WorldWideScience

Sample records for hybrid fluorocarbon-hydrocarbon co2-philic

  1. CO2-Philic polymer membrane with extremely high separation performance

    KAUST Repository

    Yave, Wilfredo

    2010-01-12

    Polymeric membranes are attractive for CO2 separation and concentration from different gas streams because of their versatility and energy efficiency; they can compete with, and they may even replace, traditional absorption processes. Here we describe a simple and powerful method for developing nanostructured and CO2-philic polymer membranes for CO2 separation. A poly(ethylene oxide)-poly(butylene terephthalate) multiblock copolymer is used as membrane material. Smart additives such as polyethylene glycol dibutyl ether are incorporated as spacers or fillers for producing nanostructured materials. The addition of these specific additives produces CO2-philic membranes and increases the CO2 permeability (750 barrer) up to five-fold without the loss of selectivity. The membranes present outstanding performance for CO2 separation, and the measured CO2 flux is extremely high ( > 2 m3 m -2 h-1 bar-1) with selectivity over H2 and N2 of 10 and 40, respectively, making them attractive for CO 2 capture. © 2009 American Chemical Society.

  2. CO2-Philic polymer membrane with extremely high separation performance

    KAUST Repository

    Yave, Wilfredo; Car, Anja; Funari, S.; Nunes, Suzana Pereira; Peinemann, Klaus-Viktor

    2010-01-01

    Polymeric membranes are attractive for CO2 separation and concentration from different gas streams because of their versatility and energy efficiency; they can compete with, and they may even replace, traditional absorption processes. Here we describe a simple and powerful method for developing nanostructured and CO2-philic polymer membranes for CO2 separation. A poly(ethylene oxide)-poly(butylene terephthalate) multiblock copolymer is used as membrane material. Smart additives such as polyethylene glycol dibutyl ether are incorporated as spacers or fillers for producing nanostructured materials. The addition of these specific additives produces CO2-philic membranes and increases the CO2 permeability (750 barrer) up to five-fold without the loss of selectivity. The membranes present outstanding performance for CO2 separation, and the measured CO2 flux is extremely high ( > 2 m3 m -2 h-1 bar-1) with selectivity over H2 and N2 of 10 and 40, respectively, making them attractive for CO 2 capture. © 2009 American Chemical Society.

  3. Surfactant Membrane Phases Containing Mixtures of Hydrocarbon and Fluorocarbon Surfactants

    International Nuclear Information System (INIS)

    de Campo, Liliana; Warr, G.G.

    2005-01-01

    Full text: We describe the structure and stability of sponge and lamellar phases comprising mixtures of hydrocarbon and fluorocarbon surfactants. Such mixtures can show limited miscibility with each other, forming for example coexisting populations of hydrocarbon rich and fluorocarbon rich micelles under some circumstances. Our system is based on the well-characterised lamellar and sponge phases of cetylpyridinium chloride, hexanol and 0.2M brine, into which the partially fluorinated surfactant N-1H,1H,2H,2H-tridecafluorooctylpyridinium chloride is incorporated. By probing the structures with SAXS (small angle x-ray scattering) and SANS (small angle neutron scattering) using contrast variation, and by characterizing the dynamic properties with dynamic light scattering, we will describe the effect of incorporating the fluorinated surfactant on the phase equilibria and properties of the surfactant membrane structures. (authors)

  4. Inexpensive CO2 Thickening Agents for Improved Mobility Control of CO2 Floods

    Energy Technology Data Exchange (ETDEWEB)

    Robert Enick; Eric Beckman; Andrew Hamilton

    2005-08-31

    The objective of this research was the design, synthesis and evaluation of inexpensive, non-fluorous carbon dioxide thickening agents. We followed the same strategy employed in the design of fluorinated CO{sub 2} polymeric thickeners. First, a highly CO{sub 2}-philic, hydrocarbon-based monomer was to be identified. Polymers or oligomers of this monomer were then synthesized. The second step was to design a CO{sub 2}-thickener based on these CO{sub 2}-philic polymers. Two types of thickeners were considered. The first was a copolymer in which the CO{sub 2}-philic monomer was combined with a small proportion of CO{sub 2}-phobic associating groups that could cause viscosity-enhancing intermolecular interactions to occur. The second was a small hydrogen-bonding compound with urea groups in the core to promote intermolecular interactions that would cause the molecules to 'stack' in solution while the arms were composed of the CO{sub 2}-philic oligomers. Although we were not able to develop a viable thickener that exhibited high enough CO{sub 2} solubility at EOR MMP conditions to induce a viscosity increase, we made significant progress in our understanding of CO{sub 2}-soluble compounds that can be used in subsequent studies to design CO{sub 2}-soluble thickeners or CO{sub 2}-soluble surfactant-based foaming agents. These findings are detailed in this final report. In summary, we assessed many polymers and verified that the most CO{sub 2}-soluble oxygenated hydrocarbon polymer is poly(vinyl acetate), PVAc. This is primarily due to the presence of both ether and carbonyl oxygens associated with acetate-rich compounds. In addition to polymers, we also made small acetate-rich molecules that were also capable of associating in solution via the inclusion of hydrogen-bonding groups in hopes of forming viscosity-enhancing macromolecules. Despite the presence of multiple acetate groups in these compounds, which can impart incredible CO{sub 2}-solubility to many

  5. Supercritical CO 2 -philic nanoparticles suitable for determining the viability of carbon sequestration in shale

    KAUST Repository

    Xu, Yisheng

    2015-01-01

    © The Royal Society of Chemistry. A fracture spacing less than a decimeter is probably required for the successful sequestration of CO2 in shale. Tracer experiments using inert nanoparticles could determine if a fracturing this intense has been achieved. Here we describe the synthesis of supercritical CO2-philic nanoparticles suitable for this application. The nanoparticles are ~50 nm in diameter and consist of iron oxide (Fe3O4) and silica (SiO2) cores functionalized with a fluorescent polymeric corona. The nanoparticles stably disperse in supercritical carbon dioxide (scCO2) and are detectable to concentrations of 10 ppm. This journal is

  6. One-step synthesis, wettability and foaming properties of high-performance non-ionic hydro-fluorocarbon hybrid surfactants

    Science.gov (United States)

    Peng, Ying-ying; Lu, Feng; Tong, Qing-Xiao

    2018-03-01

    In this work, a series of non-ionic hydro-fluorocarbon hybrid surfactants (C9F19CONH(CH2)3N(CmH2m+1)2, abbreviated as C9F19AM (m = 1), C9F19AE (m = 2) and C9F19AB (m = 4) were easily synthesized by one-step reaction and characterized by 1HNMR, 19FNMR and MS spectroscopy. Unlike conventional non-ionic surfactants (most hydrophilic units consisted of hydroxy or ether groups), their hydrophilic groups were composed of amide group, an eco-friendly unit. The surface activity, wettability, thermal stability and foaming performance were investigated. The results showed that the C9F19AE (C9F19CONH(CH2)3N[CH2CH3]2) had superior surface and interface activities, which could reduce the surface tension of water down to 15.37 mN/m and the interfacial tension (cyclohexane/water/surfactants) to 5.8 mN/m with a low cmc (critical micelle concentration) of 0.12 mmol/L. Through the calculation of Amin (the minimum area occupied per-surfactant molecule), we speculated this higher surface activity was related to the compatibility between hydrocarbon and fluorocarbon chains. When used as wetting and foaming agents, the C9F19AE also outperformed great advantages over conventional non-ionic fluorocarbon and hydrocarbon surfactants, which could decrease the contact angle of water on PTFE plate from 107.7° to 3.6°, and increase the foam integrated value F to 536 500 ± 3066.5 mL s. Moreover, the decomposition temperature (Td) of C9F19AE could reach up to 173 °C. This work demonstrates a valuable strategy to develop a kind of high-efficiency foaming agent via facile synthesis.

  7. Phase behavior of fluorocarbon and hydrocarbon double-chain hydroxylated and galactosylated amphiphiles and bolaamphiphiles. Long-term shelf-stability of their liposomes.

    Science.gov (United States)

    Clary, L; Gadras, C; Greiner, J; Rolland, J P; Santaella, C; Vierling, P; Gulik, A

    1999-06-01

    This paper describes the morphological characterization, by freeze-fracture electron microscopy, and the thermotropic phase behavior, by differential scanning calorimetry and/or X-ray scattering, of aqueous dispersions of various hydroxylated and galactosylated double-chain amphiphiles and bolaamphiphiles, several of them containing one or two hydrophobic fluorocarbon chains. Colloidal systems are observed in water with the hydroxylated hydrocarbon or fluorocarbon bolaamphiphiles only when they are dispersed with a co-amphiphile such as rac-1,2-dimyristoylphosphatidylcholine (DMPC) or rac-1,2-distearoylphosphatidylcholine (DSPC). Liposomes are formed providing the relative content of bolaamphiphiles does not exceed 20% mol. Most of these liposomes can be thermally sterilized and stored at room temperature for several months without any significant modification of their size and size distribution. The hydrocarbon galactosylated bolaamphiphile HO[C24][C12]Gal forms in water a lamellar phase (the gel to liquid-crystal phase transition is complete at 45 degrees C) and a Im3m cubic phase above 47 degrees C. The fluorocarbon HO[C24][F6C5]Gal analog displays a more complex and metastable phase behavior. The fluorinated non-bolaform galactosylated [F8C7][C16]AEGal and SerGal amphiphiles form lamellar phases in water. Low amounts (10% molar ratio) of the HO[C24][F6C5]Gal or HO[C24][C12]Gal bolaamphiphiles or of the single-headed [F8C7][C16]AEGal improve substantially the shelf-stability of reference phospholipon/cholesterol 2/1 liposomes. These liposomes when co-formulated with a single-headed amphiphile from the SerGal series are by far less stable.

  8. Novel CO{sub 2}-thickeners for improved mobility control

    Energy Technology Data Exchange (ETDEWEB)

    Enick, Dr. Robert M.; Beckman, Dr. Eric J.; Hamilton, Dr. Andrew

    2000-02-02

    The objective of this study was to design, synthesize, and characterize thickening agents for dense carbon dioxide and to evaluate their solubility and viscosity-enhancing potential in CO{sub 2}. Hydrocarbon-fluorocarbon random copolymers, sulfated hydrocarbon-fluorocarbon random copolymers, semifluorinated trialkyltin fluorides and small hydrogen-bonding compounds were evaluated. Random copolymers of styrene and heptadecafluorodecyl acrylate were characterized by high solubility ion dense carbon dioxide and the most substantial increases in solution viscosity. Falling cylinder viscometry results indicated that the 29%styrene--71%fluoroacylate bulk-polymerized copolymer induced 2--250 fold increases in viscosity at copolymer concentrations of 0.2--5.0wt%.

  9. Novel CO{sub 2}-thickeners for improved mobility control

    Energy Technology Data Exchange (ETDEWEB)

    Enick, Dr. Robert M.; Beckman, Dr. Eric J.; Hamilton, Dr. Andrew

    2000-02-02

    The objective of this study was to design, synthesize, and characterize thickening agents for dense carbon dioxide and to evaluate their solubility and viscosity-enhancing potential in CO{sub 2}. Previously, fluoroacrylate homopolymers and fluorinated telechelic ionomers were shown to increase the viscosity of carbon dioxide by a factor of 3--4 at concentrations of 2--3 at concentrations of 4--5 wt%. This report details the findings for several new types of carbon dioxide thickening candidates. Hydrocarbon-fluorocarbon random copolymers, sulfonated hydrocarbon-fluorocarbon random copolymers, semifluorinated trialkyltin fluorides and small hydrogen-bounding compounds were evaluated.

  10. Asymmetric Hollow Fiber Membranes for Separation of CO 2 from Hydrocarbons and Fluorocarbons at High-Pressure Conditions Relevant to C 2 F 4 Polymerization

    KAUST Repository

    Kosuri, Madhava R.

    2009-12-02

    Separation of high-pressure carbon dioxide from fluorocarbons is important for the production of fluoropolymers such as poly(tetrafluoroethylene). Typical polymeric membranes plasticize under high CO2 partial pressure conditions and fail to provide adequate selective separations. Torlon, a polyamide-imide polymer, with the ability to form interchain hydrogen bonding, is shown to provide stability against aggressive CO2 plasticization. Torlon membranes in the form of asymmetric hollow fibers (the most productive form of membranes) are considered for an intended separation of CO 2/C2F4. To avoid safety issues with tetrafluoroethylene (C2F4), which could detonate under testing conditions, safer surrogate mixtures (C2H2F 2 and C2H4) are considered in this paper. Permeation measurements (at 35 °C) indicate that the Torlon membranes are not plasticized even up to 1250 psi of CO2. The membranes provide mixed gas CO2/C2H2F2 and CO 2/C2H4 selectivities of 100 and 30, respectively, at 1250 psi partial pressures of CO2. On the basis of the measured separation performances of CO2/C2H 2F2 and CO2/C2H4 mixtures, the selectivity of the CO2/C2F4 mixture is expected to be greater than 100. Long-term stability studies indicate that the membranes provide stable separations over a period of 5 days at 1250 psi partial pressures of CO2, thereby making the membrane approach attractive. © 2009 American Chemical Society.

  11. Asymmetric Hollow Fiber Membranes for Separation of CO 2 from Hydrocarbons and Fluorocarbons at High-Pressure Conditions Relevant to C 2 F 4 Polymerization

    KAUST Repository

    Kosuri, Madhava R.; Koros, William J.

    2009-01-01

    Separation of high-pressure carbon dioxide from fluorocarbons is important for the production of fluoropolymers such as poly(tetrafluoroethylene). Typical polymeric membranes plasticize under high CO2 partial pressure conditions and fail to provide adequate selective separations. Torlon, a polyamide-imide polymer, with the ability to form interchain hydrogen bonding, is shown to provide stability against aggressive CO2 plasticization. Torlon membranes in the form of asymmetric hollow fibers (the most productive form of membranes) are considered for an intended separation of CO 2/C2F4. To avoid safety issues with tetrafluoroethylene (C2F4), which could detonate under testing conditions, safer surrogate mixtures (C2H2F 2 and C2H4) are considered in this paper. Permeation measurements (at 35 °C) indicate that the Torlon membranes are not plasticized even up to 1250 psi of CO2. The membranes provide mixed gas CO2/C2H2F2 and CO 2/C2H4 selectivities of 100 and 30, respectively, at 1250 psi partial pressures of CO2. On the basis of the measured separation performances of CO2/C2H 2F2 and CO2/C2H4 mixtures, the selectivity of the CO2/C2F4 mixture is expected to be greater than 100. Long-term stability studies indicate that the membranes provide stable separations over a period of 5 days at 1250 psi partial pressures of CO2, thereby making the membrane approach attractive. © 2009 American Chemical Society.

  12. Study of the synthesis and self-assembly of CO2-philic copolymers with complexing groups: application to decontamination in supercritical CO2 medium

    International Nuclear Information System (INIS)

    Ribaut, T.

    2009-10-01

    In the frame of sustainable development, a priority is to decrease the volume of nuclear wastes. The use of supercritical carbon dioxide (scCO 2 ) could allow to solve this problem. The aim of this study is to extract an ionic or particle cobalt contamination deposited on textile lab coats. The strategy uses CO 2 -philic/CO 2 -phobic copolymers soluble in scCO 2 and containing complexing groups. This approach combines the use of amphiphilic copolymers for steric stabilization of particles, of surfactants able to self-assemble to promote extraction and of ligands. Controlled radical polymerization is used to synthesize fluorinated gradient or block copolymers. Cloud point curves of the copolymers are determined experimentally in scCO 2 . Prediction of polymer/scCO 2 phase diagrams was assessed by Perturbed-Chain Statistical Associating Fluid Theory (PC-SAFT) modeling. Gradient copolymers appear more advantageous than block copolymers due to their solubility in much milder conditions of pressure and temperature. Small-angle neutron scattering (SANS) allowed us to evidence the pressure-induced aggregation of the gradient copolymers in scCO 2 . Their interface properties were demonstrated: they allow to form water-in-CO 2 microemulsions and to stabilize cobalt hydroxide dispersions in scCO 2 . Lastly, in presence of a very low quantity of water, Co 2+ ions were removed with a rate of 37 % from a cotton/polyester matrix by a gradient copolymer. (author)

  13. CO2-Philic Thin Film Composite Membranes: Synthesis and Characterization of PAN-r-PEGMA Copolymer

    Directory of Open Access Journals (Sweden)

    Madhavan Karunakaran

    2017-07-01

    Full Text Available In this work, we report the successful fabrication of CO2-philic polymer composite membranes using a polyacrylonitrile-r-poly(ethylene glycol methyl ether methacrylate (PAN-r-PEGMA copolymer. The series of PAN-r-PEGMA copolymers with various amounts of PEG content was synthesized by free radical polymerization in presence of AIBN initiator and the obtained copolymers were used for the fabrication of composite membranes. The synthesized copolymers show high molecular weights in the range of 44–56 kDa. We were able to fabricate thin film composite (TFC membranes by dip coating procedure using PAN-r-PEGMA copolymers and the porous PAN support membrane. Scanning electron microscopy (SEM and atomic force microscopy (AFM were applied to analyze the surface morphology of the composite membranes. The microscopy analysis reveals the formation of the defect free skin selective layer of PAN-r-PEGMA copolymer over the porous PAN support membrane. Selective layer thickness of the composite membranes was in the range of 1.32–1.42 μm. The resulting composite membrane has CO2 a permeance of 1.37 × 10−1 m3/m2·h·bar and an ideal CO2/N2, selectivity of 65. The TFC membranes showed increasing ideal gas pair selectivities in the order CO2/N2 > CO2/CH4 > CO2/H2. In addition, the fabricated composite membranes were tested for long-term single gas permeation measurement and these membranes have remarkable stability, proving that they are good candidates for CO2 separation.

  14. CO2-Philic Thin Film Composite Membranes: Synthesis and Characterization of PAN-r-PEGMA Copolymer

    KAUST Repository

    Karunakaran, Madhavan

    2017-07-06

    In this work, we report the successful fabrication of CO2-philic polymer composite membranes using a polyacrylonitrile-r-poly(ethylene glycol) methyl ether methacrylate (PAN-r-PEGMA) copolymer. The series of PAN-r-PEGMA copolymers with various amounts of PEG content was synthesized by free radical polymerization in presence of AIBN initiator and the obtained copolymers were used for the fabrication of composite membranes. The synthesized copolymers show high molecular weights in the range of 44-56 kDa. We were able to fabricate thin film composite (TFC) membranes by dip coating procedure using PAN-r-PEGMA copolymers and the porous PAN support membrane. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) were applied to analyze the surface morphology of the composite membranes. The microscopy analysis reveals the formation of the defect free skin selective layer of PAN-r-PEGMA copolymer over the porous PAN support membrane. Selective layer thickness of the composite membranes was in the range of 1.32-1.42 mu m. The resulting composite membrane has CO2 a permeance of 1.37 x 10(-1) m(3)/m(2).h.bar and an ideal CO2/N-2, selectivity of 65. The TFC membranes showed increasing ideal gas pair selectivities in the order CO2/N-2 > CO2/CH4 > CO2/H-2. In addition, the fabricated composite membranes were tested for long-term single gas permeation measurement and these membranes have remarkable stability, proving that they are good candidates for CO2 separation.

  15. Neutralization of methyl cation via chemical reactions in low-energy ion-surface collisions with fluorocarbon and hydrocarbon self-assembled monolayer films.

    Science.gov (United States)

    Somogyi, Arpád; Smith, Darrin L; Wysocki, Vicki H; Colorado, Ramon; Lee, T Randall

    2002-10-01

    Low-energy ion-surface collisions of methyl cation at hydrocarbon and fluorocarbon self-assembled monolayer (SAM) surfaces produce extensive neutralization of CH3+. These experimental observations are reported together with the results obtained for ion-surface collisions with the molecular ions of benzene, styrene, 3-fluorobenzonitrile, 1,3,5-triazine, and ammonia on the same surfaces. For comparison, low-energy gas-phase collisions of CD3+ and 3-fluorobenzonitrile molecular ions with neutral n-butane reagent gas were conducted in a triple quadrupole (QQQ) instrument. Relevant MP2 6-31G*//MP2 6-31G* ab initio and thermochemical calculations provide further insight in the neutralization mechanisms of methyl cation. The data suggest that neutralization of methyl cation with hydrocarbon and fluorocarbon SAMs occurs by concerted chemical reactions, i.e., that neutralization of the projectile occurs not only by a direct electron transfer from the surface but also by formation of a neutral molecule. The calculations indicate that the following products can be formed by exothermic processes and without appreciable activation energy: CH4 (formal hydride ion addition) and C2H6 (formal methyl anion addition) from a hydrocarbon surface and CH3F (formal fluoride addition) from a fluorocarbon surface. The results also demonstrate that, in some cases, simple thermochemical calculations cannot be used to predict the energy profiles because relatively large activation energies can be associated with exothermic reactions, as was found for the formation of CH3CF3 (formal addition of trifluoromethyl anion).

  16. INEXPENSIVE CO{sub 2} THICKENING AGENTS FOR IMPROVED MOBILITY CONTROL OF CO{sub 2} FLOODS

    Energy Technology Data Exchange (ETDEWEB)

    Robert M. Enick; Eric J. Beckman; Andrew Hamilton

    2004-10-01

    The objective of this research was the design, synthesis and evaluation of inexpensive, nonfluorous carbon dioxide thickening agents. We followed the same strategy employed in the design of fluorinated CO{sub 2} polymeric thickeners. First, a highly CO{sub 2}-philic, hydrocarbon-based monomer was to be identified. Polymers or oligomers of this monomer were then synthesized. The second step was to be completed only when a CO{sub 2}-soluble polymer that was soluble in CO{sub 2} at pressures comparable to the MMP was identified. In the second step, viscosity-enhancing associating groups were to be incorporated into the polymer to make it a viable thickener that exhibited high CO{sub 2} solubility at EOR MMP conditions. This final report documents the CO{sub 2} solubility of a series of commercial and novel polymers composed of carbon, hydrogen, oxygen and, in some cases, nitrogen.

  17. Graphene Oxide Membranes with Heterogeneous Nanodomains for Efficient CO2 Separations.

    Science.gov (United States)

    Wang, Shaofei; Xie, Yu; He, Guangwei; Xin, Qingping; Zhang, Jinhui; Yang, Leixin; Li, Yifan; Wu, Hong; Zhang, Yuzhong; Guiver, Michael D; Jiang, Zhongyi

    2017-11-06

    Achieving high membrane performance in terms of gas permeance and carbon dioxide selectivity is an important target in carbon capture. Aiming to manipulate the channel affinity towards CO 2 to implement efficient separations, gas separation membranes containing CO 2 -philic and non-CO 2 -philic nanodomains in the interlayer channels of graphene oxide (GO) were formed by intercalating poly(ethylene glycol) diamines (PEGDA). PEGDA reacts with epoxy groups on the GO surface, constructing CO 2 -philic nanodomains and rendering a high sorption capacity, whereas unreacted GO surfaces give non-CO 2 -philic nanodomains, rendering low-friction diffusion. Owing to the orderly stacking of nanochannels through cross-linking and the heterogeneous nanodomains with moderate CO 2 affinity, a GO-PEGDA500 membrane exhibits a high CO 2 permeance of 175.5 GPU and a CO 2 /CH 4 selectivity of 69.5, which is the highest performance reported for dry-state GO-stacking membranes. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Comparative study of the physicochemical properties of aqueous solutions of the hydrocarbon and fluorocarbon surfactants and their ternary mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Szymczyk, Katarzyna, E-mail: katarzyna.szymczyk@poczta.umcs.lublin.pl

    2014-03-03

    Highlights: • Acoustic properties of hydrocarbon and fluorocarbon surfactants were studied. • Auerbach’s relation is not proper for mixtures with fluorocarbon surfactants. • Values of the hydration number decreases at concentrations higher than CMC. • FSO100 and its mixtures are the strongest chaotropes. - Abstract: Speed of sound and density of aqueous solutions of hydrocarbon p-(1,1,3,3-tetramethylbutyl) phenoxypoly(ethyleneglycols) (Triton X-100 (TX100), Triton X-165 (TX165)) and fluorocarbon (Zonyl FSN-100 (FSN100), Zonyl FSO-100 (FSO100)) surfactants as well as their ternary mixtures were measured at 293 K. Taking into account these values and the literature data of the surface tension and viscosity of the studied systems, the values of the isentropic compressibility, apparent specific adiabatic compressibility, hydration number, apparent specific volume and Jones Dole’s A and B-coefficients were determined. For the systems containing FSO100 also the values of dB/dT were determined on the basis of the values of viscosity measured at different temperatures. Next, the calculated thermodynamic properties have been discussed in the term of intermolecular interactions between the components of the mixtures.

  19. Cusp and W peak analysis in electron capture to the continuum of bare H and He projectiles from hydrocarbon and fluorocarbon gases

    Energy Technology Data Exchange (ETDEWEB)

    Joyce, J.M.; Bissinger, G.

    1987-04-01

    The ECC cusp and W peak shapes for continuum electron capture by approx. = MeV/u H/sup +/ and He/sup 2 +/ from hydrocarbon and fluorocarbon gas molecules are analyzed with the general parametric expression of Meckbach, Nemirovsky and Garibotti (i) to look for trends in the coefficients of these parameters, (ii) as a way of generating computed cusp shapes to reduce statistical fluctuations in cusp difference spectra, and (iii) to provide information on the deconvoluted d/sup 2/sigma/d..nu.. dtheta values for cusp and W peaks in the hydrocarbon gases.

  20. Direct electroreduction of CO2 into hydrocarbon

    International Nuclear Information System (INIS)

    Winea, Gauthier; Ledoux, Marc-Jacques; Pham-Huu, Cuong; Gangeri, Miriam; Perathoner, Siglinda; Centi, Gabriele

    2006-01-01

    A lot of methods exist to directly reduce carbon dioxide into hydrocarbons: the photoelectrochemical process is certainly the most interesting, essentially due to the similarities with photosynthesis. As the human activities produce a great quantity of CO 2 , this one can then be considered as an infinite source of carbon. The products of this reaction are identical to those obtained during a Fischer-Tropsch reaction, that is to say hydrocarbons, alcohols and carboxylic acids. These works deal with the electrochemical reduction of CO 2 in standard conditions of temperature and pressure. The photochemical part has been replaced by a current generator as electrons source and a KHCO 3 aqueous solution as protons source. The first catalytic results clearly show that it is possible to reduce CO 2 into light hydrocarbons, typically from C1 to C9. (O.M.)

  1. Radiation induced solid-state polymerization of long-chain acrylates containing fluorocarbon chain

    International Nuclear Information System (INIS)

    Shibasaki, Y.; Zhu, Zhi-Qin

    1995-01-01

    γ-Ray irradiation post-polymerizations of long-chain acrylates containing fluorocarbon chain, H(CF 2 ) 10 CH 2 OCOCH=CH 2 and H(CF 2 ) 8 CH 2 OCOCH=CH 2 , were investigated and also the structures and thermal properties of comb-like polymers obtained were studied. It was found that these monomers exhibited very high polymerizability at wide temperature ranges around the melting points. Because the fluorocarbon chains are less flexible and thicker than the hydrocarbon chains, it can be expected that the aggregation force among the monomer molecules is strong and the conformational freedom of functional group for polymerization is large. According to the DSC and the X-ray diffraction measurements of the comb-like polymers obtained, the fluorocarbon chains are aggregated in a mode of hexagonal packing in the lamellar crystals. This situation can be considered as an optimum condition for the γ-ray irradiation post-polymerization. (author)

  2. Mesoporous fluorocarbon-modified silica aerogel membranes enabling long-term continuous CO2 capture with large absorption flux enhancements.

    Science.gov (United States)

    Lin, Yi-Feng; Chen, Chien-Hua; Tung, Kuo-Lun; Wei, Te-Yu; Lu, Shih-Yuan; Chang, Kai-Shiun

    2013-03-01

    The use of a membrane contactor combined with a hydrophobic porous membrane and an amine absorbent has attracted considerable attention for the capture of CO2 because of its extensive use, low operational costs, and low energy consumption. The hydrophobic porous membrane interface prevents the passage of the amine absorbent but allows the penetration of CO2 molecules that are captured by the amine absorbent. Herein, highly porous SiO2 aerogels modified with hydrophobic fluorocarbon functional groups (CF3 ) were successfully coated onto a macroporous Al2 O3 membrane; their performance in a membrane contactor for CO2 absorption is discussed. The SiO2 aerogel membrane modified with CF3 functional groups exhibits the highest CO2 absorption flux and can be continuously operated for CO2 absorption for extended periods of time. This study suggests that a SiO2 aerogel membrane modified with CF3 functional groups could potentially be used in a membrane contactor for CO2 absorption. Also, the resulting hydrophobic SiO2 aerogel membrane contactor is a promising technology for large-scale CO2 absorption during the post-combustion process in power plants. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Decontamination of solid substrates using supercritical carbon dioxide - Application with trade hydro-carbonated surfactants

    International Nuclear Information System (INIS)

    Galy, J.; Fournel, B.; Sawada, K.; Lacroix-Desmazes, P.; Lagerge, S.; Persin, M.

    2007-01-01

    The phase behavior of poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) tri-block copolymers (PEO-PPO-PEO Pluronics) in liquid and supercritical carbon dioxide has been studied by cloud point measurements. It shows that such trade hydro-carbonated surfactants are fairly soluble (0.1 wt.%) in carbon dioxide in relatively mild conditions of temperature and pressure (T ≤ 65 degrees C, P ≤ 30 MPa). An empirical model based on the molecular weight of the copolymer has been proposed to predict the pressure-temperature phase diagram for a series of Pluronics (10 wt.% of ethylene oxide). Furthermore, the water/CO 2 interfacial tension has been measured to investigate the interactions between water and the polar moieties of the surfactants (PEO blocks and hydroxyl end-groups) as well as the interactions between CO 2 and the 'CO 2 -philic' moiety of the surfactants (PPO block). An interfacial saturation concentration was evidenced and it was shown to depend on the temperature at a given pressure. The cloud point curves and interfacial tension data are fully consistent with a change in the affinity of the surfactant for CO 2 versus pressure and temperature. A correlation between CO 2 -philic characteristics and surface active properties of the copolymers is given. (authors)

  4. Development of fluorocarbon/silica composites via sol/gel process

    International Nuclear Information System (INIS)

    Ferreira, Max P.; Maria, Daniel A.; Gomes, Luiza M.F.

    2009-01-01

    Fluorocarbon/silica composites have interesting physical-chemical properties, combining the great resistance to chemical products, the electric insulation, and the thermal stability of fluorine polymers with the optical, magnetic, and dielectric properties of silica. Due to the unique mechanical, thermal, and dielectric properties of fluorocarbon and silica composites, there is interest in their application in the development of fuel cells, the production of integrated circuit boards (ICB), and packages for the transportation of integrated circuits. The sol-gel process is a chemical route to prepare ceramic materials with specific properties that are hard or impossible to obtain by conventional methods. Fluorocarbon/silica composites were obtained by the sol-gel method from tetramethoxysilane - TMOS and fluorinated hydrocarbons with low molecular weight and main chains with 10 - 20 carbon atoms previously obtained from PTFE scraps irradiated with a 60 Co γ source in oxygen atmosphere with a dose of 1 MGy. Syntheses were performed in 125-mL reaction flasks in basic medium at 35 deg C and in acid medium at 60 deg C with N-N dimethylformamide as a chemical additive for drying control. After synthesis, the material was thermally treated in an oven with electronic temperature control. The monoliths obtained were characterized by Fourier transform infrared spectroscopy (FTIR), electron microprobe and by a standard nitrogen adsorption-desorption technique. (author)

  5. Optimized CO{sub 2} miscible hydrocarbon fracturing fluids

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, R.S.; Funkhouser, G.P.; Fyten, G.; Attaway, D.; Watkins, H. [Halliburton Energy Services, Calgary, AB (Canada); Lestz, R.S. [Chevron Canada Resources, Calgary, AB (Canada); Loree, D. [FracEx Inc. (Canada)

    2006-07-01

    Carbon dioxide (CO{sub 2}) miscible hydrocarbon fracturing fluids address issues of fluid retention in low-permeability gas reservoirs, including undersaturated and underpressured reservoirs. An optimized surfactant gel technology using carbon dioxide (CO{sub 2}) hydrocarbon fracturing fluids applicable to all gas-well stimulation applications was discussed in this paper. The crosslinked surfactant gel technology improved proppant transport, leakoff control, and generation of effective fracture half-length. Tests indicated that application of the surfactant cooled the fracture face, which had the effect of extending break times and increasing viscosity during pumping periods. Rapid recovery of the fracturing fluid eliminated the need for swabbing in some cases, and the fluid system was not adversely affected by shear. However, rheological test equipment capable of mixing liquid CO{sub 2} and viscosified hydrocarbons at downhole temperatures is required to determine rheology and required chemical concentrations. It was recommended that to achieve an effective methane-drive cleanup mechanism, treatments should be designed so that the gellant system can be effective with up to 50 per cent CO{sub 2} dissolved in oil. It was concluded that it should be possible to apply the technology to low permeability gas reservoirs. Viscosity curves and friction data were presented. Issues concerning the selection of tubulars and flowback procedures were also discussed. It was suggested that the cost of the hydrocarbon fracturing fluid can be recovered by the sale of recovered load fluid. 6 refs., 4 figs.

  6. Selective Synthesis of Gasoline-Ranged Hydrocarbons from Syngas over Hybrid Catalyst Consisting of Metal-Loaded ZSM-5 Coupled with Copper-Zinc Oxide

    Directory of Open Access Journals (Sweden)

    Ting Ma

    2014-04-01

    Full Text Available The conversion of syngas (CO + H2 to gasoline-ranged hydrocarbons was carried out using a hybrid catalyst consisting of metal-loaded ZSM-5 coupled with Cu-ZnO in a near-critical n-hexane solvent. Methanol was synthesized from syngas over Cu-ZnO; subsequently, was converted to hydrocarbons through the formation of dimethyl ether (DME over the metal-loaded ZSM-5. When 0.5 wt% Pd/ZSM-5 and 5 wt% Cu/ZSM-5 among the metal-loaded ZSM-5 catalysts with Pd, Co, Fe or Cu were employed as a portion of the hybrid catalyst, the gasoline-ranged hydrocarbons were selectively produced (the gasoline-ranged hydrocarbons in all hydrocarbons: 59% for the hybrid catalyst with Pd/ZSM-5 and 64% for that with Cu/ZSM-5 with a similar CO conversion during the reaction. An increase in the Cu loading on ZSM-5 resulted in increasing the yield of the gasoline-ranged hydrocarbons, and in decreasing the yield of DME. Furthermore, the hybrid catalyst with Cu/ZSM-5 exhibited no deactivation for 30 h of the reaction. It was revealed that a hybrid catalyst containing Cu/ZSM-5 was efficient in the selective synthesis of gasoline-ranged hydrocarbons from syngas via methanol in the near-critical n-hexane fluid.

  7. Catalytic Performance for Hydrocarbon Production from Syngas on the Promoted Co-Based Hybrid Catalysts; Influence of Pt Contents

    Directory of Open Access Journals (Sweden)

    Suk-Hwan Kang

    2017-10-01

    How to Cite: Kang, S.H., Ryu, J.H., Kim, J.H., Kim, H.S., Yang, H.C., Chung, D.Y. (2017. Catalytic Performance for Hydrocarbon Production from Syngas on the Promoted Co-Based Hybrid Catalysts; Influence of Pt Contents. Bulletin of Chemical Reaction Engineering & Catalysis, 12 (3: 452-459 (doi:10.9767/bcrec.12.3.592.452-459

  8. Thermocatalytic CO2-Free Production of Hydrogen from Hydrocarbon Fuels

    Energy Technology Data Exchange (ETDEWEB)

    University of Central Florida

    2004-01-30

    The main objective of this project is the development of an economically viable thermocatalytic process for production of hydrogen and carbon from natural gas or other hydrocarbon fuels with minimal environmental impact. The three major technical goals of this project are: (1) to accomplish efficient production of hydrogen and carbon via sustainable catalytic decomposition of methane or other hydrocarbons using inexpensive and durable carbon catalysts, (2) to obviate the concurrent production of CO/CO{sub 2} byproducts and drastically reduce CO{sub 2} emissions from the process, and (3) to produce valuable carbon products in order to reduce the cost of hydrogen production The important feature of the process is that the reaction is catalyzed by carbon particulates produced in the process, so no external catalyst is required (except for the start-up operation). This results in the following advantages: (1) no CO/CO{sub 2} byproducts are generated during hydrocarbon decomposition stage, (2) no expensive catalysts are used in the process, (3) several valuable forms of carbon can be produced in the process depending on the process conditions (e.g., turbostratic carbon, pyrolytic graphite, spherical carbon particles, carbon filaments etc.), and (4) CO{sub 2} emissions could be drastically reduced (compared to conventional processes).

  9. Synthesis and Evaluation of CO2 Thickeners Designed with Molecular Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Robert Enick; Erick Beckman; J. Karl Johnson

    2009-08-31

    The objective of this research was to use molecular modeling techniques, coupled with our prior experimental results, to design, synthesize and evaluate inexpensive, non-fluorous carbon dioxide thickening agents. The first type of thickener that was considered was associating polymers. Typically, these thickeners are copolymers that contain a highly CO{sub 2}-philic monomer, and a small concentration of a CO{sub 2}-phobic associating monomer. Yale University was solely responsible for the synthesis of a second type of thickener; small, hydrogen bonding compounds. These molecules have a core that contains one or more hydrogen-bonding groups, such as urea or amide groups. Non-fluorous, CO{sub 2}-philic functional groups were attached to the hydrogen bonding core of the compound to impart CO{sub 2} stability and macromolecular stability to the linear 'stack' of these compounds. The third type of compound initially considered for this investigation was CO{sub 2}-soluble surfactants. These surfactants contain conventional ionic head groups and composed of CO{sub 2}-philic oligomers (short polymers) or small compounds (sugar acetates) previously identified by our research team. Mobility reduction could occur as these surfactant solutions contacted reservoir brine and formed mobility control foams in-situ. The vast majority of the work conducted in this study was devoted to the copolymeric thickeners and the small hydrogen-bonding thickeners; these thickeners were intended to dissolve completely in CO{sub 2} and increase the fluid viscosity. A small but important amount of work was done establishing the groundwork for CO{sub 2}-soluble surfactants that reduced mobility by generating foams in-situ as the CO{sub 2}+surfactant solution mixed with in-situ brine.

  10. Downhole fluid injection systems, CO2 sequestration methods, and hydrocarbon material recovery methods

    Science.gov (United States)

    Schaef, Herbert T.; McGrail, B. Peter

    2015-07-28

    Downhole fluid injection systems are provided that can include a first well extending into a geological formation, and a fluid injector assembly located within the well. The fluid injector assembly can be configured to inject a liquid CO2/H2O-emulsion into the surrounding geological formation. CO2 sequestration methods are provided that can include exposing a geological formation to a liquid CO2/H2O-emulsion to sequester at least a portion of the CO2 from the emulsion within the formation. Hydrocarbon material recovery methods are provided that can include exposing a liquid CO2/H2O-emulsion to a geological formation having the hydrocarbon material therein. The methods can include recovering at least a portion of the hydrocarbon material from the formation.

  11. Global warming impacts of CFC alternative technologies: Combining fluorocarbon and CO2 effects

    International Nuclear Information System (INIS)

    Fairchild, P.D.; Fischer, S.K.; Hughes, P.J.

    1992-01-01

    Chlorofluorocarbons (CFCs) are on their way out, due to their role in stratospheric ozone depletion and the related international Montreal Protocol agreement and various national phaseout timetables. As the research, engineering development, and manufacturing investment decisions have ensued to prepare for this transition away from CFCs, the climate change issue has emerged and there has recently been increased attention on the direct global warming potential (GWP) of the fluorocarbon alternatives as greenhouse gases. However, there has been less focus on the indirect global warming effect arising from end-use energy changes and associated CO 2 emissions. A study was undertaken to address these combined global warming effects. A concept of Total Equivalent Warming Impact (TEWI) was developed for combining the direct and indirect effects and was used for evaluating CFC-replacement options available in the required CFC transition time frame. Analyses of industry technology surveys indicate that CFC-user industries have made substantial progress toward near-equal energy efficiency with many HCFC/HFC alternatives. The findings also bring into question the relative importance of the direct effect in many applications and stress energy efficiency when searching for suitable CFC alternatives. For chillers, household refrigerators, and unitary air-conditioning or heat pump equipment, changes in efficiency of only 2--5% would have a greater effect on future TEWI than completely eliminating the direct effect

  12. Fluorocarbon Adsorption in Hierarchical Porous Frameworks

    Energy Technology Data Exchange (ETDEWEB)

    Motkuri, Radha K.; Annapureddy, Harsha V.; Vijayakumar, M.; Schaef, Herbert T.; Martin, P F.; McGrail, B. Peter; Dang, Liem X.; Krishna, Rajamani; Thallapally, Praveen K.

    2014-07-09

    The adsorption behavior of a series of fluorocarbon derivatives was examined on a set of microporous metal organic framework (MOF) sorbents and another set of hierarchical mesoporous MOFs. The microporous M-DOBDC (M = Ni, Co) showed a saturation uptake capacity for R12 of over 4 mmol/g at a very low relative saturation pressure (P/Po) of 0.02. In contrast, the mesoporous MOF MIL-101 showed an exceptionally high uptake capacity reaching over 14 mmol/g at P/Po of 0.4. Adsorption affinity in terms of mass loading and isosteric heats of adsorption were found to generally correlate with the polarizability of the refrigerant with R12 > R22 > R13 > R14 > methane. These results suggest the possibility of exploiting MOFs for separation of azeotropic mixtures of fluorocarbons and use in eco-friendly fluorocarbon-based adsorption cooling and refrigeration applications.

  13. Metal-Doped Nitrogenated Carbon as an Efficient Catalyst for Direct CO2 Electroreduction to CO and Hydrocarbons.

    Science.gov (United States)

    Varela, Ana Sofia; Ranjbar Sahraie, Nastaran; Steinberg, Julian; Ju, Wen; Oh, Hyung-Suk; Strasser, Peter

    2015-09-07

    This study explores the kinetics, mechanism, and active sites of the CO2 electroreduction reaction (CO2RR) to syngas and hydrocarbons on a class of functionalized solid carbon-based catalysts. Commercial carbon blacks were functionalized with nitrogen and Fe and/or Mn ions using pyrolysis and acid leaching. The resulting solid powder catalysts were found to be active and highly CO selective electrocatalysts in the electroreduction of CO2 to CO/H2 mixtures outperforming a low-area polycrystalline gold benchmark. Unspecific with respect to the nature of the metal, CO production is believed to occur on nitrogen functionalities in competition with hydrogen evolution. Evidence is provided that sufficiently strong interaction between CO and the metal enables the protonation of CO and the formation of hydrocarbons. Our results highlight a promising new class of low-cost, abundant electrocatalysts for synthetic fuel production from CO2 . © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Energy and climate impacts of producing synthetic hydrocarbon fuels from CO(2).

    Science.gov (United States)

    van der Giesen, Coen; Kleijn, René; Kramer, Gert Jan

    2014-06-17

    Within the context of carbon dioxide (CO2) utilization there is an increasing interest in using CO2 as a resource to produce sustainable liquid hydrocarbon fuels. When these fuels are produced by solely using solar energy they are labeled as solar fuels. In the recent discourse on solar fuels intuitive arguments are used to support the prospects of these fuels. This paper takes a quantitative approach to investigate some of the claims made in this discussion. We analyze the life cycle performance of various classes of solar fuel processes using different primary energy and CO2 sources. We compare their efficacy with respect to carbon mitigation with ubiquitous fossil-based fuels and conclude that producing liquid hydrocarbon fuels starting from CO2 by using existing technologies requires much more energy than existing fuels. An improvement in life cycle CO2 emissions is only found when solar energy and atmospheric CO2 are used. Producing fuels from CO2 is a very long-term niche at best, not the panacea suggested in the recent public discourse.

  15. Tailoring gas-phase CO2 electroreduction selectivity to hydrocarbons at Cu nanoparticles

    Science.gov (United States)

    Merino-Garcia, I.; Albo, J.; Irabien, A.

    2018-01-01

    Copper-based surfaces appear as the most active catalysts for CO2 electroreduction to hydrocarbons, even though formation rates and efficiencies still need to be improved. The aim of the present work is to evaluate the continuous gas-phase CO2 electroreduction to hydrocarbons (i.e. ethylene and methane) at copper nanoparticulated-based surfaces, paying attention to particle size influence (ranging from 25-80 nm) on reaction productivity, selectivity, and Faraday efficiency (FE) for CO2 conversion. The effect of the current density and the presence of a microporous layer within the working electrode are then evaluated. Copper-based gas diffusion electrodes are prepared by airbrushing the catalytic ink onto carbon supports, which are then coupled to a cation exchange membrane (Nafion) in a membrane electrode assembly. The results show that the use of smaller copper nanoparticles (25 nm) leads to a higher ethylene production (1148 μmol m-2 s-1) with a remarkable high FE (92.8%), at the same time, diminishing the competitive hydrogen evolution reaction in terms of FE. This work demonstrates the importance of nanoparticle size on reaction selectivity, which may be of help to design enhanced electrocatalytic materials for CO2 valorization to hydrocarbons.

  16. Sustainable hydrocarbon fuels by recycling CO2 and H2O with renewable or nuclear energy

    DEFF Research Database (Denmark)

    Graves, Christopher R.; Ebbesen, Sune; Mogensen, Mogens Bjerg

    2011-01-01

    ) and biofuels have received the most attention, similar hydrocarbons can be produced without using fossil fuels or biomass. Using renewable and/or nuclear energy, carbon dioxide and water can be recycled into liquid hydrocarbon fuels in non-biological processes which remove oxygen from CO2 and H2O (the reverse...... of fuel combustion). Capture of CO2 from the atmosphere would enable a closed-loop carbon-neutral fuel cycle. This article critically reviews the many possible technological pathways for recycling CO2 into fuels using renewable or nuclear energy, considering three stages—CO2 capture, H2O and CO2...... by Fischer–Tropsch synthesis is identified as one of the most promising, feasible routes. An analysis of the energy balance and economics of this CO2 recycling process is presented. We estimate that the full system can feasibly operate at 70% electricity-to-liquid fuel efficiency (higher heating value basis...

  17. Preparation of transparent fluorocarbon/TiO{sub 2}-SiO{sub 2} composite coating with improved self-cleaning performance and anti-aging property

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Jianping, E-mail: zf161162@163.com; Tan, Zhongyuan; Liu, Zhilei; Jing, Mengmeng; Liu, Wenjie; Fu, Wanli

    2017-02-28

    Graphical abstract: Semicrystalline colloidal particles of TiO{sub 2}-SiO{sub 2} composite oxide were prepared via a sol-gel approach and annealed by a microwave heating treatment. The fabricated fluorocarbon/TiO{sub 2}-SiO{sub 2} composite coatings are transparent, exhibit a highly stable and excellent hydrophilicity, an improved photocatalytic activity and outstanding self-cleaning performance. What’s more, the composite coatings display an excellent anti-aging performance toward UV irradiation. These findings indicate that the fluorocarbon/TiO{sub 2}-SiO{sub 2} composite coatings could be potentially used for outdoor applications. - Highlights: • Semicrystalline colloidal particles of TiO{sub 2}-SiO{sub 2} composite oxide presenting a particle size of 6–10 nm were prepared via a sol-gel approach and annealed by microwave heating method. • The fabricated transparent fluorocarbon/TiO{sub 2}-SiO{sub 2} composite coatings exhibited a superior hydrophilicity, an improved photocatalytic activity and excellent self-cleaning performance. • The fluorocarbon/TiO{sub 2}-SiO{sub 2} composite coatings exhibited an excellent anti-aging performance toward UV irradiation, rendering it quite suitable for outdoor applications. - Abstract: This work reports a facile method to fabricate transparent self-cleaning fluorocarbon coatings filled by semicrystalline colloidal particles of TiO{sub 2}-SiO{sub 2} composite oxide presenting a particle size ranging from 6 to 10 nm. Anatase-TiO{sub 2} crystallites were successfully obtained after microwave heating treatment of the TiO{sub 2}-SiO{sub 2} colloidal particles as confirmed by XRD, TEM and FTIR measurements. The fluorocarbon/TiO{sub 2}-SiO{sub 2} composite coatings exhibited a superior hydrophilicity and an improved photocatalytic activity in contrast to the TiO{sub 2}-filled coatings. In particular, a water contact angle (WCA) value of 4.5° and a decolorization ratio relative to methyl orange as high as 96.0% were

  18. Symmetrical synergy of hybrid CoS2-WS2 electrocatalysts for hydrogen evolution reaction

    KAUST Repository

    Zhou, Xiaofeng; Yang, Xiulin; Li, Henan; Hedhili, Mohamed N.; Huang, Kuo-Wei; Li, Lain-Jong; Zhang, Wenjing

    2017-01-01

    A highly active and stable hybrid electrocatalyst 3D hierarchical CoS2 nanosheets incorporated with WS2 (CoS2@WS2) has been developed via a one-step sulfurization method for the first time, where the contents of WS2 can be adjusted easily. We first prove the addition of small amounts of WS2 enhances the hydrogen evolution reaction (HER) performance of CoS2, and vise versa. In other words, we validated the symmetric synergy for HER between the Co- and W-based sulfide hybrid catalysts. In addition, we confirmed that the formation of nanointerfaces of Co-S-W between CoS2 and WS2 was responsible for the excellent HER activity (an overpotential of -97.2 mV at -10 mA/cm2, a small Tafel slope of 66.0 mV/dec, and prominent electrochemical stability) of hybrid electrocatalyst CoS2@WS2.

  19. Symmetrical synergy of hybrid CoS2-WS2 electrocatalysts for hydrogen evolution reaction

    KAUST Repository

    Zhou, Xiaofeng

    2017-06-05

    A highly active and stable hybrid electrocatalyst 3D hierarchical CoS2 nanosheets incorporated with WS2 (CoS2@WS2) has been developed via a one-step sulfurization method for the first time, where the contents of WS2 can be adjusted easily. We first prove the addition of small amounts of WS2 enhances the hydrogen evolution reaction (HER) performance of CoS2, and vise versa. In other words, we validated the symmetric synergy for HER between the Co- and W-based sulfide hybrid catalysts. In addition, we confirmed that the formation of nanointerfaces of Co-S-W between CoS2 and WS2 was responsible for the excellent HER activity (an overpotential of -97.2 mV at -10 mA/cm2, a small Tafel slope of 66.0 mV/dec, and prominent electrochemical stability) of hybrid electrocatalyst CoS2@WS2.

  20. Reactivity of hydrocarbons in response to injection of a CO2/O2 mixture under depleted reservoir conditions: experimental and numerical modeling

    International Nuclear Information System (INIS)

    Pacini-Petitjean, Claire

    2015-01-01

    The geological storage of CO 2 (CO 2 Capture-Storage - CCS) and the Enhanced Oil Recovery (EOR) by CO 2 injection into petroleum reservoirs could limit CO 2 atmospheric accumulation. However, CO 2 can be associated with oxygen. To predict the hydrocarbon evolution under these conditions involves the study of oxidation mechanisms. Oxidation experiment and kinetic detailed modeling were carried out with pure compounds. The comparison between experimental and modeling results led to the construction of a hydrocarbon oxidation kinetic model and emphasized the parameters leading to auto ignition. The good agreement between our experiments and modeling are promising for the development of a tool predicting the critical temperature leading to auto-ignition and the evolution of hydrocarbon composition, to estimate the stability of a petroleum system in CO 2 injection context. (author) [fr

  1. Top-philic scalar Dark Matter with a vector-like fermionic top partner

    OpenAIRE

    Baek, Seungwon; Ko, Pyungwon; Wu, Peiwen

    2016-01-01

    We consider a simple extension of the Standard Model with a scalar top-philic Dark Matter (DM) $S$ coupling, apart from the Higgs portal, exclusively to the right-handed top quark $t_R$ and a colored vector-like top partner $T$ with a Yukawa coupling $y_{ST}$ which we call the topVL portal. When the Higgs portal is closed and $y_{ST}$ is perturbative $ (\\lesssim 1)$, $TS\\to (W^+b, gt)$, $SS\\to t\\bar{t}$ and $T\\bar{T}\\to (q\\bar{q},gg)$ provide the dominant (co)annihilation contributions to obt...

  2. DEPLETED HYDROCARBON RESERVOIRS AND CO2 INJECTION WELLS –CO2 LEAKAGE ASSESSMENT

    Directory of Open Access Journals (Sweden)

    Nediljka Gaurina-Međimurec

    2017-03-01

    Full Text Available Migration risk assessment of the injected CO2 is one of the fi rst and indispensable steps in determining locations for the implementation of projects for carbon dioxide permanent disposal in depleted hydrocarbon reservoirs. Within the phase of potential storage characterization and assessment, it is necessary to conduct a quantitative risk assessment, based on dynamic reservoir models that predict the behaviour of the injected CO2, which requires good knowledge of the reservoir conditions. A preliminary risk assessment proposed in this paper can be used to identify risks of CO2 leakage from the injection zone and through wells by quantifying hazard probability (likelihood and severity, in order to establish a risk-mitigation plan and to engage prevention programs. Here, the proposed risk assessment for the injection well is based on a quantitative risk matrix. The proposed assessment for the injection zone is based on methodology used to determine a reservoir probability in exploration and development of oil and gas (Probability of Success, abbr. POS, and modifi ed by taking into account hazards that may lead to CO2 leakage through the cap rock in the atmosphere or groundwater. Such an assessment can eliminate locations that do not meet the basic criteria in regard to short-term and long-term safety and the integrity of the site

  3. Exceptionally High Efficient Co-Co2P@N, P-Codoped Carbon Hybrid Catalyst for Visible Light-Driven CO2-to-CO Conversion.

    Science.gov (United States)

    Fu, Wen Gan

    2018-05-02

    Artificial photosynthesis has attracted wide attention, particularly the development of efficient solar light-driven methods to reduce CO2 to form energy-rich carbon-based products. Because CO2 reduction is an uphill process with a large energy barrier, suitable catalysts are necessary to achieve this transformation. In addition, CO2 adsorption on a catalyst and proton transfer to CO2 are two important factors for the conversion reaction,and catalysts with high surface area and more active sites are required to improve the efficiency of CO2 reduction. Here, we report a visible light-driven system for CO2-to-CO conversion that consists of a heterogeneous hybrid catalyst of Co and Co2P nanoparticles embedded in carbon nanolayers codoped with N and P (Co-Co2P@NPC) and a homogeneous Ru(II)-based complex photosensitizer. The average generation rate of CO of the system was up to 35,000 μmol h-1 g-1 with selectivity of 79.1% in 3 h. Linear CO production at an exceptionally high rate of 63,000 μmol h-1 g-1 was observed in the first hour of reaction. Inspired by this highly active catalyst, we also synthesized Co@NC and Co2P@NPC materials and explored their structure, morphology, and catalytic properties for CO2 photoreduction. The results showed that the nanoparticle size, partially adsorbed H2O molecules on the catalyst surface, and the hybrid nature of the systems influenced their photocatalytic CO2 reduction performance. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Fluoro-Carbonate Solvents for Li-Ion Cells

    International Nuclear Information System (INIS)

    NAGASUBRAMANIAN, GANESAN

    1999-01-01

    A number of fluoro-carbonate solvents were evaluated as electrolytes for Li-ion cells. These solvents are fluorine analogs of the conventional electrolyte solvents such as dimethyl carbonate, ethylene carbonate, diethyl carbonate in Li-ion cells. Conductivity of single and mixed fluoro carbonate electrolytes containing 1 M LiPF(sub 6) was measured at different temperatures. These electrolytes did not freeze at -40 C. We are evaluating currently, the irreversible 1st cycle capacity loss in carbon anode in these electrolytes and the capacity loss will be compared to that in the conventional electrolytes. Voltage stability windows of the electrolytes were measured at room temperature and compared with that of the conventional electrolytes. The fluoro-carbon electrolytes appear to be more stable than the conventional electrolytes near Li voltage. Few preliminary electrochemical data of the fluoro-carbonate solvents in full cells are reported in the literature. For example, some of the fluorocarbonate solvents appear to have a wider voltage window than the conventional electrolyte solvents. For example, methyl 2,2,2 trifluoro ethyl carbonate containing 1 M LiPF(sub 6) electrolyte has a decomposition voltage exceeding 6 V vs. Li compared to and lt;5 V for conventional electrolytes. The solvent also appears to be stable in contact with lithium at room temperature

  5. Hybrid of Co(3)Sn(2)@Co nanoparticles and nitrogen-doped graphene as a lithium ion battery anode.

    Science.gov (United States)

    Mahmood, Nasir; Zhang, Chenzhen; Liu, Fei; Zhu, Jinghan; Hou, Yanglong

    2013-11-26

    A facile strategy was designed for the fabrication of hybrid of Co3Sn2@Co nanoparticles (NPs) and nitrogen-doped graphene (NG) sheets through a hydrothermal synthesis, followed by annealing process. Core-shell architecture of Co3Sn2@Co pin on NG is designed for the dual encapsulation of Co3Sn2 with adaptable ensembles of Co and NG to address the structural and interfacial stability concerns facing tin-based anodes. In the resulted unique architecture of Co3Sn2@Co-NG hybrid, the sealed cobalt cover prevents the direct exposer of Sn with electrolyte because of encapsulated structure and keeps the structural and interfacial integrity of Co3Sn2. However, the elastically strong, flexible and conductive NG overcoat accommodates the volume changes and therefore brings the structural and electrical stabilization of Co3Sn2@Co NPs. As a result, Co3Sn2@Co-NG hybrid exhibits extraordinary reversible capacity of 1615 mAh/g at 250 mA/g after 100 cycles with excellent capacity retention of 102%. The hybrid bears superior rate capability with reversible capacity of 793.9 mAh/g at 2500 mA/g and Coulombic efficiency nearly 100%.

  6. Process for synthesizing a new series of fluorocarbon polymers

    Science.gov (United States)

    Toy, M. S.

    1970-01-01

    Two-step process for preparing fluorocarbon materials includes - /1/ adding gaseous fluorine to a polyperfluoropolyene to create fluorocarbon radicals, with reactive sites at unsaturated carbon atoms, and /2/ introducing a monomer, after evacuation of fluorine gas, and allowing copolymerization with the free radicals.

  7. Modeling and optimization of Fischer-Tropsch synthesis over Co-Mn-Ce/SiO_2 catalyst using hybrid RSM/LHHW approaches

    International Nuclear Information System (INIS)

    Zohdi-Fasaei, Hossein; Atashi, Hossein; Farshchi Tabrizi, Farshad; Mirzaei, Ali Akbar

    2017-01-01

    Operating conditions considerably affect the energy required for Fischer-Tropsch synthesis, depending on the catalyst composition and reactor type (catalyst system). This paper reports the use of cobalt-manganese-cerium supported on silica as a novel CO hydrogenation catalyst, to produce hydrocarbons in a fixed bed micro-reactor. Response surface methodology (RSM) was applied to study the effects of temperature, pressure, feed ratio and their interactions on CO consumption rate, and the selectivity of light olefins (light olefinity), methane and C_5_+ hydrocarbons. Quadratic mathematical models adequately described the responses in this catalyst system. According to Langmuir Hinshelwood Hougen Watson (LHHW) approach, kinetic mechanism of the reaction was found to be an associative adsorption of H_2 and CO. Statistical analysis demonstrated that pressure and feed ratio were the most important factors for the production of C_5_+ and light alkenes, respectively. Model graphs indicated that minimum methane selectivity was achieved at 523.15 k and 2 bar. The maximum amounts of light olefins and heavier hydrocarbons were obtained at H_2/CO = 1 and H_2/CO = 2, respectively. Characterization of precursor and calcined catalyst (before and after the reaction) was carried out using SEM and BET techniques. - Highlights: • The performance of a new catalytic system was studied using RSM as a research plan. • Interactions between significant factors were investigated using mathematical models. • Based on LHHW approach, kinetic mechanism was molecular adsorptions of H_2 and CO. • RSM rate expression was in consistent with the LHHW kinetic model. • Hybrid RSM/LHHW is promising for optimization, mechanism and selectivity studies.

  8. Biomass consumption and CO2, CO and main hydrocarbon gas emissions in an Amazonian forest clearing fire

    Science.gov (United States)

    T. G. Soares Neto; J. A. Carvalho; C. A. G. Veras; E. C. Alvarado; R. Gielow; E. N. Lincoln; T. J. Christian; R. J. Yokelson; J. C. Santos

    2009-01-01

    Biomass consumption and CO2, CO and hydrocarbon gas emissions in an Amazonian forest clearing fire are presented and discussed. The experiment was conducted in the arc of deforestation, near the city of Alta Floresta, state of Mato Grosso, Brazil. The average carbon content of dry biomass was 48% and the estimated average moisture content of fresh biomass was 42% on...

  9. Top-philic Z ' forces at the LHC

    Science.gov (United States)

    Fox, Patrick J.; Low, Ian; Zhang, Yue

    2018-03-01

    Despite extensive searches for an additional neutral massive gauge boson at the LHC, a Z ' at the weak scale could still be present if its couplings to the first two generations of quarks are suppressed, in which case the production in hadron colliders relies on tree-level processes in association with heavy flavors or one-loop processes in association with a jet. We consider the low-energy effective theory of a top-philic Z ' and present possible UV completions. We clarify theoretical subtleties in evaluating the production of a top-philic Z ' at the LHC and examine carefully the treatment of ananomalous Z ' current in the low-energy effective theory. Recipes for properly computing the production rate in the Z ' + j channel are given. We discuss constraints from colliders and low-energy probes of new physics. As an application, we apply these considerations to models that use a weak-scale Z ' to explain possible violations of lepton universality in B meson decays, and show that the future running of a high luminosity LHC can potentially cover much of the remaining parameter space favored by this particular interpretation of the B physics anomaly.

  10. Modelling small angle neutron scattering data from polymers in supercritical fluids

    International Nuclear Information System (INIS)

    Triolo, F.; Triolo, A.; Lo Celso, F.; Donato, D. I.; Triolo, R.; Johnson, J. S. Jr.

    2000-01-01

    In this paper we report a SANS investigation of micelle formation by fluorocarbon-hydrocarbon block copolymers in supercritical CO 2 (scCO 2 ) at 313K. A sharp unimer-micelle transition is obtained due to the tuning of the solvating ability of scCO 2 by profiling pressure. At high pressure the copolymer is in a monomeric state with a random coil structure. By lowering the pressure aggregates are formed with the hydrocarbon segments forming the core and the fluorocarbon segments forming the corona of spherical aggregates. This aggregate-unimer transition is driven by the gradual penetration of CO 2 molecules toward the core of the aggregate and is critically related to the density of the solvent, thus suggesting the definition of a critical micellization density (CMD)

  11. Decentralized production of hydrogen from hydrocarbons with reduced CO2 emission

    International Nuclear Information System (INIS)

    Nazim Muradov; Franklyn Smith; Cunping Huang; Ali T-Raissi

    2006-01-01

    Currently, most of the industrial hydrogen production is based on steam methane reforming process that releases significant amount of CO 2 into the atmosphere. CO 2 sequestration is one approach to solving the CO 2 emission problem for large centralized hydrogen plants, but it would be impractical for decentralized H 2 production units. The objective of this paper is to explore new routes to hydrogen production from natural gas without (or drastically reduced) CO 2 emissions. One approach analyzed in this paper is based on thermo-catalytic decomposition (TCD) of hydrocarbons (e.g., methane) to hydrogen gas and elemental carbon. The paper discusses some technological aspects of the TCD process development: (1) thermodynamic analysis of TCD using AspenPlus chemical process simulator, (2) heat input options to the endothermic process, (3) catalyst activity issues, etc. Production of hydrogen and carbon via TCD of methane was experimentally verified using carbon-based catalysts. (authors)

  12. Amine–mixed oxide hybrid materials for carbon dioxide adsorption from CO2/H2 mixture

    Science.gov (United States)

    Ravi, Navin; Aishah Anuar, Siti; Yusuf, Nur Yusra Mt; Isahak, Wan Nor Roslam Wan; Shahbudin Masdar, Mohd

    2018-05-01

    Bio-hydrogen mainly contains hydrogen and high level of carbon dioxide (CO2). High concentration of CO2 lead to a limitation especially in fuel cell application. In this study, the amine-mixed oxide hybrid materials for CO2 separation from bio-hydrogen model (50% CO2:50% H2) have been studied. Fourier-transform infrared spectroscopy (FTIR) and x-ray diffraction (XRD) characterizations showed that the amine–mixed oxide hybrid materials successfully adsorbed CO2 physically with no chemical adsorption evidence. The dry gas of CO2/H2 mixture adsorbed physically on amine–CuO–MgO hybrid material. No carbonates were detected after several times of adsorption, which indicated the good recyclability of adsorbents. The adsorbent system of diethanolamine (DEA)/15% CuO–75% MgO showed the highest CO2 adsorption capacity of 21.2 wt% due to the presence of polar substance on MgO surface, which can adsorb CO2 at ambient condition. The alcohol group of DEA can enhance the CO2 solubility on the adsorbent surface. In the 20% CuO–50% MgO adsorbent system, DEA as amine type showed a high CO2 adsorption of 19.4 wt%. The 10% amine loading system showed that the DEA adsorption system provided high CO2 adsorption. The BET analysis confirmed that a high amine loading contributed to the decrease in CO2 adsorption due to the low surface area of the adsorbent system.

  13. Studies on CO2-laser Hybrid-Welding of Copper

    DEFF Research Database (Denmark)

    Nielsen, Jakob Skov; Olsen, Flemming Ove; Bagger, Claus

    2005-01-01

    CO2-laser welding of copper is known to be difficult due to the high heat conductivity of the material and the high reflectivity of copper at the wavelength of the CO2-laser light. THis paper presents a study of laser welding of copper, applying laser hybrid welding. Welding was performed as a hy...

  14. Difference in growth and coalescing patterns of droplets on bi-philic surfaces with varying spatial distribution.

    Science.gov (United States)

    Garimella, Martand Mayukh; Koppu, Sudheer; Kadlaskar, Shantanu Shrikant; Pillutla, Venkata; Abhijeet; Choi, Wonjae

    2017-11-01

    This paper reports the condensation and subsequent motion of water droplets on bi-philic surfaces, surfaces that are patterned with regions of different wettability. Bi-philic surfaces can enhance the water collection efficiency: droplets condensing on hydrophobic regions wick into hydrophilic drain channels when droplets grow to a certain size, renewing the condensation on the dry hydrophobic region. The onset of drain phenomenon can be triggered by multiple events with distinct nature ranging from gravity, direct contact between a droplet and a drain channel, to a mutual coalescence between droplets. This paper focuses on the effect of the length scale of hydrophobic regions on the dynamics of mutual coalescence between droplets and subsequent drainage. The main hypothesis was that, when the drop size is sufficient, the kinetic energy associated with a coalescence of droplets may cause dynamic advancing of a newly formed drop, leading to further coalescence with nearby droplets and ultimately to a chain reaction. We fabricate bi-philic surfaces with hydrophilic and hydrophobic stripes, and the result confirms that coalescing droplets, when the length scale of droplets increases beyond 0.2mm, indeed display dynamic expansion and chain reaction. Multiple droplets can thus migrate to hydrophilic drain simultaneously even when the initial motion of the droplets was not triggered by the direct contact between the droplet and the hydrophilic drain. Efficiency of drain due to mutual coalescence of droplets varies depending on the length scale of bi-philic patterns, and the drain phenomenon reaches its peak when the width of hydrophobic stripes is between 800μm and 1mm. The Ohnesorge number of droplets draining on noted surfaces is between 0.0042 and 0.0037 respectively. The observed length scale of bi-philic patterns matches that on the Stenocara beetle's fog harvesting back surface. This match between length scales suggests that the surface of the insect is optimized

  15. Caprock Integrity during Hydrocarbon Production and CO2 Injection in the Goldeneye Reservoir

    Science.gov (United States)

    Salimzadeh, Saeed; Paluszny, Adriana; Zimmerman, Robert

    2016-04-01

    Carbon Capture and Storage (CCS) is a key technology for addressing climate change and maintaining security of energy supplies, while potentially offering important economic benefits. UK offshore, depleted hydrocarbon reservoirs have the potential capacity to store significant quantities of carbon dioxide, produced during power generation from fossil fuels. The Goldeneye depleted gas condensate field, located offshore in the UK North Sea at a depth of ~ 2600 m, is a candidate for the storage of at least 10 million tons of CO2. In this research, a fully coupled, full-scale model (50×20×8 km), based on the Goldeneye reservoir, is built and used for hydro-carbon production and CO2 injection simulations. The model accounts for fluid flow, heat transfer, and deformation of the fractured reservoir. Flow through fractures is defined as two-dimensional laminar flow within the three-dimensional poroelastic medium. The local thermal non-equilibrium between injected CO2 and host reservoir has been considered with convective (conduction and advection) heat transfer. The numerical model has been developed using standard finite element method with Galerkin spatial discretisation, and finite difference temporal discretisation. The geomechanical model has been implemented into the object-oriented Imperial College Geomechanics Toolkit, in close interaction with the Complex Systems Modelling Platform (CSMP), and validated with several benchmark examples. Fifteen major faults are mapped from the Goldeneye field into the model. Modal stress intensity factors, for the three modes of fracture opening during hydrocarbon production and CO2 injection phases, are computed at the tips of the faults by computing the I-Integral over a virtual disk. Contact stresses -normal and shear- on the fault surfaces are iteratively computed using a gap-based augmented Lagrangian-Uzawa method. Results show fault activation during the production phase that may affect the fault's hydraulic conductivity

  16. The use of solvent extractions and solubility theory to discern hydrocarbon associations in coal, with application to the coal-supercritical CO2 system

    Science.gov (United States)

    Kolak, Jonathan J.; Burruss, Robert A.

    2014-01-01

    Samples of three high volatile bituminous coals were subjected to parallel sets of extractions involving solvents dichloromethane (DCM), carbon disulfide (CS2), and supercritical carbon dioxide (CO2) (40 °C, 100 bar) to study processes affecting coal–solvent interactions. Recoveries of perdeuterated surrogate compounds, n-hexadecane-d34 and four polycyclic aromatic hydrocarbons (PAHs), added as a spike prior to extraction, provided further insight into these processes. Soxhlet-DCM and Soxhlet-CS2 extractions yielded similar amounts of extractable organic matter (EOM) and distributions of individual hydrocarbons. Supercritical CO2 extractions (40 °C, 100 bar) yielded approximately an order of magnitude less EOM. Hydrocarbon distributions in supercritical CO2 extracts generally mimicked distributions from the other solvent extracts, albeit at lower concentrations. This disparity increased with increasing molecular weight of target hydrocarbons. Five- and six-ring ring PAHs generally were not detected and no asphaltenes were recovered in supercritical CO2 extractions conducted at 40 °C and 100 bar. Supercritical CO2 extraction at elevated temperature (115 °C) enhanced recovery of four-ring and five-ring PAHs, dibenzothiophene (DBT), and perdeuterated PAH surrogate compounds. These results are only partially explained through comparison with previous measurements of hydrocarbon solubility in supercritical CO2. Similarly, an evaluation of extraction results in conjunction with solubility theory (Hildebrand and Hansen solubility parameters) does not fully account for the hydrocarbon distributions observed among the solvent extracts. Coal composition (maceral content) did not appear to affect surrogate recovery during CS2 and DCM extractions but might affect supercritical CO2 extractions, which revealed substantive uptake (partitioning) of PAH surrogates into the coal samples. This uptake was greatest in the sample (IN-1) with the highest vitrinite content. These

  17. Curable fluorocarbon substituted polyetherurethaneacrylates

    International Nuclear Information System (INIS)

    Newell, R.G.; Wolf, S.F.

    1981-01-01

    Radiation polymerizable compositions comprise polyetherurethaneacrylates having pendant fluorocarbon substituents. The compositions may be radiation polymerized, e.g. by electron beam, actinic light or heat, to a light transmissive material. The fluorocarbon substituent generally has the formula-W-Rsub(f), wherein W is a divalent connecting moiety and Rsub(f) is a highly fluorinated, preferably perfluorinated, aliphatic, aryl or alkaryl radical. These compositions may be utilized as 100% solids. The compositions are particularly useful for joining electro-optical components, and as a protective coating. (author)

  18. A quantum cascade laser infrared spectrometer for CO2 stable isotope analysis: Field implementation at a hydrocarbon contaminated site under bio-remediation.

    Science.gov (United States)

    Guimbaud, Christophe; Noel, Cécile; Chartier, Michel; Catoire, Valéry; Blessing, Michaela; Gourry, Jean Christophe; Robert, Claude

    2016-02-01

    Real-time methods to monitor stable isotope ratios of CO2 are needed to identify biogeochemical origins of CO2 emissions from the soil-air interface. An isotope ratio infra-red spectrometer (IRIS) has been developed to measure CO2 mixing ratio with δ(13)C isotopic signature, in addition to mixing ratios of other greenhouse gases (CH4, N2O). The original aspects of the instrument as well as its precision and accuracy for the determination of the isotopic signature δ(13)C of CO2 are discussed. A first application to biodegradation of hydrocarbons is presented, tested on a hydrocarbon contaminated site under aerobic bio-treatment. CO2 flux measurements using closed chamber method is combined with the determination of the isotopic signature δ(13)C of the CO2 emission to propose a non-intrusive method to monitor in situ biodegradation of hydrocarbons. In the contaminated area, high CO2 emissions have been measured with an isotopic signature δ(13)C suggesting that CO2 comes from petroleum hydrocarbon biodegradation. This first field implementation shows that rapid and accurate measurement of isotopic signature of CO2 emissions is particularly useful in assessing the contribution of contaminant degradation to the measured CO2 efflux and is promising as a monitoring tool for aerobic bio-treatment. Copyright © 2016. Published by Elsevier B.V.

  19. Cobalt-Doped Carbon Gels as Electro-Catalysts for the Reduction of CO2 to Hydrocarbons

    Directory of Open Access Journals (Sweden)

    Abdalla Abdelwahab

    2017-01-01

    Full Text Available Two original series of carbon gels doped with different cobalt loadings and well-developed mesoporosity, aerogels and xerogels, have been prepared, exhaustively characterized, and tested as cathodes for the electro-catalytic reduction of CO2 to hydrocarbons at atmospheric pressure. Commercial cobalt and graphite sheets have also been tested as cathodes for comparison. All of the doped carbon gels catalyzed the formation of hydrocarbons, at least from type C1 to C4. The catalytic activity depends mainly on the metal loading, nevertheless, the adsorption of a part of the products in the porous structure of the carbon gel cannot be ruled out. Apparent faradaic efficiencies calculated with these developed materials were better that those obtained with a commercial cobalt sheet as a cathode, especially considering the much lower amount of cobalt contained in the Co-doped carbon gels. The cobalt-carbon phases formed in these types of doped carbon gels improve the selectivity to C3-C4 hydrocarbons formation, obtaining even more C3 hydrocarbons than CH4 in some cases.

  20. The possible impact of fluorocarbons and halocarbons on ozone

    International Nuclear Information System (INIS)

    1975-05-01

    Partial contents: Chemistry-(The production and atmospheric release of fluorocarbons and certain other chlorine compounds, Photochemistry of fluorocarbons); Measurement techniques-(Stratospheric sampling platforms, Methods for measuring fluorocarbons and other halocarbons); Measurements-(Halogenated organic compounds in the troposphere, Stratospheric measurement of oxides of nitrogen, Total ozone trends); Models-(Assessment of the accuracy of atmospheric transport, Model prediction of ozone depletion); Effects-

  1. Thermochemical Properties Enthalpy, Entropy, and Heat Capacity of C1-C4 Fluorinated Hydrocarbons: Fluorocarbon Group Additivity.

    Science.gov (United States)

    Wang, Heng; Castillo, Álvaro; Bozzelli, Joseph W

    2015-07-23

    Enthalpies of formation for 14 C2–C4 fluorinated hydrocarbons were calculated with nine popular ab initio and density functional theory methods: B3LYP, CBS-QB3, CBS-APNO, M06, M06-2X, ωB97X, G4, G4(MP2)-6X, and W1U via several series of isodesmic reactions. The recommended ideal gas phase ΔHf298° (kcal mol(–1)) values calculated in this study are the following: −65.4 for CH3CH2F; −70.2 for CH3CH2CH2F; −75.3 for CH3CHFCH3; −75.2 for CH3CH2CH2CH2F; −80.3 for CH3CHFCH2CH3; −108.1 for CH2F2; −120.9 for CH3CHF2; −125.8 for CH3CH2CHF2; −133.3 for CH3CF2CH3; −166.7 for CHF3; −180.5 for CH3CF3; −185.5 for CH3CH2CF3; −223.2 for CF4; and −85.8 for (CH3)3CF. Entropies (S298° in cal mol(–1) K(–1)) were estimated using B3LYP/6-31+G(d,p) computed frequencies and geometries. Rotational barriers were determined and hindered internal rotational contributions for S298°, and Cp(T) were calculated using the rigid rotor harmonic oscillator approximation, with direct integration over energy levels of the intramolecular rotation potential energy curve. Thermochemical properties for the fluorinated carbon groups C/C/F/H2, C/C2/F/H, C/C/F2/H, C/C2/F2, and C/C/F3 were derived from the above target fluorocarbons. Previously published enthalpies and groups for 1,2-difluoroethane, 1,1,2-trifluoroethane, 1,1,2,2-tetrafluoroethane, 1,1,1,2-tetrafluoroethane, 1,1,1,2,2-pentafluoroethane, 2-fluoro-2-methylpropane that were previously determined via work reaction schemes are revised using updated reference species values. Standard deviations are compared for the calculation methods.

  2. The precise measurement of the (vapour + liquid) equilibrium properties for (CO2 + isobutane) binary mixtures

    International Nuclear Information System (INIS)

    Nagata, Y.; Mizutani, K.; Miyamoto, H.

    2011-01-01

    Recently, it has been suggested that natural working fluids, such as CO 2 , hydrocarbons, and their mixtures, could provide a long-term alternative to fluorocarbon refrigerants. (Vapour + liquid) equilibrium (VLE) data for these fluids are essential for the development of equations of state, and for industrial process such as separation and refinement. However, there are large inconsistencies among the available literature data for (CO 2 + isobutane) binary mixtures, and therefore provision of reliable and new measurements with expanded uncertainties is required. In this study, we determined precise VLE data using a new re-circulating type apparatus, which was mainly designed by Akico Co., Japan. An equilibrium cell with an inner volume of about 380 cm 3 and two optical windows was used to observe the phase behaviour. The cell had re-circulating loops and expansion loops that were immersed in a thermostatted liquid bath and air bath, respectively. After establishment of a steady state in these loops, the compositions of the samples were measured by a gas chromatograph (GL Science, GC-3200). The VLE data were measured for CO 2 /propane and CO 2 /isobutane binary mixtures within the temperature range from 300 K to 330 K and at pressures up to 7 MPa. These data were compared with the available literature data and with values predicted by thermodynamic property models.

  3. The electrochemical selective reduction of NO using CoSe2@CNTs hybrid.

    Science.gov (United States)

    Liu, Hui; Xiang, Kaisong; Yang, Bentao; Xie, Xiaofeng; Wang, Dongli; Zhang, Cong; Liu, Zhilou; Yang, Shu; Liu, Cao; Zou, Jianping; Chai, Liyuan

    2017-06-01

    Converting the NO from gaseous pollutant into NH 4 + through electrocatalytical reduction using cost-effective materials holds great promise for pollutant purifying and resources recycling. In this work, we developed a highly selective and stable catalyst CoSe 2 nanoparticle hybridized with carbon nanotubes (CoSe 2 @CNTs). The CoSe 2 @CNTs hybrid catalysts performed an extraordinary high selectivity for NH 4 + formation in NO electroreduction with minimal N 2 O production and H 2 evolution. The specific spatial structure of CoSe 2 is conductive to the predominant formation of N-H bond between the N from adsorbed NO and H and inhibition of N-N formation from adjacent adsorbed NO. It was also the first time to convert the coordinated NO into NH 4 + using non-noble metal catalysis. Moreover, the original concept of employing CoSe 2 as eletrocatalyst for NO hydrogenation presented in this work can broaden horizons and provide new dimensions in the design of new highly efficient catalysts for NH 4 + synthesis in aqueous solution.

  4. Biomimetic Fluorocarbon Surfactant Polymers Reduce Platelet Adhesion on PTFE/ePTFE Surfaces

    Science.gov (United States)

    Wang, Shuwu; Gupta, Anirban Sen; Sagnella, Sharon; Barendt, Pamela M.; Kottke-Marchant, Kandice; Marchant, Roger E.

    2010-01-01

    We describe a series of fluorocarbon surfactant polymers designed as surface-modifying agents for improving the thrombogenicity of ePTFE vascular graft materials by the reduction of platelet adhesion. The surfactant polymers consist of a poly(vinyl amine) backbone with pendent dextran and perfluoroundecanoyl branches. Surface modification is accomplished by a simple dip-coating process in which surfactant polymers undergo spontaneous surface-induced adsorption and assembly on PTFE/ePTFE surface. The adhesion stability of the surfactant polymer on PTFE was examined under dynamic shear conditions in PBS and human whole blood with a rotating disk system. Fluorocarbon surfactant polymer coatings with three different dextran to perfluorocarbon ratios (1:0.5, 1:1 and 1:2) were compared in the context of platelet adhesion on PTFE/ePTFE surface under dynamic flow conditions. Suppression of platelet adhesion was achieved for all three coated surfaces over the shear-stress range of 0–75 dyn/cm2 in platelet-rich plasma (PRP) or human whole blood. The effectiveness depended on the surfactant polymer composition such that platelet adhesion on coated surfaces decreased significantly with increasing fluorocarbon branch density at 0 dyn/cm2. Our results suggest that fluorocarbon surfactant polymers can effectively suppress platelet adhesion and demonstrate the potential application of the fluorocarbon surfactant polymers as non-thrombogenic coatings for ePTFE vascular grafts. PMID:19323880

  5. Surface etching mechanism of carbon-doped Ge{sub 2}Sb{sub 2}Te{sub 5} phase change material in fluorocarbon plasma

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Lanlan [Chinese Academy of Sciences, State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Micro-system and Information Technology, Shanghai (China); Graduate School of the Chinese Academy of Sciences, Beijing (China); Song, Sannian; Song, Zhitang; Li, Le; Guo, Tianqi; Cheng, Yan; Lv, Shilong; Wu, Liangcai; Liu, Bo; Feng, Songlin [Chinese Academy of Sciences, State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Micro-system and Information Technology, Shanghai (China)

    2016-09-15

    Recently, carbon-doped Ge2Sb2Te5 (CGST) phase change material has been widely researched for being highly promising material for future phase change memory application. In this paper, the reactive-ion etching of CGST film in CF{sub 4}/Ar plasma is studied. Compared with GST, the etch rate of CGST is relatively lower due to the existence of carbon which reduce the concentration of F or CF{sub x} reactive radicals. It was found that Argon plays an important role in defining the sidewall edge acuity. Compared with GST, more physical bombardment is required to obtain vertical sidewall of CGST. The effect of fluorocarbon gas on the damage of the etched CGST film was also investigated. A Ge- and Sb-deficient layer with tens of nanometers was observed by TEM combining with XPS analysis. The reaction between fluorocarbon plasma and CGST is mainly dominated by the diffusion and consumption of reactive fluorine radicals through the fluorocarbon layer into the CGST substrate material. The formation of damage layer is mainly caused by strong chemical reactivity, low volatility of reaction compounds and weak ion bombardment. (orig.)

  6. Reservoir simulation with the cubic plus (cross-) association equation of state for water, CO2, hydrocarbons, and tracers

    Science.gov (United States)

    Moortgat, Joachim

    2018-04-01

    This work presents an efficient reservoir simulation framework for multicomponent, multiphase, compressible flow, based on the cubic-plus-association (CPA) equation of state (EOS). CPA is an accurate EOS for mixtures that contain non-polar hydrocarbons, self-associating polar water, and cross-associating molecules like methane, ethane, unsaturated hydrocarbons, CO2, and H2S. While CPA is accurate, its mathematical formulation is highly non-linear, resulting in excessive computational costs that have made the EOS unfeasible for large scale reservoir simulations. This work presents algorithms that overcome these bottlenecks and achieve an efficiency comparable to the much simpler cubic EOS approach. The main applications that require such accurate phase behavior modeling are 1) the study of methane leakage from high-pressure production wells and its potential impact on groundwater resources, 2) modeling of geological CO2 sequestration in brine aquifers when one is interested in more than the CO2 and H2O components, e.g. methane, other light hydrocarbons, and various tracers, and 3) enhanced oil recovery by CO2 injection in reservoirs that have previously been waterflooded or contain connate water. We present numerical examples of all those scenarios, extensive validation of the CPA EOS with experimental data, and analyses of the efficiency of our proposed numerical schemes. The accuracy, efficiency, and robustness of the presented phase split computations pave the way to more widespread adoption of CPA in reservoir simulators.

  7. Reaction of uranium and the fluorocarbon FC-75

    Science.gov (United States)

    Young, R. H.

    1985-04-01

    Because of criticality concerns with water cooling in enriched uranium upgrading, a fluorocarbon has been evaluated as a replacement coolant for internal module components in the Plasma Separation Process (PSP). The interaction of bulk uranium and of powdered uranium with FC-75 has been investigated at temperatures between 200 and 700 C. The gas pressure and the metal temperature were monitored as a function of time. Modest temperature changes of 50 to 100 C were observed for the bulk uranium/fluorocarbon reaction. Much larger changes (up to 1000 C) were noted for the reaction involving high surface area uranium powder. These temperature transients, particularly for the powdered uranium reaction, were short-lived ( 10 seconds) and indicative of the formation of a protective layer of reaction products. Analysis of residual gas products by infrared spectroscopy indicated that one potentially serious hazard, UF6, was not present; however, several small toxic fluorocarbons were produced by thermolysis and/or reaction. X-ray diffraction analysis of the residual solids indicated UF4 and UO2 were the major solid products.

  8. CONCEPTUAL DESIGN AND ECONOMICS OF THE ADVANCED CO2 HYBRID POWER CYCLE

    Energy Technology Data Exchange (ETDEWEB)

    A. Nehrozoglu

    2004-12-01

    Research has been conducted under United States Department of Energy Contract DEFC26-02NT41621 to analyze the feasibility of a new type of coal-fired plant for electric power generation. This new type of plant, called the Advanced CO{sub 2} Hybrid Power Plant, offers the promise of efficiencies nearing 36 percent, while concentrating CO{sub 2} for 100% sequestration. Other pollutants, such as SO{sub 2} and NOx, are sequestered along with the CO{sub 2} yielding a zero emissions coal plant. The CO{sub 2} Hybrid is a gas turbine-steam turbine combined cycle plant that uses CO{sub 2} as its working fluid to facilitate carbon sequestration. The key components of the plant are a cryogenic air separation unit (ASU), a pressurized circulating fluidized bed gasifier, a CO{sub 2} powered gas turbine, a circulating fluidized bed boiler, and a super-critical pressure steam turbine. The gasifier generates a syngas that fuels the gas turbine and a char residue that, together with coal, fuels a CFB boiler to power the supercritical pressure steam turbine. Both the gasifier and the CFB boiler use a mix of ASU oxygen and recycled boiler flue gas as their oxidant. The resulting CFB boiler flue gas is essentially a mixture of oxygen, carbon dioxide and water. Cooling the CFB flue gas to 80 deg. F condenses most of the moisture and leaves a CO{sub 2} rich stream containing 3%v oxygen. Approximately 30% of this flue gas stream is further cooled, dried, and compressed for pipeline transport to the sequestration site (the small amount of oxygen in this stream is released and recycled to the system when the CO{sub 2} is condensed after final compression and cooling). The remaining 70% of the flue gas stream is mixed with oxygen from the ASU and is ducted to the gas turbine compressor inlet. As a result, the gas turbine compresses a mixture of carbon dioxide (ca. 64%v) and oxygen (ca. 32.5%v) rather than air. This carbon dioxide rich mixture then becomes the gas turbine working fluid and

  9. Effect of SO 2 on CO 2 Capture Using Liquid-like Nanoparticle Organic Hybrid Materials

    KAUST Repository

    Lin, Kun-Yi Andrew

    2013-08-15

    Liquid-like nanoparticle organic hybrid materials (NOHMs), consisting of silica nanoparticles with a grafted polymeric canopy, were synthesized. Previous work on NOHMs has revealed that CO2 capture behaviors in these hybrid materials can be tuned by modifying the structure of the polymeric canopy. Because SO2, which is another acidic gas found in flue gas, would also interact with NOHMs, this study was designed to investigate its effect on CO2 capture in NOHMs. In particular, CO2 capture capacities as well as swelling and CO2 packing behaviors of NOHMs were analyzed using thermogravimetric analyses and Raman and attenuated total reflectance (ATR) Fourier transform infrared (FTIR) spectroscopies before and after exposure of NOHMs to SO2. It was found that the SO2 absorption in NOHMs was only prominent at high SO2 levels (i.e., 3010 ppm; Ptot = 0.4 MPa) far exceeding the typical SO2 concentration in flue gas. As expected, the competitive absorption between SO2 and CO2 for the same absorption sites (i.e., ether and amine groups) resulted in a decreased CO2 capture capacity of NOHMs. The swelling of NOHMs was not notably affected by the presence of SO 2 within the given concentration range (Ptot = 0-0.68 MPa). On the other hand, SO2, owing to its Lewis acidic nature, interacted with the ether groups of the polymeric canopy and, thus, changed the CO2 packing behaviors in NOHMs. © 2013 American Chemical Society.

  10. Effect of SO 2 on CO 2 Capture Using Liquid-like Nanoparticle Organic Hybrid Materials

    KAUST Repository

    Lin, Kun-Yi Andrew; Petit, Camille; Park, Ah-Hyung Alissa

    2013-01-01

    Liquid-like nanoparticle organic hybrid materials (NOHMs), consisting of silica nanoparticles with a grafted polymeric canopy, were synthesized. Previous work on NOHMs has revealed that CO2 capture behaviors in these hybrid materials can be tuned by modifying the structure of the polymeric canopy. Because SO2, which is another acidic gas found in flue gas, would also interact with NOHMs, this study was designed to investigate its effect on CO2 capture in NOHMs. In particular, CO2 capture capacities as well as swelling and CO2 packing behaviors of NOHMs were analyzed using thermogravimetric analyses and Raman and attenuated total reflectance (ATR) Fourier transform infrared (FTIR) spectroscopies before and after exposure of NOHMs to SO2. It was found that the SO2 absorption in NOHMs was only prominent at high SO2 levels (i.e., 3010 ppm; Ptot = 0.4 MPa) far exceeding the typical SO2 concentration in flue gas. As expected, the competitive absorption between SO2 and CO2 for the same absorption sites (i.e., ether and amine groups) resulted in a decreased CO2 capture capacity of NOHMs. The swelling of NOHMs was not notably affected by the presence of SO 2 within the given concentration range (Ptot = 0-0.68 MPa). On the other hand, SO2, owing to its Lewis acidic nature, interacted with the ether groups of the polymeric canopy and, thus, changed the CO2 packing behaviors in NOHMs. © 2013 American Chemical Society.

  11. Fluorocarbon adsorption in hierarchical porous frameworks

    Energy Technology Data Exchange (ETDEWEB)

    Motkuri, RK; Annapureddy, HVR; Vijaykumar, M; Schaef, HT; Martin, PF; McGrail, BP; Dang, LX; Krishna, R; Thallapally, PK

    2014-07-09

    Metal-organic frameworks comprise an important class of solid-state materials and have potential for many emerging applications such as energy storage, separation, catalysis and bio-medical. Here we report the adsorption behaviour of a series of fluorocarbon derivatives on a set of microporous and hierarchical mesoporous frameworks. The microporous frameworks show a saturation uptake capacity for dichlorodifluoromethane of >4 mmol g(-1) at a very low relative saturation pressure (P/P-o) of 0.02. In contrast, the mesoporous framework shows an exceptionally high uptake capacity reaching >14 mmol g(-1) at P/P-o of 0.4. Adsorption affinity in terms of mass loading and isosteric heats of adsorption is found to generally correlate with the polarizability and boiling point of the refrigerant, with dichlorodifluoromethane >chlorodifluoromethane >chlorotrifluoromethane >tetrafluoromethane >methane. These results suggest the possibility of exploiting these sorbents for separation of azeotropic mixtures of fluorocarbons and use in eco-friendly fluorocarbon-based adsorption cooling.

  12. Introducing a new bond reactivity index: Philicities for natural bond orbitals.

    Science.gov (United States)

    Sánchez-Márquez, Jesús; Zorrilla, David; García, Víctor; Fernández, Manuel

    2017-12-22

    In the present work, a new methodology defined for obtaining reactivity indices (philicities) is proposed. This is based on reactivity functions such as the Fukui function or the dual descriptor, and makes it possible to project the information from reactivity functions onto molecular orbitals, instead of onto the atoms of the molecule (atomic reactivity indices). The methodology focuses on the molecules' natural bond orbitals (bond reactivity indices) because these orbitals have the advantage of being localized, allowing the reaction site of an electrophile or nucleophile to be determined within a very precise molecular region. This methodology provides a "philicity" index for every NBO, and a representative set of molecules has been used to test the new definition. A new methodology has also been developed to compare the "finite difference" and the "frontier molecular orbital" approximations. To facilitate their use, the proposed methodology as well as the possibility of calculating the new indices have been implemented in a new version of UCA-FUKUI software. In addition, condensation schemes based on atomic populations of the "atoms in molecules" theory, the Hirshfeld population analysis, the approximation of Mulliken (with a minimal basis set) and electrostatic potential-derived charges have also been implemented, including the calculation of "bond reactivity indices" defined in previous studies. Graphical abstract A new methodology defined for obtaining bond reactivity indices (philicities) is proposed and makes it possible to project the information from reactivity functions onto molecular orbitals. The proposed methodology as well as the possibility of calculating the new indices have been implemented in a new version of UCA-FUKUI software. In addition, this version can use new atomic condensation schemes and new "utilities" have also been included in this second version.

  13. CO_2-assisted compression-adsorption hybrid for cooling and desalination

    International Nuclear Information System (INIS)

    Ali, Syed Muztuza; Chakraborty, Anutosh; Leong, Kai Choong

    2017-01-01

    Highlights: • Amalgamation of vapour compression and adsorption. • Thermodynamic frameworks of compression-adsorption hybrid. • 60% improvement in COP as compared with conventional CO_2 cooling system. • Energy recovery from CO_2 is used for cooling and desalination. • Energy from gas cooler accelerates the desalination process. - Abstract: This paper presents a novel compression-adsorption hybrid that symbiotically combines adsorption and CO_2 compression cooling devices. The seemingly low efficiency of each cycle individually is overcome by an amalgamation with the other. Hence, both heat and water vapour refrigerant mass are recovered for continuous cooling and desalination. Two different configurations are presented. The first configuration deals with a two-stage heat recovery system. At the first stage, heat is recovered from the compressed carbon dioxide to drive the adsorption device. The second stage heat recovery system internally exchanges heat between the low pressure and high pressure refrigerants of the CO_2 cycle. The second configuration is proposed with an additional third-stage heat recovery from the gas cooler to the high pressure evaporator of the adsorption cycle. The water vapour mass is recovered from bed-to-bed adsorption at relatively higher pressure. A detailed thermodynamic framework is presented to simulate the performances in terms of COP (coefficient of performance), SCP (specific cooling power), SDWP (specific daily water production), PR (performance ratio) and OCR (overall conversion ratio). It is found that the overall COP is improved by more than 60% as compared to the conventional CO_2 cycle, and in addition, the system generates 12.7 m"3 of desalinated water per tonne of silica gel per day as extra benefits. Furthermore, both the heat and mass recoveries improve the overall conversion ratio, which is almost double as compared to the conventional CO_2 cycle.

  14. Combining Geoelectrical Measurements and CO2 Analyses to Monitor the Enhanced Bioremediation of Hydrocarbon-Contaminated Soils: A Field Implementation

    Directory of Open Access Journals (Sweden)

    Cécile Noel

    2016-01-01

    Full Text Available Hydrocarbon-contaminated aquifers can be successfully remediated through enhanced biodegradation. However, in situ monitoring of the treatment by piezometers is expensive and invasive and might be insufficient as the information provided is restricted to vertical profiles at discrete locations. An alternative method was tested in order to improve the robustness of the monitoring. Geophysical methods, electrical resistivity (ER and induced polarization (IP, were combined with gas analyses, CO2 concentration, and its carbon isotopic ratio, to develop a less invasive methodology for monitoring enhanced biodegradation of hydrocarbons. The field implementation of this monitoring methodology, which lasted from February 2014 until June 2015, was carried out at a BTEX-polluted site under aerobic biotreatment. Geophysical monitoring shows a more conductive and chargeable area which corresponds to the contaminated zone. In this area, high CO2 emissions have been measured with an isotopic signature demonstrating that the main source of CO2 on this site is the biodegradation of hydrocarbon fuels. Besides, the evolution of geochemical and geophysical data over a year seems to show the seasonal variation of bacterial activity. Combining geophysics with gas analyses is thus promising to provide a new methodology for in situ monitoring.

  15. Synthesis of single- and double-chain fluorocarbon and hydrocarbon galactosyl amphiphiles and their anti-HIV-1 activity.

    Science.gov (United States)

    Faroux-Corlay, B; Clary, L; Gadras, C; Hammache, D; Greiner, J; Santaella, C; Aubertin, A M; Vierling, P; Fantini, J

    2000-07-24

    Galactosylceramide (GalCer) is an alternative receptor allowing HIV-1 entry into CD4(-)/GalCer(+) cells. This glycosphingolipid recognizes the V3 loop of HIV gp120, which plays a key role in the fusion of the HIV envelope and cellular membrane. To inhibit HIV uptake and infection, we designed and synthesized analogs of GalCer. These amphiphiles and bolaamphiphiles consist of single and double hydrocarbon and/or fluorocarbon chain beta-linked to galactose and galactosamine. They derive from serine (GalSer), cysteine (GalCys), and ethanolamine (GalAE). The anti-HIV activity and cytotoxicity of these galactolipids were evaluated in vitro on CEM-SS (a CD4(+) cell line), HT-29, a CD4(-) cell line expressing high levels of GalCer receptor, and/or HT29 genetically modified to express CD4. GalSer and GalAE derivatives, tested in aqueous medium or as part of liposome preparation, showed moderate anti-HIV-1 activities (IC50 in the 20-220 microM range), whereas none of the GalCys derivatives was found to be active. Moreover, only some of these anti-HIV active analogs inhibited the binding of [3H]suramin (a polysulfonyl compound which displays a high affinity for the V3 loop) to SPC3, a synthetic peptide which contains the conserved GPGRAF region of the V3 loop. Our results most likely indicate that the neutralization of the virion through masking of this conserved V3 loop region is not the only mechanism involved in the HIV-1 antiviral activity of our GalCer analogs.

  16. Mobile source CO2 mitigation through smart growth development and vehicle fleet hybridization.

    Science.gov (United States)

    Stone, Brian; Mednick, Adam C; Holloway, Tracey; Spak, Scott N

    2009-03-15

    This paper presents the results of a study on the effectiveness of smart growth development patterns and vehicle fleet hybridization in reducing mobile source emissions of carbon dioxide (CO2) across 11 major metropolitan regions of the Midwestern U.S. over a 50-year period. Through the integration of a vehicle travel activity modeling framework developed by researchers atthe Oak Ridge National Laboratory with small area population projections, we model mobile source emissions of CO2 associated with alternative land development and technology change scenarios between 2000 and 2050. Our findings suggest that under an aggressive smart growth scenario, growth in emissions expected to occur under a business as usual scenario is reduced by 34%, while the full dissemination of hybrid-electric vehicles throughout the light vehicle fleet is found to offset the expected growth in emissions by 97%. Our results further suggest that high levels of urban densification could achieve reductions in 2050 CO2 emissions equivalent to those attainable through the full dissemination of hybrid-electric vehicle technologies.

  17. Effect of hybrid system battery performance on determining CO2 emissions of hybrid electric vehicles in real-world conditions

    International Nuclear Information System (INIS)

    Alvarez, Robert; Schlienger, Peter; Weilenmann, Martin

    2010-01-01

    Hybrid electric vehicles (HEVs) can potentially reduce vehicle CO 2 emissions by using recuperated kinetic vehicle energy stored as electric energy in a hybrid system battery (HSB). HSB performance affects the individual net HEV CO 2 emissions for a given driving pattern, which is considered to be equivalent to unchanged net energy content in the HSB. The present study investigates the influence of HSB performance on the statutory correction procedure used to determine HEV CO 2 emissions in Europe based on chassis dynamometer measurements with three identical in-use examples of a full HEV model featuring different mileages. Statutory and real-world driving cycles and full electric vehicle operation modes have been considered. The main observation is that the selected HEVs can only use 67-80% of the charge provided to the HSB, which distorts the outcomes of the statutory correction procedure that does not consider such irreversibility. CO 2 emissions corrected according to this procedure underestimate the true net CO 2 emissions of one HEV by approximately 13% in real-world urban driving. The correct CO 2 emissions are only reproduced when considering the HSB performance in this driving pattern. The statutory procedure for correcting HEV CO 2 emissions should, therefore, be adapted.

  18. Phase behavior, rheological property, and transmutation of vesicles in fluorocarbon and hydrocarbon surfactant mixtures.

    Science.gov (United States)

    Yuan, Zaiwu; Qin, Menghua; Chen, Xiushan; Liu, Changcheng; Li, Hongguang; Hao, Jingcheng

    2012-06-26

    We present a detailed study of a salt-free cationic/anionic (catanionic) surfactant system where a strongly alkaline cationic surfactant (tetradecyltrimethylammonium hydroxide, TTAOH) was mixed with a single-chain fluorocarbon acid (nonadecafluorodecanoic acid, NFDA) and a hyperbranched hydrocarbon acid [di-(2-ethylhexyl)phosphoric acid, DEHPA] in water. Typically the concentration of TTAOH is fixed while the total concentration and mixing molar ratio of NFDA and DEHPA is varied. In the absence of DEHPA and at a TTAOH concentration of 80 mmol·L(-1), an isotropic L(1) phase, an L(1)/L(α) two-phase region, and a single L(α) phase were observed successively with increasing mixing molar ratio of NFDA to TTAOH (n(NFDA)/n(TTAOH)). In the NFDA-rich region (n(NFDA)/n(TTAOH) > 1), a small amount of excess NFDA can be solubilized into the L(α) phase while a large excess of NFDA eventually leads to phase separation. When NFDA is replaced gradually by DEHPA, the mixed system of TTAOH/NFDA/DEHPA/H(2)O follows the same phase sequence as that of the TTAOH/NFDA/H(2)O system and the phase boundaries remain almost unchanged. However, the viscoelasticity of the samples in the single L(α) phase region becomes higher at the same total surfactant concentration as characterized by rheological measurements. Cryo-transmission electron microscopic (cryo-TEM) observations revealed a microstructural evolution from unilamellar vesicles to multilamellar ones and finally to gaint onions. The size of the vesicle and number of lamella can be controlled by adjusting the molar ratio of NFDA to DEHPA. The dynamic properties of the vesicular solutions have also been investigated. It is found that the yield stress and the storage modulus are time-dependent after a static mixing process between the two different types of vesicle solutions, indicating the occurrence of a dynamic fusion between the two types of vesicles. The microenvironmental changes induced by aggregate transitions were probed by

  19. Performance comparison of two low-CO2 emission solar/methanol hybrid combined cycle power systems

    International Nuclear Information System (INIS)

    Li, Yuanyuan; Zhang, Na; Lior, Noam

    2015-01-01

    Highlights: • Two novel solar hybrid combined cycle systems have been proposed and analyzed. • The power systems integrate solar-driven thermo-chemical conversion and CO 2 capture. • Exergy efficiency of about 55% and specific CO 2 emissions of 34 g/kW h are predicted. • Systems CO 2 emissions are 36.8% lower compared to a combined cycle with CO 2 capture. • The fossil fuel demand is ∼30% lower with a solar share of ∼20%. - Abstract: Two novel hybrid combined cycle power systems that use solar heat and methanol, and integrate CO 2 capture, are proposed and analyzed, one based on solar-driven methanol decomposition and the other on solar-driven methanol reforming. The high methanol conversion rates at relatively low temperatures offer the advantage of using the solar heat at only 200–300 °C to drive the syngas production by endothermic methanol conversions and its conversion to chemical energy. Pre-combustion decarbonization is employed to produce CO 2 -free fuel from the fully converted syngas, which is then burned to produce heat at the high temperature for power generation in the proposed advanced combined cycle systems. To improve efficiency, the systems’ configurations were based on the principle of cascade use of multiple heat sources of different temperatures. The thermodynamic performance of the hybrid power systems at its design point is simulated and evaluated. The results show that the hybrid systems can attain an exergy efficiency of about 55%, and specific CO 2 emissions as low as 34 g/kW h. Compared to a gas/steam combined cycle with flue gas CO 2 capture, the proposed solar-assisted system CO 2 emissions are 36.8% lower, and a fossil fuel saving ratio of ∼30% is achievable with a solar thermal share of ∼20%. The system integration predicts high efficiency conversion of solar heat and low-energy-penalty CO 2 capture, with the additional advantage that solar heat is at relatively low temperature where its collection is cheaper and

  20. Hybrid Composite Ni(OH)(2)@NiCo2O4 Grown on Carbon Fiber Paper for High-Performance Supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Huang, L; Chen, DC; Ding, Y; Wang, ZL; Zeng, ZZ; Liu, ML

    2013-11-13

    We have successfully fabricated and tested the electrochemical performance of supercapacitor electrodes consisting of Ni(OH)(2) nanosheets coated on NiCo2O4 nanosheets grown on carbon fiber paper (CFP) current collectors. When the NiCo2O4 nanosheets are replaced by Co3O4 nanosheets, however, the energy and power density as well as the rate capability of the electrodes are significantly reduced, most likely due to the lower conductivity of Co3O4 than that of NiCo2O4. The 3D hybrid composite Ni(OH)(2)/ NiCo2O4/CFP electrodes demonstrate a high areal capacitance of 5.2 F/cm(2) at a cycling current density of 2 rnA/cm(2), with a capacitance retention of 79% as the cycling current density was increased from 2 to 50 mA/cm(2). The remarkable performance of these hybrid composite electrodes implies that supercapacitors based on them have potential for many practical applications.

  1. Hybrid composite Ni(OH)2@NiCo2O4 grown on carbon fiber paper for high-performance supercapacitors.

    Science.gov (United States)

    Huang, Liang; Chen, Dongchang; Ding, Yong; Wang, Zhong Lin; Zeng, Zhengzhi; Liu, Meilin

    2013-11-13

    We have successfully fabricated and tested the electrochemical performance of supercapacitor electrodes consisting of Ni(OH)2 nanosheets coated on NiCo2O4 nanosheets grown on carbon fiber paper (CFP) current collectors. When the NiCo2O4 nanosheets are replaced by Co3O4 nanosheets, however, the energy and power density as well as the rate capability of the electrodes are significantly reduced, most likely due to the lower conductivity of Co3O4 than that of NiCo2O4. The 3D hybrid composite Ni(OH)2/NiCo2O4/CFP electrodes demonstrate a high areal capacitance of 5.2 F/cm(2) at a cycling current density of 2 mA/cm(2), with a capacitance retention of 79% as the cycling current density was increased from 2 to 50 mA/cm(2). The remarkable performance of these hybrid composite electrodes implies that supercapacitors based on them have potential for many practical applications.

  2. Energy recovery of the H2S and CO2 elimination with technology by hybrid plasma

    International Nuclear Information System (INIS)

    Salazar T, J. A.

    2014-01-01

    This document is a research focused on energy recovery from acid gas removal contained in natural gas as hydrogen sulfide (H 2 S) and carbon dioxide (CO 2 ), by obtaining highly energetic gas such as syngas (mixture of hydrogen and carbon monoxide, in particular) using plasma technology in its hybrid form, namely, gliding arc plasma, that has the property to behave like a thermal plasma and cold plasma, besides possessing among other virtues the ability to treat large flows continuously at atmospheric pressure without the need of using noble gases, with a power consumption of no more than 1000 W. Furthermore, this type of plasma has demonstrated to be a clean and efficient not only by high conversion rates of H 2 S (86%) and CO 2 (56%) and high percentages of selectivity in the production of hydrogen (H 2 ) and carbon monoxide carbon (CO) obtained in this work, but because it can even be seriously considered to replace other technologies currently used in the process of sweetening natural gas as adsorption, absorption and sequestering membranes. The results shown are based on a series of analysis, simulations, experiments and calculations, from the design of the plasma generating source based on an impulse-phase circuit, to the electrical characterization results and simulation by acquiring electrical signals, without forgetting the characterization of the resulting chemical components using various analytical techniques such as mass spectrometry, gas chromatography (GC), optical emission spectroscopy (OES), optical spectroscopy Fourier inverse transformed (XRD) and scanning electron microscopy (Sem), X-ray diffraction (XRD) and multi-gas detectors (iBrid MX6). Additionally, performed chemical kinetics and reaction mechanism of the compounds involved in the degradation of H 2 S and CO 2 similar to those experienced as well as the study of energy efficiency (Ece), specific energy (Se), all this to meet a projects needs 127499, entitled -Development of alternative

  3. Aerosol composition of urban plumes passing over a rural monitoring site

    International Nuclear Information System (INIS)

    Ellestad, T.G.

    1980-01-01

    A field study conducted at a ground site 100 km north of St. Louis, Mo., to measure the aerosol composition and gaseous concentrations of urban plumes passing the site is discussed. Coarse and fine aerosol elemental concentrations, height scattering, meteorological data and concentrations of SO 2 , CO, O 3 , and NO-NO/sub x/ were measured and then analyzed together with data from associate investigators on fluorocarbon-11, total hydrocarbons, and size distributions. The results show that: (1) gaseous and elemental aerosol concentrations at the ground site 100 km from the St. Louis urban area were clearly influenced by the St. Louis urban plume, (2) the urban plumes of Chicago and Indianapolis, 350 km from the ground site, may have been detected, (3) sulfur compounds, presumably sulfates, accounted for 30-40% of the mass loading within the St. Louis urban plume, and resided almost entirely within the size range below 2.5 microns, (4) the most reliable urban-plume tracers in this study were fine Pb, fluorocarbon-11, total nonmethane hydrocarbons, and CO, and (5) over a period of several days, there may have been a regional buildup of fine S, light scattering, aerosol mass, O 3 , and NO/sub x/ and, to a lesser extent, CO and fluorocarbon-11

  4. Numerical investigation of CO2 storage in hydrocarbon field using a geomechanical-fluid coupling model

    Directory of Open Access Journals (Sweden)

    Guang Li

    2016-09-01

    Full Text Available Increasing pore pressure due to CO2 injection can lead to stress and strain changes of the reservoir. One of the safely standards for long term CO2 storage is whether stress and strain changes caused by CO2 injection will lead to irreversible mechanical damages of the reservoir and impact the integrity of caprock which could lead to CO2 leakage through previously sealing structures. Leakage from storage will compromise both the storage capacity and the perceived security of the project, therefore, a successful CO2 storage project requires large volumes of CO2 to be injected into storage site in a reliable and secure manner. Yougou hydrocarbon field located in Orods basin was chosen as storage site based on it's stable geological structure and low leakage risks. In this paper, we present a fluid pressure and stress-strain variations analysis for CO2 geological storage based on a geomechanical-fluid coupling model. Using nonlinear elasticity theory to describe the geomechanical part of the model, while using the Darcy's law to describe the fluid flow. Two parts are coupled together using the poroelasticity theory. The objectives of our work were: 1 evaluation of the geomechanical response of the reservoir to different CO2 injection scenarios. 2 assessment of the potential leakage risk of the reservoir caused by CO2 injection.

  5. Effect of hybrid system battery performance on determining CO{sub 2} emissions of hybrid electric vehicles in real-world conditions

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez, Robert; Schlienger, Peter; Weilenmann, Martin [Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Internal Combustion Engines, Ueberlandstrasse 129, CH-8600 Duebendorf (Switzerland)

    2010-11-15

    Hybrid electric vehicles (HEVs) can potentially reduce vehicle CO{sub 2} emissions by using recuperated kinetic vehicle energy stored as electric energy in a hybrid system battery (HSB). HSB performance affects the individual net HEV CO{sub 2} emissions for a given driving pattern, which is considered to be equivalent to unchanged net energy content in the HSB. The present study investigates the influence of HSB performance on the statutory correction procedure used to determine HEV CO{sub 2} emissions in Europe based on chassis dynamometer measurements with three identical in-use examples of a full HEV model featuring different mileages. Statutory and real-world driving cycles and full electric vehicle operation modes have been considered. The main observation is that the selected HEVs can only use 67-80% of the charge provided to the HSB, which distorts the outcomes of the statutory correction procedure that does not consider such irreversibility. CO{sub 2} emissions corrected according to this procedure underestimate the true net CO{sub 2} emissions of one HEV by approximately 13% in real-world urban driving. The correct CO{sub 2} emissions are only reproduced when considering the HSB performance in this driving pattern. The statutory procedure for correcting HEV CO{sub 2} emissions should, therefore, be adapted. (author)

  6. CoFe2O4-TiO2 Hybrid Nanomaterials: Synthesis Approaches Based on the Oil-in-Water Microemulsion Reaction Method

    Directory of Open Access Journals (Sweden)

    Arturo Adrián Rodríguez-Rodríguez

    2017-01-01

    Full Text Available CoFe2O4 nanoparticles decorated and wrapped with TiO2 nanoparticles have been prepared by mixing well-dispersed CoFe2O4 with amorphous TiO2 (impregnation approach and growing amorphous TiO2 over the magnetic core (seed approach, respectively, followed by thermal treatment to achieve TiO2 crystallinity. Synthesis strategies were based on the oil-in-water microemulsion reaction method. Thermally treated nanomaterials were characterized in terms of structure, morphology, and composition, to confirm hybrid nanoparticles formation and relate with the synthesis approaches; textural, optical, and magnetic properties were evaluated. X-ray diffraction revealed coexistence of cubic spinel-type CoFe2O4 and tetragonal anatase TiO2. Electron microscopy images depicted crystalline nanoparticles (sizes below 25 nm, with homogeneous Ti distribution for the hybrid nanoparticles synthesized by seed approach. EDX microanalysis and ICP-AES corroborated established chemical composition. XPS evidenced chemical states, as well as TiO2 predominance over CoFe2O4 surface. According to BET measurements, the hybrid nanoparticles were mesoporous. UV-Vis spectroscopy showed optical response along the UV-visible light region. Magnetic properties suggested the breaking order of magnetic domains due to modification with TiO2, especially for mediated seed approach sample. The properties of the obtained hybrid nanoparticles were different in comparison with its individual components. The results highlight the usefulness of designed microemulsion approaches for the straightforward synthesis of CoFe2O4-TiO2 nanostructured hybrids.

  7. Interaction of both plasmas in CO2 laser-MAG hybrid welding of carbon steel

    Science.gov (United States)

    Kutsuna, Muneharu; Chen, Liang

    2003-03-01

    Researches and developments of laser and arc hybrid welding has been curried out since in 1978. Especially, CO2 laser and TIG hybrid welding has been studied for increasing the penetration depth and welding speed. Recently laser and MIG/MAG/Plasma hybrid welding processes have been developed and applied to industries. It was recognized as a new welding process that promote the flexibility of the process for increasing the penetration depth, welding speed and allowable joint gap and improving the quality of the welds. In the present work, CO2 Laser-MAG hybrid welding of carbon steel (SM490) was investigated to make clear the phenomenon and characteristics of hybrid welding process comparing with laser welding and MAG process. The effects of many process parameters such as welding current, arc voltage, welding speed, defocusing distance, laser-to-arc distance on penetration depth, bead shape, spatter, arc stability and plasma formation were investigated in the present work. Especially, the interaction of laser plasma and MAG arc plasma was considered by changing the laser to arc distance (=DLA).

  8. Analysis of hybrid membrane and chemical absorption systems for CO2 capture

    International Nuclear Information System (INIS)

    Binns, Michael; Oh, Se-Young; Kwak, Dong-Hun; Kim, Jin-Kuk

    2015-01-01

    Amine-based absorption of CO 2 is currently the industry standard technology for capturing CO 2 emitted from power plants, refineries and other large chemical plants. However, more recently there have been a number of competing technologies under consideration, including the use of membranes for CO 2 separation and purification. We constructed and analyzed two different hybrid configurations combining and connecting chemical absorption with membrane separation. For a particular flue gas which is currently treated with amine-based chemical absorption at a pilot plant we considered and tested how membranes could be integrated to improve the performance of the CO 2 capture. In particular we looked at the CO 2 removal efficiency and the energy requirements. Sensitivity analysis was performed varying the size of the membranes and the solvent flow rate

  9. Influence of shielding gas pressure on welding characteristics in CO2 laser-MIG hybrid welding process

    Science.gov (United States)

    Chen, Yanbin; Lei, Zhenglong; Li, Liqun; Wu, Lin

    2006-01-01

    The droplet transfer behavior and weld characteristics have been investigated under different pressures of shielding gas in CO2 laser and metal inert/active gas (laser-MIG) hybrid welding process. The experimental results indicate that the inherent droplet transfer frequency and stable welding range of conventional MIG arc are changed due to the interaction between CO2 laser beam and MIG arc in laser-MIG hybrid welding process, and the shielding gas pressure has a crucial effect on welding characteristics. When the pressure of shielding gas is low in comparison with MIG welding, the frequency of droplet transfer decreases, and the droplet transfer becomes unstable in laser-MIG hybrid welding. So the penetration depth decreases, which shows the characteristic of unstable hybrid welding. However, when the pressure of shielding gas increases to a critical value, the hybrid welding characteristic is changed from unstable hybrid welding to stable hybrid welding, and the frequency of droplet transfer and the penetration depth increase significantly.

  10. Modified ZIF-8 mixed matrix membrane for CO2/CH4 separation

    Science.gov (United States)

    Nordin, Nik Abdul Hadi Md; Ismail, Ahmad Fauzi; Misdan, Nurasyikin; Nazri, Noor Aina Mohd

    2017-10-01

    Tunability of metal-organic frameworks (MOFs) properties enables them to be tailored for specific applications. In this study, zeolitic imidazole framework 8 (ZIF-8), sub-class of MOF, underwent pre-synthesis and post-synthesis modifications. The pre-synthesis modification using GO (ZIF-8/GO) shows slight decrease in textural properties, while the post-synthesis modification using amine solution (ZIF-8/NH2) resulted in superior BET surface area and pore volume. Mixed matrix membranes (MMMs) derived from polysulfone (PSf) and the modified ZIF-8s were then prepared via dry/wet phase inversion. The polymer chain flexibility of the resulted MMMs shows rigidification, where ZIF-8/NH2 as filler resulting higher rigidification compared to ZIF-8/GO. The MMMs were further subjected to pure CO2 and CH4 gas permeation experiments. The PSf/ZIF-8/NH2 shows superior CO2/CH4 selectivity (88% increased) while sacrificing CO2 permeance due to combination of severe polymer chain rigidification and the presence of CO2-philic group, amine. Whereas, the PSf/ZIF-8/GO possess 64% increase in CO2 permeance without notable changes in CO2/CH4 selectivity.

  11. Elevated [CO2] magnifies isoprene emissions under heat and improves thermal resistance in hybrid aspen

    OpenAIRE

    Sun, Zhihong; H?ve, Katja; Vislap, Vivian; Niinemets, ?lo

    2013-01-01

    Isoprene emissions importantly protect plants from heat stress, but the emissions become inhibited by instantaneous increase of [CO2], and it is currently unclear how isoprene-emitting plants cope with future more frequent and severe heat episodes under high [CO2]. Hybrid aspen (Populus tremula x Populus tremuloides) saplings grown under ambient [CO2] of 380 ?mol mol?1 and elevated [CO2] of 780 ?mol mol?1 were used to test the hypothesis that acclimation to elevated [CO2] reduces the inhibito...

  12. Chemical storage of renewable electricity in hydrocarbon fuels via H{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Eilers, H.; Iglesias Gonzalez, M.; Schaub, G. [Karlsruhe Institute of Technology (KIT), Karlsruhe (Germany). Engler-Bunte-Institute I

    2012-07-01

    The increased generation of renewable electricity leads to an increasing demand for storage due to its fluctuating production. Electrical energy can be stored as chemical energy carriers e.g. in form of H{sub 2} that can be further processed to hydrocarbons. Storage in form of hydrocarbons is advantageous compared to H{sub 2} storage since (i) a higher volumetric energy density in the product can be achieved and (ii) the infrastructure for hydrocarbon distribution, storage and utilization already exists. The present contribution introduces the potential of H{sub 2} integration in upgrading/production processes to hydrocarbon fuels, based on stoichiometry and kind of carbon feedstock. Processes include petroleum refining, vegetable oil hydrogenation, production of synfuel from lignocellulosic biomass and substitute natural gas from H{sub 2}/CO{sub 2}. In the case of fossil raw materials, yields per feedstock can be increased and fossil CO{sub 2} emissions decreased since fossil resources for H{sub 2} production can be avoided. In the case of biomass conversion to synfuels, product yields per biomass/hectare can be increased. If CO{sub 2} is hydrogenated to fuels, no gasification step is needed, however lower hydrocarbon product yields per H{sub 2} are achieved since CO{sub 2} has the highest oxygen content. (orig.)

  13. Fluorocarbon seal replaces metal piston ring in low density gas environment

    Science.gov (United States)

    Morath, W. D.; Morgan, N. E.

    1967-01-01

    Reinforced fluorocarbon cupseal, which provides an integral lip-type seal, replaces the metal piston rings in piston-cylinder configurations used in the compression of low density gases. The fluorocarbon seal may be used as cryogenic compressor piston seals.

  14. Highly efficient visible light photocatalytic reduction of CO2 to hydrocarbon fuels by Cu-nanoparticle decorated graphene oxide.

    Science.gov (United States)

    Shown, Indrajit; Hsu, Hsin-Cheng; Chang, Yu-Chung; Lin, Chang-Hui; Roy, Pradip Kumar; Ganguly, Abhijit; Wang, Chen-Hao; Chang, Jan-Kai; Wu, Chih-I; Chen, Li-Chyong; Chen, Kuei-Hsien

    2014-11-12

    The production of renewable solar fuel through CO2 photoreduction, namely artificial photosynthesis, has gained tremendous attention in recent times due to the limited availability of fossil-fuel resources and global climate change caused by rising anthropogenic CO2 in the atmosphere. In this study, graphene oxide (GO) decorated with copper nanoparticles (Cu-NPs), hereafter referred to as Cu/GO, has been used to enhance photocatalytic CO2 reduction under visible-light. A rapid one-pot microwave process was used to prepare the Cu/GO hybrids with various Cu contents. The attributes of metallic copper nanoparticles (∼4-5 nm in size) in the GO hybrid are shown to significantly enhance the photocatalytic activity of GO, primarily through the suppression of electron-hole pair recombination, further reduction of GO's bandgap, and modification of its work function. X-ray photoemission spectroscopy studies indicate a charge transfer from GO to Cu. A strong interaction is observed between the metal content of the Cu/GO hybrids and the rates of formation and selectivity of the products. A factor of greater than 60 times enhancement in CO2 to fuel catalytic efficiency has been demonstrated using Cu/GO-2 (10 wt % Cu) compared with that using pristine GO.

  15. 14CO2-fixation and nitrate reductase activity in vivo in relation to hybrid vigour in maize

    International Nuclear Information System (INIS)

    Balasubramanian, V.; Shanthakumari, P.; Sinha, S.K.

    1977-01-01

    Dry matter accumulation in maize shoots, leaf area, 14 CO 2 -fixation and nitrate reductase activity in vivo were measured in the field grown heterotic hybrid CM 400x CM 300 and its inbred parents CM 300 and CM 400 from seedling to maturity. Rates of dry matter accumulation and leaf area development were higher in the hybrid during the initial vegetative phase than in the inbreds. The hybrid had more absolute level of 14 CO 2 -fixation and nitrate reductase activity, although the rates of these processes on unit weight basis were not higher than those of inbreds. It is concluded that the rapid development of leaf area in hybrids during the early stages of vegetative growth is probably important for hybrid vigour. (author)

  16. Polyacrylonitrile-Derived Sponge-Like Micro/Macroporous Carbon for Selective CO2 Separation.

    Science.gov (United States)

    Guo, Li-Ping; Hu, Qing-Tao; Zhang, Peng; Li, Wen-Cui; Lu, An-Hui

    2018-03-25

    CO 2 capture under a dynamical flow situation requires adsorbents possessing balanced proportion of macropores as diffusion path and micropores as adsorption reservoir. However, the construction of interconnected micro-/macropores structure coupled with abundant nitrogen species into one carbon skeleton remains a challenge. Here, we report a new approach to prepare sponge-like carbon with a well-developed micro-/macroporous structure and enriched nitrogen species through aqueous phase polymerization of acrylonitrile in the presence of graphene oxide. The tension stress caused by the uniform thermal shrinkage of polyacrylonitrile during the pyrolysis together with the favorable flexibility of graphene oxide sheets are responsible for the formation of the sponge-like morphology. The synergistic effect of micro-/macroporous framework and rich CO 2 -philic site enables such carbon to decrease resistance to mass transfer and show high CO 2 dynamic selectivity over N 2 (454) and CH 4 (11), as well as good CO 2 capacity at 298 K under low CO 2 partial pressure (0.17 bar, a typical CO 2 partial pressure in flue gas). The above attributes make this porous carbon a promising candidate for CO 2 capture from flue gas, methane sources and other relevant applications. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Effect of Cross-Linking on the Mechanical and Thermal Properties of Poly(amidoamine) Dendrimer/Poly(vinyl alcohol) Hybrid Membranes for CO2 Separation.

    Science.gov (United States)

    Duan, Shuhong; Kai, Teruhiko; Saito, Takashi; Yamazaki, Kota; Ikeda, Kenichi

    2014-04-08

    Poly(amidoamine) (PAMAM) dendrimers were incorporated into cross-linked poly(vinyl alcohol) (PVA) matrix to improve carbon dioxide (CO2) separation performance at elevated pressures. In our previous studies, PAMAM/PVA hybrid membranes showed high CO2 separation properties from CO2/H2 mixed gases. In this study, three types of organic Ti metal compounds were selected as PVA cross-linkers that were used to prepare PAMAM/cross-linked PVA hybrid membranes. Characterization of the PAMAM/cross-linked PVA hybrid membranes was conducted using nanoindentation and thermogravimetric analyses. The effects of the cross-linker and CO2 partial pressure in the feed gas on CO2 separation performance were discussed. H2O and CO2 sorption of the PAMAM/PVA hybrid membranes were investigated to explain the obtained CO2 separation efficiencies.

  18. Layered Ni(OH)2-Co(OH)2 films prepared by electrodeposition as charge storage electrodes for hybrid supercapacitors.

    Science.gov (United States)

    Nguyen, Tuyen; Boudard, Michel; Carmezim, M João; Montemor, M Fátima

    2017-01-04

    Consecutive layers of Ni(OH) 2 and Co(OH) 2 were electrodeposited on stainless steel current collectors for preparing charge storage electrodes of high specific capacity with potential application in hybrid supercapacitors. Different electrodes were prepared consisting on films of Ni(OH) 2 , Co(OH) 2 , Ni 1/2 Co 1/2 (OH) 2 and layered films of Ni(OH) 2 on Co(OH) 2 and Co(OH) 2 on Ni(OH) 2 to highlight the advantages of the new architecture. The microscopy studies revealed the formation of nanosheets in the Co(OH) 2 films and of particles agglomerates in the Ni(OH) 2 films. Important morphological changes were observed in the double hydroxides films and layered films. Film growth by electrodeposition was governed by instantaneous nucleation mechanism. The new architecture composed of Ni(OH) 2 on Co(OH) 2 displayed a redox response characterized by the presence of two peaks in the cyclic voltammograms, arising from redox reactions of the metallic species present in the layered film. These electrodes revealed a specific capacity of 762 C g -1 at the specific current of 1 A g -1 . The hybrid cell using Ni(OH) 2 on Co(OH) 2 as positive electrode and carbon nanofoam paper as negative electrode display specific energies of 101.3 W h g -1 and 37.8 W h g -1 at specific powers of 0.2 W g -1 and 2.45 W g -1 , respectively.

  19. Three-Dimensional Hierarchical NixCo1-xO/NiyCo2-yP@C Hybrids on Nickel Foam for Excellent Supercapacitors.

    Science.gov (United States)

    Shao, Yubo; Zhao, Yongqing; Li, Hua; Xu, Cailing

    2016-12-28

    Active materials and special structures of the electrode have decisive influence on the electrochemical properties of supercapacitors. Herein, three-dimensional (3D) hierarchical Ni x Co 1-x O/Ni y Co 2-y P@C (denoted as NiCoOP@C) hybrids have been successfully prepared by a phosphorization treatment of hierarchical Ni x Co 1-x O@C grown on nickel foam. The resulting NiCoOP@C hybrids exhibit an outstanding specific capacitance and cycle performance because they couple the merits of the superior cycling stability of Ni x Co 1-x O, the high specific capacitance of Ni y Co 2-y P, the mechanical stability of carbon layer, and the 3D hierarchical structure. The specific capacitance of 2638 F g -1 can be obtained at the current density of 1 A g -1 , and even at the current density of 20 A g -1 , the NiCoOP@C electrode still possesses a specific capacitance of 1144 F g -1 . After 3000 cycles at 10 A g -1 , 84% of the initial specific capacitance is still remained. In addition, an asymmetric ultracapacitor (ASC) is assembled through using NiCoOP@C hybrids as anode and activated carbon as cathode. The as-prepared ASC obtains a maximum energy density of 39.4 Wh kg -1 at a power density of 394 W kg -1 and still holds 21 Wh kg -1 at 7500 W kg -1 .

  20. Fluorocarbon thin film with superhydrophobic property prepared by pyrolysis of hexafluoropropylene oxide

    International Nuclear Information System (INIS)

    Wang Jun; Song Xue; Li Rui; Shen Jinpeng; Yang Guangcheng; Huang Hui

    2012-01-01

    Highlights: ► We successfully prepared nanostructured fluorocarbon thin films using CVD method without any catalysts at low pyrolysis temperature (200–300 °C) of HFPO. ► The films show disparate morphology, high content of CF 2 (>90%), which are also characteristic of bulk PTFE. ► The film deposited at 300 °C shows superhydrophobic property (water contact angle of 172.7°). - Abstract: A fluorocarbon thin film with superhydrophobic property was prepared by chemical vapor deposition (CVD) method at low temperature (200–300 °C) via pyrolysis hexafluoropropylene oxide (HFPO). The experiment results indicated the morphology and structure of fluorocarbon films were strongly dependent on the pyrolysis temperature. As shown through atomic force microscope (AFM), the surface morphology of the films ranged from rodlike grains to sheets. Fourier transform infrared (FTIR) spectroscopy revealed that all the films contained the vibrational frequencies of linear CF 2 chains, which were also characteristic of bulk poly tetrafluoroethylene (PTFE). X-ray photoelectron spectroscopy (XPS) analysis showed that CF 2 structures were predominant in the films with high order. The film deposited at 300 °C exhibited a superhydrophobic surface with contact angle up to 172.7°.

  1. Effect of Cross-Linking on the Mechanical and Thermal Properties of Poly(amidoamine Dendrimer/Poly(vinyl alcohol Hybrid Membranes for CO2 Separation

    Directory of Open Access Journals (Sweden)

    Shuhong Duan

    2014-04-01

    Full Text Available Poly(amidoamine (PAMAM dendrimers were incorporated into cross-linked poly(vinyl alcohol (PVA matrix to improve carbon dioxide (CO2 separation performance at elevated pressures. In our previous studies, PAMAM/PVA hybrid membranes showed high CO2 separation properties from CO2/H2 mixed gases. In this study, three types of organic Ti metal compounds were selected as PVA cross-linkers that were used to prepare PAMAM/cross-linked PVA hybrid membranes. Characterization of the PAMAM/cross-linked PVA hybrid membranes was conducted using nanoindentation and thermogravimetric analyses. The effects of the cross-linker and CO2 partial pressure in the feed gas on CO2 separation performance were discussed. H2O and CO2 sorption of the PAMAM/PVA hybrid membranes were investigated to explain the obtained CO2 separation efficiencies.

  2. Efficient capture of CO2 over ordered micro-mesoporous hybrid carbon nanosphere

    Science.gov (United States)

    Chen, Changwei; Yu, Yanke; He, Chi; Wang, Li; Huang, Huang; Albilali, Reem; Cheng, Jie; Hao, Zhengping

    2018-05-01

    Four kinds of carbon-based adsorbents (micro-mesoporous hybrid carbon nanosphere and N-doped hollow carbon sphere with single-, double- or ruga-shell morphology) with different structural and textural properties were prepared and systematically studied in CO2 capture. All synthesized samples possess high specific surface area (828-910 m2 g-1), large pore volume (0.71-1.81 cm3 g-1), and different micropore contents varied from 2.1% to 46.4%. Amongst, the ordered micro-mesoporous carbon nanosphere (OM-CNS) exhibits the best adsorption performance with CO2 uptake as high as 3.01 mmol g-1 under conditions of 298 K and 1.0 bar, better than most of the reported CO2 adsorbents. The excellent CO2 adsorption capacity of OM-CNS can be reasonably attributed to the synergistic effect of ordered mesopore channels and abundant structural micropores which are beneficial for the diffusion and trapping of CO2 adsorbate. Moreover, the OM-CNS shows excellent CO2 trapping selectivity and superior stability and recyclability, which endow the OM-CNS as a promising and environmental-friendly adsorbent for CO2 capture and separation under practical conditions.

  3. Effect of addition of Proline, ionic liquid [Choline][Pro] on CO2 separation properties of poly(amidoamine) dendrimer / poly(ethylene glycol) hybrid membranes

    Science.gov (United States)

    Duan, S. H.; Kai, T.; Chowdhury, F. A.; Taniguchi, I.; Kazama, S.

    2018-01-01

    Poly(amidoamine) (PAMAM) dendrimers were incorporated into cross-linked poly(ethylene glycol) (PEGDMA) matrix to improve carbon dioxide (CO2) separation performance at elevated pressures. In our previous studies, PAMAM/PEGDMA hybrid membranes showed high CO2 separation properties from CO2/H2 mixed gases. In this study, proline, choline and ionic liquid [Choline][Pro] compounds were selected as rate promoters that were used to prepare PAMAM/PEGDMA hybrid membranes. The effect of addition of proline, choline, IL [Choline][Pro] on separation performance of PAMAM/PEGDMA) hybrid membranes for CO2/H2 separation was investigated. Amino acid proline, choline, and IL [Choline][Pro] were used to promote CO2 and amine reaction. With the addition of [Choline][Pro] into PAMAM/PEG membrane, CO2 permeance of PAMAM/PEG hybrid membranes are increased up to 46% without any change of selectivity of membrane for CO2.

  4. Bi-reforming of methane from any source with steam and carbon dioxide exclusively to metgas (CO-2H2) for methanol and hydrocarbon synthesis.

    Science.gov (United States)

    Olah, George A; Goeppert, Alain; Czaun, Miklos; Prakash, G K Surya

    2013-01-16

    A catalyst based on nickel oxide on magnesium oxide (NiO/MgO) thermally activated under hydrogen is effective for the bi-reforming with steam and CO(2) (combined steam and dry reforming) of methane as well as natural gas in a tubular flow reactor at elevated pressures (5-30 atm) and temperatures (800-950 °C). By adjusting the CO(2)-to-steam ratio in the gas feed, the H(2)/CO ratio in the produced syn-gas could be easily adjusted in a single step to the desired value of 2 for methanol and hydrocarbon synthesis.

  5. A rechargeable Na–CO 2 /O 2 battery enabled by stable nanoparticle hybrid electrolytes

    KAUST Repository

    Xu, Shaomao

    2014-09-10

    © the Partner Organisations 2014. We report on rechargeable batteries that use metallic sodium as the anode, a mixture of CO2 and O2 as the active material in the cathode, and an organic-inorganic hybrid liquid as electrolyte. The batteries are attractive among energy storage technologies because they provide a mechanism for simultaneously capturing CO2 emissions while generating electrical energy. Through in and ex situ chemical analysis of the cathode we show that NaHCO3 is the principal discharge product, and that its relative instability permits cell recharging. By means of differential electrochemical mass spectrometry (DEMS) based on 12C and 13C we further show that addition of as little as 10% of 1-methyl-3-propylimidazolium bis(trifluoromethanesulfone)imide ionic liquid tethered to SiO2 nanoparticles extends the high-voltage stability of the electrolyte by at least 1 V, allowing recharge of the Na-CO2/O2 cells. This journal is

  6. Rare Earth Element Fluorocarbonate Minerals from the Olympic Dam Cu-U-Au-Ag Deposit, South Australia

    Directory of Open Access Journals (Sweden)

    Danielle S. Schmandt

    2017-10-01

    Full Text Available Olympic Dam is a world-class breccia-hosted iron-oxide copper-gold-uranium ore deposit located in the Gawler Craton, South Australia. It contains elevated concentrations of rare earth elements (REE which occur as the REE minerals bastnäsite, synchysite, florencite, monazite, and xenotime. This is the first study to focus on the mineralogy and composition of the most abundant REE mineral at Olympic Dam, bastnäsite, and subordinate synchysite. The sample suite extends across the deposit and represents different sulfide mineralization styles (chalcopyrite-bornite and bornite-chalcocite and breccias of various types, ranging from those dominated by clasts of granite, dykes, and hematite. The REE-fluorocarbonates (bastnäsite and synchysite typically occur as fine-grained (<50 μm disseminations in Cu-Fe-sulfides and gangue minerals, and also within breccia matrix. They are also locally concentrated within macroscopic REE-mineral-rich pockets at various locations across the deposit. Such coarse-grained samples formed the primary target of this study. Three general textural groups of bastnäsite are recognized: matrix (further divided into disseminated, fine-grained, and stubby types, irregular (sulfide-associated, and clast replacement. Textures are largely driven by the specific location and prevailing mineral assemblage, with morphology and grain size often controlled by the associated minerals (hematite, sulfides. Major element concentration data reveal limited compositional variation among the REE-fluorocarbonates; all are Ce-dominant. Subtle compositional differences among REE-fluorocarbonates define a spectrum from relatively La-enriched to (Ce + Nd-enriched phases. Granite-derived hydrothermal fluids were the likely source of F in the REE-fluorocarbonates, as well as some of the CO2, which may also have been contributed by associated mafic-ultramafic magmatism. However, transport of REE by Cl-ligands is the most likely scenario. Stubby bastn

  7. Effect of fluorocarbons on acetylcholinesterase activity and some counter measures

    Science.gov (United States)

    Young, W.; Parker, J. A.

    1975-01-01

    An isolated vagal sympathetic heart system has been successfully used for the study of the effect of fluorocarbons (FCs) on cardiac performance and in situ enzyme activity. Dichlorodifluoromethane sensitizes this preparation to sympathetic stimulation and to exogenous epinephrine challenge. Partial and complete A-V block and even cardiac arrest have been induced by epinephrine challenge in the FC sensitized heart. Potassium chloride alone restores the rhythmicity but not the normal contractility of the heart in such a situation. Addition of glucose will, however, completely restore the normal function of the heart which is sensitized by dichlorodifluoromethane. The ED 50 values of acetylcholinesterase activity which are used as a measure of relative effectiveness of fluorocarbons are compared with the maximum permissible concentration. Kinetic studies indicate that all the fluorocarbons tested so far are noncompetitive.

  8. Self-Template Synthesis of Hybrid Porous Co3 O4 -CeO2 Hollow Polyhedrons for High-Performance Supercapacitors.

    Science.gov (United States)

    Wei, Chengzhen; Liu, Kangfei; Tao, Jing; Kang, Xiaoting; Hou, Haiyan; Cheng, Cheng; Zhang, Daojun

    2018-01-04

    In this work, hybrid porous Co 3 O 4 -CeO 2 hollow polyhedrons have been successfully obtained via a simple cation-exchange route followed by heat treatment. In the synthesis process, ZIF-67 polyhedron frameworks are firstly prepared, which not only serve as a host for the exchanged Ce3 + ions but also act as the template for the synthesis of hybrid porous Co 3 O 4 -CeO 2 hollow polyhedrons. When utilized as electrode materials for supercapacitors, the hybrid porous Co 3 O 4 -CeO 2 hollow polyhedrons delivered a large specific capacitance of 1288.3 F g -1 at 2.5 A g -1 and a remarkable long lifespan cycling stability (<3.3 % loss after 6000 cycles). Furthermore, an asymmetric supercapacitor (ASC) device based on hybrid porous Co 3 O 4 -CeO 2 hollow polyhedrons was assembled. The ASC device possesses an energy density of 54.9 W h kg -1 , which can be retained to 44.2 W h kg -1 even at a power density of 5100 W kg -1 , indicating its promising application in electrochemical energy storage. More importantly, we believe that the present route is a simple and versatile strategy for the preparation of other hybrid metal oxides with desired structures, chemical compositions and applications. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Monitoring the bio-stimulation of hydrocarbon-contaminated soils by measurements of soil electrical properties, and CO2 content and its 13C/12C isotopic signature

    Science.gov (United States)

    Noel, C.; Gourry, J.; Ignatiadis, I.; Colombano, S.; Dictor, M.; Guimbaud, C.; Chartier, M.; Dumestre, A.; Dehez, S.; Naudet, V.

    2013-12-01

    Hydrocarbon contaminated soils represent an environmental issue as it impacts on ecosystems and aquifers. Where significant subsurface heterogeneity exists, conventional intrusive investigations and groundwater sampling can be insufficient to obtain a robust monitoring of hydrocarbon contaminants, as the information they provide is restricted to vertical profiles at discrete locations, with no information between sampling points. In order to obtain wider information in space volume on subsurface modifications, complementary methods can be used like geophysics. Among geophysical methods, geoelectrical techniques such as electrical resistivity (ER) and induced polarization (IP) seem the more promising, especially to study the effects of biodegradation processes. Laboratory and field geoelectrical experiments to characterize soils contaminated by oil products have shown that mature hydrocarbon-contaminated soils are characterized by enhanced electrical conductivity although hydrocarbons are electrically resistive. This high bulk conductivity is due to bacterial impacts on geological media, resulting in changes in the chemical and physical properties and thus, to the geophysical properties of the ground. Moreover, microbial activity induced CO2 production and isotopic deviation of carbon. Indeed, produced CO2 will reflect the pollutant isotopic signature. Thus, the ratio δ13C(CO2) will come closer to δ13C(hydrocarbon). BIOPHY, project supported by the French National Research Agency (ANR), proposes to use electrical methods and gas analyses to develop an operational and non-destructive method for monitoring in situ biodegradation of hydrocarbons in order to optimize soil treatment. Demonstration field is located in the South of Paris (France), where liquid fuels (gasoline and diesel) leaked from some tanks in 1997. In order to stimulate biodegradation, a trench has been dug to supply oxygen to the water table and thus stimulate aerobic metabolic bioprocesses. ER and

  10. The hybrid nanostructure of MnCo2O4.5 nanoneedle/carbon aerogel for symmetric supercapacitors with high energy density

    Science.gov (United States)

    Hao, Pin; Zhao, Zhenhuan; Li, Liyi; Tuan, Chia-Chi; Li, Haidong; Sang, Yuanhua; Jiang, Huaidong; Wong, C. P.; Liu, Hong

    2015-08-01

    Current applications of carbon-based supercapacitors are limited by their low energy density. One promising strategy to enhance the energy density is to couple metal oxides with carbon materials. In this study, a porous MnCo2O4.5 nanoneedle/carbon aerogel hybrid nanostructure was synthesized by assembling MnCo2O4.5 nanoneedle arrays on the surface of channel walls of hierarchical porous carbon aerogels derived from chitosan for the supercapacitor application. The synthetic process of the hybrid nanostructure involves two steps, i.e. the growth of Mn-Co precursors on carbon aerogel by a hydrothermal process and the conversion of the precursor into MnCo2O4.5 nanoneedles by calcination. The carbon aerogel exhibits a high electrical conductivity, high specific surface area and porous structure, ensuring high electrochemical performance of the hybrid nanostructure when coupled with the porous MnCo2O4.5 nanoneedles. The symmetric supercapacitor using the MnCo2O4.5 nanoneedle/carbon aerogel hybrid nanostructure as the active electrode material exhibits a high energy density of about 84.3 Wh kg-1 at a power density of 600 W kg-1. The voltage window is as high as 1.5 V in neutral aqueous electrolytes. Due to the unique nanostructure of the electrodes, the capacitance retention reaches 86% over 5000 cycles.Current applications of carbon-based supercapacitors are limited by their low energy density. One promising strategy to enhance the energy density is to couple metal oxides with carbon materials. In this study, a porous MnCo2O4.5 nanoneedle/carbon aerogel hybrid nanostructure was synthesized by assembling MnCo2O4.5 nanoneedle arrays on the surface of channel walls of hierarchical porous carbon aerogels derived from chitosan for the supercapacitor application. The synthetic process of the hybrid nanostructure involves two steps, i.e. the growth of Mn-Co precursors on carbon aerogel by a hydrothermal process and the conversion of the precursor into MnCo2O4.5 nanoneedles by

  11. Two-frequency operation of a hybrid TEA CO2 laser and its application to two-frequency pulse injection locking

    International Nuclear Information System (INIS)

    Sasaki, Koichi; Ohno, Hirotaka; Fujii, Takaharu; Tsukishima, Takashige.

    1990-10-01

    Simultaneous two-frequency oscillation of a hybrid TEA CO 2 laser is exhibited when the cw section is operated in a 'below threshold' state. The output of the hybrid laser thus obtained is injected into a main TEA CO 2 laser to obtain a power-modulated, long-pulse output with a well suppressed gain-switched spike. (author)

  12. CO2 capture by polymeric membranes composed of hyper-branched polymers with dense poly(oxyethylene comb and poly(amidoamine

    Directory of Open Access Journals (Sweden)

    Taniguchi Ikuo

    2017-11-01

    Full Text Available Due to CO2-philic nature of polyoxyethylene (POE, a dense POE comb structure was tethered onto PMMA backbone to develop CO2 separation membranes over N2. The resulting hyper-branched polymers displayed preferential CO2 permeation. When the polymer thin layer was formed on a high gas permeable polydimethylsiloxane (PDMS support by a spray-coating manner, the resulting thin film composite (TFC membranes displayed very high CO2 permeability. However, the CO2 selectivity, which was the permeability ratio of CO2 over N2, was moderate and lower than 50. To enhance the selectivity, poly(amidoamine (PAMAM was introduced to the hyper-branched polymers in the CO2-selective layer of the TFC membranes. The CO2 selectivity increased from 47 to 90 with increasing PAMAM content to 40 wt%, and it was drastically enhanced to 350 with PAMAM content of 50 wt%. Differential scanning calorimetry (DSC and laser microscope revealed formation of PAMAM-rich domain at the higher amine content, where CO2 could readily migrate in comparison to the other polymeric fractions.

  13. CO2 capture by polymeric membranes composed of hyper-branched polymers with dense poly(oxyethylene) comb and poly(amidoamine)

    Science.gov (United States)

    Taniguchi, Ikuo; Wada, Norihisa; Kinugasa, Kae; Higa, Mitsuru

    2017-11-01

    Due to CO2-philic nature of polyoxyethylene (POE), a dense POE comb structure was tethered onto PMMA backbone to develop CO2 separation membranes over N2. The resulting hyper-branched polymers displayed preferential CO2 permeation. When the polymer thin layer was formed on a high gas permeable polydimethylsiloxane (PDMS) support by a spray-coating manner, the resulting thin film composite (TFC) membranes displayed very high CO2 permeability. However, the CO2 selectivity, which was the permeability ratio of CO2 over N2, was moderate and lower than 50. To enhance the selectivity, poly(amidoamine) (PAMAM) was introduced to the hyper-branched polymers in the CO2-selective layer of the TFC membranes. The CO2 selectivity increased from 47 to 90 with increasing PAMAM content to 40 wt%, and it was drastically enhanced to 350 with PAMAM content of 50 wt%. Differential scanning calorimetry (DSC) and laser microscope revealed formation of PAMAM-rich domain at the higher amine content, where CO2 could readily migrate in comparison to the other polymeric fractions.

  14. Leaf-architectured 3D Hierarchical Artificial Photosynthetic System of Perovskite Titanates Towards CO2 Photoreduction Into Hydrocarbon Fuels

    Science.gov (United States)

    Zhou, Han; Guo, Jianjun; Li, Peng; Fan, Tongxiang; Zhang, Di; Ye, Jinhua

    2013-01-01

    The development of an “artificial photosynthetic system” (APS) having both the analogous important structural elements and reaction features of photosynthesis to achieve solar-driven water splitting and CO2 reduction is highly challenging. Here, we demonstrate a design strategy for a promising 3D APS architecture as an efficient mass flow/light harvesting network relying on the morphological replacement of a concept prototype-leaf's 3D architecture into perovskite titanates for CO2 photoreduction into hydrocarbon fuels (CO and CH4). The process uses artificial sunlight as the energy source, water as an electron donor and CO2 as the carbon source, mimicking what real leaves do. To our knowledge this is the first example utilizing biological systems as “architecture-directing agents” for APS towards CO2 photoreduction, which hints at a more general principle for APS architectures with a great variety of optimized biological geometries. This research would have great significance for the potential realization of global carbon neutral cycle. PMID:23588925

  15. Methods for natural gas and heavy hydrocarbon co-conversion

    Science.gov (United States)

    Kong, Peter C [Idaho Falls, ID; Nelson, Lee O [Idaho Falls, ID; Detering, Brent A [Idaho Falls, ID

    2009-02-24

    A reactor for reactive co-conversion of heavy hydrocarbons and hydrocarbon gases and includes a dielectric barrier discharge plasma cell having a pair of electrodes separated by a dielectric material and passageway therebetween. An inlet is provided for feeding heavy hydrocarbons and other reactive materials to the passageway of the discharge plasma cell, and an outlet is provided for discharging reaction products from the reactor. A packed bed catalyst may optionally be used in the reactor to increase efficiency of conversion. The reactor can be modified to allow use of a variety of light sources for providing ultraviolet light within the discharge plasma cell. Methods for upgrading heavy hydrocarbons are also disclosed.

  16. Optimizing and Quantifying CO2 Storage Resource in Saline Formations and Hydrocarbon Reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Bosshart, Nicholas W. [Univ. of North Dakota, Grand Folks, ND (United States). Energy & Environmental Research Center; Ayash, Scott C. [Univ. of North Dakota, Grand Folks, ND (United States). Energy & Environmental Research Center; Azzolina, Nicholas A. [Univ. of North Dakota, Grand Folks, ND (United States). Energy & Environmental Research Center; Peck, Wesley D. [Univ. of North Dakota, Grand Folks, ND (United States). Energy & Environmental Research Center; Gorecki, Charles D. [Univ. of North Dakota, Grand Folks, ND (United States). Energy & Environmental Research Center; Ge, Jun [Univ. of North Dakota, Grand Folks, ND (United States). Energy & Environmental Research Center; Jiang, Tao [Univ. of North Dakota, Grand Folks, ND (United States). Energy & Environmental Research Center; Burton-Kelly, Matthew E. [Univ. of North Dakota, Grand Folks, ND (United States). Energy & Environmental Research Center; Anderson, Parker W. [Univ. of North Dakota, Grand Folks, ND (United States). Energy & Environmental Research Center; Dotzenrod, Neil W. [Univ. of North Dakota, Grand Folks, ND (United States). Energy & Environmental Research Center; Gorz, Andrew J. [Univ. of North Dakota, Grand Folks, ND (United States). Energy & Environmental Research Center

    2017-06-30

    In an effort to reduce carbon dioxide (CO2) emissions from large stationary sources, carbon capture and storage (CCS) is being investigated as one approach. This work assesses CO2 storage resource estimation methods for deep saline formations (DSFs) and hydrocarbon reservoirs undergoing CO2 enhanced oil recovery (EOR). Project activities were conducted using geologic modeling and simulation to investigate CO2 storage efficiency. CO2 storage rates and efficiencies in DSFs classified by interpreted depositional environment were evaluated at the regional scale over a 100-year time frame. A focus was placed on developing results applicable to future widespread commercial-scale CO2 storage operations in which an array of injection wells may be used to optimize storage in saline formations. The results of this work suggest future investigations of prospective storage resource in closed or semiclosed formations need not have a detailed understanding of the depositional environment of the reservoir to generate meaningful estimates. However, the results of this work also illustrate the relative importance of depositional environment, formation depth, structural geometry, and boundary conditions on the rate of CO2 storage in these types of systems. CO2 EOR occupies an important place in the realm of geologic storage of CO2, as it is likely to be the primary means of geologic CO2 storage during the early stages of commercial implementation, given the lack of a national policy and the viability of the current business case. This work estimates CO2 storage efficiency factors using a unique industry database of CO2 EOR sites and 18 different reservoir simulation models capturing fluvial clastic and shallow shelf carbonate depositional environments for reservoir depths of 1219 and 2438 meters (4000 and 8000 feet) and 7.6-, 20-, and 64-meter (25-, 66

  17. Fluorocarbon adsorption in hierarchical porous frameworks

    NARCIS (Netherlands)

    Motkuri, R.K.; Annapureddy, H.V.R.; Vijaykumar, M.; Schaef, H.T.; Martin, P.F.; McGrail, B.P.; Dang, L.X.; Krishna, R.; Thallapally, P.K.

    2014-01-01

    Metal-organic frameworks comprise an important class of solid-state materials and have potential for many emerging applications such as energy storage, separation, catalysis and bio-medical. Here we report the adsorption behaviour of a series of fluorocarbon derivatives on a set of microporous and

  18. Ectomycorrhizal colonization and growth of the hybrid larch F1 under elevated CO2 and O3

    International Nuclear Information System (INIS)

    Wang, Xiaona; Qu, Laiye; Mao, Qiaozhi; Watanabe, Makoto; Hoshika, Yasutomo; Koyama, Akihiro; Kawaguchi, Korin; Tamai, Yutaka; Koike, Takayoshi

    2015-01-01

    We studied the colonization of ectomycorrhizal fungi and species abundance of a hybrid larch (F 1 ) under elevated CO 2 and O 3. Two-year-old seedlings were planted in an Open-Top-Chamber system with treatments: Control (O 3  < 6 nmol/mol), O 3 (60 nmol/mol), CO 2 (600 μmol/mol), and CO 2  + O 3 . After two growing seasons, ectomycorrhiza (ECM) colonization and root biomass increased under elevated CO 2 . Additionally, O 3 impaired ECM colonization and species richness, and reduced stem biomass. However, there was no clear inhibition of photosynthetic capacity by O 3 . Concentrations of Al, Fe, Mo, and P in needles were reduced by O 3 , while K and Mg in the roots increased. This might explain the distinct change in ECM colonization rate and diversity. No effects of combined fumigation were observed in any parameters except the P concentration in needles. The tolerance of F 1 to O 3 might potentially be related to a shift in ECM community structure. - Highlights: • Elevated CO 2 enhanced growth of hybrid larch F 1 (F 1 ). • ECM colonization rate and species richness of ECM were reduced by O 3 . • Species abundance of ECM community differed between O 3 and control. • F 1 potentially resisted O 3 impacts via specific selection of Suillus spp. for element uptake. - Elevated CO 2 moderated the negative effects of O 3 on the growth of hybrid larch F 1 , by stimulating ectomycorrhizas and nutrient uptake

  19. Hybrid nanomaterial of α-Co(OH)2 nanosheets and few-layer graphene as an enhanced electrode material for supercapacitors.

    Science.gov (United States)

    Cheng, J P; Liu, L; Ma, K Y; Wang, X; Li, Q Q; Wu, J S; Liu, F

    2017-01-15

    Supercapacitor with metal hydroxide nanosheets as electrode can have high capacitance. However, the cycling stability and high rate capacity is low due to the low electrical conductivity. Here, the exfoliated α-Co(OH) 2 nanosheets with high capacitance has been assembled on few-layer graphene with high electric conductivity by a facile yet effective and scalable solution method. Exfoliated hydrotalcite-like α-Co(OH) 2 nanosheets and few-layer graphene suspensions were prepared by a simple ultrasonication in formamide and N-methyl-2-pyrrolidone, respectively. Subsequently, a hybrid was made by self-assembly of α-Co(OH) 2 and few-layer graphene when the two dispersions were mixed at room temperature. The hybrid material provided a high specific capacitance of 567.1F/g at 1A/g, while a better rate capability and better stability were achieved compared to that mad of pristine and single exfoliated α-Co(OH) 2 . When the hybrid nanocomposite was used as a positive electrode and activated carbon was applied as negative electrode to assembly an asymmetric capacitor, an energy density of 21.2Wh/kg at a power density of 0.41kW/kg within a potential of 1.65V was delivered. The high electrochemical performance and facile solution-based synthesis method suggested that the hybrid of exfoliated α-Co(OH) 2 /few-layer graphene could be a potential electrode material for electrochemical capacitor. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Aspects of the use of saturated fluorocarbon fluids in high energy physics

    Energy Technology Data Exchange (ETDEWEB)

    Hallewell, G., E-mail: Gregory.Hallewell@cern.c [Centre de Physique des Particules de Marseille, 163 Avenue de Luminy, Case 907, 13288 Marseille Cedex 09 (France)

    2011-05-21

    The excellent dielectric properties of saturated fluorocarbons have allowed their use in direct immersion liquid cooling of electronics, including supercomputers and as heat transfer media in vapour phase soldering and burn-in testing of electronics. Their high density, UV transparency, non-flammability, non-toxicity and radiation tolerance have led to their use as liquid and gas radiator media for RICH detectors in numerous particle physics experiments. Systems to circulate and purify saturated fluorocarbon Cherenkov radiator vapours often rely on thermodynamic evaporation-condensation cycles similar to those used in refrigeration. Their use as evaporative refrigerants was pioneered for the ATLAS silicon tracker, and they are now also used as evaporative coolants in ALICE and TOTEM and as liquid coolants in ATLAS and CMS. Ultrasonic techniques for vapour phase analysis of fluorocarbon mixtures-developed for the SLAC SLD barrel CRID radiator during the 1980s as an alternative to UV refractometry are again under development for the ATLAS tracker evaporative cooling system. Examples of fluorocarbon circulation systems, together with purification and analysis techniques for these versatile fluids are mentioned.

  1. Aspects of the use of saturated fluorocarbon fluids in high energy physics

    International Nuclear Information System (INIS)

    Hallewell, G.

    2011-01-01

    The excellent dielectric properties of saturated fluorocarbons have allowed their use in direct immersion liquid cooling of electronics, including supercomputers and as heat transfer media in vapour phase soldering and burn-in testing of electronics. Their high density, UV transparency, non-flammability, non-toxicity and radiation tolerance have led to their use as liquid and gas radiator media for RICH detectors in numerous particle physics experiments. Systems to circulate and purify saturated fluorocarbon Cherenkov radiator vapours often rely on thermodynamic evaporation-condensation cycles similar to those used in refrigeration. Their use as evaporative refrigerants was pioneered for the ATLAS silicon tracker, and they are now also used as evaporative coolants in ALICE and TOTEM and as liquid coolants in ATLAS and CMS. Ultrasonic techniques for vapour phase analysis of fluorocarbon mixtures-developed for the SLAC SLD barrel CRID radiator during the 1980s as an alternative to UV refractometry are again under development for the ATLAS tracker evaporative cooling system. Examples of fluorocarbon circulation systems, together with purification and analysis techniques for these versatile fluids are mentioned.

  2. Self-template synthesis of yolk-shelled NiCo2O4 spheres for enhanced hybrid supercapacitors

    Science.gov (United States)

    Wang, Liang; Jiao, Xinyan; Liu, Peng; Ouyang, Yu; Xia, Xifeng; Lei, Wu; Hao, Qingli

    2018-01-01

    A self-template method is developed for hierarchically yolk-shelled NiCo2O4 spheres (YS-NiCo2O4) through a controlled hydrolysis process and followed by a thermal annealing treatment. The yolk-shelled NiCo2O4 spheres possess out-shell consisting of hundreds of ultrathin sheets with 3-5 nm in thickness and solid yolk composing of a large number of nanoparticles. The YS-NiCo2O4 generates a large specific surface area of 169.6 m2 g-1. Benefit from the large specific surface area and rich oxygen vacancy, the as-fabricated YS-NiCo2O4 as electrode materials for supercapacitor exhibits high specific capacitance of 835.7 F g-1 at 0.5 A g-1, an enhanced rate capability and excellent electrochemical stability with 93% retention after 10,000 cycles even at 10 A g-1. Moreover, a hybrid supercapacitor combined with YS-NiCo2O4 and graphene shows a high energy density of 34.7 Wh kg-1 at the power density of 395.0 W kg-1 at 0.5 A g-1, even at 20 A g-1, the hybrid supercapacitor still delivers the energy density of about 12.1 Wh kg-1 and the power density of 11697 W kg-1. The desirable performance of yolk-shelled NiCo2O4 suggests it to be a promising material as supercapacitor electrodes.

  3. Real world CO2 and NOx emissions from 149 Euro 5 and 6 diesel, gasoline and hybrid passenger cars.

    Science.gov (United States)

    O'Driscoll, Rosalind; Stettler, Marc E J; Molden, Nick; Oxley, Tim; ApSimon, Helen M

    2018-04-15

    In this study CO 2 and NO x emissions from 149 Euro 5 and 6 diesel, gasoline and hybrid passenger cars were compared using a Portable Emissions Measurement System (PEMS). The models sampled accounted for 56% of all passenger cars sold in Europe in 2016. We found gasoline vehicles had CO 2 emissions 13-66% higher than diesel. During urban driving, the average CO 2 emission factor was 210.5 (sd. 47) gkm -1 for gasoline and 170.2 (sd. 34) gkm -1 for diesel. Half the gasoline vehicles tested were Gasoline Direct Injection (GDI). Euro 6 GDI engines cars. The average urban NO x emission from Euro 6 diesel vehicles 0.44 (sd. 0.44) gkm -1 was 11 times higher than for gasoline 0.04 (sd. 0.04) gkm -1 . We also analysed two gasoline-electric hybrids which out-performed both gasoline and diesel for NO x and CO 2 . We conclude action is required to mitigate the public health risk created by excessive NO x emissions from modern diesel vehicles. Replacing diesel with gasoline would incur a substantial CO 2 penalty, however greater uptake of hybrid vehicles would likely reduce both CO 2 and NO x emissions. Discrimination of vehicles on the basis of Euro standard is arbitrary and incentives should promote vehicles with the lowest real-world emissions of both NO x and CO 2 . Copyright © 2017 Elsevier B.V. All rights reserved.

  4. CO2-neutral fuels

    Directory of Open Access Journals (Sweden)

    Goede A. P. H.

    2015-01-01

    Full Text Available The need for storage of renewable energy (RE generated by photovoltaic, concentrated solar and wind arises from the fact that supply and demand are ill-matched both geographically and temporarily. This already causes problems of overcapacity and grid congestion in countries where the fraction of RE exceeds the 20% level. A system approach is needed, which focusses not only on the energy source, but includes conversion, storage, transport, distribution, use and, last but not least, the recycling of waste. Furthermore, there is a need for more flexibility in the energy system, rather than relying on electrification, integration with other energy systems, for example the gas network, would yield a system less vulnerable to failure and better adapted to requirements. For example, long-term large-scale storage of electrical energy is limited by capacity, yet needed to cover weekly to seasonal demand. This limitation can be overcome by coupling the electricity net to the gas system, considering the fact that the Dutch gas network alone has a storage capacity of 552 TWh, sufficient to cover the entire EU energy demand for over a month. This lecture explores energy storage in chemicals bonds. The focus is on chemicals other than hydrogen, taking advantage of the higher volumetric energy density of hydrocarbons, in this case methane, which has an approximate 3.5 times higher volumetric energy density. More importantly, it allows the ready use of existing gas infrastructure for energy storage, transport and distribution. Intermittent wind electricity generated is converted into synthetic methane, the Power to Gas (P2G scheme, by splitting feedstock CO2 and H2O into synthesis gas, a mixture of CO and H2. Syngas plays a central role in the synthesis of a range of hydrocarbon products, including methane, diesel and dimethyl ether. The splitting is accomplished by innovative means; plasmolysis and high-temperature solid oxygen electrolysis. A CO2-neutral fuel

  5. Fine structures and magnetic properties of FeCo granular thin films with plasma polymerized (C4F8) n matrix

    International Nuclear Information System (INIS)

    Kakizaki, K.; Yasoshima, S.; Choi, K.-K.; Kamishima, K.; Hiratsuka, N.

    2007-01-01

    In this paper a method for polymerization of fluorocarbon gas in argon plasma to obtain a novel granular structure was reported. We prepared granular films where FeCo fine particles were distributed in plasma-polymerized fluorocarbon matrix by a facing-targets RF magnetron sputtering method, and investigated the correlation between their structures and magnetic properties. The magnetization of the films prepared with the partial pressure of fluorocarbon gas between 0 and 1.0 mTorr decreased linearly, because the FeCo content in a unit volume of a film decreased when a polymerized material was used as the matrix. However, the coercivity of the films decreased drastically with increasing the partial pressure of fluorocarbon gas above 0.4 mTorr. This is because the magnetic anisotropy of FeCo particles is decreased by the decrease of grain size. It was confirmed by a TEM observation that the FeCo-(C 4 F 8 ) n films had the granular structure which was constituted by the very fine FeCo particles and the plasma-polymerized fluorocarbon matrix. For the film deposited at the partial pressure of fluorocarbon gas of 0.4 mTorr, the size of FeCo magnetic particles is about 20 nm. On the other hand, the size of FeCo particles is decreased to about 8 nm when the film deposited at the partial pressure of fluorocarbon gas of 0.8 mTorr and its distribution is small

  6. Highly selective SiO2 etching over Si3N4 using a cyclic process with BCl3 and fluorocarbon gas chemistries

    Science.gov (United States)

    Matsui, Miyako; Kuwahara, Kenichi

    2018-06-01

    A cyclic process for highly selective SiO2 etching with atomic-scale precision over Si3N4 was developed by using BCl3 and fluorocarbon gas chemistries. This process consists of two alternately performed steps: a deposition step using BCl3 mixed-gas plasma and an etching step using CF4/Ar mixed-gas plasma. The mechanism of the cyclic process was investigated by analyzing the surface chemistry at each step. BCl x layers formed on both SiO2 and Si3N4 surfaces in the deposition step. Early in the etching step, the deposited BCl x layers reacted with CF x radicals by forming CCl x and BF x . Then, fluorocarbon films were deposited on both surfaces in the etching step. We found that the BCl x layers formed in the deposition step enhanced the formation of the fluorocarbon films in the CF4 plasma etching step. In addition, because F radicals that radiated from the CF4 plasma reacted with B atoms while passing through the BCl x layers, the BCl x layers protected the Si3N4 surface from F-radical etching. The deposited layers, which contained the BCl x , CCl x , and CF x components, became thinner on SiO2 than on Si3N4, which promoted the ion-assisted etching of SiO2. This is because the BCl x component had a high reactivity with SiO2, and the CF x component was consumed by the etching reaction with SiO2.

  7. The effect of mycorrhizal inoculation on hybrid poplar fine root dynamics in hydrocarbon contaminated soils

    Energy Technology Data Exchange (ETDEWEB)

    Gunderson, J.; Knight, J.D.; Van Rees, K.C.J. [Saskatchewan Univ., Saskatoon, SK (Canada). Dept. of Soil Science

    2006-07-01

    The biological remediation of contaminated soils using plants was discussed. Hybrid poplars are good candidates for phytoremediation because they root deeply, cycle large amounts of water and grow quickly. Their fine root system is pivotal in nutrient and water acquisition. Therefore, in order to maximize the phytoremediation potential, it is important to understand the response of the fine root system. In addition to degrading organic chemicals, ectomycorrhizal (ECM) fungi provide the host with greater access to nutrients. This study determined the relationship between residual soil hydrocarbons and soil properties at a field site. The effects of residual contamination on hybrid poplar fine root dynamics was also examined along with the effect of ectomycorrhizal colonization on hybrid poplar fine root dynamics when grown in diesel contaminated soil under controlled conditions. A minirhizotron camera inside a growth chamber captured images of mycorrhizal inoculation on hybrid poplar fine root production. Walker hybrid poplar seedlings were grown for 12 weeks in a control soil and also in a diesel contaminated soil. Seedlings were also grown in control and diesel contaminated, ectomycorrhizal inoculated soils. The inoculum was a mycorrhizal mix containing Pisolithus tinctorius and Rhizopogon spp. The images showed that colonization by ECM fungi increased hybrid poplar fine root production and aboveground biomass in a diesel contaminated soil compared to non-colonized trees in the same soil. Root:shoot ratios were much higher in the diesel contaminated/non-inoculated treatment than in either of the control soil treatments. Results of phytoremediation in diesel contaminated soil were better in the non-colonized treatment than in the colonized treatment. Both treatments removed more contaminants from the soil than the unplanted control. Much higher quantities of hydrocarbons were found sequestered in the roots from the inoculated treatment than from the non

  8. Dual-Channel, Molecular-Sieving Core/Shell ZIF@MOF Architectures as Engineered Fillers in Hybrid Membranes for Highly Selective CO2 Separation.

    Science.gov (United States)

    Song, Zhuonan; Qiu, Fen; Zaia, Edmond W; Wang, Zhongying; Kunz, Martin; Guo, Jinghua; Brady, Michael; Mi, Baoxia; Urban, Jeffrey J

    2017-11-08

    A novel core/shell porous crystalline structure was prepared using a large pore metal organic framework (MOF, UiO-66-NH 2 , pore size, ∼ 0.6 nm) as core surrounded by a small pore zeolitic imidazolate framework (ZIF, ZIF-8, pore size, ∼ 0.4 nm) through a layer-by-layer deposition method and subsequently used as an engineered filler to construct hybrid polysulfone (PSF) membranes for CO 2 capture. Compared to traditional fillers utilizing only one type of porous material with rigid channels (either large or small), our custom designed core/shell fillers possess clear advantages via pore engineering: the large internal channels of the UiO-66-NH 2 MOFs create molecular highways to accelerate molecular transport through the membrane, while the thin shells with small pores (ZIF-8) or even smaller pores generated at the interface by the imperfect registry between the overlapping pores of ZIF and MOF enhance molecular sieving thus serving to distinguish slightly larger N 2 molecules (kinetic diameter, 0.364 nm) from smaller CO 2 molecules (kinetic diameter, 0.33 nm). The resultant core/shell ZIF@MOF and as-prepared hybrid PSF membranes were characterized by transmission electron microscopy, X-ray diffraction, wide-angle X-ray scattering, scanning electron microscopy, Fourier transform infrared, thermogravimetric analysis, differential scanning calorimetry, and contact angle tests. The dependence of the separation performance of the membranes on the MOF/ZIF ratio was also studied by varying the number of layers of ZIF coatings. The integrated PSF-ZIF@MOF hybrid membrane (40 wt % loading) with optimized ZIF coating cycles showed improved hydrophobicity and excellent CO 2 separation performance by simultaneously increasing CO 2 permeability (CO 2 permeability of 45.2 barrer, 710% higher than PSF membrane) and CO 2 /N 2 selectivity (CO 2 /N 2 selectivity of 39, 50% higher than PSF membrane), which is superior to most reported hybrid PSF membranes. The strategy of using

  9. Uranium metallogenic model related to CO2 and hydrocarbon in granite type uranium deposits

    International Nuclear Information System (INIS)

    Ou Guangxi; Chen Anfu; Cui Jianyong; Xu Yinhuan; Wang Chunhua; Xu Yan

    2001-01-01

    The report is concerned with the inseparable connections between the uranium migration, enrichment rule and the geochemical characteristics of CO 2 and hydrocarbon gas, as well as the relations between the deposit locations and the gas abnormal distribution in rocky body, which are based on the analysis of some data and phenomena in 11 typical deposits in 2 granite type uranium ore fields, including the observations of 250 rocky fluid inclusion sections and the analyzed data of which 2470 are in gas composition, 200 in uranium content, 50 in thermometry. All the conclusions are drawn from different angles for the first time and this new exploration and advancement fills up the blank of gas geochemistry study in uranium deposits or other metal deposits

  10. Method of treating emissions of a hybrid vehicle with a hydrocarbon absorber and a catalyst bypass system

    Science.gov (United States)

    Roos, Bryan Nathaniel; Gonze, Eugene V; Santoso, Halim G; Spohn, Brian L

    2014-01-14

    A method of treating emissions from an internal combustion engine of a hybrid vehicle includes directing a flow of air created by the internal combustion engine when the internal combustion engine is spinning but not being fueled through a hydrocarbon absorber to collect hydrocarbons within the flow of air. When the hydrocarbon absorber is full and unable to collect additional hydrocarbons, the flow of air is directed through an electrically heated catalyst to treat the flow of air and remove the hydrocarbons. When the hydrocarbon absorber is not full and able to collect additional hydrocarbons, the flow of air is directed through a bypass path that bypasses the electrically heated catalyst to conserve the thermal energy stored within the electrically heated catalyst.

  11. Fabrication and Characterization of Polyimide-CNTs hybrid membrane to enhance high performance CO2 separation

    Directory of Open Access Journals (Sweden)

    Tutuk Djoko Kusworo

    2015-03-01

    Full Text Available This study investigates the CO2 separation performance of a hybrid membranes flat sheet based on polyimide incorporated with carbon nanotubes (CNTs particles. CNTs was selected and its loading were a 1 wt% in total solid. The hybrid composite membranes were fabricated in order to increase their separation performance for the gaseous mixture of CO2 and CH4. Hybrid Composite  membrane incorporated carbon nanotubes were mannufactured  by the dry-wet phase inversion technique using flat sheet membrane casting machine system,  in which the CNTs were embedded into the polyimide membrane and the resulting membranes were characterized. The results from the FESEM, DSC and FTIR analysis confirmed that chemical modification on carbon nanotubes surface had taken place. Sieve-in-a-cage’ morphology observed shows the poor adhesion between polymer and unmodified CNT. The results revealed that the good multi-wall carbon nanotubes dispersion leads to enhanced gas permeation properties. It is also concluded that addition of carbon nanotubes particles into the matrix of Polyimide polymer has significant effect on the membrane structure and properties.

  12. Energy Efficient Hybrid Gas Separation with Ionic Liquids

    DEFF Research Database (Denmark)

    Liu, Xinyan; Liang, Xiaodong; Gani, Rafiqul

    2017-01-01

    Shale gas, like natural gas, contains H2, CO2, CH4 and that light hydrocarbon gases needs processing to separate the gases for conversion to higher value products. Currently, distillation based separation is employed, which is energy intensive. Hybrid gas separation processes, combining absorption...... systems is established for process design-analysis. A strategy for hybrid gas separation process synthesis where distillation and IL-based absorption are employed for energy efficient gas processing is developed and its application is highlighted for a model shale gas processing case study....

  13. Mass spectrometry of fluorocarbon-labeled glycosphingolipids

    DEFF Research Database (Denmark)

    Li, Yunsen; Arigi, Emma; Eichert, Heather

    2010-01-01

    ceramide N-deacylase (SCDase) is used to remove the fatty acid from the ceramide moiety, after which a fluorocarbon-rich substituent (F-Tag) is incorporated at the free amine of the sphingoid. In initial trials, a neutral GSL, globotriaosylceramide (Gb(3)Cer), three purified bovine brain gangliosides...... with subsequent per-N,O-methylation was established for the F-tagged Gb(3) Cer and purified gangliosides, and extensive mass spectra (MS(1) and MS(2)) consistent with all of the expected products were acquired. The potential use of F-tagged derivatives for a comprehensive MS based profiling application...

  14. CO2 hydrogenation to hydrocarbons over iron nanoparticles ...

    Indian Academy of Sciences (India)

    481–486. c Indian Academy of Sciences. CO2 ... degrees of CO2 conversion shows that reverse water gas shift equilibrium had been ... rise in CO2 emission.1 Additionally, depletion in crude .... detectors (FID) using argon as internal standard.

  15. Study on usage of fluorocarbon for toroidal field coil cooling

    International Nuclear Information System (INIS)

    Miyata, Hiroshi; Arai, Takashi

    1998-09-01

    In JT-60 machine, usage of fluorocarbon as an alternate coolant to a cooling channel of toroidal field coil (TF coil) in which a crack was detected is investigated. Fluorinert (a registered trademark of 3M) liquid which is one of fluorocarbon was reviewed, and liquid 'FC-43' was found as an appropriate one for TF coils cooling because of its physical properties about boiling point and thermal capacity. Fortunately, Fluorinert does not have impact on the greenhouse effect for the earth under the temperature of its boiling point. And thermal analysis shows that the cooling effectiveness obtained with liquid 'FC-43' for TF coils is rather well. Moreover, corrosion tests were carried out between liquid 'FC-43' and materials used in JT-60 by considering deterioration of TF coils. The test results demonstrate that there is no problem in applying liquid 'FC-43' as a coolant to cooling channel of TF coils. Results obtained above conclude that usage of fluorocarbon is one of the effective means to perform further experiments in JT-60. (author)

  16. Synthesis of novel complexing macromolecular surfactants and study of their interactions with cobalt for the development of a decontamination process of textiles in dense CO2 medium

    International Nuclear Information System (INIS)

    Chirat, M.

    2012-01-01

    This study is about textile decontamination in dense CO 2 (liquid CO 2 or supercritical CO 2 ). The study is carried out in the framework of decontamination of textile used in the nuclear industry. The dense CO 2 offers an alternative to aqueous medium used in the current process which generates a huge quantity of contaminated aqueous effluent requiring a post-treatment. Cobalt is the targeted contamination and can be found as ionic species or particles. The cobalt extraction in dense CO 2 is achieved with an additive: a complexing CO 2 -philic/CO 2 -phobic macromolecular surfactant. Several types of additives were synthesized by controlled free radical polymerization: gradient copolymers made with CO 2 -philic groups (silicone-based or fluorinated moieties) and CO 2 -phobic complexing groups (aceto acetoxy, di-ethylphosphonate or phosphonic acid moieties). The copolymer behavior in dense CO 2 was determined by phase diagram measurements (cloud point method) and their self-assembly in dense CO 2 was investigated by small angle neutron scattering. The fluorinated copolymers were found advantageous in terms of solubility. Nevertheless, the silicone-based copolymers showed solubilities which are compatible with the process, therefore they are a good alternative to avoid fluorinated compounds which are unwanted in the conditioning of nuclear wastes. The study of cobalt complexation by the copolymers (UV-vis spectroscopy and inductively coupled plasma-mass spectroscopy) established relations between the type of complexing group and the affinity with the cobalt. The solubility of copolymer-cobalt complexes in dense CO 2 is similar to those of copolymers. Moreover, the self-assembly study of the complex revealed a low aggregation. Finally, the synthesized copolymers were used in particle or ionic decontamination processes. In the case of ionic decontamination process, a rate of 70% of decontamination was reached with the use of gradient copolymer poly(1,1,2,2

  17. Preparation and photocatalytic properties of hybrid core–shell reusable CoFe2O4–ZnO nanospheres

    International Nuclear Information System (INIS)

    Wilson, A.; Mishra, S.R.; Gupta, R.; Ghosh, K.

    2012-01-01

    Magnetically separable and reusable core–shell CoFe 2 O 4 –ZnO photocatalyst nanospheres were prepared by the hydrothermal synthesis technique using glucose derived carbon nanospheres as the template. The morphology and the phase of core–shell hybrid structure of CoFe 2 O 4 –ZnO were assessed via TEM, SEM and XRD. The magnetic composite showed high UV photocatalytic activity for the degradation of methylene blue in water. The photocatalytic activity was found to be ZnO shell thickness dependent. Thicker ZnO shells lead to higher rate of photocatalytic activity. Hybrid nanospheres recovered using an external magnetic field demonstrated good repeatability of photocatalytic activity. These results promise the reusability of the hybrid nanospheres for photocatalytic activity. - Highlights: ► Synthesis of novel hybrid magnetic-ZnO core–shell composite nanospheres. ► High photocatalytic activity of hybrid nanospheres was noted as compared to that of pure ZnO nanoparticles. ► The hybrid nanospheres could be easily retrieved using an external magnet for repeated use. ► Repeated use of hybrid nanospheres did not show any degradation in the photocatalytic activity. ► The photocatalysis rate was observed to be ZnO shell thickness dependent.

  18. Optimized plasma-deposited fluorocarbon coating for dry release and passivation of thin SU-8 cantilevers

    DEFF Research Database (Denmark)

    Keller, Stephan Urs; Häfliger, Daniel; Boisen, Anja

    2008-01-01

    during fluorocarbon deposition, the surface free energy of the coating can be tuned to allow for uniform wetting during spin coating of arbitrary thin SU-8 films. Further, they define an optimal pressure regime for the release of thin polymer structures at high yield. They demonstrate the successful......Plasma-deposited fluorocarbon coatings are introduced as a convenient method for the dry release of polymer structures. In this method, the passivation process in a deep reactive ion etch reactor was used to deposit hydrophobic fluorocarbon films. Standard photolithography with the negative epoxy......-based photoresist SU-8 was used to fabricate polymer structures such as cantilevers and membranes on top of the nonadhesive release layer. The authors identify the plasma density as the main parameter determining the surface properties of the deposited fluorocarbon films. They show that by modifying the pressure...

  19. Redeposition of etch products on sidewalls during SiO2 etching in a fluorocarbon plasma. I. Effect of particle emission from the bottom surface in a CF4 plasma

    International Nuclear Information System (INIS)

    Min, Jae-Ho; Hwang, Sung-Wook; Lee, Gyeo-Re; Moon, Sang Heup

    2002-01-01

    The effect of etch-product redeposition on sidewall properties during the etching of step-shaped SiO 2 patterns in a CF 4 plasma was examined using a Faraday cage located in a transformer coupled plasma etcher. Sidewall properties were observed for two cases: with and without particles emitted from the bottom surface in normal contact with the sidewall. Particles sputtered from the bottom surface were redeposited on the sidewall, which contributes to the formation of a passivation layer on the surface of the latter. The passivation layer consisted of silicon oxide, Si x O y , and fluorocarbon, C x F y , the latter comprising the major species. Ar plasma experiments confirmed that C x F y or a fluorocarbon polymer must be present on the sidewall in order for the Si x O y species to be deposited on the surface. The redeposited particles, which were largely F-deficient fluorocarbon species, as evidenced by x-ray photoelectron spectroscopy analyses, functioned as precursors for fluorocarbon polymerization, resulting in a rough sidewall surface. The chemical etch rates of SiO 2 were retarded by the redeposition of particles, which eventually formed a thick layer, eventually covering the bulk SiO 2 . Auger electron spectroscopy analyses of the sidewall surface affected by the emission from the bottom suggest that the surface consists of three distinct layers: a surface-carbon layer, a redeposition-etch combined layer, and bulk SiO 2

  20. Synthesis of polydopamine-functionalized magnetic graphene and carbon nanotubes hybrid nanocomposites as an adsorbent for the fast determination of 16 priority polycyclic aromatic hydrocarbons in aqueous samples.

    Science.gov (United States)

    Chen, Kun; Jin, Rongrong; Luo, Chen; Song, Guoxin; Hu, Yaoming; Cheng, Hefa

    2018-04-01

    A novel adsorbent made of polydopamine-functionalized magnetic graphene and carbon nanotubes hybrid nanocomposite was synthesized and applied to determine 16 priority polycyclic aromatic hydrocarbons by magnetic solid phase extraction in water samples. FTIR spectroscopy, transmission electron microscopy, scanning electron microscopy, and Raman spectroscopy consistently indicate that the synthesized adsorbents are made of core-shell nanoparticles well dispersed on the surface of graphene and carbon nanotubes. The major factors affecting the extraction efficiency, including the pH value of samples, the amount of adsorbent, adsorption time and desorption time, type and volume of desorption solvent, were systematically optimized. Under the optimum extraction conditions, a linear response was obtained for polycyclic aromatic hydrocarbons between concentrations of 10 and 500 ng/L with the correlation coefficients ranging from 0.9958 to 0.9989, and the limits of detection (S/N = 3) were between 0.1 and 3.0 ng/L. Satisfactory results were also obtained when applying these magnetic graphene/carbon nanotubes/polydopamine hybrid nanocomposites to detect polycyclic aromatic hydrocarbons in several environmental aqueous samples. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Life cycle energy metrics and CO 2 credit analysis of a hybrid photovoltaic/thermal greenhouse dryer

    OpenAIRE

    P. Barnwal; G. N. Tiwari

    2008-01-01

    In this paper, life cycle energy metrics, such as energy payback time (EPBT), energy production factor (EPF) and life cycle conversion efficiency (LCCE), and mitigation of CO 2 emissions for a hybrid photovoltaic/thermal (PV/T) greenhouse dryer have been analyzed. The hybrid PV/T greenhouse (roof type even span) dryer, designed and constructed at Solar Energy Park, Indian Institute of Technology, New Delhi (28°35′N, 77°12′E, 216 m above MSL), India, has a 2.50 m × 2.60 m floor area, 1.80 m ce...

  2. Mechanism of single-frequency operation of the hybrid-CO2 laser

    International Nuclear Information System (INIS)

    Gondhalekar, A.; Heckenberg, N.R.; Holzhauer, E.

    1975-01-01

    The mechanism of a new method of obtaining high-power single-frequency pulses from a TEA-CO 2 laser is discussed. Measurements of the shape and monochromaticity of pulses from the hybrid laser which has both a TEA and a low-pressure gain section inside one resonator are presented. The mechanism of single-frequency operation of the hybrid laser is discussed with reference to numerical solutions of simplified rate equations. The low-pressure section provides gain only over a narrow range of frequencies so that a mode lying in that band-width builds up faster than neighboring modes to give a single-frequency pulse resembling in overall shape the normal TEA laser pulse. If the system is already lasing when the TEA discharge begins, the single-mode radiation already present rapidly grows to give a single-frequency pulse lacking a gain-switched peak. (U.S.)

  3. Synthesis of higher diamondoids by pulsed laser ablation plasmas in supercritical CO2

    International Nuclear Information System (INIS)

    Nakahara, Sho; Stauss, Sven; Kato, Toru; Terashima, Kazuo; Sasaki, Takehiko

    2011-01-01

    Pulsed laser ablation (wavelength 532 nm; fluence 18 J/cm 2 ; pulse width 7 ns; repetition rate 10 Hz) of highly oriented pyrolytic graphite was conducted in adamantane-dissolved supercritical CO 2 with and without cyclohexane as a cosolvent. Micro-Raman spectroscopy of the products revealed the presence of hydrocarbons possessing sp 3 -hybridized carbons similar to diamond structures. The synthesis of diamantane and other possible diamondoids consisting of up to 12 cages was confirmed by gas chromatography-mass spectrometry. Furthermore, gas chromatography-mass spectrometry measurements of samples before and after pyrolysis treatment indicate the synthesis of the most compact decamantane, namely, superadamantane. It is thought that oxidant species originating from CO 2 during pulsed laser ablation might lead to the selective dissociation of C-H bonds, enabling the synthesis of low H/C ratio molecules. Therefore, laser ablation in supercritical CO 2 is proposed as a practical method for synthesizing diamondoids.

  4. Design and Characterization of Liquidlike POSS-Based Hybrid Nanomaterials Synthesized via Ionic Bonding and Their Interactions with CO 2

    KAUST Repository

    Petit, Camille

    2013-10-01

    Liquidlike nanoparticle organic hybrid materials (NOHMs) were designed and synthesized by ionic grafting of polymer chains onto nanoscale silica units called polyhedral oligomeric silsesquioxane (POSS). The properties of these POSS-based NOHMs relevant to CO2 capture, in particular thermal stability, swelling, viscosity, as well as their interactions with CO 2, were investigated using thermogravimetric analyses, differential scanning calorimetry, and NMR and ATR FT-IR spectroscopies. The results indicate that POSS units significantly enhance the thermal stability of the hybrid materials, and their porous nature also contributes to the overall CO 2 capture capacity of NOHMs. The viscosity of the synthesized NOHMs was comparable to those reported for ionic liquids, and rapidly decreased as the temperature increased. The sorption of CO2 in POSS-based NOHMs also reduced their viscosities. The swelling behavior of POSS-based NOHMs was similar to that of previously studied nanoparticle-based NOHMs, and this generally resulted in less volume increase in NOHMs compared to their corresponding polymers for the same amount of CO2 loading. © 2013 American Chemical Society.

  5. Estimation of the efficiency of hydrocarbon mineralization in soil by measuring CO2-emission and variations in the isotope composition of carbon dioxide

    Science.gov (United States)

    Dubrovskaya, Ekaterina; Turkovskaya, Olga

    2010-05-01

    Estimation of the efficiency of hydrocarbon mineralization in soil by measuring CO2-emission and variations in the isotope composition of carbon dioxide E. Dubrovskaya1, O. Turkovskaya1, A. Tiunov2, N. Pozdnyakova1, A. Muratova1 1 - Institute of Biochemistry and Physiology of Plants and Microorganisms, RAS, Saratov, 2 - A.N. Severtsov Institute of Ecology and Evolution, RAS, Moscow, Russian Federation Hydrocarbon mineralization in soil undergoing phytoremediation was investigated in a laboratory experiment by estimating the variation in the 13С/12С ratio in the respired СО2. Hexadecane (HD) was used as a model hydrocarbon pollutant. The polluted soil was planted with winter rye (Secale cereale) inoculated with Azospirillum brasilense strain SR80, which combines the abilities to promote plant growth and to degrade oil hydrocarbon. Each vegetated treatment was accompanied with a corresponding nonvegetated one, and uncontaminated treatments were used as controls. Emission of carbon dioxide, its isotopic composition, and the residual concentration of HD in the soil were examined after two and four weeks. At the beginning of the experiment, the CO2-emission level was higher in the uncontaminated than in the contaminated soil. After two weeks, the quantity of emitted carbon dioxide decreased by about three times and did not change significantly in all uncontaminated treatments. The presence of HD in the soil initially increased CO2 emission, but later the respiration was reduced. During the first two weeks, nonvegetated soil had the highest CO2-emission level. Subsequently, the maximum increase in respiration was recorded in the vegetated contaminated treatments. The isotope composition of plant material determines the isotope composition of soil. The soil used in our experiment had an isotopic signature typical of soils formed by C3 plants (δ13C,-22.4‰). Generally, there was no significant fractionation of the carbon isotopes of the substrates metabolized by the

  6. Energy recovery of the H{sub 2}S and CO{sub 2} elimination with technology by hybrid plasma; Recuperacion energetica de la eliminacion de H{sub 2}S y CO{sub 2} con tecnologia por plasma hibrido

    Energy Technology Data Exchange (ETDEWEB)

    Salazar T, J. A.

    2014-07-01

    This document is a research focused on energy recovery from acid gas removal contained in natural gas as hydrogen sulfide (H{sub 2}S) and carbon dioxide (CO{sub 2}), by obtaining highly energetic gas such as syngas (mixture of hydrogen and carbon monoxide, in particular) using plasma technology in its hybrid form, namely, gliding arc plasma, that has the property to behave like a thermal plasma and cold plasma, besides possessing among other virtues the ability to treat large flows continuously at atmospheric pressure without the need of using noble gases, with a power consumption of no more than 1000 W. Furthermore, this type of plasma has demonstrated to be a clean and efficient not only by high conversion rates of H{sub 2}S (86%) and CO{sub 2} (56%) and high percentages of selectivity in the production of hydrogen (H{sub 2}) and carbon monoxide carbon (CO) obtained in this work, but because it can even be seriously considered to replace other technologies currently used in the process of sweetening natural gas as adsorption, absorption and sequestering membranes. The results shown are based on a series of analysis, simulations, experiments and calculations, from the design of the plasma generating source based on an impulse-phase circuit, to the electrical characterization results and simulation by acquiring electrical signals, without forgetting the characterization of the resulting chemical components using various analytical techniques such as mass spectrometry, gas chromatography (GC), optical emission spectroscopy (OES), optical spectroscopy Fourier inverse transformed (XRD) and scanning electron microscopy (Sem), X-ray diffraction (XRD) and multi-gas detectors (iBrid MX6). Additionally, performed chemical kinetics and reaction mechanism of the compounds involved in the degradation of H{sub 2}S and CO{sub 2} similar to those experienced as well as the study of energy efficiency (Ece), specific energy (Se), all this to meet a projects needs 127499, entitled

  7. Modeling solubility of CO2/hydrocarbon gas in ionic liquid ([emim][FAP]) using Aspen Plus simulations.

    Science.gov (United States)

    Bagchi, Bishwadeep; Sati, Sushmita; Shilapuram, Vidyasagar

    2017-08-01

    The Peng-Robinson equation of state with quadratic van der Waals (vdW) mixing rule model was chosen to perform the thermodynamic calculations in Flash3 column of Aspen Plus to predict the solubility of CO 2 or any one of the hydrocarbons (HCs) among methane, ethane, propane, and butane in an ionic liquid 1-ethyl-3-methylimidazolium tris(pentafluoroethyl)trifluorophosphate ([emim][FAP]). Bubble point pressure, solubility, bubble point temperature, fugacity, and partial molar volume at infinite dilution were obtained from the simulations, and enthalpy of absorption, Gibbs free energy of solvation, and entropy change of absorption were estimated by thermodynamic relations. Results show that carbon chain length has a significant effect on the bubble point pressure. Methane has the highest bubble point pressure among all the considered HCs and CO 2 . The bubble point pressure and fugacity variation with temperature is different for CO 2 as compared to HCs for mole fractions above 0.2. Two different profiles are noticed for enthalpy of absorption when plotted as a function of mole fraction of gas soluble in IL. Partial molar volume of CO 2 decreases with increase in temperature in [emim][FAP], while it is increased for HCs. Bubble point temperature decreases with increase in the mole fraction of the solute. Entropy of solvation increases with temperature till a particular value followed by a decrease with further increase in temperature. Gibbs free energy change of solvation showed that the process of solubility was spontaneous.

  8. Enhanced the performance of graphene oxide/polyimide hybrid membrane for CO2 separation by surface modification of graphene oxide using polyethylene glycol

    Science.gov (United States)

    Wu, Li-guang; Yang, Cai-hong; Wang, Ting; Zhang, Xue-yang

    2018-05-01

    Polyethylene glycol (PEG) with different molecular weights was first used to modify graphene oxide (GO) samples. Subsequently, polyimide (PI) hybrid membranes containing modified-GO were fabricated via in situ polymerization. The separation performance of these hybrid membranes was evaluated using permeation experiments for CO2 and N2 gases. The morphology characterization showed that PEG with suitable molecular weight could be successfully grafted on the GO surface. PEG modification altered the surface properties of GO and introduced defective structures onto GO surface. This caused strong surface polarity and high free volume of membranes containing PEG-modified GO, thereby improving the separation performance of membranes. The addition of PEG-GO with low molecular weight effectively increased gas diffusion through hybrid membranes. The hybrid membranes containing PEG-GO with large molecular weight had high solubility performance for CO2 gas due to the introduction of numerous polar groups into polymeric membranes. With the loading content of modified GO, the CO2 gas permeability of hybrid membranes initially increased but eventually decreased. The optimal content of modified GO in membranes reached 3.0 wt%. When too much PEG added (exceeding 30 g), some impurities formed on GO surface and some aggregates appeared in the resulting hybrid membrane, which depressed the membrane performance.

  9. Preparation and photocatalytic properties of hybrid core-shell reusable CoFe{sub 2}O{sub 4}-ZnO nanospheres

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, A. [Department of Physics, University of Memphis, Memphis, TN 38152 (United States); Mishra, S.R., E-mail: srmishra@memphis.edu [Department of Physics, University of Memphis, Memphis, TN 38152 (United States); Gupta, R.; Ghosh, K. [Department of Physics, Materials Science, and Astronomy, Missouri State University, Springfield, MO (United States)

    2012-08-15

    Magnetically separable and reusable core-shell CoFe{sub 2}O{sub 4}-ZnO photocatalyst nanospheres were prepared by the hydrothermal synthesis technique using glucose derived carbon nanospheres as the template. The morphology and the phase of core-shell hybrid structure of CoFe{sub 2}O{sub 4}-ZnO were assessed via TEM, SEM and XRD. The magnetic composite showed high UV photocatalytic activity for the degradation of methylene blue in water. The photocatalytic activity was found to be ZnO shell thickness dependent. Thicker ZnO shells lead to higher rate of photocatalytic activity. Hybrid nanospheres recovered using an external magnetic field demonstrated good repeatability of photocatalytic activity. These results promise the reusability of the hybrid nanospheres for photocatalytic activity. - Highlights: Black-Right-Pointing-Pointer Synthesis of novel hybrid magnetic-ZnO core-shell composite nanospheres. Black-Right-Pointing-Pointer High photocatalytic activity of hybrid nanospheres was noted as compared to that of pure ZnO nanoparticles. Black-Right-Pointing-Pointer The hybrid nanospheres could be easily retrieved using an external magnet for repeated use. Black-Right-Pointing-Pointer Repeated use of hybrid nanospheres did not show any degradation in the photocatalytic activity. Black-Right-Pointing-Pointer The photocatalysis rate was observed to be ZnO shell thickness dependent.

  10. Time-Lapse Seismic Monitoring and Performance Assessment of CO2 Sequestration in Hydrocarbon Reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Datta-Gupta, Akhil [Texas Engineering Experiment Station, College Station, TX (United States)

    2017-06-15

    Carbon dioxide sequestration remains an important and challenging research topic as a potentially viable approach for mitigating the effects of greenhouse gases on global warming (e.g., Chu and Majumdar, 2012; Bryant, 2007; Orr, 2004; Hepple and Benson, 2005; Bachu, 2003; Grimston et al., 2001). While CO2 can be sequestered in oceanic or terrestrial biomass, the most mature and effective technology currently available is sequestration in geologic formations, especially in known hydrocarbon reservoirs (Barrufet et al., 2010; Hepple and Benson, 2005). However, challenges in the design and implementation of sequestration projects remain, especially over long time scales. One problem is that the tendency for gravity override caused by the low density and viscosity of CO2. In the presence of subsurface heterogeneity, fractures and faults, there is a significant risk of CO2 leakage from the sequestration site into overlying rock compared to other liquid wastes (Hesse and Woods, 2010; Ennis-King and Patterson, 2002; Tsang et al., 2002). Furthermore, the CO2 will likely interact chemically with the rock in which it is stored, so that understanding and predicting its transport behavior during sequestration can be complex and difficult (Mandalaparty et al., 2011; Pruess et al., 2003). Leakage of CO2 can lead to such problems as acidification of ground water and killing of plant life, in addition to contamination of the atmosphere (Ha-Duong, 2003; Gasda et al., 2004). The development of adequate policies and regulatory systems to govern sequestration therefore requires improved characterization of the media in which CO2 is stored and the development of advanced methods for detecting and monitoring its flow and transport in the subsurface (Bachu, 2003).

  11. Carbon nanotube aerogel-CoS2 hybrid catalytic counter electrodes for enhanced photovoltaic performance dye-sensitized solar cells.

    Science.gov (United States)

    Liu, Tao; Mai, Xianmin; Chen, Haijun; Ren, Jing; Liu, Zheting; Li, Yingxiang; Gao, Lina; Wang, Ning; Zhang, Jiaoxia; He, Hongcai; Guo, Zhanhu

    2018-03-01

    The carbon nanotube aerogel (CNA) with an ultra-low density, three-dimensional network nanostructure, superior electronic conductivity and large surface area is being widely employed as a catalytic electrode and catalytic support. Impressively, dye-sensitized solar cells (DSSCs) assembled with a CNA counter electrode (CE) achieved a maximum power conversion efficiency (PCE) of 8.28%, which exceeded that of the conventional platinum (Pt)-based DSSC (7.20%) under the same conditions. Furthermore, highly dispersed CoS 2 nanoparticles endowed with excellent intrinsic catalytic activity were hydrothermally incorporated to form a CNA-supported CoS 2 (CNA-CoS 2 ) CE, which was due to the large number of catalytically active sites and sufficient connections between CoS 2 and the CNA. The electrocatalytic ability and stability were systematically evaluated by cyclic voltammetry (CV), electrochemical impedance spectra (EIS) and Tafel polarization, which confirmed that the resultant CNA-CoS 2 hybrid CE exhibited a remarkably higher electrocatalytic activity toward I 3 - reduction, and faster ion diffusion and electron transfer than the pure CNA CE. Such cost-effective DSSCs assembled with an optimized CNA-CoS 2 CE yielded an enhanced PCE of 8.92%, comparable to that of the cell fabricated with the CNA-Pt hybrid CE reported in our published literature (9.04%). These results indicate that the CNA-CoS 2 CE can be considered as a promising candidate for Pt-free CEs used in low-cost and high-performance DSSCs.

  12. Gaseous saturable absorbers for the Helios CO2 laser system

    International Nuclear Information System (INIS)

    Haglund, R.F. Jr.; Nowak, A.V.; Czuchlewski, S.J.

    1981-01-01

    Saturable absorbers are widely used to suppress parasitic oscillations in large-aperture, high-power CO 2 fusion-laser systems. We report experimental results on SF 6 -based gaseous saturable absorbers used for parasitic suppression in the eight-beam, 10 kJ Helios fusion-laser system. The gas mix effectively quenches self-lasing in the 9 and 10 μm branches of the CO 2 laser spectrum while simultaneously allowing high transmission of subnanosecond multiwavelength pulses for target-irradiation experiments. The gas isolator now in use consists of SF 6 and the additional fluorocarbons: 1, 1-difluoroethane (FC-152a); dichlorodifluoromethane (FC-12); chloropentafluoroethane (FC-115); 1,1-dichloro 2,2-difluoroethylene (FC-1112a); chlorotrifluoroethylene (FC-1113); and perfluorocyclobutane (FC-C318). The saturation of the mix was studied as a function of incident fluence, pressure, cell length, and incident wavelength. Experimental results are presented on the saturation properties of pure SF 6 and FC-152a and compared with the saturation behavior of CO 2 at 400 0 C

  13. Hydrogenation of carbon monoxide on Co/MgAl2O4 and Ce-Co/MgAl2O4 catalysts

    International Nuclear Information System (INIS)

    Kondoh, S.; Muraki, H.; Fujitani

    1986-01-01

    It is well known that various hydrocarbons are obtained by hydrogenation of CO on Fischer-Tropsch catalysts, the products depending on the catalyst components such as Co, Ni, Fe and Ru: and the reaction conditions, particularly, temperature, pressure, space velocity and H 2 /CO ratio. Further, both reactivity and selectivity of catalysts may be improved by suitable selection of support and an additive. The main program of the present work is to develop a catalyst for producing C 5 + liquid hydrocarbons, as an automobile fuel, by the Fischer-Tropsch synthesis. The authors have studied unique CO catalyst systems consisting of various supports - such as Al 2 O 3 (γ, β, α), MgAl 2 O 4 (alumina magnesia spinel), MgO and additives selected from the lanthanoid elements (LE). The composition of spinel-based supports was altered in a range from 28 mol % excess Al 2 O 3 to 28 mol % excess MgO. Particularly, they found that a MgAl 2 O 4 support with 15-18 mol % excess Al 2 O 3 is the most preferable for our purpose and CeO 2 as the additive for Co/spinel catalyst remarkably improves C 5 + yield. Further, it was confirmed that the catalytic activity of Co-base catalysts agree with the oxidation state of Co-oxides on Co and Co-Ce/spinel catalysts. The performance of Co-based catalysts for the production of higher hydrocarbons from syn-gas were described elsewhere. The items described in this report include (a) selection of supports, (b) selection of optimum reaction conditions for Co-Ce/spinel catalyst, (c) redox characteristics of Co-oxides on a spinel surface, and (d) experimental observation of TPD profiles, adsorption capacities and IR spectra relating to adsorbed CO

  14. Exchange-coupled nanoscale SmCo/NdFeB hybrid magnets

    Energy Technology Data Exchange (ETDEWEB)

    Wang Dapeng; Poudyal, Narayan; Rong, Chuanbing [Department of Physics, University of Texas at Arlington, Arlington, TX 76019 (United States); Zhang Ying [Department of Physics, University of Texas at Arlington, Arlington, TX 76019 (United States); Materials Science and Engineering, Ames Laboratory, USDOE, Iowa State University, Ames, IA 50011 (United States); Kramer, M.J. [Materials Science and Engineering, Ames Laboratory, USDOE, Iowa State University, Ames, IA 50011 (United States); Liu, J. Ping, E-mail: pliu@uta.edu [Department of Physics, University of Texas at Arlington, Arlington, TX 76019 (United States)

    2012-09-15

    Nanoscale hybrid magnets containing SmCo{sub 5} and Nd{sub 2}Fe{sub 14}B hard magnetic phases have been produced via a novel 'in-one-pot' processing route. The grain size of the processed bulk composite materials is controlled below 20 nm. The refinement of the nanoscale morphology leads to effective inter-phase exchange coupling that results in single-phase like magnetic properties. Energy product of 14 MGOe was obtained in the isotropic nanocomposite magnets at room temperature. At elevated temperatures, the hybrid magnets have greatly improved thermal stability compared to the Nd{sub 2}Fe{sub 14}B single-phase counterpart and have substantially increased magnetization and energy products compared to the single-phase SmCo{sub 5} counterpart. - Highlights: Black-Right-Pointing-Pointer We realize interphase exchange coupling in nanoscale SmCo{sub 5}/Nd{sub 2}Fe{sub 14}B magnets. Black-Right-Pointing-Pointer We observe homogenously distributed two-phase grains with size smaller than 20 nm. Black-Right-Pointing-Pointer We observe a common Curie temperature in the hybrid magnet. Black-Right-Pointing-Pointer High-temperature magnetic properties of the hybrid magnets greatly improved. Black-Right-Pointing-Pointer Plastic deformation of composite materials leads to self-nanoscaling of grains.

  15. Carbon Supported Engineering NiCo2O4 Hybrid Nanofibers with Enhanced Electrocatalytic Activity for Oxygen Reduction Reaction

    Directory of Open Access Journals (Sweden)

    Diab Hassan

    2016-09-01

    Full Text Available The design of cheap and efficient oxygen reduction reaction (ORR electrocatalysts is of a significant importance in sustainable and renewable energy technologies. Therefore, ORR catalysts with superb electrocatalytic activity and durability are becoming a necessity but still remain challenging. Herein, we report C/NiCo2O4 nanocomposite fibers fabricated by a straightforward electrospinning technique followed by a simple sintering process as a promising ORR electrocatalyst in alkaline condition. The mixed-valence oxide can offer numerous accessible active sites. In addition, the as-obtained C/NiCo2O4 hybrid reveals significantly remarkable electrocatalytic performance with a highly positive onset potential of 0.65 V, which is only 50 mV lower than that of commercially available Pt/C catalysts. The analyses indicate that C/NiCo2O4 catalyst can catalyze O2-molecules via direct four electron pathway in a similar behavior as commercial Pt/C catalysts dose. Compared to single NiCo2O4 and carbon free NiCo2O4, the C/NiCo2O4 hybrid displays higher ORR current and more positive half-wave potential. The incorporated carbon matrices are beneficial for fast electron transfer and can significantly impose an outstanding contribution to the electrocatalytic activity. Results indicate that the synthetic strategy hold a potential as efficient route to fabricate highly active nanostructures for practical use in energy technologies.

  16. Binary interaction parameters for nonpolar systems with cubic equations of state: a theoretical approach 1. CO2/hydrocarbons using SRK equation of state

    DEFF Research Database (Denmark)

    Coutinho, João A.P.; Kontogeorgis, Georgios M.; Stenby, Erling H.

    1994-01-01

    This work shows that, when suitable theoretically based combining rules are used for the cross energy and cross co-volume parameters, cubic equations of state (EoS) with the van der Waals one-fluid mixing rules can adequately represent phase equilibria for the asymmetric CO2/hydrocarbon mixtures...... for the prediction of phase behavior of petroleum fluids. A brief theoretical analysis on the temperature dependency of the Kij interaction parameter is also presented....

  17. The synthesis of higher alcohols from CO2 hydrogenation with Co, Cu, Fe-based catalysts

    International Nuclear Information System (INIS)

    Ji, Qinqin

    2017-01-01

    CO 2 is a clean carbon source for the chemical reactions, many researchers have studied the utilization of CO 2 . Higher alcohols are clean fuel additives. The synthesis of higher alcohols from CO hydrogenation has also been studied by many researchers, but there are few literatures about the synthesis of higher alcohols from CO 2 hydrogenation, which is a complex and difficult reaction. The catalysts that used for higher alcohols synthesis need at least two active phases and good cooperation. In our study, we tested the Co. Cu. Fe spinel-based catalysts and the effect of supports (CNTs and TUD-1) and promoters (K, Na, Cs) to the HAS reaction. We found that catalyst CuFe-precursor-800 is beneficial for the synthesis of C2+ hydrocarbons and higher alcohols. In the CO 2 hydrogenation, Co acts as a methanation catalyst rather than acting as a FT catalyst, because of the different reaction mechanism between CO hydrogenation and CO 2 hydrogenation. In order to inhibit the formation of huge amount of hydrocarbons, it is better to choose catalysts without Co in the CO 2 hydrogenation reaction. Compared the functions of CNTs and TUD-1, we found that CNTs is a perfect support for the synthesis of long-chain products (higher alcohols and C2+ hydrocarbons). The TUD-1 support are more suitable for synthesis of single-carbon products (methane and methanol).The addition of alkalis as promoters does not only lead to increase the conversion of CO 2 and H 2 , but also sharply increased the selectivity to the desired products, higher alcohols. The catalyst 0.5K30CuFeCNTs owns the highest productivities (370.7 g.kg -1 .h -1 ) of higher alcohols at 350 C and 50 bar. (author) [fr

  18. Photocatalytic oxidation removal of Hg"0 using ternary Ag/AgI-Ag_2CO_3 hybrids in wet scrubbing process under fluorescent light

    International Nuclear Information System (INIS)

    Zhang, Anchao; Zhang, Lixiang; Chen, Xiaozhuan; Zhu, Qifeng; Liu, Zhichao; Xiang, Jun

    2017-01-01

    Highlights: • Ag/AgI-Ag_2CO_3 hybrids were employed for Hg"0 removal under fluorescent light. • Superoxide radical (·O_2"−) played a key role in Hg"0 removal. • NO exhibited a significant effect on Hg"0 removal in comparison to SO_2. • The mechanism for enhanced Hg"0 removal over Ag/AgI-Ag_2CO_3 was proposed. - Abstract: A series of ternary Ag/AgI-Ag_2CO_3 photocatalysts synthesized using a facile coprecipitation method were employed to investigate their performances of Hg"0 removal in a wet scrubbing reactor. The hybrids were characterized by N_2 adsorption-desorption, XRD, SEM-EDS, HRTEM, XPS, DRS and ESR. The photocatalytic activities of Hg"0 removal were evaluated under fluorescent light. The results showed that AgI content, fluorescent light irradiation, reaction temperature all showed significant influences on Hg"0 removal. NO exhibited significant effect on Hg"0 removal in comparison to SO_2. Among these ternary Ag/AgI-Ag_2CO_3 hybrids, Ag/AgI(0.1)-Ag_2CO_3 showed the highest Hg"0 removal efficiency, which could be ascribed to the effective separation of photogenerated electron-hole pairs between AgI and Ag_2CO_3 and the surface plasmon resonance (SPR) effect in the visible region by metallic silver nanoparticles (Ag"0 NPs). The trapping studies of reactive radicals showed that the superoxide radicals (·O_2"−) may play a key role in Hg"0 removal under fluorescent light. According to the experimental and characterization results, a possible photocatalytic oxidation mechanism for enhanced Hg"0 removal over Ag/AgI(0.1)-Ag_2CO_3 hybrid under fluorescent light was proposed.

  19. CO2 Mitigation Potential of Plug-in Hybrid Electric Vehicles larger than expected.

    Science.gov (United States)

    Plötz, P; Funke, S A; Jochem, P; Wietschel, M

    2017-11-28

    The actual contribution of plug-in hybrid and battery electric vehicles (PHEV and BEV) to greenhouse gas mitigation depends on their real-world usage. Often BEV are seen as superior as they drive only electrically and do not have any direct emissions during driving. However, empirical evidence on which vehicle electrifies more mileage with a given battery capacity is lacking. Here, we present the first systematic overview of empirical findings on actual PHEV and BEV usage for the US and Germany. Contrary to common belief, PHEV with about 60 km of real-world range currently electrify as many annual vehicles kilometres as BEV with a much smaller battery. Accordingly, PHEV recharged from renewable electricity can highly contribute to green house gas mitigation in car transport. Including the higher CO 2eq emissions during the production phase of BEV compared to PHEV, PHEV show today higher CO 2eq savings then BEVs compared to conventional vehicles. However, for significant CO 2eq improvements of PHEV and particularly of BEVs the decarbonisation of the electricity system should go on.

  20. CuCo_2O_4 flowers/Ni-foam architecture as a battery type positive electrode for high performance hybrid supercapacitor applications

    International Nuclear Information System (INIS)

    Vijayakumar, Subbukalai; Nagamuthu, Sadayappan; Ryu, Kwang-Sun

    2017-01-01

    Graphical abstract: The Ni- foam supported CuCo_2O_4 flowers exhibits a high specific capacity with superior long term cyclic stability. - Highlights: • This paper reports the hydrothermal preparation of CuCo_2O_4 flowers on Ni-foam. • The CuCo_2O_4 flowers exhibits maximum specific capacity of 645.1C g"−"1. • After 2000 cycles, 109% of the initial specific capacity was retained. - Abstract: The battery type CuCo_2O_4 electrode was evaluated as a positive electrode material for its hybrid supercapacitor applications. CuCo_2O_4 flowers were prepared on Ni-foam through a simple hydrothermal process and post calcination treatment. The structure and morphology of the CuCo_2O_4 flowers/Ni-foam was characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and high resolution transmission electron microscopy. FESEM clearly revealed the flower-like morphology, which was composed of large number of petals. The length and width of the petals ranged from approximately 5–8 μm and approximately 50–150 nm, respectively. The CuCo_2O_4 flowers/Ni-foam electrode was employed for electrochemical characterization for hybrid supercapacitor applications. The specific capacity of the CuCo_2O_4 flower-like electrode was 692.4C g"−"1 (192.3 mA h g"−"1) at a scan rate of 5 mV s"−"1. The flower-like CuCo_2O_4 electrode exhibited a maximum specific capacity of 645.1C g"−"1 (179.2 mA h g"−"1) at a specific current of 1 A g"−"1 and good long term cyclic stability. The high specific capacity, good cyclic stability, and low internal and charge transfer resistance of the CuCo_2O_4 flowers/Ni-foam electrode confirmed the suitability of the prepared material as a positive electrode for hybrid supercapacitor applications.

  1. Preparation of a Fluorocarbon Polymerizable Surfactant and Its Application in Emulsion Polymerization of Fluorine-Containing Acrylate

    Directory of Open Access Journals (Sweden)

    Meng Zhao

    2017-11-01

    Full Text Available A novel polymerizable fluorocarbon surfactant, perfluoro (4–methyl–3, 6–dioxaoct–7–ene sodium sulfonate (PSVNa, was synthesized and characterized. The fluorocarbon surfactant PSVNa and its mixture PSVNa/SDS were used as emulsifiers during the emulsion polymerization of DFHMA/MMA. The investigation of polymerization kinetics, particle size, and stability of the emulsions revealed that PSVNa has excellent emulsifying properties. The NMR spectrum of the copolymer and the detection of residual PSVNa show that more than 95% of the fluorocarbon surfactants have been linked to the polymer chains by radical polymerization, which will greatly reduce the environmental pollution caused by fluorinated surfactants.

  2. Engineering hybrid Co-picene structures with variable spin coupling

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Chunsheng [Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Shan, Huan; Li, Bin, E-mail: libin@mail.ustc.edu.cn, E-mail: adzhao@ustc.edu.cn; Zhao, Aidi, E-mail: libin@mail.ustc.edu.cn, E-mail: adzhao@ustc.edu.cn; Wang, Bing [Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China)

    2016-04-25

    We report on the in situ engineering of hybrid Co-picene magnetic structures with variable spin coupling using a low-temperature scanning tunneling microscope. Single picene molecules adsorbed on Au(111) are manipulated to accommodate individual Co atoms one by one, forming stable artificial hybrid structures with magnetism introduced by the Co atoms. By monitoring the evolution of the Kondo effect at each site of Co atom, we found that the picene molecule plays an important role in tuning the spin coupling between individual Co atoms, which is confirmed by theoretical calculations based on the density-functional theory. Our findings indicate that the hybrid metal-molecule structures with variable spin coupling on surfaces can be artificially constructed in a controlled manner.

  3. Hybrid propulsion technology program. Volume 2: Technology definition package

    Science.gov (United States)

    Jensen, Gordon E.; Holzman, Allen L.; Leisch, Steven O.; Keilbach, Joseph; Parsley, Randy; Humphrey, John

    1989-01-01

    A concept design study was performed to configure two sizes of hybrid boosters; one which duplicates the advanced shuttle rocket motor vacuum thrust time curve and a smaller, quarter thrust level booster. Two sizes of hybrid boosters were configured for either pump-fed or pressure-fed oxygen feed systems. Performance analyses show improved payload capability relative to a solid propellant booster. Size optimization and fuel safety considerations resulted in a 4.57 m (180 inch) diameter large booster with an inert hydrocarbon fuel. The preferred diameter for the quarter thrust level booster is 2.53 m (96 inches). The demonstration plan would culminate with test firings of a 3.05 m (120 inch) diameter hybrid booster.

  4. A hybrid geothermal energy conversion technology: Auxiliary heating of geothermally preheated water or CO2 - a potential solution for low-temperature resources

    Science.gov (United States)

    Saar, Martin; Garapati, Nagasree; Adams, Benjamin; Randolph, Jimmy; Kuehn, Thomas

    2016-04-01

    Safe, sustainable, and economic development of deep geothermal resources, particularly in less favourable regions, often requires employment of unconventional geothermal energy extraction and utilization methods. Often "unconventional geothermal methods" is synonymously and solely used as meaning enhanced geothermal systems, where the permeability of hot, dry rock with naturally low permeability at greater depths (4-6 km), is enhanced. Here we present an alternative unconventional geothermal energy utilization approach that uses low-temperature regions that are shallower, thereby drastically reducing drilling costs. While not a pure geothermal energy system, this hybrid approach may enable utilization of geothermal energy in many regions worldwide that can otherwise not be used for geothermal electricity generation, thereby increasing the global geothermal resource base. Moreover, in some realizations of this hybrid approach that generate carbon dioxide (CO2), the technology may be combined with carbon dioxide capture and storage (CCS) and CO2-based geothermal energy utilization, resulting in a high-efficiency (hybrid) geothermal power plant with a negative carbon footprint. Typically, low- to moderate-temperature geothermal resources are more effectively used for direct heat energy applications. However, due to high thermal losses during transport, direct use requires that the heat resource is located near the user. Alternatively, we show here that if such a low-temperature geothermal resource is combined with an additional or secondary energy resource, the power production is increased compared to the sum from two separate (geothermal and secondary fuel) power plants (DiPippo et al. 1978) and the thermal losses are minimized because the thermal energy is utilized where it is produced. Since Adams et al. (2015) found that using CO2 as a subsurface working fluid produces more net power than brine at low- to moderate-temperature geothermal resource conditions, we

  5. Computational study on oxynitride perovskites for CO_2 photoreduction

    International Nuclear Information System (INIS)

    Hafez, Ahmed M.; Zedan, Abdallah F.; AlQaradawi, Siham Y.; Salem, Noha M.; Allam, Nageh K.

    2016-01-01

    Highlights: • Oxynitride perovskites are investigated for photoelectrochemical CO_2 reduction. • They have small electron and hole effective masses, rendering higher mobility. • The effect of cation size on the band gap is investigated and discussed. • W-doping allowed the selection of specific CO_2 reduction products. - Abstract: The photocatalytic conversion of CO_2 into chemical fuels is an attractive route for recycling this greenhouse gas. However, the large scale application of such approach is limited by the low selectivity and activity of the currently used photocatalysts. Using first principles calculations, we report on the selection of optimum oxynitride perovskites as photocatalysts for photoelectrochemical CO_2 reduction. The results revealed six perovskites that perfectly straddle the carbon dioxide redox potential; namely, BaTaO_2N, SrTaO_2N, CaTaO_2N, LaTiO_2N, BaNbO_2N, and SrNbO_2N. The electronic structure and the effective mass of the selected candidates are discussed in details, the partial and total density of states illustrated the orbital hybridization and the contribution of each element in the valence and conduction band minima. The effect of cation size in the ABO_2N perovskites on the band gap is investigated and discussed. The optical properties of the selected perovskites are calculated to account for their photoactivity. Moreover, the effect of W doping on improving the selectivity of perovskites toward specific hydrocarbon product (methane) is discussed in details. This study reveals the promising optical and structural properties of oxynitride perovskite candidates for CO_2 photoreduction.

  6. Direct synthesis of iso-butane from synthesis gas or CO2 over CuZnZrAl/Pd-β hybrid catalyst

    Directory of Open Access Journals (Sweden)

    Congming Li

    2017-12-01

    Full Text Available The effect of various factors on the catalytic performance of iso-butane formation over CuZnZrAl/Pd-β hybrid catalyst via synthesis gas or CO2 hydrogenation has been deeply investigated in this work. It was interesting to note that the iso-butane/n-butane ratio value was much higher than that of thermodynamic equilibrium (about 1/1, whose value was directly related to the reaction condition using this hybrid catalyst. In order to further clearly clarify this finding, various experimental reaction factors were selected to investigate the formation of iso-butane. The results revealed that increasing temperature, H2/COx, CO2/COx, and/or Pd loading possessed an inhibiting effect on the iso-butane yield. High selectivity of iso-butane could be achieved by increasing the reaction pressure, W/F and the weight ratio of CuZnZrAl methanol catalyst to Pd-β catalyst. It is also noted that the addition of water seriously suppressed the reaction activity, resulting in the low ratio of iso-butane/n-butane. A possible reaction route was elucidated based on the latest results. This might shed light on the development of a high efficient catalyst for iso-butane production from synthesis gas or CO2 hydrogenation. Keywords: Iso-butane, Synthesis gas, CO2, CuZnZrAl/Pd-β hybrid catalyst

  7. Total petroleum hydrocarbon degradation by hybrid electrobiochemical reactor in oilfield produced water

    International Nuclear Information System (INIS)

    Mousa, Ibrahim E.

    2016-01-01

    The crude oil drilling and extraction operations are aimed to maximize the production may be counterbalanced by the huge production of contaminated produced water (PW). PW is conventionally treated through different physical, chemical, and biological technologies. The efficiency of suggested hybrid electrobiochemical (EBC) methods for the simultaneous removal of total petroleum hydrocarbon (TPH) and sulfate from PW generated by petroleum industry is studied. Also, the factors that affect the stability of PW quality are investigated. The results indicated that the effect of biological treatment is very important to keep control of the electrochemical by-products and more TPH removal in the EBC system. The maximum TPH and sulfate removal efficiency was achieved 75% and 25.3%, respectively when the detention time was about 5.1 min and the energy consumption was 32.6 mA/cm 2 . However, a slight increasing in total bacterial count was observed when the EBC compact unit worked at a flow rate of average 20 L/h. Pseudo steady state was achieved after 30 min of current application in the solution. Also, the results of the study indicate that when the current intensity was increased above optimum level, no significant results occurred due to the release of gases. - Highlights: • The hybrid electrolytic biological cell was used for degradation of oilfield produced water. • Decomposition of Total Petroleum Hydrocarbon with or without the biofilter. • High saline water with the high chloride and sulfate ions content treatment. • The removal of electrochemical by-products is a phase change technique that requires the maintenance the biofilm on the filter media, which is sensitive and a complex operation. • Biofilter is efficient for the degradation of PW bye products, the critical drawback to their utility in full-scale operations is high TDS water content and detention time of treatment.

  8. Clonal variation in survival and growth of hybrid poplar and willow in an in situ trial on soils heavily contaminated with petroleum hydrocarbons

    Science.gov (United States)

    Ronald S., Jr. Zalesny; Edmund O. Bauer; Richard B. Hall; Jill A. Zalesny; Joshua Kunzman; Chris J. Rog; Don E. Riemenschneider

    2005-01-01

    Species and hybrids between species belonging to the genera Populus (poplar) and Salix (willow) have been used successfully for phytoremediation of contaminated soils. Our objectives were to: 1) evaluate the potential for establishing genotypes of poplar and willow on soils heavily contaminated with petroleum hydrocarbons and 2)...

  9. Methods for reformation of gaseous hydrocarbons using electrical discharge

    KAUST Repository

    Cha, Min Suk

    2017-02-16

    Methods for the reformation of gaseous hydrocarbons are provided. The methods can include forming a bubble containing the gaseous hydrocarbon in a liquid. The bubble can be generated to pass in a gap between a pair of electrodes, whereby an electrical discharge is generated in the bubble at the gap between the electrodes. The electrodes can be a metal or metal alloy with a high melting point so they can sustain high voltages of up to about 200 kilovolts. The gaseous hydrocarbon can be combined with an additive gas such as molecular oxygen or carbon dioxide. The reformation of the gaseous hydrocarbon can produce mixtures containing one or more of H2, CO, H2O, CO2, and a lower hydrocarbon such as ethane or ethylene. The reformation of the gaseous hydrocarbon can produce low amounts of CO2 and H2O, e.g. about 15 mol-% or less.

  10. Methods for reformation of gaseous hydrocarbons using electrical discharge

    KAUST Repository

    Cha, Min; Zhang, Xuming

    2017-01-01

    Methods for the reformation of gaseous hydrocarbons are provided. The methods can include forming a bubble containing the gaseous hydrocarbon in a liquid. The bubble can be generated to pass in a gap between a pair of electrodes, whereby an electrical discharge is generated in the bubble at the gap between the electrodes. The electrodes can be a metal or metal alloy with a high melting point so they can sustain high voltages of up to about 200 kilovolts. The gaseous hydrocarbon can be combined with an additive gas such as molecular oxygen or carbon dioxide. The reformation of the gaseous hydrocarbon can produce mixtures containing one or more of H2, CO, H2O, CO2, and a lower hydrocarbon such as ethane or ethylene. The reformation of the gaseous hydrocarbon can produce low amounts of CO2 and H2O, e.g. about 15 mol-% or less.

  11. Shaped articles of cross-linked fluorocarbon polymers

    International Nuclear Information System (INIS)

    Gotcher, A.J.; Germeraad, P.B.

    1981-01-01

    A process is described which comprises (1) contacting (a) a shaped article of a polymeric composition wherein the polymer is a fluorocarbon polymer having a melting point of at least 200 0 C, the article having a tensile strength of at least 3,000 psi, with (b) a fluid composition comprising a cross-linking agent, until the article contains at least 2.5% by weight of the cross-linking agent; and (2) irradiating the shaped article with ionising radiation to a dosage not exceeding 50 Mrads under conditions such that the composition is cross-linked sufficiently to impart thereto an M 100 value of at least 300 psi, while maintaining a tensile strength of at least 3000 psi, the shaped article containing a specified proportion of the cross-linking agent. (author)

  12. NO emission characteristics in counterflow diffusion flame of blended fuel of H2/CO2/Ar

    International Nuclear Information System (INIS)

    Jeong Park; Kyunghwan Lee; Keeman Lee

    2002-01-01

    Flame structure and NO emission characteristics in counterflow diffusion flame of blended fuel of H 2 /CO 2 /Ar have been numerically simulated with detailed chemistry. The combination of H 2 , CO 2 and Ar as fuel is selected to clearly display the contribution of hydrocarbon products to flame structure and NO emission characteristics due to the breakdown of CO 2 . A radiative heat loss term is involved to correctly describe the flame dynamics especially at low strain rates. The detailed chemistry adopts the reaction mechanism of GRI 2.11, which consists of 49 species and 279 elementary reactions. All mechanisms including thermal, NO 2 , N 2 O and Fenimore are taken into account to separately evaluate the effects of CO 2 addition on NO emission characteristics. The increase of added CO 2 quantity causes flame temperature to fall since at high strain rates a diluent effect is prevailing and at low strain rates the breakdown of CO 2 produces relatively populous hydrocarbon products and thus the existence of hydrocarbon products inhibits chain branching. It is also found that the contribution of NO production by N 2 O and NO 2 mechanisms are negligible and that thermal mechanism is concentrated on only the reaction zone. As strain rate and CO 2 quantity increase, NO production is remarkably augmented. (Author)

  13. Hybrid Co2Al-ABTS/reduced graphene oxide Layered Double Hydroxide: Towards O2 biocathode development

    International Nuclear Information System (INIS)

    Vialat, Pierre; Leroux, Fabrice; Mousty, Christine

    2015-01-01

    Highlights: • Synthesis of new redox mediator intercalated Layered Double Hydroxide using the coprecipitation synthesis. • Presence of electroactive Co into the LDH layers to enhance electroactivity of the system. • Improvement of the electronic conductivity by association with reduced graphene oxide (GOr) into composite system. • Application potentiality as biocathode material for O 2 reduction with immobilization of Bilirubin Oxidase enzyme. • Enhancement of the electrocatalytic response in the presence of a biopolymer like carrageenan into the electrode formulation - Abstract: Co 2 Al-ABTS layered double hydroxides and associated Co 2 Al-ABTS@graphene composite were prepared in one pot technique by in situ coprecipitation. The as-obtained materials were then fully characterized by means of Powder X-Ray Diffraction, Fourier Transformed InfraRed and Scanning Electron Microscopy confirming the intercalation of azino-bis(3-ethylbenzothiazoline-6-sulphonate) (ABTS) between the LDH layers. Their electrochemical properties, according to Cyclic Voltammetry and Electrochemical Impedance Spectroscopy data, were improved compared to Zn 2 Al-ABTS reference material. Co 2 Al-ABTS hybrid LDH was found to combine both electronic transfers: interlayer provided by the presence of ABTS and intralayer due to the Co redox species. Moreover, an improvement of electronic transfer between the LDH particles was further achieved by addition of graphene. The resulting composite assemblies were tested for the first time as oxygen bioelectrode based on bilirubin oxidase. This original approach gives rise to enhanced electroenzymatic currents (×2.5) for oxygen reduction at 0 V and pH 7.0 as regard to that obtained for the reference laccase/LDH-ABTS based bioelectrode at pH 5.5

  14. Investigation of CO2 capture mechanisms of liquid-like nanoparticle organic hybrid materials via structural characterization

    KAUST Repository

    Park, Youngjune

    2011-01-01

    Nanoparticle organic hybrid materials (NOHMs) have been recently developed that comprise an oligomeric or polymeric canopy tethered to surface-modified nanoparticles via ionic or covalent bonds. It has already been shown that the tunable nature of the grafted polymeric canopy allows for enhanced CO 2 capture capacity and selectivity via the enthalpic intermolecular interactions between CO2 and the task-specific functional groups, such as amines. Interestingly, for the same amount of CO2 loading NOHMs have also exhibited significantly different swelling behavior compared to that of the corresponding polymers, indicating a potential structural effect during CO2 capture. If the frustrated canopy species favor spontaneous ordering due to steric and/or entropic effects, the inorganic cores of NOHMs could be organized into unusual structural arrangements. Likewise, the introduction of small gaseous molecules such as CO2 could reduce the free energy of the frustrated canopy. This entropic effect, the result of unique structural nature, could allow NOHMs to capture CO2 more effectively. In order to isolate the entropic effect, NOHMs were synthesized without the task-specific functional groups. The relationship between their structural conformation and the underlying mechanisms for the CO2 absorption behavior were investigated by employing NMR and ATR FT-IR spectroscopies. The results provide fundamental information needed for evaluating and developing novel liquid-like CO2 capture materials and give useful insights for designing and synthesizing NOHMs for more effective CO2 capture. © the Owner Societies 2011.

  15. Investigation of CO2 capture mechanisms of liquid-like nanoparticle organic hybrid materials via structural characterization.

    Science.gov (United States)

    Park, Youngjune; Decatur, John; Lin, Kun-Yi Andrew; Park, Ah-Hyung Alissa

    2011-10-28

    Nanoparticle organic hybrid materials (NOHMs) have been recently developed that comprise an oligomeric or polymeric canopy tethered to surface-modified nanoparticles via ionic or covalent bonds. It has already been shown that the tunable nature of the grafted polymeric canopy allows for enhanced CO(2) capture capacity and selectivity via the enthalpic intermolecular interactions between CO(2) and the task-specific functional groups, such as amines. Interestingly, for the same amount of CO(2) loading NOHMs have also exhibited significantly different swelling behavior compared to that of the corresponding polymers, indicating a potential structural effect during CO(2) capture. If the frustrated canopy species favor spontaneous ordering due to steric and/or entropic effects, the inorganic cores of NOHMs could be organized into unusual structural arrangements. Likewise, the introduction of small gaseous molecules such as CO(2) could reduce the free energy of the frustrated canopy. This entropic effect, the result of unique structural nature, could allow NOHMs to capture CO(2) more effectively. In order to isolate the entropic effect, NOHMs were synthesized without the task-specific functional groups. The relationship between their structural conformation and the underlying mechanisms for the CO(2) absorption behavior were investigated by employing NMR and ATR FT-IR spectroscopies. The results provide fundamental information needed for evaluating and developing novel liquid-like CO(2) capture materials and give useful insights for designing and synthesizing NOHMs for more effective CO(2) capture. This journal is © the Owner Societies 2011

  16. Top-philic scalar Dark Matter with a vector-like fermionic top partner

    Science.gov (United States)

    Baek, Seungwon; Ko, Pyungwon; Wu, Peiwen

    2016-10-01

    We consider a simple extension of the Standard Model with a scalar top-philic Dark Matter (DM) S coupling, apart from the Higgs portal, exclusively to the right-handed top quark t R and a colored vector-like top partner T with a Yukawa coupling y ST which we call the topVL portal. When the Higgs portal is closed and y ST is perturbative (≲1), T S → ( W + b, gt), SSto toverline{t} and Toverline{T}to (qoverline{q}, gg) provide the dominant (co) annihilation contributions to obtain ΩDM h 2 ≃ 0 .12 in light, medium and heavy DM mass range, respectively. However, large {y}_{ST}˜ O(10) can make SS → gg dominate via the loop-induced coupling C SSgg in the m S < m t region. In this model it is the C SSgg coupling that generates DM-nucleon scattering in the direct detection, which can be large and simply determined by ΩDM h 2 ≃ 0 .12 when SS → gg dominates the DM annihilation. The current LUX results can exclude the SS → gg dominating scenario and XENON-1T experiment may further test y ST ≳ 1, and 0 .5 ≲ y ST ≲ 1 may be covered in the future LUX-ZP experiment. The current indirect detection results from Fermi gamma-ray observations can also exclude the SS → gg dominating scenario and are sensitive to the heavy DM mass region, of which the improved sensitivity by one order will push DM mass to be above 400, 600, 1000 GeV for y ST = 0 .3 , 0 .5 , 1 .0, respectively. Toverline{T} pair produced at the hadron collider will decay 100% into [InlineMediaObject not available: see fulltext.] signal when kinematically open. The latest ATLAS 13 TeV 13.2 fb-1 data can excluded m T between 300 (650) and 1150 (1100) GeV for m S =40 (400) GeV and the exclusion region can reach up to m S ˜ 500 GeV.

  17. Low CO2-emissions hybrid solar combined-cycle power system with methane membrane reforming

    International Nuclear Information System (INIS)

    Li, Yuanyuan; Zhang, Na; Cai, Ruixian

    2013-01-01

    Based on the principle of cascade utilization of multiple energy resources, a gas-steam combined cycle power system integrated with solar thermo-chemical fuel conversion and CO 2 capture has been proposed and analyzed. The collected solar heat at 550 °C drives the endothermic methane reforming and is converted to the produced syngas chemical exergy, and then released as high-temperature thermal energy via combustion for power generation, achieving its high-efficiency heat-power conversion. The reforming reaction is integrated with a hydrogen separation membrane, which continuously withdraws hydrogen from the reaction zone and enables nearly full methane conversion. The CO 2 enriched gas being concentrated in the retentate zone is collected and processed with pre-combustion decarbonization. The system is thermodynamically simulated using the ASPEN PLUS code. The results show that with 91% CO 2 captured, the specific CO 2 emission is 25 g/kWh. An exergy efficiency of 58% and thermal efficiency of 51.6% can be obtained. A fossil fuel saving ratio of 31.2% is achievable with a solar thermal share of 28.2%, and the net solar-to-electricity efficiency based on the gross solar heat incident on the collector is about 36.4% compared with the same gas-steam combined cycle system with an equal CO 2 removal ratio obtained by post-combustion decarbonization. - Highlights: ► A solar-assisted hybrid combined cycle power system has been proposed and analyzed. ► The system integrates power generation with solar-driven reforming and CO 2 capture. ► solar heat upgrading and high-efficiency heat-to-power conversion are achieved. ► membrane reforming enables high CH 4 conversion and pre-combustion CO 2 capture. ► The system thermodynamic performances have been investigated and compared

  18. Fast co-pyrolysis of waste newspaper with high-density polyethylene for high yields of alcohols and hydrocarbons.

    Science.gov (United States)

    Chen, Weimin; Shi, Shukai; Chen, Minzhi; Zhou, Xiaoyan

    2017-09-01

    Waste newspaper (WP) was first co-pyrolyzed with high-density polyethylene (HDPE) using pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) to enhance the yields of alcohols and hydrocarbons. The effects of WP: HDPE feed ratio (100:0, 75:25, 50:50, 25:75, 0:100) and temperature (500-800°C) on products distribution were investigated and the interaction mechanism during co-pyrolysis was also proposed. Maximum yields of alcohols and hydrocarbons reached 85.88% (feed ratio 50:50wt.%, 600°C). Hydrogen supplements and deoxidation by HDPE and subsequently fragments recombination result in the conversion of aldehydes and ketones into branched hydrocarbons. Radicals from WP degradation favor the secondary crack for HDPE products resulting in the formation of linear hydrocarbons with low carbon number. Hydrocarbons with activated radical site from HDPE degradation were interacted with hydroxyl from WP degradation promoting the formation of linear long chain alcohols. Moreover, co-pyrolysis significantly enhanced condensable oil qualities, which were close to commercial diesel No. 0. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Photocatalytic reduction of CO2 into hydrocarbon solar fuels over g-C3N4-Pt nanocomposite photocatalysts.

    Science.gov (United States)

    Yu, Jiaguo; Wang, Ke; Xiao, Wei; Cheng, Bei

    2014-06-21

    Photocatalytic reduction of CO2 into renewable hydrocarbon fuels is an alternative way to develop reproducible energy, which is also a promising way to solve the problem of the greenhouse effect. In this work, graphitic carbon nitride (g-C3N4) was synthesized by directly heating thiourea at 550 °C and then a certain amount of Pt was deposited on it to form g-C3N4-Pt nanocomposites used as catalysts for photocatalytic reduction of CO2 under simulated solar irradiation. The main products of photocatalysis were CH4, CH3OH and HCHO. The deposited Pt acted as an effective cocatalyst, which not only influenced the selectivity of the product generation, but also affected the activity of the reaction. The yield of CH4 first increased upon increasing the amount of Pt deposited on the g-C3N4 from 0 to 1 wt%, then decreased at 2 wt% Pt loading. The production rates of CH3OH and HCHO also increased with the content of Pt increasing from 0 to 0.75 wt% and the maximum yield was observed at 0.75 wt%. The Pt nanoparticles (NPs) could facilitate the transfer and enrichment of photogenerated electrons from g-C3N4 to its surface for photocatalytic reduction of CO2. At the same time, Pt was also used a catalyst to promote the oxidation of products. The transient photocurrent response further confirmed the proposed photocatalytic reduction mechanism of CO2. This work indicates that the deposition of Pt is a good strategy to improve the photoactivity and selectivity of g-C3N4 for CO2 reduction.

  20. Dry cleaning of fluorocarbon residues by low-power electron cyclotron resonance hydrogen plasma

    CERN Document Server

    Lim, S H; Yuh, H K; Yoon Eui Joon; Lee, S I

    1988-01-01

    A low-power ( 50 W) electron cyclotron resonance hydrogen plasma cleaning process was demonstrated for the removal of fluorocarbon residue layers formed by reactive ion etching of silicon dioxide. The absence of residue layers was confirmed by in-situ reflection high energy electron diffraction and cross-sectional high resolution transmission electron microscopy. The ECR hydrogen plasma cleaning was applied to contact cleaning of a contact string structure, resulting in comparable contact resistance arising during by a conventional contact cleaning procedure. Ion-assisted chemical reaction involving reactive atomic hydrogen species generated in the plasma is attributed for the removal of fluorocarbon residue layers.

  1. Nonionic Fluorinated Surfactant Removal from Mesoporous Film Using sc-CO2.

    Science.gov (United States)

    Chavez Panduro, Elvia A; Assaker, Karine; Beuvier, Thomas; Blin, Jean-Luc; Stébé, Marie-José; Konovalov, Oleg; Gibaud, Alain

    2017-01-25

    Surfactant templated silica thin films were self-assembled on solid substrates by dip-coating using a partially fluorinated surfactant R 8 F (EO) 9 as the liquid crystal template. The aim was 2-fold: first we checked which composition in the phase diagram was corresponding to a 2D rectangular highly ordered crystalline phase and second we exposed the films to sc-CO 2 to foster the removal of the surfactant. The films were characterized by in situ X-ray reflectivity (XRR) and grazing incidence small angle X-ray scattering (GISAXS) under CO 2 pressure from 0 to 100 bar at 34 °C. GISAXS patterns reveal the formation of a 2-D rectangular structure at a molar ratio R 8 F (EO) 9 /Si equal to 0.1. R 8 F (EO) 9 micelles have a cylindrical shape, which have a core/shell structure ordered in a hexagonal system. The core contains the R 8 F part and the shell is a mixture of (EO) 9 embedded in the silica matrix. We further evidence that the extraction of the template using supercritical carbon dioxide can be successfully achieved. This can be attributed to both the low solubility parameter of the surfactants and the fluorine and ethylene oxide CO 2 -philic groups. The initial 2D rectangular structure was well preserved after depressurization of the cell and removal of the surfactant. We attribute the very high stability of the rinsed film to the large value of the wall thickness relatively to the small pore size.

  2. Novel collider and dark matter phenomenology of a top-philic Z′

    International Nuclear Information System (INIS)

    Cox, Peter; Medina, Anibal D.; Ray, Tirtha Sankar; Spray, Andrew

    2016-01-01

    We consider extending the Standard Model by including an additional Abelian gauge group broken at low energies under which the right-handed top quark is the only effectively charged Standard Model fermion. The associated gauge boson (Z ′ ) is then naturally top-philic and couples only to the rest of the SM particle content at loop-level or via kinetic mixing with the hypercharge gauge boson which is assumed to be small. Working at the effective theory level, we demonstrate that such a minimal extension allows for an improved fitting of the ∼2σ excess observed in tt̄h searches at the LHC in a region of parameter space that satisfies existing collider constraints. We also present the reach of the LHC at 13 TeV in constraining the relevant region of parameter space. Additionally we show that within the same framework a suitably chosen fermion charged only under the exotic Abelian group can, in the region of parameter space preferred by the t̄th measurements, simultaneously explain the dark matter relic density and the γ-ray excess at the galactic center observed by the Fermi-LAT experiment.

  3. Characteristics of CoPc/CdS hybrid diode device

    Indian Academy of Sciences (India)

    Administrator

    CdS/CoPc hybrid heterojunctions were fabricated and characterized. CdS films were deposited by the spray pyrolysis technique on indium tin oxide (ITO)-coated glass substrates and ... ing solution was prepared by dissolving 0.025 M CdCl2.

  4. Storage of Renewable Energy by Reduction of CO2 with Hydrogen.

    Science.gov (United States)

    Züttel, Andreas; Mauron, Philippe; Kato, Shunsuke; Callini, Elsa; Holzer, Marco; Huang, Jianmei

    2015-01-01

    The main difference between the past energy economy during the industrialization period which was mainly based on mining of fossil fuels, e.g. coal, oil and methane and the future energy economy based on renewable energy is the requirement for storage of the energy fluxes. Renewable energy, except biomass, appears in time- and location-dependent energy fluxes as heat or electricity upon conversion. Storage and transport of energy requires a high energy density and has to be realized in a closed materials cycle. The hydrogen cycle, i.e. production of hydrogen from water by renewable energy, storage and use of hydrogen in fuel cells, combustion engines or turbines, is a closed cycle. However, the hydrogen density in a storage system is limited to 20 mass% and 150 kg/m(3) which limits the energy density to about half of the energy density in fossil fuels. Introducing CO(2) into the cycle and storing hydrogen by the reduction of CO(2) to hydrocarbons allows renewable energy to be converted into synthetic fuels with the same energy density as fossil fuels. The resulting cycle is a closed cycle (CO(2) neutral) if CO(2) is extracted from the atmosphere. Today's technology allows CO(2) to be reduced either by the Sabatier reaction to methane, by the reversed water gas shift reaction to CO and further reduction of CO by the Fischer-Tropsch synthesis (FTS) to hydrocarbons or over methanol to gasoline. The overall process can only be realized on a very large scale, because the large number of by-products of FTS requires the use of a refinery. Therefore, a well-controlled reaction to a specific product is required for the efficient conversion of renewable energy (electricity) into an easy to store liquid hydrocarbon (fuel). In order to realize a closed hydrocarbon cycle the two major challenges are to extract CO(2) from the atmosphere close to the thermodynamic limit and to reduce CO(2) with hydrogen in a controlled reaction to a specific hydrocarbon. Nanomaterials with

  5. Nanometric thin film membranes manufactured on square meter scale: ultra-thin films for CO 2 capture

    KAUST Repository

    Yave, Wilfredo

    2010-09-01

    Miniaturization and manipulation of materials at nanometer scale are key challenges in nanoscience and nanotechnology. In membrane science and technology, the fabrication of ultra-thin polymer films (defect-free) on square meter scale with uniform thickness (<100 nm) is crucial. By using a tailor-made polymer and by controlling the nanofabrication conditions, we developed and manufactured defect-free ultra-thin film membranes with unmatched carbon dioxide permeances, i.e. >5 m3 (STP) m-2 h -1 bar-1. The permeances are extremely high, because the membranes are made from a CO2 philic polymer material and they are only a few tens of nanometers thin. Thus, these thin film membranes have potential application in the treatment of large gas streams under low pressure like, e.g., carbon dioxide separation from flue gas. © 2010 IOP Publishing Ltd.

  6. How light, temperature, and measurement and growth [CO2] interactively control isoprene emission in hybrid aspen.

    Science.gov (United States)

    Niinemets, Ülo; Sun, Zhihong

    2015-02-01

    Plant isoprene emissions have been modelled assuming independent controls by light, temperature and atmospheric [CO2]. However, the isoprene emission rate is ultimately controlled by the pool size of its immediate substrate, dimethylallyl diphosphate (DMADP), and isoprene synthase activity, implying that the environmental controls might interact. In addition, acclimation to growth [CO2] can shift the share of the control by DMADP pool size and isoprene synthase activity, and thereby alter the environmental sensitivity. Environmental controls of isoprene emission were studied in hybrid aspen (Populus tremula × Populus tremuloides) saplings acclimated either to ambient [CO2] of 380 μmol mol(-1) or elevated [CO2] of 780 μmol mol(-1). The data demonstrated strong interactive effects of environmental drivers and growth [CO2] on isoprene emissions. Light enhancement of isoprene emission was the greatest at intermediate temperatures and was greater in elevated-[CO2]-grown plants, indicating greater enhancement of the DMADP supply. The optimum temperature for isoprene emission was higher at lower light, suggesting activation of alternative DMADP sinks at higher light. In addition, [CO2] inhibition of isoprene emission was lost at a higher temperature with particularly strong effects in elevated-[CO2]-grown plants. Nevertheless, DMADP pool size was still predicted to more strongly control isoprene emission at higher temperatures in elevated-[CO2]-grown plants. We argue that interactive environmental controls and acclimation to growth [CO2] should be incorporated in future isoprene emission models at the level of DMADP pool size. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  7. Lewis acid-base interactions in weakly bound formaldehyde complexes with CO2, HCN, and FCN: considerations on the cooperative H-bonding effects.

    Science.gov (United States)

    Rivelino, Roberto

    2008-01-17

    Ab initio quantum chemistry calculations reveal that HCN and mainly FCN can form Lewis acid-base complexes with formaldehyde associated with cooperative H bonds, as first noticed by Wallen et al. (Blatchford, M. A.; Raveendran, P.; Wallen, S. L. J. Am. Chem. Soc. 2002, 124, 14818-14819) for CO2-philic materials under supercritical conditions. The present results, obtained with MP2(Full)/aug-cc-pVDZ calculations, show that the degeneracy of the nu(2) mode in free HCN or FCN is removed upon complexation in the same fashion as that of CO2. The splitting of these bands along with the electron structure analysis provides substantial evidence of the interaction of electron lone pairs of the carbonyl oxygen with the electron-deficient carbon atom of the cyanides. Also, this work investigates the role of H bonds acting as additional stabilizing interactions in the complexes by performing the energetic and geometric characterization.

  8. Ultrasonic and immersion cleaning: a comparison using aqueous and fluorocarbon solvents

    International Nuclear Information System (INIS)

    Bond, R.D.; Kearsey, A.

    1984-11-01

    Decontamination is a necessary process in reducing radiation levels in the working environment in the nuclear industry. Components from active areas which require decontamination for re-use or maintenance operations. In this report, a typical chemical cleaning process using liquid pumping, airagitation and physical movement for agitation is compared with ultrasonic cleaning, now an established cleaning process in many industries. The chosen traditional method is immersion in an agitated solution of warm SDG.3 solution; an established decontaminating reagent. The decontamination effect of this process is compared with the effect of cleaning in an ultrasonic bath containing the same reagent at the same concentration and temperature. Fluorocarbon reagents are of particular interest to the nuclear industry for they offer the ability to clean electrical components without damage, and can clean product contaminated material without the risk of criticality. Such reagents are based on 1,1,2-trichloro, 1,2,2-trifluoroethane and azeotropic mixtures. This reagent and one mixture with 6% methanol were tested under agitation and ultrasonic immersion at the same temperature. Parallel control experiments were conducted using demineralised water as the cleaning media in an agitated bath. SGG3 is a good reagent for general purpose cleaning (it can remove 99% of particulate contamination) using scrubbing, immersion or spraying techniques. There is little evidence to show that ultrasonic cleaning increases its effectiveness. For special purpose fluorocarbon solvents will give satisfactory results when used in an ultrasonic system. (author)

  9. Solution-chemical route to generalized synthesis of metal germanate nanowires with room-temperature, light-driven hydrogenation activity of CO2 into renewable hydrocarbon fuels.

    Science.gov (United States)

    Liu, Qi; Zhou, Yong; Tu, Wenguang; Yan, Shicheng; Zou, Zhigang

    2014-01-06

    A facile solution-chemical route was developed for the generalized preparation of a family of highly uniform metal germanate nanowires on a large scale. This route is based on the use of hydrazine monohydrate/H2O as a mixed solvent under solvothermal conditions. Hydrazine has multiple effects on the generation of the nanowires: as an alkali solvent, a coordination agent, and crystal anisotropic growth director. Different-percentage cobalt-doped Cd2Ge2O6 nanowires were also successfully obtained through the addition of Co(OAc)2·4H2O to the initial reaction mixture for future investigation of the magnetic properties of these nanowires. The considerably negative conduction band level of the Cd2Ge2O6 nanowire offers a high driving force for photogenerated electron transfer to CO2 under UV-vis illumination, which facilitates CO2 photocatalytic reduction to a renewable hydrocarbon fuel in the presence of water vapor at room temperature.

  10. Spectroscopic Investigation of the Canopy Configurations in Nanoparticle Organic Hybrid Materials of Various Grafting Densities during CO 2 Capture

    KAUST Repository

    Petit, Camille; Park, Youngjune; Lin, Kun-Yi Andrew; Park, Ah-Hyung Alissa

    2012-01-01

    Novel liquid-like nanoparticle organic hybrid materials (NOHMs) made of polyetheramine chains tethered onto functionalized silica nanoparticles were synthesized and characterized before and after exposure to CO 2 using NMR, Raman, and ATR FT-IR spectroscopies in order to investigate the effect of the grafting densities on the NOHM canopy structure. Considering the promising tunable properties for CO 2 capture of NOHMs, this study was conducted to provide important structural information to better design NOHMs for CO 2 capture. In order to minimize the CO 2 absorption via enthalpic effect and provide a more accurate assessment of the structural effects, the NOHMs were synthesized without task-specific groups. A greater chain ordering and decreased intermolecular interactions were observed in NOHMs compared to the unbound polymer. This was attributed to the specific structural arrangement of the frustrated canopy. The distinct configuration of grafted polymer chains caused different CO 2 packing and CO 2-induced swelling behaviors between the NOHMs and the unbound polymer. The grafting density influenced the ordering and coupling of the polymer chains and CO 2-induced swelling. Its effect on the CO 2 packing behavior was less pronounced. © 2011 American Chemical Society.

  11. Spectroscopic Investigation of the Canopy Configurations in Nanoparticle Organic Hybrid Materials of Various Grafting Densities during CO 2 Capture

    KAUST Repository

    Petit, Camille

    2012-01-12

    Novel liquid-like nanoparticle organic hybrid materials (NOHMs) made of polyetheramine chains tethered onto functionalized silica nanoparticles were synthesized and characterized before and after exposure to CO 2 using NMR, Raman, and ATR FT-IR spectroscopies in order to investigate the effect of the grafting densities on the NOHM canopy structure. Considering the promising tunable properties for CO 2 capture of NOHMs, this study was conducted to provide important structural information to better design NOHMs for CO 2 capture. In order to minimize the CO 2 absorption via enthalpic effect and provide a more accurate assessment of the structural effects, the NOHMs were synthesized without task-specific groups. A greater chain ordering and decreased intermolecular interactions were observed in NOHMs compared to the unbound polymer. This was attributed to the specific structural arrangement of the frustrated canopy. The distinct configuration of grafted polymer chains caused different CO 2 packing and CO 2-induced swelling behaviors between the NOHMs and the unbound polymer. The grafting density influenced the ordering and coupling of the polymer chains and CO 2-induced swelling. Its effect on the CO 2 packing behavior was less pronounced. © 2011 American Chemical Society.

  12. Genetic variation and control of chloroplast pigment concentrations in Picea rubens, Picea mariana and their hybrids. I. Ambient and elevated [CO2] environments

    International Nuclear Information System (INIS)

    Major, J.E.; Barsi, D.C.; Mosseler, A.; Campbell, M.

    2007-01-01

    A significant decline has been noted in the red spruce component of the Acadian forest region in eastern Canada and the northeastern United States as a result of excessive harvesting, acid rain, and global warming. Two experiments were performed to acquire benchmark adaptive traits for information from a red spruce (RS) (Picea rubens Sargand) and black spruce (BS) (P. mariana (Mill.) B.S.P.) genetic complex grown in ambient carbon dioxide concentration ([CO 2 ]). The first experiment involved RS-BS seed sources from across the RS geographical range, while the second experiment involved an intra- and interspecific controlled-cross experiment to determine if RS and BS have unique chloroplast pigment concentrations and traits that reflect adaptations to different ecological niches. The objective was to determine species origin and hybrid variations in chloroplast pigment concentrations; examine the effect of elevated [CO 2 ] on chloroplast pigments; determine the inheritance of chloroplast pigments and examine the relationship of chloroplast pigment concentrations of trees grown at ambient [CO 2 ] with productivity traits and nitrogen concentrations. The traits related to light-energy processing have pronounced ecological implications for plant health. Results from the species origin experiment showed that total chlorophyll concentration was about 15 per cent higher in ambient [CO 2 ] than in elevated [CO 2 ]. In ambient [CO 2 ], BS populations had 11 per cent higher total chlorophyll and carotenoid concentrations than RS populations. Results from the controlled-cross experiment showed that families with a hybrid index of 25 per cent RS had the highest total chlorophyll concentrations, and families with hybrid indices of 75 and 100 had the lowest amounts. A predominant male effect for chlorophyll concentration was noted. In ambient and elevated [CO 2 ] environments, crosses with BS males had 10.6 and 17.6 per cent higher total chlorophyll concentrations than crosses

  13. Recent Advances in Anhydrous Solvents for CO2 Capture: Ionic Liquids, Switchable Solvents, and Nanoparticle Organic Hybrid Materials

    International Nuclear Information System (INIS)

    Park, Youngjune; Lin, Kun-Yi Andrew; Park, Ah-Hyung Alissa; Petit, Camille

    2015-01-01

    CO 2 capture by amine scrubbing, which has a high CO 2 capture capacity and a rapid reaction rate, is the most employed and investigated approach to date. There are a number of recent large-scale demonstrations including the Boundary Dam Carbon Capture Project by SaskPower in Canada that have reported successful implementations of aqueous amine solvent in CO 2 capture from flue gases. The findings from these demonstrations will significantly advance the field of CO 2 capture in the coming years. While the latest efforts in aqueous amine solvents are exciting and promising, there are still several drawbacks to amine-based CO 2 capture solvents including high volatility and corrosiveness of the amine solutions as well as the high parasitic energy penalty during the solvent regeneration step. Thus, in a parallel effort, alternative CO 2 capture solvents, which are often anhydrous, have been developed as the third-generation CO 2 capture solvents. These novel classes of liquid materials include ionic liquids, CO 2 -triggered switchable solvents (i.e., CO 2 -binding organic liquids, reversible ionic liquids), and nanoparticle organic hybrid materials. This paper provides a review of these various anhydrous solvents and their potential for CO 2 capture. Particular attention is given to the mechanisms of CO 2 absorption in these solvents, their regeneration and their processability – especially taking into account their viscosity. While not intended to provide a complete coverage of the existing literature, this review aims at pointing the major findings reported for these new classes of CO 2 capture media.

  14. In situ preparation of MgCo2O4 nanosheets on Ni-foam as a binder-free electrode for high performance hybrid supercapacitors.

    Science.gov (United States)

    Vijayakumar, Subbukalai; Nagamuthu, Sadayappan; Ryu, Kwang-Sun

    2018-05-15

    A binder-free, MgCo2O4 nanosheet-like architecture was prepared on Ni-foam using a hydrothermal method. MgCo2O4/Ni-foam was characterized by X-ray diffraction, field emission scanning electron microscopy (FESEM), and transmission electron microscopy techniques. The FESEM image revealed a nanosheet array-like architecture. The MgCo2O4 nanosheets grown on Ni-foam exhibited the maximum specific capacity of 947 C g-1 at a specific current of 2 A g-1. Approximately 96% of the specific capacity was retained from the maximum specific capacity after 5000 continuous charge-discharge cycles. This hybrid device exhibited a maximum specific capacity of 52 C g-1 at a specific current of 0.5 A g-1, and also exhibited a maximum specific energy of 12.99 W h kg-1 at a specific power of 448.7 W kg-1. These results confirmed that the binder-free MgCo2O4 nanosheets grown on Ni-foam are a suitable positive electrode material for hybrid supercapacitors.

  15. Extraordinary Hall effect in Co implanted GaAs hybrid magnetic semiconductors

    International Nuclear Information System (INIS)

    Honda, S.; Tateishi, K.; Nawate, M.; Sakamoto, I.

    2004-01-01

    Hybrid Co/GaAs ferromagnetic semiconductors have been prepared by implantation method. In these samples, sheet resistance shows weak temperature dependence, and the extraordinary Hall effect with positive coefficient is observed. In small Co content samples, Hall resistance increases with decreasing temperature and maximum value of 3.6x10 -2 Ω is obtained at 150 K

  16. A Hierarchical Z-Scheme α-Fe2 O3 /g-C3 N4 Hybrid for Enhanced Photocatalytic CO2 Reduction.

    Science.gov (United States)

    Jiang, Zhifeng; Wan, Weiming; Li, Huaming; Yuan, Shouqi; Zhao, Huijun; Wong, Po Keung

    2018-03-01

    The challenge in the artificial photosynthesis of fossil resources from CO 2 by utilizing solar energy is to achieve stable photocatalysts with effective CO 2 adsorption capacity and high charge-separation efficiency. A hierarchical direct Z-scheme system consisting of urchin-like hematite and carbon nitride provides an enhanced photocatalytic activity of reduction of CO 2 to CO, yielding a CO evolution rate of 27.2 µmol g -1 h -1 without cocatalyst and sacrifice reagent, which is >2.2 times higher than that produced by g-C 3 N 4 alone (10.3 µmol g -1 h -1 ). The enhanced photocatalytic activity of the Z-scheme hybrid material can be ascribed to its unique characteristics to accelerate the reduction process, including: (i) 3D hierarchical structure of urchin-like hematite and preferable basic sites which promotes the CO 2 adsorption, and (ii) the unique Z-scheme feature efficiently promotes the separation of the electron-hole pairs and enhances the reducibility of electrons in the conduction band of the g-C 3 N 4 . The origin of such an obvious advantage of the hierarchical Z-scheme is not only explained based on the experimental data but also investigated by modeling CO 2 adsorption and CO adsorption on the three different atomic-scale surfaces via density functional theory calculation. The study creates new opportunities for hierarchical hematite and other metal-oxide-based Z-scheme system for solar fuel generation. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Hydrocarbons cocktails of the future

    International Nuclear Information System (INIS)

    Anon.

    2004-01-01

    This publication of the Areva Group, a world nuclear industry leader, provides information on the energy in many domains. This issue deals with the CO 2 pollution exchange, the carbon sinks to compensate the CO 2 , the green coal as an innovative solution, an outsize dam in China, the solar energy progresses in France and the french medicine academy in favor of Nuclear. A special chapter is devoted to the hydrocarbons of the future, artificial chemical combination created from constituents of hydrocarbons and derived from various sources. (A.L.B.)

  18. Photocatalytic oxidation removal of Hg{sup 0} using ternary Ag/AgI-Ag{sub 2}CO{sub 3} hybrids in wet scrubbing process under fluorescent light

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Anchao, E-mail: aczhang@qq.com [School of Mechanical and Power Engineering, Henan Polytechnic University, Jiaozuo, 454000 (China); Zhang, Lixiang; Chen, Xiaozhuan; Zhu, Qifeng; Liu, Zhichao [School of Mechanical and Power Engineering, Henan Polytechnic University, Jiaozuo, 454000 (China); Xiang, Jun, E-mail: xiangjun@mail.hust.edu.cn [State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan, 430074 (China)

    2017-01-15

    Highlights: • Ag/AgI-Ag{sub 2}CO{sub 3} hybrids were employed for Hg{sup 0} removal under fluorescent light. • Superoxide radical (·O{sub 2}{sup −}) played a key role in Hg{sup 0} removal. • NO exhibited a significant effect on Hg{sup 0} removal in comparison to SO{sub 2}. • The mechanism for enhanced Hg{sup 0} removal over Ag/AgI-Ag{sub 2}CO{sub 3} was proposed. - Abstract: A series of ternary Ag/AgI-Ag{sub 2}CO{sub 3} photocatalysts synthesized using a facile coprecipitation method were employed to investigate their performances of Hg{sup 0} removal in a wet scrubbing reactor. The hybrids were characterized by N{sub 2} adsorption-desorption, XRD, SEM-EDS, HRTEM, XPS, DRS and ESR. The photocatalytic activities of Hg{sup 0} removal were evaluated under fluorescent light. The results showed that AgI content, fluorescent light irradiation, reaction temperature all showed significant influences on Hg{sup 0} removal. NO exhibited significant effect on Hg{sup 0} removal in comparison to SO{sub 2}. Among these ternary Ag/AgI-Ag{sub 2}CO{sub 3} hybrids, Ag/AgI(0.1)-Ag{sub 2}CO{sub 3} showed the highest Hg{sup 0} removal efficiency, which could be ascribed to the effective separation of photogenerated electron-hole pairs between AgI and Ag{sub 2}CO{sub 3} and the surface plasmon resonance (SPR) effect in the visible region by metallic silver nanoparticles (Ag{sup 0} NPs). The trapping studies of reactive radicals showed that the superoxide radicals (·O{sub 2}{sup −}) may play a key role in Hg{sup 0} removal under fluorescent light. According to the experimental and characterization results, a possible photocatalytic oxidation mechanism for enhanced Hg{sup 0} removal over Ag/AgI(0.1)-Ag{sub 2}CO{sub 3} hybrid under fluorescent light was proposed.

  19. Recent Advances in Anhydrous Solvents for CO2 Capture: Ionic Liquids, Switchable Solvents, and Nanoparticle Organic Hybrid Materials

    Directory of Open Access Journals (Sweden)

    YOUNGJUNE ePARK

    2015-10-01

    Full Text Available CO2 capture by amine scrubbing, which has a high CO2 capture capacity and a rapid reaction rate, is the most employed and investigated approach to date. There are a number of recent large-scale demonstrations including the Boundary Dam Carbon Capture Project by SaskPower in Canada that have reported successful implementations of aqueous amine solvent in CO2 capture from flue gases. The findings from these demonstrations will significantly advance the field of CO2 capture in the coming years. While the latest efforts in aqueous amine solvents are exciting and promising, there are still several drawbacks to amine-based CO2 capture solvents including high volatility and corrosiveness of the amine solutions, as well as the high parasitic energy penalty during the solvent regeneration step. Thus, in a parallel effort, alternative CO2 capture solvents, which are often anhydrous, have been developed as the third-generation CO2 capture solvents. These novel classes of liquid materials include: Ionic Liquids (ILs, CO2-triggered switchable solvents (i.e., CO2 Binding Organic Liquids (CO2BOLs, Reversible Ionic Liquids (RevILs, and Nanoparticle Organic Hybrid Materials (NOHMs. This paper provides a review of these various anhydrous solvents and their potential for CO2 capture. Particular attention is given to the mechanisms of CO2 absorption in these solvents, their regeneration and their processability – especially taking into account their viscosity. While not intended to provide a complete coverage of the existing literature, this review aims at pointing the major findings reported for these new classes of CO2 capture media.

  20. Enhanced removal of radioactive particles by fluorocarbon surfactant solutions

    International Nuclear Information System (INIS)

    Kaiser, R.; Harling, O.K.

    1993-08-01

    The proposed research addressed the application of ESI's particle removal process to the non-destructive decontamination of nuclear equipment. The cleaning medium used in this process is a solution of a high molecular weight fluorocarbon surfactant in an inert perfluorinated liquid which results in enhanced particle removal. The perfluorinated liquids of interest, which are recycled in the process, are nontoxic, nonflammable, and environmentally compatible, and do not present a hazard to the ozone layer. The information obtained in the Phase 1 program indicated that the proposed ESI process is technically effective and economically attractive. The fluorocarbon surfactant solutions used as working media in the ESI process survived exposure of up to 10 Mrad doses of gamma rays, and are considered sufficiently radiation resistant for the proposed process. Ultrasonic cleaning in perfluorinated surfactant solutions was found to be an effective method of removing radioactive iron (Fe 59) oxide particles from contaminated test pieces. Radioactive particles suspended in the process liquids could be quantitatively removed by filtration through a 0.1 um membrane filter. Projected economics indicate a pre-tax pay back time of 1 month for a commercial scale system

  1. Surface studies of UFe2 and evaluation of its catalytic properties with a 2H2:CO mixture

    International Nuclear Information System (INIS)

    Schultz, J.; Naegele, J.; Spirlet, J.C.; Colmenares, C.

    1987-01-01

    The reactivity of UFe 2 with O 2 , CO and CO 2 were studied using x-ray photoelectron spectroscopy (XPS). Adsorption of O 2 on clean UFe 2 surfaces (Fe/U ≅ 2.0), produced by argon-ion sputtering, leads to the formation of UO 2 and depletion of Fe from the surface layer probed by XPS (Fe/U ≅ 0.8). The oxidation state of Fe in this layer, as determined by XPS (Fe 2p/sub 3/2/ = 710.4 eV), is between Fe +2 and Fe +3 of pure Fe oxides. Exposure of sputtered-clean UFe 2 to CO and CO 2 results in a slight broadening of the U 4f peaks, indicating U oxidation, and some Fe depletion in the analyzed layer (Fe/U ≅ 1.7). The O ls (530.2 and 530.4 eV for CO and CO 2 , respectively) and C ls (282.7 and 282.6 eV for CO and CO 2 , respectively) indicate that dissociative chemisorption to O and C atoms occurs. UFe 2 ground into a fine powder was tested as a catalyst in a differential high-pressure flow reactor with a 2H 2 :CO gas mixture. A significant amount of methanol and hydrocarbons are produced at 577K; while hydrocarbons are the main products (>99%) at 739K. XPS analysis of the used catalyst indicates that U is present as UO/sub 2+x/ and Fe as Fe 2 O 3

  2. Co-electrolysis of CO2 and H2O in solid oxide cells: Performance and durability

    DEFF Research Database (Denmark)

    Graves, Christopher R.; Ebbesen, Sune; Mogensen, Mogens Bjerg

    2011-01-01

    This study examines the initial performance and durability of a solid oxide cell applied for co-electrolysis of CO2 and H2O. Such a cell, when powered by renewable/nuclear energy, could be used to recycle CO2 into sustainable hydrocarbon fuels. Polarization curves and electrochemical impedance...... systematically varied test conditions enabled clear visual identification of five electrode processes that contribute to the cell resistance. The processes could be assigned to each electrode and to gas concentration effects by examining their dependence on gas composition changes and temperature. This study...

  3. Absorption and recovery of n-hexane in aqueous solutions of fluorocarbon surfactants.

    Science.gov (United States)

    Xiao, Xiao; Yan, Bo; Fu, Jiamo; Xiao, Xianming

    2015-11-01

    n-Hexane is widely used in industrial production as an organic solvent. As an industrial exhaust gas, the contribution of n-hexane to air pollution and damage to human health are attracting increasing attention. In the present study, aqueous solutions of two fluorocarbon surfactants (FSN100 and FSO100) were investigated for their properties of solubilization and dynamic absorption of n-hexane, as well as their capacity for regeneration and n-hexane recovery by thermal distillation. The results show that the two fluorocarbon surfactants enhance dissolution and absorption of n-hexane, and their effectiveness is closely related to their concentrations in solution. For low concentration solutions (0.01%-0.30%), the partition coefficient decreases dramatically and the saturation capacity increases significantly with increasing concentration, but the changes for both are more modest when the concentration is over 0.30%. The FSO100 solution presents a smaller partition coefficient and a greater saturation capacity than the FSN100 solution at the same concentration, indicating a stronger solubilization for n-hexane. Thermal distillation is a feasible method to recover n-hexane from these absorption solutions, and to regenerate them. With 90sec heating at 80-85°C, the recovery of n-hexane ranges between 81% and 85%, and the regenerated absorption solution maintains its original performance during reuse. This study provides basic information on two fluorocarbon surfactants for application in the treatment of industrial n-hexane waste gases. Copyright © 2015. Published by Elsevier B.V.

  4. CO2 point sources and subsurface storage capacities for CO2 in aquifers in Norway

    International Nuclear Information System (INIS)

    Boee, Reidulv; Magnus, Christian; Osmundsen, Per Terje; Rindstad, Bjoern Ivar

    2002-01-01

    The GESTCO project comprises a study of the distribution and coincidence of thermal CO 2 emission sources and location/quality of geological storage capacity in Europe. Four of the most promising types of geological storage are being studied. 1. Onshore/offshore saline aquifers with or without lateral seal. 2. Low entalpy geothermal reservoirs. 3. Deep methane-bearing coal beds and abandoned coal and salt mines. 4. Exhausted or near exhausted hydrocarbon structures. In this report we present an inventory of CO 2 point sources in Norway (1999) and the results of the work within Study Area C: Deep saline aquifers offshore/near shore Northern and Central Norway. Also offshore/near shore Southern Norway has been included while the Barents Sea is not described in any detail. The most detailed studies are on the Tilje and Aare Formations on the Troendelag Platform off Mid-Norway and on the Sognefjord, Fensfjord and Krossfjord Formations, southeast of the Troll Field off Western Norway. The Tilje Formation has been chosen as one of the cases to be studied in greater detail (numerical modelling) in the project. This report shows that offshore Norway, there are concentrations of large CO 2 point sources in the Haltenbanken, the Viking Graben/Tampen Spur area, the Southern Viking Graben and the central Trough, while onshore Norway there are concentrations of point sources in the Oslofjord/Porsgrund area, along the coast of western Norway and in the Troendelag. A number of aquifers with large theoretical CO 2 storage potential are pointed out in the North Sea, the Norwegian Sea and in the Southern Barents Sea. The storage capacity in the depth interval 0.8 - 4 km below sea level is estimated to be ca. 13 Gt (13000000000 tonnes) CO 2 in geological traps (outside hydrocarbon fields), while the storage capacity in aquifers not confined to traps is estimated to be at least 280 Gt CO 2 . (Author)

  5. Co-processing of standard gas oil and biocrude oil to hydrocarbon fuels

    International Nuclear Information System (INIS)

    Agblevor, Foster A.; Mante, O.; McClung, R.; Oyama, S.T.

    2012-01-01

    The major obstacle in thermochemical biomass conversion to hydrocarbon fuels using pyrolysis has been the high oxygen content and the poor stability of the product oils, which cause them to solidify during secondary processing. We have developed a fractional catalytic pyrolysis process to convert biomass feedstocks into a product termed “biocrude oils” (stable biomass pyrolysis oils) which are distinct from unstable conventional pyrolysis oils. The biocrude oils are stable, low viscosity liquids that are storable at ambient conditions without any significant increases in viscosity; distillable at both atmospheric pressure and under vacuum without char or solid formation. About 15 wt% biocrude oils containing 20–25% oxygen were blended with 85 wt% standard gas oil and co-cracked in an Advanced Catalyst Evaluation (ACE™) unit using fluid catalytic cracking (FCC) catalysts to produce hydrocarbon fuels that contain negligible amount of oxygen. For the same conversion of 70% for both the standard gas oil and the biocrude oil/gas oil blends, the product gasoline yield was 44 wt%, light cycle oil (LCO) 17 wt%, heavy cycle oil (HCO) 13 wt%, and liquefied petroleum gas (LPG) 16 wt%. However, the coke yield for the standard gas oil was 7.06 wt% compared to 6.64–6.81 wt% for the blends. There appeared to be hydrogen transfer from the cracking of the standard gas oil to the biocrude oil which subsequently eliminated the oxygen in the fuel without external hydrogen addition. We have demonstrated for the first time that biomass pyrolysis oils can be successfully converted into hydrocarbons without hydrogenation pretreatment. -- Highlights: ► The co-processed product had less than 1% oxygen content and contained biocarbons determined by 14 C analysis. ► The co-processing did not affect the yields of gasoline, LCO, and HCO. ► First demonstration of direct conversion of pyrolysis oils into drop-in hydrocarbon fuels.

  6. Velocity of sound measurements in gaseous per-fluorocarbons and their custom mixtures

    CERN Document Server

    Vacek, V; Lindsay, S

    2000-01-01

    An inexpensive sonar instrument was prepared for measurements of sound velocity in two fluorocarbon vapors; per-fluoro-n-propane (C3F8), per-fluoro-n-butane (C4F10), and their custom mixtures. The apparatus, measurement principle and instrument software are described. All sound velocity measurements in per-fluorocarbons were made in the low pressure range between 0.01 and 0.4 MPa, and at temperatures between 253 and 303 K. The purity of the C3F8 and C4F10 samples was checked using gas chromatography. Uncertainties in the speed of sound measurements were better than ± 0.1 %. Comparisons were made with theoretical predictions of sound velocity for the two individual components. The instrument was then used for concentration monitoring of custom C3F8/C4F10 mixtures.

  7. Theoretical studies of a hybrid ejector CO2 compression cooling system for vehicles and preliminary experimental investigations of an ejector cycle

    International Nuclear Information System (INIS)

    Chen, Xiangjie; Worall, Mark; Omer, Siddig; Su, Yuehong; Riffat, Saffa

    2013-01-01

    Highlights: ► Waste heat from vehicle exhausted gas was used as heat source for ejector. ► Ejector acts as the main interface between ejector and CO 2 VC sub-system. ► The effect of sub-cooling was analyzed. ► COP of ejector cooling system was measured between 0.2 and 0.5 during experiments. ► Enhanced ejector and vapour compression system. -- Abstract: This paper presents theoretical investigations into a hybrid ejector and CO 2 vapour compression (VC) system for road transport cooling. The purpose is to utilise the waste heat from exhaust gas and the VC sub-system to drive the ejector system, whose cooling effect will be employed to subcool the VC sub-system. Exploitation of the energy consumption ratio between ejector sub-system and CO 2 VC sub-system indicated that the more energy obtained from exhausted gas, the better system performance could be achieved for CO 2 VC sub-system, and hence higher cooling capacity of the VC sub-system at the same compression power. Thermodynamic simulations of two sub-systems and the hybrid system were presented. The results indicated that, at boiler temperature of 120 °C, evaporator temperature of 10 °C, a COP of 0.584 was achieved for hybrid system, with 22% improvement over a single ejector cycle. Preliminary experimental studies were carried out on a single ejector cycle, with boiler temperatures between 115 °C and 130 °C, and evaporator temperatures between 5 °C and 10 °C. The effects of various operation conditions on the overall ejector operation were coherently analysed. The COP of the ejector sub-system from experimental results was approximately 85% compared with simulation results, which showed a good agreement between theoretical analysis and experimental results.

  8. Radiolytic degradation of chlorinated hydrocarbons in water

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Xing-Zheng; Yamamoto, Takeshi [Fukui Univ., Faculty of Engineering, Dept. of Materials Science and Engineering, Fukui (Japan); Hatashita, Masanori [The Wakasa Wan Energy Research Center, Research Dept., Tsuruga, Fukui (Japan)

    2002-11-01

    Radiolytic degradation of chlorinated hydrocarbons (chloroform, trichloroethylene, and tetrachloroethylene) in water was carried out. Water solutions of the chlorinated hydrocarbons with different concentrations were irradiated with {gamma} rays. Concentrations of methane, ethane, CO, CO{sub 2}, H{sub 2}, and O{sub 2} after the irradiation were determined by gas chromatography. Concentration of chloride ion in the irradiated sample was determined by ion chromatography. Experimental results show that radiolytic degradation of the chlorinated hydrocarbon increased with the radiation dose. Methane, ethane, CO{sub 2}, H{sub 2}, and Cl{sup -} concentrations increased with the radiation dose and the sample concentration. On the other hand, O{sub 2} concentration decreased with the radiation dose and the sample concentration. When sample concentration was high, dissolved oxygen might be not enough for converting most of the C atoms in the sample into CO{sub 2}. This resulted in a low decomposition ratio. Addition of H{sub 2}O{sub 2} as an oxygen resource could increase the decomposition ratio greatly. Furthermore, gas chromatography-mass spectroscopy was applied to identify some intermediates of the radiolytic dehalogenation. Radiolytic degradation mechanisms are also discussed. (author)

  9. Carbon nanofibers (CNFs) supported cobalt- nickel sulfide (CoNi2S4) nanoparticles hybrid anode for high performance lithium ion capacitor.

    Science.gov (United States)

    Jagadale, Ajay; Zhou, Xuan; Blaisdell, Douglas; Yang, Sen

    2018-01-25

    Lithium ion capacitors possess an ability to bridge the gap between lithium ion battery and supercapacitor. The main concern of fabricating lithium ion capacitors is poor rate capability and cyclic stability of the anode material which uses sluggish faradaic reactions to store an electric charge. Herein, we have fabricated high performance hybrid anode material based on carbon nanofibers (CNFs) and cobalt-nickel sulfide (CoNi 2 S 4 ) nanoparticles via simple electrospinning and electrodeposition methods. Porous and high conducting CNF@CoNi 2 S 4 electrode acts as an expressway network for electronic and ionic diffusion during charging-discharging processes. The effect of anode to cathode mass ratio on the performance has been studied by fabricating lithium ion capacitors with different mass ratios. The surface controlled contribution of CNF@CoNi 2 S 4 electrode was 73% which demonstrates its excellent rate capability. Lithium ion capacitor fabricated with CNF@CoNi 2 S 4 to AC mass ratio of 1:2.6 showed excellent energy density of 85.4 Wh kg -1 with the power density of 150 W kg -1 . Also, even at the high power density of 15 kW kg -1 , the cell provided the energy density of 35 Wh kg -1 . This work offers a new strategy for designing high-performance hybrid anode with the combination of simple and cost effective approaches.

  10. Highly CO2-Selective Gas Separation Membranes Based on Segmented Copolymers of Poly(Ethylene oxide) Reinforced with Pentiptycene-Containing Polyimide Hard Segments.

    Science.gov (United States)

    Luo, Shuangjiang; Stevens, Kevin A; Park, Jae Sung; Moon, Joshua D; Liu, Qiang; Freeman, Benny D; Guo, Ruilan

    2016-01-27

    Poly(ethylene oxide) (PEO)-containing polymer membranes are attractive for CO2-related gas separations due to their high selectivity toward CO2. However, the development of PEO-rich membranes is frequently challenged by weak mechanical properties and a high crystallization tendency of PEO that hinders gas transport. Here we report a new series of highly CO2-selective, amorphous PEO-containing segmented copolymers prepared from commercial Jeffamine polyetheramines and pentiptycene-based polyimide. The copolymers are much more mechanically robust than the nonpentiptycene containing counterparts due to the molecular reinforcement mechanism of supramolecular chain threading and interlocking interactions induced by the pentiptycene structures, which also effectively suppresses PEO crystallization leading to a completely amorphous structure even at 60% PEO weight content. Membrane transport properties are sensitively affected by both PEO weight content and PEO chain length. A nonlinear correlation between CO2 permeability with PEO weight content was observed due to the competition between solubility and diffusivity contributions, whereby the copolymers change from being size-selective to solubility-selective when PEO content reaches 40%. CO2 selectivities over H2 and N2 increase monotonically with both PEO content and chain length, indicating strong CO2-philicity of the copolymers. The copolymer film with the longest PEO sequence (PEO2000) and highest PEO weight content (60%) showed a measured CO2 pure gas permeability of 39 Barrer, and ideal CO2/H2 and CO2/N2 selectivities of 4.1 and 46, respectively, at 35 °C and 3 atm, making them attractive for hydrogen purification and carbon capture.

  11. Decontamination by cleaning with fluorocarbon surfactant solutions

    International Nuclear Information System (INIS)

    Kaiser, R.; Benson, C.E.; Meyers, E.S.; Vaughen, V.C.A.

    1994-02-01

    In the nuclear industry, facilities and their components inevitably become contaminated with radioactive materials. This report documents the application of a novel particle-removal process developed by Entropic Systems, Inc. (ESI), to decontaminate critical instruments and parts that are contaminated with small radioactive particles that adhere to equipment surfaces. The tests were performed as a cooperative effort between ESI and the Chemical Technology Division of the Oak Ridge National Laboratory (ORNL). ESI developed a new, environmentally compatible process to remove small particles from solid surfaces that is more effective than spraying or sonicating with CFC-113. This process uses inert perfluorinated liquids as working media; the liquids have zero ozone-depleting potential, are nontoxic and nonflammnable, and are generally recognized as nonhazardous materials. In the ESI process, parts to be cleaned are first sprayed or sonicated with a dilute solution of a high-molecular-weight fluorocarbon surfactant in an inert perfluorinated liquid to effect particle removal. The parts are then rinsed with the perfluorinated liquid to remove the fluorocarbon surfactant applied in the first step, and the residual rinse liquid is then evaporated from the parts into an air or nitrogen stream from which it is recovered. Nuclear contamination is inherently a surface phenomenon. The presence of radioactive particles is responsible for all ''smearable'' contamination and, if the radioactive particles are small enough, for some of the fixed contamination. Because radioactivity does not influence the physical chemistry of particle adhesion, the ESI process should be just as effective in removing radioactive particles as it is in removing nonradioactive particles

  12. CO2 capture by Li-functionalized silicene

    KAUST Repository

    Zhu, Jiajie; Chroneos, Alexander; Schwingenschlö gl, Udo

    2016-01-01

    CO2 capture and storage technology is of key importance to reduce the greenhouse effect. By its large surface area and sp3 hybridization, Li-functionalized silicene is demonstrated to be a promising CO2 absorbent that is stable up to at least 500 K

  13. Top-philic dark matter within and beyond the WIMP paradigm

    Science.gov (United States)

    Garny, Mathias; Heisig, Jan; Hufnagel, Marco; Lülf, Benedikt

    2018-04-01

    We present a comprehensive analysis of top-philic Majorana dark matter that interacts via a colored t -channel mediator. Despite the simplicity of the model—introducing three parameters only—it provides an extremely rich phenomenology allowing us to accommodate the relic density for a large range of coupling strengths spanning over 6 orders of magnitude. This model features all "exceptional" mechanisms for dark matter freeze-out, including the recently discovered conversion-driven freeze-out mode, with interesting signatures of long-lived colored particles at colliders. We constrain the cosmologically allowed parameter space with current experimental limits from direct, indirect and collider searches, with special emphasis on light dark matter below the top mass. In particular, we explore the interplay between limits from Xenon1T, Fermi-LAT and AMS-02 as well as limits from stop, monojet and Higgs invisible decay searches at the LHC. We find that several blind spots for light dark matter evade current constraints. The region in parameter space where the relic density is set by the mechanism of conversion-driven freeze-out can be conclusively tested by R -hadron searches at the LHC with 300 fb-1 .

  14. How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels

    DEFF Research Database (Denmark)

    Peterson, Andrew; Abild-Pedersen, Frank; Studt, Felix

    2010-01-01

    Density functional theory calculations explain copper's unique ability to convert CO2 into hydrocarbons, which may open up (photo-)electrochemical routes to fuels.......Density functional theory calculations explain copper's unique ability to convert CO2 into hydrocarbons, which may open up (photo-)electrochemical routes to fuels....

  15. Recent Advances in Anhydrous Solvents for CO{sub 2} Capture: Ionic Liquids, Switchable Solvents, and Nanoparticle Organic Hybrid Materials

    Energy Technology Data Exchange (ETDEWEB)

    Park, Youngjune [School of Environmental Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju (Korea, Republic of); Lin, Kun-Yi Andrew [Department of Environmental Engineering, National Chung Hsing University, Taichung City (China); Park, Ah-Hyung Alissa, E-mail: ap2622@columbia.edu [Department of Earth and Environmental Engineering, Lenfest Center for Sustainable Energy, Columbia University, New York, NY (United States); Department of Chemical Engineering, Lenfest Center for Sustainable Energy, Columbia University, New York, NY (United States); Petit, Camille, E-mail: ap2622@columbia.edu [Department of Chemical Engineering, Imperial College London, London (United Kingdom)

    2015-10-01

    CO{sub 2} capture by amine scrubbing, which has a high CO{sub 2} capture capacity and a rapid reaction rate, is the most employed and investigated approach to date. There are a number of recent large-scale demonstrations including the Boundary Dam Carbon Capture Project by SaskPower in Canada that have reported successful implementations of aqueous amine solvent in CO{sub 2} capture from flue gases. The findings from these demonstrations will significantly advance the field of CO{sub 2} capture in the coming years. While the latest efforts in aqueous amine solvents are exciting and promising, there are still several drawbacks to amine-based CO{sub 2} capture solvents including high volatility and corrosiveness of the amine solutions as well as the high parasitic energy penalty during the solvent regeneration step. Thus, in a parallel effort, alternative CO{sub 2} capture solvents, which are often anhydrous, have been developed as the third-generation CO{sub 2} capture solvents. These novel classes of liquid materials include ionic liquids, CO{sub 2}-triggered switchable solvents (i.e., CO{sub 2}-binding organic liquids, reversible ionic liquids), and nanoparticle organic hybrid materials. This paper provides a review of these various anhydrous solvents and their potential for CO{sub 2} capture. Particular attention is given to the mechanisms of CO{sub 2} absorption in these solvents, their regeneration and their processability – especially taking into account their viscosity. While not intended to provide a complete coverage of the existing literature, this review aims at pointing the major findings reported for these new classes of CO{sub 2} capture media.

  16. Effects of Bonding Types and Functional Groups on CO 2 Capture using Novel Multiphase Systems of Liquid-like Nanoparticle Organic Hybrid Materials

    KAUST Repository

    Lin, Kun-Yi Andrew; Park, Ah-Hyung Alissa

    2011-01-01

    Novel liquid-like nanoparticle organic hybrid materials (NOHMs) which possess unique features including negligible vapor pressure and a high degree of tunability were synthesized and their physical and chemical properties as well as CO 2 capture

  17. Varied growth response of cogongrass ecotypes to elevated CO2

    Directory of Open Access Journals (Sweden)

    G. Brett Runion

    2016-01-01

    Full Text Available Cogongrass [Imperata cylindrica (L. P. Beauv] is an invasive C4 perennial grass which is listed as one of the top ten worst weeds in the world and is a major problem in the Southeast US. Five cogongrass ecotypes (Florida, Hybrid, Louisiana, Mobile, and North Alabama collected across the Southeast and a red-tip ornamental variety were container grown for six months in open top chambers under ambient and elevated (ambient plus 200 ppm atmospheric CO2. Elevated CO2 increased average dry weight (13% which is typical for grasses. Elevated CO2 increased height growth and both nitrogen and water use efficiencies, but lowered tissue nitrogen concentration; again, these are typical plant responses to elevated CO2. The hybrid ecotype tended to exhibit the greatest growth (followed by Louisiana, North Alabama, and Florida ecotypes while the red-tip and Mobile ecotypes were smallest. Interactions of CO2 with ecotype generally showed that the hybrid, Louisiana, Florida, and/or North Alabama ecotypes showed a positive response to CO2 while the Mobile and red-tip ecotypes did not. Cogongrass is a problematic invasive weed in the southeastern U.S. and some ecotypes may become more so as atmospheric CO2 continues to rise.

  18. Polymer-silica hybrids for separation of CO2 and catalysis of organic reactions

    Science.gov (United States)

    Silva Mojica, Ernesto

    spectroscopic investigation of the interactions of CO 2 with amine molecules under simulated CO2 capture conditions. Industrial CO2 capture processes involve fluidization and require degradation-resistant sorbents in the form of pellets. Agglomeration of silica-based CO2 capture sorbents involved the formulation of a polymer binder solution and the design of a scalable pelletization process. The characterization of these pellets revealed the formation of a CO 2-permeable polymer-silica network, which is resistant to attrition, and exhibits similar CO2 capture and degradation performance as the non-pelletized sorbents. The performance of these sorbents and pellets was tested in lab-scale and bench-scale adsorption units, using in-house fabricated fixed-bed and fluidized-bed reactors. A compartmental modeling technique was used to simulate the CO2 adsorption process and to elucidate the kinetic and thermodynamic parameters that impact the commercial viability of emerging CO2 capture technologies. The fundamental concepts and experimental techniques developed for the preparation of CO2 capture sorbents served as a basis for fabricating amine-functionalized polymer-silica hybrids for applications in catalysis of organic reactions. (i) Basic catalysts for carbon-carbon addition reactions were prepared by immobilization of amine molecules on silica supports. The activity of these catalysts and the mechanisms of base-catalyzed organic condensation reactions were investigated by an in-situ FTIR micro-scale reactor. (ii) Particle-loaded PVA composite membranes were selected for immobilization of glucose oxidase (GOx). GOx was immobilized by adsorption at pH values between 3.5 and 7.1. The results showed that adsorption was primarily achieved via hydrophobic interactions, and that PVA membranes loaded with amine-functionalized particles could help retain the activity of immobilized GOx by providing a proper hydrophilic/hydrophobic balance to the immobilized enzymes micro-environment.

  19. US/Japan workshop on global change land disposal of CO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, R.T. [Alberta Oil Sands Technology and Research Authority (Canada)

    1993-12-31

    The general responses proposed to reduce CO{sub 2} emissions to the atmosphere are conservation, improved efficiency and fuel substitution. These are valid options but other alternatives such as CO{sub 2} capture and disposal may be more attractive for specific areas. There are good reasons why the capture and disposal option fits the situation in Western Canada. The first and obvious reason is the importance of hydrocarbon energy to the regional economy. Here the economy is based on the production, utilization and sale of hydrocarbons such as coal, oil and natural gas and we intend to stay in business. Besides meeting the Canadian demand, natural gas from Alberta is used in the US as far away as Boston and Los Angeles. Canadian heavy crude oil serves much of the American Midwest and coal from the Canadian Rocky Mountains is exported to Japan. Although many may consider these hydrocarbon reserves and fossil fuel production as part of the greenhouse gas problem, they may offer part of the solution through the capture and disposal of CO{sub 2}.

  20. CO 2 Capture Capacity and Swelling Measurements of Liquid-like Nanoparticle Organic Hybrid Materials via Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy

    KAUST Repository

    Park, Youngjune

    2012-01-12

    Novel nanoparticle organic hybrid materials (NOHMs), which are comprised of organic oligomers or polymers tethered to an inorganic nanosized cores of various sizes, have been synthesized, and their solvating property for CO 2 was investigated using attenuated total reflectance (ATR) Fourier transform infrared (FT-IR) spectroscopy. Simultaneous measurements of CO 2 capture capacity and swelling behaviors of polyetheramine (Jeffamine M-2070) and its corresponding NOHMs (NOHM-I-PE2070) were reported at temperatures of (298, 308, 323 and 353) K and CO 2 pressure conditions ranging from (0 to 5.5) MPa. The polymeric canopy, or polymer bound to the nanoparticle surface, showed significantly less swelling behavior with enhanced or comparable CO 2 capture capacity compared to pure unbound polyetheramine. © 2011 American Chemical Society.

  1. Direct conversion of CO2 into liquid fuels with high selectivity over a bifunctional catalyst

    Science.gov (United States)

    Gao, Peng; Li, Shenggang; Bu, Xianni; Dang, Shanshan; Liu, Ziyu; Wang, Hui; Zhong, Liangshu; Qiu, Minghuang; Yang, Chengguang; Cai, Jun; Wei, Wei; Sun, Yuhan

    2017-10-01

    Although considerable progress has been made in carbon dioxide (CO2) hydrogenation to various C1 chemicals, it is still a great challenge to synthesize value-added products with two or more carbons, such as gasoline, directly from CO2 because of the extreme inertness of CO2 and a high C-C coupling barrier. Here we present a bifunctional catalyst composed of reducible indium oxides (In2O3) and zeolites that yields a high selectivity to gasoline-range hydrocarbons (78.6%) with a very low methane selectivity (1%). The oxygen vacancies on the In2O3 surfaces activate CO2 and hydrogen to form methanol, and C-C coupling subsequently occurs inside zeolite pores to produce gasoline-range hydrocarbons with a high octane number. The proximity of these two components plays a crucial role in suppressing the undesired reverse water gas shift reaction and giving a high selectivity for gasoline-range hydrocarbons. Moreover, the pellet catalyst exhibits a much better performance during an industry-relevant test, which suggests promising prospects for industrial applications.

  2. Deposition of fluorocarbon films by Pulsed Plasma Thruster on the anode side

    International Nuclear Information System (INIS)

    Zhang, Rui; Zhang, Daixian; Zhang, Fan; He, Zhen; Wu, Jianjun

    2013-01-01

    Fluorocarbon thin films were deposited by Pulsed Plasma Thruster at different angles on the anode side of the thruster. Density and velocity of the plasma in the plume of the Pulsed Plasma Thruster were determined using double and triple Langmuir probe apparatus respectively. The deposited films were characterized by X-ray photoelectron spectroscopy (XPS), scanning probe microscope (SPM) and UV–vis spectrometer. Low F/C ratio (0.64–0.86) fluorocarbon films are deposited. The F/C ratio decreases with angle increasing from 0 degree to 30 degree; however it turns to increase with angle increasing from 45 degree to 90 degree. The films deposited at center angles appear rougher compared with that prepared at angles beyond 45 degree. These films basically show having strong absorption properties for wavelength below 600 nm and having enhanced reflective characteristics. Due to the influence of the chemical composition and the surface morphology of the films, the optical properties of these films also show significant angular dependence.

  3. Angular dependence of etch rates in the etching of poly-Si and fluorocarbon polymer using SF6, C4F8, and O2 plasmas

    International Nuclear Information System (INIS)

    Min, Jae-Ho; Lee, Gyeo-Re; Lee, Jin-Kwan; Moon, Sang Heup; Kim, Chang-Koo

    2004-01-01

    The dependences of etch rates on the angle of ions incident on the substrate surface in four plasma/substrate systems that constitute the advanced Bosch process were investigated using a Faraday cage designed for the accurate control of the ion-incident angle. The four systems, established by combining discharge gases and substrates, were a SF 6 /poly-Si, a SF 6 /fluorocarbon polymer, an O 2 /fluorocarbon polymer, and a C 4 F 8 /Si. In the case of SF 6 /poly-Si, the normalized etch rates (NERs), defined as the etch rates normalized by the rate on the horizontal surface, were higher at all angles than values predicted from the cosine of the ion-incident angle. This characteristic curve shape was independent of changes in process variables including the source power and bias voltage. Contrary to the earlier case, the NERs for the O 2 /polymer decreased and eventually reached much lower values than the cosine values at angles between 30 deg. and 70 deg. when the source power was increased and the bias voltage was decreased. On the other hand, the NERs for the SF 6 /polymer showed a weak dependence on the process variables. In the case of C 4 F 8 /Si, which is used in the Bosch process for depositing a fluorocarbon layer on the substrate surface, the deposition rate varied with the ion incident angle, showing an S-shaped curve. These characteristic deposition rate curves, which were highly dependent on the process conditions, could be divided into four distinct regions: a Si sputtering region, an ion-suppressed polymer deposition region, an ion-enhanced polymer deposition region, and an ion-free polymer deposition region. Based on the earlier characteristic angular dependences of the etch (or deposition) rates in the individual systems, ideal process conditions for obtaining an anisotropic etch profile in the advanced Bosch process are proposed

  4. An Artificial Biomimetic Catalysis Converting CO2 to Green Fuels

    Science.gov (United States)

    Li, Caihong; Wang, Zhiming

    2017-09-01

    Researchers devote to design catalytic systems with higher activity, selectivity, and stability ideally based on cheap and earth-abundant elements to reduce CO2 to value-added hydrocarbon fuels under mild conditions driven by visible light. This may offer profound inspirations on that. A bi-functional molecular iron catalyst designed could not only catalyze two-electron reduction from CO2 to CO but also further convert CO to CH4 with a high selectivity of 82% stably over several days.

  5. Upgrading pyrolysis bio-oil through hydrodeoxygenation (HDO) using non-sulfided Fe-Co/SiO2 catalyst

    International Nuclear Information System (INIS)

    Cheng, Shouyun; Wei, Lin; Julson, James; Rabnawaz, Muhammad

    2017-01-01

    Highlights: • Fe-Co/SiO 2 catalyst with medium acidity was more effective for bio-oil upgrading. • Co-loading of Fe and Co on SiO 2 support improved catalyst performance. • Catalyst showing the best catalytic activity had a Fe/Co mole ratio of 1. • Biofuel produced by Fe-Co(1)/SiO 2 had the higher hydrocarbons content at 22.44%. • The mechanism of bio-oil HDO on Fe-Co/SiO 2 catalysts is proposed. - Abstract: Hydrodeoxygenation (HDO) is an effective route to upgrade bio-oil to hydrocarbon bio-oil, but the development of efficient catalysts for bio-oil HDO still remains a challenge. In this study, non-sulfided Fe-Co/SiO 2 catalysts were used to upgrade bio-oil using HDO. A series of Fe-Co/SiO 2 catalysts with different Fe/Co mole ratios were prepared, characterized and evaluated. The Fe and/or Co loading did not change SiO 2 crystalline structure. The Fe and/or Co metals increased the amount and strength of Fe-Co/SiO 2 catalyst acidity. Physicochemical properties of upgraded bio-oils produced using Fe-Co/SiO 2 catalysts such as water content, total acid number, viscosity and higher heating values improved in comparison to raw bio-oil. Bimetallic Fe-Co/SiO 2 catalysts resulted in better HDO performance than monometallic Fe/SiO 2 or Co/SiO 2 catalysts. This was due to the synergistic effect of Fe and Co occurring on the SiO 2 support. Fe-Co/SiO 2 catalyst having medium amount of acidity was more effective for bio-oil upgrading. The highest hydrocarbons content produced using Fe-Co(1)/SiO 2 catalyst was 22.44%. The mechanism of bio-oil HDO on Fe-Co/SiO 2 catalysts is proposed.

  6. Co3O4 nanoneedle@electroactive nickel boride membrane core/shell arrays: A novel hybrid for enhanced capacity

    International Nuclear Information System (INIS)

    Li, Tingting; Zhu, Congxu; Yang, Xiaogang; Gao, Yuanhao; He, Weiwei; Yue, Hongwei; Zhao, Hongxiao

    2017-01-01

    Graphical abstract: Active nickel boride membrane anchored Co 3 O 4 nanoneedle arrays hybrid is synthesized via rapid interface reaction. The optimized core/shell nanostructure demonstrates greatly enhanced electrochemical properties. Display Omitted -- Highlights: •Active nickel boride membrane anchored Co 3 O 4 nanoneedle arrays core-shell hybrid architectures was fabricated via rapid interface reaction. •Specific capacity was improved by synergy between highly active components and optimized electron transfer microstructure. •The assembled asymmetric supercapacitor device exhibited excellent electrochemical performance. -- Abstract: Exploring novel hybrid materials with efficient microstructure using facile approaches is highly urgent in designing supercapacitor electrodes. Here, the Ni-B membrane was used for coating the porous Co 3 O 4 nanoneedle arrays which supported on the nickel foam (NF) frameworks through a rapid chemical reduction process (denoted as NF/Co 3 O 4 @NiB). The Ni-B membrane both provided sufficient active sites for redox reactions and inhibited the aggregation of formed hybrid architectures. Benefiting from the unique structural design and strongly coupled effects between porous Co 3 O 4 arrays and Ni-B membrane, the resulted NF/Co 3 O 4 @NiB electrode exhibited high areal capacitance of 3.47 F cm −2 (0.48 mAh cm −2 ) at a current density of 2.5 mA cm −2 , an excellent rate capability while maintaining 95.5% capacity retention after 2000 cycles. The asymmetric supercapacitor constructed with the NF/Co 3 O 4 @NiB as positive electrode and hierarchical porous carbon (HPC) as negative electrode also showed ideal capacitive behavior, and simultaneously delivered high energy and power densities. The easily decoration of Ni-B membrane on various active nanoarrays may arouse more novel design about hybrid architectures for large-scale applications.

  7. Co-generation of synthesis gas and C{sub 2+} hydrocarbons from methane and carbon dioxide in a hybrid catalytic-plasma reactor: A review

    Energy Technology Data Exchange (ETDEWEB)

    Istadi; Nor Aishah Saidina Amin [Universiti Teknologi Malaysia, Johor Bahru (Malaysia). Chemical Reaction Engineering Group (CREG), Faculty of Chemical and Natural Resources Engineering

    2006-03-15

    The topics on conversion and utilization of methane and carbon dioxide are important issues in tackling the global warming effects from the two greenhouse gases. Several technologies including catalytic and plasma have been proposed to improve the process involving conversion and utilization of methane and carbon dioxide. In this paper, an overview of the basic principles, and the effects of CH{sub 4}/CO{sub 2} feed ratio, total feed flow rate, discharge power, catalyst, applied voltage, wall temperature, and system pressure in dielectric-barrier discharge (DBD) plasma reactor are addressed. The discharge power, discharge gap, applied voltage and CH{sub 4}/CO{sub 2} ratio in the feed showed the most significant effects on the reactor performance. Co-feeding carbon dioxide with the methane feed stream reduced coking and increased methane conversion. The H{sub 2}/CO ratio in the products was significantly affected by CH{sub 4}/CO{sub 2} ratio. The synergism of the catalyst placed in the discharge gap and the plasma affected the products distribution significantly. Methane and carbon dioxide conversions were influenced significantly by discharge power and applied voltage. The drawbacks of DBD plasma application in the CH{sub 4}-CO{sub 2} conversion should be taken into consideration before a new plausible reactor system can be implemented. 76 refs., 4 figs., 2 tabs.

  8. Upgrading of syngas hydrotreated fractionated oxidized bio-oil to transportation grade hydrocarbons

    International Nuclear Information System (INIS)

    Luo, Yan; Hassan, El Barbary; Guda, Vamshi; Wijayapala, Rangana; Steele, Philip H.

    2016-01-01

    Highlights: • Hydrotreating of fractionated oxidized bio-oil with syngas was feasible. • Hydrocarbon properties were similar with all syngas H_2/CO molar ratios except viscosity. • Syngas with H_2/CO molar ratio of (4:6) produced the highest hydrocarbon yield. • The produced hydrocarbons were in the range of gasoline, jet fuel and diesel boiling points. - Abstract: Fast pyrolysis bio-oils have the potential to replace a part of transportation fuels obtained from fossil. Bio-oil can be successfully upgraded into stable hydrocarbons (gasoline, jet fuel and diesel) through a two-stage hydrodeoxygenation process. Consumption large amount of expensive hydrogen during this process is the major hurdle for commercialization of this technology. Applying syngas in the hydrotreating step can significantly reduce the cost of the whole process and make it competitive. In this study, four different models of syngas with different H_2 concentrations (H_2/CO molar ratios = 2:8, 4:6, 6:4 and 8:2) were used for the 1st-stage hydrotreating step of oxidized fractionated bio-oil (OFB). The 2nd-stage hydrocracking step was performed on the produced organic liquid products (OLPs) by using pure H_2 gas. The effect of syngas H_2 concentrations on the yields and properties of OLPs and the 2nd-stage hydrocarbons (HCs) was investigated. Physical and chemical properties of the 2nd-stage hydrocarbons were similar regardless syngas H_2 content, with the exception of the viscosity. Syngas with H_2/CO molar ratio of 4:6 gave significantly highest HCs yield (24.8 wt.%) based on the OFB. Simulated distillation analysis proved that all 2nd-stage hydrocarbons were mixture from a wide range boiling point fuels. These results also indicated that the successful 1st-stage syngas hydrotreating step was having the potential to produce different hydrocarbons.

  9. Promoting Ethylene Selectivity from CO2 Electroreduction on CuO Supported onto CO2 Capture Materials.

    Science.gov (United States)

    Yang, Hui-Juan; Yang, Hong; Hong, Yu-Hao; Zhang, Peng-Yang; Wang, Tao; Chen, Li-Na; Zhang, Feng-Yang; Wu, Qi-Hui; Tian, Na; Zhou, Zhi-You; Sun, Shi-Gang

    2018-03-09

    Cu is a unique catalyst for CO 2 electroreduction, since it can catalyze CO 2 reduction to a series of hydrocarbons, alcohols, and carboxylic acids. Nevertheless, such Cu catalysts suffer from poor selectivity. High pressure of CO 2 is considered to facilitate the activity and selectivity of CO 2 reduction. Herein, a new strategy is presented for CO 2 reduction with improved C 2 H 4 selectivity on a Cu catalyst by using CO 2 capture materials as the support at ambient pressure. N-doped carbon (N x C) was synthesized through high-temperature carbonization of melamine and l-lysine. We observed that the CO 2 uptake capacity of N x C depends on both the microporous area and the content of pyridinic N species, which can be controlled by the carbonization temperature (600-800 °C). The as-prepared CuO/N x C catalysts exhibit a considerably higher C 2 H 4 faradaic efficiency (36 %) than CuO supported on XC-72 carbon black (19 %), or unsupported CuO (20 %). Moreover, there is a good linear relationship between the C 2 H 4 faradaic efficiency and CO 2 uptake capacity of the supports for CuO. The local high CO 2 concentration near Cu catalysts, created by CO 2 capture materials, was proposed to increase the coverage of CO intermediate, which is favorable for the coupling of two CO units in the formation of C 2 H 4 . This study demonstrates that pairing Cu catalysts with CO 2 capture supports is a promising approach for designing highly effective CO 2 reduction electrocatalysts. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Alberta industrial synergy CO2 programs initiative

    International Nuclear Information System (INIS)

    Yildirim, E.

    1998-01-01

    The various industrial sectors within Alberta produce about 350,000 tonnes of CO 2 per day. This presentation was concerned with how this large volume and high concentration of CO 2 can be used in industrial and agricultural applications, because every tonne of CO 2 used for such purposes is a tonne that does not end up in the atmosphere. There is a good potential for an industrial synergy between the producers and users of CO 2 . The Alberta Industrial Synergy CO 2 Programs Initiative was established to ultimately achieve a balance between the producers of CO 2 and the users of CO 2 by creating ways to use the massive quantities of CO 2 produced by Alberta's hydrocarbon-based economy. The Alberta CO 2 Research Steering Committee was created to initiate and support CO 2 programs such as: (1) CO 2 use in enhanced oil recovery, (2) creation of a CO 2 production inventory, (3) survey of CO 2 users and potential users, (4) investigation of process issues such as power generation, oil sands and cement manufacturing, and (5) biofixation by plants, (6) other disposal options (e.g. in depleted oil and gas reservoirs, in aquifers, in tailings ponds, in coal beds). The single most important challenge was identified as 'rationalizing the formation of the necessary infrastructure'. Failing to do that will greatly impede efforts directed towards CO 2 utilization

  11. Enhanced Performance of Polyurethane Hybrid Membranes for CO2 Separation by Incorporating Graphene Oxide: The Relationship between Membrane Performance and Morphology of Graphene Oxide.

    Science.gov (United States)

    Wang, Ting; Zhao, Li; Shen, Jiang-nan; Wu, Li-guang; Van der Bruggen, Bart

    2015-07-07

    Polyurethane hybrid membranes containing graphene oxide (GO) with different morphologies were prepared by in situ polymerization. The separation of CO2/N2 gas mixtures was studied using these novel membranes. The results from the morphology characterization of GO samples indicated that the oxidation process in the improved Hummers method introduced oxygenated functional groups into graphite, making graphite powder exfoliate into GO nanosheets. The surface defects on the GO sheets increased when oxidation increased due to the introduction of more oxygenated functional groups. Both the increase in oxygenated functional groups on the GO surface and the decrease in the number of GO layers leads to a better distribution of GO in the polymer matrix, increasing thermal stability and gas separation performance of membranes. The addition of excess oxidant destroyed the structure of GO sheets and forms structural defects, which depressed the separation performance of membranes. The hybrid membranes containing well-distributed GO showed higher permeability and permeability selectivity for the CO2. The formation of GO aggregates in the hybrid membranes depressed the membrane performance at a high content of GO.

  12. In Situ Hydrocarbon Degradation by Indigenous Nearshore Bacterial Populations

    International Nuclear Information System (INIS)

    Cherrier, J.

    2005-01-01

    Potential episodic hydrocarbon inputs associated with oil mining and transportation together with chronic introduction of hydrocarbons via urban runoff into the relatively pristine coastal Florida waters poses a significant threat to Florida's fragile marine environment. It is therefore important to understand the extent to which indigenous bacterial populations are able to degrade hydrocarbon compounds and also determine factors that could potentially control and promote the rate at which these compounds are broken down in situ. Previous controlled laboratory experiments carried out by our research group demonstrated that separately both photo-oxidation and cometabolism stimulate bacterial hydrocarbon degradation by natural bacterial assemblages collected from a chronically petroleum contaminated site in Bayboro Bay, Florida. Additionally, we also demonstrated that stable carbon and radiocarbon abundances of respired CO 2 could be used to trace in situ hydrocarbon degradation by indigenous bacterial populations at this same site. This current proposal had two main objectives: (a) to evaluate the cumulative impact of cometabolism and photo-oxidation on hydrocarbon degradation by natural bacterial assemblages collected the same site in Bayboro Bay, Florida and (b) to determine if in situ hydrocarbon degradation by indigenous bacterial populations this site could be traced using natural radiocarbon and stable carbon abundances of assimilated bacterial carbon. Funds were used for 2 years of full support for one ESI Ph.D. student, April Croxton. To address our first objective a series of closed system bacterial incubations were carried out using photo-oxidized petroleum and pinfish (i.e. cometabolite). Bacterial production of CO 2 was used as the indicator of hydrocarbon degradation and (delta) 13 C analysis of the resultant CO 2 was used to evaluate the source of the respired CO 2 (i.e. petroleum hydrocarbons or the pinfish cometabolite). Results from these time

  13. Production of solar fuels by CO2 plasmolysis

    Directory of Open Access Journals (Sweden)

    Goede Adelbert P.H.

    2014-01-01

    Full Text Available A storage scheme for Renewable Energy (RE based on the plasmolysis of CO2into CO and O2 has been experimentally investigated, demonstrating high energy efficiency (>50% combined with high energy density, rapid start-stop and no use of scarce materials. The key parameter controlling energy efficiency has been identified as the reduced electric field. Basic plasma parameters including density and temperature are derived from a simple particle and energy balance model, allowing parameter specification of an upscale 100 kW reactor. With RE powered plasmolysis as the critical element, a CO2 neutral energy system becomes feasible when complemented by effective capture of CO2 at the input and separation of CO from the output gas stream followed by downstream chemical processing into hydrocarbon fuels.

  14. Development of a hybrid photo-bioreactor and nanoparticle adsorbent system for the removal of CO2, and selected organic and metal co-pollutants.

    Science.gov (United States)

    Rocha, Andrea A; Wilde, Christian; Hu, Zhenzhong; Nepotchatykh, Oleg; Nazarenko, Yevgen; Ariya, Parisa A

    2017-07-01

    Fossil fuel combustion and many industrial processes generate gaseous emissions that contain a number of toxic organic pollutants and carbon dioxide (CO 2 ) which contribute to climate change and atmospheric pollution. There is a need for green and sustainable solutions to remove air pollutants, as opposed to conventional techniques which can be expensive, consume additional energy and generate further waste. We developed a novel integrated bioreactor combined with recyclable iron oxide nano/micro-particle adsorption interfaces, to remove CO 2, and undesired organic air pollutants using natural particles, while generating oxygen. This semi-continuous bench-scale photo-bioreactor was shown to successfully clean up simulated emission streams of up to 45% CO 2 with a conversion rate of approximately 4% CO 2 per hour, generating a steady supply of oxygen (6mmol/hr), while nanoparticles effectively remove several undesired organic by-products. We also showed algal waste of the bioreactor can be used for mercury remediation. We estimated the potential CO 2 emissions that could be captured from our new method for three industrial cases in which, coal, oil and natural gas were used. With a 30% carbon capture system, the reduction of CO 2 was estimated to decrease by about 420,000, 320,000 and 240,000 metric tonnes, respectively for a typical 500MW power plant. The cost analysis we conducted showed potential to scale-up, and the entire system is recyclable and sustainable. We further discuss the implications of usage of this complete system, or as individual units, that could provide a hybrid option to existing industrial setups. Copyright © 2016. Published by Elsevier B.V.

  15. Recycling CO 2 ? Computational Considerations of the Activation of CO 2 with Homogeneous Transition Metal Catalysts

    KAUST Repository

    Drees, Markus

    2012-08-10

    Faced with depleting fossil carbon sources, the search for alternative energy carriers and energy storage possibilities has become an important issue. Nature utilizes carbon dioxide as starting material for storing sun energy in plant hydrocarbons. A similar approach, storing energy from renewable sources in chemical bonds with CO 2 as starting material, may lead to partial recycling of CO 2 created by human industrial activities. Unfortunately, currently available routes for the transformation of CO 2 involve high temperatures and are often not selective. With the development of more sophisticated methods and better software, theoretical studies have become both increasingly widespread and useful. This concept article summarizes theoretical investigations of the current state of the feasibility of CO 2 activation with molecular transition metal catalysts, highlighting the most promising reactions of CO 2 with olefins to industrially relevant acrylic acid/acrylates, and the insertion of CO 2 into metal-element bonds, particularly for the synthesis of cyclic carbonates and polymers. Rapidly improving computational power and methods help to increase the importance and accuracy of calculations continuously and make computational chemistry a useful tool helping to solve some of the most important questions for the future. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Synthesis of Hydrocarbons from H2-Deficient Syngas in Fischer-Tropsch Synthesis over Co-Based Catalyst Coupled with Fe-Based Catalyst as Water-Gas Shift Reaction

    Directory of Open Access Journals (Sweden)

    Ting Ma

    2015-01-01

    Full Text Available The effects of metal species in an Fe-based catalyst on structural properties were investigated through the synthesis of Fe-based catalysts containing various metal species such, as Mn, Zr, and Ce. The addition of the metal species to the Fe-based catalyst resulted in high dispersions of the Fe species and high surface areas due to the formation of mesoporous voids about 2–4 nm surrounded by the catalyst particles. The metal-added Fe-based catalysts were employed together with Co-loaded beta zeolite for the synthesis of hydrocarbons from syngas with a lower H2/CO ratio of 1 than the stoichiometric H2/CO ratio of 2 for the Fischer-Tropsch synthesis (FTS. Among the catalysts, the Mn-added Fe-based catalyst exhibited a high activity for the water-gas shift (WGS reaction with a comparative durability, leading to the enhancement of the CO hydrogenation in the FTS in comparison with Co-loaded beta zeolite alone. Furthermore, the loading of Pd on the Mn-added Fe-based catalyst enhanced the catalytic durability due to the hydrogenation of carbonaceous species by the hydrogen activated over Pd.

  17. Synthesis and characterization of water-soluble SiO{sub 1.5}/TiO{sub 2} hybrid nanoparticles by hydrolytic co-condensation of triethoxysilane containing hydroxyl groups

    Energy Technology Data Exchange (ETDEWEB)

    Mori, Hideharu [Department of Polymer Science and Engineering, Graduate School of Science and Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa 992-8510 (Japan)], E-mail: h.mori@yz.yamagata-u.ac.jp; Miyamura, Yasushi [Department of Polymer Science and Engineering, Graduate School of Science and Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa 992-8510 (Japan); Endo, Takeshi [Molecular Engineering Institute, Kinki University, Iizuka, Fukuoka 820-8555 (Japan)

    2009-05-15

    Novel R-SiO{sub 1.5}/TiO{sub 2} hybrid nanoparticles were synthesized by hydrolytic co-condensation of titanium alkoxides (Ti(OR'){sub 4}, R' = ethyl, isopropyl, and butyl) with a triethoxysilane precursor, R-Si(OCH{sub 2}CH{sub 3}){sub 3}, R = -CH{sub 2}CH{sub 2}CH{sub 2}N(CH{sub 2}CH{sub 2}COOCH{sub 2}CH{sub 2}OH){sub 2}, derived from 2-hydroxyethyl acrylate. Co-condensation of a titanium alkoxide with the triethoxysilane precursor was investigated at different feed ratios, suggesting that water-soluble nanoparticles were obtained only at less than 30% of Ti(OEt){sub 4} molar ratio in the feed. In contrast, the co-condensation of titanium tetraisopropoxide, Ti(O{sup i}Pr){sub 4}, with the triethoxysilane precursor in the presence of acetylacetone proceeded as a homogeneous system until 70% of Ti(O{sup i}Pr){sub 4} molar ratio to afford water-soluble organic-inorganic hybrid nanoparticles containing titania-silica mixed oxides, as confirmed by NMR, FT-IR, elemental and ICP analyses. Scanning force microscopy (SFM) measurements of the product prepared at Ti(O{sup i}Pr){sub 4}/triethoxysilane = 50/50 mol% with acetylacetone indicated the formation of the nanoparticles having relatively narrow size distribution with average particle diameter less than 2.0 nm without aggregation. The refractive index of the hybrid nanoparticle was 1.571. The isolated nanoparticles distributed homogeneously were visualized by transmission electron microscopy (TEM), and the size of the hybrid nanoparticle (1.9 nm) was determined by X-ray diffraction (XRD)

  18. New era for CO2 as a working fluid

    International Nuclear Information System (INIS)

    Stene, Joern

    2000-01-01

    During the past decade there has been extensive international activity to find acceptable alternatives to ozone-depleting CFC and HCFC substances that have been widely used as working fluids in refrigerating and heat pump plants. At present, the so-called natural working fluids constitute the most environmentally friendly alternative, and they include first of all ammonia, hydrocarbons and carbon dioxide (CO2). NTNU and SINTEF Energy Research, Norway, have been pioneers in the development of refrigerating and heat pump systems that use CO2 as a working fluid. The favourable technical and environmental properties of CO2 as well as the promising results have now led to considerable international interest in CO2 technology for refrigerating and heat pump applications. Two examples are international licensing for Norwegian CO2 technology and co-operation with Indonesia on CO2 for refrigeration

  19. Hybrid Membrane/Absorption Process for Post-combustion CO2 Capture

    Energy Technology Data Exchange (ETDEWEB)

    Li, Shiguang; Shou, S.; Pyrzynski, Travis; Makkuni, Ajay; Meyer, Howard

    2013-12-31

    This report summarizes scientific/technical progress made for bench-scale membrane contactor technology for post-combustion CO2 capture from DOE Contract No. DE-FE-0004787. Budget Period 1 (BP1) membrane absorber, Budget Period 2 (BP2) membrane desorber and Budget Period 3 (BP3) integrated system and field testing studies have been completed successfully and met or exceeded the technical targets (≥ 90% CO2 removal and CO2 purity of 97% in one membrane stage). Significant breakthroughs are summarized below: BP1 research: The feasibility of utilizing the poly (ether ether ketone), PEEK, based hollow fiber contractor (HFC) in combination with chemical solvents to separate and capture at least 90% of the CO2 from simulated flue gases has been successfully established. Excellent progress has been made as we have achieved the BP1 goal: ≥ 1,000 membrane intrinsic CO2 permeance, ≥ 90% CO2 removal in one stage, ≤ 2 psi gas side pressure drop, and ≥ 1 (sec)-1 mass transfer coefficient. Initial test results also show that the CO2 capture performance, using activated Methyl Diethanol Amine (aMDEA) solvent, was not affected by flue gas contaminants O2 (~3%), NO2 (66 ppmv), and SO2 (145 ppmv). BP2 research: The feasibility of utilizing the PEEK HFC for CO2-loaded solvent regeneration has been successfully established High CO2 stripping flux, one order of magnitude higher than CO2 absorption flux, have been achieved. Refined economic evaluation based on BP1 membrane absorber and BP2 membrane desorber laboratory test data indicate that the CO2 capture costs are 36% lower than DOE’s benchmark amine absorption technology. BP3 research: A bench-scale system utilizing a membrane absorber and desorber was integrated into a continuous CO2 capture process using contactors containing 10 to 20 ft2 of membrane area. The integrated process operation was stable through a 100-hour laboratory test, utilizing a simulated flue gas stream. Greater than 90% CO2 capture combined with 97

  20. Performance of Nafion-TiO2 hybrid membranes and PtSn/C electrocatalysts in PEM type fuel cells fed with ethanol and H2/CO at high temperature

    International Nuclear Information System (INIS)

    Isidoro, Roberta Alvarenga

    2010-01-01

    In this work, Nafion-TiO 2 hybrid electrolytes and PtSn/C electrocatalysts were synthesized for the application in direct ethanol fuel cell operating at high temperature (130 degree C). For this purpose, TiO 2 particles were incorporated in commercial Nafion membranes by an 'in situ' sol gel route. The resulting materials were characterized by gravimetric analysis, water uptake, DSC, XRD and EDX. Electrocatalysts based on carbon dispersed platinum-tin (PtSn/C), with different composition, were produced by alcohol-reduction method and were employed as anodic electrode. The electrocatalysts were characterized by XRD, EDX, XPS and transmission electronic spectroscopy. The electrochemical characterization was conducted by cyclic voltametry, carbon monoxide linear anodic voltammetry (CO stripping), and chronoamperometry. Membrane-electrodes assembly (MEAs) were formed with PtSn/C anodes, Pt/C cathodes and Nafion-TiO 2 hybrids. The performance of these MEA was evaluated in single-cell fed with H2/CO mixture or ethanol solution at the anode and oxygen at the cathode in the temperature range of 80-130 degree C. The analysis showed that the hybrid membranes improved the DEFC performance due to crossover suppression and that PtSn/C 70:30 electrocatalysts, prepared by an alcohol reduction process, showed better performance in ethanol oxidation. (author)

  1. Study on the structure of Co/ZrO2-SiO2 catalysts by XAFS

    International Nuclear Information System (INIS)

    Gao Haiyan; Xiang Hongwei; Li Yongwang; Sun Yuhan; Liu Tao; Xie Yaning; Hu Tiandou

    2002-01-01

    The Co-based catalysts have been extensively used in converting CO to longer chain hydrocarbons which can then be hydrocracked to diesel oil with high grade. SiO 2 is one of the most commonly used carriers for Co-based catalysts. It is showed that commercial silica carrier after modification can lead to much high reaction activity and selectivity to heavy hydrocarbons. But the structure of Co-based catalysts supported on the modified carrier has not been clearly understood. XAFS is used to investigate the change of structure of cobalt species in Co-based catalysts supported on modified carriers. The result from XAFS indicate that the structure of Co-based catalysts supported on modified carrier has certain change in comparison with Co-based catalyst supported on commercial silica. The interaction between carrier and metal is woken in the modified catalysts. Especially, the structure of catalysts after reduction have distinct difference. The extent of reduction in modified catalysts is much more than the catalyst supported on commercial silica. Cobalt species of the catalyst supported commercial silica after reduction dose exist mainly in the form of cobalt metal forms and may exist in the form of Co 2 SiO 4 surface compound

  2. Symmetrical synergy of hybrid Co9S8-MoSx electrocatalysts for hydrogen evolution reaction

    KAUST Repository

    Zhou, Xiaofeng

    2017-01-07

    There exists a strong demand to replace expensive noble metal catalysts with efficient and earth-abundant catalysts for hydrogen evolution reaction (HER). Recently the Co- and Mo-based sulfides such as CoS2, Co9S8, and MoSx have been considered as several promising HER candidates. Here, a highly active and stable hybrid electrocatalyst 3D flower-like hierarchical Co9S8 nanosheets incorporated with MoSx has been developed via a one-step sulfurization method. Since the amounts of Co9S8 and MoSx are easily adjustable, we verify that small amounts of MoSx promotes the HER activity of Co9S8, and vise versa. In other words, we validate that symmetric synergy for HER in the Co- and Mo-based sulfide hybrid catalysts, a long-standing question requiring clear experimental proofs. Meanwhile, the best electrocatalyst Co9S8-30@MoSx/CC in this study exhibits excellent HER performance with an overpotential of −98 mV at −10 mA/cm2, a small Tafel slope of 64.8 mV/dec, and prominent electrochemical stability.

  3. Syngas Conversion to Gasoline-Range Hydrocarbons over Pd/ZnO/Al2O3 and ZSM-5 Composite Catalyst System

    Energy Technology Data Exchange (ETDEWEB)

    Dagle, Robert A.; Lizarazo Adarme, Jair A.; Lebarbier, Vanessa MC; Gray, Michel J.; White, James F.; King, David L.; Palo, Daniel R.

    2014-07-01

    A composite Pd/ZnO/Al2O3-HZSM-5 (Si/Al=40) catalytic system was evaluated for the synthesis of gasoline-range hydrocarbons directly from synthesis gas. Bifunctional catalyst comprising PdZn metal and acid sites present the required catalytically active sites necessary for the methanol synthesis, methanol dehydration, and methanol-to-gasoline reactions. This system provides a unique catalytic pathway for the production of liquid hydrocarbons directly from syngas. However, selectivity control is difficult and poses many challenges. The composite catalytic system was evaluated under various process conditions. Investigated were the effects of temperature (310-375oC), pressure (300-1000 psig), time-on-stream (50 hrs), and gas-hour space velocity (740-2970 hr-1), using a H2/CO molar syngas ratio of 2.0. By operating at the lower end of the temperature range investigated, liquid hydrocarbon formation was favored, as was decreased amounts of undesirable light hydrocarbons. However, lower operating temperatures also facilitated undesirable CO2 formation via the water-gas shift reaction. Higher operating pressures slightly favored liquid synthesis. Operating at relatively low pressures (e.g. 300 psig) was made possible, whereas for methanol synthesis alone higher pressure are usually required to achieve similar conversion levels (e.g. 1000 psig). Thermodynamic constraints on methanol synthesis are eased by pushing the equilibrium through hydrocarbon formation. Catalytic performance was also evaluated by altering Pd and Zn composition of the Pd/ZnO/Al2O3 catalyst. Of the catalysts and conditions tested, selectivity toward liquid hydrocarbon was highest when using a 5% Pd metal loading and Pd/Zn molar ratio of 0.25 and mixed with HZMS-5, operating at 310oC and 300 psig, CO conversion was 43 % and selectivity (carbon weight basis) to hydrocarbons was 49 wt. %. Of the hydrocarbon fraction, 44wt. % was in the C5-C12 liquid product range and consisted primarily of aromatic

  4. HYDROCARBON FORMATION ON POLYMER-SUPPORTED COBALT

    Energy Technology Data Exchange (ETDEWEB)

    Benner, Linda S.; Perkins, Patrick; Vollhardt, K.Peter C.

    1980-10-01

    In this report we detail the synthesis catalytic chemistry of polystyrene supported {eta}{sup 5} ~cyclopentadienyl- dicarbonyl cobalt, CpCo(CO){sub 2}. This material is active in the hydrogenation of CO to saturated linear hydrocarbons and appears to retain its "homogeneous", mononuclear character during the course of its catalysis, During ·the course of our work 18% and 20% crosslinked analogs of polystyrene supported CpCo(CO){sub 2} were shown to exhibit limited catalytic activity and no CO activation.

  5. Group additivity values for enthalpies of formation (298 K), entropies (298 K), and molar heat capacities (300 K < T < 1500 K) of gaseous fluorocarbons

    International Nuclear Information System (INIS)

    Van Otterloo, Maren K.; Girshick, Steven L.; Roberts, Jeffrey T.

    2007-01-01

    A group additivity method was developed to estimate standard enthalpies of formation and standard entropies at 298 K of linear radical and closed-shell, gaseous fluorocarbon neutrals containing four or more carbon atoms. The method can also be used to estimate constant pressure molar heat capacities of the same compounds over the temperature range 300 K to 1500 K. Seventeen groups and seven fluorine-fluorine interaction terms were defined from 12 fluorocarbon molecules. Interaction term values from Yamada and Bozzelli [T. Yamada, J.W. Bozzelli, J. Phys. Chem. A 103 (1999) 7373-7379] were utilized. The enthalpy of formation group values were derived from G3MP2 calculations by Bauschlicher and Ricca [C.W. Bauschlicher, A. Ricca, J. Phys. Chem. A 104 (2000) 4581-4585]. Standard entropy and molar heat capacity group values were estimated from ab initio geometry optimization and frequency calculations at the Hartree-Fock level using the 6-31G(d) basis set. Enthalpies of formation for larger fluorocarbons estimated from the group additivity method compare well to enthalpies of formation found in the literature

  6. Magnetic graphene oxide as adsorbent for the determination of polycyclic aromatic hydrocarbon metabolites in human urine.

    Science.gov (United States)

    Zhu, Linli; Xu, Hui

    2014-09-01

    Detection of monohydroxy polycyclic aromatic hydrocarbons metabolites in urine is an advisable and valid method to assess human environmental exposure to polycyclic aromatic hydrocarbons. In this work, novel Fe3O4/graphene oxide composites were prepared and their application in the magnetic solid-phase extraction of monohydroxy polycyclic aromatic hydrocarbons in urine was investigated by coupling with liquid chromatography and mass spectrometry. In the hybrid material, superparamagnetic Fe3O4 nanoparticles provide fast separation to simplify the analytical process and graphene oxide provides a large functional surface for the adsorption. The prepared magnetic nanocomposites were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and vibrating sample magnetometry. The experimental conditions were optimized systematically. Under the optimal conditions, the recoveries of these compounds were in the range of 98.3-125.2%, the relative standard deviations ranged between 6.8 and 15.5%, and the limits of detection were in the range of 0.01-0.15 ng/mL. The simple, quick, and affordable method was successfully used in the analysis of human urinary monohydroxy polycyclic aromatic hydrocarbons in two different cities. The results indicated that the monohydroxy polycyclic aromatic hydrocarbons level in human urine can provide useful information for environmental exposure to polycyclic aromatic hydrocarbons. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. CoFe2O4@MIL-100(Fe) hybrid magnetic nanoparticles exhibit fast and selective adsorption of arsenic with high adsorption capacity

    Science.gov (United States)

    Yang, Ji-Chun; Yin, Xue-Bo

    2017-01-01

    In this study, we report the synthesis and application of mesoporous CoFe2O4@MIL-100(Fe) hybrid magnetic nanoparticles (MNPs) for the simultaneous removal of inorganic arsenic (iAs). The hybrid adsorbent had a core-shell and mesoporous structure with an average diameter of 260 nm. The nanoscale size and mesoporous character impart a fast adsorption rate and high adsorption capacity for iAs. In total, 0.1 mg L−1 As(V) and As(III) could be adsorbed within 2 min, and the maximum adsorption capacities were 114.8 mg g−1 for As(V) and 143.6 mg g−1 for As(III), higher than most previously reported adsorbents. The anti-interference capacity for iAs adsorption was improved by the electrostatic repulsion and size exclusion effects of the MIL-100(Fe) shell, which also decreased the zero-charge point of the hybrid absorbent for a broad pH adsorption range. The adsorption mechanisms of iAs on the MNPs are proposed. An Fe-O-As structure was formed on CoFe2O4@MIL-100(Fe) through hydroxyl substitution with the deprotonated iAs species. Monolayer adsorption of As(V) was observed, while hydrogen bonding led to the multi-layer adsorption of neutral As(III) for its high adsorption capacity. The high efficiency and the excellent pH- and interference-tolerance capacities of CoFe2O4@MIL-100(Fe) allowed effective iAs removal from natural water samples, as validated with batch magnetic separation mode and a portable filtration strategy. PMID:28102334

  8. Functionalized graphene oxide quantum dot-PVA hydrogel: a colorimetric sensor for Fe2+, Co2+ and Cu2+ ions

    Science.gov (United States)

    Baruah, Upama; Chowdhury, Devasish

    2016-04-01

    Functionalized graphene oxide quantum dots (GOQDs)-poly(vinyl alcohol) (PVA) hybrid hydrogels were prepared using a simple, facile and cost-effective strategy. GOQDs bearing different surface functional groups were introduced as the cross-linking agent into the PVA matrix thereby resulting in gelation. The four different types of hybrid hydrogels were prepared using graphene oxide, reduced graphene oxide, ester functionalized graphene oxide and amine functionalized GOQDs as cross-linking agents. It was observed that the hybrid hydrogel prepared with amine functionalized GOQDs was the most stable. The potential applicability of using this solid sensing platform has been subsequently explored in an easy, simple, effective and sensitive method for optical detection of M2+ (Fe2+, Co2+ and Cu2+) in aqueous media involving colorimetric detection. Amine functionalized GOQDs-PVA hybrid hydrogel when put into the corresponding solution of Fe2+, Co2+ and Cu2+ renders brown, orange and blue coloration respectively of the solution detecting the presence of Fe2+, Co2+ and Cu2+ ions in the solution. The minimum detection limit observed was 1 × 10-7 M using UV-visible spectroscopy. Further, the applicability of the sensing material was also tested for a mixture of co-existing ions in solution to demonstrate the practical applicability of the system. Insight into the probable mechanistic pathway involved in the detection process is also being discussed.

  9. Worldwide overview of hydrocarbons and perspectives

    International Nuclear Information System (INIS)

    Tonnac, Alain de; Perves, Jean-Pierre

    2013-12-01

    This publication presents and comments data regarding the share of hydrocarbons in the world energy consumption, hydrocarbon trade flows, the new situation created by the emergence of shale hydrocarbons and the consequences for the world economy, and possible risks. The authors first comment the evolution of energy consumption and outline that the objectives of CO 2 and greenhouse gas emission will not be reached (these emissions increased in 2012 and in 2013). They indicate the emission situation in the USA and Japan, and notice that the objectives defined by the IEA are quite different from those defined by the EU. They analyse the evolutions by distinguishing different periods: 2005-2008 as a reference period, 2008-2012 as a period of change, and the current period as a period of flow inversion. Then, the authors propose two different scenarios of evolution of economic and energy policies. The evolution of hydrocarbon demand is commented, and the levels of reserves (oil, conventional gas, coal, nuclear fuels) are discussed. The market evolution is also discussed, not only from an economic point of view, but also in relationship with geopolitics. The authors notably outline that the energy price is different from one country to the other, discuss the issue of hydrocarbon refining, the role of CO 2 tax

  10. Real-world fuel economy and CO2 emissions of plug-in hybrid electric vehicles

    International Nuclear Information System (INIS)

    Ploetz, Patrick; Funke, Simon Arpad; Jochem, Patrick

    2015-01-01

    Plug-in hybrid electric vehicles (PHEV) combine electric propulsion with an internal combustion engine. Their potential to reduce transport related green-house gas emissions highly depends on their actual usage and electricity provision. Various studies underline their environmental and economic advantages, but are based on standardised driving cycles, simulations or small PHEV fleets. Here, we analyse real-world fuel economy of PHEV and the factors influencing it based on about 2,000 actual PHEV that have been observed over more than a year in the U.S. and Germany. We find that real-world fuel economy of PHEV differ widely among users. The main factors explaining this variation are the annual mileage, the regularity of daily driving, and the likelihood of long-distance trips. Current test cycle fuel economy ratings neglect these factors. Despite the broad range of PHEV fuel economies, the test cycle fuel economy ratings can be close to empiric PHEV fleet averages if the average annual mile-age is about 17,000 km. For the largest group of PHEV in our data, the Chevrolet Volt, we find the average fuel economy to be 1.45 litres/100 km at an average electric driving share of 78%. The resulting real-world tank-to-wheel CO 2 emissions of these PHEV are 42 gCO 2 /km and the annual CO 2 savings in the U.S. amount to about 50 Mt. In conclusion, the variance of empirical PHEV fuel economy is considerably higher than of conventional vehicles. This should be taken into account by future test cycles and high electric driving shares should be incentivised.

  11. Effect of substrate temperature on the structure of amorphous oxygenated hydrocarbon films grown with a pulsed supersonic methane plasma flow

    Energy Technology Data Exchange (ETDEWEB)

    Fedoseeva, Yu. V., E-mail: fedoseeva@niic.nsc.ru [Nikolaev Institute of Inorganic Chemistry SB RAS, Novosibirsk 630090 (Russian Federation); Novosibirsk State University, Novosibirsk 630090 (Russian Federation); Pozdnyakov, G.A. [Khristianovich Institute of Theoretical and Applied Mechanics, SB RAS, Novosibirsk 630090 (Russian Federation); Okotrub, A.V.; Kanygin, M.A. [Nikolaev Institute of Inorganic Chemistry SB RAS, Novosibirsk 630090 (Russian Federation); Novosibirsk State University, Novosibirsk 630090 (Russian Federation); Nastaushev, Yu. V. [Rzhanov Institute of Semiconductor Physics SB RAS, Novosibirsk 630090 (Russian Federation); Vilkov, O.Y. [St. Petersburg State University, St. Petersburg 198504 (Russian Federation); Bulusheva, L.G. [Nikolaev Institute of Inorganic Chemistry SB RAS, Novosibirsk 630090 (Russian Federation); Novosibirsk State University, Novosibirsk 630090 (Russian Federation)

    2016-11-01

    Highlights: • A deposition of supersonic methane plasma flow on silicon substrate produces amorphous oxygenated hydrocarbon (CO{sub x}H{sub y}) film. • The thickness, composition, and wettability of the film depend on the substrate temperature. • A rise of the substrate temperature from 500 to 700 °C promotes the sp{sup 3}-hybridization carbon formation. - Abstract: Since amorphous oxygenated hydrocarbon (CO{sub x}H{sub y}) films are promising engineering materials a study of the structure and composition of the films depending on the conditions of synthesis is important for controlling of their physicochemical properties. Here, we used the methods of scanning and transmission electron microscopy, X-ray photoelectron, near-edge X-ray absorption fine structure, Fourier transform infrared and Raman spectroscopy to reveal changes in the chemical connectivity of CO{sub x}H{sub y} films grown on silicon substrates heated to 300, 500, and 700 °C using a supersonic flow of methane plasma. It was found that the CO{sub x}H{sub y} films, deposited at 300 and 500 °C, were mainly composed of the sp{sup 2}-hybridized carbon areas with various oxygen species. A rise of the substrate temperature caused an increase of the portion of tetrahedral carbon atoms as well as carboxyl and hydroxyl groups. With growth of the substrate temperature, the film thickness reduced monotonically from 400 to 180 nm, while the film adhesion improved substantially. The films, deposited at lower temperatures, showed high hydrophilicity due to porosity and presence of oxygenated groups both at the surface and in the bulk.

  12. Effect of subcritical CO{sub 2} on ionic conductivity of (Al[O(CH{sub 2}CH{sub 2}O){sub 8.7}]{sub r}/(LiClO{sub 4}){sub z}){sub n} hybrid inorganic-organic networks

    Energy Technology Data Exchange (ETDEWEB)

    Vezzu, Keti; Bertucco, Alberto [Universita di Padova, Padova (Italy). Dipartimento di Principi e Impianti di Ingegneria Chimica ' I. Sorgato' ; Zago, Vanni; Vittadello, Michele; Noto, Vito Di [Universita di Padova, Padova (Italy). Dipartimento di Scienze Chimiche

    2006-01-20

    The aim of this work is to study the effect of CO{sub 2} under pressure on hybrid inorganic-organic polymer electrolytes, by using broad band dielectric spectroscopy (BDS) in the frequency interval 40Hz-10MHz and in the temperature range of -80 to 120{sup o}C. Eleven inorganic-organic hybrid materials of the ORMOCERs type, with general formula (Al[O(CH{sub 2}CH{sub 2}O){sub 8.7}]{sub r}/(LiClO{sub 4}){sub z}){sub n} were treated by applying CO{sub 2} at 293K and 5MPa. The results demonstrated that the CO{sub 2} treatment generally depressed the conductivity of about one order of magnitude. The decreased conductivity in treated complexes is explained in terms of a smaller anion-trapping ability of the Al centers. Residual CO{sub 2} molecules are likely to inhibit the interaction of the perchlorate anions with Al centers within the structure. Segmental motion of the polymer chains plays a crucial role in the conductivity of investigated samples, while the ion-hopping phenomenon is the most important charge transfer mechanism both in the pristine and CO{sub 2} treated materials. Equivalent conductivity studies have elucidated the different ionic species present at various salt concentrations and gave insight about the role of CO{sub 2} in modifying the transport properties of the samples. (author)

  13. Elevated atmospheric CO2 concentration leads to increased whole-plant isoprene emission in hybrid aspen (Populus tremula × Populus tremuloides).

    Science.gov (United States)

    Sun, Zhihong; Niinemets, Ülo; Hüve, Katja; Rasulov, Bahtijor; Noe, Steffen M

    2013-05-01

    Effects of elevated atmospheric [CO2] on plant isoprene emissions are controversial. Relying on leaf-scale measurements, most models simulating isoprene emissions in future higher [CO2] atmospheres suggest reduced emission fluxes. However, combined effects of elevated [CO2] on leaf area growth, net assimilation and isoprene emission rates have rarely been studied on the canopy scale, but stimulation of leaf area growth may largely compensate for possible [CO2] inhibition reported at the leaf scale. This study tests the hypothesis that stimulated leaf area growth leads to increased canopy isoprene emission rates. We studied the dynamics of canopy growth, and net assimilation and isoprene emission rates in hybrid aspen (Populus tremula × Populus tremuloides) grown under 380 and 780 μmol mol(-1) [CO2]. A theoretical framework based on the Chapman-Richards function to model canopy growth and numerically compare the growth dynamics among ambient and elevated atmospheric [CO2]-grown plants was developed. Plants grown under elevated [CO2] had higher C : N ratio, and greater total leaf area, and canopy net assimilation and isoprene emission rates. During ontogeny, these key canopy characteristics developed faster and stabilized earlier under elevated [CO2]. However, on a leaf area basis, foliage physiological traits remained in a transient state over the whole experiment. These results demonstrate that canopy-scale dynamics importantly complements the leaf-scale processes, and that isoprene emissions may actually increase under higher [CO2] as a result of enhanced leaf area production. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  14. Mixed-Matrix Membranes for CO2 and H2 Gas Separations Using Metal-Organic Framework and Mesoporus Hybrid Silicas

    International Nuclear Information System (INIS)

    Musselman, Inga; Balkus, Kenneth Jr.; Ferraris, John

    2009-01-01

    In this work, we have investigated the separation performance of polymer-based mixed-matrix membranes containing metal-organic frameworks and mesoporous hybrid silicas. The MOF/Matrimid(reg s ign) and MOP-18/Matrimid(reg s ign) membranes exhibited improved dispersion and mechanical strength that allowed high additive loadings with reduced aggregation, as is the case of the 80 wt% MOP-18/Matrimid(reg s ign) and the 80% (w/w) Cu-MOF/Matrimid(reg s ign) membranes. Membranes with up to 60% (w/w) ZIF-8 content exhibited similar mechanical strength and improved dispersion. The H 2 /CO 2 separation properties of MOF/Matrimid(reg s ign) mixed-matrix membranes was improved by either keeping the selectivity constant and increasing the permeability (MOF-5, Cu-MOF) or by improving both selectivity and permeability (ZIF-8). In the case of MOF-5/Matrimid(reg s ign) mixed-matrix membranes, the H 2 /CO 2 selectivity was kept at 2.6 and the H 2 permeability increased from 24.4 to 53.8 Barrers. For the Cu-MOF/Matrimid(reg s ign) mixed-matrix membranes, the H 2 /CO 2 selectivity was kept at 2.05 and the H 2 permeability increased from 17.1 to 158 Barrers. These two materials introduced porosity and uniform paths that enhanced the gas transport in the membranes. When ZIF-8/Matrimid(reg s ign) mixed-matrix membranes were studied, the H 2 /CO 2 selectivity increased from 2.9 to 4.4 and the permeability of H 2 increased from 26.5 to 35.8 Barrers. The increased H 2 /CO 2 selectivity in ZIF-8/Matrimid(reg s ign) membranes was explained by the sieving effect introduced by the ZIF-8 crystals (pore window 0.34 nm) that restricted the transport of molecules larger than H 2 . Materials with microporous and/or mesoporous cavities like carbon aerogel composites with zeolite A and zeolite Y, and membranes containing mesoporous ZSM-5 showed sieving effects for small molecules (e.g. H 2 and CO 2 ), however, the membranes were most selective for CO 2 due to the strong interaction of the zeolites with

  15. Facile one-pot synthesis of CoS_2-MoS_2/CNTs as efficient electrocatalyst for hydrogen evolution reaction

    International Nuclear Information System (INIS)

    Liu, Yan-Ru; Hu, Wen-Hui; Li, Xiao; Dong, Bin; Shang, Xiao; Han, Guan-Qun; Chai, Yong-Ming; Liu, Yun-Qi; Liu, Chen-Guang

    2016-01-01

    Highlights: • Ternary hybrid CoS_2-MoS_2/CNTs electrocatalysts have been prepared. • CNTs as support may provide good conductivity and low the agglomeration of MoS_2. • CoS_2 with intrinsic metallic conductivity may enhance the activity for HER. • Ternary CoS_2-MoS_2/CNTs have the better activity and stability for HER. - Abstract: Ternary hybrid cobalt disulfide-molybdenum disulfides supported on carbon nanotubes (CoS_2-MoS_2/CNTs) electrocatalysts have been prepared via a simple hydrothermal method. CNTs as support may provide good conductivity and low the agglomeration of layered MoS_2 structure. CoS_2 with intrinsic metallic conductivity may enhance the activity of the ternary hybrid electrocatalysts for hydrogen evolution reaction (HER). X-ray diffraction (XRD) data confirm the formation of ternary hybrid nanocomposites composed of CNTs, CoS_2 and amorphous MoS_2. Scanning electron microscopy (SEM) images show that strong combination between MoS_2, CNTs and regular orthohexagonal CoS_2 has been obtained. The dispersion of each component is good and no obvious agglomeration can be observed. It is found that compared with CoS_2/CNTs and MoS_2/CNTs, the ternary CoS_2-MoS_2/CNTs have the better activity for HER with a low onset potential of 70 mV (vs. RHE) and a small Talel slope of 67 mV dec"−"1, and are extremely stable after 1000 cycles. In addition, the optimal doping ratio of Co to Mo is 2:1, which have better HER activity. It is proved that the introduction of carbon materials and Co atoms could improve the performances of MoS_2-based electrocatalysts for HER.

  16. Electrochemical production of hydrocarbons from carbon dioxide and water

    NARCIS (Netherlands)

    Ros, C.H.

    2016-01-01

    Electrocatalytic reduction of CO2 is one possibility to solve the electrical energy storage problem and decrease the amount of CO2. Copper is the only metal that has been reported to produce hydrocarbons in the electrochemical CO2 reduction at ambient pressure and temperature. External parameters

  17. Solar kerosene from H2O and CO2

    Science.gov (United States)

    Furler, P.; Marxer, D.; Scheffe, J.; Reinalda, D.; Geerlings, H.; Falter, C.; Batteiger, V.; Sizmann, A.; Steinfeld, A.

    2017-06-01

    The entire production chain for renewable kerosene obtained directly from sunlight, H2O, and CO2 is experimentally demonstrated. The key component of the production process is a high-temperature solar reactor containing a reticulated porous ceramic (RPC) structure made of ceria, which enables the splitting of H2O and CO2 via a 2-step thermochemical redox cycle. In the 1st reduction step, ceria is endo-thermally reduced using concentrated solar radiation as the energy source of process heat. In the 2nd oxidation step, nonstoichiometric ceria reacts with H2O and CO2 to form H2 and CO - syngas - which is finally converted into kerosene by the Fischer-Tropsch process. The RPC featured dual-scale porosity for enhanced heat and mass transfer: mm-size pores for volumetric radiation absorption during the reduction step and μm-size pores within its struts for fast kinetics during the oxidation step. We report on the engineering design of the solar reactor and the experimental demonstration of over 290 consecutive redox cycles for producing high-quality syngas suitable for the processing of liquid hydrocarbon fuels.

  18. Effect of Orbital Hybridization on Spin-Polarized Tunneling across Co/C60 Interfaces.

    Science.gov (United States)

    Wang, Kai; Strambini, Elia; Sanderink, Johnny G M; Bolhuis, Thijs; van der Wiel, Wilfred G; de Jong, Michel P

    2016-10-26

    The interaction between ferromagnetic surfaces and organic semiconductors leads to the formation of hybrid interfacial states. As a consequence, the local magnetic moment is altered, a hybrid interfacial density of states (DOS) is formed, and spin-dependent shifts of energy levels occur. Here, we show that this hybridization affects spin transport across the interface significantly. We report spin-dependent electronic transport measurements for tunnel junctions comprising C 60 molecular thin films grown on top of face-centered-cubic (fcc) epitaxial Co electrodes, an AlO x tunnel barrier, and an Al counter electrode. Since only one ferromagnetic electrode (Co) is present, spin-polarized transport is due to tunneling anisotropic magnetoresistance (TAMR). An in-plane TAMR ratio of approximately 0.7% has been measured at 5 K under application of a magnetic field of 800 mT. The magnetic switching behavior shows some remarkable features, which are attributed to the rotation of interfacial magnetic moments. This behavior can be ascribed to the magnetic coupling between the Co thin films and the newly formed Co/C 60 hybridized interfacial states. Using the Tedrow-Meservey technique, the tunnel spin polarization of the Co/C 60 interface was found to be 43%.

  19. Capture and geologic storage of carbon dioxide (CO2)

    International Nuclear Information System (INIS)

    2004-11-01

    This dossier about carbon sequestration presents: 1 - the world fossil fuels demand and its environmental impact; 2 - the solutions to answer the climatic change threat: limitation of fossil fuels consumption, development of nuclear and renewable energies, capture and storage of CO 2 (environmental and industrial advantage, cost); 3 - the CO 2 capture: post-combustion smokes treatment, oxi-combustion techniques, pre-combustion techniques; 4 - CO 2 storage: in hydrocarbon deposits (Weyburn site in Canada), in deep saline aquifers (Sleipner and K12B (North Sea)), in non-exploitable coal seams (Recopol European project); 5 - international and national mobilization: IEA R and D program, USA (FutureGen zero-emission coal-fired power plant, Carbon Sequestration Leadership forum), European Union (AZEP, GRACE, GESTCO, CO2STORE, NASCENT, RECOPOL, Castor, ENCAP, CO2sink etc programs), French actions (CO 2 club, network of oil and gas technologies (RTPG)), environmental stake, competitiveness, research stake. (J.S.)

  20. CO- and HCl-free synthesis of acid chlorides from unsaturated hydrocarbons via shuttle catalysis

    Science.gov (United States)

    Fang, Xianjie; Cacherat, Bastien; Morandi, Bill

    2017-11-01

    The synthesis of carboxylic acid derivatives from unsaturated hydrocarbons is an important process for the preparation of polymers, pharmaceuticals, cosmetics and agrochemicals. Despite its industrial relevance, the traditional Reppe-type carbonylation reaction using pressurized CO is of limited applicability to laboratory-scale synthesis because of: (1) the safety hazards associated with the use of CO, (2) the need for special equipment to handle pressurized gas, (3) the low reactivity of several relevant nucleophiles and (4) the necessity to employ different, often tailor-made, catalytic systems for each nucleophile. Herein we demonstrate that a shuttle-catalysis approach enables a CO- and HCl-free transfer process between an inexpensive reagent, butyryl chloride, and a wide range of unsaturated substrates to access the corresponding acid chlorides in good yields. This new transformation provides access to a broad range of carbonyl-containing products through the in situ transformation of the reactive acid chloride intermediate. In a broader context, this work demonstrates that isodesmic shuttle-catalysis reactions can unlock elusive catalytic reactions.

  1. Effects of Bonding Types and Functional Groups on CO 2 Capture using Novel Multiphase Systems of Liquid-like Nanoparticle Organic Hybrid Materials

    KAUST Repository

    Lin, Kun-Yi Andrew

    2011-08-01

    Novel liquid-like nanoparticle organic hybrid materials (NOHMs) which possess unique features including negligible vapor pressure and a high degree of tunability were synthesized and their physical and chemical properties as well as CO 2 capture capacities were investigated. NOHMs can be classified based on the synthesis methods involving different bonding types, the existence of linkers, and the addition of task-specific functional groups including amines for CO 2 capture. As a canopy of polymeric chains was grafted onto the nanoparticle cores, the thermal stability of the resulting NOHMs was improved. In order to isolate the entropy effect during CO 2 capture, NOHMs were first prepared using polymers that do not contain functional groups with strong chemical affinity toward CO 2. However, it was found that even ether groups on the polymeric canopy contributed to CO 2 capture in NOHMs via Lewis acid-base interactions, although this effect was insignificant compared to the effect of task-specific functional groups such as amine. In all cases, a higher partial pressure of CO 2 was more favorable for CO 2 capture, while a higher temperature caused an adverse effect. Multicyclic CO 2 capture tests confirmed superior recyclability of NOHMs and NOHMs also showed a higher selectivity toward CO 2 over N 2O, O 2 and N 2. © 2011 American Chemical Society.

  2. In situ biosynthesis of bacterial nanocellulose-CaCO3 hybrid bionanocomposite: One-step process

    International Nuclear Information System (INIS)

    Mohammadkazemi, Faranak; Faria, Marisa; Cordeiro, Nereida

    2016-01-01

    In this work, a simple and green route to the synthesis of the bacterial nanocellulose-calcium carbonate (BNC/CaCO 3 ) hybrid bionanocomposites using one-step in situ biosynthesis was studied. The CaCO 3 was incorporated in the bacterial nanocellulose structure during the cellulose biosynthesis by Gluconacetobacter xylinus PTCC 1734 bacteria. Hestrin-Schramm (HS) and Zhou (Z) culture media were used to the hybrid bionanocomposites production and the effect of ethanol addition was investigated. Attenuated total reflection Fourier transform infrared spectroscopy, field emission scanning electron microscopy, X-ray diffraction, energy-dispersive X-ray spectroscopy, inverse gas chromatography and thermogravimetric analysis were used to characterize the samples. The experimental results demonstrated that the ethanol and culture medium play an important role in the BNC/CaCO 3 hybrid bionanocomposites production, structure and properties. The BNC/CaCO 3 biosynthesized in Z culture medium revealed higher O/C ratio and amphoteric surface character, which justify the highest CaCO 3 content incorporation. The CaCO 3 was incorporated into the cellulosic matrix decreasing the bacterial nanocellulose crystallinity. This work reveals the high potential of in situ biosynthesis of BNC/CaCO 3 hybrid bionanocomposites and opens a new way to the high value-added applications of bacterial nanocellulose. - Graphical Abstract: Display Omitted - Highlights: • BNC/CaCO 3 hybrid bionanocomposites were produced using in situ biosynthesis process. • Ethanol and culture medium play an important role in the production and properties. • Z-BNC/CaCO 3 bionanocomposites revealed higher O/C ratio and amphoteric surface character. • CaCO 3 incorporated into the BNC decreased crystallinity.

  3. Magnetic silica hybrids modified with guanidine containing co-polymers for drug delivery applications

    Energy Technology Data Exchange (ETDEWEB)

    Timin, Alexander S., E-mail: a_timin@mail.ru [Inorganic Chemistry Department, Ivanovo State University of Chemistry and Technology (ISUCT), 7, Sheremetevsky prosp., 153000 Ivanovo (Russian Federation); RASA Center in Tomsk, Tomsk Polytechnic University, 30, Lenin Avenue, 634500 Tomsk (Russian Federation); Khashirova, Svetlana Yu. [Kabardino-Balkar State University, ul. Chernyshevskogo 173, Nal' chik, 360004 Kabardino-Balkaria (Russian Federation); Rumyantsev, Evgeniy V.; Goncharenko, Alexander A. [Inorganic Chemistry Department, Ivanovo State University of Chemistry and Technology (ISUCT), 7, Sheremetevsky prosp., 153000 Ivanovo (Russian Federation)

    2016-07-01

    Guanidine containing co-polymers grafted onto silica nanoparticles to form core-shell structure were prepared by sol-gel method in the presence of γ-Fe{sub 2}O{sub 3} nanoparticles. The morphological features for uncoated and coated silica particles have been characterized with scanning electron microscopy. The results show that the polymer coated silicas exhibit spherical morphology with rough polymeric surface covered by γ-Fe{sub 2}O{sub 3} nanoparticles. The grafting amount of guanidine containing co-polymers evaluated by thermogravimetric analysis was in the range from 17 to 30%. Then, the drug loading properties and cumulative release of silica hybrids modified with guanidine containing co-polymers were evaluated using molsidomine as a model drug. It was shown that after polymer grafting the loading content of molsidomine could reach up to 3.42 ± 0.21 and 2.34 ± 0.14 mg/g respectively. The maximum drug release of molsidomine is achieved at pH 1.6 (approximately 71–75% release at 37 °C), whereas at pH 7.4 drug release is lower (50.4–59.6% release at 37 °C). These results have an important implication that our magneto-controlled silica hybrids modified with guanidine containing co-polymers are promising as drug carriers with controlled behaviour under influence of magnetic field. - Highlights: • Polymer coated silica hybrids containing γ-Fe{sub 2}O{sub 3} were prepared via sol–gel method. • Polymer grafting influences pH-response and surface properties of final products. • Molsidomine as a model drug was effectively loaded into polymer coated silicas. • The drug loading depends on the nature of grafted polymer and its content.

  4. Solo Mycoremediation Impacted by Waste Hydrocarbons

    Directory of Open Access Journals (Sweden)

    Franklin Santos Freire

    2015-06-01

    Full Text Available Oil and its derivatives are the principal means of energy generation for vehicles that transport raw materials and goods produced in developed and developing regions accentuating the risk of accidents by spills in stockpiling, transport, use or discarding. The contamination by total hydrocarbons suggests the elevated propension to mutations and to the formation of carcinogenic tumors, as a consequence of the exposure to human contamination by these products. This work had as aims: a To investigate, in a laboratorial scale, the degrading capacity of autochthonous microbiota in the presence of differing concentrations of hydrocarbons (0%, 2,5%, 5% e 7,5%; b To isolate fungi tolerant to the contaminant; c To quantify and analyze the biodegradation capacity of soil through the microbial biomass and metabolic quotient; and d To set, in laboratory, ideal conditions of biodegradation of the xenobiotic compound. Some parameters of microbial activity have been evaluated, such as: biological (Carbon of microbial biomass, CO2 , qCO2 emission, and fungi growth, chemical (pH, electrical conductivity –EC –, analysis of fertility and total hydrocarbons and physical (physical composition of the soil for analysis and comparisons. The obtained results suggest that the adding of 5% of waste oil in the ground provided ideal condition for the biodegradation of he   contaminant in the environment. From the evaluated parameters, the emission of CO2 and microbial C were considered more indicative of changes in soil microbial activity subject to the addition of hydrocarbons, confirming the possibility of microremediation use.

  5. Interfacial symmetry of Co–Alq_3–Co hybrid structures for effective spin filtering

    International Nuclear Information System (INIS)

    Lam, Tu-Ngoc; Lai, Yu-Ling; Chen, Chih-Han; Chen, Po-Hung; Wei, Der-Hsin; Lin, Hong-Ji; Chen, C.T.; Sheu, Jeng-Tzong; Hsu, Yao-Jane

    2015-01-01

    Graphical abstract: - Highlights: • The spin interface at Alq_3/Co and Co/Alq_3 contacts was examined. • An interfacial symmetry was determined at Co–Alq_3–Co interfaces. • Spin-polarized N orbitals are induced within the Co atop Alq_3 hybridized interface. • The spin-filter role at the top contact interface of Alq_3/Co is proved. • Effective spin-filtering at Co–Alq_3–Co contacts was elucidated. - Abstract: Understanding the interfacial behavior at FM-OSC-FM hybrid structures for both the bottom contact (Alq_3 adsorption on Co, Co/Alq_3) and the top contact (Co atop Alq_3, Alq_3/Co) is crucial for efficient spin filtering with transport of spin-polarized charge carriers through these interfaces. X-ray photoelectron spectroscopy (XPS) spectra indicate a symmetry of charge transfer from Co to Alq_3 and the corresponding orbital hybridization to a certain extent at both contacts. The alignment of energy levels at both Alq_3/Co and Co/Alq_3 heterostructures is depicted with ultraviolet photoelectron spectroscopy (UPS). Through magnetic images acquired with a X-ray photoemission electron microscope (XPEEM), the strong hybridization of the top contact presents no micromagnetic domain but still shows magnetic coupling, to some extent, to the bottom contact in the Co–Alq_3–Co trilayer structure. Measurements of X-ray magnetic circular dichroism (XMCD) demonstrate the induced spin-polarization of non-magnetic Alq_3 at both contacts, proving Alq_3 a unique and promising organic material for spin filtering in OSV.

  6. CO2 capture by Li-functionalized silicene

    KAUST Repository

    Zhu, Jiajie

    2016-05-18

    CO2 capture and storage technology is of key importance to reduce the greenhouse effect. By its large surface area and sp3 hybridization, Li-functionalized silicene is demonstrated to be a promising CO2 absorbent that is stable up to at least 500 K and has a very high storage capacity of 28.6 mol/kg (55.7 wt%). The adsorption energy of CO2 on Li-functionalized silicene is enhanced as compared to pristine silicene, to attain an almost ideal value that still facilitates easy release. In addition, the band gap is found to change sensitively with the CO2 coverage. (© 2016 WILEY-VCH Verlag GmbH &Co. KGaA, Weinheim). © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

  7. Plasma processed coating of laser fusion targets

    International Nuclear Information System (INIS)

    Johnson, W.L.; Letts, S.A.; Myers, D.W.; Crane, J.K.; Illige, J.D.; Hatcher, C.W.

    1979-01-01

    Coatings for laser fusion targets have been deposited in an inductively coupled discharge device by plasma polymerization. Two feed gases were used: perfluoro-2-butene, which produced a fluorocarbon coating (CF 1 3 ) with a density of 1.8 g/cc, and trans-2-butene which produced a hydrocarbon coating (CH 1 3 ) with a density of 1.0 g/cc. Uniform pin-hole free films have been deposited to a thickness of up to 30 μm of fluorocarbon and up to 110 μm of hydrocarbon. The effect of process variables on surface smoothness has been investigated. The basic defect in the coating has been found to result from shadowing by a small surface irregularity in an anisotropic coating flux

  8. Facile formation of 2D Co2P@Co3O4 microsheets through in-situ toptactic conversion and surface corrosion: Bifunctional electrocatalysts towards overall water splitting

    Science.gov (United States)

    Yao, Lihua; Zhang, Nan; Wang, Yin; Ni, Yuanman; Yan, Dongpeng; Hu, Changwen

    2018-01-01

    Exploring efficient non-precious electrocatalysts for both the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is crucial for many renewable energy conversion processes. In this work, we report that 2D Co2P@Co3O4 microsheets can be prepared through an in-situ toptactic conversion from single-crystal β-Co(OH)2 microplatelets, associated with a surface phosphatization and corrosion process. The resultant Co2P@Co3O4 2D hybrid materials can further serve as self-supported bifunctional catalytic electrodes to drive the overall water splitting for HER and OER simultaneously, with low overpotentials and high long-term stability. Furthermore, a water electrolyzer based on Co2P@Co3O4 hybrid as both anode and cathode is fabricated, which achieves 10 mA cm-2 current at only 1.57 V during water splitting process. Therefore, this work provides a facile strategy to obtain 2D Co2P-based micro/nanostructures, which act as low-cost and highly active electrocatalysts towards overall water splitting application.

  9. Emissions of CO2, CO, NOx, HC, PM, HFC-134a, N2O and CH4 from the global light duty vehicle fleet

    Directory of Open Access Journals (Sweden)

    Timothy J. Wallington

    2008-04-01

    Full Text Available Vehicles emit carbon dioxide (CO2, carbon monoxide (CO, nitrogen oxides (NOx, hydrocarbons (HC, particulate matter (PM, hydrofluorocarbon 134a (HFC-134a, methane (CH4, and nitrous oxide (N2O. An understanding of these emissions is needed in discussions of climate change and local air pollution issues. To facilitate such discussions an overview of past, present, and likely future emissions from light duty vehicles is presented. Emission control technologies have reduced the emissions of CO, VOCs, PM, HFC-134a, CH4, and N2O from modern vehicles to very low levels.

  10. Versatility of hydrocarbon production in cyanobacteria.

    Science.gov (United States)

    Xie, Min; Wang, Weihua; Zhang, Weiwen; Chen, Lei; Lu, Xuefeng

    2017-02-01

    Cyanobacteria are photosynthetic microorganisms using solar energy, H 2 O, and CO 2 as the primary inputs. Compared to plants and eukaryotic microalgae, cyanobacteria are easier to be genetically engineered and possess higher growth rate. Extensive genomic information and well-established genetic platform make cyanobacteria good candidates to build efficient biosynthetic pathways for biofuels and chemicals by genetic engineering. Hydrocarbons are a family of compounds consisting entirely of hydrogen and carbon. Structural diversity of the hydrocarbon family is enabled by variation in chain length, degree of saturation, and rearrangements of the carbon skeleton. The diversified hydrocarbons can be used as valuable chemicals in the field of food, fuels, pharmaceuticals, nutrition, and cosmetics. Hydrocarbon biosynthesis is ubiquitous in bacteria, yeasts, fungi, plants, and insects. A wide variety of pathways for the hydrocarbon biosynthesis have been identified in recent years. Cyanobacteria may be superior chassis for hydrocabon production in a photosynthetic manner. A diversity of hydrocarbons including ethylene, alkanes, alkenes, and terpenes can be produced by cyanobacteria. Metabolic engineering and synthetic biology strategies can be employed to improve hydrocarbon production in cyanobacteria. This review mainly summarizes versatility and perspectives of hydrocarbon production in cyanobacteria.

  11. Evaluation on occluded hydrocarbon in deep–ultra deep ancient source rocks and its cracked gas resources

    Directory of Open Access Journals (Sweden)

    Jian Li

    2015-12-01

    Full Text Available Oil-cracked gas, as the main type of high-over mature marine natural gas in China, is mainly derived from occluded hydrocarbon. So it is significant to carry out quantitative study on occluded hydrocarbon. In this paper, the occluded hydrocarbon volume of the main basins in China was calculated depending on their types, abundances and evolution stages by means of the forward method (experimental simulation and the inversion method (geologic profile dissection. And then, occluded hydrocarbon evolution models were established for five types of source rocks (sapropelic, sapropelic prone hybrid, humic prone hybrid, humic and coal. It is shown that the hydrocarbon expulsion efficiency of sapropelic and sapropelic prone hybrid excellent source rocks is lower than 30% at the low-maturity stage, 30%–60% at the principal oil generation stage, and 50%–80% at the high-maturity stage, which are all about 10% higher than that of humic prone hybrid and humic source rocks at the corresponding stages. The resource distribution and cracked gas expulsion of occluded hydrocarbon since the high-maturity stage of marine source rocks in the Sichuan Basin were preliminarily calculated on the basis of the evolution models. The cracked gas expulsion is 230.4 × 1012 m3 at the high evolution stage of occluded hydrocarbon of the Lower Cambrian Qiongzhusi Fm in this basin, and 12.3 × 1012 m3 from the source rocks of Sinian Doushantuo Fm, indicating good potential for natural gas resources. It is indicated that the favorable areas of occluded hydrocarbon cracked gas in the Qiongzhusi Fm source rocks in the Sichuan Basin include Gaoshiti–Moxi, Ziyang and Weiyuan, covering a favorable area of 4.3 × 104 km2.

  12. Toward High-Performance Coatings for Biomedical Devices: Study on Plasma-Deposited Fluorocarbon Films and Ageing in PBS

    Directory of Open Access Journals (Sweden)

    Diego Mantovani

    2010-03-01

    Full Text Available High performance coatings tailored to medical devices represent a recognised approach to modulate surface properties. Plasma-deposited fluorocarbon films have been proposed as a potential stent coating. Previous studies have shown promising adhesion properties: the 35 nm-thick film sustained plastic deformation up to 25% such as induced during the clinical implantation. In this study, the compositional and morphological changes of plasma-deposited fluorocarbon films were examined during ageing in a pseudo-physiological medium, a phosphate buffer solution (PBS, by angle-resolved XPS, FT-IR data and AFM images. The evolution of the ageing process is discussed: defluorination and crosslinking yielded an oxidized protective top layer onto the films, which showed further degradation.

  13. Investigational study of the CO2 balance in high temperature CO2 separation technology; Nisanka tanso koon bunri gijutsu ni okeru CO2 balance ni kansuru chosa kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    An investigational study was conducted to clarify the adaptable environment and effectivity of technologies of high temperature separation/recovery/reutilization of CO2. In the study, data collection, arrangement and comparison were made of various separation technologies such as the membrane method, absorption method, adsorption method, and cryogenic separation method. With the LNG-fired power generation as an example, the adaptable environment and effectivity were made clear by making models by a process simulator, ASPEN PLUS. Moreover, using this simulator, effects of replacing the conventional steam reforming of hydrocarbon with the CO2 reforming were made clear with the methanol synthesis as an example. As to the rock fixation treatment of high temperature CO2, collection/arrangement were made of the data on the fixation treatment of the CO2 separated at high temperature into basic rocks such as peridotite and serpentinite in order to clarify the adaptable environment and effectivity of the treatment. Besides, a potentiality of the fixation to concrete waste was made clear. 57 refs., 57 figs., 93 tabs.

  14. Improved Charge Transfer in a Mn2O3@Co1.2Ni1.8O4 Hybrid for Highly Stable Alkaline Direct Methanol Fuel Cells with Good Methanol Tolerance.

    Science.gov (United States)

    Liu, Yan; Chen, Yuanzhen; Li, Sai; Shu, Chenyong; Fang, Yuan; Song, Bo

    2018-03-21

    A three-dimensional Mn 2 O 3 @Co 1.2 Ni 1.8 O 4 hybrid was synthesized via facile two-step processes and employed as a cathode catalyst in direct methanol fuel cells (DMFCs) for the first time. Because of the unique architecture with ultrathin and porous nanosheets of the Co 1.2 Ni 1.8 O 4 shell, this composite exhibits better electrochemical performance than the pristine Mn 2 O 3 . Remarkably, it shows excellent methanol tolerance, even in a high concentration solution. The DMFC was assembled with Mn 2 O 3 @Co 1.2 Ni 1.8 O 4 , polymer fiber membranes, and PtRu/C as the cathode, membrane, and anode, respectively. The power densities of 57.5 and 70.5 mW cm -2 were recorded at 18 and 28 °C, respectively, especially the former is the best result reported in the literature at such a low temperature. The stability of the Mn 2 O 3 @Co 1.2 Ni 1.8 O 4 catalyzed cathode was evaluated, and the results show that this compound possesses excellent stability in a high methanol concentration. The improved electrochemical activity could be attributed to the narrow band gap of the hybrid, which accelerates the electrons jumping from the valence band to the conduction band. Therefore, Mn III could be oxidized into Mn IV more easily, simultaneously providing an electron to the absorbed oxygen.

  15. Ultrathin Co3O4 Layers Realizing Optimized CO2 Electroreduction to Formate.

    Science.gov (United States)

    Gao, Shan; Jiao, Xingchen; Sun, Zhongti; Zhang, Wenhua; Sun, Yongfu; Wang, Chengming; Hu, Qitao; Zu, Xiaolong; Yang, Fan; Yang, Shuyang; Liang, Liang; Wu, Ju; Xie, Yi

    2016-01-11

    Electroreduction of CO2 into hydrocarbons could contribute to alleviating energy crisis and global warming. However, conventional electrocatalysts usually suffer from low energetic efficiency and poor durability. Herein, atomic layers for transition-metal oxides are proposed to address these problems through offering an ultralarge fraction of active sites, high electronic conductivity, and superior structural stability. As a prototype, 1.72 and 3.51 nm thick Co3O4 layers were synthesized through a fast-heating strategy. The atomic thickness endowed Co3O4 with abundant active sites, ensuring a large CO2 adsorption amount. The increased and more dispersed charge density near Fermi level allowed for enhanced electronic conductivity. The 1.72 nm thick Co3O4 layers showed over 1.5 and 20 times higher electrocatalytic activity than 3.51 nm thick Co3O4 layers and bulk counterpart, respectively. Also, 1.72 nm thick Co3O4 layers showed formate Faradaic efficiency of over 60% in 20 h. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Co-Simulation of Hybrid Systems with SpaceEx and Uppaal

    DEFF Research Database (Denmark)

    Bogomolov, Sergiy; Greitschus, Marius; Jensen, Peter Gjøl

    2015-01-01

    The Functional Mock-up Interface (FMI) is an industry standard which enables co-simulation of complex heterogeneous systems using multiple simulation engines. In this paper, we show how to use FMI in order to co-simulate hybrid systems modeled in the model checkers SPACEEX and UPPAAL. We show how...

  17. Hybrid chitosan–Pluronic F-127 films with BaTiO3:Co nanoparticles: Synthesis and properties

    International Nuclear Information System (INIS)

    Fuentes, S.; Dubo, J.; Barraza, N.; González, R.; Veloso, E.

    2015-01-01

    In this study, magnetic BaTiO 3 :Co (BT:Co) nanoparticles prepared using a combined sol–gel–hydrothermal technique were dispersed in a chitosan/Pluronic F-127 solution (QO/Pl) to obtain a nanocomposite hybrid films. Nanoparticles and hybrid films were characterized by X-ray powder diffraction, Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM) and alternating gradient magnetometry (AGM). Experimental results indicated that the BT:Co nanoparticles were encapsulated in the QO/Pl hybrid films and that the magnetic properties of the QO/Pl/BT:Co nanocomposites are similar to the naked BT:Co nanoparticles. Results indicate that Co doping produces an enhancement in the ferromagnetic behavior of the BT nanoparticle. The coating restricts this enhancement only to low-fields, leaving the diamagnetic behavior of BT at high-fields. Magnetically stable sizes (PSD) were obtained at 3% Co doping for both naked nanoparticles and hybrid films. These show an increased magnetic memory capacity and a softer magnetic hardness with respect to non-doped BT nanoparticles. - Highlights: • We described the synthesis of magnetic BaTiO 3 :Co dispersed in chitosan (QO)/Pluronic F-127 (Pl) solution by sonication to obtain nanocomposite hybrid films. • We describe the physical and magnetic properties of BaTiO 3 :Co nanoparticles and QO/Pl/BT:Co hybrid films. • The magnetic properties are defines by the presence of magnetic domains. These magnetic domains are close related with the amount of Co in the host lattice. • The prepared phases could be considered as multifunctional materials, with magnetic and ferri-electrical properties, with potential uses in the design of devices

  18. One-pot synthesis of hollow NiSe-CoSe nanoparticles with improved performance for hybrid supercapacitors

    Science.gov (United States)

    Chen, Haichao; Fan, Meiqiang; Li, Chao; Tian, Guanglei; Lv, Chunju; Chen, Da; Shu, Kangying; Jiang, Jianjun

    2016-10-01

    Hollow NiSe-CoSe samples have been synthesized for the first time via a one-pot solvothermal approach. The strategy is robust enough to synthesize NiSe-CoSe nanoparticles with different NiSe to CoSe ratios but with a similar hollow structure. Co ions in the NiSe-CoSe nanoparticles play decisive role for formation of the hollow structure; otherwise, the nanoparticles become solid for the NiSe sample. When used as the positive electroactive materials for energy storage, the NiSe-CoSe samples show excellent electrochemical activity in alkaline electrolyte. Using the synergistic effect between NiSe and CoSe, the electrochemical performance of NiSe-CoSe can be tuned by varying the NiSe to CoSe ratios. The NiSe-CoSe sample with a NiSe to CoSe ratio of 4:2 shows the best electrochemical performance in terms of superior specific capacity, improved rate capability and excellent cycling stability. In addition, the electrochemical performance of NiSe-CoSe sample with a NiSe to CoSe ratio of 4:2 is also evaluated via assembling hybrid supercapacitors with RGO, and the hybrid supercapacitor delivers both high power and energy densities (41.8 Wh kg-1 at 750 W kg-1 and 20.3 Wh kg-1 at 30 kW kg-1).

  19. Deep catalytic oxidation of heavy hydrocarbons on Pt/Al{sub 2}O{sub 3} catalysts; Oxydation catalytique totale des hydrocarbures lourds sur Pt/Al{sub 2}O{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Diehl, F.

    1998-12-09

    Deep oxidation by air on Pt supported on alumina of a large number of heavy hydrocarbons representative of those found in a real Diesel car exhaust has been studied. Light-off temperatures between 140 and 320 deg. C on 1%Pt/alumina (80% metal dispersion) have been found. Results show that not only the physical state around the conversion area but also the chemical nature of the hydrocarbon plays an important role. Heavy hydrocarbons deep oxidation behaviour has been classified as a function of their chemical category (alkane, alkene, aromatics etc..). Oxidation of binary mixtures of hydrocarbons has shown strong inhibition effects on n-alkane or CO oxidation by polycyclic compounds like 1-methyl-naphthalene. In some cases, by-product compounds in the gas effluent (other than CO{sub 2} and H{sub 2}O) have been identified by mass-spectrometry leading to oxidation mechanism proposals for different hydrocarbons. Catalyst nature (metal dispersion, content) influence has also been studied. It is shown that turn-over activity is favoured by the increase of the metal bulk size. Acidity influence of the carrier has shown only very little influence on n-alkane or di-aromatic compound oxidation. (author)

  20. Reversible electrical-field control of magnetization and anomalous Hall effect in Co/PMN-PT hybrid heterostructures

    Science.gov (United States)

    Wang, J.; Huang, Q. K.; Lu, S. Y.; Tian, Y. F.; Chen, Y. X.; Bai, L. H.; Dai, Y.; Yan, S. S.

    2018-04-01

    Room-temperature reversible electrical-field control of the magnetization and the anomalous Hall effect was reported in hybrid multiferroic heterojunctions based on Co/Pb(Mg1/3Nb2/3)0.7Ti0.3O3 (PMN-PT). We demonstrate herein that electrical-field-induced strain and oxygen-ion migration in ZnO/Co/PMN-PT junctions exert opposing effects on the magnetic properties of the Co sublayer, and the competition between these effects determines the final magnitude of magnetization. This proof-of-concept investigation opens an alternative way to optimize and enhance the electrical-field effect on magnetism through the combination of multiple electrical manipulation mechanisms in hybrid multiferroic devices.

  1. Novel concepts for CO2 capture

    International Nuclear Information System (INIS)

    Dijkstra, J.W.; Jansen, D.

    2004-01-01

    This paper describes the possibilities for power generation with CO 2 capture using envisaged key technologies: gas turbines, membranes and solid oxide fuel cells (SOFCs). First, the underlying programs in the Netherlands and at ECN are introduced. Then the key technologies are introduced, and concepts using these technologies are discussed. A literature overview of systems for power generation with fuel cells in combination with CO 2 capture is presented. Then a novel concept is introduced. This concept uses a water gas shift membrane reactor to convert the CO and H 2 in the SOFC anode off-gas to gain a CO 2 rich stream, which can be used for sequestration without elaborate treatment. Several implementation schemes of the technique are discussed such as atmospheric systems and hybrid SOFC-GT systems

  2. Hydrocarbon-degradation by Isolate Pseudomonas lundensis UTAR FPE2

    Directory of Open Access Journals (Sweden)

    Adeline, S. Y. Ting

    2009-01-01

    Full Text Available In this study, the potential of isolate Pseudomonas lundensis UTAR FPE2 as a hydrocarbon degrader was established. Their biodegradation activity was first detected with the formation of clearing zones on Bushnell-Hass agar plates, with the largest diameter observed on plates supplemented with paraffin, followed by mineral oil and petrol. Utilization of hydrocarbon sources were again detected in broth cultures supplemented with similar hydrocarbon substrates, where the mean viable cell count recovered from hydrocarbon-supplemented broth cultures were higher than the initial inoculum except for napthalene. In both tests, the isolate showed higher degradability towards aliphatic hydrocarbon sources, and the least activity towards the aromatic hydrocarbon naphthalene. The isolate P. lundensis UTAR FPE2 (8 log10 cfu/mL also degraded crude diesel sample, with 69% degradation during the first three days. To conclude, this study suggests the potential use of this isolate for bioremediation of hydrocarbon-contaminated environments.

  3. A Review of CO2-Enhanced Oil Recovery with a Simulated Sensitivity Analysis

    Directory of Open Access Journals (Sweden)

    Mandadige Samintha Anne Perera

    2016-06-01

    Full Text Available This paper reports on a comprehensive study of the CO2-EOR (Enhanced oil recovery process, a detailed literature review and a numerical modelling study. According to past studies, CO2 injection can recover additional oil from reservoirs by reservoir pressure increment, oil swelling, the reduction of oil viscosity and density and the vaporization of oil hydrocarbons. Therefore, CO2-EOR can be used to enhance the two major oil recovery mechanisms in the field: miscible and immiscible oil recovery, which can be further increased by increasing the amount of CO2 injected, applying innovative flood design and well placement, improving the mobility ratio, extending miscibility, and controlling reservoir depth and temperature. A 3-D numerical model was developed using the CO2-Prophet simulator to examine the effective factors in the CO2-EOR process. According to that, in pure CO2 injection, oil production generally exhibits increasing trends with increasing CO2 injection rate and volume (in HCPV (Hydrocarbon pore volume and reservoir temperature. In the WAG (Water alternating gas process, oil production generally increases with increasing CO2 and water injection rates, the total amount of flood injected in HCPV and the distance between the injection wells, and reduces with WAG flood ratio and initial reservoir pressure. Compared to other factors, the water injection rate creates the minimum influence on oil production, and the CO2 injection rate, flood volume and distance between the flood wells have almost equally important influence on oil production.

  4. Real-world fuel economy and CO{sub 2} emissions of plug-in hybrid electric vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Ploetz, Patrick; Funke, Simon Arpad; Jochem, Patrick [Fraunhofer-Institut fuer System- und Innovationsforschung (ISI), Karlsruhe (Germany). Competence Center Energiepolitik und Energiesysteme

    2015-07-01

    Plug-in hybrid electric vehicles (PHEV) combine electric propulsion with an internal combustion engine. Their potential to reduce transport related green-house gas emissions highly depends on their actual usage and electricity provision. Various studies underline their environmental and economic advantages, but are based on standardised driving cycles, simulations or small PHEV fleets. Here, we analyse real-world fuel economy of PHEV and the factors influencing it based on about 2,000 actual PHEV that have been observed over more than a year in the U.S. and Germany. We find that real-world fuel economy of PHEV differ widely among users. The main factors explaining this variation are the annual mileage, the regularity of daily driving, and the likelihood of long-distance trips. Current test cycle fuel economy ratings neglect these factors. Despite the broad range of PHEV fuel economies, the test cycle fuel economy ratings can be close to empiric PHEV fleet averages if the average annual mile-age is about 17,000 km. For the largest group of PHEV in our data, the Chevrolet Volt, we find the average fuel economy to be 1.45 litres/100 km at an average electric driving share of 78%. The resulting real-world tank-to-wheel CO{sub 2} emissions of these PHEV are 42 gCO{sub 2}/km and the annual CO{sub 2} savings in the U.S. amount to about 50 Mt. In conclusion, the variance of empirical PHEV fuel economy is considerably higher than of conventional vehicles. This should be taken into account by future test cycles and high electric driving shares should be incentivised.

  5. 40 CFR Appendix A to Subpart F of... - Specifications for Fluorocarbon and Other Refrigerants

    Science.gov (United States)

    2010-07-01

    ..., and 1C). An alternative gravimetric method is described in Appendix C to ARI Standard 700-1995. 5... fluorocarbon and other refrigerants regardless of source and lists acceptable test methods. These refrigerants... Test Methods and Maximum Permissible Contaminant Levels 5.1Referee Test. The referee test methods for...

  6. In situ biosynthesis of bacterial nanocellulose-CaCO{sub 3} hybrid bionanocomposite: One-step process

    Energy Technology Data Exchange (ETDEWEB)

    Mohammadkazemi, Faranak, E-mail: f_mkazemi@sbu.ac.ir [Department of Cellulose and Paper Technology, Faculty of New Technologies Engineering, Shahid Beheshti University, Science and Research Campus, Zirab, Savadkooh, Mazandaran (Iran, Islamic Republic of); Faria, Marisa; Cordeiro, Nereida [Faculty of Exact Science and Engineering, University of Madeira, Funchal (Portugal)

    2016-08-01

    In this work, a simple and green route to the synthesis of the bacterial nanocellulose-calcium carbonate (BNC/CaCO{sub 3}) hybrid bionanocomposites using one-step in situ biosynthesis was studied. The CaCO{sub 3} was incorporated in the bacterial nanocellulose structure during the cellulose biosynthesis by Gluconacetobacter xylinus PTCC 1734 bacteria. Hestrin-Schramm (HS) and Zhou (Z) culture media were used to the hybrid bionanocomposites production and the effect of ethanol addition was investigated. Attenuated total reflection Fourier transform infrared spectroscopy, field emission scanning electron microscopy, X-ray diffraction, energy-dispersive X-ray spectroscopy, inverse gas chromatography and thermogravimetric analysis were used to characterize the samples. The experimental results demonstrated that the ethanol and culture medium play an important role in the BNC/CaCO{sub 3} hybrid bionanocomposites production, structure and properties. The BNC/CaCO{sub 3} biosynthesized in Z culture medium revealed higher O/C ratio and amphoteric surface character, which justify the highest CaCO{sub 3} content incorporation. The CaCO{sub 3} was incorporated into the cellulosic matrix decreasing the bacterial nanocellulose crystallinity. This work reveals the high potential of in situ biosynthesis of BNC/CaCO{sub 3} hybrid bionanocomposites and opens a new way to the high value-added applications of bacterial nanocellulose. - Graphical Abstract: Display Omitted - Highlights: • BNC/CaCO{sub 3} hybrid bionanocomposites were produced using in situ biosynthesis process. • Ethanol and culture medium play an important role in the production and properties. • Z-BNC/CaCO{sub 3} bionanocomposites revealed higher O/C ratio and amphoteric surface character. • CaCO{sub 3} incorporated into the BNC decreased crystallinity.

  7. In situ biosynthesis of bacterial nanocellulose-CaCO3 hybrid bionanocomposite: One-step process.

    Science.gov (United States)

    Mohammadkazemi, Faranak; Faria, Marisa; Cordeiro, Nereida

    2016-08-01

    In this work, a simple and green route to the synthesis of the bacterial nanocellulose-calcium carbonate (BNC/CaCO3) hybrid bionanocomposites using one-step in situ biosynthesis was studied. The CaCO3 was incorporated in the bacterial nanocellulose structure during the cellulose biosynthesis by Gluconacetobacter xylinus PTCC 1734 bacteria. Hestrin-Schramm (HS) and Zhou (Z) culture media were used to the hybrid bionanocomposites production and the effect of ethanol addition was investigated. Attenuated total reflection Fourier transform infrared spectroscopy, field emission scanning electron microscopy, X-ray diffraction, energy-dispersive X-ray spectroscopy, inverse gas chromatography and thermogravimetric analysis were used to characterize the samples. The experimental results demonstrated that the ethanol and culture medium play an important role in the BNC/CaCO3 hybrid bionanocomposites production, structure and properties. The BNC/CaCO3 biosynthesized in Z culture medium revealed higher O/C ratio and amphoteric surface character, which justify the highest CaCO3 content incorporation. The CaCO3 was incorporated into the cellulosic matrix decreasing the bacterial nanocellulose crystallinity. This work reveals the high potential of in situ biosynthesis of BNC/CaCO3 hybrid bionanocomposites and opens a new way to the high value-added applications of bacterial nanocellulose. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. How secure is subsurface CO2 storage? Controls on leakage in natural CO2 reservoirs

    Science.gov (United States)

    Miocic, Johannes; Gilfillan, Stuart; McDermott, Christopher; Haszeldine, Stuart

    2014-05-01

    Carbon Capture and Storage (CCS) is the only industrial scale technology available to directly reduce carbon dioxide (CO2) emissions from fossil fuelled power plants and large industrial point sources to the atmosphere. The technology includes the capture of CO2 at the source and transport to subsurface storage sites, such as depleted hydrocarbon reservoirs or saline aquifers, where it is injected and stored for long periods of time. To have an impact on the greenhouse gas emissions it is crucial that there is no or only a very low amount of leakage of CO2 from the storage sites to shallow aquifers or the surface. CO2 occurs naturally in reservoirs in the subsurface and has often been stored for millions of years without any leakage incidents. However, in some cases CO2 migrates from the reservoir to the surface. Both leaking and non-leaking natural CO2 reservoirs offer insights into the long-term behaviour of CO2 in the subsurface and on the mechanisms that lead to either leakage or retention of CO2. Here we present the results of a study on leakage mechanisms of natural CO2 reservoirs worldwide. We compiled a global dataset of 49 well described natural CO2 reservoirs of which six are leaking CO2 to the surface, 40 retain CO2 in the subsurface and for three reservoirs the evidence is inconclusive. Likelihood of leakage of CO2 from a reservoir to the surface is governed by the state of CO2 (supercritical vs. gaseous) and the pressure in the reservoir and the direct overburden. Reservoirs with gaseous CO2 is more prone to leak CO2 than reservoirs with dense supercritical CO2. If the reservoir pressure is close to or higher than the least principal stress leakage is likely to occur while reservoirs with pressures close to hydrostatic pressure and below 1200 m depth do not leak. Additionally, a positive pressure gradient from the reservoir into the caprock averts leakage of CO2 into the caprock. Leakage of CO2 occurs in all cases along a fault zone, indicating that

  9. Facile one-pot synthesis of CoS{sub 2}-MoS{sub 2}/CNTs as efficient electrocatalyst for hydrogen evolution reaction

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yan-Ru; Hu, Wen-Hui; Li, Xiao [State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580 (China); Dong, Bin, E-mail: dongbin@upc.edu.cn [State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580 (China); College of Science, China University of Petroleum (East China), Qingdao 266580 (China); Shang, Xiao [State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580 (China); Han, Guan-Qun [State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580 (China); College of Science, China University of Petroleum (East China), Qingdao 266580 (China); Chai, Yong-Ming [State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580 (China); Liu, Yun-Qi, E-mail: liuyq@upc.edu.cn [State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580 (China); Liu, Chen-Guang [State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580 (China)

    2016-10-30

    Highlights: • Ternary hybrid CoS{sub 2}-MoS{sub 2}/CNTs electrocatalysts have been prepared. • CNTs as support may provide good conductivity and low the agglomeration of MoS{sub 2}. • CoS{sub 2} with intrinsic metallic conductivity may enhance the activity for HER. • Ternary CoS{sub 2}-MoS{sub 2}/CNTs have the better activity and stability for HER. - Abstract: Ternary hybrid cobalt disulfide-molybdenum disulfides supported on carbon nanotubes (CoS{sub 2}-MoS{sub 2}/CNTs) electrocatalysts have been prepared via a simple hydrothermal method. CNTs as support may provide good conductivity and low the agglomeration of layered MoS{sub 2} structure. CoS{sub 2} with intrinsic metallic conductivity may enhance the activity of the ternary hybrid electrocatalysts for hydrogen evolution reaction (HER). X-ray diffraction (XRD) data confirm the formation of ternary hybrid nanocomposites composed of CNTs, CoS{sub 2} and amorphous MoS{sub 2}. Scanning electron microscopy (SEM) images show that strong combination between MoS{sub 2}, CNTs and regular orthohexagonal CoS{sub 2} has been obtained. The dispersion of each component is good and no obvious agglomeration can be observed. It is found that compared with CoS{sub 2}/CNTs and MoS{sub 2}/CNTs, the ternary CoS{sub 2}-MoS{sub 2}/CNTs have the better activity for HER with a low onset potential of 70 mV (vs. RHE) and a small Talel slope of 67 mV dec{sup −1}, and are extremely stable after 1000 cycles. In addition, the optimal doping ratio of Co to Mo is 2:1, which have better HER activity. It is proved that the introduction of carbon materials and Co atoms could improve the performances of MoS{sub 2}-based electrocatalysts for HER.

  10. Two-step processing of oil shale to linear hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Eliseev, O.L.; Ryzhov, A.N.; Latypova, D.Zh.; Lapidus, A.L. [Russian Academy of Sciences, Moscow (Russian Federation). N.D. Zelinsky Institute of Organic Chemistry; Avakyan, T.A. [Gubkin Russian State University of Oil and Gas, Moscow (Russian Federation)

    2013-11-01

    Thermal and catalytic steam reforming of oil shale mined from Leningrad and Kashpir deposits was studied. Experiments were performed in fixed bed reactor by varying temperature and steam flow rate. Data obtained were approximated by empirical formulas containing some parameters calculated by least-squares method. Thus predicting amount of hydrogen, carbon monoxide and methane in producer gas is possible for given particular kind of oil shale, temperature and steam flow rate. Adding Ni catalyst enriches hydrogen and depletes CO content in effluent gas at low gasification temperatures. Modeling gas simulating steam reforming gases (H{sub 2}, CO, CO{sub 2}, and N{sub 2} mixture) was tested in hydrocarbon synthesis over Co-containing supported catalyst. Selectivity of CO conversion into C{sub 5+} hydrocarbons reaches 84% while selectivity to methane is 7%. Molecular weight distribution of synthesized alkanes obeys Anderson-Schulz-Flory equation and chain growth probability 0.84. (orig.)

  11. Comparing Existing Pipeline Networks with the Potential Scale of Future U.S. CO2 Pipeline Networks

    Energy Technology Data Exchange (ETDEWEB)

    Dooley, James J.; Dahowski, Robert T.; Davidson, Casie L.

    2008-02-29

    There is growing interest regarding the potential size of a future U.S. dedicated CO2 pipeline infrastructure if carbon dioxide capture and storage (CCS) technologies are commercially deployed on a large scale. In trying to understand the potential scale of a future national CO2 pipeline network, comparisons are often made to the existing pipeline networks used to deliver natural gas and liquid hydrocarbons to markets within the U.S. This paper assesses the potential scale of the CO2 pipeline system needed under two hypothetical climate policies and compares this to the extant U.S. pipeline infrastructures used to deliver CO2 for enhanced oil recovery (EOR), and to move natural gas and liquid hydrocarbons from areas of production and importation to markets. The data presented here suggest that the need to increase the size of the existing dedicated CO2 pipeline system should not be seen as a significant obstacle for the commercial deployment of CCS technologies.

  12. Carbon nanotube-TiO(2) hybrid films for detecting traces of O(2).

    Science.gov (United States)

    Llobet, E; Espinosa, E H; Sotter, E; Ionescu, R; Vilanova, X; Torres, J; Felten, A; Pireaux, J J; Ke, X; Van Tendeloo, G; Renaux, F; Paint, Y; Hecq, M; Bittencourt, C

    2008-09-17

    Hybrid titania films have been prepared using an adapted sol-gel method for obtaining well-dispersed hydrogen plasma-treated multiwall carbon nanotubes in either pure titania or Nb-doped titania. The drop-coating method has been used to fabricate resistive oxygen sensors based on titania or on titania and carbon nanotube hybrids. Morphology and composition studies have revealed that the dispersion of low amounts of carbon nanotubes within the titania matrix does not significantly alter its crystallization behaviour. The gas sensitivity studies performed on the different samples have shown that the hybrid layers based on titania and carbon nanotubes possess an unprecedented responsiveness towards oxygen (i.e. more than four times higher than that shown by optimized Nb-doped TiO(2) films). Furthermore, hybrid sensors containing carbon nanotubes respond at significantly lower operating temperatures than their non-hybrid counterparts. These new hybrid sensors show a strong potential for monitoring traces of oxygen (i.e. ≤10 ppm) in a flow of CO(2), which is of interest for the beverage industry.

  13. Carbon nanotube-TiO2 hybrid films for detecting traces of O2

    International Nuclear Information System (INIS)

    Llobet, E; Espinosa, E H; Sotter, E; Ionescu, R; Vilanova, X; Torres, J; Felten, A; Pireaux, J J; Ke, X; Tendeloo, G Van; Renaux, F; Paint, Y; Hecq, M; Bittencourt, C

    2008-01-01

    Hybrid titania films have been prepared using an adapted sol-gel method for obtaining well-dispersed hydrogen plasma-treated multiwall carbon nanotubes in either pure titania or Nb-doped titania. The drop-coating method has been used to fabricate resistive oxygen sensors based on titania or on titania and carbon nanotube hybrids. Morphology and composition studies have revealed that the dispersion of low amounts of carbon nanotubes within the titania matrix does not significantly alter its crystallization behaviour. The gas sensitivity studies performed on the different samples have shown that the hybrid layers based on titania and carbon nanotubes possess an unprecedented responsiveness towards oxygen (i.e. more than four times higher than that shown by optimized Nb-doped TiO 2 films). Furthermore, hybrid sensors containing carbon nanotubes respond at significantly lower operating temperatures than their non-hybrid counterparts. These new hybrid sensors show a strong potential for monitoring traces of oxygen (i.e. ≤10 ppm) in a flow of CO 2 , which is of interest for the beverage industry

  14. Direct Coupling of Thermo- and Photocatalysis for Conversion of CO2 -H2 O into Fuels.

    Science.gov (United States)

    Zhang, Li; Kong, Guoguo; Meng, Yaping; Tian, Jinshu; Zhang, Lijie; Wan, Shaolong; Lin, Jingdong; Wang, Yong

    2017-12-08

    Photocatalytic CO 2 reduction into renewable hydrocarbon solar fuels is considered as a promising strategy to simultaneously address global energy and environmental issues. This study focused on the direct coupling of photocatalytic water splitting and thermocatalytic hydrogenation of CO 2 in the conversion of CO 2 -H 2 O into fuels. Specifically, it was found that direct coupling of thermo- and photocatalysis over Au-Ru/TiO 2 leads to activity 15 times higher (T=358 K; ca. 99 % CH 4 selectivity) in the conversion of CO 2 -H 2 O into fuels than that of photocatalytic water splitting. This is ascribed to the promoting effect of thermocatalytic hydrogenation of CO 2 by hydrogen atoms generated in situ by photocatalytic water splitting. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Fluorescence in situ hybridization (CARD-FISH) of microorganisms in hydrocarbon contaminated aquifer sediment samples.

    Science.gov (United States)

    Tischer, Karolin; Zeder, Michael; Klug, Rebecca; Pernthaler, Jakob; Schattenhofer, Martha; Harms, Hauke; Wendeberg, Annelie

    2012-12-01

    Groundwater ecosystems are the most important sources of drinking water worldwide but they are threatened by contamination and overexploitation. Petroleum spills account for the most common source of contamination and the high carbon load results in anoxia and steep geochemical gradients. Microbes play a major role in the transformation of petroleum hydrocarbons into less toxic substances. To investigate microbial populations at the single cell level, fluorescence in situ hybridization (FISH) is now a well-established technique. Recently, however, catalyzed reporter deposition (CARD)-FISH has been introduced for the detection of microbes from oligotrophic environments. Nevertheless, petroleum contaminated aquifers present a worst case scenario for FISH techniques due to the combination of high background fluorescence of hydrocarbons and the presence of small microbial cells caused by the low turnover rates characteristic of groundwater ecosystems. It is therefore not surprising that studies of microorganisms from such sites are mostly based on cultivation techniques, fingerprinting, and amplicon sequencing. However, to reveal the population dynamics and interspecies relationships of the key participants of contaminant degradation, FISH is an indispensable tool. In this study, a protocol for FISH was developed in combination with cell quantification using an automated counting microscope. The protocol includes the separation and purification of microbial cells from sediment particles, cell permeabilization and, finally, CARD-FISH in a microwave oven. As a proof of principle, the distribution of Archaea and Bacteria was shown in 60 sediment samples taken across the contaminant plume of an aquifer (Leuna, Germany), which has been heavily contaminated with several ten-thousand tonnes of petroleum hydrocarbons since World War II. Copyright © 2012 Elsevier GmbH. All rights reserved.

  16. Self-assembly formation of Bi-functional Co3O4/MnO2-CNTs hybrid catalysts for achieving both high energy/power density and cyclic ability of rechargeable zinc-air battery.

    Science.gov (United States)

    Xu, Nengneng; Liu, Yuyu; Zhang, Xia; Li, Xuemei; Li, Aijun; Qiao, Jinli; Zhang, Jiujun

    2016-09-20

    α-MnO2 nanotubes-supported Co3O4 (Co3O4/MnO2) and its carbon nanotubes (CNTs)-hybrids (Co3O4/MnO2-CNTs) have been successfully developed through a facile two-pot precipitation reaction and hydrothermal process, which exhibit the superior bi-functional catalytic activity for both ORR and OER. The high performance is believed to be induced by the hybrid effect among MnO2 nanotubes, hollow Co3O4 and CNTs, which can produce a synergetic enhancement. When integrated into the practical primary and electrochemically rechargeable Zn-air batteries, such a hybrid catalyst can give a discharge peak power density as high as 450 mW cm(-2). At 1.0 V of cell voltage, a current density of 324 mA cm(-2) is achieved. This performance is superior to all reported non-precious metal catalysts in literature for zinc-air batteries and significantly outperforms the state-of-the-art platinum-based catalyst. Particularly, the rechargeable Zn-air battery can be fabricated into all-solid-state one through a simple solid-state approach, which exhibits an excellent peak power density of 62 mW cm(-2), and the charge and discharge potentials remain virtually unchanged during the overall cycles, which is comparable to the one with liquid electrolyte.

  17. Hybrid chitosan–Pluronic F-127 films with BaTiO{sub 3}:Co nanoparticles: Synthesis and properties

    Energy Technology Data Exchange (ETDEWEB)

    Fuentes, S., E-mail: sfuentes@ucn.cl [Departamento de Ciencias Farmacéuticas, Facultad de Ciencias, Universidad Católica del Norte, Casilla 1280, Antofagasta (Chile); Center for the Development of Nanoscience and Nanotechnology, CEDENNA, Santiago (Chile); Dubo, J. [Departamento de Ciencias Farmacéuticas, Facultad de Ciencias, Universidad Católica del Norte, Casilla 1280, Antofagasta (Chile); Barraza, N. [Departamento de Física, Facultad de Ciencias, Universidad Católica del Norte, Casilla 1280, Antofagasta (Chile); González, R. [Laboratorio de Magnetismo, Departamento de Ciencias Geológicas, Universidad Católica del Norte, Antofagasta (Chile); Veloso, E. [Dirección de Investigaciones Científicas y Tecnológicas, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Santiago (Chile)

    2015-03-01

    In this study, magnetic BaTiO{sub 3}:Co (BT:Co) nanoparticles prepared using a combined sol–gel–hydrothermal technique were dispersed in a chitosan/Pluronic F-127 solution (QO/Pl) to obtain a nanocomposite hybrid films. Nanoparticles and hybrid films were characterized by X-ray powder diffraction, Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM) and alternating gradient magnetometry (AGM). Experimental results indicated that the BT:Co nanoparticles were encapsulated in the QO/Pl hybrid films and that the magnetic properties of the QO/Pl/BT:Co nanocomposites are similar to the naked BT:Co nanoparticles. Results indicate that Co doping produces an enhancement in the ferromagnetic behavior of the BT nanoparticle. The coating restricts this enhancement only to low-fields, leaving the diamagnetic behavior of BT at high-fields. Magnetically stable sizes (PSD) were obtained at 3% Co doping for both naked nanoparticles and hybrid films. These show an increased magnetic memory capacity and a softer magnetic hardness with respect to non-doped BT nanoparticles. - Highlights: • We described the synthesis of magnetic BaTiO{sub 3}:Co dispersed in chitosan (QO)/Pluronic F-127 (Pl) solution by sonication to obtain nanocomposite hybrid films. • We describe the physical and magnetic properties of BaTiO{sub 3}:Co nanoparticles and QO/Pl/BT:Co hybrid films. • The magnetic properties are defines by the presence of magnetic domains. These magnetic domains are close related with the amount of Co in the host lattice. • The prepared phases could be considered as multifunctional materials, with magnetic and ferri-electrical properties, with potential uses in the design of devices.

  18. Reverse water-in-fluorocarbon emulsions for use in pressurized metered-dose inhalers containing hydrofluoroalkane propellants.

    Science.gov (United States)

    Butz, N; Porté, C; Courrier, H; Krafft, M P; Vandamme, Th F

    2002-05-15

    Pulmonary administration of drugs has demonstrated numerous advantages in the treatment of pulmonary diseases due to direct targeting to the respiratory tract. It enables avoiding the first pass effect, reduces the amount of drugs administered, targets drugs to specific sites and reduces their side effects. Reverse water-in-fluorocarbon (FC) emulsions are potential drug delivery systems for pulmonary administration using pressurized metered-dose inhalers (pMDI). The external phase of these emulsions consists of perfluorooctyl bromide (PFOB, perflubron), whereas their internal phase contains the drugs solubilized or dispersed in water. These emulsions are stabilized by a perfluoroalkylated dimorpholinophosphate (F8H11DMP), i.e. a fluorinated surfactant. This study demonstrates the possibility of delivering a reverse fluorocarbon emulsion via the pulmonary route using a CFC-free pMDI. Two hydrofluoroalkanes (HFAs) (Solkane(R) 134a and Solkane(R) 227) were used as propellants, and various solution (or emulsion)/propellant ratios (1/3, 1/2, 2/3, 1/1, 3/2, 3/1 v/v) were investigated. The insolubility of water (with or without the fluorinated surfactant F8H11DMP) in both HFA 227 and HFA 134a was demonstrated. PFOB and the reverse emulsion were totally soluble or dispersible in all proportions in both propellants. This study demonstrated also that the reverse FC emulsion can be successfully used to deliver caffeine in a homogeneous and reproducible way. The mean diameter of the emulsion water droplets in the pressured canister was investigated immediately after packaging and after 1 week of storage at room temperature. Best results were obtained with emulsion/propellant ratios comprised between 2/3 and 3/2, and with HFA 227 as propellant.

  19. A breakthrough in flue gas cleanup, CO2 mitigation and H2S removal

    Energy Technology Data Exchange (ETDEWEB)

    Koch, Wolf; Wasas, James; Stenger, Raymond; Howell, Evan

    2010-09-15

    SWAPSOL Corp. is developing commercial processes around a newly discovered reaction that reduces H2S below detectable levels while reacting with CO2 to form water, sulfur and carsuls, a carbon-sulfur polymer. The Stenger-Wasas Process (SWAP) stands to simplify sulfur removal technology as it consumes CO2 in an exothermic reaction. The SWAP has applications in landfill, sour, flue and Claus tail gas cleanup and may replace Claus technology. Destruction of waste hydrocarbons provides a source of H2S. The primary reactions and variants have been independently verified and the chemical kinetics determined by a third party laboratory.

  20. Interfacial symmetry of Co–Alq{sub 3}–Co hybrid structures for effective spin filtering

    Energy Technology Data Exchange (ETDEWEB)

    Lam, Tu-Ngoc [Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu 30010, Taiwan, ROC (China); Lai, Yu-Ling; Chen, Chih-Han [National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu Science Park, Hsinchu 30076, Taiwan, ROC (China); Chen, Po-Hung [Department of Engineering and System Science, National Tsing Hua University, Hsinchu 30013, Taiwan, ROC (China); Wei, Der-Hsin; Lin, Hong-Ji; Chen, C.T. [National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu Science Park, Hsinchu 30076, Taiwan, ROC (China); Sheu, Jeng-Tzong, E-mail: jtsheu@faculty.nctu.edu.tw [Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu 30010, Taiwan, ROC (China); Hsu, Yao-Jane, E-mail: yjhsu@nsrrc.org.tw [National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu Science Park, Hsinchu 30076, Taiwan, ROC (China); Institute of Electro-Optical Science and Engineering, National Cheng Kung University, Tainan 701, Taiwan, ROC (China)

    2015-11-01

    Graphical abstract: - Highlights: • The spin interface at Alq{sub 3}/Co and Co/Alq{sub 3} contacts was examined. • An interfacial symmetry was determined at Co–Alq{sub 3}–Co interfaces. • Spin-polarized N orbitals are induced within the Co atop Alq{sub 3} hybridized interface. • The spin-filter role at the top contact interface of Alq{sub 3}/Co is proved. • Effective spin-filtering at Co–Alq{sub 3}–Co contacts was elucidated. - Abstract: Understanding the interfacial behavior at FM-OSC-FM hybrid structures for both the bottom contact (Alq{sub 3} adsorption on Co, Co/Alq{sub 3}) and the top contact (Co atop Alq{sub 3}, Alq{sub 3}/Co) is crucial for efficient spin filtering with transport of spin-polarized charge carriers through these interfaces. X-ray photoelectron spectroscopy (XPS) spectra indicate a symmetry of charge transfer from Co to Alq{sub 3} and the corresponding orbital hybridization to a certain extent at both contacts. The alignment of energy levels at both Alq{sub 3}/Co and Co/Alq{sub 3} heterostructures is depicted with ultraviolet photoelectron spectroscopy (UPS). Through magnetic images acquired with a X-ray photoemission electron microscope (XPEEM), the strong hybridization of the top contact presents no micromagnetic domain but still shows magnetic coupling, to some extent, to the bottom contact in the Co–Alq{sub 3}–Co trilayer structure. Measurements of X-ray magnetic circular dichroism (XMCD) demonstrate the induced spin-polarization of non-magnetic Alq{sub 3} at both contacts, proving Alq{sub 3} a unique and promising organic material for spin filtering in OSV.

  1. Estimation of CO2 reduction by parallel hard-type power hybridization for gasoline and diesel vehicles.

    Science.gov (United States)

    Oh, Yunjung; Park, Junhong; Lee, Jong Tae; Seo, Jigu; Park, Sungwook

    2017-10-01

    The purpose of this study is to investigate possible improvements in ICEVs by implementing fuzzy logic-based parallel hard-type power hybrid systems. Two types of conventional ICEVs (gasoline and diesel) and two types of HEVs (gasoline-electric, diesel electric) were generated using vehicle and powertrain simulation tools and a Matlab-Simulink application programming interface. For gasoline and gasoline-electric HEV vehicles, the prediction accuracy for four types of LDV models was validated by conducting comparative analysis with the chassis dynamometer and OBD test data. The predicted results show strong correlation with the test data. The operating points of internal combustion engines and electric motors are well controlled in the high efficiency region and battery SOC was well controlled within ±1.6%. However, for diesel vehicles, we generated virtual diesel-electric HEV vehicle because there is no available vehicles with similar engine and vehicle specifications with ICE vehicle. Using a fuzzy logic-based parallel hybrid system in conventional ICEVs demonstrated that HEVs showed superior performance in terms of fuel consumption and CO 2 emission in most driving modes. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Alternative photocatalysts to TiO{sub 2} for the photocatalytic reduction of CO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Nikokavoura, Aspasia; Trapalis, Christos, E-mail: c.trapalis@inn.demokritos.gr

    2017-01-01

    Highlights: • Non TiO{sub 2} containing photocatalysts are intensively studied for CO{sub 2} reduction. • The inorganic and carbon based semiconductors are appropriate for redox reactions. • ZIFs and carbonaceous hybrids exhibited outstanding photocatalytic efficiency. • Highly active photocatalysts for CO{sub 2} conversion to useful materials are needed. - Abstract: The increased concentration of CO{sub 2} in the atmosphere, originating from the burning of fossil fuels in stationary and mobile sources, is referred as the “Anthropogenic Greenhouse Effect” and constitutes a major environmental concern. The scientific community is highly concerned about the resulting enhancement of the mean atmospheric temperature, so a vast diversity of methods has been applied. Thermochemical, electrochemical, photocatalytic, photoelectrochemical processes, as well as combination of solar electricity generation and water splitting processes have been performed in order to lower the CO{sub 2} atmospheric levels. Photocatalytic methods are environmental friendly and succeed in reducing the atmospheric CO{sub 2} concentration and producing fuels or/and useful organic compounds at the same time. The most common photocatalysts for the CO{sub 2} reduction are the inorganic, the carbon based semiconductors and the hybrids based on semiconductors, which combine stability, low cost and appropriate structure in order to accomplish redox reactions. In this review, inorganic semiconductors such as single-metal oxide, mixed-metal oxides, metal oxide composites, layered double hydroxides (LDHs), salt composites, carbon based semiconductors such as graphene based composites, CNT composites, g-C{sub 3}N{sub 4} composites and hybrid organic-inorganic materials (ZIFs) were studied. TiO{sub 2} and Ti based photocatalysts are extensively studied and therefore in this review they are not mentioned.

  3. Market penetration speed and effects on CO2 reduction of electric vehicles and plug-in hybrid electric vehicles in Japan

    International Nuclear Information System (INIS)

    Yabe, Kuniaki; Shinoda, Yukio; Seki, Tomomichi; Tanaka, Hideo; Akisawa, Atsushi

    2012-01-01

    Abstarct: In order to reduce CO 2 emissions in the passenger vehicle sector, mass introduction of electric vehicles (EVs) and plug-in hybrid electric vehicles (PHEVs) is required despite their high battery costs. This paper forecasts the rate at which EV/PHEV will penetrate into the market in the future and the effects of that spread on CO 2 reduction by using a learning curve for lithium-ion batteries, distribution of daily travel distance for each vehicle, and an optimal power generation planning model for charging vehicles. Taking into consideration each driver's economical viewpoint, the speed at which the EV/PHEV share of the new passenger vehicle market grows is fairly slow. The optimum calculation in our base case shows that the share of EV/PHEV is only a quarter even in 2050. However, the initial price and progress rate of batteries have a great effect on this share. Therefore, long-term economic support from the government and significant R and D innovation are required to reduce CO 2 drastically through cutting down battery price. The results also show how much the CO 2 emission intensity of power generation affects the CO 2 reduction rate by introducing EV/PHEV. - Highlights: ► Authors minimized the total cost of vehicle and power supply sectors until 2050. ► Simulation results show the penetration speed of PHEVs/EVs is not so fast. ► To accelerate it and reduce CO 2 , subsidies and innovations are required. ► The introduction of PHEVs/EVs is still reasonable even after the nuclear accident.

  4. H2-rich and Hydrocarbon Gas Recovered in a Deep Precambrian Well in Northeastern Kansas

    International Nuclear Information System (INIS)

    Newell, K. David; Doveton, John H.; Merriam, Daniel F.; Lollar, Barbara Sherwood; Waggoner, William M.; Magnuson, L. Michael

    2007-01-01

    In late 2005 and early 2006, the WTW Operating, LLC (W.T.W. Oil Co., Inc.) no. 1 Wilson well (T.D. = 5772 ft; 1759.3 m) was drilled for 1826 ft (556.6 m) into Precambrian basement underlying the Forest City Basin in northeastern Kansas. Approximately 4500 of the 380,000 wells drilled in Kansas penetrate Precambrian basement. Except for two previous wells drilled into the arkoses and basalts of the 1.1-Ga Midcontinent Rift and another well drilled in 1929 in basement on the Nemaha Uplift east of the Midcontinent Rift, this well represents the deepest penetration into basement rocks in the state to date. Granite is the typical lithology observed in wells that penetrate the Precambrian in the northern Midcontinent. Although no cores were taken to definitively identify lithologies, well cuttings and petrophysical logs indicate that this well encountered basement metamorphic rocks consisting of schist, gneiss, and amphibolitic gneiss, all cut by aplite dikes.The well was cased and perforated in the Precambrian, and then acidized. After several days of swabbing operations, the well produced shows of low-Btu gas, dominated by the non-flammable component gases of nitrogen (20%), carbon dioxide (43%), and helium (1%). Combustible components include methane (26%), hydrogen (10%), and higher molecular-weight hydrocarbons (1%). Although Coveney and others [Am. Assoc. Petroleum Geologists Bull., v. 71, no, 1, p. 39-48, 1987] identified H 2 -rich gas in two wells located close to the Midcontinent Rift in eastern Kansas, this study indicates that high levels of H 2 may be a more widespread phenomenon than previously thought. Unlike previous results, the gases in this study have a significant component of hydrocarbon gas, as well as H 2 , N 2 , and CO 2 . Although redox reactions between iron-bearing minerals and groundwater are a possible source of H 2 in the Precambrian basement rocks, the hydrocarbon gas does not exhibit the characteristics typically associated with proposed

  5. Récupération assistée des hydrocarbures par injection de CO2. Aspects techniques et économiques Enhanced Hydrocarbon Recovery by CO2 Flooding. Technical and Economic Aspects

    Directory of Open Access Journals (Sweden)

    Simandoux P.

    2006-11-01

    Full Text Available L'injection de gaz carbonique dans les gisements pétroliers a donné lieu depuis une quinzaine d'années à de très nombreuses études de laboratoire et sur modèles. De multiples pilotes ont été réalisés et quelques projets industriels sont en cours. II est donc intéressant de faire un bilan des connaissances et de l'expérience ainsi acquise, afin de tenter de dégager les perspectives de développement du procédé. La première partie rappelle le comportement du CO2 en présence d'hydrocarbures et les principaux mécanismes d'action dans le processus de récupération. On examine ensuite dans une deuxième partie les principales applications pilotes ou industrielles et les problèmes opérationnels rencontrés. Ce bilan permet de dégager les caractéristiques principales du procédé, les difficultés essentielles rencontrées. Un aperçu est donné sur les recherches en cours en vue de résoudre ces difficultés et améliorer le procédé. La dernière partie s'attache à préciser les perspectives d'application de l'injection de CO2 et pour cela trois aspects essentiels pour le développement du procédé sont discutés : les performances et le domaine d'emploi, la disponibilité et le coût des différentes sources potentielles de CO2 et enfin l'évaluation économique du procédé. The injection of carbon dioxide into oil fields has been the subject of extensive laboratory and modeling research for the last 15 years. Many pilot experiments have been performed, and several industrial projects are under way. Therefore it is interesting to review the state-of-the-art of the know-how and experience thus acquired so as to try to determine the outlook for the development of the process. The first part of this article reviews the behavior of CO2 in the presence of hydrocarbons and the leading action mechanisms in the recovery process. The second part examines the leading pilot or industrial applications and the operational problems

  6. Geochemical Interaction of Middle Bakken Reservoir Rock and CO2 during CO2-Based Fracturing

    Science.gov (United States)

    Nicot, J. P.; Lu, J.; Mickler, P. J.; Ribeiro, L. H.; Darvari, R.

    2015-12-01

    This study was conducted to investigate the effects of geochemical interactions when CO2 is used to create the fractures necessary to produce hydrocarbons from low-permeability Middle Bakken sandstone. The primary objectives are to: (1) identify and understand the geochemical reactions related to CO2-based fracturing, and (2) assess potential changes of reservoir property. Three autoclave experiments were conducted at reservoir conditions exposing middle Bakken core fragments to supercritical CO2 (sc-CO2) only and to CO2-saturated synthetic brine. Ion-milled core samples were examined before and after the reaction experiments using scanning electron microscope, which enabled us to image the reaction surface in extreme details and unambiguously identify mineral dissolution and precipitation. The most significant changes in the reacted rock samples exposed to the CO2-saturated brine is dissolution of the carbonate minerals, particularly calcite which displays severely corrosion. Dolomite grains were corroded to a lesser degree. Quartz and feldspars remained intact and some pyrite framboids underwent slight dissolution. Additionally, small amount of calcite precipitation took place as indicated by numerous small calcite crystals formed at the reaction surface and in the pores. The aqueous solution composition changes confirm these petrographic observations with increase in Ca and Mg and associated minor elements and very slight increase in Fe and sulfate. When exposed to sc-CO2 only, changes observed include etching of calcite grain surface and precipitation of salt crystals (halite and anhydrite) due to evaporation of residual pore water into the sc-CO2 phase. Dolomite and feldspars remained intact and pyrite grains were slightly altered. Mercury intrusion capillary pressure tests on reacted and unreacted samples shows an increase in porosity when an aqueous phase is present but no overall porosity change caused by sc-CO2. It also suggests an increase in permeability

  7. Tree age-dependent changes in photosynthetic and respiratory CO2 exchange in leaves of micropropagated diploid, triploid and hybrid aspen.

    Science.gov (United States)

    Pärnik, Tiit; Ivanova, Hiie; Keerberg, Olav; Vardja, Rael; Niinemets, Ulo

    2014-06-01

    The growth rate of triploid European aspen (Populus tremula L.) and hybrid aspen (P. tremula × Populus tremuloides Michx.) significantly exceeds that of diploid aspen, but the underlying physiological controls of the superior growth rates of these genotypes are not known. We tested the hypothesis that the superior growth rate of triploid and hybrid aspen reflects their greater net photosynthesis rate. Micropropagated clonal plants varying in age from 2.5 to 19 months were used to investigate the ploidy and plant age interaction. The quantum yield of net CO2 fixation (Φ) in leaves of young 2.5-month-old hybrid aspen was lower than that of diploid and triploid trees. However, Φ in 19-month-old hybrid aspen was equal to that in triploid aspen and higher than that in diploid aspen. Φ and the rate of light-saturated net photosynthesis (ANS) increased with plant age, largely due to higher leaf dry mass per unit area in older plants. ANS in leaves of 19-month-old trees was highest in hybrid, medium in triploid and lowest in diploid aspen. Light-saturated photosynthesis had a broad temperature optimum between 20 and 35 °C. Rate of respiration in the dark (RDS) did not vary among the genotypes in 2.5-month-old plants, and the shape of the temperature response was also similar. RDS increased with plant age, but RDS was still not significantly different among the leaves of 19-month-old diploid and triploid aspen, but it was significantly lower in leaves of 19-month-old hybrid plants. The initial differences in the growth of plants with different ploidy were minor up to the age of 19 months, but during the next 2 years, the growth rate of hybrid aspen exceeded that of triploid plants by 2.7 times and of diploid plants by five times, in line with differences in ANS of 19-month-old plants of these species. It is suggested that differences in photosynthesis and growth became more pronounced with tree aging, indicating that ontogeny plays a key role in the expression of

  8. Design, synthesis and evaluation of three-dimensional Co3O4/Co3(VO4)2 hybrid nanorods on nickel foam as self-supported electrodes for asymmetric supercapacitors

    Science.gov (United States)

    Zhang, Wei-Bin; Kong, Ling-Bin; Ma, Xue-Jing; Luo, Yong-Chun; Kang, Long

    2014-12-01

    A novel self-supported electrode of three-dimensional Co3O4/Co3(VO4)2 hybrid nanorods on the conductive substrate of nickel foam have been designed and synthesized by the combination of hydrothermal synthesis and subsequent annealing treatment. Based on the morphology, a possible mechanism is proposed. The unique nanostructure has been served as an "ion reservoir" to infiltrate between the electrode surface area and the electrolyte, which can ensure the ion/electron transfer. And the powerful distribution of electric field on nanorods makes the surface in response the electrode reaction as completely as possible. The electrode manifests satisfying capacitance of 847.2 F g-1, outstanding rate capability and excellent cycling stability. Also, an asymmetric supercapacitor has been assembled, where Co3O4/Co3(VO4)2 and activated carbon acted as the positive and negative electrodes respectively, and the maximum specific capacitance of 105 F g-1 and the specific energy of 38 Wh kg-1 are demonstrated at a cell voltage between 0 and 1.6 V, exhibiting a high energy density and stable power characteristic.

  9. Design and Analysis of the AlNiCo Hybrid Magnet in EMS Maglev Vehicles

    Directory of Open Access Journals (Sweden)

    Lv Chao

    2017-01-01

    Full Text Available In order to solve the problem of hybrid electromagnet lock orbit, we design a new type of AlNiCo-NdFeB hybrid levitation electromagnet. The theoretical analysis has be carried on and mathematical model is established for AlNiCo-NdFeB hybrid levitation electromagnet. Through two dimensional simulation, the electromagnetic characteristics of the suspended electromagnet are analyzed in the 3 typical operating conditions , which are in heavy load at gap 8mm, in full load at gap 16mm and in no-load at gap 3mm. And it’s compared with the traditional electromagnetic magnet and NdFeB hybrid electromagnet. Calculation and analysis show that the new hybrid levitation electromagnet can effectively solve the problems of the electromagnet lock orbit, at the same time, have a good dynamic performance and suspension regulation performance.

  10. Formation of hydrocarbons by bacteria and algae

    Energy Technology Data Exchange (ETDEWEB)

    Tornabene, T.G.

    1980-12-01

    A literature review has been performed summarizing studies on hydrocarbon synthesis by microorganisms. Certain algal and bacterial species produce hydrocarbons in large quantities, 70 to 80% of dry cell mass, when in a controlled environment. The nutritional requirements of these organisms are simple: CO/sub 2/ and mineral salts. The studies were initiated to determine whether or not microorganisms played a role in petroleum formation. 90 references. (DMC)

  11. Bioremediation of soils containing petroleum hydrocarbons, chlorinated phenols, and polycyclic aromatic hydrocarbons

    International Nuclear Information System (INIS)

    Seech, A.; Burwell, S.; Marvan, I.

    1994-01-01

    Bench-scale treatability investigations, pilot-scale and full-scale bioremediation projects were conducted to evaluate Daramend trademark bioremediation of soils containing petroleum hydrocarbons, heavy oils, paraffins, chlorinated phenols and polycyclic aromatic hydrocarbons (PAHs). Bench-scale investigations were conducted using glass microcosms. Pilot-scale and full-scale demonstrations were conducted at industrial sites and included treatment of excavated soils and sediments in on-site cells constructed using synthetic liners and covered by steel/polyethylene structures as well as in-situ treatment. A total of approximately 5,000 tons of soil was treated. The soil treatment included organic soil amendments, specialized tillage/aeration apparatus, and strict control of soil moisture. The amendments are composed of naturally-occurring organic materials prepared to soil-specific particle size distributions, nutrient profiles, and nutrient-release kinetics. Bench-scale work indicated that in refinery soil containing high concentrations of heavy oils, extractable hydrocarbon concentrations could be rapidly reduced to industrial clean-up criteria, and that the hydrocarbons were fully mineralized with release of CO 2

  12. Role of the adsorbed oxygen species in the selective electrochemical reduction of CO_2 to alcohols and carbonyls on copper electrodes

    International Nuclear Information System (INIS)

    Le Duff, Cecile S.; Lawrence, Matthew J.; Rodriguez, Paramaconi

    2017-01-01

    The electrochemical reduction of CO_2 into fuels has gained significant attention recently as source of renewable carbon-based fuels. The unique high selectivity of copper in the electrochemical reduction of CO_2 to hydrocarbons has called much interest in discovering its mechanism. In order to provide significant information about the role of oxygen in the electrochemical reduction of CO_2 on Cu electrodes, the conditions of the surface structure and the composition of the Cu single crystal electrodes were controlled over time. This was achieved using pulsed voltammetry, since the pulse sequence can be programmed to guarantee reproducible initial conditions for the reaction at every fraction of time and at a given frequency. In contrast to the selectivity of CO_2 reduction using cyclic voltammetry and chronoamperometric methods, a large selection of oxygenated hydrocarbons was found under alternating voltage conditions. Product selectivity towards the formation of oxygenated hydrocarbon was associated to the coverage of oxygen species, which is surface-structure- and potential-dependent. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  13. Surface characterization of hydrophobic thin films deposited by inductively coupled and pulsed plasmas

    International Nuclear Information System (INIS)

    Kim, Youngsoo; Lee, Ji-Hye; Kim, Kang-Jin; Lee, Yeonhee

    2009-01-01

    Different fluorocarbon thin films were deposited on Si substrates using a plasma-polymerization method. Fluorine-containing hydrophobic thin films were obtained by inductively coupled plasma (ICP) and pulsed plasma (PP) with a mixture of fluorocarbon precursors C 2 F 6 , C 3 F 8 , and c-C 4 F 8 and the unsaturated hydrocarbons of C 2 H 2 . The influence on the fluorocarbon surfaces of the process parameters for plasma polymerization, including the gas ratio and the plasma power, were investigated under two plasma-polymerized techniques with different fluorocarbon gas precursors. The hydrophobic properties, surface morphologies, and chemical compositions were elucidated using water contact angle measurements, field emission-scanning electron microscope, x-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FT-IR), and time-of-flight secondary ion mass spectrometry (TOF-SIMS). In this study, the ICP technique provides coarser grained films and more hydrophobic surfaces as well as a higher deposition rate compared to the PP technique. XPS, FT-IR, and TOF-SIMS analyses indicated that the ICP technique produced more fluorine-related functional groups, including CF 2 and CF 3 , on the surface. From the curve-fitted XPS results, fluorocarbon films grown under ICP technique exhibited less degree of cross-linking and higher CF 2 concentrations than those grown under PP technique.

  14. Frictional and transport properties of simulated faults in CO2 storage reservoirs and clay-rich caprocks

    NARCIS (Netherlands)

    Bakker, Elisenda

    2017-01-01

    In order to mitigate and meet CO2 emission regulations, long-term CO2 storage in hydrocarbon reservoirs is one of the most attractive large-scale options. To ensure save anthropogenic storage, it is important to maintain the sealing integrity of potential storage complexes. It is therefore

  15. Ag as an alternative for Ni in direct hydrocarbon SOFC anodes

    Energy Technology Data Exchange (ETDEWEB)

    Cantos-Gomez, A.; Van Duijn, J. [Instituto de Energias Renovables, Universidad de Castilla La Mancha, Paseo de la Investigacion 1, 02006 Albacete (Spain); Ruiz-Bustos, R. [Instituto de Energias Renovables, Parque Cientifico y Tecnologico de Albacete, Paseo de la Investigacion 1, 02006 Albacete (Spain)

    2011-02-15

    Ag has been shown to be a good metal for SOFC anode cermets using CO fuel. Here we have expanded on the work reported by testing Ag-YSZ cermets against different hydrocarbon based fuel (H{sub 2} and CH{sub 4}). This study shows that while Ag is a good current collector, it alone does not have the required catalytic activity for the direct oxidation of hydrocarbon based fuels needed to be used in SOFC anodes. As such an additional catalytic material (e.g. CeO{sub 2}) needs to be present when using fuels other then CO. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. Photo-conversion of CO2 using titanium dioxide: enhancements by plasmonic and co-catalytic nanoparticles

    International Nuclear Information System (INIS)

    Mankidy, Bijith D; Joseph, Babu; Gupta, Vinay K

    2013-01-01

    Converting carbon dioxide (CO 2 ) to hydrocarbons that can be used as fuels is beneficial from both environmental and economic points of view. In this study, nanoparticles are designed to enhance the photoreduction of CO 2 on a titanium dioxide (TiO 2 ) catalyst. An increase in catalytic activity is reported when silver (Ag), platinum (Pt) or bimetallic Ag–Pt and core–shell Ag@silica (SiO 2 ) nanoparticles are used with the TiO 2 semiconductor catalyst. Nanoparticles with different elemental composition or geometrical structure facilitate successive photo-excitation steps—generation, transport, storage and interfacial transfer of electrons and holes. Results show that while the addition of either type of nanoparticles augments product formation rates, bimetallic co-catalysts improve product selectivity. When both bimetallic co-catalysts and Ag@SiO 2 nanoparticles are used in combination, product yields are enhanced more than seven fold in comparison to native TiO 2 and high selectivity for methane (CH 4 ) is observed. When the bimetallic Ag–Pt co-catalysts are tuned, a selectivity of CH 4 of approximately 80%, as compared to 20% with only TiO 2 , can be achieved. (paper)

  17. CO2 in Alberta - a vision of the future

    International Nuclear Information System (INIS)

    Edwards, K.

    1999-01-01

    The potential to develop a province-wide infrastructure for carbon dioxide (CO 2 ) collection and transmission was discussed. The petroleum industry's original interest in CO 2 was its potential for enhanced oil recovery (EOR) for Alberta's depleted oil fields. However, new interest has stemmed from its perceived role in global climate change and the potentially negative business and economic implications of emitting CO 2 into the atmosphere. It was suggested that the development of a province wide infrastructure to collect CO 2 would address both interests. A simple screening of the reservoirs was carried out to determine if Alberta has the right oil reservoirs and sufficient CO 2 supplies to support a large-scale CO 2 infrastructure. The proposed infrastructure would consist of CO 2 supplies from electrical power generation plants, CO 2 trunklines, feeder pipelines to deliver CO 2 from the trunklines to the field and the oil reservoirs where the CO 2 would be injected. Such infrastructures already exist in Texas and Mexico where more than 1 billion scf per day of CO 2 is used for EOR. This study compared the factors leading to a large-scale CO 2 industry with factors in place during the 1970s and 1980s, when most of the hydrocarbon miscible floods were initiated in Alberta. It was concluded that the preliminary economics suggest that the concept has merit. 12 refs., 3 tabs., 9 figs

  18. Radiation aging studies of CO2 hydrocarbon mixtures for the SLD drift chamber

    International Nuclear Information System (INIS)

    Venuti, J.P.; Chadwick, G.B.

    1988-10-01

    The SLD drift chamber requires a 'slow' drifting gas and low diffusion to allow wave form digitization. CO 2 provides this but requires an admixture of a quencher to provide more gain. A test chamber with an 8 sense wire cell, such as will appear in the final chamber, was exposed to an x-ray tube while containing a variety of binary admixtures of Co 2 : 8% isobutane, 8% ethane, and 2% isopropanol. It was determined that adding small fractions of water (≤0.66%) or isopropanol (1--2%) to the Co 2 : 8% ethane, or 8% isobutane extended the useful life of the chamber so that integrated charge collections of /approximately/1 C/cm are permissible. Results and discussions are presented. 10 refs., 7 figs., 1 tab

  19. A geochemical record of polycyclic aromatic hydrocarbons (PAHs) during the late Paleozoic Ice Age: The relationship between atmospheric pCO2, climate and fire.

    Science.gov (United States)

    Hren, M. T.; Harris, G.; Montanez, I. P.; DiMichele, W.; Eley, Y.; White, J. D.; Wilson, J. P.; McElwain, J.; Poulsen, C. J.

    2017-12-01

    The late Paleozoic Ice Age (LPIA) represents a dynamic period of widespread glacial/interglacial cycling as the earth underwent a major transition from an icehouse to greenhouse climate. During this transition period, pCO2 is shown to have varied by several hundred ppm and within the predicted range for anthropogenic change. Glacial/interglacial changes in atmospheric pCO2 during this time are associated with restructuring of tropical forests and carbon cycle dynamics. At present however, there is considerable debate over the potential hydrologic and fire-frequency feedbacks associated with this climatic variability. Polycyclic aromatic hydrocarbons (PAHs) are produced from the incomplete combustion of organic matter and are shown to be preserved over hundreds of millions of years. Thus, these organic compounds provide a potential record of the feedbacks between global biogeochemical systems and fire. We analyzed sedimentary organic matter from the Illinois Basin spanning the late Carboniferous glacial-interglacial cycles to assess the evolution of fire during this period. Our data show a decrease in the overall abundance of high molecular weight PAHs (HMW) from 312 to 304 Myr with significant variability that is coincident with the general timing of pCO2 cycling. Decreasing PAH abundance is also coincident with a proposed long-term change in pO2 and may reflect the influence of atmospheric oxygen in regulating fire occurrence and hydrologic cycling in tropical ecosystems in the late Carboniferous.

  20. Charging and trapping of macroparticles in near-electrode regions of fluorocarbon plasmas with negative ions

    International Nuclear Information System (INIS)

    Ostrikov, K.N.; Kumar, S.; Sugai, H.

    2001-01-01

    Charging and trapping of macroparticles in the near-electrode region of fluorocarbon etching plasmas with negative ions is considered. The equilibrium charge and forces on particles are computed as a function of the local position in the plasma presheath and sheath. The ionic composition of the plasma corresponds to the etching experiments in 2.45 GHz surface-wave sustained and 13.56 MHz inductively coupled C 4 F 8 +Ar plasmas. It is shown that despite negligible negative ion currents collected by the particles, the negative fluorine ions affect the charging and trapping of particulates through modification of the sheath/presheath structure

  1. Role of the adsorbed oxygen species in the selective electrochemical reduction of CO{sub 2} to alcohols and carbonyls on copper electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Le Duff, Cecile S.; Lawrence, Matthew J.; Rodriguez, Paramaconi [School of Chemistry, University of Birmingham, Edgbaston (United Kingdom)

    2017-10-09

    The electrochemical reduction of CO{sub 2} into fuels has gained significant attention recently as source of renewable carbon-based fuels. The unique high selectivity of copper in the electrochemical reduction of CO{sub 2} to hydrocarbons has called much interest in discovering its mechanism. In order to provide significant information about the role of oxygen in the electrochemical reduction of CO{sub 2} on Cu electrodes, the conditions of the surface structure and the composition of the Cu single crystal electrodes were controlled over time. This was achieved using pulsed voltammetry, since the pulse sequence can be programmed to guarantee reproducible initial conditions for the reaction at every fraction of time and at a given frequency. In contrast to the selectivity of CO{sub 2} reduction using cyclic voltammetry and chronoamperometric methods, a large selection of oxygenated hydrocarbons was found under alternating voltage conditions. Product selectivity towards the formation of oxygenated hydrocarbon was associated to the coverage of oxygen species, which is surface-structure- and potential-dependent. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. Alternative photocatalysts to TiO2 for the photocatalytic reduction of CO2

    Science.gov (United States)

    Nikokavoura, Aspasia; Trapalis, Christos

    2017-01-01

    The increased concentration of CO2 in the atmosphere, originating from the burning of fossil fuels in stationary and mobile sources, is referred as the "Anthropogenic Greenhouse Effect" and constitutes a major environmental concern. The scientific community is highly concerned about the resulting enhancement of the mean atmospheric temperature, so a vast diversity of methods has been applied. Thermochemical, electrochemical, photocatalytic, photoelectrochemical processes, as well as combination of solar electricity generation and water splitting processes have been performed in order to lower the CO2 atmospheric levels. Photocatalytic methods are environmental friendly and succeed in reducing the atmospheric CO2 concentration and producing fuels or/and useful organic compounds at the same time. The most common photocatalysts for the CO2 reduction are the inorganic, the carbon based semiconductors and the hybrids based on semiconductors, which combine stability, low cost and appropriate structure in order to accomplish redox reactions. In this review, inorganic semiconductors such as single-metal oxide, mixed-metal oxides, metal oxide composites, layered double hydroxides (LDHs), salt composites, carbon based semiconductors such as graphene based composites, CNT composites, g-C3N4 composites and hybrid organic-inorganic materials (ZIFs) were studied. TiO2 and Ti based photocatalysts are extensively studied and therefore in this review they are not mentioned.

  3. Ultraviolet photoelectron spectroscopy investigation of interface formation in an indium-tin oxide/fluorocarbon/organic semiconductor contact

    International Nuclear Information System (INIS)

    Tong, S.W.; Lau, K.M.; Sun, H.Y.; Fung, M.K.; Lee, C.S.; Lifshitz, Y.; Lee, S.T.

    2006-01-01

    It has been demonstrated that hole-injection in organic light-emitting devices (OLEDs) can be enhanced by inserting a UV-illuminated fluorocarbon (CF x ) layer between indium-tin oxide (ITO) and organic hole-transporting layer (HTL). In this work, the process of interface formation and electronic properties of the ITO/CF x /HTL interface were investigated with ultraviolet photoelectron spectroscopy. It was found that UV-illuminated fluorocarbon layer decreases the hole-injection barrier from ITO to α-napthylphenylbiphenyl diamine (NPB). Energy level diagrams deduced from the ultraviolet photoelectron spectroscopy (UPS) spectra show that the hole-injection barrier in ITO/UV-treated CF x /NPB is the smallest (0.46 eV), compared to that in the ITO/untreated CF x /NPB (0.60 eV) and the standard ITO/NPB interface (0.68 eV). The improved current density-voltage (I-V) characteristics in the UV-treated CF x -coated ITO contact are consistent with its smallest barrier height

  4. The catalysis of CO2 electroreduction and related processes

    DEFF Research Database (Denmark)

    Varela Gasque, Ana Sofia

    The present PhD research is focused on the electrochemical reduction of CO2 to hydrocarbons. This process, coupled to renewable energy sources, such as wind and solar power, is an attractive alternative for the production of synthetic carbon neutral fuels and fine chemicals. Although many metals...

  5. Hybrid energy converter based on swirling combustion chambers: the hydrocarbon feeding analysis

    Directory of Open Access Journals (Sweden)

    Angelo Minotti

    2017-05-01

    Full Text Available This manuscript reports the latest investigations about a miniaturized hybrid energy power source, compatible with thermal/electrical conversion, by a thermo-photovoltaic cell, and potentially useful for civil and space applications. The converter is a thermally-conductive emitting parallelepiped element and the basic idea is to heat up its emitting surfaces by means of combustion, occurred in swirling chambers, integrated inside the device, and/or by the sun, which may work simultaneously or alternatively to the combustion. The current upgrades consist in examining whether the device might fulfill specific design constraints, adopting hydrocarbons-feeding. Previous papers, published by the author, demonstrate the hydrogen-feeding effectiveness. The project’s constraints are: 1 emitting surface dimensions fixed to 30 × 30 mm, 2 surface peak temperature T > 1000 K and the relative ∆T < 100 K (during the combustion mode, 3 the highest possible delivered power to the ambient, and 4 thermal efficiency greater than 20% when works with solar energy. To this end, a 5 connected swirling chambers configuration (3 mm of diameter, with 500 W of injected chemical power, stoichiometric conditions and detailed chemistry, has been adopted. Reactive numerical simulations show that the stiff methane chemical structure obliges to increase the operating pressure, up to 10 atm, and to add hydrogen, to the methane fuel injection, in order to obtain stable combustion and efficient energy conversion.

  6. Role of chamber dimension in fluorocarbon based deposition and etching of SiO2 and its effects on gas and surface-phase chemistry

    International Nuclear Information System (INIS)

    Joseph, E. A.; Zhou, B.-S.; Sant, S. P.; Overzet, L. J.; Goeckner, M. J.

    2008-01-01

    It is well understood that chamber geometry is an influential factor governing plasma processing of materials. Simple models suggest that a large fraction of this influence is due to changes in basic plasma properties, namely, density, temperature, and potential. However, while such factors do play an important role, they only partly describe the observed differences in process results. Therefore, to better elucidate the role of chamber geometry in this work, the authors explore the influence of plasma chemistry and its symbiotic effect on plasma processing by decoupling the plasma density, temperature, and potential from the plasma-surface (wall) interactions. Specifically, a plasma system is used with which the authors can vary the chamber dimension so as to vary the plasma-surface interaction directly. By varying chamber wall diameter, 20-66 cm, and source-platen distance, 4-6 cm, the etch behavior of SiO 2 (or the deposition behavior of fluorocarbon polymer) and the resulting gas-phase chemistry change significantly. Results from in situ spectroscopic ellipsometry show significant differences in etch characteristics, with etch rates as high as 350 nm/min and as low as 75 nm/min for the same self-bias voltage. Fluorocarbon deposition rates are also highly dependent on chamber dimension and vary from no net deposition to deposition rates as high as 225 nm/min. Etch yields, however, remain unaffected by the chamber size variations. From Langmuir probe measurements, it is clear that chamber geometry results in significant shifts in plasma properties such as electron and ion densities. Indeed, such measurements show that on-wafer processes are limited at least in part by ion flux for high energy reactive ion etch. However, in situ multipass Fourier transform infrared spectroscopy reveals that the line-averaged COF 2 , SiF 4 , CF 2 , and CF 3 gas-phase densities are also dependent on chamber dimension at high self-bias voltage and also correlate well to the CF x

  7. SHS-produced intermetallides as catalysts for hydrocarbons synthesis from CO and H{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Eliseev, O.L.; Kazantsev, R.V.; Davydov, P.E.; Lapidus, A.L. [Russian Academy of Sciences, Moscow (Russian Federation). N.D. Zelinsky Institute of Organic Chemistry; Borshch, V.N.; Pugacheva, E.V. [Russian Academy of Sciences, Chernogolovka (Russian Federation). Inst. of Structural Macrokinetics and Materials Science

    2012-07-01

    Raney-type polymetallic alloys were prepared by Self-Propagating High-Temperature Synthesis followed by alkaline treating. Surface morphology and composition of were studied using XRD, BET, SEM and EMPA techniques. The samples were tested in Fischer-Tropsch synthesis demonstrated rather high activity and very high selectivity to heavy paraffins. High selectivity to C{sub 5+} hydrocarbons is attributed to high thermal conductivity of alloys which prevents hot spots formation and therefore suppresses formation of methane and light hydrocarbons. Selectivity can be further improved by adding some d-metals in catalyst composition. Promotion with La seems to be particularly suitable for lowering methane formation while doping with Ni enhances methane yield greatly. (orig.)

  8. A supermolecular building layer approach for gas separation and storage applications: the eea and rtl MOF platforms for CO 2 capture and hydrocarbon separation

    KAUST Repository

    Chen, Zhijie

    2015-02-11

    The supermolecular building layer (SBL) approach was employed to deliberately synthesize five novel metal–organic frameworks (1–5) with an exposed array of amide or amine functionalities within their pore system. The ability to decorate the pores with nitrogen donor moieties offers potential to evaluate/elucidate the structure–adsorption property relationship. Two MOF platforms, eea-MOF and rtl-MOF, based on pillaring of kgm-a or sql-a layers with heterofunctional 3-connected organic building blocks were targeted and constructed to purposely introduce and expose the desired amide or amine functionalities. Interestingly, gas adsorption properties of eea-MOF-4 (1) and eea-MOF-5 (2) showed that by simply altering the nitrogen donor position within the ligand, it is possible to relatively reduce the pore size of the related eea-MOF material and subsequently increase the associated CO2 uptake. The slightly confined pore space in 2, relative to 1, has enabled an enhancement of the pore local charge density and thus the observed relative increase in the CO2 and H2 isosteric heat of adsorption (Qst). In addition, light hydrocarbon adsorption studies revealed that 2 is more selective toward C2H6 and C3H8 over CH4 than 1, as exemplified for C2H6 : CH4 (5 : 95) or C3H8 : CH4 (5 : 95) binary gas mixtures.

  9. Modeling the liquid-liquid equilibria of water plus fluorocarbons with the cubic-plus-association equation of state

    DEFF Research Database (Denmark)

    Oliveira, Mariana B.; Freire, Mara G.; Marrucho, Isabel M.

    2007-01-01

    Fluorocarbons (FCs) are a family of chemicals that are composed primarily of carbon and fluorine. They present weak intermolecular and strong intramolecular interactions, which confers them unusual thermophysical properties. They can also solubilize large amounts of gases such as oxygen and carbon...

  10. Synthesis of Hierarchically Structured Hybrid Materials by Controlled Self-Assembly of Metal-Organic Framework with Mesoporous Silica for CO2 Adsorption.

    Science.gov (United States)

    Chen, Chong; Li, Bingxue; Zhou, Lijin; Xia, Zefeng; Feng, Nengjie; Ding, Jing; Wang, Lei; Wan, Hui; Guan, Guofeng

    2017-07-12

    The HKUST-1@SBA-15 composites with hierarchical pore structure were constructed by in situ self-assembly of metal-organic framework (MOF) with mesoporous silica. The structure directing role of SBA-15 had an obvious impact on the growth of MOF crystals, which in turn affected the morphologies and structural properties of the composites. The pristine HKUST-1 and the composites with different content of SBA-15 were characterized by XRD, N 2 adsorption-desorption, SEM, TEM, FT-IR, TG, XPS, and CO 2 -TPD techniques. It was found that the composites were assembled by oriented growth of MOF nanocrystals on the surfaces of SBA-15 matrix. The interactions between surface silanol groups and metal centers induced structural changes and resulted in the increases in surface areas as well as micropore volumes of hybrid materials. Besides, the additional constraints from SBA-15 also restrained the expansion of HKUST-1, contributing to their smaller crystal sizes in the composites. The adsorption isotherms of CO 2 on the materials were measured and applied to calculate the isosteric heats of adsorption. The HS-1 composite exhibited an increase of 15.9% in CO 2 uptake capacity compared with that of HKUST-1. Moreover, its higher isosteric heats of CO 2 adsorption indicated the stronger interactions between the surfaces and CO 2 molecules. The adsorption rate of the composite was also improved due to the introduction of mesopores. Ten cycles of CO 2 adsorption-desorption experiments implied that the HS-1 had excellent reversibility of CO 2 adsorption. This study was intended to provide the possibility of assembling new composites with tailored properties based on MOF and mesoporous silica to satisfy the requirements of various applications.

  11. EPDM and fluorocarbon seal materials: a comparison of performance for nuclear fuel transport flasks

    International Nuclear Information System (INIS)

    Chivers, T.C.; George, A.F.

    2004-01-01

    The lid seals on the flasks used to transport spent fuel from U.K. AGR and Magnox Power Stations are fluorocarbon elastomer 'O' rings. Currently, only this material is qualified for the purpose and it was decided to investigate the possibility of qualifying other materials. One material that is already in use in similar applications is an Ethylene Propylene Diene Monomer (EPDM). The work presented in this paper compares the performance of the existing material with three candidate types of EPDM. The areas considered were: Extrusion and blow-out resistance when subjected to various steam pressures and temperatures at a range of flange separations, Permeability to water, caesium salt solution and hydrogen (as a typical 'benchmark' gas) Radiation resistance in warm (60 C) aqueous conditions It is concluded that the performance of the EPDM materials is good in respect of mechanical properties, radiation and water resistance. However, while permeation rates for gas and water can be higher than for fluorocarbon, this might be mitigated by assessing the actual radioactive burden in the permeate. In the case of dissolved salts, the test results indicate that this will be very low

  12. Carbon nanotube-TiO{sub 2} hybrid films for detecting traces of O{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Llobet, E; Espinosa, E H; Sotter, E; Ionescu, R; Vilanova, X [MINOS, EMaS, Universitat Rovira i Virgili, 43007 Tarragona (Spain); Torres, J [Research Department, Carburos Metalicos, MATGAS, Campus UAB, 08193 Cerdanyola del Valles (Spain); Felten, A; Pireaux, J J [LISE, University of Namur, B-5000 Namur (Belgium); Ke, X; Tendeloo, G Van [EMAT, University of Antwerp, B-2020 Antwerp (Belgium); Renaux, F; Paint, Y; Hecq, M; Bittencourt, C [LCIA, University of Mons-Hainaut, B-7000, Mons (Belgium)

    2008-09-17

    Hybrid titania films have been prepared using an adapted sol-gel method for obtaining well-dispersed hydrogen plasma-treated multiwall carbon nanotubes in either pure titania or Nb-doped titania. The drop-coating method has been used to fabricate resistive oxygen sensors based on titania or on titania and carbon nanotube hybrids. Morphology and composition studies have revealed that the dispersion of low amounts of carbon nanotubes within the titania matrix does not significantly alter its crystallization behaviour. The gas sensitivity studies performed on the different samples have shown that the hybrid layers based on titania and carbon nanotubes possess an unprecedented responsiveness towards oxygen (i.e. more than four times higher than that shown by optimized Nb-doped TiO{sub 2} films). Furthermore, hybrid sensors containing carbon nanotubes respond at significantly lower operating temperatures than their non-hybrid counterparts. These new hybrid sensors show a strong potential for monitoring traces of oxygen (i.e. {<=}10 ppm) in a flow of CO{sub 2}, which is of interest for the beverage industry.

  13. Carbon-steel corrosion in multiphase slug flow and CO2

    International Nuclear Information System (INIS)

    Villarreal, J.; Laverde, D.; Fuentes, C.

    2006-01-01

    Hydrocarbon multiphase flow may exhibit various geometric configurations or flow patterns. One of these flow patterns is known as multiphase slug flow. If CO 2 is present in hydrocarbons, the steel pipelines can be corroded as this process is probably enhanced by slug flow turbulence. A hydrodynamic circuit was built to study the CO 2 corrosion rates under different slug flow conditions. The experimental results show how the corrosion rate of a carbon-steel electrode varies according to the flow turbulence. The higher slug frequency used in this study was 80 slugs/min. Experimental results for pressure drop and slug length are in agreement with the Dukler and Hubbard [A model for gas-liquid slug flow in horizontal and near horizontal tubes, Ind. Eng. Chem. Fundam. 14 (1975) 337-347] multiphase flow model. Furthermore, the experimental slug frequencies are well correlated by the Shell and Gregory [Correlation of the liquid volume fraction in the slug for horizontal gas-liquid slug flow. Int. J. Multiphase Flow 4 (1978) 33-39] equations in horizontal pipes

  14. Hybrid2 - The hybrid power system simulation model

    Energy Technology Data Exchange (ETDEWEB)

    Baring-Gould, E.I.; Green, H.J.; Dijk, V.A.P. van [National Renewable Energy Lab., Golden, CO (United States); Manwell, J.F. [Univ. of Massachusetts, Amherst, MA (United States)

    1996-12-31

    There is a large-scale need and desire for energy in remote communities, especially in the developing world; however the lack of a user friendly, flexible performance prediction model for hybrid power systems incorporating renewables hindered the analysis of hybrids as options to conventional solutions. A user friendly model was needed with the versatility to simulate the many system locations, widely varying hardware configurations, and differing control options for potential hybrid power systems. To meet these ends, researchers from the National Renewable Energy Laboratory (NREL) and the University of Massachusetts (UMass) developed the Hybrid2 software. This paper provides an overview of the capabilities, features, and functionality of the Hybrid2 code, discusses its validation and future plans. Model availability and technical support provided to Hybrid2 users are also discussed. 12 refs., 3 figs., 4 tabs.

  15. Autothermal reforming of liquid hydrocarbons for H{sub 2} production

    Energy Technology Data Exchange (ETDEWEB)

    Palm, C.; Montel, S.; Cremer, P.; Peters, R.; Stolten, D. [Forschungszentrum Juelich GmbH (Germany). Inst. for Materials and Processes in Energy Systems IWV-3: Process Engineering

    2001-07-01

    The process of autothermal reforming of hydrocarbons can be used for the production of hydrogen within a fuel cell system. The application of three precious metal catalysts for the autothermal reforming of alkane mixtures with boiling ranges between 235 and 325 C was examined. The experiments were carried out at n(O{sub 2})/n(C) = 0.40, n(H{sub 2}O)/n(C) = 2.20, a catalyst bed temperature between 730 and 570 C and a hydrocarbon feed of 30 g/h. The catalysts yielded different hydrocarbon conversions, which can be explained by differences in the activity for the steam reforming reaction. The most active catalyst was also successfully utilized in the conversion of 400 g/h hydrocarbon feed. (orig.)

  16. Hexatungstate subunit as building block in the hydrothermal synthesis of organic-inorganic hybrid materials: synthesis, structure and optical properties of Co2(bpy)6 (W6O19)2 (bpy=4,4'-bipyridine)

    International Nuclear Information System (INIS)

    Zhang Lijuan; Wei Yongge; Wang Chongchen; Guo Hongyou; Wang Ping

    2004-01-01

    A hydrothermal reaction of WO 3 , CoCl 2 and 4,4'-bipyridine, yields a novel organic-inorganic hybrid compound, Co 2 (bpy) 6 (W 6 O 19 ) 2 , at 170 deg. C. X-ray single crystal structure determination reveals a two-dimensional covalent structure belonging to monoclinic crystal system, space group C2/c, with cell parameters a=19.971(4) A, b=11.523(2) A, c=16.138(3) A, β=96.49(3) deg., V=3690.0 A 3 and Z=2. The hexatungstate, [W 6 O 19 ] 2- , acts as a building block in bidentate fashion to bridge the Co(II) centers in the crystal structure. The title compound is found to have an optical energy gap of 2.2 eV from UV-Vis-NIR reflectance spectra

  17. CO_2 capture by amine-functionalized nanoporous materials: A review

    International Nuclear Information System (INIS)

    Chen, Chao; Kim, Jun; Ahn, Wha-Seung

    2014-01-01

    Amine-functionalized nanoporous materials can be prepared by the incorporation of diverse organic amine moieties into the pore structures of a range of support materials, such as mesoporous silica and alumina, zeolite, carbon and metal organic frameworks (MOFs), either by direct functionalization or post-synthesis through physical impregnation or grafting. These hybrid materials have great potential for practical applications, such as dry adsorbents for postcombustion CO_2 capture, owing to their high CO_2 capture capacity, high capture selectivity towards CO_2 compared to other gases, and excellent stability. This paper summarizes the preparation methods and CO_2 capture performance based on the equilibrium CO_2 uptake of a range of amine-functionalized nanoporous materials

  18. Electron transport in polycyclic aromatic hydrocarbons/boron nitride hybrid structures: density functional theory combined with the nonequilibrium Green's function.

    Science.gov (United States)

    Panahi, S F K S; Namiranian, Afshin; Soleimani, Maryam; Jamaati, Maryam

    2018-02-07

    We investigate the electronic transport properties of two types of junction based on single polyaromatic hydrocarbons (PAHs) and PAHs embedded in boron nitride (h-BN) nanoribbons, using nonequilibrium Green's functions (NEGF) and density functional theory (DFT). In the PAH junctions, a Fano resonance line shape at the Fermi energy in the transport feature can be clearly seen. In hybrid junctions, structural asymmetries enable interactions between the electronic states, leading to observation of interface-based transport. Our findings reveal that the interface of PAH/h-BN strongly affects the transport properties of the structures.

  19. Impact of CO_2-enriched combustion air on micro-gas turbine performance for carbon capture

    International Nuclear Information System (INIS)

    Best, Thom; Finney, Karen N.; Ingham, Derek B.; Pourkashanian, Mohamed

    2016-01-01

    Power generation is one of the largest anthropogenic greenhouse gas emission sources; although it is now reducing in carbon intensity due to switching from coal to gas, this is only part of a bridging solution that will require the utilization of carbon capture technologies. Gas turbines, such as those at the UK Carbon Capture Storage Research Centre's Pilot-scale Advanced CO_2 Capture Technology (UKCCSRC PACT) National Core Facility, have high exhaust gas mass flow rates with relatively low CO_2 concentrations; therefore solvent-based post-combustion capture is energy intensive. Exhaust gas recirculation (EGR) can increase CO_2 levels, reducing the capture energy penalty. The aim of this paper is to simulate EGR through enrichment of the combustion air with CO_2 to assess changes to turbine performance and potential impacts on complete generation and capture systems. The oxidising air was enhanced with CO_2, up to 6.29%vol dry, impacting mechanical performance, reducing both engine speed by over 400 revolutions per minute and compression temperatures. Furthermore, it affected complete combustion, seen in changes to CO and unburned hydrocarbon emissions. This impacted on turbine efficiency, which increased specific fuel consumption (by 2.9%). CO_2 enhancement could therefore result in significant efficiency gains for the capture plant. - Highlights: • Experimental investigation of the impact of exhaust gas recirculation (EGR) on GT performance. • Combustion air was enhanced with CO_2 to simulate EGR. • EGR impact was ascertained by CO and unburned hydrocarbon changes. • Primary factor influencing performance was found to be oxidiser temperature. • Impact of CO_2 enhancement on post-combustion capture efficiency.

  20. Feasibility study on the introduction of hybrid buses; Hybrid bus donyu kanosei chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    The purpose of this research is to design pilot projects for introducing hybrid buses into the public transportation sector. This research also covers contents regarding hybrid buses with a trolley-collector motor and a diesel engine, to identify technical and economical problems and to analyze cost beneficiation using hybrid buses. The trolley parallel hybrid system has been employed for the feasibility study. This system has abundant operation results in Europe and the USA. Its battery is small or is not necessary, and the maintenance cost is also low. As a result of the feasibility study, reduction effects of CO2 emission were found out. When the CO2 generation at the power plant is not counted, the reduction effect was estimated to be 32% compared with the CO2 emission from diesel buses. When the CO2 generation at the power plant is considered, it was estimated to be 18%. The cost beneficiation was investigated for the cases of the transportations using trolley system surrounding a medium-scale terminal among large-scale housing development, tourist resort, and stations. The annual income is estimated to be larger than the annual payment in each case. It was found that the hybrid bus is economically established. 17 refs., 48 figs., 41 tabs.

  1. Inorganic-organic hybrid structure: Synthesis, structure and magnetic properties of a cobalt phosphite-oxalate, [C4N2H12][Co4(HPO3)2(C2O4)3

    International Nuclear Information System (INIS)

    Mandal, Sukhendu; Natarajan, Srinivasan

    2005-01-01

    A hydrothermal reaction of a mixture of cobalt (II) oxalate, phosphorous acid, piperazine and water at 150 o C for 96h followed by heating at 180 o C for 24h gave rise to a new inorganic-organic hybrid solid, [C 4 N 2 H 12 ][Co 4 (HPO 3 ) 2 (C 2 O 4 ) 3 ], I. The structure consists of edge-shared CoO 6 octahedra forming a [Co 2 O 10 ] dimers that are connected by HPO 3 and C 2 O 4 units forming a three-dimensional structure with one-dimensional channels. The amine molecules are positioned within these channels. The oxalate units have a dual role of connecting within the plane of the layer as well as out of the plane. Magnetic susceptibility measurement shows the compound orders antiferromagnetically at low temperature (T N =22K). Crystal data: I, monoclinic, space group=P2 1 /c (No. 14). a=7.614(15), b=7.514(14), c=17.750(3)A, β=97.351(3) o , V=1007.30(3)A 3 , Z=2, ρ calc =2.466g/cm 3 , μ (MoKα) =3.496mm -1 , R 1 =0.0310 and wR 2 =0.0807 data [I>2σ(I)

  2. Constructing robust and highly-selective hydrogel membranes by bioadhesion-inspired method for CO 2 separation

    KAUST Repository

    Wu, Yingzhen; Zhou, Tiantian; Wu, Hong; Fu, Weixian; Wang, Xinru; Wang, Shaofei; Yang, Leixin; Wu, Xingyu; Ren, Yanxiong; Jiang, Zhongyi; Wang, Baoyi

    2018-01-01

    -size gas molecules and thus enhancing the CO2/CH4 selectivity. Moreover, the abundant amine groups from PDA nanoaggregates could facilitate CO2 transport. The optimized hybrid hydrogel membrane exhibited CO2/CH4 selectivity of 43.2, which was 43.85% higher

  3. Production of CO2 in crude oil bioremediation in clay soil

    Directory of Open Access Journals (Sweden)

    Sandro José Baptista

    2005-06-01

    Full Text Available The aim of the present work was to evaluate the biodegradation of petroleum hydrocarbons in clay soil a 45-days experiment. The experiment was conducted using an aerobic fixed bed reactor, containing 300g of contaminated soil at room temperature with an air rate of 6 L/h. The growth medium was supplemented with 2.5% (w/w (NH42SO4 and 0.035% (w/w KH2PO4. Biodegradation of the crude oil in the contaminated clay soil was monitored by measuring CO2 production and removal of organic matter (OM, oil and grease (OandG, and total petroleum hydrocarbons (TPH, measured before and after the 45-days experiment, together with total heterotrophic and hydrocarbon-degrading bacterial count. The best removals of OM (50%, OandG (37% and TPH (45% were obtained in the bioreactors in which the highest CO2 production was achieved.O objetivo do trabalho foi avaliar a biodegradação de petróleo em solo argiloso durante 45 dias de ensaios. Os ensaios de biodegradação foram conduzidos em biorreatores aeróbios de leito fixo, com 300 g de solo contaminado, à temperatura ambiente e com uma vazão de ar de 6 L/h. As deficiências nutricionais foram corrigidas com 2,5% (p/p (NH42SO4 e com 0,035% (p/p KH2PO4. O monitoramento foi realizado em função da produção de CO2, da remoção de matéria orgânica (OM, de óleos e graxas (OandG e de hidrocarbonetos totais de petróleo (TPH, além bactérias heterotróficas totais (BHT e hidrocarbonoclásticas (BHc, no início e após 45 dias. Nos biorreatores onde houve maior crescimento de bactérias hidrocarbonoclásticas e maior produção de CO2, obteve-se os melhores percentuais de remoções de MO (50%, OandG (37% e TPH (45%.

  4. Application of cyclic fluorocarbon/argon discharges to device patterning

    International Nuclear Information System (INIS)

    Metzler, Dominik; Uppireddi, Kishore; Bruce, Robert L.; Miyazoe, Hiroyuki; Zhu, Yu; Price, William; Sikorski, Ed S.; Engelmann, Sebastian U.; Joseph, Eric A.; Li, Chen; Oehrlein, Gottlieb S.

    2016-01-01

    With increasing demands on device patterning to achieve smaller critical dimensions and pitches for the 5 nm node and beyond, the need for atomic layer etching (ALE) is steadily increasing. In this work, a cyclic fluorocarbon/Ar plasma is successfully used for ALE patterning in a manufacturing scale reactor. Self-limited etching of silicon oxide is observed. The impact of various process parameters on the etch performance is established. The substrate temperature has been shown to play an especially significant role, with lower temperatures leading to higher selectivity and lower etch rates, but worse pattern fidelity. The cyclic ALE approach established with this work is shown to have great potential for small scale device patterning, showing self-limited etching, improved uniformity and resist mask performance

  5. Application of cyclic fluorocarbon/argon discharges to device patterning

    Energy Technology Data Exchange (ETDEWEB)

    Metzler, Dominik, E-mail: dmetzler@umd.edu [IBM T. J. Watson Research Center, Yorktown Heights, New York 10598 and Department of Materials Science and Engineering, and Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, Maryland 20740 (United States); Uppireddi, Kishore; Bruce, Robert L.; Miyazoe, Hiroyuki; Zhu, Yu; Price, William; Sikorski, Ed S.; Engelmann, Sebastian U.; Joseph, Eric A. [IBM T. J. Watson Research Center, Yorktown Heights, New York 10598 (United States); Li, Chen [Department of Physics, and Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, Maryland 20740 (United States); Oehrlein, Gottlieb S. [Department of Materials Science and Engineering, and Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, Maryland 20740 (United States)

    2016-01-15

    With increasing demands on device patterning to achieve smaller critical dimensions and pitches for the 5 nm node and beyond, the need for atomic layer etching (ALE) is steadily increasing. In this work, a cyclic fluorocarbon/Ar plasma is successfully used for ALE patterning in a manufacturing scale reactor. Self-limited etching of silicon oxide is observed. The impact of various process parameters on the etch performance is established. The substrate temperature has been shown to play an especially significant role, with lower temperatures leading to higher selectivity and lower etch rates, but worse pattern fidelity. The cyclic ALE approach established with this work is shown to have great potential for small scale device patterning, showing self-limited etching, improved uniformity and resist mask performance.

  6. Design of experimental setup for supercritical CO2 jet under high ambient pressure conditions

    Science.gov (United States)

    Shi, Huaizhong; Li, Gensheng; He, Zhenguo; Wang, Haizhu; Zhang, Shikun

    2016-12-01

    With the commercial extraction of hydrocarbons in shale and tight reservoirs, efficient methods are needed to accelerate developing process. Supercritical CO2 (SC-CO2) jet has been considered as a potential way due to its unique fluid properties. In this article, a new setup is designed for laboratory experiment to research the SC-CO2 jet's characteristics in different jet temperatures, pressures, standoff distances, ambient pressures, etc. The setup is composed of five modules, including SC-CO2 generation system, pure SC-CO2 jet system, abrasive SC-CO2 jet system, CO2 recovery system, and data acquisition system. Now, a series of rock perforating (or case cutting) experiments have been successfully conducted using the setup about pure and abrasive SC-CO2 jet, and the results have proven the great perforating efficiency of SC-CO2 jet and the applications of this setup.

  7. Detection of carbon monoxide (CO) in sooting hydrocarbon flames using femtosecond two-photon laser-induced fluorescence (fs-TPLIF)

    Science.gov (United States)

    Wang, Yejun; Kulatilaka, Waruna D.

    2018-01-01

    Ultrashort-pulse, femtosecond (fs)-duration, two-photon laser-induced fluorescence (fs-TPLIF) measurements of carbon monoxide (CO) are reported in rich, sooting hydrocarbon flames. CO-TPLIF detection using conventional nanosecond or picosecond lasers are often plagued by photochemical interferences, specifically under fuel-rich flames conditions. In the current study, we investigate the commonly used CO two-photon excitation scheme of the B1Σ+ ← X1Σ+ electronic transition, using approximately 100-fs-duration excitation pulses. Fluorescence emission was observed in the Ångström band originating from directly populated B1Σ+ upper state, as well as, in the third positive band from collisionally populated b3Σ+ upper state. The current work was focused on the Ångström band emission. Interference from nascent C2 emissions originating from hot soot particles in the flame could be reduced to a negligible level using a narrower detection gate width. In contrast, avoiding interferences from laser-generated C2 Swan-band emissions required specific narrowband spectral filtering in sooting flame conditions. The observed less than quadratic laser pulse energy dependence of the TPLIF signal suggests the presence of strong three-photon ionization and stimulated emission processes. In a range of CH4/air and C2H4/air premixed flames investigated, the measured CO fluorescence signals agree well with the calculated equilibrium CO number densities. Reduced-interference CO-TPLIF imaging in premixed C2H4/O2/N2 jet flames is also reported.

  8. Nd-Fe-B/Sm-M/Nd-M (M = Fe, Co, Ti, Cu, Zr) hybrid magnets with improved thermal stability

    Science.gov (United States)

    Grigoras, M.; Lostun, M.; Urse, M.; Borza, F.; Chiriac, H.; Lupu, N.

    2018-02-01

    Hybrid magnets of Nd12Fe82B6(2:14:1-phase)/Nd9.4Fe59Co25.3Ti6.3(3:29-phase) and Nd12Fe82B6/Sm11.1Co65.8Fe8.9Cu10.7Zr3.5(2:17-phase) with different weight ratio have been prepared by spark plasma sintering pressing technique from ball-milled powders obtained from melt-spun ribbons. Influence of the ratio between the two phases on the magnetic properties and thermal stability of the hybrid magnets was studied. It has been found that the ratio has a remarkable influence, especially on the thermal stability of the bulk magnets. However, the magnetic properties of such type of hybrid magnets result not only from the type and ratio of components but also from the interaction between them. It was found that in NdFeB/3:29 hybrid magnets with 15% content of 3:29-phase, the temperature coefficients of remanence (α) and of coercivity (β) are improved from -0.095 to -0.082 (%/°C) and from -0.57 to -0.47 (%/°C), respectively, as compared to the Nd2Fe14B single-phase counterpart. While for the NdFeB/2:17 hybrid magnets the content of 2:17-phase is not significantly influencing the temperature coefficient of induction (α), the temperature coefficient of °C (β) increases up to -0.41 (%/°C) for 10% content of 2:17-phase. The increase in the reversible temperature coefficients of hybrid magnets indicate a remarkable improvement of their thermal stability.

  9. Human papillomavirus testing in primary cervical screening and the cut-off level for hybrid capture 2 tests

    DEFF Research Database (Denmark)

    Rebolj, Matejka; Bonde, Jesper; Njor, Sisse Helle

    2011-01-01

    To determine the trade-off between the sensitivity and the specificity for high grade cervical intraepithelial neoplasia at hybrid capture 2 cut-off values above the standard = 1 relative light units/cut-off level (rlu/co).......To determine the trade-off between the sensitivity and the specificity for high grade cervical intraepithelial neoplasia at hybrid capture 2 cut-off values above the standard = 1 relative light units/cut-off level (rlu/co)....

  10. Methane and Benzene in Drinking-Water Wells Overlying the Eagle Ford, Fayetteville, and Haynesville Shale Hydrocarbon Production Areas.

    Science.gov (United States)

    McMahon, Peter B; Barlow, Jeannie R B; Engle, Mark A; Belitz, Kenneth; Ging, Patricia B; Hunt, Andrew G; Jurgens, Bryant C; Kharaka, Yousif K; Tollett, Roland W; Kresse, Timothy M

    2017-06-20

    Water wells (n = 116) overlying the Eagle Ford, Fayetteville, and Haynesville Shale hydrocarbon production areas were sampled for chemical, isotopic, and groundwater-age tracers to investigate the occurrence and sources of selected hydrocarbons in groundwater. Methane isotopes and hydrocarbon gas compositions indicate most of the methane in the wells was biogenic and produced by the CO 2 reduction pathway, not from thermogenic shale gas. Two samples contained methane from the fermentation pathway that could be associated with hydrocarbon degradation based on their co-occurrence with hydrocarbons such as ethylbenzene and butane. Benzene was detected at low concentrations (2500 years, indicating the benzene was from subsurface sources such as natural hydrocarbon migration or leaking hydrocarbon wells. One sample contained benzene that could be from a surface release associated with hydrocarbon production activities based on its age (10 ± 2.4 years) and proximity to hydrocarbon wells. Groundwater travel times inferred from the age-data indicate decades or longer may be needed to fully assess the effects of potential subsurface and surface releases of hydrocarbons on the wells.

  11. Pore-Engineered Metal–Organic Frameworks with Excellent Adsorption of Water and Fluorocarbon Refrigerant for Cooling Applications

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Jian [Physical; Vemuri, Rama S. [Energy; Estevez, Luis [Energy; Koech, Phillip K. [Energy; Varga, Tamas [Environmental; Camaioni, Donald M. [Physical; Blake, Thomas A. [Physical; McGrail, B. Peter [Energy; Motkuri, Radha Kishan [Energy

    2017-07-20

    Metal–organic frameworks (MOFs) are found to be promising sorbents for adsorption cooling applications. Using organic ligands with 1, 2, and 3 phenylene rings, we construct moisture-stable Ni-MOF-74 members with adjustable pore apertures. These pore-engineered materials exhibit excellent sorption capabilities towards water and fluorocarbons. The adsorption patterns for these materials differ significantly and are attributed to variances in the hydrophobic/hydrophilic pore character, associated with differences in pore size. Complementary ex situ characterizations and in situ FTIR spectra are deployed to understand the correlations between the mechanisms of gas loadings and the pore environment of the MOFs.

  12. Novel CO2 Foam Concepts and Injection Schemes for Improving CO2 Sweep Efficiency in Sandstone and Carbonate Hydrocarbon Formations

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Quoc [Univ. of Texas, Austin, TX (United States). Department of Petroleum & Geosystems Engineering; Hirasaki, George [Rice Univ., Houston, TX (United States). Department of Chemical Engineering; Johnston, Keith [Univ. of Texas, Austin, TX (United States). Department of Chemical Engineering

    2015-02-05

    We explored cationic, nonionic and zwitterionic surfactants to identify candidates that have the potential to satisfy all the key requirements for CO2 foams in EOR. We have examined the formation, texture, rheology and stability of CO2 foams as a function of the surfactant structure and formulation variables including temperature, pressure, water/CO2 ratio, surfactant concentration, salinity and concentration of oil. Furthermore, the partitioning of surfactants between oil and water as well as CO2 and water was examined in conjunction with adsorption measurements on limestone by the Hirasaki lab to develop strategies to optimize the transport of surfactants in reservoirs.

  13. Decontamination of hydrocarbon contaminated soil

    International Nuclear Information System (INIS)

    Smith, A.J.

    1991-01-01

    This patent describes the method of treating hydrocarbon contaminated soil. It comprises forming the soil into a flowing particulate stream, forming an aqueous liquid mixture of water and treating substance that reacts with hydrocarbon to form CO 2 and water, dispersing the liquid mixture into the particulate soil stream to wet the particulate, allowing the substance to react with the wetted soil particulate to thereby form CO 2 and water, thereby the resultant soil is beneficially treated, the stream being freely projected to dwell at a level and then fall, and the dispersing includes spraying the liquid mixture into the projected stream at the dwell, the substance consisting of natural bacteria, and at a concentration level in the mixture of between 100 to 3,000 PPM of bacteria to water, the soil forming step including impacting the soil to reduce it to particles less than about 1 inches in cross dimension, and including forming the wetting particulate into a first layer on a surface to allow the substance to react

  14. Optimizing an advanced hybrid of solar-assisted supercritical CO2 Brayton cycle: A vital transition for low-carbon power generation industry

    International Nuclear Information System (INIS)

    Milani, Dia; Luu, Minh Tri; McNaughton, Robbie; Abbas, Ali

    2017-01-01

    Highlights: • The layout of 14 demonstrative supercritical CO 2 closed Brayton cycles are analysed. • The key parameters of the “combined” cycle are sensitized and optimized. • The effect of thermal efficiency vs HX area on techno-economic nexus is highlighted. • The design of a matching solar heliostat field in direct configuration is revealed. • The water demand for hybrid vs water-only cooling scenarios are assessed. - Abstract: Current worldwide infrastructure of electrical power generation would mostly continue to rely on fossil-fuel but require a modest transition for the ultimate goal of decarbonizing power generation industry. By relying on those already established and carefully managed centrepiece power plants (PPs), we aim at filling the deficits of the current electrical networks with smaller, cleaner, and also more efficient PPs. In this context, we present a unique model for a small-scale decentralized solar-assisted supercritical CO 2 closed Brayton cycle (sCO 2 -CBC). Our model is based on the optimized values of three key performance indicators (KPIs); thermal efficiency, concentrated solar power (CSP) compatibility, and water demand for cooling. For a case-study of 10 MW e CSP-assisted sCO 2 -CBC power plant, our dynamic model shows a 52.7% thermal efficiency and 25.9% solar penetration and up to 80% of water saving in heat-rejection units. These KPIs show significant promise of the solar-assisted supercritical CO 2 power cycle for an imperative transformation in the power industry towards future sustainable electricity generation.

  15. Effect of CO{sub 2} and H{sub 2}O content in syngas on activity and selectivity of a cobalt based Fischer-Tropsch synthesis catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Poehlmann, F.; Kaiser, P.; Kern, C.; Jess, A. [Bayreuth Univ. (Germany). Dept. of Chemical Engineering

    2013-11-01

    When liquid hydrocarbons are to be used as CO{sub 2} neutral storage media for electrical energy, it is necessary to convert CO{sub 2} from e.g. flue gas and hydrogen from water electrolysis to synthesis gas (CO/H{sub 2}). This can be achieved by a high temperature reverse water gas shift (RWGS) reaction. Due to thermodynamic limitations, the product gas of RWGS reactors operated at technically feasible temperatures of around 900 C will always contain significant amounts of water and carbon dioxide, which can influence the activity of Fischer-Tropsch synthesis (FTS) catalysts for the actual hydrocarbon production. In this study, a commercial cobalt catalyst was investigated under low temperature FTS conditions (2.5 MPa, 215 C) regard to activity and selectivity in the presence of H{sub 2}O and CO{sub 2}. A continuous flow apparatus including a fixed-bed reactor for the synthesis step was used to conduct all experiments. The experimental data reveals that the CO/CO{sub 2}-ratio does not affect the activity and product selectivity until the CO{sub 2}-concentration reaches 75 vol.-% (CO{sub 2}/(CO+CO{sub 2})). On increasing the carbon dioxide concentration to 100 vol.-% (H{sub 2}/CO{sub 2} = 2), the methane selectivity rose up to 70 % and even above. Addition of water caused an initial loss of activity. After the initial loss of activity the FT catalyst activity was found to remain constant, irrespectively of if the water was removed from the feed or not. Thus, the deactivation was permanent. (orig.)

  16. Calculation of the band structure of GdCo2, GdRh2 e GdIr2 by the APW method

    International Nuclear Information System (INIS)

    Carvalho, J.A.B. de.

    1974-03-01

    The band structure of GdCo 2 , GdRh 2 , GdIr 2 has been calculated by the APW method. A histogram of the density of states is presented for each compound. The bands are transition-metal-like, with s-d hybridization near the Fermi level. The 5d character near the Fermi level increases as one goes from Co to Ir

  17. CO2 as an Oxidant for High Temperature Reactions

    Directory of Open Access Journals (Sweden)

    Sibudjing eKawi

    2015-03-01

    Full Text Available This paper presents a review on the developments in catalyst technology for the reactions utilizing CO2 for high temperature applications. These include dehydrogenation of alkanes to olefins, the dehydrogenation of ethylbenzene to styrene and finally CO2 reforming of hydrocarbon feedstock (i.e. methane and alcohols. Aspects on the various reaction pathways are also highlighted. The literature on the role of promoters and catalyst development is critically evaluated. Most of the reactions discussed in this review are exploited in industries and related to on-going processes, thus providing extensive data from literature. However some reactions, such as CO2 reforming of ethanol and glycerol which have not reached industrial scale are also reviewed owing to their great potential in terms of sustainability which are essential as energy for the future. This review further illustrates the building-up of knowledge which shows the role of support and catalysts for each reaction and the underlying linkage between certain catalysts which can be adapted for the multiple CO2-related reactions.

  18. Enhanced hydrogen storage in sandwich-structured rGO/Co1-xS/rGO hybrid papers through hydrogen spillover

    Science.gov (United States)

    Han, Lu; Qin, Wei; Jian, Jiahuang; Liu, Jiawei; Wu, Xiaohong; Gao, Peng; Hultman, Benjamin; Wu, Gang

    2017-08-01

    Reduced graphene oxide (rGO) based two-dimensional (2D) structures have been fabricated for electrochemical hydrogen storage. However, the effective transfer of atomic hydrogen to adjacent rGO surfaces is suppressed by binders, which are widely used in conventional electrochemical hydrogen storage electrodes, leading to a confining of the performance of rGO for hydrogen storage. As a proof of concept experiment, a novel strategy is developed to fabricate the binder-free sandwich-structured rGO/Co1-xS/rGO hybrid paper via facile ball milling and filtration process. Based on the structure investigation, Co1-xS is immobilized in the space between the individual rGO sheets by the creation of chemical "bridges" (Csbnd S bonds). Through the Csbnd S bonds, the atomic hydrogen is transferred from Co1-xS to rGO accompanying a Csbnd H chemical bond formation. When used as an electrode, the hybrid paper exhibits an improved hydrogen storage capacity of 3.82 wt% and, most importantly, significant cycling stability for up to 50 cycles. Excluding the direct hydrogen storage contribution from the Co1-xS in the hybrid paper, the hydrogen storage ability of rGO is enhanced by 10× through the spillover effects caused by the Co1-xS modifier.

  19. In vitro degradation of dicyclopentadiene by microbial consortia isolated from hydrocarbon-contaminated soil

    International Nuclear Information System (INIS)

    Stehmeier, L.G.; Voordouw, G.

    1996-01-01

    The degradation of dicyclopentadiene (DCPD), an extremely odoriferous by-product of the production of hydrocarbon feed stocks in petrochemical plants, was discussed. A laboratory study was described in which DCPD was degraded to carbon dioxide and oxygenated intermediates were established. More than 100 isolated organisms and cultures were screened for DCPD degradation using BIOLOG TM MT plates incubated in an atmosphere containing the test hydrocarbon. No single colony isolate readily mineralized DCPD, but mixed cultures produced 14 CO 2 when incubated with [ 14 C]DCPD. For bioremediation purposes, the objective was to remove odor. In the presence of a hydrocarbon degradation medium, the complete degradation to CO 2 was achieved in less than 6 months. 15 refs., 3 tabs., 4 figs

  20. Properties of surfactant films in water-in-CO2 microemulsions obtained by small-angle neutron scattering.

    Science.gov (United States)

    Yan, Ci; Sagisaka, Masanobu; James, Craig; Rogers, Sarah; Alexander, Shirin; Eastoe, Julian

    2014-12-01

    The formation, stability and structural properties of normal liquid phase microemulsions, stabilized by hydrocarbon surfactants, comprising water and hydrocarbon oils can be interpreted in terms of the film bending rigidity (energy) model. Here, this model is tested for unusual water-in-CO2 (w/c) microemulsions, formed at high pressure with supercritical CO2 (sc-CO2) as a solvent and fluorinated surfactants as stabilizers. Hence, it is possible to explore the generality of this model for other types of microemulsions. High Pressure Small-Angle Neutron Scattering (HP-SANS) has been used to study w/c microemulsions, using contrast variation to highlight scattering from the stabilizing fluorinated surfactant films: these data show clear evidence for spherical core-shell structures for the microemulsion droplets. The results extend understanding of w/c microemulsions since previous SANS studies are based only on scattering from water core droplets. Here, detailed structural parameters for the surfactant films, such as thickness and film bending energy, have been extracted from the core-shell SANS profiles revealed by controlled contrast variation. Furthermore, at reduced CO2 densities (∼0.7gcm(-3)), elongated cylindrical droplet structures have been observed, which are uncommon for CO2 microemulsions/emulsions. The implications of the presence of cylindrical micelles and droplets for applications of CO2, and viscosity enhancements are discussed. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Toronto hybrid taxi pilot

    International Nuclear Information System (INIS)

    Stevens, M.; Marans, B.

    2009-10-01

    This paper provided details of a hybrid taxi pilot program conducted to compare the on-road performance of Toyota Camry hybrid vehicles against conventional vehicles over a 1-year period in order to determine the business case and air emission reductions associated with the use of hybrid taxi cabs. Over 750,000 km worth of fuel consumption was captured from 10 Toyota Camry hybrids, a Toyota Prius, and 5 non-hybrid Camry vehicles over an 18-month period. The average real world fuel consumption for the taxis demonstrated that the Toyota Prius has the lowest cost of ownership, while the non-hybrid Camry has the highest cost of ownership. Carbon dioxide (CO 2 ) reductions associated with the 10 Camry hybrid taxis were calculated at 236 tonnes over a 7-year taxi service life. Results suggested that the conversion of Toronto's 5680 taxis would yield annual CO 2 emission reductions of over 19,000 tonnes. All hybrid purchasers identified themselves as highly likely to purchase a hybrid again. 5 tabs., 9 figs.

  2. Toronto hybrid taxi pilot

    Energy Technology Data Exchange (ETDEWEB)

    Stevens, M. [CrossChasm Technologies, Cambridge, ON (Canada); Marans, B. [Toronto Atmospheric Fund, ON (Canada)

    2009-10-15

    This paper provided details of a hybrid taxi pilot program conducted to compare the on-road performance of Toyota Camry hybrid vehicles against conventional vehicles over a 1-year period in order to determine the business case and air emission reductions associated with the use of hybrid taxi cabs. Over 750,000 km worth of fuel consumption was captured from 10 Toyota Camry hybrids, a Toyota Prius, and 5 non-hybrid Camry vehicles over an 18-month period. The average real world fuel consumption for the taxis demonstrated that the Toyota Prius has the lowest cost of ownership, while the non-hybrid Camry has the highest cost of ownership. Carbon dioxide (CO{sub 2}) reductions associated with the 10 Camry hybrid taxis were calculated at 236 tonnes over a 7-year taxi service life. Results suggested that the conversion of Toronto's 5680 taxis would yield annual CO{sub 2} emission reductions of over 19,000 tonnes. All hybrid purchasers identified themselves as highly likely to purchase a hybrid again. 5 tabs., 9 figs.

  3. Design of a hybrid silicon-plasmonic co-propagating coupler operating close to coherent perfect absorption

    Energy Technology Data Exchange (ETDEWEB)

    Zanotto, Simone; Melloni, Andrea [Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano (Italy)

    2016-04-28

    By hybrid integration of plasmonic and dielectric waveguide concepts, it is shown that nearly perfect coherent absorption can be achieved in a co-propagating coupler geometry. First, the operating principle of the proposed device is detailed in the context of a more general 2 × 2 lossy coupler formalism. Then, it is shown how to tune the device in a wide region of possible working points, its broadband operation, and the tolerance to fabrication uncertainties. Finally, a complete picture of the electromagnetic modes inside the hybrid structure is analyzed, shining light onto the potentials which the proposed device holds in view of classical and quantum signal processing, nonlinear optics, polarization control, and sensing.

  4. Aminopropyl-functionalized mesoporous silicas as CO{sub 2} adsorbents

    Energy Technology Data Exchange (ETDEWEB)

    Knowles, Gregory P.; Graham, Jeremy V.; Delaney, Seamus W.; Chaffee, Alan L. [School of Chemistry, PO Box 23, Monash University, Vic 3800 (Australia)

    2005-10-15

    A range of mesoporous silica substrates were functionalized with 3-aminopropyltrimethoxysilane to form hybrid products suitable for carbon dioxide adsorption. A 'cylindrical pore' model was employed to characterize the extent of surface modification per unit substrate surface area and to permit its comparison on a common basis. The extent of surface functionalisation varied with substrate morphology. Combined DTA/TGA was used to characterise CO{sub 2} adsorption. Substantial reversible CO{sub 2} adsorption capacities were observed under anhydrous conditions (at 20 {sup o}C). In the presence of water, CO{sub 2} capacity was enhanced, but the rate of desorption was diminished. (author)

  5. Large Hybrid Energy Systems for Making Low CO2 Load-Following Power and Synthetic Fuel

    International Nuclear Information System (INIS)

    Cherry, Robert S.; Boardman, Richard D.; Aumeier, Steven

    2012-01-01

    Hybrid energy systems using nuclear heat sources can economically produce load-following electrical power by exploiting the surplus generation capacity available at night or seasonally to make synthetic fuel. Vehicle fuel is the only current energy use large enough to absorb all the energy capacity that might be diverted from the power industry, and its ease of storage obviates problems with discontinuous synfuel production. The potential benefits and challenges of synfuels integration are illustrated by the production of methanol from natural gas (as a source of carbon) using steam from a light water nuclear power reactor which is assumed to be available in accord with a year's worth of power demand data. Methanol's synthesis process is easily adapted to using 300 C heat from a light water reactor and this simple compound can be further processed into gasoline, biodiesel, or dimethyl ether, fuels which can be used with the current vehicle fleet. A supplemental feed to the methanol process of natural gas (for energy) allows operation at constant full rate when the nuclear heat is being used to produce electrical power. The higher capital costs of such a system are offset by a lower cost of heat and power production from a large base load type of plant and by reduced costs associated with much lower CO2 emissions. Other less tangible economic benefits of this and similar hybrid systems include better use of natural resource for fuels and greater energy services security from the domestic production of vehicle fuel.

  6. National fossil fuels consumption: Estimates of CO2 emissions and thermic pollution

    International Nuclear Information System (INIS)

    Mariani, Mario; Casale, Francesco

    1997-01-01

    The study on the basis of the national energy consumption from 1988 to 1994, estimates CO 2 emission rates produced by the most relevant hydrocarbons involved in the technological combustion processes and assess the potential thermic impact on the environment. Two calculation procedures have been developed taking into account once emission factors and other emission indexes in order to verify the two estimates. Besides, the work determines the national trend of CO 2 emission with regard to the aim for the stabilization of carbon dioxide emissions at 1990 levels by 2000

  7. Adsorption of small hydrocarbons on rutile TiO2(110)

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Long; Smith, R. Scott; Kay, Bruce D.; Dohnalek, Zdenek

    2016-08-01

    Temperature programmed desorption and molecular beam scattering were used to study the adsorption and desorption of small hydrocarbons (n-alkanes, 1-alkenes and 1-alkynes with 1 - 4 carbon atoms of C1-C4) on rutile TiO2(110). We show that the sticking coefficients for all the hydrocarbons are close to unity (> 0.95) at an adsorption temperature of 60 K. The desorption energies for hydrocarbons of the same chain length increase from n-alkanes to 1-alkenes and to 1-alkynes. This trend is likely a consequence of an additional dative bonding of the alkene and alkyne π system to the coordinatively unsaturated Ti5c sites. Similar to previous studies on the adsorption of n-alkanes on metal and metal oxide surfaces, we find the desorption energies within each group (n-alkanes vs. 1-alkenes vs. 1-alkynes) from Ti5c sites increase linearly with the chain length. The absolute saturation coverages of each hydrocarbon on Ti5c sites were also determined. The saturation coverage of CH4, is found to be ~ 2/3 monolayer (ML). The saturation coverages of C2-C4 hydrocarbons are found nearly independent of the chain length with values of ~1/2 ML for n-alkanes and 1-alkenes and 2/3 ML for 1-alkynes. This result is surprising considering their similar sizes.

  8. Using microorganisms to aid in hydrocarbon degradation

    International Nuclear Information System (INIS)

    Black, W.; Zamora, J.

    1993-01-01

    Aliphatic hydrocarbons are threatening the potable water supply and the aquatic ecosystem. Given the right microbial inhabitant(s), a large portion of these aliphatic hydrocarbons could be biodegraded before reaching the water supply. The authors' purpose is to isolate possible oil-degrading organisms. Soil samples were taken from hydrocarbon-laden soils at petroleum terminals, a petroleum refinery waste-treatment facility, a sewage-treatment plant grease collector, a site of previous bioremediation, and various other places. Some isolates known to be good degraders were obtained from culture collection services. These samples were plated on a 10w-30 multigrade motor oil solid medium to screen for aliphatic hydrocarbon degraders. The degrading organisms were isolated, identified, and tested (CO 2 evolution, BOD, and COD) to determine the most efficient degrader(s). Thirty-seven organisms were tested, and the most efficient degraders were Serratia marcescens, Escherichia coli, and Enterobacter agglomerans

  9. Source apportionment of hydrocarbons measured in the Eagle Ford shale

    Science.gov (United States)

    Roest, G. S.; Schade, G. W.

    2016-12-01

    The rapid development of unconventional oil and gas in the US has led to hydrocarbon emissions that are yet to be accurately quantified. Emissions from the Eagle Ford Shale in southern Texas, one of the most productive shale plays in the U.S., have received little attention due to a sparse air quality monitoring network, thereby limiting studies of air quality within the region. We use hourly atmospheric hydrocarbon and meteorological data from three locations in the Eagle Ford Shale to assess their sources. Data are available from the Texas commission of environmental quality (TCEQ) air quality monitors in Floresville, a small town southeast of San Antonio and just north of the shale area; and Karnes city, a midsize rural city in the center of the shale. Our own measurements were carried out at a private ranch in rural Dimmit County in southern Texas from April to November of 2015. Air quality monitor data from the TCEQ were selected for the same time period. Non-negative matrix factorization in R (package NMF) was used to determine likely sources and their contributions above background. While the TCEQ monitor data consisted mostly of hydrocarbons, our own data include both CO, CO2, O3, and NOx. We find that rural Dimmit County hydrocarbons are dominated by oil and gas development sources, while central shale hydrocarbons at the TCEQ monitoring sites have a mix of sources including car traffic. However, oil and gas sources also dominate hydrocarbons at Floresville and Karnes City. Toxic benzene is nearly exclusively due to oil and gas development sources, including flaring, which NMF identifies as a major hydrocarbon source in Karnes City. Other major sources include emissions of light weight alkanes (C2-C5) from raw natural gas emissions and a larger set of alkanes (C2-C10) from oil sources, including liquid storage tanks.

  10. Extraction of hydrocarbons from high-maturity Marcellus Shale using supercritical carbon dioxide

    Science.gov (United States)

    Jarboe, Palma B.; Philip A. Candela,; Wenlu Zhu,; Alan J. Kaufman,

    2015-01-01

    Shale is now commonly exploited as a hydrocarbon resource. Due to the high degree of geochemical and petrophysical heterogeneity both between shale reservoirs and within a single reservoir, there is a growing need to find more efficient methods of extracting petroleum compounds (crude oil, natural gas, bitumen) from potential source rocks. In this study, supercritical carbon dioxide (CO2) was used to extract n-aliphatic hydrocarbons from ground samples of Marcellus shale. Samples were collected from vertically drilled wells in central and western Pennsylvania, USA, with total organic carbon (TOC) content ranging from 1.5 to 6.2 wt %. Extraction temperature and pressure conditions (80 °C and 21.7 MPa, respectively) were chosen to represent approximate in situ reservoir conditions at sample depth (1920−2280 m). Hydrocarbon yield was evaluated as a function of sample matrix particle size (sieve size) over the following size ranges: 1000−500 μm, 250−125 μm, and 63−25 μm. Several methods of shale characterization including Rock-Eval II pyrolysis, organic petrography, Brunauer−Emmett−Teller surface area, and X-ray diffraction analyses were also performed to better understand potential controls on extraction yields. Despite high sample thermal maturity, results show that supercritical CO2 can liberate diesel-range (n-C11 through n-C21) n-aliphatic hydrocarbons. The total quantity of extracted, resolvable n-aliphatic hydrocarbons ranges from approximately 0.3 to 12 mg of hydrocarbon per gram of TOC. Sieve size does have an effect on extraction yield, with highest recovery from the 250−125 μm size fraction. However, the significance of this effect is limited, likely due to the low size ranges of the extracted shale particles. Additional trends in hydrocarbon yield are observed among all samples, regardless of sieve size: 1) yield increases as a function of specific surface area (r2 = 0.78); and 2) both yield and surface area increase with increasing

  11. Targeting NF-kB signaling with polymeric hybrid micelles that co-deliver siRNA and dexamethasone for arthritis therapy.

    Science.gov (United States)

    Wang, Qin; Jiang, Hao; Li, Yan; Chen, Wenfei; Li, Hanmei; Peng, Ke; Zhang, Zhirong; Sun, Xun

    2017-04-01

    The transcription factor NF-kB plays a pivotal role in the pathogenesis of rheumatoid arthritis. Here we attempt to slow arthritis progression by co-delivering the glucocorticoid dexamethasone (Dex) and small-interfering RNA targeting NF-kB p65 using our previously developed polymeric hybrid micelle system. These micelles contain two similar amphiphilic copolymers: polycaprolactone-polyethylenimine (PCL-PEI) and polycaprolactone-polyethyleneglycol (PCL-PEG). The hybrid micelles loaded with Dex and siRNA effectively inhibited NF-kB signaling in murine macrophages more efficiently than micelles containing either Dex or siRNA on their own. In addition, the co-delivery system was able to switch macrophages from the M1 to M2 state. Injecting hybrid micelles containing Dex and siRNA into mice with collagen-induced arthritis led the therapeutic agents to accumulate in inflamed joints and reduce inflammation, without damaging renal or liver function. Thus, blocking NF-kB activation in inflammatory tissue using micelle-based co-delivery may provide a new approach for treating inflammatory disease. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Rigorous Screening Technology for Identifying Suitable CO2 Storage Sites II

    Energy Technology Data Exchange (ETDEWEB)

    George J. Koperna Jr.; Vello A. Kuuskraa; David E. Riestenberg; Aiysha Sultana; Tyler Van Leeuwen

    2009-06-01

    This report serves as the final technical report and users manual for the 'Rigorous Screening Technology for Identifying Suitable CO2 Storage Sites II SBIR project. Advanced Resources International has developed a screening tool by which users can technically screen, assess the storage capacity and quantify the costs of CO2 storage in four types of CO2 storage reservoirs. These include CO2-enhanced oil recovery reservoirs, depleted oil and gas fields (non-enhanced oil recovery candidates), deep coal seems that are amenable to CO2-enhanced methane recovery, and saline reservoirs. The screening function assessed whether the reservoir could likely serve as a safe, long-term CO2 storage reservoir. The storage capacity assessment uses rigorous reservoir simulation models to determine the timing, ultimate storage capacity, and potential for enhanced hydrocarbon recovery. Finally, the economic assessment function determines both the field-level and pipeline (transportation) costs for CO2 sequestration in a given reservoir. The screening tool has been peer reviewed at an Electrical Power Research Institute (EPRI) technical meeting in March 2009. A number of useful observations and recommendations emerged from the Workshop on the costs of CO2 transport and storage that could be readily incorporated into a commercial version of the Screening Tool in a Phase III SBIR.

  13. Energy and material balance of CO2 capture from ambient air.

    Science.gov (United States)

    Zeman, Frank

    2007-11-01

    Current Carbon Capture and Storage (CCS) technologies focus on large, stationary sources that produce approximately 50% of global CO2 emissions. We propose an industrial technology that captures CO2 directly from ambient air to target the remaining emissions. First, a wet scrubbing technique absorbs CO2 into a sodium hydroxide solution. The resultant carbonate is transferred from sodium ions to calcium ions via causticization. The captured CO2 is released from the calcium carbonate through thermal calcination in a modified kiln. The energy consumption is calculated as 350 kJ/mol of CO2 captured. It is dominated by the thermal energy demand of the kiln and the mechanical power required for air movement. The low concentration of CO2 in air requires a throughput of 3 million cubic meters of air per ton of CO2 removed, which could result in significant water losses. Electricity consumption in the process results in CO2 emissions and the use of coal power would significantly reduce to net amount captured. The thermodynamic efficiency of this process is low but comparable to other "end of pipe" capture technologies. As another carbon mitigation technology, air capture could allow for the continued use of liquid hydrocarbon fuels in the transportation sector.

  14. Recent Advances in Transition-Metal-Mediated Electrocatalytic CO2 Reduction: From Homogeneous to Heterogeneous Systems

    KAUST Repository

    Feng, Da-Ming; Zhu, Yun-Pei; Chen, Ping; Ma, Tian-Yi

    2017-01-01

    Global climate change and increasing demands for clean energy have brought intensive interest in the search for proper electrocatalysts in order to reduce carbon dioxide (CO2) to higher value carbon products such as hydrocarbons. Recently

  15. Selective transformation of syngas into gasoline-range hydrocarbons over mesoporous H-ZSM-5-supported cobalt nanoparticles.

    Science.gov (United States)

    Cheng, Kang; Zhang, Lei; Kang, Jincan; Peng, Xiaobo; Zhang, Qinghong; Wang, Ye

    2015-01-26

    Bifunctional Fischer-Tropsch (FT) catalysts that couple uniform-sized Co nanoparticles for CO hydrogenation and mesoporous zeolites for hydrocracking/isomerization reactions were found to be promising for the direct production of gasoline-range (C5-11 ) hydrocarbons from syngas. The Brønsted acidity results in hydrocracking/isomerization of the heavier hydrocarbons formed on Co nanoparticles, while the mesoporosity contributes to suppressing the formation of lighter (C1-4 ) hydrocarbons. The selectivity for C5-11 hydrocarbons could reach about 70 % with a ratio of isoparaffins to n-paraffins of approximately 2.3 over this catalyst, and the former is markedly higher than the maximum value (ca. 45 %) expected from the Anderson-Schulz-Flory distribution. By using n-hexadecane as a model compound, it was clarified that both the acidity and mesoporosity play key roles in controlling the hydrocracking reactions and thus contribute to the improved product selectivity in FT synthesis. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Underground CO{sub 2} Storage: Approach for Favourable Formations in Ebro Basin; AGP de CO{sub 2}: Seleccion de Formaciones Favorables en la Cuenca del Ebro

    Energy Technology Data Exchange (ETDEWEB)

    Campos, R.; Perucha, A.; Recreo, F.

    2008-04-10

    The study of the possibilities of conducting Deep Geological CO{sub 2} Storage inside Spanish territory is being performed through the Strategic Singular Project PS-120000-2005-2 of the National Program of Energy from the Education and Science Ministry, and called CO{sub 2} generation, sequestration and storage advanced technologies, sub project N3 CO{sub 2} Geological Storage This report studies the possibilities the Ebro basin offers for definitive CO{sub 2} storage as one of the Spanish selected areas from previous studies. The study and reinterpretation of the information obtained from the hydrocarbon exploration accomplished in the area has lead to the selection of a series of geological formations. These formations have been chosen attending certain characteristics such as their disposition, extension, depth and porosity. The study has also been conducted considering the characteristics of the geological formations above the CO{sub 2} storage formations so as to guarantee the sealing of the storage. The study includes the approximate estimation of the storage capacity for each of the formations in Megatons of CO{sub 2}, which can be useful in future decision making. Deep geological storage is one of the more relevant international initiatives in order to eliminate or reduce the anthropogenic CO{sub 2} emissions to the atmosphere. (Author) 68 refs.

  17. Hybrid NiS/CoO mesoporous nanosheet arrays on Ni foam for high-rate supercapacitors

    Science.gov (United States)

    Wu, Jianghong; Ouyang, Canbin; Dou, Shuo; Wang, Shuangyin

    2015-08-01

    A new hybrid of NiS/CoO porous nanosheets was synthesized on Ni foam by one-step electrodeposition method and used as an electrode for high-performance pseudocapacitance. The as-synthesized NiS/CoO porous nanosheets hybrid shows a high specific capacitance of 1054 F g-1 at a high current density of 6 A g-1, a good rate capability even at high current density (760 F g-1 at 20 A g-1) and a good long-term cycling stability (91.7% of the maximum specific capacitance after 3000 cycles). These excellent properties can be mainly attributed to the unique hierarchical porous structure with large surface area and interspaces which facilitate charge transfer and redox reaction. The enhancement in the interface contact between active material and substrate results in excellent conductivity of the electrode and a strong synergistic effect of NiS and CoO as individual constituents contributed to high capacitance of the hybrid electrode.

  18. Preliminary study of the influence of CO2 extraction conditions on the ester, aldehyde, ketone and hydrocarbon content of grape bagasses from jam production

    Directory of Open Access Journals (Sweden)

    J. Santos

    2007-12-01

    Full Text Available The main objective of this work was to assess the influence of temperature and pressure on the chemical characteristics of the essential oil obtained from CO2 extraction of grape bagasses in the production of jam. The experiments were performed in a laboratory-scale unit, where the effect of temperature (290 and 303 K and pressure (15 and 25 Mpa was investigated in terms of liquid yield and chemical composition of the extracts. The CO2 mass flow rate was kept within a range of 2.5 to 3.0 g/min. The instrumental analysis was performed by gas chromatography with a mass spectrometer detector (GC-MS. The extraction conditions investigated in this work had no significant influence on the mass of essencial oil extracted. The main compounds identified in the extracts by the GC-MS spectra library (match quality higher tan 90% were octadecane, dihydroxy ergostene-dione and phenylethyl n-decanoate when the temperature was increased from 290 to 303 K. Heptanal, ethyl ester of decosonoic acid and hexatriacontane were the individual compounds with the greatest increase in the chromatographic peak area when the pressure was increased from 15 to 25 Mpa. The most important class of compounds were hydrocarbons at 303 K and 15 MPa and were ketones and aldehydes at 25 Mpa and 290 K.

  19. Modification of tin oxide nanoparticles by fluorocarbon solids via a mechanochemical route

    Energy Technology Data Exchange (ETDEWEB)

    Senna, Mamoru, E-mail: senna@applc.keio.ac.jp; Turianicová, Erika; Zorkovská, Anna [Slovak Academy of Sciences, Institute of Geotechnics (Slovakia); Makreski, Petre [SS Cyril and Methodius University, Institute of Chemistry, Faculty of Natural Sciences and Mathematics (Macedonia, The Former Yugoslav Republic of); Kaňuchová, Mária [Technical University of Košice, Institute of Montaneous Sciences and Environmental Protection (Slovakia); Scholz, Gudrun [Humboldt-Universität zu Berlin, Department of Chemistry (Germany); Baláž, Matej; Baláž, Peter; Šepelák, Vladimír [Slovak Academy of Sciences, Institute of Geotechnics (Slovakia); Hahn, Horst [Institute of Nanotechnology, Karlsruhe Institute of Technology (Germany)

    2015-09-15

    Interfacial reactions at the surface of SnO{sub 2} nanoparticles adjacent to the fluorocarbon solids (FCS) under mechanical stressing were compared in an attempt to their modification by introducing fluorine and carbon. Emphasis was laid on the comparison of the reactivity of 3 different species of FCS, i.e., polyvinylidene fluoride (PVdF), polytetrafluoroethylene (PTFE), and perfluorooctanoic acid (PFOA). PVdF exhibited the highest reactivity, followed by PTFE and PFOA, as confirmed by Raman, FT-IR, XPS, and {sup 19}F MAS NMR spectra. The preferential reactivity could be explained in terms of the electrophilicity of FCS toward the nucleophilic oxygen in SnO{sub 2}, since the decomposition of FCS is catalyzed by the coexisting SnO{sub 2}. PFOA behaved in a different manner, due to its carboxylic groups. At the same time, carbon nanospecies were introduced as a decomposed product of FCS. This results in the formation of SnO{sub 2}:F/C nanocomposite. Fluorine introduced to SnO{sub 2} survived even after heating up to 600 °C either in air or in Ar. This indicates the thermal stability of the present partially fluorinated SnO{sub 2} nanoparticles.

  20. Cost and CO2 aspects of future vehicle options in Europe under new energy policy scenarios

    International Nuclear Information System (INIS)

    Thiel, Christian; Perujo, Adolfo; Mercier, Arnaud

    2010-01-01

    New electrified vehicle concepts are about to enter the market in Europe. The expected gains in environmental performance for these new vehicle types are associated with higher technology costs. In parallel, the fuel efficiency of internal combustion engine vehicles and hybrids is continuously improved, which in turn advances their environmental performance but also leads to additional technology costs versus today's vehicles. The present study compares the well-to-wheel CO 2 emissions, costs and CO 2 abatement costs of generic European cars, including a gasoline vehicle, diesel vehicle, gasoline hybrid, diesel hybrid, plug in hybrid and battery electric vehicle. The predictive comparison is done for the snapshots 2010, 2020 and 2030 under a new energy policy scenario for Europe. The results of the study show clearly that the electrification of vehicles offer significant possibilities to reduce specific CO 2 emissions in road transport, when supported by adequate policies to decarbonise the electricity generation. Additional technology costs for electrified vehicle types are an issue in the beginning, but can go down to enable payback periods of less than 5 years and very competitive CO 2 abatement costs, provided that market barriers can be overcome through targeted policy support that mainly addresses their initial cost penalty. (author)

  1. The screening effects of the screened exchange hybrid functional in surface systems: A case study on the CO/Pt(111) problem

    Energy Technology Data Exchange (ETDEWEB)

    Li, H., E-mail: li-huanglong@mail.tsinghua.edu.cn [Department of Precision Instrument, Tsinghua University, Beijing, 100084 (China); Gillen, R. [Institut für Festkörperphysik. Technische Universität Berlin. Hardenbergstr. 36, 10623 Berlin (Germany); Robertson, J., E-mail: jr214@cam.ac.uk [Engineering Department, University of Cambridge, Cambridge CB2 1PZ (United Kingdom)

    2016-06-15

    The screened exchange (sX) hybrid functional has been widely used in computational material science. Although it has widely been studied in bulk systems, less is known about its functional behavior in surface systems which are crucial to many technologies such as materials synthesis and nano-electronic devices. Assessing the screening dependent functional behaviors in the surface systems is therefore important for its application in such systems. In this work, we investigate the screening effects of the sX in CO adsorption on Pt(111) surface. The differences between the sX and Heyd-Scuseria-Ernzerhof (HSE06) hybrid functionals, and the effects of screening parameters are studied. The screening has two effects: first, the HOMO-LUMO gap is screening dependent. This affects the site preference most significantly. In this work, atop adsorption of CO/Pt(111) is predicted by the hybrid functionals with screened exchange potential. The sX(1.44) gives the largest HOMO-LUMO gap for the isolated CO molecule. The adsorption energy difference between the atop and fcc site is also the largest by the sX(1.44) which is explained by the reduced metal d states to the CO 2π* state back-donation, with stronger effect for the fcc adsorption than for the atop adsorption; second, the adsorption energy is screening dependent. This can be seen by comparing the sX(2.38) and HSE06 which have different screening strengths. They show similar surface band structures for the CO adsorption but different adsorption energies, which is explained by the stronger CO 5σ state to the metal d states donation or the effectively screened Pauli repulsion. This work underlines the screening strength as a main difference between sX and HSE06, as well as an important hybrid functional parameter for surface calculation.

  2. Abatement of CO{sub 2} emissions: IFP's solutions; Reduction des emissions de CO{sub 2}: les solutions IFP

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    In a context of increasing energy consumption and world economic growth, the fight against greenhouse gases has become a major technological challenge for the coming years. The capture and sequestration of CO{sub 2} in the underground is a promising solution in terms of environmental impact, especially in places and sectors characterized by a strong concentration of CO{sub 2} emissions (power generation plants, big industries). However, such a solution requires important R and D efforts to reduce the costs and warrant the long-term reliability of the storage. The French institute of petroleum (IFP) will play an important role in the implementation of the geological sequestration. This press kit comprises 7 documents: a press release from November 4, 2003; a press conference with a series of slides presenting the stakes, solutions and actions proposed by the IFP in collaboration with several foreign partners (CO{sub 2} capture, storage in depleted hydrocarbon deposits, saline aquifers or abandoned coal seams, storage potential, reduction of costs); a summary of the stakes and solutions for CO{sub 2} sequestration in deep underground; a similar document presented at the Panorama 2003 colloquium; the CO{sub 2} constraint in France and in Europe (international consensus on climatic change, Kyoto protocol, European directive about tradable carbon permits, voluntary commitment of companies in the fight against greenhouse effects (AERES)); the European project Castor (CO{sub 2} from capture to storage); and the IFP brochure 'innovating for a sustainable development in the energy domain'. (J.S.)

  3. Production of hydrogen from hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Lohmueller, R

    1984-03-01

    Hydrocarbons are the preferred starting materials for the industrial production of hydrogen. Most hydrogen is produced by steam reforming of light hydrocarbons. Partial oxidation of heavy oil and residue is used for the production of H/sub 2/ and synthesis gas in large plants. In both cases gas purification was improved. Hydrogen-rich gases like coke oven gas, refinery-offgas, and offgases from the chemical and petrochemical industry have high potential for becoming a major source of hydrogen. Processes for recovering H/sub 2/ (and by-products) are condensation and rectification at low temperatures and, most attractive and versatile for the production of very pure H/sub 2/, adsorption (PSA). The environmental impact of H/sub 2/ production lies mainly in the emission of CO/sub 2/ and heat. Other forms of pollution can be considerably reduced by conventional methods. The economy of H/sub 2/ production depends essentially on price and availability of the raw materials.

  4. Weeks Island gravity stable CO2 pilot: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Johnston, J.R.; Perry, G.E.

    1989-01-01

    The Weeks Island ''S'' sand Reservoir B (''S'' RB) gravity-stable CO2 field test was completed during February 1988. Injection started in October 1978 and production began in January 1981 in this high-permeability, steeply-dipping sandstone reservoir. About 264,000 barrels of oil or 65 percent of the starting volume has been recovered. A 24-percent pore-volume slug of CO2 mixed with about six mole percent of natural gas (mostly methane) was injected at the start of the pilot. Since 1983, produced CO2 plus hydrocarbon gases have been recycled. CO2 usage statistics are 9.34 MCF/BO with recycle and 3.24 MCF/BO based on purchased CO2. Previous annual reports document the pilot design, implementation, and early results for the 1977 to June 1981 time period. This report is a review of early pilot history and a more detailed account of the post June 1981 results and overall interpretation. A reservoir-simulation history match of pilot performance plus core and log data from a 1983 swept-zone evaluation well are described in this report. A brief description of the production facility and an account of the corrosion control program are also included. 11 refs., 34 figs.

  5. A comprehensive approach to dark matter studies: exploration of simplified top-philic models

    Energy Technology Data Exchange (ETDEWEB)

    Arina, Chiara; Backović, Mihailo [Centre for Cosmology, Particle Physics and Phenomenology (CP3),Université catholique de Louvain, Chemin du Cyclotron 2, B-1348 Louvain-la-Neuve (Belgium); Conte, Eric [Groupe de Recherche de Physique des Hautes Énergies (GRPHE), Université de Haute-Alsace,IUT Colmar, F-68008 Colmar Cedex (France); Fuks, Benjamin [Sorbonne Universités, UPMC University Paris 06, UMR 7589, LPTHE, F-75005, Paris (France); CNRS, UMR 7589, LPTHE, F-75005, Paris (France); Guo, Jun [State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics,Chinese Academy of Sciences, Beijing 100190 (China); Institut Pluridisciplinaire Hubert Curien/Département Recherches Subatomiques,Université de Strasbourg/CNRS-IN2P3, F-67037 Strasbourg (France); Heisig, Jan [Institute for Theoretical Particle Physics and Cosmology, RWTH Aachen University,Sommerfeldstr. 16, D-52056 Aachen (Germany); Hespel, Benoît [Centre for Cosmology, Particle Physics and Phenomenology (CP3),Université catholique de Louvain, Chemin du Cyclotron 2, B-1348 Louvain-la-Neuve (Belgium); Krämer, Michael [Institute for Theoretical Particle Physics and Cosmology, RWTH Aachen University,Sommerfeldstr. 16, D-52056 Aachen (Germany); Maltoni, Fabio; Martini, Antony [Centre for Cosmology, Particle Physics and Phenomenology (CP3),Université catholique de Louvain, Chemin du Cyclotron 2, B-1348 Louvain-la-Neuve (Belgium); Mawatari, Kentarou [Laboratoire de Physique Subatomique et de Cosmologie, Université Grenoble-Alpes,CNRS/IN2P3, 53 Avenue des Martyrs, F-38026 Grenoble (France); Theoretische Natuurkunde and IIHE/ELEM, Vrije Universiteit Brussel andInternational Solvay Institutes, Pleinlaan 2, B-1050 Brussels (Belgium); Pellen, Mathieu [Universität Würzburg, Institut für Theoretische Physik und Astrophysik,Emil-Hilb-Weg 22, 97074 Würzburg (Germany); Vryonidou, Eleni [Centre for Cosmology, Particle Physics and Phenomenology (CP3),Université catholique de Louvain, Chemin du Cyclotron 2, B-1348 Louvain-la-Neuve (Belgium)

    2016-11-21

    Studies of dark matter lie at the interface of collider physics, astrophysics and cosmology. Constraining models featuring dark matter candidates entails the capability to provide accurate predictions for large sets of observables and compare them to a wide spectrum of data. We present a framework which, starting from a model Lagrangian, allows one to consistently and systematically make predictions, as well as to confront those predictions with a multitude of experimental results. As an application, we consider a class of simplified dark matter models where a scalar mediator couples only to the top quark and a fermionic dark sector (i.e. the simplified top-philic dark matter model). We study in detail the complementarity of relic density, direct/indirect detection and collider searches in constraining the multi-dimensional model parameter space, and efficiently identify regions where individual approaches to dark matter detection provide the most stringent bounds. In the context of collider studies of dark matter, we point out the complementarity of LHC searches in probing different regions of the model parameter space with final states involving top quarks, photons, jets and/or missing energy. Our study of dark matter production at the LHC goes beyond the tree-level approximation and we show examples of how higher-order corrections to dark matter production processes can affect the interpretation of the experimental results.

  6. Efficient Generation of Long-Lived Triplet Excitons in 2D Hybrid Perovskite.

    Science.gov (United States)

    Younts, Robert; Duan, Hsin-Sheng; Gautam, Bhoj; Saparov, Bayrammurad; Liu, Jie; Mongin, Cedric; Castellano, Felix N; Mitzi, David B; Gundogdu, Kenan

    2017-03-01

    Triplet excitons form in quasi-2D hybrid inorganic-organic perovskites and diffuse over 100 nm before radiating with >11% photoluminescence quantum efficiency (PLQE) at low temperatures. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Estimating fault stability and sustainable fluid pressures for underground storage of CO2 in porous rock

    International Nuclear Information System (INIS)

    Streit, J.E.; Hillis, R.R.

    2004-01-01

    Geomechanical modelling of fault stability is an integral part of Australia's GEODISC research program to ensure the safe storage of carbon dioxide in subsurface reservoirs. Storage of CO 2 in deep saline formations or depleted hydrocarbon reservoirs requires estimates of sustainable fluid pressures that will not induce fracturing or create fault permeability that could lead to CO 2 escape. Analyses of fault stability require the determination of fault orientations, ambient pore fluid pressures and in situ stresses in a potential storage site. The calculation of effective stresses that act on faults and reservoir rocks lead then to estimates of fault slip tendency and fluid pressures sustainable during CO 2 storage. These parameters can be visualized on 3D images of fault surfaces or in 2D projections. Faults that are unfavourably oriented for reactivation can be identified from failure plots. In depleted oil and gas fields, modelling of fault and rock stability needs to incorporate changes of the pre-production stresses that were induced by hydrocarbon production and associated pore pressure depletion. Such induced stress changes influence the maximum sustainable formation pressures and CO 2 storage volumes. Hence, determination of in situ stresses and modelling of fault stability are essential prerequisites for the safe engineering of subsurface CO 2 injection and the modelling of storage capacity. (author)

  8. A Geochemical Model of Fluids and Mineral Interactions for Deep Hydrocarbon Reservoirs

    Directory of Open Access Journals (Sweden)

    Jun Li

    2017-01-01

    Full Text Available A mutual solubility model for CO2-CH4-brine systems is constructed in this work as a fundamental research for applications of deep hydrocarbon exploration and production. The model is validated to be accurate for wide ranges of temperature (0–250°C, pressure (1–1500 bar, and salinity (NaCl molality from 0 to more than 6 mole/KgW. Combining this model with PHREEQC functionalities, CO2-CH4-brine-carbonate-sulfate equilibrium is calculated. From the calculations, we conclude that, for CO2-CH4-brine-carbonate systems, at deeper positions, magnesium is more likely to be dissolved in aqueous phase and calcite can be more stable than dolomite and, for CO2-CH4-brine-sulfate systems, with a presence of CH4, sulfate ions are likely to be reduced to S2− and H2S in gas phase could be released after S2− saturated in the solution. The hydrocarbon “souring” process could be reproduced from geochemical calculations in this work.

  9. Anaerobic Microbial Degradation of Hydrocarbons: From Enzymatic Reactions to the Environment.

    Science.gov (United States)

    Rabus, Ralf; Boll, Matthias; Heider, Johann; Meckenstock, Rainer U; Buckel, Wolfgang; Einsle, Oliver; Ermler, Ulrich; Golding, Bernard T; Gunsalus, Robert P; Kroneck, Peter M H; Krüger, Martin; Lueders, Tillmann; Martins, Berta M; Musat, Florin; Richnow, Hans H; Schink, Bernhard; Seifert, Jana; Szaleniec, Maciej; Treude, Tina; Ullmann, G Matthias; Vogt, Carsten; von Bergen, Martin; Wilkes, Heinz

    2016-01-01

    Hydrocarbons are abundant in anoxic environments and pose biochemical challenges to their anaerobic degradation by microorganisms. Within the framework of the Priority Program 1319, investigations funded by the Deutsche Forschungsgemeinschaft on the anaerobic microbial degradation of hydrocarbons ranged from isolation and enrichment of hitherto unknown hydrocarbon-degrading anaerobic microorganisms, discovery of novel reactions, detailed studies of enzyme mechanisms and structures to process-oriented in situ studies. Selected highlights from this program are collected in this synopsis, with more detailed information provided by theme-focused reviews of the special topic issue on 'Anaerobic biodegradation of hydrocarbons' [this issue, pp. 1-244]. The interdisciplinary character of the program, involving microbiologists, biochemists, organic chemists and environmental scientists, is best exemplified by the studies on alkyl-/arylalkylsuccinate synthases. Here, research topics ranged from in-depth mechanistic studies of archetypical toluene-activating benzylsuccinate synthase, substrate-specific phylogenetic clustering of alkyl-/arylalkylsuccinate synthases (toluene plus xylenes, p-cymene, p-cresol, 2-methylnaphthalene, n-alkanes), stereochemical and co-metabolic insights into n-alkane-activating (methylalkyl)succinate synthases to the discovery of bacterial groups previously unknown to possess alkyl-/arylalkylsuccinate synthases by means of functional gene markers and in situ field studies enabled by state-of-the-art stable isotope probing and fractionation approaches. Other topics are Mo-cofactor-dependent dehydrogenases performing O2-independent hydroxylation of hydrocarbons and alkyl side chains (ethylbenzene, p-cymene, cholesterol, n-hexadecane), degradation of p-alkylated benzoates and toluenes, glycyl radical-bearing 4-hydroxyphenylacetate decarboxylase, novel types of carboxylation reactions (for acetophenone, acetone, and potentially also benzene and

  10. High atmosphere–ocean exchange of semivolatile aromatic hydrocarbons

    KAUST Repository

    González-Gaya, Belén

    2016-05-16

    Polycyclic aromatic hydrocarbons, and other semivolatile aromatic-like compounds, are an important and ubiquitous fraction of organic matter in the environment. The occurrence of semivolatile aromatic hydrocarbons is due to anthropogenic sources such as incomplete combustion of fossil fuels or oil spills, and other biogenic sources. However, their global transport, fate and relevance for the carbon cycle have been poorly assessed, especially in terms of fluxes. Here we report a global assessment of the occurrence and atmosphere-ocean fluxes of 64 polycyclic aromatic hydrocarbons analysed in paired atmospheric and seawater samples from the tropical and subtropical Atlantic, Pacific and Indian oceans. The global atmospheric input of polycyclic aromatic hydrocarbons to the global ocean is estimated at 0.09 Tg per month, four times greater than the input from the Deepwater Horizon spill. Moreover, the environmental concentrations of total semivolatile aromatic-like compounds were 10 2 -10 3 times higher than those of the targeted polycyclic aromatic hydrocarbons, with a relevant contribution of an aromatic unresolved complex mixture. These concentrations drive a large global deposition of carbon, estimated at 400 Tg C yr -1, around 15% of the oceanic CO2 uptake. © 2016 Macmillan Publishers Limited.

  11. CO{sub 2} as an Oxidant for High-Temperature Reactions

    Energy Technology Data Exchange (ETDEWEB)

    Kawi, Sibudjing, E-mail: chekawis@nus.edu.sg; Kathiraser, Yasotha [Department of Chemical and Biomolecular Engineering, Faculty of Engineering, National University of Singapore, Singapore (Singapore)

    2015-03-18

    This paper presents a review on the developments in catalyst technology for the reactions utilizing CO{sub 2} for high-temperature applications. These include dehydrogenation of alkanes to olefins, the dehydrogenation of ethylbenzene to styrene, and finally CO{sub 2} reforming of hydrocarbon feedstock (i.e., methane) and alcohols. Aspects on the various reaction pathways are also highlighted. The literature on the role of promoters and catalyst development is critically evaluated. Most of the reactions discussed in this review are exploited in industries and related to on-going processes, thus providing extensive data from literature. However, some reactions, such as CO{sub 2} reforming of ethanol and glycerol, which have not reached industrial scale, are also reviewed owing to their great potential in terms of sustainability, which is essential as energy for the future. This review further illustrates the building-up of knowledge that shows the role of support and catalysts for each reaction and the underlying linkage between certain catalysts, which can be adapted for the multiple CO{sub 2}-related reactions.

  12. CO2 Removal from Multi-component Gas Mixtures Utilizing Spiral-Wound Asymmetric Membranes

    International Nuclear Information System (INIS)

    Said, W.B.; Fahmy, M.F.M.; Gad, F.K.; EI-Aleem, G.A.

    2004-01-01

    A systematic procedure and a computer program have been developed for simulating the performance of a spiral-wound gas permeate for the CO 2 removal from natural gas and other hydrocarbon streams. The simulation program is based on the approximate multi-component model derived by Qi and Henson(l), in addition to the membrane parameters achieved from the binary simulation program(2) (permeability and selectivity). Applying the multi-component program on the same data used by Qi and Henson to evaluate the deviation of the approximate model from the basic transport model, showing results more accurate than those of the approximate model, and are very close to those of the basic transport model, while requiring significantly less than 1 % of the computation time. The program was successfully applied on the data of Salam gas plant membrane unit at Khalda Petroleum Company, Egypt, for the separation of CO 2 from hydrocarbons in an eight-component mixture to estimate the stage cut, residue, and permeate compositions, and gave results matched with the actual Gas Chromatography Analysis measured by the lab

  13. Enhancing hybrid direct carbon fuel cell anode performance using Ag2O

    DEFF Research Database (Denmark)

    Deleebeeck, Lisa; Ippolito, Davide; Kammer Hansen, Kent

    2015-01-01

    A hybrid-direct carbon fuel cell (HDCFC), consisting of a molten slurry of solid carbon black and (Li-K)2CO3 added to the anode chamber of a solid oxide fuel cell, was characterized using current-potential-power density curves, electrochemical impedance spectroscopy, and cyclic voltammetry. Two...... types of experimental setups were employed in this study, an anode-supported full cell configuration (two electrodes, two atmospheres setup) and a 3-electrode electrolyte-supported half-cell setup (single atmosphere). Anode processes with and without catalysts were investigated as a function...... of temperature (700-800 °C) and anode sweep gas (N2, 4-100% CO2 in N2-CO2). It was shown that the addition of silver based catalysts (Ag, Ag2O, Ag2CO3) into the carbon-carbonate slurry enhanced the performance of the HDCFC....

  14. Durable antimicrobial finishing of cellulose with QSA silicone by supercritical adsorption

    International Nuclear Information System (INIS)

    Chen Yong; Niu Mengqi; Yuan Shu; Teng Hongni

    2013-01-01

    Highlights: ► CO 2 -philic QAS silicone was synthesized through hydrosilylation and quaternization. ► QAS silicone was coated on cotton by adsorption from scCO 2 . ► The coating procedure did not need covalently bonding tethering groups. ► The coating provided potent biocidal activities against Staphylococcus aureus and Escherichia coli. ► Antibacterial coating was very stable toward washing and UV irradiation. - Abstract: This study demonstrated a generic and simple approach to generate durable antibacterial ability on cellulose without using covalently bonding tethering groups that limit the structure design. CO 2 -philic silicone with quaternary ammonium salt (QAS) pendants was synthesized through hydrosilylation reaction of poly(methylhydrosiloxane) (PMHS) and 2-(dimethylamino)ethyl acrylate in the presence of platinum-based catalyst and subsequent quaternization with 1-bromohexane. The resultant QAS silicone was deposited onto cellulose by adsorption from supercritical CO 2 (scCO 2 ) to provide potent biocidal activities against Staphylococcus aureus and Escherichia coli. Presented data also showed that the antibacterial layer was very stable toward washing and UV irradiation owning to the low surface tension and relatively high bond energy of the backbone of silicone. This procedure is applicable to substrates of other shape and chemistry.

  15. Decisive Intermediates Responsible for the Carbonaceous Products of CO2 Electro-reduction on Nitrogen-Doped sp2 Nanocarbon Catalysts in NaHCO3 Aqueous Electrolyte

    DEFF Research Database (Denmark)

    Xu, Junyuan; Zhang, Bingsen; Wang, Bolun

    2017-01-01

    CO2 and a secondary pathway leading to HCO2− from HCO3−. Neither hydrocarbon (CxHy) nor alcohol or aldehyde (CxHyOz) were detected in the reduction of CO2. However, CO, which is generally regarded as an intermediate to be transformed into these products on metal catalysts, can undoubtedly be produced...

  16. CO_2 labelling of passenger cars in Europe: Status, challenges, and future prospects

    International Nuclear Information System (INIS)

    Haq, Gary; Weiss, Martin

    2016-01-01

    Directive 1999/94/EC requires Member States of the European Union (EU) to ensure that consumers are informed about the fuel consumption and CO_2 emissions of new passenger cars. The European Commission is currently evaluating the directive. In support of this effort, we assess the status of car labelling in the EU. We find that all EU Member States have formally implemented national car labelling schemes. However, relevant information is not presented to consumers in a uniform manner. Only 13 Member States have implemented graphic labels that differ in their design, metrics, and classification of vehicles. The fuel consumption data displayed to consumers underrate yearly fuel costs in the order of several hundred Euros per car. We argue that car labelling can be made more effective if Member States adopt: (i) a uniform label that mirrors, as far as feasible, the design of the EU energy label, (ii) data and classification metrics that accurately reflect the fuel consumption and CO_2 emissions observed by consumers, and (iii) a labelling scale that allows differentiation between efficient hybrid and plug-in hybrid vehicles. By following these recommendations, the European car labelling can receive wider recognition and foster well-informed consumer choices. - Highlights: •Car labelling Directive 1999/94 implemented by all 28 EU Member States. •National labelling schemes vary from each other in design and amount of information displayed to consumers. •Future revisions should ensure labelling accurately reflects on-road energy use and CO_2 emissions of cars. •Expansion of labelling scale toward zero CO_2 emissions would allow differentiating between hybrid and plug-in hybrid cars.

  17. Cocatalysts in Semiconductor-based Photocatalytic CO2 Reduction: Achievements, Challenges, and Opportunities.

    Science.gov (United States)

    Ran, Jingrun; Jaroniec, Mietek; Qiao, Shi-Zhang

    2018-02-01

    Ever-increasing fossil-fuel combustion along with massive CO 2 emissions has aroused a global energy crisis and climate change. Photocatalytic CO 2 reduction represents a promising strategy for clean, cost-effective, and environmentally friendly conversion of CO 2 into hydrocarbon fuels by utilizing solar energy. This strategy combines the reductive half-reaction of CO 2 conversion with an oxidative half reaction, e.g., H 2 O oxidation, to create a carbon-neutral cycle, presenting a viable solution to global energy and environmental problems. There are three pivotal processes in photocatalytic CO 2 conversion: (i) solar-light absorption, (ii) charge separation/migration, and (iii) catalytic CO 2 reduction and H 2 O oxidation. While significant progress is made in optimizing the first two processes, much less research is conducted toward enhancing the efficiency of the third step, which requires the presence of cocatalysts. In general, cocatalysts play four important roles: (i) boosting charge separation/transfer, (ii) improving the activity and selectivity of CO 2 reduction, (iii) enhancing the stability of photocatalysts, and (iv) suppressing side or back reactions. Herein, for the first time, all the developed CO 2 -reduction cocatalysts for semiconductor-based photocatalytic CO 2 conversion are summarized, and their functions and mechanisms are discussed. Finally, perspectives in this emerging area are provided. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Impact of H2/CO ratios on phase and performance of Mn-modified Fe-based Fischer Tropsch synthesis catalyst

    International Nuclear Information System (INIS)

    Ding, Mingyue; Yang, Yong; Li, Yongwang; Wang, Tiejun; Ma, Longlong; Wu, Chuangzhi

    2013-01-01

    Highlights: ► Decreasing H 2 /CO ratio facilitated the conversion of Fe 3 O 4 to iron carbides on the surface layers. ► The formation of surface carbonaceous species was promoted in higher CO partial pressure. ► The formation of iron carbides on the surface of Fe 3 O 4 provided the FTS active sites. ► Decreasing H 2 /CO ratio promoted the product shifting towards heavy hydrocarbons. - Abstract: Impacts of H 2 /CO ratios on both the bulky and surface compositions of an iron–manganese based catalyst were investigated by XRD, MES, N 2 -physisorption, XPS and LRS. Fischer–Tropsch (F–T) synthesis performances were studied in a slurry-phase continuously stirred tank reactor. The characterization results showed that the fresh catalyst was comprised of the hematite, which was converted firstly to Fe 3 O 4 , and then carburized to iron carbides in both the bulk and surface regions under different H 2 /CO ratios atmosphere. Pretreatment in lower H 2 /CO ratio facilitated the formation of iron carbides on the surface of magnetite and surface carbonaceous species. During the F–T synthesis reaction, the catalyst reduced in lower H 2 /CO ratio presented higher catalytic activity, which is assigned probably to the formation of more iron carbides (especially for χ-Fe 5 C 2 ) on the surface of magnetite. The increase of CO partial pressure promoted the product distribution shifting towards heavy hydrocarbons

  19. Hybrid NiCoOx adjacent to Pd nanoparticles as a synergistic electrocatalyst for ethanol oxidation

    Science.gov (United States)

    Wang, Wei; Yang, Yan; Liu, Yanqin; Zhang, Zhe; Dong, Wenkui; Lei, Ziqiang

    2015-01-01

    To improve the electrocatalytic activity of Pd for ethanol oxidation, hybrid NiCoOx adjacent to Pd catalyst (Pd-NiCoOx/C) is successfully synthesized. Physical characterization shows NiCoOx is closely adjacent to Pd nanoparticles in Pd-NiCoOx/C catalyst, which leads to Strong Metal-Support Interactions (SMSI) between the NiCoOx and Pd nanoparticles, in favor of the electrocatalytic properties. The Pd-NiCoOx/C catalyst is estimated to own larger electrochemically active surface area than Pd/C and Pd-NiO/C catalysts. Moreover, compared to Pd/C catalyst, the onset potential of Pd-NiCoOx/C catalyst is negative 40 mV for ethanol oxidation. Noticeably, the current density of Pd-NiCoOx/C catalyst is 2.05 and 1.43 times higher contrasted to Pd/C and Pd-NiO/C catalysts accordingly. Importantly, the Pd-NiCoOx/C catalyst exhibits better stability during ethanol oxidation, which is a promising electrocatalyst for application in direct alkaline alcohol fuel cells.

  20. Fischer-Tropsch Synthesis: Influence of CO Conversion on Selectivities H2/CO Usage Ratios and Catalyst Stability for a 0.27 percent Ru 25 percent Co/Al2O3 using a Slurry Phase Reactor

    Energy Technology Data Exchange (ETDEWEB)

    W Ma; G Jacobs; Y Ji; T Bhatelia; D Bukur; S Khalid; B Davis

    2011-12-31

    The effect of CO conversion on hydrocarbon selectivities (i.e., CH{sub 4}, C{sub 5+}, olefin and paraffin), H{sub 2}/CO usage ratios, CO{sub 2} selectivity, and catalyst stability over a wide range of CO conversion (12-94%) on 0.27%Ru-25%Co/Al{sub 2}O{sub 3} catalyst was studied under the conditions of 220 C, 1.5 MPa, H{sub 2}/CO feed ratio of 2.1 and gas space velocities of 0.3-15 NL/g-cat/h in a 1-L continuously stirred tank reactor (CSTR). Catalyst samples were withdrawn from the CSTR at different CO conversion levels, and Co phases (Co, CoO) in the slurry samples were characterized by XANES, and in the case of the fresh catalysts, EXAFS as well. Ru was responsible for increasing the extent of Co reduction, thus boosting the active site density. At 1%Ru loading, EXAFS indicates that coordination of Ru at the atomic level was virtually solely with Co. It was found that the selectivities to CH{sub 4}, C{sub 5+}, and CO{sub 2} on the Co catalyst are functions of CO conversion. At high CO conversions, i.e. above 80%, CH{sub 4} selectivity experienced a change in the trend, and began to increase, and CO{sub 2} selectivity experienced a rapid increase. H{sub 2}/CO usage ratio and olefin content were found to decrease with increasing CO conversion in the range of 12-94%. The observed results are consistent with water reoxidation of Co during FTS at high conversion. XANES spectroscopy of used catalyst samples displayed spectra consistent with the presence of more CoO at higher CO conversion levels.

  1. Effects of oxygen supply on the biodegradation rate in oil hydrocarbons contaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Zawierucha, I [Institute of Chemistry and Environment Protection, Jan Dlugosz University of Czestochowa, Waszyngtona 4/8, 42-200 Czestochowa (Poland); Malina, G, E-mail: iwona_zawierucha@o2.pl [Faculty of Hydrogeology and Geology Engineering, Department of Geology, Geophysics and Environment Protection, AGH University of Science and Technology, Mickiewicza 30, 30-059 Cracow (Poland)

    2011-04-01

    Respirometry studies using the 10-chamber Micro-Oxymax respirometer (Columbus, Ohio) were conducted to determine the effect of biostimulation (by diverse ways of O{sub 2} supply) on enhancing biodegradation in soils contaminated with oil hydrocarbons. Soil was collected from a former military airport in Kluczewo, Poland. Oxygen was supplied by means of aerated water, aqueous solutions of H{sub 2}O{sub 2} and KMnO{sub 4}. The biodegradation was evaluated on the basis of O{sub 2} uptake and CO{sub 2} production. The O{sub 2} consumption and CO{sub 2} production rates during hydrocarbons biodegradation were estimated from the slopes of cumulative curve linear regressions. The pertinent intrinsic and enhanced biodegradation rates were calculated on the basis of mass balance equation and O{sub 2} uptake and CO{sub 2} production rates. The biodegradation rates of 5-7 times higher as compared to a control were observed when the aqueous solution of KMnO{sub 4} in concentration of 20 g L{sup -1} was applied. Permanganate is known to readily oxidize alkene carbon - carbon double bonds; so it can be successfully applied in remediation technology for soils contaminated with oil hydrocarbons. While hydrocarbons are not completely mineralized by permanganate oxidation reactions, their structure is altered by polar functional groups providing vast improvements in aqueous solubility and availability for biodegradation. The 3% aqueous solution of H{sub 2}O{sub 2} caused significant improvement of the biodegradation rates as compared to a control (on average about 260%). Aerobic biodegradation of hydrocarbons can benefit from the presence of oxygen released during H{sub 2}O{sub 2} decomposition. Adding of aerated water resulted in an increase of biodegradation rates (about 114 - 229%) as compared to a control. The aerated water can both be the source of oxygen for microorganisms and determine the transport of substrate to bacteria cells.

  2. Prediction of CO concentrations based on a hybrid Partial Least Square and Support Vector Machine model

    Science.gov (United States)

    Yeganeh, B.; Motlagh, M. Shafie Pour; Rashidi, Y.; Kamalan, H.

    2012-08-01

    Due to the health impacts caused by exposures to air pollutants in urban areas, monitoring and forecasting of air quality parameters have become popular as an important topic in atmospheric and environmental research today. The knowledge on the dynamics and complexity of air pollutants behavior has made artificial intelligence models as a useful tool for a more accurate pollutant concentration prediction. This paper focuses on an innovative method of daily air pollution prediction using combination of Support Vector Machine (SVM) as predictor and Partial Least Square (PLS) as a data selection tool based on the measured values of CO concentrations. The CO concentrations of Rey monitoring station in the south of Tehran, from Jan. 2007 to Feb. 2011, have been used to test the effectiveness of this method. The hourly CO concentrations have been predicted using the SVM and the hybrid PLS-SVM models. Similarly, daily CO concentrations have been predicted based on the aforementioned four years measured data. Results demonstrated that both models have good prediction ability; however the hybrid PLS-SVM has better accuracy. In the analysis presented in this paper, statistic estimators including relative mean errors, root mean squared errors and the mean absolute relative error have been employed to compare performances of the models. It has been concluded that the errors decrease after size reduction and coefficients of determination increase from 56 to 81% for SVM model to 65-85% for hybrid PLS-SVM model respectively. Also it was found that the hybrid PLS-SVM model required lower computational time than SVM model as expected, hence supporting the more accurate and faster prediction ability of hybrid PLS-SVM model.

  3. Polyoxometalate-Promoted Electrocatalytic CO2 Reduction at Nanostructured Silver in Dimethylformamide.

    Science.gov (United States)

    Guo, Si-Xuan; Li, Fengwang; Chen, Lu; MacFarlane, Douglas R; Zhang, Jie

    2018-04-18

    Electrochemical reduction of CO 2 is a promising method to convert CO 2 into fuels or useful chemicals, such as carbon monoxide (CO), hydrocarbons, and alcohols. In this study, nanostructured Ag was obtained by electrodeposition of Ag in the presence of a Keggin type polyoxometalate, [PMo 12 O 40 ] 3- (PMo). Metallic Ag is formed upon reduction of Ag + . Adsorption of PMo on the surface of the newly formed Ag lowers its surface energy thus stabilizes the nanostructure. The electrocatalytic performance of this Ag-PMo nanocomposite for CO 2 reduction was evaluated in a CO 2 saturated dimethylformamide medium containing 0.1 M [ n-Bu 4 N]PF 6 and 0.5% (v/v) added H 2 O. The results show that this Ag-PMo nanocomposite can catalyze the reduction of CO 2 to CO with an onset potential of -1.70 V versus Fc 0/+ , which is only 0.29 V more negative than the estimated reversible potential (-1.41 V) for this process and 0.70 V more positive than that on bulk Ag metal. High faradaic efficiencies of about 90% were obtained over a wide range of applied potentials. A Tafel slope of 60 mV dec -1 suggests that rapid formation of *CO 2 •- is followed by the rate-determining protonation step. This is consistent with the voltammetric data which suggest that the reduced PMo interacts strongly with CO 2 (and presumably CO 2 •- ) and hence promotes the formation of CO 2 •- .

  4. Adsorption of volatile hydrocarbons in iron polysulfide chalcogels

    KAUST Repository

    Ahmed, Ejaz

    2014-11-01

    We report the synthesis, characterization and possible applications of three new metal-chalcogenide aerogels KFe3Co3S 21, KFe3Y3S22 and KFe 3Eu3S22. Metal acetates react with the alkali metal polychalcogenides in formamide/water mixture to form extended polymeric frameworks that exhibit gelation phenomena. Amorphous aerogels obtained after supercritical CO2 drying have BET surface area from 461 to 573 m 2/g. Electron microscopy images and nitrogen adsorption measurements showed that pore sizes are found in micro (below 2 nm), meso (2-50 nm), and macro (above 50 nm) porous regions. These chalcogels possess optical bandgaps in the range of 1.55-2.70 eV. These aerogels have been studied for the adsorption of volatile hydrocarbons and gases. A much higher adsorption of toluene in comparison with cyclohexane and cyclopentane vapors have been observed. The adsorption capacities of the three volatile hydrocarbons are found in the following order: toluene > cyclohexane > cyclopentane. It has been observed that high selectivity in adsorption is feasible with high-surface-area metal chalcogenides. Similarly, almost an eight to ten times increase in adsorption selectivity towards CO2 over H2/CH4 was observed in the aerogels. Moreover, reversible ion-exchange properties for K+/Cs+ ions have also been demonstrated. © 2014 Elsevier Inc. All rights reserved.

  5. Synthesis of extended polycyclic aromatic hydrocarbons by oxidative tandem spirocyclization and 1,2-aryl migration

    Science.gov (United States)

    Zhang, Xuan; Xu, Zhanqiang; Si, Weili; Oniwa, Kazuaki; Bao, Ming; Yamamoto, Yoshinori; Jin, Tienan

    2017-04-01

    The extended polycyclic aromatic hydrocarbons (PAHs) have received significant interdisciplinary attention due to their semiconducting applications in diverse organic electronics as well as intriguing structural interests of well-defined graphene segments. Herein, a highly efficient oxidative spirocyclization and 1,2-aryl migration tandem synthetic method for the construction of extended polyaromatic hydrocarbons (PAHs) has been developed. The CuCl-catalyst/PhCO3 tBu or DDQ oxidation system in the presence of trifluoroacetic acid enables the selective single-electron oxidation to take place preferentially at the more electron-rich alkene moiety of o-biphenylyl-substituted methylenefluorenes, giving rise to the subsequent tandem process. A variety of structurally diverse extended PAHs including functionalized dibenzo[g,p]chrysenes, benzo[f]naphtho[1,2-s]picene, hexabenzo[a,c,fg,j,l,op]tetracene, tetrabenzo[a,c,f,m]phenanthro[9,10-k]tetraphene, tetrabenzo[a,c,f,k]phenanthro[9,10-m]tetraphene, tetrabenzo[a,c,f,o]phenanthro[9,10-m]picene and S-type helicene have been readily synthesized.

  6. Synthesis and characterization of ultrasound assisted “graphene oxide–magnetite” hybrid, and investigation of its adsorption properties for Sr(II) and Co(II) ions

    Energy Technology Data Exchange (ETDEWEB)

    Tayyebi, Ahmad; Outokesh, Mohammad, E-mail: Outokesh@sharif.edu; Moradi, Shahab; Doram, Amir

    2015-10-30

    Graphical abstract: - Highlights: • Narrow size magnetite NPs were synthesized by ultrasound assisted coprecipitaion method. • A formation mechanism for deposition of magnetite NPs on graphene oxide is proposed. • The formation mechanism supported using X-ray photoelectron spectroscopy analysis. • The modified Langevin equation was used for size estimation of magnetite NPs on M–GO. • Adsorption properties of M–GO for Co(II) and Sr(II) were investigated. - Abstract: Magnetite nanoparticles with a size distribution of 15–21 nm were synthesized and decorated onto surface of graphene oxide by ultrasound assisted precipitation. Size and size distribution of the obtained M–GO hybrid were appreciably finer than the hybrids prepared by stirring method. M–GO is a superparamagnetic material with saturation magnetization of 31 emu g{sup −1}. The Langevin equation was successfully applied for estimation of size of Fe{sub 3}O{sub 4} nanoparticles in M–GO hybrid, with maximum error of 17.5%. The study put forward a formation mechanism for M–GO, based on instrumental analyses. Adsorption isotherms of Sr{sup 2+} and Co{sup 2+} ions, which were fitted by Langmuir monolayer model, displayed two-fold higher capacity for Co{sup 2+} ions, presumably due to its similarity to Fe{sup 2+} (of Fe{sub 3}O{sub 4} component). Uptake of both Co{sup 2+} and Sr{sup 2+} ions were endothermic, and spontaneous, however the former proceeded through inner-shell complex formation, while the latter took place via ion exchange mechanism. Rate of adsorption of Co{sup 2+} was faster, but for both ions, chemical reaction was the rate determining step. Sorption of Sr{sup 2+} and Co{sup 2+} ions greatly increased at pHs above 5, where (1) surface zeta potential changed its sign, and (2) deprotonating reactions at the surface became complete.

  7. Microstructural analysis of metal solution interfacial films in the multiphase brine CO{sub 2}, H{sub 2}S hydrocarbon inhibitor system; Analise microestrutural de filmes na interface metal-solucao no sistema multifasico salmoura Co{sub 2}/H{sub 2}S hidrocarboneto inibidor

    Energy Technology Data Exchange (ETDEWEB)

    Forero, Adriana; Yesid Pena, Dario [Universidad Industrial de Santander, Bucaramanga (Colombia); Bott, Ivani de S. [Pontificia Univ. Catolica do Rio de Janeiro, RJ (Brazil). Dept. de Ciencia dos Materiais e Metalurgia

    2005-07-01

    This work presents an analysis of the formation of different films obtained at the metal - solution interface in a multiphase Brine - CO{sub /}H{sub 2}S Hydrocarbon - Inhibitor - Steel AISI SAE 1020 system. Tests were carried out on loss of mass test pieces in a static autoclave, for exposure times of 21 days. Infrared Absorption Spectroscopy (IAS), X Ray Diffraction (XRD) and Scanning Electronic Microscopy (SEM) techniques, were used for the analysis of the products of corrosion and the inhibitor films formed. The results obtained for XRD indicate the formation hydrous oxide of iron, Siderite, Magnetite, and in some cases chloride crystals and iron sulphates. The results obtained by SEM, show that the thin films of the inhibitor and corrosion products have irregular surfaces, are porous, fragile and have little adhesion to the metal. Additionally the generation of primary films of carbonate of iron saturated with carbon and oxide of iron was confirmed and also the formation of secondary carbonates of iron due to recrystallization of the of iron carbonate. (author)

  8. Ni-Nanocluster Modified Black TiO2 with Dual Active Sites for Selective Photocatalytic CO2 Reduction.

    Science.gov (United States)

    Billo, Tadesse; Fu, Fang-Yu; Raghunath, Putikam; Shown, Indrajit; Chen, Wei-Fu; Lien, Hsiang-Ting; Shen, Tzu-Hsien; Lee, Jyh-Fu; Chan, Ting-Shan; Huang, Kuo-You; Wu, Chih-I; Lin, M C; Hwang, Jih-Shang; Lee, Chih-Hao; Chen, Li-Chyong; Chen, Kuei-Hsien

    2018-01-01

    One of the key challenges in artificial photosynthesis is to design a photocatalyst that can bind and activate the CO 2 molecule with the smallest possible activation energy and produce selective hydrocarbon products. In this contribution, a combined experimental and computational study on Ni-nanocluster loaded black TiO 2 (Ni/TiO 2[Vo] ) with built-in dual active sites for selective photocatalytic CO 2 conversion is reported. The findings reveal that the synergistic effects of deliberately induced Ni nanoclusters and oxygen vacancies provide (1) energetically stable CO 2 binding sites with the lowest activation energy (0.08 eV), (2) highly reactive sites, (3) a fast electron transfer pathway, and (4) enhanced light harvesting by lowering the bandgap. The Ni/TiO 2[Vo] photocatalyst has demonstrated highly selective and enhanced photocatalytic activity of more than 18 times higher solar fuel production than the commercial TiO 2 (P-25). An insight into the mechanisms of interfacial charge transfer and product formation is explored. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Transport and deposition of injected hydrocarbons in plasma generator PSI-2

    International Nuclear Information System (INIS)

    Bohmeyer, W.; Naujoks, D.; Markin, A.; Arkhipov, I.; Koch, B.; Schroeder, D.; Fussmann, G.

    2005-01-01

    The transport and deposition of hydrocarbons were studied in the stationary plasma of plasma generator PSI-2. CH 4 or C 2 H 4 were injected into the plasma at different positions in the target chamber. After an interaction between the plasma and the hydrocarbons, different species are produced, some of them having high sticking probabilities and forming a:CH films on a temperature controlled collector. The film growth is studied in situ for different plasma parameters. The 3D Monte Carlo code ERO including three different sets of atomic data is used to describe the formation of hydrocarbon films

  10. Metal-Carbon-CNF Composites Obtained by Catalytic Pyrolysis of Urban Plastic Residues as Electro-Catalysts for the Reduction of CO2

    Directory of Open Access Journals (Sweden)

    Jesica Castelo-Quibén

    2018-05-01

    Full Text Available Metal–carbon–carbon nanofibers composites obtained by catalytic pyrolysis of urban plastic residues have been prepared using Fe, Co or Ni as pyrolitic catalysts. The composite materials have been fully characterized from a textural and chemical point of view. The proportion of carbon nanofibers and the final content of carbon phases depend on the used pyrolitic metal with Ni being the most active pyrolitic catalysts. The composites show the electro-catalyst activity in the CO2 reduction to hydrocarbons, favoring all the formation of C1 to C4 hydrocarbons. The tendency of this activity is in accordance with the apparent faradaic efficiencies and the linear sweep voltammetries. The cobalt-based composite shows high selectivity to C3 hydrocarbons within this group of compounds.

  11. Metal phosphonate hybrid mesostructures: environmentally friendly multifunctional materials for clean energy and other applications.

    Science.gov (United States)

    Ma, Tian-Yi; Yuan, Zhong-Yong

    2011-10-17

    The synthesis of porous hybrid materials has been extended to mesoporous non-silica-based organic-inorganic hybrid materials, in which mesoporous metal phosphonates represent an important family. By using organically bridged polyphosphonic acids as coupling molecules, the homogeneous incorporation of a considerable number of organic functional groups into the metal phosphonate hybrid framework has been realized. Small amounts of organic additives and the pH value of the reaction solution have a large impact on the morphology and textural properties of the resultant hybrid mesoporous metal phosphonate solids. Cationic and nonionic surfactants can be used as templates for the synthesis of ordered mesoporous metal phosphonates. The materials are used as efficient adsorbents for heavy metal ions, CO₂, and aldehydes, as well as in the separation of polycyclic aromatic hydrocarbons. They are also useful photocatalysts under UV and simulated solar light irradiation for organic dye degradation. Further functionalization of the synthesized mesoporous hybrids makes them oxidation and acid catalysts, both with impressive performances in the fields of sustainable energy and environment. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Thermodynamic analysis of vapor compression heat pump cycle for tap water heating and development of CO_2 heat pump water heater for residential use

    International Nuclear Information System (INIS)

    Saikawa, Michiyuki; Koyama, Shigeru

    2016-01-01

    Highlights: • The ideal vapor compression cycle for tap water heating and its COP were defined. • It was verified theoretically that CO_2 achieves the highest COP for tap water heating. • The prototype of CO_2 heat pump water heater for residential use was developed. • Further COP improvement of CO_2 heat pump water heater was estimated. - Abstract: The ideal vapor compression cycle for tap water heating and its coefficient of performance (COP) have been studied theoretically at first. The ideal cycle is defined as the cycle whose high temperature heat source varies temperature with constant specific heat and other processes are same as the reverse Carnot cycle. The COP upper limit of single stage compression heat pump cycle for tap water heating with various refrigerants such as fluorocarbons and natural refrigerants was calculated. The refrigerant which achieves the highest COP for supplying hot water is CO_2. Next, the prototype of CO_2 heat pump water heater for residential use has been developed. Its outline and experimental results are described. Finally its further possibility of COP improvement has been studied. The COP considered a limit from a technical point of view was estimated about 6.0 at the Japanese shoulder season (spring and autumn) test condition of heating water from 17 °C to 65 °C at 16 °C heat source air temperature (dry bulb)/12 °C (wet bulb).

  13. Surface properties and aggregate morphology of partially fluorinated carboxylate-type anionic gemini surfactants.

    Science.gov (United States)

    Yoshimura, Tomokazu; Bong, Miri; Matsuoka, Keisuke; Honda, Chikako; Endo, Kazutoyo

    2009-11-01

    Three anionic homologues of a novel partially fluorinated carboxylate-type anionic gemini surfactant, N,N'-di(3-perfluoroalkyl-2-hydroxypropyl)-N,N'-diacetic acid ethylenediamine (2C(n)(F) edda, where n represents the number of carbon atoms in the fluorocarbon chain (4, 6, and 8)) were synthesized. In these present gemini surfactants, the relatively small carboxylic acid moieties form hydrophilic head groups. The surface properties or structures of the aggregates of these surfactants are strongly influenced by the nonflexible fluorocarbons and small head groups; this is because these surfactants have a closely packed molecular structure. The equilibrium surface tension properties of these surfactants were measured at 298.2K for various fluorocarbon chain lengths. The plot of the logarithm of the critical micelle concentration (cmc) against the fluorocarbon chain lengths for 2C(n)(F) edda (n=4, 6, and 8) showed a minimum for n=6. Furthermore, the lowest surface tension of 2C(6)(F) edda at the cmc was 16.4mNm(-1). Such unique behavior has not been observed even in the other fluorinated surfactants. Changes in the shapes and sizes of these surfactant aggregate with concentration were investigated by dynamic light scattering and transmission electron microscopy (TEM). The TEM micrographs showed that in an aqueous alkali solution, 2C(n)(F) edda mainly formed aggregates with stringlike (n=4), cagelike (n=6), and distorted bilayer structures (n=8). The morphological changes in the aggregates were affected by the molecular structure composed of nonflexible fluorocarbon chains and flexible hydrocarbon chains.

  14. The importance of surface morphology in controlling the selectivity of polycrystalline copper for CO(2) electroreduction

    DEFF Research Database (Denmark)

    Tang, Wei; Peterson, Andrew A; Varela Gasque, Ana Sofia

    2012-01-01

    This communication examines the effect of the surface morphology of polycrystalline copper on electroreduction of CO(2). We find that a copper nanoparticle covered electrode shows better selectivity towards hydrocarbons compared with the two other studied surfaces, an electropolished copper elect...

  15. One-step electrosynthesis of ethylene and ethanol from CO2 in an alkaline electrolyzer

    Science.gov (United States)

    Ma, Sichao; Sadakiyo, Masaaki; Luo, Raymond; Heima, Minako; Yamauchi, Miho; Kenis, Paul J. A.

    2016-01-01

    Electroreduction of CO2 has potential for storing otherwise wasted intermittent renewable energy, while reducing emission of CO2 into the atmosphere. Identifying robust and efficient electrocatalysts and associated optimum operating conditions to produce hydrocarbons at high energetic efficiency (low overpotential) remains a challenge. In this study, four Cu nanoparticle catalysts of different morphology and composition (amount of surface oxide) are synthesized and their activities towards CO2 reduction are characterized in an alkaline electrolyzer. Use of catalysts with large surface roughness results in a combined Faradaic efficiency (46%) for the electroreduction of CO2 to ethylene and ethanol in combination with current densities of ∼200 mA cm-2, a 10-fold increase in performance achieved at much lower overpotential (only catalysts bring electrochemical reduction processes such as presented here closer to practical application.

  16. Emission of CO2 from energy crop production

    International Nuclear Information System (INIS)

    Turhollow, A.F.

    1991-01-01

    The production of cellulosic energy crops (e.g., short rotation woody crops and herbaceous crops) make a net contribution of CO 2 to the atmosphere to the extent that fossil-fuel based inputs are used in their production. The CO 2 released from the use of the biomass is merely CO 2 that has recently been removed from the atmosphere by the plant growth process. Fossil inputs used in the production of energy corps include energy invested in fertilizers and pesticides, and petroleum fuels used for machinery operation such as site preparation, weed control, harvesting, and hauling. Fossil inputs used come from petroleum, natural gas, and electricity derived from fossil sources. No fossil inputs for the capital used to produce fertilizers, pesticides, or machinery is calculated in this analysis. In this paper calculations are made for the short rotation woody crop hybrid poplar (Populus spp.), the annual herbaceous crop sorghum (Sorghum biocolor [L.] Moench), and the perennial herbaceous crop switchgrass (Panicum virgatum L.). For comparison purposes, emissions of CO 2 from corn (Zea mays L.) are calculated

  17. Activity Descriptors for CO2 Electroreduction to Methane on Transition-Metal Catalysts

    DEFF Research Database (Denmark)

    Peterson, Andrew; Nørskov, Jens K.

    2012-01-01

    The electrochemical reduction of CO2 into hydrocarbons and alcohols would allow renewable energy sources to be converted into fuels and chemicals. However, no electrode catalysts have been developed that can perform this transformation with a low overpotential at reasonable current densities....... In this work, we compare trends in binding energies for the intermediates in CO2 electrochemical reduction and present an activity “volcano” based on this analysis. This analysis describes the experimentally observed variations in transition-metal catalysts, including why copper is the best-known metal...

  18. Fabrication of a 3D Hierarchical Sandwich Co9 S8 /α-MnS@N-C@MoS2 Nanowire Architectures as Advanced Electrode Material for High Performance Hybrid Supercapacitors.

    Science.gov (United States)

    Kandula, Syam; Shrestha, Khem Raj; Kim, Nam Hoon; Lee, Joong Hee

    2018-05-10

    Supercapacitors suffer from lack of energy density and impulse the energy density limit, so a new class of hybrid electrode materials with promising architectures is strongly desirable. Here, the rational design of a 3D hierarchical sandwich Co 9 S 8 /α-MnS@N-C@MoS 2 nanowire architecture is achieved during the hydrothermal sulphurization reaction by the conversion of binary mesoporous metal oxide core to corresponding individual metal sulphides core along with the formation of outer metal sulphide shell at the same time. Benefiting from the 3D hierarchical sandwich architecture, Co 9 S 8 /α-MnS@N-C@MoS 2 electrode exhibits enhanced electrochemical performance with high specific capacity/capacitance of 306 mA h g -1 /1938 F g -1 at 1 A g -1 , and excellent cycling stability with a specific capacity retention of 86.9% after 10 000 cycles at 10 A g -1 . Moreover, the fabricated asymmetric supercapacitor device using Co 9 S 8 /α-MnS@N-C@MoS 2 as the positive electrode and nitrogen doped graphene as the negative electrode demonstrates high energy density of 64.2 Wh kg -1 at 729.2 W kg -1 , and a promising energy density of 23.5 Wh kg -1 is still attained at a high power density of 11 300 W kg -1 . The hybrid electrode with 3D hierarchical sandwich architecture promotes enhanced energy density with excellent cyclic stability for energy storage. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Reduced Graphene Oxide-Hybridized Polymeric High-Internal Phase Emulsions for Highly Efficient Removal of Polycyclic Aromatic Hydrocarbons from Water Matrix.

    Science.gov (United States)

    Huang, Yipeng; Zhang, Wenjuan; Ruan, Guihua; Li, Xianxian; Cong, Yongzheng; Du, Fuyou; Li, Jianping

    2018-03-27

    Reduced graphene oxide (RGO)-hybridized polymeric high-internal phase emulsions (RGO/polyHIPEs) with an open-cell structure and hydrophobicity have been successfully prepared using 2-ethylhexyl acrylate and ethylene glycol dimethacrylate as the monomer and the cross-linker, respectively. The adsorption mechanism and performance of this RGO/polyHIPEs to polycyclic aromatic hydrocarbons (PAHs) were investigated. Adsorption isotherms of PAHs on RGO/polyHIPEs show that the saturated adsorption capacity is 47.5 mg/g and the equilibrium time is 8 h. Cycling tests show that the adsorption capacity of RGO/polyHIPEs remains stable in 10 adsorption-desorption cycles without observable structure change in RGO/polyHIPEs. Moreover, the PAH residues in water samples after being purified by RGO/polyHIPEs are lower than the limit values in drinking water set by the European Food Safety Authority. These results demonstrate that the RGO/polyHIPEs have great potentiality in PAH removal and water purification.

  20. High Efficiency Solar-based Catalytic Structure for CO2 Reforming

    Energy Technology Data Exchange (ETDEWEB)

    Menkara, Hisham [PhosphorTech Corporation, Kennesaw, GA (United States)

    2013-09-30

    Throughout this project, we developed and optimized various photocatalyst structures for CO2 reforming into hydrocarbon fuels and various commodity chemical products. We also built several closed-loop and continuous fixed-bed photocatalytic reactor system prototypes for a larger-scale demonstration of CO2 reforming into hydrocarbons, mainly methane and formic acid. The results achieved have indicated that with each type of reactor and structure, high reforming yields can be obtained by refining the structural and operational conditions of the reactor, as well as by using various sacrificial agents (hole scavengers). We have also demonstrated, for the first time, that an aqueous solution containing acid whey (a common bio waste) is a highly effective hole scavenger for a solar-based photocatalytic reactor system and can help reform CO2 into several products at once. The optimization tasks performed throughout the project have resulted in efficiency increase in our conventional reactors from an initial 0.02% to about 0.25%, which is 10X higher than our original project goal. When acid whey was used as a sacrificial agent, the achieved energy efficiency for formic acid alone was ~0.4%, which is 16X that of our original project goal and higher than anything ever reported for a solar-based photocatalytic reactor. Therefore, by carefully selecting sacrificial agents, it should be possible to reach energy efficiency in the range of the photosynthetic efficiency of typical crop and biofuel plants (1-3%).

  1. Constructing robust and highly-selective hydrogel membranes by bioadhesion-inspired method for CO 2 separation

    KAUST Repository

    Wu, Yingzhen

    2018-06-01

    Water-swollen hydrogel membranes are good candidates for CO2 separations due to the favorable solubility of CO2 in water. However, the excessive amount of water often causes the poor mechanical property and low selectivity. Herein, we propose a bioadhesion-inspired method to construct robust and high-performance CO2 separation membranes via in situ generation of polydopamine (PDA) nanoaggregates within poly (vinyl alcohol) (PVA) matrix. PDA nanoaggregates entangled with PVA chains and formed hydrogen bonding with hydroxyl groups from PVA chains. Physical cross-linking occurred between PVA chains and PDA nanoaggregates. Compared with the PVA membrane, the PVA-PDA hybrid membrane with the dopamine content of 0.5mol% exhibited a 1.7-fold increase in tensile strength and a 2.2-fold increase in the tensile modulus. The membranes were used for CO2/CH4 separation. The physical cross-linking resulted in a PVA chain rigidification region around PDA nanoaggregates, which hindered the penetration of larger-size gas molecules and thus enhancing the CO2/CH4 selectivity. Moreover, the abundant amine groups from PDA nanoaggregates could facilitate CO2 transport. The optimized hybrid hydrogel membrane exhibited CO2/CH4 selectivity of 43.2, which was 43.85% higher than that of the PVA membrane. The bioadhesion-inspired method opens up new opportunities to exploit the potential application of hydrogel membranes.

  2. Hybridized 1T/2H MoS2 Having Controlled 1T Concentrations and its use in Supercapacitors.

    Science.gov (United States)

    Thi Xuyen, Nguyen; Ting, Jyh-Ming

    2017-12-06

    Molybdenum disulfide (MoS 2 ) nanoflowers consisting of hybridized 1T/2H phases have been synthesized by using a microwave-assisted hydrothermal (MTH) method. The concentration of the 1T phase, ranging from 40 % to 73 %, is controlled by simply adjusting the ratio of the Mo and S precursors. By using the hybridized 1T/2H MoS 2 as an electrode material, it was demonstrated that the resulting supercapacitor performance is dominated by the 1T phase concentration. It was found that a supercapacitor with 73 % 1T phase exhibits excellent capacitance of 259 F g -1 and great cyclic stability after 1000 cycles. The formation mechanism of the MHT-synthesized hybridized 1T/2H MoS 2 is also reported. More importantly, the mechanism also explains the observed relationship between the 1T phase concentration and the ratio of the Mo and S precursors. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Beam Simulation Studies of Plasma-Surface Interactions in Fluorocarbon Etching of Silicon and Silicon Dioxide

    Science.gov (United States)

    Gray, David C.

    1992-01-01

    A molecular beam apparatus has been constructed which allows the synthesis of dominant species fluxes to a wafer surface during fluorocarbon plasma etching. These species include atomic F as the primary etchant, CF _2 as a potential polymer forming precursor, and Ar^{+} or CF _{rm x}^{+} type ions. Ionic and neutral fluxes employed are within an order of magnitude of those typical of fluorocarbon plasmas and are well characterized through the use of in -situ probes. Etching yields and product distributions have been measured through the use of in-situ laser interferometry and line-of-sight mass spectrometry. XPS studies of etched surfaces were performed to assess surface chemical bonding states and average surface stoichiometry. A useful design guide was developed which allows optimal design of straight -tube molecular beam dosers in the collisionally-opaque regime. Ion-enhanced surface reaction kinetics have been studied as a function of the independently variable fluxes of free radicals and ions, as well as ion energy and substrate temperature. We have investigated the role of Ar ^{+} ions in enhancing the chemistries of F and CF_2 separately, and in combination on undoped silicon and silicon dioxide surfaces. We have employed both reactive and inert ions in the energy range most relevant to plasma etching processes, 20-500 eV, through the use of Kaufman and ECR type ion sources. The effect of increasing ion energy on the etching of fluorine saturated silicon and silicon dioxide surfaces was quantified through extensions of available low energy physical sputtering theory. Simple "site"-occupation models were developed for the quantification of the ion-enhanced fluorine etching kinetics in these systems. These models are suitable for use in topography evolution simulators (e.g. SAMPLE) for the predictive modeling of profile evolution in non-depositing fluorine-based plasmas such as NF_3 and SF_6. (Copies available exclusively from MIT Libraries, Rm. 14

  4. Non-covalent Interactions of Graphene with Polycyclic Aromatic Hydrocarbons

    NARCIS (Netherlands)

    Zygouri, Panagiota; Potsi, Georgia; Mouzourakis, Eleftherios; Spyrou, Konstantinos; Gournis, Dimitrios; Rudolf, Petra

    2015-01-01

    In this mini review we discuss the interactions of polyaromatic hydrocarbons (PAHs) with graphene and the experimental approaches developed so far to create novel graphene/PAH hybrids and composite systems. The utilization of these systems in electrical, biomedical and polymer-reinforcement

  5. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Further, iPrTAPB-Azo-COP has also been utilized for capture of carbon dioxide as the azo-COP is enriched with CO2-philic nitrogen atoms apart from its microporosity. Since the azo (–N=N-) linkages are masked by the bulky isopropyl groups, iPrTAPB-Azo-COP exhibits a CO2 uptake of 6.5 and 19.4 wt% at 1 bar and 30 bar ...

  6. Impact of Different Driving Cycles and Operating Conditions on CO2 Emissions and Energy Management Strategies of a Euro-6 Hybrid Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Claudio Cubito

    2017-10-01

    Full Text Available Although Hybrid Electric Vehicles (HEVs represent one of the key technologies to reduce CO2 emissions, their effective potential in real world driving conditions strongly depends on the performance of their Energy Management System (EMS and on its capability to maximize the efficiency of the powertrain in real life as well as during Type Approval (TA tests. Attempting to close the gap between TA and real world CO2 emissions, the European Commission has decided to introduce from September 2017 the Worldwide Harmonized Light duty Test Procedure (WLTP, replacing the previous procedure based on the New European Driving Cycle (NEDC. The aim of this work is the analysis of the impact of different driving cycles and operating conditions on CO2 emissions and on energy management strategies of a Euro-6 HEV through the limited number of information available from the chassis dyno tests. The vehicle was tested considering different initial battery State of Charge (SOC, ranging from 40% to 65%, and engine coolant temperatures, from −7 °C to 70 °C. The change of test conditions from NEDC to WLTP was shown to lead to a significant reduction of the electric drive and to about a 30% increase of CO2 emissions. However, since the specific energy demand of WLTP is about 50% higher than that of NEDC, these results demonstrate that the EMS strategies of the tested vehicle can achieve, in test conditions closer to real life, even higher efficiency levels than those that are currently evaluated on the NEDC, and prove the effectiveness of HEV technology to reduce CO2 emissions.

  7. Economic Optimal HVAC Design for Hybrid GEOTABS Buildings and CO2 Emissions Analysis

    Directory of Open Access Journals (Sweden)

    Damien Picard

    2018-02-01

    Full Text Available In the early design phase of a building, the task of the Heating, Ventilation and Air Conditioning (HVAC engineer is to propose an appropriate HVAC system for a given building. This system should provide thermal comfort to the building occupants at all time, meet the building owner’s specific requirements, and have minimal investment, running, maintenance and replacement costs (i.e., the total cost and energy use or environmental impact. Calculating these different aspects is highly time-consuming and the HVAC engineer will therefore only be able to compare a (very limited number of alternatives leading to suboptimal designs. This study presents therefore a Python tool that automates the generation of all possible scenarios for given thermal power profiles and energy load and a given database of HVAC components. The tool sizes each scenario properly, computes its present total cost (PC and the total CO 2 emissions associated with the building energy use. Finally, the different scenarios can be searched and classified to pick the most appropriate scenario. The tool uses static calculations based on standards, manufacturer data and basic assumptions similar to those made by engineers in the early design phase. The current version of the tool is further focused on hybrid GEOTABS building, which combines a GEOthermal heat pump with a Thermally Activated System (TABS. It should further be noted that the tool optimizes the HVAC system but not the building envelope, while, ideally, both should be simultaneously optimized.

  8. Multivariable Optimization of the Piperazine CO2 Post-Combustion Process

    DEFF Research Database (Denmark)

    Gaspar, Jozsef; von Solms, Nicolas; Thomsen, Kaj

    2016-01-01

    of the lean solvent. However, optimal solvent composition must be determined taking into account the solvent circulation rate and the heat demand of the solvent regeneration.In this paper, we determine and generalize trends of performance for a broad range of operating conditions: 1.8 to 9mol PZ/ kg water, 0.......2 to 0.6 lean loading, and for two flue gas sources: natural gas combined cycle power plant (NGCC, 3.9 mol% CO2) and a coal based power plant (ASC, 13.25 mol% CO2). Special attention is given to the boundaries where precipitation may occur. The results are created by the hybrid CAPCO2 rate-based model...... which accounts for precipitation when estimating the heat and mass transfer rates. The results show that the 7 molal piperazine gives the lowest specific reboiler duty at 0.40 CO2 lean loading: 3.32 GJ/t CO2 and 4.05 GJ/t CO2 for the ASC case and NGCC cases. The analysis also reveals that the capture...

  9. Free-standing ultrathin CoMn2O4 nanosheets anchored on reduced graphene oxide for high-performance supercapacitors.

    Science.gov (United States)

    Gao, Guoxin; Lu, Shiyao; Xiang, Yang; Dong, Bitao; Yan, Wei; Ding, Shujiang

    2015-11-21

    Ultrathin CoMn2O4 nanosheets supported on reduced graphene oxide (rGO) are successfully synthesized through a simple co-precipitation method with a post-annealing treatment. With the assistance of citrate, the free-standing CoMn2O4 ultrathin nanosheets can form porous overlays on both sides of the rGO sheets. Such a novel hybrid nanostructure can effectively promote charge transport and accommodate volume variation upon prolonged charge/discharge cycling. When evaluated as a promising electrode for supercapacitors in a 6 M KOH solution electrolyte, the hybrid nanocomposites demonstrate highly enhanced capacitance and excellent cycling stability.

  10. Formation of combustible hydrocarbons and H2 during photocatalytic decomposition of various organic compounds under aerated and deaerated conditions.

    Science.gov (United States)

    Mozia, Sylwia; Kułagowska, Aleksandra; Morawski, Antoni W

    2014-11-26

    A possibility of photocatalytic production of useful aliphatic hydrocarbons and H2 from various organic compounds, including acetic acid, methanol, ethanol and glucose, over Fe-modified TiO2 is discussed. In particular, the influence of the reaction atmosphere (N2, air) was investigated. Different gases were identified in the headspace volume of the reactor depending on the substrate. In general, the evolution of the gases was more effective in air compared to a N2 atmosphere. In the presence of air, the gaseous phase contained CO2, CH4 and H2, regardless of the substrate used. Moreover, formation of C2H6 and C3H8 in the case of acetic acid and C2H6 in the case of ethanol was observed. In case of acetic acid and methanol an increase in H2 evolution under aerated conditions was observed. It was concluded that the photocatalytic decomposition of organic compounds with simultaneous generation of combustible hydrocarbons and hydrogen could be a promising method of "green energy" production.

  11. Including dynamic CO2 intensity with demand response

    International Nuclear Information System (INIS)

    Stoll, Pia; Brandt, Nils; Nordström, Lars

    2014-01-01

    Hourly demand response tariffs with the intention of reducing or shifting loads during peak demand hours are being intensively discussed among policy-makers, researchers and executives of future electricity systems. Demand response rates have still low customer acceptance, apparently because the consumption habits requires stronger incentive to change than any proposed financial incentive. An hourly CO 2 intensity signal could give customers an extra environmental motivation to shift or reduce loads during peak hours, as it would enable co-optimisation of electricity consumption costs and carbon emissions reductions. In this study, we calculated the hourly dynamic CO 2 signal and applied the calculation to hourly electricity market data in Great Britain, Ontario and Sweden. This provided a novel understanding of the relationships between hourly electricity generation mix composition, electricity price and electricity mix CO 2 intensity. Load shifts from high-price hours resulted in carbon emission reductions for electricity generation mixes where price and CO 2 intensity were positively correlated. The reduction can be further improved if the shift is optimised using both price and CO 2 intensity. The analysis also indicated that an hourly CO 2 intensity signal can help avoid carbon emissions increases for mixes with a negative correlation between electricity price and CO 2 intensity. - Highlights: • We present a formula for calculating hybrid dynamic CO 2 intensity of electricity generation mixes. • We apply the dynamic CO 2 Intensity on hourly electricity market prices and generation units for Great Britain, Ontario and Sweden. • We calculate the spearman correlation between hourly electricity market price and dynamic CO 2 intensity for Great Britain, Ontario and Sweden. • We calculate carbon footprint of shifting 1 kWh load daily from on-peak hours to off-peak hours using the dynamic CO 2 intensity. • We conclude that using dynamic CO 2 intensity for

  12. Monitoring in situ biodegradation of hydrocarbons by using stable carbon isotopes

    International Nuclear Information System (INIS)

    Aggarwal, P.K.; Hinchee, R.E.

    1991-01-01

    Spilled or leaked nonhalogenated petroleum hydrocarbons in the soil can generally be metabolized by indigenous, aerobic bacteria. In situ biological degradation of hydrocarbons may be accelerated by supplying inorganic nutrients and/or oxygen. Approaches to monitoring and verifying enhanced in situ biodegradation have included measurements of changes over time in the (a) concentration of hydrocarbons, (b) temperature, (c) number of hydrocarbon-degrading microorganisms, (d) ratio of fast-degrading hydrocarbons (e.g., pristanes or phytanes), and (e) metabolic intermediates. Measurements of oxygen consumption over time and elevated carbon dioxide concentrations in soil gas also have been used as indicators of hydrocarbon degradation. An alternative approach that may help substantiate biodegradation is to measure stable carbon isotope ratios in soil gas CO 2 . Stable carbon isotope ratio analysis is inexpensive and commercially available at many laboratories. Carbon dioxide produced by hydrocarbon degradation may be distinguished from that produced by other processes based on the carbon isotopic compositions characteristic of the source material and/or fractionation accompanying microbial metabolism. Here the authors demonstrate the applicability of the stable isotope technique for monitoring enhanced. aerobic biodegradation of hydrocarbons using data from three locations in the United States

  13. Crucial thermophysical mechanisms for the safety of CO{sub 2} geological storage; Mecanismes thermophysiques determinant la securite du stockage geologique du CO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Chiquet, P

    2006-09-15

    CO{sub 2} underground storage as an option for reducing greenhouse gases emissions consists of trapping industrial CO{sub 2} and injecting it into deep geological formations such as saline aquifers and hydrocarbons reservoirs. This study aims at assessing leakage processes and evaluating storage capacities. To this end, two leakage phenomena were considered, cap-rock capillary breakthrough and diffusional transport. The former involves interfacial properties of the brine/CO{sub 2}/mineral system: brine/CO{sub 2} interfacial tension and rock wettability under dense CO{sub 2}. Chapter one presents a series of IFT measurements performed at temperatures and pressures up to 4 5 MPa-110 C. Results show a great decrease of IFT with pressure in the 0-to-20 MPa range beyond what it tends to stabilize at values in the order of 25-30 mN.m{sup -1}. Chapter two deals with rock wettability. Dynamic contact angles were measured on muscovite mica and quartz up to 10 MPa. Results highlight an alteration of wettability with pressure that was accounted for by means of a DLVO based model. Direct capillary entry pressures on a clay stone sample are proposed in chapter three. Diffusion, is treated in chapter four. We used the Taylor dispersion method to measure D up to 40 MPa. Results indicate low values in the order of 2.10{sup -9} m{sup 2}.s{sup -1}. Chapter five discusses the consequences of the previous parameters in terms of storage capacity. (author)

  14. CO2 Selective, Zeolitic Imidazolate Framework-7 Based Polymer Composite Mixed-Matrix Membranes

    KAUST Repository

    Chakrabarty, Tina; Neelakanda, Pradeep; Peinemann, Klaus-Viktor

    2018-01-01

    CO2 removal is necessary to mitigate the effects of global warming but it is a challenging process to separate CO2 from natural gas, biogas, and other gas streams. Development of hybrid membranes by use of polymers and metal-organic framework (MOF) particles is a viable option to overcome this challenge. A ZIF-7 nano-filler that was synthesized in our lab was embedded into a designed polymer matrix at various loadings and the performance of the mixed matrix membranes was evaluated in terms of gas permeance and selectivity. Hybrid membranes with various loadings (20, 30 and 40 wt%) were developed and tested at room temperature by a custom made time lag equipment and a jump in selectivity was observed when compared with the pristine polymer. A commercially attractive region for the selectivity CO2 over CH4 was achieved with a selectivity of 39 for 40 wt% particle loading. An increase in selectivity was observed with the increase of ZIF-7 loadings. Best performance was seen at 40% ZIF-7 loaded membrane with an ideal selectivity of 39 for CO2 over CH4. The obtained selectivity was 105% higher for CO2 over CH4 than the selectivity of the pristine polymer with a slight decrease in permeance. Morphological characterization of such developed membranes showed an excellent compatibility between the polymer and particle adhesion.

  15. CO2 Selective, Zeolitic Imidazolate Framework-7 Based Polymer Composite Mixed-Matrix Membranes

    KAUST Repository

    Chakrabarty, Tina

    2018-05-17

    CO2 removal is necessary to mitigate the effects of global warming but it is a challenging process to separate CO2 from natural gas, biogas, and other gas streams. Development of hybrid membranes by use of polymers and metal-organic framework (MOF) particles is a viable option to overcome this challenge. A ZIF-7 nano-filler that was synthesized in our lab was embedded into a designed polymer matrix at various loadings and the performance of the mixed matrix membranes was evaluated in terms of gas permeance and selectivity. Hybrid membranes with various loadings (20, 30 and 40 wt%) were developed and tested at room temperature by a custom made time lag equipment and a jump in selectivity was observed when compared with the pristine polymer. A commercially attractive region for the selectivity CO2 over CH4 was achieved with a selectivity of 39 for 40 wt% particle loading. An increase in selectivity was observed with the increase of ZIF-7 loadings. Best performance was seen at 40% ZIF-7 loaded membrane with an ideal selectivity of 39 for CO2 over CH4. The obtained selectivity was 105% higher for CO2 over CH4 than the selectivity of the pristine polymer with a slight decrease in permeance. Morphological characterization of such developed membranes showed an excellent compatibility between the polymer and particle adhesion.

  16. Lattice Boltzmann simulation of CO2 reactive transport in network fractured media

    Science.gov (United States)

    Tian, Zhiwei; Wang, Junye

    2017-08-01

    Carbon dioxide (CO2) geological sequestration plays an important role in mitigating CO2 emissions for climate change. Understanding interactions of the injected CO2 with network fractures and hydrocarbons is key for optimizing and controlling CO2 geological sequestration and evaluating its risks to ground water. However, there is a well-known, difficult process in simulating the dynamic interaction of fracture-matrix, such as dynamic change of matrix porosity, unsaturated processes in rock matrix, and effect of rock mineral properties. In this paper, we develop an explicit model of the fracture-matrix interactions using multilayer bounce-back treatment as a first attempt to simulate CO2 reactive transport in network fractured media through coupling the Dardis's LBM porous model for a new interface treatment. Two kinds of typical fracture networks in porous media are simulated: straight cross network fractures and interleaving network fractures. The reaction rate and porosity distribution are illustrated and well-matched patterns are found. The species concentration distribution and evolution with time steps are also analyzed and compared with different transport properties. The results demonstrate the capability of this model to investigate the complex processes of CO2 geological injection and reactive transport in network fractured media, such as dynamic change of matrix porosity.

  17. CAPHIGAS Project: Design of a Novel WGS-Adsorbent-Membrane Hybrid System for the Simultaneous Capture of CO2 and Production of H2 (Ref.: Ene2009-08002)

    International Nuclear Information System (INIS)

    Marano, M.; Barreiro, M. M.; Sanchez, J. M.

    2014-01-01

    This report describes the general objective, tasks and main results and conclusions drawn within CAPHIGAS Project, Plan Nacional de I+D+I 2008-2011, financed by the Spanish Ministry of Science and Innovation and carried out by the Valorization of Fuels and Wastes Group of Ciemat. The general objective of the project was the design and development of a novel hybrid system for the simultaneous removal of CO 2 and production of H 2 using a WGS catalyst-adsorbent membrane configuration. The novel system proposed has provided new insight into the adsorption and reaction processes and has allowed an optimization of the operating conditions to take advantage of the synergies between both processes. In this report main future activities are also reported. (Author)

  18. 1D Ni-Co oxide and sulfide nanoarray/carbon aerogel hybrid nanostructures for asymmetric supercapacitors with high energy density and excellent cycling stability.

    Science.gov (United States)

    Hao, Pin; Tian, Jian; Sang, Yuanhua; Tuan, Chia-Chi; Cui, Guanwei; Shi, Xifeng; Wong, C P; Tang, Bo; Liu, Hong

    2016-09-15

    The fabrication of supercapacitor electrodes with high energy density and excellent cycling stability is still a great challenge. A carbon aerogel, possessing a hierarchical porous structure, high specific surface area and electrical conductivity, is an ideal backbone to support transition metal oxides and bring hope to prepare electrodes with high energy density and excellent cycling stability. Therefore, NiCo 2 S 4 nanotube array/carbon aerogel and NiCo 2 O 4 nanoneedle array/carbon aerogel hybrid supercapacitor electrode materials were synthesized by assembling Ni-Co precursor needle arrays on the surface of the channel walls of hierarchical porous carbon aerogels derived from chitosan in this study. The 1D nanostructures grow on the channel surface of the carbon aerogel vertically and tightly, contributing to the enhanced electrochemical performance with ultrahigh energy density. The energy density of NiCo 2 S 4 nanotube array/carbon aerogel and NiCo 2 O 4 nanoneedle array/carbon aerogel hybrid asymmetric supercapacitors can reach up to 55.3 Wh kg -1 and 47.5 Wh kg -1 at a power density of 400 W kg -1 , respectively. These asymmetric devices also displayed excellent cycling stability with a capacitance retention of about 96.6% and 92% over 5000 cycles.

  19. CO2 como refrigerante: del pasado al futuro CO2 as refrigerant: from the past to future

    Directory of Open Access Journals (Sweden)

    Juan Manuel Belman Flores

    2013-05-01

    Full Text Available En años recientes y debido a la problemática que ha originado el calentamiento mundial, en el campo de la refrigeración y climatización se ha incrementado el interés por utilizar refrigerantes naturales e hidrocarburos con bajo potencial de calentamiento mundial, este es el caso de la utilización del CO2 como fluido frigorígeno que ha sido visto como una alter­nativa adecuada a los actuales refrigerantes en la comunidad científica. Hoy en día, el CO2 cada vez está retomando presencia en el campo de la refrigeración y climatización a nivel internacional, así pues, el presente trabajo tiene la finalidad de dar a conocer su potencial como refrigerante natural, las causas por las cuales este fluido fue relevado momentánea­mente por refrigerantes clorofluorocarbonados y su renacer en pleno siglo XXI. Además, se plantea su aplicación en la generación de frío en nuestro país mediante la tecnología de compresión de vapor basado en ciclo transcrítico.  In recent years, and due to problems resulting from global warming, interest has grown in the fields of refrigeration and air conditioning, specifically regarding the use of natural refrigerants and hydrocarbons with low potential for global warming. Such is the case of the use of CO2 as a cold fluid, which has been considered in the scientific community as an adequate alternative to common refrigerants. Nowadays, the use of CO2 in the areas of refrigeration and air conditioning has been recognized at international levels. Therefore, this work aims to show its potential as a natural refrigerant, the causes why this fluid was temporarily replaced by chlorofluorocarbon refrigerants, and its reappearance in the XXI century. It also proposes the use of CO2 in air conditioning in our country by using vapor compression technology, based on the transcritical cycle.

  20. Syntrophic biodegradation of hydrocarbon contaminants.

    Science.gov (United States)

    Gieg, Lisa M; Fowler, S Jane; Berdugo-Clavijo, Carolina

    2014-06-01

    Anaerobic environments are crucial to global carbon cycling wherein the microbial metabolism of organic matter occurs under a variety of redox conditions. In many anaerobic ecosystems, syntrophy plays a key role wherein microbial species must cooperate, essentially as a single catalytic unit, to metabolize substrates in a mutually beneficial manner. Hydrocarbon-contaminated environments such as groundwater aquifers are typically anaerobic, and often methanogenic. Syntrophic processes are needed to biodegrade hydrocarbons to methane, and recent studies suggest that syntrophic hydrocarbon metabolism can also occur in the presence of electron acceptors. The elucidation of key features of syntrophic processes in defined co-cultures has benefited greatly from advances in 'omics' based tools. Such tools, along with approaches like stable isotope probing, are now being used to monitor carbon flow within an increasing number of hydrocarbon-degrading consortia to pinpoint the key microbial players involved in the degradative pathways. The metagenomic sequencing of hydrocarbon-utilizing consortia should help to further identify key syntrophic features and define microbial interactions in these complex communities. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Properties of solid polymer electrolyte fluorocarbon film. [used in hydrogen/oxygen fuel cells

    Science.gov (United States)

    Alston, W. B.

    1973-01-01

    The ionic fluorocarbon film used as the solid polymer electrolyte in hydrogen/oxygen fuel cells was found to exhibit delamination failures. Polarized light microscopy of as-received film showed a lined region at the center of the film thickness. It is shown that these lines were not caused by incomplete saponification but probably resulted from the film extrusion process. The film lines could be removed by an annealing process. Chemical, physical, and tensile tests showed that annealing improved or sustained the water contents, spectral properties, thermo-oxidative stability, and tensile properties of the film. The resistivity of the film was significantly decreased by the annealing process.

  2. 40 CFR Table 2b to Subpart E of... - Reactivity Factors for Aliphatic Hydrocarbon Solvent Mixtures

    Science.gov (United States)

    2010-07-01

    ... Hydrocarbon Solvent Mixtures 2B Table 2B to Subpart E of Part 59 Protection of Environment ENVIRONMENTAL... Hydrocarbon Solvent Mixtures Bin Averageboiling point * (degrees F) Criteria Reactivityfactor 1 80-205 Alkanes... + Dry Point) / 2 (b) Aromatic Hydrocarbon Solvents ...

  3. Prussian Blue Analogues Derived Penroseite (Ni,Co)Se2 Nanocages Anchored on 3D Graphene Aerogel for Efficient Water Splitting

    KAUST Repository

    Xu, Xun; Liang, Hanfeng; Ming, Fangwang; Qi, Zhengbing; Xie, Yaqiang; Wang, Zhoucheng

    2017-01-01

    Efficient water splitting demands highly active, low cost, and robust electrocatalysts. In this study, we report the synthesis of penroseite (Ni,Co)Se2 nanocages anchored on 3D graphene aerogel using Prussian blue analogues as precursor and further their applications in overall water splitting electrolysis. The synergy between the high activity of (Ni,Co)Se2 and the good conductivity of graphene leads to superior performance of the hybrid toward the water splitting in basic solutions. The (Ni,Co)Se2-GA only requires a low cell voltage of 1.60 V to reach the current density of 10 mA cm-2, making the (Ni,Co)Se2-GA hybrid a competitive alternative to noble metal based catalysts for water splitting.

  4. Prussian Blue Analogues Derived Penroseite (Ni,Co)Se2 Nanocages Anchored on 3D Graphene Aerogel for Efficient Water Splitting

    KAUST Repository

    Xu, Xun

    2017-08-14

    Efficient water splitting demands highly active, low cost, and robust electrocatalysts. In this study, we report the synthesis of penroseite (Ni,Co)Se2 nanocages anchored on 3D graphene aerogel using Prussian blue analogues as precursor and further their applications in overall water splitting electrolysis. The synergy between the high activity of (Ni,Co)Se2 and the good conductivity of graphene leads to superior performance of the hybrid toward the water splitting in basic solutions. The (Ni,Co)Se2-GA only requires a low cell voltage of 1.60 V to reach the current density of 10 mA cm-2, making the (Ni,Co)Se2-GA hybrid a competitive alternative to noble metal based catalysts for water splitting.

  5. Catalysts for the production of hydrocarbons from carbon monoxide and water

    Science.gov (United States)

    Sapienza, R.S.; Slegeir, W.A.; Goldberg, R.I.

    1985-11-06

    A method of converting low H/sub 2//CO ratio syngas to carbonaceous products comprising reacting the syngas with water or steam at 200 to 350/sup 0/C in the presence of a metal catalyst supported on zinc oxide. Hydrocarbons are produced with a catalyst selected from cobalt, nickel or ruthenium and alcohols are produced with a catalyst selected from palladium, platinum, ruthenium or copper on the zinc oxide support. The ratio of the reactants are such that for alcohols and saturated hydrocarbons: (2n + 1) greater than or equal to x greater than or equal to O and for olefinic hydrocarbons: 2n greater than or equal to x greater than or equal to O where n is the number of carbon atoms in the product and x is the molar amount of water in the reaction mixture.

  6. CO 2-scrubbing and methanation as purification system for PEFC

    Science.gov (United States)

    Ledjeff-Hey, K.; Roes, J.; Wolters, R.

    Hydrogen is usually produced by steam reforming of natural gas in large-scale processes. The reformate consists of hydrogen, carbon dioxide, carbon monoxide, and residues of hydrocarbons. Since the anode catalyst of a polymer electrolyte membrane fuel cell (PEFC) is usually based on platinum, which is easily poisoned by carbon monoxide, the conditioned feed gas should contain less than 100 ppmv CO, and preferably, less than 10 ppmv. Depending on the design and operating conditions of the hydrogen production process, the CO content of a typical reformate gas, even after the CO shift reactor may be in the range of 0.2-1.0 vol.%; this is far higher than a PEFC can tolerate. A CO management system is required to lower the CO concentration to acceptable levels. In many cases, the CO purification system consists of a combination of physical or chemical processes to achieve the necessary reduction in CO content. A promising alternative for hydrogen purification is a combined process consisting of a carbon dioxide scrubber with subsequent methanation to reduce the carbon monoxide content to an acceptable level of less than 10 ppmv.

  7. Using elevated CO2 to increase the biomass of a Sorghum vulgare x Sorghum vulgare var. sudanense hybrid and Trifolium pratense L. and to trigger hyperaccumulation of cesium

    International Nuclear Information System (INIS)

    Wu Huibin; Tang Shirong; Zhang Ximei; Guo Junkang; Song, Zhengguo; Tian Shuai; Smith, Donald L.

    2009-01-01

    The most important challenge to use phytoremediation is how to improve its efficiency by increasing the accumulation of metals in plants, or by improving key plant biological traits that should enhance metal uptake. In this paper, we used open-top chambers to investigate the effects of elevated CO 2 (860 μL L -1 ) on biomass and Cs uptake by a Sorghum vulgare x Sorghum vulgare var. sudanense hybrid and Trifolium pratense L. growing on soils spiked with various levels of cesium (0, 300, 1500 and 3000 mg Cs kg -1 ). The results showed that elevated CO 2 not only increased aboveground biomass of the Sorghum and Trifolium species by 32-111%, and by 8-11%, respectively, compared to the ambient CO 2 treatment, but also caused more accumulation of Cs by Sorghum species (up to 73%) than Trifolium species (up to 43%). It was speculated that the increase in biomass and the improvement in Cs accumulation ability at elevated CO 2 could be related to lowered soil pH values, and changes in number and kind of microorganisms in the rhizospheres of the two tested species. This is the first report of a link among elevated CO 2 , increased biomass and hyperaccumulation of Cs by Sorghum and Trifolium species.

  8. Impact of hydrocarbon type, concentration and weathering on its biodegradability in soil.

    Science.gov (United States)

    Maletić, Snežana P; Dalmacija, Božo D; Rončević, Srđan D; Agbaba, Jasmina R; Perović, Svetlana D Ugarčina

    2011-01-01

    The objective of this research was to investigate the impact of the hydrocarbon type and concentration, as well as the total effect of the natural weathering process to hydrocarbon biodegradability in sandy soil and the environment. In this experiment, sandy soil was separately contaminated with 0.5%, 1.0%, 2.0% and 3.5% of diesel and crude oils. Oil contaminated soil was taken from the Oil Refinery dumping sites after 9 years of weathering, and its concentration was adjusted to the above-mentioned levels. The biodegradation process was monitored by measuring CO(2), evolution rate, hydrocarbon degradation rate and dehydrogenase activity. The favourable concentration ranges for the soil contaminated with diesel oil were 1.0%, with concentrations at about 2.0% causing slightly adverse effects to CO(2) production which was overcome after 2 weeks, and with 3.5% diesel oil causing significant toxicity. For soil contaminated with crude oil, 2.0% was found to be optimum for effective biodegradation, with 3.5% crude oil also causing adverse effects to CO(2) production, although less so than the same concentration of diesel oil. No adverse effect was obtained for any concentration of the weathered oil, as after the weathering process, the remaining contaminants in the soil were mostly poorly degradable constituents like asphaltenes, resins etc. It has been proposed that such residual material from oil degradation is analogous to, and can even be regarded as, humic material. Due to its inert characteristics, insolubility and similarity to humic materials it is unlikely to be environmentally hazardous.

  9. One step hydrothermal synthesis of 3D CoS2@MoS2-NG for high performance supercapacitors.

    Science.gov (United States)

    Meng, Qi; Chen, Yizhi; Zhu, Wenkun; Zhang, Ling; Yang, Xiaoyong; Duan, Tao

    2018-05-03

    A three-dimensional (3D) MoS 2 coated CoS 2 -nitrogen doped graphene (NG) (CoS 2 @MoS 2 -NG) hybrid has been synthesized by a one step hydrothermal method as supercapacitor (SC) electrode material for the first time. Such a composite consists of NG embedded with stacked CoS 2 @MoS 2 sheets. With a 3D skeleton, it prevents the agglomeration of CoS 2 @MoS 2 nanoparticles, resulting in sound conductivity, rich porous structures and a large surface area. The results indicate that CoS 2 @MoS 2 -NG has higher specific capacitance (198 F g -1 at 1 A g -1 ), better rate performance (with about 56.57% from 1 to 16 A g -1 ) and an improved cycle stability (with about 96.97% after 1000 cycles). It is an ideal candidate for SC electrode materials.

  10. Nitrogen-containing polymers as a platform for CO2 electroreduction.

    Science.gov (United States)

    Ponnurangam, Sathish; Chernyshova, Irina V; Somasundaran, Ponisseril

    2017-06-01

    Heterogeneous electroreduction of CO 2 has received considerable attention in the past decade. However, none of the earlier reviews has been dedicated to nitrogen-containing polymers (N-polymers) as an emerging platform for conversion of CO 2 to industrially useful chemicals. The term 'platform' is used here to underscore that the role of N-polymers is not only to serve as direct catalysts (through loaded metals) but also as co-catalysts/promoters and stabilizing agents. This review covers the current state, advantages, challenges, and prospects of the application of N-polymer-metal composites, also referred as polymer functionalized, coated, or modified electrodes, as well as functional hybrid materials, for the electrocatalytic conversion of CO 2 . It briefly surveys the efficiencies of the N-polymer-metal electrodes already used for this application, methods of their fabrication, and proposed mechanisms of their catalytic activities. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Graphene oxide – molybdenum disulfide hybrid membranes for hydrogen separation

    KAUST Repository

    Ostwal, Mayur; Shinde, Digambar B.; Wang, Xinbo; Gadwal, Ikhlas; Lai, Zhiping

    2017-01-01

    Graphene oxide – molybdenum disulfide hybrid membranes were prepared using vacuum filtration technique. The thickness and the MoS2 content in the membranes were varied and their H2 permeance and H2/CO2 selectivity are reported. A 60nm hybrid membrane containing ~75% by weight of MoS2 exhibited the highest H2 permeance of 804×10−9mol/m2·s·Pa with corresponding H2/CO2 selectivity of 26.7; while a 150nm hybrid membrane with ~29% MoS2 showed the highest H2/CO2 selectivity of 44.2 with corresponding H2 permeance of 287×10−9mol/m2·s·Pa. The hybrid membranes exhibited much higher H2 permeance compared to graphene oxide membranes and higher selectivity compared to MoS2 membranes, which fully demonstrated the synergistic effect of both nanomaterials. The membranes also displayed excellent operational long-term stability.

  12. Graphene oxide – molybdenum disulfide hybrid membranes for hydrogen separation

    KAUST Repository

    Ostwal, Mayur

    2017-12-24

    Graphene oxide – molybdenum disulfide hybrid membranes were prepared using vacuum filtration technique. The thickness and the MoS2 content in the membranes were varied and their H2 permeance and H2/CO2 selectivity are reported. A 60nm hybrid membrane containing ~75% by weight of MoS2 exhibited the highest H2 permeance of 804×10−9mol/m2·s·Pa with corresponding H2/CO2 selectivity of 26.7; while a 150nm hybrid membrane with ~29% MoS2 showed the highest H2/CO2 selectivity of 44.2 with corresponding H2 permeance of 287×10−9mol/m2·s·Pa. The hybrid membranes exhibited much higher H2 permeance compared to graphene oxide membranes and higher selectivity compared to MoS2 membranes, which fully demonstrated the synergistic effect of both nanomaterials. The membranes also displayed excellent operational long-term stability.

  13. Benzo[a]pyrene co-metabolism in the presence of plant root extracts and exudates: Implications for phytoremediation

    International Nuclear Information System (INIS)

    Rentz, Jeremy A.; Alvarez, Pedro J.J.; Schnoor, Jerald L.

    2005-01-01

    Benzo[a]pyrene, a high molecular weight (HMW) polycyclic aromatic hydrocarbon (PAH) was removed from solution by Sphingomonas yanoikuyae JAR02 while growing on root products as a primary carbon and energy source. Plant root extracts of osage orange (Maclura pomifera), hybrid willow (Salix albaxmatsudana), or kou (Cordia subcordata), or plant root exudates of white mulberry (Morus alba) supported 15-20% benzo[a]pyrene removal over 24 h that was similar to a succinate grown culture and an unfed acetonitrile control. No differences were observed between the different root products tested. Mineralization of 14 C-7-benzo[a]pyrene by S. yanoikuyae JAR02 yielded 0.2 to 0.3% 14 CO 2 when grown with plant root products. Collectively, these observations were consistent with field observations of enhanced phytoremediation of HMW PAH and corroborated the hypothesis that co-metabolism may be a plant/microbe interaction important to rhizoremediation. However, degradation and mineralization was much less for root product-exposed cultures than salicylate-induced cultures, and suggested the rhizosphere may not be an optimal environment for HMW PAH degradation by Sphingomonas yanoikuyae JAR02. - Bacterial benzo[a]pyrene cometabolism, a plant-microbe interaction affecting polycyclic aromatic hydrocarbon phytoremediation was demonstrated with Sphingomonas yanoikuyae JAR02 that utilized plant root extracts and exudates as primary substrates

  14. Hydrodeoxygenation of methyl esters on sulphided NiMo/{gamma}-Al{sub 2}O{sub 3} and CoMo/{gamma}-Al{sub 2}O{sub 3} catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Senol, O.I; Viljava, T.R.; Krause, A.O.I. [Laboratory of Industrial Chemistry, Helsinki University of Technology, P.O. Box 6100, FIN-02015 Hut (Finland)

    2005-02-28

    Wood-derived bio-oil contains high amounts of compounds with different oxygen-containing functional groups that must be removed to improve the fuel characteristics. Elimination of oxygen from carboxylic groups was studied with model compounds, methyl heptanoate and methyl hexanoate, on sulphided NiMo/{gamma}-Al{sub 2}O{sub 3} and CoMo/{gamma}-Al{sub 2}O{sub 3} catalysts in a flow reactor. Catalyst performances and reaction schemes were addressed. Aliphatic methyl esters produced hydrocarbons via three main paths: The first path gave alcohols followed by dehydration to hydrocarbons. Deesterification yielded an alcohol and a carboxylic acid in the second path. Carboxylic acid was further converted to hydrocarbons either directly or with an alcohol intermediate. Decarboxylation of the esters led to hydrocarbons in the third path. No oxygen-containing compounds were detected at complete conversions. However, the product distributions changed with time, even at complete conversions, indicating that both catalysts deactivated under the studied conditions.

  15. Oil-shale gasification for obtaining of gas for synthesis of aliphatic hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Strizhakova, Yu. [Samara State Univ. (Russian Federation); Avakyan, T.; Lapidus, A.L. [I.M. Gubkin Russian State Univ. of Oil and Gas, Moscow (Russian Federation)

    2011-07-01

    Nowadays, the problem of qualified usage of solid fossil fuels as raw materials for obtaining of motor fuels and chemical products is becoming increasingly important. Gasification with further processing of gaseous products is a one of possible ways of their use. Production of synthesis gas with H{sub 2}/CO ratio equal 2 is possible by gasification of oil-shale. This gas is converted into the mixture of hydrocarbons over cobalt catalyst at temperature from 160 to 210 C at atmospheric pressure. The hydrocarbons can be used as motor, including diesel, or reactive fuel. (orig.)

  16. Few-Layer MoS2-Organic Thin-Film Hybrid Complementary Inverter Pixel Fabricated on a Glass Substrate.

    Science.gov (United States)

    Lee, Hee Sung; Shin, Jae Min; Jeon, Pyo Jin; Lee, Junyeong; Kim, Jin Sung; Hwang, Hyun Chul; Park, Eunyoung; Yoon, Woojin; Ju, Sang-Yong; Im, Seongil

    2015-05-13

    Few-layer MoS2-organic thin-film hybrid complementary inverters demonstrate a great deal of device performance with a decent voltage gain of ≈12, a few hundred pW power consumption, and 480 Hz switching speed. As fabricated on glass, this hybrid CMOS inverter operates as a light-detecting pixel as well, using a thin MoS2 channel. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Fuel consumption and CO{sub 2} emissions (Car Labelling); Consommations de carburant et emissions de CO{sub 2} (Car Labelling)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-03-01

    CO{sub 2} is the most important greenhouse gas produced by internal combustion engines. In the framework of the Kyoto protocol, actions have been implemented in the transportation sector for the abatement of vehicles fuel consumption and pollutant emissions. This study presents the 'honors list' established by the French agency of environment and energy mastery (Ademe) of the fuel consumption and CO{sub 2} emissions of gasoline, diesel, LPG, NGV, and hybrid electric-powered vehicles. Results are presented in tables per company and model. These data are compiled and summarized in a last part which presents the key data about the evolution of the French automotive market, the emissions and consumptions of vehicles and the technological evolution of the vehicles and its influence on the fuel consumption. (J.S.)

  18. Evaluating real-world CO2 and NOX emissions for public transit buses using a remote wireless on-board diagnostic (OBD) approach.

    Science.gov (United States)

    Yang, Liuhanzi; Zhang, Shaojun; Wu, Ye; Chen, Qizheng; Niu, Tianlin; Huang, Xu; Zhang, Shida; Zhang, Liangjun; Zhou, Yu; Hao, Jiming

    2016-11-01

    The challenge to mitigate real-world emissions from vehicles calls for powerful in-use compliance supervision. The remote on-board diagnostic (OBD) approach, with wireless data communications, is one of the promising next-generation monitoring methods. We collected second-by-second profiles of carbon dioxide (CO 2 ) and nitrogen oxides (NO X ) emissions, driving conditions and engine performance for three conventional diesel and three hybrid diesel buses participating in a remote OBD pilot program in Nanjing, China. Our results showed that the average CO 2 emissions for conventional diesel and hybrid diesel buses were 816 ± 83 g km -1 and 627 ± 54 g km -1 , respectively, under a typical driving pattern. An operating mode binning analysis indicated that CO 2 emissions reduction by series-parallel hybrid technology was largely because of the significant benefits of the technology under the modes of low speed and low power demand. However, significantly higher CO 2 emissions were observed for conventional diesel buses during rush hours, higher than 1200 g km -1 . The OBD data suggested no improvement in NO X emission reduction for hybrid buses compared with conventional buses; both were approximately 12 g km -1 because of poor performance of the selective catalyst reduction (SCR) systems in the real world. Speed-dependent functions for real-world CO 2 and NO X emissions were also constructed. The CO 2 emissions of hybrid buses were much less sensitive to the average speed than conventional buses. If the average speed decreased from 20 km h -1 to 10 km h -1 , the estimated CO 2 emission factor for conventional buses would be increased by 34%. Such a change in speed would increase NO X emissions for conventional and hybrid buses by 38% and 56%, respectively. This paper demonstrates the useful features of the remote OBD system and can inform policy makers how to take advantage of these features in monitoring in-use vehicles. Copyright © 2016 Elsevier

  19. Synthesis of well-dispersed magnetic CoFe2O4 nanoparticles in cellulose aerogels via a facile oxidative co-precipitation method.

    Science.gov (United States)

    Wan, Caichao; Li, Jian

    2015-12-10

    With the increasing emphasis on green chemistry, it is becoming more important to develop environmentally friendly matrix materials for the synthesis of nanocomposites. Cellulose aerogels with hierarchical micro/nano-scale three-dimensional network beneficial to control and guide the growth of nanoparticles, are suitable as a class of ideal green nanoparticles hosts to fabricate multifunctional nanocomposites. Herein, a facile oxidative co-precipitation method was carried out to disperse CoFe2O4 nanoparticles in the cellulose aerogels matrixes, and the cellulose aerogels were prepared from the native wheat straw based on a green NaOH/polyethylene glycol solution. The mean diameter of the well-dispersed CoFe2O4 nanoparticles in the hybrid aerogels is 98.5 nm. Besides, the hybrid aerogels exhibit strong magnetic responsiveness, which could be flexibly actuated by a small magnet. And this feature also makes this class of magnetic aerogels possibly useful as recyclable adsorbents and some magnetic devices. Meanwhile, the mild green preparation method could also be extended to fabricate other miscellaneous cellulose-based nanocomposites. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Insights into hydrocarbon formation by nitrogenase cofactor homologs.

    Science.gov (United States)

    Lee, Chi Chung; Hu, Yilin; Ribbe, Markus W

    2015-04-14

    The L-cluster is an all-iron homolog of nitrogenase cofactors. Driven by europium(II) diethylenetriaminepentaacetate [Eu(II)-DTPA], the isolated L-cluster is capable of ATP-independent reduction of CO and CN(-) to C1 to C4 and C1 to C6 hydrocarbons, respectively. Compared to its cofactor homologs, the L-cluster generates considerably more CH4 from the reduction of CO and CN(-), which could be explained by the presence of a "free" Fe atom that is "unmasked" by homocitrate as an additional site for methanation. Moreover, the elevated CH4 formation is accompanied by a decrease in the amount of longer hydrocarbons and/or the lengths of the hydrocarbon products, illustrating a competition between CH4 formation/release and C-C coupling/chain extension. These observations suggest the possibility of designing simpler synthetic clusters for hydrocarbon formation while establishing the L-cluster as a platform for mechanistic investigations of CO and CN(-) reduction without complications originating from the heterometal and homocitrate components. Nitrogenase is a metalloenzyme that is highly complex in structure and uniquely versatile in function. It catalyzes two reactions that parallel two important industrial processes: the reduction of nitrogen to ammonia, which parallels the Haber-Bosch process in ammonia production, and the reduction of carbon monoxide to hydrocarbons, which parallels the Fischer-Tropsch process in fuel production. Thus, the significance of nitrogenase can be appreciated from the perspective of the useful products it generates: (i) ammonia, the "fixed" nitrogen that is essential for the existence of the entire human population; and (ii) hydrocarbons, the "recycled" carbon fuel that could be used to directly address the worldwide energy shortage. This article provides initial insights into the catalytic characteristics of various nitrogenase cofactors in hydrocarbon formation. The reported assay system provides a useful tool for mechanistic

  1. Effects of non-thermal plasmas and electric field on hydrocarbon/air flames

    Science.gov (United States)

    Ganguly, Biswa

    2009-10-01

    Need to improve fuel efficiency, and reduce emission from hydrocarbon combustor in automotive and gas turbine engines have reinvigorated interest in reducing combustion instability of a lean flame. The heat generation rate in a binary reaction is HQ =N^2 c1c2 Q exp(-E/RT), where N is the density, c1 and c2 are mol fractions of the reactants, Q is the reaction heat release, E is the activation energy, R is the gas constant and T is the average temperature. For hydrocarbon-air reactions, the typical value of E/R ˜20, so most heat release reactions are confined to a thin reaction sheet at T >=1400 K. The lean flame burning condition is susceptible to combustion instability due to a critical balance between heat generation and heat loss rates, especially at high gas flow rate. Radical injection can increase flame speed by reducing the hydrocarbon oxidation reaction activation barrier and it can improve flame stability. Advances in nonequilibrium plasma generation at high pressure have prompted its application for energy efficient radical production to enhance hydrocarbon-air combustion. Dielectric barrier discharges and short pulse excited corona discharges have been used to enhance combustion stability. Direct electron impact dissociation of hydrocarbon and O2 produces radicals with lower fuel oxidation reaction activation barriers, initiating heat release reaction CnHm+O CnHm-1+ OH (and other similar sets of reactions with partially dissociated fuel) below the typical cross-over temperature. Also, N2 (A) produced in air discharge at a moderate E/n can dissociate O2 leading to oxidation of fuel at lower gas temperature. Low activation energy reactions are also possible by dissociation of hydrocarbon CnHm+e -> CnHm-2+H2+e, where a chain propagation reaction H2+ O OH+H can be initiated at lower gas temperature than possible under thermal equilibrium kinetics. Most of heat release comes from the reaction CO+OH-> CO2 +H, nonthermal OH production seem to improve

  2. Enhanced photocatalytic activity of Bi{sub 2}O{sub 3}–Ag{sub 2}O hybrid photocatalysts

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xinjuan, E-mail: lxj669635@126.com [Institute of Coordination Bond Metrology and Engineering, College of Materials Science and Engineering, China Jiliang University, Hangzhou 310018 (China); Liu, Junying [Engineering Research Center for Nanophotonics & Advanced Instrument, Ministry of Education, Department of Physics, East China Normal University, Shanghai 200062 China (China); Chu, Haipeng [Institute of Coordination Bond Metrology and Engineering, College of Materials Science and Engineering, China Jiliang University, Hangzhou 310018 (China); Li, Jinliang; Yu, Wei [Engineering Research Center for Nanophotonics & Advanced Instrument, Ministry of Education, Department of Physics, East China Normal University, Shanghai 200062 China (China); Zhu, Guang [Anhui Key Laboratory of Spin Electron and Nanomaterials, Suzhou University, Suzhou 234000 (China); Niu, Lengyuan [Institute of Coordination Bond Metrology and Engineering, College of Materials Science and Engineering, China Jiliang University, Hangzhou 310018 (China); Sun, Zhuo [Engineering Research Center for Nanophotonics & Advanced Instrument, Ministry of Education, Department of Physics, East China Normal University, Shanghai 200062 China (China); Pan, Likun, E-mail: lkpan@phy.ecnu.edu.cn [Engineering Research Center for Nanophotonics & Advanced Instrument, Ministry of Education, Department of Physics, East China Normal University, Shanghai 200062 China (China); Sun, Chang Q. [Institute of Coordination Bond Metrology and Engineering, College of Materials Science and Engineering, China Jiliang University, Hangzhou 310018 (China)

    2015-08-30

    Graphical abstract: Bi{sub 2}O{sub 3}–Ag{sub 2}O composites were fabricated for visible light photocatalytic degradation of phenol with a high degradation rate of 92% for 60 min. - Highlights: • Bi{sub 2}O{sub 3}–Ag{sub 2}O composites were synthesized via a co-precipitation method. • The photocatalytic activity for the degradation of phenol is investigated. • A high degradation rate of 92% for 60 min is achieved under visible light irradiation. - Abstract: Bi{sub 2}O{sub 3}–Ag{sub 2}O hybrid photocatalysts were successfully synthesized via a co-precipitation method. The morphology, structure and photocatalytic performance in the degradation of phenol were characterized by using scanning electron microscopy, transmission electron microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction, electrochemical impedance spectra and UV–vis absorption spectroscopy, respectively. The results show that Bi{sub 2}O{sub 3}–Ag{sub 2}O hybrid photocatalysts exhibit enhanced photocatalytic performance in the degradation of phenol with a maximum degradation rate of 92% for 60 min under visible light irradiation compared with pure Bi{sub 2}O{sub 3} (57%), which is ascribed to the increase in light adsorption and the reduction in electron–hole pair recombination with the introduction of Ag{sub 2}O.

  3. Recycling Carbon Dioxide into Sustainable Hydrocarbon Fuels: Electrolysis of Carbon Dioxide and Water

    Science.gov (United States)

    Graves, Christopher Ronald

    Great quantities of hydrocarbon fuels will be needed for the foreseeable future, even if electricity based energy carriers begin to partially replace liquid hydrocarbons in the transportation sector. Fossil fuels and biomass are the most common feedstocks for production of hydrocarbon fuels. However, using renewable or nuclear energy, carbon dioxide and water can be recycled into sustainable hydrocarbon fuels in non-biological processes which remove oxygen from CO2 and H2O (the reverse of fuel combustion). Capture of CO2 from the atmosphere would enable a closed-loop carbon-neutral fuel cycle. The purpose of this work was to develop critical components of a system that recycles CO2 into liquid hydrocarbon fuels. The concept is examined at several scales, beginning with a broad scope analysis of large-scale sustainable energy systems and ultimately studying electrolysis of CO 2 and H2O in high temperature solid oxide cells as the heart of the energy conversion, in the form of three experimental studies. The contributions of these studies include discoveries about electrochemistry and materials that could significantly improve the overall energy use and economics of the CO2-to-fuels system. The broad scale study begins by assessing the sustainability and practicality of the various energy carriers that could replace petroleum-derived hydrocarbon fuels, including other hydrocarbons, hydrogen, and storage of electricity on-board vehicles in batteries, ultracapacitors, and flywheels. Any energy carrier can store the energy of any energy source. This sets the context for CO2 recycling -- sustainable energy sources like solar and wind power can be used to provide the most energy-dense, convenient fuels which can be readily used in the existing infrastructure. The many ways to recycle CO2 into hydrocarbons, based on thermolysis, thermochemical loops, electrolysis, and photoelectrolysis of CO2 and/or H 2O, are critically reviewed. A process based on high temperature co

  4. HARNESSING THE CHEMISTRY OF CO2

    Energy Technology Data Exchange (ETDEWEB)

    Louie, Janis

    2010-05-11

    Our research program is broadly focused on activating CO{sub 2} through the use of organic and organometallic based catalysts. Some of our methods have centered on annulation reactions of unsaturated hydrocarbons (and carbonyl substrates) to provide a diverse array of carbocycles and heterocycles. We use a combination of catalyst discovery and optimization in conjunction with classical physical organic chemistry to elucidate the key mechanistic features of the cycloaddition reactions such that the next big advances in catalyst development can be made. Key to all of our cycloaddition reactions is the use of a sterically hindered, electron donating N heterocyclic carbene (NHC) ligand, namely IPr (or SIPr), in conjunction with a low valent nickel pre-catalyst. The efficacy of this ligand is two-fold: (1) the high {delta}-donating ability of the NHC increases the nucleophilicity of the metal center which thereby facilitates interaction with the electrophilic carbonyl and (2) the steric hindrance prevents an otherwise competitive side reaction involving only the alkyne substrate. Such a system has allowed for the facile cycloaddition to prepare highly functionalized pyrones, pyridones, pyrans, as well as novel carbocycles. Importantly, all reactions proceed under extremely mild conditions (room temperature, atmospheric pressures, and short reaction times), require only catalytic amounts of Ni/NHC and readily available starting materials, and afford annulated products in excellent yields. Our current focus revolves around understanding the fundamental processes that govern these cycloadditions such that the next big advance in the cyclization chemistry of CO{sub 2} can be made. Concurrent to our annulation chemistry is our investigation of the potential for imidazolylidenes to function as thermally-actuated CO{sub 2} sequestering and delivery agents.

  5. Co-hydrothermal synthesis of LiMn_2_3_/_2_4Mg_1_/_2_4PO_4·LiAlO_2/C nano-hybrid cathode material with enhanced electrochemical performance for lithium-ion batteries

    International Nuclear Information System (INIS)

    Zhang, Jun; Luo, Shaohua; Chang, Longjiao; Hao, Aimin; Wang, Zhiyuan; Liu, Yanguo; Xu, Qian; Wang, Qing; Zhang, Yahui

    2017-01-01

    Highlights: • A co-hydrothermal approach to synthesize LiMn_2_3_/_2_4Mg_1_/_2_4PO_4·LiAlO_2/C composite material in water/PEG system is present. • The Mn_1_-_xMg_xPO_4 precursor is prepared by precipitation reaction. • Co-modified with Mg"2"+ doping and LiAlO_2 compositing strategies play an important role in improving the electronic conductivity and facilitating the diffusion of lithium ion. • LiMn_2_3_/_2_4Mg_1_/_2_4PO_4·LiAlO_2/C composite material exhibits a high specific discharge capacity of 151.8 mAh/g at 0.05C. - Abstract: LiMn_2_3_/_2_4Mg_1_/_2_4PO_4·LiAlO_2/C is synthesized by a co-hydrothermal method in water/PEG system using Li_2CO_3, AAO and Mn_1_-_xMg_xPO_4 as raw material. The electronic structure and micromorphology of multi-component compound LiMn_1_-_xMg_xPO_4/C (x = 0, 1/24, 1/12, 1/6) and nano-hybrid LiMn_2_3_/_2_4Mg_1_/_2_4PO_4·LiAlO_2/C cathode materials are studied by first-principles calculation and experimental research including XRD, SEM, TEM. The calculated band gap of LiMn_2_3_/_2_4Mg_1_/_2_4PO_4/C is 2.296 eV, which is lower than other percentages Mg"2"+ doping samples. Electrochemical tests exhibit LiMn_2_3_/_2_4Mg_1_/_2_4PO_4/C has better cycling performance and rate capability than other contents Mg"2"+ doping samples with the discharge capacity of 143.5 mAh/g, 141.5 mAh/g, 139.2 mAh/g and 136.3 mAh/g at 0.05C, 0.1C, 0.5C and 1C in order. After compositing and preparation of LiMn_2_3_/_2_4Mg_1_/_2_4PO_4·LiAlO_2/C composite material by co-hydrothermal route, the initial discharge capacity reaches up to 151.8 mAh/g, which suggests that co-modified with Mg"2"+ doping and LiAlO_2 compositing material can improve the electronic conductivity of LiMnPO_4/C by facilitating the lithium ion diffusion rate in the interior of the materials.

  6. CoS/CNTs hybrid structure for improved performance lithium ion battery

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Huijun; Ma, Jingjing; Liu, Sheng; Nie, Longying; Chai, Yaqin; Yang, Xia, E-mail: xiayang2@swu.edu.cn; Yuan, Ruo, E-mail: yuanruo@swu.edu.cn

    2016-08-15

    Cobalt sulfide (CoS) has a high theoretical capacity as an anode materials for lithium ion batteries (LIBs), however it suffers from poor cyclability and weak retention. Therefore, a lot of efforts have been devoted to overcome these defects. In this work, cobalt sulfide/carbon nanotubes (CoS/CNTs) nanocomposites were prepared by a simple and effective solvothermal method. The nanocomposites were constructed by CoS nanoparticles coated on the carbon nanotubes and the electrochemical performances of the CoS/CNTs nanocomposites were investigated as anode materials for LIBs. The results showed that the materials had superior cycle stability and kept a high discharge capacity of 780 mAh g{sup −1} after 50 cycles at the current density of 100 mA g{sup −1}. The excellent electrochemical performances are due to the good combination of the hybrid structure and better electron transportation originated from CNTs. The CoS/CNTs nanocomposites with excellent rate capabilities and super capabilities could be promising anode material for lithium ion battery. - Highlights: • CoS/CNTs nanocomposites were prepared by a simple and effective solvothermal method. • Compared with pristine CoS, CoS/CNTs nanocomposites had superior cycle stability. • CoS/CNTs nanocomposites kept a high discharge capacity of 780 mAh g{sup −1} after 50 cycles at 100 mA g{sup −1}.

  7. Thermal effects in a depleted gas field by cold CO2 injection in the presence of methana

    NARCIS (Netherlands)

    Loeve, D.; Hofstee, C.; Maas, J.G.

    2014-01-01

    Depleted gas fields are seen as promising options for geological storage of CO2. The advantage of hydrocarbon fields are that the characteristics, such as the storage capacity and the proven sealing capacity are known. This means that only limited uncertainty remains after a technical feasibility

  8. Chemical Method to Improve CO{sub 2} Flooding Sweep Efficiency for Oil Recovery Using SPI-CO{sub 2} Gels

    Energy Technology Data Exchange (ETDEWEB)

    Burns, Lyle D.

    2009-04-14

    hydrocarbon combustion for energy, chemical and fertilizer plants. For example, coal fired power plants emit large amounts of CO{sub 2} in order to produce electrical energy. Carbon dioxide sequestration is gaining attention as concerns mount over possible global climate change caused by rising emissions of greenhouse gases. Removing the CO{sub 2} from the energy generation process would make these plants more environmentally friendly. In addition, CO{sub 2} flooding is an attractive means to enhance oil and natural gas recovery. Capture and use of the CO{sub 2} from these plants for recycling into CO{sub 2} flooding of marginal reservoirs provides a “dual use” opportunity prior to final CO{sub 2} sequestration in the depleted reservoir. Under the right pressure, temperature and oil composition conditions, CO{sub 2} can act as a solvent, cleaning oil trapped in the microscopic pores of the reservoir rock. This miscible process greatly increases the recovery of crude oil from a reservoir compared to recovery normally seen by waterflooding. An Enhanced Oil Recovery (EOR) project that uses an industrial source of CO{sub 2} that otherwise would be vented to the atmosphere has the added environmental benefit of sequestering the greenhouse gas.

  9. Interaction of fish aryl hydrocarbon receptor paralogs (AHR1 and AHR2) with the retinoblastoma protein

    Energy Technology Data Exchange (ETDEWEB)

    Merson, Rebeka R., E-mail: rmerson@ric.edu [Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543 (United States); Biology Department, Rhode Island College, 500 Mt. Pleasant Ave., Providence, RI 02908 (United States); Karchner, Sibel I.; Hahn, Mark E. [Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543 (United States)

    2009-08-13

    The aryl hydrocarbon receptor (AHR) mediates the toxic effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and related compounds. In some mammalian cell lines, TCDD induces G1 cell cycle arrest, which depends on an interaction between the AHR and the retinoblastoma tumor suppressor (RB). Mammals possess one AHR, whereas fishes possess two or more AHR paralogs that differ in the domains important for AHR-RB interactions in mammals. To test the hypothesis that fish AHR paralogs differ in their ability to interact with RB, we cloned RB cDNA from Atlantic killifish, Fundulus heteroclitus, and studied the interactions of killifish RB protein with killifish AHR1 and AHR2. In coimmunoprecipitation experiments, in vitro-expressed killifish RB coprecipitated with both AHR1 and AHR2. Consistent with these results, both killifish AHR1 and AHR2 interacted with RB in mammalian two-hybrid assays. These results suggest that both fish AHR1 and AHR2 paralogs may have the potential to influence cell proliferation through interactions with RB.

  10. Structural, optical, and improved photocatalytic properties of CdS/SnO_2 hybrid photocatalyst nanostructure

    International Nuclear Information System (INIS)

    Venkata Reddy, Ch.; Ravikumar, R.V.S.S.N.; Srinivas, Ganganagunta; Shim, Jaesool; Cho, Migyung

    2017-01-01

    Highlights: • CdS, SnO_2, and a CdS/SnO_2 hybrid photocatalyst were synthesized using a two-step technique. • The dislocation density, strain values are higher for CdS/SnO_2 hybrid photocatalyst. • The CdS/SnO_2 has a higher surface area and smaller crystallite size compared to pristine CdS. • The CdS/SnO_2 catalyst greatly reduced recombination of electron and hole pairs. - Abstract: CdS, SnO_2 and CdS/SnO_2 hybrid photocatalyst nanostructure were synthesized using a two-step (co-precipitation/hydrothermal) method. The as-prepared materials were characterized by powder X-ray diffraction, transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), surface analysis (BET), photoluminescence spectra (PL), UV–Vis diffusion reflectance spectroscopy (DRS), fourier transform infrared spectroscopy (FT-IR), and photocatalytic activity. The band gap energies calculated from the DRS results are 3.30, 2.15, and 2.99 eV for pristine SnO_2, CdS, and the CdS/SnO_2 hybrid photocatalyst, respectively. The CdS/SnO_2 hybrid photocatalyst showed more efficient charge carrier separation and improved photocatalytic degradation of methyl orange (MO). The highest degradation rate constant was achieved for the CdS/SnO_2 hybrid photocatalyst (0.02434 min"−"1) compared to CdS (0.01381 min"−"1) and SnO_2 (0.00878 min"−"1). The present study provides insights for improving the photocatalytic activity and photo-stability of CdS/SnO_2 hybrid photocatalyst.

  11. Receptor modeling of C2─C7 hydrocarbon sources at an urban background site in Zurich, Switzerland: changes between 1993─1994 and 2005─2006

    Directory of Open Access Journals (Sweden)

    S. Reimann

    2008-05-01

    Full Text Available Hourly measurements of 13 volatile hydrocarbons (C2–C7 were performed at an urban background site in Zurich (Switzerland in the years 1993–1994 and again in 2005–2006. For the separation of the volatile organic compounds by gas-chromatography (GC, an identical chromatographic column was used in both campaigns. Changes in hydrocarbon profiles and source strengths were recovered by positive matrix factorization (PMF. Eight and six factors could be related to hydrocarbon sources in 1993–1994 and in 2005–2006, respectively. The modeled source profiles were verified by hydrocarbon profiles reported in the literature. The source strengths were validated by independent measurements, such as inorganic trace gases (NOx, CO, SO2, methane (CH4, oxidized hydrocarbons (OVOCs and meteorological data (temperature, wind speed etc.. Our analysis suggests that the contribution of most hydrocarbon sources (i.e. road traffic, solvents use and wood burning decreased by a factor of about two to three between the early 1990s and 2005–2006. On the other hand, hydrocarbon losses from natural gas leakage remained at relatively constant levels (−20%. The estimated emission trends are in line with the results from different receptor-based approaches reported for other European cities. Their differences to national emission inventories are discussed.

  12. SYSTEMATIC VARIATIONS IN CO2/H2O ICE ABUNDANCE RATIOS IN NEARBY GALAXIES FOUND WITH AKARI NEAR-INFRARED SPECTROSCOPY

    International Nuclear Information System (INIS)

    Yamagishi, M.; Kaneda, H.; Ishihara, D.; Oyabu, S.; Onaka, T.; Shimonishi, T.; Suzuki, T.

    2015-01-01

    We report CO 2 /H 2 O ice abundance ratios in seven nearby star-forming galaxies based on the AKARI near-infrared (2.5–5.0 μm) spectra. The CO 2 /H 2 O ice abundance ratios show clear variations between 0.05 and 0.2 with the averaged value of 0.14 ± 0.01. The previous study on M82 revealed that the CO 2 /H 2 O ice abundance ratios strongly correlate with the intensity ratios of the hydrogen recombination Brα line to the polycyclic aromatic hydrocarbon (PAH) 3.3 μm feature. In the present study, however, we find no correlation for the seven galaxies as a whole due to systematic differences in the relation between CO 2 /H 2 O ice abundance and Brα/PAH 3.3 μm intensity ratios from galaxy to galaxy. This result suggests that there is another parameter that determines the CO 2 /H 2 O ice abundance ratios in a galaxy in addition to the Brα/PAH 3.3 μm ratios. We find that the CO 2 /H 2 O ice abundance ratios positively correlate with the specific star formation rates of the galaxies. From these results, we conclude that CO 2 /H 2 O ice abundance ratios tend to be high in young star-forming galaxies

  13. Preparation and optical and electrical evaluation of bulk SiO2 sonogel hybrid composites and vacuum thermal evaporated thin films prepared from molecular materials derived from (Fe, Co) metallic phthalocyanines and 1,8 dihydroxiantraquinone compounds

    International Nuclear Information System (INIS)

    Sanchez Vergara, Maria Elena; Morales-Saavedra, Omar G.; Ontiveros-Barrera, Fernando G.; Torres-Zuniga, Vicente; Ortega-Martinez, Roberto; Ortiz Rebollo, Armando

    2009-01-01

    Semiconducting molecular material of PcFe(CN)L1 and PcCo(CN)L1 (L1 = 1,8 dihydroxianthraquinone), PcFe(CN)L2 and PcCo(CN)L2 (L2 = double potassium salt of 1,8 dihydroxianthraquinone) have been successfully used to prepare thin film and bulk sol-gel hybrid optical materials. These samples were developed according to the vacuum thermal evaporation technique and the catalyst-free sonogel route, respectively. Thin films samples were deposited on Corning glass substrates and crystalline silicon wafers and were characterized by infrared (FTIR), Raman and ultraviolet-visible (UV-vis) spectroscopies. IR-spectroscopy and Raman studies unambiguously confirmed that the molecular material thin films exhibit the same intra-molecular bonds, which suggests that the thermal evaporation process does not alter these bonds significantly. These results show that it is possible to deposit molecular materials of PcFe(CN)L2 and PcCo(CN)L2 on Corning glass substrates and silicon wafers. From the UV-vis studies the optical band gap (E g ) was evaluated. The effect of temperature on conductivity was also evaluated in these samples. Finally, the studied molecular systems dissolved at different concentrations in tetrahydrofuran (THF) were successfully embedded into a highly pure SiO 2 sonogel network generated via sonochemical reactions to form several solid state, optically active sol-gel hybrid glasses. By this method, homogeneous and stable hybrid monoliths suitable for optical characterization can be produced. The linear optical properties of these amorphous bulk structures were determined by the Brewster angle method and by absorption-, Raman- and photoluminescent (PL)-spectroscopies, respectively

  14. C2-C10 hydrocarbon emissions from a boreal wetland and forest floor

    Directory of Open Access Journals (Sweden)

    H. Hellén

    2006-01-01

    Full Text Available Emissions of various C2-C10 hydrocarbons (VOCs and halogenated hydrocarbons (VHOCs from a boreal wetland and a Scots pine forest floor in south-western Finland were measured by the static chamber technique. Isoprene was the main non-methane hydrocarbon emitted by the wetland, but small emissions of ethene, propane, propene, 1-butene, 2-methylpropene, butane, pentane and hexane were also detected. The isoprene emission from the wetland was observed to follow the commonly-used isoprene emission algorithm. The mean emission potential of isoprene was 224 µg m-2 h-1 for the whole season. This is lower than the emission potentials published earlier; that is probably at least partly due to the cold and cloudy weather during the measurements. No emissions were detected of monoterpenes or halogenated hydrocarbons from the wetland. The highest hydrocarbon emissions from the Scots pine forest floor were measured in spring and autumn. However, only a few measurements were conducted during summer. The main compounds emitted were monoterpenes. Isoprene emissions were negligible. The total monoterpene emission rates varied from zero to 373 µg m-2 h-1. The results indicated that decaying plant litter may be the source for these emissions. Small emissions of chloroform (100-800 ng m-2 h-1, ethene, propane, propene, 2-methylpropene, cis-2-butene, pentane, hexane and heptane were detected. Comparison with Scots pine emissions showed that the forest floor may be an important monoterpene source, especially in spring.

  15. Exchange transfusion with fluorocarbon for studying synaptically evoked optical signal in rat cortex.

    Science.gov (United States)

    Nomura, Y; Fujii, F; Sato, C; Nemoto, M; Tamura, M

    2000-02-01

    . Zieglgansberger, The intrinsic optical signal evoked by chiasm stimulation in the rat suprachiasmatic nuclei exhibits GABAergic day-night variation, Eur. J. Neurosci. 8 (1996) 319-328] [3] [9] [13] [24]. A spectral fitting method with three components is used for the analysis of intrinsic optical signal [M. Nemoto, Y. Nomura, C. Sato, M. Tamura, K. Houkin, I. Koyanagi, H. Abe, Analysis of optical signals evoked by peripheral nerve stimulation in rat somatosensory cortex: dynamic changes in hemoglobin concentration and oxygenation, J. Cereb. Blood Flow Metab. 19 (1999) 246-259] [17]. In order to validate the analysis, we need the knowledge on contribution of signal resulted from hemoglobin to total intrinsic optical signal. The exchange transfusion with fluorocarbon has the advantage that can change the spectral contribution of hemoglobin [M. Ferrari, M.A. Williams, D.A. Wilson, N.V. Thakor, R.J. Traystman, D.F. Hanley, Cat brain cytochrome-c oxidase redox changes induced by hypoxia after blood-fluorocarbon exchange transfusion, Am. J. Physiol. 269 (1995) H417-H424; A.L. Sylvia, C.A. Piantadosi, O(2) dependence of in vivo brain cytochrome redox responses and energy metabolism in bloodless rats, J. Cereb. Blood Flow Metab. 8 (1988) 163-172] [6] [23]. Here we describe a new method of the reduction of hemoglobin signal from somatosensory evoked optical intrinsic signal in rat cortex by the combination of exchange transfusion with fluorocarbon and imaging system of thinned skull cranial window. The method allows for the study of the synaptically evoked changes in light scattering as well as fluorescence of calcium indicator or voltage-sensitive dye without absorption of hemoglobin.

  16. Properties and Developments of Combustion and Gasification of Coal and Char in a CO2-Rich and Recycled Flue Gases Atmosphere by Rapid Heating

    Directory of Open Access Journals (Sweden)

    Zhigang Li

    2012-01-01

    Full Text Available Combustion and gasification properties of pulverized coal and char have been investigated experimentally under the conditions of high temperature gradient of order 200°C·s−1 by a CO2 gas laser beam and CO2-rich atmospheres with 5% and 10% O2. The laser heating makes a more ideal experimental condition compared with previous studies with a TG-DTA, because it is able to minimize effects of coal oxidation and combustion by rapid heating process like radiative heat transfer condition. The experimental results indicated that coal weight reduction ratio to gases followed the Arrhenius equation with increasing coal temperature; further which were increased around 5% with adding H2O in CO2-rich atmosphere. In addition, coal-water mixtures with different water/coal mass ratio were used in order to investigate roles of water vapor in the process of coal gasification and combustion. Furthermore, char-water mixtures with different water/char mass ratio were also measured in order to discuss the generation ratio of CO/CO2, and specified that the source of Hydrocarbons is volatile matter from coal. Moreover, it was confirmed that generations of CO and Hydrocarbons gases are mainly dependent on coal temperature and O2 concentration, and they are stimulated at temperature over 1000°C in the CO2-rich atmosphere.

  17. Vehicle emissions of greenhouse gases and related tracers from a tunnel study: : CO: CO2, N2O: CO2, CH4: CO2, O2: CO2 ratios, and the stable isotopes 13C and 18O in CO2 and CO

    NARCIS (Netherlands)

    Popa, Maria Elena; Vollmer, M. K.; Jordan, A.; Brand, W. A.; Pathirana, S. L.; Rothe, M.; Röckmann, T.

    2014-01-01

    Measurements of CO2, CO, N2O and CH4 mole fractions, O2/N2 ratios and the stable isotopes 13C and 18O in CO2 and CO have been performed in air samples from the Islisberg highway tunnel (Switzerland). The molar CO : CO2 ratios, with an average of (4.15 ± 0.34) ppb:ppm, are lower than reported in

  18. DETECTIONS OF WATER ICE, HYDROCARBONS, AND 3.3 μm PAH IN z ∼ 2 ULIRGs

    International Nuclear Information System (INIS)

    Sajina, Anna; Spoon, Henrik; Yan Lin; Imanishi, Masatoshi; Fadda, Dario; Elitzur, Moshe

    2009-01-01

    We present the first detections of the 3 μm water ice and 3.4 μm amorphous hydrocarbon (HAC) absorption features in z ∼ 2 ULIRGs. These are based on deep rest-frame 2-8 μm Spitzer Infrared Spectrograph spectra of 11 sources selected for their appreciable silicate absorption. The HAC-to-silicate ratio for our z ∼ 2 sources is typically higher by a factor of 2-5 than that observed in the Milky Way. This HAC 'excess' suggests compact nuclei with steep temperature gradients as opposed to predominantly host obscuration. Beside the above molecular absorption features, we detect the 3.3 μm polycyclic aromatic hydrocarbon (PAH) emission feature in one of our sources with three more individual spectra showing evidence for it. Stacking analysis suggests that water ice, hydrocarbons, and PAH are likely present in the bulk of this sample even when not individually detected. The most unexpected result of our study is the lack of clear detections of the 4.67 μm CO gas absorption feature. Only three of the sources show tentative signs of this feature at significantly lower levels than has been observed in local ULIRGs. Overall we find that the closest local analogs to our sources, in terms of 3-4 μm color, HAC-to-silicate and ice-to-silicate ratios, as well as low PAH equivalent widths, are sources dominated by deeply obscured nuclei. Such sources form only a small fraction of ULIRGs locally and are commonly believed to be dominated by buried active galactic nuclei (AGNs). Our sample suggests that, in an absolute number, such buried AGNs are at least an order of magnitude more common at z ∼ 2 than today. The presence of PAH suggests that significant levels of star formation are present even if the obscured AGNs typically dominate the power budget.

  19. Facile synthesis of hybrid CNTs/NiCo2S4 composite for high performance supercapacitors

    Science.gov (United States)

    Li, Delong; Gong, Youning; Pan, Chunxu

    2016-07-01

    In this work, a novel carbon nanotubes (CNTs)/NiCo2S4 composite for high performance supercapacitors was prepared via a simple chemical bath deposition combined with a post-anion exchange reaction. The morphologies and phase structures of the composites were characterized using scanning electron microscopy (SEM), X-ray diffraction (XRD), Raman spectroscopy (Raman), X-ray photoelectron spectroscopy (XPS) and low-temperature sorption of nitrogen (BET). The electro-chemical tests revealed that the CNT/NiCo2S4 composite exhibited high electrochemical performance, because the CNTs were used as a conductive network for the NiCo2S4 hexagonal nanoplates. Compared with pure NiCo2S4 and the mechanically mixed CNTs/NiCo2S4 composite, the CNTs/NiCo2S4 composite electrode material exhibited excellent supercapacitive performance, such as a high specific capacitance up to 1537 F/g (discharge current density of 1 A/g) and an outstanding rate capability of 78.1% retention as the discharge current density increased to 100 A/g. It is therefore expected to be a promising alternative material in the area of energy storage.

  20. Facile synthesis of hybrid CNTs/NiCo2S4 composite for high performance supercapacitors.

    Science.gov (United States)

    Li, Delong; Gong, Youning; Pan, Chunxu

    2016-07-11

    In this work, a novel carbon nanotubes (CNTs)/NiCo2S4 composite for high performance supercapacitors was prepared via a simple chemical bath deposition combined with a post-anion exchange reaction. The morphologies and phase structures of the composites were characterized using scanning electron microscopy (SEM), X-ray diffraction (XRD), Raman spectroscopy (Raman), X-ray photoelectron spectroscopy (XPS) and low-temperature sorption of nitrogen (BET). The electro-chemical tests revealed that the CNT/NiCo2S4 composite exhibited high electrochemical performance, because the CNTs were used as a conductive network for the NiCo2S4 hexagonal nanoplates. Compared with pure NiCo2S4 and the mechanically mixed CNTs/NiCo2S4 composite, the CNTs/NiCo2S4 composite electrode material exhibited excellent supercapacitive performance, such as a high specific capacitance up to 1537 F/g (discharge current density of 1 A/g) and an outstanding rate capability of 78.1% retention as the discharge current density increased to 100 A/g. It is therefore expected to be a promising alternative material in the area of energy storage.

  1. Fundamentals of carbon dioxide-enhanced oil recovery (CO2-EOR): a supporting document of the assessment methodology for hydrocarbon recovery using CO2-EOR associated with carbon sequestration

    Science.gov (United States)

    Verma, Mahendra K.

    2015-01-01

    The objective of this report is to provide basic technical information regarding the CO2-EOR process, which is at the core of the assessment methodology, to estimate the technically recoverable oil within the fields of the identified sedimentary basins of the United States. Emphasis is on CO2-EOR because this is currently one technology being considered as an ultimate long-term geologic storage solution for CO2 owing to its economic profitability from incremental oil production offsetting the cost of carbon sequestration.

  2. Hierarchical NiCo2 O4 nanosheets grown on Ni nanofoam as high-performance electrodes for supercapacitors.

    Science.gov (United States)

    Gao, Guoxin; Wu, Hao Bin; Ding, Shujiang; Liu, Li-Min; Lou, Xiong Wen David

    2015-02-18

    A high-performance electrode for supercapacitors is designed and synthesized by growing electroactive NiCo2 O4 nanosheets on conductive Ni nanofoam. Because of the structural advantages, the as-prepared Ni@NiCo2 O4 hybrid nanostructure exhibits significantly improved electrochemical performance with high capacitance, excellent rate capability, and good cycling stability. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Polycyclic aromatic hydrocarbons and nitropolycyclic aromatic hydrocarbons in particulates emitted by motorcycles

    International Nuclear Information System (INIS)

    Pham, Chau Thuy; Kameda, Takayuki; Toriba, Akira; Hayakawa, Kazuichi

    2013-01-01

    We determined eleven PAHs and four NPAHs in particulates and regulated pollutants (CO, CO 2 , HC, NO x , PM) exhausted from motorcycles to figure out the characteristics of motorcycle exhausts. Fluoranthene and pyrene accounted for more than 50% of the total detected PAHs. Among four detected NPAHs, 6-nitrochrysene and 7-nitrobenz[a]anthracene were the predominant NPAHs and were highly correlated relationship with their parent PAHs (R = 0.93 and 0.97, respectively). The PM and HC emissions tended to be close to the PAH emissions. NO x and NPAHs were negatively correlated. Despite their small engine size, motorcycles emitted much more PM and PAHs, showed stronger PAH-related carcinogenicity and indirect-acting mutagenicity, but weaker NPAH-related direct-acting mutagenic potency than automobiles. This is the first study to analyze both PAHs and NPAHs emitted by motorcycles, which could provide useful information to design the emission regulations and standards for motorcycles such as PM. -- Highlights: ► We characterized PAHs and NPAHs distribution in motorcycle exhausts. ► NPAHs concentrations were about three orders of magnitude lower than those of PAHs. ► We found larger amounts of PM and PAHs in exhaust of motorcycles than of automobiles. ► Motorcycles showed stronger PAH-related toxicity than automobiles. ► Motorcycles showed weaker NPAH-related direct-acting mutagenicity than automobiles. -- Control polycyclic aromatic hydrocarbons and nitropolycyclic aromatic hydrocarbon in particulates emitted by motorcycles due to their toxic potency

  4. Template-based fabrication of nanowire-nanotube hybrid arrays

    International Nuclear Information System (INIS)

    Ye Zuxin; Liu Haidong; Schultz, Isabel; Wu Wenhao; Naugle, D G; Lyuksyutov, I

    2008-01-01

    The fabrication and structure characterization of ordered nanowire-nanotube hybrid arrays embedded in porous anodic aluminum oxide (AAO) membranes are reported. Arrays of TiO 2 nanotubes were first deposited into the pores of AAO membranes by a sol-gel technique. Co nanowires were then electrochemically deposited into the TiO 2 nanotubes to form the nanowire-nanotube hybrid arrays. Scanning electron microscopy and transmission electron microscopy measurements showed a high nanowire filling factor and a clean interface between the Co nanowire and the TiO 2 nanotube. Application of these hybrids to the fabrication of ordered nanowire arrays with highly controllable geometric parameters is discussed

  5. Evolution of the energy content and emissions of CO{sub 2} associated with Brazilian economic production between 1990 and 2030: a hybrid approach; Evolucao do conteudo energetico e das emissoes de CO{sub 2} associadas a producao economica brasileira entre 1990 e 2030: uma abordagem hibrida

    Energy Technology Data Exchange (ETDEWEB)

    Pereira Junior, Amaro Olimpio; Soares, Jeferson Borghetti; Oliveira, Ricardo Gorini de; Queiroz, Renato Pinto de [Empresa de Pesquisa Energetica (EPE), Rio de Janeiro, RJ (Brazil)], e-mail: amaro.pereira@epe.gov.br, e-mail: jeferson.soares@epe.gov.br, e-mail: ricardo.gorini@epe.gov.br, e-mail: renato.queiroz@epe.gov.br

    2008-07-01

    This study proposes um hybrid approach to analyze the results of the Energy National Plan 2030, performed by EPE, a state owned Enterprise of Energy Research. The model integrates the energy data to macroeconomics, giving them consistence, from the input-output analysis. The resultant matrixes from this methodology are use to analyze the evolution of energy content and the CO{sub 2} emissions associated to the economic production of choose sectors. (author)

  6. Catalytic reduction of NOx with H2/CO/CH4 over PdMOR catalysts

    International Nuclear Information System (INIS)

    Pieterse, Johannis A.Z.; Booneveld, Saskia

    2007-01-01

    Conversion of NO x with reducing agents H 2 , CO and CH 4 , with and without O 2 , H 2 O, and CO 2 were studied with catalysts based on MOR zeolite loaded with palladium and cerium. The catalysts reached high NO x to N 2 conversion with H 2 and CO (>90% conversion and N 2 selectivity) range under lean conditions. The formation of N 2 O is absent in the presence of both H 2 and CO together with oxygen in the feed, which will be the case in lean engine exhaust. PdMOR shows synergic co-operation between H 2 and CO at 450-500 K. The positive effect of cerium is significant in the case of H 2 and CH 4 reducing agent but is less obvious with H 2 /CO mixture and under lean conditions. Cerium lowers the reducibility of Pd species in the zeolite micropores. The catalysts showed excellent stability at temperatures up to 673 K in a feed with 2500 ppm CH 4 , 500 ppm NO, 5% O 2 , 10% H 2 O (0-1% H 2 ), N 2 balance but deactivation is noticed at higher temperatures. Combining results of the present study with those of previous studies it shows that the PdMOR-based catalysts are good catalysts for NO x reduction with H 2 , CO, hydrocarbons, alcohols and aldehydes under lean conditions at temperatures up to 673 K. (author)

  7. Recent Advances in Transition-Metal-Mediated Electrocatalytic CO2 Reduction: From Homogeneous to Heterogeneous Systems

    Directory of Open Access Journals (Sweden)

    Da-Ming Feng

    2017-12-01

    Full Text Available Global climate change and increasing demands for clean energy have brought intensive interest in the search for proper electrocatalysts in order to reduce carbon dioxide (CO2 to higher value carbon products such as hydrocarbons. Recently, transition-metal-centered molecules or organic frameworks have been reported to show outstanding electrocatalytic activity in the liquid phase. Their d-orbital electrons are believed to be one of the key factors to capture and convert CO2 molecules to value-added low-carbon fuels. In this review, recent advances in electrocatalytic CO2 reduction have been summarized based on the targeted products, ranging from homogeneous reactions to heterogeneous ones. Their advantages and fallbacks have been pointed out and the existing challenges, especially with respect to the practical and industrial application are addressed.

  8. Recent Advances in Transition-Metal-Mediated Electrocatalytic CO2 Reduction: From Homogeneous to Heterogeneous Systems

    KAUST Repository

    Feng, Da-Ming

    2017-12-01

    Global climate change and increasing demands for clean energy have brought intensive interest in the search for proper electrocatalysts in order to reduce carbon dioxide (CO2) to higher value carbon products such as hydrocarbons. Recently, transition-metal-centered molecules or organic frameworks have been reported to show outstanding electrocatalytic activity in the liquid phase. Their d-orbital electrons are believed to be one of the key factors to capture and convert CO2 molecules to value-added low-carbon fuels. In this review, recent advances in electrocatalytic CO2 reduction have been summarized based on the targeted products, ranging from homogeneous reactions to heterogeneous ones. Their advantages and fallbacks have been pointed out and the existing challenges, especially with respect to the practical and industrial application are addressed.

  9. Synthesis and photocatalytic CO2 reduction performance of Cu2O/Coal-based carbon nanoparticle composites

    Science.gov (United States)

    Dedong, Zhang; Maimaiti, Halidan; Awati, Abuduheiremu; Yisilamu, Gunisakezi; Fengchang, Sun; Ming, Wei

    2018-05-01

    The photocatalytic reduction of CO2 into hydrocarbons provides a promising approach to overcome the challenges of environmental crisis and energy shortage. Here we fabricated a cuprous oxide (Cu2O) based composite photocatalyst consisting of Cu2O/carbon nanoparticles (CNPs). To prepare the CNPs, coal samples from Wucaiwan, Xinjiang, China, were first treated with HNO3, followed by hydrogen peroxide (H2O2) oxidation to strip nanocrystalline carbon from coal. After linking with oxygen-containing group such as hydroxyl, coal-based CNPs with sp2 carbon structure and multilayer graphene lattice structure were synthesized. Subsequently, the CNPs were loaded onto the surface of Cu2O nanoparticles prepared by in-situ reduction of copper chloride (CuCl2·2H2O). The physical properties and chemical structure of the Cu2O/CNPs as well as photocatalytic activity of CO2/H2O reduction into CH3OH were measured. The results demonstrate that the Cu2O/CNPs are composed of spherical particles with diameter of 50 nm and mesoporous structure, which are suitable for CO2 adsorption. Under illumination of visible light, electron-hole pairs are generated in Cu2O. Thanks to the CNPs, the fast recombination of electron-hole pairs is suppressed. The energy gradient formed on the surface of Cu2O/CNPs facilitates the efficient separation of electron-hole pairs for CO2 reduction and H2O oxidation, leading to enhanced photocatalytic activity.

  10. Original Conductive Nano-Co3O4 Investigated as Electrode Material for Hybrid Supercapacitors

    OpenAIRE

    Godillot, Gérôme; Guerlou-Demourgues, Liliane; Taberna, Pierre-Louis; Simon, Patrice; Delmas, Claude

    2011-01-01

    Cobalt oxides have been extensively used as conductive additives for Ni-MH batteries. We report in this paper the performances of an original nanometric cobalt oxide, close to Co3O4, as electrode material for hybrid supercapacitors. This spinel type phase contains hydrogen, lithium, cobalt vacancies, and especially Co4þ ions within the structure, leading to a high electronic conductivity. Cyclic voltammetry and impedance spectroscopy measurements show interesting capacitance (320 F/g in 8M-KO...

  11. A Framework to Estimate CO2 Leakage associated with Geological Storage in Mature Sedimentary Basins

    Science.gov (United States)

    Celia, M. A.; Bachu, S.; Gasda, S.

    2002-12-01

    Geological storage of carbon dioxide requires careful risk analysis to avoid unintended consequences associated with the subsurface injection. Most negative consequences of subsurface injection are associated with leakage of the injected CO2 out of the geological formation into which it is injected. Such leakage may occur through natural geological features, including fractures and faults, or it may occur through human-created pathways such as existing wells. Possible leakage of CO2 through existing wells appears to be especially important in mature sedimentary basins that have been explored intensively and exploited for hydrocarbon production. In the Alberta Basin of western Canada, more than 300,000 oil and gas wells have been drilled, while in the state of Texas in the United States, more than 1,500,000 wells have been drilled. Many of these wells have been abandoned, and the information available to describe their current state is highly variable and sometimes nonexistent. Because these wells represent possible direct conduits from the injection zone to the land surface, a comprehensive assessment of leakage potential associated with these wells needs to be pursued. Analysis of leakage potential associated with existing wells must combine a data mining component with a multi-level modeling effort to assess leakage potential in a probabilistic framework. Information available for existing wells must be categorized and analyzed, and general leakage characteristics associated with wells of varying properties must be quantified. One example of a realistic target formation is the Viking Formation in Alberta, which is overlain by a thick shale layer and contains hydrocarbon in some locations. The existence of hydrocarbon in the formation indicates that the overlying shale layer is an effective barrier to flow, and therefore this is a good candidate formation for CO2 storage. However, the formation and its cap rock are punctured by approximately 180,000 wells, with

  12. Adsorption Properties of MFM-400 and MFM-401 with CO2 and Hydrocarbons: Selectivity Derived from Directed Supramolecular Interactions.

    Science.gov (United States)

    Ibarra, Ilich A; Mace, Amber; Yang, Sihai; Sun, Junliang; Lee, Sukyung; Chang, Jong-San; Laaksonen, Aatto; Schröder, Martin; Zou, Xiaodong

    2016-08-01

    ([Sc2(OH)2(BPTC)]) (H4BPTC = biphenyl-3,3',5,5'-tetracarboxylic acid), MFM-400 (MFM = Manchester Framework Material, previously designated NOTT), and ([Sc(OH)(TDA)]) (H2TDA = thiophene-2,5-dicarboxylic acid), MFM-401, both show selective and reversible capture of CO2. In particular, MFM-400 exhibits a reasonably high CO2 uptake at low pressures and competitive CO2/N2 selectivity coupled to a moderate isosteric heat of adsorption (Qst) for CO2 (29.5 kJ mol(-1)) at zero coverage, thus affording a facile uptake-release process. Grand canonical Monte Carlo (GCMC) and density functional theory (DFT) computational analyses of CO2 uptake in both materials confirmed preferential adsorption sites consistent with the higher CO2 uptake observed experimentally for MFM-400 over MFM-401 at low pressures. For MFM-400, the Sc-OH group participates in moderate interactions with CO2 (Qst = 33.5 kJ mol(-1)), and these are complemented by weak hydrogen-bonding interactions (O···H-C = 3.10-3.22 Å) from four surrounding aromatic -CH groups. In the case of MFM-401, adsorption is provided by cooperative interactions of CO2 with the Sc-OH group and one C-H group. The binding energies obtained by DFT analysis for the adsorption sites for both materials correlate well with the observed moderate isosteric heats of adsorption for CO2. GCMC simulations for both materials confirmed higher uptake of EtOH compared with nonpolar vapors of toluene and cyclohexane. This is in good correlation with the experimental data, and DFT analysis confirmed the formation of a strong hydrogen bond between EtOH and the hydrogen atom of the hydroxyl group of the MFM-400 and MFM-401 framework (FW) with H-OEtOH···H-OFW distances of 1.77 and 1.75 Å, respectively. In addition, the accessible regeneration of MFM-400 and MFM-401 and release of CO2 potentially provide minimal economic and environmental penalties.

  13. Mesoporous Co3O4 nanosheets-3D graphene networks hybrid materials for high-performance lithium ion batteries

    International Nuclear Information System (INIS)

    Sun, Hongyu; Liu, Yanguo; Yu, Yanlong; Ahmad, Mashkoor; Nan, Ding; Zhu, Jing

    2014-01-01

    Graphical abstract: - Highlights: • The mesoporous Co 3 O 4 nanosheets-3D graphene networks have been found to display better LIB performance as compare with Co 3 O 4 /CNT and Co 3 O 4 structures. • Electrochemical impedance spectroscopy shows that the addition of 3DGN largely enhanced the electrochemical activity of Co 3 O 4 during the cycling processes. • The large specific surface area and porous nature of the Co 3 O 4 nanosheets are very convenient and accessible for electrolyte diffusion and intercalation of Li + ions into the active phases. - Abstract: Mesoporous Co 3 O 4 nanosheets-3D graphene networks (3DGN) hybrid materials have been synthesized by combining chemical vapor deposition (CVD) and hydrothermal method and investigated as anode materials for Li-ion batteries (LIBs). Microscopic characterizations have been performed to confirm the 3DGN and mesoporous Co 3 O 4 nanostructures. The specific surface area and pore size of the hybrid structures have been found ∼ 34.5 m 2 g −1 and ∼ 3.8 nm respectively. It has been found that the Co 3 O 4 /3DGNs composite displays better LIB performance with enhanced reversible capacity, good cyclic performance and rate capability as compare with Co 3 O 4 /CNT and Co 3 O 4 structures. Electrochemical impedance spectroscopy (EIS) results show that the addition of 3DGN not only preserves high conductivity of the composite electrode, but also largely enhanced the electrochemical activity of Co 3 O 4 during the cycling processes. The improved electrochemical performance is considered due to the addition of 3DGNs which prevent the cracking of electrode. In addition, the large specific surface area and porous nature of the Co 3 O 4 nanosheets are also very convenient and accessible for electrolyte diffusion and intercalation of Li + ions into the active phases. Therefore, this combination can be considered to be an attractive candidate as an anode material for LIBs

  14. Source rock hydrocarbons. Present status

    International Nuclear Information System (INIS)

    Vially, R.; Maisonnier, G.; Rouaud, T.

    2013-01-01

    This report first presents the characteristics of conventional oil and gas system, and the classification of liquid and gaseous non conventional hydrocarbons, with the peculiar case of coal-bed methane. The authors then describe how source rock hydrocarbons are produced: production of shale oils and gases (horizontal drilling, hydraulic fracturing, exploitation) and of coal-bed methane and coal mine methane. In the next part, they address and discuss the environmental impact of source rock hydrocarbon production: installation footprint, water resource management, drilling fluids, fracturing fluids composition, toxicity and recycling, air pollution, induced seismicity, pollutions from other exploitation and production activities. They propose an overview of the exploitation and production of source rock gas, coal-bed gas and other non conventional gases in the world. They describe the current development and discuss their economic impacts: world oil context and trends in the USA, in Canada and other countries, impacts on the North American market, on the world oil industry, on refining industries, on the world oil balance. They analyse the economic impacts of non conventional gases: development potential, stakes for the world gas trade, consequence for gas prices, development opportunities for oil companies and for the transport sector, impact on CO 2 emissions, macro-economic impact in the case of the USA

  15. Half-metallic magnetism in Ti3Co5-xFexB2

    Directory of Open Access Journals (Sweden)

    Rohit Pathak

    2017-05-01

    Full Text Available Bulk alloys and thin films of Fe-substituted Ti3Co5B2 have been investigated by first-principle density-functional calculations. The series, which is of interest in the context of alnico magnetism and spin electronics, has been experimentally realized in nanostructures but not in the bulk. Our bulk calculations predict paramagnetism for Ti3Co5B2, Ti3Co4FeB2 and Ti3CoFe4B2, whereas Ti3Fe5B2 is predicted to be ferromagnetic. The thin films are all ferromagnetic, indicating that moment formation may be facilitated at nanostructural grain boundaries. One member of the thin-film series, namely Ti3CoFe4B2, is half-metallic and exhibits perpendicular easy-axis magnetic anisotropy. The half-metallicity reflects the hybridization of the Ti, Fe and Co 3d orbitals, which causes a band gap in minority spin channel, and the limited equilibrium solubility of Fe in bulk Ti3Co5B2 may be linked to the emerging half-metallicity due to Fe substitution.

  16. Interdiffusion Reaction-Assisted Hybridization of Two-Dimensional Metal-Organic Frameworks and Ti3C2Tx Nanosheets for Electrocatalytic Oxygen Evolution.

    Science.gov (United States)

    Zhao, Li; Dong, Biliang; Li, Shaozhou; Zhou, Lijun; Lai, Linfei; Wang, Zhiwei; Zhao, Shulin; Han, Min; Gao, Kai; Lu, Min; Xie, Xiaoji; Chen, Bo; Liu, Zhengdong; Wang, Xiangjing; Zhang, Hao; Li, Hai; Liu, Juqing; Zhang, Hua; Huang, Xiao; Huang, Wei

    2017-06-27

    Two-dimensional (2D) metal-organic framework (MOF) nanosheets have been recently regarded as the model electrocatalysts due to their porous structure, fast mass and ion transfer through the thickness, and large portion of exposed active metal centers. Combining them with electrically conductive 2D nanosheets is anticipated to achieve further improved performance in electrocatalysis. In this work, we in situ hybridized 2D cobalt 1,4-benzenedicarboxylate (CoBDC) with Ti 3 C 2 T x (the MXene phase) nanosheets via an interdiffusion reaction-assisted process. The resulting hybrid material was applied in the oxygen evolution reaction and achieved a current density of 10 mA cm -2 at a potential of 1.64 V vs reversible hydrogen electrode and a Tafel slope of 48.2 mV dec -1 in 0.1 M KOH. These results outperform those obtained by the standard IrO 2 -based catalyst and are comparable with or even better than those achieved by the previously reported state-of-the-art transition-metal-based catalysts. While the CoBDC layer provided the highly porous structure and large active surface area, the electrically conductive and hydrophilic Ti 3 C 2 T x nanosheets enabled the rapid charge and ion transfer across the well-defined Ti 3 C 2 T x -CoBDC interface and facilitated the access of aqueous electrolyte to the catalytically active CoBDC surfaces. The hybrid nanosheets were further fabricated into an air cathode for a rechargeable zinc-air battery, which was successfully used to power a light-emitting diode. We believe that the in situ hybridization of MXenes and 2D MOFs with interface control will provide more opportunities for their use in energy-based applications.

  17. Visible-light-driven methane formation from CO2 with a molecular iron catalyst

    Science.gov (United States)

    Rao, Heng; Schmidt, Luciana C.; Bonin, Julien; Robert, Marc

    2017-08-01

    Converting CO2 into fuel or chemical feedstock compounds could in principle reduce fossil fuel consumption and climate-changing CO2 emissions. One strategy aims for electrochemical conversions powered by electricity from renewable sources, but photochemical approaches driven by sunlight are also conceivable. A considerable challenge in both approaches is the development of efficient and selective catalysts, ideally based on cheap and Earth-abundant elements rather than expensive precious metals. Of the molecular photo- and electrocatalysts reported, only a few catalysts are stable and selective for CO2 reduction; moreover, these catalysts produce primarily CO or HCOOH, and catalysts capable of generating even low to moderate yields of highly reduced hydrocarbons remain rare. Here we show that an iron tetraphenylporphyrin complex functionalized with trimethylammonio groups, which is the most efficient and selective molecular electro- catalyst for converting CO2 to CO known, can also catalyse the eight-electron reduction of CO2 to methane upon visible light irradiation at ambient temperature and pressure. We find that the catalytic system, operated in an acetonitrile solution containing a photosensitizer and sacrificial electron donor, operates stably over several days. CO is the main product of the direct CO2 photoreduction reaction, but a two-pot procedure that first reduces CO2 and then reduces CO generates methane with a selectivity of up to 82 per cent and a quantum yield (light-to-product efficiency) of 0.18 per cent. However, we anticipate that the operating principles of our system may aid the development of other molecular catalysts for the production of solar fuels from CO2 under mild conditions.

  18. Preparation and optical and electrical evaluation of bulk SiO{sub 2} sonogel hybrid composites and vacuum thermal evaporated thin films prepared from molecular materials derived from (Fe, Co) metallic phthalocyanines and 1,8 dihydroxiantraquinone compounds

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez Vergara, Maria Elena [Coordinacion de Ingenieria Mecatronica, Facultad de Ingenieria, Universidad Anahuac Mexico Norte. Avenida Universidad Anahuac 46, Col. Lomas Anahuac, 52786 Huixquilucan, Estado de Mexico (Mexico); Morales-Saavedra, Omar G. [Universidad Nacional Autonoma de Mexico, Centro de Ciencias Aplicadas y Desarrollo Tecnologico, CCADET-UNAM, A.P. 70-186, Coyoacan, 04510 Mexico, D.F. (Mexico)], E-mail: omar.morales@ccadet.unam.mx; Ontiveros-Barrera, Fernando G.; Torres-Zuniga, Vicente; Ortega-Martinez, Roberto [Universidad Nacional Autonoma de Mexico, Centro de Ciencias Aplicadas y Desarrollo Tecnologico, CCADET-UNAM, A.P. 70-186, Coyoacan, 04510 Mexico, D.F. (Mexico); Ortiz Rebollo, Armando [Universidad Nacional Autonoma de Mexico, Instituto de Investigaciones en Materiales, IIM-UNAM, A.P. 70-360, Coyoacan, 04510 Mexico, D.F. (Mexico)

    2009-02-25

    Semiconducting molecular material of PcFe(CN)L1 and PcCo(CN)L1 (L1 = 1,8 dihydroxianthraquinone), PcFe(CN)L2 and PcCo(CN)L2 (L2 = double potassium salt of 1,8 dihydroxianthraquinone) have been successfully used to prepare thin film and bulk sol-gel hybrid optical materials. These samples were developed according to the vacuum thermal evaporation technique and the catalyst-free sonogel route, respectively. Thin films samples were deposited on Corning glass substrates and crystalline silicon wafers and were characterized by infrared (FTIR), Raman and ultraviolet-visible (UV-vis) spectroscopies. IR-spectroscopy and Raman studies unambiguously confirmed that the molecular material thin films exhibit the same intra-molecular bonds, which suggests that the thermal evaporation process does not alter these bonds significantly. These results show that it is possible to deposit molecular materials of PcFe(CN)L2 and PcCo(CN)L2 on Corning glass substrates and silicon wafers. From the UV-vis studies the optical band gap (E{sub g}) was evaluated. The effect of temperature on conductivity was also evaluated in these samples. Finally, the studied molecular systems dissolved at different concentrations in tetrahydrofuran (THF) were successfully embedded into a highly pure SiO{sub 2} sonogel network generated via sonochemical reactions to form several solid state, optically active sol-gel hybrid glasses. By this method, homogeneous and stable hybrid monoliths suitable for optical characterization can be produced. The linear optical properties of these amorphous bulk structures were determined by the Brewster angle method and by absorption-, Raman- and photoluminescent (PL)-spectroscopies, respectively.

  19. Hydrocarbon Degradation and Sulfate Reduction in a Coastal Marsh of North Florida

    Science.gov (United States)

    Hsieh, Y.; Bugna, G. C.; Robinson, L.

    2001-05-01

    Hydrocarbon contamination of coastal waters has been an environmental concern for sometime. Coastal wetlands, which are rich in organic matter and microbial activities, have been considered natural systems that could degrade hydrocarbon in contaminated coastal waters. This study was initiated to investigate the potential of hydrocarbon degradation in a coastal salt marsh of North Florida with special reference to sulfate reduction. Freshly collected surface marsh sediments (0-20 cm) were incubated in a laboratory at ambient temperature (23.2° C) with the treatments of: 1) Control (i.e., no treatment), 2) +(crude) oil, 3) +NO3-1+oil, and 4) +MoO4-2+oil. Carbon dioxide evolution from the incubation was collected and analyzed for the total amount and the 13C signature. The NO3-1 and MoO4-2 treatments were intended to block the sulfate reduction activity. The results show that the indigenous organic matter and the crude oil have distinct δ 13C values of -19.8 and -27.6 \\permil, respectively, relative to PDB. Evolved CO2 concentrations and δ 13C values also indicate that microbial populations can adapt to the presence of anthropogenic hydrocarbons. Blocking of sulfate reducers by MoO4-2 addition started to reduce the carbon dioxide evolution rates after a 4-d incubation. After a 48-d incubation, the carbon dioxide evolution of the MoO4-2-treated samples was reduced to only 23 % of the non-MoO4-2-treated samples, indicating the increased significant role of sulfate reducers in digesting older soil organic matter and the hydrocarbons. T-tests also indicated that in NO3-1 treatment, δ 13C values significantly depleted (p=0.1) while CO2 concentration remained relatively constant. These indicate that while denitrifiers played a role in the degradation, the microbial population is predominantly composed of sulfate reducers. Salt marshes would be a much more significant source of CH4 if SO4-2 is suppressed. All MoO4-2-treated samples produced significant amount of methane

  20. Hydrogen production by reforming of hydrocarbons and alcohols in a dielectric barrier discharge

    Energy Technology Data Exchange (ETDEWEB)

    Sarmiento, Belen; Brey, J. Javier; Viera, Inmaculada G. [Hynergreen Technologies, S.A. Avda. de la Buhaira, 2. 41018 Sevilla (Spain); Gonzalez-Elipe, Agustin R.; Cotrino, Jose; Rico, Victor J. [Instituto de Ciencia de los Materiales de Sevilla (CSIC-University Sevilla), Avda. Americo Vespucio, 49, 41092 Sevilla (Spain)

    2007-06-10

    This work reports about the use of plasmas to obtain hydrogen by reforming of hydrocarbons or alcohols in mixtures with CO{sub 2} or H{sub 2}O. The plasma is activated in a dielectric barrier discharge (DBD) reactor working at atmospheric pressure and low temperatures (i.e., about 100 C). The reactor presents a great versatility in operation and a low manufacturing cost. Results are presented for the reforming of methane, methanol and ethanol. Methane transforms up to a 70% into CO and H{sub 2} without formation of any kind of superior hydrocarbon. For the two alcohols 100% conversion into the same products is found for flows much higher than in the case of methane. The work reports a description of the reactor and the operational conditions of the power supply enabling the ignition of the plasma and its steady state operation. (author)