WorldWideScience

Sample records for hybrid fluorescence chemosensor

  1. Turn-on fluorescent chemosensor for Hg2+ based on multivalent rhodamine ligands

    NARCIS (Netherlands)

    Wang, X.; Iqbal, M.; Huskens, Jurriaan; Verboom, Willem

    2012-01-01

    Rhodamine-based fluorescent chemosensors 1 and 2 exhibit selective fluorescence enhancement to Fe3+ and Hg2+ over other metal ions at 580 nm in CH3CN/H2O (3/1, v/v) solution. Bis(rhodamine) chemosensor 1, under optimized conditions (CH3CN/HEPES buffer (0.02 M, pH = 7.0) (95/5, v/v)), shows a high

  2. Coumarin amide derivatives as fluorescence chemosensors for cyanide anions

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Qianqian [School of Material Science and Engineering, Shandong Provincial Key Laboratory of Preparation and Measurement of Building Materials, University of Jinan, Jinan 250022, Shandong (China); Liu, Zhiqiang [State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, Shandong (China); Cao, Duxia, E-mail: duxiacao@ujn.edu.cn [School of Material Science and Engineering, Shandong Provincial Key Laboratory of Preparation and Measurement of Building Materials, University of Jinan, Jinan 250022, Shandong (China); Guan, Ruifang, E-mail: mse_guanrf@ujn.edu.cn [School of Material Science and Engineering, Shandong Provincial Key Laboratory of Preparation and Measurement of Building Materials, University of Jinan, Jinan 250022, Shandong (China); Wang, Kangnan; Shan, Yanyan; Xu, Yongxiao; Ma, Lin [School of Material Science and Engineering, Shandong Provincial Key Laboratory of Preparation and Measurement of Building Materials, University of Jinan, Jinan 250022, Shandong (China)

    2015-07-01

    Four coumarin amide derivatives with 4-methyl coumarin or pyrene as terminal group have been synthesized. Their photophysical properties and recognition properties for cyanide anions have been examined. The results indicate that the compounds can recognize cyanide anions with obvious absorption and fluorescence spectra change, at the same time, obvious color and fluorescence change can be observed by naked eye. The in situ hydrogen nuclear magnetic resonance spectra and photophysical properties change confirm that Michael additions between the chemosensors and cyanide anions take place at the 4-position of coumarin. - Highlights: • Four coumarin amide derivatives with 4-methyl coumarin or pyrene as terminal group were synthesized. • The compounds can recognize cyanide anions with obvious absorption and fluorescence spectra change. • Michael additions between the chemosensors and cyanide anions take place at the 4-position of coumarin.

  3. Sensing mechanism for a fluorescent off–on chemosensor for cyanide anion

    International Nuclear Information System (INIS)

    Li, Yang; Chen, Junsheng; Chu, Tian-Shu

    2016-01-01

    In this article, the sensing mechanism of cyanide anion chemosensor 2-((2-phenyl-2H-1,2,3-triazol-4-yl)methylene)malononitrile (M1) has been investigated through the density functional theory (DFT) and time-dependent density functional theory (TDDFT) methods. The theoretical results demonstrate that the reaction barrier of 13.02 kcal/mol means a favorable response speed of the chemosensor M1 for cyanide anion. Cyanide anion attacks C=C double bond and hinders the ICT process from the malononitrile moiety to the fluorophore phenyl ring. The high viscosity of DMSO restrains the twisting of the group, inhibits the formation of the ICT state in the first excited state. Due to weak ICT character, the nucleophilic addition product shows the dramatic “off–on” fluorescence enhancement. Meanwhile, intramolecular charge transfer (ICT) mechanism accounts for how different solvents influence the fluorescence spectra. That is, more obvious ICT character of product in EtOH causes fluorescence quenching. The “reaction-based” recognition mode and large bond energy between M1 and cyanide anion minimize the interference by other anions, such as F − , AcO − . Thus, the chemosensor M1 has a high selectivity for cyanide.

  4. Nanoparticle-based, organic receptor coupled fluorescent chemosensors for the determination of phosphate

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, Navneet, E-mail: navneetkaur@pu.ac.in [Centre for Nanoscience and Nanotechnology (UIEAST), Panjab University, Chandigarh 160014 (India); Kaur, Simanpreet; Kaur, Amanpreet [Centre for Nanoscience and Nanotechnology (UIEAST), Panjab University, Chandigarh 160014 (India); Saluja, Preeti; Sharma, Hemant [Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001 (India); Saini, Anu; Dhariwal, Nisha [Centre for Nanoscience and Nanotechnology (UIEAST), Panjab University, Chandigarh 160014 (India); Singh, Ajnesh; Singh, Narinder [Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001 (India)

    2014-01-15

    The sensors have been developed using silver nanoparticles coated with organic ligands and are fully characterized with spectroscopic methods. The energy-dispersive X-ray (EDX) analysis revealed the presence of organic receptors on the surface of metal nanoparticles. These chemosensors were tested against a range of biological and environmentally relevant cations in the HEPES buffered DMSO/H{sub 2}O (8:2, v/v) solvent system. The fluorescence intensity of these chemosensors was quenched upon coordination with open shell metal ions such as Cu{sup 2+}/Fe{sup 3+}. Anion recognition properties of the corresponding metal complexes have been studied and the original fluorescence intensity of sensors was restored upon addition of phosphate (0–20 µM). Thus, a highly selective chemosensor has been devised for the micromolar estimation of phosphate in semi-aqueous medium. -- Highlights: • The silver nanoparticles have been decorated with organic receptors for chemosensor applications. • The sensor properties are developed for the estimation of phosphate anion. • Thus the sensor relies on the cation displacement assay. • The phosphate sensing event displays the “ON–OFF–ON” mode of switching in sensor.

  5. Turn-On Fluorescent Chemosensor for Hg2+ Based on Multivalent Rhodamine Ligands

    Science.gov (United States)

    Wang, Xuemei; Iqbal, Mudassir; Huskens, Jurriaan; Verboom, Willem

    2012-01-01

    Rhodamine-based fluorescent chemosensors 1 and 2 exhibit selective fluorescence enhancement to Fe3+ and Hg2+ over other metal ions at 580 nm in CH3CN/H2O (3/1, v/v) solution. Bis(rhodamine) chemosensor 1, under optimized conditions (CH3CN/HEPES buffer (0.02 M, pH = 7.0) (95/5, v/v)), shows a high selectivity and sensitivity to Hg2+, with a linear working range of 0–50 μM, a wide pH span of 4–10, and a detection limit of 0.4 μM Hg2+. PMID:23222686

  6. Sensing mechanism for a fluorescent off–on chemosensor for cyanide anion

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yang [State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Chen, Junsheng [State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China); Chu, Tian-Shu, E-mail: tschu@dicp.ac.cn [State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China); Institute for Computational Sciences and Engineering, Laboratory of New Fiber, Materials and Modern Textile, the Growing Base for State Key Laboratory, Qingdao University, Qingdao 266071 (China)

    2016-11-15

    In this article, the sensing mechanism of cyanide anion chemosensor 2-((2-phenyl-2H-1,2,3-triazol-4-yl)methylene)malononitrile (M1) has been investigated through the density functional theory (DFT) and time-dependent density functional theory (TDDFT) methods. The theoretical results demonstrate that the reaction barrier of 13.02 kcal/mol means a favorable response speed of the chemosensor M1 for cyanide anion. Cyanide anion attacks C=C double bond and hinders the ICT process from the malononitrile moiety to the fluorophore phenyl ring. The high viscosity of DMSO restrains the twisting of the group, inhibits the formation of the ICT state in the first excited state. Due to weak ICT character, the nucleophilic addition product shows the dramatic “off–on” fluorescence enhancement. Meanwhile, intramolecular charge transfer (ICT) mechanism accounts for how different solvents influence the fluorescence spectra. That is, more obvious ICT character of product in EtOH causes fluorescence quenching. The “reaction-based” recognition mode and large bond energy between M1 and cyanide anion minimize the interference by other anions, such as F{sup −}, AcO{sup −}. Thus, the chemosensor M1 has a high selectivity for cyanide.

  7. Turn-on fluorescence chemosensor for fluoride ions and its applicability in imaging of living cells

    Energy Technology Data Exchange (ETDEWEB)

    Ponnuvel, Kandasamy; Padmini, Vediappen, E-mail: padimini_tamilenthi@yahoo.co.in

    2016-01-15

    The study was easy to prepare fluorescent chemosensor, the urea based triphenylamine conjugated ligand and structurally simple anion probes displayed great selectivity for the fluoride anion over other anions in an aqueous tetrahydrofuran solution. The probe was characterized using NMR spectroscopy, UV–visible, emission spectroscopy and mass spectrometry. The sensor showed spectral shifts and intensity changes in the presence of fluoride anions. The Job’s plot analysis indicates that the binding stoichiometry to be 1:1. Furthermore, by means of confocal fluorescent microscopy experiments, it has been demonstrated that it can be used as a fluorescent probe for monitoring fluoride ions in the living cells. - Highlights: • A novel fluorescent chemosensor for the detection of F{sup −} anions. • Detection of F{sup −} anions can be performed in water at pH=7.4. • The chemosensor could be efficiently delivered to live cells for bioimaging of F{sup −}.

  8. Highly selective rhodamine-based fluorescence turn-on chemosensor for Al3+ ion

    Science.gov (United States)

    Manjunath, Rangasamy; Kannan, Palaninathan

    2018-05-01

    A new rhodamine-based colorimetric and fluorescent turn-on chemosensor (L) has been designed and synthesized for selective and sensitive detection of Al3+ ion. The sensing behavior toward metal ion was investigated by UV/Vis and fluorescence spectroscopy. Upon addition of Al3+ ion to solution of L provided a visual color change as well as significantly fluorescent enhancement, while other metal ions including Na+, Mg2+, K+, Mn2+, Fe3+, Ni2+, Cu2+, Zn2+, Pb2+, Cd2+ and Hg2+ ions fails to generate a distinct color and spectral changes, the distinct color change and rapid switch-on fluorescence also provide naked eye detection for Al3+ ion. The mechanism involved equilibrium between non-fluorescent spirocyclic form and highly fluorescent ring open form process was utilized and 1:2 stoichiometry for L-Al3+ complex formed with an association constant of 1.42 × 103 M-1. Moreover, chemosensor L was applied for living cell imaging and confirmed that can be used as a fluorescent probe for monitoring Al3+ ion in living cells.

  9. Fluorescent Chemosensors for Toxic Organophosphorus Pesticides: A Review

    Directory of Open Access Journals (Sweden)

    Kenneth Fletcher

    2010-07-01

    Full Text Available Many organophosphorus (OP based compounds are highly toxic and powerful inhibitors of cholinesterases that generate serious environmental and human health concerns. Organothiophosphates with a thiophosphoryl (P=S functional group constitute a broad class of these widely used pesticides. They are related to the more reactive phosphoryl (P=O organophosphates, which include very lethal nerve agents and chemical warfare agents, such as, VX, Soman and Sarin. Unfortunately, widespread and frequent commercial use of OP-based compounds in agricultural lands has resulted in their presence as residues in crops, livestock, and poultry products and also led to their migration into aquifers. Thus, the design of new sensors with improved analyte selectivity and sensitivity is of paramount importance in this area. Herein, we review recent advances in the development of fluorescent chemosensors for toxic OP pesticides and related compounds. We also discuss challenges and progress towards the design of future chemosensors with dual modes for signal transduction.

  10. Highly selective and sensitive fluorescent chemosensor for femtomolar detection of silver ion in aqueous medium

    Directory of Open Access Journals (Sweden)

    Abraham Daniel Arulraj

    2015-12-01

    Full Text Available The chemical sensing for the trace level detection of silver ion in aqueous solution still remains a challenge using simple, rapid, and inexpensive method. We report that thionine can be used as a fluorescent probe for the detection of Ag+ ion. The successive addition of Ag+ ion to the solution containing thionine quenches (turns-off the fluorescence intensity of thionine. Association and quenching constants have been estimated by the Benesi–Hildebrand method and Stern–Volmer plot, respectively. From the plot, the nature of the fluorescence quenching was confirmed as static quenching. An important feature of our chemosensor is high selectivity towards the determination of silver ion in aqueous solution over the other competitive metal ions. The detection limit of the sensor achieved 5 fM for Ag+ ion, which is superior to all previously reported chemosensors. The NMR and FT-IR studies were also carried out to support the complex formation between thionine and Ag+ ion. The practicality of the proposed chemosensor for determination of Ag+ ion was carried in untreated water samples.

  11. A novel peptide-based fluorescence chemosensor for selective imaging of hydrogen sulfide both in living cells and zebrafish.

    Science.gov (United States)

    Wang, Peng; Wu, Jiang; Di, Cuixia; Zhou, Rong; Zhang, Hong; Su, Pingru; Xu, Cong; Zhou, Panpan; Ge, Yushu; Liu, Dan; Liu, Weisheng; Tang, Yu

    2017-06-15

    Hydrogen sulfide (H 2 S) plays an important role as a signaling compound (gasotransmitter) in living systems. However, the development of an efficient imaging chemosensor of H 2 S in live animals is a challenging field for chemists. Herein, a novel peptide-based fluorescence chemosensor L-Cu was designed and synthesized on the basis of the copper chelating with the peptide ligand (FITC-Ahx-Ser-Pro-Gly-His-NH 2 , L), and its H 2 S sensing ability has been evaluated both in living cells and zebrafish. The peptide backbone and Cu 2+ -removal sensing mechanism are used to deliver rapid response time, high sensitivity, and good biocompatibility. After a fast fluorescence quench by Cu 2+ coordinated with L, the fluorescence of L is recovered by adding S 2- to form insoluble copper sulfide in aqueous solution with a detection limit for hydrogen sulfide measured to be 31nM. Furthermore, the fluorescence chemosensor L-Cu showed excellent cell permeation and low biotoxicity to realize the intracellular biosensing, L-Cu has also been applied to image hydrogen sulfide in live zebrafish larvae. We expect that this peptide-based fluorescence chemosensor L-Cu can be used to study H 2 S-related chemical biology in physiological and pathological events. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. New carbazole-based Schiff base: Colorimetric chemosensor for Fe{sup 3+} and fluorescent turn-on chemosensor for Fe{sup 3+} and Cr{sup 3+}

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Weiju; Yang, Lianlian; Fang, Min; Wu, Zhenyu; Zhang, Qing; Yin, Fangfang; Huang, Qiang; Li, Cun, E-mail: cun_li@126.com

    2015-02-15

    Two novel carbazole-based Schiff-bases L1 and L2 have been synthesized and characterized by {sup 1}H NMR, {sup 13}C NMR, FT-IR spectroscopy and elemental analysis. L1 can selectively detect Fe{sup 3+} by UV–vis spectroscopy and Fe{sup 3+}/Cr{sup 3+} by fluorescent spectroscopy in CH{sub 3}CN among various metal ions. The addition of Fe{sup 3+} ions to a L1 solution results in a significant blue-shift from 410 nm to 378 nm accompanied with color change from yellowish green to colorless. Upon excitation at 380 nm, the addition of Fe{sup 3+} or Cr{sup 3+} causes a 13-fold or 11-fold fluorescence enhancement. The binding stoichiometry ratio of L1–Fe{sup 3+} and L1–Cr{sup 3+} is recognized as 2:1 by the method of Job's plot, and the possible binding mode of the system also proposes. The results indicate that L1 is an ideal chemosensor for Fe{sup 3+} and Cr{sup 3+} recognition. However, L2 without hydroxyl in ortho imino group cannot selectively recognize the tasted metal ions, indicating that the introduction of the appropriate coordination binding site to receptor can improve efficiently the selectivity of chemosensor. - Highlights: • We designed and synthesized two new carbazole-based Schiff bases L1 and L2. • L1 could selectively recognize Fe{sup 3+} but L2 could not, which suggested that increase recognition site helped to improve the selectivity of probe. • L1 not only could serve as a highly selective visual chemosensor for Fe{sup 3+} ion without the aid of any instruments, but also could be used as a fluorescent chemosensor for Fe{sup 3+} and Cr{sup 3+}.

  13. Turn-On Fluorescent Chemosensor for Fluoride Based on Pyreneamide Derivative

    International Nuclear Information System (INIS)

    Jeon, Nam Joong; Hong, Sung Won; Hong, Ju Hyun; Jeong, Ju Mi; Nam, Kye Chun

    2012-01-01

    A new chemosensor with pyreneamide derivative of bipyridine is synthesized. In the free ligand, pyreneamide derivative has nearly no fluorescence in acetonitrile solution. However, in the presence of fluoride ion, a 'turn-on' fluorescence was observed. Simultaneously, the colorless ligand solution became markedly orange when fluoride ion was added to pyreneamide derivative in acetonitrile. This phenomenon suggest that the PET (photoinduced electron transfer) between anion electron and pyrene unit was changed the π-π interaction between bipyridine and pyrene that was modified structure by deprotonation. On account of the important roles of anion in biological, clinical, environmental, catalysis, and chemical processes, the selective and efficient recognition of anion is an area of growing interest in supramolecular chemistry. In particular, the studies of chemosensors toward F - anion are quite intriguing because of its beneficial effects in human physiology. Also, fluoride is interest due to its established role in dental care and osteoporosis. However, an excess of fluoride ion can lead to fluorosis. Therefore, the development of reliable sensors for F - is needed for environment and human health care. Color changes that can be detected by the naked eye are widely used as signals for events owing to the inexpensive equipment required or no equipment at all

  14. Turn-On Fluorescent Chemosensor for Fluoride Based on Pyreneamide Derivative

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Nam Joong; Hong, Sung Won; Hong, Ju Hyun; Jeong, Ju Mi; Nam, Kye Chun [Seoul National University, Seoul (Korea, Republic of)

    2012-01-15

    A new chemosensor with pyreneamide derivative of bipyridine is synthesized. In the free ligand, pyreneamide derivative has nearly no fluorescence in acetonitrile solution. However, in the presence of fluoride ion, a 'turn-on' fluorescence was observed. Simultaneously, the colorless ligand solution became markedly orange when fluoride ion was added to pyreneamide derivative in acetonitrile. This phenomenon suggest that the PET (photoinduced electron transfer) between anion electron and pyrene unit was changed the π-π interaction between bipyridine and pyrene that was modified structure by deprotonation. On account of the important roles of anion in biological, clinical, environmental, catalysis, and chemical processes, the selective and efficient recognition of anion is an area of growing interest in supramolecular chemistry. In particular, the studies of chemosensors toward F{sup -} anion are quite intriguing because of its beneficial effects in human physiology. Also, fluoride is interest due to its established role in dental care and osteoporosis. However, an excess of fluoride ion can lead to fluorosis. Therefore, the development of reliable sensors for F{sup -} is needed for environment and human health care. Color changes that can be detected by the naked eye are widely used as signals for events owing to the inexpensive equipment required or no equipment at all.

  15. A highly selective chemosensor for colorimetric detection of Hg2+ and fluorescence detection of pH changes in aqueous solution

    International Nuclear Information System (INIS)

    Kavitha, Ramasamy; Stalin, Thambusamy

    2014-01-01

    A naturally existing and unmodified simple chemosensor, 2-hydroxy-1,4-naphthoquinone (2HNQ), was identified and used for both the colorimetric detection of Hg 2+ and the fluorescent (on-off) detection of pH. The distinct color change and quenching of fluorescence emission was visible to the naked eye. More importantly, the chemosensor was used in combination with β-cyclodextrin (β-CD), which enabled the sensor to be solubilized and stabilized in aqueous solutions. The sensor selectively detected Hg 2+ via the stable 1:1 complexation of the CåO and OH groups with Hg 2+ and reflected pH changes in the range from 6 to 12 via a fluorescence on–off response resulting from the deprotonation of the hydroxyl group in 2HNQ. - Highlights: • The 2-Hydroxy-1,4-Naphthoquinone (2HNQ) chemosensor is capable of both colorimetric detection of Hg 2+ and a fluorescence on-off response to pH. • The distinct color change and quenching of fluorescence emission are detectable with the naked eye. • The on– off fluorescence response in the pH range from 6– to 12 is due to the deprotonation of the hydroxyl group in 2HNQ

  16. Highly selective and reversible chemosensor for Pd(2+) detected by fluorescence, colorimetry, and test paper.

    Science.gov (United States)

    Wang, Mian; Liu, Xiaomei; Lu, Huizhe; Wang, Hongmei; Qin, Zhaohai

    2015-01-21

    A "turn-on" fluorescent and colorimetric chemosensor (RBS) for Pd(2+) has been designed and synthesized through introduction of sulfur as a ligand atom to Rhodamine B. RBS exhibits high selectivity (freedom from the interference of Hg(2+ )in particular) and sensitivity toward Pd(2+) with a detection limit as low as 2.4 nM. RBS is also a reversible sensor, and it can be made into test paper to detect Pd(2+) in pure water. Compared to the chemosensors that introduced phosphorus to Rhodamine to detect Pd(2+), RBS can be synthesized more simply and economically.

  17. A highly selective fluorescent chemosensor for CN- based on a novel bis(salamo)-type tetraoxime ligand

    Science.gov (United States)

    Wang, Fei; Gao, Lei; Zhao, Qing; Zhang, Yang; Dong, Wen-Kui; Ding, Yu-Jie

    2018-02-01

    The optical properties of a novel chemosensor for cyanide anions based on a symmetric bis(salamo)-type ligand (H3L) were investigated by UV-Vis and fluorescence spectroscopy in MeOH/H2O (1:1 v/v) solution. Sensor H3L can selectively sense CN- based on prominent color changes among other anions. The chemosensor exhibits an apparent fluorescence enhancement at 482 nm to CN- which because cyanide ions interact with Cdbnd N bonds. Combining the corrected Benesi-Hildebrand formula, the binding constant of the formed host-guest complex was calculated as 2.42 × 105 M- 1. Meanwhile, the detection limit of the sensor toward CN- was 8.91 × 10- 7 M. It is worth noting that the designed sensor can be used for rapid detection of cyanide anions in basic pH range, and has great practical value.

  18. A dansyl-rhodamine chemosensor for Fe(III) based on off-on FRET

    Science.gov (United States)

    Piao, Jingyu; Lv, Jia; Zhou, Xin; Zhao, Tong; Wu, Xue

    2014-07-01

    A novel fluorescent chemosensor bearing a rhodamine and a dansyl moiety was developed for highly selective detection of Fe3+ based on fluorescence resonance energy transfer (FRET) mechanism. Binding of Fe3+ to the chemosensor induced spirolactam ring opening in the rhodamine moiety and subsequent off-on FRET from the dansyl energy donor to the rhodamine energy acceptor due to the spectral overlap between the emission of the dansyl moiety and the absorption of the ring opened rhodamine moiety. Job's plot analysis indicated a 1:1 binding stoichiometry between the chemosensor and Fe3+. The association constant was estimated to be 2.72 × 103 M-1 according to the Benesi-Hildebrand method. With the feature of easy synthesis, simple structural skeleton and excellent sensing ability, the newly synthesized chemosensor provided the potential for applying as a highly selective fluorescent probe in complex samples containing various competitive metal ions and developing other metal ion chemosensors to fulfill various needs of biological and environmental field.

  19. A rhodol-based fluorescent chemosensor for hydrazine and its application in live cell bioimaging

    Science.gov (United States)

    Tiensomjitr, Khomsan; Noorat, Rattha; Wechakorn, Kanokorn; Prabpai, Samran; Suksen, Kanoknetr; Kanjanasirirat, Phongthon; Pewkliang, Yongyut; Borwornpinyo, Suparerk; Kongsaeree, Palangpon

    2017-10-01

    A rhodol cinnamate fluorescent chemosensor (RC) has been developed for selective detection of hydrazine (N2H4). In aqueous medium, the rhodol-based probe exhibited high selectivity for hydrazine among other molecules. The addition of hydrazine triggered a fluorescence emission with 48-fold enhancement based on hydrazinolysis and a subsequent ring-opening process. The chemical probe also displayed a selective colorimetric response toward N2H4 from colorless solution to pink, readily observed by the naked eye. The detection limit of RC for hydrazine was calculated to be 300 nM (9.6 ppb). RC is membrane permeable and was successfully demonstrated to detect hydrazine in live HepG2 cells by confocal fluorescence microscopy.

  20. A dansyl-rhodamine chemosensor for Fe(III) based on off-on FRET.

    Science.gov (United States)

    Piao, Jingyu; Lv, Jia; Zhou, Xin; Zhao, Tong; Wu, Xue

    2014-07-15

    A novel fluorescent chemosensor bearing a rhodamine and a dansyl moiety was developed for highly selective detection of Fe(3+) based on fluorescence resonance energy transfer (FRET) mechanism. Binding of Fe(3+) to the chemosensor induced spirolactam ring opening in the rhodamine moiety and subsequent off-on FRET from the dansyl energy donor to the rhodamine energy acceptor due to the spectral overlap between the emission of the dansyl moiety and the absorption of the ring opened rhodamine moiety. Job's plot analysis indicated a 1:1 binding stoichiometry between the chemosensor and Fe(3+). The association constant was estimated to be 2.72×10(3) M(-1) according to the Benesi-Hildebrand method. With the feature of easy synthesis, simple structural skeleton and excellent sensing ability, the newly synthesized chemosensor provided the potential for applying as a highly selective fluorescent probe in complex samples containing various competitive metal ions and developing other metal ion chemosensors to fulfill various needs of biological and environmental field. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Acridine-based fluorescence chemosensors for selective sensing of Fe3+ and Ni2+ ions

    Science.gov (United States)

    Wang, Chaoyu; Fu, Jiaxin; Yao, Kun; Xue, Kun; Xu, Kuoxi; Pang, Xiaobin

    2018-06-01

    Two novel acridine-based fluorescence chemosensors (L1 and L2) were prepared and their metal ions sensing properties were investigated. L1 (L2) exhibited an excellent selective fluorescence response toward Fe3+ (Ni2+) and the stoichiometry ratio of L1-Fe3+ and L2-Ni2+ were 1:1. The detection limits of L1 and L2 were calculated by the fluorescence titration to be 4.13 μM and 1.52 μM, respectively, which were below the maximum permissive level of Fe3+ and Ni2+ ions in drinking water set by the EPA. The possible mechanism of the fluorescence detection of Fe3+ and Ni2+ had been proposed according to the analysis of Job's plot, IR spectra and ESI-MS. The determination of Fe3+ and Ni2+ ions in living cells had been applied successfully.

  2. A coumarin-derived Cu2 +-fluorescent chemosensor and its direct application in aqueous media

    Science.gov (United States)

    Mergu, Naveen; Kim, Myeongjin; Son, Young-A.

    2018-01-01

    A novel coumarin-based receptor bearing a benzohydrazide (FCBH) was developed as a fluorescent chemosensor with high selectivity toward Cu2 +. The sensor was successfully applied to the monitoring of Cu2 + in aqueous solution. After the addition of Cu2 + to FCBH, the color of the solution changed from greenish-yellow to red, and the absorption band at 457 nm red-shifted to 517 nm. The fluorescent green color of FCBH disappeared and the fluorescence emission was completely quenched in the presence of Cu2 +. Upon the addition of Cu2 +, deprotonation of FCBH occurred, and a 1:1 metal-ligand complex formed. DFT theoretical investigation was carried out to understand the behavior of the sensing probe toward Cu2 +. Additionally, the quenched fluorescence of the FCBH-Cu2 + complex was restored upon the addition of CN- ions. The possible sensing mechanism of FCBH toward Cu2 + was derived from experimental and theoretical examinations.

  3. Triphenylamine based benzimidazole and benzothiazole: Synthesis and applications in fluorescent chemosensors and laser dyes

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yang [State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033 (China); University of Chinese Academy of Sciences, Beijing 100039 (China); Li, Bin, E-mail: libinteacher@163.com [State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033 (China); Zhang, Liming; Guan, Yunlong [State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033 (China)

    2014-01-15

    Triphenylamine based fluorescent dyes TPA-benzimidazole and TPA-benzothiazole have been designed and synthesized. The TPA-benzimidazole chemosensor was tested for a number of metal ions and found to exhibit binding affinity for Fe{sup 3+} and Hg{sup 2+} in acetonitrile, and the fluorescence quenching was achieved through a PET process. The appearance of an isosbestic point in absorption titrations and Job's plot analysis supported 1:1 stoichiometries for Fe{sup 3+} and Hg{sup 2+} ions. Laser experiments showed that under transversal pumping with a Q-switched Nd:YAG (355 nm) laser in toluene, TPA-benzothiazole exhibits efficient and stable amplified spontaneous emissions (ASE) at 436 nm. -- Highlights: • Triphenylamine based fluorescent dyes TPA-benzimidazole and TPA-benzothiazole have been designed and synthesized. • The TPA-benzimidazole exhibits binding affinity for Fe{sup 3+} and Hg{sup 2+} in acetonitrile and the fluorescence quenching was achieved through a PET process. • Under transversal pumping at 355 nm in toluene, TPA-benzothiazole exhibits efficient and stable amplified spontaneous emissions (ASE) in 436 nm.

  4. Triphenylamine based benzimidazole and benzothiazole: Synthesis and applications in fluorescent chemosensors and laser dyes

    International Nuclear Information System (INIS)

    Yang, Yang; Li, Bin; Zhang, Liming; Guan, Yunlong

    2014-01-01

    Triphenylamine based fluorescent dyes TPA-benzimidazole and TPA-benzothiazole have been designed and synthesized. The TPA-benzimidazole chemosensor was tested for a number of metal ions and found to exhibit binding affinity for Fe 3+ and Hg 2+ in acetonitrile, and the fluorescence quenching was achieved through a PET process. The appearance of an isosbestic point in absorption titrations and Job's plot analysis supported 1:1 stoichiometries for Fe 3+ and Hg 2+ ions. Laser experiments showed that under transversal pumping with a Q-switched Nd:YAG (355 nm) laser in toluene, TPA-benzothiazole exhibits efficient and stable amplified spontaneous emissions (ASE) at 436 nm. -- Highlights: • Triphenylamine based fluorescent dyes TPA-benzimidazole and TPA-benzothiazole have been designed and synthesized. • The TPA-benzimidazole exhibits binding affinity for Fe 3+ and Hg 2+ in acetonitrile and the fluorescence quenching was achieved through a PET process. • Under transversal pumping at 355 nm in toluene, TPA-benzothiazole exhibits efficient and stable amplified spontaneous emissions (ASE) in 436 nm

  5. Off–on switchable chemosensor based on rhodamine armed with morpholine moiety

    Energy Technology Data Exchange (ETDEWEB)

    Dhara, Anamika; Guchhait, Nikhil, E-mail: nguchhait@yahoo.com; Kar, Susanta K., E-mail: skkar_cu@yahoo.co.in

    2015-12-15

    We have synthesized a novel morpholine functionalized rhodamine derivative RBM which specifically binds to Fe{sup 3+} in the presence of large excess of other competing metal ions. The chemosensor is highly selective for Fe{sup 3+} over other cations. Meanwhile, the distinct color changes and rapid switch-on fluorescence also provide “naked eyes” detection for Fe{sup 3+} over a broad pH range. The chemosensor also displays 1:1 complex formation with Fe{sup 3+} ion, with a detection limit of 2.1 µM in aqueous CH{sub 3}CN solution, showing that it may offer potential as a chemosensor for the detection of submillimolar Fe{sup 3+} ions in physiological environments. - Highlights: • Design and synthesis of morpholine functionalized rhodamine derivative RBM. • RBM is a highly selective fluorescence sensor for Fe{sup 3+} via reversible CHEF mechanism. • Distinct color changes “naked-eye” and rapid switch-on fluorescence detection for Fe{sup 3+}. • Detection limit was calculated to be 2.1 μM for Fe{sup 3+} ion.

  6. An Effective Hg2+-Selective Fluorescent Chemosensor Based on a Calix[4]arene Bearing Four Dansyl Amides

    Institute of Scientific and Technical Information of China (English)

    LI Guang-Ke; LIU Min; YANG Guo-Qiang; CHEN Chuan-Feng; HUANG Zhi-Tang

    2008-01-01

    A new calix[4]arene-based fluorescent chemosensor bearing four dansyl amides on the upper rim (1) was con- veniently synthesized, which showed high sensitivity and selectivity toward Hg2+ over a wide range of metal ions in 50% aqueous acetonitrile. The complexation of Hg2+ ion induced a strong fluorescence quenching of 1 due to a well-defined electron transfer process from the dansyl group(s) to the metal center. Compared with compounds 2 and 3, tetradansyl amide substituted calix[4]arene 1 showed a preorganized and coordinated complexing site for metal ions. Moreover, the detection limit for Hg2. was found to be 3.41×10-6 mol·L-1, which might make 1 a po-tentially practical Hg2+-selective fluorescent sensor in aqueous system.

  7. A dansyl based fluorescence chemosensor for Hg2+ and its application in the complicated environment samples

    Science.gov (United States)

    Zhou, Shuai; Zhou, Ze-Quan; Zhao, Xuan-Xuan; Xiao, Yu-Hao; Xi, Gang; Liu, Jin-Ting; Zhao, Bao-Xiang

    2015-09-01

    We have developed a novel fluorescent chemosensor (DAM) based on dansyl and morpholine units for the detection of mercury ion with excellent selectivity and sensitivity. In the presence of Hg2+ in a mixture solution of HEPES buffer (pH 7.5, 20 mM) and MeCN (2/8, v/v) at room temperature, the fluorescence of DAM was almost completely quenched from green to colorless with fast response time. Moreover, DAM also showed its excellent anti-interference capability even in the presence of large amount of interfering ions. It is worth noting that DAM could be used to detect Hg2+ specifically in the Yellow River samples, which significantly implied the potential applications of DAM in the complicated environment samples.

  8. Synthesis and properties of fluorescent hybrid nanocomposites based on copolyacrylates with dansyl semicarbazide units

    International Nuclear Information System (INIS)

    Buruiana, Emil C.; Chibac, Andreea L.; Buruiana, Tinca; Musteata, Valentina

    2011-01-01

    Our study examined a series of hybrid composites containing copolyacrylate with semicarbazide-dansyl groups prepared by conventional radical polymerization of monomers in the organic montmorillonite modified with alkyl chains of variable length or using the sol-gel technique. The structure and the chemical composition of the copolymers N-methacryloyloxyethylcarbamoyl-5- (dimethylaminonaphtalene-1-sulfonohydrazine)-co-methyl metahacrylate (DnsSA-co-MMA) and N-methacryloyloxyethylcarbamoyl -5-(dimethylaminonaphtalene-1-sulfonohydrazine)-co-dodecylacrylamide (DnsSA-co-DA) as well as their nanocomposites (HC-P1, HC-P2, HC-P3, HC-P4) were confirmed by spectral analysis ( 1 H NMR, FTIR, UV/vis), thermal methods and atomic force microscopy. To quantify the effect of the inorganic component compared to pure photopolymers we evaluated the properties of hybrid composites, including dielectric characterization. Additionally, these materials have been tested in experiments of fluorescence quenching by acids (HCl, p-toluenesulfonic acid, 1-S-camphorsulfonic acid), metallic cation (Cu 2+ ) and nitrobenzene. The results suggest that such nanocomposites could find applications as fluorescence-based chemosensors in homogeneous organic solutions or thin films. - Highlights: → Dansylated hybrid composites were prepared by polymerization of monomers in organo-MMT or by sol-gel. → Quenching effects by acids, Cu 2+ and nitrobenzene in solution/film were evidenced. → A fluorescence dequenching was observed for the composite with silsesquixane units. → A reversible process occurs in the composite film exposed to nitrobenzene vapors.

  9. Synthesis and properties of fluorescent hybrid nanocomposites based on copolyacrylates with dansyl semicarbazide units

    Energy Technology Data Exchange (ETDEWEB)

    Buruiana, Emil C., E-mail: emilbur@icmpp.r [' Petru Poni' Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi (Romania); Chibac, Andreea L.; Buruiana, Tinca; Musteata, Valentina [' Petru Poni' Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi (Romania)

    2011-07-15

    Our study examined a series of hybrid composites containing copolyacrylate with semicarbazide-dansyl groups prepared by conventional radical polymerization of monomers in the organic montmorillonite modified with alkyl chains of variable length or using the sol-gel technique. The structure and the chemical composition of the copolymers N-methacryloyloxyethylcarbamoyl-5- (dimethylaminonaphtalene-1-sulfonohydrazine)-co-methyl metahacrylate (DnsSA-co-MMA) and N-methacryloyloxyethylcarbamoyl -5-(dimethylaminonaphtalene-1-sulfonohydrazine)-co-dodecylacrylamide (DnsSA-co-DA) as well as their nanocomposites (HC-P1, HC-P2, HC-P3, HC-P4) were confirmed by spectral analysis ({sup 1}H NMR, FTIR, UV/vis), thermal methods and atomic force microscopy. To quantify the effect of the inorganic component compared to pure photopolymers we evaluated the properties of hybrid composites, including dielectric characterization. Additionally, these materials have been tested in experiments of fluorescence quenching by acids (HCl, p-toluenesulfonic acid, 1-S-camphorsulfonic acid), metallic cation (Cu{sup 2+}) and nitrobenzene. The results suggest that such nanocomposites could find applications as fluorescence-based chemosensors in homogeneous organic solutions or thin films. - Highlights: {yields} Dansylated hybrid composites were prepared by polymerization of monomers in organo-MMT or by sol-gel. {yields} Quenching effects by acids, Cu{sup 2+} and nitrobenzene in solution/film were evidenced. {yields} A fluorescence dequenching was observed for the composite with silsesquixane units. {yields} A reversible process occurs in the composite film exposed to nitrobenzene vapors.

  10. An ultrasensitive and highly selective fluorescent and colorimetric chemosensor for citrate ions based on rhodamine B and its application as the first molecular security keypad lock based on phosphomolybdic acid and citrate inputs

    Energy Technology Data Exchange (ETDEWEB)

    Tavallali, Hossein, E-mail: Tavallali@pnu.ac.ir; Baezzat, Mohammad-Reza; Deilamy-Rad, Gohar; Parhami, Abolfath; Hasanli, Nahid

    2015-04-15

    Rhodamine B (Rh{sub B}) has been developed as novel and efficient colorimetric and fluorometric chemosensor for citrate ions (Cit{sup 3−}) in an absolutely aqueous media. The UV–vis absorption and fluorescent emission titrations experiments have been employed to study the sensing process. Rh{sub B} could act as an efficient “ON–OFF” fluorescent chemosensor for phosphomolybdic acid (PMA) based on an electron transfer (ET) process. Also (Rh{sub B}{sup +}){sub 3}.PMA{sup 3−} could operate as an “OFF–ON” fluorescent chemosensor for citrate ions based on a ligand substitution process. The chemosensor Rh{sub B} shows excellent fluorescence sensitivity and selectivity toward citrate in aqueous media, and displays ON–OFF–ON type fluorescence change with alternately adding PMA and citrate to the media along with reversible association–dissociation of the complex. The (Rh{sub B}{sup +}){sub 3}.PMA{sup 3−} can be applied to the quantification of citrate with a linear ranges covering from 0.053 to 0.83 and 0.08 to 1.6 µM by detection limits of 6.0 and 9.1 nM for fluorescence and colorimetric methods respectively. The keypad lock operation is particularly important, as the output of the system depends not only on the proper combination but also on the order of input signals, creating the correct password that can be used to “open” this molecular keypad lock through strong fluorescence emission at 575 nm. As a whole, its various logic gate properties may improve its impact for the development of new-generation “intelligence” digital devices. The ionic PMA and Cit{sup 3−} inputs to (Rh{sub B}{sup +}){sub 3}.PMA{sup 3−} have been mimicked as a superimposed electronic molecular keypad lock. Also indicates that Rh{sub B} is suitable for the detection of Cit{sup 3−} ions in the biological environment. - Highlights: • Our probe is commercially available with good photostability and high quantum yield. • Both color and fluorescence change

  11. A dansyl based fluorescence chemosensor for Hg(2+) and its application in the complicated environment samples.

    Science.gov (United States)

    Zhou, Shuai; Zhou, Ze-Quan; Zhao, Xuan-Xuan; Xiao, Yu-Hao; Xi, Gang; Liu, Jin-Ting; Zhao, Bao-Xiang

    2015-09-05

    We have developed a novel fluorescent chemosensor (DAM) based on dansyl and morpholine units for the detection of mercury ion with excellent selectivity and sensitivity. In the presence of Hg(2+) in a mixture solution of HEPES buffer (pH 7.5, 20 mM) and MeCN (2/8, v/v) at room temperature, the fluorescence of DAM was almost completely quenched from green to colorless with fast response time. Moreover, DAM also showed its excellent anti-interference capability even in the presence of large amount of interfering ions. It is worth noting that DAM could be used to detect Hg(2+) specifically in the Yellow River samples, which significantly implied the potential applications of DAM in the complicated environment samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. A Cu2+-selective fluorescent chemosensor based on BODIPY with two pyridine ligands and logic gate

    Science.gov (United States)

    Huang, Liuqian; Zhang, Jing; Yu, Xiaoxiu; Ma, Yifan; Huang, Tianjiao; Shen, Xi; Qiu, Huayu; He, Xingxing; Yin, Shouchun

    2015-06-01

    A novel near-infrared fluorescent chemosensor based on BODIPY (Py-1) has been synthesized and characterized. Py-1 displays high selectivity and sensitivity for sensing Cu2+ over other metal ions in acetonitrile. Upon addition of Cu2+ ions, the maximum absorption band of Py-1 in CH3CN displays a red shift from 603 to 608 nm, which results in a visual color change from pink to blue. When Py-1 is excited at 600 nm in the presence of Cu2+, the fluorescent emission intensity of Py-1 at 617 nm is quenched over 86%. Notably, the complex of Py-1-Cu2+ can be restored with the introduction of EDTA or S2-. Consequently, an IMPLICATION logic gate at molecular level operating in fluorescence mode with Cu2+ and S2- as chemical inputs can be constructed. Finally, based on the reversible and reproducible system, a nanoscale sequential memory unit displaying "Writing-Reading-Erasing-Reading" functions can be integrated.

  13. Screening of biologically important Zn2 + by a chemosensor with fluorescent turn on-off mechanism

    Science.gov (United States)

    Khan, Tanveer A.; Sheoran, Monika; Nikhil Raj M., Venkata; Jain, Surbhi; Gupta, Diksha; Naik, Sunil G.

    2018-01-01

    Reported herein the synthesis, characterization and biologically important zinc ion binding propensity of a weakly fluorescent chemosensor, 4-methyl-2,6-bis((E)-(2-(4-phenylthiazol-2-yl)hydrazono)methyl)phenol (1). 1H NMR spectroscopic titration experiment reveals the binding knack of 1 to the essential Zn2 +. The photo-physical studies of 1 exhibit an enhancement in the fluorescence by several folds upon binding with the zinc ions attributed to PET-off process, with a binding constant value of 5.22 × 103 M- 1. 1 exhibits an excellent detection range for Zn2 + with lower detection limit value of 2.31 × 10- 8 M. The selectivity of 1 was studied with various mono and divalent metal cations and it was observed that most cations either quenches the fluorescence or remains unchanged except for Cd2 +, which shows a slight enhancement in fluorescence intensity of 1. The ratiometric displacement of Cd2 + ions by Zn2 + ions shows an excellent selectivity towards in-situ detection of Zn2 + ions. Photo-physical studies also support the reversible binding of 1 to Zn2 + ions having on and off mechanism in presence of EDTA. Such recognition of the biologically important zinc ions finds potential application in live cell imaging.

  14. Highly Sensitive Fluorescence Probe Based on Functional SBA-15 for Selective Detection of Hg2+

    Directory of Open Access Journals (Sweden)

    Wang Xiaoyu

    2010-01-01

    Full Text Available Abstract An inorganic–organic hybrid fluorescence chemosensor (DA/SBA-15 was prepared by covalent immobilization of a dansylamide derivative into the channels of mesoporous silica material SBA-15 via (3-aminopropyltriethoxysilane (APTES groups. The primary hexagonally ordered mesoporous structure of SBA-15 was preserved after the grafting procedure. Fluorescence characterization shows that the obtained inorganic–organic hybrid composite is highly selective and sensitive to Hg2+ detection, suggesting the possibility for real-time qualitative or quantitative detection of Hg2+ and the convenience for potential application in toxicology and environmental science.

  15. A dual chemosensor: Colorimetric detection of Co{sup 2+} and fluorometric detection of Zn{sup 2+}

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seong Youl; Kim, So Young; Kim, Jin Ah; Kim, Cheal, E-mail: chealkim@seoultech.ac.kr

    2016-11-15

    A new dual chemosensor 1was designed and synthesized. Receptor 1 detected Co{sup 2+} via color change and Zn{sup 2+} with turn-on fluorescence in a 1:1stoichiometric system, respectively. The response mechanisms of 1-Co{sup 2+} and 1-Zn{sup 2+} complexes have been analyzed using UV–vis spectroscopy, fluorescence titration, ESI-mass spectrometry analysis, NMR titration and DFT calculations. Importantly, the detection limit of 1 for Co{sup 2+}was down to 0.34 μM a near-perfect aqueous solution, which is the lowest one among those previously reported for organic chemosensors for sensing of Co{sup 2+}. 1 was also used to quantify Co{sup 2+} in real water samples. Therefore, a versatile chemosensor 1 could be a great method for detecting of both Co{sup 2+} and Zn{sup 2+}.

  16. A NOVEL RHODAMINE-BASED FLUORESCENCE CHEMOSENSOR CONTAINING POLYETHER FOR MERCURY (II IONS IN AQUEOUS SOLUTION

    Directory of Open Access Journals (Sweden)

    Wenqi Du

    Full Text Available A novel rhodamine-based Hg2+ chemosensor P2 containing polyether was readily synthesized and investigated, which displayed high selectivity and sensitivity for Hg2+. Because of good water-solubility of polyther, the rhodamine-based chemosensor containing polyether can be used in aqueous solution. The sensor responded rapidly to Hg2+ in pure water solutions with a 1:1 stoichiometry. Meanwhile, it indicated excellent adaptability and also the responsiveness.

  17. A Cu²⁺-selective fluorescent chemosensor based on BODIPY with two pyridine ligands and logic gate.

    Science.gov (United States)

    Huang, Liuqian; Zhang, Jing; Yu, Xiaoxiu; Ma, Yifan; Huang, Tianjiao; Shen, Xi; Qiu, Huayu; He, Xingxing; Yin, Shouchun

    2015-06-15

    A novel near-infrared fluorescent chemosensor based on BODIPY (Py-1) has been synthesized and characterized. Py-1 displays high selectivity and sensitivity for sensing Cu(2+) over other metal ions in acetonitrile. Upon addition of Cu(2+) ions, the maximum absorption band of Py-1 in CH3CN displays a red shift from 603 to 608 nm, which results in a visual color change from pink to blue. When Py-1 is excited at 600 nm in the presence of Cu(2+), the fluorescent emission intensity of Py-1 at 617 nm is quenched over 86%. Notably, the complex of Py-1-Cu(2+) can be restored with the introduction of EDTA or S(2-). Consequently, an IMPLICATION logic gate at molecular level operating in fluorescence mode with Cu(2+) and S(2-) as chemical inputs can be constructed. Finally, based on the reversible and reproducible system, a nanoscale sequential memory unit displaying "Writing-Reading-Erasing-Reading" functions can be integrated. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. A turn-on near-infrared fluorescent chemosensor for selective detection of lead ions based on a fluorophore-gold nanoparticle assembly.

    Science.gov (United States)

    Wang, Shaozhen; Sun, Junyong; Gao, Feng

    2015-06-21

    A turn-on fluorescent chemosensor of Pb(2+) in the near-infrared (NIR) region, which is based on the Pb(2+)-tuned restored fluorescence of a weakly fluorescent fluorophore-gold nanoparticle (AuNPs) assembly, has been reported. In this fluorophore-AuNP assembly, NIR fluorescent dye brilliant cresyl blue (BCB) molecules act as fluorophores and are used for signal transduction of fluorescence, while AuNPs act as quenchers to quench the nearby fluorescent BCB molecules via electron transfer. In the presence of Pb(2+), fluorescent BCB molecules detached from AuNPs and restored their fluorescence due to the formation of a chelating complex between Pb(2+) and glutathione confined on AuNPs. Under the optimal conditions, the present BCB-AuNP assembly is capable of detecting Pb(2+) with a concentration ranging from 7.5 × 10(-10) to 1 × 10(-8) mol L(-1) (0.16-2.1 ng mL(-1)) and a detection limit of 0.51 nM (0.11 ng mL(-1)). The present BCB-AuNP assembly can be used in aqueous media for the determination of Pb(2+) unlike common organic fluorescent reagents, and also shows advantages of NIR fluorescence spectrophotometry such as less interference, lower detection limit, and higher sensitivity. Moreover, the present method was successfully applied for the detection of Pb(2+) in water samples with satisfactory results.

  19. A dual-responsive colorimetric and fluorescent chemosensor based on diketopyrrolopyrrole derivative for naked-eye detection of Fe3 + and its practical application

    Science.gov (United States)

    Zhang, Shanshan; Sun, Tao; Xiao, Dejun; Yuan, Fang; Li, Tianduo; Wang, Enhua; Liu, Haixia; Niu, Qingfen

    2018-01-01

    A novel dual-responsive colorimetric and fluorescent chemosensor L based on diketopyrrolopyrrole derivative for Fe3 + detection was designed and synthesized. In presence of Fe3 +, sensor L displayed strong colorimetric response as amaranth to rose pink and significant fluorescence enhancement and chromogenic change, which served as a naked-eye indicator by an obvious color change from purple to red. The binding constant for L-Fe3 + complex was found as 2.4 × 104 with the lower detection limit of 14.3 nM. The sensing mechanism was investigated in detail by fluorescence measurements, IR and 1H NMR spectra. Sensor L for Fe3 + detection also exhibited high anti-interference performance, good reversibility, wide pH response range and instantaneous response time. Furthermore, the sensor L has been used to quantify Fe3 + ions in practical water samples with good recovery.

  20. Graphene Oxide-terpyridine Conjugate: A Highly Selective Colorimetric and Sensitive Fluorescence Nano-chemosensor for Fe2+ in Aqueous Media

    Directory of Open Access Journals (Sweden)

    Bagher Eftekhari-Sis

    2016-07-01

    Full Text Available A graphene oxide-terpyridine conjugate (GOTC based colorimetric and fluorescent nano-chemosensor was synthesized. It showed high selectivity and sensitivity for Fe2+ and Fe3+ ions in neutral aqueous solution over other metal ions such as Li+, Na+, Ba2+, Ca2+, Al3+, Cd2+, Co2+, Cu2+, Hg2+, Mn2+, Ni2+, Pb2+, Zn2+, Cr3+ and Ag+. In absorption spectra, upon addition of Fe2+ or Fe3+, the sensor displayed a peak at 568 nm, by changing the color of the solution from light pink for GOTC to light magenta and deep magenta for Fe3+ and Fe2+, respectively. Also, the fluorescence studies revealed that, Fe2+, Fe3+ and Co2+ quench the emission of GOTC at 473 nm, while other metal ions do not quench the fluorescence of GOTC in solution. Colorimetric and fluorescence techniques could be used for detection of Fe2+ ion concentration at least about 6-10 μM in water solution. The sensing on test paper was also investigated for the naked-eye detection of Fe2+.

  1. A highly selective and sensitive fluorescent chemosensor and its application for rapid on-site detection of Al3 +

    Science.gov (United States)

    Yue, Xiao-li; Wang, Zhao-qing; Li, Chao-rui; Yang, Zheng-yin

    2018-03-01

    In this paper, a simple naphthalene-based derivative (HL) has been designed and synthesized as a Al3 +-selective fluorescent chemosensor based on the PET mechanism. HL exhibited high selectivity and sensitivity towards Al3 + over other commonly coexisting metal ions in ethanol with a detection limit of 2.72 nM. The 1:1 binding stoichiometry of the complex (HL-Al3 +) was determined from the Job's plot based on fluorescence titrations and the ESI-MS spectrum data. Moreover, the binding site of HL with Al3 + was assured by the 1H NMR titration experiment. The binding constant (Ka) of the complex (HL-Al3 +) was calculated to be 5.06 × 104 M- 1 according to the Benesi-Hildebrand equation. In addition, the recognizing process of HL towards Al3 + was chemically reversible by adding Na2EDTA. Importantly, HL could directly and rapidly detect aluminum ion through the filter paper without resorting to additional instrumental analysis.

  2. Exciton-controlled fluorescence: application to hybridization-sensitive fluorescent DNA probe.

    Science.gov (United States)

    Okamoto, Akimitsu; Ikeda, Shuji; Kubota, Takeshi; Yuki, Mizue; Yanagisawa, Hiroyuki

    2009-01-01

    A hybridization-sensitive fluorescent probe has been designed for nucleic acid detection, using the concept of fluorescence quenching caused by the intramolecular excitonic interaction of fluorescence dyes. We synthesized a doubly thiazole orange-labeled nucleotide showing high fluorescence intensity for a hybrid with the target nucleic acid and effective quenching for the single-stranded state. This exciton-controlled fluorescent probe was applied to living HeLa cells using microinjection to visualize intracellular mRNA localization. Immediately after injection of the probe into the cell, fluorescence was observed from the probe hybridizing with the target RNA. This fluorescence rapidly decreased upon addition of a competitor DNA. Multicoloring of this probe resulted in the simple simultaneous detection of plural target nucleic acid sequences. This probe realized a large, rapid, reversible change in fluorescence intensity in sensitive response to the amount of target nucleic acid, and facilitated spatiotemporal monitoring of the behavior of intracellular RNA.

  3. Spiropyran-Isoquinoline Dyad as a Dual Chemosensor for Co(II and In(III Detection

    Directory of Open Access Journals (Sweden)

    Yong-Min Kho

    2017-09-01

    Full Text Available Spiropyran derivatives have been studied as light-regulated chemosensors for a variety of metal cations and anions, but there is little research on chemosensors that simultaneously detect multiple metal cations. In this study, a spiropyran derivative with isoquinoline, SP-IQ, was prepared and it functions investigated as a light-regulated sensor for both Co2+ and In3+ cations. A colorless nonfluorescent SP-IQ converts to a pink-colored fluorescent MC-IQ by UV irradiation or standing in the dark, and MC-IQ returns to SP-IQ with visible light. Upon UV irradiation with the Co2+ cation for 7 min, the stronger absorption at 540 nm and the similar fluorescence intensity at 640 nm are observed, compared to when no metal cation is added, due to the formation of a Co2+ complex with pink color and pink fluorescence. When placed in the dark with the In3+ cation for 7 h, the colorless solution of SP-IQ changes to the In3+ complex with yellow color and pink fluorescence, which shows strong absorption at 410 nm and strong fluorescence at 640 nm. Selective detection of the Co2+ cation with UV irradiation and the In3+ cation in the dark could be possible with SP-IQ by both absorption and fluorescence spectroscopy or by the naked eye.

  4. NATO Advanced Research Workshop on Chemosensors of Ion and Molecule Recognition

    CERN Document Server

    Czarnik, A

    1997-01-01

    In the broad field of supramolecular chemistry, the design and hence the use of chemosensors for ion and molecule recognition have developed at an extroardinary rate. This imaginative and creative area which involves the interface of different disciplines, e.g. organic and inorganic chemistry, physical chemistry, biology, medicine, environmental science, is not only fundamental in nature. It is also clear that progress is most rewarding for several new sensor applications deriving from the specific signal delivered by the analyte-probe interaction. Indeed, if calcium sensing in real time for biological purposes is actually possible, owing to the emergence of efficient fluorescent receptors, other elements can also be specifically detected, identified and finally titrated using tailored chemosensors. Pollutants such as heavy metals or radionuclides are among the main targets since their detection and removal could be envisioned at very low concentrations with, in addition, sensors displaying specific and stron...

  5. Oligothiophene-based colorimetric and ratiometric fluorescence dual-channel cyanide chemosensor: Sensing ability, TD-DFT calculations and its application as an efficient solid state sensor

    Science.gov (United States)

    Lan, Linxin; Li, Tianduo; Wei, Tao; Pang, He; Sun, Tao; Wang, Enhua; Liu, Haixia; Niu, Qingfen

    2018-03-01

    An oligothiophene-based colorimetric and ratiometric fluorescence dual-channel cyanide chemosensor 3 T-2CN was reported. Sensor 3 T-2CN showed both naked-eye recognition and ratiometric fluorescence response for CN- with an excellent selectivity and high sensitivity. The sensing mechanism based on the nucleophilic attack of CN- on the vinyl Cdbnd C bond has been successfully confirmed by the optical measurements, 1H NMR titration, FT-IR spectra as well as the DFT/TD-DFT calculations. Moreover, the detection limit was calculated to be 0.19 μM, which is much lower than the maximum permission concentration in drinking water (1.9 μM). Importantly, test strips (filter paper and TLC plates) containing 3 T-2CN were fabricated, which could act as a practical and efficient solid state optical sensor for CN- in field measurements.

  6. A new ensemble approach based chemosensor for the reversible detection of bio-thiols and its application in live cell imaging

    International Nuclear Information System (INIS)

    Wang, Yue; Zhang, Zhiqiang; Meng, Qingtao; He, Cheng; Zhang, Run; Duan, Chunying

    2016-01-01

    Based on an aldazine-copper chemosensing ensemble (NP-Cu 2+ ), a new fluorescence chemosensor for the detection of biothiols (Cys, Hcy and GSH) was designed and synthesized. In aqueous solution, the ligand NP exhibited high selectivity toward Cu 2+ ions by forming a 2:1 complex, accompanied with a dramatic fluorescence quenching and a notable bathochromic-shift of the absorbance band. Due to the high affinity of thiols and copper, the specific interaction of thiols (Cys, Hcy and GSH) with NP-Cu 2+ ensemble led to the liberation of the NP. As the result, recovery of fluorescence and UV–vis absorbance was observed. The detection limits of NP-Cu 2+ to Cys, Hcy and GSH were estimated to be 1.5 μM, 1.8 μM and 2.2 μM, respectively. The fluorescence “OFF–ON” circle can be repeated to a minimum of 5 times by the alternative addition of thiols and Cu 2+ , implying that NP-Cu 2+ is a recyclable chemosensor for thiols. Results of fluorescence microscopy imaging suggested that NP-Cu 2+ has potential to be used as a powerful tool for the detection of intracellular thiols.

  7. A fluorescent chemosensor for Zn(II). Exciplex formation in solution and the solid state.

    Science.gov (United States)

    Bencini, Andrea; Berni, Emanuela; Bianchi, Antonio; Fornasari, Patrizia; Giorgi, Claudia; Lima, Joao C; Lodeiro, Carlos; Melo, Maria J; de Melo, J Seixas; Parola, Antonio Jorge; Pina, Fernando; Pina, Joao; Valtancoli, Barbara

    2004-07-21

    The macrocyclic phenanthrolinophane 2,9-[2,5,8-triaza-5-(N-anthracene-9-methylamino)ethyl]-[9]-1,10-phenanthrolinophane (L) bearing a pendant arm containing a coordinating amine and an anthracene group forms stable complexes with Zn(II), Cd(II) and Hg(II) in solution. Stability constants of these complexes were determined in 0.10 mol dm(-3) NMe(4)Cl H(2)O-MeCN (1:1, v/v) solution at 298.1 +/- 0.1 K by means of potentiometric (pH metric) titration. The fluorescence emission properties of these complexes were studied in this solvent. For the Zn(II) complex, steady-state and time-resolved fluorescence studies were performed in ethanol solution and in the solid state. In solution, intramolecular pi-stacking interaction between phenanthroline and anthracene in the ground state and exciplex emission in the excited state were observed. From the temperature dependence of the photostationary ratio (I(Exc)/I(M)), the activation energy for the exciplex formation (E(a)) and the binding energy of the exciplex (-DeltaH) were determined. The crystal structure of the [ZnLBr](ClO(4)).H(2)O compound was resolved, showing that in the solid state both intra- and inter-molecular pi-stacking interactions are present. Such interactions were also evidenced by UV-vis absorption and emission spectra in the solid state. The absorption spectrum of a thin film of the solid complex is red-shifted compared with the solution spectra, whereas its emission spectrum reveals the unique featureless exciplex band, blue shifted compared with the solution. In conjunction with X-ray data the solid-state data was interpreted as being due to a new exciplex where no pi-stacking (full overlap of the pi-electron cloud of the two chromophores - anthracene and phenanthroline) is observed. L is a fluorescent chemosensor able to signal Zn(II) in presence of Cd(II) and Hg(II), since the last two metal ions do not give rise either to the formation of pi-stacking complexes or to exciplex emission in solution.

  8. Pyridoxal derived chemosensor for chromogenic sensing of Cu2+ and fluorogenic sensing of Fe3+ in semi-aqueous medium

    International Nuclear Information System (INIS)

    Sahoo, Suban K.; Sharma, Darshna; Moirangthem, Anuradha; Kuba, Aman; Thomas, Rini; Kumar, Rajender; Kuwar, Anil; Choi, Heung-Jin; Basu, Anupam

    2016-01-01

    An easy-to-prepare chemosensor L was developed by condensation of pyridoxal with 1,8-diaminonaphthalene. In DMSO:H 2 O (1:1, v/v), sensor L displayed a highly selective and sensitive response towards Cu 2+ via perceptible color and UV–vis absorbance changes among the other tested metal ions. However, the fluorescence of L is selectively quenched in the presence of both Fe 3+ and Cu 2+ . With a micromolar detection limit and non-interference from other co-existing metal ions, this sensor can be applied over a wide pH range for the detection of Fe 3+ and Cu 2+ . In addition, the cytotoxicity and fluorescence changes of L within live HeLa cells were examined in the absence and presence of Cu 2+ . - Highlights: • A new noncytotoxic chemosensor derived from vitamin B 6 cofactor was introduced. • Sensor showed colorimetric sensing ability towards Cu 2+ . • Sensor showed fluorescent turn-off sensing ability towards Fe 3+ and Cu 2+ . • Detection limit was better than the prescribed permissible limit.

  9. A rhodamine B-based fluorescent sensor toward highly selective mercury (II) ions detection.

    Science.gov (United States)

    Jiao, Yang; Zhang, Lei; Zhou, Peng

    2016-04-01

    This work presented the design, syntheses and photophysical properties of a rhodamine B-based fluorescence probe, which exhibited a sensitive and selective recognition towards mercury (II). The chemosensor RA (Rhodamine- amide- derivative) contained a 5-aminoisophthalic acid diethyl ester and a rhodamine group, and the property of spirolactone of this chemosensor RA was detected by X-ray crystal structure analyses. Chemosensor RA afforded turn-on fluorescence enhancement and displayed high brightness for Hg(2+), which leaded to the opening of the spirolactone ring and consequently caused the appearance of strong absorption at visible range, moreover, the obvious and characteristic color changed from colorless to pink was observed. We envisioned that the chemosensor RA exhibited a considerable specificity with two mercury (II) ions which was attributed to the open of spirolactone over other interference metal ions. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. A highly efficient dinuclear Cu(II) chemosensor for colorimetric and fluorescent detection of cyanide in water

    Science.gov (United States)

    Rhaman, Md. Mhahabubur; Alamgir, Azmain; Wong, Bryan M.; Powell, Douglas R.

    2017-01-01

    A novel dinuclear copper chemosensor selectively binds cyanide over a wide range of inorganic anions, enabling it to detect cyanide in water up to 0.02 ppm which is 10 times lower than the EPA standard for drinking water. PMID:28217299

  11. A Reagentless Amperometric Formaldehyde-Selective Chemosensor Based on Platinized Gold Electrodes.

    Science.gov (United States)

    Demkiv, Olha; Smutok, Oleh; Gonchar, Mykhailo; Nisnevitch, Marina

    2017-05-06

    Fabrication and characterization of a new amperometric chemosensor for accurate formaldehyde analysis based on platinized gold electrodes is described. The platinization process was performed electrochemically on the surface of 4 mm gold planar electrodes by both electrolysis and cyclic voltamperometry. The produced electrodes were characterized using scanning electron microscopy and X-ray spectral analysis. Using a low working potential (0.0 V vs. Ag/AgCl) enabled an essential increase in the chemosensor's selectivity for the target analyte. The sensitivity of the best chemosensor prototype to formaldehyde is uniquely high (28180 A·M -1 ·m -2 ) with a detection limit of 0.05 mM. The chemosensor remained stable over a one-year storage period. The formaldehye-selective chemosensor was tested on samples of commercial preparations. A high correlation was demonstrated between the results obtained by the proposed chemosensor, chemical and enzymatic methods ( R = 0.998). The developed formaldehyde-selective amperometric chemosensor is very promising for use in industry and research, as well as for environmental control.

  12. A new ensemble approach based chemosensor for the reversible detection of bio-thiols and its application in live cell imaging

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yue; Zhang, Zhiqiang [Key Laboratory for Functional Material, Educational Department of Liaoning Province, University of Science and Technology Liaoning, Anshan 114051 (China); Meng, Qingtao, E-mail: qtmeng@ustl.edu.cn [Key Laboratory for Functional Material, Educational Department of Liaoning Province, University of Science and Technology Liaoning, Anshan 114051 (China); State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian High-Tech Industrial Zone, 116024 (China); He, Cheng [State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian High-Tech Industrial Zone, 116024 (China); Zhang, Run [Key Laboratory for Functional Material, Educational Department of Liaoning Province, University of Science and Technology Liaoning, Anshan 114051 (China); Department of Chemistry and Biomolecular Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, NSW, 2109 (Australia); Duan, Chunying, E-mail: cyduan@dlut.edu.cn [State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian High-Tech Industrial Zone, 116024 (China)

    2016-07-15

    Based on an aldazine-copper chemosensing ensemble (NP-Cu{sup 2+}), a new fluorescence chemosensor for the detection of biothiols (Cys, Hcy and GSH) was designed and synthesized. In aqueous solution, the ligand NP exhibited high selectivity toward Cu{sup 2+} ions by forming a 2:1 complex, accompanied with a dramatic fluorescence quenching and a notable bathochromic-shift of the absorbance band. Due to the high affinity of thiols and copper, the specific interaction of thiols (Cys, Hcy and GSH) with NP-Cu{sup 2+} ensemble led to the liberation of the NP. As the result, recovery of fluorescence and UV–vis absorbance was observed. The detection limits of NP-Cu{sup 2+} to Cys, Hcy and GSH were estimated to be 1.5 μM, 1.8 μM and 2.2 μM, respectively. The fluorescence “OFF–ON” circle can be repeated to a minimum of 5 times by the alternative addition of thiols and Cu{sup 2+}, implying that NP-Cu{sup 2+} is a recyclable chemosensor for thiols. Results of fluorescence microscopy imaging suggested that NP-Cu{sup 2+} has potential to be used as a powerful tool for the detection of intracellular thiols.

  13. Chemosensors for detection of nitroaromatic compounds (explosives)

    Science.gov (United States)

    Zyryanov, G. V.; Kopchuk, D. S.; Kovalev, I. S.; Nosova, E. V.; Rusinov, V. L.; Chupakhin, O. N.

    2014-09-01

    The key types of low-molecular-mass chemosensors for the detection of nitroaromatic compounds representing energetic substances (explosives) are analyzed. The coordination and chemical properties of these chemosensors and structural features of their complexes with nitroaromatic compounds are considered. The causes and methods for attaining high selectivity of recognition are demonstrated. The primary attention is paid to the use of low-molecular-mass chemosensors for visual detection of explosives of this class by colorimetric and photometric methods. Examples of using photo- and chemiluminescence for this purpose are described. A separate section is devoted to electrochemical methods of detection of nitroaromatic compounds. Data published from 2000 to 2014 are mainly covered. The bibliography includes 245 references.

  14. Chemosensors for detection of nitroaromatic compounds (explosives)

    International Nuclear Information System (INIS)

    Zyryanov, G V; Kopchuk, D S; Rusinov, V L; Chupakhin, O N; Kovalev, I S; Nosova, E V

    2014-01-01

    The key types of low-molecular-mass chemosensors for the detection of nitroaromatic compounds representing energetic substances (explosives) are analyzed. The coordination and chemical properties of these chemosensors and structural features of their complexes with nitroaromatic compounds are considered. The causes and methods for attaining high selectivity of recognition are demonstrated. The primary attention is paid to the use of low-molecular-mass chemosensors for visual detection of explosives of this class by colorimetric and photometric methods. Examples of using photo- and chemiluminescence for this purpose are described. A separate section is devoted to electrochemical methods of detection of nitroaromatic compounds. Data published from 2000 to 2014 are mainly covered. The bibliography includes 245 references

  15. An Anthracene-Based Tripodal Chemosensor for Anion Sensing

    Directory of Open Access Journals (Sweden)

    Whitney A. Quinn

    2010-05-01

    Full Text Available An anthracene-based tripodal ligand was synthesized from the condensation of tren with 9-anthraldehyde, and the subsequent reduction with sodium borohydride. The neutral ligand was protonated from the reaction with p-toluenesulfonic acid to give a triply charged chemosensor that was examined for its anion binding ability toward fluoride, chloride, bromide, sulfate and nitrate by the fluorescence spectroscopy in DMSO. The addition of an anion to the ligand resulted in an enhancement in fluorescence intensity at the excitation of 310 nm. Analysis of the spectral changes suggested that the ligand formed a 1:1 complex with each of the anions, showing strong affinity for fluoride and sulfate in DMSO. The unsubstituted tren was reacted with sulfuric acid to form a sulfate complex and the structure was determined by the X-ray crystallography. Analysis of the complex revealed that three sulfates are held between two ligands by multiple hydrogen bonding interactions with protonated amines.

  16. A simple, reversible, colorimetric and water-soluble fluorescent chemosensor for the naked-eye detection of Cu2 + in 100% aqueous media and application to real samples

    Science.gov (United States)

    Sun, Tao; Niu, Qingfen; Li, Tianduo; Guo, Zongrang; Liu, Haixia

    2018-01-01

    A simple, reversible, colorimetric and water-soluble fluorescent chemosensor ADA for the naked-eye detection of Cu2 + was developed. Sensor ADA showed high selectivity and sensitivity toward Cu2 + in 100% aqueous media over wide pH range. Sensor ADA exhibited a red-shift in the absorption spectra from 466 to 480 nm that is accompanied by significant color change from light yellow to yellowish brown instantaneously. The Cu2 + recognition is based on the chelation-enhanced fluorescence quenching (CHEQ) effect of the paramagnetic nature. The lowest detection limit is determined to be 15.8 nM, which is much lower than the allowable level of Cu2 + in drinking water set by U.S. Environmental Protection Agency ( 20 μM) and the World Health Organization ( 30 μM). The 1:1 binding process was confirmed by fluorescence measurements, IR analysis and DFT studies. Moreover, sensor ADA was successfully applied for determination of trace level of Cu2 + with 4 reuse cycles in various water samples, which affords promising potential in ion-detection field.

  17. A novel pyrimidine derivative as a fluorescent chemosensor for highly selective detection of aluminum (III) in aqueous media.

    Science.gov (United States)

    Suryawanshi, Vishwas D; Gore, Anil H; Dongare, Pravin R; Anbhule, Prashant V; Patil, Shivajirao R; Kolekar, Govind B

    2013-10-01

    An efficient fluorescent chemosensor Al(3+) receptor based on pyrimidine derivative,2-amino-6-hydroxy-4-(4-N,N-dimethylaminophenyl)-pyrimidine-5-carbonitrile (DMAB), has been synthesized by three-component condensation of aromatic aldehyde, ethyl cyanoacetate and guanidine hydrochloride in ethanol under alkaline medium. High selectivity and sensitivity of DMAB towards Aluminum ion (Al(3+)) in water: ethanol and acetate buffer at pH 4.0 makes it suitable to detect Al(3+) with steady-state UV-vis and fluorescence spectroscopy. Method shows good selectivity towards Al(3+) over other coexisting metal ions tested, viz. Fe(2+), Ni(2+), Cu(2+), Co(2+), Pb(2+), Sb(3+), Na(+), Ca(2+), Mg(2+), Zn(2+), Hg(2+), Ba(2+), Cd(2+) and K(+). A good linearity between the Stern-Volmer plots of F0/F versus concentration of Al(3+) was observed over the range from 10 to 60 μg mL(-1) with correlation coefficient of 0.991. The accuracy and reliability of the method were further confirmed by recovery studies via standard addition method with percent recoveries in the range of 101.03-103.44% and lowest detection limit (LOD=7.35 μg mL(-1)) for Al(3+) was established. This method may offer a new cost-effective, rapid, and simple key to the inspection of Al(3+) ions in water samples in the presence of a complex matrix and can be capable of evaluating the exceeding standard of Al(3+) in environmental water samples. The probable mechanism for fluorescence quenching was also discussed. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. A turn-on fluorescent sensor for detection of cyanide in aqueous media

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shan-Teng; Chir, Jiun-Ly; Jhong, Yi; Wu, An-Tai, E-mail: antai@cc.ncue.edu.tw

    2015-11-15

    2-Hydroxy-1-naphthaldehyde oxime (receptor 1) serves as a selective chemosensor for cyanide anion (CN{sup −}). In the presence of CN{sup −}, an enhanced fluorescent intensity and red-shift were observed. The observed complexation between receptor 1 and CN{sup −} may cause by a hydrogen bonding interaction between the OH group of receptor 1 and CN{sup −}. - Highlights: • 2-Hydroxy-1-naphthaldehyde oxime serves as a selective chemosensor for CN{sup −}. • In the presence of CN{sup −}, an enhanced fluorescent and red-shift were observed.

  19. A novel cyanide-selective colorimetric and fluorescent chemosensor: First molecular security keypad lock based on phosphotungstic acid and CN{sup −} inputs

    Energy Technology Data Exchange (ETDEWEB)

    Tavallali, Hossein, E-mail: Tavallali@pnu.ac.ir; Deilamy-Rad, Gohar; Parhami, Abolfath; Hasanli, Nahid

    2014-02-15

    Highlights: • Our probe is commercially available with good photo stability and high quantum yield. • Both color and fluorescence change with long emission wavelength in aqueous media. • Characteristics of an ON–OFF–ON fluorescence switch. • The simple receptor for CN{sup -} detection with low detection limit (≪WHO). • Mimic the function of a security keypad lock on sequential addition of PTA and CN{sup −}. -- Abstract: Rhodamine B (Rh{sub B}) an available dye has been developed as novel and efficient colorimetric and fluorometric chemosensor for cyanide ions in an absolutely aqueous media. The UV–vis absorption and fluorescent emission titrations experiments have been employed to study the sensing process. Rh{sub B} could act as an efficient “ON–OFF” fluorescent response for phosphotungstic acid (H{sub 3}PW{sub 12}O{sub 40} or PTA) based on an ion associate process. Also (Rh{sub B}{sup +}){sub 3}·PTA{sup 3−} could operate as an “OFF–ON” fluorescent sensor for cyanide anions based on a ligand substitution process. It has been identified as highly sensitive probe for CN{sup −} which responds at 0.3 and 0.04 μmol L{sup −1} concentration levels by absorption and fluorescent method respectively. Depending upon the sequence of addition of PTA and CN{sup −} ions into the solution, Rh{sub B} could be as a molecular security keypad lock with PTA and CN{sup −} inputs. The ionic inputs to new fluorophore have been mimicked as a superimposed electronic molecular keypad lock. The results were compared successfully (>96%) with the data of a spectrophotometry approved method (EPA 9014-1) for cyanide ions.

  20. Pyridoxal derived chemosensor for chromogenic sensing of Cu{sup 2+} and fluorogenic sensing of Fe{sup 3+} in semi-aqueous medium

    Energy Technology Data Exchange (ETDEWEB)

    Sahoo, Suban K., E-mail: suban_sahoo@rediffmail.com [Department of Applied Chemistry, SV National Institute Technology, Surat, Gujrat (India); Department of Applied Chemistry, Kyungpook National University, Daegu 701702 (Korea, Republic of); Sharma, Darshna [Department of Applied Chemistry, SV National Institute Technology, Surat, Gujrat (India); Moirangthem, Anuradha [Molecular Biology and Human Genetics Laboratory, Department of Zoology, The University of Burdwan, Burdwan, West Bengal (India); Kuba, Aman; Thomas, Rini; Kumar, Rajender [Department of Applied Chemistry, SV National Institute Technology, Surat, Gujrat (India); Kuwar, Anil [School of Chemical Sciences, North Maharashtra University, Jalgaon, Maharashtra 425001 (India); Choi, Heung-Jin [Department of Applied Chemistry, Kyungpook National University, Daegu 701702 (Korea, Republic of); Basu, Anupam, E-mail: abasu@zoo.buruniv.ac.in [Molecular Biology and Human Genetics Laboratory, Department of Zoology, The University of Burdwan, Burdwan, West Bengal (India)

    2016-04-15

    An easy-to-prepare chemosensor L was developed by condensation of pyridoxal with 1,8-diaminonaphthalene. In DMSO:H{sub 2}O (1:1, v/v), sensor L displayed a highly selective and sensitive response towards Cu{sup 2+}via perceptible color and UV–vis absorbance changes among the other tested metal ions. However, the fluorescence of L is selectively quenched in the presence of both Fe{sup 3+} and Cu{sup 2+}. With a micromolar detection limit and non-interference from other co-existing metal ions, this sensor can be applied over a wide pH range for the detection of Fe{sup 3+} and Cu{sup 2+}. In addition, the cytotoxicity and fluorescence changes of L within live HeLa cells were examined in the absence and presence of Cu{sup 2+}. - Highlights: • A new noncytotoxic chemosensor derived from vitamin B{sub 6} cofactor was introduced. • Sensor showed colorimetric sensing ability towards Cu{sup 2+}. • Sensor showed fluorescent turn-off sensing ability towards Fe{sup 3+} and Cu{sup 2+}. • Detection limit was better than the prescribed permissible limit.

  1. A simple, reversible, colorimetric and water-soluble fluorescent chemosensor for the naked-eye detection of Cu2+ in ~100% aqueous media and application to real samples.

    Science.gov (United States)

    Sun, Tao; Niu, Qingfen; Li, Tianduo; Guo, Zongrang; Liu, Haixia

    2018-01-05

    A simple, reversible, colorimetric and water-soluble fluorescent chemosensor ADA for the naked-eye detection of Cu 2+ was developed. Sensor ADA showed high selectivity and sensitivity toward Cu 2+ in ~100% aqueous media over wide pH range. Sensor ADA exhibited a red-shift in the absorption spectra from 466 to 480nm that is accompanied by significant color change from light yellow to yellowish brown instantaneously. The Cu 2+ recognition is based on the chelation-enhanced fluorescence quenching (CHEQ) effect of the paramagnetic nature. The lowest detection limit is determined to be 15.8nM, which is much lower than the allowable level of Cu 2+ in drinking water set by U.S. Environmental Protection Agency (~20μM) and the World Health Organization (~30μM). The 1:1 binding process was confirmed by fluorescence measurements, IR analysis and DFT studies. Moreover, sensor ADA was successfully applied for determination of trace level of Cu 2+ with 4 reuse cycles in various water samples, which affords promising potential in ion-detection field. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Colorimetric and fluorescent chemosensor for highly selective and sensitive relay detection of Cu2 + and H2PO4- in aqueous media

    Science.gov (United States)

    Su, Jun-Xia; Wang, Xiao-Ting; Chang, Jing; Wu, Gui-Yuan; Wang, Hai-Ming; Yao, Hong; Lin, Qi; Zhang, You-Ming; Wei, Tai-Bao

    2017-07-01

    In this manuscript, a new colorimetric and fluorescent chemosensor (T) was designed and synthesized, it could successively detect Cu2 + and H2PO4- in DMSO/H2O (v/v = 9:1, pH = 7.2) buffer solution with high selectivity and sensitivity. When added Cu2 + ions into the solution of T, it showed a color changes from yellow to colorless, meanwhile, the green fluorescence of sensor T quenched. This recognition behavior was not affected in the presence of other cations, including Hg2 +, Ag+, Ca2 +, Co2 +, Ni2 +, Cd2 +, Pb2 +, Zn2 +, Cr3 +, and Mg2 + ions. More interestingly, the Cu2 + ions contain sensor T solution could recover the color and fluorescence upon the addition of H2PO4- anions in the same medium. And other surveyed anions (including F-, Cl-, Br-, I-, AcO-, HSO4-, ClO4-, CN- and SCN-) had nearly no influence on the recognition behavior. The detection limits of T to Cu2 + and T-Cu2 + to H2PO4- were evaluated to be 1.609 × 10- 8 M and 0.994 × 10- 7 M, respectively. In addition, the sensor T also could be served as a recyclable component and the logic gate output was also defined in sensing materials. The test strips based on sensor T were fabricated, which acted as a convenient and efficient Cu2 + and H2PO4- test kits.

  3. 21 CFR 866.4700 - Automated fluorescence in situ hybridization (FISH) enumeration systems.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Automated fluorescence in situ hybridization (FISH... Laboratory Equipment and Reagents § 866.4700 Automated fluorescence in situ hybridization (FISH) enumeration... Hybridization (FISH) Enumeration Systems.” See § 866.1(e) for the availability of this guidance document. [70 FR...

  4. Design of selective 8-methylquinolinol based ratiometric Fe{sup 2+} and Fe{sup 3+}/H{sub 2}PO{sub 4}{sup −} fluorescent chemosensor mimicking NOR and IMPLICATION logic gates

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Gurjaspreet, E-mail: gjpsingh@pu.ac.in; Singh, Jandeep; Singh, Jasbhinder; Mangat, Satinderpal Singh

    2015-09-15

    This report describes an on–off module of a fluorescent probe for selectively sensing of Fe(II) and Fe(III) ions by a single chemosensor with unique output optical response and is being reported for the first time. The probe 8-methylquinolinyl-1,2,3-triazolyl silatrane (QTS) was efficiently developed using click silylation route, followed by transetherification of silane. Moreover, the color change in probe QTS by response of this colorimetric sensor can be visualized by naked eye. The anti-quenching response for quenched QTS–Fe{sup 3+} fluorescence spectra by addition of H{sub 2}PO{sub 4}{sup −} ions in the MeOH/H{sub 2}O solvent system results into reversion of fluorescence maximum. These fluctuations in spectral response, under electronic behavior, can be viewed to mimic as NOR and IMPLICATION logic gate. - Highlights: • The probe 8-methylquinolinyl-1,2,3-triazolyl silatrane (QTS) was efficiently developed by using click silylation route. • The fluorescence emission response of sensor QTS towards Fe{sup 3+} ions show 'turn-on' mode, with red shift of 79 nm. • UV–vis spectra illustrate increase in absorption maxima on sensing of both ionic species.

  5. The use of yellow fluorescent hybrids to indicate mating in Trypanosoma brucei

    Directory of Open Access Journals (Sweden)

    Ferris Vanessa

    2008-02-01

    Full Text Available Abstract Background Trypanosoma brucei undergoes genetic exchange in its insect vector, the tsetse fly, by an unknown mechanism. The difficulties of working with this experimental system of genetic exchange have hampered investigation, particularly because the trypanosome life cycle stages involved cannot be cultured in vitro and therefore must be examined in the insect. Searching for small numbers of hybrid trypanosomes directly in the fly has become possible through the incorporation of fluorescent reporter genes, and we have previously carried out a successful cross using a reporter-repressor strategy. However, we could not be certain that all fluorescent trypanosomes observed in that cross were hybrids, due to mutations of the repressor leading to spontaneous fluorescence, and we have therefore developed an alternative strategy. Results To visualize the production of hybrids in the fly, parental trypanosome clones were transfected with a gene encoding Green Fluorescent Protein (GFP or Red Fluorescent Protein (RFP. Co-infection of flies with red and green fluorescent parental trypanosomes produced yellow fluorescent hybrids, which were easily visualized in the fly salivary glands. Yellow trypanosomes were not seen in midgut or proventricular samples and first appeared in the glands as epimastigotes as early as 13 days after fly infection. Cloned progeny originating from individual salivary glands had yellow, red, green or no fluorescence and were confirmed as hybrids by microsatellite, molecular karyotype and kinetoplast (mitochondrial DNA analyses. Hybrid clones showed biparental inheritance of both nuclear and kinetoplast genomes. While segregation and reassortment of the reporter genes and microsatellite alleles were consistent with Mendelian inheritance, flow cytometry measurement of DNA content revealed both diploid and polyploid trypanosomes among the hybrid progeny clones. Conclusion The strategy of using production of yellow hybrids

  6. Electron-deficient tripodal amide based receptor: An exclusive turn-on fluorescent and colorimetric chemo sensor for cyanide ion

    Science.gov (United States)

    Murugesan, Kumaresan; Jeyasingh, Vanthana; Lakshminarayanan, Sudha; Govindaraj, Tamil Selvan; Paulraj, Mosae Selvakumar; Narayanan, Selvapalam; Piramuthu, Lakshminarayanan

    2018-06-01

    Here in, we have designed, synthesized and isolated sensor L, as an exclusive selective turn-on fluorescent chemo sensor for cyanide ion. The acetonitrile solution contains L with tetrabutyl ammonium cyanide, results sudden color change from colorless to yellowish-brown. Chemosensor L produced a strong fluorescence response with an enhancement of very high fluorescence intensity while addition of CN- ion and the strength of the chemosensor L towards cyanide binding is found to be 3.9813 × 104 M-1. In order to use this sensor in practical application, we also prepared a cassette which is fabricated with sensor L and we succeeded to sense cyanide ion.

  7. Spectroscopic and TD-DFT studies on the dual mode fluorescent chemosensors based on pyrene thiosemicarbazones, and its application as molecular-scale logic devices

    Energy Technology Data Exchange (ETDEWEB)

    Basheer, Sabeel M. [Department of Chemistry, National Institute of Technology, Tiruchirappalli 620 015 (India); Willis, Anthony C. [Research School of Chemistry, The Australian National University, Canberra, ACT 2601 (Australia); Sreekanth, Anandaram, E-mail: sreekanth@nitt.edu [Department of Chemistry, National Institute of Technology, Tiruchirappalli 620 015 (India)

    2017-03-15

    Two newly synthesised pyrene based molecules are hereby reported as molecular switches. The absorption and emission response for receptors with and without F{sup −}, CN{sup −} and Cu{sup 2+} ions can mimic multiple logic gate such as AND, NOR, XNOR, OR, XOR, INHIBITION and TRANSFER gates. The fluorescence reversibility was checked with the alternative addition of fluoride and calcium ions, which can be explained by the “Read-Erase-Read-Write” logic loop. The calculated binding constant value show PyBTSC is better chemosensor than PyCTSC, and the binding affinity is in the order of Cu{sup 2+}Г‹Ж’F{sup -}Г‹Ж’CN{sup −.} The detailed mechanism was investigated using DFT and TD-DFT calculations. The fluorescence quenching behaviour of receptor-F complex can be explained by PET mechanism along with ESPT process. The proton attached to the nitrogen which is adjacent to pyrene moiety is first make the hydrogen bond with fluoride ion at the excited state, which has confirmed by natural bond orbital (NBO) and potential energy surface (PES) analysis. - Graphical abstract: The newly synthesised thiocarbazone derivates used as an effective and selective colourimetric and “turn on” fluorescence sensor for copper ion and ‘turn off’ for fluoride and cyanide anion. The presence and absence of ions were considered as input signals and the corresponding absorption and emission responses were consired as output. The proton transfer from the nitrogen adjacent to pyrene moiety, and which takes place at the excited state (ESPT).

  8. Contribution of fluorescence in situ hybridization to biological dosimetry

    International Nuclear Information System (INIS)

    Sorokine-Durm, I.; Roy, L.; Durand, V.; Voisin, P.

    1995-01-01

    Fluorescence in situ hybridization with composite whole chromosome specific DNA probes for human chromosomes 2, 4 and 12 an α-satellite centromeric DNA probe labelled with biotin were used to measure symmetrical and terminal translocations (dose rate 0.5 Gy/min) and dicentrics (0.1 Gy/min) induced in vitro by 60 Co γ-irradiation (0-5 Gy). The suitability of fluorescence in situ hybridization (F.I.S.H.) technique for dicentrics detection is compared with the conventional technique. Dose-response curves for γ-rays ( 60 Co) for two dose rates are shown (dicentrics and translocations). (authors). 10 refs., 2 figs

  9. Double-staining chromogenic in situ hybridization as a useful alternative to split-signal fluorescence in situ hybridization in lymphoma diagnostics

    DEFF Research Database (Denmark)

    van Rijk, A.; Svenstroup-Poulsen, T.; Jones, M.

    2010-01-01

    within the reach of every pathology laboratory. Design and Methods Our study was initiated to determine the consistency between chromogenic in situ hybridization and fluorescence in situ hybridization, both using split-signal probes developed for the detection of chromosomal breaks. Five hundred...... and actual signal were compared to the original fluorescence hybridization results. In addition, hematoxylin background staining intensity and signal intensity of the double-staining chromogenic in situ hybridization procedure were analyzed. Results With respect to the presence or absence of chromosomal...

  10. A chromogenic and fluorogenic rhodol-based chemosensor for hydrazine detection and its application in live cell bioimaging

    Science.gov (United States)

    Tiensomjitr, Khomsan; Noorat, Rattha; Chomngam, Sinchai; Wechakorn, Kanokorn; Prabpai, Samran; Kanjanasirirat, Phongthon; Pewkliang, Yongyut; Borwornpinyo, Suparerk; Kongsaeree, Palangpon

    2018-04-01

    A rhodol-based fluorescent probe has been developed as a selective hydrazine chemosensor using levulinate as a recognition site. The rhodol levulinate probe (RL) demonstrated high selectivity and sensitivity toward hydrazine among other molecules. The chromogenic response of RL solution to hydrazine from colorless to pink could be readily observed by the naked eye, while strong fluorescence emission could be monitored upon excitation at 525 nm. The detection process occurred via a ring-opening process of the spirolactone initiated by hydrazinolysis, triggering the fluorescence emission with a 53-fold enhancement. The probe rapidly reacted with hydrazine in aqueous medium with the detection limit of 26 nM (0.83 ppb), lower than the threshold limit value (TLV) of 10 ppb suggested by the U.S. Environmental Protection Agency. Furthermore, RL-impregnated paper strips could detect hydrazine vapor. For biological applicability of RL, its membrane-permeable property led to bioimaging of hydrazine in live HepG2 cells by confocal fluorescence microscopy.

  11. Photoswitchable non-fluorescent thermochromic dye-nanoparticle hybrid probes

    OpenAIRE

    Harrington, Walter N.; Haji, Mwafaq R.; Galanzha, Ekaterina I.; Nedosekin, Dmitry A.; Nima, Zeid A.; Watanabe, Fumiya; Ghosh, Anindya; Biris, Alexandru S.; Zharov, Vladimir P.

    2016-01-01

    Photoswitchable fluorescent proteins with controllable light?dark states and spectral shifts in emission in response to light have led to breakthroughs in the study of cell biology. Nevertheless, conventional photoswitching is not applicable for weakly fluorescent proteins and requires UV light with low depth penetration in bio-tissue. Here we introduce a novel concept of photoswitchable hybrid probes consisting of thermochromic dye and absorbing nanoparticles, in which temperature-sensitive ...

  12. Fluorescent In Situ Hybridization to Detect Transgene Integration into Plant Genomes

    Science.gov (United States)

    Schwarzacher, Trude

    Fluorescent chromosome analysis technologies have advanced our understanding of genome organization during the last 30 years and have enabled the investigation of DNA organization and structure as well as the evolution of chromosomes. Fluorescent chromosome staining allows even small chromosomes to be visualized, characterized by their composition and morphology, and counted. Aneuploidies and polyploidies can be established for species, breeding lines, and individuals, including changes occurring during hybridization or tissue culture and transformation protocols. Fluorescent in situ hybridization correlates molecular information of a DNA sequence with its physical location on chromosomes and genomes. It thus allows determination of the physical position of sequences and often is the only means to determine the abundance and distribution of DNA sequences that are difficult to map with any other molecular method or would require segregation analysis, in particular multicopy or repetitive DNA. Equally, it is often the best way to establish the incorporation of transgenes, their numbers, and physical organization along chromosomes. This chapter presents protocols for probe and chromosome preparation, fluorescent in situ hybridization, chromosome staining, and the analysis of results.

  13. Hybrid confocal Raman fluorescence microscopy on single cells using semiconductor quantum dots

    NARCIS (Netherlands)

    van Manen, H.J.; Otto, Cornelis

    2007-01-01

    We have overcome the traditional incompatibility of Raman microscopy with fluorescence microscopy by exploiting the optical properties of semiconductor fluorescent quantum dots (QDs). Here we present a hybrid Raman fluorescence spectral imaging approach for single-cell microscopy applications. We

  14. A PDMS-based cylindrical hybrid lens for enhanced fluorescence detection in microfluidic systems.

    Science.gov (United States)

    Lin, Bor-Shyh; Yang, Yu-Ching; Ho, Chong-Yi; Yang, Han-Yu; Wang, Hsiang-Yu

    2014-02-13

    Microfluidic systems based on fluorescence detection have been developed and applied for many biological and chemical applications. Because of the tiny amount of sample in the system; the induced fluorescence can be weak. Therefore, most microfluidic systems deploy multiple optical components or sophisticated equipment to enhance the efficiency of fluorescence detection. However, these strategies encounter common issues of complex manufacturing processes and high costs. In this study; a miniature, cylindrical and hybrid lens made of polydimethylsiloxane (PDMS) to improve the fluorescence detection in microfluidic systems is proposed. The hybrid lens integrates a laser focusing lens and a fluorescence collecting lens to achieve dual functions and simplify optical setup. Moreover, PDMS has advantages of low-cost and straightforward fabrication compared with conventional optical components. The performance of the proposed lens is first examined with two fluorescent dyes and the results show that the lens provides satisfactory enhancement for fluorescence detection of Rhodamine 6G and Nile Red. The overall increments in collected fluorescence signal and detection sensitivity are more than 220% of those without lens, and the detection limits of Rhodamine 6G and Nile red are lowered to 0.01 μg/mL and 0.05 μg/mL, respectively. The hybrid lens is further applied to the detection of Nile red-labeled Chlorella vulgaris cells and it increases both signal intensity and detection sensitivity by more than 520%. The proposed hybrid lens also dramatically reduces the variation in detected signal caused by the deviation in incident angle of excitation light.

  15. Whole-slide imaging is a robust alternative to traditional fluorescent microscopy for fluorescence in situ hybridization imaging using break-apart DNA probes.

    Science.gov (United States)

    Laurent, Camille; Guérin, Maxime; Frenois, François-Xavier; Thuries, Valérie; Jalabert, Laurence; Brousset, Pierre; Valmary-Degano, Séverine

    2013-08-01

    Fluorescence in situ hybridization is an indispensable technique used in routine pathology and for theranostic purposes. Because fluorescence in situ hybridization techniques require sophisticated microscopic workstations and long procedures of image acquisition with sometimes subjective and poorly reproducible results, we decided to test a whole-slide imaging system as an alternative approach. In this study, we used the latest generation of Pannoramic 250 Flash digital microscopes (P250 Flash digital microscopes; 3DHISTECH, Budapest, Hungary) to digitize fluorescence in situ hybridization slides of diffuse large B cells lymphoma cases for detecting MYC rearrangement. The P250 Flash digital microscope was found to be precise with better definition of split signals in cells containing MYC rearrangement with fewer truncated signals as compared to traditional fluorescence microscopy. This digital technique is easier thanks to the preview function, which allows almost immediate identification of the tumor area, and the panning and zooming functionalities as well as a shorter acquisition time. Moreover, fluorescence in situ hybridization analyses using the digital technique appeared to be more reproducible between pathologists. Finally, the digital technique also allowed prolonged conservation of photos. In conclusion, whole-slide imaging technologies represent rapid, robust, and highly sensitive methods for interpreting fluorescence in situ hybridization slides with break-apart probes. In addition, these techniques offer an easier way to interpret the signals and allow definitive storage of the images for pathology expert networks or e-learning databases. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Hg(II) sensing platforms with improved photostability: The combination of rhodamine derived chemosensors and up-conversion nanocrystals.

    Science.gov (United States)

    Song, Kai; Mo, Jingang; Lu, Chengwen

    2017-05-15

    This paper reported two nanocomposite sensing platforms for Hg(II) detection with improved photostability, using two rhodamine derivatives as chemosensors and up-conversion nanocrystals as excitation host, respectively. There existed a secondary energy transfer from this excitation host to these chemosensors, which was confirmed by spectral analysis, energy transfer radius calculation and emission decay lifetime comparison. In this case, chemosensor photostability was greatly improved. Further analysis suggested that these chemosensors recognized Hg(II) following a simple binding stoichiometry of 1:1. Hg(II) sensing performance of these sensing platforms was analyzed through their emission spectra upon various Hg(II) concentrations. Emission spectral response, Stern-Volmer equation, emission stability and sensing selectivity were discussed in detail. It was finally concluded that these chemosensors showed emission turn on effect towards Hg(II), with high photostability, good selectivity and linear response. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Common Fluorescence In Situ Hybridization Applications in Cytology.

    Science.gov (United States)

    Savic, Spasenija; Bubendorf, Lukas

    2016-12-01

    - Fluorescence in situ hybridization (FISH) is a well-established method for detection of genomic aberrations in diagnostic, prognostic, and predictive marker testing. - To review common applications of FISH in cytology. - The published literature was reviewed. - Cytology is particularly well suited for all kinds of FISH applications, which is highlighted in respiratory tract cytology with an increasing demand for predictive FISH testing in lung cancer. Fluorescence in situ hybridization is the gold standard for detection of predictive anaplastic lymphoma kinase gene (ALK) rearrangements, and the same evaluation criteria as in histology apply to cytology. Several other gene rearrangements, including ROS proto-oncogene 1 receptor tyrosine kinase (ROS1), are becoming clinically important and share the same underlining cytogenetic mechanisms with ALK. MET amplification is one of the most common mechanisms of acquired resistance to epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors and can be targeted by crizotinib. As genomic aberrations are a hallmark of malignant cells, FISH is a valuable objective ancillary diagnostic tool. In urinary tract cytology, atypical urothelial cells equivocal for malignancy are a common diagnostic dilemma and multitarget FISH can help clarify such cells. Diagnosis of malignant mesothelioma remains one of the most challenging fields in effusion cytology, and ancillary FISH is useful in establishing the diagnosis. Fluorescence in situ hybridization is a morphology-based technique, and the prerequisite for reliable FISH results is a targeted evaluation of the cells in question (eg, cancer or atypical cells). Cytopathologists and cytotechnicians should therefore be involved in molecular testing in order to select the best material and to provide their morphologic expertise.

  18. Membrane and Films Based on Novel Crown-Containing Dyes as Promising Chemosensoring Materials

    Directory of Open Access Journals (Sweden)

    Sergei Yu. Zaitsev

    2010-12-01

    Full Text Available This paper discusses several works on supramolecular systems such as monolayer and multilayer, polymer films of various crown-containing dyes, surface-active monomers and polymers. Design, production and investigation of the membrane nanostructures based on crown ethers is a rapidly developing field at the “junction” of materials sciences and nanotechnology. These nanostructures can serve as convenient models for studying the self-organization and molecular recognition processes at interfaces that are typical for biomembranes. Based on the results obtained for such structures by absorption and fluorescence spectroscopy, atomic force and Brewster-angle microscopy, surface pressure and surface potential isotherm measurements, the possibility of developing micro- and nanomaterials possessing a set of specified properties (including chemosensor, photochromic and photorefractive materials is demonstrated.

  19. Effect of cocoon fluorescence, silkworm hybrid and gender on sericin content of Bombyx mori L. silk thread

    Directory of Open Access Journals (Sweden)

    M. Panayotov

    2016-06-01

    Full Text Available Abstract. The goal of the present study was to determine the influence of the ultraviolet fluorescence of cocoons, the hybrid, the sex and the interaction among them on the sericin content in silk threads. The study was performed with 3 di- and 2 tetra-cross silkmoth (Bombyx mori L. hybrids, differentiated in three groups – with violet, intermediate and yellow fluorescence of the cocoons. The examined factors had a significant effect (p≤0.001 on the sericin content. The highest sericin content was detected in the silk threads of the violet-fluorescent and the lowest – in the yellow-fluorescent group. The analysed di-hybrids were distinguished by better characteristics in terms of sericin content, compared to the tetra-hybrids, most obvious for the yellow-fluorescent fraction.

  20. A novel fluorescent in situ hybridization technique for detection of Rickettsia spp. in archival samples

    DEFF Research Database (Denmark)

    Svendsen, Claus Bo; Boye, Mette; Struve, Carsten

    2009-01-01

    A novel, sensitive and specific method for detecting Rickettsia spp. in archival samples is described. The method involves the use of fluorescently marked oligonucleotide probes for in situ hybridization. Specific hybridization of Ricekttsia was found without problems of cross-reactions with bact......A novel, sensitive and specific method for detecting Rickettsia spp. in archival samples is described. The method involves the use of fluorescently marked oligonucleotide probes for in situ hybridization. Specific hybridization of Ricekttsia was found without problems of cross...

  1. Modification of mesoporous silica SBA-15 with different organic molecules to gain chemical sensors: a review

    Directory of Open Access Journals (Sweden)

    Negar Lashgari

    2016-01-01

    Full Text Available The recognition of the biologically and environmentally important ions is of great interest in the field of chemical sensors in recent years. The fluorescent sensors as a powerful optical analytical technique for the detection of low level of various analytes such as anions and metal cations have been progressively developed due to the simplicity, cost effective, and selectivity for monitoring specific analytes in various systems. Organic-inorganic hybrid nanomaterials have important advantages as solid chemosensors and various innovative hybrid materials modified by fluorescence molecules were recently prepared. On the other hand, the homogeneous porosity and large surface area of mesoporous silica make it a promising inorganic support. SBA-15 as a two-dimensional hexagonal mesoporous silica material with stable structure, thick walls, tunable pore size, and high specific surface area is a valuable substrate for modification with different organic chelating groups. This review highlights the fluorescent chemosensors for ionic species based on modification of the mesoporous silica SBA-15 with different organic molecules, which have been recently developed from our laboratory.

  2. RNA Imaging with Multiplexed Error Robust Fluorescence in situ Hybridization

    Science.gov (United States)

    Moffitt, Jeffrey R.; Zhuang, Xiaowei

    2016-01-01

    Quantitative measurements of both the copy number and spatial distribution of large fractions of the transcriptome in single-cells could revolutionize our understanding of a variety of cellular and tissue behaviors in both healthy and diseased states. Single-molecule Fluorescence In Situ Hybridization (smFISH)—an approach where individual RNAs are labeled with fluorescent probes and imaged in their native cellular and tissue context—provides both the copy number and spatial context of RNAs but has been limited in the number of RNA species that can be measured simultaneously. Here we describe Multiplexed Error Robust Fluorescence In Situ Hybridization (MERFISH), a massively parallelized form of smFISH that can image and identify hundreds to thousands of different RNA species simultaneously with high accuracy in individual cells in their native spatial context. We provide detailed protocols on all aspects of MERFISH, including probe design, data collection, and data analysis to allow interested laboratories to perform MERFISH measurements themselves. PMID:27241748

  3. Hybrid Rayleigh, Raman and TPE fluorescence spectral confocal microscopy of living cells

    NARCIS (Netherlands)

    Pully, V.V.; Lenferink, Aufrid T.M.; Otto, Cornelis

    2010-01-01

    A hybrid fluorescence–Raman confocal microscopy platform is presented, which integrates low-wavenumber-resolution Raman imaging, Rayleigh scatter imaging and two-photon fluorescence (TPE) spectral imaging, fast ‘amplitude-only’ TPE-fluorescence imaging and high-spectral-resolution Raman imaging.

  4. A simple protocol for attenuating the auto-fluorescence of cyanobacteria for optimized fluorescence in situ hybridization (FISH) imaging.

    Science.gov (United States)

    Zeller, Perrine; Ploux, Olivier; Méjean, Annick

    2016-03-01

    Cyanobacteria contain pigments, which generate auto-fluorescence that interferes with fluorescence in situ hybridization (FISH) imaging of cyanobacteria. We describe simple chemical treatments using CuSO4 or H2O2 that significantly reduce the auto-fluorescence of Microcystis strains. These protocols were successfully applied in FISH experiments using 16S rRNA specific probes and filamentous cyanobacteria. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Enhanced emission of nile red fluorescent nanoparticles embedded in hybrid sol-gel glasses.

    Science.gov (United States)

    Ferrer, Maria L; del Monte, Francisco

    2005-01-13

    Highly fluorescent Nile Red (NR) nanoparticles embedded in a hybrid sol-gel glass are reported. The crystallite growth within the confined system created by the porous hybrid matrix results in NR nanoparticles of averaged dimensions below 36 nm. The preparation process allows for the control of both the conformation adopted by single NR molecules prior to aggregation (e.g., near planar) and the configuration of the aggregates (e.g., oblique with phi architecture which ultimately forms the nanoparticles. The full preservation of the fluorescent configuration of the aggregates in the nanoparticles is confirmed through the application of the exciton theory, and it is responsible for the significant increase of the fluorescence emission intensity (e.g., up to 525- and 70-fold as compared to that obtained for single NR molecules embedded in pure and hybrid silica glasses, respectively).

  6. Efficient FRET-based fuorescent ratiometric chemosensors for Fe3+ and its application in living cells

    International Nuclear Information System (INIS)

    Wang, Cuicui; Liu, Yaqi; Cheng, Junye; Song, Jianhua; Zhao, Yufen; Ye, Yong

    2015-01-01

    A series of novel FRET-based fluorescent ratiometric chemosensors (L 1 –L 6 ) were designed and synthesized. Sensor L 2 showed reversible and the best selective recognition toward Fe 3+ over other metal ions with a detection limit of 0.418 ppm, which can meet the selective requirements for practical application. Experiment results showed that the response behavior of L 2 toward Fe 3+ is pH independent in weak acid condition (pH 4.0–6.0). In addition, sensor L 2 was successfully applied for ratiometric visualization of Fe 3+ in living cells. - Highlights: • The detection limit of a new FRET probe for Fe 3+ was 0.418 ppm. • The probe exhibited high selectivity and sensitivity detection to Fe 3+ with a pH span of 4.0–6.0. • The significant changes in color could be used for naked-eye detection • The fluorescence imaging experiment demonstrated its value of practical application

  7. Fluorescent probe based on heteroatom containing styrylcyanine: pH-sensitive properties and bioimaging in vivo

    International Nuclear Information System (INIS)

    Yang, Xiaodong; Gao, Ya; Huang, Zhibing; Chen, Xiaohui; Ke, Zhiyong; Zhao, Peiliang; Yan, Yichen; Liu, Ruiyuan; Qu, Jinqing

    2015-01-01

    A novel fluorescent probe based on heteroatom containing styrylcyanine is synthesized. The fluorescence of probe is bright green in basic and neutral media but dark orange in strong acidic environments, which could be reversibly switched. Such behavior enables it to work as a fluorescent pH sensor in the solution state and a chemosensor for detecting acidic and basic volatile organic compounds. Analyses by NMR spectroscopy confirm that the protonation or deprotonation of pyridinyl moiety is responsible for the sensing process. In addition, the fluorescent microscopic images of probe in live cells and zebrafish are achieved successfully, suggesting that the probe has good cell membrane permeability and low cytotoxicity. - Graphical abstract: A novel styrylcyanine-based fluorescent pH probe was designed and synthesized, the fluorescence of which is bright green in basic and neutral media but dark orange in strong acidic environments. Such behavior enables it to work as a fluorescent pH sensor in solution states, and a chemosensor for detecting volatile organic compounds with high acidity and basicity in solid state. In addition, it can be used for fluorescent imaging in living cell and living organism. - Highlights: • Bright green fluorescence was observed in basic and neutral media. • Dark orange fluorescence was found in strong acidic environments. • Volatile organic compounds with high acidity and basicity could be detected. • Bioimaging in living cell and living organism was achieved successfully

  8. Visualisation of Leishmania donovani fluorescent hybrids during early stage development in the sand fly vector.

    Science.gov (United States)

    Sadlova, Jovana; Yeo, Matthew; Seblova, Veronika; Lewis, Michael D; Mauricio, Isabel; Volf, Petr; Miles, Michael A

    2011-01-01

    The Leishmania protozoan parasites cause devastating human diseases. Leishmania have been considered to replicate clonally, without genetic exchange. However, an accumulation of evidence indicates that there are inter-specific and intra-specific hybrids among natural populations. The first and so far only experimental proof of genetic exchange was obtained in 2009 when double drug resistant Leishmania major hybrids were produced by co-infecting sand flies with two strains carrying different drug resistance markers. However, the location and timing of hybridisation events in sand flies has not been described. Here we have co-infected Phlebotomus perniciosus and Lutzomyia longipalpis with transgenic promastigotes of Leishmania donovani strains carrying hygromycin or neomycin resistance genes and red or green fluorescent markers. Fed females were dissected at different times post bloodmeal (PBM) and examined by fluorescent microscopy or fluorescent activated cell sorting (FACS) followed by confocal microscopy. In mixed infections strains LEM3804 and Gebre-1 reached the cardia and stomodeal valves more rapidly than strains LEM4265 and LV9. Hybrids unequivocally expressing both red and green fluorescence were seen in single flies of both vectors tested, co-infected with LEM4265 and Gebre-1. The hybrids were present as short (procyclic) promastigotes 2 days PBM in the semi-digested blood in the endoperitrophic space. Recovery of a clearly co-expressing hybrid was also achieved by FACS. However, hybrids could not sustain growth in vitro. For the first time, we observed L. donovani hybrids in the sand fly vector, 2 days PBM and described the morphological stages involved. Fluorescence microscopy in combination with FACS allows visualisation and recovery of the progeny of experimental crosses but on this occasion the hybrids were not viable in vitro. Nevertheless, genetic exchange in L. donovani has profound epidemiological significance, because it facilitates the emergence

  9. Data simulation in machine olfaction with the R package chemosensors.

    Directory of Open Access Journals (Sweden)

    Andrey Ziyatdinov

    Full Text Available In machine olfaction, the design of applications based on gas sensor arrays is highly dependent on the robustness of the signal and data processing algorithms. While the practice of testing the algorithms on public benchmarks is not common in the field, we propose software for performing data simulations in the machine olfaction field by generating parameterized sensor array data. The software is implemented as an R language package chemosensors which is open-access, platform-independent and self-contained. We introduce the concept of a virtual sensor array which can be used as a data generation tool. In this work, we describe the data simulation workflow which basically consists of scenario definition, virtual array parameterization and the generation of sensor array data. We also give examples of the processing of the simulated data as proof of concept for the parameterized sensor array data: the benchmarking of classification algorithms, the evaluation of linear- and non-linear regression algorithms, and the biologically inspired processing of sensor array data. All the results presented were obtained under version 0.7.6 of the chemosensors package whose home page is chemosensors.r-forge.r-project.org.

  10. Fluorescence in situ hybridization on formalin-fixed and paraffin-embedded tissue

    DEFF Research Database (Denmark)

    Laub Petersen, Bodil; Zeuthen, Mette Christa; Pedersen, Sanni

    2004-01-01

    Fluorescence in situ hybridization (FISH) is widely used to study numerical and structural genetic abnormalities in both metaphase and interphase cells. The technique is based on the hybridization of labeled probes to complementary sequences in the DNA or RNA of the cells. Interphase FISH is most...... in time lapse between removal of tissue and fixation, duration of fixation, enzymatic pretreatment, hybridization conditions, and posthybridization washing conditions are important factors in the hybridization. In this study, we have listed the results of a systematic approach to improve FISH on isolated...

  11. Synthesis and properties of core–shell fluorescent hybrids with distinct morphologies based on carbon dots

    KAUST Repository

    Markova, Zdenka; Bourlinos, Athanasios B.; Safarova, Klara; Polakova, Katerina; Tucek, Jiri; Medrik, Ivo; Siskova, Karolina; Petr, Jan; Krysmann, Marta; Giannelis, Emmanuel P.; Zboril, Radek

    2012-01-01

    Fluorescent core-shell nanohybrids with the shells derived from carbon dots and cores differing in the chemical nature and morphology were synthesized. Hybrid nanoparticles combine fluorescence with other functionalities such as magnetic response on a single platform. These hybrids can be used in various bioapplications as demonstrated with labeling of stem cells. © The Royal Society of Chemistry 2012.

  12. Fluorescent magnetic hybrid nanoprobe for multimodal bioimaging

    Energy Technology Data Exchange (ETDEWEB)

    Koktysh, Dmitry [Department of Chemistry, Vanderbilt University, Station B 351822, Nashville, TN 37235 (United States); Bright, Vanessa; Pham, Wellington, E-mail: dmitry.koktysh@vanderbilt.edu, E-mail: wellington.pham@vanderbilt.edu [Institute of Imaging Science, Vanderbilt University, 1161 21st Avenue South AA, 1105 MCN, Nashville, TN 37232 (United States)

    2011-07-08

    A fluorescent magnetic hybrid imaging nanoprobe (HINP) was fabricated by the conjugation of superparamagnetic Fe{sub 3}O{sub 4} nanoparticles and visible light emitting ({approx}600 nm) fluorescent CdTe/CdS quantum dots (QDs). The assembly strategy used the covalent linking of the oxidized dextran shell of magnetic particles to the glutathione ligands of QDs. The synthesized HINP formed stable water-soluble colloidal dispersions. The structure and properties of the particles were characterized by transmission electron and atomic force microscopy, energy dispersive x-ray analysis and inductively coupled plasma optical emission spectroscopy, dynamic light scattering analysis, optical absorption and photoluminescence spectroscopy, and fluorescent imaging. The luminescence imaging region of the nanoprobe was extended to the near-infrared (NIR) ({approx}800 nm) by conjugation of the superparamagnetic nanoparticles with synthesized CdHgTe/CdS QDs. Cadmium, mercury based QDs in HINP can be easily replaced by novel water-soluble glutathione stabilized AgInS{sub 2}/ZnS QDs to present a new class of cadmium-free multimodal imaging agents. The observed NIR photoluminescence of fluorescent magnetic nanocomposites supports their use for bioimaging. The developed HINP provides dual-imaging channels for simultaneous optical and magnetic resonance imaging.

  13. Fluorescence in situ hybridization of old G-banded and mounted chromosome preparations

    DEFF Research Database (Denmark)

    Gerdes, A M; Pandis, N; Bomme, L

    1997-01-01

    the coverslips detach spontaneously; any mechanical manipulation will jeopardize the results. The success of chromosome painting is improved by excluding the regular RNase treatment step prior to hybridization. Additional changes compared with standard FISH protocols are that the 2 x SSC step is omitted......An improved method for fluorescence in situ hybridization (FISH) investigation of old, previously G-banded, mounted chromosome preparations with chromosome specific painting probes and centromere-specific probes is described. Before hybridization, the slides are incubated in xylene until......, that the amount of added probe is increased approximately 2.5 times, and that the amplification of signals is performed twice. The applicability of the method, which allows double painting with two differently labeled probes using two differently fluorescing colors, was tested on 11 cases involving different...

  14. A facile approach for cupric ion detection in aqueous media using polyethyleneimine/PMMA core-shell fluorescent nanoparticles

    International Nuclear Information System (INIS)

    Chen Jian; Zeng Fang; Wu Shuizhu; Su Junhua; Zhao Jianqing; Tong Zhen

    2009-01-01

    A facile approach was developed to produce a dye-doped core-shell nanoparticle chemosensor for detecting Cu 2+ in aqueous media. The core-shell nanoparticle sensor was prepared by a one-step emulsifier-free polymerization, followed by the doping of the fluorescent dye Nile red (9-diethylamino- 5H-benzo[alpha] phenoxazine-5-one, NR) into the particles. For the nanoparticles, the hydrophilic polyethyleneimine (PEI) chain segments serve as the shell and the hydrophobic polymethyl methacrylate (PMMA) constitutes the core of the nanoparticles. The non-toxic and biocompatible PEI chain segments on the nanoparticle surface exhibit a high affinity for Cu 2+ ions in aqueous media, and the quenching of the NR fluorescence is observed upon binding of Cu 2+ ions. This makes the core-shell nanoparticle system a water-dispersible chemosensor for Cu 2+ ion detection. The quenching of fluorescence arises through intraparticle energy transfer (FRET) from the dye in the hydrophobic PMMA core to the Cu 2+ /PEI complexes on the nanoparticle surface. The energy transfer efficiency for PEI/PMMA particles with different diameters was determined, and it is found that the smaller nanoparticle sample exhibits higher quenching efficiency, and the limit for Cu 2+ detection is 1 μM for a nanoparticle sample with a diameter of ∼30 nm. The response of the fluorescent nanoparticle towards different metal ions was investigated and the nanoparticle chemosensor displays high selectivity and antidisturbance for the Cu 2+ ion among the metal ions examined (Na + , K + , Mg 2+ , Ca 2+ , Zn 2+ , Hg 2+ , Mn 2+ , Fe 2+ , Ni 2+ , Co 2+ and Pb 2+ ). This emulsifier-free, biocompatible and sensitive fluorescent nanoparticle sensor may find applications in cupric ion detection in the biological and environmental areas.

  15. A facile approach for cupric ion detection in aqueous media using polyethyleneimine/PMMA core-shell fluorescent nanoparticles.

    Science.gov (United States)

    Chen, Jian; Zeng, Fang; Wu, Shuizhu; Su, Junhua; Zhao, Jianqing; Tong, Zhen

    2009-09-09

    A facile approach was developed to produce a dye-doped core-shell nanoparticle chemosensor for detecting Cu(2+) in aqueous media. The core-shell nanoparticle sensor was prepared by a one-step emulsifier-free polymerization, followed by the doping of the fluorescent dye Nile red (9-diethylamino- 5H-benzo[alpha] phenoxazine-5-one, NR) into the particles. For the nanoparticles, the hydrophilic polyethyleneimine (PEI) chain segments serve as the shell and the hydrophobic polymethyl methacrylate (PMMA) constitutes the core of the nanoparticles. The non-toxic and biocompatible PEI chain segments on the nanoparticle surface exhibit a high affinity for Cu(2+) ions in aqueous media, and the quenching of the NR fluorescence is observed upon binding of Cu(2+) ions. This makes the core-shell nanoparticle system a water-dispersible chemosensor for Cu(2+) ion detection. The quenching of fluorescence arises through intraparticle energy transfer (FRET) from the dye in the hydrophobic PMMA core to the Cu(2+)/PEI complexes on the nanoparticle surface. The energy transfer efficiency for PEI/PMMA particles with different diameters was determined, and it is found that the smaller nanoparticle sample exhibits higher quenching efficiency, and the limit for Cu(2+) detection is 1 microM for a nanoparticle sample with a diameter of approximately 30 nm. The response of the fluorescent nanoparticle towards different metal ions was investigated and the nanoparticle chemosensor displays high selectivity and antidisturbance for the Cu(2+) ion among the metal ions examined (Na(+), K(+), Mg(2+), Ca(2+), Zn(2+), Hg(2+), Mn(2+), Fe(2+), Ni(2+), Co(2+) and Pb(2+)). This emulsifier-free, biocompatible and sensitive fluorescent nanoparticle sensor may find applications in cupric ion detection in the biological and environmental areas.

  16. A facile approach for cupric ion detection in aqueous media using polyethyleneimine/PMMA core-shell fluorescent nanoparticles

    Science.gov (United States)

    Chen, Jian; Zeng, Fang; Wu, Shuizhu; Su, Junhua; Zhao, Jianqing; Tong, Zhen

    2009-09-01

    A facile approach was developed to produce a dye-doped core-shell nanoparticle chemosensor for detecting Cu2+ in aqueous media. The core-shell nanoparticle sensor was prepared by a one-step emulsifier-free polymerization, followed by the doping of the fluorescent dye Nile red (9-diethylamino- 5H-benzo[alpha] phenoxazine-5-one, NR) into the particles. For the nanoparticles, the hydrophilic polyethyleneimine (PEI) chain segments serve as the shell and the hydrophobic polymethyl methacrylate (PMMA) constitutes the core of the nanoparticles. The non-toxic and biocompatible PEI chain segments on the nanoparticle surface exhibit a high affinity for Cu2+ ions in aqueous media, and the quenching of the NR fluorescence is observed upon binding of Cu2+ ions. This makes the core-shell nanoparticle system a water-dispersible chemosensor for Cu2+ ion detection. The quenching of fluorescence arises through intraparticle energy transfer (FRET) from the dye in the hydrophobic PMMA core to the Cu2+/PEI complexes on the nanoparticle surface. The energy transfer efficiency for PEI/PMMA particles with different diameters was determined, and it is found that the smaller nanoparticle sample exhibits higher quenching efficiency, and the limit for Cu2+ detection is 1 µM for a nanoparticle sample with a diameter of ~30 nm. The response of the fluorescent nanoparticle towards different metal ions was investigated and the nanoparticle chemosensor displays high selectivity and antidisturbance for the Cu2+ ion among the metal ions examined (Na+, K+, Mg2+, Ca2+, Zn2+, Hg2+, Mn2+, Fe2+, Ni2+, Co2+ and Pb2+). This emulsifier-free, biocompatible and sensitive fluorescent nanoparticle sensor may find applications in cupric ion detection in the biological and environmental areas.

  17. Preparation and fluorescent recognition properties for fluoride of a nanostructured covalently bonded europium hybrid material

    Institute of Scientific and Technical Information of China (English)

    余旭东; 李景印; 李亚娟; 耿丽君; 甄小丽; 于涛

    2015-01-01

    A novel covalently bonded Eu3+-based silica hybrid material was designed and its spectrophotometric anion sensing prop-erty was studied. The fluorescent receptor (europium complex) was covalently grafted to the silica matrix via a sol-gel approach. FTIR, UV-vis spectra, scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and photoluminescent spectra were characterized, and the results revealed that the hybrid material with nanosphere structure displayed excellent photophysical property. In addition, the selective anion sensing property of the hybrid material was studied by UV-vis and fluorescence spectra. The results showed that the hybrid material exhibited a smart response with fluoride anions.

  18. Biomarkers for ALK and ROS1 in Lung Cancer: Immunohistochemistry and Fluorescent In Situ Hybridization.

    Science.gov (United States)

    Luk, Peter P; Selinger, Christina I; Mahar, Annabelle; Cooper, Wendy A

    2018-06-14

    - A small proportion of non-small cell lung cancers harbor rearrangements of ALK or ROS1 genes, and these tumors are sensitive to targeted tyrosine kinase inhibitors. It is crucial for pathologists to accurately identify tumors with these genetic alterations to enable patients to access optimal treatments and avoid unnecessary side effects of less effective agents. Although a number of different techniques can be used to identify ALK- and ROS1-rearranged lung cancers, immunohistochemistry and fluorescence in situ hybridization are the mainstays. - To review the role of immunohistochemistry in assessment of ALK and ROS1 rearrangements in lung cancer, focusing on practical issues in comparison with other modalities such as fluorescence in situ hybridization. - This manuscript reviews the current literature on ALK and ROS1 detection using immunohistochemistry and fluorescence in situ hybridization as well as current recommendations. - Although fluorescence in situ hybridization remains the gold standard for detecting ALK and ROS1 rearrangement in non-small cell lung cancer, immunohistochemistry plays an important role and can be an effective screening method for detection of these genetic alterations, or a diagnostic test in the setting of ALK.

  19. New dual emission fluorescent sensor for pH and Pb(II) based on bis(napfthalimide) derivative

    International Nuclear Information System (INIS)

    Pina-Luis, Georgina; Martínez-Quiroz, Marisela; Ochoa-Terán, Adrián; Santacruz-Ortega, Hisila; Mendez-Valenzuela, Eduardo

    2013-01-01

    This paper describes a novel dual emission bis-1,8-naphthalimide sensor for selective determination of pH and Pb 2+ ions. The influence of the variability in the backbone that links the two fluorophores (naphthalimides) as a function of pH and metal ions was studied by UV–visible and fluorescence spectroscopy. Compounds 1(a–d) with different length alkyl linkers (CH 2 ) n (n=1, 2, 4 and 6) showed no excimer formation in aqueous solution. Fluorescence emission of these derivatives varied in a narrow range of pH (5–8) and was only slightly influenced by the addition of metal ions in CH 3 CN solutions. However, derivative 1e with amino-containing spacer (CH 2 –NH–CH 2 ) showed excimer emission in aqueous solution, a wide response to pH (2.5–9.5) and fluorescence enhancement with selective behavior towards metal ions. The pH sensor based in derivative 1e has a sufficient selectivity for practical pH monitoring in the presence of Li + , Na + , K + , Cs + , Ca 2+ , Mg 2+ , Ba 2+ , Cu 2+ , Pb 2+ , Ni 2+ , Zn 2+ and Cd 2+ . The coordination chemistry of these complexes was studied by UV–Vis, fluorescence and 1 H NMR. This chemosensor displayed high selectivity fluorescence enhancement toward Pb 2+ ions in the presence of the metals ions mentioned in CH 3 CN solutions. Competitive assays show that a 1-fold of metal cations in each case, compared with Pb 2+ ions, results in less than ±5% fluorescence intensity changes. Linear calibration up to 1×10 −5 M for Pb(II) ions (R=0.9968) was obtained and detection limit resulted of 5.0×10 −8 M. - Highlights: ► A novel dual emission bis-1,8-naphthalimide sensor for pH and Pb 2+ ions is synthetized. ► The excimer formation depends on the spacer that links the two naphthalimide groups. ► Bis(naphthalimide) with amino-containing spacer showed a wide selective response to pH. ► This chemosensor displayed a selective fluorescence enhancement effect towards Pb 2+ ions. ► Mechanism for the fluorescence OFF

  20. Comparison of Fluorescence In Situ Hybridization and Chromogenic In Situ Hybridization for Low and High Throughput HER2 Genetic Testing

    DEFF Research Database (Denmark)

    Poulsen, Tim S; Espersen, Maiken Lise Marcker; Kofoed, Vibeke

    2013-01-01

    cancer patients with HER2 immunohistochemistry (IHC) results scored as 0/1+, 2+, and 3+. HER2 genetic status was analysed using chromogenic in situ hybridization (CISH) and fluorescence in situ hybridization (FISH). Scoring results were documented through digital image analysis. The cancer region...

  1. Detection of Hg2+ ions in aqueous medium using an indole-based fluorescent probe: Experimental and theoretical investigations

    Czech Academy of Sciences Publication Activity Database

    Joshi, S.; Kumari, S.; Sarmah, Amrit; Pant, D. D.; Sakhuja, R.

    2017-01-01

    Roč. 248, Dec (2017), s. 668-677 ISSN 0167-7322 Institutional support: RVO:61388963 Keywords : coumarin * chemosensor * fluorescence * quenching * mercury * DFT calculations Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Physical chemistry Impact factor: 3.648, year: 2016

  2. A highly selective and turn-on fluorescence sensor for detection of cyanide.

    Science.gov (United States)

    Jhong, Yi; Hsieh, Wei Hsun; Chir, Jiun-Ly; Wu, An-Tai

    2014-11-01

    2-Hydroxy-1-naphthaldehyde (receptor 1) serves as a selective chemosensor for cyanide anion (CN(-)). In the presence of CN(-), an enhanced fluorescent intensity and red shift were observed. The observed complexation between receptor 1 and CN(-) may cause from a formation of phenoxide anion by nucleophilic addition of the CN(-) to carbonyl group.

  3. Supernumerary ring chromosome 20 characterized by fluorescence in situ hybridization

    NARCIS (Netherlands)

    Van Langen, Irene M.; Otter, Mariëlle A.; Aronson, Daniël C.; Overweg-Plandsoen, W.C.G.; Hennekam, Raoul C.M.; Leschot, Nico J.; Hoovers, Jan M.N.

    1996-01-01

    We report on a boy with mild dysmorphic features and developmental delay, in whom karyotyping showed an additional minute ring chromosome in 60% of metaphases. Fluorescence in situ hybridization (FISH) with a centromere specific probe demonstrated that the ring chromosome contained the centromeric

  4. Self-Assembly of Fluorescent Hybrid Core-Shell Nanoparticles and Their Application.

    Science.gov (United States)

    Wang, Chun; Tang, Fu; Wang, Xiaoyu; Li, Lidong

    2015-06-24

    In this work, a fluorescent hybrid core-shell nanoparticle was prepared by coating a functional polymer shell onto silver nanoparticles via a facile one-pot method. The biomolecule poly-L-lysine (PLL) was chosen as the polymer shell and assembled onto the silver core via the amine-reactive cross-linker, 3,3'-dithiobis(sulfosuccinimidylpropionate). The fluorescent anticancer drug, doxorubicin, was incorporated into the PLL shell through the same linkage. As the cross-linker possesses a thiol-cleavable disulfide bond, disassembly of the PLL shell was observed in the presence of glutathione, leading to controllable doxorubicin release. The silver core there provided an easily modified surface to facilitate the shell coating and ensures the efficient separation of as-prepared nanoparticles from their reaction mixture through centrifugation. Cell assays show that the prepared hybrid fluorescent nanoparticles can internalize into cells possessing excellent biocompatibility prior to the release of doxorubicin, terminating cancer cells efficiently as the doxorubicin is released at the intracellular glutathione level. Such properties are important for designing smart containers for target drug delivery and cellular imaging.

  5. Detection of DNA hybridization based on SnO2 nanomaterial enhanced fluorescence

    International Nuclear Information System (INIS)

    Gu Cuiping; Huang Jiarui; Ni Ning; Li Minqiang; Liu Jinhuai

    2008-01-01

    In this paper, enhanced fluorescence emissions were firstly investigated based on SnO 2 nanomaterial, and its application in the detection of DNA hybridization was also demonstrated. The microarray of SnO 2 nanomaterial was fabricated by the vapour phase transport method catalyzed by patterned Au nanoparticles on a silicon substrate. A probe DNA was immobilized on the substrate with patterned SnO 2 nanomaterial, respectively, by covalent and non-covalent linking schemes. When a fluorophore labelled target DNA was hybridized with a probe DNA on the substrate, fluorescence emissions were only observed on the surface of SnO 2 nanomaterial, which indicated the property of enhancing fluorescence signals from the SnO 2 nanomaterial. By comparing the different fluorescence images from covalent and non-covalent linking schemes, the covalent method was confirmed to be more effective for immobilizing a probe DNA. With the combined use of SnO 2 nanomaterial and the covalent linking scheme, the target DNA could be detected at a very low concentration of 10 fM. And the stability of SnO 2 nanomaterial under the experimental conditions was also compared with silicon nanowires. The findings strongly suggested that SnO 2 nanomaterial could be extensively applied in detections of biological samples with enhancing fluorescence property and high stability

  6. Dansyl Based "Turn-On" Fluorescent Sensor for Cu2+ Ion Detection and the Application to Living Cell Imaging.

    Science.gov (United States)

    Nasomphan, Weerachai; Tangboriboonrat, Pramuan; Smanmoo, Srung

    2017-11-01

    A new "turn-on" fluorescent chemosensor based on dansyl derivative was prepared for Cu 2+ ion sensing. Hydroxyl, imine and azomethine groups in Schiff base derived compound 1 were deliberately introduced for facilitating the binding of Cu 2+ ion. Of screen metal ions, compound 1 showed a high degree of selectivity toward Cu 2+ ion. Other interfering metal ions did not affect the fluorescence intensity of compound 1, except Hg 2+ and Fe 3+ ions exhibited a significant degree of fluorescence quenching. Upon binding of Cu 2+ ion, compound 1 displayed a chelation enhanced fluorescence (CHEF) resulting in increasing of the fluorescence intensity. The molecular optimized geometry indicated the binding ratio between compound 1 and Cu 2+ ion at 1:1 with the binding constant of 1.68 × 10 - 7 M - 1 . The optimized condition for sensing ability of compound 1 with a detection limit of 5 × 10 - 7 M was found at the physiological pH 7.2 with the excitation wavelength of 366 nm. Due to no cytotoxicity and good photophysical properties, compound 1 was extended its application for the detection of Cu 2+ ion in Vero cells. Compound 1 could be potentially used as an intracellular fluorescent chemosensor for tracking Cu 2+ ion. Graphical Abstract.

  7. In Vivo Deep Tissue Fluorescence and Magnetic Imaging Employing Hybrid Nanostructures.

    Science.gov (United States)

    Ortgies, Dirk H; de la Cueva, Leonor; Del Rosal, Blanca; Sanz-Rodríguez, Francisco; Fernández, Nuria; Iglesias-de la Cruz, M Carmen; Salas, Gorka; Cabrera, David; Teran, Francisco J; Jaque, Daniel; Martín Rodríguez, Emma

    2016-01-20

    Breakthroughs in nanotechnology have made it possible to integrate different nanoparticles in one single hybrid nanostructure (HNS), constituting multifunctional nanosized sensors, carriers, and probes with great potential in the life sciences. In addition, such nanostructures could also offer therapeutic capabilities to achieve a wider variety of multifunctionalities. In this work, the encapsulation of both magnetic and infrared emitting nanoparticles into a polymeric matrix leads to a magnetic-fluorescent HNS with multimodal magnetic-fluorescent imaging abilities. The magnetic-fluorescent HNS are capable of simultaneous magnetic resonance imaging and deep tissue infrared fluorescence imaging, overcoming the tissue penetration limits of classical visible-light based optical imaging as reported here in living mice. Additionally, their applicability for magnetic heating in potential hyperthermia treatments is assessed.

  8. Light and colour as analytical detection tools: a journey into the periodic table using polyamines to bio-inspired systems as chemosensors.

    Science.gov (United States)

    Lodeiro, Carlos; Capelo, José Luis; Mejuto, Juan Carlos; Oliveira, Elisabete; Santos, Hugo M; Pedras, Bruno; Nuñez, Cristina

    2010-08-01

    This critical review describes some developments on the chemistry of fluorescent and colorimetric molecular probes or chemosensors, based on polyamines and associated compounds having oxygen and/or sulfur as donor atoms. The reported systems are essentially based on some selected published work in this field in the last five years, and in the work developed by the authors from 2000 onwards. Some interesting properties beyond sensing molecules, ions or/and cations by fluorescence, colorimetry as well as by MALDI-TOF MS spectrometry can arise from these systems. A short brief on different examples activated by PET (photoinduced electron transfer), ICT (internal charge transfer) and EET (electronic energy transfer) phenomena will be provided. Finally the introduction of bio-inspired compounds derived from emissive amino acid or short peptide systems and nanoparticle devices to detect metal ions will be reviewed (202 references).

  9. Fluorescence background subtraction technique for hybrid fluorescence molecular tomography/x-ray computed tomography imaging of a mouse model of early stage lung cancer.

    Science.gov (United States)

    Ale, Angelique; Ermolayev, Vladimir; Deliolanis, Nikolaos C; Ntziachristos, Vasilis

    2013-05-01

    The ability to visualize early stage lung cancer is important in the study of biomarkers and targeting agents that could lead to earlier diagnosis. The recent development of hybrid free-space 360-deg fluorescence molecular tomography (FMT) and x-ray computed tomography (XCT) imaging yields a superior optical imaging modality for three-dimensional small animal fluorescence imaging over stand-alone optical systems. Imaging accuracy was improved by using XCT information in the fluorescence reconstruction method. Despite this progress, the detection sensitivity of targeted fluorescence agents remains limited by nonspecific background accumulation of the fluorochrome employed, which complicates early detection of murine cancers. Therefore we examine whether x-ray CT information and bulk fluorescence detection can be combined to increase detection sensitivity. Correspondingly, we research the performance of a data-driven fluorescence background estimator employed for subtraction of background fluorescence from acquisition data. Using mice containing known fluorochromes ex vivo, we demonstrate the reduction of background signals from reconstructed images and sensitivity improvements. Finally, by applying the method to in vivo data from K-ras transgenic mice developing lung cancer, we find small tumors at an early stage compared with reconstructions performed using raw data. We conclude with the benefits of employing fluorescence subtraction in hybrid FMT-XCT for early detection studies.

  10. Fluorescence sensing and photocatalytic properties of a 2D stable and biocompatible Zn(II)-based polymer

    Science.gov (United States)

    Wu, Jian; Li, Bao-Hong; Zhong, Hua-Rui; Qiu, Shuo-Wen; Liang, Yi-Wen; Zhuang, Xiao-Yi; Singh, Amita; Kumar, Abhinav

    2018-04-01

    A biocompatible metal-organic framework (MOF) [Zn2(TPL)(FA)(OH)(H2O)] (1) (TPL = theophylline and H2FA = fumaric acid) had been chosen which offers an ideal model for the development of fluorescencent chemosensor using simple synthetic protocol. The MOF 1 have been tested as a fluorescent chemosensor against nitro-aromatics (NACs) and it displayed high selectivity for 4-NT over other NACs as evident by the emission spectroscopy. The alleviation in fluorescence intensity of 1 in presence of different NACs have been explained with the help of theoretical calculations which suggested that there is occurrence of both electron and energy transfer processes, in addition to electrostatic interaction between 1 and NACs which may be responsible for the unprecedented selective alleviation in the fluorescence intensity. Also, 1 had been deployed as a photocatalyst for the degradation of methyl violet (MV) and Rhodamine B (Rh B) in aqueous solution under UV irradiation. The photocatalytic results indicated the 1 exhibit 85% photocatalytic efficiency against Rh B in 100 min, while its efficiency against MV was only 50% under the identical experimental conditions. The possible mechanism for the photocatalytic activity has been proposed using density of states (DOS) calculations.

  11. Sensitive detection of nucleic acids by PNA hybridization directed co-localization of fluorescent beads

    DEFF Research Database (Denmark)

    Shiraishi, Takehiko; Deborggraeve, Stijn; Büscher, Philippe

    2011-01-01

    )avidin-coated fluorescent beads, differing in size and color [green beads (1 µm) and red beads (5.9 µm)], thereby allowing distinct detection of each PNA probe by conventional fluorescence microscopy. These two PNA beads showed easily detectable co-localization when simultaneously hybridizing to a target nucleic acid...

  12. New dual emission fluorescent sensor for pH and Pb(II) based on bis(napfthalimide) derivative

    Energy Technology Data Exchange (ETDEWEB)

    Pina-Luis, Georgina, E-mail: gpinaluis@yahoo.com [Centro de Graduados e Investigacion en Quimica, Instituto Tecnologico de Tijuana, AP 1166, Tijuana 22500, BC (Mexico); Martinez-Quiroz, Marisela; Ochoa-Teran, Adrian [Centro de Graduados e Investigacion en Quimica, Instituto Tecnologico de Tijuana, AP 1166, Tijuana 22500, BC (Mexico); Santacruz-Ortega, Hisila [Departamento de investigacion en Polimeros y Materiales, Universidad de Sonora, Hermosillo, Sonora 83000 (Mexico); Mendez-Valenzuela, Eduardo [Centro de Graduados e Investigacion en Quimica, Instituto Tecnologico de Tijuana, AP 1166, Tijuana 22500, BC (Mexico)

    2013-02-15

    This paper describes a novel dual emission bis-1,8-naphthalimide sensor for selective determination of pH and Pb{sup 2+} ions. The influence of the variability in the backbone that links the two fluorophores (naphthalimides) as a function of pH and metal ions was studied by UV-visible and fluorescence spectroscopy. Compounds 1(a-d) with different length alkyl linkers (CH{sub 2}){sub n} (n=1, 2, 4 and 6) showed no excimer formation in aqueous solution. Fluorescence emission of these derivatives varied in a narrow range of pH (5-8) and was only slightly influenced by the addition of metal ions in CH{sub 3}CN solutions. However, derivative 1e with amino-containing spacer (CH{sub 2}-NH-CH{sub 2}) showed excimer emission in aqueous solution, a wide response to pH (2.5-9.5) and fluorescence enhancement with selective behavior towards metal ions. The pH sensor based in derivative 1e has a sufficient selectivity for practical pH monitoring in the presence of Li{sup +}, Na{sup +}, K{sup +}, Cs{sup +}, Ca{sup 2+}, Mg{sup 2+}, Ba{sup 2+}, Cu{sup 2+}, Pb{sup 2+}, Ni{sup 2+}, Zn{sup 2+} and Cd{sup 2+}. The coordination chemistry of these complexes was studied by UV-Vis, fluorescence and {sup 1}H NMR. This chemosensor displayed high selectivity fluorescence enhancement toward Pb{sup 2+} ions in the presence of the metals ions mentioned in CH{sub 3}CN solutions. Competitive assays show that a 1-fold of metal cations in each case, compared with Pb{sup 2+} ions, results in less than {+-}5% fluorescence intensity changes. Linear calibration up to 1 Multiplication-Sign 10{sup -5} M for Pb(II) ions (R=0.9968) was obtained and detection limit resulted of 5.0 Multiplication-Sign 10{sup -8} M. - Highlights: Black-Right-Pointing-Pointer A novel dual emission bis-1,8-naphthalimide sensor for pH and Pb{sup 2+} ions is synthetized. Black-Right-Pointing-Pointer The excimer formation depends on the spacer that links the two naphthalimide groups. Black-Right-Pointing-Pointer Bis

  13. Fluorescent chemosensor for pyridine based on N-doped carbon dots.

    Science.gov (United States)

    Campos, B B; Abellán, C; Zougagh, M; Jimenez-Jimenez, J; Rodríguez-Castellón, E; Esteves da Silva, J C G; Ríos, A; Algarra, M

    2015-11-15

    Fluorescent carbon dots (CDs) and its nitrogen doped (N-CDs) nanoparticles have been synthesized from lactose as precursor using a bottom-up hydrothermal methodology. The synthesized nanoparticles have been characterized by elemental analysis, FTIR, Raman, TEM, DLS, XPS, and steady-state and life-time fluorescence. The synthesized carbon nanoparticles, CDs and N-CDs, have a size at about 7.7±2.4 and 50±15nm, respectively, and quantum yields of 8% (CDs) and 11% (N-CDs). These techniques demonstrated the effectiveness of the synthesis procedure and the functionalization of the CDs surface with amine and amide groups in the presence of NH3 in aqueous media. The effect of excitation wavelength and pH on the luminescent properties was studied. Under the optimal conditions, the nitrogen doped nanoparticles can be used as pyridine sensor in aqueous media because they show an enhancement of its fluorescence with a good linear relationship. The analytical method is simple, reproducible and very sensitive for pyridine determination. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Semi-Interpenetrating Polymer Networks with Predefined Architecture for Metal Ion Fluorescence Monitoring

    Directory of Open Access Journals (Sweden)

    Kyriakos Christodoulou

    2016-11-01

    Full Text Available The development of new synthetic approaches for the preparation of efficient 3D luminescent chemosensors for transition metal ions receives considerable attention nowadays, owing to the key role of the latter as elements in biological systems and their harmful environmental effects when present in aquatic media. In this work, we describe an easy and versatile synthetic methodology that leads to the generation of nonconjugated 3D luminescent semi-interpenetrating amphiphilic networks (semi-IPN with structure-defined characteristics. More precisely, the synthesis involves the encapsulation of well-defined poly(9-anthrylmethyl methacrylate (pAnMMA (hydrophobic, luminescent linear polymer chains within a covalent poly(2-(dimethylaminoethyl methacrylate (pDMAEMA hydrophilic polymer network, derived via the 1,2-bis-(2-iodoethoxyethane (BIEE-induced crosslinking process of well-defined pDMAEMA linear chains. Characterization of their fluorescence properties demonstrated that these materials act as strong blue emitters when exposed to UV irradiation. This, combined with the presence of the metal-binding tertiary amino functionalities of the pDMAEMA segments, allowed for their applicability as sorbents and fluorescence chemosensors for transition metal ions (Fe3+, Cu2+ in solution via a chelation-enhanced fluorescence-quenching effect promoted within the semi-IPN network architecture. Ethylenediaminetetraacetic acid (EDTA-induced metal ion desorption and thus material recyclability has been also demonstrated.

  15. Highly sensitive optical chemosensor for the detection of Cu using a ...

    Indian Academy of Sciences (India)

    Administrator

    Highly sensitive colorimetric chemosensor molecule RHN for selective detection of Cu. 2+ in ... colour development against the colourless blank during the sensing event, a feature that would facilitate ... ever reported, much attention has been.

  16. Implementation of the Fluorescent in Situ Hybridization technique in the Faculty of Medicine, UdelaR

    Directory of Open Access Journals (Sweden)

    Andrea Cairus

    2017-11-01

    Full Text Available The Cytogenetic Laboratory of the Faculty of Medicine processes, on average, 300 annual samples of public and private healthcare centers by conventional cytogenetics. It is essential to implement new techniques to improve the quality of the service offered. The purpose of this work was to implement the Fluorescent in situ Hybridization technique (FISH. An observational, cross-sectional, analytical study was performed. Peripheral blood samples from patients with sex chromosomopathies diagnosed by conventional cytogenetics were analyzed. Fluorescent in situ hybridization technique was applied, comparing results with FISH and with conventional cytogenetics. The percentage of mosaicism detected by conventional cytogenetics and Fluorescent in situ Hybridization was studied: 24 samples were analyzed; 19 presented numerical alterations, 3 structural and 2 both. Numerical alterations were Turner syndrome, Klinefelter syndrome, XXX syndrome and XYY syndrome. Concordance in diagnoses was found for both techniques. For Turner syndrome, 8 of 12 samples corresponded to mosaicism, and there were no significant differences between conventional cytogenetics and the technique studied (p0.05. Klinefelter syndrome and XYY were both presented in a non-mosaic karyotype. For XXX syndrome, a normal line (46, XX was observed in three of the samples, in a percentage close to the cut off. From this research, it will be possible to implement Fluorescent in situ Hybridization in this service, to extend it to other pathologies and to enable the training of human resources; consolidating this laboratory as a national academic reference center.

  17. Synergistic Combination of Unquenching and Plasmonic Fluorescence Enhancement in Fluorogenic Nucleic Acid Hybridization Probes.

    Science.gov (United States)

    Vietz, Carolin; Lalkens, Birka; Acuna, Guillermo P; Tinnefeld, Philip

    2017-10-11

    Fluorogenic nucleic acid hybridization probes are widely used for detecting and quantifying nucleic acids. The achieved sensitivity strongly depends on the contrast between a quenched closed form and an unquenched opened form with liberated fluorescence. So far, this contrast was improved by improving the quenching efficiency of the closed form. In this study, we modularly combine these probes with optical antennas used for plasmonic fluorescence enhancement and study the effect of the nanophotonic structure on the fluorescence of the quenched and the opened form. As quenched fluorescent dyes are usually enhanced more by fluorescence enhancement, a detrimental reduction of the contrast between closed and opened form was anticipated. In contrast, we could achieve a surprising increase of the contrast with full additivity of quenching of the dark form and fluorescence enhancement of the bright form. Using single-molecule experiments, we demonstrate that the additivity of the two mechanisms depends on the perfect quenching in the quenched form, and we delineate the rules for new nucleic acid probes for enhanced contrast and absolute brightness. Fluorogenic hybridization probes optimized not only for quenching but also for the brightness of the open form might find application in nucleic acid assays with PCR avoiding detection schemes.

  18. Fluorescence in situ hybridization on human metaphase chromosomes detected by near-field scanning optical microscopy

    NARCIS (Netherlands)

    Moers, M.H.P.; Moers, M.H.P.; Kalle, W.H.J.; Kalle, W.H.J.; Ruiter, A.G.T.; Wiegant, J.C.A.G.; Raap, A.K.; Greve, Jan; de Grooth, B.G.; van Hulst, N.F.

    1996-01-01

    Fluorescence in situ hybridization o­n human metaphase chromosomes is detected by near-field scanning optical microscopy. This combination of cytochemical and scanning probe techniques enables the localization and identification of several fluorescently labelled genomic DNA fragments o­n a single

  19. A highly sensitive, single selective, fluorescent sensor for Al3+ detection and its application in living cell imaging

    International Nuclear Information System (INIS)

    Ye, Xing-Pei; Sun, Shao-bo; Li, Ying-dong; Zhi, Li-hua; Wu, Wei-na; Wang, Yuan

    2014-01-01

    A new o-aminophenol-based fluorogenic chemosensor methyl 3,5-bis((E)-(2-hydroxyphenylimino)methyl)-4-hydroxybenzoate 1 have been synthesized by Schiff base condensation of methyl 3,5-diformyl-4-hydroxybenzoate with o-aminophenol, which exhibits high selectivity and sensitivity toward Al 3+ . Fluorescence titration studies of receptors 1 with different metal cations in CH 3 OH medium showed highly selective and sensitive towards Al 3+ ions even in the presence of other commonly coexisting metal ions. The detection limit of Al 3+ ions is at the parts per billion level. Interestingly, the Al(III) complex of 1 offered a large Stokes shift (>120 nm), which can miximize the selfquenching effect. In addition, possible utilization of this receptor as bio-imaging fluorescent probe to detect Al 3+ in human cervical HeLa cancer cell lines was also investigated by confocal fluorescence microscopy. - Highlights: • A new Schiff base chemosensor is reported. • The sensor for Al 3+ offers large Stokes shift. • The detection limit of Al 3+ in CH 3 OH solution is at the parts per billion level. • The utilization of sensor for the monitoring of Al 3+ levels in living cells was examined

  20. Synthesis of New Blue Fluorescent Polymerizable 1,8-Naphthalimides and Their Copolymers with Styrene as Sensors for Fe(III Cations

    Directory of Open Access Journals (Sweden)

    Ivo Grabchev

    2014-01-01

    Full Text Available The synthesis, characterization, and functional properties of two new polymerizable 1,8-naphthalimides (MDs have been described. Their copolymers with styrene designed to act as a fluorescence PET chemosensor have been investigated. The study also reports the influence of different metal cations (Ag+, Mg2+, Cu2+, Sr2+, Co2+, Pb2+, and Fe3+ on the fluorescence intensity of both low and high molecular weight fluorophores.

  1. Synthesis and evaluation of a new Rhodamine B and Di(2-picolyl)amine conjugate as a highly sensitive and selective chemosensor for Al3+ and its application in living-cell imaging.

    Science.gov (United States)

    Bao, Xiaofeng; Cao, Qiansheng; Xu, Yazhou; Gao, Yuanxue; Xu, Yuan; Nie, Xuemei; Zhou, Baojing; Pang, Tao; Zhu, Jing

    2015-02-15

    A new Rhodamine B derivative (RBDPA), namely, N(1)-(2-(3',6'-bis(diethylamino)-3-oxospiro[isoindoline-1,9'-xanthen]-2-yl)ethyl)-N(4),N(4)-bis(pyridin-2-ylmethyl)succinamide, was designed, synthesized and structurally characterized to develop a chemosensor. The studies show that RBDPA exhibits high sensitivity and selectivity toward Al(3+) among many other metal cations in an ethanol/H2O (1:1, v/v, pH=7.2, HEPES buffer, 0.1mM) solution. Fluorescence microscopy experiments further demonstrate that RBDPA can be used as a fluorescent probe to detect Al(3+) in living cells. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Fluorescent in situ hybridization of mitochondrial DNA and RNA

    Czech Academy of Sciences Publication Activity Database

    Alán, Lukáš; Zelenka, Jaroslav; Ježek, Jan; Dlasková, Andrea; Ježek, Petr

    2010-01-01

    Roč. 57, č. 4 (2010), s. 403-408 ISSN 0001-527X R&D Projects: GA ČR GAP302/10/0346; GA ČR GPP304/10/P204; GA AV ČR KJB500110902 Institutional research plan: CEZ:AV0Z50110509 Keywords : mitochondrial DNA and RNA * nucleoids of mitochondrial DNA * molecular beacon fluorescent hybridization probes Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.234, year: 2010

  3. A fluorescent optical fibre chemosensor for mercury detection

    Science.gov (United States)

    Wren, Stephen P.; Sun, Tong; Grattan, Kenneth T. V.

    2015-09-01

    A proof-of-concept mercury probe was developed based on covalent attachment of a chemical coating to optical fibre. The sensing element comprised a dansyl derivative and crown ether moiety, acting as fluorophore and metal ion chelator respectively. An ON-OFF type fluorescence (quench) occurred upon binding of mercury ions, via an intramolecular charge transfer mechanism, in aqueous solution in the 909nM-90.9μM (247 ppb -24.7 ppm) concentration range. A washing protocol was identified for sensor regeneration allowing the probe to be re-used.

  4. Performance dependence of hybrid x-ray computed tomography/fluorescence molecular tomography on the optical forward problem.

    Science.gov (United States)

    Hyde, Damon; Schulz, Ralf; Brooks, Dana; Miller, Eric; Ntziachristos, Vasilis

    2009-04-01

    Hybrid imaging systems combining x-ray computed tomography (CT) and fluorescence tomography can improve fluorescence imaging performance by incorporating anatomical x-ray CT information into the optical inversion problem. While the use of image priors has been investigated in the past, little is known about the optimal use of forward photon propagation models in hybrid optical systems. In this paper, we explore the impact on reconstruction accuracy of the use of propagation models of varying complexity, specifically in the context of these hybrid imaging systems where significant structural information is known a priori. Our results demonstrate that the use of generically known parameters provides near optimal performance, even when parameter mismatch remains.

  5. Hybrid system for in vivo real-time planar fluorescence and volumetric optoacoustic imaging

    Science.gov (United States)

    Chen, Zhenyue; Deán-Ben, Xosé Luís.; Gottschalk, Sven; Razansky, Daniel

    2018-02-01

    Fluorescence imaging is widely employed in all fields of cell and molecular biology due to its high sensitivity, high contrast and ease of implementation. However, the low spatial resolution and lack of depth information, especially in strongly-scattering samples, restrict its applicability for deep-tissue imaging applications. On the other hand, optoacoustic imaging is known to deliver a unique set of capabilities such as high spatial and temporal resolution in three dimensions, deep penetration and spectrally-enriched imaging contrast. Since fluorescent substances can generate contrast in both modalities, simultaneous fluorescence and optoacoustic readings can provide new capabilities for functional and molecular imaging of living organisms. Optoacoustic images can further serve as valuable anatomical references based on endogenous hemoglobin contrast. Herein, we propose a hybrid system for in vivo real-time planar fluorescence and volumetric optoacoustic tomography, both operating in reflection mode, which synergistically combines the advantages of stand-alone systems. Validation of the spatial resolution and sensitivity of the system were first carried out in tissue mimicking phantoms while in vivo imaging was further demonstrated by tracking perfusion of an optical contrast agent in a mouse brain in the hybrid imaging mode. Experimental results show that the proposed system effectively exploits the contrast mechanisms of both imaging modalities, making it especially useful for accurate monitoring of fluorescence-based signal dynamics in highly scattering samples.

  6. First-in-human evaluation of a hybrid modality that allows combined radio- and (near-infrared) fluorescence tracing during surgery

    Energy Technology Data Exchange (ETDEWEB)

    Berg, Nynke S. van den [Leiden University Medical Center, Interventional Molecular Imaging Laboratory, Department of Radiology (Netherlands); The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Department of Urology, Amsterdam (Netherlands); Simon, Herve [Eurorad S.A., Eckbolsheim (France); Kleinjan, Gijs H. [Leiden University Medical Center, Interventional Molecular Imaging Laboratory, Department of Radiology (Netherlands); The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Department of Nuclear Medicine, Amsterdam (Netherlands); Engelen, Thijs [Leiden University Medical Center, Interventional Molecular Imaging Laboratory, Department of Radiology (Netherlands); The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Department of Head and Neck Surgery and Oncology, Amsterdam (Netherlands); Bunschoten, Anton; Welling, Mick M. [Leiden University Medical Center, Interventional Molecular Imaging Laboratory, Department of Radiology (Netherlands); Tijink, Bernard M. [The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Department of Head and Neck Surgery and Oncology, Amsterdam (Netherlands); Horenblas, Simon [The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Department of Urology, Amsterdam (Netherlands); Chambron, Jacques [The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Department of Nuclear Medicine, Amsterdam (Netherlands); Leeuwen, Fijs W.B. van [Leiden University Medical Center, Interventional Molecular Imaging Laboratory, Department of Radiology (Netherlands); The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Department of Urology, Amsterdam (Netherlands); The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Department of Head and Neck Surgery and Oncology, Amsterdam (Netherlands)

    2015-10-15

    The clinical introduction of the hybrid tracer indocyanine green (ICG)-{sup 99m}Tc-nanocolloid, composed of a radioactive and a near-infrared (NIR) fluorescence component, has created the need for surgical (imaging) modalities that allow for simultaneous detection of both signals. This study describes the first-in-human use of a prototype opto-nuclear probe during sentinel node (SN) biopsy using ICG-{sup 99m}Tc-nanocolloid. To allow for fluorescence tracing, a derivative of the conventional gamma probe technology was generated in which two optical fibers were integrated to allow for excitation (785 nm) and emission signal collection (> 810 nm). The ability of this opto-nuclear probe to detect the fluorescence signal of the hybrid tracer ICG-{sup 99m}Tc-nanocolloid was firstly determined ex vivo in (non)SNs samples obtained from 41 patients who underwent hybrid tracer-based SN biopsy in the head and neck or urogenital area. In an in vivo proof-of-concept study in nine of these 41 patients, SNs were localized using combined gamma and fluorescence tracing with the opto-nuclear probe. Fluorescence tracing was performed in a similar manner as gamma tracing and under ambient light conditions. Ex vivo, the gamma tracing option of the opto-nuclear probe correctly identified the SN in all 150 evaluated (non)SN samples. Ex vivo fluorescence tracing in the low-sensitivity mode correctly identified 71.7 % of the samples. This increased to 98.9 % when fluorescence tracing was performed in the high-sensitivity mode. In vivo fluorescence tracing (high-sensitivity mode) accurately identified the SNs in all nine patients (20 SNs evaluated; 100 %). This study demonstrates the first-in-human evaluation of a hybrid modality capable of detecting both gamma and fluorescence signals during a surgical procedure. Fluorescence tracing could be performed in ambient light. (orig.)

  7. Detection of a variable number of ribosomal DNA loci by fluorescent in situ hybridization in Populus species.

    Science.gov (United States)

    Prado, E A; Faivre-Rampant, P; Schneider, C; Darmency, M A

    1996-10-01

    Fluorescent in situ hybridization (FISH) was applied to related Populus species (2n = 19) in order to detect rDNA loci. An interspecific variability in the number of hybridization sites was revealed using as probe an homologous 25S clone from Populus deltoides. The application of image analysis methods to measure fluorescence intensity of the hybridization signals has enabled us to characterize major and minor loci in the 18S-5.8S-25S rDNA. We identified one pair of such rDNA clusters in Populus alba; two pairs, one major and one minor, in both Populus nigra and P. deltoides; and three pairs in Populus balsamifera, (two major and one minor) and Populus euroamericana (one major and two minor). FISH results are in agreement with those based on RFLP analysis. The pBG13 probe containing 5S sequence from flax detected two separate clusters corresponding to the two size classes of units that coexist within 5S rDNA of most Populus species. Key words : Populus spp., fluorescent in situ hybridization, FISH, rDNA variability, image analysis.

  8. Automated Image Analysis for Quantitative Fluorescence In Situ Hybridization with Environmental Samples▿ †

    OpenAIRE

    Zhou, Zhi; Pons, Marie Noëlle; Raskin, Lutgarde; Zilles, Julie L.

    2007-01-01

    When fluorescence in situ hybridization (FISH) analyses are performed with complex environmental samples, difficulties related to the presence of microbial cell aggregates and nonuniform background fluorescence are often encountered. The objective of this study was to develop a robust and automated quantitative FISH method for complex environmental samples, such as manure and soil. The method and duration of sample dispersion were optimized to reduce the interference of cell aggregates. An au...

  9. Selective recognition of monohydrogen phosphate by fluorescence enhancement of a new cerium complex

    International Nuclear Information System (INIS)

    Ganjali, Mohammad Reza; Hosseini, Morteza; Memari, Zahra; Faridbod, Farnoush; Norouzi, Parviz; Goldooz, Hassan; Badiei, Alireza

    2011-01-01

    Highlights: ► Finding a new fluorescent enhancing chemosensor for phosphate ions. ► Synthesis of a new complex (bis(8-hydroxy quinoline-5-solphonate) cerium(III) chloride (Ce(QS) 2 Cl)) as a practical fluorescent probe. ► Analysis of phosphate content in three kinds of fertilizers, mixed fertilizer (N–P–K), triple super phosphate (TSP), and single super phosphate (SSP) (from Zarrin Kood Co., Tehran, Iran). - Abstract: Bis(8-hydroxy quinoline-5-solphonate) cerium(III) chloride (Ce(QS) 2 Cl) (L) was synthesized and then used as a novel fluorescent sensor for anion recognition. Preliminarily study showed that fluorescence of L enhanced selectively in the presence of HPO 4 2− ion. This enhancement is attributed to a 1:1 complex formation between L and HPO 4 2− anion. The association constant of 1:1 complex of L-HPO 4 2− was calculated as 3.0 × 10 6 . Thus, L was utilized as a basis for a selective detection of HPO 4 2− anion in solution. The linear response range of the proposed fluorescent chemo-sensor covers a concentration range of HPO 4 2− from 3.3 × 10 −7 to 5.0 × 10 −6 mol L −1 with a detection limit of 2.5 × 10 −8 mol L −1 . L showed selective and sensitive fluorescence enhancement response toward HPO 4 2− ion in comparison with I 3 − , NO 3 − , CN − , CO 3 2− , Br − , Cl − , F − , H 2 PO 4 − and SO 4 2− ions. It was probably attributed to the higher stability of the inorganic complex between HPO 4 2− ion and L. The method was successfully applied for analysis of phosphate ions in some fertilizers samples.

  10. Calix[2]pyreno[2]pyrrole as a Fluorescence Chemical Probe for Polynitroaromatics

    International Nuclear Information System (INIS)

    Park, Kyung Hwa; Yoo, Jae Duk; Lee, Chang Hee; Ka, Jae Won

    2012-01-01

    We have demonstrated that the new, readily synthesized and well characterized calix pyreno pyrrole fluorescence molecular probe can detect polynitroaromatic compounds with high affinity. In addition, this highly fluorescent neutral molecular receptor also exhibits enhanced binding affinity towards TNT which is associated with the formation of a pi-complex. The dynamic nature of the current system may enable it to serve as an excellent scaffold for electron-deficient guest molecular binding. Studies for other neutral molecules including metal ions are under in active progress. The elevated selectivity and sensitivity for specific analytes are the core requirements for an ideal chemical probes. A signal induced by guest binding must be sensitive enough so that accurate real time monitoring could be satisfactorily achieved. Introduction of signaling units at suitable places in which they can directly interact with the recognition events is critical in designing chemosensors. Among various signaling events, fluorescence changes are often applied for the sensitive detection of various analytes. An easy modulation of the photochemical properties of the signaling units is an additional advantage in compatibility and applications. Chemosensors for the detection of explosives becomes important due to their immediate applications in remedation of explosive manufacturing sites, homeland security or forensic sciences. With that in mind, numerous methods for the explosive detection have been reported in recent years. Nevertheless, some detection methods sometimes require sophisticated instrumentation which is not easy for on-site testing

  11. Bis-Pyrene-Modified Unlocked Nucleic Acids: Synthesis, Hybridization Studies, and Fluorescent Properties

    Czech Academy of Sciences Publication Activity Database

    Perlíková, Pavla; Ejlersen, M.; Langkjaer, N.; Wengel, J.

    2014-01-01

    Roč. 9, č. 9 (2014), s. 2120-2127 ISSN 1860-7179 Grant - others:European Research Council(XE) FP7-268776 Institutional support: RVO:61388963 Keywords : fluorescence * nucleic acid hybridization * oligonucleotides * pyrenes * unlocked nucleic acids Subject RIV: CC - Organic Chemistry Impact factor: 2.968, year: 2014

  12. Human chromosome-specific changes in a human-hamster hybrid cell line (AL) assessed by fluorescent in situ hybridization (fish)

    International Nuclear Information System (INIS)

    Geard, Charles R.; Jenkins, Gloria

    1995-01-01

    Purpose: To quantitatively assess all gamma-ray induced chromosomal changes confined to one human chromosome using fluorescence microscopy and in situ hybridization with a fluorescently labeled human chromosome specific nucleic acid probe. Methods and Materials: Synchronized human-hamster hybrid cells containing human chromosome 11 were obtained by a modified mitotic shake-off procedure. G1 phase cells (> 95%) were irradiated with 137 Cs gamma rays (0, 0.5, 1.0, 1.5, 2.0, 4.0, 6.0, 8.0, and 10.0 Gy) at a dose rate of 1.1 Gy/min and mitotic cells collected 16-20 h later; chromosomal spreads were prepared, denatured, and hybridized with a fluorescein-tagged nucleic acid probe against total human DNA. Chromosomes were examined by fluorescence microscopy and all categories of change involving the human chromosome 11 as target, recorded. Results: Overall, of the 3104 human-hamster hybrid cells examined, 82.1% were euploid, of which 88.6% contained one copy of human chromosome 11, 6.2% contained two copies, and 5.2% contained 0 copies. This is compatible with mitotic nondisjunction in a small fraction of cells. Of the remaining 17.9% of cells, 85.2% were tetraploid cells with two copies of human chromosome 11. For all aberrations involving human chromosome 11 there was a linear relationship between yield and absorbed dose of 0.1 aberrations per chromosome per Gy. The yield of dicentrics, translocations, and terminal deletions that involve one lesion on the human chromosome was linear, while the yield of interstitial deletions that arise from two interacting lesions on the human chromosome was curvilinear. The frequencies of dicentrics and translocations were about equal, while there was a high (40-60%) incidence of incomplete exchanges between human and hamster chromosomes. Conclusions: Fluorescent in situ hybridization (FISH) procedures allow for the efficient detection of a broad range of induced changes in target chromosomes. Symmetrical exchanges induced in G1

  13. Analytical assays based on chromogenic and fluorogenic chemosensors for the detection of cyanide

    Directory of Open Access Journals (Sweden)

    Vanderléia Gava Marini

    2010-06-01

    Full Text Available Cyanide (CN– is an anion well–known for its toxicity, being a chemical agent often related to cases of homicide and suicide. Despite being responsible for the toxicity of many animals and plants, it is used in several industrial activities, with innumerous implications in terms of the environment. Due to its high toxicity, the maximum level of CN– concentration allowed by the World Health Organization in potable water is 1.7 µmol/L. This low concentration limit requires methods of visual detection and quantitative determination which are ever more sensitive, simple, reliable, and economical. Advancements in the field of chromogenic and fluorogenic chemosensors for anionic analytes have led to the development of several methodologies for the detection of CN–. Therefore, this review aims to present the main strategies that have been used in the study of quantitative and naked–eye detection of CN– by means of chromogenic and fluorogenic chemosensors. Aspects related to CN–, such as its reactivity, toxicity, applications, and implications in different domains of knowledge, are presented. Recent work involving the development of chemosensors for CN– based on acid–base reactions, chemodosimeters, chromoreactands, and competition assays is also described. In addition, recent studies that make use of nanotechnology to develop strategies for the detection of CN– are also discussed, as well as the prospects envisioned in this field.

  14. Fluorescence in situ hybridization evaluation of chromosome deletion patterns in prostate cancer.

    Science.gov (United States)

    Huang, S F; Xiao, S; Renshaw, A A; Loughlin, K R; Hudson, T J; Fletcher, J A

    1996-11-01

    Various nonrandom chromosomal aberrations have been identified in prostate carcinoma. These aberrations include deletions of several chromosome regions, particularly the chromosome 8 short arm. Large-scale numerical aberrations, reflected in aberrant DNA ploidy, are also found in a minority of cases. However, it is unclear whether prostate carcinomas contain aberrations of certain chromosome regions that are deleted frequently in other common types of cancer. In this study, we performed dual-color fluorescence in situ hybridization on intact nuclei from touch preparations of 16 prostate cancers. Chromosome copy number was determined using pericentromeric probes, whereas potential chromosome arm deletions were evaluated using yeast artificial chromosome (YAC) and P1 probes. Two YAC probes targeted chromosome 8 short arm regions known to be deleted frequently in prostate cancer. Other YACs and P1s were for chromosome regions, including 1p22, 3p14, 6q21, 9p21, and 22q12, that are deletion targets in a variety of cancers although not extensively studied in prostate cancer. Hybridization efficiencies and signal intensities were excellent for both repeat sequence (alpha-satellite) and single, copy (YAC and P1) fluorescence in situ hybridization probes. Of 16 prostate cancers, 11 had clonal aberrations of 1 or more of the 13 chromosome regions evaluated, and 10 cases (62.5%) had 8p deletions, including 4 cases with 8p deletion in virtually all cells and aneuploidy in only a subset of those deleted cells. Deletions at 3p14, 6q21, and 22q12 were identified in 2, 1, and 1 case, respectively, and each of those cases had a similarly sized cell population with 8p deletion. These studies confirm 8p deletion in the majority of prostate carcinomas. 8p deletions appear to be early events in prostate tumorigenesis, often antedating aneuploidy. Fluorescence in situ hybridization strategies incorporating pericentromeric and single-copy regional chromosome probes offer a powerful and

  15. Synthesis, characterization and fluorescence studies of a novel europium complex based sensor

    International Nuclear Information System (INIS)

    Li Bin; Chen Qiuyun; Wang Yachen; Huang Jing; Li Yang

    2010-01-01

    A novel europium(III) complex was synthesized using TTA (α-thenoyltrifluoroacetone) as the first ligand and H 2 bpdc (2,2'-bipyridine-3,3'-dicarboxylate) as the second ligand. Elemental analysis, thermal analysis, IR and UV-vis spectrum and fluorescence spectrum of the europium(III) complex were carried out. A characteristic Eu 3+ fluorescence emission was observed in ethanol-water (1:1) solution, indicating that the complex is stable in solution and the emission of Eu(III) ions was not influenced by the water molecules. The fluorescence emission of the complex was quenched completely by the Co 2+ and Fe 3+ ions, but the quenched emission was recovered in the presence of glycine. Moreover, the Eu 3+ emission was very sensitive to pH, so the complex can be used as pH-dependent fluorescence probe or chemosensors.

  16. Fluorescence tuning of 2-(1H-Benzimidazol-2-yl)phenol-ESIPT process

    International Nuclear Information System (INIS)

    Prakash, S.M.; Jayamoorthy, K.; Srinivasan, N.; Dhanalekshmi, K.I.

    2016-01-01

    Catalytic synthesis of potential chemosensor 2-(1H-Benzimidazol-2-yl)phenol (HBYP) has been prepared by three components cyclization reaction. It can behaves as a selective fluorescent sensor for the detection of Fe 3+ metal ion. HBYP has been characterized by 1 H NMR, 13 C NMR, mass spectral studies and elemental analysis. Single crystal XRD analysis has been carried out to confirm the structure of HBYP and it shows the imidazole ring is essentially planar and monoclinic crystal. Addition and increasing concentration of Fe 3+ ions into HBYP results dramatic fluorescence quenching. Other cations, including Ca 2+ , Co 2+ , Ni 2+ , Cd 2+ , Pb 2+ , Zn 2+ and Mg 2+ had little influence in the fluorescence intensity. Surprisingly reversible fluorescence enhancement has been observed with the addition of H 3 PO 4 due to the deactivation of iron complex.

  17. A highly sensitive, single selective, fluorescent sensor for Al{sup 3+} detection and its application in living cell imaging

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Xing-Pei [Department of Physics and Chemistry, Henan Polytechnic University, Jiaozuo 454000 (China); Sun, Shao-bo; Li, Ying-dong [Institute of Integrated Traditional and Western Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou 730000 (China); Zhi, Li-hua [Department of Physics and Chemistry, Henan Polytechnic University, Jiaozuo 454000 (China); Wu, Wei-na, E-mail: wuwn08@hpu.edu.cn [Department of Physics and Chemistry, Henan Polytechnic University, Jiaozuo 454000 (China); Wang, Yuan, E-mail: wangyuan08@hpu.edu.cn [Department of Physics and Chemistry, Henan Polytechnic University, Jiaozuo 454000 (China)

    2014-11-15

    A new o-aminophenol-based fluorogenic chemosensor methyl 3,5-bis((E)-(2-hydroxyphenylimino)methyl)-4-hydroxybenzoate 1 have been synthesized by Schiff base condensation of methyl 3,5-diformyl-4-hydroxybenzoate with o-aminophenol, which exhibits high selectivity and sensitivity toward Al{sup 3+}. Fluorescence titration studies of receptors 1 with different metal cations in CH{sub 3}OH medium showed highly selective and sensitive towards Al{sup 3+} ions even in the presence of other commonly coexisting metal ions. The detection limit of Al{sup 3+} ions is at the parts per billion level. Interestingly, the Al(III) complex of 1 offered a large Stokes shift (>120 nm), which can miximize the selfquenching effect. In addition, possible utilization of this receptor as bio-imaging fluorescent probe to detect Al{sup 3+} in human cervical HeLa cancer cell lines was also investigated by confocal fluorescence microscopy. - Highlights: • A new Schiff base chemosensor is reported. • The sensor for Al{sup 3+} offers large Stokes shift. • The detection limit of Al{sup 3+} in CH{sub 3}OH solution is at the parts per billion level. • The utilization of sensor for the monitoring of Al{sup 3+} levels in living cells was examined.

  18. Calix[4]arene-Based Enantioselective Fluorescent Sensors for the Recognition of N-Acetyl-aspartate

    Institute of Scientific and Technical Information of China (English)

    QING Guang-Yan; CHEN Zhi-Hong; WANG Feng; YANG Xi; MENG Ling-Zhi; HE Yong-Bing

    2008-01-01

    Two-armed chiral anion receptors (1 and 2), calix[4]arenes bearing dansyl fluorophore and (1R,2R)- or(1S,2S)-1,2-diphenylethylenediamine binding sites, were prepared and examined for their chiral amino acid anion binding abilities by the fluorescence spectra in dimethylsulfoxide (DMSO). The results of non-linear curve fitting indicate that 1 or 2 forms a 1 : 1 stoichiometry complex with N-acetyl-L-or D-aspartate by multiple hydrogen bonding interactions, exhibiting good enantioselective fluorescent recognition for the enantiomers of N-acetyl-as-partate, [receptor 1: Kass(D)/Kass(L)=6.74; receptor 2: Kass(L)/Kass(D)=6.48]. The clear fluorescent response difference indicates that receptors 1 and 2 could be used as a fluorescent chemosensor for N-Acetyl-aspartate.

  19. FMT-XCT: in vivo animal studies with hybrid fluorescence molecular tomography-X-ray computed tomography.

    Science.gov (United States)

    Ale, Angelique; Ermolayev, Vladimir; Herzog, Eva; Cohrs, Christian; de Angelis, Martin Hrabé; Ntziachristos, Vasilis

    2012-06-01

    The development of hybrid optical tomography methods to improve imaging performance has been suggested over a decade ago and has been experimentally demonstrated in animals and humans. Here we examined in vivo performance of a camera-based hybrid fluorescence molecular tomography (FMT) system for 360° imaging combined with X-ray computed tomography (XCT). Offering an accurately co-registered, information-rich hybrid data set, FMT-XCT has new imaging possibilities compared to stand-alone FMT and XCT. We applied FMT-XCT to a subcutaneous 4T1 tumor mouse model, an Aga2 osteogenesis imperfecta model and a Kras lung cancer mouse model, using XCT information during FMT inversion. We validated in vivo imaging results against post-mortem planar fluorescence images of cryoslices and histology data. Besides offering concurrent anatomical and functional information, FMT-XCT resulted in the most accurate FMT performance to date. These findings indicate that addition of FMT optics into the XCT gantry may be a potent upgrade for small-animal XCT systems.

  20. Hybrid fluorescence and electron cryo-microscopy for simultaneous electron and photon imaging.

    Science.gov (United States)

    Iijima, Hirofumi; Fukuda, Yoshiyuki; Arai, Yoshihiro; Terakawa, Susumu; Yamamoto, Naoki; Nagayama, Kuniaki

    2014-01-01

    Integration of fluorescence light and transmission electron microscopy into the same device would represent an important advance in correlative microscopy, which traditionally involves two separate microscopes for imaging. To achieve such integration, the primary technical challenge that must be solved regards how to arrange two objective lenses used for light and electron microscopy in such a manner that they can properly focus on a single specimen. To address this issue, both lateral displacement of the specimen between two lenses and specimen rotation have been proposed. Such movement of the specimen allows sequential collection of two kinds of microscopic images of a single target, but prevents simultaneous imaging. This shortcoming has been made up by using a simple optical device, a reflection mirror. Here, we present an approach toward the versatile integration of fluorescence and electron microscopy for simultaneous imaging. The potential of simultaneous hybrid microscopy was demonstrated by fluorescence and electron sequential imaging of a fluorescent protein expressed in cells and cathodoluminescence imaging of fluorescent beads. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Application of locked nucleic acid-based probes in fluorescence in situ hybridization

    DEFF Research Database (Denmark)

    Fontenete, Sílvia; Carvalho, Daniel R; Guimarães, Nuno

    2016-01-01

    of nucleic acid mimics used as mixmers in LNA-based probes strongly influence the efficiency of detection. LNA probes with 10 to 15 mers showed the highest efficiency. Additionally, the combination of 2′-OMe RNA with LNA allowed an increase on the fluorescence intensities of the probes. Overall......Fluorescence in situ hybridization (FISH) employing nucleic acid mimics as probes is becoming an emerging molecular tool in the microbiology area for the detection and visualization of microorganisms. However, the impact that locked nucleic acid (LNA) and 2′-O-methyl (2′-OMe) RNA modifications have...

  2. Multifunctional Magnetic-fluorescent Nanocomposites for Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Rakovich Yury

    2008-01-01

    Full Text Available AbstractNanotechnology is a fast-growing area, involving the fabrication and use of nano-sized materials and devices. Various nanocomposite materials play a number of important roles in modern science and technology. Magnetic and fluorescent inorganic nanoparticles are of particular importance due to their broad range of potential applications. It is expected that the combination of magnetic and fluorescent properties in one nanocomposite would enable the engineering of unique multifunctional nanoscale devices, which could be manipulated using external magnetic fields. The aim of this review is to present an overview of bimodal “two-in-one” magnetic-fluorescent nanocomposite materials which combine both magnetic and fluorescent properties in one entity, in particular those with potential applications in biotechnology and nanomedicine. There is a great necessity for the development of these multifunctional nanocomposites, but there are some difficulties and challenges to overcome in their fabrication such as quenching of the fluorescent entity by the magnetic core. Fluorescent-magnetic nanocomposites include a variety of materials including silica-based, dye-functionalised magnetic nanoparticles and quantum dots-magnetic nanoparticle composites. The classification and main synthesis strategies, along with approaches for the fabrication of fluorescent-magnetic nanocomposites, are considered. The current and potential biomedical uses, including biological imaging, cell tracking, magnetic bioseparation, nanomedicine and bio- and chemo-sensoring, of magnetic-fluorescent nanocomposites are also discussed.

  3. Chromosomal imbalances detected in primary bone tumors by comparative genomic hybridization and interphase fluorescence in situ hybridization

    Directory of Open Access Journals (Sweden)

    Marcelo Razera Baruffi

    2003-01-01

    Full Text Available We applied a combination of comparative genomic hybridization (CGH and fluorescence in situ hybridization (FISH, to characterize the genetic aberrations in three osteosarcomas (OS and one Ewing's sarcoma. CGH identified recurrent chromosomal losses at 10p14-pter and gains at 8q22.3-24.1 in OS. Interphase FISH allowed to confirm 8q gain in two cases. A high amplification level of 11q12-qter was detected in one OS. The Ewing's sarcoma showed gain at 1p32-36.1 as the sole chromosome alteration. These studies demonstrate the value of molecular cytogenetic methods in the characterization of recurrent genomic alterations in bone tumor tissue.

  4. Assignment of electron transfer flavoprotein-ubiquinone oxidoreductase (ETF-QO) to human chromosome 4q33 by fluorescence in situ hybridization and somatic cell hybridization.

    Science.gov (United States)

    Spector, E B; Seltzer, W K; Goodman, S I

    1999-08-01

    Electron transfer flavoprotein-ubiquinone oxidoreductase (ETF-QO) is a nuclear-encoded protein located in the inner mitochondrial membrane. Inherited defects of ETF-QO cause glutaric acidemia type II. We here describe the localization of the ETF-QO gene to human chromosome 4q33 by somatic cell hybridization and fluorescence in situ hybridization. Copyright 1999 Academic Press.

  5. Phenanthroimidazoles as fluorimetric and colourimetric chemosensors in aqueous solution

    OpenAIRE

    Ferreira, R. Cristina M.; Costa, Susana P. G.; Raposo, M. Manuela M.

    2015-01-01

    2,4,5-Triaryl-imidazoles are versatile compounds with application in medicine, due to their biological activity, and materials sciences, for their interesting optical properties. These properties can be tuned by careful selection of substituents at positions 2, 4 and 5: replacement of the aryl group by an heterocyclic group results in larger π-conjugated systems with improved optical properties for application in nonlinear optics, OLEDs, DNA intercalators, and chemosensors. Moreover, it is ex...

  6. One-pot synthesis of polyamines improved magnetism and fluorescence Fe3O4-carbon dots hybrid NPs for dual modal imaging.

    Science.gov (United States)

    Li, Bo; Wang, Xudong; Guo, Yali; Iqbal, Anam; Dong, Yaping; Li, Wu; Liu, Weisheng; Qin, Wenwu; Chen, Shizhen; Zhou, Xin; Yang, Yunhuang

    2016-04-07

    A one-step hydrothermal method was developed to fabricate Fe3O4-carbon dots (Fe3O4-CDs) magnetic-fluorescent hybrid nanoparticles (NPs). Ferric ammonium citrate (FAC) was used as a cheap and nontoxic iron precursor and as the carbon source. Moreover, triethylenetetramine (TETA) was used to improve the adhesive strength of CDs on Fe3O4 and the fluorescence intensity of CDs. The prepared water-soluble hybrid NPs not only exhibit excellent superparamagnetic properties (Ms = 56.8 emu g(-1)), but also demonstrate excitation-independent photoluminescence for down-conversion and up-conversion at 445 nm. Moreover, the prepared water-soluble Fe3O4-CDs hybrid NPs have a dual modal imaging ability for both magnetic resonance imaging (MRI) and fluorescence imaging.

  7. Measuring DNA hybridization using fluorescent DNA-stabilized silver clusters to investigate mismatch effects on therapeutic oligonucleotides.

    Science.gov (United States)

    de Bruin, Donny; Bossert, Nelli; Aartsma-Rus, Annemieke; Bouwmeester, Dirk

    2018-04-06

    Short nucleic acid oligomers have found a wide range of applications in experimental physics, biology and medicine, and show potential for the treatment of acquired and genetic diseases. These applications rely heavily on the predictability of hybridization through Watson-Crick base pairing to allow positioning on a nanometer scale, as well as binding to the target transcripts, but also off-target binding to transcripts with partial homology. These effects are of particular importance in the development of therapeutic oligonucleotides, where off-target effects caused by the binding of mismatched sequences need to be avoided. We employ a novel method of probing DNA hybridization using optically active DNA-stabilized silver clusters (Ag-DNA) to measure binding efficiencies through a change in fluorescence intensity. In this way we can determine their location-specific sensitivity to individual mismatches in the sequence. The results reveal a strong dependence of the hybridization on the location of the mismatch, whereby mismatches close to the edges and center show a relatively minor impact. In parallel, we propose a simple model for calculating the annealing ratios of mismatched DNA sequences, which supports our experimental results. The primary result shown in this work is a demonstration of a novel technique to measure DNA hybridization using fluorescent Ag-DNA. With this technique, we investigated the effect of mismatches on the hybridization efficiency, and found a significant dependence on the location of individual mismatches. These effects are strongly influenced by the length of the used oligonucleotides. The novel probe method based on fluorescent Ag-DNA functions as a reliable tool in measuring this behavior. As a secondary result, we formulated a simple model that is consistent with the experimental data.

  8. Detection of Helicobacter pylori in the Gastric Mucosa by Fluorescence In Vivo Hybridization

    DEFF Research Database (Denmark)

    Fontenete, Silvia; Leite, Marina; Figueiredo, Céu

    2017-01-01

    In this chapter, we describe a fluorescence in vivo hybridization (FIVH) protocol, using nucleic acid probes, for the detection of the bacterium Helicobacter pylori in the gastric mucosa of an infected C57BL/6 mouse model. This protocol should be easily extended to other microorganisms not only...

  9. Karyotypes and Distribution of Tandem Repeat Sequences in Brassica nigra Determined by Fluorescence in situ Hybridization

    Czech Academy of Sciences Publication Activity Database

    Wang, G.; He, Q.; Macas, Jiří; Novák, Petr; Neumann, Pavel; Meng, D.; Zhao, H.; Guo, N.; Han, S.; Zong, M.; Jin, W.; Liu, F.

    2017-01-01

    Roč. 152, č. 3 (2017), s. 158-165 ISSN 1424-8581 R&D Projects: GA ČR GBP501/12/G090 Institutional support: RVO:60077344 Keywords : asymmetric somatic hybridization * Fluorescence in situ hybridization * Karyotype * (Peri) centromere Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Genetics and heredity (medical genetics to be 3) Impact factor: 1.354, year: 2016

  10. [Chromosomal localization of foreign genes in transgenic mice using dual-color fluorescence in situ hybridization].

    Science.gov (United States)

    Lin, Dan; Gong, Xiu-li; Li, Wei; Guo, Xin-bing; Zhu, Yi-wen; Huang, Ying

    2008-02-01

    To establish a highly sensitive and specific dual-color fluorescence in situ hybridization (D-FISH) method used for chromosomal localization of foreign genes in double transgenic mice. Two strains of double transgenic mice were used in this experiment, one was integrated with the herpes simplex virus thymidine kinase (HSV-tk) and the enhanced green fluorescence protein (eGFP), the other was with the short hairpin RNA interference(RNAi) and beta(654). Splenic cells cultured in vitro were arrested in metaphase by colchicine and hybridized with digoxigenin-labeled and biotinylated DNA probes, then detected by rhodamine-conjugated avidin and FITC-conjugated anti-digoxigenin. Dual-color fluorescence signals were detected on the same metaphase in both transgenic mice strains. In HSV-tk/eGFP double transgenic mice, strong green fluorescence for HSV-tk and red for eGFP were observed and localized at 2E5-G3 and 8A2-A4 respectively. In beta(654)/RNAi mice, beta(654) was detected as red fluorescence on chromosome 7D3-E2, and RNAi showed random integration on chromosomes. It was detected as green fluorescence on chromosome 12B1 in one mouse, while on 1E2.3-1F and 3A3 in the other. Highly sensitive and specific D-FISH method was established using the self-prepared DNA probes, and chromosomal localization of the foreign genes was also performed in combination with G-banding in double transgenic mice. This technology will facilitate the researches in transgenic animals and gene therapy models.

  11. 10p Duplication characterized by fluorescence in situ hybridization

    Energy Technology Data Exchange (ETDEWEB)

    Wiktor, A.; Feldman, G.L.; Van Dyke, D.L.; Kratkoczki, P.; Ditmars, D.M. Jr. [Henry Ford Hospital, Detroit, MI (United States)

    1994-09-01

    We describe a patient with severe failure to thrive, mild-moderate developmental delay, cleft lip and palate, and other anomalies. Routine cytogenetic analysis documented a de novo chromosome rearrangement involving chromosome 4, but the origin of the derived material was unknown. Using chromosome specific painting probes, the karyotype was defined as 46,XY,der(4)t(4;10)(q35;p11.23). Characterization of the dup(10p) by fluorescence in situ hybridization (FISH) analysis provides another example of the usefulness of this technology in identifying small deletions, duplications, or supernumerary marker chromosomes. 19 refs., 4 figs.

  12. High-performance hybrid white organic light-emitting devices without interlayer between fluorescent and phosphorescent emissive regions.

    Science.gov (United States)

    Sun, Ning; Wang, Qi; Zhao, Yongbiao; Chen, Yonghua; Yang, Dezhi; Zhao, Fangchao; Chen, Jiangshan; Ma, Dongge

    2014-03-12

    By using mixed hosts with bipolar transport properties for blue emissive layers, a novel phosphorescence/fluorescence hybrid white OLED without using an interlayer between the fluorescent and phosphorescent regions is demonstrated. The peak EQE of the device is 19.0% and remains as high as 17.0% at the practical brightness of 1000 cd m(-2) . © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Fluorescence in situ hybridization for phytoplasma and endophytic bacteria localization in plant tissues.

    Science.gov (United States)

    Bulgari, Daniela; Casati, Paola; Faoro, Franco

    2011-11-01

    In the present study, we developed a rapid and efficient fluorescence in situ hybridization assay (FISH) in non-embedded tissues of the model plant Catharanthus roseus for co-localizing phytoplasmas and endophytic bacteria, opening new perspectives for studying the interaction between these microorganisms. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Actinobacillus pleuropneumoniae osteomyelitis in pigs demonstrated by fluorescent in situ hybridization

    DEFF Research Database (Denmark)

    Jensen, Tim Kåre; Boye, Mette; Hagedorn-Olsen, T.

    1999-01-01

    Necrotizing osteomyelitis and fibrinopurulent arthritis with isolation of Actinobacillus pleuropneumoniae serotype 2 is reported in two pigs from a herd with lameness and mild coughing problems among 8 to 12-week-old pigs. Application of fluorescent in situ hybridization targeting 16S ribosomal R......, in joints with arthritis, and in bone necroses including lysis of growth plate and suppurative inflammation in the adjacent trabecular metaphysis, thus demonstrating that well-known infections manifest new, unusual lesions....

  15. Chemosensors and biosensors based on polyelectrolyte microcapsules containing fluorescent dyes and enzymes.

    Science.gov (United States)

    Kazakova, Lyubov I; Shabarchina, Lyudmila I; Anastasova, Salzitsa; Pavlov, Anton M; Vadgama, Pankaj; Skirtach, Andre G; Sukhorukov, Gleb B

    2013-02-01

    The concept of enzyme-assisted substrate sensing based on use of fluorescent markers to detect the products of enzymatic reaction has been investigated by fabrication of micron-scale polyelectrolyte capsules containing enzymes and dyes in one entity. Microcapsules approximately 5 μm in size entrap glucose oxidase or lactate oxidase, with peroxidase, together with the corresponding markers Tris(4,7-diphenyl-1,10-phenanthroline)ruthenium(II) dichloride (Ru(dpp)) complex and dihydrorhodamine 123 (DHR123), which are sensitive to oxygen and hydrogen peroxide, respectively. These capsules are produced by co-precipitation of calcium carbonate particles with the enzyme followed by layer-by-layer assembly of polyelectrolytes over the surface of the particles and incorporation of the dye in the capsule interior or in the multilayer shell. After dissolution of the calcium carbonate the enzymes and dyes remain in the multilayer capsules. In this study we produced enzyme-containing microcapsules sensitive to glucose and lactate. Calibration curves based on fluorescence intensity of Ru(dpp) and DHR123 were linearly dependent on substrate concentration, enabling reliable sensing in the millimolar range. The main advantages of using these capsules with optical recording is the possibility of building single capsule-based sensors. The response from individual capsules was observed by confocal microscopy as increasing fluorescence intensity of the capsule on addition of lactate at millimolar concentrations. Because internalization of the micron-sized multi-component capsules was feasible, they could be further optimized for in-situ intracellular sensing and metabolite monitoring on the basis of fluorescence reporting.

  16. Clinical application of fluorescence in situ hybridization for prenatal diagnosis

    Directory of Open Access Journals (Sweden)

    Shu-fang JIANG

    2012-07-01

    Full Text Available Objective To establish and optimize the procedures of fluorescence in situ hybridization(FISH), and evaluate its clinical value in rapid prenatal diagnosis of fetal numerical abnormality of chromosomes 21, 18, 13, X, Y. Methods Amniotic fluid or fetal blood was sampled by routine invasive procedures. After the amniotic fluid cells or fetal blood cells were separated and sequentially processed with hypotonic solution, fixation solution, smear and high temperature, they were hybridized in situ with two panels of specific fluorescence probes to detect numerical abnormality of chromosomes 21, 18, 13, X, Y. All the samples were also cultured and analyzed for their karyotype by conventional methods. Results When it was used as a diagnostic criterion of chromosomal number that the fluorescence signals were observed in ≥90% cells, GLP 13/GLP 21 probe panel showed 2 green/2 red fluorescence signals and CSP18/CSP X/CSP Y probe panel showed 2 blue/2 yellow (female or 2 blue/1 yellow/1 red fluorescence signals (male under normal condition. The test reports of all 196 cases were sent out in 72-96 hours, and 7 cases of Down syndrome, 2 cases of trisomy 18 and 1 case of sex chromosomal numerical abnormality were detected, which were accordant with karyotype analysis results reported one month later. Conclusions FISH has potential for clinical application, and is applicable to rapid prenatal diagnosis of fetal numerical abnormality of chromosomes 21, 18, 13, X, Y. The rapid FISH, together with conventional karyotyping, offer a valuable means for prenatal diagnosis of fetal aneuploidies.

  17. Non-Covalent Fluorescent Labeling of Hairpin DNA Probe Coupled with Hybridization Chain Reaction for Sensitive DNA Detection.

    Science.gov (United States)

    Song, Luna; Zhang, Yonghua; Li, Junling; Gao, Qiang; Qi, Honglan; Zhang, Chengxiao

    2016-04-01

    An enzyme-free signal amplification-based assay for DNA detection was developed using fluorescent hairpin DNA probes coupled with hybridization chain reaction (HCR). The hairpin DNAs were designed to contain abasic sites in the stem moiety. Non-covalent labeling of the hairpin DNAs was achieved when a fluorescent ligand was bound to the abasic sites through hydrogen bonding with the orphan cytosine present on the complementary strand, accompanied by quench of ligand fluorescence. As a result, the resultant probes, the complex formed between the hairpin DNA and ligand, showed almost no fluorescence. Upon hybridization with target DNA, the probe underwent a dehybridization of the stem moiety containing an abasic site. The release of ligand from the abasic site to the solution resulted in an effective fluorescent enhancement, which can be used as a signal. Compared with a sensing system without HCR, a 20-fold increase in the sensitivity was achieved using the sensing system with HCR. The fluorescent intensity of the sensing system increased with the increase in target DNA concentration from 0.5 nM to 100 nM. A single mismatched target ss-DNA could be effectively discriminated from complementary target DNA. Genotyping of a G/C single-nucleotide polymorphism of polymerase chain reaction (PCR) products was successfully demonstrated with the sensing system. Therefore, integrating HCR strategy with non-covalent labeling of fluorescent hairpin DNA probes provides a sensitive and cost-effective DNA assay. © The Author(s) 2016.

  18. Characterization of a de novo duplication of 11p14----p13, using fluorescent in situ hybridization and southern hybridization

    NARCIS (Netherlands)

    Speleman, F.; Mannens, M.; Redeker, B.; Vercruyssen, M.; van Oostveldt, P.; Leroy, J.; Slater, R.

    1991-01-01

    A de novo 11p+ chromosome was found in a child with mild mental retardation but no other remarkable dysmorphic characteristics. Banding studies suggested a duplication of regions 11p13 and 11p14 or regions 11p14 and 11p15. Using fluorescent in situ hybridization and digital imaging microscopy, we

  19. Presence and localization of bacteria in the bovine endometrium postpartum using fluorescence in situ hybridization

    DEFF Research Database (Denmark)

    Karstrup, C. C.; Agerholm, J. S.; Jensen, Tim Kåre

    2017-01-01

    The aim of this study was to investigate bacterial invasiveness of the bovine endometrium during the postpartum period. Fluorescence in situ hybridization was applied to endometrial biopsies using probes for Fusobacterium necrophorum, Porphyromonas levii, Trueperella pyogenes, Escherichia coli...

  20. Hybrid Integrated Silicon Microfluidic Platform for Fluorescence Based Biodetection

    Directory of Open Access Journals (Sweden)

    André Darveau

    2007-09-01

    Full Text Available The desideratum to develop a fully integrated Lab-on-a-chip device capable ofrapid specimen detection for high throughput in-situ biomedical diagnoses and Point-of-Care testing applications has called for the integration of some of the novel technologiessuch as the microfluidics, microphotonics, immunoproteomics and Micro ElectroMechanical Systems (MEMS. In the present work, a silicon based microfluidic device hasbeen developed for carrying out fluorescence based immunoassay. By hybrid attachment ofthe microfluidic device with a Spectrometer-on-chip, the feasibility of synthesizing anintegrated Lab-on-a-chip type device for fluorescence based biosensing has beendemonstrated. Biodetection using the microfluidic device has been carried out usingantigen sheep IgG and Alexafluor-647 tagged antibody particles and the experimentalresults prove that silicon is a compatible material for the present application given thevarious advantages it offers such as cost-effectiveness, ease of bulk microfabrication,superior surface affinity to biomolecules, ease of disposability of the device etc., and is thussuitable for fabricating Lab-on-a-chip type devices.

  1. Identification of bacteria used for microbial enhanced oil recovery process by fluorescence in situ hybridization technique

    Energy Technology Data Exchange (ETDEWEB)

    Fujiwara, K.; Tanaka, S.; Otsuka, M. [Kansai Research Institute, Kyoto (Japan). Lifescience Lab.; Yonebayashi, H. [Japan National Oil Corp., Chiba (Japan). Tech. Research Center; Enomoto, H. [Tohoku University, Sendai (Japan). Dept. of Geoscience and Tech.

    2000-01-01

    A fluorescence in situ hybridization (FISH) technique using 16S rRNA-targeted oligonucleotide probes was developed for rapid detection of microorganisms for use in the microbial enhancement of oil recovery (MEOR) process. Two microorganisms, Enterobacter cloacae TRC-322 and Bacillus licheniformis TRC-18-2-a, were selected from a collection of Enterobacter sp. and Bacillus sp. which were screened in previous studies as candidate microorganisms for injection, and were used for this experiment. Oligonucleotide probes, design based on specific sequences in the 16S rRNA gene were labeled with either fluorescein isothiocyanate (FITC), or 6-car-boxy-X-rhodamine (ROX), and were allowed to hybridize with fixed cells of the two microorganisms noted above. The fluorescence signal emitted from each microorganism cells could clearly be detected by an epifluorescence microscope. Moreover, E. cloacae TRC-322 and B, licheniformis TRC-18-2-a, suspended in actual reservoir brine, including inorganic salts, oil and aboriginal cells of the reservoir brine, could be detected directly by this hybridization method, without the need for cultivation and isolation. (author)

  2. Fluorescence in situ hybridization with reference to biodosimetry: a review

    International Nuclear Information System (INIS)

    Venkatachalam, P.; Paul, S.F.D.; Jeevanram, R.K.

    1996-01-01

    Many advances have taken place in the field of radiation biodosimetry in the recent past. Measurement of dicentric chromosome aberrations, was first developed and followed by micronuclei scoring. These, however, are unstable type aberrations and the cells carrying such aberrations are eliminated from the body in few years. They are therefore of use primarily in case of accidental exposures. The challenge is to measure the cumulative radiation exposure resulting from normal operations by measuring stable chromosome aberrations. Banding technique can measure stable chromosome aberration but require long time to analyse the banding pattern to study translocations. On the other hand fluorescence in situ hybridization (FISH) technique is sensitive, fast and easy to identify the translocations as the chromosomes involved in translocation are painted with different colours. This review brings out the requirements of various materials, their preparations, method of detection of fluorescence etc. for carrying out FISH. The experience of various laboratories using FISH in the monitoring of radiation absorbed dose is discussed. (author)

  3. Study of the frequency of translocations and dicentrics in human spermatozoid using fluorescent in situ hybridization

    International Nuclear Information System (INIS)

    Alvarez, R.; Ponsa, I.; Tusell, L.; Genesca, A.; Miro, R.; Egozcue, J.

    1998-01-01

    Present study has intended to analyze the induction translocations and dicentrics in human sperms irradiated in vitro to the dose 4Gy by means of the use technical in situ hybridization with probes marked fluorescently

  4. Cytogenetic analysis using fluorescence in situ hybridization (FISH) to evaluate occupational exposure to carcinogens

    Czech Academy of Sciences Publication Activity Database

    Šrám, Radim; Beskid, Olena; Binková, Blanka; Rössner, P.; Šmerhovský, Zdeněk

    2004-01-01

    Roč. 149, - (2004), s. 335-344 ISSN 0378-4274 R&D Projects: GA MŽP SI/340/2/00 Institutional research plan: CEZ:AV0Z5039906 Keywords : Chromosomal aberrations * Fluorescence in situ hybridization Subject RIV: DN - Health Impact of the Environment Quality Impact factor: 2.571, year: 2004

  5. Analysis of Caffeine in Beverages Using Aspirin as a Fluorescent Chemosensor

    Science.gov (United States)

    Smith, Jordan; Loxley, Kristen; Sheridan, Patrick; Hamilton, Todd M.

    2016-01-01

    Caffeine (1,3,7-trimethylxanthine) is an alkaloid stimulant that is popular in beverages. Fluorescence-coupled methods have been used to measure the caffeine content in coffee, tea, soft drinks, energy drinks, and cosmetics. In this experiment, we have developed a method for detecting caffeine in beverages utilizing the effect of the caffeine…

  6. Single-Labeled Oligonucleotides Showing Fluorescence Changes upon Hybridization with Target Nucleic Acids

    Directory of Open Access Journals (Sweden)

    Gil Tae Hwang

    2018-01-01

    Full Text Available Sequence-specific detection of nucleic acids has been intensively studied in the field of molecular diagnostics. In particular, the detection and analysis of single-nucleotide polymorphisms (SNPs is crucial for the identification of disease-causing genes and diagnosis of diseases. Sequence-specific hybridization probes, such as molecular beacons bearing the fluorophore and quencher at both ends of the stem, have been developed to enable DNA mutation detection. Interestingly, DNA mutations can be detected using fluorescently labeled oligonucleotide probes with only one fluorophore. This review summarizes recent research on single-labeled oligonucleotide probes that exhibit fluorescence changes after encountering target nucleic acids, such as guanine-quenching probes, cyanine-containing probes, probes containing a fluorophore-labeled base, and microenvironment-sensitive probes.

  7. Fluorescence In situ Hybridization: Cell-Based Genetic Diagnostic and Research Applications.

    Science.gov (United States)

    Cui, Chenghua; Shu, Wei; Li, Peining

    2016-01-01

    Fluorescence in situ hybridization (FISH) is a macromolecule recognition technology based on the complementary nature of DNA or DNA/RNA double strands. Selected DNA strands incorporated with fluorophore-coupled nucleotides can be used as probes to hybridize onto the complementary sequences in tested cells and tissues and then visualized through a fluorescence microscope or an imaging system. This technology was initially developed as a physical mapping tool to delineate genes within chromosomes. Its high analytical resolution to a single gene level and high sensitivity and specificity enabled an immediate application for genetic diagnosis of constitutional common aneuploidies, microdeletion/microduplication syndromes, and subtelomeric rearrangements. FISH tests using panels of gene-specific probes for somatic recurrent losses, gains, and translocations have been routinely applied for hematologic and solid tumors and are one of the fastest-growing areas in cancer diagnosis. FISH has also been used to detect infectious microbias and parasites like malaria in human blood cells. Recent advances in FISH technology involve various methods for improving probe labeling efficiency and the use of super resolution imaging systems for direct visualization of intra-nuclear chromosomal organization and profiling of RNA transcription in single cells. Cas9-mediated FISH (CASFISH) allowed in situ labeling of repetitive sequences and single-copy sequences without the disruption of nuclear genomic organization in fixed or living cells. Using oligopaint-FISH and super-resolution imaging enabled in situ visualization of chromosome haplotypes from differentially specified single-nucleotide polymorphism loci. Single molecule RNA FISH (smRNA-FISH) using combinatorial labeling or sequential barcoding by multiple round of hybridization were applied to measure mRNA expression of multiple genes within single cells. Research applications of these single molecule single cells DNA and RNA FISH

  8. Fluorescence In situ Hybridization: Cell-Based Genetic Diagnostic and Research Applications

    Directory of Open Access Journals (Sweden)

    Chenghua Cui

    2016-09-01

    Full Text Available Fluorescence in situ hybridization (FISH is a macromolecule recognition technology based on the complementary nature of DNA or DNA/RNA double strands. Selected DNA strands incorporated with fluorophore-coupled nucleotides can be used as probes to hybridize onto the complementary sequences in tested cells and tissues and then visualized through a fluorescence microscope or an imaging system. This technology was initially developed as a physical mapping tool to delineate genes within chromosomes. Its high analytical resolution to a single gene level and high sensitivity and specificity enabled an immediate application for genetic diagnosis of constitutional common aneuploidies, microdeletion/microduplication syndromes and subtelomeric rearrangements. FISH tests using panels of gene-specific probes for somatic recurrent losses, gains and translocations have been routinely applied for hematologic and solid tumors and are one of the fastest-growing areas in cancer diagnosis. FISH has also been used to detect infectious microbials and parasites like malaria in human blood cells. Recent advances in FISH technology involve various methods for improving probe labeling efficiency and the use of super resolution imaging systems for direct visualization of intra-nuclear chromosomal organization and profiling of RNA transcription in single cells. Cas9-mediated FISH (CASFISH allowed in situ labeling of repetitive sequences and single-copy sequences without the disruption of nuclear genomic organization in fixed or living cells. Using oligopaint-FISH and super-resolution imaging enabled in situ visualization of chromosome haplotypes from differentially specified single-nucleotide polymorphism loci. Single molecule RNA FISH (smRNA-FISH using combinatorial labeling or sequential barcoding by multiple round of hybridization were applied to measure mRNA expression of multiple genes within single cells. Research applications of these single molecule single cells

  9. Gold nanoparticles and the corresponding filter membrane as chemosensors and adsorbents for dual signal amplification detection and fast removal of mercury(ii).

    Science.gov (United States)

    Chen, Gaosong; Hai, Jun; Wang, Hao; Liu, Weisheng; Chen, Fengjuan; Wang, Baodui

    2017-03-02

    Nowadays, the development of a multifunction system for the simultaneous multiple signal amplification detection and fast removal of Hg 2+ remains a major challenge. Herein, we for the first time used gold nanoparticles (Au NPs) and the corresponding filter membrane as chemosensors and adsorbents for dual signal amplification detection and fast removal of Hg 2+ . Such a system was based on the formation of gold amalgam and a gold amalgam-based reaction between rhodamine B (RhB) and NaBH 4 with fluorescence and colorimetric sensing functions. When the gold amalgam catalyzes the reduction of RhB, the red color and orange fluorescence of RhB gradually changed to colorless by switching the amount of Hg 2+ deposited on 13 nm Au NPs. The detection limit of the fluorescence assay and colorimetric assay is 1.16 nM and 2.54 nM for Hg 2+ , respectively. Interestingly, the color and fluorescence of RhB could be recovered when the above colorless reaction solution was exposed to air for about 2 hours. Taking advantage of the above optical phenomenon, a recyclable paper-based sensor has been developed by immobilizing the Au NPs and RhB dye on filter paper and has been successfully used for detection of Hg 2+ in real water samples. In addition, the filter membrane immobilized Au NPs could allow fast removal of mercury ions in Yellow river water and tap water with the removal efficiency close to 99%.

  10. QUANTITATIVE IMAGING AND STATISTICAL ANALYSIS OF FLUORESCENCE IN SITU HYBRIDIZATION (FISH) OF AUREOBASIDIUM PULLULANS. (R823845)

    Science.gov (United States)

    AbstractImage and multifactorial statistical analyses were used to evaluate the intensity of fluorescence signal from cells of three strains of A. pullulans and one strain of Rhodosporidium toruloides, as an outgroup, hybridized with either a universal o...

  11. Morphological spot counting from stacked images for automated analysis of gene copy numbers by fluorescence in situ hybridization.

    Science.gov (United States)

    Grigoryan, Artyom M; Dougherty, Edward R; Kononen, Juha; Bubendorf, Lukas; Hostetter, Galen; Kallioniemi, Olli

    2002-01-01

    Fluorescence in situ hybridization (FISH) is a molecular diagnostic technique in which a fluorescent labeled probe hybridizes to a target nucleotide sequence of deoxyribose nucleic acid. Upon excitation, each chromosome containing the target sequence produces a fluorescent signal (spot). Because fluorescent spot counting is tedious and often subjective, automated digital algorithms to count spots are desirable. New technology provides a stack of images on multiple focal planes throughout a tissue sample. Multiple-focal-plane imaging helps overcome the biases and imprecision inherent in single-focal-plane methods. This paper proposes an algorithm for global spot counting in stacked three-dimensional slice FISH images without the necessity of nuclei segmentation. It is designed to work in complex backgrounds, when there are agglomerated nuclei, and in the presence of illumination gradients. It is based on the morphological top-hat transform, which locates intensity spikes on irregular backgrounds. After finding signals in the slice images, the algorithm groups these together to form three-dimensional spots. Filters are employed to separate legitimate spots from fluorescent noise. The algorithm is set in a comprehensive toolbox that provides visualization and analytic facilities. It includes simulation software that allows examination of algorithm performance for various image and algorithm parameter settings, including signal size, signal density, and the number of slices.

  12. Slit scan flow cytometry of isolated chromosomes following fluorescence hybridization: an approach of online screening for specific chromosomes and chromosome translocations

    NARCIS (Netherlands)

    Hausmann, M.; Dudin, G.; Aten, J. A.; Heilig, R.; Diaz, E.; Cremer, C.

    1991-01-01

    The recently developed methods of non radioactive in situ hybridization of chromosomes offer new aspects for chromosome analysis. Fluorescent labelling of hybridized chromosomes or chromosomal subregions allows to facilitate considerably the detection of specific chromosomal abnormalities. For many

  13. Toward robust high resolution fluorescence tomography: a hybrid row-action edge preserving regularization

    Science.gov (United States)

    Behrooz, Ali; Zhou, Hao-Min; Eftekhar, Ali A.; Adibi, Ali

    2011-02-01

    Depth-resolved localization and quantification of fluorescence distribution in tissue, called Fluorescence Molecular Tomography (FMT), is highly ill-conditioned as depth information should be extracted from limited number of surface measurements. Inverse solvers resort to regularization algorithms that penalize Euclidean norm of the solution to overcome ill-posedness. While these regularization algorithms offer good accuracy, their smoothing effects result in continuous distributions which lack high-frequency edge-type features of the actual fluorescence distribution and hence limit the resolution offered by FMT. We propose an algorithm that penalizes the total variation (TV) norm of the solution to preserve sharp transitions and high-frequency components in the reconstructed fluorescence map while overcoming ill-posedness. The hybrid algorithm is composed of two levels: 1) An Algebraic Reconstruction Technique (ART), performed on FMT data for fast recovery of a smooth solution that serves as an initial guess for the iterative TV regularization, 2) A time marching TV regularization algorithm, inspired by the Rudin-Osher-Fatemi TV image restoration, performed on the initial guess to further enhance the resolution and accuracy of the reconstruction. The performance of the proposed method in resolving fluorescent tubes inserted in a liquid tissue phantom imaged by a non-contact CW trans-illumination FMT system is studied and compared to conventional regularization schemes. It is observed that the proposed method performs better in resolving fluorescence inclusions at higher depths.

  14. Application of Fluorescence In Situ Hybridization (FISH) Technique for the Detection of Genetic Aberration in Medical Science

    Science.gov (United States)

    Ratan, Zubair Ahmed; Zaman, Sojib Bin; Haidere, Mohammad Faisal; Runa, Nusrat Jahan; Akter, Nasrin

    2017-01-01

    Fluorescence in situ hybridization (FISH) is a macromolecule recognition technique, which is considered as a new advent in the field of cytology. Initially, it was developed as a physical mapping tool to delineate genes within chromosomes. The accuracy and versatility of FISH were subsequently capitalized upon in biological and medical research. This visually appealing technique provides an intermediate degree of resolution between DNA analysis and chromosomal investigations. FISH consists of a hybridizing DNA probe, which can be labeled directly or indirectly. In the case of direct labeling, fluorescent nucleotides are used, while indirect labeling is incorporated with reporter molecules that are subsequently detected by fluorescent antibodies or other affinity molecules. FISH is applied to detect genetic abnormalities that include different characteristic gene fusions or the presence of an abnormal number of chromosomes in a cell or loss of a chromosomal region or a whole chromosome. It is also applied in different research applications, such as gene mapping or the identification of novel oncogenes. This article reviews the concept of FISH, its application, and its advantages in medical science.  PMID:28690958

  15. Sensitive detection of mercury and copper ions by fluorescent DNA/Ag nanoclusters in guanine-rich DNA hybridization.

    Science.gov (United States)

    Peng, Jun; Ling, Jian; Zhang, Xiu-Qing; Bai, Hui-Ping; Zheng, Liyan; Cao, Qiu-E; Ding, Zhong-Tao

    2015-02-25

    In this work, we designed a new fluorescent oligonucleotides-stabilized silver nanoclusters (DNA/AgNCs) probe for sensitive detection of mercury and copper ions. This probe contains two tailored DNA sequence. One is a signal probe contains a cytosine-rich sequence template for AgNCs synthesis and link sequence at both ends. The other is a guanine-rich sequence for signal enhancement and link sequence complementary to the link sequence of the signal probe. After hybridization, the fluorescence of hybridized double-strand DNA/AgNCs is 200-fold enhanced based on the fluorescence enhancement effect of DNA/AgNCs in proximity of guanine-rich DNA sequence. The double-strand DNA/AgNCs probe is brighter and stable than that of single-strand DNA/AgNCs, and more importantly, can be used as novel fluorescent probes for detecting mercury and copper ions. Mercury and copper ions in the range of 6.0-160.0 and 6-240 nM, can be linearly detected with the detection limits of 2.1 and 3.4 nM, respectively. Our results indicated that the analytical parameters of the method for mercury and copper ions detection are much better than which using a single-strand DNA/AgNCs. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Dynamic Measurement of Tumor Vascular Permeability and Perfusion using a Hybrid System for Simultaneous Magnetic Resonance and Fluorescence Imaging.

    Science.gov (United States)

    Ren, Wuwei; Elmer, Andreas; Buehlmann, David; Augath, Mark-Aurel; Vats, Divya; Ripoll, Jorge; Rudin, Markus

    2016-04-01

    Assessing tumor vascular features including permeability and perfusion is essential for diagnostic and therapeutic purposes. The aim of this study was to compare fluorescence and magnetic resonance imaging (MRI)-based vascular readouts in subcutaneously implanted tumors in mice by simultaneous dynamic measurement of tracer uptake using a hybrid fluorescence molecular tomography (FMT)/MRI system. Vascular permeability was measured using a mixture of extravascular imaging agents, GdDOTA and the dye Cy5.5, and perfusion using a mixture of intravascular agents, Endorem and a fluorescent probe (Angiosense). Dynamic fluorescence reflectance imaging (dFRI) was integrated into the hybrid system for high temporal resolution. Excellent correspondence between uptake curves of Cy5.5/GdDOTA and Endorem/Angiosense has been found with correlation coefficients R > 0.98. The two modalities revealed good agreement regarding permeability coefficients and centers-of-gravity of the imaging agent distribution. The FMT/dFRI protocol presented is able to accurately map physiological processes and poses an attractive alternative to MRI for characterizing tumor neoangiogenesis.

  17. Spatial Exploration and Characterization of Endozoicomonas spp. Bacteria in Stylophora pistillata Using Fluorescence In Situ Hybridization

    KAUST Repository

    Alsheikh-­Hussain, Areej

    2011-12-12

    Studies of coral-­associated bacterial communities have repeatedly demonstrated that the microbial assemblages of the coral host are highly specific and complex. In particular, bacterial community surveys of scleractinian and soft corals from geographically diverse reefs continually uncover a high abundance of sequences affiliated with the Gammaproteobacteria genus Endozoicomonas. The role of these bacteria within the complex coral holobiont is currently unknown. In order to localize these cells and gain an understanding of their potential interactions within the coral, we developed a fluorescence in situ hybridization(FISH) approach for reef-­building coral tissues. Using a custom small-­subunit ribosomal RNA gene database, we developed two Endozoicomonas-­specific probes that cover almost all known coral-­associated Endozoicomonas sequences. Probe hybridization conditions were quantitatively evaluated against target and non-­target bacterial cultures using fluorescence microscopy. Using these experimentally tested conditions, probes were then hybridized to the branching coral Stylophora pistillata, obtained from the Red Sea, using whole mount and paraffin embedding techniques. This study allowed preliminary spatial exploration and characterization of Endozoicomonas in coral, which has provided insight into their functional role and interactions within the coral holobiont.

  18. A Reagentless Amperometric Formaldehyde-Selective Chemosensor Based on Platinized Gold Electrodes

    OpenAIRE

    Demkiv, Olha; Smutok, Oleh; Gonchar, Mykhailo; Nisnevitch, Marina

    2017-01-01

    Fabrication and characterization of a new amperometric chemosensor for accurate formaldehyde analysis based on platinized gold electrodes is described. The platinization process was performed electrochemically on the surface of 4 mm gold planar electrodes by both electrolysis and cyclic voltamperometry. The produced electrodes were characterized using scanning electron microscopy and X-ray spectral analysis. Using a low working potential (0.0 V vs. Ag/AgCl) enabled an essential increase in th...

  19. Fluorescence in situ hybridization karyotyping reveals the presence of two distinct genomes in the taxon Aegilops tauschii

    OpenAIRE

    Zhao, Laibin; Ning, Shunzong; Yi, Yingjin; Zhang, Lianquan; Yuan, Zhongwei; Wang, Jirui; Zheng, Youliang; Hao, Ming; Liu, Dengcai

    2018-01-01

    Background Aegilops tauschii is the donor of the bread wheat D genome. Based on spike morphology, the taxon has conventionally been subdivided into ssp. tauschii and ssp. strangulata. The present study was intended to address the poor match between this whole plant morphology-based subdivision and genetic relationships inferred from genotyping by fluorescence in situ hybridization karyotyping a set of 31 Ae. tauschii accessions. Results The distribution of sites hybridizing to the two probes ...

  20. Direct fluorescence in situ hybridization on human metaphase chromosomes using quantum dot-platinum labeled DNA probes

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Gyoyeon [Chemical Kinomics Research Center, Future Convergence Research Division, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 136-791 (Korea, Republic of); Biological Chemistry, Korea University of Science and Technology, 217, Gajeong-ro, Yuseong-gu, Deajeon (Korea, Republic of); Lee, Hansol [Chemical Kinomics Research Center, Future Convergence Research Division, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 136-791 (Korea, Republic of); Lee, Jiyeon, E-mail: jylee@kist.re.kr [Chemical Kinomics Research Center, Future Convergence Research Division, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 136-791 (Korea, Republic of); Biological Chemistry, Korea University of Science and Technology, 217, Gajeong-ro, Yuseong-gu, Deajeon (Korea, Republic of)

    2015-11-13

    The telomere shortening in chromosomes implies the senescence, apoptosis, or oncogenic transformation of cells. Since detecting telomeres in aging and diseases like cancer, is important, the direct detection of telomeres has been a very useful biomarker. We propose a telomere detection method using a newly synthesized quantum dot (QD) based probe with oligonucleotide conjugation and direct fluorescence in situ hybridization (FISH). QD-oligonucleotides were prepared with metal coordination bonding based on platinum-guanine binding reported in our previous work. The QD-oligonucleotide conjugation method has an advantage where any sequence containing guanine at the end can be easily bound to the starting QD-Pt conjugate. A synthesized telomeric oligonucleotide was bound to the QD-Pt conjugate successfully and this probe hybridized specifically on the telomere of fabricated MV-4-11 and MOLT-4 chromosomes. Additionally, the QD-telomeric oligonucleotide probe successfully detected the telomeres on the CGH metaphase slide. Due to the excellent photostability and high quantum yield of QDs, the QD-oligonucleotide probe has high fluorescence intensity when compared to the organic dye-oligonucleotide probe. Our QD-oligonucleotide probe, conjugation method of this QD probe, and hybridization protocol with the chromosomes can be a useful tool for chromosome painting and FISH. - Highlights: • We prepared a probe linked between QD and telomeric oligonucleotide with platinum-guanine bonding. • Telomeres were detected by our new telomere probes successfully in three different human metaphase chromosomes. • QDPt-DNA probe has high fluorescence intensity in comparison with organic dye-DNA probe.

  1. Fluorescence in situ hybridization: an improved method of quantitating chromosome damage and repair

    International Nuclear Information System (INIS)

    Brown, J.M.; Evans, J.W.

    1993-01-01

    The authors combined fluorescence in situ hybridization (FISH) with specific full-length chromosome probes using the premature chromosome condensation (PCC) technique chromosome condensation (PCC) technique to simplify scoring chromosome damage and its repair. They have shown the technique works well and enables breaks and exchanges to be readily detected and scored in individual chromosomes. A chromosome 4 full-length specific library has been used in initial studies. (UK)

  2. Salicylimine-Based Colorimetric and Fluorescent Chemosensor for Selective Detection of Cyanide in Aqueous Buffer

    Energy Technology Data Exchange (ETDEWEB)

    Noh, Jin Young; Hwang, In Hong; Kim, Hyun; Song, Eun Joo; Kim, Kyung Beom; Kim, Cheal [Seoul National Univ., Seoul (Korea, Republic of)

    2013-07-15

    A simple colorimetric and fluorescent anion sensor 1 based on salicylimine showed a high selectivity and sensitivity for detection of cyanide in aqueous solution. The receptor 1 showed high selectivity toward CN{sup -} ions in a 1:1 stoichiometric manner, which induces a fast color change from colorless to orange and a dramatic enhancement in fluorescence intensity selectively for cyanide anions over other anions. Such selectivity resulted from the nucleophilic addition of CN{sup -} to the carbon atom of an electron-deficient imine group. The sensitivity of the fluorescence-based assay (0.06 μM) is below the 1.9 μM suggested by the World Health Organization (WHO) as the maximum allowable cyanide concentration in drinking water, capable of being a practical system for the monitoring of CN. concentrations in aqueous samples.

  3. Determination of HER2 amplification in primary breast cancer using dual-colour chromogenic in situ hybridization is comparable to fluorescence in situ hybridization: a European multicentre study involving 168 specimens

    Science.gov (United States)

    García-Caballero, Tomás; Grabau, Dorthe; Green, Andrew R; Gregory, John; Schad, Arno; Kohlwes, Elke; Ellis, Ian O; Watts, Sarah; Mollerup, Jens

    2010-01-01

    García-Caballero T, Grabau D, Green A R, Gregory J, Schad A, Kohlwes E, Ellis I O, Watts S & Mollerup J (2010) Histopathology56, 472–480 Determination of HER2 amplification in primary breast cancer using dual-colour chromogenic in situ hybridization is comparable to fluorescence in situ hybridization: a European multicentre study involving 168 specimens Aims: Fluorescence in situ hybridization (FISH) can be used to reveal several genomic imbalances relevant to proper cancer diagnosis and to the correct treatment regime. However, FISH requires expensive and advanced fluorescence microscopes in addition to expertise in fluorescence microscopy. To determine whether a newly developed dual-colour chromogenic in situ hybridization (CISH) method is a suitable alternative to FISH, we analysed the human epidermal growth factor receptor 2 gene (HER2) amplification level of 168 breast cancer specimens using dual-colour CISH and FISH and compared the results. Methods and results: We found 100% agreement between HER2 status determined by FISH and dual-colour CISH. Furthermore, we observed that the time used to score slides was significantly reduced by 28% in dual-colour CISH compared with the FISH protocol. Concordance between HER2 protein status and dual-colour CISH or FISH was equally good with an overall agreement of 96.8%. Correlation between the HER2/centromere 17 gene ratios obtained with dual-colour CISH and FISH was highly significant with an overall correlation coefficient (ρ) of 0.96. Conclusions: We conclude that dual-colour CISH and bright field microscopy are excellent alternatives to FISH when analysing the HER2 status of primary breast cancer. PMID:20459554

  4. Multicolor fluorescent in situ hybridization to define abutting and overlapping gene expression in the embryonic zebrafish brain

    Directory of Open Access Journals (Sweden)

    Hauptmann Giselbert

    2011-04-01

    Full Text Available Abstract Background In recent years, mapping of overlapping and abutting regulatory gene expression domains by chromogenic two-color in situ hybridization has helped define molecular subdivisions of the developing vertebrate brain and shed light on its basic organization. Despite the benefits of this technique, visualization of overlapping transcript distributions by differently colored precipitates remains difficult because of masking of lighter signals by darker color precipitates and lack of three-dimensional visualization properties. Fluorescent detection of transcript distributions may be able to solve these issues. However, despite the use of signal amplification systems for increasing sensitivity, fluorescent detection in whole-mounts suffers from rapid quenching of peroxidase (POD activity compared to alkaline phosphatase chromogenic reactions. Thus, less strongly expressed genes cannot be efficiently detected. Results We developed an optimized procedure for fluorescent detection of transcript distribution in whole-mount zebrafish embryos using tyramide signal amplification (TSA. Conditions for hybridization and POD-TSA reaction were optimized by the application of the viscosity-increasing polymer dextran sulfate and the use of the substituted phenol compounds 4-iodophenol and vanillin as enhancers of POD activity. In combination with highly effective bench-made tyramide substrates, these improvements resulted in dramatically increased signal-to-noise ratios. The strongly enhanced signal intensities permitted fluorescent visualization of less abundant transcripts of tissue-specific regulatory genes. When performing multicolor fluorescent in situ hybridization (FISH experiments, the highly sensitive POD reaction conditions required effective POD inactivation after each detection cycle by glycine-hydrochloric acid treatment. This optimized FISH procedure permitted the simultaneous fluorescent visualization of up to three unique transcripts

  5. Fluorescent silica hybrid materials containing benzimidazole dyes obtained by sol-gel method and high pressure processing

    International Nuclear Information System (INIS)

    Hoffmann, Helena Sofia; Stefani, Valter; Benvenutti, Edilson Valmir; Costa, Tania Maria Haas; Gallas, Marcia Russman

    2011-01-01

    Research highlights: → Sol-gel technique was used to obtain silica based hybrid materials containing benzimidazole dyes. → The sol-gel catalysts, HF and NaF, produce xerogels with different optical and textural characteristics. → High pressure technique (6.0 GPa) was used to produce fluorescent and transparent silica compacts with the dyes entrapped in closed pores, maintaining their optical properties. → The excited state intramolecular proton transfer (ESIPT) mechanism of benzimidazole dyes was studied by steady-state fluorescence spectroscopy for the monoliths, powders, and compacts. - Abstract: New silica hybrid materials were obtained by incorporation of two benzimidazole dyes in the silica network by sol-gel technique, using tetraethylorthosilicate (TEOS) as inorganic precursor. Several syntheses were performed with two catalysts (HF and NaF) producing powders and monoliths with different characteristics. The dye 2-(2'-hydroxy-5'-aminophenyl)benzimidazole was dispersed and physically adsorbed in the matrix, and the dye 2'(5'-N-(3-triethoxysilyl)propylurea-2'-hydroxyphenyl)benzimidazole was silylated, becoming chemically bonded to the silica network. High pressure technique was used to produce fluorescent and transparent silica compacts with the silylated and incorporated dye, at 6.0 GPa and room temperature. The excited state intramolecular proton transfer (ESIPT) mechanism of benzimidazole dyes was studied by steady-state fluorescence spectroscopy for the monoliths, powders, and compacts. The influence of the syntheses conditions was investigated by textural analysis using nitrogen adsorption isotherms.

  6. Recyclable fluorescent gold nanocluster membrane for visual sensing of copper(II) ion in aqueous solution.

    Science.gov (United States)

    Lin, Zhijin; Luo, Fenqiang; Dong, Tongqing; Zheng, Liyan; Wang, Yaxian; Chi, Yuwu; Chen, Guonan

    2012-05-21

    Recently, metal-selective fluorescent chemosensors have attracted intense attention for their simple and real-time tracking of metal ions in environmental samples. However, most of the existing fluorescent sensors are one-off sensors and thus suffer from large amount of reagent consumption, significant experimental cost and raising the risk of environmental pollution. In this paper, we developed a green (low reagent consumption, low-toxicity reagent use), recyclable, and visual sensor for Cu(2+) in aqueous solution by using a fluorescent gold nanoclusters membrane (FGM) as the sensing unit, basing on our findings on gold nanoclusters (Au NCs) that the bovine serum albumin (BSA)-coated Au NCs exhibit excellent membrane-forming ability under the isoelectric point of BSA, and thus enable us to obtain a new type of sensing membrane (i.e. FGM) by denaturing Au NCs; the fluorescence of FGM can be significantly quenched by Cu(2+) ion, and the quenched fluorescence can be totally recovered by histidine; the as-prepared FGM is very stable and recyclable, which makes it an ideal sensing material.

  7. Intrinsically Labeled Fluorescent Oligonucleotide Probes on Quantum Dots for Transduction of Nucleic Acid Hybridization.

    Science.gov (United States)

    Shahmuradyan, Anna; Krull, Ulrich J

    2016-03-15

    Quantum dots (QDs) have been widely used in chemical and biosensing due to their unique photoelectrical properties and are well suited as donors in fluorescence resonance energy transfer (FRET). Selective hybridization interactions of oligonucleotides on QDs have been determined by FRET. Typically, the QD-FRET constructs have made use of labeled targets or have implemented labeled sandwich format assays to introduce dyes in proximity to the QDs for the FRET process. The intention of this new work is to explore a method to incorporate the acceptor dye into the probe molecule. Thiazole orange (TO) derivatives are fluorescent intercalating dyes that have been used for detection of double-stranded nucleic acids. One such dye system has been reported in which single-stranded oligonucleotide probes were doubly labeled with adjacent thiazole orange derivatives. In the absence of the fully complementary (FC) oligonucleotide target, the dyes form an H-aggregate, which results in quenching of fluorescence emission due to excitonic interactions between the dyes. The hybridization of the FC target to the probe provides for dissociation of the aggregate as the dyes intercalate into the double stranded duplex, resulting in increased fluorescence. This work reports investigation of the dependence of the ratiometric signal on the type of linkage used to conjugate the dyes to the probe, the location of the dye along the length of the probe, and the distance between adjacent dye molecules. The limit of detection for 34mer and 90mer targets was found to be identical and was 10 nM (2 pmol), similar to analogous QD-FRET using labeled oligonucleotide target. The detection system could discriminate a one base pair mismatch (1BPM) target and was functional without substantial compromise of the signal in 75% serum. The 1BPM was found to reduce background signal, indicating that the structure of the mismatch affected the environment of the intercalating dyes.

  8. Fluorescent deep-blue and hybrid white emitting devices based on a naphthalene-benzofuran compound

    KAUST Repository

    Yang, Xiaohui

    2013-08-01

    We report the synthesis, photophysics and electrochemical properties of naphthalene-benzofuran compound 1 and its application in organic light emitting devices. Fluorescent deep-blue emitting devices employing 1 as the emitting dopant embedded in 4-4′-bis(9-carbazolyl)-2,2′-biphenyl (CBP) host show the peak external quantum efficiency of 4.5% and Commission Internationale d\\'Énclairage (CIE) coordinates of (0.15, 0.07). Hybrid white devices using fluorescent blue emitting layer with 1 and a phosphorescent orange emitting layer based on an iridium-complex show the peak external quantum efficiency above 10% and CIE coordinates of (0.31, 0.37). © 2013 Published by Elsevier B.V.

  9. An extremely sensitive monoboronic acid based fluorescent sensor for glucose

    International Nuclear Information System (INIS)

    Sun Xiangying; Liu Bin; Jiang Yunbao

    2004-01-01

    An extremely sensitive monoboronic acid based fluorescent sensor for glucose was developed. This was carried out by assembling a fluorescent monoboronic acid, 3-aminophenylboronic acid (PBA) indirectly onto gold surface via its electrostatic interaction with cysteine (Cys) that was directly assembled on the gold surface. The formation of self-assembled bilayers (SAB) was confirmed and primarily characterized by cyclic voltammetry and X-ray photoelectron spectra (XPS). The SAB containing PBA was found fluorescent and its fluorescence showed an extremely high sensitivity to the presence of glucose and other monosaccharides such as galactose and fructose with quenching constants at 10 8 M -1 order of magnitude compared to those at 10 2 M -1 in bulk solutions. The quenching constants were found to vary in the order of D-glucose>D-galactose>D-fructose>D-mannose that is different from that in bulk solution which shows the highest binding affinity toward D-fructose and very low sensitivity toward glucose. The reported monoboronic acid based SAB fluorescent sensor showed the highest sensitivity towards glucose with the capacity of detecting saccharides of concentration down to nanomolar level. It was also demonstrated that the fluorescence from PBA/Cys/Au can be easily recovered after each measurement event and therefore also represents a new reusable method for immobilizing reagent in fabricating chemosensors

  10. Structurally tuned benzo[h]chromene derivative as Pb2+ selective ‘turn-on’ fluorescence sensor for living cell imaging

    International Nuclear Information System (INIS)

    Sinha, Sougata; Rani Koner, Rik; Kumar, Sunil; Mathew, Jomon; Roy, Anindita; Kanti Mukhopadhyay, Subhra; Nandi, Chayan K.; Ghosh, Subrata

    2013-01-01

    A benzo[h]chromene derivative, 2-amino-4-phenyl-4H-benzo[h]chromene-3-carbonitrile 1, has been utilized as ‘Turn On’ fluorescence chemosensor for the selective detection of Pb 2+ . The title compound 1 was synthesized in one step using a multicomponent condensation reaction (MCR), and characterized using various spectroscopic techniques. The selectivity was tested over a range of 17 different metal and non-metal ions. Compound 1 was found to be weak fluorescent (Φ 1 =0.06) because of photoinduced electron transfer (PET). The presence of 2 equiv of Pb 2+ showed a significant increase in fluorescence quantum yield (Φ 1−Pb 2+ =0.132). A change in weak blue emission of 1 to a glowing green emission along with a prominent red shift (26 nm) in emission band was observed upon addition of Pb 2+ to a methanolic solution of 1. The complexation of 1 with Pb 2+ was proved by mass spectroscopy and NMR studies. Some of our experimental findings have been supported by theoretical studies. Compound 1 was found to be easily permeable to living cells without causing any harm and ultimately was used to detect effectively Pb 2+ in living system. -- Highlights: • Benzo[h]chromene derivative (1) as fluorogenic chemosensor for Pb 2+ . • One-step synthesis of the sensor using multicomponent condensation reaction. • The sensor follows a ‘turn-on’ mechanism through CHEF. • 1–Pb 2+ complex was characterized by various spectroscopic techniques. • The probe can detect Pb 2+ in living cells

  11. Efficient fluorescent deep-blue and hybrid white emitting devices based on carbazole/benzimidazole compound

    KAUST Repository

    Yang, Xiaohui

    2011-07-28

    We report the synthesis, photophysics, and electrochemical characterization of carbazole/benzimidazole-based compound (Cz-2pbb) and efficient fluorescent deep-blue light emitting devices based on Cz-2pbb with the peak external quantum efficiency of 4.1% and Commission Internationale dÉnclairage coordinates of (0.16, 0.05). Efficient deep-blue emission as well as high triplet state energy of Cz-2pbb enables fabrication of hybrid white organic light emitting diodes with a single emissive layer. Hybrid white emitting devices based on Cz-2pbb show the peak external quantum efficiency exceeding 10% and power efficiency of 14.8 lm/W at a luminance of 500 cd/m2. © 2011 American Chemical Society.

  12. Highly fluorescent and morphology-controllable graphene quantum dots-chitosan hybrid xerogels for in vivo imaging and pH-sensitive drug carrier

    Energy Technology Data Exchange (ETDEWEB)

    Lv, Ouyang; Tao, Yongxin; Qin, Yong [Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164 (China); Chen, Chuanxiang [School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003 (China); Pan, Yan; Deng, Linhong [Institute of Biomedical Engineering and Health Sciences, Changzhou University, Changzhou 213164 (China); Liu, Li [School of pharmaceutical Engineering & Life Science, Changzhou University, Changzhou 213164 (China); Kong, Yong, E-mail: yzkongyong@126.com [Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164 (China)

    2016-10-01

    Highly fluorescent graphene quantum dots (GQDs)-chitosan (CS) hybrid xerogels (GQDs-CS) were facilely synthesized, and the morphology of GQDs-CS was controllable by varying the content of GQDs in the xerogel. The GQDs-CS exhibited a porous and three-dimensional (3D) network structure when the content of GQDs reached 43% (wt%) in the xerogel, which was beneficial for drug loading and sustained release. The as-prepared GQDs-CS could also be applied for in vivo imaging since it showed strong blue, green and red luminescence under excitation of varying wavelengths. Moreover, the pH-induced protonation/deprotonation of the –NH{sub 2} groups on CS chains can result in a pH-dependent drug delivery behavior of the GQDs-CS hybrid xerogel. - Graphical abstract: Highly fluorescent and morphology-controllable graphene quantum dots-chitosan hybrid xerogels for in vivo imaging and pH-sensitive drug carrier. Display Omitted - Highlights: • Highly fluorescent GQDs-CS hybrid xerogels were facilely synthesized. • The as-made xerogels exhibited various morphologies with different GQDs contents. • The GQDs-CS exhibited a porous and 3D network when the content of GQDs reached 43%. • The GQDs-CS could be applied for in vivo imaging since it showed strong luminescence. • The protonation/deprotonation of –NH{sub 2} on CS result in a pH-dependent drug delivery.

  13. Highly fluorescent and morphology-controllable graphene quantum dots-chitosan hybrid xerogels for in vivo imaging and pH-sensitive drug carrier

    International Nuclear Information System (INIS)

    Lv, Ouyang; Tao, Yongxin; Qin, Yong; Chen, Chuanxiang; Pan, Yan; Deng, Linhong; Liu, Li; Kong, Yong

    2016-01-01

    Highly fluorescent graphene quantum dots (GQDs)-chitosan (CS) hybrid xerogels (GQDs-CS) were facilely synthesized, and the morphology of GQDs-CS was controllable by varying the content of GQDs in the xerogel. The GQDs-CS exhibited a porous and three-dimensional (3D) network structure when the content of GQDs reached 43% (wt%) in the xerogel, which was beneficial for drug loading and sustained release. The as-prepared GQDs-CS could also be applied for in vivo imaging since it showed strong blue, green and red luminescence under excitation of varying wavelengths. Moreover, the pH-induced protonation/deprotonation of the –NH_2 groups on CS chains can result in a pH-dependent drug delivery behavior of the GQDs-CS hybrid xerogel. - Graphical abstract: Highly fluorescent and morphology-controllable graphene quantum dots-chitosan hybrid xerogels for in vivo imaging and pH-sensitive drug carrier. Display Omitted - Highlights: • Highly fluorescent GQDs-CS hybrid xerogels were facilely synthesized. • The as-made xerogels exhibited various morphologies with different GQDs contents. • The GQDs-CS exhibited a porous and 3D network when the content of GQDs reached 43%. • The GQDs-CS could be applied for in vivo imaging since it showed strong luminescence. • The protonation/deprotonation of –NH_2 on CS result in a pH-dependent drug delivery.

  14. Functionalized graphene oxide/Fe3O4 hybrids for cellular magnetic resonance imaging and fluorescence labeling.

    Science.gov (United States)

    Zhou, Chaohui; Wu, Hui; Wang, Mingliang; Huang, Chusen; Yang, Dapeng; Jia, Nengqin

    2017-09-01

    In this work, we developed a T 2 -weighted contrast agent based on graphene oxide (GO)/Fe 3 O 4 hybrids for efficient cellular magnetic resonance imaging (MRI). The GO/Fe 3 O 4 hybrids were obtained by combining with co-precipitation method and pyrolysis method. The structural, surface and magnetic characteristics of the hybrids were systematically characterized by transmission electron microscopy (TEM), vibrating sample magnetometer (VSM), AFM, Raman, FT-IR and XRD. The GO/Fe 3 O 4 hybrids were functionalized by modifying with anionic and cationic polyelectrolyte through layer-by-layer assembling. The fluorescence probe fluorescein isothiocyanate (FITC) was further loaded on the surface of functionalized GO/Fe 3 O 4 hybrids to trace the location of GO/Fe 3 O 4 hybrids in cells. Functionalized GO/Fe 3 O 4 hybrids possess good hydrophilicity, less cytotoxicity, high MRI enhancement with the relaxivity (r 2 ) of 493mM -1 s -1 as well as cellular MRI contrast effect. These obtained results indicated that the functionalized GO/Fe 3 O 4 hybrids could have great potential to be utilized as cellular MRI contrast agents for tumor early diagnosis and monitoring. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Sensitive detection of strong acidic condition by a novel rhodamine-based fluorescent pH chemosensor.

    Science.gov (United States)

    Tan, Jia-Lian; Yang, Ting-Ting; Liu, Yu; Zhang, Xue; Cheng, Shu-Jin; Zuo, Hua; He, Huawei

    2016-05-01

    A novel rhodamine-based fluorescent pH probe responding to extremely low pH values has been synthesized and characterized. This probe showed an excellent photophysical response to pH on the basis that the colorless spirocyclic structure under basic conditions opened to a colored and highly fluorescent form under extreme acidity. The quantitative relationship between fluorescence intensity and pH value (1.75-2.62) was consistent with the equilibrium equation pH = pKa + log[(Imax - I)/(I - Imin)]. This sensitive pH probe was also characterized with good reversibility and no interaction with interfering metal ions, and was successfully applied to image Escherichia coli under strong acidity. Copyright © 2015 John Wiley & Sons, Ltd.

  16. Interfacial transduction of nucleic acid hybridization using immobilized quantum dots as donors in fluorescence resonance energy transfer.

    Science.gov (United States)

    Algar, W Russ; Krull, Ulrich J

    2009-01-06

    Fluorescence resonance energy transfer (FRET) using immobilized quantum dots (QDs) as energy donors was explored as a transduction method for the detection of nucleic acid hybridization at an interface. This research was motivated by the success of the QD-FRET-based transduction of nucleic acid hybridization in solution-phase assays. This new work represents a fundamental step toward the assembly of a biosensor, where immobilization of the selective chemistry on a surface is desired. After immobilizing QD-probe oligonucleotide conjugates on optical fibers, a demonstration of the retention of selectivity was achieved by the introduction of acceptor (Cy3)-labeled single-stranded target oligonucleotides. Hybridization generated the proximity required for FRET, and the resulting fluorescence spectra provided an analytical signal proportional to the amount of target. This research provides an important framework for the future development of nucleic acid biosensors based on QDs and FRET. The most important findings of this work are that (1) a QD-FRET solid-phase hybridization assay is viable and (2) a passivating layer of denatured bovine serum albumin alleviates nonspecific adsorption, ultimately resulting in (3) the potential for a reusable assay format and mismatch discrimination. In this, the first incarnation of a solid-phase QD-FRET hybridization assay, the limit of detection was found to be 5 nM, and the dynamic range was almost 2 orders of magnitude. Selective discrimination of the target was shown using a three-base-pairs mismatch from a fully complementary sequence. Despite a gradual loss of signal, reuse of the optical fibers over multiple cycles of hybridization and dehybridization was possible. Directions for further improvement of the analytical performance by optimizing the design of the QD-probe oligonucleotide interface are identified.

  17. Distribution of 45S rDNA in Modern Rose Cultivars (Rosa hybrida), Rosa rugosa, and Their Interspecific Hybrids Revealed by Fluorescence in situ Hybridization.

    Science.gov (United States)

    Ding, Xiao-Liu; Xu, Ting-Liang; Wang, Jing; Luo, Le; Yu, Chao; Dong, Gui-Min; Pan, Hui-Tang; Zhang, Qi-Xiang

    2016-01-01

    To elucidate the evolutionary dynamics of the location and number of rDNA loci in the process of polyploidization in the genus Rosa, we examined 45S rDNA sites in the chromosomes of 6 modern rose cultivars (R. hybrida), 5 R. rugosa cultivars, and 20 hybrid progenies by fluorescence in situ hybridization. Variation in the number of rDNA sites in parents and their interspecific hybrids was detected. As expected, 4 rDNA sites were observed in the genomes of 4 modern rose cultivars, while 3 hybridization sites were observed in the 2 others. Two expected rDNA sites were found in 2 R. rugosa cultivars, while in the other 3 R. rugosa cultivars 4 sites were present. Among the 20 R. hybrida × R. rugosa offspring, 13 carried the expected number of rDNA sites, and 1 had 6 hybridization sites, which exceeded the expected number by far. The other 6 offspring had either 2 or 3 hybridization sites, which was less than expected. Differences in the number of rDNA loci were observed in interspecific offspring, indicating that rDNA loci exhibit instability after distant hybridization events. Abnormal chromosome pairing may be the main factor explaining the variation in rDNA sites during polyploidization. © 2016 S. Karger AG, Basel.

  18. Combined Confocal and Wide-Field High-Resolution Cytometry of Fluorescent In Situ Hybridization-Stained Cells

    Czech Academy of Sciences Publication Activity Database

    Kozubek, Michal; Kozubek, Stanislav; Lukášová, Emilie; Bártová, Eva; Skalníková, M.; Matula, Pa.; Matula, Pe.; Jirsová, Pavla; Cafourková, Alena; Koutná, Irena

    2001-01-01

    Roč. 45, č. 1 (2001), s. 1-12 ISSN 0196-4763 R&D Projects: GA MŠk VS97031; GA ČR GA202/99/P008; GA AV ČR IBS5004010 Institutional research plan: CEZ:AV0Z5004920 Keywords : high-resolution cytometry * fluorescence in situ hybridization * interphase nuclei Subject RIV: BO - Biophysics Impact factor: 2.220, year: 2001

  19. Fluorescence in situ hybridization detection of cytogenetic abnormalities and prognosis in multiple myeloma

    Directory of Open Access Journals (Sweden)

    Zhou Xu

    2015-01-01

    Full Text Available We evaluated the prognosis of patients with newly diagnosed multiple myeloma (MM and attempted to find a suitable treatment strategy for them. Interphase fluorescence in situ hybridization (FISH detection was performed on 57 patients with MM. The following probes: IgH, p53, 1q21, RB1, and D13S319 specific for the rearrangements of 14q32, 17p13, 1q21 and 13q14 were used. Fluorescent hybridization signals were observed using an Olympus BX60 epifluorescence microscope equipped with filters for detecting fluoroisothiocyanate (FITC, Texas red, and 4'-6-Diamidino-2-phenylindole (DAPI. Triple color clone-specific images were captured using a Quips XL genetic workstation. The mortalities in patients with moderate prognosis (66.7% and poor prognosis (50% were significantly higher compared with that in patients with good prognosis (15%, P<0.05. All the patients in good and moderate prognosis groups achieved complete remission (CR/very good partial remission (VGPR/partial remission (PR, whereas only half of the cases in the poor prognosis group reached this level. Patients 2 supported by autologous hematopoietic stem-cell transplantation presented CR/PR and long survival. For those with poor prognosis, a proper therapeutic regimen and timely transplantation, especially tandem transplantation, was necessary due to the rapid progression and complications.

  20. Unlocked Nucleic Acids with a Pyrene-Modified Uracil: Synthesis, Hybridization Studies, Fluorescent Properties and i-Motif Stability

    Czech Academy of Sciences Publication Activity Database

    Perlíková, Pavla; Karlsen, K. K.; Pedersen, E. B.; Wengel, J.

    2014-01-01

    Roč. 15, č. 1 (2014), s. 146-156 ISSN 1439-4227 Grant - others:European Research Council(XE) FP7-268776 Institutional support: RVO:61388963 Keywords : fluorescence * i-motifs * nucleic acid hybridization * oligonucleotides * unlocked nucleic acids Subject RIV: CE - Biochemistry Impact factor: 3.088, year: 2014

  1. Fluorescence in situ hybridization and molecular studies in infertile men with dysplasia of the fibrous sheath.

    Science.gov (United States)

    Baccetti, Baccio; Collodel, Giulia; Gambera, Laura; Moretti, Elena; Serafini, Francesca; Piomboni, Paola

    2005-07-01

    To perform fluorescence in situ hybridization (FISH) and molecular analysis in patients with the genetic sperm defect "dysplasia of the fibrous sheath" (DFS). Retrospective study. Regional Referral Center for Male Infertility, Siena, Italy. Twelve infertile patients with DFS sperm defects. Family history, lymphocytic karyotype, physical and hormonal assays, semen analysis. The DFS sperm phenotype was defined by light, fluorescent, and electron microscopy. Sperm chromosomal constitution was examined by FISH. Gene deletions were tested by polymerase chain reaction. The genetic sperm defect DFS was determined by transmission and scanning electron microscopy. Immunofluorescence staining of A-kinase anchoring protein 4 (AKAP4) showed a moderate and diffuse signal, revealing a disorganized and incompletely assembled fibrous sheath. In 11 of 12 DFS patients, polymerase chain reaction for detecting the presence of partial sequence of AKAP4/AKAP3 binding regions gave positive results. Fluorescence in situ hybridization was performed in decondensed sperm nuclei with probes for chromosomes 18, X, and Y. The mean disomy frequency of chromosome 18 was in the normal range, whereas the mean disomy frequencies of sex chromosomes and diploidies were twice those of controls. These results should be considered when DFS sperm are used in assisted reproductive technology, owing to the high risk of transmission of chromosomal unbalance and of DFS sperm defects to male offspring.

  2. Cleavable DNA-protein hybrid molecular beacon: A novel efficient signal translator for sensitive fluorescence anisotropy bioassay.

    Science.gov (United States)

    Hu, Pan; Yang, Bin

    2016-01-15

    Due to its unique features such as high sensitivity, homogeneous format, and independence on fluorescent intensity, fluorescence anisotropy (FA) assay has become a hotspot of study in oligonucleotide-based bioassays. However, until now most FA probes require carefully customized structure designs, and thus are neither generalizable for different sensing systems nor effective to obtain sufficient signal response. To address this issue, a cleavable DNA-protein hybrid molecular beacon was successfully engineered for signal amplified FA bioassay, via combining the unique stable structure of molecular beacon and the large molecular mass of streptavidin. Compared with single DNA strand probe or conventional molecular beacon, the DNA-protein hybrid molecular beacon exhibited a much higher FA value, which was potential to obtain high signal-background ratio in sensing process. As proof-of-principle, this novel DNA-protein hybrid molecular beacon was further applied for FA bioassay using DNAzyme-Pb(2+) as a model sensing system. This FA assay approach could selectively detect as low as 0.5nM Pb(2+) in buffer solution, and also be successful for real samples analysis with good recovery values. Compatible with most of oligonucleotide probes' designs and enzyme-based signal amplification strategies, the molecular beacon can serve as a novel signal translator to expand the application prospect of FA technology in various bioassays. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Heavy ion-induced chromosomal aberrations analyzed by fluorescence in situ hybridization

    International Nuclear Information System (INIS)

    Durante, M.; Gialanella, G.; Grossi, G.; Pugliese, M.; Cella, L.; Greco, O.; George, K.; Yang, T.C.

    1997-01-01

    We have investigated the effectiveness of heavy ions in the induction of chromosomal aberrations in mammalian cells by the recent technique of fluorescence in situ hybridization (FISH) with whole-chromosome probes. FISH-painting was used both in metaphase and interphase (prematurely condensed) chromosomes. The purpose of our experiments was to address the following problems: (a) the ratio of different types of aberrations as a function of radiation quality (search for biomarkers); (b) the ratio between aberrations scored in interphase and metaphase as a function of radiation quality (role of apoptosis); (c) differences between cytogenetic effects produced by different ions at the same LET (role of track structure). (orig./MG)

  4. Heavy ion-induced chromosomal aberrations analyzed by fluorescence in situ hybridization

    Energy Technology Data Exchange (ETDEWEB)

    Durante, M; Gialanella, G; Grossi, G; Pugliese, M [Univ. ` ` Federico II` ` , Naples (Italy). Dept. of Physics; [INFN, Naples (Italy); Cella, L; Greco, O [Univ. ` ` Federico II` ` , Naples (Italy). Dept. of Physics; Furusawa, Y [NIRS, Chiba (Japan); George, K; Yang, T C [NASA Lyndon B. Johnson Space Center, Houston, TX (United States)

    1997-09-01

    We have investigated the effectiveness of heavy ions in the induction of chromosomal aberrations in mammalian cells by the recent technique of fluorescence in situ hybridization (FISH) with whole-chromosome probes. FISH-painting was used both in metaphase and interphase (prematurely condensed) chromosomes. The purpose of our experiments was to address the following problems: (a) the ratio of different types of aberrations as a function of radiation quality (search for biomarkers); (b) the ratio between aberrations scored in interphase and metaphase as a function of radiation quality (role of apoptosis); (c) differences between cytogenetic effects produced by different ions at the same LET (role of track structure). (orig./MG)

  5. Subcellular localization of low-abundance human immunodeficiency virus nucleic acid sequences visualized by fluorescence in situ hybridization

    International Nuclear Information System (INIS)

    Lawrence, J.B.; Marselle, L.M.; Byron, K.S.; Johnson, C.V.; Sullivan, J.L.; Singer, R.H.

    1990-01-01

    Detection and subcellular localization of human immunodeficiency virus (HIV) were investigated using sensitive high-resolution in situ hybridization methodology. Lymphocytes infected with HIV in vitro or in vivo were detected by fluorescence after hybridization with either biotin or digoxigenin-labeled probes. At 12 hr after infection in vitro, a single intense signal appeared in the nuclei of individual cells. Later in infection, when cytoplasmic fluorescence became intense, multiple nuclear foci frequently appeared. The nuclear focus consisted of newly synthesized HIV RNA as shown by hybridization in the absence of denaturation and by susceptibility to RNase and actinomycin D. Virus was detected in patient lymphocytes and it was shown that a singular nuclear focus also characterizes cells infected in vivo. The cell line 8E5/LAV containing one defective integrated provirus revealed a similar focus of nuclear RNA, and the single integrated HIV genome was unequivocally visualized on a D-group chromosome. This demonstrates an extremely sensitive single-cell assay for the presence of a single site of HIV transcription in vitro and in vivo and suggests that it derives from one (or very few) viral genomes per cell. In contrast, productive Epstein-Barr virus infection exhibited many foci of nuclear RNA per cell

  6. Photocatalytic oxidation removal of Hg"0 using ternary Ag/AgI-Ag_2CO_3 hybrids in wet scrubbing process under fluorescent light

    International Nuclear Information System (INIS)

    Zhang, Anchao; Zhang, Lixiang; Chen, Xiaozhuan; Zhu, Qifeng; Liu, Zhichao; Xiang, Jun

    2017-01-01

    Highlights: • Ag/AgI-Ag_2CO_3 hybrids were employed for Hg"0 removal under fluorescent light. • Superoxide radical (·O_2"−) played a key role in Hg"0 removal. • NO exhibited a significant effect on Hg"0 removal in comparison to SO_2. • The mechanism for enhanced Hg"0 removal over Ag/AgI-Ag_2CO_3 was proposed. - Abstract: A series of ternary Ag/AgI-Ag_2CO_3 photocatalysts synthesized using a facile coprecipitation method were employed to investigate their performances of Hg"0 removal in a wet scrubbing reactor. The hybrids were characterized by N_2 adsorption-desorption, XRD, SEM-EDS, HRTEM, XPS, DRS and ESR. The photocatalytic activities of Hg"0 removal were evaluated under fluorescent light. The results showed that AgI content, fluorescent light irradiation, reaction temperature all showed significant influences on Hg"0 removal. NO exhibited significant effect on Hg"0 removal in comparison to SO_2. Among these ternary Ag/AgI-Ag_2CO_3 hybrids, Ag/AgI(0.1)-Ag_2CO_3 showed the highest Hg"0 removal efficiency, which could be ascribed to the effective separation of photogenerated electron-hole pairs between AgI and Ag_2CO_3 and the surface plasmon resonance (SPR) effect in the visible region by metallic silver nanoparticles (Ag"0 NPs). The trapping studies of reactive radicals showed that the superoxide radicals (·O_2"−) may play a key role in Hg"0 removal under fluorescent light. According to the experimental and characterization results, a possible photocatalytic oxidation mechanism for enhanced Hg"0 removal over Ag/AgI(0.1)-Ag_2CO_3 hybrid under fluorescent light was proposed.

  7. Identification of Cannabis sativa L. using the 1-kbTHCA synthase-fluorescence in situ hybridization probe.

    Science.gov (United States)

    Jeangkhwoa, Pattraporn; Bandhaya, Achirapa; Umpunjun, Puangpaka; Chuenboonngarm, Ngarmnij; Panvisavas, Nathinee

    2017-03-01

    This study reports a successful application of fluorescence in situ hybridization (FISH) technique in the identification of Cannabis sativa L. cells recovered from fresh and dried powdered plant materials. Two biotin-16-dUTP-labeled FISH probes were designed from the Cannabis-specific tetrahydrocannabinolic acid synthase (THCAS) gene and the ITS region of the 45S rRNA gene. Specificity of probe-target hybridization was tested against the target and 4 non-target plant species, i.e., Humulus lupulus, Mitragyna speciosa, Papaver sp., and Nicotiana tabacum. The 1-kb THCA synthase hybridization probe gave Cannabis-specific hybridization signals, unlike the 700-bp Cannabis-ITS hybridization probe. Probe-target hybridization was also confirmed against 20 individual Cannabis plant samples. The 1-kb THCA synthase and 700-bp Cannabis-ITS hybridization probes clearly showed 2 hybridization signals per cell with reproducibility. The 1-kb THCA synthase probe did not give any FISH signal when tested against H. lupulus, its closely related member of the Canabaceae family. It was also showed that 1-kb THCA synthase FISH probe can be applied to identify small amount of dried powdered Cannabis material with an addition of rehydration step prior to the experimental process. This study provided an alternative identification method for Cannabis trace. Copyright © 2016. Published by Elsevier B.V.

  8. Hybridization chain reaction amplification for highly sensitive fluorescence detection of DNA with dextran coated microarrays.

    Science.gov (United States)

    Chao, Jie; Li, Zhenhua; Li, Jing; Peng, Hongzhen; Su, Shao; Li, Qian; Zhu, Changfeng; Zuo, Xiaolei; Song, Shiping; Wang, Lianhui; Wang, Lihua

    2016-07-15

    Microarrays of biomolecules hold great promise in the fields of genomics, proteomics, and clinical assays on account of their remarkably parallel and high-throughput assay capability. However, the fluorescence detection used in most conventional DNA microarrays is still limited by sensitivity. In this study, we have demonstrated a novel universal and highly sensitive platform for fluorescent detection of sequence specific DNA at the femtomolar level by combining dextran-coated microarrays with hybridization chain reaction (HCR) signal amplification. Three-dimensional dextran matrix was covalently coated on glass surface as the scaffold to immobilize DNA recognition probes to increase the surface binding capacity and accessibility. DNA nanowire tentacles were formed on the matrix surface for efficient signal amplification by capturing multiple fluorescent molecules in a highly ordered way. By quantifying microscopic fluorescent signals, the synergetic effects of dextran and HCR greatly improved sensitivity of DNA microarrays, with a detection limit of 10fM (1×10(5) molecules). This detection assay could recognize one-base mismatch with fluorescence signals dropped down to ~20%. This cost-effective microarray platform also worked well with samples in serum and thus shows great potential for clinical diagnosis. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Application of Pseudomurein Endoisopeptidase to Fluorescence In Situ Hybridization of Methanogens within the Family Methanobacteriaceae▿

    Science.gov (United States)

    Nakamura, Kohei ; Terada, Takeshi; Sekiguchi, Yuji; Shinzato, Naoya; Meng, Xian-Ying; Enoki, Miho; Kamagata, Yoichi

    2006-01-01

    In situ detection of methanogens within the family Methanobacteriaceae is sometimes known to be unsuccessful due to the difficulty in permeability of oligonucleotide probes. Pseudomurein endoisopeptidase (Pei), a lytic enzyme that specifically acts on their cell walls, was applied prior to 16S rRNA-targeting fluorescence in situ hybridization (FISH). For this purpose, pure cultured methanogens within this family, Methanobacterium bryantii, Methanobrevibacter ruminantium, Methanosphaera stadtmanae, and Methanothermobacter thermautotrophicus together with a Methanothermobacter thermautotrophicus-containing syntrophic acetate-oxidizing coculture, endosymbiotic Methanobrevibacter methanogens within an anaerobic ciliate, and an upflow anaerobic sludge blanket (UASB) granule were examined. Even without the Pei treatment, Methanobacterium bryantii and Methanothermobacter thermautotrophicus cells are relatively well hybridized with oligonucleotide probes. However, almost none of the cells of Methanobrevibacter ruminantium, Methanosphaera stadtmanae, cocultured Methanothermobacter thermautotrophicus, and the endosymbiotic methanogens and the cells within UASB granule were hybridized. Pei treatment was able to increase the probe hybridization ratio in every specimen, particularly in the specimen that had shown little hybridization. Interestingly, the hybridizing signal intensity of Methanothermobacter thermautotrophicus cells in coculture with an acetate-oxidizing H2-producing syntroph was significantly improved by Pei pretreatment, whereas the probe was well hybridized with the cells of pure culture of the same strain. We found that the difference is attributed to the differences in cell wall thicknesses between the two culture conditions. These results indicate that Pei treatment is effective for FISH analysis of methanogens that show impermeability to the probe. PMID:16950902

  10. Curcumin as a colorimetric and fluorescent chemosensor for selective recognition of fluoride ion

    Energy Technology Data Exchange (ETDEWEB)

    Wu Fangying, E-mail: fywu@ncu.edu.c [Department of Chemistry and Center of Analysis and Testing, Nanchang University, Nanchang 330031 (China); Sun Meizhen [Department of Chemistry and Center of Analysis and Testing, Nanchang University, Nanchang 330031 (China); Jiangxi Institute of Geological Survey, Nanchang, 330030 (China); Xiang Yanling [Department of Chemistry and Center of Analysis and Testing, Nanchang University, Nanchang 330031 (China); Wu Yumei [Packaging Engineering Institute of Jinan University, Zhuhai 519070 (China); Tong, Du-Qiu [Department of Chemistry and Center of Analysis and Testing, Nanchang University, Nanchang 330031 (China)

    2010-02-15

    The binding properties of curcumin with anions in acetonitrile were examined for the first time by UV-vis absorption and fluorescence spectroscopies. The results showed that curcumin highly and selectively responded to F{sup -} over other anions such as AcO{sup -}, H{sub 2}PO{sub 4}{sup -} and Cl{sup -} because of anionic complex formation via hydrogen bond. Curcumin gave rise to the red-shift of absorption spectra and its fluorescence was quenched with concomitant color change from yellow to purple upon addition of F{sup -}, which was detected by naked eyes. The addition of other anions such as AcO{sup -}, H{sub 2}PO{sub 4}{sup -}, HSO{sub 4}{sup -}, NO{sub 3}{sup -}, Cl{sup -} and Br{sup -} did not result in observable spectral change and solution color change. The binding constant between curcumin and F{sup -} was 2.0x10{sup 5} mol{sup -1} L and the recognizing mechanism was investigated as well.

  11. Time-resolved and temperature tuneable measurements of fluorescent intensity using a smartphone fluorimeter.

    Science.gov (United States)

    Hossain, Md Arafat; Canning, John; Yu, Zhikang; Ast, Sandra; Rutledge, Peter J; Wong, Joseph K-H; Jamalipour, Abbas; Crossley, Maxwell J

    2017-05-30

    A smartphone fluorimeter capable of time-based fluorescence intensity measurements at various temperatures is reported. Excitation is provided by an integrated UV LED (λ ex = 370 nm) and detection obtained using the in-built CMOS camera. A Peltier is integrated to allow measurements of the intensity over T = 10 to 40 °C. All components are controlled using a smartphone battery powered Arduino microcontroller and a customised Android application that allows sequential fluorescence imaging and quantification every δt = 4 seconds. The temperature dependence of fluorescence intensity for four emitters (rhodamine B, rhodamine 6G, 5,10,15,20-tetraphenylporphyrin and 6-(1,4,8,11-tetraazacyclotetradecane)2-ethyl-naphthalimide) are characterised. The normalised fluorescence intensity over time of the latter chemosensor dye complex in the presence of Zn 2+ is observed to accelerate with an increasing rate constant, k = 1.94 min -1 at T = 15 °C and k = 3.64 min -1 at T = 30 °C, approaching a factor of ∼2 with only a change in temperature of ΔT = 15 °C. Thermally tuning these twist and bend associated rates to optimise sensor approaches and device applications is proposed.

  12. Highly selective and sensitive fluorescent chemosensor for femtomolar detection of silver ion in aqueous medium

    OpenAIRE

    Arulraj, Abraham Daniel; Devasenathipathy, Rajkumar; Chen, Shen-Ming; Vasantha, Vairathevar Sivasamy; Wang, Sea-Fue

    2015-01-01

    The chemical sensing for the trace level detection of silver ion in aqueous solution still remains a challenge using simple, rapid, and inexpensive method. We report that thionine can be used as a fluorescent probe for the detection of Ag+ ion. The successive addition of Ag+ ion to the solution containing thionine quenches (turns-off) the fluorescence intensity of thionine. Association and quenching constants have been estimated by the Benesi–Hildebrand method and Stern–Volmer plot, respectiv...

  13. Fluorescent sensors based on quinoline-containing styrylcyanine: determination of ferric ions, hydrogen peroxide, and glucose, pH-sensitive properties and bioimaging.

    Science.gov (United States)

    Yang, Xiaodong; Zhao, Peiliang; Qu, Jinqing; Liu, Ruiyuan

    2015-08-01

    A novel styrylcyanine-based fluorescent probe 1 was designed and synthesized via facile methods. Ferric ions quenched the fluorescence of probe 1, whereas the addition of ferrous ions led to only small changes in the fluorescence signal. When hydrogen peroxide was introduced into the solution containing probe 1 and Fe(2+) , Fe(2+) was oxidized to Fe(3+), resulting in the quenching of the fluorescence. The probe 1/Fe(2+) solution fluorescence could also be quenched by H2 O2 released from glucose oxidation by glucose oxidase (GOD), which means that probe 1/Fe(2+) platform could be used to detect glucose. Probe 1 is fluorescent in basic and neutral media but almost non-fluorescent in strong acidic environments. Such behaviour enables it to work as a fluorescent pH sensor in both the solution and solid states and as a chemosensor for detecting volatile organic compounds with high acidity and basicity. Subsequently, the fluorescence microscopic images of probe 1 in live cells and in zebrafish were achieved successfully, suggesting that the probe has good cell membrane permeability and a potential application for imaging in living cells and living organisms. Copyright © 2014 John Wiley & Sons, Ltd.

  14. A highly selective fluorescent chemosensor for Cu2+ : synthesis and properties of a rhodamine B-containing diarylethene.

    Science.gov (United States)

    Xue, Dandan; Zheng, Chunhong; Qu, Shengzu; Liao, Guanming; Fan, Congbin; Liu, Gang; Pu, Shouzhi

    2017-06-01

    A diarylethene bearing a triazole-linked rhodamine B unit was synthesized. Its fluorescent emission was significantly enhanced in the presence of protons or Cu 2 + due to transformation from the pirocyclic form to open-ring form. The fluorescence was quenched sequentially upon irradiation with 297 nm light based on the intramolecular fluorescence resonance energy transfer mechanism. In an acetonitrile: water binary solvent (1: 1 v/v), the compound showed significant fluorescent enhancement for Cu 2 + compared with a wide range of tested metal ions with a fast response and a limit of detection of 2.86 × 10 -8  mol L -1 . Using Cu 2 + and UV light as the chemical inputs, and fluorescence intensity at 597 nm as the output, a logic gate was developed at the molecular level. Moreover, the compound can be used with a high accuracy to detect Cu 2 + in a natural water sample. Copyright © 2016 John Wiley & Sons, Ltd.

  15. Structurally tuned benzo[h]chromene derivative as Pb{sup 2+} selective ‘turn-on’ fluorescence sensor for living cell imaging

    Energy Technology Data Exchange (ETDEWEB)

    Sinha, Sougata; Rani Koner, Rik; Kumar, Sunil [School of Basic Sciences, Indian Institute of Technology Mandi, Mandi-175001, H.P (India); Mathew, Jomon [Schulich Faculty of Chemistry and the Lise Meitner Minerva Center for Computational Quantum Chemistry, Technion-Israel Institute of Technology, Haifa (Israel); Roy, Anindita [Department of Microbiology, MUC Women’s College, Burdwan, West Bengal (India); Kanti Mukhopadhyay, Subhra [Department of Microbiology, Burdwan University, Burdwan, West Bengal (India); Nandi, Chayan K., E-mail: chayan@iitmandi.ac.in [School of Basic Sciences, Indian Institute of Technology Mandi, Mandi-175001, H.P (India); Ghosh, Subrata, E-mail: subrata@iitmandi.ac.in [School of Basic Sciences, Indian Institute of Technology Mandi, Mandi-175001, H.P (India)

    2013-11-15

    A benzo[h]chromene derivative, 2-amino-4-phenyl-4H-benzo[h]chromene-3-carbonitrile 1, has been utilized as ‘Turn On’ fluorescence chemosensor for the selective detection of Pb{sup 2+}. The title compound 1 was synthesized in one step using a multicomponent condensation reaction (MCR), and characterized using various spectroscopic techniques. The selectivity was tested over a range of 17 different metal and non-metal ions. Compound 1 was found to be weak fluorescent (Φ{sub 1}=0.06) because of photoinduced electron transfer (PET). The presence of 2 equiv of Pb{sup 2+} showed a significant increase in fluorescence quantum yield (Φ{sub 1−Pb{sup 2}{sup +}}=0.132). A change in weak blue emission of 1 to a glowing green emission along with a prominent red shift (26 nm) in emission band was observed upon addition of Pb{sup 2+} to a methanolic solution of 1. The complexation of 1 with Pb{sup 2+} was proved by mass spectroscopy and NMR studies. Some of our experimental findings have been supported by theoretical studies. Compound 1 was found to be easily permeable to living cells without causing any harm and ultimately was used to detect effectively Pb{sup 2+} in living system. -- Highlights: • Benzo[h]chromene derivative (1) as fluorogenic chemosensor for Pb{sup 2+}. • One-step synthesis of the sensor using multicomponent condensation reaction. • The sensor follows a ‘turn-on’ mechanism through CHEF. • 1–Pb{sup 2+} complex was characterized by various spectroscopic techniques. • The probe can detect Pb{sup 2+} in living cells.

  16. Self-organized fluorescent nanosensors for ratiometric Pb2+ detection.

    Science.gov (United States)

    Arduini, Maria; Mancin, Fabrizio; Tecilla, Paolo; Tonellato, Umberto

    2007-07-31

    Silica nanoparticles (60 nm diameter) doped with fluorescent dyes and functionalized on the surface with thiol groups have been proved to be efficient fluorescent chemosensors for Pb2+ ions. The particles can detect a 1 microM metal ion concentration with a good selectivity, suffering only interference from Cu2+ ions. Analyte binding sites are provided by the simple grafting of the thiol groups on the nanoparticles. Once bound to the particles surface, the Pb2+ ions quench the emission of the reporting dyes embedded. Sensor performances can be improved by taking advantage of the ease of production of multishell silica particles. On one hand, signaling units can be concentrated in the external shells, allowing a closer interaction with the surface-bound analyte. On the other, a second dye can be buried in the particle core, far enough from the surface to be unaffected by the Pb2+ ions, thus producing a reference signal. In this way, a ratiometric system is easily prepared by simple self-organization of the particle components.

  17. Microwave assisted synthesis of a novel optical chemosensor for selective Fe{sup 3+} detection

    Energy Technology Data Exchange (ETDEWEB)

    Saleem, Muhammad [Department of Chemistry, Kongju National University, Gongju, Chungnam 314-701 (Korea, Republic of); Kang, Sung Kwon [Department of Chemistry Chungnam National University, Daejeon 305-754 (Korea, Republic of); Lee, Ki Hwan, E-mail: khlee@kongju.ac.kr [Department of Chemistry, Kongju National University, Gongju, Chungnam 314-701 (Korea, Republic of)

    2015-06-15

    Recently, there has been significant interest in the design and development of optical chemosensors for recognition of biologically and environmentally important analytes with high selectivity, sensitivity and low detection-limit because of their fundamental role in medical, environmental and biological applications. Herein, a novel fluorogenic signaling probe 6 for the selective detection of ferric ion in mixed aqueous organic media has been developed through microwave assisted Schiff base formation by reacting 4-amino-3-(2-fluorobenzyl)-1H-1,2,4-triazole-5(4H)-thione 5 with thiophene-2-carbaldehyde. The formation of probe 6 was characterized by FT-IR, {sup 1}H NMR, {sup 13}C NMR, mass spectrometric and single crystal X-ray diffraction analysis. The photophysical results of (Z)-3-(2-fluorobenzyl)-4-[(thiophen-2-ylmethylene) amino]-1H-1,2,4-triazole-5(4H)-thione (6) corroborates its applicability as optical sensing platform for selective Fe{sup 3+} detection in pure organic as well as mixed organic-aqueous media. Through fluorescence titration at 478 nm, we were confirmed that the ligand 6 exhibited remarkable decline in the fluorescence intensity by complexation between 6 and Fe{sup 3+} while it appeared negligible fluorescent quenching in case of the competitive ions in MeOH/water (8:2, v/v, pH 7) at ambient temperature. Meanwhile, the emergence of a new characteristic redshifted signal at 357 nm with gradual increment in the absorption intensity on gentle increase in the ferric ion concentration and continuous shifting in the ligand absorption bands after Fe{sup 3+} addition ascribed the conformational changes in the ligand structure upon Fe{sup 3+} binding. Due to simplicity, low cost, fast response time, considerable sensitivity and robustness, the proposed sensing method might be a practical tool for environmental samples analysis and biological studies. - Highlights: • A novel fluorogenic signaling probe for ferric ion has been developed. • The ligand

  18. Pyrazolone as a recognition site: Rhodamine 6G-based fluorescent probe for the selective recognition of Fe3+ in acetonitrile-aqueous solution.

    Science.gov (United States)

    Parihar, Sanjay; Boricha, Vinod P; Jadeja, R N

    2015-03-01

    Two novel Rhodamine-pyrazolone-based colorimetric off-on fluorescent chemosensors for Fe(3+) ions were designed and synthesized using pyrazolone as the recognition moiety and Rhodamine 6G as the signalling moiety. The photophysical properties and Fe(3+) -binding properties of sensors L(1) and L(2) in acetonitrile-aqueous solution were also investigated. Both sensors successfully exhibit a remarkably 'turn-on' response, toward Fe(3+) , which was attributed to 1: 2 complex formation between Fe(3+) and L(1) /L(2) . The fluorescent and colorimetric response to Fe(3+) can be detected by the naked eye, which provides a facile method for the visual detection of Fe(3+) . Copyright © 2014 John Wiley & Sons, Ltd.

  19. Efficiency of fluorescence in situ hybridization for bacterial cell identification in temporary river sediments with contrasting water content.

    Science.gov (United States)

    Fazi, Stefano; Amalfitano, Stefano; Pizzetti, Ilaria; Pernthaler, Jakob

    2007-09-01

    We studied the efficiency of two hybridization techniques for the analysis of benthic bacterial community composition under varying sediment water content. Microcosms were set up with sediments from four European temporary rivers. Wet sediments were dried, and dry sediments were artificially rewetted. The percentage of bacterial cells detected by fluorescence in situ hybridization with fluorescently monolabeled probes (FISH) significantly increased from dry to wet sediments, showing a positive correlation with the community activity measured via incorporation of (3)H leucine. FISH and signal amplification by catalyzed reporter deposition (CARD-FISH) could significantly better detect cells with low activity in dried sediments. Through the application of an optimized cell permeabilization protocol, the percentage of hybridized cells by CARD-FISH showed comparable values in dry and wet conditions. This approach was unrelated to (3)H leucine incorporation rates. Moreover, the optimized protocol allowed a significantly better visualization of Gram-positive Actinobacteria in the studied samples. CARD-FISH is, therefore, proposed as an effective technique to compare bacterial communities residing in sediments with contrasting water content, irrespective of differences in the activity state of target cells. Considering the increasing frequencies of flood and drought cycles in European temporary rivers, our approach may help to better understand the dynamics of microbial communities in such systems.

  20. Exploring the origin of the D genome of oat by fluorescence in situ hybridization.

    Science.gov (United States)

    Luo, Xiaomei; Zhang, Haiqin; Kang, Houyang; Fan, Xing; Wang, Yi; Sha, Lina; Zhou, Yonghong

    2014-09-01

    Further understanding of the origin of cultivated oat would accelerate its genetic improvement. In particular, it would be useful to clarify which diploid progenitor contributed the D genome of this allohexaploid species. In this study, we demonstrate that the landmarks produced by fluorescence in situ hybridization (FISH) of species of Avena using probes derived from Avena sativa can be used to explore the origin of the D genome. Selected sets of probes were hybridized in several sequential experiments performed on exactly the same chromosome spreads, with multiple probes of cytological preparations. Probes pITS and A3-19 showed there might be a similar distribution of pITS between the Ac and D genomes. These results indicated that the Ac genome is closely related to the D genome, and that Avena canariensis (AcAc) could be the D-genome donor of cultivated oat.

  1. A novel polymer probe for Zn(II) detection with ratiometric fluorescence signal

    Science.gov (United States)

    Diao, Haipeng; Guo, Lixia; Liu, Wen; Feng, Liheng

    2018-05-01

    A conjugated polymer probe comprised of fluorene, quinolone and benzothiazole units was designed and synthesized by the Suzuki coupling reaction. Through the studies of photophysical and thermal properties, the polymer displays blue-emitting feature and good thermal stability. A ratiometric fluorescence signal of the probe for Zn(II) was observed in ethanol with a new emission peak at 555 nm. The probe possesses a high selectivity and sensitivity for Zn(II) during familiar metal ions in ethanol. The detection limit of the probe for Zn (II) is up to 10-8 mol/L. The electron distributions of the polymer before and after bonding with Zn (II) were investigated by the Gaussian 09 software, which agreed with the experimental results. Noticeably, based on the color property of the probe with Zn(II), a series of color test paper were developed for visual detecting Zn(II) ions. This work helps to provide a platform or pattern for the development of polymer fluorescence probe in the chemosensor field.

  2. Use of Hybridization Chain Reaction-Fluorescent In Situ Hybridization To Track Gene Expression by Both Partners during Initiation of Symbiosis.

    Science.gov (United States)

    Nikolakakis, K; Lehnert, E; McFall-Ngai, M J; Ruby, E G

    2015-07-01

    The establishment of a productive symbiosis between Euprymna scolopes, the Hawaiian bobtail squid, and its luminous bacterial symbiont, Vibrio fischeri, is mediated by transcriptional changes in both partners. A key challenge to unraveling the steps required to successfully initiate this and many other symbiotic associations is characterization of the timing and location of these changes. We report on the adaptation of hybridization chain reaction-fluorescent in situ hybridization (HCR-FISH) to simultaneously probe the spatiotemporal regulation of targeted genes in both E. scolopes and V. fischeri. This method revealed localized, transcriptionally coregulated epithelial cells within the light organ that responded directly to the presence of bacterial cells while, at the same time, provided a sensitive means to directly show regulated gene expression within the symbiont population. Thus, HCR-FISH provides a new approach for characterizing habitat transition in bacteria and for discovering host tissue responses to colonization. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  3. A highly sensitive, selective and turn-off fluorescent sensor based on phenylamine-oligothiophene derivative for rapid detection of Hg{sup 2+}

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Xingxing; Niu, Qingfen, E-mail: qf_niu1216@qlu.edu.cn; Li, Tianduo; Cui, Yuezhi; Zhang, Shanshan

    2016-07-15

    A fluorescent sensor based on phenylamine-oligothiophene derivative 3TEA was reported. This sensor showed highly selective and sensitive detection of Hg{sup 2+} ion in THF/H{sub 2}O (7/3, v/v) solution through fluorescence quenching. The detection was unaffected by other competitive metal ions. The detection limit was found to be as low as 3.952×10{sup −7} M estimated by the titration method. The recognition process is reversible and confirmed by EDTA experiment. The turn-off fluorescence behavior of mercury interaction with 3TEA has been found to be so fast that it can be used for its qualitative as well as quantitative estimation. - Highlights: • A highly sensitive and selective fluorescence chemosensor 3TEA was reported. • 3TEA features high sensitive with the detection limit for Hg{sup 2+} ions was as low as 3.952×10{sup −7} M. • 3TEA can detect Hg{sup 2+} ion on-line and in real time.

  4. Supramolecular assembly of group 11 phosphorescent metal complexes for chemosensors of alcohol derivatives

    Science.gov (United States)

    Lintang, H. O.; Ghazalli, N. F.; Yuliati, L.

    2018-04-01

    We report on systematic study on vapochromic sensing of ethanol by using phosphorescent trinuclear metal pyrazolate complexes with supramolecular assembly of weak intermolecular metal-metal interactions using 4-(3,5-dimethoxybenzyl)-3,5-dimethyl pyrazole ligand (1) and group 11 metal ions (Cu(I), Ag(I), Au(I)). Upon excitation at 284, the resulting complexes showed emission bands with a peak centered at 616, 473 and 612 nm for 2(Cu), 2(Ag) and 2(Au), respectively. Chemosensor 2(Cu) showed positive response to ethanol vapors in 5 mins by blue-shifting its emission band from 616 to 555 nm and emitting bright orange to green. Otherwise 2(Au) gave shifting from its emission band centered at 612 to 587 nm with Δλ of 25 nm (41%) and color changes from red-orange to light green-orange while 2(Ag) showed quenching in its original emission intensity at 473 nm in 40% with color changes from dark green to less emissive. These results demonstrate that sensing capability of chemosensor 2(Cu) with suitable molecular design of ligand and metal ion in the complex is due to the formation of a weak intermolecular hydrogen bonding interaction of O atom at the methoxy of the benzyl ring with the OH of the vapors at the outside of the molecules.

  5. Human cDNA mapping using fluorescence in situ hybridization

    Energy Technology Data Exchange (ETDEWEB)

    Korenberg, J.R.

    1993-03-04

    Genetic mapping is approached using the techniques of high resolution fluorescence in situ hybridization (FISH). This technology and the results of its application are designed to rapidly generate whole genome as tool box of expressed sequence to speed the identification of human disease genes. The results of this study are intended to dovetail with and to link the results of existing technologies for creating backbone YAC and genetic maps. In the first eight months, this approach generated 60--80% of the expressed sequence map, the remainder expected to be derived through more long-term, labor-intensive, regional chromosomal gene searches or sequencing. The laboratory has made significant progress in the set-up phase, in mapping fetal and adult brain and other cDNAs, in testing a model system for directly linking genetic and physical maps using FISH with small fragments, in setting up a database, and in establishing the validity and throughput of the system.

  6. HER-2 protein concentrations in breast cancer cells increase before immunohistochemical and fluorescence in situ hybridization analysis turn positive

    DEFF Research Database (Denmark)

    Olsen, Dorte A; Østergaard, Birthe; Bokmand, Susanne

    2007-01-01

    BACKGROUND: The level of HER-2/neu in breast cancer cells is normally measured by immunohistochemistry (IHC) and/or fluorescence in situ hybridization (FISH). It determines whether patients should be treated with trastuzumab (Herceptin). In this study, HER-2 protein in breast cancer tissue...

  7. A hybrid segmentation approach for geographic atrophy in fundus auto-fluorescence images for diagnosis of age-related macular degeneration.

    Science.gov (United States)

    Lee, Noah; Laine, Andrew F; Smith, R Theodore

    2007-01-01

    Fundus auto-fluorescence (FAF) images with hypo-fluorescence indicate geographic atrophy (GA) of the retinal pigment epithelium (RPE) in age-related macular degeneration (AMD). Manual quantification of GA is time consuming and prone to inter- and intra-observer variability. Automatic quantification is important for determining disease progression and facilitating clinical diagnosis of AMD. In this paper we describe a hybrid segmentation method for GA quantification by identifying hypo-fluorescent GA regions from other interfering retinal vessel structures. First, we employ background illumination correction exploiting a non-linear adaptive smoothing operator. Then, we use the level set framework to perform segmentation of hypo-fluorescent areas. Finally, we present an energy function combining morphological scale-space analysis with a geometric model-based approach to perform segmentation refinement of false positive hypo- fluorescent areas due to interfering retinal structures. The clinically apparent areas of hypo-fluorescence were drawn by an expert grader and compared on a pixel by pixel basis to our segmentation results. The mean sensitivity and specificity of the ROC analysis were 0.89 and 0.98%.

  8. mathFISH, a web tool that uses thermodynamics-based mathematical models for in silico evaluation of oligonucleotide probes for fluorescence in situ hybridization.

    Science.gov (United States)

    Yilmaz, L Safak; Parnerkar, Shreyas; Noguera, Daniel R

    2011-02-01

    Mathematical models of RNA-targeted fluorescence in situ hybridization (FISH) for perfectly matched and mismatched probe/target pairs are organized and automated in web-based mathFISH (http://mathfish.cee.wisc.edu). Offering the users up-to-date knowledge of hybridization thermodynamics within a theoretical framework, mathFISH is expected to maximize the probability of success during oligonucleotide probe design.

  9. Waste chimney oil to nanolights: A low cost chemosensor for tracer metal detection in practical field and its polymer composite for multidimensional activity.

    Science.gov (United States)

    Das, Poushali; Ganguly, Sayan; Maity, Priti Prasanna; Bose, Madhuparna; Mondal, Subhadip; Dhara, Santanu; Das, Amit Kumar; Banerjee, Susanta; Das, Narayan Ch

    2018-03-01

    Proper waste disposal from household and restaurants is becoming an important and recurring waste-management concern. Herein, a method of upcycling of waste kitchen chimney oil has been adopted to prepare fluorescent multifunctional carbon quantum dots. These nanodots showed superior biocompatibility, excellent optical properties, water solubility and high yield. Preparation of C-dots from highly abundant carbon source of waste refusals is highly effective in commercial aspect as well as in reducing the immense environmental pollution. The C-dots showed quasi-spherical size obtained from high resolution transmission electron microscopy (HRTEM) having an abundance of 1-4 nm in size. The ease of water dispersibility of the nanodots is a mere reflection of their surface polarity which has been supported by Fourier transformed infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). In the field of practical acceptability, the C-dots have been experimented to sense Fe 3+ ion in a wide range of concentration (1 nM to 600 μM) with a detection limit of 0.18 nM which can be termed as 'tracer metal chemosensor'. Moreover, the prepared carbon dots were also tested against inter-cellular Fe 3+ ion sensing probe. Lastly, we also fabricate the biopolymer‑carbon dots composite for fluorescent marker ink and light emitting polymer film. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Preparation of fluorescent-dye-labeled cDNA from RNA for microarray hybridization.

    Science.gov (United States)

    Ares, Manuel

    2014-01-01

    This protocol describes how to prepare fluorescently labeled cDNA for hybridization to microarrays. It consists of two steps: first, a mixture of anchored oligo(dT) and random hexamers is used to prime amine-modified cDNA synthesis by reverse transcriptase using a modified deoxynucleotide with a reactive amine group (aminoallyl-dUTP) and an RNA sample as a template. Second, the cDNA is purified and exchanged into bicarbonate buffer so that the amine groups in the cDNA react with the dye N-hydroxysuccinimide (NHS) esters, covalently joining the dye to the cDNA. The dye-coupled cDNA is purified again, and the amount of dye incorporated per microgram of cDNA is determined.

  11. Towards Fluorescence In Vivo Hybridization (FIVH) Detection of H. pylori in Gastric Mucosa Using Advanced LNA Probes

    DEFF Research Database (Denmark)

    Fontenete, Sílvia; Leite, Marina; Guimarães, Nuno

    2015-01-01

    acid (LNA)/ 2' O-methyl RNA (2'OMe) probe using standard phosphoramidite chemistry and FISH hybridization was then successfully performed both on adhered and suspended bacteria at 37°C. In this work we simplified, shortened and adapted FISH to work at gastric pH values, meaning that the hybridization...... step now takes only 30 minutes and, in addition to the buffer, uses only urea and probe at non-toxic concentrations. Importantly, the sensitivity and specificity of the FISH method was maintained in the range of conditions tested, even at low stringency conditions (e.g., low pH). In conclusion......In recent years, there have been several attempts to improve the diagnosis of infection caused by Helicobacter pylori. Fluorescence in situ hybridization (FISH) is a commonly used technique to detect H. pylori infection but it requires biopsies from the stomach. Thus, the development of an in vivo...

  12. Biomolecule-to-fluorescent-color encoder: modulation of fluorescence emission via DNA structural changes

    Science.gov (United States)

    Nishimura, Takahiro; Ogura, Yusuke; Yamada, Kenji; Ohno, Yuko; Tanida, Jun

    2014-01-01

    A biomolecule-to-fluorescent-color (B/F) encoder for optical readout of biomolecular information is proposed. In the B/F encoder, a set of fluorescence wavelengths and their intensity levels are used for coding of a biomolecular signal. A hybridization chain reaction of hairpin DNAs labeled with fluorescent reporters was performed to generate the fluorescence color codes. The fluorescence is modulated via fluorescence resonance energy transfer, which is controlled by DNA structural changes. The results demonstrate that fluorescent color codes can be configured based on two wavelengths and five intensities using the B/F encoder, and the assigned codes can be retrieved via fluorescence measurements. PMID:25071950

  13. Advances in Biosensors, Chemosensors and Assays for the Determination of Fusarium Mycotoxins

    Directory of Open Access Journals (Sweden)

    Xialu Lin

    2016-05-01

    Full Text Available The contaminations of Fusarium mycotoxins in grains and related products, and the exposure in human body are considerable concerns in food safety and human health worldwide. The common Fusarium mycotoxins include fumonisins, T-2 toxin, deoxynivalenol and zearalenone. For this reason, simple, fast and sensitive analytical techniques are particularly important for the screening and determination of Fusarium mycotoxins. In this review, we outlined the related advances in biosensors, chemosensors and assays based on the classical and novel recognition elements such as antibodies, aptamers and molecularly imprinted polymers. Application to food/feed commodities, limit and time of detection were also discussed.

  14. An orange fluorescent protein tagging system for real-time pollen tracking.

    Science.gov (United States)

    Rice, J Hollis; Millwood, Reginald J; Mundell, Richard E; Chambers, Orlando D; Abercrombie, Laura L; Davies, H Maelor; Stewart, C Neal

    2013-09-27

    Monitoring gene flow could be important for future transgenic crops, such as those producing plant-made-pharmaceuticals (PMPs) in open field production. A Nicotiana hybrid (Nicotiana. tabacum × Nicotiana glauca) shows limited male fertility and could be used as a bioconfined PMP platform. Effective assessment of gene flow from these plants is augmented with methods that utilize fluorescent proteins for transgenic pollen identification. We report the generation of a pollen tagging system utilizing an orange fluorescent protein to monitor pollen flow and as a visual assessment of transgene zygosity of the parent plant. This system was created to generate a tagged Nicotiana hybrid that could be used for the incidence of gene flow. Nicotiana tabacum 'TN 90' and Nicotiana glauca were successfully transformed via Agrobacterium tumefaciens to express the orange fluorescent protein gene, tdTomato-ER, in pollen and a green fluorescent protein gene, mgfp5-er, was expressed in vegetative structures of the plant. Hybrids were created that utilized the fluorescent proteins as a research tool for monitoring pollen movement and gene flow. Manual greenhouse crosses were used to assess hybrid sexual compatibility with N. tabacum, resulting in seed formation from hybrid pollination in 2% of crosses, which yielded non-viable seed. Pollen transfer to the hybrid formed seed in 19% of crosses and 10 out of 12 viable progeny showed GFP expression. The orange fluorescent protein is visible when expressed in the pollen of N. glauca, N. tabacum, and the Nicotiana hybrid, although hybrid pollen did not appear as bright as the parent lines. The hybrid plants, which show limited ability to outcross, could provide bioconfinement with the benefit of detectable pollen using this system. Fluorescent protein-tagging could be a valuable tool for breeding and in vivo ecological monitoring.

  15. 2-Hydroxy-naphthyl functionalized mesoporous silica for fluorescence sensing and removal of aluminum ions.

    Science.gov (United States)

    Das, Trisha; Roy, Ankita; Uyama, Hiroshi; Roy, Partha; Nandi, Mahasweta

    2017-06-06

    Mesoporous silica functionalized with a 2-hydroxy-naphthyl moiety has been synthesized and characterized by standard techniques like powder X-ray diffraction, N 2 adsorption/desorption studies, transmission electron microscopy and spectral studies like FT-IR, UV-visible, fluorescence and 13 C and 29 Si solid state NMR. The functionalized silica material showed significant enhancement in its emission intensity in the presence of Al 3+ ions whereas other metal ions could not bring about any increase in its emission intensity. They either quench the emission or do not alter the intensity significantly making the functionalized material a fluorescence chemosensor for Al 3+ . The sensitivity of the probe towards Al 3+ has been determined to be high with a low limit of detection value. As functionalized silica is not soluble in common solvents, it has been effectively used to bind and remove Al 3+ from a solution. Theoretical calculations on a model system have been performed to investigate the electronic spectral transitions.

  16. Anionic chromogenic chemosensors highly selective for fluoride or cyanide based on 4-(4-Nitrobenzylideneamine)phenol

    OpenAIRE

    Nicoleti,Celso R.; Marini,Vanderléia G.; Zimmermann,Lizandra M.; Machado,Vanderlei G.

    2012-01-01

    4-(4-Nitrobenzylideneamine)phenol was used in two strategies allowing the highly selective detection of F- and CN-. Firstly, the compound in acetonitrile acts as a chromogenic chemosensor based on the idea that more basic anions cause its deprotonation (colorless solution), generating a colored solution containing phenolate. The discrimination of CN- over F- was obtained by adding 1.4% water to acetonitrile: water preferentially solvates F-, leaving the CN- free to deprotonate the compound. A...

  17. Partial trisomy 13 in an infant with a mild phenotype: application of fluorescence in situ hybridization in cytogenetic syndromes.

    Science.gov (United States)

    Begovic, D; Hitrec, V; Lasan, R; Letica, L; Baric, I; Sarnavka, V; Galic, S

    1998-06-01

    We report on a month-old infant with dysmorphic face and several anomalies known to be associated with trisomy 13. Fluorescence in situ hybridization (FISH) studies performed on metaphase cells allowed us to identify an extra material on the short arm of the chromosome 13 as a duplication of 13q22-qter.

  18. Hybrid white organic light-emitting devices based on phosphorescent iridium–benzotriazole orange–red and fluorescent blue emitters

    International Nuclear Information System (INIS)

    Xia, Zhen-Yuan; Su, Jian-Hua; Chang, Chi-Sheng; Chen, Chin H.

    2013-01-01

    We demonstrate that high color purity or efficiency hybrid white organic light-emitting devices (OLEDs) can be generated by integrating a phosphorescent orange–red emitter, bis[4-(2H-benzotriazol-2-yl)-N,N-diphenyl-aniline-N 1 ,C 3 ] iridium acetylacetonate, Ir(TBT) 2 (acac) with fluorescent blue emitters in two different emissive layers. The device based on deep blue fluorescent material diphenyl-[4-(2-[1,1′;4′,1″]terphenyl-4-yl-vinyl)-phenyl]-amine BpSAB and Ir(TBT) 2 (acac) shows pure white color with the Commission Internationale de L'Eclairage (CIE) coordinates of (0.33,0.30). When using sky-blue fluorescent dopant N,N′-(4,4′-(1E,1′E)-2,2′-(1,4-phenylene)bis(ethene-2,1-diyl) bis(4,1-phenylene))bis(2-ethyl-6-methyl-N-phenylaniline) (BUBD-1) and orange–red phosphor with a color-tuning phosphorescent material fac-tris(2-phenylpyridine) iridium (Ir(ppy) 3 ), it exhibits peak luminance yield and power efficiency of 17.4 cd/A and 10.7 lm/W, respectively with yellow-white color and CIE color rendering index (CRI) value of 73. - Highlights: ► An iridium-based orange–red phosphor Ir(TBT) 2 (acac) was applied in hybrid white OLEDs. ► Duel- and tri-emitter WOLEDs were achieved with either high color purity or efficiency performance. ► Peak luminance yield of tri-emitter WOLEDs was 17.4 cd/A with yellow-white color and color rendering index (CRI) value of 73.

  19. Selective detection of Cu2 + and Co2 + in aqueous media: Asymmetric chemosensors, crystal structure and spectroscopic studies

    Science.gov (United States)

    Dogaheh, Samira Gholizadeh; Khanmohammadi, Hamid; Carolina Sañudo, E.

    2017-05-01

    Two new azo-azomethine receptors, H2L1 and H2L2, containing hydrazine, naphthalene and different electron withdrawing groups, Cl and NO2, have been designed and synthesized for qualitative and quantitative detection of Cu2 + and Co2 + in aqueous media. The crystal structure of H2L1is reported. The H2L1was used as a chemosensor for selective detection of trace amount of Cu2 + in aqueous media. H2L2 was also applied to naked-eye distinction of Cu2 + and Co2 + from other transition metal ions in aqueous media. Detection limit of Cu2 + is 1.13 μM and 1.26 μM, in water, for H2L1 and H2L2, respectively, which are lower than the World Health Organization (WHO) recommended level. The binuclear Cu2 + and Co2 + complexes of the receptors have been also prepared and characterized using spectroscopic methods and MALDI-TOF mass analysis. Furthermore, the binding stoichiometry between the receptors upon the addition Cu2 + and Co2 + has been investigated using Job's plot. Moreover, the fluorescence emission spectra of the receptors and their metal complexes are also reported.

  20. Imaging performance of a hybrid x-ray computed tomography-fluorescence molecular tomography system using priors.

    Science.gov (United States)

    Ale, Angelique; Schulz, Ralf B; Sarantopoulos, Athanasios; Ntziachristos, Vasilis

    2010-05-01

    The performance is studied of two newly introduced and previously suggested methods that incorporate priors into inversion schemes associated with data from a recently developed hybrid x-ray computed tomography and fluorescence molecular tomography system, the latter based on CCD camera photon detection. The unique data set studied attains accurately registered data of high spatially sampled photon fields propagating through tissue along 360 degrees projections. Approaches that incorporate structural prior information were included in the inverse problem by adding a penalty term to the minimization function utilized for image reconstructions. Results were compared as to their performance with simulated and experimental data from a lung inflammation animal model and against the inversions achieved when not using priors. The importance of using priors over stand-alone inversions is also showcased with high spatial sampling simulated and experimental data. The approach of optimal performance in resolving fluorescent biodistribution in small animals is also discussed. Inclusion of prior information from x-ray CT data in the reconstruction of the fluorescence biodistribution leads to improved agreement between the reconstruction and validation images for both simulated and experimental data.

  1. An Amidochlorin-Based Colorimetric Fluorescent Probe for Selective Cu2+ Detection

    Directory of Open Access Journals (Sweden)

    Wenting Li

    2016-01-01

    Full Text Available The design and synthesis of selective and sensitive chemosensors for the quantification of environmentally and biologically important ionic species has attracted widespread attention. Amidochlorin p6 (ACP; an effective colorimetric and fluorescent probe for copper ions (Cu2+ in aqueous solution derived from methyl pheophorbide-a (MPa was designed and synthesized. A remarkable color change from pale yellow to blue was easily observed by the naked eye upon addition of Cu2+; and a fluorescence quenching was also determined. The research of fluorescent quenching of ACP-Cu2+ complexation showed the detection limit was 7.5 × 10−8 mol/L; which suggested that ACP can act as a high sensitive probe for Cu2+ and can be used to quantitatively detect low levels of Cu2+ in aqueous solution. In aqueous solution the probe exhibits excellent selectivity and sensitivity toward Cu2+ ions over other metal ions (M = Zn2+; Ni2+; Ba2+; Ag+; Co2+; Na+; K+; Mg2+; Cd2+; Pb2+; Mn2+; Fe3+; and Ca2+. The obvious change from pale yellow to blue upon the addition of Cu2+ could make it a suitable “naked eye” indicator for Cu2+.

  2. Application of Fluorescence In Situ Hybridization (FISH) Technique for the Detection of Genetic Aberration in Medical Science

    OpenAIRE

    Ratan, Zubair Ahmed; Zaman, Sojib Bin; Mehta, Varshil; Haidere, Mohammad Faisal; Runa, Nusrat Jahan; Akter, Nasrin

    2017-01-01

    Fluorescence in situ hybridization (FISH) is a macromolecule recognition technique, which is considered as a new advent in the field of cytology.?Initially, it was developed as a physical mapping tool to delineate genes within chromosomes. The accuracy and versatility of FISH were subsequently capitalized upon in biological and medical research. This visually appealing technique provides an intermediate degree of resolution between DNA analysis and chromosomal investigations. FISH consists of...

  3. Hybrid Microfluidic Platform for Multifactorial Analysis Based on Electrical Impedance, Refractometry, Optical Absorption and Fluorescence

    Directory of Open Access Journals (Sweden)

    Fábio M. Pereira

    2016-10-01

    Full Text Available This paper describes the development of a novel microfluidic platform for multifactorial analysis integrating four label-free detection methods: electrical impedance, refractometry, optical absorption and fluorescence. We present the rationale for the design and the details of the microfabrication of this multifactorial hybrid microfluidic chip. The structure of the platform consists of a three-dimensionally patterned polydimethylsiloxane top part attached to a bottom SU-8 epoxy-based negative photoresist part, where microelectrodes and optical fibers are incorporated to enable impedance and optical analysis. As a proof of concept, the chip functions have been tested and explored, enabling a diversity of applications: (i impedance-based identification of the size of micro beads, as well as counting and distinguishing of erythrocytes by their volume or membrane properties; (ii simultaneous determination of the refractive index and optical absorption properties of solutions; and (iii fluorescence-based bead counting.

  4. Fluorescence photooxidation with eosin: a method for high resolution immunolocalization and in situ hybridization detection for light and electron microscopy

    Science.gov (United States)

    1994-01-01

    A simple method is described for high-resolution light and electron microscopic immunolocalization of proteins in cells and tissues by immunofluorescence and subsequent photooxidation of diaminobenzidine tetrahydrochloride into an insoluble osmiophilic polymer. By using eosin as the fluorescent marker, a substantial improvement in sensitivity is achieved in the photooxidation process over other conventional fluorescent compounds. The technique allows for precise correlative immunolocalization studies on the same sample using fluorescence, transmitted light and electron microscopy. Furthermore, because eosin is smaller in size than other conventional markers, this method results in improved penetration of labeling reagents compared to gold or enzyme based procedures. The improved penetration allows for three-dimensional immunolocalization using high voltage electron microscopy. Fluorescence photooxidation can also be used for high resolution light and electron microscopic localization of specific nucleic acid sequences by in situ hybridization utilizing biotinylated probes followed by an eosin-streptavidin conjugate. PMID:7519623

  5. Development of species-specific rDNA probes for Giardia by multiple fluorescent in situ hybridization combined with immunocytochemical identification of cyst wall antigens.

    Science.gov (United States)

    Erlandsen, Stanley L; Jarroll, Edward; Wallis, Peter; van Keulen, Harry

    2005-08-01

    In this study, we describe the development of fluorescent oligonucleotide probes to variable regions in the small subunit of 16S rRNA in three distinct Giardia species. Sense and antisense probes (17-22 mer) to variable regions 1, 3, and 8 were labeled with digoxygenin or selected fluorochomes (FluorX, Cy3, or Cy5). Optimal results were obtained with fluorochome-labeled oligonucleotides for detection of rRNA in Giardia cysts. Specificity of fluorescent in situ hybridization (FISH) was shown using RNase digestion and high stringency to diminish the hybridization signal, and oligonucleotide probes for rRNA in Giardia lamblia, Giardia muris, and Giardia ardeae were shown to specifically stain rRNA only within cysts or trophozoites of those species. The fluorescent oligonucleotide specific for rRNA in human isolates of Giardia was positive for ten different strains. A method for simultaneous FISH detection of cysts using fluorescent antibody (genotype marker) and two oligonucleotide probes (species marker) permitted visualization of G. lamblia and G. muris cysts in the same preparation. Testing of an environmental water sample revealed the presence of FISH-positive G. lamblia cysts with a specific rDNA probe for rRNA, while negative cysts were presumed to be of animal or bird origin.

  6. Simple process of hybrid white quantum dot/organic light-emitting diodes by using quantum dot plate and fluorescence

    Science.gov (United States)

    Lee, Ho Won; Lee, Ki-Heon; Lee, Jae Woo; Kim, Jong-Hoon; Yang, Heesun; Kim, Young Kwan

    2015-02-01

    In this work, the simple process of hybrid quantum dot (QD)/organic light-emitting diode (OLED) was proposed to apply a white illumination light by using QD plate and organic fluorescence. Conventional blue fluorescent OLEDs were firstly fabricated and then QD plates of various concentrations, which can be controlled of UV-vis absorption and photoluminescence spectrum, were attached under glass substrate of completed blue devices. The suggested process indicates that we could fabricate the white device through very simple process without any deposition of orange or red organic emitters. Therefore, this work would be demonstrated that the potential simple process for white applications can be applied and also can be extended to additional research on light applications.

  7. FISHIS: fluorescence in situ hybridization in suspension and chromosome flow sorting made easy.

    Directory of Open Access Journals (Sweden)

    Debora Giorgi

    Full Text Available The large size and complex polyploid nature of many genomes has often hampered genomics development, as is the case for several plants of high agronomic value. Isolating single chromosomes or chromosome arms via flow sorting offers a clue to resolve such complexity by focusing sequencing to a discrete and self-consistent part of the whole genome. The occurrence of sufficient differences in the size and or base-pair composition of the individual chromosomes, which is uncommon in plants, is critical for the success of flow sorting. We overcome this limitation by developing a robust method for labeling isolated chromosomes, named Fluorescent In situ Hybridization In suspension (FISHIS. FISHIS employs fluorescently labeled synthetic repetitive DNA probes, which are hybridized, in a wash-less procedure, to chromosomes in suspension following DNA alkaline denaturation. All typical A, B and D genomes of wheat, as well as individual chromosomes from pasta (T. durum L. and bread (T. aestivum L. wheat, were flow-sorted, after FISHIS, at high purity. For the first time in eukaryotes, each individual chromosome of a diploid organism, Dasypyrum villosum (L. Candargy, was flow-sorted regardless of its size or base-pair related content. FISHIS-based chromosome sorting is a powerful and innovative flow cytogenetic tool which can develop new genomic resources from each plant species, where microsatellite DNA probes are available and high quality chromosome suspensions could be produced. The joining of FISHIS labeling and flow sorting with the Next Generation Sequencing methodology will enforce genomics for more species, and by this mightier chromosome approach it will be possible to increase our knowledge about structure, evolution and function of plant genome to be used for crop improvement. It is also anticipated that this technique could contribute to analyze and sort animal chromosomes with peculiar cytogenetic abnormalities, such as copy number variations

  8. FISHIS: fluorescence in situ hybridization in suspension and chromosome flow sorting made easy.

    Science.gov (United States)

    Giorgi, Debora; Farina, Anna; Grosso, Valentina; Gennaro, Andrea; Ceoloni, Carla; Lucretti, Sergio

    2013-01-01

    The large size and complex polyploid nature of many genomes has often hampered genomics development, as is the case for several plants of high agronomic value. Isolating single chromosomes or chromosome arms via flow sorting offers a clue to resolve such complexity by focusing sequencing to a discrete and self-consistent part of the whole genome. The occurrence of sufficient differences in the size and or base-pair composition of the individual chromosomes, which is uncommon in plants, is critical for the success of flow sorting. We overcome this limitation by developing a robust method for labeling isolated chromosomes, named Fluorescent In situ Hybridization In suspension (FISHIS). FISHIS employs fluorescently labeled synthetic repetitive DNA probes, which are hybridized, in a wash-less procedure, to chromosomes in suspension following DNA alkaline denaturation. All typical A, B and D genomes of wheat, as well as individual chromosomes from pasta (T. durum L.) and bread (T. aestivum L.) wheat, were flow-sorted, after FISHIS, at high purity. For the first time in eukaryotes, each individual chromosome of a diploid organism, Dasypyrum villosum (L.) Candargy, was flow-sorted regardless of its size or base-pair related content. FISHIS-based chromosome sorting is a powerful and innovative flow cytogenetic tool which can develop new genomic resources from each plant species, where microsatellite DNA probes are available and high quality chromosome suspensions could be produced. The joining of FISHIS labeling and flow sorting with the Next Generation Sequencing methodology will enforce genomics for more species, and by this mightier chromosome approach it will be possible to increase our knowledge about structure, evolution and function of plant genome to be used for crop improvement. It is also anticipated that this technique could contribute to analyze and sort animal chromosomes with peculiar cytogenetic abnormalities, such as copy number variations or cytogenetic

  9. Preimplantation genetic diagnosis by fluorescence in situ hybridization of reciprocal and Robertsonian translocations.

    Science.gov (United States)

    Chen, Chun-Kai; Wu, Dennis; Yu, Hsing-Tse; Lin, Chieh-Yu; Wang, Mei-Li; Yeh, Hsin-Yi; Huang, Hong-Yuan; Wang, Hsin-Shin; Soong, Yung-Kuei; Lee, Chyi-Long

    2014-03-01

    The presence of reciprocal and Robertsonian chromosomal rearrangement is often related to recurrent miscarriage. Using preimplantation genetic diagnosis, the abortion rate can be decreased. Cases treated at our center were reviewed. A retrospective analysis for either Robertsonian or reciprocal translocations was performed on all completed cycles of preimplantation genetic diagnosis at our center since the first reported case in 2004 until the end of 2010. Day 3 embryo biopsies were carried out, and the biopsied cell was checked by fluorescent in situ hybridization using relevant informative probes. Embryos with a normal or balanced translocation karyotype were transferred on Day 4. Thirty-eight preimplantation genetic diagnosis cycles involving 17 couples were completed. A total of 450 (82.6%) of the total oocytes were MII oocytes, and 158 (60.0%) of the two-pronuclei embryos were biopsied. In 41.4% of the fluorescent in situ hybridization analyses, the results were either normal or balanced. Embryos were transferred back after 21 cycles. Three babies were born from Robertsonian translocation carriers and another two from reciprocal translocation carriers. The miscarriage rate was 0%. Among the reciprocal translocation group, the live delivery rate was 8.3% per ovum pick-up cycle and 18.2% per embryo transfer cycle. Among the Robertsonian translocation group, the live delivery rate was 14.3% per ovum pick-up cycle and 20.0% per embryo transfer cycle. There is a trend whereby the outcome for Robertsonian translocation group carriers is better than that for reciprocal translocation group carriers. Aneuploidy screening may possibly be added in order to improve the outcome, especially for individuals with an advanced maternal age. The emergence of an array-based technology should help improve this type of analysis. Copyright © 2014. Published by Elsevier B.V.

  10. Comparison of Chromogenic In Situ Hybridization and Fluorescence In Situ Hybridization for the Evaluation of MDM2 Amplification in Adipocytic Tumors.

    Science.gov (United States)

    Mardekian, Stacey K; Solomides, Charalambos C; Gong, Jerald Z; Peiper, Stephen C; Wang, Zi-Xuan; Bajaj, Renu

    2015-11-01

    Atypical lipomatous tumor/well-differentiated liposarcoma (ALT-WDLPS) and dedifferentiated liposarcoma (DDLPS) are characterized cytogenetically by a 12q13-15 amplification involving the mouse double minute 2 (MDM2) oncogene. Fluorescence in situ hybridization (FISH) is used frequently to detect this amplification and aid with the diagnosis of these entities, which is difficult by morphology alone. Recently, bright-field in situ hybridization techniques such as chromogenic in situ hybridization (CISH) have been introduced for the determination of MDM2 amplification status. The present study compared the results of FISH and CISH for detecting MDM2 amplification in 41 cases of adipocytic tumors. Amplification was defined in both techniques as a MDM2/CEN12 ratio of 2 or greater. Eleven cases showed amplification with both FISH and CISH, and 26 cases showed no amplification with both methods. Two cases had discordant results between CISH and FISH, and two cases were not interpretable by CISH. CISH is advantageous for allowing pathologists to evaluate the histologic and molecular alterations occurring simultaneously in a specimen. Moreover, CISH is found to be more cost- and time-efficient when used with automation, and the signals do not quench over time. CISH technique is a reliable alternative to FISH in the evaluation of adipocytic tumors for MDM2 amplification. © 2014 Wiley Periodicals, Inc.

  11. RBAP, a Rhodamine B-Based Derivative: Synthesis, Crystal Structure Analysis, Molecular Simulation, and Its Application as a Selective Fluorescent Chemical Sensor for Sn2+

    Directory of Open Access Journals (Sweden)

    Xiaofeng Bao

    2014-06-01

    Full Text Available A new fluorescent chemosensor based on a Rhodamine B and a benzyl 3-aminopropanoate conjugate (RBAP was designed, synthesized, and structurally characterized. Its single crystal structure was obtained and analyzed by X-ray analysis. In a MeOH/H2O (2:3, v/v, pH 5.95 solution RBAP exhibits a high selectivity and excellent sensitivity for Sn2+ ions in the presence of many other metal cations. The binding analysis using the Job’s plot suggested the RBAP formed a 1:1 complex with Sn2+.

  12. RBAP, a Rhodamine B-Based Derivative: Synthesis, Crystal Structure Analysis, Molecular Simulation, and Its Application as a Selective Fluorescent Chemical Sensor for Sn2+

    OpenAIRE

    Xiaofeng Bao; Xiaowei Cao; Xuemei Nie; Yanyan Jin; Baojing Zhou

    2014-01-01

    A new fluorescent chemosensor based on a Rhodamine B and a benzyl 3-aminopropanoate conjugate (RBAP) was designed, synthesized, and structurally characterized. Its single crystal structure was obtained and analyzed by X-ray analysis. In a MeOH/H2O (2:3, v/v, pH 5.95) solution RBAP exhibits a high selectivity and excellent sensitivity for Sn2+ ions in the presence of many other metal cations. The binding analysis using the Job’s plot suggested the RBAP formed a 1:1 complex with Sn2+.

  13. Biomimetic synthesis of needle-like fluorescent calcium phosphate/carbon dot hybrid composites for cell labeling and copper ion detection.

    Science.gov (United States)

    Guo, Shanshan; Lu, Shousi; Xu, Pingxiang; Ma, Yi; Zhao, Liang; Zhao, Yuming; Gu, Wei; Xue, Ming

    2016-05-04

    Herein, we report a biomimetic method to synthesize needle-like calcium phosphate (CaP) with dimensions of ∼130 nm length and ∼30 nm width using carbon dots (CDs) and sodium carboxymethylcellulose as dual templates. In addition to acting as the template, the CDs enable the CaP/CDs hybrid composites to emit blue fluorescence under UV excitation. Moreover, the prepared CaP/CDs exhibited a negligible cytotoxicity towards HeLa cells. The potential of these CaP/CDs as a fluorescent probe for cell labeling was tested. In addition, it was demonstrated that the CaP/CDs were capable of selective detection of copper ions in drinking water.

  14. A novel fluorescent probe based on rhodamine hydrazone derivatives bearing a thiophene group for Al³⁺.

    Science.gov (United States)

    Li, Meng-xiao; Zhang, Xia; Fan, Yu-hua; Bi, Cai-feng

    2016-05-01

    In the present work, a novel 5-methyl-thiophene-carbaldehyde-functionalized rhodamine 6G Schiff base (RA) was designed and easily prepared as an Al(3+) fluorescent and colorimetric probe, which could selectively and sensitively detect Al(3+) by showing enhanced fluorescence emission. Meanwhile distinct color variation from colorless to pink also provided 'naked eye' detection of Al(3+), due to the ring spirolactam opening of the rhodamine derivative. Other metal ions (including K(+), Mg(2+), Na(+), Ba(2+), Mn(2+), Cd(2+), Fe(2+), Ni(2+), Pb(2+), Zn(2+), Hg(2+), Co(2+), Li(+), Sr(2+) and Cu(2+)) could only induce limited interference. The detection limit of the fluorescent probe was estimated to be 4.17 × 10(-6) M, the binding constant of the RA-Al(3+) complex was 1.4 × 10(6)  M(-1). Moreover, this fluorescent probe RA possessed high reversibility. As aluminum is a ubiquitous metal in nature and plays vital roles in many biological processes, this chemosensor could be explored for biological study applications. Copyright © 2015 John Wiley & Sons, Ltd.

  15. Molecular Self-Assembly of Group 11 Pyrazolate Complexes as Phosphorescent Chemosensors for Detection of Benzene

    Science.gov (United States)

    Ghazalli, N. F.; Yuliati, L.; Lintang, H. O.

    2018-01-01

    We highlight the systematic study on vapochromic sensing of aromatic vapors such as benzene using phosphorescent trinuclear pyrazolate complexes (2) with supramolecular assembly of a weak intermolecular metal-metal interaction consisting of 4-(3,5-dimethoxybenzyl)-3,5-dimethyl pyrazole ligand (1) and group 11 metal ions (Cu(I), Ag(I), Au(I)). The resulting chemosensor 2(Cu) revealed positive response to benzene vapors in 5 mins by blue-shifting its emission band in 44 nm (from 616 to 572 nm) and emitted bright orange to green, where this change cannot be recovered even with external stimuli. Comparing to 2(Ag) with longer metal-metal distance (473 nm) with same sensing time and quenching in 37%, 2(Au) gave quenching in 81% from its original intensity at 612 nm with reusability in 82% without external stimuli and emitted less emissive of red-orange from its original color. The shifting phenomenon in 2(Cu) suggests diffusion of benzene vapors to inside molecules for formation of intermolecular interaction with Cu(I)-Cu(I) interaction while quenching phenomenon in 2(Au) suggests diffusion of benzene vapors to between the Au(I)-Au(I) interaction. These results indicate that suitable molecular structure of ligand and metal ion in pyrazolate complex is important for designing chemosensor in the detection of benzene vapors.

  16. Remanagement of Singlet and Triplet Excitons in Single-Emissive-Layer Hybrid White Organic Light-Emitting Devices Using Thermally Activated Delayed Fluorescent Blue Exciplex.

    Science.gov (United States)

    Liu, Xiao-Ke; Chen, Zhan; Qing, Jian; Zhang, Wen-Jun; Wu, Bo; Tam, Hoi Lam; Zhu, Furong; Zhang, Xiao-Hong; Lee, Chun-Sing

    2015-11-25

    A high-performance hybrid white organic light-emitting device (WOLED) is demonstrated based on an efficient novel thermally activated delayed fluorescence (TADF) blue exciplex system. This device shows a low turn-on voltage of 2.5 V and maximum forward-viewing external quantum efficiency of 25.5%, which opens a new avenue for achieving high-performance hybrid WOLEDs with simple structures. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Investigation of kinetics and thermodynamics of DNA hybridization by means of 2-D fluorescence spectroscopy and soft/hard modeling techniques

    Energy Technology Data Exchange (ETDEWEB)

    Ebrahimi, Sara; Kompany-Zareh, Mohsen, E-mail: kmpz@dr.com

    2016-02-04

    Reversible hybridization reaction plays a key role in fundamental biological processes, in many laboratory techniques, and also in DNA based sensing devices. Comprehensive investigation of this process is, therefore, essential for the development of more sophisticated applications. Kinetics and thermodynamics of the hybridization reaction, as a second order process, are systematically investigated with the aid of the soft and hard chemometric methods. Labeling two complementary 21 mer DNA single strands with FAM and Texas red fluorophores, enabled recording of the florescence excitation−emission matrices during the experiments which led to three-way data sets. The presence of fluorescence resonance energy transfer in excitation and emission modes and the closure in concentration mode, made the three-way data arrays rank deficient. To acquire primary chemical information, restricted Tucker3 as a soft method was employed. Herein a model-based method, hard restricted trilinear decomposition, is introduced for in depth analysis of rank deficient three-way data sets. By employing proposed hard method, the nonlinear model parameters as well as the correct profiles could be estimated. In addition, a simple constraint is presented to extract chemically reasonable output profiles regarding the core elements of restricted Tucker3 model. - Highlights: • Hard restricted trilinear decomposition (HrTD) was introduced for model-based analysis of three-way rank deficient data. • DNA hybridization was investigated by two-dimensional fluorescence spectroscopy and soft/hard multi-way techniques. • Restricted Tucker3 analysis enabled accurate estimation of pure FRET profiles in the hybridized form. • HrTD was successfully employed to estimate kinetic and equilibrium parameters of DNA hybridization system. • The performance of the proposed methods in response to different physical stimuli was successfully evaluated.

  18. Detection of dengue group viruses by fluorescence in situ hybridization

    Directory of Open Access Journals (Sweden)

    Raquin Vincent

    2012-10-01

    Full Text Available Abstract Background Dengue fever (DF and dengue hemorrhagic fever (DHF represent a global challenge in public health. It is estimated that 50 to 100 million infections occur each year causing approximately 20,000 deaths that are usually linked to severe cases like DHF and dengue shock syndrome. The causative agent of DF is dengue virus (genus Flavivirus that comprises four distinct serotypes (DENV-1 to DENV-4. Fluorescence in situ hybridization (FISH has been used successfully to detect pathogenic agents, but has not been implemented in detecting DENV. To improve our understanding of DENV infection and dissemination in host tissues, we designed specific probes to detect DENV in FISH assays. Methods Oligonucleotide probes were designed to hybridize with RNA from the broadest range of DENV isolates belonging to the four serotypes, but not to the closest Flavivirus genomes. Three probes that fit the criteria defined for FISH experiments were selected, targeting both coding and non-coding regions of the DENV genome. These probes were tested in FISH assays against the dengue vector Aedes albopictus (Diptera: Culicidae. The FISH experiments were led in vitro using the C6/36 cell line, and in vivo against dissected salivary glands, with epifluorescence and confocal microscopy. Results The three 60-nt oligonucleotides probes DENV-Probe A, B and C cover a broad range of DENV isolates from the four serotypes. When the three probes were used together, specific fluorescent signals were observed in C6/36 infected with each DENV serotypes. No signal was detected in either cells infected with close Flavivirus members West Nile virus or yellow fever virus. The same protocol was used on salivary glands of Ae. albopictus fed with a DENV-2 infectious blood-meal which showed positive signals in the lateral lobes of infected samples, with no significant signal in uninfected mosquitoes. Conclusion Based on the FISH technique, we propose a way to design and use

  19. Photocatalytic oxidation removal of Hg{sup 0} using ternary Ag/AgI-Ag{sub 2}CO{sub 3} hybrids in wet scrubbing process under fluorescent light

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Anchao, E-mail: aczhang@qq.com [School of Mechanical and Power Engineering, Henan Polytechnic University, Jiaozuo, 454000 (China); Zhang, Lixiang; Chen, Xiaozhuan; Zhu, Qifeng; Liu, Zhichao [School of Mechanical and Power Engineering, Henan Polytechnic University, Jiaozuo, 454000 (China); Xiang, Jun, E-mail: xiangjun@mail.hust.edu.cn [State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan, 430074 (China)

    2017-01-15

    Highlights: • Ag/AgI-Ag{sub 2}CO{sub 3} hybrids were employed for Hg{sup 0} removal under fluorescent light. • Superoxide radical (·O{sub 2}{sup −}) played a key role in Hg{sup 0} removal. • NO exhibited a significant effect on Hg{sup 0} removal in comparison to SO{sub 2}. • The mechanism for enhanced Hg{sup 0} removal over Ag/AgI-Ag{sub 2}CO{sub 3} was proposed. - Abstract: A series of ternary Ag/AgI-Ag{sub 2}CO{sub 3} photocatalysts synthesized using a facile coprecipitation method were employed to investigate their performances of Hg{sup 0} removal in a wet scrubbing reactor. The hybrids were characterized by N{sub 2} adsorption-desorption, XRD, SEM-EDS, HRTEM, XPS, DRS and ESR. The photocatalytic activities of Hg{sup 0} removal were evaluated under fluorescent light. The results showed that AgI content, fluorescent light irradiation, reaction temperature all showed significant influences on Hg{sup 0} removal. NO exhibited significant effect on Hg{sup 0} removal in comparison to SO{sub 2}. Among these ternary Ag/AgI-Ag{sub 2}CO{sub 3} hybrids, Ag/AgI(0.1)-Ag{sub 2}CO{sub 3} showed the highest Hg{sup 0} removal efficiency, which could be ascribed to the effective separation of photogenerated electron-hole pairs between AgI and Ag{sub 2}CO{sub 3} and the surface plasmon resonance (SPR) effect in the visible region by metallic silver nanoparticles (Ag{sup 0} NPs). The trapping studies of reactive radicals showed that the superoxide radicals (·O{sub 2}{sup −}) may play a key role in Hg{sup 0} removal under fluorescent light. According to the experimental and characterization results, a possible photocatalytic oxidation mechanism for enhanced Hg{sup 0} removal over Ag/AgI(0.1)-Ag{sub 2}CO{sub 3} hybrid under fluorescent light was proposed.

  20. Hybrid white organic light-emitting devices based on phosphorescent iridium-benzotriazole orange-red and fluorescent blue emitters

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Zhen-Yuan, E-mail: xiazhenyuan@hotmail.com [Key Laboratory for Advanced Materials and Institute of Fine Chemicals, East China University of Science and Technology, Shanghai 200237 (China); Su, Jian-Hua [Key Laboratory for Advanced Materials and Institute of Fine Chemicals, East China University of Science and Technology, Shanghai 200237 (China); Chang, Chi-Sheng; Chen, Chin H. [Display Institute, Microelectronics and Information Systems Research Center, National Chiao Tung University, Hsinchu, Taiwan 300 (China)

    2013-03-15

    We demonstrate that high color purity or efficiency hybrid white organic light-emitting devices (OLEDs) can be generated by integrating a phosphorescent orange-red emitter, bis[4-(2H-benzotriazol-2-yl)-N,N-diphenyl-aniline-N{sup 1},C{sup 3}] iridium acetylacetonate, Ir(TBT){sub 2}(acac) with fluorescent blue emitters in two different emissive layers. The device based on deep blue fluorescent material diphenyl-[4-(2-[1,1 Prime ;4 Prime ,1 Double-Prime ]terphenyl-4-yl-vinyl)-phenyl]-amine BpSAB and Ir(TBT){sub 2}(acac) shows pure white color with the Commission Internationale de L'Eclairage (CIE) coordinates of (0.33,0.30). When using sky-blue fluorescent dopant N,N Prime -(4,4 Prime -(1E,1 Prime E)-2,2 Prime -(1,4-phenylene)bis(ethene-2,1-diyl) bis(4,1-phenylene))bis(2-ethyl-6-methyl-N-phenylaniline) (BUBD-1) and orange-red phosphor with a color-tuning phosphorescent material fac-tris(2-phenylpyridine) iridium (Ir(ppy){sub 3} ), it exhibits peak luminance yield and power efficiency of 17.4 cd/A and 10.7 lm/W, respectively with yellow-white color and CIE color rendering index (CRI) value of 73. - Highlights: Black-Right-Pointing-Pointer An iridium-based orange-red phosphor Ir(TBT){sub 2}(acac) was applied in hybrid white OLEDs. Black-Right-Pointing-Pointer Duel- and tri-emitter WOLEDs were achieved with either high color purity or efficiency performance. Black-Right-Pointing-Pointer Peak luminance yield of tri-emitter WOLEDs was 17.4 cd/A with yellow-white color and color rendering index (CRI) value of 73.

  1. Accuracy Assessment of Interphase Fluorescence In-Situ Hybridization on Uncultured Amniotic Fluid Cells

    Directory of Open Access Journals (Sweden)

    Hamideh Karimi

    2007-01-01

    Full Text Available Background: Parental anxiety while waiting for the results of amniocentesis has been investigatedby many authors. It seems that the implementation of faster techniques such as fluorescence in-situhybridization (FISH will have some benefits in reducing this anxiety. Besides the patients' attitudesto choosing this method, gynecologists who are the persons responsible for treatment, must feelcomfortable about prescribing FISH techniques.Materials and Methods: This study, using a simple methodology, was undertaken to evaluate theresults of FISH tests on the amniotic fluid from 40 pregnant women undergoing cesarean surgery.Two sets of probes including X/Y cocktail and 13, 21 and 18 were applied on different slides.Results: The results of FISH tests were compared with the reports of the pediatrician about thehealth condition of the newborn. Complete conformity between the two sets of findings, haveconvinced our gynecologists of the benefit of prescribing this method to reduce the anxiety ofpatients at risk of having abnormal offspring due to chromosomal anuploidies.Conclusion: As has been documented by many authors, conventional chromosome analysis hasgreat advantages over fluorescence in situ hybridization of interphase amniocytes, but reducing theanxiety of parents is a good reason for employing the FISH technique.

  2. Hybrid nanostructures of well-organized arrays of colloidal quantum dots and a self-assembled monolayer of gold nanoparticles for enhanced fluorescence

    Science.gov (United States)

    Liu, Xiaoying; McBride, Sean P.; Jaeger, Heinrich M.; Nealey, Paul F.

    2016-07-01

    Hybrid nanomaterials comprised of well-organized arrays of colloidal semiconductor quantum dots (QDs) in close proximity to metal nanoparticles (NPs) represent an appealing system for high-performance, spectrum-tunable photon sources with controlled photoluminescence. Experimental realization of such materials requires well-defined QD arrays and precisely controlled QD-metal interspacing. This long-standing challenge is tackled through a strategy that synergistically combines lateral confinement and vertical stacking. Lithographically generated nanoscale patterns with tailored surface chemistry confine the QDs into well-organized arrays with high selectivity through chemical pattern directed assembly, while subsequent coating with a monolayer of close-packed Au NPs introduces the plasmonic component for fluorescence enhancement. The results show uniform fluorescence emission in large-area ordered arrays for the fabricated QD structures and demonstrate five-fold fluorescence amplification for red, yellow, and green QDs in the presence of the Au NP monolayer. Encapsulation of QDs with a silica shell is shown to extend the design space for reliable QD/metal coupling with stronger enhancement of 11 times through the tuning of QD-metal spatial separation. This approach provides new opportunities for designing hybrid nanomaterials with tailored array structures and multiple functionalities for applications such as multiplexed optical coding, color display, and quantum transduction.

  3. Luminescent Metal Nanoclusters for Potential Chemosensor Applications

    Directory of Open Access Journals (Sweden)

    Muthaiah Shellaiah

    2017-12-01

    Full Text Available Studies of metal nanocluster (M-NCs-based sensors for specific analyte detection have achieved significant progress in recent decades. Ultra-small-size (<2 nm M-NCs consist of several to a few hundred metal atoms and exhibit extraordinary physical and chemical properties. Similar to organic molecules, M-NCs display absorption and emission properties via electronic transitions between energy levels upon interaction with light. As such, researchers tend to apply M-NCs in diverse fields, such as in chemosensors, biological imaging, catalysis, and environmental and electronic devices. Chemo- and bio-sensory uses have been extensively explored with luminescent NCs of Au, Ag, Cu, and Pt as potential sensory materials. Luminescent bi-metallic NCs, such as Au-Ag, Au-Cu, Au-Pd, and Au-Pt have also been used as probes in chemosensory investigations. Both metallic and bi-metallic NCs have been utilized to detect various analytes, such as metal ions, anions, biomolecules, proteins, acidity or alkalinity of a solution (pH, and nucleic acids, at diverse detection ranges and limits. In this review, we have summarized the chemosensory applications of luminescent M-NCs and bi-metallic NCs.

  4. Chromosome translocations measured by fluorescence in-situ hybridization: A promising biomarker

    International Nuclear Information System (INIS)

    Lucas, J.N.; Straume, T.

    1995-10-01

    A biomarker for exposure and risk assessment would be most useful if it employs an endpoint that is highly quantitative, is stable with time, and is relevant to human risk. Recent advances in chromosome staining using fluorescence in situ hybridization (FISH) facilitate fast and reliable measurement of reciprocal translocations, a kind of DNA damage linked to both prior exposure and risk. In contrast to other biomarkers available, the frequency of reciprocal translocations in individuals exposed to whole-body radiation is stable with time post exposure, has a rather small inter-individual variability, and can be measured accurately at the low levels. Here, the authors discuss results from their studies demonstrating that chromosome painting can be used to reconstruct radiation dose for workers exposed within the dose limits, for individuals exposed a long time ago, and even for those who have been diagnosed with leukemia but not yet undergone therapy

  5. Filter-Adapted Fluorescent In Situ Hybridization (FA-FISH) for Filtration-Enriched Circulating Tumor Cells.

    Science.gov (United States)

    Oulhen, Marianne; Pailler, Emma; Faugeroux, Vincent; Farace, Françoise

    2017-01-01

    Circulating tumor cells (CTCs) may represent an easily accessible source of tumor material to assess genetic aberrations such as gene-rearrangements or gene-amplifications and screen cancer patients eligible for targeted therapies. As the number of CTCs is a critical parameter to identify such biomarkers, we developed fluorescent in situ hybridization (FISH) for CTCs enriched on filters (filter-adapted-FISH, FA-FISH). Here, we describe the FA-FISH protocol, the combination of immunofluorescent staining (DAPI/CD45) and FA-FISH techniques, as well as the semi-automated microscopy method that we developed to improve the feasibility and reliability of FISH analyses in filtration-enriched CTC.

  6. Improved selectivity towards NO₂ of phthalocyanine-based chemosensors by means of original indigo/nanocarbons hybrid material.

    Science.gov (United States)

    Brunet, J; Pauly, A; Dubois, M; Rodriguez-Mendez, M L; Ndiaye, A L; Varenne, C; Guérin, K

    2014-09-01

    A new and original gas sensor-system dedicated to the selective monitoring of nitrogen dioxide in air and in the presence of ozone, has been successfully achieved. Because of its high sensitivity and its partial selectivity towards oxidizing pollutants (nitrogen dioxide and ozone), copper phthalocyanine-based chemoresistors are relevant. The selectivity towards nitrogen dioxide results from the implementation of a high efficient and selective ozone filter upstream the sensing device. Thus, a powdered indigo/nanocarbons hybrid material has been developed and investigated for such an application. If nanocarbonaceous material acts as a highly permeable matrix with a high specific surface area, immobilized indigo nanoparticles are involved into an ozonolysis reaction with ozone leading to the selective removal of this analytes from air sample. The filtering yields towards each gas have been experimentally quantified and establish the complete removal of ozone while having the concentration of nitrogen dioxide unchanged. Long-term gas exposures reveal the higher durability of hybrid material as compared to nanocarbons and indigo separately. Synthesis, characterizations by many complementary techniques and tests of hybrid filters are detailed. Results on sensor-system including CuPc-based chemoresistors and indigo/carbon nanotubes hybrid material as in-line filter are illustrated. Sensing performances will be especially discussed. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. On-chip transduction of nucleic acid hybridization using spatial profiles of immobilized quantum dots and fluorescence resonance energy transfer.

    Science.gov (United States)

    Tavares, Anthony J; Noor, M Omair; Vannoy, Charles H; Algar, W Russ; Krull, Ulrich J

    2012-01-03

    The glass surface of a glass-polydimethylsiloxane (PDMS) microfluidic channel was modified to develop a solid-phase assay for quantitative determination of nucleic acids. Electroosmotic flow (EOF) within channels was used to deliver and immobilize semiconductor quantum dots (QDs), and electrophoresis was used to decorate the QDs with oligonucleotide probe sequences. These processes took only minutes to complete. The QDs served as energy donors in fluorescence resonance energy transfer (FRET) for transduction of nucleic acid hybridization. Electrokinetic injection of fluorescent dye (Cy3) labeled oligonucleotide target into a microfluidic channel and subsequent hybridization (within minutes) provided the proximity for FRET, with emission from Cy3 being the analytical signal. The quantification of target concentration was achieved by measurement of the spatial length of coverage by target along a channel. Detection of femtomole quantities of target was possible with a dynamic range spanning an order of magnitude. The assay provided excellent resistance to nonspecific interactions of DNA. Further selectivity of the assay was achieved using 20% formamide, which allowed discrimination between a fully complementary target and a 3 base pair mismatch target at a contrast ratio of 4:1. © 2011 American Chemical Society

  8. Establishment of 60Co dose calibration curve using fluorescent in situ hybridization assay technique: Result of preliminary study

    International Nuclear Information System (INIS)

    Rahimah Abdul Rahim; Noriah Jamal; Noraisyah Mohd Yusof; Juliana Mahamad Napiah; Nelly Bo Nai Lee

    2010-01-01

    This study aims at establishing an in-vitro 60 Co dose calibration curve using Fluorescent In-Situ Hybridization assay technique for the Malaysian National Bio dosimetry Laboratory. Blood samples collected from a female healthy donor were irradiated with several doses of 60 Co radiation. Following culturing of lymphocytes, microscopic slides are prepared, denatured and hybridized. The frequencies of translocation are estimated in the metaphases. A calibration curve was then generated using a regression technique. It shows a good fit to a linear-quadratic model. The results of this study might be useful in estimating absorbed dose for the individual exposed to ionizing radiation retrospectively. This information may be useful as a guide for medical treatment for the assessment of possible health consequences. (author)

  9. Aminoquinoline based highly sensitive fluorescent sensor for lead(II) and aluminum(III) and its application in live cell imaging

    International Nuclear Information System (INIS)

    Anand, Thangaraj; Sivaraman, Gandhi; Mahesh, Ayyavu; Chellappa, Duraisamy

    2015-01-01

    Highlights: • Aminoquinoline derivative was synthesized and used to recognize Pb 2+ /Al 3+ . • ANQ was high sensitive, selective and turn-on sensor for Pb 2+ /Al 3+ . • The Pb 2+ detection limit (2.08 × 10 −9 mol L −1 ) is reported. • This fluorescence change was further supported by DFT/TD-DFT calculations. • The probe is applied successfully for recognizing intracellular Pb 2+ /Al 3+ within living cells. - Abstract: We have synthesized a new probe 5-((anthracen-9-ylmethylene) amino)quinolin-10-ol (ANQ) based on anthracene platform. The probe was tested for its sensing behavior toward heavy metal ions Hg 2+ , Pb 2+ , light metal Al 3+ ion, alkali, alkaline earth, and transition metal ions by UV–visible and fluorescent techniques in ACN/H 2 O mixture buffered with HEPES (pH 7.4). It shows high selectivity toward sensing Pb 2+ /Al 3+ metal ions. Importantly, 10-fold and 5- fold fluorescence enhancement at 429 nm was observed for probe upon complexation with Pb 2+ and Al 3+ ions, respectively. This fluorescence enhancement is attributable to the prevention of photoinduced electron transfer. The photonic studies indicate that the probe can be adopted as a sensitive fluorescent chemosensor for Pb 2+ and Al 3+ ions

  10. A real-time fluorescent sensor specific to Mg2+: crystallographic evidence, DFT calculation and its use for quantitative determination of magnesium in drinking water.

    Science.gov (United States)

    Men, Guangwen; Chen, Chunrong; Zhang, Shitong; Liang, Chunshuang; Wang, Ying; Deng, Mengyu; Shang, Hongxing; Yang, Bing; Jiang, Shimei

    2015-02-14

    An "off-the-shelf" fluorescence "turn-on" Mg(2+) chemosensor 3,5-dichlorosalicylaldehyde (BCSA) was rationally designed and developed. This proposed sensor works based on Mg(2+)-induced formation of the 2 : 1 BCSA-Mg(2+) complex. The coordination of BSCA to Mg(2+) increases its structural rigidity generating a chelation-enhanced fluorescence (CHEF) effect which was confirmed by single crystal XRD studies of the BSCA-Mg(2+) complex and TD/DFT calculations. This sensor exhibits high sensitivity and selectivity for the quantitative monitoring of Mg(2+) with a wide detection range (0-40 μM), a low detection limit (2.89 × 10(-7) mol L(-1)) and a short response time (sensor can be utilized to monitor Mg(2+) in real time within actual samples from drinking water.

  11. Reliability of chromogenic in situ hybridization for epidermal growth factor receptor gene copy number detection in non-small-cell lung carcinomas: a comparison with fluorescence in situ hybridization study.

    Science.gov (United States)

    Yoo, Seol Bong; Lee, Hyun Ju; Park, Jung Ok; Choe, Gheeyoung; Chung, Doo Hyun; Seo, Jeong-Wook; Chung, Jin-Haeng

    2010-03-01

    Fluorescence in situ hybridization (FISH) has been known to be the most representative and standardized test for assessing gene amplification. However, FISH requires a fluorescence microscope, the signals are labile and rapidly fade over time. Recently, chromogenic in situ hybridization (CISH) has emerged as a potential alternative to FISH. The aim of this study is to test the reliability of CISH technique for the detection of epidermal growth factor receptor (EGFR) gene amplification in non-small-cell lung carcinomas (NSCLC), to compare CISH results with FISH. A total of 277 formalin-fixed and paraffin embedded NSCLC tissue samples were retrieved from the surgical pathology archives at Seoul National University Bundang Hospital. CISH and FISH examinations were performed to test EGFR gene amplification status. There was high concordance in the assessment of EGFR gene copy number between CISH and FISH tests (Kappa coefficient=0.83). Excellent concordance was shown between two observers on the interpretation of the CISH results (Kappa coefficient=0.90). In conclusion, CISH result is highly reproducible, accurate and practical method to determine EGFR gene amplification in NSCLC. In addition, CISH allows a concurrent analysis of histological features of the tumors and gene copy numbers.

  12. Fluorescence from a quantum dot and metallic nanosphere hybrid system

    Energy Technology Data Exchange (ETDEWEB)

    Schindel, Daniel G. [Department of Mathematics and Statistics, University of Winnipeg, 515 Portage Avenue, Winnipeg, MB, R3B 2E9 (Canada); Singh, Mahi R. [Department of Physics and Astronomy, University of Western Ontario, 1151 Richmond Street, London, ON, N6A 3K7 (Canada)

    2014-03-31

    We present energy absorption and interference in a quantum dot-metallic nanosphere system embedded on a dielectric substrate. A control field is applied to induce dipole moments in the nanosphere and the quantum dot, and a probe field is applied to monitor absorption. Dipole moments in the quantum dot or the metal nanosphere are induced, both by the external fields and by each other's dipole fields. Thus, in addition to direct polarization, the metal nanosphere and the quantum dot will sense one another via the dipole-dipole interaction. The density matrix method was used to show that the absorption spectrum can be split from one peak to two peaks by the control field, and this can also be done by placing the metal sphere close to the quantum dot. When the two are extremely close together, a self-interaction in the quantum dot produces an asymmetry in the absorption peaks. In addition, the fluorescence efficiency can be quenched by the addition of a metal nanosphere. This hybrid system could be used to create ultra-fast switching and sensing nanodevices.

  13. Image navigation as a means to expand the boundaries of fluorescence-guided surgery.

    Science.gov (United States)

    Brouwer, Oscar R; Buckle, Tessa; Bunschoten, Anton; Kuil, Joeri; Vahrmeijer, Alexander L; Wendler, Thomas; Valdés-Olmos, Renato A; van der Poel, Henk G; van Leeuwen, Fijs W B

    2012-05-21

    Hybrid tracers that are both radioactive and fluorescent help extend the use of fluorescence-guided surgery to deeper structures. Such hybrid tracers facilitate preoperative surgical planning using (3D) scintigraphic images and enable synchronous intraoperative radio- and fluorescence guidance. Nevertheless, we previously found that improved orientation during laparoscopic surgery remains desirable. Here we illustrate how intraoperative navigation based on optical tracking of a fluorescence endoscope may help further improve the accuracy of hybrid surgical guidance. After feeding SPECT/CT images with an optical fiducial as a reference target to the navigation system, optical tracking could be used to position the tip of the fluorescence endoscope relative to the preoperative 3D imaging data. This hybrid navigation approach allowed us to accurately identify marker seeds in a phantom setup. The multispectral nature of the fluorescence endoscope enabled stepwise visualization of the two clinically approved fluorescent dyes, fluorescein and indocyanine green. In addition, the approach was used to navigate toward the prostate in a patient undergoing robot-assisted prostatectomy. Navigation of the tracked fluorescence endoscope toward the target identified on SPECT/CT resulted in real-time gradual visualization of the fluorescent signal in the prostate, thus providing an intraoperative confirmation of the navigation accuracy.

  14. A novel fluorescence probe based on triphenylamine Schiff base for bioimaging and responding to pH and Fe3+

    International Nuclear Information System (INIS)

    Wang, Lei; Yang, Xiaodong; Chen, Xiuli; Zhou, Yuping; Lu, Xiaodan; Yan, Chenggong; Xu, Yikai; Liu, Ruiyuan; Qu, Jinqing

    2017-01-01

    A novel fluorescence probe 1 based on triphenylamine was synthesized and characterized by NMR, IR, high resolution mass spectrometry and elemental analysis. Its fluorescence was quenched when pH below 2. There was a linear relationship between the fluorescence intensity and pH value ranged from 2 to 7. And its fluorescence emission was reversibility in acidic and alkaline solution. Furthermore, it exhibited remarkable selectivity and high sensitivity to Fe 3+ and was able to detect Fe 3+ in aqueous solution with low detection limit of 0.511 μM. Job plot showed that the binding stoichiometry of 1 with Fe 3+ was 1:1. Further observations of 1 H NMR titration suggested that coordination interaction between Fe 3+ and nitrogen atom on C =N bond promoted the intramolecular charge transfer (ICT) or energy transfer process causing fluorescence quenching. Additionally, 1 was also able to be applied for detecting Fe 3+ in living cell and bioimaging. - Graphical abstract: Triphenylamine based fluorescence probe can detect pH and Fe 3+ simultaneously in aqueous solution and be applied for detecting Fe 3+ in living cell and bioimaging. - Highlights: • The fluorescence probe is sensitive to pH in strong acid conditions. • The fluorescence chemosensor can detect pH and Fe 3+ simultaneously. • The recognition is able to carry out in aqueous solution. • The probe can also be applied for detecting Fe 3+ in living cell and bioimaging. • The sensor is synthesized easily with one step.

  15.   In situ identification of streptococci and other bacteria in initial dental biofilm by confocal laser scanning microscopy and fluorescence in situ hybridization

    DEFF Research Database (Denmark)

    Dige, Irene; Kilian, Mogens; Nilsson, Holger

    2007-01-01

    Confocal laser scanning microscopy (CLSM) has been employed as a method for studying intact natural biofilm. When combined with fluorescence in situ hybridization (FISH) it is possible to analyze spatial relationships and changes of specific members of microbial populations over time. The aim...

  16. Laser-induced emission, fluorescence and Raman hybrid setup: A versatile instrument to analyze materials from cultural heritage

    Science.gov (United States)

    Syvilay, D.; Bai, X. S.; Wilkie-Chancellier, N.; Texier, A.; Martinez, L.; Serfaty, S.; Detalle, V.

    2018-02-01

    The aim of this research project was the development of a hybrid system in laboratory coupling together three analytical techniques, namely laser-induced breakdown spectroscopy (LIBS), laser-induced fluorescence (LIF) and Raman spectroscopy in a single instrument. The rationale for combining these three spectroscopies was to identify a material (molecular and elemental analysis) without any preliminary preparation, regardless of its organic or inorganic nature, on the surface and in depth, without any surrounding light interference thanks to time resolution. Such instrumentation would allow characterizing different materials from cultural heritage. A complete study on LIBS-LIF-Raman hybrid was carried out, from its conception to instrumental achievement, in order to elaborate a strategy of analysis according to the material and to be able to address conservation issues. From an instrumental point of view, condensing the three spectroscopies was achieved by using a single laser for excitation and two spectrometers (time-integrated and not time-integrated) for light collection. A parabolic mirror was used as collecting system, while three excitation sources directed through this optical system ensured the examination of a similar probe area. Two categories of materials were chosen to test the hybrid instrumentation on cultural heritage applications (copper corrosion products and wall paintings). Some examples are reported to illustrate the wealth of information provided by the hybrid, thus demonstrating its great potential to be used for cultural heritage issues. Finally, several considerations are outlined aimed at further improving the hybrid.

  17. Automated image analysis for quantitative fluorescence in situ hybridization with environmental samples.

    Science.gov (United States)

    Zhou, Zhi; Pons, Marie Noëlle; Raskin, Lutgarde; Zilles, Julie L

    2007-05-01

    When fluorescence in situ hybridization (FISH) analyses are performed with complex environmental samples, difficulties related to the presence of microbial cell aggregates and nonuniform background fluorescence are often encountered. The objective of this study was to develop a robust and automated quantitative FISH method for complex environmental samples, such as manure and soil. The method and duration of sample dispersion were optimized to reduce the interference of cell aggregates. An automated image analysis program that detects cells from 4',6'-diamidino-2-phenylindole (DAPI) micrographs and extracts the maximum and mean fluorescence intensities for each cell from corresponding FISH images was developed with the software Visilog. Intensity thresholds were not consistent even for duplicate analyses, so alternative ways of classifying signals were investigated. In the resulting method, the intensity data were divided into clusters using fuzzy c-means clustering, and the resulting clusters were classified as target (positive) or nontarget (negative). A manual quality control confirmed this classification. With this method, 50.4, 72.1, and 64.9% of the cells in two swine manure samples and one soil sample, respectively, were positive as determined with a 16S rRNA-targeted bacterial probe (S-D-Bact-0338-a-A-18). Manual counting resulted in corresponding values of 52.3, 70.6, and 61.5%, respectively. In two swine manure samples and one soil sample 21.6, 12.3, and 2.5% of the cells were positive with an archaeal probe (S-D-Arch-0915-a-A-20), respectively. Manual counting resulted in corresponding values of 22.4, 14.0, and 2.9%, respectively. This automated method should facilitate quantitative analysis of FISH images for a variety of complex environmental samples.

  18. Import of desired nucleic acid sequences using addressing motif of mitochondrial ribosomal 5S-rRNA for fluorescent in vivo hybridization of mitochondrial DNA and RNA.

    Science.gov (United States)

    Zelenka, Jaroslav; Alán, Lukáš; Jabůrek, Martin; Ježek, Petr

    2014-04-01

    Based on the matrix-addressing sequence of mitochondrial ribosomal 5S-rRNA (termed MAM), which is naturally imported into mitochondria, we have constructed an import system for in vivo targeting of mitochondrial DNA (mtDNA) or mt-mRNA, in order to provide fluorescence hybridization of the desired sequences. Thus DNA oligonucleotides were constructed, containing the 5'-flanked T7 RNA polymerase promoter. After in vitro transcription and fluorescent labeling with Alexa Fluor(®) 488 or 647 dye, we obtained the fluorescent "L-ND5 probe" containing MAM and exemplar cargo, i.e., annealing sequence to a short portion of ND5 mRNA and to the light-strand mtDNA complementary to the heavy strand nd5 mt gene (5'-end 21 base pair sequence). For mitochondrial in vivo fluorescent hybridization, HepG2 cells were treated with dequalinium micelles, containing the fluorescent probes, bringing the probes proximally to the mitochondrial outer membrane and to the natural import system. A verification of import into the mitochondrial matrix of cultured HepG2 cells was provided by confocal microscopy colocalizations. Transfections using lipofectamine or probes without 5S-rRNA addressing MAM sequence or with MAM only were ineffective. Alternatively, the same DNA oligonucleotides with 5'-CACC overhang (substituting T7 promoter) were transcribed from the tetracycline-inducible pENTRH1/TO vector in human embryonic kidney T-REx®-293 cells, while mitochondrial matrix localization after import of the resulting unlabeled RNA was detected by PCR. The MAM-containing probe was then enriched by three-order of magnitude over the natural ND5 mRNA in the mitochondrial matrix. In conclusion, we present a proof-of-principle for mitochondrial in vivo hybridization and mitochondrial nucleic acid import.

  19. Sets of RNA repeated tags and hybridization-sensitive fluorescent probes for distinct images of RNA in a living cell.

    Directory of Open Access Journals (Sweden)

    Takeshi Kubota

    Full Text Available BACKGROUND: Imaging the behavior of RNA in a living cell is a powerful means for understanding RNA functions and acquiring spatiotemporal information in a single cell. For more distinct RNA imaging in a living cell, a more effective chemical method to fluorescently label RNA is now required. In addition, development of the technology labeling with different colors for different RNA would make it easier to analyze plural RNA strands expressing in a cell. METHODOLOGY/PRINCIPAL FINDINGS: Tag technology for RNA imaging in a living cell has been developed based on the unique chemical functions of exciton-controlled hybridization-sensitive oligonucleotide (ECHO probes. Repetitions of selected 18-nucleotide RNA tags were incorporated into the mRNA 3'-UTR. Pairs with complementary ECHO probes exhibited hybridization-sensitive fluorescence emission for the mRNA expressed in a living cell. The mRNA in a nucleus was detected clearly as fluorescent puncta, and the images of the expression of two mRNAs were obtained independently and simultaneously with two orthogonal tag-probe pairs. CONCLUSIONS/SIGNIFICANCE: A compact and repeated label has been developed for RNA imaging in a living cell, based on the photochemistry of ECHO probes. The pairs of an 18-nt RNA tag and the complementary ECHO probes are highly thermostable, sequence-specifically emissive, and orthogonal to each other. The nucleotide length necessary for one tag sequence is much shorter compared with conventional tag technologies, resulting in easy preparation of the tag sequences with a larger number of repeats for more distinct RNA imaging.

  20. Comparison of Fluorescence In Situ Hybridization and Chromogenic In Situ Hybridization for Low and High Throughput HER2 Genetic Testing

    Science.gov (United States)

    Poulsen, Tim S.; Espersen, Maiken L. M.; Kofoed, Vibeke; Dabetic, Tanja; Høgdall, Estrid; Balslev, Eva

    2013-01-01

    The purpose was to evaluate and compare 5 different HER2 genetic assays with different characteristics that could affect the performance to analyze the human epidermal growth factor 2 (HER2) gene copy number under low and high throughput conditions. The study included 108 tissue samples from breast cancer patients with HER2 immunohistochemistry (IHC) results scored as 0/1+, 2+, and 3+. HER2 genetic status was analysed using chromogenic in situ hybridization (CISH) and fluorescence in situ hybridization (FISH). Scoring results were documented through digital image analysis. The cancer region of interest was identified from a serial H&E stained slide following tissue cores were transferred to a tissue microarrays (TMA). When using TMA in a routine flow, all patients will be tested for HER2 status with IHC followed by CISH or FISH, thereby providing individual HER2 results. In conclusion, our results show that the differences between the HER2 genetic assays do not have an effect on the analytic performance and the CISH technology is superior to high throughput HER2 genetic testing due to scanning speed, while the IQ-FISH may still be a choice for fast low throughput HER2 genetic testing. PMID:24383005

  1. Dual-colour chromogenic in-situ hybridization is a potential alternative to fluorescence in-situ hybridization in HER2 testing.

    Science.gov (United States)

    Hwang, Cheng-Cheng; Pintye, Mariann; Chang, Liang-Che; Chen, Huang-Yang; Yeh, Kun-Yan; Chein, Hui-Ping; Lee, Nin; Chen, Jim-Ray

    2011-11-01

    Dual-colour chromogenic in-situ hybridization (dc-CISH) is an emerging methodology for characterizing genomic alterations. This study was aimed at evaluating the performance of a dc-CISH kit (ZytoVision) in determining human epidermal growth factor receptor 2 (HER2) status in breast cancer. Two hundred and twenty-eight invasive breast carcinomas arranged in tissue microarrays were analysed in parallel with dc-CISH, fluorescence in-situ hybridization (FISH), and immunohistochemistry. Of 227 tumours with available FISH and dc-CISH results, HER2 amplification and non-amplification were detected in 49 (21.6%) and 178 (78.4%) tumours, respectively, by both assays. The concordance between dc-CISH and FISH results showed 100% agreement (κ-coefficient=1.00). Immunohistochemically, 162 (71%), 25 (11.0%) and 41 (18%) tumours were scored 0/1+, 2+, and 3+, respectively. The corresponding results with both FISH and dc-CISH demonstrated HER2 amplification in two (3.2%), nine (36%) and 38 (93%) tumours, respectively. Complete consensus among these three methods was observed in 197 cases, representing 98% of all 3+ and 0/1+ tumours (κ-coefficient=0.92). Confirmatory testing of 25 2+ tumours showed complete consensus between FISH and dc-CISH. dc-CISH is a promising alternative to FISH in HER2 testing, and the single-institute incidence of HER2 amplification in breast cancer in Taiwan is 21.2%. © 2011 Blackwell Publishing Limited.

  2. Development of a 16S rRNA-targeted fluorescence in situ hybridization probe for quantification of the ammonia-oxidizer Nitrosotalea devanaterra and its relatives.

    Science.gov (United States)

    Restrepo-Ortiz, C X; Merbt, S N; Barrero-Canossa, J; Fuchs, B M; Casamayor, E O

    2018-04-28

    The Thaumarchaeota SAGMCG-1 group and, in particular, members of the genus Nitrosotalea have high occurrence in acidic soils, the rhizosphere, groundwater and oligotrophic lakes, and play a potential role in nitrogen cycling. In this study, the specific oligonucleotide fluorescence in situ hybridization probe SAG357 was designed for this Thaumarchaeota group based on the available 16S rRNA gene sequences in databases, and included the ammonia-oxidizing species Nitrosotalea devanaterra. Cell permeabilization for catalyzed reporter deposition fluorescence in situ detection and the hybridization conditions were optimized on enrichment cultures of the target species N. devanaterra, as well as the non-target ammonia-oxidizing archaeon Nitrosopumilus maritimus. Probe specificity was improved with a competitor oligonucleotide, and fluorescence intensity and cell visualization were enhanced by the design and application of two adjacent helpers. Probe performance was tested in soil samples along a pH gradient, and counting results matched the expected in situ distributions. Probe SAG357 and the CARD-FISH protocol developed in the present study will help to improve the current understanding of the ecology and physiology of N. devanaterra and its relatives in natural environments. Copyright © 2018 Elsevier GmbH. All rights reserved.

  3. Highly selective and sensitive coumarin-triazole-based fluorometric 'turn-off' sensor for detection of Pb2+ ions.

    Science.gov (United States)

    Shaily; Kumar, Ajay; Parveen, Iram; Ahmed, Naseem

    2018-06-01

    Exposure to even very low concentrations of Pb 2+ is known to cause cardiovascular, neurological, developmental, and reproductive disorders, and affects children in particular more severely. Consequently, much effort has been dedicated to the development of colorimetric and fluorescent sensors that can selectively detect Pb 2+ ions. Here, we describe the development of a triazole-based fluorescent sensor L5 for Pb 2+ ion detection. The fluorescence intensity of chemosensor L5 was selectively quenched by Pb 2+ ions and a clear color change from colorless to yellow could be observed by the naked eye. Chemosensor L5 exhibited high sensitivity and selectivity towards Pb 2+ ions in phosphate-buffered solution [20 mM, 1:9 DMSO/H 2 O (v/v), pH 8.0] with a 1:1 binding stoichiometry, a detection limit of 1.9 nM and a 6.76 × 10 6  M -1 binding constant. Additionally, low-cost and easy-to-prepare test strips impregnated with chemosensor L5 were also produced for efficient of Pb 2+ detection and proved the practical use of this test. Copyright © 2018 John Wiley & Sons, Ltd.

  4. DNA hybridization sensing for cytogenetic analysis

    DEFF Research Database (Denmark)

    Kwasny, Dorota; Dapra, Johannes; Brøgger, Anna Line

    2013-01-01

    are rearrangements between two chromosome arms that results in two derivative chromosomes having a mixed DNA sequence. The current detection method is a Fluorescent In situ Hybridization, which requires a use of expensive, fluorescently labeled probes that target the DNA sequences of two chromosomes involved...... in the translocation (Kwasny et al., 2012). We have developed a new double hybridization assay that allows for sorting of the DNA chromosomal fragments into separate compartment, moreover allowing for detection of the translocation. To detect the translocation it is necessary to determine that the two DNA sequences...... forming a derivative chromosome are connected, which is achieved by two subsequent hybridization steps. The first example of the translocation detection was presented on lab-on-a-disc using fluorescently labeled DNA fragments, representing the derivative chromosome (Brøgger et al., 2012). To allow...

  5. In vivo fluorescence imaging of bacteriogenic cyanide in the lungs of live mice infected with cystic fibrosis pathogens.

    Directory of Open Access Journals (Sweden)

    Seong-Won Nam

    Full Text Available BACKGROUND: Pseudomonas aeruginosa (PA and Burkholderia cepacia complex (Bcc, commonly found in the lungs of cystic fibrosis (CF patients, often produce cyanide (CN, which inhibits cellular respiration. CN in sputa is a potential biomarker for lung infection by CF pathogens. However, its actual concentration in the infected lungs is unknown. METHODS AND FINDINGS: This work reports observation of CN in the lungs of mice infected with cyanogenic PA or Bcc strains using a CN fluorescent chemosensor (4',5'-fluorescein dicarboxaldehyde with a whole animal imaging system. When the CN chemosensor was injected into the lungs of mice intratracheally infected with either PA or B. cepacia strains embedded in agar beads, CN was detected in the millimolar range (1.8 to 4 mM in the infected lungs. CN concentration in PA-infected lungs rapidly increased within 24 hours but gradually decreased over the following days, while CN concentration in B. cepacia-infected lungs slowly increased, reaching a maximum at 5 days. CN concentrations correlated with the bacterial loads in the lungs. In vivo efficacy of antimicrobial treatments was tested in live mice by monitoring bacteriogenic CN in the lungs. CONCLUSIONS: The in vivo imaging method was also found suitable for minimally invasive testing the efficacy of antibiotic compounds as well as for aiding the understanding of bacterial cyanogenesis in CF lungs.

  6. Identification of supernumerary ring chromosome 1 mosaicism using fluorescence in situ hybridization.

    Science.gov (United States)

    Chen, H; Tuck-Muller, C M; Batista, D A; Wertelecki, W

    1995-03-27

    We report on a 15-year-old black boy with severe mental retardation, multiple congenital anomalies, and a supernumerary ring chromosome mosaicism. Fluorescence in situ hybridization with a chromosome 1 painting probe (pBS1) identified the ring as derived from chromosome 1. The karyotype was 46,XY/47,XY,+r(1)(p13q23). A review showed 8 reports of ring chromosome 1. In 5 cases, the patients had a non-supernumerary ring chromosome 1 resulting in partial monosomies of the short and/or long arm of chromosome 1. In 3 cases, the presence of a supernumerary ring resulted in partial trisomy of different segments of chromosome 1. In one of these cases the supernumerary ring was composed primarily of the centromere and the heterochromatic region of chromosome 1, resulting in normal phenotype. Our patient represents the third report of a supernumerary ring chromosome 1 resulting in abnormal phenotype.

  7. Hybrid fluorescent nanoparticles fabricated from pyridine-functionalized polyfluorene-based conjugated polymer as reversible pH probes over a broad range of acidity-alkalinity

    International Nuclear Information System (INIS)

    Cui, Haijun; Chen, Ying; Li, Lianshan; Tang, Zhiyong; Wu, Yishi; Fu, Hongbing; Tian, Zhiyuan

    2014-01-01

    Conjugated polymer nanoparticles (CPNs) were developed based on a polyfluorene-based conjugated polymer with thiophene units carrying pyridyl moieties incorporated in the backbone of polymer chains (PFPyT). Hybrid CPNs fabricated from PFPyT and an amphiphilic polymer (NP1) displayed pH-sensitive fluorescence emission features in the range from pH 4.8 to 13, which makes them an attractive nanomaterial for wide range optical sensing of pH values. The fluorescence of hybrid CPNs based on chemically close polyfluorene derivatives without pyridyl moieties (NP3), in contrast, remains virtually unperturbed by pH values in the same range. The fluorescence emission features of NP1 underwent fully reversible changes upon alternating acidification/basification of aqueous dispersions of the CPNs and also displayed excellent repeatability. The observed pH sensing properties of NP1 are attributed to protonation/deprotonation of the nitrogen atoms of the pyridine moieties. This, in turn, leads to the redistribution of electron density of pyridine moieties and their participation in the π-conjugation within the polymer main chains. The optically transparent amphiphilic polymers also exerted significant influence on the pH sensing features of the CPNs, likely by acting as proton sponge and/or acid chaperone. (author)

  8. Paper-based solid-phase nucleic acid hybridization assay using immobilized quantum dots as donors in fluorescence resonance energy transfer.

    Science.gov (United States)

    Noor, M Omair; Shahmuradyan, Anna; Krull, Ulrich J

    2013-02-05

    A paper-based solid-phase assay is presented for transduction of nucleic acid hybridization using immobilized quantum dots (QDs) as donors in fluorescence resonance energy transfer (FRET). The surface of paper was modified with imidazole groups to immobilize QD-probe oligonucleotide conjugates that were assembled in solution. Green-emitting QDs (gQDs) were FRET-paired with Cy3 acceptor. Hybridization of Cy3-labeled oligonucleotide targets provided the proximity required for FRET-sensitized emission from Cy3, which served as an analytical signal. The assay exhibited rapid transduction of nucleic acid hybridization within minutes. Without any amplification steps, the limit of detection of the assay was found to be 300 fmol with the upper limit of the dynamic range at 5 pmol. The implementation of glutathione-coated QDs for the development of nucleic acid hybridization assay integrated on a paper-based platform exhibited excellent resistance to nonspecific adsorption of oligonucleotides and showed no reduction in the performance of the assay in the presence of large quantities of noncomplementary DNA. The selectivity of nucleic acid hybridization was demonstrated by single-nucleotide polymorphism (SNP) detection at a contrast ratio of 19 to 1. The reuse of paper over multiple cycles of hybridization and dehybridization was possible, with less than 20% reduction in the performance of the assay in five cycles. This work provides an important framework for the development of paper-based solid-phase QD-FRET nucleic acid hybridization assays that make use of a ratiometric approach for detection and analysis.

  9. Enhanced solid state emission of quinoline derivatives for fluorescent sensors

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyong-Jun, E-mail: hkim@kongju.ac.kr

    2016-08-15

    Excited-state intramolecular proton transfer (ESIPT) molecules are of utmost interest in the fields of organic light emitting diode, photo-patterning, chemosensor, proton transfer laser, and photostabilizer. Fine control of the functional substituents as well as the molecular structure of core ESIPT unit is primarily demanded for specific applications. Here, the photophysics of quinoline derivatives of 2-quinolin-2-yl-phenol and 2-(8-chloroquinolin-2-yl)phenol is explored. Straightening the twist between the hydroxyphenyl and the quinoline moieties with the aid of the hydrogen bonding promoted the excited energy to flow through a radiative decay pathway via proton transfer to the nitrogen. Furthermore, close molecular packing of J-aggregates and thus resulted vibration restriction in a dense matter opens an ESIPT corridor and is characterized to show enhanced emission. The mechanism is applied to the selective Cu{sup 2+} or Fe{sup 2+} cation detection and further immunofluorescence labeling using avidin–biotin protein specific binding is demonstrated with the aid of nano self-assembly technique. - Highlights: • New orange fluorescent hydroxyphenylquinoline derivative was synthesized. • Molecular structure planarization induced enhanced fluorescence with large Stokes' shift. • Selective solution phase cation detection and solid state bio-sensing were demonstrated successfully.

  10. Highly stable lipid-encapsulation of fluorescent nanodiamonds for bioimaging applications.

    Science.gov (United States)

    Sotoma, Shingo; Hsieh, Feng-Jen; Chen, Yen-Wei; Tsai, Pei-Chang; Chang, Huan-Cheng

    2018-01-23

    Highly stable lipid-encapsulated fluorescent nanodiamonds (FNDs) are produced by photo-crosslinking of diacetylene-containing lipids physically attached to the FND surface. Not only is this coating method simple and fast, but also it gives the FND-lipid hybrids favorable properties for bioapplications. The hybrids are useful as fluorescent biolabels as well as fiducial markers for correlative light and electron microscopy.

  11. Unlocked nucleic acids with a pyrene-modified uracil: Synthesis, hybridization studies, fluorescent properties and i-motif stability

    DEFF Research Database (Denmark)

    Perlíková, P.; Karlsen, K.K.; Pedersen, E.B.

    2014-01-01

    The synthesis of two new phosphoramidite building blocks for the incorporation of 5-(pyren-1-yl)uracilyl unlocked nucleic acid (UNA) monomers into oligonucleotides has been developed. Monomers containing a pyrene-modified nucleobase component were found to destabilize an i-motif structure at pH 5...... intensities upon hybridization to DNA or RNA. Efficient quenching of fluorescence of pyrene-modified UNA monomers was observed after formation of i-motif structures at pH 5.2. The stabilizing/destabilizing effect of pyrene-modified nucleic acids might be useful for designing antisense oligonucleotides...

  12. Assignment of Alzheimer's presenilin-2 (PS-2) gene to 1q42.1 by fluorescence in situ hybridization.

    Science.gov (United States)

    Takano, T; Sahara, N; Yamanouchi, Y; Mori, H

    1997-01-17

    Presenilin-2 (PS-2) was suggested to be localized on 1q31-42 based on linkage analysis and cDNA cloning. The final identification of PS-2 as the causal gene for early-onset familial Alzheimer's disease in Voga-German pedigrees was concluded based on the point mutation found in the candidate cDNA isolated from this familial AD. We present evidence of its physical genome mapping of PS-2 on chromosome 1q42.1 by fluorescence in situ hybridization method.

  13. A fluorescence scanning electron microscope

    International Nuclear Information System (INIS)

    Kanemaru, Takaaki; Hirata, Kazuho; Takasu, Shin-ichi; Isobe, Shin-ichiro; Mizuki, Keiji; Mataka, Shuntaro; Nakamura, Kei-ichiro

    2009-01-01

    Fluorescence techniques are widely used in biological research to examine molecular localization, while electron microscopy can provide unique ultrastructural information. To date, correlative images from both fluorescence and electron microscopy have been obtained separately using two different instruments, i.e. a fluorescence microscope (FM) and an electron microscope (EM). In the current study, a scanning electron microscope (SEM) (JEOL JXA8600 M) was combined with a fluorescence digital camera microscope unit and this hybrid instrument was named a fluorescence SEM (FL-SEM). In the labeling of FL-SEM samples, both Fluolid, which is an organic EL dye, and Alexa Fluor, were employed. We successfully demonstrated that the FL-SEM is a simple and practical tool for correlative fluorescence and electron microscopy.

  14. A colorimetric turn-on optical chemosensor for Cu2+ ions and its application as solid state sensor

    Science.gov (United States)

    Pannipara, Mehboobali; Al-Sehemi, Abdullah G.; Assiri, Mohammed; Kalam, Abul

    2018-05-01

    We report a novel coumarin based optical chemosensor (Probe 1) for the selective and sensitive detection of Cu2+ ions in aqueous medium. The addition of Cu2+ ions to Probe 1 shows distinct color change from light yellow to pinkish red color under visible light with the sensing limit of 1.54 μM. Moreover, practical utility of Probe 1 as solid state optical sensor (test paper, TLC plates) for sensing Cu2+ has been demonstrated by instantaneous "naked eye" response.

  15. Hybrid inorganic/organic photonic crystal biochips for cancer biomarkers detection

    Science.gov (United States)

    Sinibaldi, Alberto; Danz, Norbert; Munzert, Peter; Michelotti, Francesco

    2018-06-01

    We report on hybrid inorganic/organic one-dimensional photonic crystal biochips sustaining Bloch surface waves. The biochips were used, together with an optical platform operating in a label-free and fluorescence configuration simultaneously, to detect the cancer biomarker Angiopoietin 2 in a protein base buffer. The hybrid photonic crystals embed in their geometry a thin functionalization poly-acrylic acid layer deposited by plasma polymerization, which is used to immobilize a monoclonal antibody for highly specific biological recognition. The fluorescence operation mode is described in detail, putting into evidence the role of field enhancement and localization at the photonic crystal surface in the shaping and intensification of the angular fluorescence pattern. In the fluorescence operation mode, the hybrid biochips can attain the limit of detection 6 ng/ml.

  16. Determination of catecholamine in human serum by a fluorescent quenching method based on a water-soluble fluorescent conjugated polymer-enzyme hybrid system.

    Science.gov (United States)

    Huang, Hui; Gao, Yuan; Shi, Fanping; Wang, Guannan; Shah, Syed Mazhar; Su, Xingguang

    2012-03-21

    In this paper, a sensitive water-soluble fluorescent conjugated polymer biosensor for catecholamine (dopamine DA, adrenaline AD and norepinephrine NE) was developed. In the presence of horse radish peroxidase (HRP) and H(2)O(2), catecholamine could be oxidized and the oxidation product of catecholamine could quench the photoluminescence (PL) intensity of poly(2,5-bis(3-sulfonatopropoxy)-1,4-phenylethynylenealt-1,4-poly(phenylene ethynylene)) (PPESO(3)). The quenching PL intensity of PPESO(3) (I(0)/I) was proportional to the concentration of DA, AD and NE in the concentration ranges of 5.0 × 10(-7) to 1.4 × 10(-4), 5.0 × 10(-6) to 5.0 × 10(-4), and 5.0 × 10(-6) to 5.0 × 10(-4) mol L(-1), respectively. The detection limit for DA, AD and NE was 1.4 × 10(-7) mol L(-1), 1.0 × 10(-6) and 1.0 × 10(-6) mol L(-1), respectively. The PPESO(3)-enzyme hybrid system based on the fluorescence quenching method was successfully applied for the determination of catecholamine in human serum samples with good accuracy and satisfactory recovery. The results were in good agreement with those provided by the HPLC-MS method.

  17. Single molecule localization imaging of telomeres and centromeres using fluorescence in situ hybridization and semiconductor quantum dots.

    Science.gov (United States)

    Wang, Le; Zong, Shenfei; Wang, Zhuyuan; Lu, Ju; Chen, Chen; Zhang, Ruohu; Cui, Yiping

    2018-07-13

    Single molecule localization microscopy (SMLM) is a powerful tool for imaging biological targets at the nanoscale. In this report, we present SMLM imaging of telomeres and centromeres using fluorescence in situ hybridization (FISH). The FISH probes were fabricated by decorating CdSSe/ZnS quantum dots (QDs) with telomere or centromere complementary DNA strands. SMLM imaging experiments using commercially available peptide nucleic acid (PNA) probes labeled with organic fluorophores were also conducted to demonstrate the advantages of using QDs FISH probes. Compared with the PNA probes, the QDs probes have the following merits. First, the fluorescence blinking of QDs can be realized in aqueous solution or PBS buffer without thiol, which is a key buffer component for organic fluorophores' blinking. Second, fluorescence blinking of the QDs probe needs only one excitation light (i.e. 405 nm). While fluorescence blinking of the organic fluorophores usually requires two illumination lights, that is, the activation light (i.e. 405 nm) and the imaging light. Third, the high quantum yield, multiple switching times and a good optical stability make the QDs more suitable for long-term imaging. The localization precision achieved in telomeres and centromeres imaging experiments is about 30 nm, which is far beyond the diffraction limit. SMLM has enabled new insights into telomeres or centromeres on the molecular level, and it is even possible to determine the length of telomere and become a potential technique for telomere-related investigation.

  18. Fluorescent nanodiamond and lanthanide labelled in situ hybridization for the identification of RNA transcripts in fixed and CLARITY-cleared central nervous system tissues (Conference Presentation)

    Science.gov (United States)

    Parker, Lindsay M.; Staikopoulos, Vicky; Cordina, Nicole M.; Sayyadi, Nima; Hutchinson, Mark R.; Packer, Nicolle H.

    2016-03-01

    Despite significant advancement in the methodology used to conjugate, incorporate and visualize fluorescent molecules at the cellular and tissue levels, biomedical imaging predominantly relies on the limitations of established fluorescent molecules such as fluorescein, cyanine and AlexaFluor dyes or genetic incorporation of fluorescent proteins by viral or other means. These fluorescent dyes and conjugates are highly susceptible to photobleaching and compete with cellular autofluorescence, making biomedical imaging unreliable, difficult and time consuming in many cases. In addition, some proteins have low copy numbers and/or poor antibody recognition, further making detection and imaging difficult. We are developing better methods for imaging central nervous system neuroinflammatory markers using targeted mRNA transcripts labelled with fluorescent nanodiamonds or lanthanide chelates. These tags have increased signal and photostability and can also discriminate against tissue/cell autofluorescence. Brains and spinal cords from BALB/c mice with a chronic constriction model of neuropathic pain (neuroinflammation group) or that have undergone sham surgeries (control group) were collected. A subset of brains and spinal cords were perfused and fixed with paraformaldehyde (n=3 sham and n=3 pain groups) prior to sectioning and in situ hybridization using nanodiamond or lanthanide chelate conjugated complementary RNA probes. Another subset of brains and spinal cords from the same cohort of animals were perfused and processed for CLARITY hydrogel based clearing prior to in situ hybridization with the same probes. We will present our findings on the photostability, sensitivity and discrimination from background tissue autofluorescence of our novel RNA probes, compared to traditional fluorophore tags.

  19. Analysis of Single-cell Gene Transcription by RNA Fluorescent In Situ Hybridization (FISH)

    DEFF Research Database (Denmark)

    Ronander, Elena; Bengtsson, Dominique C; Joergensen, Louise

    2012-01-01

    Adhesion of Plasmodium falciparum infected erythrocytes (IE) to human endothelial receptors during malaria infections is mediated by expression of PfEMP1 protein variants encoded by the var genes. The haploid P. falciparum genome harbors approximately 60 different var genes of which only one has...... been believed to be transcribed per cell at a time during the blood stage of the infection. How such mutually exclusive regulation of var gene transcription is achieved is unclear, as is the identification of individual var genes or sub-groups of var genes associated with different receptors...... fluorescent in situ hybridization (FISH) analysis of var gene transcription by the parasite in individual nuclei of P. falciparum IE(1). Here, we present a detailed protocol for carrying out the RNA-FISH methodology for analysis of var gene transcription in single-nuclei of P. falciparum infected human...

  20. Fluorescence In Situ Hybridization for MicroRNA Detection in Archived Oral Cancer Tissues

    Directory of Open Access Journals (Sweden)

    Zonggao Shi

    2012-01-01

    Full Text Available The noncoding RNA designated as microRNA (miRNA is a large group of small single-stranded regulatory RNA and has generated wide-spread interest in human disease studies. To facilitate delineating the role of microRNAs in cancer pathology, we sought to explore the feasibility of detecting microRNA expression in formalin-fixed paraffin-embedded (FFPE tissues. Using FFPE materials, we have compared fluorescent in situ hybridization (FISH procedures to detect miR-146a with (a different synthetic probes: regular custom DNA oligonucleotides versus locked nucleic acid (LNA incorporated DNA oligonucleotides; (b different reporters for the probes: biotin versus digoxigenin (DIG; (c different visualization: traditional versus tyramide signal amplification (TSA system; (d different blocking reagents for endogenous peroxidase. Finally, we performed miR-146a FISH on a commercially available oral cancer tissue microarray, which contains 40 cases of oral squamous cell carcinoma (OSCC and 10 cases of normal epithelia from the human oral cavity. A sample FISH protocol for detecting miR-146a is provided. In summary, we have established reliable in situ hybridization procedures for detecting the expression of microRNA in FFPE oral cancer tissues. This method is an important tool for studies on the involvement of microRNA in oral cancer pathology and may have potential prognostic or diagnostic value.

  1. In situ hybridization; principles and applications: review article

    Directory of Open Access Journals (Sweden)

    Zahra Nozhat

    2015-06-01

    Full Text Available In situ hybridization (ISH is a method that uses labeled complementary single strand DNA or RNA to localize specific DNA or RNA sequences in an intact cell or in a fixed tissue section. The main steps of ISH consist of: probe selection, tissue or sample preparation, pre-hybridization treatment, hybridization and washing, detection and control procedure. Probe selection is one of the important aspects of successful hybridization. ISH sensitivity and specificity can be influenced by: probe construct, efficiency of labeling, percentage of GC, probe length and signal detection systems. Different methods such as nick translation, random priming, end tailing and T4 DNA polymerase replacement are used for probe generation. Both radioactive and non-radioactive labels can be used in order to probe labeling. Nucleic acid maintenance in samples, prevention of morphological changes of samples and probe penetration into tissue section are the main aims of sample preparation step. Then, a small amount of solution containing probe, is added on slides containing tissue sections for hybridization process, then slides are incubated overnight. Next day, washes are carried out to remove the probes which are not bound to target DNA or RNA. Finally, in order to be sure that the observed labeling is specific to the target sequence, using several control procedures is very important. Various techniques based on ISH consist of: Fluorescence in situ hybridization (FISH, chromogenic in situ hybridization (CISH, genomic in situ hybridization (GISH, comparative genomic hybridization (CGH, spectral karyotyping (SKY and multiplex fluorescence in situ hybridization (MFISH. One of the most common techniques of ISH is fluorescence in situ hybridization. FISH can be used to: 1 detect small deletions and duplications that are not visible using microscope analysis, 2 detect how many chromosomes of a certain type are present in each cell and 3 confirm rearrangements that are

  2. Combination of microautoradiography and fluorescence in situ hybridization for identification of microorganisms degrading xenobiotic contaminants.

    Science.gov (United States)

    Yang, Yanru; Zarda, Annatina; Zeyer, Josef

    2003-12-01

    One of the central topics in environmental bioremediation research is to identify microorganisms that are capable of degrading the contaminants of interest. Here we report application of combined microautoradiography (MAR) and fluorescence in situ hybridization (FISH). The method has previously been used in a number of systems; however, here we demonstrate its feasibility in studying the degradation of xenobiotic compounds. With a model system (coculture of Pseudomonas putida B2 and Sphingomonas stygia incubated with [14C] o-nitrophenol), combination of MAR and FISH was shown to be able to successfully identify the microorganisms degrading o-nitrophenol. Compared with the conventional techniques, MAR-FISH allows fast and accurate identification of the microorganisms involved in environmental contaminant degradation.

  3. Detection of Bacteria by Fluorescence in Situ Hybridization in Culture-Negative Soft Tissue Filler Lesions

    DEFF Research Database (Denmark)

    Bjarnsholt, Thomas; Tolker-Nielsen, Tim; Givskov, Michael

    2009-01-01

    BACKGROUND Adverse reactions to polyacrylamide gel occur as swellings or nodules, and controversy exists whether these are due to bacterial infection or an autoimmune reaction to the filler. OBJECTIVES Biopsies from culture-negative long-lasting nodules after injection with different types...... of polyacrylamide gel were examined with a combination of Gram stain and fluorescence in situ hybridization. RESULTS Bacteria were detected in biopsies from seven of eight patients. They inhabited gel and intervening tissue and tended to lie in aggregates. CONCLUSION This study supports the assumption...... that infection with bacteria in aggregates causes culture-negative late adverse reactions to polyacrylamide gel, suggesting a biofilm environment. The authors have indicated no significant interest with commercial supporters....

  4. 3,9-Dithia-6-azaundecane-appended Iridium (III) Complex for the Selective Detection of Hg2+ in Aqueous Acetonitrile

    International Nuclear Information System (INIS)

    Ann, Jee Hye; Li, Yinan; Hyun, Myung Ho

    2012-01-01

    Detection of mercuric ion (Hg 2+ ) originated from natural or industrial sources is very important because it is extremely toxic even at low levels and causes serious environmental and health problems. Consequently, many efforts have been devoted to the development of sensitive chemosensors for the detection of Hg 2+ . For example, various fluorescent chemosensors based on rhodamine, nitrobenzoxadiazole, fluorescein, boradiazaindacene (BODIPY), dansyl, pyrene, or other fluorophores have been developed for the selective detection of Hg 2+ . While various fluorescent chemosensors for the selective detection of Hg 2+ have been developed, phosphorescent chemosensors for the selective detection of Hg 2+ are relatively rare. Among various phosphors, iridium (III) complexes with sulfur containing cyclometalated ligands have been used as phosphorescent chemosensors for the selective detection of Hg 2+ . Azacrown ether-appended iridium (III) complex developed in our laboratory has also been utilized as a phosphorescent chemosensor for the selective detection of Hg 2+ . As an another iridium (III) complex-based phosphorescent chemosensors for the selective detection of Hg 2+ , in this study, we wish to prepare iridium (III) complex containing two 3,9-dithia-6-azaundecane units as chelating ligands for metal ions. Some fluorophores containing 3,9-dithia-6-azaundecane unit have been successfully applied for the selective detection of Hg 2+ . In this instance, iridium (III) complex containing two 3,9-dithia-6-azaundecane units is expected to be useful as a phosphorescent chemosensor for the selective detection of Hg 2+ . Iridium (III) complex containing two 3,9-dithia-6-azaundecane units was prepared starting from 2-phenylpyridine according to the procedure shown in Scheme 1. 2-Phenylpyridine was transformed into chloride bridged dimeric iridium complex, [(ppy) 2 IrCl] 2 , via the reported procedure. By treating [(ppy) 2 IrCl] 2 with 4,4'-bis(bromomethyl)-2,2'-bipyridine, which

  5. Nucleic Acid Sandwich Hybridization Assay with Quantum Dot-Induced Fluorescence Resonance Energy Transfer for Pathogen Detection

    Science.gov (United States)

    Chou, Cheng-Chung; Huang, Yi-Han

    2012-01-01

    This paper reports a nucleic acid sandwich hybridization assay with a quantum dot (QD)-induced fluorescence resonance energy transfer (FRET) reporter system. Two label-free hemagglutinin H5 sequences (60-mer DNA and 630-nt cDNA fragment) of avian influenza viruses were used as the targets in this work. Two oligonucleotides (16 mers and 18 mers) that specifically recognize two separate but neighboring regions of the H5 sequences were served as the capturing and reporter probes, respectively. The capturing probe was conjugated to QD655 (donor) in a molar ratio of 10:1 (probe-to-QD), and the reporter probe was labeled with Alexa Fluor 660 dye (acceptor) during synthesis. The sandwich hybridization assay was done in a 20 μL transparent, adhesive frame-confined microchamber on a disposable, temperature-adjustable indium tin oxide (ITO) glass slide. The FRET signal in response to the sandwich hybridization was monitored by a homemade optical sensor comprising a single 400 nm UV light-emitting diode (LED), optical fibers, and a miniature 16-bit spectrophotometer. The target with a concentration ranging from 0.5 nM to 1 μM was successfully correlated with both QD emission decrease at 653 nm and dye emission increase at 690 nm. To sum up, this work is beneficial for developing a portable QD-based nucleic acid sensor for on-site pathogen detection. PMID:23211753

  6. A novel fluorescence probe based on triphenylamine Schiff base for bioimaging and responding to pH and Fe{sup 3+}

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lei; Yang, Xiaodong; Chen, Xiuli [School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640 (China); Zhou, Yuping [Guangdong Provincial key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515 (China); Lu, Xiaodan; Yan, Chenggong; Xu, Yikai [Medical Imaging Center, Nanfang Hospital, Southern Medical University, Guangzhou 510515 (China); Liu, Ruiyuan, E-mail: ruiyliu@smu.edu.cn [Guangdong Provincial key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515 (China); Qu, Jinqing, E-mail: cejqqu@scut.edu.cn [School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640 (China)

    2017-03-01

    A novel fluorescence probe 1 based on triphenylamine was synthesized and characterized by NMR, IR, high resolution mass spectrometry and elemental analysis. Its fluorescence was quenched when pH below 2. There was a linear relationship between the fluorescence intensity and pH value ranged from 2 to 7. And its fluorescence emission was reversibility in acidic and alkaline solution. Furthermore, it exhibited remarkable selectivity and high sensitivity to Fe{sup 3+} and was able to detect Fe{sup 3+} in aqueous solution with low detection limit of 0.511 μM. Job plot showed that the binding stoichiometry of 1 with Fe{sup 3+} was 1:1. Further observations of {sup 1}H NMR titration suggested that coordination interaction between Fe{sup 3+} and nitrogen atom on C =N bond promoted the intramolecular charge transfer (ICT) or energy transfer process causing fluorescence quenching. Additionally, 1 was also able to be applied for detecting Fe{sup 3+} in living cell and bioimaging. - Graphical abstract: Triphenylamine based fluorescence probe can detect pH and Fe{sup 3+} simultaneously in aqueous solution and be applied for detecting Fe{sup 3+} in living cell and bioimaging. - Highlights: • The fluorescence probe is sensitive to pH in strong acid conditions. • The fluorescence chemosensor can detect pH and Fe{sup 3+} simultaneously. • The recognition is able to carry out in aqueous solution. • The probe can also be applied for detecting Fe{sup 3+} in living cell and bioimaging. • The sensor is synthesized easily with one step.

  7. Fluorescent cadmium sulfide nanoparticles for selective and sensitive detection of toxic pesticides in aqueous medium

    International Nuclear Information System (INIS)

    Walia, Shanka; Acharya, Amitabha

    2014-01-01

    The detection of pesticide residues in ground water, food, or soil samples is extremely important. The currently available laboratory techniques have several drawbacks and needs to be replaced. Fluorescent chemosensors for pesticide detection were reported in the literature, with few reports published on quantum dot-based pesticide sensors, but none of these were focused toward differentiating organophosphorus and organochlorine pesticides specifically. In this respect, glutathione-coated CdS nanoparticles were synthesized and characterized. The TEM studies of the nanoparticles suggested mostly monodispersed spherical particles, with size in the range of 11.5±1 nm. The prepared fluorescent nanoparticles were found to selectively recognize organochlorine pesticide dicofol among all the other pesticides studied, by increasing the fluorescence intensity of the nanoparticles ∼ 2.5 times. Similar studies carried out with organophosphorous pesticide dimethoate did not result any change in the fluorescence intensity of the nanoparticles. Further studies carried out with commercially available pesticide solutions, also confirmed similar results. The TEM, SEM, and DLS studies suggested aggregation of the nanoparticles in the presence of dicofol. Control experiments suggested possible role of both amine and carboxylic acid functional groups of glutathione in the recognition of dicofol. The limit of detection of dicofol was found to be ∼ 55±11 ppb.Graphical AbstractGlutathione-coated CdS nanoparticles selectively recognize organochlorine pesticide dicofol among all the other pesticides studied, by increasing the fluorescence intensity of the nanoparticles. The TEM, SEM, and DLS studies suggested aggregation of the nanoparticles in the presence of dicofol

  8. Fluorescent cadmium sulfide nanoparticles for selective and sensitive detection of toxic pesticides in aqueous medium

    Energy Technology Data Exchange (ETDEWEB)

    Walia, Shanka; Acharya, Amitabha, E-mail: amitabhachem@gmail.com [CSIR-Institute of Himalayan Bioresource Technology, Biotechnology Division (India)

    2014-12-15

    The detection of pesticide residues in ground water, food, or soil samples is extremely important. The currently available laboratory techniques have several drawbacks and needs to be replaced. Fluorescent chemosensors for pesticide detection were reported in the literature, with few reports published on quantum dot-based pesticide sensors, but none of these were focused toward differentiating organophosphorus and organochlorine pesticides specifically. In this respect, glutathione-coated CdS nanoparticles were synthesized and characterized. The TEM studies of the nanoparticles suggested mostly monodispersed spherical particles, with size in the range of 11.5±1 nm. The prepared fluorescent nanoparticles were found to selectively recognize organochlorine pesticide dicofol among all the other pesticides studied, by increasing the fluorescence intensity of the nanoparticles ∼ 2.5 times. Similar studies carried out with organophosphorous pesticide dimethoate did not result any change in the fluorescence intensity of the nanoparticles. Further studies carried out with commercially available pesticide solutions, also confirmed similar results. The TEM, SEM, and DLS studies suggested aggregation of the nanoparticles in the presence of dicofol. Control experiments suggested possible role of both amine and carboxylic acid functional groups of glutathione in the recognition of dicofol. The limit of detection of dicofol was found to be ∼ 55±11 ppb.Graphical AbstractGlutathione-coated CdS nanoparticles selectively recognize organochlorine pesticide dicofol among all the other pesticides studied, by increasing the fluorescence intensity of the nanoparticles. The TEM, SEM, and DLS studies suggested aggregation of the nanoparticles in the presence of dicofol.

  9. Determination of the ruminant origin of bone particles using fluorescence in situ hybridization (FISH).

    Science.gov (United States)

    Lecrenier, M C; Ledoux, Q; Berben, G; Fumière, O; Saegerman, C; Baeten, V; Veys, P

    2014-07-17

    Molecular biology techniques such as PCR constitute powerful tools for the determination of the taxonomic origin of bones. DNA degradation and contamination by exogenous DNA, however, jeopardise bone identification. Despite the vast array of techniques used to decontaminate bone fragments, the isolation and determination of bone DNA content are still problematic. Within the framework of the eradication of transmissible spongiform encephalopathies (including BSE, commonly known as "mad cow disease"), a fluorescence in situ hybridization (FISH) protocol was developed. Results from the described study showed that this method can be applied directly to bones without a demineralisation step and that it allows the identification of bovine and ruminant bones even after severe processing. The results also showed that the method is independent of exogenous contamination and that it is therefore entirely appropriate for this application.

  10. Persistence of translocations detected by means of fluorescence in situ hybridization in peripheral lymphocytes of accidentally exposed radiation workers

    International Nuclear Information System (INIS)

    Pressl, S.; Stephan, G.

    1997-01-01

    The translocation frequency in lymphocytes of radiation workers accidentally exposed a number of years earlier was determined by means of fluorescence in situ hybridization. Chromosomes 2, 4 and 8 were painted, and simultaneously the centromeres. The genomic frequency of translocations is between 1.7 and 17.9 per 1000 cells. This variation is not significantly different from the level in healthy control subjects. Therefore, no radiation exposure could be detected retrospectively. On the other hand, the frequency of dicentrics in these radiation workers measured by means of fluorescence plus Giemsa staining shortly after the exposure was significantly increased, and whole body doses between 0.2 and 0.3 Gy could be calculated. Consequently, it would seem that dicentrics measured shortly after an exposure are a more sensitive indicator than translocations which are determined years later. (author)

  11. An efficient and ultrasensitive rhodamine B-based reversible colorimetric chemosensor for naked-eye recognition of molybdenum and citrate ions in aqueous solution: sensing behavior and logic operation.

    Science.gov (United States)

    Tavallali, Hossein; Deilamy-Rad, Gohar; Parhami, Abolfath; Hasanli, Nahid

    2015-03-15

    In this paper we manifest a novel rhodamine B (RhB) based colorimetric chemosensor for molybdenum and citrate ions (Cit(3-)) in an absolutely aqueous media. It has been identified as highly sensitive probe for Mo(6+) which responds at 4.0 nmol L(-1) concentration levels. RhB while combined with Mo(6+) in aqueous solution displays a color changing from pink to purple which could be quickly dissociated by the addition of citrate in this system so that reversible color changes from purple to pink can be achieved. The comparison of this method with some other methods for citrate indicates that this is the only method which can detect citrate in aqueous solution by color changes. This chemosensor can be applied for quantification of citrate with a linear range covering from 1.67×10(-7) to 1.22×10(-5) M and a detection limit of 2.0×10(-8) M. Moreover, the response of the chemosensor toward Mo(6+) and citrate is fast. In addition, based on above sensing mechanism, an IMPLICATION logic operation can be achieved using Mo(6+) ion and Cit(3-) as the inputs, making RhB a promising candidate for further applications in molecular logic devices and also indicates that RhB is suitable for the detection of Mo(6+) and Cit(3-) ions in real samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Small supernumerary marker chromosome derived from proximal p-arm of chromosome 2: identification by fluorescent in situ hybridization.

    Science.gov (United States)

    Lasan Trcić, Ruzica; Hitrec, Vlasta; Letica, Ljiljana; Cuk, Mario; Begović, Davor

    2003-08-01

    Conventional cytogenetics detected an interstitial deletion of proximal region of p-arm of chromosome 2 in a 6-month-old boy with a phenotype slightly resembling Down's syndrome. The deletion was inherited from the father, whose karyotype revealed a small ring-shaped marker chromosome, in addition to interstitial deletion. Fluorescence in situ hybridization identified the marker, which consisted of the proximal region of the p-arm of chromosome 2, including a part of its centromere. This case shows that molecular cytogenetic analysis can reveal the mechanism of the formation of the marker chromosome.

  13. Association of Serpulina hyodysenteriae with the colonic mucosa in experimental swine dysentery studied by fluorescent in situ hybridization

    DEFF Research Database (Denmark)

    Jensen, Tim Kåre; Boye, Mette; Møller, Kristian

    1998-01-01

    The localization of Serpulina hyodysenteriae in experimental swine dysentery was studied by fluorescent in situ hybridization (FISH) using an oligonucleotide probe targeting the 23S rRNA of S. hyodysenteriae. Nine 8-week-old pigs were challenged. Seven of the pigs were intragastrically dosed with 1......x10(9) cfu S. hyodysenteriae for 3 consecutive days, whereas two pigs were infected by contact. Six non-challenged pigs served as negative controls. The challenged pigs developed clinical swine dysentery from 8 to 14 days postinfection with typical gross lesions. By FISH S. hyodysenteriae cells...

  14. Standardization and optimization of fluorescence in situ hybridization (FISH) for HER-2 assessment in breast cancer: A single center experience.

    Science.gov (United States)

    Bogdanovska-Todorovska, Magdalena; Petrushevska, Gordana; Janevska, Vesna; Spasevska, Liljana; Kostadinova-Kunovska, Slavica

    2018-05-20

    Accurate assessment of human epidermal growth factor receptor 2 (HER-2) is crucial in selecting patients for targeted therapy. Commonly used methods for HER-2 testing are immunohistochemistry (IHC) and fluorescence in situ hybridization (FISH). Here we presented the implementation, optimization and standardization of two FISH protocols using breast cancer samples and assessed the impact of pre-analytical and analytical factors on HER-2 testing. Formalin fixed paraffin embedded (FFPE) tissue samples from 70 breast cancer patients were tested for HER-2 using PathVysion™ HER-2 DNA Probe Kit and two different paraffin pretreatment kits, Vysis/Abbott Paraffin Pretreatment Reagent Kit (40 samples) and DAKO Histology FISH Accessory Kit (30 samples). The concordance between FISH and IHC results was determined. Pre-analytical and analytical factors (i.e., fixation, baking, digestion, and post-hybridization washing) affected the efficiency and quality of hybridization. The overall hybridization success in our study was 98.6% (69/70); the failure rate was 1.4%. The DAKO pretreatment kit was more time-efficient and resulted in more uniform signals that were easier to interpret, compared to the Vysis/Abbott kit. The overall concordance between IHC and FISH was 84.06%, kappa coefficient 0.5976 (p characteristics. Differences in the pre-analytical and analytical steps can affect the hybridization quality and efficiency. The use of DAKO pretreatment kit is time-saving and cost-effective.

  15. Fluorescence in situ hybridization techniques (FISH) to detect changes in CYP19a gene expression of Japanese medaka (Oryzias latipes)

    International Nuclear Information System (INIS)

    Park, June-Woo; Tompsett, Amber; Zhang, Xiaowei; Newsted, John L.; Jones, Paul D.; Au, Doris; Kong, Richard; Wu, Rudolf S.S.; Giesy, John P.; Hecker, Markus

    2008-01-01

    The aim of this study was to develop a sensitive in situ hybridization methodology using fluorescence-labeled riboprobes (FISH) that allows for the evaluation of gene expression profiles simultaneously in multiple target tissues of whole fish sections of Japanese medaka (Oryzias latipes). To date FISH methods have been limited in their application due to autofluorescence of tissues, fixatives or other components of the hybridization procedure. An optimized FISH method, based on confocal fluorescence microscopy was developed to reduce the autofluorescence signal. Because of its tissue- and gender-specific expression and relevance in studies of endocrine disruption, gonadal aromatase (CYP19a) was used as a model gene. The in situ hybridization (ISH) system was validated in a test exposure with the aromatase inhibitor fadrozole. The optimized FISH method revealed tissue-specific expression of the CYP19a gene. Furthermore, the assay could differentiate the abundance of CYP19a mRNA among cell types. Expression of CYP19a was primarily associated with early stage oocytes, and expression gradually decreased with increasing maturation. No expression of CYP19a mRNA was observed in other tissues such as brain, liver, or testes. Fadrozole (100 μg/L) caused up-regulation of CYP19a expression, a trend that was confirmed by RT-PCR analysis on excised tissues. In a combination approach with gonad histology, it could be shown that the increase in CYP19a expression as measured by RT-PCR on a whole tissue basis was due to a combination of both increases in numbers of CYP19a-containing cells and an increase in the amount of CYP19a mRNA present in the cells

  16. White organic light emitting devices with hybrid emissive layers combining phosphorescence and fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Lei Gangtie; Chen Xiaolan; Wang Lei; Zhu Meixiang; Zhu Weiguo [Key Lab of Environmental-friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105 (China); Wang Liduo; Qiu Yong [Key Lab of Organic-Optoelectronics and Molecular Sciences of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084 (China)], E-mail: lgt@xtu.edu.cn

    2008-05-21

    We fabricated a white organic light-emitting diode (WOLED) by hybrid emissive layers which combined phosphorescence with fluorescence. In this device, the thin layer of 4-(dicyanomethylene)-2-(t-butyl)-6-(1, 1, 7, 7-tetramethyljulolidyl-9-enyl)-4H-pyran played the role of undoped red emissive layer which was inserted between two blue phosphorescence emissive layers. The blue phosphorescent dye was bis[(4, 6-difluorophenyl)-pyridinato-N, C{sup 2}] (picolinato) Ir(III), which was doped in the host material, N, N'-dicarbazolyl-1, 4-dimethene-benzene. The WOLED showed stable Commission Internationale de L'Eclairage coordinates and a high efficency of 9.6 cd A{sup -1} when the current density was 1.8 A m{sup -2}. The maximum luminance of the device achieved was 17 400 cd m{sup -2} when the current density was 3000 A m{sup -2}.

  17. Detection and quantification of Epstein-Barr virus EBER1 in EBV-infected cells by fluorescent in situ hybridization and flow cytometry

    Science.gov (United States)

    Stowe, R. P.; Cubbage, M. L.; Sams, C. F.; Pierson, D. L.; Barrett, A. D.

    1998-01-01

    A rapid and highly sensitive fluorescent in situ hybridization (FISH) assay was developed to detect Epstein Barr virus (EBV)-infected cells in peripheral blood. Multiple fluorescein-labeled antisense oligonucleotide probes were designed to hybridize to the EBER1 transcript, which is highly expressed in latently infected cells. After a rapid (30 min) hybridization, the cells were analyzed by flow cytometry. EBER1 was detected in several positive control cell lines that have variable numbers of EBV genome copies. No EBER1 was detected in two known EBV-negative cell lines. Northern blot analyses confirmed the presence and quantity of EBER1 transcripts in each cell line. This method was used to quantify the number of EBV-infected cells in peripheral blood from a patient with chronic mononucleosis. These results indicate that EBV-infected cells can be detected at the single cell level, and that this assay can be used to quantify the number of EBV-infected cells in clinical samples.

  18. Imaging of pharmacokinetic rates of indocyanine green in mouse liver with a hybrid fluorescence molecular tomography/x-ray computed tomography system.

    Science.gov (United States)

    Zhang, Guanglei; Liu, Fei; Zhang, Bin; He, Yun; Luo, Jianwen; Bai, Jing

    2013-04-01

    Pharmacokinetic rates have the potential to provide quantitative physiological and pathological information for biological studies and drug development. Fluorescence molecular tomography (FMT) is an attractive imaging tool for three-dimensionally resolving fluorophore distribution in small animals. In this letter, pharmacokinetic rates of indocyanine green (ICG) in mouse liver are imaged with a hybrid FMT and x-ray computed tomography (XCT) system. A recently developed FMT method using structural priors from an XCT system is adopted to improve the quality of FMT reconstruction. In the in vivo experiments, images of uptake and excretion rates of ICG in mouse liver are obtained, which can be used to quantitatively evaluate liver function. The accuracy of the results is validated by a fiber-based fluorescence measurement system.

  19. Aminoquinoline based highly sensitive fluorescent sensor for lead(II) and aluminum(III) and its application in live cell imaging

    Energy Technology Data Exchange (ETDEWEB)

    Anand, Thangaraj; Sivaraman, Gandhi [School of Chemistry, Madurai Kamaraj University, Madurai 625021 (India); Mahesh, Ayyavu, E-mail: mahesh.a06@gmail.com [School of Biological Sciences, Madurai Kamaraj University, Madurai 625021 (India); Chellappa, Duraisamy, E-mail: dcmku123@gmail.com [School of Chemistry, Madurai Kamaraj University, Madurai 625021 (India)

    2015-01-01

    Highlights: • Aminoquinoline derivative was synthesized and used to recognize Pb{sup 2+}/Al{sup 3+}. • ANQ was high sensitive, selective and turn-on sensor for Pb{sup 2+}/Al{sup 3+}. • The Pb{sup 2+} detection limit (2.08 × 10{sup −9} mol L{sup −1}) is reported. • This fluorescence change was further supported by DFT/TD-DFT calculations. • The probe is applied successfully for recognizing intracellular Pb{sup 2+}/Al{sup 3+} within living cells. - Abstract: We have synthesized a new probe 5-((anthracen-9-ylmethylene) amino)quinolin-10-ol (ANQ) based on anthracene platform. The probe was tested for its sensing behavior toward heavy metal ions Hg{sup 2+}, Pb{sup 2+}, light metal Al{sup 3+} ion, alkali, alkaline earth, and transition metal ions by UV–visible and fluorescent techniques in ACN/H{sub 2}O mixture buffered with HEPES (pH 7.4). It shows high selectivity toward sensing Pb{sup 2+}/Al{sup 3+} metal ions. Importantly, 10-fold and 5- fold fluorescence enhancement at 429 nm was observed for probe upon complexation with Pb{sup 2+} and Al{sup 3+} ions, respectively. This fluorescence enhancement is attributable to the prevention of photoinduced electron transfer. The photonic studies indicate that the probe can be adopted as a sensitive fluorescent chemosensor for Pb{sup 2+} and Al{sup 3+} ions.

  20. Towards understanding of poly-guanine activated fluorescent silver nanoclusters

    International Nuclear Information System (INIS)

    Walczak, Sylwia; Morishita, Kiyoshi; Ahmed, Moin; Liu, Juewen

    2014-01-01

    It has been recently reported that the fluorescence of some DNA-templated silver nanoclusters (AgNCs) can be significantly enhanced upon by hybridizing with a partially complementary DNA containing a G-rich overhang near the AgNCs. This discovery has found a number of analytical applications but many fundamental questions remain to be answered. In this work, the photostability of these activated AgNCs is reported. After adding the G-rich DNA activator, the fluorescence intensity peaks in ∼1 h and then starts to decay, where the decaying rate is much faster with light exposure. The lost fluorescence is recovered by adding NaBH 4 , suggesting that the bleaching is an oxidative process. Once activated, the G-rich activator can be removed while the AgNCs still maintain most of their fluorescence intensity. UV–vis spectroscopy suggests that new AgNC species are generated upon hybridization with the activator. The base sequence and length of the template DNA have also been varied, leading to different emission colors and color change after hybridization. G-rich aptamers can also serve as activators. Our results indicate that activation of the fluorescence by G-rich DNA could be a convenient method for biosensor development since the unstable NaBH 4 is not required for the activation step. (paper)

  1. Validation of interphase fluorescence in situ hybridization (iFISH for multiple myeloma using CD138 positive cells

    Directory of Open Access Journals (Sweden)

    Renata Kiyomi Kishimoto

    2016-06-01

    Full Text Available ABSTRACT BACKGROUND: Multiple myeloma is a plasma cell neoplasm with acquired genetic abnormalities of clinical and prognostic importance. Multiple myeloma differs from other hematologic malignancies due to a high fraction of low proliferating malignant plasma cells and the paucity of plasma cells in bone marrow aspiration samples, making cytogenetic analysis a challenge. An abnormal karyotype is found in only one-third of patients with multiple myeloma and interphase fluorescence in situ hybridization is the most useful test for studying the chromosomal abnormalities present in almost 90% of cases. However, it is necessary to study the genetic abnormalities in plasma cells after their identification or selection by morphology, immunophenotyping or sorting. Other challenges are the selection of the most informative FISH panel and determining cut-off levels for FISH probes. This study reports the validation of interphase fluorescence in situ hybridization using CD138 positive cells, according to proposed guidelines published by the European Myeloma Network (EMN in 2012. METHOD: Bone marrow samples from patients with multiple myeloma were used to standardize a panel of five probes [1q amplification, 13q14 deletion, 17p deletion, t(4;14, and t(14;16] in CD138+ cells purified by magnetic cell sorting. RESULTS: This test was validated with a low turnaround time and good reproducibility. Five of six samples showed genetic abnormalities. Monosomy/deletion 13 plus t(4;14 were found in two cases. CONCLUSION: This technique together with magnetic cell sorting is effective and can be used in the routine laboratory practice. In addition, magnetic cell sorting provides a pure plasma cell population that allows other molecular and genomic studies.

  2. Towards Fluorescence In Vivo Hybridization (FIVH) Detection of H. pylori in Gastric Mucosa Using Advanced LNA Probes

    Science.gov (United States)

    Fontenete, Sílvia; Leite, Marina; Guimarães, Nuno; Madureira, Pedro; Ferreira, Rui Manuel; Figueiredo, Céu; Wengel, Jesper; Azevedo, Nuno Filipe

    2015-01-01

    In recent years, there have been several attempts to improve the diagnosis of infection caused by Helicobacter pylori. Fluorescence in situ hybridization (FISH) is a commonly used technique to detect H. pylori infection but it requires biopsies from the stomach. Thus, the development of an in vivo FISH-based method (FIVH) that directly detects and allows the visualization of the bacterium within the human body would significantly reduce the time of analysis, allowing the diagnosis to be performed during endoscopy. In a previous study we designed and synthesized a phosphorothioate locked nucleic acid (LNA)/ 2’ O-methyl RNA (2’OMe) probe using standard phosphoramidite chemistry and FISH hybridization was then successfully performed both on adhered and suspended bacteria at 37°C. In this work we simplified, shortened and adapted FISH to work at gastric pH values, meaning that the hybridization step now takes only 30 minutes and, in addition to the buffer, uses only urea and probe at non-toxic concentrations. Importantly, the sensitivity and specificity of the FISH method was maintained in the range of conditions tested, even at low stringency conditions (e.g., low pH). In conclusion, this methodology is a promising approach that might be used in vivo in the future in combination with a confocal laser endomicroscope for H. pylori visualization. PMID:25915865

  3. Towards Fluorescence In Vivo Hybridization (FIVH Detection of H. pylori in Gastric Mucosa Using Advanced LNA Probes.

    Directory of Open Access Journals (Sweden)

    Sílvia Fontenete

    Full Text Available In recent years, there have been several attempts to improve the diagnosis of infection caused by Helicobacter pylori. Fluorescence in situ hybridization (FISH is a commonly used technique to detect H. pylori infection but it requires biopsies from the stomach. Thus, the development of an in vivo FISH-based method (FIVH that directly detects and allows the visualization of the bacterium within the human body would significantly reduce the time of analysis, allowing the diagnosis to be performed during endoscopy. In a previous study we designed and synthesized a phosphorothioate locked nucleic acid (LNA/ 2' O-methyl RNA (2'OMe probe using standard phosphoramidite chemistry and FISH hybridization was then successfully performed both on adhered and suspended bacteria at 37°C. In this work we simplified, shortened and adapted FISH to work at gastric pH values, meaning that the hybridization step now takes only 30 minutes and, in addition to the buffer, uses only urea and probe at non-toxic concentrations. Importantly, the sensitivity and specificity of the FISH method was maintained in the range of conditions tested, even at low stringency conditions (e.g., low pH. In conclusion, this methodology is a promising approach that might be used in vivo in the future in combination with a confocal laser endomicroscope for H. pylori visualization.

  4. Fluorescence In Situ Hybridization (FISH Signal Analysis Using Automated Generated Projection Images

    Directory of Open Access Journals (Sweden)

    Xingwei Wang

    2012-01-01

    Full Text Available Fluorescence in situ hybridization (FISH tests provide promising molecular imaging biomarkers to more accurately and reliably detect and diagnose cancers and genetic disorders. Since current manual FISH signal analysis is low-efficient and inconsistent, which limits its clinical utility, developing automated FISH image scanning systems and computer-aided detection (CAD schemes has been attracting research interests. To acquire high-resolution FISH images in a multi-spectral scanning mode, a huge amount of image data with the stack of the multiple three-dimensional (3-D image slices is generated from a single specimen. Automated preprocessing these scanned images to eliminate the non-useful and redundant data is important to make the automated FISH tests acceptable in clinical applications. In this study, a dual-detector fluorescence image scanning system was applied to scan four specimen slides with FISH-probed chromosome X. A CAD scheme was developed to detect analyzable interphase cells and map the multiple imaging slices recorded FISH-probed signals into the 2-D projection images. CAD scheme was then applied to each projection image to detect analyzable interphase cells using an adaptive multiple-threshold algorithm, identify FISH-probed signals using a top-hat transform, and compute the ratios between the normal and abnormal cells. To assess CAD performance, the FISH-probed signals were also independently visually detected by an observer. The Kappa coefficients for agreement between CAD and observer ranged from 0.69 to 1.0 in detecting/counting FISH signal spots in four testing samples. The study demonstrated the feasibility of automated FISH signal analysis that applying a CAD scheme to the automated generated 2-D projection images.

  5. Phenylethynylpyrene excimer forming hybridization probes for fluorescence SNP detection

    DEFF Research Database (Denmark)

    Prokhorenko, Igor A.; Astakhova, Irina V.; Momynaliev, Kuvat T.

    2009-01-01

    Excimer formation is a unique feature of some fluorescent dyes (e.g., pyrene) which can be used for probing the proximity of biomolecules. Pyrene excimer fluorescence has previously been used for homogeneous detection of single nucleotide polymorphism (SNP) on DNA. 1-Phenylethynylpyrene (1-1-PEPy...

  6. Correlation between HER2 gene amplification and protein overexpression through fluorescence in situ hybridization and immunohistochemistry in breast carcinoma patients

    OpenAIRE

    R N Makroo; Mohit Chowdhry; Manoj Kumar; Priyanka Srivastava; Richa Tyagi; Preeti Bhadauria; Sumaid Kaul; Ramesh Sarin; P K Das; Harsh Dua

    2012-01-01

    Background : In India, the incidence of breast cancer has increased in the urban population, with 1 in every 22 women diagnosed with breast cancer. It is important to know the HER2/neu gene status for a better prognostication of these patients. Aim : The aim of this study was to compare the efficacy of fluorescence in situ hybridization (FISH) and immunohistochemistry (IHC) for determining HER2/neu alteration in breast carcinoma. Materials and Methods : A total of 188 histologically proven br...

  7. Off-on fluorescent sensor based on the bis(2,4,7,8,9-pentamethyldipyrrolylmethene-3-yl)methane for detection of Cd{sup 2+} and Hg{sup 2+} cations

    Energy Technology Data Exchange (ETDEWEB)

    Bumagina, Natalia A., E-mail: nad@isc-ras.ru [G.A. Krestov Institute of Solution Chemistry of Russian Academy of Sciences (ISC RAS), 1 Akademicheskaya St., 153045 Ivanovo (Russian Federation); Antina, Elena V., E-mail: eva@isc-ras.ru [G.A. Krestov Institute of Solution Chemistry of Russian Academy of Sciences (ISC RAS), 1 Akademicheskaya St., 153045 Ivanovo (Russian Federation); Sozonov, Dmitry I., E-mail: super_dk@mail.ru [Ivanovo State University of Chemistry and Technology (ISUCT), 7 Sheremetevskij Prosp., 153000 Ivanovo (Russian Federation)

    2017-03-15

    The off-on fluorescent chemosensor based on the bis(2,4,7,8,9-pentamethyldipyrrolylmethene-3-yl)methane for detection of Cd{sup 2+} and Hg{sup 2+} ions was obtained and its metal ion sensing properties were investigated. The bis(dipyrrin) exhibited remarkably fluorescence enhancement (150- and 40-fold) to Cd{sup 2+} and Hg{sup 2+} ions, respectively, with significant color change on the background of other metal ions in propanol-1/cyclohexane (1:30) binary mixture. Consequently, it can be used as a “naked eye” indicator with an obvious color change from yellow-orange to orange-green color upon the addition of Cd{sup 2+} and Hg{sup 2+}. The fluorescent response mechanism of bis(dipyrrin) to Cd{sup 2+} and Hg{sup 2+} was based on the fluorescence enhancement effect upon complexation (CHEF) due to formation of a metal–ligand (2:2) complex [M{sub 2}L{sub 2}]. The detection limit of Cd{sup 2+} and Hg{sup 2+} ions was 2 × 10{sup –9} and 1.7 × 10{sup –8} M ions, respectively.

  8. Macro-/micro-environment-sensitive chemosensing and biological imaging.

    Science.gov (United States)

    Yang, Zhigang; Cao, Jianfang; He, Yanxia; Yang, Jung Ho; Kim, Taeyoung; Peng, Xiaojun; Kim, Jong Seung

    2014-07-07

    Environment-related parameters, including viscosity, polarity, temperature, hypoxia, and pH, play pivotal roles in controlling the physical or chemical behaviors of local molecules. In particular, in a biological environment, such factors predominantly determine the biological properties of the local environment or reflect corresponding status alterations. Abnormal changes in these factors would cause cellular malfunction or become a hallmark of the occurrence of severe diseases. Therefore, in recent years, they have increasingly attracted research interest from the fields of chemistry and biological chemistry. With the emergence of fluorescence sensing and imaging technology, several fluorescent chemosensors have been designed to respond to such parameters and to further map their distributions and variations in vitro/in vivo. In this work, we have reviewed a number of various environment-responsive chemosensors related to fluorescent recognition of viscosity, polarity, temperature, hypoxia, and pH that have been reported thus far.

  9. Highly fluorescent and morphology-controllable graphene quantum dots-chitosan hybrid xerogels for in vivo imaging and pH-sensitive drug carrier.

    Science.gov (United States)

    Lv, Ouyang; Tao, Yongxin; Qin, Yong; Chen, Chuanxiang; Pan, Yan; Deng, Linhong; Liu, Li; Kong, Yong

    2016-10-01

    Highly fluorescent graphene quantum dots (GQDs)-chitosan (CS) hybrid xerogels (GQDs-CS) were facilely synthesized, and the morphology of GQDs-CS was controllable by varying the content of GQDs in the xerogel. The GQDs-CS exhibited a porous and three-dimensional (3D) network structure when the content of GQDs reached 43% (wt%) in the xerogel, which was beneficial for drug loading and sustained release. The as-prepared GQDs-CS could also be applied for in vivo imaging since it showed strong blue, green and red luminescence under excitation of varying wavelengths. Moreover, the pH-induced protonation/deprotonation of the -NH2 groups on CS chains can result in a pH-dependent drug delivery behavior of the GQDs-CS hybrid xerogel. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. 3,9-Dithia-6-azaundecane-appended Iridium (III) Complex for the Selective Detection of Hg{sup 2+} in Aqueous Acetonitrile

    Energy Technology Data Exchange (ETDEWEB)

    Ann, Jee Hye; Li, Yinan; Hyun, Myung Ho [Pusan National Univ., Busan (Korea, Republic of)

    2012-10-15

    Detection of mercuric ion (Hg{sup 2+}) originated from natural or industrial sources is very important because it is extremely toxic even at low levels and causes serious environmental and health problems. Consequently, many efforts have been devoted to the development of sensitive chemosensors for the detection of Hg{sup 2+}. For example, various fluorescent chemosensors based on rhodamine, nitrobenzoxadiazole, fluorescein, boradiazaindacene (BODIPY), dansyl, pyrene, or other fluorophores have been developed for the selective detection of Hg{sup 2+}. While various fluorescent chemosensors for the selective detection of Hg{sup 2+} have been developed, phosphorescent chemosensors for the selective detection of Hg{sup 2+} are relatively rare. Among various phosphors, iridium (III) complexes with sulfur containing cyclometalated ligands have been used as phosphorescent chemosensors for the selective detection of Hg{sup 2+}. Azacrown ether-appended iridium (III) complex developed in our laboratory has also been utilized as a phosphorescent chemosensor for the selective detection of Hg{sup 2+}. As an another iridium (III) complex-based phosphorescent chemosensors for the selective detection of Hg{sup 2+}, in this study, we wish to prepare iridium (III) complex containing two 3,9-dithia-6-azaundecane units as chelating ligands for metal ions. Some fluorophores containing 3,9-dithia-6-azaundecane unit have been successfully applied for the selective detection of Hg{sup 2+}. In this instance, iridium (III) complex containing two 3,9-dithia-6-azaundecane units is expected to be useful as a phosphorescent chemosensor for the selective detection of Hg{sup 2+}. Iridium (III) complex containing two 3,9-dithia-6-azaundecane units was prepared starting from 2-phenylpyridine according to the procedure shown in Scheme 1. 2-Phenylpyridine was transformed into chloride bridged dimeric iridium complex, [(ppy){sub 2}IrCl]{sub 2}, via the reported procedure. By treating [(ppy){sub 2}Ir

  11. Double-labeled donor probe can enhance the signal of fluorescence resonance energy transfer (FRET) in detection of nucleic acid hybridization

    Science.gov (United States)

    Okamura, Yukio; Kondo, Satoshi; Sase, Ichiro; Suga, Takayuki; Mise, Kazuyuki; Furusawa, Iwao; Kawakami, Shigeki; Watanabe, Yuichiro

    2000-01-01

    A set of fluorescently-labeled DNA probes that hybridize with the target RNA and produce fluorescence resonance energy transfer (FRET) signals can be utilized for the detection of specific RNA. We have developed probe sets to detect and discriminate single-strand RNA molecules of plant viral genome, and sought a method to improve the FRET signals to handle in vivo applications. Consequently, we found that a double-labeled donor probe labeled with Bodipy dye yielded a remarkable increase in fluorescence intensity compared to a single-labeled donor probe used in an ordinary FRET. This double-labeled donor system can be easily applied to improve various FRET probes since the dependence upon sequence and label position in enhancement is not as strict. Furthermore this method could be applied to other nucleic acid substances, such as oligo RNA and phosphorothioate oligonucleotides (S-oligos) to enhance FRET signal. Although the double-labeled donor probes labeled with a variety of fluorophores had unexpected properties (strange UV-visible absorption spectra, decrease of intensity and decay of donor fluorescence) compared with single-labeled ones, they had no relation to FRET enhancement. This signal amplification mechanism cannot be explained simply based on our current results and knowledge of FRET. Yet it is possible to utilize this double-labeled donor system in various applications of FRET as a simple signal-enhancement method. PMID:11121494

  12. Standardization and optimization of fluorescence in situ hybridization (FISH for HER-2 assessment in breast cancer: A single center experience

    Directory of Open Access Journals (Sweden)

    Magdalena Bogdanovska-Todorovska

    2018-05-01

    Full Text Available Accurate assessment of human epidermal growth factor receptor 2 (HER-2 is crucial in selecting patients for targeted therapy. Commonly used methods for HER-2 testing are immunohistochemistry (IHC and fluorescence in situ hybridization (FISH. Here we presented the implementation, optimization and standardization of two FISH protocols using breast cancer samples and assessed the impact of pre-analytical and analytical factors on HER-2 testing. Formalin fixed paraffin embedded (FFPE tissue samples from 70 breast cancer patients were tested for HER-2 using PathVysion™ HER-2 DNA Probe Kit and two different paraffin pretreatment kits, Vysis/Abbott Paraffin Pretreatment Reagent Kit (40 samples and DAKO Histology FISH Accessory Kit (30 samples. The concordance between FISH and IHC results was determined. Pre-analytical and analytical factors (i.e., fixation, baking, digestion, and post-hybridization washing affected the efficiency and quality of hybridization. The overall hybridization success in our study was 98.6% (69/70; the failure rate was 1.4%. The DAKO pretreatment kit was more time-efficient and resulted in more uniform signals that were easier to interpret, compared to the Vysis/Abbott kit. The overall concordance between IHC and FISH was 84.06%, kappa coefficient 0.5976 (p < 0.0001. The greatest discordance (82% between IHC and FISH was observed in IHC 2+ group. A standardized FISH protocol for HER-2 assessment, with high hybridization efficiency, is necessary due to variability in tissue processing and individual tissue characteristics. Differences in the pre-analytical and analytical steps can affect the hybridization quality and efficiency. The use of DAKO pretreatment kit is time-saving and cost-effective.

  13. DNA conformation on surfaces measured by fluorescence self-interference.

    Science.gov (United States)

    Moiseev, Lev; Unlü, M Selim; Swan, Anna K; Goldberg, Bennett B; Cantor, Charles R

    2006-02-21

    The conformation of DNA molecules tethered to the surface of a microarray may significantly affect the efficiency of hybridization. Although a number of methods have been applied to determine the structure of the DNA layer, they are not very sensitive to variations in the shape of DNA molecules. Here we describe the application of an interferometric technique called spectral self-interference fluorescence microscopy to the precise measurement of the average location of a fluorescent label in a DNA layer relative to the surface and thus determine specific information on the conformation of the surface-bound DNA molecules. Using spectral self-interference fluorescence microscopy, we have estimated the shape of coiled single-stranded DNA, the average tilt of double-stranded DNA of different lengths, and the amount of hybridization. The data provide important proofs of concept for the capabilities of novel optical surface analytical methods of the molecular disposition of DNA on surfaces. The determination of DNA conformations on surfaces and hybridization behavior provide information required to move DNA interfacial applications forward and thus impact emerging clinical and biotechnological fields.

  14. Multiplexed interfacial transduction of nucleic acid hybridization using a single color of immobilized quantum dot donor and two acceptors in fluorescence resonance energy transfer.

    Science.gov (United States)

    Algar, W Russ; Krull, Ulrich J

    2010-01-01

    A multiplexed solid-phase assay for the detection of nucleic acid hybridization was developed on the basis of a single color of immobilized CdSe/ZnS quantum dot (QD) as a donor in fluorescence resonance energy transfer (FRET). This work demonstrated that two channels of detection did not necessitate two different QD donors. Two probe oligonucleotides were coimmobilized on optical fibers modified with QDs, and a sandwich assay was used to associate the acceptor dyes with interfacial hybridization events without target labeling. FRET-sensitized acceptor emission provided an analytical signal that was concentration dependent down to 10 nM. Changes in the ratio of coimmobilized probe oligonucleotides were found to yield linear changes in the relative amounts of acceptor emission. These changes were compared to previous studies that used mixed films of two QD donors for two detection channels. The analysis indicated that probe dilution effects were primarily driven by changes in acceptor number density and that QD dilution effects or changes in mean donor-acceptor distance were secondary. Hybridization kinetics were found to be consistent between different ratios of coimmobilized probes, suggesting that hybridization in this type of system occurred via the accepted model for solid-phase hybridization, where adsorption and then diffusion at the solid interface drove hybridization.

  15. Plasmonic hybrid nanostructure with controlled interaction strength

    Science.gov (United States)

    Grzelak, Justyna K.; Krajnik, Bartosz; Thoreson, Mark D.; Nyga, Piotr; Shalaev, Vladimir M.; Mackowski, Sebastian

    2014-03-01

    In this report we discuss the influence of plasmon excitations in a silver island film on the fluorescence of photosynthetic complex, peridinin-chlorophyll-protein (PCP). Control of the separation between these two components is obtained by fabricating a wedge layer of silica across the substrate, with a thickness from 0 to 46 nm. Continuous variation of the silica thickness allows for gradual change of interaction strength between plasmon excitations in the metallic film and the excited states of pigments comprising photosynthetic complexes. While the largest separation between the silver film and photosynthetic complexes results in fluorescence featuring a mono-exponential decay and relatively narrow distribution of intensities, the PCP complexes placed on thinner silica spacers show biexponential fluorescence decay and significantly broader distribution of total fluorescence intensities. This broad distribution is a signature of stronger sensitivity of fluorescence enhancement upon actual parameters of a hybrid nanostructure. By gradual change of the silica spacer thickness we are able to reproduce classical distance dependence of fluorescence intensity in plasmonic hybrid nanostructures on ensemble level. Experiments carried out for different excitation wavelengths indicate that the interaction is stronger for excitations resonant with plasmon absorption in the metallic layer.

  16. Fluctuation localization imaging-based fluorescence in situ hybridization (fliFISH) for accurate detection and counting of RNA copies in single cells

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Yi; Hu, Dehong; Markillie, Lye Meng; Chrisler, William B.; Gaffrey, Matthew J.; Ansong, Charles; Sussel, Lori; Orr, Galya

    2017-10-04

    Quantitative gene expression analysis in intact single cells can be achieved using single molecule- based fluorescence in situ hybridization (smFISH). This approach relies on fluorescence intensity to distinguish between true signals, emitted from an RNA copy hybridized with multiple FISH sub-probes, and background noise. Thus, the precision in smFISH is often compromised by partial or nonspecific binding of sub-probes and tissue autofluorescence, limiting its accuracy. Here we provide an accurate approach for setting quantitative thresholds between true and false signals, which relies on blinking frequencies of photoswitchable dyes. This fluctuation localization imaging-based FISH (fliFISH) uses blinking frequency patterns, emitted from a transcript bound to multiple sub-probes, which are distinct from blinking patterns emitted from partial or nonspecifically bound sub-probes and autofluorescence. Using multicolor fliFISH, we identified radial gene expression patterns in mouse pancreatic islets for insulin, the transcription factor, NKX2-2, and their ratio (Nkx2-2/Ins2). These radial patterns, showing higher values in β cells at the islet core and lower values in peripheral cells, were lost in diabetic mouse islets. In summary, fliFISH provides an accurate, quantitative approach for detecting and counting true RNA copies and rejecting false signals by their distinct blinking frequency patterns, laying the foundation for reliable single-cell transcriptomics.

  17. Fluorescence detection of natural RNA using rationally designed "clickable" oligonucleotide probes

    DEFF Research Database (Denmark)

    Okholm, Anders; Kjems, Jørgen; Astakhova, Kira

    2014-01-01

    Herein a reliable approach to the design of effective fluorescent probes for RNA detection is described. The fluorescence signalling of hybridization by internally positioned polyaromatic hydrocarbons and rhodamine dyes was achieved with a low fluorescence background signal, high fluorescence qua...... quantum yields at ambient and elevated temperature, high selectivity and signal specificity of the probes when binding to miR-7 and circRNA targets....

  18. Fluorescence In Situ Hybridization with Peptide Nucleic Acid Probes for Rapid Identification of Candida albicans Directly from Blood Culture Bottles

    Science.gov (United States)

    Rigby, Susan; Procop, Gary W.; Haase, Gerhard; Wilson, Deborah; Hall, Geraldine; Kurtzman, Cletus; Oliveira, Kenneth; Von Oy, Sabina; Hyldig-Nielsen, Jens J.; Coull, James; Stender, Henrik

    2002-01-01

    A new fluorescence in situ hybridization (FISH) method that uses peptide nucleic acid (PNA) probes for identification of Candida albicans directly from positive-blood-culture bottles in which yeast was observed by Gram staining (herein referred to as yeast-positive blood culture bottles) is described. The test (the C. albicans PNA FISH method) is based on a fluorescein-labeled PNA probe that targets C. albicans 26S rRNA. The PNA probe is added to smears made directly from the contents of the blood culture bottle and hybridized for 90 min at 55°C. Unhybridized PNA probe is removed by washing of the mixture (30 min), and the smears are examined by fluorescence microscopy. The specificity of the method was confirmed with 23 reference strains representing phylogenetically related yeast species and 148 clinical isolates covering the clinically most significant yeast species, including C. albicans (n = 72), C. dubliniensis (n = 58), C. glabrata (n = 5), C. krusei (n = 2), C. parapsilosis (n = 4), and C. tropicalis (n = 3). The performance of the C. albicans PNA FISH method as a diagnostic test was evaluated with 33 routine and 25 simulated yeast-positive blood culture bottles and showed 100% sensitivity and 100% specificity. It is concluded that this 2.5-h method for the definitive identification of C. albicans directly from yeast-positive blood culture bottles provides important information for optimal antifungal therapy and patient management. PMID:12037084

  19. High-quality substrate for fluorescence enhancement using agarose-coated silica opal film.

    Science.gov (United States)

    Xu, Ming; Li, Juan; Sun, Liguo; Zhao, Yuanjin; Xie, Zhuoying; Lv, Linli; Zhao, Xiangwei; Xiao, Pengfeng; Hu, Jing; Lv, Mei; Gu, Zhongze

    2010-08-01

    To improve the sensitivity of fluorescence detection in biochip, a new kind of substrates was developed by agarose coating on silica opal film. In this study, silica opal film was fabricated on glass substrate using the vertical deposition technique. It can provide stronger fluorescence signals and thus improve the detection sensitivity. After coating with agarose, the hybrid film could provide a 3D support for immobilizing sample. Comparing with agarose-coated glass substrate, the agarose-coated opal substrates could selectively enhance particular fluorescence signals with high sensitivity when the stop band of the silica opal film in the agarose-coated opal substrate overlapped the fluorescence emission wavelength. A DNA hybridization experiment demonstrated that fluorescence intensity of special type of agarose-coated opal substrates was about four times that of agarose-coated glass substrate. These results indicate that the optimized agarose-coated opal substrate can be used for improving the sensitivity of fluorescence detection with high quality and selectivity.

  20. Layered rare-earth hydroxide (LRH, R = Tb, Y) composites with fluorescein: delamination, tunable luminescence and application in chemosensoring for detecting Fe(iii) ions.

    Science.gov (United States)

    Su, Feifei; Guo, Rong; Yu, Zihuan; Li, Jian; Liang, Zupei; Shi, Keren; Ma, Shulan; Sun, Genban; Li, Huifeng

    2018-04-17

    We demonstrate a novel example of tunable luminescence and the application of the delaminated FLN/OS-LRH composites (LRHs are layered rare-earth hydroxides, R = Tb, Y; FLN is the fluorescein named 2-(6-hydroxy-3-oxo-(3H)-xanthen-9-yl)benzoic acid; OS is the anionic surfactant 1-octane sulfonic acid sodium) in detecting Fe(iii) ions. The FLNxOS1-x species (x = 0.02, 0.05, 0.10, and 0.20) are intercalated into the LTbyY1-yH layers (y = 1, 0.9, 0.7, 0.5, 0.3, 0.1 and 0) by ion exchange reactions to yield the composites FLNxOS1-x-LTbyY1-yH. In the solid state, the LYH composites display green emission (564 nm) arising from the organic FLN, while in LTbH composites, the luminescence of the Tb3+ in the layers (545 nm) and the FLN in the interlayers is co-quenched. In the delaminated state in formamide (FM), FLNxOS1-x-LTbH composites display green to yellowish-green luminescence (540-574 nm) following the increasing FLN/OS ratio; while the FLN0.02OS0.98-LTbyY1-yH composites show green emission at ∼540 nm. The fluorescence lifetimes of the composites (4.22-4.63 ns) are comparable to the free FLN-Na, and the quantum yields (31.62-78.70%) of the composites especially that (78.70%) of the FLN0.02OS0.98-LYH are much higher than that (28.40%) of free FLN-Na. The recognition ability of the FLN0.02OS0.98-LYH composite for metal cations is researched. The delaminated FLN0.02OS0.98-LYH colloidal suspension exhibits high selectivity for Fe3+ over other ions (Mg2+, Al3+, Ni2+, Co2+, Cu2+, Zn2+, Mn2+, Pb2+, and Cd2+) with fluorescence quenching, which can work as a kind of turn-off fluorescence sensor for the detection of Fe3+. The detection limit of Fe3+ is determined to be 2.58 × 10-8 M and the quenching constant (Ksv) is 1.70 × 103 M-1. This is the first work on LRH materials working as a chemosensor for recognising metal cations. It provides a new approach for the design of LRH materials to be applied in fluorescence chemosensing.

  1. Fluorescent in situ hybridization of pre-incubated blood culture material for the rapid diagnosis of histoplasmosis.

    Science.gov (United States)

    da Silva, Roberto Moreira; da Silva Neto, João Ricardo; Santos, Carla Silvana; Cruz, Kátia Santana; Frickmann, Hagen; Poppert, Sven; Koshikene, Daniela; de Souza, João Vicente Braga

    2015-02-01

    Fluorescence in situ hybridization (FISH) has been shown to be useful for the detection of Candida and Cryptococcus species in blood culture materials. FISH procedures for the detection of Histoplasma capsulatum var. capsulatum have not been reported so far. This study describes the development and evaluation of fluorescently labeled rRNA-targeting FISH probes to detect and identify H. capsulatum in blood cultures. All three analyzed H. capsulatum reference strains and clinical isolates showed positive signals with the newly designed specific oligonucleotide probes for H. capsulatum, whereas negative reactions were observed for all three nontarget yeast species and the two nontarget bacteria. The assay was also successfully applied for detections of H. capsulatum cells in pre-incubated blood culture samples of patients with clinical suspicion of histoplasmosis (n = 33). The described FISH-based assay was shown to be easy to apply, sensitive, and specific (compared to polymerase chain reaction) for the detection and identification of H. capsulatum in this proof-of-principle analysis. Larger multicentric assessments are recommended for a thorough diagnostic evaluation of the procedure. © The Author 2014. Published by Oxford University Press on behalf of The International Society for Human and Animal Mycology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. Fluorescent whole-mount RNA in situ hybridization (F-WISH) in plant germ cells and the fertilized ovule.

    Science.gov (United States)

    Bleckmann, Andrea; Dresselhaus, Thomas

    2016-04-01

    First evidence on gene function and regulation is provided by the cellular expression pattern in complex tissues. However, to understand the activity of a specific gene, it is essential to analyze the regulatory network, which controls the spatio-temporal translation pattern during the entire life span of the transcribed mRNA. To explore mechanisms which control mRNA abundance and localization in space and time, it is necessary to visualize mRNAs quantitatively with a subcellular resolution, without sectioning the tissues. We have adapted and optimized a protocol for colorimetric whole-mount RNA in situ hybridization (WISH) using egg cell-specific digoxigenin (DIG) labeled probes (Hejátko et al., 2006) [1] on ovules and early seeds of Arabidopsis. Furthermore, we established a fluorescent whole-mount RNA in situ hybridization (F-WISH) protocol, which allows mRNA visualization on a subcellular level. The polar localized mRNA of SBT4.13, encoding a subtilase, was identified using this protocol. Both methods are described and discussed in detail. Additionally a (F)-WISH flow-chart is provided along with a troubleshooting table. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Electrokinetic acceleration of DNA hybridization in microsystems.

    Science.gov (United States)

    Lei, Kin Fong; Wang, Yun-Hsiang; Chen, Huai-Yi; Sun, Jia-Hong; Cheng, Ji-Yen

    2015-06-01

    In this work, electrokinetic acceleration of DNA hybridization was investigated by different combinations of frequencies and amplitudes of actuating electric signals. Because the frequencies from low to high can induce different kinds of electrokinetic forces, i.e., electroosmotic to electrothermal forces, this work provides an in-depth investigation of electrokinetic enhanced hybridization. Concentric circular Cr/Au microelectrodes of 350 µm in diameter were fabricated on a glass substrate and probe DNA was immobilized on the electrode surface. Target DNA labeled with fluorescent dyes suspending in solution was then applied to the electrode. Different electrokinetic forces were induced by the application of different electric signals to the circular microelectrodes. Local microfluidic vortexes were generated to increase the collision efficiency between the target DNA suspending in solution and probe DNA immobilized on the electrode surface. DNA hybridization on the electrode surface could be accelerated by the electrokinetic forces. The level of hybridization was represented by the fluorescent signal intensity ratio. Results revealed that such 5-min dynamic hybridization increased 4.5 fold of signal intensity ratio as compared to a 1-h static hybridization. Moreover, dynamic hybridization was found to have better differentiation ability between specific and non-specific target DNA. This study provides a strategy to accelerate DNA hybridization in microsystems. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Metaphase FISH on a Chip: Miniaturized Microfluidic Device for Fluorescence in situ Hybridization

    Directory of Open Access Journals (Sweden)

    Niels Tommerup

    2010-11-01

    Full Text Available Fluorescence in situ Hybridization (FISH is a major cytogenetic technique for clinical genetic diagnosis of both inherited and acquired chromosomal abnormalities. Although FISH techniques have evolved and are often used together with other cytogenetic methods like CGH, PRINS and PNA-FISH, the process continues to be a manual, labour intensive, expensive and time consuming technique, often taking over 3–5 days, even in dedicated labs. We have developed a novel microFISH device to perform metaphase FISH on a chip which overcomes many shortcomings of the current laboratory protocols. This work also introduces a novel splashing device for preparing metaphase spreads on a microscope glass slide, followed by a rapid adhesive tape-based bonding protocol leading to rapid fabrication of the microFISH device. The microFISH device allows for an optimized metaphase FISH protocol on a chip with over a 20-fold reduction in the reagent volume. This is the first demonstration of metaphase FISH on a microfluidic device and offers a possibility of automation and significant cost reduction of many routine diagnostic tests of genetic anomalies.

  5. Fluorescent in situ hybridization (FISH as a diagnostic tool for Williams-Beuren syndrome

    Directory of Open Access Journals (Sweden)

    Deise Helena de Souza

    2007-01-01

    Full Text Available Fluorescent in situ hybridization (FISH with commercial probes covering the elastin gene (ELN was used to determine the frequency of the 7q11.23 deletion in 18 children clinically diagnosed with Williams-Beuren syndrome (WBS. A de novo deletion was detected in 15 of the children (83%. Diagnostic investigation for WBS started late in childhood (median = 5.8 years. All the children showed facial features typical of the syndrome, mental retardation and developmental delay. Over-friendliness was observed in the majority of cases. Clinodactyly of the 5th finger (n = 13, cardiovascular disease (n = 9, loquacity (n = 9, low birthweight (n = 8, and failure to thrive (n = 9 were observed only in those children with the deletion. Respiratory problems (n = 9, though not previously reported in the literature, was a common finding in the group studied. Our results confirmed that FISH is useful in identifying 7q11.23 deletions in cases of WBS. Clinical manifestations were more evident in the deletion-positive children.

  6. A Case of Renal Primitive Neuroectodermal Tumor Confirmed by Fluorescence in situ Hybridization

    Directory of Open Access Journals (Sweden)

    Toshiki Etani

    2015-04-01

    Full Text Available Primitive neuroectodermal tumor (PNET is a member of the Ewing's sarcoma family of tumors (ESFT. We report a case of PNET in a 66-year-old male who presented with a large solid tumor within the parenchyma of the middle pole of the left kidney with metastases to the left adrenal gland and right ischium. A fine-needle biopsy was performed and showed a small round cell tumor. Results of immunohistochemical staining suggested this tumor belonged to ESFT. Preoperative VDC-IE (combined vincristine, doxorubicin and cyclophosphamide followed by another combination of ifosfamide and etoposide chemotherapy and left radical nephrectomy and adrenalectomy were performed. The histopathological findings of the resected tumor were similar to those in the biopsy specimen, but the results of AE1/AE3 were different. For the diagnosis, fluorescence in situ hybridization was performed. Split signals of the EWSR1 gene were detected, and transmission electron microscopy showed neuroendocrine granules and microtubules. The final diagnosis of this tumor was PNET of the kidney.

  7. Utility of chromogenic in situ hybridization (CISH) for detection of EGFR amplification in glioblastoma: comparison with fluorescence in situ hybridization (FISH).

    Science.gov (United States)

    Fischer, Ingeborg; de la Cruz, Clarissa; Rivera, Andreana L; Aldape, Kenneth

    2008-12-01

    In this study, we test the reliability of chromogenic in situ hybridization (CISH) for the detection of epidermal growth factor receptor (EGFR) gene amplification in glioblastoma. Earlier reports have described EGFR CISH in glioblastoma multiforme, but a comparison of CISH with a "gold standard" testing method, such as fluorescence in situ hybridization (FISH), has not been described. Therapies targeting the EGFR-signaling pathway might increase the importance of assessment of EGFR-amplification status. CISH is a potential alternative to FISH as a testing method. To test its reliability, EGFR-amplification status by CISH was assessed in 89 cases of glioblastoma and compared with FISH results, and correlated with the protein expression using immunohistochemistry (IHC) for EGFR. FISH was scored as being EGFR-amplified in 47/89 tumors, CISH as being amplified in 43/89 tumors. The CISH and FISH results were in agreement in 83/89 cases (93%). Four glioblastomas were scored as being amplified by FISH, but not by CISH; whereas amplification was detected in 2 tumors by CISH that were not amplified using FISH. Forty-eight of the 89 cases were positive for EGFR expression by IHC. EGFR amplification was highly correlated with protein expression by IHC, as 40/48 (83%) EGFR IHC-positive cases were found to be EGFR-amplified. The high concordance of CISH and FISH for the assessment of EGFR gene-amplification status indicates that CISH is a viable alternative to FISH for the detection of EGFR gene amplification in glioblastoma. Detectable EGFR expression by IHC can occur in the absence of gene amplification, but is uncommon.

  8. On-chip multiplexed solid-phase nucleic acid hybridization assay using spatial profiles of immobilized quantum dots and fluorescence resonance energy transfer.

    Science.gov (United States)

    Noor, M Omair; Tavares, Anthony J; Krull, Ulrich J

    2013-07-25

    A microfluidic based solid-phase assay for the multiplexed detection of nucleic acid hybridization using quantum dot (QD) mediated fluorescence resonance energy transfer (FRET) is described herein. The glass surface of hybrid glass-polydimethylsiloxane (PDMS) microfluidic channels was chemically modified to assemble the biorecognition interface. Multiplexing was demonstrated using a detection system that was comprised of two colors of immobilized semi-conductor QDs and two different oligonucleotide probe sequences. Green-emitting and red-emitting QDs were paired with Cy3 and Alexa Fluor 647 (A647) labeled oligonucleotides, respectively. The QDs served as energy donors for the transduction of dye labeled oligonucleotide targets. The in-channel assembly of the biorecognition interface and the subsequent introduction of oligonucleotide targets was accomplished within minutes using a combination of electroosmotic flow and electrophoretic force. The concurrent quantification of femtomole quantities of two target sequences was possible by measuring the spatial coverage of FRET sensitized emission along the length of the channel. In previous reports, multiplexed QD-FRET hybridization assays that employed a ratiometric method for quantification had challenges associated with lower analytical sensitivity arising from both donor and acceptor dilution that resulted in reduced energy transfer pathways as compared to single-color hybridization assays. Herein, a spatial method for quantification that is based on in-channel QD-FRET profiles provided higher analytical sensitivity in the multiplexed assay format as compared to single-color hybridization assays. The selectivity of the multiplexed hybridization assays was demonstrated by discrimination between a fully-complementary sequence and a 3 base pair sequence at a contrast ratio of 8 to 1. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Sorting fluorescent nanocrystals with DNA

    Energy Technology Data Exchange (ETDEWEB)

    Gerion, Daniele; Parak, Wolfgang J.; Williams, Shara C.; Zanchet, Daniela; Micheel, Christine M.; Alivisatos, A. Paul

    2001-12-10

    Semiconductor nanocrystals with narrow and tunable fluorescence are covalently linked to oligonucleotides. These biocompounds retain the properties of both nanocrystals and DNA. Therefore, different sequences of DNA can be coded with nanocrystals and still preserve their ability to hybridize to their complements. We report the case where four different sequences of DNA are linked to four nanocrystal samples having different colors of emission in the range of 530-640 nm. When the DNA-nanocrystal conjugates are mixed together, it is possible to sort each type of nanoparticle using hybridization on a defined micrometer -size surface containing the complementary oligonucleotide. Detection of sorting requires only a single excitation source and an epifluorescence microscope. The possibility of directing fluorescent nanocrystals towards specific biological targets and detecting them, combined with their superior photo-stability compared to organic dyes, opens the way to improved biolabeling experiments, such as gene mapping on a nanometer scale or multicolor microarray analysis.

  10. Preparation of graphene quantum dots based core-satellite hybrid spheres and their use as the ratiometric fluorescence probe for visual determination of mercury(II) ions

    International Nuclear Information System (INIS)

    Hua, Mengjuan; Wang, Chengquan; Qian, Jing; Wang, Kan; Yang, Zhenting; Liu, Qian; Mao, Hanping; Wang, Kun

    2015-01-01

    We herein proposed a simple and effective strategy for preparing graphene quantum dots (GQDs)-based core-satellite hybrid spheres and further explored the feasibility of using such spheres as the ratiometric fluorescence probe for the visual determination of Hg 2+ . The red-emitting CdTe QDs were firstly entrapped in the silica nanosphere to reduce their toxicity and improve their photo and chemical stabilities, thus providing a built-in correction for environmental effects, while the GQDs possessing good biocompatibility and low toxicity were electrostatic self-assembly on the silica surface acting as reaction sites. Upon exposure to the increasing contents of Hg 2+ , the blue fluorescence of GQDs can be gradually quenched presumably due to facilitating nonradiative electron/hole recombination annihilation. With the embedded CdTe QDs as the internal standard, the variations of the tested solution display continuous fluorescence color changes from blue to red, which can be easily observed by the naked eye without any sophisticated instrumentations and specially equipped laboratories. This sensor exhibits high sensitivity and selectivity toward Hg 2+ in a broad linear range of 10 nM–22 μM with a low detection limit of 3.3 nM (S/N = 3), much lower than the allowable Hg 2+ contents in drinking water set by U.S. Environmental Protection Agency. This prototype ratiometric probe is of good simplicity, low toxicity, excellent stabilities, and thus potentially attractive for Hg 2+ quantification related biological systems. - Highlights: • A facile strategy for preparing GQDs based core-satellite hybrid spheres was reported. • Such spheres can be used as the ratiometric fluorescence probe for Hg 2+ detection. • The Hg 2+ content can be easily distinguished by the naked eye. • The sensor shows high sensitivity and selectivity toward Hg 2+ detection. • The ratiometric probe is of good simplicity, low toxicity, and excellent stability

  11. [HER-2 oncogene amplification assessment in invasive breast cancer by dual-color in situ hybridization (dc-CISH): a comparative study with fluorescent in situ hybridization (FISH)].

    Science.gov (United States)

    Akhdar, Abbas; Bronsard, Marc; Lemieux, Renald; Geha, Sameh

    2011-12-01

    The amplification of the gene encoding for the human epidermal growth factor receptor 2 (HER-2 oncogene), located on chromosome 17 (17q21-q22), or the overexpression of this receptor have prognostic and therapeutic implications in invasive breast cancer. An evaluation of the HER-2 status by immunohistochemistry (IHC) is performed on all invasive breast cancer cases. Fluorescent in situ hybridization (FISH) is considered as the gold standard for the detection of HER-2 gene amplification for IHC equivocal cases (score 2+). A more recent in situ hybridization technique, the dual-color chromogenic in situ hybridization (dc-CISH), has been proposed as an alternative to FISH. The aim of this study was to measure the correlation between dc-CISH and FISH for HER-2 oncogene amplification assessment in invasive breast cancer. We built four tissue micro-array (TMA) blocs with 100 breast invasive cancer cases that had been previously tested by IHC for HER-2 detection: 10 score 0 cases, 10 score 3+cases, 39 score 1+and 41 score 2+cases. Both FISH and dc-CISH techniques were applied on all TMA cases as well as on two additional slides serving as controls. Interpretation of dc-CISH was carried out by a pathologist using an optical microscope. For FISH, the interpretation was done by a professional from the medical genetics department using a fluorescent microscope linked to a computer system for image capturing and analysis. The interpretation of the HER-2/CEN-17 ratio for both tests was in accordance with the values of the updated recommendations from the Canadian National Consensus Meeting on HER-2/neu testing in breast cancer and from the ASCO/CAP. Among the 100 cases initially included in the study, eight were excluded from the analysis due to sampling or technical flaws. From the 92 remaining cases, we obtained a concordance of 97.8% (90/92 cases) between the two techniques (Kappa coefficient 0.97, 95% confidence interval). The correlation coefficient (rho) between ratios

  12. Development and use of fluorescent 16S rRNA-targeted probes for the specific detection of Methylophaga species by in situ hybridization in marine sediments.

    Science.gov (United States)

    Janvier, Monique; Regnault, Béatrice; Grimont, Patrick

    2003-09-01

    Methylotrophic bacteria are widespread in nature. They may play an important role in the cycling of carbon and in the metabolism of dimethylsulfide in a marine environment. Bacteria belonging to the genus Methylophaga are a unique group of aerobic, halophilic, non-methane-utilizing methylotrophs. Two 16S rRNA-targeted oligonucleotide probes were developed for the specific detection of Methylophaga species, marine methylobacteria, by fluorescence in situ hybridization. Probe MPH-730 was highly specific for all members of the genus Methylophaga while probe MPHm-994 targeted exclusively M. marina. The application of these probes were demonstrated by the detection of Methylophaga species in enrichment cultures from various marine sediments. All isolates recovered were visualized by using the genus specific probe MPH-730. The results were confirmed by 16S rDNA sequencing which demonstrated that all selected isolates belong to Methylophaga. Five isolates could be detected by the M. marina-specific probe MPHm-994 and were confirmed by rRNA gene restriction pattern (ribotyping). With the development of these specific probes, fluorescence in situ hybridization shows that the genus Methylophaga is widespread in marine samples.

  13. Preparation and Fluorescent Analysis of Plant Metaphase Chromosomes.

    Science.gov (United States)

    Schwarzacher, Trude

    2016-01-01

    Good preparations are essential for informative analysis of both somatic and meiotic chromosomes, cytogenetics, and cell divisions. Fluorescent chromosome staining allows even small chromosomes to be visualized and counted, showing their morphology. Aneuploidies and polyploidies can be established for species, populations, or individuals while changes occurring in breeding lines during hybridization or tissue culture and transformation protocols can be assessed. The process of division can be followed during mitosis and meiosis including pairing and chiasma distribution, as well as DNA organization and structure during the evolution of chromosomes can be studied. This chapter presents protocols for pretreatment and fixation of material, including tips of how to grow plants to get good and healthy meristem with many divisions. The chromosome preparation technique is described using proteolytic enzymes, but acids can be used instead. Chromosome slide preparations are suitable for fluorochrome staining for fast screening (described in the chapter) or fluorescent in situ hybridization (see Schwarzacher and Heslop-Harrison, In situ hybridization. BIOS Scientific Publishers, Oxford, 2000).

  14. Selective fluorescence detection of Cu{sup 2+} in aqueous solution and living cells

    Energy Technology Data Exchange (ETDEWEB)

    Saleem, Muhammad; Lee, Ki-Hwan, E-mail: khlee@kongju.ac.kr

    2014-01-15

    A rhodamine B semicarbazide 3 was synthesized by the reaction of rhodamine B acid chloride 2 with hydrazine carboxamide hydrochloride under reflux with triethyl amine in acetonitrile. It was used as selective fluorescent and colorimetric sensor for visual detection of Cu{sup 2+} over competitive ions (Fe{sup 3+},Fe{sup 2+}, Cr{sup 3+}, Cd{sup 2+}, Pb{sup 2+}, Zn{sup 2+}, Hg{sup 2+}, Co{sup 2+}, Ni{sup 2+}, Ca{sup 2+}, Mg{sup 2+}, Ag{sup 2+}, Mn{sup 2+}, Sr{sup 2+}, Cs{sup 2+}, Na{sup +}, K{sup +}, Li{sup +}) in aqueous methanol (1:1, v/v), exhibiting a fast response time, less than few second and a detection limit of 1.6×10{sup −7} mol/L at neutral pH. The proposed sensing system can be successfully applicable for determination of Cu{sup 2+} in waste water samples showing turn on fluorescence response and for further monitoring of intracellular Cu{sup 2+} levels in living cells with high sensitivity and selectivity at micro molar level concentrations using confocal fluorescence spectroscopy. The synthesis of probe 3 was confirmed by {sup 1}H NMR, {sup 13}C NMR and mass spectrometric analysis. -- Highlights: • New chemosensor rhodamine B semicarbazide 3 was synthesized. • Addition of Cu{sup +2} ion into aqueous solution of probe 3 gave visual color changes as well as fluorescent off/on observations. • The proposed spirolactam ring opening mechanism of the synthesized probe triggered by copper ion was revealed by using mass spectrum. • High selectivity and sensitivity of probe 3 towards Cu{sup +2} are excellent enough to detect micromolar level of Cu{sup +2} ion even in aqueous media and living cells.

  15. Turn on macrocyclic chemosensor for Al3+ ion with facile synthesis and application in live cell imaging

    Science.gov (United States)

    Ezhumalai, Dhineshkumar; Mathivanan, Iyappan; Chinnadurai, Anbuselvan

    2018-06-01

    An effort of a new Schiff base macrocyclic chemosensor, 14‑methyl‑2,6,8,12,14,18‑hexaaza‑1,7,13(1,2),4,10,16(1,4)‑hexabenzenacyclooctadecaphane‑2,5,8,11,14,17‑hexaene (me1) and 14,74‑dimethyl‑2,6,8,12,14,18‑hexaaza‑1,7,13(1,2),4,10,16(1,4)‑hexabenzenacyclooctadecadecaphane‑2,5,8,11,14,17‑hexaene (dm2), which enables selective sensing of Al3+ in aqueous DMF were synthesized by a simplistic one-step condensation reaction of macrocyclic compounds. The probe me1 and dm2 characterized by elemental analysis, FT-IR, 1H and 13C NMR, LC-MS spectral techniques. The compounds as mentioned above subjected to FE-SEM with EDS and elemental color mapping. On addition of Al3+, the fluorescent probe me1 and dm2 induces turn-on responses in both absorption and sensing spectra by a PET mechanism. The receptor me1 and dm2 serve highly selective, sensitive and turn-on detection of Al3+. Further, they did not interfere with other cations present in biological or environmental samples. The detection limit is found to be 3 μM and 5 μM. From the view of cytotoxic activity, the ability of these compounds me1 and dm2 to inhibit the growth of KB cell lines examined. The chelating functionality of compounds me1 and dm2 examined for their inhibitory properties of KB cell, live cell images. The compounds me1 and dm2 subjected to theoretical studies by DFT-B3LYP invoking the 6-31G level of theory. The energy of the HOMO and LUMO has been established.

  16. Demonstration of Brachyspira aalborgi lineages 2 and 3 in human colonic biopsies with intestinal spirochaetosis by specific fluorescent in situ hybridization

    DEFF Research Database (Denmark)

    Jensen, Tim Kåre; Teglbjærg, Peter S.; Lindboe, Christian F.

    2004-01-01

    of these organisms in human intestinal spirochaetosis. Seventeen human colonic biopsies from Norway and Denmark with intestinal spirochaetosis caused by Brachyspira-like organisms different from the type strain of B. aalborgi (lineage 1) were examined. Application of the probe gave a positive signal in two Norwegian...... biopsies, whereas the 15 other biopsies were hybridization-negative. The positive reaction visualized the spirochaetes as a fluorescent, 3-5 mum-high fringe on the surface epithelium, extending into the crypts. The study verified the presence of B. aalborgi lineages 2 and 3 and identified the bacteria...

  17. Concise and Efficient Fluorescent Probe via an Intromolecular Charge Transfer for the Chemical Warfare Agent Mimic Diethylchlorophosphate Vapor Detection.

    Science.gov (United States)

    Yao, Junjun; Fu, Yanyan; Xu, Wei; Fan, Tianchi; Gao, Yixun; He, Qingguo; Zhu, Defeng; Cao, Huimin; Cheng, Jiangong

    2016-02-16

    Sarin, used as chemical warfare agents (CWAs) for terrorist attacks, can induce a number of virulent effects. Therefore, countermeasures which could realize robust and convenient detection of sarin are in exigent need. A concise charge-transfer colorimetric and fluorescent probe (4-(6-(tert-butyl)pyridine-2-yl)-N,N-diphenylaniline, TBPY-TPA) that could be capable of real-time and on-site monitoring of DCP vapor was reported in this contribution. Upon contact with DCP, the emission band red-shifted from 410 to 522 nm upon exposure to DCP vapor. And the quenching rate of TBPY-TPA reached up to 98% within 25 s. Chemical substances such as acetic acid (HAc), dimethyl methylphosphonate (DMMP), pinacolyl methylphosphonate (PAMP), and triethyl phosphate (TEP) do not interfere with the detection. A detection limit for DCP down to 2.6 ppb level is remarkably achieved which is below the Immediately Dangerous to Life or Health concentration. NMR data suggested that a transformation of the pyridine group into pyridinium salt via a cascade reaction is responsible for the sensing process which induced the dramatic fluorescent red shift. All of these data suggest TBPY-TPA is a promising fluorescent sensor for a rapid, simple, and low-cost method for DCP detection, which could be easy to prepare as a portable chemosensor kit for its practical application in real-time and on-site monitoring.

  18. The Diagnosis of Gastric Mucosa-associated Lymphoid Tissue Lymphoma by Flow Cytometry and Fluorescence in situ Hybridization of Biopsy Specimens.

    Science.gov (United States)

    Matsueda, Katsunori; Omote, Sizuma; Sakata, Masahiro; Fujita, Isao; Horii, Jouichiro; Toyokawa, Tatsuya

    2018-04-15

    Mucosa-associated lymphoid tissue (MALT) lymphoma and reactive inflammatory lymphoid changes are frequently difficult to distinguish based on a routine histological differential diagnosis. We were unable to diagnose gastric MALT lymphoma histologically using specimens obtained by endoscopy, although a flow cytometry (FCM) analysis demonstrated clonality of neoplastic cells by separating cells by CD45 gating. Furthermore, a fluorescence in situ hybridization (FISH) analysis showed trisomy 18. We therefore diagnosed gastric MALT lymphoma with trisomy 18. We recommend that FCM and FISH analyses of biopsy specimens be considered for diagnosing gastric MALT lymphoma if this diagnosis is suspected based on endoscopic findings.

  19. The correlation between dual-color chromogenic in situ hybridization and fluorescence in situ hybridization in assessing HER2 gene amplification in breast cancer.

    Science.gov (United States)

    Pedersen, Marianne; Rasmussen, Birgitte Bruun

    2009-06-01

    Fluorescence in situ hybridization (FISH) is regarded as the gold standard method for detecting HER2 gene amplification. Chromogenic in situ hybridization (CISH) is a promising alternative to FISH because CISH has the advantages of being a method evaluated by bright-field microscopy and the generated chromogenic signals are also stable. This study presents a dual color CISH for simultaneous detection of the HER2 gene and chromosome 17. The CISH method performs a chromogenic detection "on top" of the Food and Drug Administration (FDA)-approved HER2 FISH pharmDx method, where the fluorochrome-labeled probes are detected using enzyme-labeled antibodies and visualized by chromogenic enzymatic reactions. The HER2 status (amplified/not amplified and HER2 ratios) was evaluated by the CISH method and compared with results obtained by the FDA-approved FISH method. Of the 72 successfully investigated invasive breast carcinomas, both FISH and CISH detected HER2 amplification in 24 cases and nonamplification was detected in 47 cases. One case showed a discrepancy between FISH and CISH. The concordance between CISH and FISH was found to be almost perfect (98.6%). The correlation between the HER2 ratios obtained by the 2 methods showed excellent correlation (correlation coefficient 0.95). In conclusion, it is possible by dual-color CISH method to demonstrate HER2 genes and chromosome 17 genes, in the same tissue section and reliably assess HER2 status. The CISH method is a very promising alternative to the FISH method.

  20. Interfacial chemistry and the design of solid-phase nucleic acid hybridization assays using immobilized quantum dots as donors in fluorescence resonance energy transfer.

    Science.gov (United States)

    Algar, W Russ; Krull, Ulrich J

    2011-01-01

    The use of quantum dots (QDs) as donors in fluorescence resonance energy transfer (FRET) offer several advantages for the development of multiplexed solid-phase QD-FRET nucleic acid hybridization assays. Designs for multiplexing have been demonstrated, but important challenges remain in the optimization of these systems. In this work, we identify several strategies based on the design of interfacial chemistry for improving sensitivity, obtaining lower limits of detection (LOD) and enabling the regeneration and reuse of solid-phase QD-FRET hybridization assays. FRET-sensitized emission from acceptor dyes associated with hybridization events at immobilized QD donors provides the analytical signal in these assays. The minimization of active sensing area reduces background from QD donor PL and allows the resolution of smaller amounts of acceptor emission, thus lowering the LOD. The association of multiple acceptor dyes with each hybridization event can enhance FRET efficiency, thereby improving sensitivity. Many previous studies have used interfacial protein layers to generate selectivity; however, transient destabilization of these layers is shown to prevent efficient regeneration. To this end, we report a protein-free interfacial chemistry and demonstrate the specific detection of as little as 2 pmol of target, as well as an improved capacity for regeneration.

  1. Chromogenic in situ hybridization (CISH) to detect HER2 gene amplification in breast and gastric cancer: comparison with immunohistochemistry (IHC) and fluorescence in situ hybridization (FISH).

    Science.gov (United States)

    Kiyose, Shinichiro; Igarashi, Hisaki; Nagura, Kiyoko; Kamo, Takaharu; Kawane, Kazunori; Mori, Hiroki; Ozawa, Takachika; Maeda, Matsuyoshi; Konno, Keisuke; Hoshino, Hideaki; Konno, Hiroyuki; Ogura, Hiroyuki; Shinmura, Kazuya; Hattori, Naohiko; Sugimura, Haruhiko

    2012-11-01

    The chromogenic in situ hybridization (CISH) assay, designed to detect the amplification of the HER2 gene in formalin-fixed, paraffin-embedded (FFPE) breast cancer (BC) and gastric cancer (GC) tissue specimens, was evaluated in 125 FFPE BC cases and 198 FFPE GC cases for which the HER2 status had been predetermined using immunohistochemistry (IHC) and fluorescence in situ hybridization (FISH). In the 125 BC cases and the 198 gastric cases, we found a very good concordance (98.4% and 99.0%, respectively) between CISH and FISH. In particular, we evaluated the polysomy cases, as these cases often have ambiguous treatment options in clinical practice. The polysomy of chromosome 17 was defined as the presence of three or more CEP17 signals in at least 10% of the tumor cells. In the 50 BC cases and 54 GC cases displaying chromosome 17 polysomy, the concordance between FISH and CISH was 98.0% and 98.1%, respectively. These results indicate that CISH could provide an accurate and practical alternative to FISH for the clinical diagnosis of HER2 gene amplification in FFPE BC and FFPE GC samples. © 2012 The Authors. Pathology International © 2012 Japanese Society of Pathology and Wiley Publishing Asia Pty Ltd.

  2. Diagnostic and Prognostic Utility of Fluorescence In situ Hybridization (FISH) Analysis in Acute Myeloid Leukemia.

    Science.gov (United States)

    Gonzales, Patrick R; Mikhail, Fady M

    2017-12-01

    Acute myeloid leukemia (AML) is a hematologic neoplasia consisting of incompletely differentiated hematopoietic cells of the myeloid lineage that proliferate in the bone marrow, blood, and/or other tissues. Clinical implementation of fluorescence in situ hybridization (FISH) in cytogenetic laboratories allows for high-resolution analysis of recurrent structural chromosomal rearrangements specific to AML, especially in AML with normal karyotypes, which comprises approximately 33-50% of AML-positive specimens. Here, we review the use of several FISH probe strategies in the diagnosis of AML. We also review the standards and guidelines currently in place for use by clinical cytogenetic laboratories in the evaluation of AML. Updated standards and guidelines from the WHO, ACMG, and NCCN have further defined clinically significant, recurring cytogenetic anomalies in AML that are detectable by FISH. FISH continues to be a powerful technique in the diagnosis of AML, with higher resolution than conventional cytogenetic analysis, rapid turnaround time, and a considerable diagnostic and prognostic utility.

  3. Implementation and importance of fluorescence in situ hybridization (fish) in paraffin tissues for categorization of B-cell lymphoma unclassifiable, with features intermediate between Burkitt lymphoma and diffuse large B-cell lymphoma

    International Nuclear Information System (INIS)

    Carvajal Cuenca, Alejandra

    2011-01-01

    The diagnostic criteria have been defined based on the tools that the country has acquired and international guidelines for pure entities: the LB, LDCGB, and the new entity of B lymphoma unclassifiable with features intermediate LDCGB and LB. The fluorescence in situ hybridization for the translocation (8;14) has been implemented in paraffin tissues for proper categorization. A total of 21 cases have been studied: the characteristics of patients, morphology, immunohistochemistry and the presence or absence of the translocation (8;14). Twelve of the cases have been classified as B-cell lymphoma unclassifiable with features intermediate between LDCGB and LB. Furthermore, nine of the cases were classified in LB. Fluorescence in situ hybridization (FISH) has been negative in 5 of the 21 cases. The diagnosis of lymphoma with features bordering between the LB and the LDCGB has been imperative for the survival of the patient and the corresponding treatment [es

  4. Scanning electron microscopy and fluorescent in situ hybridization of experimental Brachyspira (Serpulina) pilosicoli infection in growing pigs

    DEFF Research Database (Denmark)

    Jensen, Tim Kåre; Møller, Kristian; Boye, Mette

    2000-01-01

    Two groups of six 8-week-old pigs were challenged with 1X10(9) cfu Brachyspira (Serpulina) pilosicoli or Serpulina intermedia daily for 3 consecutive days to study the pathology of porcine colonic spirochetosis by scanning electron microscopy (SEM) and fluorescent in situ hybridization (FISH......; however, only two pigs developed transient watery diarrhea. S. intermedia was reisolated from four of the inoculated pigs, but clinical signs were not observed. Gross examination of the B. pilosicoli-infected pigs revealed dilated large intestines with a hyperemic mucosa, whereas the large intestines...... of the S. intermedia-inoculated pigs and the control pigs appeared normal. SEM examination of B. pilosicoli-infected pigs revealed degenerated epithelial cells and spirochetal colonization of the colonic mucosa in four pigs. By FISH, B. pilosicoli cells were found colonizing and invading the surface...

  5. Sensitive and selective turn off-on fluorescence detection of heparin based on the energy transfer platform using the BSA-stabilized Au nanoclusters/amino-functionalized graphene oxide hybrids.

    Science.gov (United States)

    Lan, Jing; Zou, Hong Yan; Wang, Qiang; Zeng, Ping; Li, Yuan Fang; Huang, Cheng Zhi

    2016-12-01

    An ultra-sensitive and selective turn off-on fluorescence detection of heparin based on the energy transfer in the BSA-stabilized gold nanoclusters/amino-functionalized graphene oxide (BSA-AuNCs/NH 2 -GO) hybrids was successfully realized. The BSA-AuNCs containing amounts of carboxyl groups could be absorbed on the surface of NH 2 -GO through the electrostatic interaction, which resulted in the fluorescence quenching of BSA-AuNCs with high efficiency. However, heparin, possessing high density of negative charge, could compete with BSA-AuNCs to bind NH 2 -GO and block the energy transfer from BSA-AuNCs to NH 2 -GO. The fluorescence recovery of BSA-AuNCs was closely related to the amount of heparin and there was a good linear relationship between fluorescence recovery of BSA-AuNCs and heparin over the range of 100ng/mL to 30μg/mL with a detection limit of 40ng/mL. What's more, the fluorescence assay was successfully applied for heparin sensing in human serums and intracellular imaging. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Multicenter Evaluation of a New Shortened Peptide Nucleic Acid Fluorescence In Situ Hybridization Procedure for Species Identification of Select Gram-Negative Bacilli from Blood Cultures▿

    Science.gov (United States)

    Morgan, Margie; Marlowe, Elizabeth; Della-Latta, Phyllis; Salimnia, Hossein; Novak-Weekley, Susan; Wu, Fann; Crystal, Benjamin S.

    2010-01-01

    A shortened protocol for two peptide nucleic acid fluorescence in situ hybridization (PNA FISH) assays for the detection of Gram-negative bacilli from positive blood cultures was evaluated in a multicenter trial. There was 100% concordance between the two protocols for each assay (368 of 368 and 370 of 370 results) and 99.7% (367 of 368 and 369 of 370 results) agreement with routine laboratory techniques. PMID:20357212

  7. In Silico and Fluorescence In Situ Hybridization Mapping Reveals Collinearity between the Pennisetum squamulatum Apomixis Carrier-Chromosome and Chromosome 2 of Sorghum and Foxtail Millet

    OpenAIRE

    Sapkota, Sirjan; Conner, Joann A.; Hanna, Wayne W.; Simon, Bindu; Fengler, Kevin; Deschamps, St?phane; Cigan, Mark; Ozias-Akins, Peggy

    2016-01-01

    Apomixis, or clonal propagation through seed, is a trait identified within multiple species of the grass family (Poaceae). The genetic locus controlling apomixis in Pennisetum squamulatum (syn Cenchrus squamulatus) and Cenchrus ciliaris (syn Pennisetum ciliare, buffelgrass) is the apospory-specific genomic region (ASGR). Previously, the ASGR was shown to be highly conserved but inverted in marker order between P. squamulatum and C. ciliaris based on fluorescence in situ hybridization (FISH) a...

  8. The exposure of the hybrid detector of the Pierre Auger Observatory

    OpenAIRE

    The Pierre Auger Collaboration

    2010-01-01

    Abstract The Pierre Auger Observatory is a detector for ultra-high energy cosmic rays. It consists of a surface array to measure secondary particles at ground level and a fluorescence detector to measure the development of air showers in the atmosphere above the array. The ?hybrid? detection mode combines the information from the two subsystems. We describe the determination of the hybrid exposure for events observed by the fluorescence telescopes in coincidence with at least one w...

  9. Fluorescence in situ hybridization (CARD-FISH) of microorganisms in hydrocarbon contaminated aquifer sediment samples.

    Science.gov (United States)

    Tischer, Karolin; Zeder, Michael; Klug, Rebecca; Pernthaler, Jakob; Schattenhofer, Martha; Harms, Hauke; Wendeberg, Annelie

    2012-12-01

    Groundwater ecosystems are the most important sources of drinking water worldwide but they are threatened by contamination and overexploitation. Petroleum spills account for the most common source of contamination and the high carbon load results in anoxia and steep geochemical gradients. Microbes play a major role in the transformation of petroleum hydrocarbons into less toxic substances. To investigate microbial populations at the single cell level, fluorescence in situ hybridization (FISH) is now a well-established technique. Recently, however, catalyzed reporter deposition (CARD)-FISH has been introduced for the detection of microbes from oligotrophic environments. Nevertheless, petroleum contaminated aquifers present a worst case scenario for FISH techniques due to the combination of high background fluorescence of hydrocarbons and the presence of small microbial cells caused by the low turnover rates characteristic of groundwater ecosystems. It is therefore not surprising that studies of microorganisms from such sites are mostly based on cultivation techniques, fingerprinting, and amplicon sequencing. However, to reveal the population dynamics and interspecies relationships of the key participants of contaminant degradation, FISH is an indispensable tool. In this study, a protocol for FISH was developed in combination with cell quantification using an automated counting microscope. The protocol includes the separation and purification of microbial cells from sediment particles, cell permeabilization and, finally, CARD-FISH in a microwave oven. As a proof of principle, the distribution of Archaea and Bacteria was shown in 60 sediment samples taken across the contaminant plume of an aquifer (Leuna, Germany), which has been heavily contaminated with several ten-thousand tonnes of petroleum hydrocarbons since World War II. Copyright © 2012 Elsevier GmbH. All rights reserved.

  10. Chromosome translocations in chinese medical X-ray workers analyzed by fluorescence in situ hybridization

    International Nuclear Information System (INIS)

    Sun Yuanming; Li Jin; Wang Qin; Tang Weisheng; Wang Zhiquan

    2002-01-01

    Objective: To study long-term radiation effect in occupational workers exposed to low dose X-rays using the method of fluorescence in situ hybridization (FISH). Method: Chromosome translocations of 25 medical X-ray workers were analyzed by FISH with chromosome No. 4 and No. 7 probes according to PAINT (The Protocol for Aberration Identification and Nomenclature Terminology) system. Results: The frequency of genome translocation in X-ray workers was (13.14 ± 1.23)/1000 cells. The rate of complete and incomplete translocation was 1:1.7. According to the calendar year of entry before/after the year of 1965 as the border, the data showed that the incomplete translocation of the after 1965 group was obviously higher than those of the controls (P < 0.01 and P < 0.05, respectively). Conclusion: The chromosome translocation in early Chinese medical X-ray workers is mainly the incomplete one, the frequency of translocation does not dependent on chromosomal DNA content, and incomplete and complete ones increase along with prolongation of working years in their position

  11. Chromosome specific DNA hybridization in suspension for flow cytometric detection of chimerism in bone marrow transplantation and leukemia

    NARCIS (Netherlands)

    G.J.A. Arkesteijn (Ger); C.A.J. Erpelinck (Claudia); A.C.M. Martens (Anton); A. Hagenbeek (Anton)

    1995-01-01

    textabstractFlow cytometry was used to measure the fluorescence intensity of nuclei that were subjected to fluorescent in situ hybridization in suspension with chromosome specific DNA probes. Paraformaldehyde-fixed nuclei were protein digested with trypsin and hybridized simultaneously with a

  12. Poly(o-phenylenediamine) colloid-quenched fluorescent oligonucleotide as a probe for fluorescence-enhanced nucleic acid detection.

    Science.gov (United States)

    Tian, Jingqi; Li, Hailong; Luo, Yonglan; Wang, Lei; Zhang, Yingwei; Sun, Xuping

    2011-02-01

    In this Letter, we demonstrate that chemical oxidation polymerization of o-phenylenediamine (OPD) by potassium bichromate at room temperature results in the formation of submicrometer-scale poly(o-phenylenediamine) (POPD) colloids. Such colloids can absorb and quench dye-labeled single-stranded DNA (ssDNA) very effectively. In the presence of a target, a hybridization event occurs, which produces a double-stranded DNA (dsDNA) that detaches from the POPD surface, leading to recovery of dye fluorescence. With the use of an oligonucleotide (OND) sequence associated with human immunodeficiency virus (HIV) as a model system, we demonstrate the proof of concept that POPD colloid-quenched fluorescent OND can be used as a probe for fluorescence-enhanced nucleic acid detection with selectivity down to single-base mismatch.

  13. Localization of introduced genes on the chromosomes of transgenic barley, wheat and triticale by fluorescence in situ hybridization

    DEFF Research Database (Denmark)

    Pedersen, C.; Zimny, J.; Becker, D.

    1997-01-01

    Using fluorescence in situ hybridization (FISH) we localized introduced genes on metaphase chromosomes of barley, wheat, and triticale transformed by microprojectile bombardment of microspores and scutellar tissue with the pDB1 plasmid containing the uidA and bar genes. Thirteen integration sites...... of single-copy integrations. There was a slight tendency towards the localization of transgenes in distal chromosome regions. Using the GAA-satellite sequence for chromosome banding, the chromosomes containing the inserted genes were identified in most cases. Two barley lines derived from the same...... transformant showed a totally different integration pattern. Southern analysis confirmed that the inserted genes were segregating independently, resulting in different integration patterns among the progeny lines. The application of the FISH technique for the analysis of transgenic plants is discussed....

  14. Rapid detection of rRNA group I pseudomonads in contaminated metalworking fluids and biofilm formation by fluorescent in situ hybridization.

    Science.gov (United States)

    Saha, Ratul; Donofrio, Robert S; Goeres, Darla M; Bagley, Susan T

    2012-05-01

    Metalworking fluids (MWFs), used in different machining operations, are highly prone to microbial degradation. Microbial communities present in MWFs lead to biofilm formation in the MWF systems, which act as a continuous source of contamination. Species of rRNA group I Pseudomonas dominate in contaminated MWFs. However, their actual distribution is typically underestimated when using standard culturing techniques as most fail to grow on the commonly used Pseudomonas Isolation Agar. To overcome this, fluorescent in situ hybridization (FISH) was used to study their abundance along with biofilm formation by two species recovered from MWFs, Pseudomonas fluorescens MWF-1 and the newly described Pseudomonas oleovorans subsp. lubricantis. Based on 16S rRNA sequences, a unique fluorescent molecular probe (Pseudo120) was designed targeting a conserved signature sequence common to all rRNA group I Pseudomonas. The specificity of the probe was evaluated using hybridization experiments with whole cells of different Pseudomonas species. The probe's sensitivity was determined to be 10(3) cells/ml. It successfully detected and enumerated the abundance and distribution of Pseudomonas indicating levels between 3.2 (± 1.1) × 10(6) and 5.0 (± 2.3) × 10(6) cells/ml in four different industrial MWF samples collected from three different locations. Biofilm formation was visualized under stagnant conditions using high and low concentrations of cells for both P. fluorescens MWF-1 and P. oleovorans subsp. lubricantis stained with methylene blue and Pseudo120. On the basis of these observations, this molecular probe can be successfully be used in the management of MWF systems to monitor the levels and biofilm formation of rRNA group I pseudomonads.

  15. Study on a highly selective fluorescent chemosensor for Cu{sup 2+} and its direct sensing for proton based on 1,3,4-oxadiazole

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Ling [College of Chemistry, Jilin University, Changchun 130024 (China); Gu, Caiying [Faculty of Chemistry, Northeast Normal University, Changchun 130024 (China); He, Yi [College of Chemistry, Jilin University, Changchun 130024 (China); Wang, Guang, E-mail: wangg923@nenu.edu.cn [Faculty of Chemistry, Northeast Normal University, Changchun 130024 (China)

    2014-09-15

    A photoinduced electron transfer cation sensor, oxadiazole-bridge-bis(N,N-bis(2-pyridylmethyl)amine), was designed and prepared. This sensor displayed an “off–on–off” fluorescent switch for proton and an “on–off” fluorescent switch for Cu{sup 2+}. The fluorescence emission of the sensor was quenched upon addition of Cu{sup 2+} and proton in CH{sub 3}CN/H{sub 2}O solution (v/v, 4:1) due to electron transfer between the N,N-bis(2-pyridylmethyl)amine and the oxadiazole. The sensor presented high selectivity for Cu{sup 2+} over other metal ions and determined Cu{sup 2+} concentration in a linear fashion from 5×10{sup −7} M to 8×10{sup −5} M. Stern–Volmer analysis showed the binding stoichiometry to be 1:2 (host-guest) with a binding constant of 1.8×10{sup 10} M{sup −2}, calculated using the Benesi–Hilderbrand equation. The response of the sensor to Cu{sup 2+} was instantaneous and reversible, and the usual anions did not influence the selectivity for Cu{sup 2+}. - Highlights: • A new fluorescent sensor based on oxadiazole and N,N-bis-(2-pyridylmethyl)amine was designed. • The sensor displayed sensitive fluorescence response “on–off” to Cu{sup 2+} and “on–off–on” for protons. • Fluorescence intensity showed good linear correlation with Cu{sup 2+} concentration from 5×10{sup −7} M to 8×10{sup −5} M. • The high concentration of metal ions and usual anions did not influence the selectivity for Cu{sup 2+}. • The short response time of the sensor for Cu{sup 2+} (within 20 s) meets practical requirements.

  16. Detection of ALK gene rearrangement in non-small cell lung cancer: a comparison of fluorescence in situ hybridization and chromogenic in situ hybridization with correlation of ALK protein expression.

    Science.gov (United States)

    Kim, Hyojin; Yoo, Seol-Bong; Choe, Ji-Young; Paik, Jin Ho; Xu, Xianhua; Nitta, Hiroaki; Zhang, Wenjun; Grogan, Thomas M; Lee, Choon-Taek; Jheon, Sanghoon; Chung, Jin-Haeng

    2011-08-01

    Accurate determination of ALK rearrangement is important in lung cancer patients, especially in determining their eligibility for crizotinib therapy. Fluorescence in situ hybridization (FISH) has been regarded as the gold standard method for detecting ALK rearrangement. However, FISH requires a fluorescence microscope, and the signals are labile and rapidly fade over time. This study evaluates the concordance between ALK gene rearrangement in non-small cell lung cancer assessed by ALK FISH and a newly developed ALK chromogenic in situ hybridization (CISH) and correlates the results with ALK protein expression assessed by immunohistochemistry. A total of 465 formalin-fixed, paraffin-embedded non-small cell lung cancer samples were analyzed by ALK FISH (PathVysion, Vysis, Abbott) and ALK CISH. For comparison, all specimens were stained by immunohistochemistry (clone 5A4, Novocastra) and interobserver reproducibility was assessed. We found that agreement between the pathologists on the CISH-determined ALK status was achieved in 449 patients (96.6%), and ALK rearrangement was identified in 18 patients (4.0%) in CISH method. Among these cases, 443 cases (95.3%) had results matching the corresponding FISH results: 17 rearranged, 425 wild types, and 1 discordant case. There was high concordance in the assessment of ALK gene rearrangement between FISH and CISH techniques (κ = 0.92) and between observers (κ = 0.97). In addition, there was high concordance in the ALK gene status and ALK protein expression between CISH and IHC tests (κ = 0.82). CISH is a highly reproducible and practical method to detect ALK gene rearrangement and correlated well with ALK protein expression. Here, we present a diagnostic algorithm (Chung's SNUBH ALK protocol) to detect lung cancer with ALK rearrangements using IHC, FISH and CISH. Because CISH allows a concurrent analysis of histological features of the tumors and gene rearrangement, it appears to be a useful method in determining ALK gene

  17. Chromogenic in situ hybridization for Her-2/neu-oncogene in breast cancer: comparison of a new dual-colour chromogenic in situ hybridization with immunohistochemistry and fluorescence in situ hybridization.

    Science.gov (United States)

    Mayr, Doris; Heim, Sibylle; Weyrauch, Kerstin; Zeindl-Eberhart, Evelyn; Kunz, Anne; Engel, Jutta; Kirchner, Thomas

    2009-12-01

    Her-2/neu testing is used as a marker for Herceptin therapy. The aim was to investigate new dual-colour chromogenic in situ hybridization (CISH), in a large number of breast carcinomas (n = 205) with DNA-specific dual-colour probes (ZytoVision, Bremerhaven, Germany) and to compare the results with immunohistochemistry (n = 205) and fluorescence in situ hybridization (FISH) (n = 129). Paraffin-embedded tissue of 205 patients was used. After immunohistochemistry with a focus on immunohistochemically uncertain cases, Her-2/neu amplification using dual-colour CISH (ZytoVision) was analysed. Validation by FISH was performed. The results were: immunohistochemistry, 27.8% with strong expression, 53.7% with uncertain overexpression and 18.5% with no expression; FISH, 25.6% amplified and 74.4% negative; CISH, 35.6% amplified, 62.9% negative and 1.5% not evaluable. Comparison of immunohistochemistry with CISH: CISH negative in 100% with immunohistochemistry 0/1+, amplified in 82.5% with immunohistochemistry 3+; 5.9% contradictory results: 4.4% immunohistochemistry 3+ and negative by CISH, 1.5% negative in immunohistochemistry but amplified by CISH; FISH (129 cases), 8.5% contradictory results to immunohistochemistry, 6.2% immunohistochemistry 3+ and negative by FISH, 2.3% negative by immunohistochemistry and amplified by FISH; comparison of CISH and FISH, 94.6% same results, 3.9% different ones, 1.6% CISH not analysable. CISH, using dual-colour probes (ZytoVision) is as good as FISH for Her-2/neu analysis. The few discrepant results are likely to be caused by polysomy or tumour heterogeneity.

  18. Frequency of reciprocal translocations and dicentrics induced in human blood lymphocytes by X-irradiation as determined by fluorescence in situ hybridization

    International Nuclear Information System (INIS)

    Nakano, M.; Nakashima, E.; Pawel, D.; Kodama, Y.; Awa, A.

    1993-01-01

    This study was designed to test the scoring efficiency of reciprocal translocations and dicentrics induced by X-irradiation in vitro using the fluorescence in situ hybridization (FISH) technique. An excess was found in the frequencies of reciprocal translocations relative to those of dicentrics by measurement with FISH at the first cell division after irradiation (translocation:dicentric ≅ 60:40). However, when the same metaphases were also evaluated sequentially by a conventional staining method, the ratio of about 50:50 was restored. This was due in part to misclassification of certain dicentrics as reciprocal translocations by the FISH technique. (author)

  19. Hybrid Imaging Labels: Providing the Link Between Mass Spectrometry-Based Molecular Pathology and Theranostics

    Science.gov (United States)

    Buckle, Tessa; van der Wal, Steffen; van Malderen, Stijn J.M.; Müller, Larissa; Kuil, Joeri; van Unen, Vincent; Peters, Ruud J.B.; van Bemmel, Margaretha E.M.; McDonnell, Liam A.; Velders, Aldrik H.; Koning, Frits; Vanhaeke, Frank; van Leeuwen, Fijs W. B.

    2017-01-01

    Background: Development of theranostic concepts that include inductively coupled plasma mass spectrometry (ICP-MS) and laser ablation ICP-MS (LA-ICP-MS) imaging can be hindered by the lack of a direct comparison to more standardly used methods for in vitro and in vivo evaluation; e.g. fluorescence or nuclear medicine. In this study a bimodal (or rather, hybrid) tracer that contains both a fluorescent dye and a chelate was used to evaluate the existence of a direct link between mass spectrometry (MS) and in vitro and in vivo molecular imaging findings using fluorescence and radioisotopes. At the same time, the hybrid label was used to determine whether the use of a single isotope label would allow for MS-based diagnostics. Methods: A hybrid label that contained both a DTPA chelate (that was coordinated with either 165Ho or 111In) and a Cy5 fluorescent dye was coupled to the chemokine receptor 4 (CXCR4) targeting peptide Ac-TZ14011 (hybrid-Cy5-Ac-TZ4011). This receptor targeting tracer was used to 1) validate the efficacy of (165Ho-based) mass-cytometry in determining the receptor affinity via comparison with fluorescence-based flow cytometry (Cy5), 2) evaluate the microscopic binding pattern of the tracer in tumor cells using both fluorescence confocal imaging (Cy5) and LA-ICP-MS-imaging (165Ho), 3) compare in vivo biodistribution patterns obtained with ICP-MS (165Ho) and radiodetection (111In) after intravenous administration of hybrid-Cy5-Ac-TZ4011 in tumor-bearing mice. Finally, LA-ICP-MS-imaging (165Ho) was linked to fluorescence-based analysis of excised tissue samples (Cy5). Results: Analysis with both mass-cytometry and flow cytometry revealed a similar receptor affinity, respectively 352 ± 141 nM and 245 ± 65 nM (p = 0.08), but with a much lower detection sensitivity for the first modality. In vitro LA-ICP-MS imaging (165Ho) enabled clear discrimination between CXCR4 positive and negative cells, but fluorescence microscopy was required to determine the

  20. In Situ Hybridization Pada Kanker Payudara

    OpenAIRE

    Diah Witari, Ni Putu

    2014-01-01

    Kesulitan yang dijumpai pada penanganan kanker payudara adalah terjadinya kekambuhan atau relaps. Deteksi status HER2 pada pasien merupakan salah satu upaya untuk mendeteksi terjadinya relaps dan juga untuk menentukan jenis terapi yang ada diberikan. Ekspresi protein HER2 dapat dideteksi dengan immunohistochemistry (IHC), sedangkan mutasi gen HER2 dapat dideteksi dengan teknik in situ hybridization baik berupa fluorescence in situ hybridization (FISH) ataupun chromogenic in situ hy...

  1. Development of a biological dosimeter for translocation scoring based on two-color fluorescence in situ hybridization of chromosome subsets

    Energy Technology Data Exchange (ETDEWEB)

    Popp, S; Cremer, T [Heidelberg Univ. (Germany). Inst. of Human Genetics and Anthropology

    1992-03-01

    Recently fluorescence in situ hybridization protocols have been developed which allow the paining of individual chromosomes using DNA-libraries from sorted human chromosomes. This approach has the particular advantage that radiation induced chromosome translocations can be easily detected, if chromosomes of distinctly different colors take part in the translocation event. To enhance the sensitivity of this approach two metaphase chromosome subsets A and B (A: chromosome 1, 2, 4, 8, 16; B: 3, 5, 9, 10, 13) were simultaneously painted in green and red color. Counterstaining of the chromosomes with DAPI resulted in a third subset which exhibited blue fluorescence only. Green-red, green-blue and red-blue translocation chromosomes could be easily detected after irradiation of lymphocyte cultures with {sup 137}Cs-{gamma}-rays. Analyses of painted chromosomes can be combined with conventional GTG-banding analyses. This new biological dosimeter should become useful to monitor both long term effects of single irradiation events and the cumulative effects of multiple or chronic irradiation exposure. In contrast to translocation scoring based on the analysis of banded chromosomes, this new approach has the particular advantage that a rapid, automated scoring of translocations can now be envisaged. (author).

  2. Detection of airborne Legionella while showering using liquid impingement and fluorescent in situ hybridization (FISH).

    Science.gov (United States)

    Deloge-Abarkan, Magali; Ha, Thi-Lan; Robine, Enric; Zmirou-Navier, Denis; Mathieu, Laurence

    2007-01-01

    Aerosols of water contaminated with Legionella bacteria constitute the only mode of exposure for humans. However, the prevention strategy against this pathogenic bacteria risk is managed through the survey of water contamination. No relationship linked the Legionella bacteria water concentration and their airborne abundance. Therefore, new approaches in the field of the metrological aspects of Legionella bioaerosols are required. This study was aimed at testing the main principles for bioaerosol collection (solid impaction, liquid impingement and filtration) and the in situ hybridization (FISH) method, both in laboratory and field assays, with the intention of applying such methodologies for airborne Legionella bacteria detection while showering. An aerosolization chamber was developed to generate controlled and reproducible L. pneumophila aerosols. This tool allowed the identification of the liquid impingement method as the most appropriate one for collecting airborne Legionella bacteria. The culturable fraction of airborne L. pneumophila recovered with the liquid impingement principle was 4 and 700 times higher compared to the impaction and filtration techniques, respectively. Moreover, the concentrations of airborne L. pneumophila in the impinger fluid were on average 7.0 x 10(5) FISH-cells m(-3) air with the fluorescent in situ hybridization (FISH) method versus 9.0 x 10(4) CFU m(-3) air with the culture method. These results, recorded under well-controlled conditions, were confirmed during the field experiments performed on aerosols generated by hot water showers in health institutions. This new approach may provide a more accurate characterization of aerobiocontamination by Legionella bacteria.

  3. A hybrid mathematical modeling approach of the metabolic fate of a fluorescent sphingolipid analogue to predict cancer chemosensitivity.

    Science.gov (United States)

    Molina-Mora, J A; Kop-Montero, M; Quirós-Fernández, I; Quiros, S; Crespo-Mariño, J L; Mora-Rodríguez, R A

    2018-04-13

    Sphingolipid (SL) metabolism is a complex biological system that produces and transforms ceramides and other molecules able to modulate other cellular processes, including survival or death pathways key to cell fate decisions. This signaling pathway integrates several types of stress signals, including chemotherapy, into changes in the activity of its metabolic enzymes, altering thereby the cellular composition of bioactive SLs. Therefore, the SL pathway is a promising sensor of chemosensitivity in cancer and a target hub to overcome resistance. However, there is still a gap in our understanding of how chemotherapeutic drugs can disturb the SL pathway in order to control cellular fate. We propose to bridge this gap by a systems biology approach to integrate i) a dynamic model of SL analogue (BODIPY-FL fluorescent-sphingomyelin analogue, SM-BOD) metabolism, ii) a Gaussian mixture model (GMM) of the fluorescence features to identify how the SL pathway senses the effect of chemotherapy and iii) a fuzzy logic model (FLM) to associate SL composition with cell viability by semi-quantitative rules. Altogether, this hybrid model approach was able to predict the cell viability of double experimental perturbations with chemotherapy, indicating that the SL pathway is a promising sensor to design strategies to overcome drug resistance in cancer. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Oligonucleotide PIK3CA/Chromosome 3 Dual in Situ Hybridization Automated Assay with Improved Signals, One-Hour Hybridization, and No Use of Blocking DNA.

    Science.gov (United States)

    Zhang, Wenjun; Hubbard, Antony; Baca-Parkinson, Leslie; Stanislaw, Stacey; Vladich, Frank; Robida, Mark D; Grille, James G; Maxwell, Daniel; Tsao, Tsu-Shuen; Carroll, William; Gardner, Tracie; Clements, June; Singh, Shalini; Tang, Lei

    2015-09-01

    The PIK3CA gene at chromosome 3q26.32 was found to be amplified in up to 45% of patients with squamous cell carcinoma of the lung. The strong correlation between PIK3CA amplification and increased phosphatidylinositol 3-kinase (PI3K) pathway activities suggested that PIK3CA gene copy number is a potential predictive biomarker for PI3K inhibitors. Currently, all microscopic assessments of PIK3CA and chromosome 3 (CHR3) copy numbers use fluorescence in situ hybridization. PIK3CA probes are derived from bacterial artificial chromosomes whereas CHR3 probes are derived mainly from the plasmid pHS05. These manual fluorescence in situ hybridization assays mandate 12- to 18-hour hybridization and use of blocking DNA from human sources. Moreover, fluorescence in situ hybridization studies provide limited morphologic assessment and suffer from signal decay. We developed an oligonucleotide-based bright-field in situ hybridization assay that overcomes these shortcomings. This assay requires only a 1-hour hybridization with no need for blocking DNA followed by indirect chromogenic detection. Oligonucleotide probes produced discrete and uniform CHR3 stains superior to those from the pHS05 plasmid. This assay achieved successful staining in 100% of the 195 lung squamous cell carcinoma resections and in 94% of the 33 fine-needle aspirates. This robust automated bright-field dual in situ hybridization assay for the simultaneous detection of PIK3CA and CHR3 centromere provides a potential clinical diagnostic method to assess PIK3CA gene abnormality in lung tumors. Copyright © 2015 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.

  5. Preparation of graphene quantum dots based core-satellite hybrid spheres and their use as the ratiometric fluorescence probe for visual determination of mercury(II) ions

    Energy Technology Data Exchange (ETDEWEB)

    Hua, Mengjuan [Key Laboratory of Modern Agriculture Equipment and Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013 (China); Wang, Chengquan [School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013 (China); Qian, Jing, E-mail: qianj@ujs.edu.cn [Key Laboratory of Modern Agriculture Equipment and Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013 (China); Wang, Kan; Yang, Zhenting; Liu, Qian; Mao, Hanping [Key Laboratory of Modern Agriculture Equipment and Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013 (China); Wang, Kun, E-mail: wangkun@ujs.edu.cn [Key Laboratory of Modern Agriculture Equipment and Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013 (China)

    2015-08-12

    We herein proposed a simple and effective strategy for preparing graphene quantum dots (GQDs)-based core-satellite hybrid spheres and further explored the feasibility of using such spheres as the ratiometric fluorescence probe for the visual determination of Hg{sup 2+}. The red-emitting CdTe QDs were firstly entrapped in the silica nanosphere to reduce their toxicity and improve their photo and chemical stabilities, thus providing a built-in correction for environmental effects, while the GQDs possessing good biocompatibility and low toxicity were electrostatic self-assembly on the silica surface acting as reaction sites. Upon exposure to the increasing contents of Hg{sup 2+}, the blue fluorescence of GQDs can be gradually quenched presumably due to facilitating nonradiative electron/hole recombination annihilation. With the embedded CdTe QDs as the internal standard, the variations of the tested solution display continuous fluorescence color changes from blue to red, which can be easily observed by the naked eye without any sophisticated instrumentations and specially equipped laboratories. This sensor exhibits high sensitivity and selectivity toward Hg{sup 2+} in a broad linear range of 10 nM–22 μM with a low detection limit of 3.3 nM (S/N = 3), much lower than the allowable Hg{sup 2+} contents in drinking water set by U.S. Environmental Protection Agency. This prototype ratiometric probe is of good simplicity, low toxicity, excellent stabilities, and thus potentially attractive for Hg{sup 2+} quantification related biological systems. - Highlights: • A facile strategy for preparing GQDs based core-satellite hybrid spheres was reported. • Such spheres can be used as the ratiometric fluorescence probe for Hg{sup 2+} detection. • The Hg{sup 2+} content can be easily distinguished by the naked eye. • The sensor shows high sensitivity and selectivity toward Hg{sup 2+} detection. • The ratiometric probe is of good simplicity, low toxicity, and

  6. Fluorescence guided surgery and tracer-dose, fact or fiction?

    International Nuclear Information System (INIS)

    KleinJan, Gijs H.; Olmos, Renato A.V.; Bunschoten, Anton; Berg, Nynke S. van den; Klop, W.M.C.; Horenblas, Simon; Poel, Henk G. van der; Wester, Hans-Juergen; Leeuwen, Fijs W.B. van

    2016-01-01

    Fluorescence guidance is an upcoming methodology to improve surgical accuracy. Challenging herein is the identification of the minimum dose at which the tracer can be detected with a clinical-grade fluorescence camera. Using a hybrid tracer such as indocyanine green (ICG)- 99m Tc-nanocolloid, it has become possible to determine the accumulation of tracer and correlate this to intraoperative fluorescence-based identification rates. In the current study, we determined the lower detection limit of tracer at which intraoperative fluorescence guidance was still feasible. Size exclusion chromatography (SEC) provided a laboratory set-up to analyze the chemical content and to simulate the migratory behavior of ICG-nanocolloid in tissue. Tracer accumulation and intraoperative fluorescence detection findings were derived from a retrospective analysis of 20 head-and-neck melanoma patients, 40 penile and 20 prostate cancer patients scheduled for sentinel node (SN) biopsy using ICG- 99m Tc-nanocolloid. In these patients, following tracer injection, single photon emission computed tomography fused with computed tomography (SPECT/CT) was used to identify the SN(s). The percentage injected dose (% ID), the amount of ICG (in nmol), and the concentration of ICG in the SNs (in μM) was assessed for SNs detected on SPECT/CT and correlated with the intraoperative fluorescence imaging findings. SEC determined that in the hybrid tracer formulation, 41 % (standard deviation: 12 %) of ICG was present in nanocolloid-bound form. In the SNs detected using fluorescence guidance a median of 0.88 % ID was present, compared to a median of 0.25 % ID in the non-fluorescent SNs (p-value < 0.001). The % ID values could be correlated to the amount ICG in a SN (range: 0.003-10.8 nmol) and the concentration of ICG in a SN (range: 0.006-64.6 μM). The ability to provide intraoperative fluorescence guidance is dependent on the amount and concentration of the fluorescent dye accumulated in the lesion(s) of

  7. The application of fluorescence in situ hybridization (FISH technique for studying the microbial communities in intestinal tissues of white shrimp (Penaeus vannamei

    Directory of Open Access Journals (Sweden)

    Supamattaya, K.

    2005-02-01

    Full Text Available Fluorescence in situ hybridization technique is very useful for the evaluation of microbial communities in various environments. It is possible to apply this technique to study the intestinal microflora in white shrimp (Penaeus vannamei. Different fixatives and storage temperature were tested in this technique. It was found that fixation with 10% buffered formalin for 12 hours and changed to 70% ethanol shown positive results when compared to the fixation with Davidson's fixative or RF fixative. The best signaling was obtainedfrom the samples which were stored in -20ºC. By using the DNA probe targeted to the Eubacteria domain (EUB338 probe, 5′-GCT GCC TCC CGT AGG AGT-3′ labeled with fluorescein as a hybridizing probe, it was found that most intestinal microflora were aggregated with the intestinal contents, or dispersed in the lumen. There was not evidence of the attachment of the microflora with the intestinal epithelium in this study.

  8. On-Chip Fluorescence Switching System for Constructing a Rewritable Random Access Data Storage Device.

    Science.gov (United States)

    Nguyen, Hoang Hiep; Park, Jeho; Hwang, Seungwoo; Kwon, Oh Seok; Lee, Chang-Soo; Shin, Yong-Beom; Ha, Tai Hwan; Kim, Moonil

    2018-01-10

    We report the development of on-chip fluorescence switching system based on DNA strand displacement and DNA hybridization for the construction of a rewritable and randomly accessible data storage device. In this study, the feasibility and potential effectiveness of our proposed system was evaluated with a series of wet experiments involving 40 bits (5 bytes) of data encoding a 5-charactered text (KRIBB). Also, a flexible data rewriting function was achieved by converting fluorescence signals between "ON" and "OFF" through DNA strand displacement and hybridization events. In addition, the proposed system was successfully validated on a microfluidic chip which could further facilitate the encoding and decoding process of data. To the best of our knowledge, this is the first report on the use of DNA hybridization and DNA strand displacement in the field of data storage devices. Taken together, our results demonstrated that DNA-based fluorescence switching could be applicable to construct a rewritable and randomly accessible data storage device through controllable DNA manipulations.

  9. Ratiometric fluorescence transduction by hybridization after isothermal amplification for determination of zeptomole quantities of oligonucleotide biomarkers with a paper-based platform and camera-based detection

    Energy Technology Data Exchange (ETDEWEB)

    Noor, M. Omair; Hrovat, David [Chemical Sensors Group, Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON L5L 1C6 (Canada); Moazami-Goudarzi, Maryam [Department of Cell and Systems Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON L5L 1C6 (Canada); Espie, George S. [Department of Cell and Systems Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON L5L 1C6 (Canada); Department of Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON L5L 1C6 (Canada); Krull, Ulrich J., E-mail: ulrich.krull@utoronto.ca [Chemical Sensors Group, Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON L5L 1C6 (Canada)

    2015-07-23

    Highlights: • Solid-phase QD-FRET transduction of isothermal tHDA amplicons on paper substrates. • Ratiometric QD-FRET transduction improves assay precision and lowers the detection limit. • Zeptomole detection limit by an iPad camera after isothermal amplification. • Tunable assay sensitivity by immobilizing different amounts of QD–probe bioconjugates. - Abstract: Paper is a promising platform for the development of decentralized diagnostic assays owing to the low cost and ease of use of paper-based analytical devices (PADs). It can be challenging to detect on PADs very low concentrations of nucleic acid biomarkers of lengths as used in clinical assays. Herein we report the use of thermophilic helicase-dependent amplification (tHDA) in combination with a paper-based platform for fluorescence detection of probe-target hybridization. Paper substrates were patterned using wax printing. The cellulosic fibers were chemically derivatized with imidazole groups for the assembly of the transduction interface that consisted of immobilized quantum dot (QD)–probe oligonucleotide conjugates. Green-emitting QDs (gQDs) served as donors with Cy3 as the acceptor dye in a fluorescence resonance energy transfer (FRET)-based transduction method. After probe-target hybridization, a further hybridization event with a reporter sequence brought the Cy3 acceptor dye in close proximity to the surface of immobilized gQDs, triggering a FRET sensitized emission that served as an analytical signal. Ratiometric detection was evaluated using both an epifluorescence microscope and a low-cost iPad camera as detectors. Addition of the tHDA method for target amplification to produce sequences of ∼100 base length allowed for the detection of zmol quantities of nucleic acid targets using the two detection platforms. The ratiometric QD-FRET transduction method not only offered improved assay precision, but also lowered the limit of detection of the assay when compared with the non

  10. Ratiometric fluorescence transduction by hybridization after isothermal amplification for determination of zeptomole quantities of oligonucleotide biomarkers with a paper-based platform and camera-based detection

    International Nuclear Information System (INIS)

    Noor, M. Omair; Hrovat, David; Moazami-Goudarzi, Maryam; Espie, George S.; Krull, Ulrich J.

    2015-01-01

    Highlights: • Solid-phase QD-FRET transduction of isothermal tHDA amplicons on paper substrates. • Ratiometric QD-FRET transduction improves assay precision and lowers the detection limit. • Zeptomole detection limit by an iPad camera after isothermal amplification. • Tunable assay sensitivity by immobilizing different amounts of QD–probe bioconjugates. - Abstract: Paper is a promising platform for the development of decentralized diagnostic assays owing to the low cost and ease of use of paper-based analytical devices (PADs). It can be challenging to detect on PADs very low concentrations of nucleic acid biomarkers of lengths as used in clinical assays. Herein we report the use of thermophilic helicase-dependent amplification (tHDA) in combination with a paper-based platform for fluorescence detection of probe-target hybridization. Paper substrates were patterned using wax printing. The cellulosic fibers were chemically derivatized with imidazole groups for the assembly of the transduction interface that consisted of immobilized quantum dot (QD)–probe oligonucleotide conjugates. Green-emitting QDs (gQDs) served as donors with Cy3 as the acceptor dye in a fluorescence resonance energy transfer (FRET)-based transduction method. After probe-target hybridization, a further hybridization event with a reporter sequence brought the Cy3 acceptor dye in close proximity to the surface of immobilized gQDs, triggering a FRET sensitized emission that served as an analytical signal. Ratiometric detection was evaluated using both an epifluorescence microscope and a low-cost iPad camera as detectors. Addition of the tHDA method for target amplification to produce sequences of ∼100 base length allowed for the detection of zmol quantities of nucleic acid targets using the two detection platforms. The ratiometric QD-FRET transduction method not only offered improved assay precision, but also lowered the limit of detection of the assay when compared with the non

  11. Visualization of mcr mRNA in a methanogen by fluorescence in situ hybridization with an oligonucleotide probe and two-pass tyramide signal amplification (two-pass TSA-FISH).

    Science.gov (United States)

    Kubota, Kengo; Ohashi, Akiyoshi; Imachi, Hiroyuki; Harada, Hideki

    2006-09-01

    Two-pass tyramide signal amplification-fluorescence in situ hybridization (two-pass TSA-FISH) with a horseradish peroxidase (HRP)-labeled oligonucleotide probe was applied to detect prokaryotic mRNA. In this study, mRNA of a key enzyme for methanogenesis, methyl coenzyme M reductase (mcr), in Methanococcus vannielii was targeted. Applicability of mRNA-targeted probes to in situ hybridization was verified by Clone-FISH. It was observed that sensitivity of two-pass TSA-FISH was significantly higher than that of TSA-FISH, which was further increased by the addition of dextran sulphate in TSA working solution. Signals from two-pass TSA-FISH were more reliable compared to the weak, spotty signals yielded by TSA-FISH.

  12. Advancing surgical guidance : from (hybrid) molecule to man and beyond

    NARCIS (Netherlands)

    Berg, van den N.S.

    2016-01-01

    The work described in this thesis shows how intraoperative lesion identification can be improved via the introduction of (hybrid) tracers and optimised (hybrid) imaging modalities capable of detecting this tracers. In part one, the reader is introduced to the concept of fluorescence image-guided

  13. Benzothiazole-Based AIEgen with Tunable Excited-State Intramolecular Proton Transfer and Restricted Intramolecular Rotation Processes for Highly Sensitive Physiological pH Sensing.

    Science.gov (United States)

    Li, Kai; Feng, Qi; Niu, Guangle; Zhang, Weijie; Li, Yuanyuan; Kang, Miaomiao; Xu, Kui; He, Juan; Hou, Hongwei; Tang, Ben Zhong

    2018-04-23

    In this work, a benzothiazole-based aggregation-induced emission luminogen (AIEgen) of 2-(5-(4-carboxyphenyl)-2-hydroxyphenyl)benzothiazole (3) was designed and synthesized, which exhibited multifluorescence emissions in different dispersed or aggregated states based on tunable excited-state intramolecular proton transfer (ESIPT) and restricted intramolecular rotation (RIR) processes. 3 was successfully used as a ratiometric fluorescent chemosensor for the detection of pH, which exhibited reversible acid/base-switched yellow/cyan emission transition. More importantly, the pH jump of 3 was very precipitous from 7.0 to 8.0 with a midpoint of 7.5, which was well matched with the physiological pH. This feature makes 3 very suitable for the highly sensitive detection of pH fluctuation in biosamples and neutral water samples. 3 was also successfully used as a ratiometric fluorescence chemosensor for the detection of acidic and basic organic vapors in test papers.

  14. Radiation induced wheat-rye chromosomal translocations in triticale. Optimizing the dose using fluorescence in situ hybridization

    International Nuclear Information System (INIS)

    Ahmad, F.; Comeau, A.; Chen, Q.; Collin, J.; St-Pierre, C.A.

    2000-01-01

    Fluorescent in situ hybridization (FISH) was utilized to monitor the level of ionizing radiation ( 60 Co source) in their ability to cause intra- and intergeneric chromosomal aberrations in triticale seeds. Seeds were irradiated with 0, 20, 50, 100, 200, 300, 400, 500 and 1000 Gy doses. The root growth of irradiated seeds was greatly inhibited at 200 Gy and above. Various types of aberrations including wheat-rye, wheat-wheat, rye-rye, wheat-rye-wheat, rye-wheat-rye translocations and acentric fragments with or without translocations were observed. There was a consistent increase in proportion of aberrations per cell with an increase in radiation dose. It was concluded that for an optimal level of chromosomal translocation and least number of acentric fragments, a 20 Gy dose was quite sufficient for inducing a desirable level of wheat-rye chromosomal translocations. The excellent efficiency and importance of utilizing FISH in such studies of alien-introgression via chromosomal translocations are discussed. (author)

  15. Radiation induced wheat-rye chromosomal translocations in triticale. Optimizing the dose using fluorescence in situ hybridization

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, F. [Brandon Univ., Manitoba (Canada); Comeau, A.; Chen, Q.; Collin, J.; St-Pierre, C.A.

    2000-03-01

    Fluorescent in situ hybridization (FISH) was utilized to monitor the level of ionizing radiation ({sup 60}Co source) in their ability to cause intra- and intergeneric chromosomal aberrations in triticale seeds. Seeds were irradiated with 0, 20, 50, 100, 200, 300, 400, 500 and 1000 Gy doses. The root growth of irradiated seeds was greatly inhibited at 200 Gy and above. Various types of aberrations including wheat-rye, wheat-wheat, rye-rye, wheat-rye-wheat, rye-wheat-rye translocations and acentric fragments with or without translocations were observed. There was a consistent increase in proportion of aberrations per cell with an increase in radiation dose. It was concluded that for an optimal level of chromosomal translocation and least number of acentric fragments, a 20 Gy dose was quite sufficient for inducing a desirable level of wheat-rye chromosomal translocations. The excellent efficiency and importance of utilizing FISH in such studies of alien-introgression via chromosomal translocations are discussed. (author)

  16. Quantum dots-hyperbranched polyether hybrid nanospheres towards delivery and real-time detection of nitric oxide

    DEFF Research Database (Denmark)

    Liu, Shuiping; Gu, Tianxun; Fu, Jiajia

    2014-01-01

    In this work, novel hybrid nanosphere vehicles were synthesized for nitric oxide (NO) donating and real-time detection. The hybrid nanosphere vehicles consist of cadmium selenide quantum dots (CdSe QDs) as NO fluorescent probes, and the modified hyperbranched polyether (mHP)-based diazeniumdiolates...... as NO donors, respectively. The nanospheres have spherical outline with dimension of ~ 127 nm. The data of systematic characterization demonstrated that the mHP-based hybrid nanosphere vehicles (QDs-mHP-NO) can release and real-time detect NO with the low limit of 25 nM, based on fluorescence quenching...

  17. Sensitive optical bio-sensing of p-type WSe2 hybridized with fluorescent dye attached DNA by doping and de-doping effects

    Science.gov (United States)

    Han, Kyu Hyun; Kim, Jun Young; Jo, Seong Gi; Seo, Changwon; Kim, Jeongyong; Joo, Jinsoo

    2017-10-01

    Layered transition metal dichalcogenides, such as MoS2, WSe2 and WS2, are exciting two-dimensional (2D) materials because they possess tunable optical and electrical properties that depend on the number of layers. In this study, the nanoscale photoluminescence (PL) characteristics of the p-type WSe2 monolayer, and WSe2 layers hybridized with the fluorescent dye Cy3 attached to probe-DNA (Cy3/p-DNA), have been investigated as a function of the concentration of Cy3/DNA by using high-resolution laser confocal microscopy. With increasing concentration of Cy3/p-DNA, the measured PL intensity decreases and its peak is red-shifted, suggesting that the WSe2 layer has been p-type doped with Cy3/p-DNA. Then, the PL intensity of the WSe2/Cy3/p-DNA hybrid system increases and the peak is blue-shifted through hybridization with relatively small amounts of target-DNA (t-DNA) (50-100 nM). This effect originates from charge and energy transfer from the Cy3/DNA to the WSe2. For t-DNA detection, our systems using p-type WSe2 have the merit in terms of the increase of PL intensity. The p-type WSe2 monolayers can be a promising nanoscale 2D material for sensitive optical bio-sensing based on the doping and de-doping responses to biomaterials.

  18. Compression of Born ratio for fluorescence molecular tomography/x-ray computed tomography hybrid imaging: methodology and in vivo validation.

    Science.gov (United States)

    Mohajerani, Pouyan; Ntziachristos, Vasilis

    2013-07-01

    The 360° rotation geometry of the hybrid fluorescence molecular tomography/x-ray computed tomography modality allows for acquisition of very large datasets, which pose numerical limitations on the reconstruction. We propose a compression method that takes advantage of the correlation of the Born-normalized signal among sources in spatially formed clusters to reduce the size of system model. The proposed method has been validated using an ex vivo study and an in vivo study of a nude mouse with a subcutaneous 4T1 tumor, with and without inclusion of a priori anatomical information. Compression rates of up to two orders of magnitude with minimum distortion of reconstruction have been demonstrated, resulting in large reduction in weight matrix size and reconstruction time.

  19. Monolayer-functionalized microfluidics devices for optical sensing of acidity

    NARCIS (Netherlands)

    Mela, P.; Onclin, S.; Goedbloed, M.H.; Levi, S.; Garcia Parajo, M.F.; van Hulst, N.F.; Ravoo, B.J.; Reinhoudt, David; van den Berg, Albert

    This paper describes the integration of opto-chemosensors in microfluidics networks. Our technique exploits the internal surface of the network as a platform to build a sensing system by coating the surface with a self-assembled monolayer and subsequently binding a fluorescent sensing molecule to

  20. Comparative mapping of DNA probes derived from the V{sub k} immunoglobulin gene regions on human and great ape chromosomes by fluorescence in situ hybridization

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, N.; Wienberg, J.; Ermert, K. [Universitaet Muenchen (Germany)] [and others

    1995-03-01

    Fluorescence in situ hybridization (FISH) of cosmid clones of human V{sub K} gene regions to human and primate chromosomes contributed to the dating of chromosome reorganizations in evolution. A clone from the K locus at 2p11-p12 (cos 106) hybridized to the assumed homologous chromosome bands in the chimpanzees Pan troglodytes (PTR) and P. paniscus (PPA), the Gorilla gorilla (GGO), and the orangutan Pongo Pygmaeus (PPY). Human and both chimpanzees differed from gorilla and orangutan by the mapping of cos 170, a clone derived from chromosome 2cen-q11.2; the transposition of this orphon to the other side of the centromere can, therefore, be dated after the human/chimpanzee and gorilla divergence. Hybridization to homologous bands was also found with a cosmid clone containing a V{sub K}I orphon located on chromosome 1 (cos 115, main signal at 1q31-q32), although the probe is not fully unique. Also, a clone derived from the orphon V{sub K} region on chromosome 22q11 (cos 121) hybridized to the homologous bands in the great apes. This indicates that the orphons on human chromosomes 1 and 22 had been translocated early in primate evolution. 18 refs., 2 figs.

  1. Interphase fluorescent in situ hybridization deletion analysis of the 9p21 region and prognosis in childhood acute lymphoblastic leukaemia (ALL)

    DEFF Research Database (Denmark)

    Kuchinskaya, Ekaterina; Heyman, Mats; Nordgren, Ann

    2011-01-01

    Interphase fluorescent in situ hybridization (FISH) was applied on diagnostic BM smears from 519 children with acute lymphoblastic leukaemia (ALL) in order to establish the frequency and prognostic importance of 9p21 deletion in children enrolled in the Nordic Society of Paediatric Haematology...... and Oncology (NOPHO) - 2000 treatment protocol. Among the patients, 452 were diagnosed with B-cell precursor (BCP)-ALL and 66 with T-ALL. A higher incidence of 9p21 deletions was found in T-ALL (38%) compared to BCP-ALL (15·7%). Homozygous deletions were found in 19·7% of T-ALL and 4·0% of BCP-ALL; hemizygous...

  2. Hybrid fluorescent layer emitting polarized light

    Directory of Open Access Journals (Sweden)

    Mohammad Mohammadimasoudi

    2017-07-01

    Full Text Available Semiconductor nanorods have anisotropic absorption and emission properties. In this work a hybrid luminescent layer is produced based on a mixture of CdSe/CdS nanorods dispersed in a liquid crystal that is aligned by an electric field and polymerized by UV illumination. The film emits light with polarization ratio 0.6 (polarization contrast 4:1. Clusters of nanorods in liquid crystal can be avoided by applying an AC electric field with sufficient amplitude. This method can be made compatible with large-scale processing on flexible transparent substrates. Thin polarized light emitters can be used in LCD backlights or solar concentrators to increase the efficiency.

  3. Selective detection of Fe2+ by combination of CePO4:Tb3+ nanocrystal-H2O2 hybrid system with synchronous fluorescence scan technique.

    Science.gov (United States)

    Chen, Hongqi; Ren, Jicun

    2012-04-21

    A new method for quenching kinetic discrimination of Fe(2+) and Fe(3+), and sensitive detection of trace amount of Fe(2+) was developed by using synchronous fluorescence scan technique. The principle of this assay is based on the quenching kinetic discrimination of Fe(2+) and Fe(3+) in CePO(4):Tb(3+) nanocrytals-H(2)O(2) hybrid system and the Fenton reaction between Fe(2+) and H(2)O(2). Stable, water-soluble and well-dispersible CePO(4):Tb(3+) nanocrystals were synthesized in aqueous solutions, and characterized by transmission electron microscopy (TEM) and electron diffraction spectroscopy (EDS). We found that both Fe(2+) and Fe(3+) could quench the synchronous fluorescence of CePO(4):Tb(3+) nanocrytals-H(2)O(2) system, but their quenching kinetics velocities were quite different. In the presence of Fe(3+), the synchronous fluorescent intensity was unchanged after only one minute, but in the presence of Fe(2+), the synchronous fluorescent intensity decreased slowly until 28 min later. The Fenton reaction between Fe(2+) and H(2)O(2) resulted in hydroxyl radicals which effectively quenched the synchronous fluorescence of the CePO(4):Tb(3+) nanocrystals due to the oxidation of Ce(3+) into Ce(4+) by hydroxyl radicals. Under optimum conditions, the linear range for Fe(2+) is 3 nM-2 μM, and the limit of detection is 2.0 nM. The method was used to analyze water samples.

  4. Synthesis and characterization of 1D tris(8-quinolinolato) aluminum fluorescent fibers by electrospinning

    Energy Technology Data Exchange (ETDEWEB)

    Yan Eryun [Faculty of Chemistry, Northeast Normal University, Changchun 130024 (China); Wang Cheng [Faculty of Chemistry, Northeast Normal University, Changchun 130024 (China); Laboratory of Polymer Chemistry, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080 (China); Huang Zonghao [Faculty of Chemistry, Northeast Normal University, Changchun 130024 (China)], E-mail: huangzh295@nenu.edu.cn; Xin Yi; Tong Yanbin [Faculty of Chemistry, Northeast Normal University, Changchun 130024 (China)

    2007-08-25

    A simple and versatile method called the electrospinning technology was used to fabricate poly(ethylene oxide) (PEO)/tris(8-quinolinolato) aluminum (Alq3) fluorescent hybrid fibers with smooth surface and uniform morphology. The morphology of fibers has been characterized by field emission scanning electron microscopy (FE-SEM) and fluorescence microscopy. The diameter of the hybrid fibers was narrowly between 800 and 850 nm. FTIR spectra analysis showed that the Alq3 molecules interacted with the oxygen atoms on the PEO chains, which resulted in the changes of the crystalline phase of Alq3 in the as-prepared fibers. The photoluminescence (PL) spectra analysis indicated that the hybrid fibers' peak position was red shifted due to the addition of PEO, compared with free standing Alq3.

  5. Application of fluorescence in situ hybridization technique in the diagnosis of acute promyelocytic leukemia with abnormal immunophenotype

    International Nuclear Information System (INIS)

    Chen Leilei; Sun Xuemei; Chen Junhao; Zhang Le

    2005-01-01

    To evaluate the utilization of fluorescence in situ hybridization (FISH) technique in the diagnosis of acute promyelocytic leukemia(APL) with abnormal immunophenotype, flow cytometry was used to detect the immunophenotype of mononuclear cells in APL patients and PML/RARα fusion gene was detected by FISH. The mononuclear cells of several APL patients showed abnormal immunophenotype: CD13 + , CD33 + , CD34 - , HLA-DR + and PML/RARα fusion gene was also detected, which was different from the regular result of APL: HLA- DR - , PML/RARα + . Therefore, the detection of immunophenotype in APL patients should not be regarded as the sole accurate target for diagnosing leukemia. FISH ,associated with traditional FAB classification, is a simple, rapid, accurate and direct method. It can be used to help confirm the diagnosis, to guide the formulation of a reasonable chemotherapy scheme and to supervise the efficacy of the treatment in patients with leukemia. (authors)

  6. Identification of Fetal Inflammatory Cells in Eosinophilic/T-cell Chorionic Vasculitis Using Fluorescent In Situ Hybridization.

    Science.gov (United States)

    Katzman, Philip J; Li, LiQiong; Wang, Nancy

    2015-01-01

    Eosinophilic/T-cell chorionic vasculitis (ETCV) is an inflammatory lesion of placental fetal vessels. In contrast to acute chorionic vasculitis, inflammation in ETCV is seen in chorionic vessel walls opposite the amnionic surface. It is not known whether inflammation in ETCV consists of maternal cells from the intervillous space or fetal cells migrating from the vessel. We used fluorescent in situ hybridization (FISH) to differentiate fetal versus maternal cells in ETCV. Placentas with ETCV, previously identified for a published study, were used. Infant sex in each case was identified using the electronic medical record. For male infants, 3-μm sections were cut from archived tissue blocks from placentas involving ETCV and stained with fluorescent X- and Y-chromosome centromeric probes. A consecutive hematoxylin/eosin-stained section was used for correlation. FISH analysis was performed on 400 interphase nuclei at the site of ETCV to determine the proportion of XX, XY, X, and Y cells. Of 31 ETCV cases, 20 were female and 10 were male (1 sex not recorded). Six of 10 cases with male infants had recuts with visible ETCV. In these 6 cases the average percentages (ranges) of XY cells, X-only cells, and Y-only cells in the region of inflammation were 81 (70-90), 11 (6-17), and 8 (2-14), respectively. There was a 2:1 female:male infant ratio in ETCV. Similar to acute chorionic vasculitis, the inflammation in ETCV is of fetal origin. It is still unknown, however, whether the stimulus for ETCV is of fetal or maternal origin.

  7. Comparative cytogenetic characterization of primary canine melanocytic lesions using array CGH and fluorescence in situ hybridization.

    Science.gov (United States)

    Poorman, Kelsey; Borst, Luke; Moroff, Scott; Roy, Siddharth; Labelle, Philippe; Motsinger-Reif, Alison; Breen, Matthew

    2015-06-01

    Melanocytic lesions originating from the oral mucosa or cutaneous epithelium are common in the general dog population, with up to 100,000 diagnoses each year in the USA. Oral melanoma is the most frequent canine neoplasm of the oral cavity, exhibiting a highly aggressive course. Cutaneous melanocytomas occur frequently, but rarely develop into a malignant form. Despite the differential prognosis, it has been assumed that subtypes of melanocytic lesions represent the same disease. To address the relative paucity of information about their genomic status, molecular cytogenetic analysis was performed on the three recognized subtypes of canine melanocytic lesions. Using array comparative genomic hybridization (aCGH) analysis, highly aberrant distinct copy number status across the tumor genome for both of the malignant melanoma subtypes was revealed. The most frequent aberrations included gain of dog chromosome (CFA) 13 and 17 and loss of CFA 22. Melanocytomas possessed fewer genome wide aberrations, yet showed a recurrent gain of CFA 20q15.3-17. A distinctive copy number profile, evident only in oral melanomas, displayed a sigmoidal pattern of copy number loss followed immediately by a gain, around CFA 30q14. Moreover, when assessed by fluorescence in situ hybridization (FISH), copy number aberrations of targeted genes, such as gain of c-MYC (80 % of cases) and loss of CDKN2A (68 % of cases), were observed. This study suggests that in concordance with what is known for human melanomas, canine melanomas of the oral mucosa and cutaneous epithelium are discrete and initiated by different molecular pathways.

  8. Toward a solid-phase nucleic acid hybridization assay within microfluidic channels using immobilized quantum dots as donors in fluorescence resonance energy transfer.

    Science.gov (United States)

    Chen, Lu; Algar, W Russ; Tavares, Anthony J; Krull, Ulrich J

    2011-01-01

    The optical properties and surface area of quantum dots (QDs) have made them an attractive platform for the development of nucleic acid biosensors based on fluorescence resonance energy transfer (FRET). Solid-phase assays based on FRET using mixtures of immobilized QD-oligonucleotide conjugates (QD biosensors) have been developed. The typical challenges associated with solid-phase detection strategies include non-specific adsorption, slow kinetics of hybridization, and sample manipulation. The new work herein has considered the immobilization of QD biosensors onto the surfaces of microfluidic channels in order to address these challenges. Microfluidic flow can be used to dynamically control stringency by adjustment of the potential in an electrokinetic-based microfluidics environment. The shearing force, Joule heating, and the competition between electroosmotic and electrophoretic mobilities allow the optimization of hybridization conditions, convective delivery of target to the channel surface to speed hybridization, amelioration of adsorption, and regeneration of the sensing surface. Microfluidic flow can also be used to deliver (for immobilization) and remove QD biosensors. QDs that were conjugated with two different oligonucleotide sequences were used to demonstrate feasibility. One oligonucleotide sequence on the QD was available as a linker for immobilization via hybridization with complementary oligonucleotides located on a glass surface within a microfluidic channel. A second oligonucleotide sequence on the QD served as a probe to transduce hybridization with target nucleic acid in a sample solution. A Cy3 label on the target was excited by FRET using green-emitting CdSe/ZnS QD donors and provided an analytical signal to explore this detection strategy. The immobilized QDs could be removed under denaturing conditions by disrupting the duplex that was used as the surface linker and thus allowed a new layer of QD biosensors to be re-coated within the channel

  9. Formation of diploid and triploid hybrid groupers (hybridization of Epinephelus coioides ♀ × Epinephelus lanceolatus ♂) and their 5S gene analysis.

    Science.gov (United States)

    Huang, Wen; Qin, Qinbo; Yang, Huirong; Li, Shuisheng; Hu, Chaoqun; Wang, Yude; Zhang, Yong; Liu, Shaojun; Lin, Haoran

    2016-10-07

    Interspecies hybridization is widely used to achieve heterosis or hybrid vigor, which has been observed and harnessed by breeders for centuries. Natural allopolyploid hybrids generally exhibit more superior heterosis than both the diploid progenies and their parental species. However, polyploid formation processes have been long ignored, the genetic basis of heterosis in polyploids remains elusive. In the present study, triploid hybrids had been demonstrated to contain two sets of chromosomes from mother species and one set from father species. Cellular polyploidization process in the embryos had been traced. The triploid hybrids might be formed by failure formation of the second polarized genome during the second meiosis stage. Four spindle centers were observed in anaphase stage of the first cell division. Three spindle centers were observed in side of cell plate after the first cell division. The 5S rDNA genes of four types of groupers were cloned and analyzed. The diploid and triploid hybrids had been proved to contain the tandem chimera structures which were recombined by maternal and paternal monomer units. The results indicated that genome re-fusion had occurred in the hybrid progenies. To further elucidate the genetic patterns of diploid and triploid hybrids, fluorescence chromosome location had been carried out, maternal 5S gene (M-386) were used as the probe. The triploid hybrids contained fewer fluorescence loci numbers than the maternal species. The results indicated that participation of paternal 5S gene in the triploid hybrid genome had degraded the match rates of M-386 probe. Our study is the first to investigate the cellular formation processes of natural allopolyploids in hybrid fish, the cellular polyploidization process may be caused by failure formation of the second polarized genome during the meiosis, and our results will provide the molecular basis of hybrid vigor in interspecies hybridization.

  10. Seven-hour fluorescence in situ hybridization technique for enumeration of Enterobacteriaceae in food and environmental water sample.

    Science.gov (United States)

    Ootsubo, M; Shimizu, T; Tanaka, R; Sawabe, T; Tajima, K; Ezura, Y

    2003-01-01

    A fluorescent in situ hybridization (FISH) technique using an Enterobacteriaceae-specific probe (probe D) to target 16S rRNA was improved in order to enumerate, within a single working day, Enterobacteriaceae present in food and environmental water samples. In order to minimize the time required for the FISH procedure, each step of FISH with probe D was re-evaluated using cultured Escherichia coli. Five minutes of ethanol treatment for cell fixation and hybridization were sufficient to visualize cultured E. coli, and FISH could be performed within 1 h. Because of the difficulties in detecting low levels of bacterial cells by FISH without cultivation, a FISH technique for detecting microcolonies on membrane filters was investigated to improve the bacterial detection limit. FISH with probe D following 6 h of cultivation to grow microcolonies on a 13 mm diameter membrane filter was performed, and whole Enterobacteriaceae microcolonies on the filter were then detected and enumerated by manual epifluorescence microscopic scanning at magnification of x100 in ca 5 min. The total time for FISH with probe D following cultivation (FISHFC) was reduced to within 7 h. FISHFC can be applied to enumerate cultivable Enterobacteriaceae in food (above 100 cells g-1) and environmental water samples (above 1 cell ml-1). Cultivable Enterobacteriaceae in food and water samples were enumerated accurately within 7 h using the FISHFC method. A FISHFC method capable of evaluating Enterobacteriaceae contamination in food and environmental water within a single working day was developed.

  11. Intermolecular G-quadruplex structure-based fluorescent DNA detection system.

    Science.gov (United States)

    Zhou, Hui; Wu, Zai-Sheng; Shen, Guo-Li; Yu, Ru-Qin

    2013-03-15

    Adopting multi-donors to pair with one acceptor could improve the performance of fluorogenic detection probes. However, common dyes (e.g., fluorescein) in close proximity to each other would self-quench the fluorescence, and the fluorescence is difficult to restore. In this contribution, we constructed a novel "multi-donors-to-one acceptor" fluorescent DNA detection system by means of the intermolecular G-quadruplex (IGQ) structure-based fluorescence signal enhancement combined with the hairpin oligonucleotide. The novel IGQ-hairpin system was characterized using the p53 gene as the model target DNA. The proposed system showed an improved assay performance due to the introduction of IGQ-structure into fluorescent signaling probes, which could inhibit the background fluorescence and increase fluorescence restoration amplitude of fluoresceins upon target DNA hybridization. The proof-of-concept scheme is expected to provide new insight into the potential of G-quadruplex structure and promote the application of fluorescent oligonucleotide probes in fundamental research, diagnosis, and treatment of genetic diseases. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Fluorescent nanohybrids based on asymmetrical cyanine dyes decorated carbon nanotubes

    OpenAIRE

    Çavuşlar, Özge; Cavuslar, Ozge

    2015-01-01

    In this thesis, we focused on imparting new optical properties to carbon nanotubes (CNTs) to allow their optical detection and visualization in biomedical applications. We investigated the interactions of CNTs and DNA wrapped CNTs with asymmetrical cyanine dye molecules to study the applicability of resulting hybrid materials to fluorescent based systems. When CNTs interacted with asymmetrical cyanine dyes, they constructed a light absorbing nanoarray. However, the fluorescence emission of th...

  13. Nanodiamond arrays on glass for quantification and fluorescence characterisation.

    Science.gov (United States)

    Heffernan, Ashleigh H; Greentree, Andrew D; Gibson, Brant C

    2017-08-23

    Quantifying the variation in emission properties of fluorescent nanodiamonds is important for developing their wide-ranging applicability. Directed self-assembly techniques show promise for positioning nanodiamonds precisely enabling such quantification. Here we show an approach for depositing nanodiamonds in pre-determined arrays which are used to gather statistical information about fluorescent lifetimes. The arrays were created via a layer of photoresist patterned with grids of apertures using electron beam lithography and then drop-cast with nanodiamonds. Electron microscopy revealed a 90% average deposition yield across 3,376 populated array sites, with an average of 20 nanodiamonds per site. Confocal microscopy, optimised for nitrogen vacancy fluorescence collection, revealed a broad distribution of fluorescent lifetimes in agreement with literature. This method for statistically quantifying fluorescent nanoparticles provides a step towards fabrication of hybrid photonic devices for applications from quantum cryptography to sensing.

  14. Biocompatible multi-walled carbon nanotube–CdTe quantum dot–polymer hybrids for medical applications

    Energy Technology Data Exchange (ETDEWEB)

    Baslak, Canan, E-mail: cananbaslak@gmail.com [Advanced Technology Research and Application Center, Selcuk University, 42075 Konya (Turkey); Department of Chemistry, Faculty of Science, Selcuk University, 42075 Konya (Turkey); Demirel Kars, Meltem, E-mail: dmeltem@yahoo.com [Advanced Technology Research and Application Center, Selcuk University, 42075 Konya (Turkey); Sarayonu Vocational High School, Selcuk University, 42430 Konya (Turkey); Karaman, Mustafa; Kus, Mahmut [Advanced Technology Research and Application Center, Selcuk University, 42075 Konya (Turkey); Department of Chemical Engineering, Faculty of Engineering, Selcuk University, 42075 Konya (Turkey); Cengeloglu, Yunus; Ersoz, Mustafa [Advanced Technology Research and Application Center, Selcuk University, 42075 Konya (Turkey); Department of Chemistry, Faculty of Science, Selcuk University, 42075 Konya (Turkey)

    2015-04-15

    Herein we report the synthesis of polymer coated quantum dots (QDs)–carbon nanotube composite material with high biocompatibility and low cellular toxicity. The synthesized multi-walled carbon nanotube (MWCNT)–QD-(-poly(glycidyl methacrylate)) (pGMA) hybrids were characterized using X-ray photoelectron spectroscopy, laser scanning confocal microscopy, transmission electron microscopy and scanning electron microscopy. The results showed that quantum dots were well-distributed on nanotube surfaces in high density. The toxicological assessments of QDs and MWCNT–QD–polymer hybrids in human mammary carcinoma cells and their fluorescence imaging in living cell system were carried out. MWCNT–QD–polymer hybrids possess intense red fluorescence signal under confocal microscopy and good fluorescence stability over 6-h exposure in living cell system. The toxicity comparison of QDs and MWCNT–QD–polymer hybrids has shown that the existence of PGMA thin coating on MWCNT–QD hybrid surface decreased the cellular toxicity and increased biocompatibility. - Highlights: • We report that polymer coating of QDs on CNTs increased their biocompatibility by decreasing cellular toxicity. • QD–CNT polymer hybrid material may be proposed as a good diagnostic agent to visualize cancer cells which may be improved as a therapeutic carrier in future. • Coating QDs with polymer seems to be a right choice to be used in medicinal applications both for diagnosis and for therapy.

  15. Biocompatible multi-walled carbon nanotube–CdTe quantum dot–polymer hybrids for medical applications

    International Nuclear Information System (INIS)

    Baslak, Canan; Demirel Kars, Meltem; Karaman, Mustafa; Kus, Mahmut; Cengeloglu, Yunus; Ersoz, Mustafa

    2015-01-01

    Herein we report the synthesis of polymer coated quantum dots (QDs)–carbon nanotube composite material with high biocompatibility and low cellular toxicity. The synthesized multi-walled carbon nanotube (MWCNT)–QD-(-poly(glycidyl methacrylate)) (pGMA) hybrids were characterized using X-ray photoelectron spectroscopy, laser scanning confocal microscopy, transmission electron microscopy and scanning electron microscopy. The results showed that quantum dots were well-distributed on nanotube surfaces in high density. The toxicological assessments of QDs and MWCNT–QD–polymer hybrids in human mammary carcinoma cells and their fluorescence imaging in living cell system were carried out. MWCNT–QD–polymer hybrids possess intense red fluorescence signal under confocal microscopy and good fluorescence stability over 6-h exposure in living cell system. The toxicity comparison of QDs and MWCNT–QD–polymer hybrids has shown that the existence of PGMA thin coating on MWCNT–QD hybrid surface decreased the cellular toxicity and increased biocompatibility. - Highlights: • We report that polymer coating of QDs on CNTs increased their biocompatibility by decreasing cellular toxicity. • QD–CNT polymer hybrid material may be proposed as a good diagnostic agent to visualize cancer cells which may be improved as a therapeutic carrier in future. • Coating QDs with polymer seems to be a right choice to be used in medicinal applications both for diagnosis and for therapy

  16. Particle Image Velocimetry Applications of Fluorescent Dye-Doped Particles

    OpenAIRE

    Petrosky, Brian Joseph

    2015-01-01

    Laser flare can often be a major issue in particle image velocimetry (PIV) involving solid boundaries in a flow or a gas-liquid interface. The use of fluorescent light from dye-doped particles has been demonstrated in water applications, but reproducing the technique in an airflow is more difficult due to particle size constraints and safety concerns. The following thesis is formatted in a hybrid manuscript style, including a full paper presenting the applications of fluorescent Kiton R...

  17. Multivalent calix[4]arene-based fluorescent sensor for detecting silver ions in aqueous media and physiological environment.

    Science.gov (United States)

    Lotfi, Behzad; Tarlani, Aliakbar; Akbari-Moghaddam, Peyman; Mirza-Aghayan, Maryam; Peyghan, Ali Ahmadi; Muzart, Jacques; Zadmard, Reza

    2017-04-15

    A new derivative of dipodal 1,3-calix[4]arene-based chemosensor (R), which was containing several binding sites have been synthesized and characterized by NMR, IR and LC-MS spectroscopic methods. The selectivity of Rhas been investigated in aqueous methanol, resulting in fluorescence shift and selective recognition of Ag + among 20 various alkali, alkaline earth and transition metal ions. Microstructural features of R and its complex with Ag + have been investigated by Atomic Force Microscopy (AFM). AFM images can clearly differentiate R from its complex of Ag + . Moreover; the complicated binding mode of metal-ligand complex has been explored by UV-Vis, LC-MS, FIR, Fluorescence titration, Job's plot method and theoretical approaches. Density functional theory (DFT) method at B3LYP/LANL2DZ level of theory was employed for computational studies. Theoretical calculations revealed that selectivity and specificity of R toward Ag + could be attributed to structural conformation of 1,3-alternate-calix[4]arene scaffold and molecular electrostatic potential of its surface. Furthermore; the competitive experiments were carried out to test sensor's ability for practical uses. Finally, the efficiency of R in matrix of physiological cations was examined and showed gradual emission enhancement which makes R an ideal candidate for monitoring of Ag + in physiological environment. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Anionic chromogenic chemosensors highly selective for fluoride or cyanide based on 4-(4-Nitrobenzylideneamine)phenol

    Energy Technology Data Exchange (ETDEWEB)

    Nicoleti, Celso R; Marini, Vanderleia G; Zimmermann, Lizandra M; Machado, Vanderlei G., E-mail: vanderlei.machado@ufsc.br [Departamento de Quimica, Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil)

    2012-08-15

    4-(4-Nitrobenzylideneamine)phenol was used in two strategies allowing the highly selective detection of F{sup -} and CN{sup -}. Firstly, the compound in acetonitrile acts as a chromogenic chemosensor based on the idea that more basic anions cause its deprotonation (colorless solution), generating a colored solution containing phenolate. The discrimination of CN{sup -} over F{sup -} was obtained by adding 1.4% water to acetonitrile: water preferentially solvates F{sup -}, leaving the CN{sup -} free to deprotonate the compound. Another strategy involved an assay comprised of the competition between phenolate dye and the analyte for calyx[4]pyrrole in acetonitrile, a receptor highly selective for F{sup -}. Phenolate and calyx[4]pyrrole form a hydrogen-bonded complex, which changes the color of the medium. On the addition of various anions, only F{sup -} was able to restore the original color corresponding to phenolate in solution due to the fact that the anion dislodges phenolate from the complexation site. (author)

  19. Anionic chromogenic chemosensors highly selective for fluoride or cyanide based on 4-(4-Nitrobenzylideneamine)phenol

    International Nuclear Information System (INIS)

    Nicoleti, Celso R.; Marini, Vanderleia G.; Zimmermann, Lizandra M.; Machado, Vanderlei G.

    2012-01-01

    4-(4-Nitrobenzylideneamine)phenol was used in two strategies allowing the highly selective detection of F - and CN - . Firstly, the compound in acetonitrile acts as a chromogenic chemosensor based on the idea that more basic anions cause its deprotonation (colorless solution), generating a colored solution containing phenolate. The discrimination of CN - over F - was obtained by adding 1.4% water to acetonitrile: water preferentially solvates F - , leaving the CN - free to deprotonate the compound. Another strategy involved an assay comprised of the competition between phenolate dye and the analyte for calyx[4]pyrrole in acetonitrile, a receptor highly selective for F - . Phenolate and calyx[4]pyrrole form a hydrogen-bonded complex, which changes the color of the medium. On the addition of various anions, only F - was able to restore the original color corresponding to phenolate in solution due to the fact that the anion dislodges phenolate from the complexation site. (author)

  20. Plant Cell Imaging Based on Nanodiamonds with Excitation-Dependent Fluorescence

    Science.gov (United States)

    Su, Li-Xia; Lou, Qing; Jiao, Zhen; Shan, Chong-Xin

    2016-09-01

    Despite extensive work on fluorescence behavior stemming from color centers of diamond, reports on the excitation-dependent fluorescence of nanodiamonds (NDs) with a large-scale redshift from 400 to 620 nm under different excitation wavelengths are so far much fewer, especially in biological applications. The fluorescence can be attributed to the combined effects of the fraction of sp2-hybridized carbon atoms among the surface of the fine diamond nanoparticles and the defect energy trapping states on the surface of the diamond. The excitation-dependent fluorescent NDs have been applied in plant cell imaging for the first time. The results reported in this paper may provide a promising route to multiple-color bioimaging using NDs.

  1. Plant Cell Imaging Based on Nanodiamonds with Excitation-Dependent Fluorescence.

    Science.gov (United States)

    Su, Li-Xia; Lou, Qing; Jiao, Zhen; Shan, Chong-Xin

    2016-12-01

    Despite extensive work on fluorescence behavior stemming from color centers of diamond, reports on the excitation-dependent fluorescence of nanodiamonds (NDs) with a large-scale redshift from 400 to 620 nm under different excitation wavelengths are so far much fewer, especially in biological applications. The fluorescence can be attributed to the combined effects of the fraction of sp(2)-hybridized carbon atoms among the surface of the fine diamond nanoparticles and the defect energy trapping states on the surface of the diamond. The excitation-dependent fluorescent NDs have been applied in plant cell imaging for the first time. The results reported in this paper may provide a promising route to multiple-color bioimaging using NDs.

  2. A cost-effective and practical polybenzanthrone-based fluorescent sensor for efficient determination of palladium (II) ion and its application in agricultural crops and environment

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Ge [Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013 (China); Wen, Yangping [Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, and Key Laboratory of Physiology, Ecology and Cultivation of Double Cropping Rice, Ministry of Agriculture, Jiangxi Agricultural University, Nanchang 330045 (China); Guo, Chaoqun [Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013 (China); Xu, Jingkun, E-mail: xujingkun@tsinghua.org.cn [Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013 (China); Lu, Baoyang; Duan, Xuemin [Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013 (China); He, Haohua; Yang, Jun [Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, and Key Laboratory of Physiology, Ecology and Cultivation of Double Cropping Rice, Ministry of Agriculture, Jiangxi Agricultural University, Nanchang 330045 (China)

    2013-12-17

    Graphical abstract: -- Highlights: •PBA was facilely electrosynthesized in the binary solvent system containing of acetonitrile and boron trifluoride diethyl etherate. •“On–off” type fluorescent sensor based on this polymer for highly selective, sensitive, and practical detection of Pd{sup 2+} was designed. •The possible mechanism between Pd{sup 2+} and PBA has been discussed and TEM preliminary proved the proposed mechanism. •This fluorescent CP-based sensor has been used to practically detect Pd{sup 2+} in agricultural crops and environment samples with satisfactory results. -- Abstract: A highly selective and sensitive fluorescent chemosensor suitable for practical measurement of palladium ion (Pd{sup 2+}) in agricultural crops and environment samples has been successfully fabricated using polybenzanthrone (PBA). PBA was facilely electrosynthesized in the mixed electrolyte of acetonitrile and boron trifluoride diethyl etherate. The fluorescence intensity of PBA showed a linear response to Pd{sup 2+} in the concentration range of 5 nM–0.12 mM with a detection limit of 0.277 nM and quantification limit of 0.925 nM. Different compounds existing in agricultural crops and environment such as common metal ions, anions, natural amino acids, carbohydrates, and organic acids were used to examine the selectivity of the as-fabricated sensor, and no obvious fluorescence change could be observed in these interferents and their mixtures. A possible mechanism was proposed that the coordination of PBA and Pd{sup 2+} enhance the aggregation of polymer chains, which led to a significant quenching of PBA emission, and this was further confirmed by absorption spectra monitoring and transmission electron microscopy. The excellent performance of the proposed sensor and satisfactory results of the Pd{sup 2+} determination in practical samples suggested that the PBA-based fluorescent sensor for the determination of Pd{sup 2+} will be a good candidate for application in

  3. Rapid detection of chromosome rearrangement in medical diagnostic X-ray workers by using fluorescence in situ hybridization and study on dose estimation

    International Nuclear Information System (INIS)

    Wang Zhiquan; Sun Yuanming; Li Jin

    1998-01-01

    Objective: Biological doses were estimated for medical diagnostic X-ray workers. Methods: Chromosome rearrangements in X-ray workers were analysed by fluorescence in situ hybridization (FISH) with composite whole chromosome paintings number 4 and number 7. Results: The frequency of translocation in medical diagnostic X-ray workers was much higher than that in control group (P<0.01). The biological doses to individual X-ray workers were calculated by their translocation frequency. The translocation frequencies of both FISH and G-banding were in good agreement. Conclusion: The biological doses to X-ray workers are estimated by FISH first when their dosimetry records are not documented

  4. Human cDNA mapping using fluorescence in situ hybridization. Progress report, April 1, 1992--December 31, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Korenberg, J.R.

    1993-03-04

    Genetic mapping is approached using the techniques of high resolution fluorescence in situ hybridization (FISH). This technology and the results of its application are designed to rapidly generate whole genome as tool box of expressed sequence to speed the identification of human disease genes. The results of this study are intended to dovetail with and to link the results of existing technologies for creating backbone YAC and genetic maps. In the first eight months, this approach generated 60--80% of the expressed sequence map, the remainder expected to be derived through more long-term, labor-intensive, regional chromosomal gene searches or sequencing. The laboratory has made significant progress in the set-up phase, in mapping fetal and adult brain and other cDNAs, in testing a model system for directly linking genetic and physical maps using FISH with small fragments, in setting up a database, and in establishing the validity and throughput of the system.

  5. Integrated ultrasonic particle positioning and low excitation light fluorescence imaging

    International Nuclear Information System (INIS)

    Bernassau, A. L.; Al-Rawhani, M.; Beeley, J.; Cumming, D. R. S.

    2013-01-01

    A compact hybrid system has been developed to position and detect fluorescent micro-particles by combining a Single Photon Avalanche Diode (SPAD) imager with an acoustic manipulator. The detector comprises a SPAD array, light-emitting diode (LED), lenses, and optical filters. The acoustic device is formed of multiple transducers surrounding an octagonal cavity. By stimulating pairs of transducers simultaneously, an acoustic landscape is created causing fluorescent micro-particles to agglomerate into lines. The fluorescent pattern is excited by a low power LED and detected by the SPAD imager. Our technique combines particle manipulation and visualization in a compact, low power, portable setup

  6. Naphthalene-based fluorescent probes for glutathione and their applications in living cells and patients with sepsis

    Science.gov (United States)

    Li, Jun; Kwon, Younghee; Chung, Kyung Soo; Lim, Chang Su; Lee, Dayoung; Yue, Yongkang; Yoon, Jisoo; Kim, Gyoungmi; Nam, Sang-Jip; Chung, Youn Wook; Kim, Hwan Myung; Yin, Caixia; Ryu, Ji-Hwan; Yoon, Juyoung

    2018-01-01

    Rationale: Among the biothiols-related diseases, sepsis is defined as life-threatening organ dysfunction caused by a dysregulated host response to infection and can result in severe oxidative stress and damage to multiple organs. In this study, we aimed to develop a fluorescence chemosensor that can both detect GSH and further predict sepsis. Methods: In this study, two new naphthalene dialdehyde compounds containing different functional groups were synthesized, and the sensing abilities of these compounds towards biothiols and its applications for prediction of sepsis were investigated. Results: Our study revealed that the newly developed probe 6-methoxynaphthalene-2, 3-dicarbaldehyde (MNDA) has two-photon is capable of detecting GSH in live cells with two-photon microscopy (TPM) under the excitation at a wavelength of 900 nm. Furthermore, two GSH detection probes naphthalene-2,3-dicarboxaldehyde (NDA) and 6-fluoronaphthalene-2,3-dicarbaldehyde (FNDA) not only can detect GSH in living cells, but also showed clinical significance for the diagnosis and prediction of mortality in patients with sepsis. Conclusions: These results open up a promising direction for further medical diagnostic techniques. PMID:29507630

  7. A highly selective and non-reaction based chemosensor for the detection of Hg2+ ions using a luminescent iridium(III complex.

    Directory of Open Access Journals (Sweden)

    Daniel Shiu-Hin Chan

    Full Text Available We report herein a novel luminescent iridium(III complex with two hydrophobic carbon chains as a non-reaction based chemosensor for the detection of Hg(2+ ions in aqueous solution (<0.002% of organic solvent attributed to the probe solution. Upon the addition of Hg(2+ ions, the emission intensity of the complex was significantly enhanced and this change could be monitored by the naked eye under UV irradiation. The iridium(III complex shows high specificity for Hg(2+ ions over eighteen other cations. The system is capable of detecting micromolar levels of Hg(2+ ions, which is within the range of many chemical systems.

  8. In situ hybridization of phytoplankton using fluorescently labeled rRNA probes

    OpenAIRE

    Groben, R.; Medlin, Linda

    2005-01-01

    Fluorescently-labelled molecular probes were used to identify and characterise phytoplankton species using in situ hybridisation coupled with fluorescence microscopy and flow cytometry. The application of this technique is sometimes problematic, because of the many different species with which this method is to be used. Problems that may occur are: probe penetration versus maintanance of cell stability, strong autofluorescence and/or cell lost during the sample processing. Here we present a m...

  9. Utility and impact of early t(15;17) identification by Fluorescence In Situ Hybridization (FISH) in clinical decision making for patients in Acute Promyelocytic Leukemia (APL).

    Science.gov (United States)

    Kolhe, R; Mangaonkar, A; Mansour, J; Clemmons, A; Shaw, J; Dupont, B; Walczak, L; Mondal, A; Rojiani, A; Jillella, A; Kota, V

    2015-08-01

    Acute Promyelocytic Leukemia (APL) is a curable malignancy with studies showing above 90% survival. However, population-based studies looking at survival suggest that approximately 30% of patients with APL die during induction. Early demonstration of t(15;17) will lead to accurate decision making regarding treatment. The aim of this project was to validate earlier time frames for the Abbott Molecular Vysis LSI promyelocytic leukemia (PML)/ retinoic acid receptor alpha (RARA) fluorescence in situ hybridization (FISH) probe (ASR 6-16 h). Twenty patients (15 APL cases and five non-APL cases) were selected for validating various hybridization times for the FISH probe. Expected normal signal pattern was two red and two green signals (2R2G), and the most common expected abnormal signal pattern was two fusion (yellow) signals, one red and one green (2F1R1G) and/or one fusion, one red and one green (1F1R1G). The specificity of the probe ranged from 84% at 2 h, 86% at 4 h, 84% at 6 h, and 87% for overnight hybridization. The sensitivity increased from 79% at 2 h, 80% at 4 h, 81% at 6 h to 87% for overnight hybridization. Based on the validation studies, we recommend reading of FISH results at the 4-h incubation mark for a preliminary diagnosis and confirmation with overnight hybridization. © 2015 John Wiley & Sons Ltd.

  10. Hybrid phosphorescence and fluorescence native spectroscopy for breast cancer detection.

    Science.gov (United States)

    Alimova, Alexandra; Katz, A; Sriramoju, Vidyasagar; Budansky, Yuri; Bykov, Alexei A; Zeylikovich, Roman; Alfano, R R

    2007-01-01

    Fluorescence and phosphorescence measurements are performed on normal and malignant ex vivo human breast tissues using UV LED and xenon lamp excitation. Tryptophan (trp) phosphorescence intensity is higher in both normal glandular and adipose tissue when compared to malignant tissue. An algorithm based on the ratio of trp fluorescence intensity at 345 nm to phosphorescence intensity at 500 nm is successfully used to separate normal from malignant tissue types. Normal specimens consistently exhibited a low I(345)I(500) ratio (15). The ratio analysis correlates well with histopathology. Intensity ratio maps with a spatial resolution of 0.5 mm are generated in which local regions of malignancy could be identified.

  11. A Continuous Flow System for the Measurement of Ambient Nitrogen Oxides [NO + NO] Using Rhodamine B Hydrazide as a Chemosensor

    Directory of Open Access Journals (Sweden)

    Pandurangappa Malingappa

    2014-01-01

    Full Text Available A new chemosensor has been used to monitor atmospheric nitrogen oxides [NO + NO 2 ] at parts per billion (ppb level. It is based on the catalytic reaction of nitrogen oxides with rhodamine B hydrazide (RBH to produce a colored compound through the hydrolysis of the amide bond of the molecule. A simple colorimeter has been used to monitor atmospheric nitrogen dioxide at ppb level. The air samples were purged through a sampling cuvette containing RBH solution using peristaltic pump. The proposed method has been successfully applied to monitor the ambient nitrogen dioxide levels at traffic junction points within the city limits and the results obtained are compared with the standard Griess-Ilosvay method.

  12. Fluorescence Enhancement on Large Area Self-Assembled Plasmonic-3D Photonic Crystals.

    Science.gov (United States)

    Chen, Guojian; Wang, Dongzhu; Hong, Wei; Sun, Lu; Zhu, Yongxiang; Chen, Xudong

    2017-03-01

    Discontinuous plasmonic-3D photonic crystal hybrid structures are fabricated in order to evaluate the coupling effect of surface plasmon resonance and the photonic stop band. The nanostructures are prepared by silver sputtering deposition on top of hydrophobic 3D photonic crystals. The localized surface plasmon resonance of the nanostructure has a symbiotic relationship with the 3D photonic stop band, leading to highly tunable characteristics. Fluorescence enhancements of conjugated polymer and quantum dot based on these hybrid structures are studied. The maximum fluorescence enhancement for the conjugated polymer of poly(5-methoxy-2-(3-sulfopropoxy)-1,4-phenylenevinylene) potassium salt by a factor of 87 is achieved as compared with that on a glass substrate due to the enhanced near-field from the discontinuous plasmonic structures, strong scattering effects from rough metal surface with photonic stop band, and accelerated decay rates from metal-coupled excited state of the fluorophore. It is demonstrated that the enhancement induced by the hybrid structures has a larger effective distance (optimum thickness ≈130 nm) than conventional plasmonic systems. It is expected that this approach has tremendous potential in the field of sensors, fluorescence-imaging, and optoelectronic applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Human cDNA mapping using fluorescence in situ hybridization. Progress report, April 1--December 31, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Korenberg, J.R.

    1993-12-31

    The ultimate goal of this proposal is to create a cDNA map of the human genome. Mapping is approached using the techniques of high resolution fluorescence in situ hybridization (FISH). This technology and the results of its application are designed to rapidly generate whole genome as tool box of expressed sequence to speed the identification of human disease genes. The results of this study are intended to dovetail with and to link the results of existing technologies for creating backbone YAC and genetic maps. In the first eight months, this approach will generate 60--80% of the expressed sequence map, the remainder expected to be derived through more long-term, labor-intensive, regional chromosomal gene searches or sequencing. The laboratory has made significant progress in the set-up phase, in mapping fetal and adult brain and other cDNAs, in testing a model system for directly linking genetic and physical maps using FISH with small fragments, in setting up a database, and in establishing the validity and throughput of the system.

  14. Analysis of methanogenic activity in a thermophilic-dry anaerobic reactor: Use of fluorescent in situ hybridization

    International Nuclear Information System (INIS)

    Montero, B.; Garcia-Morales, J.L.; Sales, D.; Solera, R.

    2009-01-01

    Methanogenic activity in a thermophilic-dry anaerobic reactor was determined by comparing the amount of methane generated for each of the organic loading rates with the size of the total and specific methanogenic population, as determined by fluorescent in situ hybridization. A high correlation was evident between the total methanogenic activity and retention time [-0.6988Ln(x) + 2.667] (R 2 0.8866). The total methanogenic activity increased from 0.04 x 10 -8 mLCH 4 cell -1 day -1 to 0.38 x 10 -8 mLCH 4 cell -1 day -1 while the retention time decreased, augmenting the organic loading rates. The specific methanogenic activities of H 2 -utilizing methanogens and acetate-utilizing methanogens increased until they stabilised at 0.64 x 10 -8 mLCH 4 cell -1 day -1 and 0.33 x 10 -8 mLCH 4 cell -1 day -1 , respectively. The methanogenic activity of H 2 -utilizing methanogens was higher than acetate-utilizing methanogens, indicating that maintaining a low partial pressure of hydrogen does not inhibit the acetoclastic methanogenesis or the anaerobic process

  15. Fluorescence in situ hybridization in combination with the comet assay and micronucleus test in genetic toxicology

    Directory of Open Access Journals (Sweden)

    Hovhannisyan Galina G

    2010-09-01

    Full Text Available Abstract Comet assay and micronucleus (MN test are widely applied in genotoxicity testing and biomonitoring. While comet assay permits to measure direct DNA-strand breaking capacity of a tested agent MN test allows estimating the induced amount of chromosome and/or genome mutations. The potential of these two methods can be enhanced by the combination with fluorescence in situ hybridization (FISH techniques. FISH plus comet assay allows the recognition of targets of DNA damage and repairing directly. FISH combined with MN test is able to characterize the occurrence of different chromosomes in MN and to identify potential chromosomal targets of mutagenic substances. Thus, combination of FISH with the comet assay or MN test proved to be promising techniques for evaluation of the distribution of DNA and chromosome damage in the entire genome of individual cells. FISH technique also permits to study comet and MN formation, necessary for correct application of these methods. This paper reviews the relevant literature on advantages and limitations of Comet-FISH and MN-FISH assays application in genetic toxicology.

  16. Automated processing of fluorescence in-situ hybridization slides for HER2 testing in breast and gastro-esophageal carcinomas.

    Science.gov (United States)

    Tafe, Laura J; Allen, Samantha F; Steinmetz, Heather B; Dokus, Betty A; Cook, Leanne J; Marotti, Jonathan D; Tsongalis, Gregory J

    2014-08-01

    HER2 fluorescence in-situ hybridization (FISH) is used in breast and gastro-esophageal carcinoma for determining HER2 gene amplification and patients' eligibility for HER2 targeted therapeutics. Traditional manual processing of the FISH slides is labor intensive because of multiple steps that require hands on manipulation of the slides and specifically timed intervals between steps. This highly manual processing also introduces inter-run and inter-operator variability that may affect the quality of the FISH result. Therefore, we sought to incorporate an automated processing instrument into our FISH workflow. Twenty-six cases including breast (20) and gastro-esophageal (6) cancer comprising 23 biopsies and three excision specimens were tested for HER2 FISH (Pathvysion, Abbott) using the Thermobrite Elite (TBE) system (Leica). Up to 12 slides can be run simultaneously. All cases were previously tested by the Pathvysion HER2 FISH assay with manual preparation. Twenty cells were counted by two observers for each case; five cases were tested on three separate runs by different operators to evaluate the precision and inter-operator variability. There was 100% concordance in the scoring between the manual and TBE methods as well as among the five cases that were tested on three runs. Only one case failed due to poor probe hybridization. In total, seven cases were positive for HER2 amplification (HER2:CEP17 ratio >2.2) and the remaining 19 were negative (HER2:CEP17 ratio <1.8) utilizing the 2007 ASCO/CAP scoring criteria. Due to the automated denaturation and hybridization, for each run, there was a reduction in labor of 3.5h which could then be dedicated to other lab functions. The TBE is a walk away pre- and post-hybridization system that automates FISH slide processing, improves work flow and consistency and saves approximately 3.5h of technologist time. The instrument has a small footprint thus occupying minimal counter space. TBE processed slides performed

  17. Paper-based solid-phase multiplexed nucleic acid hybridization assay with tunable dynamic range using immobilized quantum dots as donors in fluorescence resonance energy transfer.

    Science.gov (United States)

    Noor, M Omair; Krull, Ulrich J

    2013-08-06

    A multiplexed solid-phase nucleic acid hybridization assay on a paper-based platform is presented using multicolor immobilized quantum dots (QDs) as donors in fluorescence resonance energy transfer (FRET). The surface of paper was modified with imidazole groups to immobilize two types of QD-probe oligonucleotide conjugates that were assembled in solution. Green-emitting QDs (gQDs) and red-emitting QDs (rQDs) served as donors with Cy3 and Alexa Fluor 647 (A647) acceptors. The gQD/Cy3 FRET pair served as an internal standard, while the rQD/A647 FRET pair served as a detection channel, combining the control and analytical test zones in one physical location. Hybridization of dye-labeled oligonucleotide targets provided the proximity for FRET sensitized emission from the acceptor dyes, which served as an analytical signal. Hybridization assays in the multicolor format provided a limit of detection of 90 fmol and an upper limit of dynamic range of 3.5 pmol. The use of an array of detection zones was designed to provide improved analytical figures of merit compared to that which could be achieved on one type of array design in terms of relative concentration of multicolor QDs. The hybridization assays showed excellent resistance to nonspecific adsorption of oligonucleotides. Selectivity of the two-plex hybridization assay was demonstrated by single nucleotide polymorphism (SNP) detection at a contrast ratio of 50:1. Additionally, it is shown that the use of preformed QD-probe oligonucleotide conjugates and consideration of the relative number density of the two types of QD-probe conjugates in the two-color assay format is advantageous to maximize assay sensitivity and the upper limit of dynamic range.

  18. Mechanisms of induction of chromosomal aberrations and their detection by fluorescence in situ hybridization

    International Nuclear Information System (INIS)

    Natarajan, A.T.

    2002-01-01

    Recently introduced fluorescence in situ hybridization (FISH) technique employing chromosome specific DNA libraries as well as region specific DNA probes (e.g., centromere, telomere) have helped to analyse chromosomal aberrations in great detail and thus have given some new insights into the mechanisms of induction of chromosomal aberrations. The relative proportion of induction of translocations and dicentrics by ionising radiation was studied in human, mice and Chinese hamster cells. Many of the studies point to the differences between the mechanisms of induction of dicentrics and translocations. Preliminary results obtained in our laboratory using arm specific probes for human chromosomes 1 and 3 indicate that the aberrations between the arms appear to be more than expected on a random basis. By employing telomeric probes the frequencies of interstitial deletions were found to be high and similar to the frequencies of dicentrics both in human and mouse lymphocytes. A recent study with human chromosome specific probes clearly shows variation of sensitivity of chromosomes for the induction of exchange aberrations. Radiation response studies with Chinese hamster cells using telomeric probes, suggest that telomeric sequences, especially interstitial ones appear to be an important factor in the origin of both spontaneous and induced chromosomal aberrations

  19. Hybrid plasmonic bullseye antennas for efficient photon collection

    DEFF Research Database (Denmark)

    Andersen, Sebastian Kim Hjælm; Bozhevolnyi, Sergey I.; Shalaev, Vladimir M.

    2018-01-01

    We propose highly efficient hybrid plasmonic bullseye antennas for collecting photon emission from nm sized quantum emitters. In our approach, the emitter radiation is coupled to surface plasmon polaritons that are consequently converted into highly directional out-of-plane emission. The proposed...... configuration consists of a high-index titania bullseye grating separated from a planar silver film by a thin low-index silica spacer layer. Such hybrid systems are theoretically capable of directing 85% of the dipole emission into a 0.9 NA objective, while featuring a spectrally narrow-band tunable decay rate...... stable operation. For experimental characterization of the antenna properties, a fluorescent nanodiamond containing multiple nitrogen vacancy centers (NV-center) was deterministically placed in the bullseye center, using an atomic force microscope. Probing the NV-center fluorescence we demonstrate...

  20. Considerations in the use of fluorescence in situ hybridization (FISH) and confocal laser scanning microscopy to characterize rumen methanogens and define their spatial distributions.

    Science.gov (United States)

    Valle, Edith R; Henderson, Gemma; Janssen, Peter H; Cox, Faith; Alexander, Trevor W; McAllister, Tim A

    2015-06-01

    In this study, methanogen-specific coenzyme F420 autofluorescence and confocal laser scanning microscopy were used to identify rumen methanogens and define their spatial distribution in free-living, biofilm-, and protozoa-associated microenvironments. Fluorescence in situ hybridization (FISH) with temperature-controlled hybridization was used in an attempt to describe methanogen diversity. A heat pretreatment (65 °C, 1 h) was found to be a noninvasive method to increase probe access to methanogen RNA targets. Despite efforts to optimize FISH, 16S rRNA methanogen-specific probes, including Arch915, bound to some cells that lacked F420, possibly identifying uncharacterized Methanomassiliicoccales or reflecting nonspecific binding to other members of the rumen bacterial community. A probe targeting RNA from the methanogenesis-specific methyl coenzyme M reductase (mcr) gene was shown to detect cultured Methanosarcina cells with signal intensities comparable to those of 16S rRNA probes. However, the probe failed to hybridize with the majority of F420-emitting rumen methanogens, possibly because of differences in cell wall permeability among methanogen species. Methanogens were shown to integrate into microbial biofilms and to exist as ecto- and endosymbionts with rumen protozoa. Characterizing rumen methanogens and defining their spatial distribution may provide insight into mitigation strategies for ruminal methanogenesis.

  1. Fluorescence in situ hybridization as adjunct to cytology improves the diagnosis and directs estimation of prognosis of malignant pleural effusions

    Directory of Open Access Journals (Sweden)

    Han Jingquan

    2012-11-01

    Full Text Available Abstract Background The identification of malignant cells in effusions by conventional cytology is hampered by its limited sensitivity and specificity. The aim of this study was to investigate the value of fluorescence in situ hybridization (FISH as adjuncts to conventional cytologic examination in patients with malignant pleural effusions. Methods We conducted a retrospective cohort study of 93 inpatients with pleural effusions (72 malignant pleural effusions metastatic from 11 different organs and 21 benign over 23 months. All the patients came from Chinese northeast areas. Aspirated pleural fluid underwent cytologic examination and fluorescence in situ hybridization (FISH for aneuploidy. We used FISH in single-colour or if appropriate in dual-colour evaluation to detect chromosomal aberrations (chromosomes 7, 11, and 17 in effusion cells as markers of malignancy, to raise the diagnostic yield and identified the efficiency by diagnostic biopsy. Predominant cytogenetic anomalies and patterns of intratumor cytogenetic heterogeneity were brought in relation to overall survival rate. Results Cytology alone confirmed malignant pleural effusions in 45 of 72 patients (sensitivity 63%, whereas FISH alone positively identified 48 of 72 patients (sensitivity 67%. Both tests had high specificity in predicting benign effusions. If cytology and FISH were considered together, they exhibited 88% sensitivity and 94.5% specificity in discriminating benign and malignant effusions. Combined, the two assays were more sensitive than either test alone. Although the positive predictive value of each test was 94.5%, the negative predictive value of cytology and FISH combined was 78%, better than 47% and 44% for FISH and cytology alone, respectively. There was a significantly prolonged survival rate for patients with aneuploidy for chromosome 17. Conclusions FISH in combination with conventional cytology is a highly sensitive and specific diagnostic tool for detecting

  2. Detection of group B streptococci in Lim broth by use of group B streptococcus peptide nucleic acid fluorescent in situ hybridization and selective and nonselective agars.

    Science.gov (United States)

    Montague, Naomi S; Cleary, Timothy J; Martinez, Octavio V; Procop, Gary W

    2008-10-01

    The sensitivity, specificity, and positive and negative predictive values for the detection of group B streptococci from Lim enrichment broth with sheep blood agar (SBA), with selective Streptococcus agar (SSA), and by a peptide nucleic acid fluorescent in situ hybridization (PNA FISH) assay were as follows: for culture on SBA, 68.4%, 100%, 100%, and 87.9%, respectively; for culture on SSA, 85.5%, 100%, 100%, and 94.1%, respectively; and for the PNA FISH assay, 97.4%, 98.3%, 96.1%, and 98.9%, respectively.

  3. A novel detection platform for parallel monitoring of DNA hybridization with high sensitivity and specificity

    DEFF Research Database (Denmark)

    Yi, Sun; Perch-Nielsen, Ivan R.; Wang, Zhenyu

    We developed a high-sensitive platform to monior multiple hybridization events in real time. By creating a microoptical array in a polymeric chip, the system combine the excellent discriminative power of supercritical angle fluorescence (SAF) microscopy with high-throughput capabilities of microa......We developed a high-sensitive platform to monior multiple hybridization events in real time. By creating a microoptical array in a polymeric chip, the system combine the excellent discriminative power of supercritical angle fluorescence (SAF) microscopy with high-throughput capabilities...

  4. Two emissive-magnetic composite platforms for Hg(II) sensing and removal: The combination of magnetic core, silica molecular sieve and rhodamine chemosensors

    Science.gov (United States)

    Mao, Hanping; Liu, Zhongshou

    2018-01-01

    In this paper, a composite sensing platform for Hg(II) optical sensing and removal was designed and reported. A core-shell structure was adopted, using magnetic Fe3O4 nanoparticles as the core, silica molecular sieve MCM-41 as the shell, respectively. Two rhodamine derivatives were synthesized as chemosensor and covalently immobilized into MCM-41 tunnels. Corresponding composite samples were characterized with SEM/TEM images, XRD analysis, IR spectra, thermogravimetry and N2 adsorption/desorption analysis, which confirmed their core-shell structure. Their emission was increased by Hg(II), showing emission turn on effect. High selectivity, linear working curves and recyclability were obtained from these composite samples.

  5. Fluorescence in situ hybridization and qPCR to detect Merkel cell polyomavirus physical status and load in Merkel cell carcinomas.

    Science.gov (United States)

    Haugg, Anke M; Rennspiess, Dorit; zur Hausen, Axel; Speel, Ernst-Jan M; Cathomas, Gieri; Becker, Jürgen C; Schrama, David

    2014-12-15

    The Merkel cell polyomavirus (MCPyV) is detected in 80% of Merkel cell carcinomas (MCC). Clonal integration and tumor-specific mutations in the large T antigen are strong arguments that MCPyV is a human tumor virus. However, the relationship between viral presence and cancer induction remains discussed controversially. Since almost all studies on virus prevalence are based on PCR techniques, we performed MCPyV fluorescence in situ hybridization (FISH) on MCC to gain information about the quality of the viral presence on the single cell level. MCPyV-FISH was performed on tissue microarrays containing 62 formalin-fixed and paraffin-embedded tissue samples including all tumor grades of 42 patients. The hybridization patterns were correlated to the qPCR data determined on corresponding whole tissue sections. Indeed, MCPyV-FISH and qPCR data were highly correlated, i.e. 83% for FISH-positive and 93% for FISH-negative cores. Accordingly, the mean of the qPCR values of all MCPyV-positive cores differed significantly from the mean of the negative cores (p = 0.0076). Importantly, two hybridization patterns were definable in the MCPyV-FISH: a punctate pattern (85%) indicating viral integration, which correlated with a moderate viral abundance and a combination of the punctate with a diffuse pattern (15%), suggesting a possible coexistence of integrated and episomal virus which was associated with very high viral load and VP1 expression. Thus, MCPyV-FISH adds important information on the single cell level within the histomorphological context and could therefore be an important tool to further elucidate MCPyV related carcinogenesis. © 2014 UICC.

  6. Stabilizing Protein Effects on the Pressure Sensitivity of Fluorescent Gold Nanoclusters

    Science.gov (United States)

    2016-01-13

    affected by the environment of the stabilizing protein, allowing these hybrid systems to act as sensors in many applications.2,9,14–19 This has led...Biosens Bioelectron. 2012;32:297–299. 8. Joseph D, Geckeler KE. Synthesis of highly fluorescent gold nanoclusters using egg white proteins. Colloids Surf...Chang HW, Chien YC, Hsiao JK, Cheng JT, Chou PT. Insulin -directed synthesis of fluorescent gold nanoclusters: preservation of insulin bioactivity and

  7. Molecular Organization Induced Anisotropic Properties of Perylene - Silica Hybrid Nanoparticles.

    Science.gov (United States)

    Sriramulu, Deepa; Turaga, Shuvan Prashant; Bettiol, Andrew Anthony; Valiyaveettil, Suresh

    2017-08-10

    Optically active silica nanoparticles are interesting owing to high stability and easy accessibility. Unlike previous reports on dye loaded silica particles, here we address an important question on how optical properties are dependent on the aggregation-induced segregation of perylene molecules inside and outside the silica nanoparticles. Three differentially functionalized fluorescent perylene - silica hybrid nanoparticles are prepared from appropriate ratios of perylene derivatives and tetraethyl orthosilicate (TEOS) and investigated the structure property correlation (P-ST, P-NP and P-SF). The particles differ from each other on the distribution, organization and intermolecular interaction of perylene inside or outside the silica matrix. Structure and morphology of all hybrid nanoparticles were characterized using a range of techniques such as electron microscope, optical spectroscopic measurements and thermal analysis. The organizations of perylene in three different silica nanoparticles were explored using steady-state fluorescence, fluorescence anisotropy, lifetime measurements and solid state polarized spectroscopic studies. The interactions and changes in optical properties of the silica nanoparticles in presence of different amines were tested and quantified both in solution and in vapor phase using fluorescence quenching studies. The synthesized materials can be regenerated after washing with water and reused for sensing of amines.

  8. Chemo-sensors development based on low-dimensional codoped Mn2O3-ZnO nanoparticles using flat-silver electrodes.

    Science.gov (United States)

    Rahman, Mohammed M; Gruner, George; Al-Ghamdi, Mohammed Saad; Daous, Muhammed A; Khan, Sher Bahadar; Asiri, Abdullah M

    2013-03-28

    Semiconductor doped nanostructure materials have attained considerable attention owing to their electronic, opto-electronic, para-magnetic, photo-catalysis, electro-chemical, mechanical behaviors and their potential applications in different research areas. Doped nanomaterials might be a promising owing to their high-specific surface-area, low-resistances, high-catalytic activity, attractive electro-chemical and optical properties. Nanomaterials are also scientifically significant transition metal-doped nanostructure materials owing to their extraordinary mechanical, optical, electrical, electronic, thermal, and magnetic characteristics. Recently, it has gained significant interest in manganese oxide doped-semiconductor materials in order to develop their physico-chemical behaviors and extend their efficient applications. It has not only investigated the basic of magnetism, but also has huge potential in scientific features such as magnetic materials, bio- & chemi-sensors, photo-catalysts, and absorbent nanomaterials. The chemical sensor also displays the higher-sensitivity, reproducibility, long-term stability, and enhanced electrochemical responses. The calibration plot is linear (r2 = 0.977) over the 0.1 nM to 50.0 μM 4-nitrophenol concentration ranges. The sensitivity and detection limit is ~4.6667 μA cm-2 μM-1 and ~0.83 ± 0.2 nM (at a Signal-to-Noise-Ratio, SNR of 3) respectively. To best of our knowledge, this is the first report for detection of 4-nitrophenol chemical with doped Mn2O3-ZnO NPs using easy and reliable I-V technique in short response time. As for the doped nanostructures, NPs are introduced a route to a new generation of toxic chemo-sensors, but a premeditate effort has to be applied for doped Mn2O3-ZnO NPs to be taken comprehensively for large-scale applications, and to achieve higher-potential density with accessible to individual chemo-sensors. In this report, it is also discussed the prospective utilization of Mn2O3-ZnO NPs on the basis

  9. Novel DNA sequence detection method based on fluorescence energy transfer

    International Nuclear Information System (INIS)

    Kobayashi, S.; Tamiya, E.; Karube, I.

    1987-01-01

    Recently the detection of specific DNA sequence, DNA analysis, has been becoming more important for diagnosis of viral genomes causing infections disease and human sequences related to inherited disorders. These methods typically involve electrophoresis, the immobilization of DNA on a solid support, hybridization to a complementary probe, the detection using labeled with /sup 32/P or nonisotopically with a biotin-avidin-enzyme system, and so on. These techniques are highly effective, but they are very time-consuming and expensive. A principle of fluorescene energy transfer is that the light energy from an excited donor (fluorophore) is transferred to an acceptor (fluorophore), if the acceptor exists in the vicinity of the donor and the excitation spectrum of donor overlaps the emission spectrum of acceptor. In this study, the fluorescence energy transfer was applied to the detection of specific DNA sequence using the hybridization method. The analyte, single-stranded DNA labeled with the donor fluorophore is hybridized to a probe DNA labeled with the acceptor. Because of the complementary DNA duplex formation, two fluorophores became to be closed to each other, and the fluorescence energy transfer was occurred

  10. Detection of Group B Streptococci in Lim Broth by Use of Group B Streptococcus Peptide Nucleic Acid Fluorescent In Situ Hybridization and Selective and Nonselective Agars▿

    Science.gov (United States)

    Montague, Naomi S.; Cleary, Timothy J.; Martinez, Octavio V.; Procop, Gary W.

    2008-01-01

    The sensitivity, specificity, and positive and negative predictive values for the detection of group B streptococci from Lim enrichment broth with sheep blood agar (SBA), with selective Streptococcus agar (SSA), and by a peptide nucleic acid fluorescent in situ hybridization (PNA FISH) assay were as follows: for culture on SBA, 68.4%, 100%, 100%, and 87.9%, respectively; for culture on SSA, 85.5%, 100%, 100%, and 94.1%, respectively; and for the PNA FISH assay, 97.4%, 98.3%, 96.1%, and 98.9%, respectively. PMID:18667597

  11. Biocompatible Polymer/Quantum Dots Hybrid Materials: Current Status and Future Developments

    Directory of Open Access Journals (Sweden)

    Lei Shen

    2011-12-01

    Full Text Available Quantum dots (QDs are nanometer-sized semiconductor particles with tunable fluorescent optical property that can be adjusted by their chemical composition, size, or shape. In the past 10 years, they have been demonstrated as a powerful fluorescence tool for biological and biomedical applications, such as diagnostics, biosensing and biolabeling. QDs with high fluorescence quantum yield and optical stability are usually synthesized in organic solvents. In aqueous solution, however, their metallic toxicity, non-dissolubility and photo-luminescence instability prevent the direct utility of QDs in biological media. Polymers are widely used to cover and coat QDs for fabricating biocompatible QDs. Such hybrid materials can provide solubility and robust colloidal and optical stability in water. At the same time, polymers can carry ionic or reactive functional groups for incorporation into the end-use application of QDs, such as receptor targeting and cell attachment. This review provides an overview of the recent development of methods for generating biocompatible polymer/QDs hybrid materials with desirable properties. Polymers with different architectures, such as homo- and co-polymer, hyperbranched polymer, and polymeric nanogel, have been used to anchor and protect QDs. The resulted biocompatible polymer/QDs hybrid materials show successful applications in the fields of bioimaging and biosensing. While considerable progress has been made in the design of biocompatible polymer/QDs materials, the research challenges and future developments in this area should affect the technologies of biomaterials and biosensors and result in even better biocompatible polymer/QDs hybrid materials.

  12. Highly Sensitive Ratiometric Fluorescent Sensor for Trinitrotoluene Based on the Inner Filter Effect between Gold Nanoparticles and Fluorescent Nanoparticles.

    Science.gov (United States)

    Lu, Hongzhi; Quan, Shuai; Xu, Shoufang

    2017-11-08

    In this work, we developed a simple and sensitive ratiometric fluorescent assay for sensing trinitrotoluene (TNT) based on the inner filter effect (IFE) between gold nanoparticles (AuNPs) and ratiometric fluorescent nanoparticles (RFNs), which was designed by hybridizing green emissive carbon dots (CDs) and red emissive quantum dots (QDs) into a silica sphere as a fluorophore pair. AuNPs in their dispersion state can be a powerful absorber to quench CDs, while the aggregated AuNPs can quench QDs in the IFE-based fluorescent assays as a result of complementary overlap between the absorption spectrum of AuNPs and emission spectrum of RFNs. As a result of the fact that TNT can induce the aggregation of AuNPs, with the addition of TNT, the fluorescent of QDs can be quenched, while the fluorescent of CDs would be recovered. Then, ratiometric fluorescent detection of TNT is feasible. The present IFE-based ratiometric fluorescent sensor can detect TNT ranging from 0.1 to 270 nM, with a detection limit of 0.029 nM. In addition, the developed method was successfully applied to investigate TNT in water and soil samples with satisfactory recoveries ranging from 95 to 103%, with precision below 4.5%. The simple sensing approach proposed here could improve the sensitivity of colorimetric analysis by changing the ultraviolet analysis to ratiometric fluorescent analysis and promote the development of a dual-mode detection system.

  13. A New Coumarin-Based Colorimetric and Fluorometric Sensor for Cu{sup 2+}

    Energy Technology Data Exchange (ETDEWEB)

    An, Kyounglyong; Jun, Kun [Korea Research Institute of Chemical Technology, Daejeon (Korea, Republic of); Park, Koon Ha [Chungnam National Univ., Daejeon (Korea, Republic of)

    2014-07-15

    We have developed a new colorimetric and fluorescent 'turn-off' sensor for Cu{sup 2+} based on coumarin Shiff base of hydroxycinnamaldehyde. It displays a 50 nm red-shift of maximum absorption band with color change from colorless to greenish-yellow upon addition of Cu{sup 2+} in 10 mM tris-HCl buffer solution (acetonitrile/water = 9:1, pH = 7.01). And also remarkable fluorescence quenching was observed upon the addition of Cu{sup 2+}. The 1:2 stoichiometry of sensor complex (sensor A + Cu{sup 2+}) was confirmed by Job's plot based on absorption titration. Chemosensors, small chemical compounds that sense the presence of analytes or energy, typically consist of two components: a receptor moiety that interacts with the target analytes and a read-out system that signals binding. And one of the most utilized research tool for the study of chemosensors employs a colorimetric and fluorometric spectroscopic techniques. So far successful reports on metal ion sensors have been documented including our recent result. Many different kinds of optical or fluorescent sensors have several advantages (such as high sensitivity and selectivity, non-destructive analysis, low cost and real-time monitoring), which allow naked-eye detection of color and fluorescent emission change upon metal ion binding without the use of any expensive spectroscopic equipment.

  14. New nontoxic double information magnetic and fluorescent MRI agent

    Energy Technology Data Exchange (ETDEWEB)

    Kublickas, Augustinas; Rastenien, Loreta; Bloznelytė-Plėšnienė, Laima; Karalius, Nerijus [Liquid Crystals Laboratory, Institute of Science and Technology, Lithuanian University of Educational Sciences (Lithuania); Franckevinius, Marius [Institute of Physics, Center for Physical Sciences and Technology (Lithuania); Loudos, George [Technological Educational Institute of Athens (Greece); Fahmi, Amir [Materials Science, Rhein-Waal University of Applied Sciences (Germany); Vaisnoras, Rimas [Liquid Crystals Laboratory, Institute of Science and Technology, Lithuanian University of Educational Sciences (Lithuania)

    2015-05-18

    Today sensitivity of the MRI is not enough compared to the nuclear methods, such as positron emission tomography and single photon emission computed tomography. Challenging its extension to the nanometre scale could provide a powerful new tool for the nanosciences and nanomedicine. To achieve this potential, innovative new detection strategies are required to overcome the severe sensitivity limitations of conventional inductive detection techniques. In this regard, we perform embodiment of nanodiamonds in dendrimer matrix as additional fluorescent optical and magnetic (together with Gd (III)) imaging modalities of the MRI. New hybrid system composed of dendrimer-gadolinium Gd (III) - nanodiamond as a new contrast agent for MRI was studied. Poly(propilene-imine) PPI and poly(amidoamine) PAMAM dendrimers with fixed size of nanocavities will be used as host material to protect organism against the toxicity and also to increase relaxivity of contrast agent (resulting in the increases MRI resolution). Nanodiamond as biocompatible platform to functionalize the contrast agent will be used. This bimodal hybrid system enables to use smaller amount of the contrast agent and could permit the decrease of the lateral toxicity. This bimodal hybrid system as MRI agent is providing double information (magnetic and fluorescent) about the damaged cell.

  15. New nontoxic double information magnetic and fluorescent MRI agent

    International Nuclear Information System (INIS)

    Kublickas, Augustinas; Rastenien, Loreta; Bloznelytė-Plėšnienė, Laima; Karalius, Nerijus; Franckevinius, Marius; Loudos, George; Fahmi, Amir; Vaisnoras, Rimas

    2015-01-01

    Today sensitivity of the MRI is not enough compared to the nuclear methods, such as positron emission tomography and single photon emission computed tomography. Challenging its extension to the nanometre scale could provide a powerful new tool for the nanosciences and nanomedicine. To achieve this potential, innovative new detection strategies are required to overcome the severe sensitivity limitations of conventional inductive detection techniques. In this regard, we perform embodiment of nanodiamonds in dendrimer matrix as additional fluorescent optical and magnetic (together with Gd (III)) imaging modalities of the MRI. New hybrid system composed of dendrimer-gadolinium Gd (III) - nanodiamond as a new contrast agent for MRI was studied. Poly(propilene-imine) PPI and poly(amidoamine) PAMAM dendrimers with fixed size of nanocavities will be used as host material to protect organism against the toxicity and also to increase relaxivity of contrast agent (resulting in the increases MRI resolution). Nanodiamond as biocompatible platform to functionalize the contrast agent will be used. This bimodal hybrid system enables to use smaller amount of the contrast agent and could permit the decrease of the lateral toxicity. This bimodal hybrid system as MRI agent is providing double information (magnetic and fluorescent) about the damaged cell.

  16. A study of the compartmentalization of core-shell nanoparticles through fluorescence energy transfer of dopants

    Energy Technology Data Exchange (ETDEWEB)

    Chavez, Jorge L; Jiang Hui; Duran, Randolph S, E-mail: rduran@lsu.edu [Department of Chemistry, University of Florida, PO Box 117200, Gainesville, FL 32611 (United States)

    2010-02-05

    Hybrid organic-inorganic templates and core-shell nanoparticles were used as models to study the communication between fluorescent probes placed inside nanoparticles. The hybrid templates were prepared on the basis of a mixed-surfactant system using octadecyltrimethoxysilane as a reactive amphiphile. The core-shell particles were obtained after coating of the templates with a siloxane shell, using the silanol groups on their surface. Atomic force microscopy imaging showed that the templates were made of a flexible material that flattened significantly after deposition on a substrate and evaporation of the solvent. Pyrene was sequestered by the templates in an aqueous suspension, which placed it in a nonpolar environment, as observed by its fluorescence response. Subsequently, double-doped templates were prepared by sequestering coumarin 153 (C153), with pyrene-doped hybrid templates. The communication between these probes was studied on the basis of their spectral properties, by means of fluorescence resonance energy transfer (FRET). Energy transfer between the dyes with efficiencies up to 55% was observed. Similarly, double-doped core-shell particles prepared on the basis of the hybrid templates were doped with this pair of dyes. Despite the presence of the shell, which was intended to increment the average separation between the probes, interaction of the dyes was observed, although with lower efficiencies. A similar study was performed with C153 and 4-(dicyanomethylene)-2-methyl-6-p-(dimethylamino)styryl-4H-pyran (DCM). FRET studies indicated that the probes were placed in proximity to each other. We confirmed these observations by means of fluorescence lifetime measurements, which showed a decrease in the lifetime of the donor upon addition of the acceptor.

  17. Assignment of the human gene for pregnancy-associated plasma protein A (PAPPA) to 9q33.1 by fluorescence in situ hybridization to mitotic and meiotic chromosomes

    DEFF Research Database (Denmark)

    Silahtaroglu, A N; Tümer, Z; Kristensen, Torsten

    1993-01-01

    Low levels of pregnancy-associated plasma protein A (PAPPA) during the first trimester has been suggested as a biochemical indicator of pregnancies with aneuploid fetuses. Furthermore, the complete absence of PAPPA in pregnancies associated with Cornelia de Lange syndrome (CL) has suggested...... a causal connection between PAPPA and the development of CL. We have assigned the locus for PAPPA to chromosome region 9q33.1 on mitotic and meiotic chromosomes by fluorescence in situ hybridization, using a 3.7-kb partial PAPPA cDNA probe...

  18. [Molecular beacon based PNA-FISH method combined with fluorescence scanning for rapid detection of Listeria monocytogenes].

    Science.gov (United States)

    Wu, Shan; Zhang, Xiaofeng; Shuai, Jiangbing; Li, Ke; Yu, Huizhen; Jin, Chenchen

    2016-07-04

    To simplify the PNA-FISH (Peptide nucleic acid-fluorescence in situ hybridization) test, molecular beacon based PNA probe combined with fluorescence scanning detection technology was applied to replace the original microscope observation to detect Listeria monocytogenes The 5′ end and 3′ end of the L. monocytogenes specific PNA probes were labeled with the fluorescent group and the quenching group respectively, to form a molecular beacon based PNA probe. When PNA probe used for fluorescence scanning and N1 treatment as the control, the false positive rate was 11.4%, and the false negative rate was 0; when N2 treatment as the control, the false positive rate decreased to 4.3%, but the false negative rate rose to 18.6%. When beacon based PNA probe used for fluorescence scanning, taken N1 treatment as blank control, the false positive rate was 8.6%, and the false negative rate was 1.4%; taken N2 treatment as blank control, the false positive rate was 5.7%, and the false negative rate was 1.4%. Compared with PNA probe, molecular beacon based PNA probe can effectively reduce false positives and false negatives. The success rates of hybridization of the two PNA probes were 83.3% and 95.2% respectively; and the rates of the two beacon based PNA probes were 91.7% and 90.5% respectively, which indicated that labeling the both ends of the PNA probe dose not decrease the hybridization rate with the target bacteria. The combination of liquid phase PNA-FISH and fluorescence scanning method, can significantly improve the detection efficiency.

  19. Fluorescence in situ hybridization of TP53 for the detection of chromosome 17 abnormalities in myelodysplastic syndromes.

    Science.gov (United States)

    Sánchez-Castro, Judit; Marco-Betés, Víctor; Gómez-Arbonés, Xavier; García-Cerecedo, Tomás; López, Ricard; Talavera, Elisabeth; Fernández-Ruiz, Sara; Ademà, Vera; Marugan, Isabel; Luño, Elisa; Sanzo, Carmen; Vallespí, Teresa; Arenillas, Leonor; Marco Buades, Josefa; Batlle, Ana; Buño, Ismael; Martín Ramos, María Luisa; Blázquez Rios, Beatriz; Collado Nieto, Rosa; Vargas, Ma Teresa; González Martínez, Teresa; Sanz, Guillermo; Solé, Francesc

    2015-01-01

    Conventional G-banding cytogenetics (CC) detects chromosome 17 (chr17) abnormalities in 2% of patients with de novo myelodysplastic syndromes (MDS). We used CC and fluorescence in situ hybridization (FISH) (LSI p53/17p13.1) to assess deletion of 17p in 531 patients with de novo MDS from the Spanish Group of Hematological Cytogenetics. FISH detected - 17 or 17p abnormalities in 13 cases (2.6%) in whom no 17p abnormalities were revealed by CC: 0.9% of patients with a normal karyotype, 0% in non-informative cytogenetics, 50% of patients with a chr17 abnormality without loss of 17p and 4.7% of cases with an abnormal karyotype not involving chr17. Our results suggest that applying FISH of 17p13 to identify the number of copies of the TP53 gene could be beneficial in patients with a complex karyotype. We recommend using FISH of 17p13 in young patients with a normal karyotype or non-informative cytogenetics, and always in isolated del(17p).

  20. Fabrication of fluorescent silica nanoparticles with aggregation-induced emission luminogens for cell imaging.

    Science.gov (United States)

    Chen, Sijie; Lam, Jacky W Y; Tang, Ben Zhong

    2013-01-01

    Fluorescence-based techniques have found wide applications in life science. Among various luminogenic materials, fluorescent nanoparticles have attracted much attention due to their fabulous emission properties and potential applications as sensors. Here, we describe the fabrication of fluorescent silica nanoparticles (FSNPs) containing aggregation-induced emission (AIE) luminogens. By employing surfactant-free sol-gel reaction, FSNPs with uniform size and high surface charge and colloidal stability are generated. The FSNPs emit strong light upon photoexcitation, due to the AIE characteristic of the silole -aggregates in the hybrid nanoparticles. The FSNPs are cytocompatible and can be utilized as fluorescent visualizer for intracellular imaging for HeLa cells.

  1. Oligothiophenes as Fluorescent Markers for Biological Applications

    Directory of Open Access Journals (Sweden)

    Antonio Manetto

    2012-01-01

    Full Text Available This paper summarizes some of our results on the application of oligothiophenes as fluorescent markers for biological studies. The oligomers of thiophene, widely known for their semiconductor properties in organic electronics, are also fluorescent compounds characterized by chemical and optical stability, high absorbance and quantum yield. Their fluorescent emission can be easily modulated via organic synthesis by changing the number of thiophene rings and the nature of side-chains. This review shows how oligothiophenes can be derivatized with active groups such as phosphoramidite, N-hydroxysuccinimidyl and 4-sulfotetrafluorophenyl esters, isothiocyanate and azide by which the (biomolecules of interest can be covalently bound. This paper also describes how molecules such as oligonucleotides, proteins and even nanoparticles, tagged with oligothiophenes, can be used in experiments ranging from hybridization studies to imaging of fixed and living cells. Finally, a few multilabeling experiments are described.

  2. Conventional and fluorescence in situ hybridization analysis of three-way complex BCR-ABL rearrangement in a chronic myeloid leukemia patient

    Directory of Open Access Journals (Sweden)

    Ganguly Bani

    2007-01-01

    Full Text Available Chromosomal analysis was carried out in bone marrow sample of an 11-year-old girl suspected of myeloproliferative disorder. Conventional G-banding study detected a complex three-way translocation involving 7, 9 and 22, which has resulted in the formation of a variant Philadelphia chromosome causing rearrangement of abl and bcr genes in 87% cells. Fluorescence in situ hybridization (FISH confirmed the fusion of bcr-abl oncogene. Thus the bone marrow karyotype was observed as 46,XX (13% / 46,XX,t(7;9;22(q11;q34;q11 (87%. Hyperdiploidy was present in two cells. In this study, both conventional cytogenetic and FISH diagnosis proved to be significant to identify the variant nature of the Philadelphia chromosome and hyperdiploid condition for introduction of a suitable treatment regimen and estimation of life expectancy of the young girl.

  3. Color optimization of conjugated-polymer/InGaN hybrid white light emitting diodes by incomplete energy transfer

    International Nuclear Information System (INIS)

    Chang, Chi-Jung; Lai, Chun-Feng; Madhusudhana Reddy, P.; Chen, Yung-Lin; Chiou, Wei-Yung; Chang, Shinn-Jen

    2015-01-01

    By using the wavelength conversion method, white light emitting diodes (WLEDs) were produced by applying mixtures of polysiloxane and fluorescent polymers on InGaN based light emitting diodes. UV curable organic–inorganic hybrid materials with high refractive index (1.561), compromised optical, thermal and mechanical properties was used as encapsulants. Red light emitting fluorescent FABD polymer (with 9,9-dioctylfluorene (F), anthracene (A) and 2,1,3-benzothiadiazole (B), and 4,7-bis(2-thienyl)-2,1,3-benzothiadiazole (D) repeating units) and green light emitting fluorescent FAB polymer were used as wavelength converters. The encapsulant/fluorescent polymer mixture and InGaN produce the white light by incomplete energy transfer mechanism. WLEDs with high color rendering index (CRI, about 93), and tunable correlated color temperature (CCT) properties can be produced by controlling the composition and chemical structures of encapsulating polymer and fluorescent polymer in hybrid materials, offering cool-white and neutral-white LEDs. - Highlights: • Highly efficient white light-emitting diodes (WLEDs) were produced. • Conjugated-polymer/InGaN hybrid WLEDs by incomplete energy transfer mechanism. • WLEDs with high color-rendering index and tunable correlated color temperature. • Polysiloxane encapsulant with superior optical, mechanical and thermal properties

  4. Pre-implantation genetic screening using fluorescence in situ hybridization in couples of Indian ethnicity: Is there a scope?

    Directory of Open Access Journals (Sweden)

    Shailaja Gada Saxena

    2014-01-01

    Full Text Available Context: There is a high incidence of numerical chromosomal aberration in couples with repeated in vitro fertilization (IVF failure, advanced maternal age, repeated unexplained abortions, severe male factor infertility and unexplained infertility. Pre-implantation genetic screening (PGS, a variant of pre-implantation genetic diagnosis, screens numerical chromosomal aberrations in couples with normal karyotype, experiencing poor reproductive outcome. The present study includes the results of the initial pilot study on 9 couples who underwent 10 PGS cycles. Aim: The aim of the present study was to evaluate the beneficial effects of PGS in couples with poor reproductive outcome. Settings and Design: Data of initial 9 couples who underwent 10 PGS for various indications was evaluated. Subjects and Methods: Blastomere biopsy was performed on cleavage stage embryos and subjected to two round fluorescence in situ hybridization (FISH testing for chromosomes 13, 18, 21, X and Y as a two-step procedure. Results: Six of the 9 couples (10 PGS cycles conceived, including a twin pregnancy in a couple with male factor infertility, singleton pregnancies in a couple with secondary infertility, in three couples with adverse obstetric outcome in earlier pregnancies and in one couple with repeated IVF failure. Conclusion: In the absence of availability of array-comparative genomic hybridization in diagnostic clinical scenario for PGS and promising results with FISH based PGS as evident from the current pilot study, it is imperative to offer the best available services in the present scenario for better pregnancy outcome for patients.

  5. Structural Modifications and Photophysical Studies of Fluorescent Conjugated Polymers for Solid State Sensor Development

    Science.gov (United States)

    Chen, Anting

    Fluorescent conjugated polymers (FCPs) represent an exciting area of research in chemosensors and biosensors. Previously, the polymer tmeda-PPETE, N,N,N'-trimethylethylenediamino (tmeda) receptors on a poly[2,5-thiophenediyl-1,2-ethynediyl-1,4-phenylenediyl-1,2-ethynediyl] (PPETE) backbone, showed significant quenching when copper(II) was added. Tmeda-PPETE polymer preloaded with copper(II) was found to be a fluorescent "turn-on" sensor for iron cations. Additional investigation of this metallopolymer revealed a selective sensory system toward carbonate and phosphorus anions through a competitive binding of copper(II) between the polymer tmeda-PPETE and the anions. Fluorescent turn-on response under systematically varied pH was affected by the equilibrium shift of the ionization of polyprotic ions. A sterically hindered pentiptycene group was introduced to the PPETE polymer backbone aiming to reduce aggregation and self-quenching in the solid state. A new FCP, tmeda-PPpETE (poly[(pentiptycene ethynylene)-alt-(thienylene ethynylene)] with tmeda receptors, has been designed and synthesized via Sonogashira cross-coupling reaction. Absorption and emission spectra of tmeda-PPpETE showed blue shifting from tmeda-PPETE, suggesting increased rigidity of polymer backbone. Tmeda-PPpETE showed a high selectivity towards copper(II) with improved sensitivity compared to tmeda-PPETE. The fluorescent quenching response is over 120-fold at emission maximum, and the detection limit is 1.04 ppb, significantly lower than the EPA action level of 1.3 ppm for copper(II). A small turn-off fluorescent response of tmeda-PPpETE was also observed upon addition of iron cations. To further investigate the interaction between pentiptycene containing polymers and iron cations, tmpda-PPpETE containing N,N,N'-trimethylpropylenediamino (tmpda) receptors was designed and synthesized. The absorption and emission spectra for tmpda-PPpETE were analogous to those of tmeda-PPpETE, with a higher quantum

  6. Resolving colocalization of bacteria and metal(loid)s on plant root surfaces by combining fluorescence in situ hybridization (FISH) with multiple-energy micro-focused X-ray fluorescence (ME μXRF).

    Science.gov (United States)

    Honeker, Linnea K; Root, Robert A; Chorover, Jon; Maier, Raina M

    2016-12-01

    Metal(loid)-contamination of the environment due to anthropogenic activities is a global problem. Understanding the fate of contaminants requires elucidation of biotic and abiotic factors that influence metal(loid) speciation from molecular to field scales. Improved methods are needed to assess micro-scale processes, such as those occurring at biogeochemical interfaces between plant tissues, microbial cells, and metal(loid)s. Here we present an advanced method that combines fluorescence in situ hybridization (FISH) with synchrotron-based multiple-energy micro-focused X-ray fluorescence microprobe imaging (ME μXRF) to examine colocalization of bacteria and metal(loid)s on root surfaces of plants used to phytostabilize metalliferous mine tailings. Bacteria were visualized on a small root section using SytoBC nucleic acid stain and FISH probes targeting the domain Bacteria and a specific group (Alphaproteobacteria, Gammaproteobacteria, or Actinobacteria). The same root region was then analyzed for elemental distribution and metal(loid) speciation of As and Fe using ME μXRF. The FISH and ME μXRF images were aligned using ImageJ software to correlate microbiological and geochemical results. Results from quantitative analysis of colocalization show a significantly higher fraction of As colocalized with Fe-oxide plaques on the root surfaces (fraction of overlap 0.49±0.19) than to bacteria (0.072±0.052) (proots, metal(loid)s and microbes, information that should lead to improved mechanistic models of metal(loid) speciation and fate. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Calcium carbonate-gold nanocluster hybrid spheres: synthesis and versatile application in immunoassays.

    Science.gov (United States)

    Peng, Juan; Feng, Li-Na; Zhang, Kui; Li, Xing-Hua; Jiang, Li-Ping; Zhu, Jun-Jie

    2012-04-23

    Fluorescent gold nanoclusters (AuNCs) were incorporated into porous calcium carbonate spheres through electrostatic interaction. The resulting CaCO(3)/AuNCs hybrid material exhibited interesting properties, such as porous structure, excellent biocompatibility, good water solubility, and degradability. These properties make the CaCO(3)/AuNCs hybrid material a promising template to assemble horseradish peroxidase/antibody conjugates (HRP-Ab(2)). By using CaCO(3)/AuNCs/HRP-Ab(2) bioconjugates as probes, a versatile immunosensor was developed for fluorescent and electrochemical detection of the cancer biomarker neuron-specific enolase (NSE). The detection limits of the sensor were 2.0 and 0.1 pg mL(-1) for fluorescent and electrochemical detection, respectively. The immunosensor shows high sensitivity and offers an alternative strategy for the detection of other proteins and DNA. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Immunoglobulin heavy-chain fluorescence in situ hybridization-chromogenic in situ hybridization DNA probe split signal in the clonality assessment of lymphoproliferative processes on cytological samples.

    Science.gov (United States)

    Zeppa, Pio; Sosa Fernandez, Laura Virginia; Cozzolino, Immacolata; Ronga, Valentina; Genesio, Rita; Salatiello, Maria; Picardi, Marco; Malapelle, Umberto; Troncone, Giancarlo; Vigliar, Elena

    2012-12-25

    The human immunoglobulin heavy-chain (IGH) locus at chromosome 14q32 is frequently involved in different translocations of non-Hodgkin lymphoma (NHL), and the detection of any breakage involving the IGH locus should identify a B-cell NHL. The split-signal IGH fluorescence in situ hybridization-chromogenic in situ hybridization (FISH-CISH) DNA probe is a mixture of 2 fluorochrome-labeled DNAs: a green one that binds the telomeric segment and a red one that binds the centromeric segment, both on the IGH breakpoint. In the current study, the authors tested the capability of the IGH FISH-CISH DNA probe to detect IGH translocations and diagnose B-cell lymphoproliferative processes on cytological samples. Fifty cytological specimens from cases of lymphoproliferative processes were tested using the split-signal IGH FISH-CISH DNA probe and the results were compared with light-chain assessment by flow cytometry (FC), IGH status was tested by polymerase chain reaction (PCR), and clinicohistological data. The signal score produced comparable results on FISH and CISH analysis and detected 29 positive, 15 negative, and 6 inadequate cases; there were 29 true-positive cases (66%), 9 true-negative cases (20%), 6 false-negative cases (14%), and no false-positive cases (0%). Comparing the sensitivity of the IGH FISH-CISH DNA split probe with FC and PCR, the highest sensitivity was obtained by FC, followed by FISH-CISH and PCR. The split-signal IGH FISH-CISH DNA probe is effective in detecting any translocation involving the IGH locus. This probe can be used on different samples from different B-cell lymphoproliferative processes, although it is not useful for classifying specific entities. Cancer (Cancer Cytopathol) 2012;. © 2012 American Cancer Society. Copyright © 2012 American Cancer Society.

  9. Integrin-Targeted Hybrid Fluorescence Molecular Tomography/X-ray Computed Tomography for Imaging Tumor Progression and Early Response in Non-Small Cell Lung Cancer

    Directory of Open Access Journals (Sweden)

    Xiaopeng Ma

    2017-01-01

    Full Text Available Integrins play an important role in tumor progression, invasion and metastasis. Therefore we aimed to evaluate a preclinical imaging approach applying ανβ3 integrin targeted hybrid Fluorescence Molecular Tomography/X-ray Computed Tomography (FMT-XCT for monitoring tumor progression as well as early therapy response in a syngeneic murine Non-Small Cell Lung Cancer (NSCLC model. Lewis Lung Carcinomas were grown orthotopically in C57BL/6 J mice and imaged in-vivo using a ανβ3 targeted near-infrared fluorescence (NIRF probe. ανβ3-targeted FMT-XCT was able to track tumor progression. Cilengitide was able to substantially block the binding of the NIRF probe and suppress the imaging signal. Additionally mice were treated with an established chemotherapy regimen of Cisplatin and Bevacizumab or with a novel MEK inhibitor (Refametinib for 2 weeks. While μCT revealed only a moderate slowdown of tumor growth, ανβ3 dependent signal decreased significantly compared to non-treated mice already at one week post treatment. ανβ3 targeted imaging might therefore become a promising tool for assessment of early therapy response in the future.

  10. A fluorescent chemosensor for Hg(2+) and Cd(2+) ions in aqueous medium under physiological pH and its applications in imaging living cells.

    Science.gov (United States)

    Maity, Shubhra B; Banerjee, Saikat; Sunwoo, Kyoung; Kim, Jong Seung; Bharadwaj, Parimal K

    2015-04-20

    A new BODIPY derivative with 2,2'-(ethane-1,2-diylbis(oxy))bis(N,N-bis(pyridine-2-ylmethyl)aniline unit as the metal receptor has been designed and synthesized. The dye selectively detects either Cd(2+) or Hg(2+) ions in the presence of hosts of other biologically important and environmentally relevant metal ions in aqueous medium at physiological pH. Binding of metal ions causes a change in the emission behavior of the dye from weakly fluorescent to highly fluorescent. Confocal microscopic experiments validate that the dye can be used to identify changes in either Hg(2+) or Cd(2+) levels in living cells.

  11. Fluorescent Molecular Rotor-in-Paraffin Waxes for Thermometry and Biometric Identification.

    Science.gov (United States)

    Jin, Young-Jae; Dogra, Rubal; Cheong, In Woo; Kwak, Giseop

    2015-07-08

    Novel thermoresponsive sensor systems consisting of a molecular rotor (MR) and paraffin wax (PW) were developed for various thermometric and biometric identification applications. Polydiphenylacetylenes (PDPAs) coupled with long alkyl chains were used as MRs, and PWs of hydrocarbons having 16-20 carbons were utilized as phase-change materials. The PDPAs were successfully dissolved in the molten PWs and did not act as an impurity that prevents phase transition of the PWs. These PDPA-in-PW hybrids had almost the same enthalpies and phase-transition temperatures as the corresponding pure PWs. The hybrids exhibited highly reversible fluorescence (FL) changes at the critical temperatures during phase transition of the PWs. These hybrids were impregnated into common filter paper in the molten state by absorption or were encapsulated into urea resin to enhance their mechanical integrity and cyclic stability during repeated use. The wax papers could be utilized in highly advanced applications including FL image writing/erasing, an array-type thermo-indicator, and fingerprint/palmprint identification. The present findings should facilitate the development of novel fluorescent sensor systems for biometric identification and are potentially applicable for biological and biomedical thermometry.

  12. Identification of Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa in Blood Cultures: a Multicenter Performance Evaluation of a Three-Color Peptide Nucleic Acid Fluorescence In Situ Hybridization Assay▿

    Science.gov (United States)

    Della-Latta, Phyllis; Salimnia, Hossein; Painter, Theresa; Wu, Fann; Procop, Gary W.; Wilson, Deborah A.; Gillespie, Wendy; Mender, Alayna; Crystal, Benjamin S.

    2011-01-01

    A multicenter evaluation was undertaken to evaluate the performance of a new three-color peptide nucleic acid fluorescence in situ hybridization assay that identifies isolates directly from blood cultures positive for Gram-negative bacilli (GNB). The assay correctly identified 100% (186/186) of the Escherichia coli isolates, 99.1% (109/110) of the Klebsiella pneumoniae isolates, and 95.8% (46/48) of the Pseudomonas aeruginosa isolates in this study. Negative assay results were correctly obtained for 162 of 165 other GNB (specificity, 98.2%). PMID:21490185

  13. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    2-(2-methoxyphenyl)-4,5-diphenyl-1H-imidazole 1, an imidazole-based compound, was found to sense Cu2+ ions via fluorescence and absorption spectroscopy over a number of other metal ions. During Cu2+ sensing, the chemosensor 1 followed a “switch-off” mechanism. Job's plot supported 1:1 stoichiometry of 1-Cu2+ ...

  14. Hybrid Coatings as Transducer in Optical Biosensors

    Czech Academy of Sciences Publication Activity Database

    Rose, K.; Dzyadevych, S.; Fernandez-Lafuente, R.; Jaffrezic, N.; Kuncová, Gabriela; Matějec, Vlastimil; Scully, P.

    2008-01-01

    Roč. 5, č. 4 (2008), s. 491-496 ISSN 1547-0091 Grant - others:GRD1(XE) 2001-C40477 Institutional research plan: CEZ:AV0Z40720504; CEZ:AV0Z20670512 Keywords : optical sensor * fluorescence * hybrid coating Subject RIV: EI - Biotechnology ; Bionics Impact factor: 1.059, year: 2008

  15. Fluorescence In Vivo Hybridization (FIVH) for Detection of Helicobacter pylori Infection in a C57BL/6 Mouse Model

    DEFF Research Database (Denmark)

    Fontenete, Sílvia; Leite, Marina; Cappoen, Davie

    2016-01-01

    ). Finally, the efficiency of FIVH to detect H. pylori SS1 strain in C57BL/6 infected mice was evaluated ex vivo in mucus samples, in cryosections and paraffin-embedded sections by epifluorescence and confocal microscopy. RESULTS: H. pylori SS1 strain infecting C57BL/6 mice was successfully detected...... by the Cy3_HP_LNA/2OMe_PS probe in the mucus, attached to gastric epithelial cells and colonizing the gastric pits. The specificity of the probe for H. pylori was confirmed by microscopy. CONCLUSIONS: In the future this methodology can be used in combination with a confocal laser endomicroscope for in vivo......INTRODUCTION: In this study, we applied fluorescence in vivo hybridization (FIVH) using locked nucleic acid (LNA) probes targeting the bacterial rRNA gene for in vivo detection of H. pylori infecting the C57BL/6 mouse model. A previously designed Cy3_HP_LNA/2OMe_PS probe, complementary...

  16. Smart detection of microRNAs through fluorescence enhancement on a photonic crystal.

    Science.gov (United States)

    Pasquardini, L; Potrich, C; Vaghi, V; Lunelli, L; Frascella, F; Descrovi, E; Pirri, C F; Pederzolli, C

    2016-04-01

    The detection of low abundant biomarkers, such as circulating microRNAs, demands innovative detection methods with increased resolution, sensitivity and specificity. Here, a biofunctional surface was implemented for the selective capture of microRNAs, which were detected through fluorescence enhancement directly on a photonic crystal. To set up the optimal biofunctional surface, epoxy-coated commercially available microscope slides were spotted with specific anti-microRNA probes. The optimal concentration of probe as well as of passivating agent were selected and employed for titrating the microRNA hybridization. Cross-hybridization of different microRNAs was also tested, resulting negligible. Once optimized, the protocol was adapted to the photonic crystal surface, where fluorescent synthetic miR-16 was hybridized and imaged with a dedicated equipment. The photonic crystal consists of a dielectric multilayer patterned with a grating structure. In this way, it is possible to take advantage from both a resonant excitation of fluorophores and an angularly redirection of the emitted radiation. As a result, a significant fluorescence enhancement due to the resonant structure is collected from the patterned photonic crystal with respect to the outer non-structured surface. The dedicated read-out system is compact and based on a wide-field imaging detection, with little or no optical alignment issues, which makes this approach particularly interesting for further development such as for example in microarray-type bioassays. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Bis-pyrene-modified unlocked nucleic acids: synthesis, hybridization studies, and fluorescent properties

    DEFF Research Database (Denmark)

    Perlíková, Pavla; Ejlersen, Maria; Langkjaer, Niels

    2014-01-01

    Efficient synthesis of a building block for the incorporation of a bis-pyrene-modified unlocked nucleic acid (UNA) into oligonucleotides (DNA*) was developed. The presence of bis-pyrene-modified UNA within a duplex leads to duplex destabilization that is more profound in DNA*/RNA and less distinc......)uracil:pyrene exciplex emission in the single-stranded form. Such fluorescent properties enable the application of bis-pyrene-modified UNA in the development of fluorescence probes for DNA/RNA detection and for detection of deletions at specific positions....

  18. Speckle-type POZ (pox virus and zinc finger protein) protein gene deletion in ovarian cancer: Fluorescence in situ hybridization analysis of a tissue microarray.

    Science.gov (United States)

    Hu, Xiaoyu; Yang, Zhu; Zeng, Manman; Liu, Y I; Yang, Xiaotao; Li, Yanan; Li, X U; Yu, Qiubo

    2016-07-01

    The aim of the present study was to investigate the status of speckle-type POZ (pox virus and zinc finger protein) protein (SPOP) gene located on chromosome 17q21 in ovarian cancer (OC). The present study evaluated a tissue microarray, which contained 90 samples of ovarian cancer and 10 samples of normal ovarian tissue, using fluorescence in situ hybridization (FISH). FISH is a method where a SPOP-specific DNA red fluorescence probe was used for the experimental group and a centromere-specific DNA green fluorescence probe for chromosome 17 was used for the control group. The present study demonstrated that a deletion of the SPOP gene was observed in 52.27% (46/88) of the ovarian cancer tissues, but was not identified in normal ovarian tissues. Simultaneously, monosomy 17 was frequently identified in the ovarian cancer tissues, but not in the normal ovarian tissues. Furthermore, the present data revealed that the ovarian cancer histological subtype and grade were significantly associated with a deletion of the SPOP gene, which was assessed by the appearance of monosomy 17 in the ovarian cancer samples; the deletion of the SPOP gene was observed in a large proportion of serous epithelial ovarian cancer (41/61; 67.21%), particularly in grade 3 (31/37; 83.78%). In conclusion, deletion of the SPOP gene on chromosome 17 in ovarian cancer samples, which results from monosomy 17, indicates that the SPOP gene may serve as a tumor suppressor gene in ovarian cancer.

  19. Fluorescence in situ hybridization (FISH screening for the 22q11.2 deletion in patients with clinical features of velocardiofacial syndrome but without cardiac anomalies

    Directory of Open Access Journals (Sweden)

    Paula Sandrin-Garcia

    2007-01-01

    Full Text Available The velocardiofacial syndrome (VCFS, a condition associated with 22q11.2 deletions, is characterized by a typical facies, palatal anomalies, learning disabilities, behavioral disturbances and cardiac defects. We investigated the frequency of these chromosomal deletions in 16 individuals with VCFS features who presented no cardiac anomalies, one of the main characteristics of VCFS. Fluorescent in situ hybridization (FISH with the N25 (D22S75; 22q11.2 probe revealed deletions in ten individuals (62%. Therefore, even in the absence of cardiac anomalies testing for the 22q11.2 microdeletions in individuals showing other clinical features of this syndrome is recommended.

  20. Quantitative fluorescence in situ hybridization measurement of telomere length in skin with/without sun exposure or actinic keratosis.

    Science.gov (United States)

    Ikeda, Hiroyuki; Aida, Junko; Hatamochi, Atsushi; Hamasaki, Yoichiro; Izumiyama-Shimomura, Naotaka; Nakamura, Ken-Ichi; Ishikawa, Naoshi; Poon, Steven S; Fujiwara, Mutsunori; Tomita, Ken-Ichiro; Hiraishi, Naoki; Kuroiwa, Mie; Matsuura, Masaaki; Sanada, Yukihiro; Kawano, Youichi; Arai, Tomio; Takubo, Kaiyo

    2014-03-01

    Chromosomal and genomic instability due to telomere dysfunction is known to play an important role in carcinogenesis. To study telomere shortening in the epidermis surrounding actinic keratosis, we measured telomere lengths of basal, parabasal, and suprabasal cells in epidermis with actinic keratosis (actinic keratosis group, n = 18) and without actinic keratosis (sun-protected, n = 15, and sun-exposed, n = 13 groups) and in actinic keratosis itself as well as in dermal fibroblasts in the 3 groups, using quantitative fluorescence in situ hybridization. Among the 3 cell types, telomeres of basal cells were not always the longest, suggesting that tissue stem cells are not necessarily located among basal cells. Telomeres of basal cells in the sun-exposed group were shorter than those in the sun-protected group. Telomeres in the background of actinic keratosis and in actinic keratosis itself and those of fibroblasts in actinic keratosis were significantly shorter than those in the controls. Our findings demonstrate that sun exposure induces telomere shortening and that actinic keratosis arises from epidermis with shorter telomeres despite the absence of any histologic atypia. © 2014.

  1. Nanogel-quantum dot hybrid nanoparticles for live cell imaging

    International Nuclear Information System (INIS)

    Hasegawa, Urara; Nomura, Shin-ichiro M.; Kaul, Sunil C.; Hirano, Takashi; Akiyoshi, Kazunari

    2005-01-01

    We report here a novel carrier of quantum dots (QDs) for intracellular labeling. Monodisperse hybrid nanoparticles (38 nm in diameter) of QDs were prepared by simple mixing with nanogels of cholesterol-bearing pullulan (CHP) modified with amino groups (CHPNH 2 ). The CHPNH 2 -QD nanoparticles were effectively internalized into the various human cells examined. The efficiency of cellular uptake was much higher than that of a conventional carrier, cationic liposome. These hybrid nanoparticles could be a promising fluorescent probe for bioimaging

  2. A label-free, fluorescence based assay for microarray

    Science.gov (United States)

    Niu, Sanjun

    DNA chip technology has drawn tremendous attention since it emerged in the mid 90's as a method that expedites gene sequencing by over 100-fold. DNA chip, also called DNA microarray, is a combinatorial technology in which different single-stranded DNA (ssDNA) molecules of known sequences are immobilized at specific spots. The immobilized ssDNA strands are called probes. In application, the chip is exposed to a solution containing ssDNA of unknown sequence, called targets, which are labeled with fluorescent dyes. Due to specific molecular recognition among the base pairs in the DNA, the binding or hybridization occurs only when the probe and target sequences are complementary. The nucleotide sequence of the target is determined by imaging the fluorescence from the spots. The uncertainty of background in signal detection and statistical error in data analysis, primarily due to the error in the DNA amplification process and statistical distribution of the tags in the target DNA, have become the fundamental barriers in bringing the technology into application for clinical diagnostics. Furthermore, the dye and tagging process are expensive, making the cost of DNA chips inhibitive for clinical testing. These limitations and challenges make it difficult to implement DNA chip methods as a diagnostic tool in a pathology laboratory. The objective of this dissertation research is to provide an alternative approach that will address the above challenges. In this research, a label-free assay is designed and studied. Polystyrene (PS), a commonly used polymeric material, serves as the fluorescence agent. Probe ssDNA is covalently immobilized on polystyrene thin film that is supported by a reflecting substrate. When this chip is exposed to excitation light, fluorescence light intensity from PS is detected as the signal. Since the optical constants and conformations of ssDNA and dsDNA (double stranded DNA) are different, the measured fluorescence from PS changes for the same

  3. Optical imaging as an expansion of nuclear medicine: Cerenkov-based luminescence vs fluorescence-based luminescence

    International Nuclear Information System (INIS)

    Chin, Patrick T.K.; Welling, Mick M.; Leeuwen, Fijs W.B. van; Meskers, Stefan C.J.; Valdes Olmos, Renato A.; Tanke, Hans

    2013-01-01

    Integration of optical imaging technologies can further strengthen the field of radioguided surgery. Rather than using two separate chemical entities to achieve this extension, hybrid imaging agents can be used that contain both radionuclear and optical properties. Two types of such hybrid imaging agents are available: (1) hybrid imaging agents generated by Cerenkov luminescence imaging (CLI) of β-emitters and (2) hybrid imaging agents that contain both a radioactive moiety and a fluorescent dye. One major challenge clinicians are now facing is to determine the potential value of these approaches. With this tutorial review we intend to clarify the differences between the two approaches and highlight the clinical potential of hybrid imaging during image-guided surgery applications. (orig.)

  4. Optical imaging as an expansion of nuclear medicine: Cerenkov-based luminescence vs fluorescence-based luminescence

    Energy Technology Data Exchange (ETDEWEB)

    Chin, Patrick T.K.; Welling, Mick M.; Leeuwen, Fijs W.B. van [Leiden University Medical Center, Interventional Molecular Imaging Laboratory, Department of Radiology, P.O. Box 9600, Leiden (Netherlands); Meskers, Stefan C.J. [Eindhoven University of Technology, Molecular Materials and Nanosystems, P.O. Box 513, Eindhoven (Netherlands); Valdes Olmos, Renato A. [Leiden University Medical Center, Interventional Molecular Imaging Laboratory, Department of Radiology, P.O. Box 9600, Leiden (Netherlands); Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Department of Nuclear Medicine, Amsterdam (Netherlands); Tanke, Hans [Leiden University Medical Center, Department of Molecular Cell Biology, P.O. Box 9600, Leiden (Netherlands)

    2013-08-15

    Integration of optical imaging technologies can further strengthen the field of radioguided surgery. Rather than using two separate chemical entities to achieve this extension, hybrid imaging agents can be used that contain both radionuclear and optical properties. Two types of such hybrid imaging agents are available: (1) hybrid imaging agents generated by Cerenkov luminescence imaging (CLI) of {beta}-emitters and (2) hybrid imaging agents that contain both a radioactive moiety and a fluorescent dye. One major challenge clinicians are now facing is to determine the potential value of these approaches. With this tutorial review we intend to clarify the differences between the two approaches and highlight the clinical potential of hybrid imaging during image-guided surgery applications. (orig.)

  5. Dendrimeric tweezers for recognition of fluorogenic Co{sup 2+}, Mg{sup 2+} and chromogenic Fe{sup 2+}

    Energy Technology Data Exchange (ETDEWEB)

    Roy, Chandana B.; Meshram, Jyotsna S., E-mail: drjsmeshram@gmail.com

    2016-03-15

    Dendrimers are the attractive candidature for the formation of metal complexes capable of performing varied application, owing to the presence of multiple terminal groups on the exterior of the molecule has received tremendous attention. Herein, we have synthesized novel dendritic macromolecule (N′E,N‴E,N″‴E,N‴‴′E)-3,3′,3″,3‴-(ethane-1,2-diylbis(azanetriyle)) tetrakis(N'-(2-hydroxybenzyllidene)propanehydrazide) chemosensor L and its metal complexes. In the present study the application in the optical sensing for chromogenic Fe{sup 2+} and fluorogenic Co{sup 2+} and Mg{sup 2+}cation is reported. The dendrimeric chemosensor L and its metal complexes are investigated with the help of FTIR spectroscopy, Nuclear magnetic resonance ({sup 1}H NMR and {sup 13}C NMR), FT Raman Microspectroscopy, fluorescence and UV–visible spectroscopy. Thermal properties are studied using thermal gravimetric analysis. - Highlights: • Dual effect – Chromogenic and fluorogenic. Chemosensor shows chromogenic effect towards Fe{sup 2+} as well as fluorogenic effect towards Co{sup 2+}and Mg{sup 2+} cation. • From Linear fitting calibration plot for computing LOD and LOQ, it was detected that – LOD=32.3 nM, LOQ=97.8 nM. • Jobs Plot – A graph plotted [HG]={(ΔF/Fo)[H]} Vs {[H]v/([H]v+[G]v)} has maxima at 0.33 which corresponds to 1:2 stoichiometry of chemosensor L:Co{sup 2+}.

  6. Hybrid male sterility is caused by mitochondrial DNA deletion.

    Science.gov (United States)

    Hayashida, Kenji; Kohno, Shigeru

    2009-07-01

    Although it is known that the hybrid male mouse is sterile just like any other animal's heterogametic sex, the reason why only the male germ cells are impaired has yet to be discovered. TdT-mediated dUTP nick end labeling assay using a confocal fluorescence microscope and DNA fragmentation assay of hybrid testis indicated destruction of the mitochondrial DNA (mtDNA) rather than the nuclear DNA. Previously we reported that maternal mtDNA inheritance is through selective sperm mtDNA elimination based on the sperm factor and two egg factors, and expression of these three factors was recognized in the hybrid testis. It was thereby assumed that mtDNA destruction caused by the expression of maternal mtDNA inheritance system in male germ cells is implicated in the hybrid male sterility of mice.

  7. Hybrid fluorescent curcumin loaded zein electrospun nanofibrous scaffold for biomedical applications

    International Nuclear Information System (INIS)

    Brahatheeswaran, Dhandayuthapani; Mathew, Anila; Aswathy, Ravindran Girija; Nagaoka, Yutaka; Yoshida, Yasuhiko; Maekawa, Toru; Sakthikumar, D; Venugopal, K

    2012-01-01

    Nanomedicine utilizes engineered nanodevices and nanostructures for monitoring, repair, construction and control of human biological systems at the molecular level. In this study, we investigated the feasibility and potential of zein nanofiber as a delivery vehicle for curcumin in biomedical applications. By optimizing the electrospinning parameters, ultrafine zein fluorescence nanofibers containing curcumin were developed with interconnected fibrous networks. We found that these nanofibers show an increase in fluorescence due to the incorporation of curcumin. The morphology and material properties of the resulting multifunctional nanofiber including the surface area were examined by a field emission-scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA) and confocal microscopy. The surface area and pore size were characterized by N 2 adsorption–desorption isotherm. SEM and fluorescence images showed that the uniform fibers with smooth surface had an average diameter of about 310 nm. An in vitro degradation study showed significant morphological changes. The in vitro evaluations suggested that the curcumin incorporated zein nanofibers showed sustained release of curcumin and maintained its free radical scavenging ability. It provides an attractive structure for the attachment and growth of fibroblast as cell culture surfaces. The results demonstrate that the curcumin loaded zein nanofiber could be a good candidate for soft tissue engineering scaffolds and has the potential for further applications in drug delivery system. (paper)

  8. Frequency of chromosome 17 aneuploidy in primary and recurrent pterygium by interphase-fluorescence in situ hybridization.

    Science.gov (United States)

    Kamis, Umit; Kerimoglu, Hurkan; Ozkagnici, Ahmet; Acar, Hasan

    2006-01-01

    To investigate chromosome 17 numerical aberrations by using fluorescence in situ hybridization (FISH) in pterygia and to find out whether there is any association between chromosome 17 aneuploidy and recurrent pterygia. Pterygium tissue samples were taken from 21 patients by surgical excision. Eighteen of them had primary and 3 had recurrent pterygium. Peripheral whole blood interphase cells obtained from 11 healthy subjects were assigned as control group. The cells from pterygium tissue and peripheral blood were incubated with a hypotonic solution and fixed in order to obtain interphase nuclei. FISH analysis with chromosome-17-specific alpha-satellite DNA probe was performed on both the interphase nuclei of pterygium tissue (of patients) and peripheral whole blood cells of controls. The mean percentage of chromosome 17 aneuploidy was 4.71% for the pterygia group and 4.41% for the controls. No significant difference of chromosome 17 aneuploidy was observed between the patients and the controls. When the group of patients with recurrences was compared with the group without recurrences, there was a significant difference in the frequency of chromosome 17 aneuploidy (U = 17, p = 0.029). Chromosome 17 aneuploidy is probably not an important factor in the formation of pterygium, but it may be related to recurrence.

  9. Synthesis, characterization and application of poly(acrylamide-co-methylenbisacrylamide) nanocomposite as a colorimetric chemosensor for visual detection of trace levels of Hg and Pb ions

    Energy Technology Data Exchange (ETDEWEB)

    Sedghi, Roya, E-mail: r_sedghi@sbu.ac.ir; Heidari, Bahareh; Behbahani, Mohammad

    2015-03-21

    Highlights: • Poly(acrylamide-co-methylenbisacrylamide) nanocomposite. • Colorimetric chemosensor. • Determination of trace levels of Hg and Pb ions. • Environmental samples. - Abstract: In this study, a new colorimetric chemosensor based on TiO{sub 2}/poly(acrylamide-co-methylenbisacrylamide) nanocomposites was designed for determination of mercury and lead ions at trace levels in environmental samples. The removal and preconcentration of lead and mercury ions on the sorbent was achieved due to sharing an electron pair of N and O groups of polymer chains with the mentioned heavy metal ions. The hydrogel sensor was designed by surface modification of a synthesized TiO{sub 2} nanoparticles using methacryloxypropyltrimethoxysilan (MAPTMS), which provided a reactive C=C bond that polymerized the acrylamide and methylenbisacrylamide. The sorbent was characterized using X-ray diffraction (XRD), thermogravimetric analysis (TGA), scanning electron microscope (SEM), EDS analysis and Fourier transform in frared (FT-IR) spectrometer. This nanostructured composite with polymer shell was developed as a sensitive and selective sorbent for adsorption of mercury and lead ions from aqueous solution at optimized condition. This method involves two-steps: (1) preconcentration of mercury and lead ions by the synthesized sorbent and (2) its selective monitoring of the target ions by complexation with dithizone (DZ). The color of the sorbent in the absence and presence of mercury and lead ions shifts from white to violet and red, respectively. The detection limit of the synthesized nanochemosensor for mercury and lead ions was 1 and 10 μg L{sup −1}, respectively. The method was successfully applied for trace detection of mercury and lead ions in tap, river, and sea water samples.

  10. Ultra-sensitive DNA assay based on single-molecule detection coupled with fluorescent quantum dot-labeling and its application to determination of messenger RNA

    International Nuclear Information System (INIS)

    Li Li; Li Xincang; Li Lu; Wang Jinxing; Jin Wenrui

    2011-01-01

    An ultra-sensitive single-molecule detection (SMD) method for quantification of DNA using total internal reflection fluorescence microscopy (TIRFM) coupled with fluorescent quantum dot (QD)-labeling was developed. In this method, the target DNA (tDNA) was captured by the capture DNA immobilized on the silanized coverslip blocked with ethanolamine and bovine serum albumin. Then, the QD-labeled probe DNA was hybridized to the tDNA. Ten fluorescent images of the QD-labeled sandwich DNA hybrids on the coverslip were taken by a high-sensitive CCD. The tDNA was quantified by counting the bright spots on the images using a calibration curve. The LOD of the method was 1 x 10 -14 mol L -1 . Several key factors, including image acquirement, fluorescence probe, substrate preparation, noise elimination from solutions and glass coverslips, and nonspecific adsorption and binding of solution-phase detection probes were discussed in detail. The method could be applied to quantify messenger RNA (mRNA) in cells. In order to determine mRNA, double-stranded RNA-DNA hybrids consisting of mRNA and corresponding cDNA were synthesized from the cellular mRNA template using reverse transcription in the presence of reverse transcriptase. After removing the mRNA in the double-stranded hybrids using ribonuclease, cDNA was quantified using the SMD-based TIRFM. Osteopontin mRNA in decidual stromal cells was chosen as the model analyte.

  11. Site-specific confocal fluorescence imaging of biological microstructures in a turbid medium

    International Nuclear Information System (INIS)

    Saloma, Caesar; Palmes-Saloma, Cynthia; Kondoh, Hisato

    1998-01-01

    Normally transparent biological structures in a turbid medium are imaged using a laser confocal microscope and multiwavelength site-specific fluorescence labelling. The spatial filtering capability of the detector pinhole in the confocal microscope limits the number of scattered fluorescent photons that reach the photodetector. Simultaneous application of different fluorescent markers on the same sample site minimizes photobleaching by reducing the excitation time for each marker. A high-contrast grey-level image is also produced by summing confocal images of the same site taken at different fluorescence wavelengths. Monte Carlo simulations are performed to obtain the quantitative behaviour of confocal fluorescence imaging in turbid media. Confocal images of the following samples were also obtained: (i) 15 μm diameter fluorescent spheres placed 1.16 mm deep beneath an aqueous suspension of 0.0823 μm diameter polystyrene latex spheres, and (ii) hindbrain of a whole-mount mouse embryo (age 10 days) that was stained to fluoresce at 515 nm and 580 nm peak wavelengths. Expression of RNA transcripts of a gene within the embryo hindbrain was detected by a fluorescence-based whole-mount in situ hybridization procedure that we recently tested. (author)

  12. A Conjugated Aptamer-Gold Nanoparticle Fluorescent Probe for Highly Sensitive Detection of rHuEPO-α

    Directory of Open Access Journals (Sweden)

    Zhaoyang Zhang

    2011-11-01

    Full Text Available We present here a novel conjugated aptamer-gold nanoparticle (Apt-AuNPs fluorescent probe and its application for specific detection of recombinant human erythropoietin-α (rHuEPO-α. In this nanobiosensor, 12 nm AuNPs function as both a nano-scaffold and a nano-quencher (fluorescent energy acceptor, on the surface of which the complementary sequences are linked (as cODN-AuNPs and pre-hybridized with carboxymethylfluorescein (FAM-labeled anti-rHuEPO-α aptamers. Upon target protein binding, the aptamers can be released from the AuNP surface and the fluorescence signal is restored. Key variables such as the length of linker, the hybridization site and length have been designed and optimized. Full performance evaluation including sensitivity, linear range and interference substances are also described. This nanobiosensor provides a promising approach for a simple and direct quantification of rHuEPO-α concentrations as low as 0.92 nM within a few hours.

  13. Quantum dots-hyperbranched polyether hybrid nanospheres towards delivery and real-time detection of nitric oxide

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Shuiping; Gu, Tianxun; Fu, Jiajia [Key Laboratory of Eco-Textiles, Ministry of Education (Jiangnan University), Wuxi 214122 (China); College of Textile and Clothing, Jiangnan University, Wuxi 214122 (China); Li, Xiaoqiang, E-mail: leecaiwei@163.com [Key Laboratory of Eco-Textiles, Ministry of Education (Jiangnan University), Wuxi 214122 (China); College of Textile and Clothing, Jiangnan University, Wuxi 214122 (China); Technical University of Denmark, DTU Food, Søltofts plads, B227, 2800 Kgs. Lyngby (Denmark); Chronakis, Ioannis S. [Technical University of Denmark, DTU Food, Søltofts plads, B227, 2800 Kgs. Lyngby (Denmark); Ge, Mingqiao [Key Laboratory of Eco-Textiles, Ministry of Education (Jiangnan University), Wuxi 214122 (China); College of Textile and Clothing, Jiangnan University, Wuxi 214122 (China)

    2014-12-01

    In this work, novel hybrid nanosphere vehicles were synthesized for nitric oxide (NO) donating and real-time detection. The hybrid nanosphere vehicles consist of cadmium selenide quantum dots (CdSe QDs) as NO fluorescent probes, and the modified hyperbranched polyether (mHP)-based diazeniumdiolates as NO donors, respectively. The nanospheres have spherical outline with dimension of ∼ 127 nm. The data of systematic characterization demonstrated that the mHP-based hybrid nanosphere vehicles (QDs-mHP-NO) can release and real-time detect NO with the low limit of 25 nM, based on fluorescence quenching mechanism. The low cell-toxicity of QDs-mHP-NO nanospheres was verified by means of MTT assay on L929 cells viability. The QDs-mHP-NO nanospheres provide perspectives for designing a new class of biocompatible NO donating and imaging systems. - Highlights: • QDs-mHP-NO fluorescent probe was prepared. • The QDs-mHP-NO probe is capable of releasing NO. • The QDs-mHP-NO probe can quantitatively detecting the release of NO in real time. • The low cell-toxicity of QDs-mHP-NO nanospheres was verified.

  14. Establishment of a new human pleomorphic malignant fibrous histiocytoma cell line, FU-MFH-2: molecular cytogenetic characterization by multicolor fluorescence in situ hybridization and comparative genomic hybridization

    Directory of Open Access Journals (Sweden)

    Isayama Teruto

    2010-11-01

    Full Text Available Abstract Background Pleomorphic malignant fibrous histiocytoma (MFH is one of the most frequent malignant soft tissue tumors in adults. Despite the considerable amount of research on MFH cell lines, their characterization at a molecular cytogenetic level has not been extensively analyzed. Methods and results We established a new permanent human cell line, FU-MFH-2, from a metastatic pleomorphic MFH of a 72-year-old Japanese man, and applied multicolor fluorescence in situ hybridization (M-FISH, Urovysion™ FISH, and comparative genomic hybridization (CGH for the characterization of chromosomal aberrations. FU-MFH-2 cells were spindle or polygonal in shape with oval nuclei, and were successfully maintained in vitro for over 80 passages. The histological features of heterotransplanted tumors in severe combined immunodeficiency mice were essentially the same as those of the original tumor. Cytogenetic and M-FISH analyses displayed a hypotriploid karyotype with numerous structural aberrations. Urovysion™ FISH revealed a homozygous deletion of the p16INK4A locus on chromosome band 9p21. CGH analysis showed a high-level amplification of 9q31-q34, gains of 1p12-p34.3, 2p21, 2q11.2-q21, 3p, 4p, 6q22-qter, 8p11.2, 8q11.2-q21.1, 9q21-qter, 11q13, 12q24, 15q21-qter, 16p13, 17, 20, and X, and losses of 1q43-qter, 4q32-qter, 5q14-q23, 7q32-qter, 8p21-pter, 8q23, 9p21-pter, 10p11.2-p13, and 10q11.2-q22. Conclusion The FU-MFH-2 cell line will be a particularly useful model for studying molecular pathogenesis of human pleomorphic MFH.

  15. Hybrid white organic light-emitting devices consisting of a non-doped thermally activated delayed fluorescent emitter and an ultrathin phosphorescent emitter

    International Nuclear Information System (INIS)

    Zhao, Juan; Wang, Zijun; Wang, Run; Chi, Zhenguo; Yu, Junsheng

    2017-01-01

    Hybrid white organic light-emitting devices (OLEDs) are fabricated by employing non-doped emitting layers (EMLs), which are consisted of a blue thermally activated delayed fluorescent (TADF) emitter 9,9-dimethyl-9,10-dihydroacridine-diphenylsulfone (DMAC-DPS) and an ultrathin yellow iridium complex bis[2-(4-tertbutylphenyl)benzothiazolato-N,C 2′ ] iridium (acetylacetonate) [(tbt) 2 Ir(acac)]. With thickness optimization of DMAC-DPS, a white OLED achieves maximum current efficiency, power efficiency and external quantum efficiency of 34.9 cd/A, 29.2 lm/W and 11.4%, respectively, as well as warm white emission with relatively stable electroluminescence spectra. The results suggest that, bipolar charge carrier transport property and concentration independent property of DMAC-DPS, charge carrier trapping effect of the ultrathin (tbt) 2 Ir(acac), and balanced self-emission process and energy transfer process between DMAC-DPS and (tbt) 2 Ir(acac), contribute to high device performance.

  16. High accuracy FIONA-AFM hybrid imaging

    International Nuclear Information System (INIS)

    Fronczek, D.N.; Quammen, C.; Wang, H.; Kisker, C.; Superfine, R.; Taylor, R.; Erie, D.A.; Tessmer, I.

    2011-01-01

    Multi-protein complexes are ubiquitous and play essential roles in many biological mechanisms. Single molecule imaging techniques such as electron microscopy (EM) and atomic force microscopy (AFM) are powerful methods for characterizing the structural properties of multi-protein and multi-protein-DNA complexes. However, a significant limitation to these techniques is the ability to distinguish different proteins from one another. Here, we combine high resolution fluorescence microscopy and AFM (FIONA-AFM) to allow the identification of different proteins in such complexes. Using quantum dots as fiducial markers in addition to fluorescently labeled proteins, we are able to align fluorescence and AFM information to ≥8 nm accuracy. This accuracy is sufficient to identify individual fluorescently labeled proteins in most multi-protein complexes. We investigate the limitations of localization precision and accuracy in fluorescence and AFM images separately and their effects on the overall registration accuracy of FIONA-AFM hybrid images. This combination of the two orthogonal techniques (FIONA and AFM) opens a wide spectrum of possible applications to the study of protein interactions, because AFM can yield high resolution (5-10 nm) information about the conformational properties of multi-protein complexes and the fluorescence can indicate spatial relationships of the proteins in the complexes. -- Research highlights: → Integration of fluorescent signals in AFM topography with high (<10 nm) accuracy. → Investigation of limitations and quantitative analysis of fluorescence-AFM image registration using quantum dots. → Fluorescence center tracking and display as localization probability distributions in AFM topography (FIONA-AFM). → Application of FIONA-AFM to a biological sample containing damaged DNA and the DNA repair proteins UvrA and UvrB conjugated to quantum dots.

  17. A new colorimetric chemosensors for Cu{sup 2+} and Cd{sup 2+} ions detection: Application in environmental water samples and analytical method validation

    Energy Technology Data Exchange (ETDEWEB)

    Tekuri, Venkatadri; Trivedi, Darshak R., E-mail: darshak_rtrivedi@yahoo.co.in

    2017-06-15

    A new heterocyclic thiophene-2-caboxylic acid hydrazide based chemosensor R1 to R4 were designed, synthesized and characterized by various spectroscopic techniques like FT-IR, UV-Vis, {sup 1}H NMR, {sup 13}C NMR, Mass and SC-XRD. The chemosensor R3 showed a significant color change from colorless to yellow in the presence of Cu{sup 2+} ions and chemosensor R4 showed a significant color change from colorless to yellow in the presence of Cd{sup 2+} ions over the other tested cations such as Cr{sup 3+}, Mn{sup 2+}, Fe{sup 2+}, Fe{sup 3+}, Co{sup 2+}, Ni{sup 2+}, Zn{sup 2+}, Ag{sup 2+}, Al{sup 3+}, Pb{sup 2+}, Hg{sup 2+}, K{sup +}, Ca{sup 2+} and Mg{sup 2+}. The high selective and sensitivity of R3 towards Cu{sup 2+} and R4 towards Cd{sup 2+} ions was confirmed by UV-Vis spectroscopic study. The R3 showed a red shift in the presence of Cu{sup 2+} ions by Δλ{sub max} 67 nm and R4 showed a red shift in the presence of Cd{sup 2+} ions by Δλ{sub max} 105 nm in the absorption spectrum. The binding stoichiometric ratio of the complex between R3 - Cu{sup 2+} and R4 - Cd{sup 2+} ions have been found to be 1:1 using the B-H plot. Under optimized experimental conditions, the R3 and R4 exhibits a dynamic linear absorption response range, from 0 to 50 μM for Cu{sup 2+} ions and 0 to 30 μM for Cd{sup 2+} ions, with the detection limit of 2.8 × 10{sup −6} M for Cu{sup 2+} and 2.0 × 10{sup −7} M for Cd{sup 2+} ions. The proposed analytical method for the quantitative determination of Cu{sup 2+} and Cd{sup 2+} ions was validated and successfully applied for the environmental samples with good precision and accuracy. - Highlights: • Detection of Cu{sup 2+} and Cd{sup 2+} ions has gained significance by virtue of its key role in biological and environmental science. • The R3 and R4 showed instantaneous color change from colorless to yellow in the presence of Cu{sup 2+} and Cd{sup 2+} ions respectively. • The proposed detection methods were validated and

  18. Evaluation of a radioactive and fluorescent hybrid tracer for sentinel lymph node biopsy in head and neck malignancies: prospective randomized clinical trial to compare ICG-{sup 99m}Tc-nanocolloid hybrid tracer versus {sup 99m}Tc-nanocolloid

    Energy Technology Data Exchange (ETDEWEB)

    Stoffels, Ingo; Leyh, Julia; Schadendorf, Dirk; Klode, Joachim [University Hospital Essen University of Duisburg-Essen, Department of Dermatology, Venerology and Allergology, Essen (Germany); University Duisburg-Essen, West German Cancer Center, Essen (Germany); German Cancer Consortium (DKTK), Essen (Germany); Poeppel, Thorsten [University Hospital Essen University of Duisburg-Essen, Department of Nuclear Medicine, Essen (Germany)

    2015-10-15

    There is some controversy about the value of sentinel lymph node excision (SLNE) in patients with head and neck malignancies. The gold standard for detection and targeted extirpation of the SLN is lymphoscintigraphy with {sup 99m}Tc-nanocolloid. The purpose of this prospective randomized study was to analyse the feasibility and clinical benefit of a hybrid tracer comprising the near-infrared (NIR) fluorescent indocyanine green (ICG) and {sup 99m}Tc-nanocolloid (ICG-{sup 99m}Tc-nanocolloid) in direct comparison with standard {sup 99m}Tc-nanocolloid for guiding SLNE in patients with head and neck cutaneous malignancies. We analysed the data from 40 clinically lymph node-negative patients with melanoma, high-risk cutaneous squamous cell carcinoma, Merkel cell carcinoma or sweat gland carcinoma who underwent SLNE with ICG-{sup 99m}Tc-nanocolloid (cohort A) or with the standard {sup 99m}Tc-nanocolloid (cohort B). Overall SLNs were identified preoperatively in all 20 patients (100 %) in cohort A and in 18 of 20 patients (90 %) in cohort B. The SLN basin was detected preoperatively in 18 patients (90 %) in cohort A and also in 18 patients (90 %) in cohort B. SLNs were identified intraoperatively in all 20 patients (100 %) in cohort A and in 19 patients (95 %) in cohort B (p = 0.487). Metastatic SLNs were detected in 9 patients (22.5 %), 3 (15.0 %) in cohort A and 6 (30.0 %) in cohort B (p = 0.228). The hybrid tracer ICG-{sup 99m}Tc-nanocolloid is an innovative imaging tracer, reliably and readily providing additional information for the detection and excision of SLN in the head and neck region. Therefore, SLNE with combined radioactive and NIR fluorescence guidance is an attractive option for improving the SLN detection rate in patients with cutaneous head and neck malignancies. (orig.)

  19. Mechanisms of Surface-Mediated DNA Hybridization

    Science.gov (United States)

    2015-01-01

    Single-molecule total internal reflection fluorescence microscopy was employed in conjunction with resonance energy transfer (RET) to observe the dynamic behavior of donor-labeled ssDNA at the interface between aqueous solution and a solid surface decorated with complementary acceptor-labeled ssDNA. At least 100 000 molecular trajectories were determined for both complementary strands and negative control ssDNA. RET was used to identify trajectory segments corresponding to the hybridized state. The vast majority of molecules from solution adsorbed nonspecifically to the surface, where a brief two-dimensional search was performed with a 7% chance of hybridization. Successful hybridization events occurred with a characteristic search time of ∼0.1 s, and unsuccessful searches resulted in desorption from the surface, ultimately repeating the adsorption and search process. Hybridization was reversible, and two distinct modes of melting (i.e., dehybridization) were observed, corresponding to long-lived (∼15 s) and short-lived (∼1.4 s) hybridized time intervals. A strand that melted back onto the surface could rehybridize after a brief search or desorb from the interface. These mechanistic observations provide guidance for technologies that involve DNA interactions in the near-surface region, suggesting a need to design surfaces that both enhance the complex multidimensional search process and stabilize the hybridized state. PMID:24708278

  20. Magnified fluorescence detection of silver(I) ion in aqueous solutions by using nano-graphite-DNA hybrid and DNase I.

    Science.gov (United States)

    Wei, Yin; Li, Bianmiao; Wang, Xu; Duan, Yixiang

    2014-08-15

    This paper describes a novel approach utilizing nano-graphite-DNA hybrid and DNase I for the amplified detection of silver(I) ion in aqueous solutions for the first time. Nano-graphite can effectively quench the fluorescence of dye-labeled cytosine-rich single-stranded DNA due to its strong π-π stacking interactions; however, in the presence of Ag(+), C-Ag(+)-C coordination induces the probe to fold into a hairpin structure, which does not adsorb on the surface of nano-graphite and thus retains the dye fluorescence. Meanwhile, the hairpin structure can be cleaved by DNase I, and in such case Ag(+) is delivered from the complex. The released Ag(+) then binds other dye-labeled single-stranded DNA on the nano-graphite surface, and touches off another target recycling, resulting in the successive release of dye-labeled single-stranded DNA from the nano-graphite, which leads to significant amplification of the signal. The present magnification sensing system exhibits high sensitivity toward Ag(+) with a limit of detection of 0.3nM (S/N=3), which is much lower than the standard for Ag(+) in drinking water recommended by the Environmental Protection Agency (EPA). The selectivity of the sensor for Ag(+) against other biologically and environmentally related metal ions is outstanding due to the high specificity of C-Ag(+)-C formation. Moreover, the sensing system is used for the determination of Ag(+) in river water samples with satisfying results. The proposed assay is simple, cost-effective, and might open the door for the development of new assays for other metal ions or biomolecules. Copyright © 2014 Elsevier B.V. All rights reserved.