. The materials were characterized by thermal analysis, infrared spectroscopy, scanning electron microscopy and energy dispersive X-ray spectroscopy. The hybrid nature of the materials was demonstrated through thermal analysis and infrared spectroscopy. In both systems, as the amount of alkoxide increased, the bands described above were more defined. This behavior indicates the interactions between the resin and the alkoxides. Hybrids with Teos showed a smoother and homogeneous surface in its entirety, without irregularities. Hybrids with titanium isopropoxide had low roughness. Both Teos and I Ti hybrids showed a decrease on the atomic weight percentage of carbon due to a slight reduction of the organic part on the surface. (Author)

  2. Preparation and characterization of hybrid materials of epoxy resin type bisphenol a with silicon and titanium oxides by sol-gel process

    International Nuclear Information System (INIS)

    Carrillo C, A.; Osuna A, J. G.

    2011-01-01

    Hybrid materials were synthesized from epoxy resins as a result bisphenol type A-silicon oxide and epoxy resin bisphenol type A-titanium oxide were obtained. The synthesis was done by sol-gel process using tetraethyl orthosilicate (Teos) and titanium isopropoxide (I Ti) as inorganic precursors. The molar ratio of bisphenol A to the inorganic precursors was the studied variable. The materials were characterized by thermal analysis, infrared spectroscopy, scanning electron microscopy and energy dispersive X-ray spectroscopy. The hybrid nature of the materials was demonstrated through thermal analysis and infrared spectroscopy. In both systems, as the amount of alkoxide increased, the bands described above were more defined. This behavior indicates the interactions between the resin and the alkoxides. Hybrids with Teos showed a smoother and homogeneous surface in its entirety, without irregularities. Hybrids with titanium isopropoxide had low roughness. Both Teos and I Ti hybrids showed a decrease on the atomic weight percentage of carbon due to a slight reduction of the organic part on the surface. (Author)

  3. Effect of polyvinyl alcohol content and after synthesis neutralization on structure, mechanical properties and cytotoxicity of sol-gel derived hybrid foams

    Directory of Open Access Journals (Sweden)

    Agda Aline Rocha de Oliveira

    2009-06-01

    Full Text Available Bioactive glass/polymer hybrids are promising materials for biomedical applications because they combine the bioactivity of these glasses with the flexibility of polymers. In this work it was evaluated the effect of increasing the PVA content of the on structural characteristics and mechanical properties of hybrid. The hybrids were prepared with 70 wt. (% SiO2-30 wt. (% CaO and PVA fractions of 20 to 60 wt. (% by the sol-gel method. The structural and mechanical characterization was done by FTIR, SEM and compression tests. To reduce the acidic character of the hybrids due to the catalysts added, different neutralization solutions were tested. The calcium acetate alcoholic solution was the best neutralizing method, resulting in foams with final pH of about 7.0 and small sample contraction. The foams presented porosity of 60-85 wt. (% and pore diameters of 100-500 μm with interconnected structure. An increase of PVA fraction in the hybrids improved their mechanical properties. The scaffolds produced provided a good environment for the adhesion and proliferation of osteoblasts.

  4. Preparation of sol-gel TiO2/purified Na-bentonite composites and their photovoltaic application for natural dye-sensitized solar cells

    International Nuclear Information System (INIS)

    Saelim, Ni-on; Magaraphan, Rathanawan; Sreethawong, Thammanoon

    2011-01-01

    Highlights: → Natural dye from red cabbage was successfully employed in DSSC. → A fast sol-gel method to produce TiO 2 /clay thin film was proposed. → The sol-gel-prepared TiO 2 /clay was applied as the scattering layer on top of TiO 2 electrode. → Thicker sol-gel-prepared TiO 2 /clay electrode showed higher DSSC efficiency. - Abstract: The sol-gel TiO 2 /purified natural clay electrodes having Ti:Si molar ratios of 95:5 and 90:10 were initially prepared, sensitized with natural red cabbage dye, and compared to the sol-gel TiO 2 electrode in terms of physicochemical characteristics and solar cell efficiency. The results showed that the increase in purified Na-bentonite content greatly increased the specific surface area and total pore volume of the prepared sol-gel TiO 2 /purified Na-bentonite composites because the clay platelets prevented TiO 2 particle agglomeration. The sol-gel TiO 2 /5 mol% Si purified Na-bentonite and sol-gel TiO 2 /10 mol% Si purified Na-bentonite composites could increase the film thickness of solar cells without cracking when they were coated as a scattering layer on the TiO 2 semiconductor-based film, leading to increasing the efficiency of the natural dye-sensitized solar cells in this work.

  5. Preparation and characterization of carbon nanotube-hybridized carbon fiber to reinforce epoxy composite

    International Nuclear Information System (INIS)

    An, Feng; Lu, Chunxiang; Li, Yonghong; Guo, Jinhai; Lu, Xiaoxuan; Lu, Huibin; He, Shuqing; Yang, Yu

    2012-01-01

    Highlights: → CNTs were uniformly grown onto the carbon fibers. → No obvious mechanical properties of carbon fiber were observed after CNT growth. → The IFSS of multiscale epoxy composite was measured by single fiber pull-out tests. → Observing fractography of composite, the fracture modes of CNTs were discussed. -- Abstract: The multiscale carbon nanotube-hybridized carbon fiber was prepared by a newly developed aerosol-assisted chemical vapour deposition. Scanning electron microscopy and transmission electron microscope were carried out to characterize this multiscale material. Compared with the original carbon fibers, the fabrication of this hybrid fiber resulted in an almost threefold increase of BET surface area to reach 2.22 m 2 /g. Meanwhile, there was a slight degradation of fiber tensile strength within 10%, while the fiber modulus was not significantly affected. The interfacial shearing strength of a carbon fiber-reinforced polymer composite with carbon nanotube-hybridized carbon fiber and an epoxy matrix was determined from the single fiber pull-out tests of microdroplet composite. Due to an efficient increase of load transfer at the fiber/matrix interfaces, the interracial shear strength of composite reinforced by carbon nanotube-hybridized carbon fiber is almost 94% higher than that of one reinforced by the original carbon fiber. Based on the fractured morphologies of the composites, the interfacial reinforcing mechanisms were discussed through proposing different types of carbon nanotube fracture modes along with fiber pulling out from epoxy composites.

  6. Hopping mixed hybrid excitations in multiple composite quantum wire structures

    International Nuclear Information System (INIS)

    Nguyen Ba An; Tran Thai Hoa

    1995-10-01

    A structure consisting of N pairs of inorganic semiconductor and organic quantum wires is considered theoretically. In such an isolated pair of wires, while the intrawire coupling forms Wannier-Mott exciton in an inorganic semiconductor quantum wire and Frenkel exciton in an organic one, the interwire coupling gives rise to hybrid excitons residing within the pair. When N pairs of wires are packed together 2N new mixed hybrid modes appear that are the true elementary excitations and can hop throughout the whole structure. Energies and wave functions of such hopping mixed hybrid excitations are derived analytically in detail accounting for the global interwire coupling and the different polarization configurations. (author). 19 refs

  7. Hybrid Gear Preliminary Results-Application of Composites to Dynamic Mechanical Components

    Science.gov (United States)

    Handschuh, Robert F.; Roberts Gary D.; Sinnamon, R.; Stringer, David B.; Dykas, Brian D.; Kohlman, Lee W.

    2012-01-01

    Composite spur gears were fabricated and then tested at NASA Glenn Research Center. The composite material served as the web of the gear between the gear teeth and a metallic hub for mounting to the torque-applying shaft. The composite web was bonded only to the inner and outer hexagonal features that were machined from an initially all-metallic aerospace quality spur gear. The Hybrid Gear was tested against an all-steel gear and against a mating Hybrid Gear. As a result of the composite to metal fabrication process used, the concentricity of the gears were reduced from their initial high-precision value. Regardless of the concentricity error, the hybrid gears operated successfully for over 300 million cycles at 10000 rpm and 490 in.*lbs torque. Although the design was not optimized for weight, the composite gears were found to be 20% lighter than the all-steel gears. Free vibration modes and vibration/noise tests were also conduct to compare the vibration and damping characteristic of the Hybrid Gear to all-steel gears. The initial results indicate that this type of hybrid design may have a dramatic effect on drive system weight without sacrificing strength.

  8. Effect of natural fibers and bio-resins on mechanical properties in hybrid and non-hybrid composites

    Science.gov (United States)

    Fragassa, Cristiano

    2016-05-01

    The aim of the present experimental investigation was to perform a comparative analysis concerning the influence on mechanical properties of natural fibers and/or bio-resins in reinforced thermoset composites. Flax and basalt fibers were selected as natural reinforcements, as single constituents or in hybrid combination. Glass synthetic fibers were used for comparison. Eco-friendly matrixes, both epoxy or vinylester, were considered and compared with composites based on traditional resins. Samples were fabricated by hand lay-up and resin infusion techniques. Cures were accelerated and controlled by applying heat and pressure in autoclave. Tensile, flexural and impact tests were carried out according to ASTM standards.

  9. Composition Dependence of Water Permeation Across Multicomponent Gel-Phase Bilayers

    NARCIS (Netherlands)

    Hartkamp, R.M.; Moore, Timothy C.; Iacovella, Christopher R.; Thompson, Michael A.; Bulsara, Pallav A.; Moore, David J.; McCabe, Clare

    2018-01-01

    The permeability of multicomponent phospholipid bilayers in the gel phase is investigated via molecular dynamics simulation. The physical role of the different molecules is probed by comparing multiple mixed-component bilayers containing distearylphosphatidylcholine (DSPC) with varying amounts of

  10. Finite element analysis when orthogonal cutting of hybrid composite CFRP/Ti

    International Nuclear Information System (INIS)

    Xu, Jinyang; Mansori, Mohamed El

    2015-01-01

    Hybrid composite, especially CFRP/Ti stack, is usually considered as an innovative structural configuration for manufacturing the key load-bearing components in modern aerospace industry. This paper originally proposed an FE model to simulate the total chip formation process dominated the hybrid cutting operation. The hybrid composite model was established based on three physical constituents, i.e., Ti constituent, interface and CFRP constituent. Different constitutive models and damage criteria were introduced to replicate the interrelated cutting behaviour of the stack material. The CFRP/Ti interface was modelled as a third phase through the concept of cohesive zone (CZ). Particular attention was made on the comparative studies of the influence of different cutting-sequence strategies on the machining responses induced in hybrid stack cutting. The numerical results emphasized the pivotal role of cutting-sequence strategy on the various machining induced responses including cutting-force generation, machined surface quality and induced interface damage. (paper)

  11. The influence of the matrix structure on the oxidation of aniline in a silica sol-gel composite

    International Nuclear Information System (INIS)

    Widera, J.; Kijak, A.M.; Ca, D.V.; Pacey, G.E.; Taylor, R.T.; Perfect, H.; Cox, J.A.

    2005-01-01

    Mesoporous and microporous silica matrices were formed on indium tin oxide electrodes for liquid-phase voltammetry and as monoliths for solid-state voltammetry of aniline. The pore structure, which was verified by scanning probe microscopy and by surface area measurement, was directed by either control of pH during sol-gel processing or by inclusion of a templating agent. Whether aniline was included as a dopant in the sol-gel or as a component of the contacting liquid, the pore size influenced the coupling of the product of its electrochemical oxidation. With microporous silica, the dominant products were dimers and related short-chain products whereas with mesoporous silica, polymerization was suggested. As a step toward the formation of polyaniline (PANI) that is covalently anchored to the sol-gel, the electrochemistry of aniline was investigated using composites prepared from sols comprising tetraethyl orthosilicate (TEOS), 3-aminophenyl-[3-triethoxylsilyl)-propyl] urea (ormosil), and aniline in various ratios. Combinatorial chemistry identified that the optimum combination of silica precursors in terms of obtaining PANI was a 1:12 mole ratio of ormosil:TEOS

  12. Fatty acid composition of maize germ oil from high-oil hybrids wet-milling processing

    Directory of Open Access Journals (Sweden)

    Jovanović Petar Lj.

    2005-01-01

    Full Text Available Maize germ was obtained by wet-milling laboratory processing of domestic high-oil maize hybrids. After separation, the germ was subjected to extraction of maize oil. Fatty acid composition of maize germ oil was determined by gas chromatography. The results showed very high levels of unsaturated fatty acids and a constant sum of oleic and linoleic acids in oils of different maize hybrids.

  13. Fast sol-gel synthesis of LiFePO{sub 4}/C for high power lithium-ion batteries for hybrid electric vehicle application

    Energy Technology Data Exchange (ETDEWEB)

    Beninati, Sabina; Damen, Libero; Mastragostino, Marina [University of Bologna, Department of Metal Science, Electrochemistry and Chemical Techniques, Via San Donato 15, 40127 Bologna (Italy)

    2009-12-01

    LiFePO{sub 4}/C of high purity grade was successfully synthesized by microwave accelerated sol-gel synthesis and showed excellent electrochemical performance in terms of specific capacity and stability. This cathode material was characterized in battery configuration with a graphite counter electrode by USABC-DOE tests for power-assist hybrid electric vehicle. It yielded a non-conventional Ragone plot that represents complexity of battery functioning in power-assist HEV and shows that the pulse power capability and available energy of such a battery surpasses the DOE goal for such an application. (author)

  14. Process development and tooling design for intrinsic hybrid composites

    Science.gov (United States)

    Riemer, M.; Müller, R.; Drossel, W. G.; Landgrebe, D.

    2017-09-01

    Hybrid parts, which combine the advantages of different material classes, are moving into the focus of lightweight applications. This development is amplified by their high potential for usage in the field of crash relevant structures. By the current state of the art, hybrid parts are mainly made in separate, subsequent forming and joining processes. By using the concept of an intrinsic hybrid, the shaping of the part and the joining of the different materials are performed in a single process step for shortening the overall processing time and thereby the manufacturing costs. The investigated hybrid part is made from continuous fibre reinforced plastic (FRP), in which a metallic reinforcement structure is integrated. The connection between these layered components is realized by a combination of adhesive bonding and a geometrical form fit. The form fit elements are intrinsically generated during the forming process. This contribution regards the development of the forming process and the design of the forming tool for the single step production of a hybrid part. To this end a forming tool, which combines the thermo-forming and the metal forming process, is developed. The main challenge by designing the tool is the temperature management of the tool elements for the variothermal forming process. The process parameters are determined in basic tests and finite element (FE) simulation studies. On the basis of these investigations a control concept for the steering of the motion axes and the tool temperature is developed. Forming tests are carried out with the developed tool and the manufactured parts are analysed by computer assisted tomography (CT) scans.

  15. Clinical performance of a hybrid resin composite with and without an intermediate layer of flowable resin composite: a 7-year evaluation

    DEFF Research Database (Denmark)

    van Dijken, Jan W V; Pallesen, Ulla

    2011-01-01

    The objective of this prospective clinical follow up was to evaluate the long term clinical performance of a hybrid resin composite in Class II restorations with and without intermediate layer of flowable resin composite....

  16. Composite Strain Hardening Properties of High Performance Hybrid Fibre Reinforced Concrete

    Directory of Open Access Journals (Sweden)

    Vikram Jothi Jayakumar

    2014-01-01

    Full Text Available Hybrid fibres addition in concrete proved to be a promising method to improve the composite mechanical properties of the cementitious system. Fibre combinations involving different fibre lengths and moduli were added in high strength slag based concrete to evaluate the strain hardening properties. Influence of hybrid fibres consisting of steel and polypropylene fibres added in slag based cementitious system (50% CRL was explored. Effects of hybrid fibre addition at optimum volume fraction of 2% of steel fibres and 0.5% of PP fibres (long and short steel fibre combinations were observed in improving the postcrack strength properties of concrete. Test results also indicated that the hybrid steel fibre additions in slag based concrete consisting of short steel and polypropylene (PP fibres exhibited a the highest compressive strength of 48.56 MPa. Comparative analysis on the performance of monofibre concrete consisting of steel and PP fibres had shown lower residual strength compared to hybrid fibre combinations. Hybrid fibres consisting of long steel-PP fibres potentially improved the absolute and residual toughness properties of concrete composite up to a maximum of 94.38% compared to monofibre concrete. In addition, the relative performance levels of different hybrid fibres in improving the matrix strain hardening, postcrack toughness, and residual strength capacity of slag based concretes were evaluated systematically.

  17. Thermal, mechanical, and physical properties of seaweed/sugar palm fibre reinforced thermoplastic sugar palm Starch/Agar hybrid composites.

    Science.gov (United States)

    Jumaidin, Ridhwan; Sapuan, Salit M; Jawaid, Mohammad; Ishak, Mohamad R; Sahari, Japar

    2017-04-01

    The aim of this research is to investigate the effect of sugar palm fibre (SPF) on the mechanical, thermal and physical properties of seaweed/thermoplastic sugar palm starch agar (TPSA) composites. Hybridized seaweed/SPF filler at weight ratio of 25:75, 50:50 and 75:25 were prepared using TPSA as a matrix. Mechanical, thermal and physical properties of hybrid composites were carried out. Obtained results indicated that hybrid composites display improved tensile and flexural properties accompanied with lower impact resistance. The highest tensile (17.74MPa) and flexural strength (31.24MPa) was obtained from hybrid composite with 50:50 ratio of seaweed/SPF. Good fibre-matrix bonding was evident in the scanning electron microscopy (SEM) micrograph of the hybrid composites' tensile fracture. Fourier transform infrared spectroscopy (FT-IR) analysis showed increase in intermolecular hydrogen bonding following the addition of SPF. Thermal stability of hybrid composites was enhanced, indicated by a higher onset degradation temperature (259°C) for 25:75 seaweed/SPF composites than the individual seaweed composites (253°C). Water absorption, thickness swelling, water solubility, and soil burial tests showed higher water and biodegradation resistance of the hybrid composites. Overall, the hybridization of SPF with seaweed/TPSA composites enhances the properties of the biocomposites for short-life application; that is, disposable tray, plate, etc. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Synthesis and mechanical behavior of carbon nanotube-magnesium composites hybridized with nanoparticles of alumina

    International Nuclear Information System (INIS)

    Thakur, Sanjay Kumar; Srivatsan, T.S.; Gupta, Manoj

    2007-01-01

    Carbon nanotubes reinforced magnesium based composites were prepared with diligence and care using the powder metallurgy route coupled with rapid microwave sintering. Nanometer-sized particles of alumina were used to hybridize the carbon nanotubes reinforcement in the magnesium matrix so as to establish the intrinsic influence of hybridization on mechanical behavior of the resultant composite material. The yield strength, tensile strength and strain-to-failure of the carbon nanotubes-magnesium composites were found to increase with the addition of nanometer-sized alumina particles to the composite matrix. Scanning electron microscopy observations of the fracture surfaces of the samples deformed and failed in uniaxial tension revealed the presence of cleavage-like features on the fracture surface indicative of the occurrence of locally brittle fracture mechanism in the composite microstructure

  19. Hybrid Silicon-Based Organic/Inorganic Block Copolymers with Sol-Gel Active Moieties: Synthetic Advances, Self-Assembly and Applications in Biomedicine and Materials Science.

    Science.gov (United States)

    Czarnecki, Sebastian; Bertin, Annabelle

    2018-03-07

    Hybrid silicon-based organic/inorganic (multi)block copolymers are promising polymeric precursors to create robust nano-objects and nanomaterials due to their sol-gel active moieties via self-assembly in solution or in bulk. Such nano-objects and nanomaterials have great potential in biomedicine as nanocarriers or scaffolds for bone regeneration as well as in materials science as Pickering emulsifiers, photonic crystals or coatings/films with antibiofouling, antibacterial or water- and oil-repellent properties. Thus, this Review outlines recent synthetic efforts in the preparation of these hybrid inorganic/organic block copolymers, gives an overview of their self-assembled structures and finally presents recent examples of their use in the biomedical field and material science. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Piezoelectric properties of the new generation active matrix hybrid (micro-nano) composites

    Energy Technology Data Exchange (ETDEWEB)

    Parali, Levent, E-mail: levent.parali@cbu.edu.tr [Department of Electronics and Automation, Celal Bayar University, Manisa (Turkey); Şabikoğlu, İsrafil [Department of Physics, Celal Bayar University, Manisa (Turkey); Kurbanov, Mirza A. [Institute of Physics, Academy of Sciences of Azerbaijan, Baku (Azerbaijan)

    2014-11-01

    Highlights: • We prepared hybrid structured piezocomposites. • We examine thermostimulated depolarization of piezocomposites. • We examine frequency characteristic of piezocomposites with SiO{sub 2} and BaTiO{sub 3}. • The piezocomposites can be used in acoustic applications at 5 Hz–40 kHz. - Abstract: A hybrid piezoelectric composite structure is obtained by addition of nano-sized BaTiO{sub 3}, SiO{sub 2} to the micro-sized PZT and polymers composition. Although the PZT material itself has excellent piezoelectric properties, PZT-based composite variety is limited. Piezoelectric properties of PZT materials can be varied with an acceptor or a donor added to the material. In addition, varieties of PZT-based sensors can be increased with doping polymers which have physical-mechanical, electrophysical, thermophysical and photoelectrical properties. The active matrix hybrid structure occurs when bringing together the unique piezoelectric properties of micro-sized PZT with electron trapping properties of nano-sized insulators (BaTiO{sub 3} or SiO{sub 2}), and their piezoelectric, mechanic and electromechanic properties significantly change. In this study, the relationship between the piezoelectric constant and the coupling factor values of microstructure (PZT–PVDF) and the hybrid structure (PZT–PVDF–BaTiO{sub 3}) composite are compared. The d{sub 33} value and the coupling factor of the hybrid structure have shown an average of 54 and 62% increase according to microstructure composite, respectively. In addition, the d{sub 33} value and the coupling factor of the hybrid structure (PZT–HDPE–SiO{sub 2}) have exhibited about 68 and 52% increase according to microstructure composite (PZT–HDPE), respectively.

  1. Flexural Progressive Failure of Carbon/Glass Interlayer and Intralayer Hybrid Composites.

    Science.gov (United States)

    Wang, Qingtao; Wu, Weili; Gong, Zhili; Li, Wei

    2018-04-17

    The flexural progressive failure modes of carbon fiber and glass fiber (C/G) interlayer and intralayer hybrid composites were investigated in this work. Results showed that the bending failure modes for interlayer hybrid composites are determined by the layup structure. Besides, the bending failure is characterized by the compression failure of the upper layer, when carbon fiber tends to distribute in the upper layer, the interlayer hybrid composite fails early, the failure force is characterized by a multi-stage slightly fluctuating decline and the fracture area exhibits a diamond shape. While carbon fiber distributes in the middle or bottom layer, the failure time starts late, and the failure process exhibits one stage sharp force/stress drop, the fracture zone of glass fiber above the carbon layers presents an inverted trapezoid shape, while the fracture of glass fiber below the carbon layers exhibits an inverted triangular shape. With regards to the intralayer hybrid composites, the C/G hybrid ratio plays a dominating role in the bending failure which could be considered as the mixed failures of four structures. The bending failure of intralayer hybrid composites occurs in advance since carbon fiber are located in each layer; the failure process shows a multi-stage fluctuating decline, and the decline slows down as carbon fiber content increases, and the fracture sound release has the characteristics of a low intensity and high frequency for a long time. By contrast, as glass fiber content increases, the bending failure of intralayer composites is featured with a multi-stage cliff decline with a high amplitude and low frequency for a short-time fracture sound release.

  2. Characterization of composites prepared by sol-gel process through positrons lifetime spectroscopy

    International Nuclear Information System (INIS)

    Sousa, Edesia M.B. de; Magalhaes, Welligton F. de; Mohallem, Nelcy D.S.

    1996-01-01

    Si O 2 matrix were prepared by sol-gel method using TEOS, ethanol and H 2 O in a 1/3/10 mol ratio, with HCl and HF as catalysts. This silica gels were doped with copper and titanium adding Cu Cl and titanium tetra-iso-prop oxide in the starting solution, during agitation. The samples were prepared in monolithic shape, were dried at 110 deg C for 24 hours and thermally treated for 2 hours at 500, 900 and 1100 deg C. The structural evolution was studied y x-ray diffraction, mercury porosimetry and pycnometry. In this work, it was also used the Position Annihilation Lifetime Spectroscopy which have been used, nowadays, as a microscopic probe in order to investigate the free volume in zeolites, polymers and metallic alloy. All the samples have shown a stable pore structure until 900 deg C and a strong densification process at 1100 deg C. (author)

  3. Denaturing gradient gel electrophoresis profiling of bacterial communities composition in Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Singh, S.K.; Ramaiah, N.

    of Environmental Biology circleshadowdwnMay 2011circleshadowdwn Introduction The bacteria play a major role in carbon dynamics of marine ecosystems and, the importance of heterotrophic bacteria in marine ecosystem functioning is very well recognized (Azam et al..., 2008). Denaturing gradient gel-electrophoressis (DGGE) based fingerprinting helps estimate the numbers of dominant phylotype in a given sample (Muyzer et al., 1993). Very diverse bacterial assemblages such as those in the soils present many bands...

  4. Combined sol–gel and carbothermal synthesis of ZrC–TiC powders for composites

    Energy Technology Data Exchange (ETDEWEB)

    Umalas, Madis [Institute of Physics, University of Tartu, Riia 142, 51014, Tartu (Estonia); Estonian Nanotechnology Competence Centre, Riia 142, 51014, Tartu (Estonia); Hussainova, Irina, E-mail: irina.hussainova@ttu.ee [Department of Materials Engineering, Tallinn University of Technology, Ehitajate 5, 19086, Tallinn (Estonia); ITMO University, Kronverksky 49, St. Petersburg, 197101 (Russian Federation); Reedo, Valter [Institute of Physics, University of Tartu, Riia 142, 51014, Tartu (Estonia); Young, Der-Liang [Department of Materials Engineering, Tallinn University of Technology, Ehitajate 5, 19086, Tallinn (Estonia); Cura, Erkin; Hannula, Simo-Pekka [Department of Materials Science and Engineering, Aalto University, School of Chemical Technology, POB 16200, Aalto, 00076 (Finland); Lõhmus, Rünno [Institute of Physics, University of Tartu, Riia 142, 51014, Tartu (Estonia); Estonian Nanotechnology Competence Centre, Riia 142, 51014, Tartu (Estonia); Lõhmus, Ants [Institute of Physics, University of Tartu, Riia 142, 51014, Tartu (Estonia)

    2015-03-01

    The TiC–ZrC binary compound of nanostructured powders was synthesised by combination of sol–gel and carbothermal reduction. The polymeric precursor of the blend was produced by sol–gel process from titanium tetrabutoxide, zirconium tetrabutoxide and benzene-1.4-diol; then carbothermally reduced to the TiC–ZrC blend at 1600 °C in an inert environment. The chemical reactions occurring in the system were monitored by infrared spectrometry. Stable alkoxide solution was obtained by adding acetylacetone to avoid premature gelation of the metal alkoxide mixture. A solid solution of ZrTiC{sub 2} was produced by spark plasma sintering at temperature of 2000 °C. - Highlights: • A polymeric precursor of TiC–ZrC blend was synthesised by sol–gel process. • The polymeric precursor synthesis was studied by infrared spectroscopy. • TiC–ZrC powder blend was carbothermally reduced from polymeric precursor. • TiC–ZrC powder blend was sintered to ZrTiC{sub 2} solid solution by spark plasma sintering. • Sintered ZrTiC{sub 2} have good mechanical properties.

  5. Combined sol–gel and carbothermal synthesis of ZrC–TiC powders for composites

    International Nuclear Information System (INIS)

    Umalas, Madis; Hussainova, Irina; Reedo, Valter; Young, Der-Liang; Cura, Erkin; Hannula, Simo-Pekka; Lõhmus, Rünno; Lõhmus, Ants

    2015-01-01

    The TiC–ZrC binary compound of nanostructured powders was synthesised by combination of sol–gel and carbothermal reduction. The polymeric precursor of the blend was produced by sol–gel process from titanium tetrabutoxide, zirconium tetrabutoxide and benzene-1.4-diol; then carbothermally reduced to the TiC–ZrC blend at 1600 °C in an inert environment. The chemical reactions occurring in the system were monitored by infrared spectrometry. Stable alkoxide solution was obtained by adding acetylacetone to avoid premature gelation of the metal alkoxide mixture. A solid solution of ZrTiC 2 was produced by spark plasma sintering at temperature of 2000 °C. - Highlights: • A polymeric precursor of TiC–ZrC blend was synthesised by sol–gel process. • The polymeric precursor synthesis was studied by infrared spectroscopy. • TiC–ZrC powder blend was carbothermally reduced from polymeric precursor. • TiC–ZrC powder blend was sintered to ZrTiC 2 solid solution by spark plasma sintering. • Sintered ZrTiC 2 have good mechanical properties

  6. Electrochemically assisted deposition of sol-gel bio-composite with co-immobilized dehydrogenase and diaphorase

    Energy Technology Data Exchange (ETDEWEB)

    Wang Zhijie [LCPME, UMR 7564, CNRS-Nancy University, 405, rue de Vandoeuvre, 54600 Villers-les-Nancy (France); Etienne, Mathieu, E-mail: mathieu.etienne@lcpme.cnrs-nancy.fr [LCPME, UMR 7564, CNRS-Nancy University, 405, rue de Vandoeuvre, 54600 Villers-les-Nancy (France); Kohring, Gert-Wieland [Mikrobiologie, Universitaet des Saarlandes, Campus, Geb. A1.5, D-66123 Saarbruecken (Germany); Bon-Saint-Come, Yemima; Kuhn, Alexander [Universite Bordeaux, ISM, ENSCPB, 16 avenue Pey Berland, 33607 Pessac (France); Walcarius, Alain [LCPME, UMR 7564, CNRS-Nancy University, 405, rue de Vandoeuvre, 54600 Villers-les-Nancy (France)

    2011-10-30

    We report here that the electrochemically assisted deposition (EAD) of silica thin films can be a good strategy to co-encapsulate D-sorbitol dehydrogenase (DSDH) and diaphorase in an active form. This is achieved via the electrolysis of a hydrolyzed sol containing the biomolecules to initiate the poly-condensation of silica precursors upon electrochemically induced pH increase at the electrode/solution interface. DSDH was found to be very sensitive to the silica gel environment and the addition of a positively-charged polyelectrolyte was necessary to ensure effective operational behavior of the biomolecules. The composition of the sol and the conditions for electrolysis have been optimized with respect to the intensity of the electrochemical response to D-sorbitol oxidation. The K{sub m} of DSDH in the electrodeposited film was in the range of 3 mM, slightly better than the value determined biochemically in solution (6.5 mM). The co-immobilization of DSDH and diaphorase in this way led on the one hand to the possible reduction of NAD{sup +} to NADH (simultaneously to D-sorbitol oxidation) and on the other hand to the safe re-oxidation of the co-factor using a mediator (ferrocenedimethanol) as electron relay. The bioelectrocatalytic response looks promising for electro-enzymatic applications. To support this idea, the EAD of sol-gel bio-composite has been extended to macroporous electrodes displaying a much bigger electroactive surface area.

  7. Examination of the concrete from an old Portuguese dam: Texture and composition of alkali-silica gel

    International Nuclear Information System (INIS)

    Fernandes, Isabel; Noronha, Fernando; Teles, Madalena

    2007-01-01

    Exudations and pop-outs were identified in the interior galleries of a large dam built in the 1960s. The samples collected were examined by a Scanning Electron Microscope. A dense material with a smooth surface and drying shrinkage cracks or a spongy texture were observed in the samples. The semi-quantitative composition was obtained by energy dispersive spectrometry (EDS) and it was concluded that this material corresponds to alkali-silica gel, composed of SiO 2 -Na 2 O-K 2 O-CaO. A viscous white product in contact with an aggregate particle in a cone sampled from a pop-out was observed through use of the scanning electron microscope and it has characteristics similar to the gel present in the exudations and cavities. Reference is made to the potential alkali reactivity of the aggregate present in the concrete. The texture and composition of the products probably resulting from an alkali-silica reaction are presented, set out in ternary diagrams, and discussed

  8. Hybrid welding of carbon-fiber reinforced epoxy based composites

    NARCIS (Netherlands)

    Lionetto, Francesca; De Nicolas Morillas, M.; Pappadà, Silvio; Buccoliero, Giuseppe; Fernandez Villegas, I.; Maffezzoli, Alfonso

    2018-01-01

    The approach for joining thermosetting matrix composites (TSCs) proposed in this study is based on the use of a low melting co-cured thermoplastic film, added as a last ply in the stacking sequence of the composite laminate. During curing, the thermoplastic film partially penetrates in the first

  9. Compositionality issues in discrete, continuous and hybrid systems

    NARCIS (Netherlands)

    van der Schaft, Arjan; Schumacher, J.M.

    2000-01-01

    Models of complex dynamical systems are often built by connecting submodels of smaller parts. The key to this method is the operation of ``interconnection'' or ``composition'' which serves to define the whole in terms of its parts. In the setting of smooth differential equations the composition

  10. Experimental Results and Model Calculations of a Hybrid Adsorption-Compression Heat Pump Based on a Roots Compressor and Silica Gel-Water Sorption

    Energy Technology Data Exchange (ETDEWEB)

    Van der Pal, M.; De Boer, R.; Wemmers, A.K.; Smeding, S.F.; Veldhuis, J.B.J.; Lycklama a Nijeholt, J.A.

    2013-10-15

    Thermally driven sorption systems can provide significant energy savings, especially in industrial applications. The driving temperature for operation of such systems limits the operating window and can be a barrier for market-introduction. By adding a compressor, the sorption cycle can be run using lower waste heat temperatures. ECN has recently started the development of such a hybrid heat pump. The final goal is to develop a hybrid heat pump for upgrading lower (<100C) temperature industrial waste heat to above pinch temperatures. The paper presents the first measurements and model calculations of a hybrid heat pump system using a water-silica gel system combined with a Roots type compressor. From the measurements can be seen that the effect of the compressor is dependent on where in the cycle it is placed. When placed between the evaporator and the sorption reactor, it has a considerable larger effect compared to the compressor placed between the sorption reactor and the condenser. The latter hardly improves the performance compared to purely heat-driven operation. This shows the importance of studying the interaction between all components of the system. The model, which shows reasonable correlation with the measurements, could proof to be a valuable tool to determine the optimal hybrid heat pump configuration.

  11. Investigation of mechanical properties of hemp/glass fiber reinforced nano clay hybrid composites

    Science.gov (United States)

    Unki, Hanamantappa Ningappa; Shivanand, H. K.; Vidyasagar, H. N.

    2018-04-01

    Over the last twenty to thirty years composite materials have been used in engineering field. Composite materials possess high strength, high strength to weight ratio due to these facts composite materials are becoming popular among researchers and scientists. The major proportion of engineering materials consists of composite materials. Composite materials are used in vast applications ranging from day-to-day household articles to highly sophisticated applications. In this paper an attempt is made to prepare three different composite materials using e-glass and Hemp. In this present investigation hybrid composite of Hemp, Glass fiber and Nano clay will be prepared by Hand-layup technique. The glass fiber used in this present investigation is E-glass fiber bi-directional: 90˚ orientation. The composite samples will be made in the form of a Laminates. The wt% of nanoclay added in the preparation of sample is 20 gm constant. The fabricated composite Laminate will be cut into corresponding profiles as per ASTM standards for Mechanical Testing. The effect of addition of Nano clay and variation of Hemp/glass fibers will be studied. In the present work, a new Hybrid composite is developed in which Hemp, E glass fibers is reinforced with epoxy resin and with Nano clay.

  12. Polylactide-based renewable green composites from agricultural residues and their hybrids.

    Science.gov (United States)

    Nyambo, Calistor; Mohanty, Amar K; Misra, Manjusri

    2010-06-14

    Agricultural natural fibers like jute, kenaf, sisal, flax, and industrial hemp have been extensively studied in green composites. The continuous supply of biofibers in high volumes to automotive part makers has raised concerns. Because extrusion followed by injection molding drastically reduces the aspect ratio of biofibers, the mechanical performance of injection molded agricultural residue and agricultural fiber-based composites are comparable. Here, the use of inexpensive agricultural residues and their hybrids that are 8-10 times cheaper than agricultural fibers is demonstrated to be a better way of getting sustainable materials with better performance. Green renewable composites from polylactide (PLA), agricultural residues (wheat straw, corn stover, soy stalks, and their hybrids) were successfully prepared through twin-screw extrusion, followed by injection molding. The effect on mechanical properties of varying the wheat straw amount from 10 to 40 wt % in PLA-wheat straw composites was studied. Tensile moduli were compared with theoretical calculations from the rule of mixture (ROM). Combination of agricultural residues as hybrids is proved to reduce the supply chain concerns for injection molded green composites. Densities of the green composites were found to be lower than those of conventional glass fiber composites.

  13. Experimental Characterization of Aluminum-Based Hybrid Composites Obtained Through Powder Metallurgy

    Science.gov (United States)

    Marcu, D. F.; Buzatu, M.; Ghica, V. G.; Petrescu, M. I.; Popescu, G.; Niculescu, F.; Iacob, G.

    2018-06-01

    The paper presents some experimental results concerning fabrication through powder metallurgy (P/M) of aluminum-based hybrid composites - Al/Al2O3/Gr. In order to understand the mechanisms that occur during the P/M processes of obtaining Al/Al2O3/Gr composite, we correlated the physical characteristics with their micro-structural characteristics. The characterization was performed using analysis techniques specific for P/M process, SEM-EDS and XRD analyses. Micro-structural characterization of the composites has revealed fairly uniform distribution this resulting in good properties of the final composite material.

  14. Frequency and deflection analysis of cenosphere/glass fiber interply hybrid composite cantilever beam

    Science.gov (United States)

    Bharath, J.; Joladarashi, Sharnappa; Biradar, Srikumar; Kumar, P. Naveen

    2018-04-01

    Interply hybrid laminates contain plies made of two or more different composite systems. Hybrid composites have unique features that can be used to meet specified design requirements in a more cost-effective way than nonhybrid composites. They offer many advantages over conventional composites including balanced strength and stiffness, enhanced bending and membrane mechanical properties, balanced thermal distortion stability, improved fatigue/impact resistance, improved fracture toughness and crack arresting properties, reduced weight and cost. In this paper an interply hybrid laminate composite containing Cenosphere reinforced polymer composite core and glass fiber reinforced polymer composite skin is analysied and effect of volume fraction of filler on frequency and load v/s deflection of hybrid composite are studied. Cenosphere reinforced polymer composite has increased specific strength, specific stiffness, specific density, savings in cost and weight. Glass fiber reinforced polymer composite has higher torsional rigidity when compared to metals. These laminate composites are fabricated to meet several structural applications and hence there is a need to study their vibration and deflection properties. Experimental investigation starts with fabrication of interply hybrid composite with cores of cenosphere reinforced epoxy composite volume fractions of CE 15, CE 25, CE15_UC as per ASTM E756-05C, and glasss fiber reinforced epoxy skin, cast product of required dimension by selecting glass fibre of proper thickness which is currently 0.25mm E-glass bidirectional woven glass fabric having density 2500kg/m3, in standard from cast parts of size 230mmX230mmX5mm in an Aluminum mould. Modal analysis of cantilever beam is performed to study the variation of natural frequency with strain gauge and the commercially available Lab-VIEW software and deflection in each of the cases by optical Laser Displacement Measurement Sensor to perform Load versus Deflection Analysis

  15. Architectural optimization of an epoxy-based hybrid sol–gel coating for the corrosion protection of a cast Elektron21 magnesium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Murillo-Gutiérrez, N.V., E-mail: murillo@chimie.ups-tlse.fr [Université de Toulouse UPS-INP-CNRS, Institut Carnot CIRIMAT, Toulouse (France); Ansart, F.; Bonino, J-P. [Université de Toulouse UPS-INP-CNRS, Institut Carnot CIRIMAT, Toulouse (France); Kunst, S.R.; Malfatti, C.F. [Universidade Federal do Rio grande do Sul, Laboratory of Corrosion Research (LAPEC), Porto Alegre (Brazil)

    2014-08-01

    An epoxy-based hybrid sol–gel coating was prepared in various architectural configurations has been studied for the corrosion protection of a cast Elektron21 magnesium alloy. The creation of a single layer of this coating presents defects consisting of macro-pores and protuberances, which opens access for corrosive species to reach the metallic substrate. These defects are suspected to result from the high reactivity of the substrate, as well as to the irregular topography of the substrate disrupted by the microstructure of the own magnesium alloy. Hence, a sol–gel coating in bilayer architecture is proposed, where the first layer would “inert” the surface of the magnesium substrate, and the second layer would cover the defects of the first layer and also thickening the coating. The morphological characteristics of the sol–gel coatings were analyzed by scanning electron microscopy (SEM), and their corrosion behavior was evaluated by OCP (open circuit potential) monitoring and electrochemical impedance spectroscopy (EIS) in chloride media. It is shown that both the architectural arrangement and the individual thickness of the first and second layers have an important influence on the anticorrosion performances of the protective system, just as much as its global thickness.

  16. Architectural optimization of an epoxy-based hybrid sol-gel coating for the corrosion protection of a cast Elektron21 magnesium alloy

    Science.gov (United States)

    Murillo-Gutiérrez, N. V.; Ansart, F.; Bonino, J.-P.; Kunst, S. R.; Malfatti, C. F.

    2014-08-01

    An epoxy-based hybrid sol-gel coating was prepared in various architectural configurations has been studied for the corrosion protection of a cast Elektron21 magnesium alloy. The creation of a single layer of this coating presents defects consisting of macro-pores and protuberances, which opens access for corrosive species to reach the metallic substrate. These defects are suspected to result from the high reactivity of the substrate, as well as to the irregular topography of the substrate disrupted by the microstructure of the own magnesium alloy. Hence, a sol-gel coating in bilayer architecture is proposed, where the first layer would “inert” the surface of the magnesium substrate, and the second layer would cover the defects of the first layer and also thickening the coating. The morphological characteristics of the sol-gel coatings were analyzed by scanning electron microscopy (SEM), and their corrosion behavior was evaluated by OCP (open circuit potential) monitoring and electrochemical impedance spectroscopy (EIS) in chloride media. It is shown that both the architectural arrangement and the individual thickness of the first and second layers have an important influence on the anticorrosion performances of the protective system, just as much as its global thickness.

  17. Architectural optimization of an epoxy-based hybrid sol–gel coating for the corrosion protection of a cast Elektron21 magnesium alloy

    International Nuclear Information System (INIS)

    Murillo-Gutiérrez, N.V.; Ansart, F.; Bonino, J-P.; Kunst, S.R.; Malfatti, C.F.

    2014-01-01

    An epoxy-based hybrid sol–gel coating was prepared in various architectural configurations has been studied for the corrosion protection of a cast Elektron21 magnesium alloy. The creation of a single layer of this coating presents defects consisting of macro-pores and protuberances, which opens access for corrosive species to reach the metallic substrate. These defects are suspected to result from the high reactivity of the substrate, as well as to the irregular topography of the substrate disrupted by the microstructure of the own magnesium alloy. Hence, a sol–gel coating in bilayer architecture is proposed, where the first layer would “inert” the surface of the magnesium substrate, and the second layer would cover the defects of the first layer and also thickening the coating. The morphological characteristics of the sol–gel coatings were analyzed by scanning electron microscopy (SEM), and their corrosion behavior was evaluated by OCP (open circuit potential) monitoring and electrochemical impedance spectroscopy (EIS) in chloride media. It is shown that both the architectural arrangement and the individual thickness of the first and second layers have an important influence on the anticorrosion performances of the protective system, just as much as its global thickness.

  18. Preparation and Characterization of Graphene-Based Magnetic Hybrid Nano composite

    International Nuclear Information System (INIS)

    Jashiela Wani Jusin; Madzlan Aziz

    2016-01-01

    Graphene-based magnetic hybrid nano composite has the advantage of exhibiting better performance as platform or supporting materials to develop novel properties of composite by increasing selectivity of the targeted adsorbate. The hybrid nano material was prepared by mixing and hydrolysing iron (II) and iron (III) salt precursors in the presence of GO dispersion through coprecipitation method followed by in situ chemical reduction of GO. The effect of weight loading ratio of Fe to GO (4:1, 2.5:1, 1:1 and 1:4) on structural properties of the hybrid nano materials was investigated. The presence of characteristic peaks in FTIR spectra indicated that GO has been successfully oxidized from graphite while the decrease in oxygenated functional groups and peaks intensity evidenced the formation of hybrid nano materials through the subsequent reduction process. The presence of characteristic peaks in XRD pattern denoted that magnetite nanoparticles disappeared at higher loading of GO. TEM micrograph showed that the best distribution of iron oxide particles on the surface of hybrid nano material occurred when the loading ratio of Fe to GO was fixed at 2:5 to 1. The reduced graphene oxide (RGO) sheets in the hybrid materials showed less wrinkled sheet like structure compared to GO due to exfoliation and reduction process during the synthesis. The layered morphology of GO degrades at higher concentrations of iron oxide. (author)

  19. Algorithm of constructing hybrid effective modules for elastic isotropic composites

    Science.gov (United States)

    Svetashkov, A. A.; Miciński, J.; Kupriyanov, N. A.; Barashkov, V. N.; Lushnikov, A. V.

    2017-02-01

    The algorithm of constructing of new effective elastic characteristics of two-component composites based on the superposition of the models of Reiss and Voigt, Hashin and Strikman, as well as models of the geometric average for effective modules. These effective characteristics are inside forks Voigt and Reiss. Additionally, the calculations of the stress-strain state of composite structures with new effective characteristics give more accurate prediction than classical models do.

  20. Radio frequency shielding behaviour of silane treated Fe2O3/E-glass fibre reinforced epoxy hybrid composite

    Science.gov (United States)

    Arun prakash, V. R.; Rajadurai, A.

    2016-10-01

    In this work, radio frequency shielding behaviour of polymer (epoxy) matrixes composed of E-glass fibres and Fe2O3 fillers have been studied. The principal aim of this project is to prepare suitable shielding material for RFID application. When RFID unit is pasted on a metal plate without shielding material, the sensing distance is reduced, resulting in a less than useful RFID system. To improve RF shielding of epoxy, fibres and fillers were utilized. Magnetic behaviour of epoxy polymer composites was measured by hysteresis graphs (B-H) followed by radio frequency identifier setup. Fe2O3 particles of sizes 800, 200 and 100 nm and E-glass fibre woven mat of 600 g/m2 were used to make composites. Particle sizes of 800 nm and 200 nm were prepared by high-energy ball milling, whereas particles of 100 nm were prepared by sol-gel method. To enhance better dispersion of particles within the epoxy matrix, a surface modification process was carried out on fillers by an amino functional coupling agent called 3-Aminopropyltrimethoxysilane (APTMS). Crystalline and functional groups of siliconized Fe2O3 particles were characterized by XRD and FTIR spectroscopy analysis. Variable quantity of E-glass fibre (25, 35, and 45 vol%) was laid down along with 0.5 and 1.0 vol% of 800, 200, and 100 nm size Fe2O3 particles into the matrix, to fabricate the hybrid composites. Scanning electron microscopy and transmission electron microscopy images reveal the shape and size of Fe2O3 particles for different milling times and particle dispersion in the epoxy matrix. The maximum improved sensing distance of 45.2, 39.4 and 43.5 % was observed for low-, high-, and ultra-high radio frequency identifier setup along with shielding composite consist of epoxy, 1 vol% 200 nm Fe2O3 particles and 45 vol% of E-glass fibre.

  1. Flexural behavior of the fibrous cementitious composites (FCC) containing hybrid fibres

    Science.gov (United States)

    Ramli, Mahyuddin; Ban, Cheah Chee; Samsudin, Muhamad Fadli

    2018-02-01

    In this study, the flexural behavior of the fibrous cementitious composites containing hybrid fibers was investigated. Waste materials or by product materials such as pulverized fuel ash (PFA) and ground granulated blast-furnace slag (GGBS) was used as supplementary cement replacement. In addition, barchip and kenaf fiber will be used as additional materials for enhance the flexural behavior of cementitious composites. A seven mix design of fibrous cementitious composites containing hybrid fiber mortar were fabricated with PFA-GGBS as cement replacement at 50% with hybridization of barchip and kenaf fiber between 0.5% and 2.0% by total volume weight. The FCC with hybrid fibers mortar will be fabricated by using 50 × 50 × 50 mm, 40 × 40 × 160 mm and 350 × 125 × 30 mm steel mold for assessment of mechanical performances and flexural behavior characteristics. The flexural behavior and mechanical performance of the PFA-GGBS with hybrid fiber mortar block was assessed in terms of load deflection response, stress-strain response, crack development, compressive and flexural strength after water curing for 28 days. Moreover, the specimen HBK 1 and HBK 2 was observed equivalent or better in mechanical performance and flexural behavior as compared to control mortar.

  2. Evaluation of Impact Strength of Epoxy Based Hybrid Composites Reinforced with E-Glass/Kevlar 49

    Directory of Open Access Journals (Sweden)

    SUBHAN ALIJOGI

    2017-10-01

    Full Text Available In hybridization different fibers are stacked layer by layer to produce laminates have specific strength and stiffness and employed in light weight high strength applications. Physically mean fabricated hybrid composites used in aerospace, under water, body armors and armed forces establishment. In present work drop-weight impact response of hybrid composites were investigated by making laminates of hybrid composites. In Hybridization layers of E-glass (roving and Kevlar 49 fabrics stacked with epoxy resin. The layers formulation was set up by hand layup method. Impregnationsof epoxy resin of commercial grade (601A in fabrics were accomplished by VRTM (Vacuum Bagging Resin Transfer Molding technique. Layup placementof Glass fibers/ Kevlar at 0°/90°, 45°/45° and 30°/60° were set for this work. Mechanical properties such as impact strength, bear resistance and break resistance were analyzed by usingASTM D-256 and D-3763 standard.Experimental investigation was conducted using instrumented Dart impact and Izod Impact test. E-glass/Kevlar 49 at layup 0°/90°and 30°/60°exhibited improvedimpact strength than 45°/45°. The surface morphology and fractography were also investigated by capturing different images of Specimens by using the SEM (Scanning Electron Microscopy. The fiberreinforcement and matrix fracture were also observed by using SEM.The SEM images suggest that epoxy resin tightly bonded with Kevlar fibers whereas Glass fibers were pulled out from laminations.

  3. Evaluation of impact strength of epoxy based hybrid composites reinforced with e-glass/kevlar 49

    International Nuclear Information System (INIS)

    Jogi, S.A.; Memon, I.A.; Baloch, M.; Chandio, A.D.

    2017-01-01

    In hybridization different fibers are stacked layer by layer to produce laminates have specific strength and stiffness and employed in light weight high strength applications. Physically mean fabricated hybrid composites used in aerospace, under water, body armors and armed forces establishment. In present work drop-weight impact response of hybrid composites were investigated by making laminates of hybrid composites. In Hybridization layers of E-glass (roving) and Kevlar 49 fabrics stacked with epoxy resin. The layers formulation was set up by hand layup method. Impregnations of epoxy resin of commercial grade (601A) in fabrics were accomplished by VRTM (Vacuum Bagging Resin Transfer Molding) technique. Layup placementof Glass fibers/ Kevlar at 0 degree/90 degree, 45 degree/45 degree and 30 degree/60 degree were set for this work. Mechanical properties such as impact strength, bear resistance and break resistance were analyzed by using ASTM D-256 and D-3763 standard. Experimental investigation was conducted using instrumented Dart impact and Izod Impact test. E-glass/Kevlar 49 at layup 0 degree/90 degree and 30 degree/60 degree exhibited improvedimpact strength than 45 degree/45 degree. The surface morphology and fractography were also investigated by capturing different images of Specimens by using the SEM (Scanning Electron Microscopy). The fiberreinforcement and matrix fracture were also observed by using SEM.The SEM images suggest that epoxy resin tightly bonded with Kevlar fibers whereas Glass fibers were pulled out from laminations. (author)

  4. Genetic origin and composition of a natural hybrid poplar Populus???jrtyschensis from two distantly related species

    OpenAIRE

    Jiang, Dechun; Feng, Jianju; Dong, Miao; Wu, Guili; Mao, Kangshan; Liu, Jianquan

    2016-01-01

    Background The factors that contribute to and maintain hybrid zones between distinct species are highly variable, depending on hybrid origins, frequencies and fitness. In this study, we aimed to examine genetic origins, compositions and possible maintenance of Populus???jrtyschensis, an assumed natural hybrid between two distantly related species. This hybrid poplar occurs mainly on the floodplains along the river valleys between the overlapping distributions of the two putative parents. Resu...

  5. A six-year prospective randomized study of a nano-hybrid and a conventional hybrid resin composite in Class II restorations

    DEFF Research Database (Denmark)

    van Dijken, Jan W V; Pallesen, Ulla

    2013-01-01

    The objective of this 6 year prospective randomized equivalence trial was to evaluate the long-term clinical performance of a new nano-hybrid resin composite (RC) in Class II restorations in an intraindividual comparison with its well-established conventional hybrid RC predecessor....

  6. Optimisation of hybrid high-modulus/high-strength carbon fiber reinforced plastic composite drive

    OpenAIRE

    Montagnier, Olivier; Hochard, Christian

    2011-01-01

    International audience; This study deals with the optimisation of hybrid composite drive shafts operating at subcritical or supercritical speeds, using a genetic algorithm. A formulation for the flexural vibrations of a composite drive shaft mounted on viscoelastic supports including shear effects is developed. In particular, an analytic stability criterion is developed to ensure the integrity of the system in the supercritical regime. Then it is shown that the torsional strength can be compu...

  7. Effect of different polishing systems on the surface roughness of nano-hybrid composites

    OpenAIRE

    Brijesh Patel; Naveen Chhabra; Disha Jain

    2016-01-01

    Objective: The study aimed to investigate the influence of different polishing systems on the surface roughness of nano-hybrid composite resins. Background: Different shapes of polishing systems are available according to the site of work. To minimize variability, a new system with single shape is developed that can be utilized in both anterior as well as posterior teeth. Materials and Methods: Seventy composite discs were fabricated using Teflon well (10 mm × 3 mm). Two main group of...

  8. Polypeptide composition of fraction 1 protein of the somatic hybrid between Petunia parodii and Petunia parviflora.

    Science.gov (United States)

    Kumar, A; Wilson, D; Cocking, E C

    1981-04-01

    The analysis of the subunit polypeptide composition of Fraction 1 protein provides information on the expression of both chloroplast and nuclear genomes. Fraction 1 protein, isolated from leaves of the somatic hybrid plants derived form the fusion of protoplasts of Petunia parodii and P. parviflora, was analyzed for its subunit polypeptide composition by isoelectric focusing in 8 M urea. The fraction 1 protein enzyme oligomer in the somatic hybrid plants contained small subunits resulting from the expression of both parental nuclear genomes, but probably only one of the parental large subunits, namely that of P. parodii. The relevance of such somatic hybrid material for the study of nucleocytoplasmic interrelationship is discussed, as well as the use of these fraction 1 protein isoelectric focusing patterns for the analysis of taxonomic relationships in Petunia.

  9. Optimal design of damping layers in SMA/GFRP laminated hybrid composites

    Science.gov (United States)

    Haghdoust, P.; Cinquemani, S.; Lo Conte, A.; Lecis, N.

    2017-10-01

    This work describes the optimization of the shape profiles for shape memory alloys (SMA) sheets in hybrid layered composite structures, i.e. slender beams or thinner plates, designed for the passive attenuation of flexural vibrations. The paper starts with the description of the material and architecture of the investigated hybrid layered composite. An analytical method, for evaluating the energy dissipation inside a vibrating cantilever beam is developed. The analytical solution is then followed by a shape profile optimization of the inserts, using a genetic algorithm to minimize the SMA material layer usage, while maintaining target level of structural damping. Delamination problem at SMA/glass fiber reinforced polymer interface is discussed. At the end, the proposed methodology has been applied to study the hybridization of a wind turbine layered structure blade with SMA material, in order to increase its passive damping.

  10. The Mechanical Properties and Microstructure Characters of Hybrid Composite Geopolymers-Pineapple Fiber Leaves (PFL)

    Science.gov (United States)

    Amalia, N.; Hidayatullah, S.; Nurfadilla; Subaer

    2017-03-01

    The objective of this research is to study the influence of organic fibers on the mechanical properties and microstructure characters of hybrid composite geopolymers-pineapple fibers (PFL). Geopolymers were synthesized by using alkali activated of class C-fly ash added manually with short pineapple fiber leaves (PFL) and then cured at 60°C for 1 hour. The resulting composites were stored in open air for 28 days prior to mechanical and microstructure characterizations. The samples were subjected to compressive and flexural strength measurements, heat resistance as well as acid attack (1M H2SO4 solution). The microstructure of the composites were examined by using Scanning Electron Microscopy-Energy Dispersive Spectroscopy (SEM-EDS). The measurement showed that the addition of pineapple fibers was able to improve the compressive and flexural strength of geopolymers. The resulting hybrid composites were able to resist fire to a maximum temperature of 1500°C. SEM examination showed the presence of good bond between geopolymer matrix and pineapple fibers. It was also found that there were no chemical constituents of geopolymers leached out during acid liquid treatment. It is concluded that hybrid composite geopolymers-pineapple fibers are potential composites for wide range applications.

  11. Composites characterization by sol-gel process using positron lifetime spectroscopy

    International Nuclear Information System (INIS)

    Sousa, Edesia M.B. de; Minas Gerais Univ., Belo Horizonte, MG; Magalhaes, Wellington F. de; Mohallem, Nelci D.S.

    1997-01-01

    Si O 2 matrix were prepared by sol-gel method using TEOS, ethanol and H 2 O in a 1/3/10 mole ratio, with H Cl and HF as catalysts. These silica gels were doped with copper and titanium adding Cu Cl and titanium tetra-iso-propoxide in the starting solution during agitation. The samples were prepared in monolithic shape, dried at 110 0 C for 24 hours and thermally treated for 2 hours at 500, 900 and 110 0 C for 24 hours The structural evolution was studied by X-Ray diffraction, mercury porosimetry and picnometry. In this work it was also used the Positron Annihilation Lifetime Spectroscopy which have been used , now a days, as a microscopic probe in order to investigate the free volume in zeolites, polymers and metallic alloy. All the samples have shown a stable pore structure until 900 0 C and a strong densification process at 1100 0 C. (author). 10 refs., 4 figs., 2 tabs

  12. In-service performance evaluation and monitoring of a hybrid composite beam bridge system : final report.

    Science.gov (United States)

    2017-10-01

    The hybrid composite beam (HCB) technology has been presented as a system for short and medium span beam bridges as an alternative to traditional materials such as concrete and steel. An HCB consists of a concrete tied arch encased in a fiber reinfor...

  13. A transformation framework for the compositional interchange format for hybrid systems

    NARCIS (Netherlands)

    Hendriks, D.; Schiffelers, R.R.H.; Hüfner, Martin; Sonntag, Christian

    2012-01-01

    The purpose of the Compositional Interchange Format for hybrid systems (CIF) is to establish inter-operability of a wide range of tools by means of model transformations - using the CIF as intermediate, the implementation of many bi-lateral translators between specific formalisms can be avoided.

  14. Hybrid composite based on poly(vinyl alcohol) and fillers from renewable resources

    Science.gov (United States)

    Hybrid composite laminates consisting of polyvinyl alcohol (PVA) as continuous phase (33% by weight) and lignocellulosic fillers, derived from sugarcane bagasse, apple and orange waste (22% by weight) were molded in a carver press in the presence of water and glycerol such as platicizers agents. Cor...

  15. Influence of PCL on mechanical properties and bioactivity of ZrO{sub 2}-based hybrid coatings synthesized by sol–gel dip coating technique

    Energy Technology Data Exchange (ETDEWEB)

    Catauro, Michelina, E-mail: michelina.catauro@unina2.it [Department of Industrial and Information Engineering, Second University of Naples, Via Roma 29, 81031 Aversa (Italy); Bollino, Flavia [Department of Industrial and Information Engineering, Second University of Naples, Via Roma 29, 81031 Aversa (Italy); Veronesi, Paolo [Department of Engineering “Enzo Ferrari”, University of Modena and Reggio Emilia, Via Vignolese 905, 41125 Modena (Italy); Lamanna, Giuseppe [Department of Industrial and Information Engineering, Second University of Naples, Via Roma 29, 81031 Aversa (Italy)

    2014-06-01

    The biological properties of medical implants can be enhanced through surface modifications such as to provide a firm attachment of the implant. In this study, organic–inorganic hybrid coatings have been synthesized via sol–gel dip coating. They consist of an inorganic ZrO{sub 2} matrix in which different amounts of poly(ε-caprolactone) have been entrapped to improve the mechanical properties of the films. The influence of the PCL amount on the microstructural, biological and mechanical properties of the coating has been investigated. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) analyses have shown that the hybrids used for the coating are homogenous and totally amorphous materials; Fourier transform infrared spectroscopy (FT-IR) has demonstrated that hydrogen bonds arise between the organic and inorganic phases. SEM and atomic force microscopy (AFM) have highlighted the nanostructured nature of the film. SEM and EDS analyses, after soaking the samples in a simulated body fluid (SBF), have pointed out the apatite formation on the coating surface, which proves the bone-bonding ability of the nanocomposite bioactive films. Scratch and nano-indentation tests have shown that the coating hardness, stiffness and Young's modulus decrease in the presence of large amounts of the organic phase. - Highlights: • ZrO{sub 2}/PCL organic-inorganic hybrid coatings synthesis via sol-gel dip coating. • Coatings porosity and bioactivity increase in presence of high PCL amount. • Coatings Hardness and Young’s modulus decrease in presence of high PCL amount.

  16. Tensile and Flexural Test on Kenaf Hybrid Composites

    Science.gov (United States)

    Salleh, Z.; Yunus, S.; Masdek, N. R. N. M.; Taib, Y. M.; Azhar, I. I. S.; Hyie, K. M.

    2018-03-01

    The widely use of synthetic materials like carbon and fiberglass in various industries such as automotive and aircraft has lead to human health and environment problems. Therefore, the use of natural fibres such as kenaf has received higher attention as reinforcement. Kenaf or the scientific name is Hibiscus Cannabinus. L is one of the group of Malvecea plant which in the early days, the application of kenaf served only rope and canvas. However, it has more advantages than synthetic materials such as; widely availaible, renewable, lightweight, non-abbrasiveness during processing, high specific strength, free from health hazard and biodegradeable. This study was carried out to investigate the effects of different arrangement of kenaf and fiberglass composites on Young’s Modulus. The material composite was hardened with polyester resin and their properties was characterized. The tensile and the flexural properties is determined using an Instron universal tensile testing machine and carried out by following ASTM D3039 for tensile and ASTM D790 for a flexural test. The experimental program was designed to correlate the flexural and tensile Young’s Modulus of kenaf and fiberglass composite under the same load condition but different arrangement of kenaf and fiberglass on the mold . The resistance to change in shape was described by the behavior and characteristic of the composite materials. The stiffness or the elastic modulus of the composite material was determined at the end of the experiment. The results obtained show that the [±90FG/0/90/90/0/±90FG] kenaf/fiberglass composite arrangement has the highest elastic value.

  17. Properties of form-stable paraffin/silicon dioxide/expanded graphite phase change composites prepared by sol–gel method

    International Nuclear Information System (INIS)

    Li, Min; Wu, Zhishen; Tan, Jinmiao

    2012-01-01

    Highlights: ► Paraffin/SiO 2 /EG composite PCM was prepared with sol–gel method. ► The thermal conductivity of SiO 2 /paraffin/EG is 94.7% higher than paraffin. ► The latent heat of paraffin/SiO 2 /EG composite is 104.4 J/g. -- Abstract: A form-stable paraffin/silicon dioxide (SiO 2 )/expanded graphite (EG) composite phase change material (PCM) was prepared by sol–gel method. Silica gel acts as the supporting material and EG is used to increase the thermal conductivity. The mass fractions of silicon oxide and graphite are 20.8% and 7.2%, respectively. The composite PCM was characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Fourier transformation infrared spectroscopy (FTIR) method. Thermal properties and thermal stability of the composite PCM were studied using differential scanning calorimetry (DSC). The result shows that paraffin was well dispersed in the network of silica gel and there is no chemical reaction between them. The phase change temperature of the paraffin/SiO 2 composite and the paraffin/SiO 2 /EG composite are 27.53 °C and 27.72 °C, respectively. The latent heat of the paraffin/SiO 2 composite and the paraffin/SiO 2 /EG composite are 112.8 J/g and 104.4 J/g, respectively. The thermal conductivity of the SiO 2 /paraffin composite and the SiO 2 /paraffin/EG composite are 28.2% and 94.7% higher than that of paraffin.

  18. Composite coating prepared by micro-arc oxidation followed by sol-gel process and in vitro degradation properties

    International Nuclear Information System (INIS)

    Zhang Yi; Bai Kuifeng; Fu Zhenya; Zhang Caili; Zhou Huan; Wang Liguo; Zhu Shijie; Guan Shaokang; Li Dongsheng; Hu Junhua

    2012-01-01

    A Mg phosphate coating was prepared on home-developed Mg-Zn-Ca alloy to improve its anticorrosion performance in simulated body fluid (SBF, Kokubo solution). The coating was prepared by micro-arc oxidation (MAO) method at the working voltage of 120-140 V. Evident improvement of anticorrosion was obtained even through the surface was porous. To further diminish the contact with SBF, a TiO 2 layer was coated on the porous MAO layer by sol-gel dip coating followed by an annealing treatment. The coatings were characterized by X-ray diffractometry (XRD), scanning electron microscopy (SEM) and energy dispersion spectroscopy (EDS). The electrochemical performance of the MAO and TiO 2 /MAO coated alloys was evaluated by anodic polarization measurements. The pores on Mg phosphate layer provided accommodation sites for the subsequent TiO 2 sol-gel coating which sealed the pores and hence significantly enhanced the anticorrosion while single MAO coating only improve anticorrosion within a limited range. The present result indicates that fabrication of composite coatings is a significant strategy to improve the corrosion resistance of Mg-Zn-Ca alloy and other alloys, thus enhancing the potential of using Mg alloys as bio-implants.

  19. In-situ fabrication of hybrid polyoxometalate nanoparticles composite films

    International Nuclear Information System (INIS)

    Lan Yang; Mao Baodong; Wang Enbo; Song Yonghai; Kang Zhenhui; Wang Chunlei; Tian Chungui; Zhang Chao; Xu Lin; Li Zhuang

    2007-01-01

    Inorganic-organic hybrid nanoparticles multilayer films were fabricated by extending the method of nucleation and growth of particles in polymer assemblies. The polyelectrolyte matrix was constructed by layer-by-layer self-assembly method. Synthesis of polyoxometalate nanoparticles was achieved by alternately dipping the precursor polyelectrolyte matrix into AgNO 3 and H 4 SiW 12 O 40 aqueous solutions. Repeating the above synthesis process, Ag 4 SiW 12 O 40 nanoparticles with controllable diameters of 20 to 77 nm were synthesized in the multilayer films in-situ. UV-vis absorption spectra indicate that the nanoparticles grew gradually in the synthesis process. Transmission electron microscopy was used to observe the size and morphology of the nanoparticles

  20. Development of hybrid composite radar wave absorbing structure for ...

    Indian Academy of Sciences (India)

    epoxy composite and balsa wood instead of PVC foam as the two have low dielectric properties and the latter has greater mechanical strength. 2. Specification of the materials used. The plain weave E-glass fibre and epoxy resin is purchased.

  1. Polyetheretherketone Hybrid Composites with Bioactive Nanohydroxyapatite and Multiwalled Carbon Nanotube Fillers

    Directory of Open Access Journals (Sweden)

    Chen Liu

    2016-12-01

    Full Text Available Polyetheretherketone (PEEK hybrid composites reinforced with inorganic nanohydroxyapatite (nHA and multiwalled carbon nanotube (MWNT were prepared by melt-compounding and injection molding processes. The additions of nHA and MWNT to PEEK were aimed to increase its elastic modulus, tensile strength, and biocompatibility, rendering the hybrids suitable for load-bearing implant applications. The structural behavior, mechanical property, wettability, osteoblastic cell adhesion, proliferation, differentiation, and mineralization of the PEEK/nHA-MWNT hybrids were studied. X-ray diffraction and SEM observation showed that both nHA and MWNT fillers are incorporated into the polymer matrix of PEEK-based hybrids. Tensile tests indicated that the elastic modulus of PEEK can be increased from 3.87 to 7.13 GPa by adding 15 vol % nHA and 1.88 vol % MWNT fillers. The tensile strength and elongation at break of the PEEK/(15% nHA-(1.88% MWNT hybrid were 64.48 MPa and 1.74%, respectively. Thus the tensile properties of this hybrid were superior to those of human cortical bones. Water contact angle measurements revealed that the PEEK/(15% nHA-(1.88% MWNT hybrid is hydrophilic due to the presence of nHA. Accordingly, hydrophilic PEEK/(15% nHA-(1.88% MWNT hybrid promoted the adhesion, proliferation, differentiation, and mineralization of murine MC3T3-E1 osteoblasts on its surface effectively on the basis of cell culture, fluorescence microscopy, MTT assay, WST-1 assay, alkaline phosphatase activity, and Alizarin red staining tests. Thus the PEEK/(15% nHA-(1.88% MWNT hybrid has the potential to be used for fabricating load-bearing bone implants.

  2. A novel hybrid joining methodology for composite to steel joints

    Science.gov (United States)

    Sarh, Bastian

    This research has established a novel approach for designing, analyzing, and fabricating load bearing structural connections between resin infused composite materials and components made of steel or other metals or alloys. A design philosophy is proposed wherein overlapping joint sections comprised of fiber reinforced plastics (FRP's) and steel members are connected via a combination of adhesive bonding and integrally placed composite pins. A film adhesive is utilized, placed into the dry stack prior to resin infusion and is cured after infusion through either local heat elements or by placing the structure into an oven. The novel manner in which the composite pins are introduced consists of perforating the steel member with holes and placing pre-formed composite pins through them, also prior to resin infusion of the composite section. In this manner joints are co-molded structures such that secondary processing is eliminated. It is shown that such joints blend the structural benefits of adhesive and mechanically connected joints, and that the fabrication process is feasible for low-cost, large-scale production as applicable to the shipbuilding industry. Analysis procedures used for designing such joints are presented consisting of an adhesive joint design theory and a pin placement theory. These analysis tools are used in the design of specimens, specific designs are fabricated, and these evaluated through structural tests. Structural tests include quasi-static loading and low cycle fatigue evaluation. This research has thereby invented a novel philosophy on joints, created the manufacturing technique for fabricating such joints, established simple to apply analysis procedures used in the design of such joints (consisting of both an adhesive and a pin placement analysis), and has validated the methodology through specimen fabrication and testing.

  3. The effect of concentration ratio and type of functional group on synthesis of CNT-ZnO hybrid nanomaterial by an in situ sol-gel process

    Science.gov (United States)

    Hosseini Largani, Sekineh; Akbarzadeh Pasha, Mohammad

    2017-12-01

    In this research, MWCNT-ZnO hybrid nanomaterials were synthesized by a simple sol-gel process using Zn(CH3COO)2·2H2O and functionalized MWCNT with carboxyl(COOH) and hydroxyl(OH) groups. Three different mass ratios of MWCNT:ZnO = 3:1, 1:1 and 1:3 were examined. The prepared nanomaterials were characterized by field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDX) and Fourier transform infrared spectroscopy (FTIR). Successful growth of MWCNT-ZnO hybrids for both COOH and OH functional groups and all the three mass ratios were obtained. The ZnO nanoparticles attached on the surfaces of CNTs have rather spherical shapes and hexagonal crystal structure. By increasing the concentration of ZnO, the number and average size of ZnO nanoparticles decorated the body of CNTs in hybrid structures increase. By increasing the ZnO precursor, the distribution of ZnO nanoparticles that appeared on the surface of CNTs becomes more uniform. The SEM observation beside EDX analysis revealed that at the same concentration ratio the amount of ZnO loading on the surface of MWCNT-COOH is more than MWCNT-OH. Moreover, the average size of ZnO nanoparticles attached on the surface of COOH functionalized CNTs is relatively smaller than that of OH functionalized ones.

  4. Analysis on the factors affecting the preparation of TIO2-ADUN composite sol by sol-gel method

    International Nuclear Information System (INIS)

    Wang Hui; Yin Rongcai; Liu Jinhong

    2010-01-01

    With C 2 H 2 O 5 and water as solvent and TBT as precursor and HNO 3 as the activator and valorize, the process for preparing TiO 2 -ADUN composite Sol method was studied. The influence of different reaction conditions on Sol-Gel time was analyzed in this study. The optimal reaction condition are: reaction temperature 20-25 degree C; pH value of reaction mixture 2-5; HNO 3 value of reaction mixture 0.3-0.5 ml; molar rations of alcohol to TBT 10, of water to TBT 2-3, respectively. A concentrated ADUN solution with Ti Sol , urea, water as additive is dispersed into uniform which are prepared by external mlii. (authors)

  5. Partial Replacement of Glass Fiber by Woven Kenaf in Hybrid Composites and its Effect on Monotonic and Fatigue Properties

    Directory of Open Access Journals (Sweden)

    Mohaiman Jaffar Sharba

    2016-02-01

    Full Text Available Natural–synthetic fiber hybrid composites offer a combination of high mechanical properties from the synthetic fibers and the advantages of renewable fibers to produce a material with highly specific and determined properties. In this study, plain-woven kenaf/glass reinforced unsaturated polyester (UP hybrid composites were fabricated using the hand lay-up method with a cold hydraulic press in a sandwich-configuration laminate. The glass was used as a shell with kenaf as a core, with an approximate total fiber content of 40%. Three glass/kenaf weight ratios percentages of (70/30% (H1, (55/45% (H2, and (30/70% (H3 were used to fabricate hybrid composites. Also pure glass/UP and kenaf/UP were fabricated for comparison purposes. Monotonic tests, namely tensile, compression, and flexural strengths of the composites, were performed. The morphological properties of tensile and compression failure of kenaf and hybrid composites were studied. In addition, uniaxial tensile fatigue life of hybrid composites were conducted and evaluated. The results revealed that the hybrid composite (H1 offered a good balance and the best static properties, but in tensile fatigue loading (H3 displayed low fatigue sensitivity when compared with the other hybrid composites.

  6. A Review on Potentiality of Nano Filler/Natural Fiber Filled Polymer Hybrid Composites

    Directory of Open Access Journals (Sweden)

    Naheed Saba

    2014-08-01

    Full Text Available The increasing demand for greener and biodegradable materials leading to the satisfaction of society requires a compelling towards the advancement of nano-materials science. The polymeric matrix materials with suitable and proper filler, better filler/matrix interaction together with advanced and new methods or approaches are able to develop polymeric composites which shows great prospective applications in constructions and buildings, automotive, aerospace and packaging industries. The biodegradability of the natural fibers is considered as the most important and interesting aspects of their utilization in polymeric materials. Nanocomposite shows considerable applications in different fields because of larger surface area, and greater aspect ratio, with fascinating properties. Being environmentally friendly, applications of nanocomposites offer new technology and business opportunities for several sectors, such as aerospace, automotive, electronics, and biotechnology industries. Hybrid bio-based composites that exploit the synergy between natural fibers in a nano-reinforced bio-based polymer can lead to improved properties along with maintaining environmental appeal. This review article intended to present information about diverse classes of natural fibers, nanofiller, cellulosic fiber based composite, nanocomposite, and natural fiber/nanofiller-based hybrid composite with specific concern to their applications. It will also provide summary of the emerging new aspects of nanotechnology for development of hybrid composites for the sustainable and greener environment.

  7. A Study of Hybrid Composite Hydroxyapatite (HA-Geopolymers as a Material for Biomedical Application

    Directory of Open Access Journals (Sweden)

    Saleha

    2017-01-01

    Full Text Available The main purpose of this research is to study the physical properties and microstructure characters of hybrid composites HA-geopolymers as a material for biomedical application. Hybrid composite HA–geopolymers were produced through alkaline activation method of metakaolin as a matrix and HA as the filler. HA was synthesized from eggshell particles by using a precipitation method. The addition of HA in metakaolin paste was varied from 0.5%, 1.0%, 1.5%, and 2.0% relative the weight of metakaolin. FTIR was used to examine the absorption bands the composites. X-ray diffraction (XRD was used to study the crystal structure of the starting and the resulting materials. Scanning Electron Microscopy-Energy Dispersive Spectroscopy (SEM-EDS was used to investigate the surface morphology of the composites. The thermal properties of the samples was examined by means of Differential Scanning Calorimetry (DSC. Capacitance measurement was conducted to investigate the bioactive properties of HA. The study results suggest that hybrid composite HA-geopolymers has a potential to be applied as a biomedical such as biosensor material.

  8. Flutter analysis of hybrid metal-composite low aspect ratio trapezoidal wings in supersonic flow

    Directory of Open Access Journals (Sweden)

    Shokrollahi Saeed

    2017-02-01

    Full Text Available An effective 3D supersonic Mach box approach in combination with non-classical hybrid metal-composite plate theory has been used to investigate flutter boundaries of trapezoidal low aspect ratio wings. The wing structure is composed of two main components including aluminum material (in-board section and laminated composite material (out-board section. A global Ritz method is used with simple polynomials being employed as the trial functions. The most important objective of the present research is to study the effect of composite to metal proportion of hybrid wing structure on flutter boundaries in low supersonic regime. In addition, the effect of some important geometrical parameters such as sweep angle, taper ratio and aspect ratio on flutter boundaries were studied. The results obtained by present approach for special cases like pure metallic wings and results for high supersonic regime based on piston theory show a good agreement with those obtained by other investigators.

  9. Aerogel Hybrid Composite Materials: Designs and Testing for Multifunctional Applications

    Science.gov (United States)

    Williams, Martha K.; Fesmire, James E.

    2016-01-01

    This webinar will introduce the broad spectrum of aerogel composites and their diverse performance properties such as reduced heat transfer to energy storage, and expands specifically on the aerogel/fiber laminate systems and testing methodologies. The multi-functional laminate composite system, AeroFiber, and its construction is designed by varying the type of fiber (e.g. polyester, carbon, Kevlar®, Spectra® or Innegral(TradeMark) and combinations thereof), the aerogel panel type and thickness, and overall layup configuration. The combination and design of materials may be customized and tailored to achieve a range of desired properties in the resulting laminate system. Multi-functional properties include structural strength, impact resistance, reduction in heat transfer, increased fire resistance, mechanical energy absorption, and acoustic energy dampening. Applications include aerospace, aircraft, automotive, boating, building and construction, lightweight portable structures, liquefied natural gas, cryogenics, transportation and energy, sporting equipment, and military protective gear industries.

  10. Preparation of ZnO/SiO{sub 2} gel composites and their performance of H{sub 2}S removal at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Guoqiang [Laboratory of Advanced Materials, Department of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Huang, Zheng-Hong, E-mail: zhhuang@tsinghua.edu.cn [Laboratory of Advanced Materials, Department of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Kang, Feiyu [Laboratory of Advanced Materials, Department of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Institute of Advanced Materials Research, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055 (China)

    2012-05-15

    Graphical abstract: The ZnO/SiO{sub 2} gel composites exhibit mixed type isotherms, in which the initial part is type I, and intermediate and high relative pressures are type IV with a hysteresis loop of type H2. The breakthrough time of ZnO/SiO{sub 2} composites first increased sharply up to 400 Degree-Sign C with the H{sub 2}S breakthrough capacity is up to 96.4 mg/g, and then decrease dramatically with further rising of temperature beyond 500 Degree-Sign C. Highlights: Black-Right-Pointing-Pointer High surface area ZnO/SiO{sub 2} gel composites were prepared by co-sol-gel method. Black-Right-Pointing-Pointer The active phase (ZnO) well disperses in the composites. Black-Right-Pointing-Pointer The highest H{sub 2}S adsorption capacity of the composites reaches up to 96.4 mg/g. Black-Right-Pointing-Pointer Both physisorption and the active phase reactivation governed the H{sub 2}S removal process. - Abstract: ZnO/SiO{sub 2} gel composites with different active component loading were prepared by sol-gel method combined with ambient drying process, followed by thermal treatment. The gel composites were characterized by scanning electron microscopy (SEM), nitrogen adsorption, X-ray diffraction (XRD), FTIR and X-ray photoelectron spectroscopy (XPS), and their performances for H{sub 2}S removal were evaluated by dynamic testing at room temperature. The as prepared materials exhibited high surface area with multimodal pore size distributions in micropore and mesopore region. The porous properties were significantly influenced both by the ZnO loading ratio and the treated temperature. The gel composites showed a high performance for H{sub 2}S removal, with the highest H{sub 2}S adsorption capacity of 96.4 mg/g for the sample treated at 400 Degree-Sign C with 30 wt% ZnO. Both physisorption and the active phase reactivation governed the H{sub 2}S removal process. It needs to optimize the composites' porous structure and active component loading amount.

  11. Multi-walled carbon nanotubes/graphene oxide hybrid and nanohydroxyapatite composite: A novel coating to prevent dentin erosion.

    Science.gov (United States)

    Nahorny, Sídnei; Zanin, Hudson; Christino, Vinie Abreu; Marciano, Fernanda Roberta; Lobo, Anderson Oliveira; Soares, Luís Eduardo Silva

    2017-10-01

    To date is emergent the development of novel coatings to protect erosion, especially to preventive dentistry and restorative dentistry. Here, for the first time we report the effectiveness of multi-walled carbon nanotube/graphene oxide hybrid carbon-base material (MWCNTO-GO) combined with nanohydroxyapatite (nHAp) as a protective coating for dentin erosion. Fourier transform Raman spectroscopy (FT-Raman), scanning electron (SEM), and transmission electron (TEM) microscopy were used to investigated the coatings and the effect of acidulated phosphate fluoride gel (APF) treatment on bovine teeth root dentin before and after erosion. The electrochemical corrosion performance of the coating was evaluated. Raman spectra identified that: (i) the phosphate (ν 1 PO 4 3- ) content of dentin was not significantly affected by the treatments and (ii) the carbonate (ν 1 CO 3 2- ) content in dentin increased when nHAp was used. However, the nHAp/MWCNTO-GO composite exposited lower levels of organic matrix (CH bonds) after erosion compared to other treatments. Interesting, SEM micrographs identified that the nHAp/MWCNTO-GO formed layers after erosive cycling when associate with APF treatment, indicating a possible chemical bond among them. Treatments of root dentin with nHAp, MWCNTO-GO, APF_MWCNTO-GO, and APF_nHAp/MWCNTO-GO increased the carbonate content, carbonate/phosphate ratio, and organic matrix band area after erosion. The potentiodynamic polarization curves and Nyquist plot showed that nHAp, MWCNT-GO and nHAp/MWCNT-GO composites acted as protective agents against corrosion process. Clearly, the nHAp/MWCNTO-GO composite was stable after erosive cycling and a thin and acid-resistant film was formed when associated to APF treatment. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Lauric Acid Hybridizing Fly Ash Composite for Thermal Energy Storage

    Directory of Open Access Journals (Sweden)

    Dawei Xu

    2018-04-01

    Full Text Available Fly ash includes different mineral phases. This paper reported on the preparation of a novel lauric acid (LA/fly ash (FA composite by vacuum impregnation as a form-stable phase change material (PCM for thermal energy, and especially investigated the effect of the hydrochloric acid-treated fly ash (FAh on the thermal energy storage performance of the composites. The morphology, crystalline structure, and porous textures of the samples were characterized by scanning electron microscopy (SEM, X-ray diffraction (XRD, Brunauer–Emmett–Teller (BET, X-ray fluorescence (XRF, and differential scanning calorimetry (DSC. The results indicated that hydrochloric acid treatment was beneficial to the increase of loading capacity and crystallinity of LA in the LA/FAh composite, which caused an enhanced thermal storage capacity with latent heats for melting and freezing of LA/FAh (80.94 and 77.39 J/g, higher than those of LA/FA (34.09 and 32.97 J/g, respectively. Furthermore, the mechanism of enhanced thermal storage properties was investigated in detail.

  13. Hybrid Composites Based on Carbon Fiber/Carbon Nanofilament Reinforcement

    Directory of Open Access Journals (Sweden)

    Mehran Tehrani

    2014-05-01

    Full Text Available Carbon nanofilament and nanotubes (CNTs have shown promise for enhancing the mechanical properties of fiber-reinforced composites (FRPs and imparting multi-functionalities to them. While direct mixing of carbon nanofilaments with the polymer matrix in FRPs has several drawbacks, a high volume of uniform nanofilaments can be directly grown on fiber surfaces prior to composite fabrication. This study demonstrates the ability to create carbon nanofilaments on the surface of carbon fibers employing a synthesis method, graphitic structures by design (GSD, in which carbon structures are grown from fuel mixtures using nickel particles as the catalyst. The synthesis technique is proven feasible to grow nanofilament structures—from ethylene mixtures at 550 °C—on commercial polyacrylonitrile (PAN-based carbon fibers. Raman spectroscopy and electron microscopy were employed to characterize the surface-grown carbon species. For comparison purposes, a catalytic chemical vapor deposition (CCVD technique was also utilized to grow multiwall CNTs (MWCNTs on carbon fiber yarns. The mechanical characterization showed that composites using the GSD-grown carbon nanofilaments outperform those using the CCVD-grown CNTs in terms of stiffness and tensile strength. The results suggest that further optimization of the GSD growth time, patterning and thermal shield coating of the carbon fibers is required to fully materialize the potential benefits of the GSD technique.

  14. Study on Two-segment Electric-mechanical Composite Braking Strategy of Tracked Vehicle Hybrid Transmission System

    OpenAIRE

    Ma, Tian; Gai, Jiangtao; Ma, Xiaofeng

    2010-01-01

    In order to lighten abrasion of braking system of hybrid electric tracked vehicle, according to characteristic of hybrid electric transmission, electric-mechanical composite braking method was proposed. By means of analyzing performance of electric braking and mechanical braking and three-segment composite braking strategy, two-segment electric-mechanical composite braking strategy was put forward in this paper. Simulation results of Matlab/Simulink indicated that the two-segment electric-mec...

  15. Effect of elevated temperature on the tensile strength of Napier/glass-epoxy hybrid reinforced composites

    Science.gov (United States)

    Ridzuan, M. J. M.; Majid, M. S. Abdul; Afendi, M.; Firdaus, A. Z. Ahmad; Azduwin, K.

    2017-11-01

    The effects of elevated temperature on the tensile strength of Napier/glass-epoxy hybrid reinforced composites and its morphology of fractured surfaces are discussed. Napier/glass-epoxy hybrid reinforced composites were fabricated by using vacuum infusion method by arranging Napier fibres in between sheets of woven glass fibres. Napier and glass fibres were laminated with estimated volume ratios were 24 and 6 vol. %, respectively. The epoxy resin was used as matrix estimated to 70 vol. %. Specimens were tested to failure under tension at a cross-head speed of 1 mm/min using Universal Testing Machine (Instron) with a load cell 100 kN at four different temperatures of RT, 40°C, 60°C and 80°C. The morphology of fractured surface of hybrid composites was investigated by field emission scanning electron microscopy. The result shows reduction in tensile strength at elevated temperatures. The increase in the temperature activates the process of diffusion, and generates critical stresses which cause the damage at first-ply or at the centre of the hybrid plate, as a result lower the tensile strength. The observation of FESEM images indicates that the fracture mode is of evolution of localized damage, from fibre/matrix debonding, matric cracking, delamination and fibre breakage.

  16. Analysis of composition and microstructural uniformity of hybrid glass/carbon fibre composites

    DEFF Research Database (Denmark)

    Beauson, Justine; Markussen, Christen Malte; Madsen, Bo

    2013-01-01

    level are investigated. The different levels of compositions in the composites are defined and experimentally determined. The composite volume fractions are determined using an image analysis based procedure. The global fibre volume fractions are determined using a gravimetrical based method. The local...... methods, a standard deviation based method and a fast Fourier transform method, are used to quantify the difference in microstructural uniformity between composites, and to detect and quantify any repeating pattern in the composite microstructure....

  17. Sol–gel hybrid membranes loaded with meso/macroporous SiO{sub 2}, TiO{sub 2}–P{sub 2}O{sub 5} and SiO{sub 2}–TiO{sub 2}–P{sub 2}O{sub 5} materials with high proton conductivity

    Energy Technology Data Exchange (ETDEWEB)

    Castro, Yolanda, E-mail: castro@icv.csic.es [Instituto de Cerámica y Vidrio, Consejo Superior de Investigaciones Científicas (ICV-CSIC), Campus de Cantoblanco, 28049 Madrid (Spain); Mosa, Jadra, E-mail: jmosa@icv.csic.es [Instituto de Cerámica y Vidrio, Consejo Superior de Investigaciones Científicas (ICV-CSIC), Campus de Cantoblanco, 28049 Madrid (Spain); Aparicio, Mario [Instituto de Cerámica y Vidrio, Consejo Superior de Investigaciones Científicas (ICV-CSIC), Campus de Cantoblanco, 28049 Madrid (Spain); Pérez-Carrillo, Lourdes A.; Vílchez, Susana; Esquena, Jordi [Instituto de Química Avanzada de Cataluña, Consejo Superior de Investigaciones Científicas (IQAC-CSIC), CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Jordi Girona 18-26, 08034 Barcelona (Spain); Durán, Alicia [Instituto de Cerámica y Vidrio, Consejo Superior de Investigaciones Científicas (ICV-CSIC), Campus de Cantoblanco, 28049 Madrid (Spain)

    2015-01-15

    In this work, highly conductive hybrid organic–inorganic membranes loaded with SiO{sub 2}, TiO{sub 2}–P{sub 2}O{sub 5} and SiO{sub 2}–TiO{sub 2}–P{sub 2}O{sub 5} meso/macroporous particles were prepared via a sol–gel process. Meso/macroporous particles were incorporated to hybrid membranes, for improving water retention and enhancing electrochemical performance. These particles with a polymodal pore size distribution were prepared by templating in highly concentrated emulsions, the particles showed a specific surface area between 50 m{sup 2}/g (TiO{sub 2}–P{sub 2}O{sub 5}) and 300 m{sup 2}/g (SiO{sub 2}–TiO{sub 2}–P{sub 2}O{sub 5}). The particles were dispersed in a hybrid silica sol and further sprayed onto glass paper. The films were polymerized and sintered; those loaded with meso/macroporous particles had a homogenous distribution. High temperature proton conductivity measurements confirmed a high water retention. Conductivity of these materials is higher than that of Nafion{sup ®} at higher temperatures (120 °C) (2·10{sup −2} S/cm). This study provides processing guideline to achieve hybrid electrolytes for efficient conduction of protons due to their high surface area and porous structure. - Highlights: • Hybrid electrolyte with meso/macroporous particles were synthesized by sol–gel. • Depositions of hybrid solutions by spraying onto glass substrates were performed. • Proton conductivity was evaluated as a function of composition and porous structure.

  18. Sol–gel hybrid membranes loaded with meso/macroporous SiO2, TiO2–P2O5 and SiO2–TiO2–P2O5 materials with high proton conductivity

    International Nuclear Information System (INIS)

    Castro, Yolanda; Mosa, Jadra; Aparicio, Mario; Pérez-Carrillo, Lourdes A.; Vílchez, Susana; Esquena, Jordi; Durán, Alicia

    2015-01-01

    In this work, highly conductive hybrid organic–inorganic membranes loaded with SiO 2 , TiO 2 –P 2 O 5 and SiO 2 –TiO 2 –P 2 O 5 meso/macroporous particles were prepared via a sol–gel process. Meso/macroporous particles were incorporated to hybrid membranes, for improving water retention and enhancing electrochemical performance. These particles with a polymodal pore size distribution were prepared by templating in highly concentrated emulsions, the particles showed a specific surface area between 50 m 2 /g (TiO 2 –P 2 O 5 ) and 300 m 2 /g (SiO 2 –TiO 2 –P 2 O 5 ). The particles were dispersed in a hybrid silica sol and further sprayed onto glass paper. The films were polymerized and sintered; those loaded with meso/macroporous particles had a homogenous distribution. High temperature proton conductivity measurements confirmed a high water retention. Conductivity of these materials is higher than that of Nafion ® at higher temperatures (120 °C) (2·10 −2  S/cm). This study provides processing guideline to achieve hybrid electrolytes for efficient conduction of protons due to their high surface area and porous structure. - Highlights: • Hybrid electrolyte with meso/macroporous particles were synthesized by sol–gel. • Depositions of hybrid solutions by spraying onto glass substrates were performed. • Proton conductivity was evaluated as a function of composition and porous structure

  19. Mechanical properties evaluation of single and hybrid composites polyester reinforced bamboo, PALF and coir fiber

    Science.gov (United States)

    Rihayat, T.; Suryani, S.; Fauzi, T.; Agusnar, H.; Wirjosentono, B.; Syafruddin; Helmi; Zulkifli; Alam, P. N.; Sami, M.

    2018-03-01

    This study aims to determine the composition fiber natural of bamboo, pineapple leaf and coir in single and hybrid composite to see the best characteristics of tensile strength and flexural test by using a Universal Testing Machine (UTM) and observe the effect on the microstructure of the composite through optical and scanning electron microscopy. Bamboo, Palf and coir have synthesis from natural fiber was used as reinforcement in polyester composite using hand lay up or a hot-compression moulding while filler:matrix was used (45%:55wt.%, 70%:30wt.% and 15%:85wt.%). From the variation of the volume fraction between filler and matrix show that mechanical properties of composites increased with increasing amount of filler in the matrix. This is evidenced by the high mechanical properties A:B:C/Ps in compositions 45%: 55wt.% 136 Mpa while flexural strength 93 N and good structure surface morphology. This research has produced a hybrid composite materials that have high mechanical properties and bending compared with conventional synthetic fibers and other materials.

  20. Sol–gel synthesis of tantalum oxide and phosphonic acid-modified carbon nanotubes composite coatings on titanium surfaces

    International Nuclear Information System (INIS)

    Maho, Anthony; Detriche, Simon; Delhalle, Joseph; Mekhalif, Zineb

    2013-01-01

    Carbon nanotubes used as fillers in composite materials are more and more appreciated for the outstanding range of accessible properties and functionalities they generate in numerous domains of nanotechnologies. In the framework of biological and medical sciences, and particularly for orthopedic applications and devices (prostheses, implants, surgical instruments, …), titanium substrates covered by tantalum oxide/carbon nanotube composite coatings have proved to constitute interesting and successful platforms for the conception of solid and biocompatible biomaterials inducing the osseous regeneration processes (hydroxyapatite growth, osteoblasts attachment). This paper describes an original strategy for the conception of resistant and homogeneous tantalum oxide/carbon nanotubes layers on titanium through the introduction of carbon nanotubes functionalized by phosphonic acid moieties (-P(=O)(OH) 2 ). Strong covalent C-P bonds are specifically inserted on their external sidewalls with a ratio of two phosphonic groups per anchoring point. Experimental results highlight the stronger “tantalum capture agent” effect of phosphonic-modified nanotubes during the sol–gel formation process of the deposits compared to nanotubes bearing oxidized functions (-OH, -C=O, -C(=O)OH). Particular attention is also paid to the relative impact of the rate of functionalization and the dispersion degree of the carbon nanotubes in the coatings, as well as their wrapping level by the tantalum oxide matrix material. The resulting effect on the in vitro growth of hydroxyapatite is also evaluated to confirm the primary osseous bioactivity of those materials. Chemical, structural and morphological features of the different composite deposits described herein are assessed by X-ray photoelectron spectroscopy (XPS), scanning (SEM) and transmission (TEM) electronic microscopies, energy dispersive X-rays analysis (EDX) and peeling tests. Highlights: ► Formation of tantalum/carbon nanotube

  1. Sol–gel synthesis of tantalum oxide and phosphonic acid-modified carbon nanotubes composite coatings on titanium surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Maho, Anthony [Laboratory of Chemistry and Electrochemistry of Surfaces, University of Namur (FUNDP), Rue de Bruxelles 61, B-5000 Namur (Belgium); Fonds pour la Formation à la Recherche dans l' Industrie et dans l' Agriculture (FRIA), Rue d' Egmont 5, B-1000 Bruxelles (Belgium); Detriche, Simon; Delhalle, Joseph [Laboratory of Chemistry and Electrochemistry of Surfaces, University of Namur (FUNDP), Rue de Bruxelles 61, B-5000 Namur (Belgium); Mekhalif, Zineb, E-mail: zineb.mekhalif@fundp.ac.be [Laboratory of Chemistry and Electrochemistry of Surfaces, University of Namur (FUNDP), Rue de Bruxelles 61, B-5000 Namur (Belgium)

    2013-07-01

    Carbon nanotubes used as fillers in composite materials are more and more appreciated for the outstanding range of accessible properties and functionalities they generate in numerous domains of nanotechnologies. In the framework of biological and medical sciences, and particularly for orthopedic applications and devices (prostheses, implants, surgical instruments, …), titanium substrates covered by tantalum oxide/carbon nanotube composite coatings have proved to constitute interesting and successful platforms for the conception of solid and biocompatible biomaterials inducing the osseous regeneration processes (hydroxyapatite growth, osteoblasts attachment). This paper describes an original strategy for the conception of resistant and homogeneous tantalum oxide/carbon nanotubes layers on titanium through the introduction of carbon nanotubes functionalized by phosphonic acid moieties (-P(=O)(OH){sub 2}). Strong covalent C-P bonds are specifically inserted on their external sidewalls with a ratio of two phosphonic groups per anchoring point. Experimental results highlight the stronger “tantalum capture agent” effect of phosphonic-modified nanotubes during the sol–gel formation process of the deposits compared to nanotubes bearing oxidized functions (-OH, -C=O, -C(=O)OH). Particular attention is also paid to the relative impact of the rate of functionalization and the dispersion degree of the carbon nanotubes in the coatings, as well as their wrapping level by the tantalum oxide matrix material. The resulting effect on the in vitro growth of hydroxyapatite is also evaluated to confirm the primary osseous bioactivity of those materials. Chemical, structural and morphological features of the different composite deposits described herein are assessed by X-ray photoelectron spectroscopy (XPS), scanning (SEM) and transmission (TEM) electronic microscopies, energy dispersive X-rays analysis (EDX) and peeling tests. Highlights: ► Formation of tantalum

  2. Impact strength and flexural properties enhancement of methacrylate silane treated oil palm mesocarp fiber reinforced biodegradable hybrid composites.

    Science.gov (United States)

    Eng, Chern Chiet; Ibrahim, Nor Azowa; Zainuddin, Norhazlin; Ariffin, Hidayah; Yunus, Wan Md Zin Wan

    2014-01-01

    Natural fiber as reinforcement filler in polymer composites is an attractive approach due to being fully biodegradable and cheap. However, incompatibility between hydrophilic natural fiber and hydrophobic polymer matrix restricts the application. The current studies focus on the effects of incorporation of silane treated OPMF into polylactic acid (PLA)/polycaprolactone (PCL)/nanoclay/OPMF hybrid composites. The composites were prepared by melt blending technique and characterize the composites with Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), and scanning electron microscopy (SEM). FTIR spectra indicated that peak shifting occurs when silane treated OPMF was incorporated into hybrid composites. Based on mechanical properties results, incorporation of silane treated OPMF enhances the mechanical properties of unmodified OPMF hybrid composites with the enhancement of flexural and impact strength being 17.60% and 48.43%, respectively, at 10% fiber loading. TGA thermogram shows that incorporation of silane treated OPMF did not show increment in thermal properties of hybrid composites. SEM micrographs revealed that silane treated OPMF hybrid composites show good fiber/matrix adhesion as fiber is still embedded in the matrix and no cavity is present on the surface. Water absorption test shows that addition of less hydrophilic silane treated OPMF successfully reduces the water uptake of hybrid composites.

  3. Bifunctional ferromagnetic Eu-Gd-Bi-codoped hybrid organo-silica red emitting phosphors synthesized by a modified Pechini sol-gel method

    Energy Technology Data Exchange (ETDEWEB)

    Abo-Naf, S.M., E-mail: sm.abo-naf@nrc.sci.eg [Glass Research Department, National Research Centre (NRC), El-Buhouth Str., Dokki, 12622 Cairo (Egypt); Abdel-Hameed, S.A.M.; Marzouk, M.A. [Glass Research Department, National Research Centre (NRC), El-Buhouth Str., Dokki, 12622 Cairo (Egypt); Hamdy, Y.M. [Spectroscopy Department, National Research Centre (NRC), El-Buhouth Str., Dokki, 12622 Cairo (Egypt)

    2017-06-15

    Red phosphor, composed of Eu-Gd-Bi-codoped hybrid organo-silica glass, has been synthesized via a modified Pechini sol-gel process. The synthesized hybrid glass was analyzed with powder X-ray diffraction (XRD), differential thermal analysis coupled with thermogravimetry (DTA-TG) and Fourier transform infrared (FTIR) spectroscopy. XRD and DTA-TG confirmed its amorphous structure up to 1000 °C. Magnetic behavior of the produced phosphor was investigated using vibrating specimen magnetometer (VSM) and the obtained results revealed its unsaturated ferromagnetic behavior. Photoluminescence (PL) properties of the obtained phosphor have been investigated under near-UV excitation at 395 nm. The influence of calcination temperature on the PL intensity and its decay behavior as well as on the ferromagnetic characteristics has been studied to determine the optimal reaction temperature of the phosphor. The PL emission spectra show the characteristic emission bands of Eu{sup 3+} ions in the wavelength range from 580 to 700 nm. These emission spectra have been dominated by the electric dipole {sup 5}D{sub 0}→{sup 7}F{sub 2} transition of the Eu{sup 3+} peaked at 610–620 nm producing the red light emission of the phosphors. It was found that the phosphor performance, expressed by its PL intensity and life time, could be significantly improved by increasing of the heat treatment temperature up to 900 °C. Also, calcination at 900 °C for 6 h greatly increased both of the magnetization and retentivity, while decreased the coercivity value. The organic phenomenon of metal citrate-ethylene glycol chelation and its degradation by calcination were well followed by FTIR spectroscopy. The obtained results are promising and could afford a basis for designing of efficient red phosphors for displays, lighting and bifunctional biosensors for biomedical applications. - Highlights: • Eu-Gd-Bi-codoped hybrid organo-silica phosphor was synthesized by sol-gel method. • Inorganic Eu

  4. Synthesis of Silica Nanoparticles by Sol-Gel: Size-Dependent Properties, Surface Modification, and Applications in Silica-Polymer Nano composites-A Review

    International Nuclear Information System (INIS)

    Ismail, A.R.; Vejayakumaran, P.

    2012-01-01

    Application of silica nanoparticles as fillers in the preparation of nano composite of polymers has drawn much attention, due to the increased demand for new materials with improved thermal, mechanical, physical, and chemical properties. Recent developments in the synthesis of monodispersed, narrow-size distribution of nanoparticles by sol-gel method provide significant boost to development of silica-polymer nano composites. This paper is written by emphasizing on the synthesis of silica nanoparticles, characterization on size-dependent properties, and surface modification for the preparation of homogeneous nano composites, generally by sol-gel technique. The effect of nano silica on the properties of various types of silica-polymer composites is also summarized.

  5. The development and mechanical characterization of aluminium copper-carbon fiber metal matrix hybrid composite

    Science.gov (United States)

    Manzoor, M. U.; Feroze, M.; Ahmad, T.; Kamran, M.; Butt, M. T. Z.

    2018-04-01

    Metal matrix composites (MMCs) come under advanced materials that can be used for a wide range of industrial applications. MMCs contain a non-metallic reinforcement incorporated into a metallic matrix which can enhance properties over base metal alloys. Copper-Carbon fiber reinforced aluminium based hybrid composites were prepared by compo casting method. 4 weight % copper was used as alloying element with Al because of its precipitation hardened properties. Different weight compositions of composites were developed and characterized by mechanical testing. A significant improvement in tensile strength and micro hardness were found, before and after heat treatment of the composite. The SEM analysis of the fractured surfaces showed dispersed and embedded Carbon fibers within the network leading to the enhanced strength.

  6. Characterizations of Polystyrene-Based Hybrid Particles Containing Hydrophobic Mg(OH2 Powder and Composites Fabricated by Employing Resultant Hybrid Particles

    Directory of Open Access Journals (Sweden)

    Shuichi Kimura

    2007-01-01

    unchanged, even when the ST-1 powder content increased from 10 to 50 phr. Furthermore, a composite fabricated by employing the hybrid particles achieved homogenous distribution of ST-1 powder and showed a higher oxygen index than that of a composite fabricated by directly mixing of PS pellets and ST-1 powder.

  7. ZnTe Semiconductor-Polymer Gel Composited Electrolyte for Conversion of Solar Energy

    Directory of Open Access Journals (Sweden)

    Wonchai Promnopas

    2014-01-01

    Full Text Available Nanostructured cubic p-type ZnTe for dye sensitized solar cells (DSSCs was synthesized from 1 : 1 molar ratio of Zn : Te by 600 W and 900 W microwave plasma for 30 min. In this research, their green emissions were detected at the same wavelengths of 563 nm, the energy gap (Eg at 2.24 eV, and three Raman shifts at 205, 410, and 620 cm−1. The nanocomposited electrolyte of quasisolid state ZnO-DSSCs was in correlation with the increase in the JSC, VOC, fill factor (ff, and efficiency (η by increasing the wt% of ZnTe-GPE (gel polymer electrolyte to an optimum value and decreased afterwards. The optimal ZnO-DSSC performance was achieved for 0.20 wt% ZnTe-GPE with the highest photoelectronic energy conversion efficiency at 174.7% with respect to that of the GPE without doping of p-type ZnTe.

  8. Phase Composition of Samarium Niobate and Tantalate Thin Films Prepared by Sol-Gel Method

    Science.gov (United States)

    Bruncková, H.; Medvecký, Ľ.; Múdra, E.; Kovalčiková, A.; Ďurišin, J.; Šebek, M.; Girman, V.

    2017-12-01

    Samarium niobate SmNbO4 (SNO) and tantalate SmTaO4 (STO) thin films ( 100 nm) were prepared by sol-gel/spin-coating process on alumina substrates with PZT interlayer and annealing at 1000°C. The precursors of films were synthesized using Nb or Ta tartrate complexes. The improvement of the crystallinity of monoclinic M'-SmTaO4 phase via heating was observed through the coexistence of small amounts of tetragonal T-SmTa7O19 phase in STO precursor at 1000°C. The XRD results of SNO and STO films confirmed monoclinic M-SmNbO4 and M'-SmTaO4 phases, respectively, with traces of orthorhombic O-SmNbO4 (in SNO). In STO film, the single monoclinic M'-SmTaO4 phase was revealed. The surface morphology and topography of thin films were investigated by SEM and AFM analysis. STO film was smoother with roughness 3.2 nm in comparison with SNO (6.3 nm). In the microstructure of SNO film, small spherical ( 50 nm) and larger cuboidal particles ( 100 nm) of the SmNbO4 phase were observed. In STO, compact clusters composed of fine spherical SmTaO4 particles ( 20-50 nm) were found. Effect of samarium can contribute to the formation different polymorphs of these films for the application to environmental electrolytic thin film devices.

  9. Nanocellulose composites with enhanced interfacial compatibility and mechanical properties using a hybrid-toughened epoxy matrix.

    Science.gov (United States)

    Kuo, Pei-Yu; Barros, Luizmar de Assis; Yan, Ning; Sain, Mohini; Qing, Yan; Wu, Yiqiang

    2017-12-01

    Although there is a growing interest in utilizing nanocellulose fibres (NCFs) based composites for achieving a higher sustainability, mechanical performance of these composites is limited due to the poor compatibility between fibre reinforcement and polymer matrices. Here we developed a bio-nanocomposite with an enhanced fibre/resin interface using a hybrid-toughened epoxy. A strong reinforcing effect of NCFs was achieved, demonstrating an increase up to 88% in tensile strength and 298% in tensile modulus as compared to neat petro-based P-epoxy. The toughness of neat P-epoxy was improved by 84% with the addition of 10wt% bio-based E-epoxy monomers, which also mitigated the amount of usage of bisphenol A (BPA). The morphological analyses showed that the hybrid epoxy improved the resin penetration and fibre distribution significantly in the resulting composites. Thus, our findings demonstrated the promise of developing sustainable and high performance epoxy composites combing NCFs with a hybrid petro-based and bio-based epoxy resin system. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Studies on Effective Elastic Properties of CNT/Nano-Clay Reinforced Polymer Hybrid Composite

    Science.gov (United States)

    Thakur, Arvind Kumar; Kumar, Puneet; Srinivas, J.

    2016-02-01

    This paper presents a computational approach to predict elastic propertiesof hybrid nanocomposite material prepared by adding nano-clayplatelets to conventional CNT-reinforced epoxy system. In comparison to polymers alone/single-fiber reinforced polymers, if an additional fiber is added to the composite structure, it was found a drastic improvement in resultant properties. In this regard, effective elastic moduli of a hybrid nano composite are determined by using finite element (FE) model with square representative volume element (RVE). Continuum mechanics based homogenization of the nano-filler reinforced composite is considered for evaluating the volumetric average of the stresses and the strains under different periodic boundary conditions.A three phase Halpin-Tsai approach is selected to obtain the analytical result based on micromechanical modeling. The effect of the volume fractions of CNTs and nano-clay platelets on the mechanical behavior is studied. Two different RVEs of nano-clay platelets were used to investigate the influence of nano-filler geometry on composite properties. The combination of high aspect ratio of CNTs and larger surface area of clay platelets contribute to the stiffening effect of the hybrid samples. Results of analysis are validated with Halpin-Tsai empirical formulae.

  11. Synthesis and optical characterization of C-SiO2 and C-NiO sol-gel composite films for use as selective solar absorbers

    CSIR Research Space (South Africa)

    Makiwa, G

    2008-08-01

    Full Text Available The authors present a cheaper and environmentally friendly method to fabricate efficient spectrally selective solar absorber materials. The sol-gel technique was used to fabricate carbon-silica (C-SiO2) and carbon-nickel oxide (C-NiO) composite...

  12. Effect of Coconut Fillers on Hybrid Coconut Kevlar Fiber Reinforced Epoxy Composites

    Directory of Open Access Journals (Sweden)

    S. P. Jani

    2015-12-01

    Full Text Available This project focuses on the conversion of naturally available coconut fibers and shells into a useful composite. In addition to it, some mechanical properties of the resultant composite is determined and also the effect of coconut shell fillers on the composite is also investigated. The few portion of the composite is incorporated with synthetic Kevlar fiber, thus the coconut fiber is hybridized to enhance the mechanical properties of coconut. In this work two types of composite is fabricate, kevelar coconut fibre (kc composite and kevelarcoco nut fibre coconut shell filler (kccsf composite. Coconut fibers have low weight and considerable properties among the natural fibers, while coconut fillers have a good ductile and impact property. The natural fibers and fillers are treated with Na-OH to make it free of organic impurities. Epoxy resin is used as the polymer matrix. Two composite are produced one with fillers and the other without the fillers using compression molding method. Mechanical properties like tensile strength, flexural strength and water absorption tests are done with ASTM standard. It is observed that that the addition of filler materials improves the adhesiveness of the fibers leading to the increase in the above mentioned properties. The density of the composite is also low hence the strength to weight ratio is very high. The water absorption test also showed that the resultant composite had a small adhesion to water and absorption of water.

  13. Effect of Short Fiber Reinforcement on Mechanical Properties of Hybrid Phenolic Composites

    Directory of Open Access Journals (Sweden)

    Sembian Manoharan

    2014-01-01

    Full Text Available Fiber plays an important role in determining the hardness, strength, and dynamic mechanical properties of composite material. In the present work, enhancement of viscoelastic behaviour of hybrid phenolic composites has been synergistically investigated. Five different phenolic composites, namely, C1, C2, C3, C4, and C5, were fabricated by varying the weight percentage of basalt and aramid fiber, namely, 25, 20, 15, 10, and 5% by compensating with barium sulphate (BaSO4 to keep the combined reinforcement concentration at 25 wt%. Hardness was measured to examine the resistance of composites to indentation. The hardness of phenolic composites increased from 72.2 to 85.2 with increase in basalt fiber loading. Composite C1 (25 wt% fiber is 1.2 times harder than composite C5. Compression test was conducted to find out compressive strength of phenolic composites and compressive strength increased with increase in fiber content. Dynamic mechanical analysis (DMA was carried out to assess the temperature dependence mechanical properties in terms of storage modulus (E′, loss modulus (E′′, and damping factor (tan δ. The results indicate great improvement of E′ values and decrease in damping behaviour of composite upon fiber addition. Further X-ray powder diffraction (XRD and energy-dispersive X-ray (EDX analysis were employed to characterize the friction composites.

  14. Effect of fibre orientations on the mechanical properties of kenaf–aramid hybrid composites for spall-liner application

    Institute of Scientific and Technical Information of China (English)

    R. YAHAYA; S.M. SAPUAN; M. JAWAID; Z. LEMAN; E.S. ZAINUDIN

    2016-01-01

    This paper presents the effect of kenaf fibre orientation on the mechanical properties of kenaf–aramid hybrid composites for military vehicle's spall liner application. It was observed that the tensile strength of woven kenaf hybrid composite is almost 20.78%and 43.55%higher than that of UD and mat samples respectively. Charpy impact strength of woven kenaf composites is 19.78%and 52.07%higher than that of UD and mat kenaf hybrid composites respectively. Morphological examinations were carried out using scanning electron microscopy. The results of this study indicate that using kenaf in the form of woven structure could produce a hybrid composite material with high tensile strength and impact resistance properties.

  15. Influence of Hybridizing Flax and Hemp-Agave Fibers with Glass Fiber as Reinforcement in a Polyurethane Composite

    Directory of Open Access Journals (Sweden)

    Pankaj Pandey

    2016-05-01

    Full Text Available In this study, six combinations of flax, hemp, and glass fiber were investigated for a hybrid reinforcement system in a polyurethane (PU composite. The natural fibers were combined with glass fibers in a PU composite in order to achieve a better mechanical reinforcement in the composite material. The effect of fiber hybridization in PU composites was evaluated through physical and mechanical properties such as water absorption (WA, specific gravity (SG, coefficient of linear thermal expansion (CLTE, flexural and compression properties, and hardness. The mechanical properties of hybridized samples showed mixed trends compared to the unhybridized samples, but hybridization with glass fiber reduced water absorption by 37% and 43% for flax and hemp-agave PU composites respectively.

  16. Nanostructured sol-gel coatings doped with cerium nitrate as pre-treatments for AA2024-T3

    International Nuclear Information System (INIS)

    Zheludkevich, M.L.; Serra, R.; Montemor, M.F.; Yasakau, K.A.; Salvado, I.M. Miranda; Ferreira, M.G.S.

    2005-01-01

    Nanostructured hybrid sol-gel coatings doped with cerium ions were investigated in the present work as pre-treatments for the AA2024-T3 alloy. The sol-gel films have been synthesized from tetraethylorthosilicate (TEOS) and 3-glycidoxypropyltrimethoxysilane (GPTMS) precursors. Additionally the hybrid sol was doped with zirconia nanoparticles prepared from hydrolyzed tetra-n-propoxyzirconium (TPOZ). Cerium nitrate, as corrosion inhibitor, was added into the hybrid matrix or into the oxide nanoparticles. The chemical composition and the structure of the hybrid sol-gel films were studied by XPS (X-ray photoelectron spectroscopy) and AFM (atomic force microscopy), respectively. The evolution of the corrosion protection properties of the sol-gel films was studied by EIS (electrochemical impedance spectroscopy), which can provide quantitative information on the role of the different pre-treatments. Different equivalent circuits, for different stages of the corrosion processes, were used in order to model the coating degradation. The models were supported by SEM (scanning electron microscopy) measurements. The results show that the sol-gel films containing zirconia nanoparticles present improved barrier properties. Doping the hybrid nanostructured sol-gel coatings with cerium nitrate leads to additional improvement of the corrosion protection. The zirconia particles present in the sol-gel matrix seem to act as nanoreservoirs providing a prolonged release of cerium ions. The nanostructured sol-gel films doped with cerium nitrate can be proposed as a potential candidate for substitution of the chromate pre-treatments for AA2024-T3

  17. Chemical sensors of benzene and toluene based on inorganic and hybrid organic-inorganic polymers elaborated by a sol-gel process

    International Nuclear Information System (INIS)

    Calvo Munoz, Maria Luisa

    2000-01-01

    As mono-cyclic aromatic hydrocarbons (MAH) are a matter of concern in terms of pollution, and are to be monitored due to new regulations regarding air quality control, this research thesis first aims at explaining why these compounds are to be monitored, at recalling their sources, at outlining what we know about their negative impact on health and how this impact is determined, which are the means implemented to monitor these compounds and which are their drawbacks, and at recalling which requirements are defined by European directives. The author then reports a literature survey of the current technology regarding chemical sensors, and identifies the required characteristics of an ideal sensor. The author proposes a review of studied performed on sol-gel process and of inorganic polymer synthesis methods based on sol-gel process. He reports the synthesis and characterization of inorganic or hybrid organic-inorganic host matrices, monolithic or in thin layers, used to produce MAH sensors. A matrix pore local polarity study is reported. Benzene and toluene trapping is studied with respect to the polarity and thickness of the host matrix. Pollutant trapping is directly monitored by their absorption in the near-UV and visible range. The author finally reports the study of interactions between fluorescent probe molecules and pollutants, as well as the effect of an interfering gas (oxygen) on the fluorescence of probe molecules [fr

  18. Mechanical Characterization and Water Absorption Behaviour of Interwoven Kenaf/PET Fibre Reinforced Epoxy Hybrid Composite

    Directory of Open Access Journals (Sweden)

    Yakubu Dan-mallam

    2015-01-01

    Full Text Available The development of interwoven fabric for composite production is a novel approach that can be adopted to address the challenges of balanced mechanical properties and water absorption behaviour of polymer composites. In this paper, kenaf and PET (polyethylene terephthalate fibre were selected as reinforcing materials to develop the woven fabric, and low viscosity epoxy resin was chosen as the matrix. Vacuum infusion process was adopted to produce the hybrid composite due to its superior advantages over hand lay-up technique. The weight percentage composition of the Epoxy/kenaf/PET hybrid composite was maintained at 70/15/15 and 60/20/20, respectively. A significant increase in tensile strength and elastic modulus of approximately 73% and 53% was recorded in relation to neat epoxy. Similarly, a substantial increase in flexural, impact, and interlaminar properties was also realized in relation to neat epoxy. This enhancement in mechanical properties may be attributed to the interlocking structure of the interwoven fabric, individual properties of kenaf and PET fibres, strong interfacial bonding, and resistance of the fibres to impact loading. The water absorption of the composites was studied by prolonged exposure in distilled water, and the moisture absorption pattern was found to follow Fickian behaviour.

  19. Dry Process for Manufacturing Hybridized Boron Fiber/Carbon Fiber Thermoplastic Composite Materials from a Solution Coated Precursor

    Science.gov (United States)

    Belvin, Harry L. (Inventor); Cano, Roberto J. (Inventor)

    2003-01-01

    An apparatus for producing a hybrid boron reinforced polymer matrix composite from precursor tape and a linear array of boron fibers. The boron fibers are applied onto the precursor tapes and the precursor tape processed within a processing component having an impregnation bar assembly. After passing through variable-dimension forming nip-rollers, the precursor tape with the boron fibers becomes a hybrid boron reinforced polymer matrix composite. A driving mechanism is used to pulled the precursor tape through the method and a take-up spool is used to collect the formed hybrid boron reinforced polymer matrix composite.

  20. Amino Acid Composition, Molecular Weight Distribution and Gel Electrophoresis of Walnut (Juglans regia L. Proteins and Protein Fractionations

    Directory of Open Access Journals (Sweden)

    Xiaoying Mao

    2014-01-01

    Full Text Available As a by-product of oil production, walnut proteins are considered as an additional source of plant protein for human food. To make full use of the protein resource, a comprehensive understanding of composition and characteristics of walnut proteins are required. Walnut proteins have been fractionated and characterized in this study. Amino acid composition, molecular weight distribution and gel electrophoresis of walnut proteins and protein fractionations were analyzed. The proteins were sequentially separated into four fractions according to their solubility. Glutelin was the main component of the protein extract. The content of glutelin, albumin, globulin and prolamin was about 72.06%, 7.54%, 15.67% and 4.73% respectively. Glutelin, albumin and globulin have a balanced content of essential amino acids, except for methionine, with respect to the FAO pattern recommended for adults. SDS-PAGE patterns of albumin, globulin and glutelin showed several polypeptides with molecular weights 14.4 to 66.2 kDa. The pattern of walnut proteins in two-dimension electrophoresis (2-DE showed that the isoelectric point was mainly in the range of 4.8–6.8. The results of size exclusion chromatogram indicated molecular weight of the major components of walnut proteins were between 3.54 and 81.76 kDa.

  1. Hybrid waste filler filled bio-polymer foam composites for sound absorbent materials

    Science.gov (United States)

    Rus, Anika Zafiah M.; Azahari, M. Shafiq M.; Kormin, Shaharuddin; Soon, Leong Bong; Zaliran, M. Taufiq; Ahraz Sadrina M. F., L.

    2017-09-01

    Sound absorption materials are one of the major requirements in many industries with regards to the sound insulation developed should be efficient to reduce sound. This is also important to contribute in economically ways of producing sound absorbing materials which is cheaper and user friendly. Thus, in this research, the sound absorbent properties of bio-polymer foam filled with hybrid fillers of wood dust and waste tire rubber has been investigated. Waste cooking oil from crisp industries was converted into bio-monomer, filled with different proportion ratio of fillers and fabricated into bio-polymer foam composite. Two fabrication methods is applied which is the Close Mold Method (CMM) and Open Mold Method (OMM). A total of four bio-polymer foam composite samples were produce for each method used. The percentage of hybrid fillers; mixture of wood dust and waste tire rubber of 2.5 %, 5.0%, 7.5% and 10% weight to weight ration with bio-monomer. The sound absorption of the bio-polymer foam composites samples were tested by using the impedance tube test according to the ASTM E-1050 and Scanning Electron Microscope to determine the morphology and porosity of the samples. The sound absorption coefficient (α) at different frequency range revealed that the polymer foam of 10.0 % hybrid fillers shows highest α of 0.963. The highest hybrid filler loading contributing to smallest pore sizes but highest interconnected pores. This also revealed that when highly porous material is exposed to incident sound waves, the air molecules at the surface of the material and within the pores of the material are forced to vibrate and loses some of their original energy. This is concluded that the suitability of bio-polymer foam filled with hybrid fillers to be used in acoustic application of automotive components such as dashboards, door panels, cushion and etc.

  2. Randomized controlled split-mouth clinical trial of direct laminate veneers with two micro-hybrid resin composites

    NARCIS (Netherlands)

    Gresnigt, Marco M. M.; Kalk, Warner; Ozcan, M.; Ozcan, Mutlu

    Objectives: This randomized, split-mouth clinical study evaluated the survival rate of direct laminate veneers made of two resin-composite materials. Methods: A total of 23 patients (mean age: 52.4 years old) received 96 direct composite laminate veneers using two micro-hybrid composites in

  3. Drilling of Hybrid Titanium Composite Laminate (HTCL with Electrical Discharge Machining

    Directory of Open Access Journals (Sweden)

    M. Ramulu

    2016-09-01

    Full Text Available An experimental investigation was conducted to determine the application of die sinker electrical discharge machining (EDM as it applies to a hybrid titanium thermoplastic composite laminate material. Holes were drilled using a die sinker EDM. The effects of peak current, pulse time, and percent on-time on machinability of hybrid titanium composite material were evaluated in terms of material removal rate (MRR, tool wear rate, and cut quality. Experimental models relating each process response to the input parameters were developed and optimum operating conditions with a short cutting time, achieving the highest workpiece MRR, with very little tool wear were determined to occur at a peak current value of 8.60 A, a percent on-time of 36.12%, and a pulse time of 258 microseconds. After observing data acquired from experimentation, it was determined that while use of EDM is possible, for desirable quality it is not fast enough for industrial application.

  4. Drilling of Hybrid Titanium Composite Laminate (HTCL) with Electrical Discharge Machining.

    Science.gov (United States)

    Ramulu, M; Spaulding, Mathew

    2016-09-01

    An experimental investigation was conducted to determine the application of die sinker electrical discharge machining (EDM) as it applies to a hybrid titanium thermoplastic composite laminate material. Holes were drilled using a die sinker EDM. The effects of peak current, pulse time, and percent on-time on machinability of hybrid titanium composite material were evaluated in terms of material removal rate (MRR), tool wear rate, and cut quality. Experimental models relating each process response to the input parameters were developed and optimum operating conditions with a short cutting time, achieving the highest workpiece MRR, with very little tool wear were determined to occur at a peak current value of 8.60 A, a percent on-time of 36.12%, and a pulse time of 258 microseconds. After observing data acquired from experimentation, it was determined that while use of EDM is possible, for desirable quality it is not fast enough for industrial application.

  5. Isothermal and hygrothermal agings of hybrid glass fiber/carbon fiber composite

    Science.gov (United States)

    Barjasteh, Ehsan

    anhydride/epoxy network used in composite-reinforced conductor cables was investigated to determine the extent of thermal oxidative (surface effect) and non-oxidative (bulk effect) degradation. Thermal oxidation tests were performed in air-circulating and vacuum ovens at 180°C and 200ºC (the maximum emergency temperature for ACCC conductors). The extent of oxidation during aging was determined by monitoring the thickness of the oxidized layer. Results showed that the oxidized layer thickness did not increase monotonically as a function of exposure time, and even decreased for a limited period of time. A phenomenological reaction-diffusion model was implemented to predict the thickness of oxidized layer, and the calculated results were compared with measurements for aging times up to 10,000 hours. The accuracy of the reaction-diffusion-based thickness values for the isothermally aged epoxy specimen was affected by the permeability properties of the oxidized material, and to a lesser extent by the degree of oxidation. The diffusivity varied because of changes in the density of the oxidized layer, the macro-void content, crack formation, and the molecular structures. To investigate the effects on diffusivity, the morphology of the oxidized layer and the void content was monitored over time. In addition, the density of the oxidized specimens was calculated by direct measurements of volume and weight during exposure. An empirically based volume-loss model was developed to predict the changes in volume of the specimen as a function of aging times and hence to predict the effects on the oxidized layer thickness. Volume-loss measurements provide an indication of material degradation by demonstrating a direct measurement of shrinkage rates and insight into crack initiation, as opposed to typical weight-loss measurements that provide no insight into material failure. Thermal oxidation of a unidirectional carbon-fiber/glass-fiber hybrid composite was also investigated in this study

  6. A review of composite material applications in the automotive industry for the electric and hybrid vehicle

    Science.gov (United States)

    Bauer, J. L.

    1979-01-01

    A review is made of the state-of-the-art in regard to the use of composite materials for reducing the structural mass of automobiles. Reduction of mass provides, in addition to other engineering improvements, increased performance/range advantages that are particularly needed in the electric and hybrid vehicle field. Problems encountered include the attainment of mass production techniques and the prevention of environmental hazards.

  7. Hybrid Composite Tensile Armour Wires in Flexible Risers: A Multi-scale Model

    OpenAIRE

    Gautam, Mayank; Katnam, Kali-Babu; Potluri, Venkata; Jha, Vivekanand; Latto, J.; Dodds, NI

    2017-01-01

    Traditional carbon-steel armour wires pose limitations (e.g. long spans, weight reduction, corrosion and fatigue) for flexible risers to operate in demanding and deeper water environments. In this context, an alternative to carbon-steel tensile armour wires is proposed recently by the authors (Gautam et al. [1]), comprising of hexagonally packed polymer composite rods with uni-directional fibres and an over-braided (i.e. bi-axial braid with high performance fibres) sleeve. These hybrid compos...

  8. THERMOMECHANICAL PROPERTIES OF JUTE/BAGASSE HYBRID FIBRE REINFORCED EPOXY THERMOSET COMPOSITES

    OpenAIRE

    Sudhir Kumar Saw; Chandan Datta

    2009-01-01

    Natural fibres are partly replacing currently used synthetic fibres as reinforcement for polymer composites. Jute fibre bundles were high-cellulose-content modified by alkali treatment, while the bagasse fibre bundles were modified by creating quinones in the lignin portions of fibre surfaces and reacting them with furfuryl alcohol (FA) to increase their adhesiveness. The effects of different fibre bundle loading and modification of bagasse fibre surfaces in hybrid fibre reinforced epoxy comp...

  9. Mechanical properties of hybrid composites prepared by ice-templating of alumina

    Czech Academy of Sciences Publication Activity Database

    Roleček, J.; Salamon, D.; Chlup, Zdeněk

    2017-01-01

    Roč. 37, č. 14 (2017), s. 4279-4286 ISSN 0955-2219 R&D Projects: GA MŠk(CZ) LQ1601 Institutional support: RVO:68081723 Keywords : fracture-toughness * ceramic s * matrix * laminate * behavior * fibers * Ice-templating * Alumina * Epoxide * Hybrid composites * Strength Subject RIV: JH - Ceramic s, Fire-Resistant Materials and Glass OBOR OECD: Ceramic s Impact factor: 3.411, year: 2016

  10. Parallel characterization of anaerobic toluene- and ethylbenzene-degrading microbial consortia by PCR-denaturing gradient gel electrophoresis, RNA-DNA membrane hybridization, and DNA microarray technology

    Science.gov (United States)

    Koizumi, Yoshikazu; Kelly, John J.; Nakagawa, Tatsunori; Urakawa, Hidetoshi; El-Fantroussi, Said; Al-Muzaini, Saleh; Fukui, Manabu; Urushigawa, Yoshikuni; Stahl, David A.

    2002-01-01

    A mesophilic toluene-degrading consortium (TDC) and an ethylbenzene-degrading consortium (EDC) were established under sulfate-reducing conditions. These consortia were first characterized by denaturing gradient gel electrophoresis (DGGE) fingerprinting of PCR-amplified 16S rRNA gene fragments, followed by sequencing. The sequences of the major bands (T-1 and E-2) belonging to TDC and EDC, respectively, were affiliated with the family Desulfobacteriaceae. Another major band from EDC (E-1) was related to an uncultured non-sulfate-reducing soil bacterium. Oligonucleotide probes specific for the 16S rRNAs of target organisms corresponding to T-1, E-1, and E-2 were designed, and hybridization conditions were optimized for two analytical formats, membrane and DNA microarray hybridization. Both formats were used to characterize the TDC and EDC, and the results of both were consistent with DGGE analysis. In order to assess the utility of the microarray format for analysis of environmental samples, oil-contaminated sediments from the coast of Kuwait were analyzed. The DNA microarray successfully detected bacterial nucleic acids from these samples, but probes targeting specific groups of sulfate-reducing bacteria did not give positive signals. The results of this study demonstrate the limitations and the potential utility of DNA microarrays for microbial community analysis.

  11. Effect of Environmental Degradation on Mechanical Properties of Kenaf/Polyethylene Terephthalate Fiber Reinforced Polyoxymethylene Hybrid Composite

    Directory of Open Access Journals (Sweden)

    Mohamad Zaki Abdullah

    2013-01-01

    Full Text Available The main objective of this research is to investigate the effect of environmental degradation on the mechanical properties of kenaf/PET fiber reinforced POM hybrid composite. Kenaf and PET fibers were selected as reinforcements because of their good mechanical properties and resistance to photodegradation. The test samples were produced by compression molding. The samples were exposed to moisture, water spray, and ultraviolet penetration in an accelerated weathering chamber for 672 hours. The tensile strength of the long fiber POM/kenaf (80/20 composite dropped by 50% from 127.8 to 64.8 MPa while that of the hybrid composite dropped by only 2% from 73.8 to 72.5 MPa. This suggests that the hybrid composite had higher resistance to tensile strength than the POM/kenaf composite. Similarly, the results of flexural and impact strengths also revealed that the hybrid composite showed less degradation compared to the kenaf fiber composite. The results of the investigation revealed that the hybrid composite had better retention of mechanical properties than that of the kenaf fiber composites and may be suitable for outdoor application in the automotive industry.

  12. Hybrid composites of monodisperse pi-conjugated rodlike organic compounds and semiconductor quantum particles

    DEFF Research Database (Denmark)

    Hensel, V.; Godt, A.; Popovitz-Biro, R.

    2002-01-01

    Composite materials of quantum particles (Q-particles) arranged in layers within crystalline powders of pi-conjugated, rodlike dicarboxylic acids are reported. The synthesis of the composites, either as three-dimensional crystals or as thin films at the air-water interface, comprises a two...... analysis of the solids and grazing incidence X-ray diffraction analysis of the films on water. 2) Topotactic solid/gas reaction of these salts with H2S to convert the metal ions into Q-particles of CdS or PbS embedded in the organic matrix that consists of the acids 6(H) and 8(H). These hybrid materials...

  13. Characterization of Glass Fibre – Coconut Coir– Human Hair Hybrid Composites

    OpenAIRE

    D. Senthilnathan; A Gnanavel Babu; G. B. Bhaskar; KGS. Gopinath

    2014-01-01

    A composite material is a combination of two or more materials arranged in the form of layer one on the other layer using binding material through some prescribed methods. In the Glass fibre coconut fibre human hair hybrid composite method, the epoxy resin is used as binding material, in which one layer is formed of glass fibre, followed by coconut fibre and then by human hair. By using hand layup method and by changing the above arrangement of layers, six types of laminates are prepared by u...

  14. Interlocked graphene-Prussian blue hybrid composites enable multifunctional electrochemical applications

    DEFF Research Database (Denmark)

    Zhang, Minwei; Hou, Chengyi; Halder, Arnab

    2017-01-01

    There has been increasing interest recently in mixed-valence inorganic nanostructure functionalized graphene composites, represented by Prussian blue, because they can cost-effectively apply to biosensors and energy devices. In this work, we present a one-pot green method to synthesize interlocked...... graphene-Prussian Blue hybrid composites as high-performance materials for biosensors and supercapacitor electrodes. Given the fact that graphene oxide (GO) can act as an electron acceptor, we used iron(II) and glucose as co-reducing agents to reduce GO under mild reaction conditions without introducing...

  15. Enhanced Thermal Conductivity of Polyimide Composites Filled with Modified h-BN and Nanodiamond Hybrid Filler.

    Science.gov (United States)

    Yang, Xi; Yu, Xiaoyan; Naito, Kimiyoshi; Ding, Huili; Qu, Xiongwei; Zhang, Qingxin

    2018-05-01

    A new thermally conductive and electrically insulative polyimide were prepared by filling different amounts of hexagonal boron nitride (h-BN) particles, and the thermal conductivity of Polyimide (PI) composites were improved with the increasing h-BN content. Based on this, two methods were applied to improve thermal conductivity furtherly at limited filler loading in this paper. One is modifying the h-BN to improve interface interaction, another is fabricating a nano-micro hybrid filler with 2-D h-BN and 0-D nano-scale nanodiamond (ND) to build more effective conductive network. Both surface modification and hybrid system have a positive effect on thermal conductivity. The composites introducing 40 wt% hybrid filler (the weight ratio of ND/modified BN was 1/10) showed the highest thermal conductivity, being up to 0.98 W/(m K) (5.2 times that of PI). In addition, the composites exhibits excellent electrical insulation, thermal stability properties etc.

  16. Cross-linked Composite Gel Polymer Electrolyte using Mesoporous Methacrylate-Functionalized SiO2 Nanoparticles for Lithium-Ion Polymer Batteries

    Science.gov (United States)

    Shin, Won-Kyung; Cho, Jinhyun; Kannan, Aravindaraj G.; Lee, Yoon-Sung; Kim, Dong-Won

    2016-01-01

    Liquid electrolytes composed of lithium salt in a mixture of organic solvents have been widely used for lithium-ion batteries. However, the high flammability of the organic solvents can lead to thermal runaway and explosions if the system is accidentally subjected to a short circuit or experiences local overheating. In this work, a cross-linked composite gel polymer electrolyte was prepared and applied to lithium-ion polymer cells as a safer and more reliable electrolyte. Mesoporous SiO2 nanoparticles containing reactive methacrylate groups as cross-linking sites were synthesized and dispersed into the fibrous polyacrylonitrile membrane. They directly reacted with gel electrolyte precursors containing tri(ethylene glycol) diacrylate, resulting in the formation of a cross-linked composite gel polymer electrolyte with high ionic conductivity and favorable interfacial characteristics. The mesoporous SiO2 particles also served as HF scavengers to reduce the HF content in the electrolyte at high temperature. As a result, the cycling performance of the lithium-ion polymer cells with cross-linked composite gel polymer electrolytes employing methacrylate-functionalized mesoporous SiO2 nanoparticles was remarkably improved at elevated temperatures. PMID:27189842

  17. Dynamic Mechanical and Thermal Properties of Bagasse/Glass Fiber/Polypropylene Hybrid Composites

    Directory of Open Access Journals (Sweden)

    Mehdi Roohani

    2016-06-01

    Full Text Available This work aims to evaluate the thermal and dynamic mechanical properties of bagasse/glass fiber/polypropylene hybrid composites. Composites were prepared by the melt compounding method and their properties were characterized by differential scanning calorimetry (DSC and dynamic mechanical analysis (DMA. DSC results found that with incorporation of bagasse and glass fiber the melting temperature (Tm and the crystallisation temperature (Tc shift to higher temperatures and the degree of crystallinity (Xc increase. These findings suggest that the fibers played the role of a nucleating agent in composites. Dynamic mechanical analysis indicated that by the incorporation of bagasse and glass fiber into polypropylene, the storage modulus ( and the loss modulus ( increase whereas the mechanical loss factor (tanδ decrease. To assess the effect of reinforcement with increasing temperature, the effectiveness coefficient C was calculated at different temperature ranges and revealed that, at the elevated temperatures, improvement of mechanical properties due to the presence of fibers was more noticeable. The fiber-matrix adhesion efficiency determined by calculating of adhesion factor A in terms of the relative damping of the composite (tan δc and the polymer (tan δpand volume fraction of the fibers (Фf. Calculated adhesion factor A values indicated that by adding glass fiber to bagasse/polypropylene system, the fiber-matrix adhesion improve. Hybrid composite containing 25% bagasse and 15% glass fiber showed better fiber-matrix adhesion.

  18. Optimization and Static Stress Analysis of Hybrid Fiber Reinforced Composite Leaf Spring

    Directory of Open Access Journals (Sweden)

    Luay Muhammed Ali Ismaeel

    2015-01-01

    Full Text Available A monofiber reinforced composite leaf spring is proposed as an alternative to the typical steel one as it is characterized by high strength-to-weight ratio. Different reinforcing schemes are suggested to fabricate the leaf spring. The composite and the typical steel leaf springs are subjected to the same working conditions. A weight saving of about more than 60% can be achieved while maintaining the strength for the structures under consideration. The objective of the present study was to replace material for leaf spring. This study suggests various materials of hybrid fiber reinforced plastics (HFRP. Also the effects of shear moduli of the fibers, matrices, and the composites on the composites performance and responses are discussed. The results and behaviors of each are compared with each other and verified by comparison with analytical solution; a good convergence is found between them. The elastic properties of the hybrid composites are calculated using rules of mixtures and Halpin-Tsi equation through the software of MATLAB v-7. The problem is also analyzed by the technique of finite element analysis (FEA through the software of ANSYS v-14. An element modeling was done for every leaf with eight-node 3D brick element (SOLID185 3D 8-Node Structural Solid.

  19. MAX Phase Modified SiC Composites for Ceramic-Metal Hybrid Cladding Tubes

    International Nuclear Information System (INIS)

    Jung, Yang-Il; Kim, Sun-Han; Park, Dong-Jun; Park, Jeong-Hwan; Park, Jeong-Yong; Kim, Hyun-Gil; Koo, Yang-Hyun

    2015-01-01

    A metal-ceramic hybrid cladding consists of an inner zirconium tube, and an outer SiC fiber-matrix SiC ceramic composite with surface coating as shown in Fig. 1 (left-hand side). The inner zirconium allows the matrix to remain fully sealed even if the ceramic matrix cracks through. The outer SiC composite can increase the safety margin by taking the merits of the SiC itself. In addition, the outermost layer prevents the dissolution of SiC during normal operation. On the other hand, a ceramic-metal hybrid cladding consists of an outer zirconium tube, and an inner SiC ceramic composite as shown in Fig. 1 (right-hand side). The outer zirconium protects the fuel rod from a corrosion during reactor operation, as in the present fuel claddings. The inner SiC composite, additionally, is designed to resist the severe oxidation under a postulated accident condition of a high-temperature steam environment. Reaction-bonded SiC was fabricated by modifying the matrix as the MAX phase. The formation of Ti 3 SiC 2 was investigated depending on the compositions of the preform and melt. In most cases, TiSi 2 was the preferential phase because of its lowest melting point in the Ti-Si-C system. The evidence of Ti 3 SiC 2 was the connection with the pressurizing

  20. Low Working-Temperature Acetone Vapor Sensor Based on Zinc Nitride and Oxide Hybrid Composites.

    Science.gov (United States)

    Qu, Fengdong; Yuan, Yao; Guarecuco, Rohiverth; Yang, Minghui

    2016-06-01

    Transition-metal nitride and oxide composites are a significant class of emerging materials that have attracted great interest for their potential in combining the advantages of nitrides and oxides. Here, a novel class of gas sensing materials based on hybrid Zn3 N2 and ZnO composites is presented. The Zn3 N2 /ZnO (ZnNO) composites-based sensor exhibits selectivity and high sensitivity toward acetone vapor, and the sensitivity is dependent on the nitrogen content of the composites. The ZnNO-11.7 described herein possesses a low working temperature of 200 °C. The detection limit (0.07 ppm) is below the diabetes diagnosis threshold (1.8 ppm). In addition, the sensor shows high reproducibility and long-term stability. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. New generation poly(ε-caprolactone)/gel-derived bioactive glass composites for bone tissue engineering: Part I. Material properties.

    Science.gov (United States)

    Dziadek, Michal; Menaszek, Elzbieta; Zagrajczuk, Barbara; Pawlik, Justyna; Cholewa-Kowalska, Katarzyna

    2015-11-01

    Poly(ε-caprolactone) (PCL) based composite films containing 12 and 21vol.% bioactive glass (SBG) microparticles were prepared by solvent casting method. Two gel-derived SBGs of SiO2-CaO-P2O5 system differing in SiO2 and CaO contents were applied (mol%): S2: 80SiO2, 16CaO, 4P2O5 and A2: 40SiO2, 54CaO, 6P2O5. The surfaces of the films in contact with Petri dish and exposed to the gas phase during casting were denoted as GS and AS, respectively. Both surfaces of films were characterised in terms of their morphology, micro- and nano-topography as well as wettability. Also mechanical properties (tensile strength, Young's modulus) and PCL matrix crystallinity (degree of crystallinity, crystal size) were evaluated. Degradation behaviour was examined by incubation of materials in UHQ-water at 37°C for 56weeks. The crystallinity, melting temperature and mass loss of incubated materials and pH changes of water were monitored. Furthermore, proliferation of MG-63 osteoblastic cells by direct contact and cytotoxic effect of obtained materials were investigated. Results showed that opposite surfaces of the same polymer and composite films differ in studied surface parameters. The addition of SBG particles into PCL matrix improves nano- and micro-roughness of both surfaces, enhances the hydrophilicity of GS surfaces (~67° for 21A2-PCL compared to ~78° for pure PCL) and also makes AS surface more hydrophobic (~94° for 21S2-PCL compared to ~86° for pure PCL). The nucleation density of PCL was increased with increasing content of SBG particles, which results in the large number of fine spherulites on composite AS surfaces observed using polarized optical (POM), scanning electron (SEM), and atomic force (AFM) microscopies. Higher content of SBG particles causes a notable increase of Young's modulus (from 0.38GPa for pure PCL, 0.90GPa for 12A2-PCL to 1.31GPa for 21A2-PCL), which also depends on SBG chemical composition. After 56-week degradation test, considerably higher

  2. Hybrid Carbon-Glass Fiber/Toughened Epoxy Thick Composite Joints Subject to Drop-Weight and Ballistic Impacts

    National Research Council Canada - National Science Library

    Liaw, Benjamin; Delale, Feridun

    2007-01-01

    ... No. DAAD19-02-R-0010 to conduct research on hybrid carbon-S2 glass fiber/toughened epoxy thick-section, hybrid interwoven composite joints subject to drop-weight and ballistic impacts. Dr. Basavaraju B. Raju of U.S...

  3. Modeling water partition in composite gels of BSA with gelatin following high pressure treatment.

    Science.gov (United States)

    Semasaka, Carine; Mhaske, Pranita; Buckow, Roman; Kasapis, Stefan

    2018-11-01

    Changes in the structural properties of hydrogels made with gelatin and bovine serum albumin mixtures were recorded following exposure to high pressure at 300 MPa for 15 min at 10 and 80 °C. Dynamic oscillation, SEM, FTIR and blending law modelling were utilised to rationalise results. Pressurization at the low temperature end yielded continuous gelatin networks supporting discontinuous BSA inclusions, whereas an inverted dispersion was formed at the high temperature end with the continuous BSA network suspending the discontinuous gelatin inclusions. Lewis and Nielsen equations followed the mechanical properties of the composites thus arguing that solvent partition between the two phases was always in favour of the polymer forming the continuous network. As far as we are aware, this is the first attempt to elucidate the solvent partition in pressurised hydrogel composites using blending law theory. Outcomes were contrasted with earlier work where binary mixtures were subjected only to thermal treatment. Copyright © 2018. Published by Elsevier Ltd.

  4. Disinfection of water with new chitosan-modified hybrid clay composite adsorbent

    Directory of Open Access Journals (Sweden)

    Emmanuel I. Unuabonah

    2017-08-01

    Full Text Available Hybrid clay composites were prepared from Kaolinite clay and Carica papaya seeds via modification with chitosan, Alum, NaOH, and ZnCl2 in different ratios, using solvothermal and surface modification techniques. Several composite adsorbents were prepared, and the most efficient of them for the removal of gram negative enteric bacteria was the hybrid clay composite that was surface-modified with chitosan, Ch-nHYCA1:5 (Chitosan: nHYCA = 1:5. This composite adsorbent had a maximum adsorption removal value of 4.07 × 106 cfu/mL for V. cholerae after 120 min, 1.95 × 106 cfu/mL for E. coli after ∼180 min and 3.25 × 106 cfu/mL for S. typhi after 270 min. The Brouers-Sotolongo model was found to better predict the maximum adsorption capacity (qmax of Ch-nHYCA1:5 composite adsorbent for the removal of E. coli with a qmax of 103.07 mg/g (7.93 × 107 cfu/mL and V. cholerae with a qmax of 154.18 mg/g (1.19 × 108 cfu/mL while the Sips model best described S. typhi adsorption by Ch-nHYCA1:5 composite with an estimated qmax of 83.65 mg/g (6.43 × 107 cfu/mL. These efficiencies do far exceed the alert/action levels of ca. 500 cfu/mL in drinking water for these bacteria. The simplicity of the composite preparation process and the availability of raw materials used for its preparation underscore the potential of this low-cost chitosan-modified composite adsorbent (Ch-nHYCA1:5 for water treatment.

  5. A study on flexural and water absorption of surface modified rice husk flour/E-glass/polypropylene hybrid composite

    Science.gov (United States)

    Rassiah, K.; Sin, T. W.; Ismail, M. Z.

    2016-10-01

    This work is to study the effects of rice husk (RH)/E-Glass (EG)/polypropylene (PP) hybrid composites in terms of flexural and water absorption properties. The tests conducted are the flexural test and also the water absorption test using two types of water: distilled and sea water. The hybrid composites are prepared with various ratios of fibre weight fractions and the rice husk is treated using 2% Sodium Hydroxide (NaOH) to improve interaction and adhesion between the non-polar matrix and the polar lignocellulosic fibres. It was found that the content of rice husk/E-Glass fillers affected the structural integrity and flexural properties of hybrid composites. In addition, a higher ratio of rice husk contributes to higher water absorption in the hybrid composites.

  6. Static and dynamic mechanical properties of alkali treated unidirectional continuous Palmyra Palm Leaf Stalk Fiber/jute fiber reinforced hybrid polyester composites

    International Nuclear Information System (INIS)

    Shanmugam, D.; Thiruchitrambalam, M.

    2013-01-01

    Highlights: • New type of hybrid composite with Palmyra Palm Leaf Stalk Fibers (PPLSF) and jute. • Composites fabricated with continuous, unidirectional fibers. • Alkali treatment and hybridizing jute imparted good static and dynamic properties. • Properties are comparable with well know natural/glass fiber composites. • New hybrid composite can be an alternative in place of synthetic fiber composites. - Abstract: Alkali treated continuous Palmyra Palm Leaf Stalk Fiber (PPLSF) and jute fibers were used as reinforcement in unsaturated polyester matrix and their static and dynamic mechanical properties were evaluated. Continuous PPLSF and jute fibers were aligned unidirectionally in bi-layer arrangement and the hybrid composites were fabricated by compression molding process. Positive hybrid effect was observed for the composites due to hybridization. Increasing jute fiber loading showed a considerable increase in tensile and flexural properties of the hybrid composites as compared to treated PPLSF composites. Scanning Electron microscopy (SEM) of the fractured surfaces showed the nature of fiber/matrix interface. The impact strength of the hybrid composites were observed to be less compared to pure PPLSF composites. Addition of jute fibers to PPLSF and alkali treatment of the fibers has enhanced the storage and loss modulus of the hybrid composites. A positive shift of Tan δ peaks to higher temperature and reduction in the peak height of the composites was also observed. The composites with higher jute loading showed maximum damping behavior. Overall the hybridization was found to be efficient showing increased static and dynamic mechanical properties. A comparative study of properties of this hybrid composite with other hybrids made out of using natural/glass fibers is elaborated. Hybridization of alkali treated jute and PPLSF has resulted in enhanced properties which are comparable with other natural/glass fiber composites thus increasing the scope of

  7. Characterization of hybrid microparticles/Montmorillonite composite with raspberry-like morphology for Atorvastatin controlled release.

    Science.gov (United States)

    García-Guzmán, Perla; Medina-Torres, Luis; Calderas, Fausto; Bernad-Bernad, María Josefa; Gracia-Mora, Jesús; Mena, Baltasar; Manero, Octavio

    2018-07-01

    In this work, we prepared a novel composite based on hybrid gelatin carriers and montmorillonite clay (MMT) to analyze its viability as controlled drug delivery system. The objective of this research involves the characterization of composites formed by structured lipid-gelatin micro-particles (MP) and MMT clay. This analysis included the evaluation of the composite according to its rheological properties, morphology (SEM), particle size, XRD, FT-IR, and in vitro drug release. The effect of pH in the properties of the composite is evaluated. A novel raspberry-like or armor MP/MMT clay composite is reported, in which the pH has an important effect on the final structure of the composite for ad-hoc drug delivery systems. For pH values below the isoelectric point, we obtained defined morphologies with entrapment efficiencies up to 67%. The pH level controls the MP/MMT composite release mechanism, restringing drug release in the stomach-like environment. Intended for oral administration, these results evidence that the MP/MMT composite represents an attractive alternative for intestinal-colonic controlled drug delivery systems. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Residual Stress Measurement of SiC tile/Al7075 Hybrid Composites by Neutron Diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jong Bok; Lee, Jun Ho; Hong, Soon Hyung; Ryu, Ho Jin [KAIST, Daejeon (Korea, Republic of); Lee, Sang Bok; Lee, Sang Kwan [Korea Institute of Materials Science, Changwon (Korea, Republic of); Muslihd, M. Rifai [Center for Advanced Materials Science and Technology, Tangerang (India)

    2016-05-15

    In this research, SiC which has low density, high compressive strength, and high elastic modulus was used to fabricate the armor plate. In addition, Al which has low density and high toughness was used for a metal matrix of the composites. If two materials are combined, the composite can be effective materials for light weight armor applications. However, the existence of a large difference in coefficients of thermal expansion (CTE) between SiC and Al matrix, SiC/Al composites can have residual stresses while cooled in the fabrication process. Previous research reported that residual stresses in the composites or microstructures have an effect on the fatigue life and their mechanical properties. Some researchers reported about the residual stresses in the SiCp/Al metal matrix composites by numerical simulation systems, X-ray diffraction, and destructive methods. In order to analyze the residual stress of SiC/Al composites, the neutron diffraction as the non-destructive method was performed in this research. The 50 vol.% SiC{sub p}/Al7075 composites and SiC tile inserted 50 vol.% SiC{sub p}/Al7075 hybrid composites were measured to analyze the residual stress of Al (111) and SiC (111). Both samples had the tensile residual stresses in the Al (111) and the compressive residual stresses in the SiC (111) due to the difference in CTE.

  9. International Workshop on Glasses and Ceramics, Hybrids and Nanocomposites from Gels (9th); Sol-Gel '97 Held in Centre for Glass Research, The University of Sheffield, UK on 31 August-5 September 1997

    National Research Council Canada - National Science Library

    James, Peter

    1998-01-01

    The primary objective of the Journal Of Sol-Gel Science and Technology is to provide an international forum for the dissemination of scientific and technical information and knowledge about sol-gel processed materials...

  10. Fabrication and Properties of Silica Gel/Calcium Sulfate/Strontium-doped β-tricalcium Phosphate Composite Porous Scaffolds for Bone Tissue Engineering

    Directory of Open Access Journals (Sweden)

    QIN Xiao-su

    2018-03-01

    Full Text Available The calcium sulfate/strontium-doped β-tricalcium phosphate composite spherical pellets was fabricated, using the calcium sulfate/strontium-doped β-TCP as raw material, and through the stirring spray drying method, and then composite spherical pellets were combined with silica gel, porous silica gel/calcium sulfate/strontium-doped β-tricalcium phosphate scaffold was obtained by stacking aggregation method in the mould. The XRD, SEM and FT-IR, etc are employed to examine the chemical composition, composite morphology and structure characteristics, and the degradability, porosity, mechanical properties and cytotoxicity of the scaffolds materials were studied. The results reveal that the composite porous scaffolds have irregular pore structure with pore size between 0.2-1.0mm, and they have a large number of micropores on each of the composite spherical pellets, with the aperture between 50-200μm. Moreover, the porosity of the composite scaffolds is about 62%, which can meet the requirements of scaffolds for bone tissue engineering in porosity; the cytotoxicity tests show the composite scaffolds have no cytotoxic effect and it has good degradation. Therefore, it has good application prospect in bone tissue engineering of the bone defect repair of non-bearing site.

  11. High-Energy Impact Behaviors of Hybrid Composite Plates Strengthened with 3D-UHMWPE Composites

    Directory of Open Access Journals (Sweden)

    Sang-Youl Lee

    2018-01-01

    Full Text Available This study deals with drop-impact effects of new hybrid concrete plates strengthened with an ultrahigh molecular weight polyethylene (UHMWPE. The proposed 3D-UHMWPE results in excellent mechanical properties such as high abrasion resistance, impact strength, and low coefficient of friction. These special properties allow the product to be used in several high-performance applications. In this study, we used two kinds of high-performance materials for the impact reinforcement of a structure made of conventional materials such as a concrete. In particular, the impact mechanism of a fiber-concrete hybrid structure was studied using various parameters. The parametric studies are focused on the various effects of drop-impact on the structural performance. The combined effects of using different fiber-reinforced materials on the impact behavers are also investigated.

  12. Volumetric composition and shear strength evaluation of pultruded hybrid kenaf/glass fiber composites

    DEFF Research Database (Denmark)

    Hashemi, Fariborz; Tahir, Paridah Md; Madsen, Bo

    2015-01-01

    by using a gravimetrically based method. Optical microscopy was used to determine the location of voids. The short-beam test method was used to determine the interlaminar shear strength of the composites, and the failure mode was observed. It was found that the void volume fraction of the composites...

  13. Enhanced mechanical properties and biocompatibility of novel hydroxyapatite/TOPAS hybrid composite for bone tissue engineering applications

    Energy Technology Data Exchange (ETDEWEB)

    Ain, Qurat Ul [Department of Materials Engineering, School of Chemical and Materials Engineering, National University of Sciences and Technology, H-12, Islamabad (Pakistan); Khan, Ahmad Nawaz, E-mail: ahmad.nawaz@scme.nust.edu.pk [Department of Materials Engineering, School of Chemical and Materials Engineering, National University of Sciences and Technology, H-12, Islamabad (Pakistan); Nabavinia, Mahboubeh [Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA (United States); Mujahid, Mohammad [Department of Materials Engineering, School of Chemical and Materials Engineering, National University of Sciences and Technology, H-12, Islamabad (Pakistan)

    2017-06-01

    The bioactivity and mechanical properties of hybrid composites of hydroxyapatite (HA) in cyclic olefinic copolymer (COC) also known commercially as TOPAS are investigated, first time, for regeneration and repair of the bone tissues. HA is synthesized to obtain the spherically shaped nanoparticles in the size range of 60 ± 20 nm. Various concentrations of HA ranging from 1 to 30 wt% are dispersed in TOPAS using sodium dodecyl sulfate (SDS) coupling agent for better dispersion and interaction of hydrophilic HA with hydrophobic TOPAS. Scanning electron microscope shows the uniform dispersion of HA ≤ 10 wt% in TOPAS and at higher concentrations > 10 wt%, agglomeration occurs in the hybrid composites. Tunable mechanical properties are achieved as the compressive modulus and strength are increased around 140% from 6.4 to 15.3 MPa and 185% from 0.26 to 0.74 MPa, respectively. Such increase in the mechanical properties of TOPAS is attributed to the anchoring of the polymer chains in the vicinity of HA nanoparticles owing to better dispersion and interfacial interactions. In comparison to neat TOPAS, hybrid composites of TOPAS/HA promoted the cell adhesion and proliferation significantly. The cell density and proliferation of TOPAS/HA hybrid composites is enhanced 9 and 3 folds, respectively, after 1 day culturing in preosteoblasts cells. Moreover, the morphology of cells changed from spherical to flattened spread morphology demonstrating clearly the migration of the cells for the formation of interconnected cellular network. Additionally, very few dead cells are found in hybrid composites showing their cytocompatibility. Overall, the hybrid composites of TOPAS/HA exhibited superior strength and stiffness along with enhanced cytocompatibility for bone tissue engineering applications. - Highlights: • TOPAS/HA hybrid composites exhibited enhanced mechanical properties owing to better dispersion and interaction of HA. • Without affecting the degradation rate, the

  14. Enhanced mechanical properties and biocompatibility of novel hydroxyapatite/TOPAS hybrid composite for bone tissue engineering applications

    International Nuclear Information System (INIS)

    Ain, Qurat Ul; Khan, Ahmad Nawaz; Nabavinia, Mahboubeh; Mujahid, Mohammad

    2017-01-01

    The bioactivity and mechanical properties of hybrid composites of hydroxyapatite (HA) in cyclic olefinic copolymer (COC) also known commercially as TOPAS are investigated, first time, for regeneration and repair of the bone tissues. HA is synthesized to obtain the spherically shaped nanoparticles in the size range of 60 ± 20 nm. Various concentrations of HA ranging from 1 to 30 wt% are dispersed in TOPAS using sodium dodecyl sulfate (SDS) coupling agent for better dispersion and interaction of hydrophilic HA with hydrophobic TOPAS. Scanning electron microscope shows the uniform dispersion of HA ≤ 10 wt% in TOPAS and at higher concentrations > 10 wt%, agglomeration occurs in the hybrid composites. Tunable mechanical properties are achieved as the compressive modulus and strength are increased around 140% from 6.4 to 15.3 MPa and 185% from 0.26 to 0.74 MPa, respectively. Such increase in the mechanical properties of TOPAS is attributed to the anchoring of the polymer chains in the vicinity of HA nanoparticles owing to better dispersion and interfacial interactions. In comparison to neat TOPAS, hybrid composites of TOPAS/HA promoted the cell adhesion and proliferation significantly. The cell density and proliferation of TOPAS/HA hybrid composites is enhanced 9 and 3 folds, respectively, after 1 day culturing in preosteoblasts cells. Moreover, the morphology of cells changed from spherical to flattened spread morphology demonstrating clearly the migration of the cells for the formation of interconnected cellular network. Additionally, very few dead cells are found in hybrid composites showing their cytocompatibility. Overall, the hybrid composites of TOPAS/HA exhibited superior strength and stiffness along with enhanced cytocompatibility for bone tissue engineering applications. - Highlights: • TOPAS/HA hybrid composites exhibited enhanced mechanical properties owing to better dispersion and interaction of HA. • Without affecting the degradation rate, the

  15. The effect of soda immersion on nano hybrid composite resin discoloration

    Directory of Open Access Journals (Sweden)

    M. Chair Effendi

    2014-03-01

    Full Text Available Background: Composite resin is the tooth-colored restorative material which most of the people are fond of due to their aesthetic value. The composite resin discoloration may happen because of the intrinsic and extrinsic factors. Soda water is one of the beverages which can cause the composite resin discoloration. Purpose: The study was aimed to determine the effect of soda immersion on nano hybrid composite resin discoloration. Methods: The study was an experimental laboratory study using 100 shade A3 nano hybrid composite resin specimens with the diameter of 5 mm and density of 2mm. The samples were divided into 5 groups, each group was immersed in different beverages. The beverages were mineral water; lemon-flavored soda; strawberry-flavored soda; fruit punch-flavored soda; and orange-flavored soda for 3, 7, 14 and 21 days respectively, in the temperature of 37o C. The discoloration measurement utilizes Spectrophotometer, Vita Easy Shade, and uses CIEL*a*b* method. Results: The result showed that the duration of immersion in soda had an effect on the Nano hybrid composite resin discoloration. Strawberry and fruit punch- flavored soda were the most influential components toward the discoloration. Nevertheless, the generally-occurred discoloration was clinically acceptable (∆E ≤ 3,3. Conclusion: The study suggested that the soda immersion duration has effect on Nano hybrid composite resin discoloration.Latar belakang: Resin komposit adalah material sewarna gigi yang diminati masyarakat karena memiliki nilai estetik yang baik. Perubahan warna resin komposit dapat terjadi karena faktor intrinsik dan ekstrinsik. Minuman soda merupakan salah satu minuman yang dapat menyebabkan perubahan warna pada resin komposit. Tujuan: Tujuan dari penelitian ini untuk meneliti perubahan warna resin komposit nanohibrida akibat perendaman dalam minuman soda. Metode: Metode yang digunakan pada penelitian ini adalah eksperimental laboratorik dengan menggunakan

  16. Fabrication of Self-Healable and Patternable Polypyrrole/Agarose Hybrid Hydrogels for Smart Bioelectrodes.

    Science.gov (United States)

    Park, Nokyoung; Chae, Seung Chul; Kim, Il Tae; Hur, Jaehyun

    2016-02-01

    We present a new class of electrically conductive, mechanically moldable, and thermally self-healable hybrid hydrogels. The hybrid gels consist of polypyrrole and agarose as the conductive component and self-healable matrix, respectively. By using the appropriate oxidizing agent under conditions of mild temperature, the polymerization of pyrrole occurred along the three-dimensional network of the agarose hydrogel matrix. In contrast to most commercially available hydrogels, the physical crosslinking of agarose gel allows for reversible gelation in the case of our hybrid gel, which could be manipulated by temperature variation, which controls the electrical on/off behavior of the hybrid gel electrode. Exploiting this property, we fabricated a hybrid conductive hydrogel electrode which also self-heals thermally. The novel composite material we report here will be useful for many technological and biological applications, especially in reactive biomimetic functions and devices, artificial muscles, smart membranes, smart full organic batteries, and artificial chemical synapses.

  17. The concept of a novel hybrid smart composite reinforced with radially aligned zigzag carbon nanotubes on piezoelectric fibers

    International Nuclear Information System (INIS)

    Ray, M C

    2010-01-01

    A new hybrid piezoelectric composite (HPZC) reinforced with zigzag single-walled carbon nanotubes (CNTs) and piezoelectric fibers is proposed. The novel constructional feature of this composite is that the uniformly aligned CNTs are radially grown on the surface of piezoelectric fibers. A micromechanics model is derived to estimate the effective piezoelectric and elastic properties. It is found that the effective piezoelectric coefficient e 31 of the proposed HPZC, which accounts for the in-plane actuation, is significantly higher than that of the existing 1-3 piezoelectric composite without reinforcement with carbon nanotubes and the previously reported hybrid piezoelectric composite (Ray and Batra 2009 ASME J. Appl. Mech. 76 034503)

  18. Microstructural evolution and mechanical properties of Mg composites containing nano-B4C hybridized micro-Ti particulates

    International Nuclear Information System (INIS)

    Sankaranarayanan, S.; Sabat, R.K.; Jayalakshmi, S.; Suwas, S.; Gupta, M.

    2014-01-01

    In this work, the microstructural evolution and mechanical properties of extruded Mg composites containing micro-Ti particulates hybridized with varying contents of nano-B 4 C are investigated, and compared with Mg-5.6Ti. Microstructural characterization showed the presence of uniformly distributed micro-Ti particles embedded with nano-B 4 C particulates that resulted in significant grain refinement. Electron back scattered diffraction (EBSD) analyses of Mg-(5.6Ti + x-B 4 C) BM hybrid composites showed that the addition of hybridized particle resulted in relatively more recrystallized grains, realignment of basal planes and extension of weak basal fibre texture when compared to Mg-5.6Ti. The evaluation of mechanical properties indicated improved strength with ductility retention in Mg-(5.6Ti + x-B 4 C) BM hybrid composites. When compared to Mg-5.6Ti, the superior strength properties of the Mg-(5.6Ti + x-B 4 C) BM hybrid composites are attributed to the presence of nano-reinforcements, the uniform distribution of the hybridized particles, better interfacial bonding between the matrix and the reinforcement particles and the matrix grain refinement achieved by nano-B 4 C addition. The ductility enhancement obtained in hybrid composites can be attributed to the fibre texture spread and favourable basal plane orientation achieved due to nano B 4 C addition. - Highlights: • Micro-Ti particulates are hybridized with varying weight fractions of nano-B 4 C. • The hybrid mixture was used as hybrid reinforcements in magnesium. • Microstructure and mechanical properties of Mg-(5.6Ti + x-B 4 C) BM are compared with Mg-5.6Ti. • Electron back scattered diffraction (EBSD) analysis conducted to study the microtexture evolution

  19. Tailoring of transition metal alkoxides via complexation for the synthesis of hybrid organic-inorganic sols and gels

    International Nuclear Information System (INIS)

    Sanchez, C.; In, M.; Toledano, P.; Griesmar, P.

    1992-01-01

    This paper reports that the chemical control of hydrolysis-condensation reactions of transition metal alkoxides can be performed through the modification of the transition metal coordination sphere by using strong complexing ligands (SCL). Complexing organic groups can be bonded to the transition metal oxide network in two different ways, as network modifiers or network formers. Different illustrations of the role of complexing ligands on Ti(IV) and Zr(IV) alkoxides are presented. As a network modifier, SCL act as termination agents for condensation reactions allowing a control of particle growth. The complexing ligands being located at the periphery of the oxo core open many opportunities for colloid surface protection. SCL carrying organofunctional groups which exhibit non linear optical (NLO) properties have also been used as probes to study sol-gel transformations. SCL functionalized with organic polymerizable functions act as network formers

  20. Sol-Gel synthesis of MgO-SiO2 glass compositions having stable liquid-liquid immiscibility

    Science.gov (United States)

    Bansal, Narottam P.

    1987-01-01

    MgO-SiO2 glasses containing up to 15 mol % MgO, which could not have been prepared by the conventional glass melting method due to the presence of stable liquid-liquid immiscibility, were synthesized by the sol-gel technique. Clear and transparent gels were obtained from the hydrolysis and polycondensation of silicon tetraethoxide (TEOS) and magnesium nitrate hexahydrate when the water/TEOS mole ratio was four or more. The gelling time decreased with increase in magnesium content, water/TEOS ratio, and reaction temperature. Magnesium nitrate hexahydrate crystallized out of the gels containing 15 and 20 mol % MgO on slow drying. This problem was partially alleviated by drying the gels quickly at higher temperatures. Monolithic gel samples were prepared using glycerol as the drying control additive. The gels were subjected to various thermal treatments and characterized by several methods. No organic groups could be detected in the glasses after heat treatments to approx. 800 C, but trace amounts of hydroxyl groups were still present. No crystalline phase was found from X-ray diffraction in the gel samples to approx. 890 C. At higher temperatures, alpha quartz precipitated out as the crystalline phase in gels containing up to 10 mol % MgO. The overall activation energy for gel formation in 10MgO-90SiO2 (mol %) system for water/TEOS mole ratio of 7.5 was calculated to be 58.7 kJ/mol.

  1. Zirconia/Hydroxyapatite Composites Synthesized Via Sol-Gel: Influence of Hydroxyapatite Content and Heating on Their Biological Properties

    Science.gov (United States)

    Bollino, Flavia; Armenia, Emilia; Tranquillo, Elisabetta

    2017-01-01

    Zirconia (ZrO2) and zirconia-based glasses and ceramics are materials proposed for use in the dental and orthopedic fields. In this work, ZrO2 glass was modified by adding different amounts of bioactive and biocompatible hydroxyapatite (HAp). ZrO2/HAp composites were synthesized via the sol-gel method and heated to different temperatures to induce modifications of their chemical structure, as ascertained by Fourier transform infrared spectroscopy (FTIR) analysis. The aim was to investigate the effect of both HAp content and heating on the biological performances of ZrO2. The materials’ bioactivity was studied by soaking samples in a simulated body fluid (SBF). FTIR and scanning electron microscopy (SEM)) analyses carried out after exposure to SBF showed that all materials are bioactive, i.e., they are able to form a hydroxyapatite layer on their surface. Moreover, the samples were soaked in a solution containing bovine serum albumin (BSA). FTIR analysis proved that the synthesized materials are able to adsorb the blood protein, the first step of cell adhesion. WST-8 ([2-(2-methoxy-4-nitrophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium, monosodium salt]) assay showed that no cytotoxicity effects were induced by the materials’ extract. However, the results proved that bioactivity increases with both the HAp content and the temperature used for the thermal treatment, whereas biocompatibility increases with heating but is not affected by the HAp content. PMID:28773116

  2. Iron-based soft magnetic composites with Mn-Zn ferrite nanoparticles coating obtained by sol-gel method

    Science.gov (United States)

    Wu, Shen; Sun, Aizhi; Xu, Wenhuan; Zhang, Qian; Zhai, Fuqiang; Logan, Philip; Volinsky, Alex A.

    2012-11-01

    This paper focuses on iron-based soft magnetic composites which were synthesized by utilizing Mn-Zn ferrite nanoparticles to coat iron powder. The nanocrystalline iron powders, with an average particle diameter of 20 nm, were obtained via the sol-gel method. Scanning electron microscopy, energy dispersive X-ray spectroscopy and distribution maps show that the iron particle surface is covered with a thin layer of Mn-Zn ferrites. Mn-Zn ferrite uniformly coated the surface of the powder particles, resulting in a reduced imaginary permeability, increased electrical resistivity and a higher operating frequency of the synthesized magnets. Mn-Zn ferrite coated samples have higher permeability and lower magnetic loss when compared with the non-magnetic epoxy resin coated compacts. The real part of permeability increases by 33.5% when compared with the epoxy resin coated samples at 10 kHz. The effects of heat treatment temperature on crystalline phase formation and on the magnetic properties of the Mn-Zn ferrite were investigated via X-ray diffraction and a vibrating sample magnetometer. Ferrites decomposed to FeO and MnO after annealing above 400 °C in nitrogen; thus it is the optimum annealing temperature to attain the desired permeability.

  3. A Chip-Capillary Hybrid Device for Automated Transfer of Sample Pre-Separated by Capillary Isoelectric Focusing to Parallel Capillary Gel Electrophoresis for Two-Dimensional Protein Separation

    Science.gov (United States)

    Lu, Joann J.; Wang, Shili; Li, Guanbin; Wang, Wei; Pu, Qiaosheng; Liu, Shaorong

    2012-01-01

    In this report, we introduce a chip-capillary hybrid device to integrate capillary isoelectric focusing (CIEF) with parallel capillary sodium dodecyl sulfate – polyacrylamide gel electrophoresis (SDS-PAGE) or capillary gel electrophoresis (CGE) toward automating two-dimensional (2D) protein separations. The hybrid device consists of three chips that are butted together. The middle chip can be moved between two positions to re-route the fluidic paths, which enables the performance of CIEF and injection of proteins partially resolved by CIEF to CGE capillaries for parallel CGE separations in a continuous and automated fashion. Capillaries are attached to the other two chips to facilitate CIEF and CGE separations and to extend the effective lengths of CGE columns. Specifically, we illustrate the working principle of the hybrid device, develop protocols for producing and preparing the hybrid device, and demonstrate the feasibility of using this hybrid device for automated injection of CIEF-separated sample to parallel CGE for 2D protein separations. Potentials and problems associated with the hybrid device are also discussed. PMID:22830584

  4. Ballistic Impact Response of Woven Hybrid Coir/Kevlar Laminated Composites

    Directory of Open Access Journals (Sweden)

    Azrin Hani A.R

    2016-01-01

    Full Text Available The effects of different laminated hybrid composites stacking configuration subjected to ballistic impact were investigated. The hybrid composites consist of woven coir (C and woven Kevlar (K layers laminated together. The samples of woven coir were prepared using handloom device. The composites were produced by stacking the laminated woven coir and Kevlar alternately with the presence of the binder. The samples were tested under ballistic impact with different stacking configuration. The results obtained had successfully achieved the National Institute of Justice (NIJ standard level IIA with energy absorption of 435.6 kJ and 412.2 kJ under the projectile speed of between 330 m/s and 321 m/s respectively. Samples that having Kevlar layer at the front face and woven coir layer as back face achieved partial penetration during projectile impact. This orientation is proven to have good impact energy absorption and able to stop projectile at the second panel of the composites.

  5. Synthesis of LiFePO4/C composites based on natural iron stone using a sol gel method

    Science.gov (United States)

    Angela, Riyan; Islam, Humaatul; Sari, Vamellia; Latif, Chaironi; Zainuri, Mochamad; Pratapa, Suminar

    2017-01-01

    Synthesis of LiFePO4/C composites has been carried out using a sol gel method. The Fe precursor was made from a natural iron stone of Tanah Laut, South Kalimantan, while the other raw materials were commercial Li2CO3 powder and NH4H2PO4 powder with HCl and water as solvents. Citric acid was used as the carbon source in the synthesis. This study used a molar ratio of 1:1:2 for Li:Fe:P with variation of added citric acid of 1.5 and 2.5 g. The solutions were dried in air at 100°C. The dried powders were characterized using DSC-TGA and then calcined at 600 and 700°C under argon environment for 10 hours. The calcined powders were characterized by X-ray diffractometry (XRD), scanning electron microscopy-energy dispersive x-ray (SEM-EDX), and LCR meter. It was found that the samples contained LiFePO4 as the dominant phase and LiFeP2O7 and Fe2O3 as secondary phases. The analysis showed that the addition of citric acid influenced the electronic conductivity of the composites. A Rietveld relative weight fraction of up to 94.7% was achieved in the synthesis at temperature 600°C. The LFP/C sample exhibited electronic conductivity of 4.56×10-3 Scm-1 which was six times of that of the pure LFP.

  6. Rheological Enhancement of Pork Myofibrillar Protein-Lipid Emulsion Composite Gels via Glucose Oxidase Oxidation/Transglutaminase Cross-Linking Pathway.

    Science.gov (United States)

    Wang, Xu; Xiong, Youling L; Sato, Hiroaki

    2017-09-27

    Porcine myofibrillar protein (MP) was modified with glucose oxidase (GluOx)-iron that produces hydroxyl radicals then subjected to microbial transglutaminase (TGase) cross-linking in 0.6 M NaCl at 4 °C. The resulting aggregation and gel formation of MP were examined. The GluOx-mediated oxidation promoted the formation of both soluble and insoluble protein aggregates via disulfide bonds and occlusions of hydrophobic groups. The subsequent TGase treatment converted protein aggregates into highly cross-linked polymers. MP-lipid emulsion composite gels formed with such polymers exhibited markedly enhanced gelling capacity: up to 4.4-fold increases in gel firmness and 3.5-fold increases in gel elasticity over nontreated protein. Microstructural examination showed small oil droplets dispersed in a densely packed gel matrix when MP was oxidatively modified, and the TGase treatment further contributed to such packing. The enzymatic GluOx oxidation/TGase treatment shows promise to improve the textural properties of emulsified meat products.

  7. Experimental Investigation of the Piezoresistive Properties of Cement Composites with Hybrid Carbon Fibers and Nanotubes

    Directory of Open Access Journals (Sweden)

    Seung-Jung Lee

    2017-11-01

    Full Text Available Cement-based sensors with hybrid conductive fillers using both carbon fibers (CFs and multi-walled carbon nanotubes (MWCNTs were experimentally investigated in this study. The self-sensing capacities of cement-based composites with only CFs or MWCNTs were found based on preliminary tests. The results showed that the percolation thresholds of CFs and MWCNTs were 0.5–1.0 vol.% and 1.0 vol.%, respectively. Based on these results, the feasibility of self-sensing composites with four different amounts of CFs and MWCNTs was considered under cyclic compression loads. When the amount of incorporated CFs increased and the amount of incorporated MWCNTs decreased, the self-sensing capacity of the composites was reduced. It was concluded that cement-based composites containing both 0.1 vol.% CFs and 0.5 vol.% MWCNTs could be an alternative to cement-based composites with 1.0 vol.% MWCNTs in order to achieve equivalent self-sensing performance at half the price. The gauge factor (GF for that composite was 160.3 with an R-square of 0.9274 in loading stages I and II, which was similar to the GF of 166.6 for the composite with 1.0 vol.% MWCNTs.

  8. Vacuum infusion method for woven carbon/Kevlar reinforced hybrid composite

    Science.gov (United States)

    Hashim, N.; Majid, D. L.; Uda, N.; Zahari, R.; Yidris, N.

    2017-12-01

    The vacuum assisted resin transfer moulding (VaRTM) or Vacuum Infusion (VI) is one of the fabrication methods used for composite materials. Compared to other methods, this process costs lower than using prepregs because it does not need to use the autoclave to cure. Moreover, composites fabricated using this VI method exhibit superior mechanical properties than those made through hand layup process. In this study, the VI method is used in fabricating woven carbon/Kevlar fibre cloth with epoxy matrix. This paper reports the detailed methods on fabricating the hybrid composite using VI process and several precautions that need to be taken to avoid any damage to the properties of the composite material. The result highlights that the successfully fabricated composite has approximately 60% of fibres weight fraction. Since the composites produced by the VI process have a higher fibre percentage, this process should be considered for composites used in applications that are susceptible to the conditions where the fibres need to be the dominant element such as in tension loading.

  9. Adsorption of Pb(II) using silica gel composite from rice husk ash modified 3-aminopropyltriethoxysilane (APTES)-activated carbon from coconut shell

    Science.gov (United States)

    Yusmaniar, Purwanto, Agung; Putri, Elfriyana Awalita; Rosyidah, Dzakiyyatur

    2017-03-01

    Silica gel modified by 3-aminopropyltriethoxysilane (APTES) was synthesized from rice husk ash combined with activated carbon from coconut shell yielded the composite adsorbent. The composite was characterized by Fourier Transform Infra Red spectroscopy (FT-IR), Electron Dispersive X-Ray (EDX), Surface Area Analyzer (SAA) and adsorption test by Atomic Absorption Spectrometry (AAS). This composite adsorbent has been used moderately for the removal of lead ions from metal solutions and compared with silica gel modified APTES and activated carbon. The adsorption experiments of Pb -ions by adsorbents were performed at different pH and contact time with the same metal solutions concentration, volume solution, and adsorbent dosage. The optimum pH for the adsorption was found to be 5.0 and the equilibrium was achieved for Pb with 20 min of contact time. Pb ions adsorption by composite silica gel modified APTES-activated carbon followed by Langmuir isotherm model with qmax value of 46.9483 mg/g that proved an adsorbent mechanism consistent to the mechanism of monolayer formation.

  10. Mechanical Properties of SiC, Al2O3 Reinforced Aluminium 6061-T6 Hybrid Matrix Composite

    Science.gov (United States)

    Murugan, S. Senthil; Jegan, V.; Velmurugan, M.

    2018-04-01

    This paper contains the investigation of tensile, compression and impact characterization of SiC, Al2O3 reinforced Aluminium 6061-T6 matrix hybrid composite. Hybrid matrix composite fabrication was done by stir casting method. An attempt has been made by keeping Al2O3 percentage (7%) constant and increasing SiC percentage (10, 15, and 20%). After fabricating, the samples were prepared and tested to find out the various mechanical properties like tensile, compressive, and impact strength of the developed composites of different weight % of silicon carbide and Alumina in Aluminium alloy. The main objective of the study is to compare the values obtained and choose the best composition of the hybrid matrix composite from the mechanical properties point of view.

  11. A Randomized 10-year Prospective Follow-up of Class II Nanohybrid and Conventional Hybrid Resin Composite Restorations

    DEFF Research Database (Denmark)

    van Dijken, Jan Wv; Pallesen, Ulla

    2014-01-01

    Purpose: To evaluate the 10-year durability of a nanohybrid resin composite in Class II restorations in a randomized controlled intraindividual comparison with its conventional hybrid resin composite predecessor. Materials and Methods: Each of 52 participants received at least two Class II...... restorations that were as similar as possible. The cavities were chosen at random to be restored with a nanohybrid resin composite (Excite/Tetric EvoCeram (TEC); n = 61) and a conventional hybrid (Excite/Tetric Ceram (TC); n = 61). The restorations were evaluated with slightly modified USPHS criteria...... investigated resin composites. Conclusion: The nanohybrid and the conventional hybrid resin composite showed good clinical effectiveness in extensive Class II restorations during the 10-year study....

  12. Insect damages on structural, morphologic and composition of Bt maize hybrids to silage

    Directory of Open Access Journals (Sweden)

    Geraldo Balieiro Neto

    2013-03-01

    Full Text Available It was aimed to evaluate the effect of insect damage on the morphologic and structural characteristics and chemical composition from maize hybrids DKB 390 and AG 8088 with the Cry1Ab trait versus its nonbiotech counterpart. The GMO did not receive insecticide application and the conventional hybrids received one deltametrina (2.8% application at 42 days. The damages caused bySpodoptera frugiperda and Helicoverpa zea in hybrids with Cry1Ab were smaller than its nonbiotech counterpart. After harvest, 95 days after seedling plants were separated in stalks, ears, leafs, dead leafs and floral pennant. The experimental design was randomized block in factorial arrangement 2 x 2. The height of plant and height of ear, percentage and amount of dead leafs from hybrids with the Cry1Ab were higher than its nonbiotech counterpart. There was higher nutrients transfer from stalks to grain filling and smaller rate stalks:ear on transgenic plant. The quality of the transgenic plants can be better when harvest earlier, by increasing no fiber carbohydrates, but when harvest latter, by increasing stalk percentage and stalk lignin content.

  13. Onion Hybrid Seed Production: Relation with Nectar Composition and Flower Traits.

    Science.gov (United States)

    Soto, Veronica C; Caselles, Cristian A; Silva, Maria F; Galmarini, Claudio R

    2018-05-28

    Onion (Allium cepa L.) is one of the main vegetable crops. Pollinators are required for onion seed production, being honeybees the most used. Around the world, two types of onion varieties are grown: open pollinated (OP) and hybrids. Hybrids offer numerous advantages to growers, but usually have lower seed yields than OP cultivars, which in many cases compromise the success of new hybrids. As pollination is critical for seed set, understanding the role of floral rewards and attractants to pollinator species is the key to improve crop seed yield. In this study, the correlation of nectar-analyzed compounds, floral traits, and seed yield under open field conditions in two experimental sites was determined. Nectar composition was described through the analysis of sugars, phenol, and alkaloid compounds. Length and width of the style and tepals of the flowers were measured to describe floral traits. Floral and nectar traits showed differences among the studied lines. For nectar traits, we found a significant influence of the environment where plants were cultivated. Nonetheless, flower traits were not influenced by the experimental sites. The OP and the male-sterile lines (MSLs) showed differences in nectar chemical composition and floral traits. In addition, there were differences between and within MSLs, some of which were correlated with seed yield, bringing the opportunity to select the most productive MSL, using simple determinations of morphological characters like the length of the style or tepals size.

  14. Morpho-Productive and Chemical Composition of Local and Foreign Sweet Corn Hybrids Grown in the Conditions of Transylvania Plateau

    Directory of Open Access Journals (Sweden)

    Luana PĂCURAR

    2017-11-01

    Full Text Available Sweet corn (Zea mays L. belongs to the Gramineae family, var. rugosa (Bonof convar. Saccharate (Sturt. and can be distinguished from normal corn by presence of one or more mutant genes that affect carbohydrate metabolism in endosperm. Purpose of this research is to compare behavior of sweet corn hybrids created at SCDA Turda, but also foreign hybrids, in terms of quality elements and chemical composition, in conditions of Transylvania plateau, in two localities: Turda and Viişoara. As biological material following domestic sweet corn hybrids were chosen: ‘Prima’, ‘Estival’, ‘Deliciul verii’, ‘Dulcin’, ‘Delicios’, ‘Estival M’ and foreign hybrid ‘Jubilee’. These hybrids were also analyzed in terms of chemical composition. Weight of ‘Estival’ hybrid has the best behavior in both localities; as regards to cobs length, ‘Delicios’ hybrid has registered increases very significant positive, differences between plant height in the two localities confirm significant influence of environment on formation of this important typical qualitative characteristics, highest performances in terms of β-cryptoxanthin and zeaxanthin content, are recorded by ‘Jubilee’ in both localities, ‘Deliciul Verii’ hybrid records significant value for lutein content, also recording an important addition of carbohydrates in Turda, ‘Prima’ and ‘Estival’ hybrids recorded highest values of sucrose in both localities.

  15. Effect of hybrid fiber reinforcement on the cracking process in fiber reinforced cementitious composites

    DEFF Research Database (Denmark)

    Pereira, Eduardo B.; Fischer, Gregor; Barros, Joaquim A.O.

    2012-01-01

    The simultaneous use of different types of fibers as reinforcement in cementitious matrix composites is typically motivated by the underlying principle of a multi-scale nature of the cracking processes in fiber reinforced cementitious composites. It has been hypothesized that while undergoing...... tensile deformations in the composite, the fibers with different geometrical and mechanical properties restrain the propagation and further development of cracking at different scales from the micro- to the macro-scale. The optimized design of the fiber reinforcing systems requires the objective...... materials is carried out by assessing directly their tensile stress-crack opening behavior. The efficiency of hybrid fiber reinforcements and the multi-scale nature of cracking processes are discussed based on the experimental results obtained, as well as the micro-mechanisms underlying the contribution...

  16. Nanocrystal/sol-gel nanocomposites

    Science.gov (United States)

    Petruska, Melissa A [Los Alamos, NM; Klimov, Victor L [Los Alamos, NM

    2007-06-05

    The present invention is directed to solid composites including colloidal nanocrystals within a sol-gel host or matrix and to processes of forming such solid composites. The present invention is further directed to alcohol soluble colloidal nanocrystals useful in formation of sol-gel based solid composites.

  17. Effects of Kenaf Fiber Orientation on Mechanical Properties and Fatigue Life of Glass/Kenaf Hybrid Composites

    Directory of Open Access Journals (Sweden)

    Mohaiman Jaffar Sharba

    2015-12-01

    Full Text Available The objectives of this work were to investigate the effect of kenaf fiber alignment on the mechanical and fatigue properties of kenaf/glass hybrid sandwich composites. Three types of kenaf fibers were used, namely, non-woven random mat, unidirectional twisted yarn, and plain-woven kenaf. A symmetric sandwich configuration was constructed with glass as the shell and kenaf as the core with a constant kenaf/glass weight ratio of 30/70% and a volume fraction of 35%. Tensile, compression, flexural, and fully reversed fatigue tests were conducted, and a morphological study of the tensile failure surface of each hybrid composite was carried out. The non-woven mat kenaf hybrid had poor properties for all tests, while the unidirectional kenaf hybrid composite possessed higher tensile strength and similar compressive properties compared with the woven kenaf. Hybridization with kenaf fibers improved the fatigue degradation coefficient of the final composites to 6.2% and 6.4% for woven and unidirectional kenaf, respectively, compared with 7.9% for non-woven. Because woven kenaf hybrid composite is lightweight, environment friendly, and has a considerable balance in static and fatigue strengths with low fatigue sensitivity in bidirectional planes compared to glass, it is strongly recommended for structural applications.

  18. Hydrogen storage behaviors of Ni-doped graphene Oxide/MIL-101 hybrid composites.

    Science.gov (United States)

    Lee, Seul-Yi; Park, Soo-Jin

    2013-01-01

    In this work, Ni-doped graphene oxide/MIL-101 hybrid composites (Ni--GO/MIL) were prepared to investigate their hydrogen storage behaviors. Ni--GO/MIL was synthesized by adding Ni--GO in situ during the synthesis of MIL-101 using a hydrothermal process, which was conducted by conventional convection heating with Cr(III) ion as a metal center and telephthalic acid as organic ligands. The crystalline structures and morphologies were measured by X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. The specific surface area and micropore volume were investigated by N2/77 K adsorption isotherms using the Brunauer-Emmett-Teller (BET) method and Dubinin-Radushkevic (D-R) equation, respectively. The hydrogen storage capacity was investigated by BEL-HP at 77 K and 1 bar. The obtained results show that Ni--GO/MIL presents new directions for achieving novel hybrid materials with higher hydrogen storage capacity.

  19. Tension-Compression Fatigue Behavior of Plain Woven Kenaf/Kevlar Hybrid Composites

    Directory of Open Access Journals (Sweden)

    Suhad D. Salman

    2016-02-01

    Full Text Available The applications of hybrid natural/synthetic reinforced polymer composites have been rapidly gaining market share in structural applications due to their remarkable characteristics and the fact that most of the components made of these materials are subjected to cyclic loading. Their fatigue properties have received a lot of attention because predicting their behavior is a challenge due to the effects of the synergies between the fibers. The purpose of this work is to characterize the tension, compression, and tensile-compression fatigue behavior of six layers of Kevlar hybridized with one layer of woven kenaf reinforced epoxy, at a 35% weight fraction. Fatigue tests were carried out and loaded cyclically at 60%, 70%, 80%, and 90% of their ultimate compressive stress. The results give a complete description for tensile and compression properties and could be used to predict fatigue-induced failure mechanisms.

  20. Morphology of one-time coated palladium-alumina composite membrane prepared by sol-gel process and electroless plating technique

    Science.gov (United States)

    Sari, R.; Dewi, R.; Pardi; Hakim, L.; Diana, S.

    2018-03-01

    Palladium coated porous alumina ceramic membrane tube was obtained using a combination of sol-gel process and electroless plating technique. The thickness, structure and composition of palladium-alumina composite membrane were analyzed by transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy-dispersive X-ray (EDX), and atomic force microscopy (AFM). Palladium particle size was 6.18 to 7.64 nm. Palladium membrane with thickness of approximately 301.5 to 815.1 nm was formed at the outer surface of the alumina layer. EDX data confirmed the formation of palladium-alumina membrane containing 45% of palladium. From this research it shows the combination of sol-gel process and electroless plating technique with one-time coating can produce a homogeneous and smoother palladium nano layer film on alumina substrate.

  1. Hybrid carbon-glass fiber/toughened epoxy thick composites subject to drop-weight and ballistic impacts

    Science.gov (United States)

    Sevkat, Ercan

    The goals of this study are to investigate the low velocity and ballistic impact response of thick-section hybrid fiber composites at room temperature. Plain-woven S2-Glass and IM7 Graphite fabrics are chosen as fiber materials reinforcing the SC-79 epoxy. Four different types of composites consisting of alternating layers of glass and graphite woven fabric sheets are considered. Tensile tests are conducted using 98 KN (22 kip) MTS testing machine equipped with environmental chamber. Low-velocity impact tests are conducted using an Instron-Dynatup 8250 impact test machine equipped with an environmental chamber. Ballistic impact tests are performed using helium pressured high-speed gas-gun. Tensile tests results were used to define the material behavior of the hybrid and non-hybrid composites in Finite Element modeling. The low velocity and ballistic impact tests showed that hybrid composites performance was somewhere between non-hybrid woven composites. Using woven glass fabrics as outer skin improved the impact performance of woven graphite composite. However hybrid composites are prone to delamination especially between dissimilar layers. The ballistic limit velocity V50 hybrid composites were higher that of woven graphite composite and lower than that of woven glass composite. Both destructive cross-sectional micrographs and nondestructive ultrasonic techniques are used to evaluate the damage created by impact. The Finite Element code LS-DYNA is chosen to perform numerical simulations of low velocity and ballistic impact on thick-section hybrid composites. The damage progression in these composites shows anisotropic nonlinearity. The material model to describe this behavior is not available in LS-DYNA material library. Initially, linear orthotropic material with damage (Chan-Chan Model) is employed to simulate some of the experimental results. Then, user-defined material subroutine is incorporated into LS-DYNA to simulate the nonlinear behavior. The

  2. Fuel composition effect on cathode airflow control in fuel cell gas turbine hybrid systems

    Science.gov (United States)

    Zhou, Nana; Zaccaria, Valentina; Tucker, David

    2018-04-01

    Cathode airflow regulation is considered an effective means for thermal management in solid oxide fuel cell gas turbine (SOFC-GT) hybrid system. However, performance and controllability are observed to vary significantly with different fuel compositions. Because a complete system characterization with any possible fuel composition is not feasible, the need arises for robust controllers. The sufficiency of robust control is dictated by the effective change of operating state given the new composition used. It is possible that controller response could become unstable without a change in the gains from one state to the other. In this paper, cathode airflow transients are analyzed in a SOFC-GT system using syngas as fuel composition, comparing with previous work which used humidified hydrogen. Transfer functions are developed to map the relationship between the airflow bypass and several key variables. The impact of fuel composition on system control is quantified by evaluating the difference between gains and poles in transfer functions. Significant variations in the gains and the poles, more than 20% in most cases, are found in turbine rotational speed and cathode airflow. The results of this work provide a guideline for the development of future control strategies to face fuel composition changes.

  3. Nucleic acids in mummified plant seeds: screening of twelve specimens by gel-electrophoresis, molecular hybridization and DNA cloning.

    Science.gov (United States)

    Rollo, F; La Marca, A; Amici, A

    1987-02-01

    Twelve seed specimens of varying ages and from different archaeological sites were analyzed for the presence of polymerized DNA and RNA. Amongst the samples tested, one of Vitis vinifera from an archaeological site in Iran (2,000-3,000 B.C.) was found to be completely devoid of nucleic acids. Zea mais seeds of Precolumbial age from Peru (about 800 A.D.) contained depolymerized DNA and RNA. Samples of Vitis vinifera and Rubus sp. from a Lombard archaeological site (800 A.D.) as well as radiocarbon dated seeds from the site of the "Spring Sanctuary" near Metaponto (I-IV century B.C.) were found to contain polymerized DNA and rRNA bands. However the electrophoretic properties of the rRNAs in one case and hybridization experiments performed with cloned seed DNA in the other, clearly demonstrated that the polymerized nucleic acids were not of plant origin.

  4. A finite element modeling of a multifunctional hybrid composite beam with viscoelastic materials

    Science.gov (United States)

    Wang, Ya; Inman, Daniel J.

    2013-04-01

    The multifunctional hybrid composite structure studied here consists of a ceramic outer layer capable of withstanding high temperatures, a functionally graded ceramic layer combining shape memory alloy (SMA) properties of NiTi together with Ti2AlC (called Graded Ceramic/Metal Composite, or GCMeC), and a high temperature sensor patch, followed by a polymer matrix composite laced with vascular cooling channels all held together with various epoxies. Due to the recoverable nature of SMA and adhesive properties of Ti2AlC, the damping behavior of the GCMeC is largely viscoelastic. This paper presents a finite element formulation for this multifunctional hybrid structure with embedded viscoelastic material. In order to implement the viscoelastic model into the finite element formulation, a second order three parameter Golla-Hughes-McTavish (GHM) method is used to describe the viscoelastic behavior. Considering the parameter identification, a strategy to estimate the fractional order of the time derivative and the relaxation time is outlined. The curve-fitting aspects of both GHM and ADF show good agreement with experimental data obtained from dynamic mechanics analysis. The performance of the finite element of the layered multifunctional beam is verified through experimental model analysis.

  5. The composition of cell walls from grape skin in Vitis vinifera intraspecific hybrids.

    Science.gov (United States)

    Apolinar-Valiente, Rafael; Gómez-Plaza, Encarna; Terrier, Nancy; Doco, Thierry; Ros-García, José María

    2017-09-01

    Monastrell is a red grape cultivar adapted to the dry environmental conditions of Murcia, SE Spain. Its berries seem to be characterized by a rigid cell wall structure, which could make difficult the winemaking process. Cabernet Sauvignon cultivar is used to complement Monastrell wines in this region owing to its high phenolic content with high extractability. This study explores the skin cell wall composition of grapes from plants resulting from intraspecific crosses of Vitis vinifera cultivars Monastrell × Cabernet Sauvignon. Moreover, the morphology of the cell wall material (CWM) from some representative samples was visualized by transmission optical microscopy. The total sugar content of CWM from nine out of ten genotypes of the progeny was lower than that from Monastrell. Seven out of ten genotypes showed lower phenolic content than Cabernet Sauvignon. The CWM from nine out of ten hybrids presented lower protein content than that from Monastrell. This study confirms that skin cell walls from Monastrell × Cabernet Sauvignon hybrid grapes presented major differences in composition compared with their parents. These data could help in the development of new cultivars adapted to the dry conditions of SE Spain and with a cell wall composition favouring extractability. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  6. Effect of different polishing systems on the surface roughness of nano-hybrid composites.

    Science.gov (United States)

    Patel, Brijesh; Chhabra, Naveen; Jain, Disha

    2016-01-01

    The study aimed to investigate the influence of different polishing systems on the surface roughness of nano-hybrid composite resins. Different shapes of polishing systems are available according to the site of work. To minimize variability, a new system with single shape is developed that can be utilized in both anterior as well as posterior teeth. Seventy composite discs were fabricated using Teflon well (10 mm × 3 mm). Two main group of nano-hybrid composite Group I - Filtek Z350 and Group II - Tetric N-Ceram were used (n = 35 for each group). Both groups were further divided into four subgroups. Subgroup a - OneGloss (n = 10), Subgroup b - PoGo (n = 10), Subgroup c - Sof-Lex spiral (n = 10), Subgroup d - Mylar strip (control, n = 5). Samples were polished according to the manufacturer's recommendations. Surface roughness test was performed using contact profilometer. The obtained data were analyzed using the one-way analysis of variance test. Tetric N-Ceram produced smoother surfaces than Filtek Z350 (P OneGloss" (P OneGloss" and "Sof-Lex Spiral."

  7. Cutting Modeling of Hybrid CFRP/Ti Composite with Induced Damage Analysis

    Science.gov (United States)

    Xu, Jinyang; El Mansori, Mohamed

    2016-01-01

    In hybrid carbon fiber reinforced polymer (CFRP)/Ti machining, the bi-material interface is the weakest region vulnerable to severe damage formation when the tool cutting from one phase to another phase and vice versa. The interface delamination as well as the composite-phase damage is the most serious failure dominating the bi-material machining. In this paper, an original finite element (FE) model was developed to inspect the key mechanisms governing the induced damage formation when cutting this multi-phase material. The hybrid composite model was constructed by establishing three disparate physical constituents, i.e., the Ti phase, the interface, and the CFRP phase. Different constitutive laws and damage criteria were implemented to build up the entire cutting behavior of the bi-material system. The developed orthogonal cutting (OC) model aims to characterize the dynamic mechanisms of interface delamination formation and the affected interface zone (AIZ). Special focus was made on the quantitative analyses of the parametric effects on the interface delamination and composite-phase damage. The numerical results highlighted the pivotal role of AIZ in affecting the formation of interface delamination, and the significant impacts of feed rate and cutting speed on delamination extent and fiber/matrix failure. PMID:28787824

  8. Sol-Gel Glasses

    Science.gov (United States)

    Mukherjee, S. P.

    1985-01-01

    Multicomponent homogeneous, ultrapure noncrystalline gels/gel derived glasses are promising batch materials for the containerless glass melting experiments in microgravity. Hence, ultrapure, homogeneous gel precursors could be used to: (1) investigate the effect of the container induced nucleation on the glass forming ability of marginally glass forming compositions; and (2) investigate the influence of gravity on the phase separation and coarsening behavior of gel derived glasses in the liquid-liquid immiscibility zone of the nonsilicate systems having a high density phase. The structure and crystallization behavior of gels in the SiO2-GeO2 as a function of gel chemistry and thermal treatment were investigated. As are the chemical principles involved in the distribution of a second network former in silica gel matrix being investigated. The procedures for synthesizing noncrystalline gels/gel-monoliths in the SiO2-GeO2, GeO2-PbO systems were developed. Preliminary investigations on the levitation and thermal treatment of germania silicate gel-monoliths in the Pressure Facility Acoustic Levitator were done.

  9. Mechanical properties of banana/kenaf fiber-reinforced hybrid polyester composites: Effect of woven fabric and random orientation

    International Nuclear Information System (INIS)

    Alavudeen, A.; Rajini, N.; Karthikeyan, S.; Thiruchitrambalam, M.; Venkateshwaren, N.

    2015-01-01

    Highlights: • This paper is presents the fabrications of kenaf/banana fiber hybrid composites. • Effect of weaving pattern and random orientation on mechanical properties was studied. • Role of interfacial adhesion due to chemical modifications were analyzed with the aid of SEM. • Hybridization of kenaf and banana fibers in plain woven composites exhibits maximum mechanical strength. - Abstract: The present work deals with the effect of weaving patterns and random orientatation on the mechanical properties of banana, kenaf and banana/kenaf fiber-reinforced hybrid polyester composites. Composites were prepared using the hand lay-up method with two different weaving patterns, namely, plain and twill type. Of the two weaving patterns, the plain type showed improved tensile properties compared to the twill type in all the fabricated composites. Furthermore, the maximum increase in mechanical strength was observed in the plain woven hybrid composites rather than in randomly oriented composites. This indicates minimum stress development at the interface of composites due to the distribution of load transfer along the fiber direction. Moreover, alkali (NaOH) and sodium lauryl sulfate (SLS) treatments appear to provide an additional improvement in mechanical strength through enhanced interfacial bonding. Morphological studies of fractured mechanical testing samples were performed by scanning electron microscopy (SEM) to understand the de-bonding of fiber/matrix adhesion

  10. Perspectives on State-of-the-Art Carbon Nanotube/Polyaniline and Graphene/Polyaniline Composites for Hybrid Supercapacitor Electrodes.

    Science.gov (United States)

    Srikanth, Vadali V S S; Ramana, Gedela Venkata; Kumar, Puttapati Sampath

    2016-03-01

    Supercapacitors are attractive alternative energy storage sources. They offer high energy/power density with other characteristics like fast discharge/charge time, long operation stability, safety etc. In a supercapacitor, working electrode material is the principal constituent. At present there are numerous electrode materials (with properties) suitable for their use in hybrid type supercapacitors. Carbon/polyaniline (PANi) composites are one class of such electrode materials. Here, perspectives on state-of-the-art carbon/PANi composites namely carbon nanotube/polyaniline and graphene/polyaniline composites expedient as hybrid type supercapacitor electrode materials will be presented.

  11. Lithological discrimination of accretionary complex (Sivas, northern Turkey) using novel hybrid color composites and field data

    Science.gov (United States)

    Özkan, Mutlu; Çelik, Ömer Faruk; Özyavaş, Aziz

    2018-02-01

    One of the most appropriate approaches to better understand and interpret geologic evolution of an accretionary complex is to make a detailed geologic map. The fact that ophiolite sequences consist of various rock types may require a unique image processing method to map each ophiolite body. The accretionary complex in the study area is composed mainly of ophiolitic and metamorphic rocks along with epi-ophiolitic sedimentary rocks. This paper attempts to map the Late Cretaceous accretionary complex in detail in northern Sivas (within İzmir-Ankara-Erzincan Suture Zone in Turkey) by the analysis of all of the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) bands and field study. The new two hybrid color composite images yield satisfactory results in delineating peridotite, gabbro, basalt, and epi-ophiolitic sedimentary rocks of the accretionary complex in the study area. While the first hybrid color composite image consists of one principle component (PC) and two band ratios (PC1, 3/4, 4/6 in the RGB), the PC5, the original ASTER band 4 and the 3/4 band ratio images were assigned to the RGB colors to generate the second hybrid color composite image. In addition to that, the spectral indices derived from the ASTER thermal infrared (TIR) bands discriminate clearly ultramafic, siliceous, and carbonate rocks from adjacent lithologies at a regional scale. Peridotites with varying degrees of serpentinization illustrated as a single color were best identified in the spectral indices map. Furthermore, the boundaries of ophiolitic rocks based on fieldwork were outlined in detail in some parts of the study area by superimposing the resultant maps of ASTER maps on Google Earth images of finer spatial resolution. Eventually, the encouraging geologic map generated by the image analysis of ASTER data strongly correlates with lithological boundaries from a field survey.

  12. Concept selection of car bumper beam with developed hybrid bio-composite material

    International Nuclear Information System (INIS)

    Davoodi, M.M.; Sapuan, S.M.; Ahmad, D.; Aidy, A.; Khalina, A.; Jonoobi, Mehdi

    2011-01-01

    Highlights: → We simulate the low impact test by Abaqus Ver16R9 using the same material model. → Six different weighted criteria were discussed to nominate the best concept. → Double Hat Profile showed the best concept to fulfil the defined PDS. → Geometric parameters may overcome the weak inherent properties of bio composite. → Toughened bio-composite material may employ in structural automotive components. -- Abstract: Application of natural fibre composites is going to increase in different areas caused by environmental, technical and economic advantages. However, their low mechanical properties have limited their particular application in automotive structural components. Hybridizations with other reinforcements or matrices can improve mechanical properties of natural fibre composite. Moreover, geometric optimizations have a significant role in structural strength improvement. This study focused on selecting the best geometrical bumper beam concept to fulfill the safety parameters of the defined product design specification (PDS). The mechanical properties of developed hybrid composite material were considered in different bumper beam concepts with the same frontal curvature, thickness, and overall dimensions. The low-speed impact test was simulated under the same conditions in Abaqus V16R9 software. Six weighted criteria, which were deflection, strain energy, mass, cost, easy manufacturing, and the rib possibility were analyzed to form an evaluation matrix. Topsis method was employed to select the best concept. It is concluded that double hat profile (DHP) with defined material model can be used for bumper beam of a small car. In addition, selected concept can be strengthened by adding reinforced ribs or increasing the thickness of the bumper beam to comply with the defined PDS.

  13. Buckling behavior of fiber reinforced plastic–metal hybrid-composite beam

    International Nuclear Information System (INIS)

    Eksi, Secil; Kapti, Akin O.; Genel, Kenan

    2013-01-01

    Highlights: ► We developed a new plastic–metal hybrid-composite tubular beam structure. ► This structure offers innovative design solutions with weight reduction. ► It prevents premature buckling without adding significant weight to the structure. ► The composite interaction gives better mechanical properties to the products. ► Buckling and bending loads of the beam increased 3.2 and 7.6 times, respectively. - Abstract: It is known that the buckling is characterized by a sudden failure of a structural member subjected to high compressive load. In this study, the buckling behavior of the aluminum tubular beam (ATB) was analyzed using finite element (FE) method, and the reinforcing arrangements as well as its combinations were decided for the composite beams based on the FE results. Buckling and bending behaviors of thin-walled ATBs with internal cast polyamide (PA6) and external glass and carbon fiber reinforcement polymers (GFRPs and CFRPs) were investigated systematically. Experimental studies showed that the 219% increase in buckling load and 661% in bending load were obtained with reinforcements. The use of plastics and metal together as a reinforced structure yields better mechanical performance properties such as high resistance to buckling and bending loads, dimensional stability and high energy absorption capacity, including weight reduction. While the thin-walled metallic component provides required strength and stiffness, the plastic component provides the support necessary to prevent premature buckling without adding significant weight to the structure. It is thought that the combination of these materials will offer a promising new focus of attention for designers seeking more appropriate composite beams with high buckling loads beside light weight. The developed plastic–metal hybrid-composite structure is promising especially for critical parts serving as a support member of vehicles for which light weight is a critical design

  14. Effect of interfacial composition and crumbliness on aroma release in soy protein/sugar beet pectin mixed emulsion gels.

    Science.gov (United States)

    Hou, Jun-Jie; Guo, Jian; Wang, Jin-Mei; Yang, Xiao-Quan

    2016-10-01

    In this study, soy protein isolate/sugar beet pectin (SPI/SBP) emulsion gels were prepared through an enzymatic gelation process. The effects of emulsifier (SBP, SPI or SPI/SBP complex) and emulsification process on the microstructure, texture, breakdown properties and aroma release behavior of resulting emulsion gels were investigated. Oil emulsification by SBP/SPI complex resulted in a higher amount of emulsifier absorbing on the oil-water interface than by SBP and SPI alone, indicating that a more compact interfacial network was formed. Flocculation of oil droplets was observed and corresponding emulsion gels exhibited lower fracture force and strain when the oil was emulsified by SPI and SBP/SPI complex. Moreover, emulsion gels with small droplets produced a greater quantity of small fragments after mastication. However, microstructure did not have a significant effect on breakdown properties of emulsion gels. Headspace gas chromatography analysis showed that the release rate of ethyl butyrate before and after mastication was significantly lower in emulsion gel with more compact network, but the release of aroma compounds with higher hydrophobicity did not show a significant influence of the microstructure and texture of emulsion gel. This finding provides a useful application for designing semi-solid foods with desirable flavor perception. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  15. Iron-based soft magnetic composites with Mn–Zn ferrite nanoparticles coating obtained by sol–gel method

    International Nuclear Information System (INIS)

    Wu, Shen; Sun, Aizhi; Xu, Wenhuan; Zhang, Qian; Zhai, Fuqiang; Logan, Philip; Volinsky, Alex A.

    2012-01-01

    This paper focuses on iron-based soft magnetic composites which were synthesized by utilizing Mn–Zn ferrite nanoparticles to coat iron powder. The nanocrystalline iron powders, with an average particle diameter of 20 nm, were obtained via the sol–gel method. Scanning electron microscopy, energy dispersive X-ray spectroscopy and distribution maps show that the iron particle surface is covered with a thin layer of Mn–Zn ferrites. Mn–Zn ferrite uniformly coated the surface of the powder particles, resulting in a reduced imaginary permeability, increased electrical resistivity and a higher operating frequency of the synthesized magnets. Mn–Zn ferrite coated samples have higher permeability and lower magnetic loss when compared with the non-magnetic epoxy resin coated compacts. The real part of permeability increases by 33.5% when compared with the epoxy resin coated samples at 10 kHz. The effects of heat treatment temperature on crystalline phase formation and on the magnetic properties of the Mn–Zn ferrite were investigated via X-ray diffraction and a vibrating sample magnetometer. Ferrites decomposed to FeO and MnO after annealing above 400 °C in nitrogen; thus it is the optimum annealing temperature to attain the desired permeability. - Highlights: ► Uniformly coated Mn–Zn ferrite powder increased the operating frequency of SMCs. ► Compared with epoxy coated, the permeability of SMCs increased by 33.5% at 10 kHz. ► 400 °C is the optimum annealing temperature to attain the desired permeability.

  16. High-Strength Hybrid Textile Composites with Carbon, Kevlar, and E-Glass Fibers for Impact-Resistant Structures. A Review.

    Science.gov (United States)

    Priyanka, P.; Dixit, A.; Mali, H. S.

    2017-11-01

    The paper reviews the characterization of high-performance hybrid textile composites and their hybridization effects of composite's behavior. Considered are research works based on the finite-element modeling, simulation, and experimental characterization of various mechanical properties of such composites.

  17. Phase and electrical properties of PZT thin films embedded with CuO nano-particles by a hybrid sol-gel route

    Science.gov (United States)

    Sreesattabud, Tharathip; Gibbons, Brady J.; Watcharapasorn, Anucha; Jiansirisomboon, Sukanda

    2013-07-01

    Pb(Zr0.52Ti0.48)O3 or PZT thin films embedded with CuO nano-particles were successfully prepared by a hybrid sol-gel process. In this process, CuO (0, 0.1, 0.2, 0.3, 0.4, 0.5 and 1 wt. %) nanopowder was suspended in an organometallic solution of PZT, and then coated on platinised silicon substrate using a spin-coating technique. The influence of CuO nano-particles' dispersion on the phase of PZT thin films was investigated. XRD results showed a perovskite phase in all films. At the CuO concentration of 0.4-1 wt. %, a second phase was observed. The addition of CuO nano-particles affected the orientation of PZT thin films. The addition was also found to reduce the ferroelectric properties of PZT thin films. However, at 0.2 wt. % CuO concentration, the film exhibited good ferroelectric properties similar to those of PZT films. In addition, the fatigue retention properties of the PZT/CuO system was observed, and it showed 14% fatigue at 108 switching bipolar pulse cycles while the fatigue in PZT thin films was found to be 17% at the same switching bipolar pulse cycles.

  18. Sol-gel electrospinning preparation of hybrid carbon silica nanofibers for extracting organophosphorus pesticides prior to analyzing them by gas chromatography-ion mobility spectrometry.

    Science.gov (United States)

    Jafari, Mohammad T; Saraji, Mohammad; Kermani, Mansoure

    2018-07-13

    Carbon-silica hybrid nanofibers as high performance coatings for solid-phase microextraction fibers were used for analyzing some pesticides by using gas chromatography-corona discharge ion mobility spectrometry. To that end, the fibers were prepared by carbonizing sol-gel based on electrospun polyacrylonitrile and tetraethyl orthosilicate nanofibers as carbon and silica precursors, respectively. Different parameters affecting the electrospinning and the extraction processes including spinning distance, voltage, feeding rate, stirring rate, salt concentration, temperature and extraction time were optimized by response surface methodology. The method involved deionized water samples spiked with pesticides at different concentration levels. The calibration curves were linear in the ranges of 0.1-20 and 0.05-20 μg L -1 with determination coefficients (R 2 ) of 0.9976 and 0.9928 for malathion and chlorpyrifos, respectively. The limits of detection of 0.032 and 0.019 μg L -1 and the limits of quantification of 0.1 and 0.05 μg L -1 were found for malathion and chlorpyrifos, respectively. Acceptable reproducibility values were obtained with relative standard deviations (RSD, n = 3) lower than 6 and 15%, for intra-day and inter-day precision, respectively. Finally, the relative recoveries of the proposed method were calculated in the range of 80-111% for real samples. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Tribological properties of three-dimensional braided carbon/Kevlar/epoxy hybrid composites under dry and lubricated conditions

    International Nuclear Information System (INIS)

    Wan, Y.Z.; Huang, Y.; He, F.; Li, Q.Y.; Lian, J.J.

    2007-01-01

    This paper presents a study of the tribological properties of three-dimensional (3-D) braided carbon/Kevlar/epoxy hybrid composites. Their specific wear rate and the coefficient of friction were examined as a function of operating conditions (load and sliding distance) under dry and lubricated conditions. In addition, the 3-D braided hybrid composites with varying carbon to Kevlar fiber volume ratio were tested to assess hybrid effects. It was found that the friction and wear rate decreased with sliding distance and then leveled off under dry and lubricated conditions. Different changing patterns with normal load were observed under two different sliding conditions. Furthermore, it was noted that negative hybrid effects on the wear resistance and the friction coefficient were identified for the current 3-D braided hybrid system. The composite with a carbon to Kevlar ratio of 3:2 was found to have the least wear and friction among all 3-D braided hybrid composites studied. Worn surfaces were observed by scanning electron microscope (SEM) and wear mechanisms were discussed in this study

  20. Carbon Nanotube Enhanced Aerospace Composite Materials A New Generation of Multifunctional Hybrid Structural Composites

    CERN Document Server

    Kostopoulos, V

    2013-01-01

    The well documented increase in the use of high performance composites as structural materials in aerospace components is continuously raising the demands in terms of dynamic performance, structural integrity, reliable life monitoring systems and adaptive actuating abilities. Current technologies address the above issues separately; material property tailoring and custom design practices aim to the enhancement of dynamic and damage tolerance characteristics, whereas life monitoring and actuation is performed with embedded sensors that may be detrimental to the structural integrity of the component. This publication explores the unique properties of carbon nanotubes (CNT) as an additive in the matrix of Fibre Reinforced Plastics (FRP), for producing structural composites with improved mechanical performance as well as sensing/actuating capabilities. The successful combination of the CNT properties and existing sensing actuating technologies leads to the realization of a multifunctional FRP structure. The curre...

  1. Chemical resistance, void content and tensile properties of oil palm/jute fibre reinforced polymer hybrid composites

    International Nuclear Information System (INIS)

    Jawaid, M.; Khalil, H.P.S. Abdul; Bakar, A. Abu; Khanam, P. Noorunnisa

    2011-01-01

    Tri layer hybrid composites of oil palm empty fruit bunches (EFB) and jute fibres was prepared by keeping oil palm EFB as skin material and jute as the core material and vice versa. The chemical resistance, void content and tensile properties of oil palm EFB/Jute composites was investigated with reference to the relative weight of oil palm EFB/Jute, i.e. 4:1, the fibre loading was optimized and different layering pattern were investigated. It is found from the chemical resistance test that all the composites are resistant to various chemicals. It was observed that marked reduction in void content of hybrid composites in different layering pattern. From the different layering pattern, the tensile properties were slightly higher for the composite having jute as skin and oil palm EFB as core material. Scanning electron microscopy (SEM) was used to study tensile fracture surfaces of different composites.

  2. Design and characterization of hybrid peptide sol-gel materials for the solid state induction of neuronal differentiation

    Science.gov (United States)

    Jedlicka, Sabrina S.

    2007-12-01

    Cell-based therapeutics are a rapidly growing area of research, with considerable promise in the treatment of neurological diseases. One of the primary limitations to neuronal cell-based devices is the necessity to maintain cells in an immature or undifferentiated state in culture prior to transplantation. In many cases, the undifferentiated cell does not express the desired characteristics for implantation. Biologically functional nanomaterials provide the ability to manipulate the direct extracellular environment surrounding cells; influencing their fate and differentiation path. The ability to engineer the interface between the cells and culture materials provides a repeatable, stable means of directing cells down a specific growth path determined by endogenous signaling pathways. This materials approach to cellular engineering can limit the need for added exogenous growth factors, "feeder" layers, or animal sera, in addition to creating a homogenous cell population for transplantation. In this work, hybrid peptide ormosil materials were developed; designed to mimic the developing mammalian brain during corticogenesis. These materials have been developed to enhance the GABAergic phenotype of P19 embryonic carcinoma cells and immature immortalized neurons. The ability to develop a homogenous, directed cell population has implications in stem cell research, regenerative medicine, cell-based devices and biosensing technology.

  3. Genetic origin and composition of a natural hybrid poplar Populus × jrtyschensis from two distantly related species.

    Science.gov (United States)

    Jiang, Dechun; Feng, Jianju; Dong, Miao; Wu, Guili; Mao, Kangshan; Liu, Jianquan

    2016-04-18

    The factors that contribute to and maintain hybrid zones between distinct species are highly variable, depending on hybrid origins, frequencies and fitness. In this study, we aimed to examine genetic origins, compositions and possible maintenance of Populus × jrtyschensis, an assumed natural hybrid between two distantly related species. This hybrid poplar occurs mainly on the floodplains along the river valleys between the overlapping distributions of the two putative parents. We collected 566 individuals from 45 typical populations of P. × jrtyschensis, P. nigra and P. laurifolia. We genotyped them based on the sequence variations of one maternally inherited chloroplast DNA (cpDNA) fragment and genetic polymorphisms at 20 SSR loci. We further sequenced eight nuclear genes for 168 individuals from 31 populations. Two groups of cpDNA haplotypes characteristic of P. nigra and P. laurifolia respectively were both recovered for P. × jrtyschensis. Genetic structures and coalescent tests of two sets of nuclear population genetic data suggested that P. × jrtyschensis originated from hybridizations between the two assumed parental species. All examined populations of P. × jrtyschensis comprise mainly F1 hybrids from interspecific hybridizations between P. nigra and P. laurifolia. In the habitats of P. × jrtyschensis, there are lower concentrations of soil nitrogen than in the habitats occupied by the other two species. Our extensive examination of the genetic composition of P. × jrtyschensis suggested that it is typical of F1-dominated hybrid zones. This finding plus the low concentration of soil nitrogen in the floodplain soils support the F1-dominated bounded hybrid superiority hypothesis of hybrid zone maintenance for this particular hybrid poplar.

  4. Thermoplastic impact property improvement in hybrid natural fibre epoxy composite bumper beam

    International Nuclear Information System (INIS)

    Davoodi, M M; Sapuan, S M; Ali, Aidy; Ahmad, D; Khalina, A

    2010-01-01

    Utilization of thermoset resin as a bumper beam composite matrix is currently more dominated in car manufacturer suppliers, because of availability, easy processing, low material cost and production equipment investment. Moreover, low viscosity, shrinkage and excellent flow facilitate better fibre impregnation and proper surface resin wetting. Three-dimensional cross linking curing increase impact, creep and environmental stress cracking resistance properties. Low impact properties of natural fibre epoxy composite, are main issues in its employment for automotive structural components. Impact properties in epoxy composite bumper beam could be increased by modifying the resin, reinforcement and manufacturing process as well as geometry parameters such as cross section, thickness, added ribs and fixing method optimizations could strengthen impact resistance. There are two main methods, flexibilisation and toughening, as modifying the resin in order to improve the impact properties of epoxy composite, which form single phase or two-phase morphology to make modifier as epoxy or from separate phase to keep the thermo-mechanical properties. Liquid rubber, thermoplastic, core shell particle and rigid particle are different methods of toughening improvements. In this research, thermoplastic toughening has used to improve impact properties in hybrid natural fibre epoxy composite for automotive bumper beam and has achieved reasonable impact improvements.

  5. Performance of hybrid nano-micro reinforced mg metal matrix composites brake calliper: simulation approach

    Science.gov (United States)

    Fatchurrohman, N.; Chia, S. T.

    2017-10-01

    Most commercial vehicles use brake calliper made of grey cast iron (GCI) which possesses heavy weight. This contributes to the total weight of the vehicle which can lead to higher fuel consumption. Another major problem is GCI calliper tends to deflect during clamping action, known as “bending of bridge”. This will result in extended pedal travel. Magnesium metal matrix composites (Mg-MMC) has a potential application in the automotive industry since it having a lower density, higher strength and very good modulus of elasticity as compared to GCI. This paper proposed initial development of hybrid Mg-MMC brake calliper. This was achieved by analyzing the performance of hybrid nano-micro reinforced Mg-MMC and comparing with the conventional GCI brake calliper. It was performed using simulation in ANSYS, a finite element analysis (FEA) software. The results show that hybrid Mg-MMC has better performance in terms of reduction the weight of the brake calliper, reduction in total deformation/deflection and better ability to withstand equivalent elastic strain.

  6. Mechanical and water absorption behaviour of banana/sisal reinforced hybrid composites

    International Nuclear Information System (INIS)

    Venkateshwaran, N.; ElayaPerumal, A.; Alavudeen, A.; Thiruchitrambalam, M.

    2011-01-01

    Highlights: → It explores the utilization of waste banana fiber. → Improving the mechanical property by hybridization. → Results show its usefulness to low cost application. -- Abstract: The tensile, flexural, impact and water absorption tests were carried out using banana/epoxy composite material. Initially, optimum fiber length and weight percentage were determined. To improve the mechanical properties, banana fiber was hybridised with sisal fiber. This study showed that addition of sisal fiber in banana/epoxy composites of up to 50% by weight results in increasing the mechanical properties and decreasing the moisture absorption property. Morphological analysis was carried out to observe fracture behaviour and fiber pull-out of the samples using scanning electron microscope.

  7. Optimization of process parameters in drilling of fibre hybrid composite using Taguchi and grey relational analysis

    Science.gov (United States)

    Vijaya Ramnath, B.; Sharavanan, S.; Jeykrishnan, J.

    2017-03-01

    Nowadays quality plays a vital role in all the products. Hence, the development in manufacturing process focuses on the fabrication of composite with high dimensional accuracy and also incurring low manufacturing cost. In this work, an investigation on machining parameters has been performed on jute-flax hybrid composite. Here, the two important responses characteristics like surface roughness and material removal rate are optimized by employing 3 machining input parameters. The input variables considered are drill bit diameter, spindle speed and feed rate. Machining is done on CNC vertical drilling machine at different levels of drilling parameters. Taguchi’s L16 orthogonal array is used for optimizing individual tool parameters. Analysis Of Variance is used to find the significance of individual parameters. The simultaneous optimization of the process parameters is done by grey relational analysis. The results of this investigation shows that, spindle speed and drill bit diameter have most effect on material removal rate and surface roughness followed by feed rate.

  8. Composition-Graded MoWSx Hybrids with Tailored Catalytic Activity by Bipolar Electrochemistry.

    Science.gov (United States)

    Tan, Shu Min; Pumera, Martin

    2017-12-06

    Among transition metal dichalcogenide (TMD)-based composites, TMD/graphene-related material and bichalcogen TMD composites have been widely studied for application toward energy production via the hydrogen evolution reaction (HER). However, scarcely any literature explored the possibility of bimetallic TMD hybrids as HER electrocatalysts. The use of harmful chemicals and harsh preparation conditions in conventional syntheses also detracts from the objective of sustainable energy production. Herein, we present the conservational alternative synthesis of MoWS x via one-step bipolar electrochemical deposition. Through bipolar electrochemistry, the simultaneous fabrication of composition-graded MoWS x hybrids, i.e., sulfur-deficient Mo x W (1-x) S 2 and Mo x W (1-x) S 3 (MoWS x /BPE cathodic and MoWS x /BPE anodic , respectively) under cathodic and anodic overpotentials, was achieved. The best-performing MoWS x /BPE cathodic and MoWS x /BPE anodic materials exhibited Tafel slopes of 45.7 and 50.5 mV dec -1 , together with corresponding HER overpotentials of 315 and 278 mV at -10 mA cm -2 . The remarkable HER activities of the composite materials were attributed to their small particle sizes, as well as the near-unity value of their surface Mo/W ratios, which resulted in increased exposed HER-active sites and differing active sites for the concurrent adsorption of protons and desorption of hydrogen gas. The excellent electrocatalytic performances achieved via the novel methodology adopted here encourage the empowerment of electrochemical deposition as the foremost fabrication approach toward functional electrocatalysts for sustainable energy generation.

  9. Tribo-performance of epoxy hybrid composites reinforced with carbon fibers and potassium titanate whiskers

    Science.gov (United States)

    Suresha, B.; Harshavardhan, B.; Ravishankar, R.

    2018-04-01

    The present investigation deals with the fabrication and characterization of epoxy reinforced with bidirectional carbon fiber mat (CF/Ep) and filled with 2.5, 5 and 7.5 wt% potassium titanate whiskers (PTw) composites. The effect of PTw loading on hardness, tensile properties and dry sliding wear behaviour of CF/Ep composite were carefully investigated in expectation of providing valuable information for the application of hybrid CF/Ep composites. Results indicated that the incorporation of PTw actually improved the hardness, tensile strength and tensile modulus of CF/Ep composites. Meanwhile, the specific wear rate of CF/Ep filled by 5 wt % PTw reached to 6.3× 10-14 m3/N-m, which is 41% lower than that of CF/Ep composite at the same dry sliding condition. It also seen that the fiber and filler worked synergistically to enhance the wear resistance. Further, for all composites the friction coefficient increases with increase in load and sliding velocity. However, PTw reinforced CF/Ep exhibited considerably higher coefficient of friction compared to unfilled ones, while PTw filler loading of 5 wt% was effective in reducing the specific wear rate of CF/Ep composite. The carbon fiber carried the applied load between the contact surfaces and protected the epoxy from severe abrasion of the counterface. At the same time, the exposed PTw out of the epoxy matrix around the fiber inhibited the direct scraping between the fiber and counterface so that the fibers could be less directly impacted during the subsequent wear process and they were protected from severe damage.

  10. An Assessment of Mechanical and Tribological Property of Hybrid Aluminium Metal Matrix Composite

    Directory of Open Access Journals (Sweden)

    R. Santosh Kumar

    2017-04-01

    Full Text Available Composite materials has huge requirement in the area of automobile, aerospace, and wear resistant applications. This study presents the synthesis of composite reinforced with SiC and Al2O3 using gravity stir casting. Stir casting is the manufacturing process that is incorporated to produce the composite material because of its extreme bonding capacity with base material. The composition of reinforcement with 6061 aluminium matrix is SiC-7.5% and Al2O3 -2.5% respectively. The average size of reinforcement particle is 30-40 microns. The synthesised composite casting is machined using EDM to prepare specimens for various tests. Microstructure study was carried and the microstructure images prove the existence and dispersion of reinforcement particles in the metal matrix. There is no visible porosity is observed. The hardness of the specimen is tested using Vickers hardness tester and found considerable increase when compare with parent alloy Al 6061. Also mechanical and tribological properties of hybrid Aluminium metal matrix composite were employed. The fortifying material, Silicon Carbide is composed of tetrahedral of carbon and silicon atoms with strong bonds in crystal lattice along with its excellent wear resistance property and alumina have high strength and wear resistance. To avoid enormous material wastage and to achieve absolute accuracy, wire-cut EDM process is capitalised to engrave the specimen as per required dimensions. Three Tensile test specimens were prepared, in order to achieve reliability in results as per ASTM- E8 standard, and the values were tabulated. Impact test was carried out and the readings were tabulated. Wear test was carried out using pin on disc wear test apparatus and the results show considerable increase in wear resistant property when compare with parent alloy Al6061.The above work proves the successful fabrication of composite and evaluation of properties.

  11. SERS of semiconducting nanoparticles (TiO{sub 2} hybrid composites).

    Energy Technology Data Exchange (ETDEWEB)

    Musumeci, A.; Gosztola, D.; Schiller, T.; Dimitrijevic, N.; Mujica, V.; Martin, D.; Rajh, T. (Center for Nanoscale Materials)

    2009-04-13

    Raman scattering of molecules adsorbed on the surface of TiO{sub 2} nanoparticles was investigated. We find strong enhancement of Raman scattering in hybrid composites that exhibit charge transfer absorption with TiO{sub 2} nanoparticles. An enhancement factor up to {approx}10{sup 3} was observed in the solutions containing TiO{sub 2} nanoparticles and biomolecules, including the important class of neurotransmitters such as dopamine and dopac (3,4-dihydroxy-phenylacetic acid). Only selected vibrations are enhanced, indicating molecular specificity due to distinct binding and orientation of the biomolecules coupled to the TiO{sub 2} surface. All enhanced modes are associated with the asymmetric vibrations of attached molecules that lower the symmetry of the charge transfer complex. The intensity and the energy of selected vibrations are dependent on the size and shape of nanoparticle support. Moreover, we show that localization of the charge in quantized nanoparticles (2 nm), demonstrated as the blue shift of particle absorption, diminishes SERS enhancement. Importantly, the smallest concentration of adsorbed molecules shows the largest Raman enhancements suggesting the possibility for high sensitivity of this system in the detection of biomolecules that form a charge transfer complex with metal oxide nanoparticles. The wavelength-dependent properties of a hybrid composite suggest a Raman resonant state. Adsorbed molecules that do not show a charge transfer complex show weak enhancements probably due to the dielectric cavity effect.

  12. Influence of Hybrid Fillers on Thermal Conductivity of Nylon-6/Graphene Composites

    Directory of Open Access Journals (Sweden)

    SONG Na

    2018-03-01

    Full Text Available The thermal insulating properties of polymer greatly restrict the application of polymer as the thermal conductivity materials in industry. Multilayer graphene was chosen as a filler due to its unique thermal transfer property. The effect of alumina oxide (Al2O3 and silicon carbide (SiC with graphene as hybrid fillers on thermal conductivity of polymers was also explored. The thermal conductivity of the composites enhances 161% with 3%(mass fraction graphene content compared to pure nylon-6(PA6. The thermal conductivity of PA6 composites is within 0.653-4.307W·m-1·K-1 by adjusting hybrid fillers content and the ratio of graphene with Al2O3 and SiC. The best thermal conductivity is 20 times higher than the pure PA6. It is no doubt that the exploration can provide valuable experimental basis for extending the utilization of graphene as thermal conductivity filler and the application of PA6 thermal conductivity materials in industry.

  13. Facile and controllable preparation of glucose biosensor based on Prussian blue nanoparticles hybrid composites.

    Science.gov (United States)

    Li, Lei; Sheng, Qinglin; Zheng, Jianbin; Zhang, Hongfang

    2008-11-01

    A glucose biosensor based on polyvinylpyrrolidone (PVP) protected Prussian blue nanoparticles (PBNPs)-polyaniline/multi-walled carbon nanotubes hybrid composites was fabricated by electrochemical method. A novel route for PBNPs preparation was applied in the fabrication with the help of PVP, and from scanning electron microscope images, Prussian blue particles on the electrode were found nanoscaled. The biosensor exhibits fast current response (<6 s) and a linearity in the range from 6.7x10(-6) to 1.9x10(-3) M with a high sensitivity of 6.28 microA mM(-1) and a detection limit of 6x10(-7) M (S/N=3) for the detection of glucose. The apparent activation energy of enzyme-catalyzed reaction and the apparent Michaelis-Menten constant are 23.9 kJ mol(-1) and 1.9 mM respectively, which suggests a high affinity of the enzyme-substrate. This easy and controllable construction method of glucose biosensor combines the characteristics of the components of the hybrid composites, which favors the fast and sensitive detection of glucose with improved analytical capabilities. In addition, the biosensor was examined in human serum samples for glucose determination with a recovery between 95.0 and 104.5%.

  14. Synthesis of new aluminum nano hybrid composite liner for energy saving in diesel engines

    International Nuclear Information System (INIS)

    Tiruvenkadam, N.; Thyla, P.R.; Senthilkumar, M.; Bharathiraja, M.; Murugesan, A.

    2015-01-01

    Highlights: • Nano hybrid composite cylinder liner (NL) was developed to replace cast iron liner. • NL improved engine performance, combustion and reduced emissions except NO x . • Teardown analysis provides the suitability of NL for diesel engine. • The developed aluminum NL saved 43.75% of weight than cast iron cylinder liner. - Abstract: This work aims to replace the conventional cast iron cylinder liner (CL) in diesel engine by introducing lightweight aluminum (Al) 6061 nano hybrid composite cylinder liner (NL) by analyzing the performance, combustion, and emission characteristics of an engine. NL was fabricated by bottom pouring stir casting technique with nano- and micro-reinforcement materials. Experimental results proved that the use of NL increased brake thermal efficiency, in-cylinder pressure, heat release rate, and reduced carbon monoxide, hydrocarbon, and smoke emission in comparison with CL. However, oxides of nitrogen slightly increased with the use of the new liner. No differences in wear or other issues were noted during the engine teardown after 1 year of operation and 2000 h of running. Thus, NL has been recommended to replace the CL to save the energy and to reap environmental benefits

  15. Temperature effect on the physico-chemical properties of silica based bio-hybrid composite for uranium uptake

    International Nuclear Information System (INIS)

    Mishra, Archana; Melo, Jose Savio

    2013-01-01

    In the present work, silica based bio-hybrid composite has been prepared using Streptococcus lactis cells and silica nanoparticles through one step single process of spray drying. Bio-hybrids have many desired characteristics, and are thus used in a wide range of applications for example environmental cleanup which is of increasing importance. Thermogravimetric and thermodynamic analysis have been employed to understand the binding of uranium to the synthesized bio-hybrid material. Analysis of the thermodynamic parameters (ΔG 0 , ΔS 0 and ΔH 0 ) provides information regarding the inherent energy and feasibility of the sorption process. (author)

  16. A Numerical Study on Electrical Percolation of Polymer-Matrix Composites with Hybrid Fillers of Carbon Nanotubes and Carbon Black

    Directory of Open Access Journals (Sweden)

    Yuli Chen

    2014-01-01

    Full Text Available The electrical percolation of polymer-matrix composites (PMCs containing hybrid fillers of carbon nanotubes (CNTs and carbon black (CB is estimated by studying the connection possibility of the fillers using Monte Carlo simulation. The 3D simulation model of CB-CNT hybrid filler is established, in which CNTs are modeled by slender capped cylinders and CB groups are modeled by hypothetical spheres with interspaces because CB particles are always agglomerated. The observation on the effects of CB and CNT volume fractions and dimensions on the electrical percolation threshold of hybrid filled composites is then carried out. It is found that the composite electrical percolation threshold can be reduced by increasing CNT aspect ratio, as well as increasing the diameter ratio of CB groups to CNTs. And adding CB into CNT composites can decrease the CNT volume needed to convert the composite conductivity, especially when the CNT volume fraction is close to the threshold of PMCs with only CNT filler. Different from previous linear assumption, the nonlinear relation between CB and CNT volume fractions at composite percolation threshold is revealed, which is consistent with the synergistic effect observed in experiments. Based on the nonlinear relation, the estimating equation for the electrical percolation threshold of the PMCs containing CB-CNT hybrid fillers is established.

  17. EFFECT OF CLIMATIC FACTOR ON THE MECHANICAL BEHAVIOUR OF AEOLIAN BLADES: APPLICATION OF HYBRID COMPOSITE MATERIALS

    Directory of Open Access Journals (Sweden)

    F. Mili

    2015-08-01

    Full Text Available The great interest which the wind power brings in the development of the various economic sectors encourages to contribute in the improvement of the hydrothermal and mechanical performances of the blades of wind rotors with horizontal axis. The use of composite materials involves a profit of substantial weight, strength to the directional constraints that the blade will undergo during its work and a reduction of the aerodynamic and mechanical losses. The adoption of composite materials with unidirectional reinforcement carbon/epoxy makes it possible to get for the structure a high wear resistance and a reduction of the phenomenon of bearing pressure created around the airfoil of the blade moving relative compared to the speed of the wind. The evaluation of the behavior of such composites with [+θ/- θ]4S stacking sequence, with the combined effect of the temperature, the moisture and the tensile effort constitutes the principal axis of this contribution. In order to minimize the costs, our analysis will direct towards hybrid composite materials glass-carbon/epoxy being presented in the form of symmetrical laminates [+q/0°]2S and antisymmetric [+q/0°/90°/-q]. The results obtained showed that their use contributes to the improvement of their thermomechanical behavior by involving profits of performance, weight, cost savings and energy.

  18. Refractive Index Tuning of Hybrid Materials for Highly Transmissive Luminescent Lanthanide Particle-Polymer Composites.

    Science.gov (United States)

    Kim, Paul; Li, Cheng; Riman, Richard E; Watkins, James

    2018-03-14

    High-refractive-index ZrO 2 nanoparticles were used to tailor the refractive index of a polymer matrix to match that of luminescent lanthanide-ion-doped (La 0.92 Yb 0.075 Er 0.005 F 3 ) light-emitting particles, thereby reducing scattering losses to yield highly transparent emissive composites. Photopolymerization of blends of an amine-modified poly(ether acrylate) oligomer and tailored quantities of ZrO 2 nanoparticles yielded optically transparent composites with tailored refractive indices between 1.49 and 1.69. By matching the refractive index of the matrix to that of La 0.92 Yb 0.075 Er 0.005 F 3 , composites with high transmittance (>85%) and low haze from the visible to infrared regions, bright 1530 nm optical emissions were achieved at solids loadings of La 0.92 Yb 0.075 Er 0.005 F 3 , ranging from 5 to 30 vol %. These optical results suggest that a hybrid matrix approach is a versatile strategy for the fabrication of functional luminescent optical composites of high transparency.

  19. Frequency Dependence of Electrical Parameters of an Organic-Inorganic Hybrid Composite Based Humidity Sensor

    Directory of Open Access Journals (Sweden)

    Rizwan Akram

    2016-05-01

    Full Text Available The present study highlights the interdependence of ambient humidity levels on the electrical parameters of organic-inorganic hybrid composite based humidity sensor at varied AC frequencies of input signal. Starting from the bottom, the layer stack of the fabricated humidity sensor was 200-nm silver (Ag thin film and 4 μm spun-coated PEPC+NiPC+Cu2O active layer. Silver thin films were deposited by thermal evaporator on well cleaned microscopic glass slides, which served as a substrate. Conventional optical lithography procedure was adapted to define pairs of silver-silver surface electrodes with two sorts of configurations, i.e., interdigitated and rectangular. Humidity-sensitive layers of organic-inorganic composite were then spun-cast upon the channel between the silver electrodes. The changes in relative humidity levels induced variation in capacitance and impedance of the sensors. These variations in electrical parameters of sensors were also found to be highly dependent upon frequency of input AC signal. Our findings reveal that the organic-inorganic composite shows higher humidity sensitivity at smaller orders of frequency. This finding is in accordance with the established fact that organic semiconductors-based devices are not applicable for high frequency applications due to their lower charge carrier mobility values. Two distinct geometries of semiconducting medium between the silver electrodes were investigated to optimize the sensing parameters of the humidity sensor. Furthermore, the effect of temperature change on the resistance of organic composite has also been studied.

  20. Thin film composites in the BiFeO3–Bi4Ti3O12 system obtained by an aqueous solution-gel deposition methodology

    Directory of Open Access Journals (Sweden)

    Carlos Gumiel

    2018-01-01

    Full Text Available Thin film multiferroic composites, with a high quantity of interfaces between the different materials, represent a more feasible alternative to single phase systems in which the multifunctional response is usually hampered due to intrinsic physical constraints. Nowadays some of these composites can be produced by applying deposition techniques such as PLD, CVD, MBE or the like, which allow a high degree of crystallographic control. However, despite their effectiveness, all these techniques also involve a high consumption of energy in terms of temperature and/or vacuum. Within this frame, the present contribution proposes a sustainable chemical solution deposition process to prepare thin films of the multiferroic BiFeO3–Bi4Ti3O12 composite system. More specifically an aqueous solution-gel plus spin-coating methodology is employed which also avoids the organic solvents typically used in a conventional sol–gel method, so further keeping an eye on the environmentally friendly conditions. Attempts are conducted that demonstrate how by systematically controlling the processing parameters it is possible to obtain thin film composites with a promising 3-3 type connectivity at temperatures as low as 600 °C.

  1. Thin film composites in the BiFeO3–Bi4Ti3O12 system obtained by an aqueous solution-gel deposition methodology

    International Nuclear Information System (INIS)

    Gumiel, C.; Vranken, T.; Bernardo, M.S.; Jardiel, T.; Hardy, A.; Van Bael, M.K.; Peiteado, M.

    2018-01-01

    Thin film multiferroic composites, with a high quantity of interfaces between the different materials, represent a more feasible alternative to single phase systems in which the multifunctional response is usually hampered due to intrinsic physical constraints. Nowadays some of these composites can be produced by applying deposition techniques such as PLD, CVD, MBE or the like, which allow a high degree of crystallographic control. However, despite their effectiveness, all these techniques also involve a high consumption of energy in terms of temperature and/or vacuum. Within this frame, the present contribution proposes a sustainable chemical solution deposition process to prepare thin films of the multiferroic BiFeO3–Bi4Ti3O12 composite system. More specifically an aqueous solution-gel plus spin-coating methodology is employed which also avoids the organic solvents typically used in a conventional sol–gel method, so further keeping an eye on the environmentally friendly conditions. Attempts are conducted that demonstrate how by systematically controlling the processing parameters it is possible to obtain thin film composites with a promising 3-3 type connectivity at temperatures as low as 600°C. [es

  2. Mechanical properties and production quality of hand-layup and vacuum infusion processed hybrid composite materials for GFRP marine structures

    Science.gov (United States)

    Kim, Sang-Young; Shim, Chun Sik; Sturtevant, Caleb; Kim, Dave (Dae-Wook); Song, Ha Cheol

    2014-09-01

    Glass Fiber Reinforced Plastic (GFRP) structures are primarily manufactured using hand lay-up or vacuum infusion techniques, which are cost-effective for the construction of marine vessels. This paper aims to investigate the mechanical properties and failure mechanisms of the hybrid GFRP composites, formed by applying the hand lay-up processed exterior and the vacuum infusion processed interior layups, providing benefits for structural performance and ease of manufacturing. The hybrid GFRP composites contain one, two, and three vacuum infusion processed layer sets with consistent sets of hand lay-up processed layers. Mechanical properties assessed in this study include tensile, compressive and in-plane shear properties. Hybrid composites with three sets of vacuum infusion layers showed the highest tensile mechanical properties while those with two sets had the highest mechanical properties in compression. The batch homogeneity, for the GFRP fabrication processes, is evaluated using the experimentally obtained mechanical properties

  3. A study of nitroxide polyradical/activated carbon composite as the positive electrode material for electrochemical hybrid capacitor

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hui-qiao; Zou, Ying; Xia, Yong-yao [Chemistry Department and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433 (China)

    2007-01-01

    We present a new concept of the hybrid electrochemical capacitor technology in which a poly(2,2,6,6-tetramethylpiperidinyloxy methacrylate) nitroxide polyradical/activated carbon composite (PTMA-AC) is used as the positive electrode material and activated carbon is used as the negative electrode material. On the positive electrode, both reversible reduction and oxidation of nitroxide polyradical and non-faradic ion sorption/de-sorption of activated carbon are involved during charge and discharge process. The capacity of the composite electrode is 30% larger than that of the pure activated carbon electrode. A hybrid capacitor fabricated by the PTMA-AC composite positive electrode and the activated carbon negative electrode shows a good cycling life, it can be charged/discharged for over 1000 cycles with slight capacity loss. The hybrid capacitor also has a good rate capability, it maintains 80% of the initial capacity even at the high discharge current of up to 20C. (author)

  4. Analysis of the mechanical and thermal properties of jute and glass fiber as reinforcement epoxy hybrid composites.

    Science.gov (United States)

    Braga, R A; Magalhaes, P A A

    2015-11-01

    This work describes the study to investigate and compare the mechanical and thermal properties of raw jute and glass fiber reinforced epoxy hybrid composites. To improve the mechanical properties, jute fiber was hybridized with glass fiber. Epoxy resin, jute and glass fibers were laminated in three weight ratios (69/31/0, 68/25/7 and 64/18/19) respectively to form composites. The tensile, flexural, impact, density, thermal and water absorption tests were carried out using hybrid composite samples. This study shows that the addition of jute fiber and glass fiber in epoxy, increases the density, the impact energy, the tensile strength and the flexural strength, but decreases the loss mass in function of temperature and the water absorption. Morphological analysis was carried out to observe fracture behavior and fiber pull-out of the samples using scanning electron microscope. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Mechanical properties and production quality of hand-layup and vacuum infusion processed hybrid composite materials for GFRP marine structures

    Directory of Open Access Journals (Sweden)

    Kim Sang-Young

    2014-09-01

    Full Text Available Glass Fiber Reinforced Plastic (GFRP structures are primarily manufactured using hand lay-up or vacuum infusion techniques, which are cost-effective for the construction of marine vessels. This paper aims to investigate the mechanical properties and failure mechanisms of the hybrid GFRP composites, formed by applying the hand lay-up processed exterior and the vacuum infusion processed interior layups, providing benefits for structural performance and ease of manufacturing. The hybrid GFRP composites contain one, two, and three vacuum infusion processed layer sets with consistent sets of hand lay-up processed layers. Mechanical properties assessed in this study include tensile, compressive and in-plane shear properties. Hybrid composites with three sets of vacuum infusion layers showed the highest tensile mechanical properties while those with two sets had the highest mechanical properties in compression. The batch homogeneity, for the GFRP fabrication processes, is evaluated using the experimentally obtained mechanical properties

  6. Mechanical properties and production quality of hand-layup and vacuum infusion processed hybrid composite materials for GFRP marine structures

    Directory of Open Access Journals (Sweden)

    Sang-Young Kim

    2014-09-01

    Full Text Available Glass Fiber Reinforced Plastic (GFRP structures are primarily manufactured using hand lay-up or vacuum infusion techniques, which are cost-effective for the construction of marine vessels. This paper aims to investigate the mechanical properties and failure mechanisms of the hybrid GFRP composites, formed by applying the hand lay-up processed exterior and the vacuum infusion processed interior layups, providing benefits for structural performance and ease of manufacturing. The hybrid GFRP composites contain one, two, and three vacuum infusion processed layer sets with consistent sets of hand lay-up processed layers. Mechanical properties assessed in this study include tensile, compressive and in-plane shear properties. Hybrid composites with three sets of vacuum infusion layers showed the highest tensile mechanical properties while those with two sets had the highest mechanical properties in compression. The batch homogeneity, for the GFRP fabrication processes, is evaluated using the experimentally obtained mechanical properties.

  7. Reagentless D-sorbitol biosensor based on D-sorbitol dehydrogenase immobilized in a sol-gel carbon nanotubes-poly(methylene green) composite.

    Science.gov (United States)

    Wang, Zhijie; Etienne, Mathieu; Urbanova, Veronika; Kohring, Gert-Wieland; Walcarius, Alain

    2013-04-01

    A reagentless D-sorbitol biosensor based on NAD-dependent D-sorbitol dehydrogenase (DSDH) immobilized in a sol-gel carbon nanotubes-poly(methylene green) composite has been developed. It was prepared by durably immobilizing the NAD(+) cofactor with DSDH in a sol-gel thin film on the surface of carbon nanotubes functionalized with poly(methylene green). This device enables selective determination of D-sorbitol at 0.2 V with a sensitivity of 8.7 μA mmol(-1) L cm(-2) and a detection limit of 0.11 mmol L(-1). Moreover, this biosensor has excellent operational stability upon continuous use in hydrodynamic conditions.

  8. Investigation of Tribological Behavior of a Novel Hybrid Composite Prepared with Al-Coconut Shell Ash Mixed with Graphite

    Science.gov (United States)

    Siva Sankara Raju, R.; Panigrahi, M. K.; Ganguly, R. I.; Srinivasa Rao, G.

    2017-08-01

    The present investigation develops a next-generation hybrid Al metal matrix composite using coconut shell ash (CSA) and graphite (Gr) reinforcement. Stir-casting is adapted to prepare an Al-1100-based composite. Three other composites of Al-Al2O3, Al-Al2O3-Gr, and Al-CSA are prepared that contain equivalent volume fractions of Al2O3, CSA, and Gr. These assist in comparisons among the three composites and the developed hybrid Al-CSA-Gr composite. The study reveals that the addition of 3 pct Gr improves the specific strength, toughness, and tribological properties. The Al-CSA composite shows better mechanical properties, such as tensile strength and hardness, than the other three composites. Gr addition helps the hybrid Al-CSA-Gr composite to attain better tribological properties with a slightly lower specific strength. Scanning electron microscopy studies of the worn material surfaces corroborate the findings of the abrasion testing. Elemental analyses by energy-dispersive X-ray spectroscopy of the debris from the counter-face of the tribo surface confirm the presence of Al, O, Si, Fe, Mn, and C.

  9. Surface geometry of three packable and one hybrid composite after polishing.

    Science.gov (United States)

    Jung, Martin; Bruegger, Hilka; Klimek, Joachim

    2003-01-01

    This study evaluated the surface quality of four composite materials after polishing with six different polishing techniques. Eighty specimens were made using three packable composites (Definite/Degussa, SureFil/ Dentsply and Solitaire/Heraeus-Kulzer) and one hybrid composite (Herculite XRV/Kerr). Five specimens of each material were polished using flexible Sof-Lex discs. The remaining 75 specimens of each composite were prepared using three finishing protocols: a single 30 microm diamond (n = 25), two finishing diamonds (30/20 microm; n = 25) and a 30 microm diamond followed by a tungsten carbide finishing bur (n = 25). Final polishing of each of the three finishing groups was accomplished with SuperBuff, Diafix-oral, OneGloss, Astropol and HaWe Composite Polishers (n = 5, each). Surface roughness was evaluated quantitatively by laser-stylus profilometry. Average roughness (R(a)) was calculated; statistical analysis of the data was performed with two-way ANOVA and Scheffé post-hoc tests. The polished surfaces were examined qualitatively by SEM. The results showed significant effects on surface roughness from the different composites (p = 0.011) and polishing systems (p < 0.001). After polishing, the Solitaire surfaces (R(a) = 0.72 microm) were smoother than Definite (R(a) = 0.87 microm) and SureFil (R(a) = 0.89 microm) and significantly smoother than Herculite (R(a) = 0.92 microm; p = 0.011). Three of the polishing methods (SuperBuff, Diafix-oral and Astropol) achieved lower R(a)-values than Sof-Lex discs. The polishing quality of the one-step systems SuperBuff and Diafix-oral was strongly affected by the initial finishing protocol.

  10. Enhanced mechanical properties and biocompatibility of novel hydroxyapatite/TOPAS hybrid composite for bone tissue engineering applications.

    Science.gov (United States)

    Ain, Qurat Ul; Khan, Ahmad Nawaz; Nabavinia, Mahboubeh; Mujahid, Mohammad

    2017-06-01

    The bioactivity and mechanical properties of hybrid composites of hydroxyapatite (HA) in cyclic olefinic copolymer (COC) also known commercially as TOPAS are investigated, first time, for regeneration and repair of the bone tissues. HA is synthesized to obtain the spherically shaped nanoparticles in the size range of 60±20nm. Various concentrations of HA ranging from 1 to 30wt% are dispersed in TOPAS using sodium dodecyl sulfate (SDS) coupling agent for better dispersion and interaction of hydrophilic HA with hydrophobic TOPAS. Scanning electron microscope shows the uniform dispersion of HA≤10wt% in TOPAS and at higher concentrations >10wt%, agglomeration occurs in the hybrid composites. Tunable mechanical properties are achieved as the compressive modulus and strength are increased around 140% from 6.4 to 15.3MPa and 185% from 0.26 to 0.74MPa, respectively. Such increase in the mechanical properties of TOPAS is attributed to the anchoring of the polymer chains in the vicinity of HA nanoparticles owing to better dispersion and interfacial interactions. In comparison to neat TOPAS, hybrid composites of TOPAS/HA promoted the cell adhesion and proliferation significantly. The cell density and proliferation of TOPAS/HA hybrid composites is enhanced 9 and 3 folds, respectively, after 1day culturing in preosteoblasts cells. Moreover, the morphology of cells changed from spherical to flattened spread morphology demonstrating clearly the migration of the cells for the formation of interconnected cellular network. Additionally, very few dead cells are found in hybrid composites showing their cytocompatibility. Overall, the hybrid composites of TOPAS/HA exhibited superior strength and stiffness along with enhanced cytocompatibility for bone tissue engineering applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Chemical composition of open pollinated and hybrid population of sunflower (helianthus annuus l.)

    International Nuclear Information System (INIS)

    Nisar, M.; Hussain, S.; Nausheen, A.; Siddique, F.

    2011-01-01

    Sunflower is the world fourth most important sources of edible oil. A lot of work has been done for varietal improvement through conventional breeding in Pakistan. Sunflower is the cash crop and is easily adapted to many region of Pakistan, genetic and agronomical improvement was needed so that economically valuable crop could be harvested. In the present work, 16 cultivars (open pollinated population 'OPP' and hybrid population 'HP' eight each) of sunflower was evaluated. The study was aimed at evaluating the mineral composition, estimation of moisture contents, measuring electrical conductivity and 100 seeds weight. The mineral composition was fractionated though Atomic Absorption Spectrometer, which indicate that Zn +2 was 8.54 and 9.35%; Cu/sup +2/ 0.5 and 0.02%; Mn/sup +2/ 3.48 and 9.72%; Co/sup +2/ 18.67 and 16.81%; Mg/sup +2/ 68.27 and 83.53%; Fe/sup +3/ 4.32 and 4.35% were estimated in HP and OPP respectively. Similarly, moisture contents 6.26 and 6.78%, and 1000-seeds weight 510.8 and 598 g were calculated in the HP and OPP respectively. In comparative picture the mineral concentration, moisture contents and 100 seeds weight in open pollinated population were high as compared to hybrid. A total of 11.7 % genetic diversity was observed in mineral composition of both the populations. The EC was high in HP ranging from 70. 85-137.8, while comparatively low in OPP ranged 46.81 - 120.18. (author)

  12. International Workshop on Glasses and Ceramics, Hybrids and Nanocomposites from Gels (9th); Sol-Gel 󈨥 Held in Centre for Glass Research, The University of Sheffield, UK on 31 August-5 September 1997

    Science.gov (United States)

    1998-01-01

    transformation. The spectrum of gel 6 has two over- lapped signals around 8 = —58 (56%) and —66 ppm (44%) whose maxima are in good agreement with those...Wojick and L.C. Klein, J. Sol-Gel Sei. Tech. 5, 77 (1995). 3. M. In, C. Gerardin, J. Lambard , and C. Sanchez, J. Sol-Gel Sei. Tech. 5, 101 (1995). 4...region which ranges from 520 to 600 nm and can over- lap the Raman bands. This fluorescence is attributed to the presence of pentahedrally

  13. A novel ZnO@Ag@Polypyrrole hybrid composite evaluated as anode material for zinc-based secondary cell

    OpenAIRE

    Jianhang Huang; Zhanhong Yang; Zhaobin Feng; Xiaoe Xie; Xing Wen

    2016-01-01

    A novel ZnO@Ag@Polypyrrole nano-hybrid composite has been synthesized with a one-step approach, in which silver-ammonia complex ion serves as oxidant to polymerize the pyrrole monomer. X-ray diffraction (XRD) and infrared spectroscopy (IR) show the existence of metallic silver and polypyrrole. The structure of nano-hybrid composites are characterized by scanning electron microscope (SEM) and transmission electron microscope (TEM), which demonstrates that the surface of ZnO is decorated with n...

  14. AuNPs Hybrid Black ZnO Nanorods Made by a Sol-Gel Method for Highly Sensitive Humidity Sensing

    Directory of Open Access Journals (Sweden)

    Hongyan Zhang

    2018-01-01

    Full Text Available A highly sensitive self-powered humidity sensor has been realized from AuNPs hybrid black zinc oxide (ZnO nanorods prepared through a sol-gel method. XRD pattern reveals that both ZnO and ZnO/AuNPs exhibit a wurtzite structure. ZnO/AuNPs nanorods grow in a vertical alignment, which possesses high uniformity and forms dense arrays with a smaller diameter than that of ZnO nanoparticles. All ZnO/AuNPs and pure black ZnO show lower band gap energy than the typically reported 3.34 eV of pure ZnO. Furthermore, the band gap of ZnO/AuNPs nanocomposites is effectively influenced by the amount of AuNPs. The humidity sensing tests clearly prove that all the ZnO/AuNPs humidity sensors exhibit much higher response than that of ZnO sensors, and the sensitivity of such ZnO/AuNPs nanorods (6 mL AuNPs display a change three orders higher than that of pure ZnO with relative humidity (RH ranging from 11% to 95% at room temperature. The response and recovery time of the ZnO/AuNPs are 5.6 s and 32.4 s, respectively. This study of the construction of semiconductor/noble metal sensors provides a rational way to control the morphology of semiconductor nanomaterials and to design a humidity sensor with high performance.

  15. Development of a composite based on hydroxyapatite and magnesium and zinc‐containing sol–gel-derived bioactive glass for bone substitute applications

    International Nuclear Information System (INIS)

    Ashuri, Maziar; Moztarzadeh, Fathollah; Nezafati, Nader; Ansari Hamedani, Ali; Tahriri, Mohammadreza

    2012-01-01

    In the present study, a bioceramic-based composite was prepared by sintering compacts made up of mixtures of hydroxyapatite (HA) and sol–gel-derived bioactive glass (64SiO 2 -26CaO-5MgO-5ZnO) (based on mol%) powders. HA powder was mixed with different concentrations of the glass powders up to 30 wt.%. The effect of adding bioactive glass powder to HA matrix, on the mechanical properties of the composite was assessed by compression test. The specimen with the highest compressive strength was chosen to be immersed in simulated body fluid (SBF) to study apatite forming ability and dissolution behavior. It was found that compressive strength of the specimen was decreased 65% after maintaining in the SBF for 14 days. X-ray diffraction (XRD) showed prevalence of HA and β-TCP related peaks. Also, the surface morphology of the composite was observed using scanning electron microscopy (SEM). The study of degradation behavior revealed Si release capability of this composite. Biological evaluations in vitro confirmed the composite studied could induce osteoblast-like cells' activities. - Highlights: ► A novel composite based on HA/bioactive glass for bone substitutes was developed. ► Evaluations in vitro confirmed the composites induce bone-like cells' activities. ► A successful compromise of bioactivity and cytocompatibility was observed.

  16. Compressive strength measurements of hybrid dental composites treated with dry heat and light emitting diodes (LED post cure treatment

    Directory of Open Access Journals (Sweden)

    Jenny Krisnawaty

    2014-11-01

    Full Text Available Hybrid composites are mostly used on large cavities as restorative dental materials, whether it is used directly or indirectly. The mechanical properties of composite resin shall increase if it is treated with post cure treatment. The aim of this study is to evaluate compressive strength differences between dry heat and Light Emitting Diodes (LED treatment on the hybrid dental composite. A quasi-experimental was applied on this research with a total of 30 samples that were divided into two groups. Each sample was tested using LLOYD Universal Testing Machine with 1 mm/min speed to evaluate the compressive strength. The compressive strength results were marked when the sample was broken. The results of two groups were then analyzed using t-test statistical calculation. The results of this study show that post cure treatment on hybrid composite using LED light box (194.138 MPa was lower than dry heat treatment (227.339 MPa, which was also significantly different from statistical analysis. It can be concluded that compressive strength of LED light box was lower than dry heat post-cure treatment on the hybrid composite resin.

  17. Effect of forging on mechanical properties of rice husk ash-silicon carbide reinforced Al1100 hybrid composites

    Science.gov (United States)

    Ghanaraja, S.; Gireesha, B. L.; Ravikumar, K. S.; Likith, P.

    2018-04-01

    During the past few years, material design has changed prominence to pursue light weight, environment friendliness, low cost, quality, higher service temperature, higher elastic modulus, improved wear resistance and performance. Straight monolithic materials have limitations in achieving the above decisive factors. To overcome these limitations and to convince the ever increasing demand of modern day technology, Attention has been shifted towards Metal Matrix Composites (MMC). Stir casting route is most hopeful for synthesizing discontinuous reinforcement aluminium matrix composites because of its relative simplicity and easy adaptability with all shape casting process used in metal casting industry. Hybridization of metal matrix composites is the introduction of more than one type/kind, size and shape of reinforcement during processing of composites. It is carried out to obtain synergistic properties of different reinforcements and matrix used, which may not be rea1ised in monolithic alloy or in conventional monocomposites. The present study involves synthesis of hybrid composites by addition of the desired amount of Silicon Carbide (SiC) and Rice Husk Ash (RHA) particles in to the molten Al 1100-Mg alloy through stir casting technique fallowed by hot forging of the cast composites. The influence of increasing in the wt% (3, 6, 9, 12 and 15 wt%) of SiC particles addition (3 wt% Rice husk ash kept constant) on evolution of microstructure is studied through XRD and SEM and their impact on the mechanical properties like hardness and tensile strength of the resulting forged hybrid composites has been investigated.

  18. Effects of leached components from a hybrid resin composite on the reproductive system of male mice

    Directory of Open Access Journals (Sweden)

    Taher Akbari Saeed

    2012-01-01

    Full Text Available Background and Aims: There is concern that leached components from dental composites may cause adverse changes in the reproductive health. This study aimed to assess the effects of leached components from a hybrid resin composite on the reproductive system of male mice.Materials and Methods: In the present animal study, twenty adult Syrian male mice were divided into two groups of 10 mice each. In the test group, components which leached from samples made from Filtek Z250 resin composite into 75% ethanol were daily administered to the mice for 28 days. In the control group, the procedure was repeated in the same way as the test group but without placing composite samples in the solution. Then, the body weight, weights of paired testes, Gonado Somatic Index, sperm viability, sperm motility, epididymal sperm reserve and daily sperm production were recorded. Four male mice in each group were mated with untreated female mice for 10 days. After that, the number of pregnant females and number of infants were recorded. The data were analyzed using repeated measures ANOVA, Chi-square test and t-test.Results: There was a significant reduction in the sperm viability and sperm motility of male mice in the test group compared to the control group (P=0.001. There was no any significant differences in other parameters between two groups (P>0.05.Conclusion: This study showed that the leached components from resin composites cannot cause infertility but they could potentially cause some adverse effects on the reproductive system of male mice.

  19. EFFECT OF SURFACE SEALING ON STAIN RESISTANCE OF A NANO-