WorldWideScience

Sample records for hybrid flow model

  1. Data assimilation using a hybrid ice flow model

    Directory of Open Access Journals (Sweden)

    D. N. Goldberg

    2010-10-01

    Full Text Available Hybrid models, or depth-integrated flow models that include the effect of both longitudinal stresses and vertical shearing, are becoming more prevalent in dynamical ice modeling. Under a wide range of conditions they closely approximate the well-known First Order stress balance, yet are of computationally lower dimension, and thus require less intensive resources. Concomitant with the development and use of these models is the need to perform inversions of observed data. Here, an inverse control method is extended to use a hybrid flow model as a forward model. We derive an adjoint of a hybrid model and use it for inversion of ice-stream basal traction from observed surface velocities. A novel aspect of the adjoint derivation is a retention of non-linearities in Glen's flow law. Experiments show that including those nonlinearities is advantageous in minimization of the cost function, yielding a more efficient inversion procedure.

  2. Hybrid Continuum and Molecular Modeling of Nano-scale Flows

    Science.gov (United States)

    Povitsky, Alex; Zhao, Shunliu

    2010-11-01

    A novel hybrid method combining the continuum approach based on boundary singularity method (BSM) and the molecular approach based on the direct simulation Monte Carlo (DSMC) is developed and then used to study viscous fibrous filtration flows in the transition flow regime, Kn>0.25. The DSMC is applied to a Knudsen layer enclosing the fiber and the BSM is employed to the entire flow domain. The parameters used in the DSMC and the coupling procedure, such as the number of simulated particles, the cell size and the size of the coupling zone are determined. Results are compared to the experiments measuring pressure drop and flowfield in filters. The optimal location of singularities outside of flow domain was determined and results are compared to those obtained by regularized Stokeslets. The developed hybrid method is parallelized by using MPI and extended to multi-fiber filtration flows. The multi-fiber filter flows considered are in the partial-slip and transition regimes. For Kn˜1, the computed velocity near fibers changes significantly that confirms the need of molecular methods in evaluation of the flow slip in transitional regime.

  3. Hybrid turbulence models for atmospheric flow: A proper comparison with RANS models

    Directory of Open Access Journals (Sweden)

    Bautista Mary C.

    2015-01-01

    Full Text Available A compromise between the required accuracy and the need for affordable simulations for the wind industry might be achieved with the use of hybrid turbulence models. Detached-Eddy Simulation (DES [1] is a hybrid technique that yields accurate results only if it is used according to its original formulation [2]. Due to its particular characteristics (i.e., the type of mesh required, the modeling of the atmospheric flow might always fall outside the original scope of DES. An enhanced version of DES called Simplify Improved Delayed Detached-Eddy Simulation (SIDDES [3] can overcome this and other disadvantages of DES. In this work the neutrally stratified atmospheric flow over a flat terrain with homogeneous roughness will be analyzed using a Reynolds-Averaged Navier–Stokes (RANS model called k – ω SST (shear stress transport [4], and the hybrids k – ω SST-DES and k – ω SST-SIDDES models. An obvious test is to validate these hybrid approaches and asses their advantages and disadvantages over the pure RANS model. However, for several reasons the technique to drive the atmospheric flow is generally different for RANS and LES or hybrid models. The flow in a RANS simulation is usually driven by a constant shear stress imposed at the top boundary [5], therefore modeling only the atmospheric surface layer. On the contrary the LES and hybrid simulations are usually driven by a constant pressure gradient, thus a whole atmospheric boundary layer is simulated. Rigorously, this represents two different simulated cases making the model comparison not trivial. Nevertheless, both atmospheric flow cases are studied with the mentioned models. The results prove that a simple comparison of the time average turbulent quantities obtained by RANS and hybrid simulations is not easily achieved. The RANS simulations yield consistent results for the atmospheric surface layer case, while the hybrid model results are not correct. As for the atmospheric boundary

  4. Parameter estimation for stochastic hybrid model applied to urban traffic flow estimation

    OpenAIRE

    2015-01-01

    This study proposes a novel data-based approach for estimating the parameters of a stochastic hybrid model describing the traffic flow in an urban traffic network with signalized intersections. The model represents the evolution of the traffic flow rate, measuring the number of vehicles passing a given location per time unit. This traffic flow rate is described using a mode-dependent first-order autoregressive (AR) stochastic process. The parameters of the AR process take different values dep...

  5. A modeling method of semiconductor fabrication flows with extended knowledge hybrid Petri nets

    Institute of Scientific and Technical Information of China (English)

    Zhou Binghai; Jiang Shuyu; Wang Shijin; Wu bin

    2008-01-01

    A modeling method of extended knowledge hybrid Petri nets (EKHPNs), incorporating object-oriented methods into hybrid Petri nets (HPNs), was presented and used for the representation and modeling of semiconductor wafer fabrication flows. To model the discrete and continuous parts of a complex semiconductor wafer fabrication flow, the HPNs were introduced into the EKHPNs. Object-oriented methods were combined into the EKHPNs for coping with the complexity of the fabrication flow. Knowledge annotations were introduced to solve input and output conflicts of the EKHPNs.Finally, to demonstrate the validity of the EKHPN method, a real semiconductor wafer fabrication case was used to illustrate the modeling procedure. The modeling results indicate that the proposed method can be used to model a complex semiconductor wafer fabrication flow expediently.

  6. An hybrid RANS/LES model for simulation of complex turbulent flow

    Institute of Scientific and Technical Information of China (English)

    魏群; 陈红勋; 马峥

    2016-01-01

    A non-linear eddy viscosity model (NLEVM) and a scalable hybrid Reynolds averaged Navier-Stokes/ large eddy simula- tion (RANS/LES) strategy are developed to improve the capability of the eddy viscosity model (EVM) to simulate complex flows featuring separations and unsteady motions. To study the performance of the NLEVM, numerical simulations around S809 airfoil are carried out and the results show that the NLEVM performs much better when a large separation occurs. Calculated results of the flow around a triangular cylinder show that the NLEVM can improve the precision of the flow fields to some extents, but the error is still considerable, and the small turbulence structures can not be clearly captured as the EVM. Whereas the scalable hybrid RANS/LES model based on the NLEVM is fairly effective on resolving the turbulent structures and can give more satisfactory predictions of the flow fields.

  7. Multiscale modeling of rapid granular flow with a hybrid discrete-continuum method

    CERN Document Server

    Chen, Xizhong; Li, Jinghai

    2015-01-01

    Both discrete and continuum models have been widely used to study rapid granular flow, discrete model is accurate but computationally expensive, whereas continuum model is computationally efficient but its accuracy is doubtful in many situations. Here we propose a hybrid discrete-continuum method to profit from the merits but discard the drawbacks of both discrete and continuum models. Continuum model is used in the regions where it is valid and discrete model is used in the regions where continuum description fails, they are coupled via dynamical exchange of parameters in the overlap regions. Simulation of granular channel flow demonstrates that the proposed hybrid discrete-continuum method is nearly as accurate as discrete model, with much less computational cost.

  8. Model-Invariant Hybrid Computations of Separated Flows for RCA Standard Test Cases

    Science.gov (United States)

    Woodruff, Stephen

    2016-01-01

    NASA's Revolutionary Computational Aerosciences (RCA) subproject has identified several smooth-body separated flows as standard test cases to emphasize the challenge these flows present for computational methods and their importance to the aerospace community. Results of computations of two of these test cases, the NASA hump and the FAITH experiment, are presented. The computations were performed with the model-invariant hybrid LES-RANS formulation, implemented in the NASA code VULCAN-CFD. The model- invariant formulation employs gradual LES-RANS transitions and compensation for model variation to provide more accurate and efficient hybrid computations. Comparisons revealed that the LES-RANS transitions employed in these computations were sufficiently gradual that the compensating terms were unnecessary. Agreement with experiment was achieved only after reducing the turbulent viscosity to mitigate the effect of numerical dissipation. The stream-wise evolution of peak Reynolds shear stress was employed as a measure of turbulence dynamics in separated flows useful for evaluating computations.

  9. Comparative study of hybrid RANS-LES models for separated flows

    Science.gov (United States)

    Kumar, G.; Lakshmanan, S. K.; Gopalan, H.; De, A.

    2016-06-01

    Hybrid RANS-LES models are proven to be capable of predicting massively separated flows with reasonable computation cost. In this paper, Spalart-Allmaras (S-A) based detached eddy simulation (DES) model and three SST based hybrid models with different RANS to LES switching criteriaare investigated. The flow over periodic hill at Re = 10,595 is chosen as the benchmark for comparing the performance of the different models due to the complex flow physics and reasonablecomputational cost. The model performances are evaluated based on their prediction capabilities of velocity and stress profiles, and separation and reattachment point. The simulated results are validatedagainst experimental and numerical results available in literature. The S-A DES model predicted separation bubble accurately at the top of the hill, as reported earlier in experiments and other numerical results. This model also correctly predicted velocity and stress profiles in recirculation region. However, the performance of this model was poor in the post reattachment region. On the other hand, the k-ω SST based hybrid models performed poorly in recirculation region, but it fairly predicted stress profiles in post reattachment region.

  10. E324 Simulation of Turbulent Channel Flow Using a RANS/LES Hybrid Model

    OpenAIRE

    半場, 藤弘; Fujihiro, Hamba; 東大生研; Institute of Industrial Science, University of Tokyo

    2004-01-01

    A RANS/LES hybrid simulation of a channel flow at Reτ=5000 was carried out using the Smagorinsky model. It is known that some hybrid simulations including the detached eddy simulation have a common defect: the mean velocity profile has a mismatch between the RANS and LES regions due to a steep gradient near the interface. New filtering for the velocity was introduced to improve the mean velocity profile. It was shown that this method increases the intensity of the normal velocity component in...

  11. Numerical modelling of liquid material flow in the fusion zone of hybrid welded joint

    Directory of Open Access Journals (Sweden)

    M. Kubiak

    2011-04-01

    Full Text Available This paper concerns modelling of liquid metal motion in the fusion zone of laser-arc hybrid butt-welded plate. Velocity field in the fusion zone and temperature field in welded plate were obtained on the basis of the solution of mass, momentum and energy conservationsequations. Differential equations were solved using Chorin’s projection method and finite volume method. Melting and solidificationprocesses were taken into account in calculations assuming fuzzy solidification front where fluid flow is treated as a flow through porous medium. Double-ellipsoidal heat source model was used to describe electric arc and laser beam heat sources. On the basis of developed solution algorithms simulation of hybrid welding process was performed and the influence of liquid metal motion in the fusion zone on the results of calculations was analyzed.

  12. Hybrid nested sampling algorithm for Bayesian model selection applied to inverse subsurface flow problems

    Energy Technology Data Exchange (ETDEWEB)

    Elsheikh, Ahmed H., E-mail: aelsheikh@ices.utexas.edu [Institute for Computational Engineering and Sciences (ICES), University of Texas at Austin, TX (United States); Institute of Petroleum Engineering, Heriot-Watt University, Edinburgh EH14 4AS (United Kingdom); Wheeler, Mary F. [Institute for Computational Engineering and Sciences (ICES), University of Texas at Austin, TX (United States); Hoteit, Ibrahim [Department of Earth Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal (Saudi Arabia)

    2014-02-01

    A Hybrid Nested Sampling (HNS) algorithm is proposed for efficient Bayesian model calibration and prior model selection. The proposed algorithm combines, Nested Sampling (NS) algorithm, Hybrid Monte Carlo (HMC) sampling and gradient estimation using Stochastic Ensemble Method (SEM). NS is an efficient sampling algorithm that can be used for Bayesian calibration and estimating the Bayesian evidence for prior model selection. Nested sampling has the advantage of computational feasibility. Within the nested sampling algorithm, a constrained sampling step is performed. For this step, we utilize HMC to reduce the correlation between successive sampled states. HMC relies on the gradient of the logarithm of the posterior distribution, which we estimate using a stochastic ensemble method based on an ensemble of directional derivatives. SEM only requires forward model runs and the simulator is then used as a black box and no adjoint code is needed. The developed HNS algorithm is successfully applied for Bayesian calibration and prior model selection of several nonlinear subsurface flow problems.

  13. An Efficient Hybrid DSMC/MD Algorithm for Accurate Modeling of Micro Gas Flows

    KAUST Repository

    Liang, Tengfei

    2013-01-01

    Aiming at simulating micro gas flows with accurate boundary conditions, an efficient hybrid algorithmis developed by combining themolecular dynamics (MD) method with the direct simulationMonte Carlo (DSMC)method. The efficiency comes from the fact that theMD method is applied only within the gas-wall interaction layer, characterized by the cut-off distance of the gas-solid interaction potential, to resolve accurately the gas-wall interaction process, while the DSMC method is employed in the remaining portion of the flow field to efficiently simulate rarefied gas transport outside the gas-wall interaction layer. A unique feature about the present scheme is that the coupling between the two methods is realized by matching the molecular velocity distribution function at the DSMC/MD interface, hence there is no need for one-toone mapping between a MD gas molecule and a DSMC simulation particle. Further improvement in efficiency is achieved by taking advantage of gas rarefaction inside the gas-wall interaction layer and by employing the "smart-wall model" proposed by Barisik et al. The developed hybrid algorithm is validated on two classical benchmarks namely 1-D Fourier thermal problem and Couette shear flow problem. Both the accuracy and efficiency of the hybrid algorithm are discussed. As an application, the hybrid algorithm is employed to simulate thermal transpiration coefficient in the free-molecule regime for a system with atomically smooth surface. Result is utilized to validate the coefficients calculated from the pure DSMC simulation with Maxwell and Cercignani-Lampis gas-wall interaction models. ©c 2014 Global-Science Press.

  14. A Hybrid Windkessel Model of Blood Flow in Arterial Tree Using Velocity Profile Method

    Science.gov (United States)

    Aboelkassem, Yasser; Virag, Zdravko

    2016-11-01

    For the study of pulsatile blood flow in the arterial system, we derived a coupled Windkessel-Womersley mathematical model. Initially, a 6-elements Windkessel model is proposed to describe the hemodynamics transport in terms of constant resistance, inductance and capacitance. This model can be seen as a two compartment model, in which the compartments are connected by a rigid pipe, modeled by one inductor and resistor. The first viscoelastic compartment models proximal part of the aorta, the second elastic compartment represents the rest of the arterial tree and aorta can be seen as the connection pipe. Although the proposed 6-elements lumped model was able to accurately reconstruct the aortic pressure, it can't be used to predict the axial velocity distribution in the aorta and the wall shear stress and consequently, proper time varying pressure drop. We then modified this lumped model by replacing the connection pipe circuit elements with a vessel having a radius R and a length L. The pulsatile flow motions in the vessel are resolved instantaneously along with the Windkessel like model enable not only accurate prediction of the aortic pressure but also wall shear stress and frictional pressure drop. The proposed hybrid model has been validated using several in-vivo aortic pressure and flow rate data acquired from different species such as, humans, dogs and pigs. The method accurately predicts the time variation of wall shear stress and frictional pressure drop. Institute for Computational Medicine, Dept. Biomedical Engineering.

  15. Flow-radiation coupling for atmospheric entries using a Hybrid Statistical Narrow Band model

    Science.gov (United States)

    Soucasse, Laurent; Scoggins, James B.; Rivière, Philippe; Magin, Thierry E.; Soufiani, Anouar

    2016-09-01

    In this study, a Hybrid Statistical Narrow Band (HSNB) model is implemented to make fast and accurate predictions of radiative transfer effects on hypersonic entry flows. The HSNB model combines a Statistical Narrow Band (SNB) model for optically thick molecular systems, a box model for optically thin molecular systems and continua, and a Line-By-Line (LBL) description of atomic radiation. Radiative transfer calculations are coupled to a 1D stagnation-line flow model under thermal and chemical nonequilibrium. Earth entry conditions corresponding to the FIRE 2 experiment, as well as Titan entry conditions corresponding to the Huygens probe, are considered in this work. Thermal nonequilibrium is described by a two temperature model, although non-Boltzmann distributions of electronic levels provided by a Quasi-Steady State model are also considered for radiative transfer. For all the studied configurations, radiative transfer effects on the flow, the plasma chemistry and the total heat flux at the wall are analyzed in detail. The HSNB model is shown to reproduce LBL results with an accuracy better than 5% and a speed up of the computational time around two orders of magnitude. Concerning molecular radiation, the HSNB model provides a significant improvement in accuracy compared to the Smeared-Rotational-Band model, especially for Titan entries dominated by optically thick CN radiation.

  16. The shallow water equations as a hybrid flow model for the numerical and experimental analysis of hydro power stations

    Energy Technology Data Exchange (ETDEWEB)

    Ostermann, Lars; Seidel, Christian [AG Regenerative Energien, Institut für Statik, TU Braunschweig, Beethovenstrasse 51, 38106 Braunschweig (Germany)

    2015-03-10

    The numerical analysis of hydro power stations is an important method of the hydraulic design and is used for the development and optimisation of hydro power stations in addition to the experiments with the physical submodel of a full model in the hydraulic laboratory. For the numerical analysis, 2D and 3D models are appropriate and commonly used.The 2D models refer mainly to the shallow water equations (SWE), since for this flow model a large experience on a wide field of applications for the flow analysis of numerous problems in hydraulic engineering already exists. Often, the flow model is verified by in situ measurements. In order to consider 3D flow phenomena close to singularities like weirs, hydro power stations etc. the development of a hybrid fluid model is advantageous to improve the quality and significance of the global model. Here, an extended hybrid flow model based on the principle of the SWE is presented. The hybrid flow model directly links the numerical model with the experimental data, which may originate from physical full models, physical submodels and in-situ measurements. Hence a wide field of application of the hybrid model emerges including the improvement of numerical models and the strong coupling of numerical and experimental analysis.

  17. Traffic flow characteristics in a mixed traffic system consisting of ACC vehicles and manual vehicles: A hybrid modelling approach

    Science.gov (United States)

    Yuan, Yao-Ming; Jiang, Rui; Hu, Mao-Bin; Wu, Qing-Song; Wang, Ruili

    2009-06-01

    In this paper, we have investigated traffic flow characteristics in a traffic system consisting of a mixture of adaptive cruise control (ACC) vehicles and manual-controlled (manual) vehicles, by using a hybrid modelling approach. In the hybrid approach, (i) the manual vehicles are described by a cellular automaton (CA) model, which can reproduce different traffic states (i.e., free flow, synchronised flow, and jam) as well as probabilistic traffic breakdown phenomena; (ii) the ACC vehicles are simulated by using a car-following model, which removes artificial velocity fluctuations due to intrinsic randomisation in the CA model. We have studied the traffic breakdown probability from free flow to congested flow, the phase transition probability from synchronised flow to jam in the mixed traffic system. The results are compared with that, where both ACC vehicles and manual vehicles are simulated by CA models. The qualitative and quantitative differences are indicated.

  18. Collision Energy Evolution of Elliptic and Triangular Flow in a Hybrid Model

    CERN Document Server

    Auvinen, Jussi

    2013-01-01

    While the existence of a strongly interacting state of matter, known as 'quark-gluon plasma' (QGP), has been established in heavy ion collision experiments in the past decade, the task remains to map out the transition from the hadronic matter to the QGP. This is done by measuring the dependence of key observables (such as particle suppression and elliptic flow) on the collision energy of the heavy ions. This procedure, known as 'beam energy scan', has been most recently performed at the Relativistic Heavy Ion Collider (RHIC). Utilizing a Boltzmann+hydrodynamics hybrid model, we study the collision energy dependence of initial state eccentricities and the final state elliptic and triangular flow. This approach is well suited to investigate the relative importance of hydrodynamics and hadron transport at different collision energies.

  19. Hybrid nested sampling algorithm for Bayesian model selection applied to inverse subsurface flow problems

    KAUST Repository

    Elsheikh, Ahmed H.

    2014-02-01

    A Hybrid Nested Sampling (HNS) algorithm is proposed for efficient Bayesian model calibration and prior model selection. The proposed algorithm combines, Nested Sampling (NS) algorithm, Hybrid Monte Carlo (HMC) sampling and gradient estimation using Stochastic Ensemble Method (SEM). NS is an efficient sampling algorithm that can be used for Bayesian calibration and estimating the Bayesian evidence for prior model selection. Nested sampling has the advantage of computational feasibility. Within the nested sampling algorithm, a constrained sampling step is performed. For this step, we utilize HMC to reduce the correlation between successive sampled states. HMC relies on the gradient of the logarithm of the posterior distribution, which we estimate using a stochastic ensemble method based on an ensemble of directional derivatives. SEM only requires forward model runs and the simulator is then used as a black box and no adjoint code is needed. The developed HNS algorithm is successfully applied for Bayesian calibration and prior model selection of several nonlinear subsurface flow problems. © 2013 Elsevier Inc.

  20. Efficient Time-Step Coupling For Hybrid Continuum/Molecular Modelling of Unsteady Micro-Scale Gas Flows

    Science.gov (United States)

    Lockerby, Duncan A.; Duque-Daza, Carlos A.; Borg, Matthew K.; Reese, Jason M.

    2012-05-01

    In this paper we describe a numerical method for the efficient time-accurate coupling of hybrid continuum/molecular micro gas flow solvers. Hybrid approaches are commonly used when non-equilibrium effects in the flow field are spatially localized; in these regions a more accurate, but typically more expensive, solution procedure is adopted. Although this can greatly increase efficiency in steady flows, in unsteady flows the evolution of the solution as a whole is restricted by the maximum time step allowed by the molecular-based/kinetic model; numerically speaking, this is a stiff problem. In the method presented in this paper we exploit time-scale separation, when it exists, to partially decouple the temporal evolution of the two parts of the hybrid model. This affords major computational savings. The method is a modified/extended version of the seamless heterogeneous multiscale method (SHMM). Our approach allows multiple micro steps (molecular steps) before coupling with the macro (continuum) solver: we call this a multi-step SHMM. This maintains the main advantages of SHMM (computational speed-up and flexible application) while improving on accuracy and greatly reducing the number of continuum computations and instances of coupling required. The improved accuracy of the multi-step SHMM is demonstrated for two canonical one-dimensional transient flows (oscillatory Poiseuille and oscillatory Couette flow) and for rarefied-gas oscillatory Poiseuille flow.

  1. 3-D hybrid LES-RANS model for simulation of open-channel T-diversion flows

    Institute of Scientific and Technical Information of China (English)

    Jie ZHOU; Cheng ZENG

    2009-01-01

    The study of flow diversions in open channels plays an important practical role in the design and management of open-channel networks for irrigation or drainage.To accurately predict the mean flow and turbulence characteristics of open-channel dividing flows,a hybrid LES-RANS model,which combines the large eddy simulation (LES) model with the Reynolds-averaged Navier-Stokes (RANS) model,is proposed in the present study.The unsteady RANS model was used to simulate the upstream and downstream regions of a main channel,as well as the downstream region of a branch channel.The LES model was used to simulate the channel diversion region,where turbulent flow characteristics ate complicated.Isotropic velocity fluctuations were added at the inflow interface of the LES region to trigger the generation of resolved turbulence.A method based on the virtual body force is proposed to impose Reynolds-averaged velocity fields near the outlet of the LES region in order to take downstream flow effects computed by the RANS model into account and dissipate the excessive turbulent fluctuations.This hybrid approach saves computational effort and makes it easier to properly specify inlet and outlet boundary conditions.Comparison between computational results and experimental data indicates that this relatively new modeling approach can accurately predict open-channel T-diversion flows.

  2. A hybrid flow shop model for an ice cream production scheduling problem

    Directory of Open Access Journals (Sweden)

    Imma Ribas Vila

    2009-07-01

    Full Text Available Normal 0 21 false false false ES X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Taula normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Times New Roman","serif";} In this paper we address the scheduling problem that comes from an ice cream manufacturing company. This production system can be modelled as a three stage nowait hybrid flow shop with batch dependent setup costs. To contribute reducing the gap between theory and practice we have considered the real constraints and the criteria used by planners. The problem considered has been formulated as a mixed integer programming. Further, two competitive heuristic procedures have been developed and one of them will be proposed to schedule in the ice cream factory.

  3. A hybrid CFD-DSMC model designed to simulate rapidly rarefying flow fields and its application to physical vapor deposition

    Science.gov (United States)

    Gott, Kevin

    This research endeavors to better understand the physical vapor deposition (PVD) vapor transport process by determining the most appropriate fluidic model to design PVD coating manufacturing. An initial analysis was completed based on the calculation of Knudsen number from titanium vapor properties. The results show a dense Navier-Stokes solver best describes flow near the evaporative source, but the material properties suggest expansion into the chamber may result in a strong drop in density and a rarefied flow close to the substrate. A hybrid CFD-DSMC solver is constructed in OpenFOAM for rapidly rarefying flow fields such as PVD vapor transport. The models are patched together combined using a new patching methodology designed to take advantage of the one-way motion of vapor from the CFD region to the DSMC region. Particles do not return to the dense CFD region, therefore the temperature and velocity can be solved independently in each domain. This novel technique allows a hybrid method to be applied to rapidly rarefying PVD flow fields in a stable manner. Parameter studies are performed on a CFD, Navier-Stokes continuum based compressible solver, a Direct Simulation Monte Carlo (DSMC) rarefied particle solver, a collisionless free molecular solver and the hybrid CFD-DSMC solver. The radial momentum at the inlet and radial diffusion characteristics in the flow field are shown to be the most important to achieve an accurate deposition profile. The hybrid model also shows sensitivity to the shape of the CFD region and rarefied regions shows sensitivity to the Knudsen number. The models are also compared to each other and appropriate experimental data to determine which model is most likely to accurately describe PVD coating deposition processes. The Navier-Stokes solvers are expected to yield backflow across the majority of realistic inlet conditions, making their physics unrealistic for PVD flow fields. A DSMC with improved collision model may yield an accurate

  4. A Hybrid Short-Term Traffic Flow Prediction Model Based on Singular Spectrum Analysis and Kernel Extreme Learning Machine.

    Science.gov (United States)

    Shang, Qiang; Lin, Ciyun; Yang, Zhaosheng; Bing, Qichun; Zhou, Xiyang

    2016-01-01

    Short-term traffic flow prediction is one of the most important issues in the field of intelligent transport system (ITS). Because of the uncertainty and nonlinearity, short-term traffic flow prediction is a challenging task. In order to improve the accuracy of short-time traffic flow prediction, a hybrid model (SSA-KELM) is proposed based on singular spectrum analysis (SSA) and kernel extreme learning machine (KELM). SSA is used to filter out the noise of traffic flow time series. Then, the filtered traffic flow data is used to train KELM model, the optimal input form of the proposed model is determined by phase space reconstruction, and parameters of the model are optimized by gravitational search algorithm (GSA). Finally, case validation is carried out using the measured data of an expressway in Xiamen, China. And the SSA-KELM model is compared with several well-known prediction models, including support vector machine, extreme learning machine, and single KLEM model. The experimental results demonstrate that performance of the proposed model is superior to that of the comparison models. Apart from accuracy improvement, the proposed model is more robust.

  5. Reproduction of continuous flow left ventricular assist device experimental data by means of a hybrid cardiovascular model with baroreflex control.

    Science.gov (United States)

    Fresiello, Libera; Zieliński, Krzysztof; Jacobs, Steven; Di Molfetta, Arianna; Pałko, Krzysztof Jakub; Bernini, Fabio; Martin, Michael; Claus, Piet; Ferrari, Gianfranco; Trivella, Maria Giovanna; Górczyńska, Krystyna; Darowski, Marek; Meyns, Bart; Kozarski, Maciej

    2014-06-01

    Long-term mechanical circulatory assistance opened new problems in ventricular assist device-patient interaction, especially in relation to autonomic controls. Modeling studies, based on adequate models, could be a feasible approach of investigation. The aim of this work is the exploitation of a hybrid (hydronumerical) cardiovascular simulator to reproduce and analyze in vivo experimental data acquired during a continuous flow left ventricular assistance. The hybrid cardiovascular simulator embeds three submodels: a computational cardiovascular submodel, a computational baroreflex submodel, and a hydronumerical interface submodel. The last one comprises two impedance transformers playing the role of physical interfaces able to provide a hydraulic connection with specific cardiovascular sites (in this article, the left atrium and the ascending/descending aorta). The impedance transformers are used to connect a continuous flow pump for partial left ventricular support (Synergy Micropump, CircuLite, Inc., Saddlebrooke, NJ, USA) to the hybrid cardiovascular simulator. Data collected from five animals in physiological, pathological, and assisted conditions were reproduced using the hybrid cardiovascular simulator. All parameters useful to characterize and tune the hybrid cardiovascular simulator to a specific hemodynamic condition were extracted from experimental data. Results show that the simulator is able to reproduce animal-specific hemodynamic status both in physiological and pathological conditions, to reproduce cardiovascular left ventricular assist device (LVAD) interaction and the progressive unloading of the left ventricle for different pump speeds, and to investigate the effects of the LVAD on baroreflex activity. Results in chronic heart failure conditions show that an increment of LVAD speed from 20 000 to 22 000 rpm provokes a decrement of left ventricular flow of 35% (from 2 to 1.3 L/min). Thanks to its flexibility and modular structure, the

  6. A Novel Hybrid Approach for Numerical Modeling of the Nucleating Flow in Laval Nozzle and Transonic Steam Turbine Blades

    Directory of Open Access Journals (Sweden)

    Edris Yousefi Rad

    2017-08-01

    Full Text Available In the present research, considering the importance of desirable steam turbine design, improvement of numerical modeling of steam two-phase flows in convergent and divergent channels and the blades of transonic steam turbines has been targeted. The first novelty of this research is the innovative use of combined Convective Upstream Pressure Splitting (CUSP and scalar methods to update the flow properties at each calculation point. In other words, each property (density, temperature, pressure and velocity at each calculation point can be computed from either the CUSP or scalar method, depending on the least deviation criterion. For this reason this innovative method is named “hybrid method”. The next novelty of this research is the use of an inverse method alongside the proposed hybrid method to find the amount of the important parameter z in the CUSP method, which is herein referred to as “CUSP’s convergence parameter”. Using a relatively simple computational grid, firstly, five cases with similar conditions to those of the main cases under study in this research with available experimental data were used to obtain the value of z by the Levenberg-Marquardt inverse method. With this innovation, first, an optimum value of z = 2.667 was obtained using the inverse method and then directly used for the main cases considered in the research. Given that the aim is to investigate the two-dimensional, steady state, inviscid and adiabatic modeling of steam nucleating flows in three different nozzle and turbine blade geometries, flow simulation was performed using a relatively simple mesh and the innovative proposed hybrid method (scalar + CUSP, with the desired value of z = 2.667 . A comparison between the results of the hybrid modeling of the three main cases with experimental data showed a very good agreement, even within shock zones, including the condensation shock region, revealing the efficiency of this numerical modeling method innovation

  7. Energy loss and coronary flow simulation following hybrid stage I palliation: a hypoplastic left heart computational fluid dynamic model.

    Science.gov (United States)

    Shuhaiber, Jeffrey H; Niehaus, Justin; Gottliebson, William; Abdallah, Shaaban

    2013-08-01

    The theoretical differences in energy losses as well as coronary flow with different band sizes for branch pulmonary arteries (PA) in hypoplastic left heart syndrome (HLHS) remain unknown. Our objective was to develop a computational fluid dynamic model (CFD) to determine the energy losses and pulmonary-to-systemic flow rates. This study was done for three different PA band sizes. Three-dimensional computer models of the hybrid procedure were constructed using the standard commercial CFD softwares Fluent and Gambit. The computer models were controlled for bilateral PA reduction to 25% (restrictive), 50% (intermediate) and 75% (loose) of the native branch pulmonary artery diameter. Velocity and pressure data were calculated throughout the heart geometry using the finite volume numerical method. Coronary flow was measured simultaneously with each model. Wall shear stress and the ratio of pulmonary-to-systemic volume flow rates were calculated. Computer simulations were compared at fixed points utilizing echocardiographic and catheter-based metric dimensions. Restricting the PA band to a 25% diameter demonstrated the greatest energy loss. The 25% banding model produced an energy loss of 16.76% systolic and 24.91% diastolic vs loose banding at 7.36% systolic and 17.90% diastolic. Also, restrictive PA bands had greater coronary flow compared with loose PA bands (50.2 vs 41.9 ml/min). Shear stress ranged from 3.75 Pascals with restrictive PA banding to 2.84 Pascals with loose banding. Intermediate PA banding at 50% diameter achieved a Qp/Qs (closest to 1) at 1.46 systolic and 0.66 diastolic compared with loose or restrictive banding without excess energy loss. CFD provides a unique platform to simulate pressure, shear stress as well as energy losses of the hybrid procedure. PA banding at 50% provided a balanced pulmonary and systemic circulation with adequate coronary flow but without extra energy losses incurred.

  8. An Exact and Grid-free Numerical Scheme for the Hybrid Two Phase Traffic Flow Model Based on the Lighthill-Whitham-Richards Model with Bounded Acceleration

    KAUST Repository

    Qiu, Shanwen

    2012-07-01

    In this article, we propose a new grid-free and exact solution method for computing solutions associated with an hybrid traffic flow model based on the Lighthill- Whitham-Richards (LWR) partial differential equation. In this hybrid flow model, the vehicles satisfy the LWR equation whenever possible, and have a fixed acceleration otherwise. We first present a grid-free solution method for the LWR equation based on the minimization of component functions. We then show that this solution method can be extended to compute the solutions to the hybrid model by proper modification of the component functions, for any concave fundamental diagram. We derive these functions analytically for the specific case of a triangular fundamental diagram. We also show that the proposed computational method can handle fixed or moving bottlenecks.

  9. Porous Media and Immersed Boundary Hybrid-Modelling for Simulating Flow in Stone Cover-Layers

    DEFF Research Database (Denmark)

    Jensen, Bjarne; Liu, Xiaofeng; Christensen, Erik Damgaard

    2017-01-01

    In this paper we present a new numerical modelling approach for coastal and marine applications where a porous media conceptual model was combined with a free surface volume-of-fluid (VOF) model and an immersed boundary method (IBM). The immersed boundary model covers the method of describing a s....... In this paper, the model is applied to investigate two practical cases in terms of a cover layer of stones on a flat bed under oscillatory flow at different packing densities, and a rock toe structure at a breakwater....

  10. Modeling the Hybrid Flow Shop Scheduling Problem Followed by an Assembly Stage Considering Aging Effects and Preventive Maintenance Activities

    Directory of Open Access Journals (Sweden)

    Seyyed Mohammad Hassan Hosseini

    2016-05-01

    Full Text Available Scheduling problem for the hybrid flow shop scheduling problem (HFSP followed by an assembly stage considering aging effects additional preventive and maintenance activities is studied in this paper. In this production system, a number of products of different kinds are produced. Each product is assembled with a set of several parts. The first stage is a hybrid flow shop to produce parts. All machines can process all kinds of parts in this stage but each machine can process only one part at the same time. The second stage is a single assembly machine or a single assembly team of workers. The aim is to schedule the parts on the machines and assembly sequence and also determine when the preventive maintenance activities get done in order to minimize the completion time of all products (makespan. A mathematical modeling is presented and its validation is shown by solving an example in small scale. Since this problem has been proved strongly NP-hard, in order to solve the problem in medium and large scale, four heuristic algorithms is proposed based on the Johnson’s algorithm. The numerical experiments are used to run the mathematical model and evaluate the performance of the proposed algorithms.

  11. Mixed-hybrid and vertex-discontinuous-Galerkin finite element modeling of multiphase compositional flow on 3D unstructured grids

    Science.gov (United States)

    Moortgat, Joachim; Firoozabadi, Abbas

    2016-06-01

    Problems of interest in hydrogeology and hydrocarbon resources involve complex heterogeneous geological formations. Such domains are most accurately represented in reservoir simulations by unstructured computational grids. Finite element methods accurately describe flow on unstructured meshes with complex geometries, and their flexible formulation allows implementation on different grid types. In this work, we consider for the first time the challenging problem of fully compositional three-phase flow in 3D unstructured grids, discretized by any combination of tetrahedra, prisms, and hexahedra. We employ a mass conserving mixed hybrid finite element (MHFE) method to solve for the pressure and flux fields. The transport equations are approximated with a higher-order vertex-based discontinuous Galerkin (DG) discretization. We show that this approach outperforms a face-based implementation of the same polynomial order. These methods are well suited for heterogeneous and fractured reservoirs, because they provide globally continuous pressure and flux fields, while allowing for sharp discontinuities in compositions and saturations. The higher-order accuracy improves the modeling of strongly non-linear flow, such as gravitational and viscous fingering. We review the literature on unstructured reservoir simulation models, and present many examples that consider gravity depletion, water flooding, and gas injection in oil saturated reservoirs. We study convergence rates, mesh sensitivity, and demonstrate the wide applicability of our chosen finite element methods for challenging multiphase flow problems in geometrically complex subsurface media.

  12. A hybrid Eulerian-Lagrangian flow solver

    CERN Document Server

    Palha, Artur; Ferreira, Carlos Simao; van Bussel, Gerard

    2015-01-01

    Currently, Eulerian flow solvers are very efficient in accurately resolving flow structures near solid boundaries. On the other hand, they tend to be diffusive and to dampen high-intensity vortical structures after a short distance away from solid boundaries. The use of high order methods and fine grids, although alleviating this problem, gives rise to large systems of equations that are expensive to solve. Lagrangian solvers, as the regularized vortex particle method, have shown to eliminate (in practice) the diffusion in the wake. As a drawback, the modelling of solid boundaries is less accurate, more complex and costly than with Eulerian solvers (due to the isotropy of its computational elements). Given the drawbacks and advantages of both Eulerian and Lagrangian solvers the combination of both methods, giving rise to a hybrid solver, is advantageous. The main idea behind the hybrid solver presented is the following. In a region close to solid boundaries the flow is solved with an Eulerian solver, where th...

  13. A Hybrid Segmentation Model based on Watershed and Gradient Vector Flow for the Detection of Brain Tumor

    Directory of Open Access Journals (Sweden)

    D. Jayadevappa

    2009-09-01

    Full Text Available Medical Image segmentation deals with segmentation of tumor in CT and MR images for improved quality in medical diagnosis. Geometric Vector Flow (GVF enhances the concave object extraction capability. However, it suffers from high computational requirement andsensitiveness to noise. This paper intends to combine watershed algorithm with GVF snake model to reduce the computational complexity, to improve the insensitiveness to noise, and capture range. Specifically, the image will be segmented firstly through watershed algorithm and then the edges produced will be the initial contour of GVF model. This enhances the tumor boundaries and tuning the regulating parameters of the GVF snake mode by couplingthe smoothness of the edge map obtained due to watershed algorithm. The proposed method is compared with recent hybrid segmentation algorithm based on watershed and balloon snake. Superiority of the proposed work is observed in terms of capture range, concave objectextraction capability, sensitivity to noise, computational complexity, and segmentation accuracy.

  14. A Hybrid Vortex Sheet / Point Vortex Model for Unsteady Separated Flows

    Science.gov (United States)

    Darakananda, Darwin; Eldredge, Jeff D.; Colonius, Tim; Williams, David R.

    2015-11-01

    The control of separated flow over an airfoil is essential for obtaining lift enhancement, drag reduction, and the overall ability to perform high agility maneuvers. In order to develop reliable flight control systems capable of realizing agile maneuvers, we need a low-order aerodynamics model that can accurately predict the force response of an airfoil to arbitrary disturbances and/or actuation. In the present work, we integrate vortex sheets and variable strength point vortices into a method that is able to capture the formation of coherent vortex structures while remaining computationally tractable for control purposes. The role of the vortex sheet is limited to tracking the dynamics of the shear layer immediately behind the airfoil. When parts of the sheet develop into large scale structures, those sections are replaced by variable strength point vortices. We prevent the vortex sheets from growing indefinitely by truncating the tips of the sheets and transfering their circulation into nearby point vortices whenever the length of sheet exceeds a threshold. We demonstrate the model on a variety of canonical problems, including pitch-up and impulse translation of an airfoil at various angles of attack. Support by the U.S. Air Force Office of Scientific Research (FA9550-14-1-0328) with program manager Dr. Douglas Smith is gratefully acknowledged.

  15. Hybrid Amyloid Membranes for Continuous Flow Catalysis.

    Science.gov (United States)

    Bolisetty, Sreenath; Arcari, Mario; Adamcik, Jozef; Mezzenga, Raffaele

    2015-12-29

    Amyloid fibrils are promising nanomaterials for technological applications such as biosensors, tissue engineering, drug delivery, and optoelectronics. Here we show that amyloid-metal nanoparticle hybrids can be used both as efficient active materials for wet catalysis and as membranes for continuous flow catalysis applications. Initially, amyloid fibrils generated in vitro from the nontoxic β-lactoglobulin protein act as templates for the synthesis of gold and palladium metal nanoparticles from salt precursors. The resulting hybrids possess catalytic features as demonstrated by evaluating their activity in a model catalytic reaction in water, e.g., the reduction of 4-nitrophenol into 4-aminophenol, with the rate constant of the reduction increasing with the concentration of amyloid-nanoparticle hybrids. Importantly, the same nanoparticles adsorbed onto fibrils surface show improved catalytic efficiency compared to the same unattached particles, pointing at the important role played by the amyloid fibril templates. Then, filter membranes are prepared from the metal nanoparticle-decorated amyloid fibrils by vacuum filtration. The resulting membranes serve as efficient flow catalysis active materials, with a complete catalytic conversion achieved within a single flow passage of a feeding solution through the membrane.

  16. River flow prediction using hybrid models of support vector regression with the wavelet transform, singular spectrum analysis and chaotic approach

    Science.gov (United States)

    Baydaroğlu, Özlem; Koçak, Kasım; Duran, Kemal

    2017-03-01

    Prediction of water amount that will enter the reservoirs in the following month is of vital importance especially for semi-arid countries like Turkey. Climate projections emphasize that water scarcity will be one of the serious problems in the future. This study presents a methodology for predicting river flow for the subsequent month based on the time series of observed monthly river flow with hybrid models of support vector regression (SVR). Monthly river flow over the period 1940-2012 observed for the Kızılırmak River in Turkey has been used for training the method, which then has been applied for predictions over a period of 3 years. SVR is a specific implementation of support vector machines (SVMs), which transforms the observed input data time series into a high-dimensional feature space (input matrix) by way of a kernel function and performs a linear regression in this space. SVR requires a special input matrix. The input matrix was produced by wavelet transforms (WT), singular spectrum analysis (SSA), and a chaotic approach (CA) applied to the input time series. WT convolutes the original time series into a series of wavelets, and SSA decomposes the time series into a trend, an oscillatory and a noise component by singular value decomposition. CA uses a phase space formed by trajectories, which represent the dynamics producing the time series. These three methods for producing the input matrix for the SVR proved successful, while the SVR-WT combination resulted in the highest coefficient of determination and the lowest mean absolute error.

  17. Hybrid modeling of convective laminar flow in a permeable tube associated with the cross-flow process

    Science.gov (United States)

    Venezuela, A. L.; Pérez-Guerrero, J. S.; Fontes, S. R.

    2009-03-01

    The confined flows in tubes with permeable surfaces are associated to tangential filtration processes (microfiltration or ultrafiltration). The complexity of the phenomena do not allow for the development of exact analytical solutions, however, approximate solutions are of great interest for the calculation of the transmembrane outflow and estimate of the concentration polarization phenomenon. In the present work, the generalized integral transform technique (GITT) was employed in solving the laminar and permanent flow in permeable tubes of Newtonian and incompressible fluid. The mathematical formulation employed the parabolic differential equation of chemical species conservation (convective-diffusive equation). The velocity profiles for the entrance region flow, which are found in the connective terms of the equation, were assessed by solutions obtained from literature. The velocity at the permeable wall was considered uniform, with the concentration at the tube wall regarded as variable with an axial position. A computational methodology using global error control was applied to determine the concentration in the wall and concentration boundary layer thickness. The results obtained for the local transmembrane flux and the concentration boundary layer thickness were compared against others in literature.

  18. Hybrid Ventilation Air Flow Process

    DEFF Research Database (Denmark)

    Heiselberg, Per Kvols

    The scope of this annex is therefore to obtain better knowledge of the use of hybrid ventilation technologies. The annex focus on development of control strategies for hybrid ventilation, on development of methods to predict hybrid ventilation performance in office buildings and on implementation...

  19. Hybrid Unifying Variable Supernetwork Model

    Institute of Scientific and Technical Information of China (English)

    LIU; Qiang; FANG; Jin-qing; LI; Yong

    2015-01-01

    In order to compare new phenomenon of topology change,evolution,hybrid ratio and network characteristics of unified hybrid network theoretical model with unified hybrid supernetwork model,this paper constructed unified hybrid variable supernetwork model(HUVSM).The first layer introduces a hybrid ratio dr,the

  20. Large Unifying Hybrid Supernetwork Model

    Institute of Scientific and Technical Information of China (English)

    LIU; Qiang; FANG; Jin-qing; LI; Yong

    2015-01-01

    For depicting multi-hybrid process,large unifying hybrid network model(so called LUHNM)has two sub-hybrid ratios except dr.They are deterministic hybrid ratio(so called fd)and random hybrid ratio(so called gr),respectively.

  1. Mixed-Hybrid and Vertex-Discontinuous-Galerkin Finite Element Modeling of Multiphase Compositional Flow on 3D Unstructured Grids

    CERN Document Server

    Moortgat, Joachim

    2016-01-01

    Problems of interest in hydrogeology and hydrocarbon resources involve complex heterogeneous geological formations. Such domains are most accurately represented in reservoir simulations by unstructured computational grids. Finite element methods accurately describe flow on unstructured meshes with complex geometries, and their flexible formulation allows implementation on different grid types. In this work, we consider for the first time the challenging problem of fully compositional three-phase flow in 3D unstructured grids, discretized by any combination of tetrahedra, prisms, and hexahedra. We employ a mass conserving mixed hybrid finite element (MHFE) method to solve for the pressure and flux fields. The transport equations are approximated with a higher-order vertex-based discontinuous Galerkin (DG) discretization. We show that this approach outperforms a face-based implementation of the same polynomial order. These methods are well suited for heterogeneous and fractured reservoirs, because they provide ...

  2. Computational Fluid Dynamics Study of Molten Steel Flow Patterns and Particle-Wall Interactions Inside a Slide-Gate Nozzle by a Hybrid Turbulent Model

    Science.gov (United States)

    Mohammadi-Ghaleni, Mahdi; Asle Zaeem, Mohsen; Smith, Jeffrey D.; O'Malley, Ronald

    2016-10-01

    Melt flow patterns and turbulence inside a slide-gate throttled submerged entry nozzle (SEN) were studied using Detached-Eddy Simulation (DES) model, which is a combination of Reynolds-Averaged Navier-Stokes (RANS) and Large-Eddy Simulation (LES) models. The DES switching criterion between RANS and LES was investigated to closely reproduce the flow structures of low and high turbulence regions similar to RANS and LES simulations, respectively. The melt flow patterns inside the nozzle were determined by k- ɛ (a RANS model), LES, and DES turbulent models, and convergence studies were performed to ensure reliability of the results. Results showed that the DES model has significant advantages over the standard k- ɛ model in transient simulations and in regions containing flow separation from the nozzle surface. Moreover, due to applying a hybrid approach, DES uses a RANS model at wall boundaries which resolves the extremely fine mesh requirement of LES simulations, and therefore it is computationally more efficient. Investigation of particle distribution inside the nozzle and particle adhesion to the nozzle wall also reveals that the DES model simulations predict more particle-wall interactions compared to LES model.

  3. Investigation of Francis Turbine Part Load Instabilities using Flow Simulations with a Hybrid RANS-LES Turbulence Model

    Science.gov (United States)

    Krappel, Timo; Ruprecht, Albert; Riedelbauch, Stefan; Jester-Zuerker, Roland; Jung, Alexander

    2014-03-01

    The operation of Francis turbines in part load condition causes high pressure fluctuations and dynamic loads in the turbine as well as high flow losses in the draft tube. Owing to the co-rotating velocity distribution at the runner blade trailing edge a low pressure zone arises in the hub region finally leading to a rotating vortex rope in the draft tube. A better understanding and a more accurate prediction of this phenomenon can help in the design process of a Francis turbine. The goal of this study is to reach a quantitatively better numerical prediction of the flow at part load and to evaluate the necessary numerical depth with respect to effort and benefit. As standard practice, simulation results are obtained for the steady state approach with SST turbulence modelling. Those results are contrasted with transient simulations applying a SST as well as a SAS (Scale Adaptive Simulation) turbulence model. The structure of the SAS model is such, that it is able to resolve the turbulent flow behaviour in more detail. The investigations contain a comparison of the flow losses in different turbine components. A detailed flow evaluation is done in the cone and the diffuser of the draft tube. The different numerical approaches show a different representation of the vortex rope phenomenon indicating differences in pressure pulsations at different geometric positions in the entire turbine. Finally, the turbulent flow structures in the draft tube are illustrated with several evaluation methods, such as turbulent eddy viscosity, velocity invariant and turbulent kinetic energy spectra.

  4. Modeling of Quasi-Four-Phase Flow in Continuous Casting Mold Using Hybrid Eulerian and Lagrangian Approach

    Science.gov (United States)

    Liu, Zhongqiu; Sun, Zhenbang; Li, Baokuan

    2016-12-01

    Lagrangian tracking model combined with Eulerian multi-phase model is employed to predict the time-dependent argon-steel-slag-air quasi-four-phase flow inside a slab continuous casting mold. The Eulerian approach is used for the description of three phases (molten steel, liquid slag, and air at the top of liquid slag layer). The dispersed argon bubble injected from the SEN is treated in the Lagrangian way. The complex interfacial momentum transfers between various phases are considered. Validation is supported by the measurement data of cold model experiments and industrial practice. Close agreements were achieved for the gas volume fraction, liquid flow pattern, level fluctuation, and exposed slag eye phenomena. Many known phenomena and new predictions were successfully reproduced using this model. The vortex slag entrapment phenomenon at the slag-steel interface was obtained using this model, some small slag drops are sucked deep into the liquid pool of molten steel. Varying gas flow rates have a large effect on the steel flow pattern in the upper recirculation zone. Three typical flow patterns inside the mold with different argon gas flow rates have been obtained: double roll, three roll, and single roll. Effects of argon gas flow rate, casting speed, and slag layer thickness on the exposed slag eye and level fluctuation at the slag-steel interface were studied. A dimensionless value of H ave/h was proposed to describe the time-averaged level fluctuation of slag-steel interface. The exposed slag eye near the SEN would be formed when the value of H ave/h is larger than 0.4.

  5. Load flow computations in hybrid transmission - distributed power systems

    NARCIS (Netherlands)

    Wobbes, E.D.; Lahaye, D.J.P.

    2013-01-01

    We interconnect transmission and distribution power systems and perform load flow computations in the hybrid network. In the largest example we managed to build, fifty copies of a distribution network consisting of fifteen nodes is connected to the UCTE study model, resulting in a system consisting

  6. Hybrid anodes for redox flow batteries

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wei; Xiao, Jie; Wei, Xiaoliang; Liu, Jun; Sprenkle, Vincent L.

    2015-12-15

    RFBs having solid hybrid electrodes can address at least the problems of active material consumption, electrode passivation, and metal electrode dendrite growth that can be characteristic of traditional batteries, especially those operating at high current densities. The RFBs each have a first half cell containing a first redox couple dissolved in a solution or contained in a suspension. The solution or suspension can flow from a reservoir to the first half cell. A second half cell contains the solid hybrid electrode, which has a first electrode connected to a second electrode, thereby resulting in an equipotential between the first and second electrodes. The first and second half cells are separated by a separator or membrane.

  7. A comparison of methods for computing the sigma-coordinate pressure gradient force for flow over sloped terrain in a hybrid theta-sigma model

    Science.gov (United States)

    Johnson, D. R.; Uccellini, L. W.

    1983-01-01

    In connection with the employment of the sigma coordinates introduced by Phillips (1957), problems can arise regarding an accurate finite-difference computation of the pressure gradient force. Over steeply sloped terrain, the calculation of the sigma-coordinate pressure gradient force involves computing the difference between two large terms of opposite sign which results in large truncation error. To reduce the truncation error, several finite-difference methods have been designed and implemented. The present investigation has the objective to provide another method of computing the sigma-coordinate pressure gradient force. Phillips' method is applied for the elimination of a hydrostatic component to a flux formulation. The new technique is compared with four other methods for computing the pressure gradient force. The work is motivated by the desire to use an isentropic and sigma-coordinate hybrid model for experiments designed to study flow near mountainous terrain.

  8. A hybrid modeling approach to evaluate the groundwater flow system at the low- and intermediate-level radioactive waste disposal site in Gyeong-Ju, Korea

    Science.gov (United States)

    Ji, Sung-Hoon; Park, Kyung Woo; Lim, Doo-Hyun; Kim, Chunsoo; Kim, Kyung Su; Dershowitz, William

    2012-11-01

    The development and implementation of a hybrid discrete fracture network/equivalent porous medium (DFN/EPM) approach to groundwater flow at the Gyeong-Ju low- and intermediate-level radioactive waste (LILW) disposal site in the Republic of Korea is reported. The geometrical and hydrogeological properties of fractured zones, background fractures and rock matrix were derived from site characterization data and implemented as a DFN. Several DFN realizations, including the deterministic fractured zones and the stochastic background fractures, whose statistical properties were verified by comparison with in-situ fracture and hydraulic test data, were suggested, and they were then upscaled to continuums using a fracture tensor approach for site-scale flow simulations. The upscaled models were evaluated by comparison to in-situ pressure monitoring data, and then used to simulate post-closure hydrogeology for the LILW facility. Simulation results demonstrate the importance of careful characterization and implementation of fractured zones. The study highlighted the importance of reducing uncertainty regarding the properties and variability of natural background fractures, particularly in the immediate vicinity of repository emplacement.

  9. Unified Hybrid Network Theoretical Model Trilogy

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    The first of the unified hybrid network theoretical model trilogy (UHNTF) is the harmonious unification hybrid preferential model (HUHPM), seen in the inner loop of Fig. 1, the unified hybrid ratio is defined.

  10. Model Reduction of Hybrid Systems

    DEFF Research Database (Denmark)

    Shaker, Hamid Reza

    systems are derived in this thesis. The results are used for output feedback control of switched nonlinear systems. Model reduction of piecewise affine systems is also studied in this thesis. The proposed method is based on the reduction of linear subsystems inside the polytopes. The methods which......High-Technological solutions of today are characterized by complex dynamical models. A lot of these models have inherent hybrid/switching structure. Hybrid/switched systems are powerful models for distributed embedded systems design where discrete controls are applied to continuous processes...... of hybrid systems, designing controllers and implementations is very high so that the use of these models is limited in applications where the size of the state space is large. To cope with complexity, model reduction is a powerful technique. This thesis presents methods for model reduction and stability...

  11. Hybrid Model of Content Extraction

    DEFF Research Database (Denmark)

    Qureshi, Pir Abdul Rasool; Memon, Nasrullah

    2012-01-01

    We present a hybrid model for content extraction from HTML documents. The model operates on Document Object Model (DOM) tree of the corresponding HTML document. It evaluates each tree node and associated statistical features like link density and text distribution across the node to predict signi...

  12. Hybrid models for complex fluids

    CERN Document Server

    Tronci, Cesare

    2010-01-01

    This paper formulates a new approach to complex fluid dynamics, which accounts for microscopic statistical effects in the micromotion. While the ordinary fluid variables (mass density and momentum) undergo usual dynamics, the order parameter field is replaced by a statistical distribution on the order parameter space. This distribution depends also on the point in physical space and its dynamics retains the usual fluid transport features while containing the statistical information on the order parameter space. This approach is based on a hybrid moment closure for Yang-Mills Vlasov plasmas, which replaces the usual cold-plasma assumption. After presenting the basic properties of the hybrid closure, such as momentum map features, singular solutions and Casimir invariants, the effect of Yang-Mills fields is considered and a direct application to ferromagnetic fluids is presented. Hybrid models are also formulated for complex fluids with symmetry breaking. For the special case of liquid crystals, a hybrid formul...

  13. Review of hybrid laminar flow control systems

    Science.gov (United States)

    Krishnan, K. S. G.; Bertram, O.; Seibel, O.

    2017-08-01

    The aeronautic community always strived for fuel efficient aircraft and presently, the need for ecofriendly aircraft is even more, especially with the tremendous growth of air traffic and growing environmental concerns. Some of the important drivers for such interests include high fuel prices, less emissions requirements, need for more environment friendly aircraft to lessen the global warming effects. Hybrid laminar flow control (HLFC) technology is promising and offers possibility to achieve these goals. This technology was researched for decades for its application in transport aircraft, and it has achieved a new level of maturity towards integration and safety and maintenance aspects. This paper aims to give an overview of HLFC systems research and associated flight tests in the past years both in the US and in Europe. The review makes it possible to distinguish between the successful approaches and the less successful or outdated approaches in HLFC research. Furthermore, the technology status shall try to produce first estimations regarding the mass, power consumption and performance of HLFC systems as well as estimations regarding maintenance requirements and possible subsystem definitions.

  14. Hybrid Model of Content Extraction

    DEFF Research Database (Denmark)

    Qureshi, Pir Abdul Rasool; Memon, Nasrullah

    2012-01-01

    We present a hybrid model for content extraction from HTML documents. The model operates on Document Object Model (DOM) tree of the corresponding HTML document. It evaluates each tree node and associated statistical features like link density and text distribution across the node to predict...... model outperformed other existing content extraction models. We present a browser based implementation of the proposed model as proof of concept and compare the implementation strategy with various state of art implementations. We also discuss various applications of the proposed model with special...

  15. Hybrid2 - The hybrid power system simulation model

    Energy Technology Data Exchange (ETDEWEB)

    Baring-Gould, E.I.; Green, H.J.; Dijk, V.A.P. van [National Renewable Energy Lab., Golden, CO (United States); Manwell, J.F. [Univ. of Massachusetts, Amherst, MA (United States)

    1996-12-31

    There is a large-scale need and desire for energy in remote communities, especially in the developing world; however the lack of a user friendly, flexible performance prediction model for hybrid power systems incorporating renewables hindered the analysis of hybrids as options to conventional solutions. A user friendly model was needed with the versatility to simulate the many system locations, widely varying hardware configurations, and differing control options for potential hybrid power systems. To meet these ends, researchers from the National Renewable Energy Laboratory (NREL) and the University of Massachusetts (UMass) developed the Hybrid2 software. This paper provides an overview of the capabilities, features, and functionality of the Hybrid2 code, discusses its validation and future plans. Model availability and technical support provided to Hybrid2 users are also discussed. 12 refs., 3 figs., 4 tabs.

  16. Modeling and analysis using hybrid Petri nets

    CERN Document Server

    Ghomri, Latéfa

    2007-01-01

    This paper is devoted to the use of hybrid Petri nets (PNs) for modeling and control of hybrid dynamic systems (HDS). Modeling, analysis and control of HDS attract ever more of researchers' attention and several works have been devoted to these topics. We consider in this paper the extensions of the PN formalism (initially conceived for modeling and analysis of discrete event systems) in the direction of hybrid modeling. We present, first, the continuous PN models. These models are obtained from discrete PNs by the fluidification of the markings. They constitute the first steps in the extension of PNs toward hybrid modeling. Then, we present two hybrid PN models, which differ in the class of HDS they can deal with. The first one is used for deterministic HDS modeling, whereas the second one can deal with HDS with nondeterministic behavior. Keywords: Hybrid dynamic systems; D-elementary hybrid Petri nets; Hybrid automata; Controller synthesis

  17. Hybrid Atlas Models

    CERN Document Server

    Ichiba, Tomoyuki; Banner, Adrian; Karatzas, Ioannis; Fernholz, Robert

    2009-01-01

    We study Atlas-type models of equity markets with local characteristics that depend on both name and rank, and in ways that induce a stability of the capital distribution. Ergodic properties and rankings of processes are examined with reference to the theory of reflected Brownian motions in polyhedral domains. In the context of such models, we discuss properties of various investment strategies, including the so-called growth-optimal and universal portfolios.

  18. Validated dynamic flow model

    DEFF Research Database (Denmark)

    Knudsen, Torben

    2011-01-01

    The purpose with this deliverable 2.5 is to use fresh experimental data for validation and selection of a flow model to be used for control design in WP3-4. Initially the idea was to investigate the models developed in WP2. However, in the project it was agreed to include and focus on a additive...... model turns out not to be useful for prediction of the flow. Moreover, standard Box Jenkins model structures and multiple output auto regressive models proves to be superior as they can give useful predictions of the flow....

  19. A Hybrid Model. DEMETER

    Energy Technology Data Exchange (ETDEWEB)

    Gerlagh, Reyer [University of Manchester, Manchester (United Kingdom); Van der Zwaan, Bob [ECN Policy Studies, Petten (Netherlands)

    2009-11-15

    This insightful book explores the issue of sustainable development in its more operative and applied sense. Although a great deal of research has addressed potential interpretations and definitions of sustainable development, much of this work is too abstract to offer policy-makers and researchers the feasible and effective guidelines they require. This book redresses the balance. The authors highlight how various indicators and aggregate measures can be included in models that are used for decision-making support and sustainability assessment. They also demonstrate the importance of identifying practical means to assess whether policy proposals, specific decisions or targeted scenarios are sustainable. With discussions of basic concepts relevant to understanding applied sustainability analysis, such as definitions of costs and revenue recycling, this book provides policy-makers, researchers and graduate students with feasible and effective principles for measuring sustainable development.

  20. Data flow modeling techniques

    Science.gov (United States)

    Kavi, K. M.

    1984-01-01

    There have been a number of simulation packages developed for the purpose of designing, testing and validating computer systems, digital systems and software systems. Complex analytical tools based on Markov and semi-Markov processes have been designed to estimate the reliability and performance of simulated systems. Petri nets have received wide acceptance for modeling complex and highly parallel computers. In this research data flow models for computer systems are investigated. Data flow models can be used to simulate both software and hardware in a uniform manner. Data flow simulation techniques provide the computer systems designer with a CAD environment which enables highly parallel complex systems to be defined, evaluated at all levels and finally implemented in either hardware or software. Inherent in data flow concept is the hierarchical handling of complex systems. In this paper we will describe how data flow can be used to model computer system.

  1. Power flow analysis for droop controlled LV hybrid AC-DC microgrids with virtual impedance

    DEFF Research Database (Denmark)

    Li, Chendan; Chaudhary, Sanjay; Vasquez, Juan Carlos

    2014-01-01

    The AC-DC hybrid microgrid is an effective form of utilizing different energy resources and the analysis of this system requires a proper power flow algorithm. This paper proposes a suitable power flow algorithm for LV hybrid AC-DC microgrid based on droop control and virtual impedance. Droop...... and virtual impedance concepts for AC network, DC network and interlinking converter are reviewed so as to model it in the power flow analysis. The validation of the algorithm is verified by comparing it with steady state results from detailed time domain simulation. The effectiveness of the proposed...

  2. FLUID FLOW SEPARATION CHARACTER ON NOVEL HYBRID JOURNAL BEARING

    Institute of Scientific and Technical Information of China (English)

    CHEN Shujiang; LU Changhou; LI Lei

    2006-01-01

    The influence of the structure and running parameters of a novel spiral oil wedge hybrid journal bearing on the fluid flow trace is investigated. The governing equation of the flow trace of lubricant is set up, and the simulation is carried out by using finite difference method. The results show that the lubricant flow status and end leakage quantity are greatly influenced by spiral angle,and that the rotating speed has little influence on the flow status. With advisable geometry design,the separation of lubricant between different oil wedges can be obtained, which can decrease the temperature rise effectively.

  3. Multicomponent flow modeling

    Institute of Scientific and Technical Information of China (English)

    GIOVANGIGLI; Vincent

    2012-01-01

    We present multicomponent flow models derived from the kinetic theory of gases and investigate the symmetric hyperbolic-parabolic structure of the resulting system of partial differential equations.We address the Cauchy problem for smooth solutions as well as the existence of deflagration waves,also termed anchored waves.We further discuss related models which have a similar hyperbolic-parabolic structure,notably the SaintVenant system with a temperature equation as well as the equations governing chemical equilibrium flows.We next investigate multicomponent ionized and magnetized flow models with anisotropic transport fluxes which have a different mathematical structure.We finally discuss numerical algorithms specifically devoted to complex chemistry flows,in particular the evaluation of multicomponent transport properties,as well as the impact of multicomponent transport.

  4. A hybrid least squares support vector machines and GMDH approach for river flow forecasting

    Science.gov (United States)

    Samsudin, R.; Saad, P.; Shabri, A.

    2010-06-01

    This paper proposes a novel hybrid forecasting model, which combines the group method of data handling (GMDH) and the least squares support vector machine (LSSVM), known as GLSSVM. The GMDH is used to determine the useful input variables for LSSVM model and the LSSVM model which works as time series forecasting. In this study the application of GLSSVM for monthly river flow forecasting of Selangor and Bernam River are investigated. The results of the proposed GLSSVM approach are compared with the conventional artificial neural network (ANN) models, Autoregressive Integrated Moving Average (ARIMA) model, GMDH and LSSVM models using the long term observations of monthly river flow discharge. The standard statistical, the root mean square error (RMSE) and coefficient of correlation (R) are employed to evaluate the performance of various models developed. Experiment result indicates that the hybrid model was powerful tools to model discharge time series and can be applied successfully in complex hydrological modeling.

  5. A High Resolution Low Dissipation Hybrid Scheme for Compressible Flows

    Institute of Scientific and Technical Information of China (English)

    YU Jian; YAN Chao; JIANG Zhenhua

    2011-01-01

    In this paper,an efficient hybrid shock capturing scheme is proposed to obtain accurate results both in the smooth region and around discontinuities for compressible flows.The hybrid algorithm is based on a fifth-order weighted essentially non-oscillatory (WENO) scheme in the finite volume form to solve the smooth part of the flow field,which is coupled with a characteristic-based monotone upstream-centered scheme for conservation laws(MUSCL) to capture discontinuities.The hybrid scheme is intended to combine high resolution of MUSCL scheme and low dissipation of WENO scheme.The two ingredients in this hybrid scheme are switched with an indicator.Three typical indicators are chosen and compared.MUSCL and WENO are both shock capturing schemes making the choice of the indicator parameter less crucial.Several test cases are carried out to investigate hybrid scheme with different indicators in terms of accuracy and efficiency.Numerical results demonstrate that the hybrid scheme in the present work performs well in a broad range of problems.

  6. Hybrid RANS/LES method for wind flow over complex terrain

    DEFF Research Database (Denmark)

    Bechmann, Andreas; Sørensen, Niels N.

    2010-01-01

    The use of Large Eddy Simulation (LES) to predict wall-bounded flows has presently been limited to low Reynolds number flows. Since the number of computational grid points required to resolve the near-wall turbulent structures increase rapidly with Reynolds number, LES has been unattainable...... for flows at high Reynolds numbers. To reduce the computational cost of traditional LES, a hybrid method is proposed in which the near-wall eddies are modelled in a Reynolds-averaged sense. Close to walls, the flow is treated with the Reynolds-averaged Navier-Stokes (RANS) equations (unsteady RANS......), and this layer acts as wall model for the outer flow handled by LES. The well-known high Reynolds number two-equation k - turbulence model is used in the RANS layer and the model automatically switches to a two-equation k - subgrid scale stress model in the LES region. The approach can be used for flow over...

  7. Mutation Flow Control Model Simulation Analysis Based on the Large Hybrid Network%基于大型混合网络的突变流量控制模型仿真分析

    Institute of Scientific and Technical Information of China (English)

    梁红杰

    2015-01-01

    当大型混合网络受到异常攻击或大规模登录时,流量会发生短时间的巨幅变化,使得单个节点面临瘫痪的风险,导致传统基于单个节点的大型混合网络突变流量控制模型,由于不能适应流量大幅度变化,无法有效实现突变流量控制。提出一种基于自适应PD流量控制算法的大型混合网络突变流量控制模型,将大型混合网络流量统计时间划分成几个周期,获取周期个数的估计值,求出大型混合网络操作行为数据序列中的各统计周期中数据的离均差平方、与组间离均差平方和以及各周期中的方差比值,对流量成分模型进行塑造,通过简单PD控制算法对突变流量进行初步控制,引入延时环节,获取各闭环极点的位置,求出PD控制器参数求出交换节点瓶颈链接个数的估测值,从而实现突变流量控制。仿真实验结果表明,所提方法在控制突变流量方面具有很高的优越性及高效性。%When a large hybrid network anomaly attacks or massive logs in, flow can produce the huge change in a short pe⁃riod of time, make the paralyzed risk faced by a single node.Lead to traditional based on big mutation hybrid network flow control model of a single node, due to the large variation can not adapt to flow, flow control, cannot effectively mutations presents a flow based on adaptive PD control algorithm of large mutation hybrid network flow control model, mix a large net⁃work traffic statistics of time into several cycles, obtaining estimates of the number of cycles, and the large hybrid network operating behavior of each cycle of data in a sequence of data from the divided difference square, alienation and group were sum of squared residuals and variance ratio of each cycle, to shape the traffic composition model, through a simple PD con⁃trol algorithm to control the initial mutation flow, introducing delay link, obtain the closed-loop pole

  8. Hybrid continuum-atomistic approach to model electrokinetics in nanofluidics

    Energy Technology Data Exchange (ETDEWEB)

    Amani, Ehsan, E-mail: eamani@aut.ac.ir; Movahed, Saeid, E-mail: smovahed@aut.ac.ir

    2016-06-07

    In this study, for the first time, a hybrid continuum-atomistic based model is proposed for electrokinetics, electroosmosis and electrophoresis, through nanochannels. Although continuum based methods are accurate enough to model fluid flow and electric potential in nanofluidics (in dimensions larger than 4 nm), ionic concentration is too low in nanochannels for the continuum assumption to be valid. On the other hand, the non-continuum based approaches are too time-consuming and therefore is limited to simple geometries, in practice. Here, to propose an efficient hybrid continuum-atomistic method of modelling the electrokinetics in nanochannels; the fluid flow and electric potential are computed based on continuum hypothesis coupled with an atomistic Lagrangian approach for the ionic transport. The results of the model are compared to and validated by the results of the molecular dynamics technique for a couple of case studies. Then, the influences of bulk ionic concentration, external electric field, size of nanochannel, and surface electric charge on the electrokinetic flow and ionic mass transfer are investigated, carefully. The hybrid continuum-atomistic method is a promising approach to model more complicated geometries and investigate more details of the electrokinetics in nanofluidics. - Highlights: • A hybrid continuum-atomistic model is proposed for electrokinetics in nanochannels. • The model is validated by molecular dynamics. • This is a promising approach to model more complicated geometries and physics.

  9. Identification and Prediction of Large Pedestrian Flow in Urban Areas Based on a Hybrid Detection Approach

    OpenAIRE

    Kaisheng Zhang; Mei Wang; Bangyang Wei; Daniel(Jian) Sun

    2016-01-01

    Recently, population density has grown quickly with the increasing acceleration of urbanization. At the same time, overcrowded situations are more likely to occur in populous urban areas, increasing the risk of accidents. This paper proposes a synthetic approach to recognize and identify the large pedestrian flow. In particular, a hybrid pedestrian flow detection model was constructed by analyzing real data from major mobile phone operators in China, including information from smartphones and...

  10. Identification and Prediction of Large Pedestrian Flow in Urban Areas Based on a Hybrid Detection Approach

    OpenAIRE

    Kaisheng Zhang; Mei Wang; Bangyang Wei; Daniel (Jian) Sun

    2016-01-01

    Recently, population density has grown quickly with the increasing acceleration of urbanization. At the same time, overcrowded situations are more likely to occur in populous urban areas, increasing the risk of accidents. This paper proposes a synthetic approach to recognize and identify the large pedestrian flow. In particular, a hybrid pedestrian flow detection model was constructed by analyzing real data from major mobile phone operators in China, including information from smartphones and...

  11. Comment on "A hybrid model of self organizing maps and least square support vector machine for river flow forecasting" by Ismail et al. (2012)

    Science.gov (United States)

    Fahimi, F.; El-Shafie, A. H.

    2014-07-01

    Without a doubt, river flow forecasting is one of the most important issues in water engineering field. There are lots of forecasting techniques that have successfully been utilized by previously conducted studies in water resource management and water engineering. The study of Ismail et al. (2012), which was published in the journal Hydrology and Earth System Sciences in 2012, was a valuable piece of research that investigated the combination of two effective methods (self-organizing map and least squares support vector machine) for river flow forecasting. The goal was to make a comparison between the performances of self organizing map and least square support vector machine (SOM-LSSVM), autoregressive integrated moving average (ARIMA), artificial neural network (ANN) and least squares support vector machine (LSSVM) models for river flow prediction. This comment attempts to focus on some parts of the original paper that need more discussion. The emphasis here is to provide more information about the accuracy of the observed river flow data and the optimum map size for SOM mode as well.

  12. Travelling waves in hybrid chemotaxis models

    CERN Document Server

    Franz, Benjamin; Painter, Kevin J; Erban, Radek

    2013-01-01

    Hybrid models of chemotaxis combine agent-based models of cells with partial differential equation models of extracellular chemical signals. In this paper, travelling wave properties of hybrid models of bacterial chemotaxis are investigated. Bacteria are modelled using an agent-based (individual-based) approach with internal dynamics describing signal transduction. In addition to the chemotactic behaviour of the bacteria, the individual-based model also includes cell proliferation and death. Cells consume the extracellular nutrient field (chemoattractant) which is modelled using a partial differential equation. Mesoscopic and macroscopic equations representing the behaviour of the hybrid model are derived and the existence of travelling wave solutions for these models is established. It is shown that cell proliferation is necessary for the existence of non-transient (stationary) travelling waves in hybrid models. Additionally, a numerical comparison between the wave speeds of the continuum models and the hybr...

  13. Hadron rapidity spectra within a hybrid model

    CERN Document Server

    Khvorostukhin, A S

    2016-01-01

    A 2-stage hybrid model is proposed that joins the fast initial state of interaction, described by the hadron string dynamics (HSD) model, to subsequent evolution of the expanding system at the second stage, treated within ideal hydrodynamics. The developed hybrid model is assigned to describe heavy-ion collisions in the energy range of the NICA collider under construction in Dubna. Generally, the model is in reasonable agreement with the available data on proton rapidity spectra. However, reproducing proton rapidity spectra, our hybrid model cannot describe the rapidity distributions of pions. The model should be improved by taking into consideration viscosity effects at the hydrodynamical stage of system evolution.

  14. Statistical Model Checking for Stochastic Hybrid Systems

    DEFF Research Database (Denmark)

    David, Alexandre; Du, Dehui; Larsen, Kim Guldstrand

    2012-01-01

    This paper presents novel extensions and applications of the UPPAAL-SMC model checker. The extensions allow for statistical model checking of stochastic hybrid systems. We show how our race-based stochastic semantics extends to networks of hybrid systems, and indicate the integration technique ap...

  15. Hybrid Information Flow Analysis for Programs with Arrays

    Directory of Open Access Journals (Sweden)

    Gergö Barany

    2016-07-01

    Full Text Available Information flow analysis checks whether certain pieces of (confidential data may affect the results of computations in unwanted ways and thus leak information. Dynamic information flow analysis adds instrumentation code to the target software to track flows at run time and raise alarms if a flow policy is violated; hybrid analyses combine this with preliminary static analysis. Using a subset of C as the target language, we extend previous work on hybrid information flow analysis that handled pointers to scalars. Our extended formulation handles arrays, pointers to array elements, and pointer arithmetic. Information flow through arrays of pointers is tracked precisely while arrays of non-pointer types are summarized efficiently. A prototype of our approach is implemented using the Frama-C program analysis and transformation framework. Work on a full machine-checked proof of the correctness of our approach using Isabelle/HOL is well underway; we present the existing parts and sketch the rest of the correctness argument.

  16. Transport hub flow modelling

    OpenAIRE

    Despagne, Wilfried; Frenod, Emmanuel

    2014-01-01

    Purpose: The purpose of this paper is to investigate the road freight haulage activity. Using the physical and data flow information from a freight forwarder, we intend to model the flow of inbound and outbound goods in a freight transport hub. Approach: This paper presents the operation of a road haulage group. To deliver goods within two days to any location in France, a haulage contractor needs to be part of a network. This network handles the processing of both physical goods and data. We...

  17. Hybrid neural network models of transducers

    Science.gov (United States)

    Xie, Shilin; Zhang, Xinong; Chen, Shenglai; Zhu, Changchun

    2011-10-01

    A hybrid neural network (NN) approach is proposed and applied to modeling of transducers in the paper. The modeling procedures are also presented in detail. First, the simulated studies on the modeling of single input-single output and multi input-multi output transducers are conducted respectively by use of the developed hybrid NN scheme. Secondly, the hybrid NN modeling approach is utilized to characterize a six-axis force sensor prototype based on the measured data. The results show that the hybrid NN approach can significantly improve modeling precision in comparison with the conventional modeling method. In addition, the method is superior to NN black-box modeling because the former possesses smaller network scale, higher convergence speed, higher model precision and better generalization performance.

  18. Hybrid models for hydrological forecasting: integration of data-driven and conceptual modelling techniques

    NARCIS (Netherlands)

    Corzo Perez, G.A.

    2009-01-01

    This book presents the investigation of different architectures of integrating hydrological knowledge and models with data-driven models for the purpose of hydrological flow forecasting. The models resulting from such integration are referred to as hybrid models. The book addresses the following top

  19. Hybrid models for hydrological forecasting: Integration of data-driven and conceptual modelling techniques

    NARCIS (Netherlands)

    Corzo Perez, G.A.

    2009-01-01

    This book presents the investigation of different architectures of integrating hydrological knowledge and models with data-driven models for the purpose of hydrological flow forecasting. The models resulting from such integration are referred to as hybrid models. The book addresses the following top

  20. Hybrid models for hydrological forecasting: integration of data-driven and conceptual modelling techniques

    NARCIS (Netherlands)

    Corzo Perez, G.A.

    2009-01-01

    This book presents the investigation of different architectures of integrating hydrological knowledge and models with data-driven models for the purpose of hydrological flow forecasting. The models resulting from such integration are referred to as hybrid models. The book addresses the following

  1. Hybrid models for hydrological forecasting: Integration of data-driven and conceptual modelling techniques

    NARCIS (Netherlands)

    Corzo Perez, G.A.

    2009-01-01

    This book presents the investigation of different architectures of integrating hydrological knowledge and models with data-driven models for the purpose of hydrological flow forecasting. The models resulting from such integration are referred to as hybrid models. The book addresses the following

  2. MODEL OF LASER-TIG HYBRID WELDING HEAT SOURCE

    Institute of Scientific and Technical Information of China (English)

    Chen Yanbin; Li Liqun; Feng Xiaosong; Fang Junfei

    2004-01-01

    The welding mechanism of laser-TIG hybrid welding process is analyzed. With the variation of arc current, the welding process is divided into two patterns: deep-penetration welding and heat conductive welding. The heat flow model of hybrid welding is presented. As to deep-penetration welding, the heat source includes a surface heat flux and a volume heat flux. The heat source of heat conductive welding is composed of two Gaussian distribute surface heat sources. With this heat source model, a temperature field is calculated. The finite element code MARC is employed for this purpose. The calculation results show a good agreement with the experimental data.

  3. Evaluating the Pedagogical Potential of Hybrid Models

    Science.gov (United States)

    Levin, Tzur; Levin, Ilya

    2013-01-01

    The paper examines how the use of hybrid models--that consist of the interacting continuous and discrete processes--may assist in teaching system thinking. We report an experiment in which undergraduate students were asked to choose between a hybrid and a continuous solution for a number of control problems. A correlation has been found between…

  4. Harmonious Unifying Hybrid Preferential Supernetwork Model

    Institute of Scientific and Technical Information of China (English)

    LIU; Qiang; FANG; Jin-qing; LI; Yong

    2015-01-01

    The basic concepts and methods for harmonious unifying hybrid preferential model(HUHPM)are based on random preferential attachment(RPA)mixed with deterministic preferential attachment(DPA),so there is only one unified hybrid ratio dr,which is defined as:

  5. Towards Modelling of Hybrid Systems

    DEFF Research Database (Denmark)

    Wisniewski, Rafal

    2006-01-01

    The article is an attempt to use methods of category theory and topology for analysis of hybrid systems. We use the notion of a directed topological space; it is a topological space together with a set of privileged paths. Dynamical systems are examples of directed topological spaces. A hybrid...... system consists of a number of dynamical systems that are glued together according to information encoded in the discrete part of the system. We develop a definition of a hybrid system as a functor from the category generated by a transition system to the category of directed topological spaces. Its...... directed homotopy colimit (geometric realization) is a single directed topological space. The behavior of hybrid systems can be then understood in terms of the behavior of dynamical systems through the directed homotopy colimit....

  6. Modeling hybrid perovskites by molecular dynamics.

    Science.gov (United States)

    Mattoni, Alessandro; Filippetti, Alessio; Caddeo, Claudia

    2017-02-01

    The topical review describes the recent progress in the modeling of hybrid perovskites by molecular dynamics simulations. Hybrid perovskites and in particular methylammonium lead halide (MAPI) have a tremendous technological relevance representing the fastest-advancing solar material to date. They also represent the paradigm of an organic-inorganic crystalline material with some conceptual peculiarities: an inorganic semiconductor for what concerns the electronic and absorption properties with a hybrid and solution processable organic-inorganic body. After briefly explaining the basic concepts of ab initio and classical molecular dynamics, the model potential recently developed for hybrid perovskites is described together with its physical motivation as a simple ionic model able to reproduce the main dynamical properties of the material. Advantages and limits of the two strategies (either ab initio or classical) are discussed in comparison with the time and length scales (from pico to microsecond scale) necessary to comprehensively study the relevant properties of hybrid perovskites from molecular reorientations to electrocaloric effects. The state-of-the-art of the molecular dynamics modeling of hybrid perovskites is reviewed by focusing on a selection of showcase applications of methylammonium lead halide: molecular cations disorder; temperature evolution of vibrations; thermally activated defects diffusion; thermal transport. We finally discuss the perspectives in the modeling of hybrid perovskites by molecular dynamics.

  7. Modeling hybrid perovskites by molecular dynamics

    Science.gov (United States)

    Mattoni, Alessandro; Filippetti, Alessio; Caddeo, Claudia

    2017-02-01

    The topical review describes the recent progress in the modeling of hybrid perovskites by molecular dynamics simulations. Hybrid perovskites and in particular methylammonium lead halide (MAPI) have a tremendous technological relevance representing the fastest-advancing solar material to date. They also represent the paradigm of an organic-inorganic crystalline material with some conceptual peculiarities: an inorganic semiconductor for what concerns the electronic and absorption properties with a hybrid and solution processable organic-inorganic body. After briefly explaining the basic concepts of ab initio and classical molecular dynamics, the model potential recently developed for hybrid perovskites is described together with its physical motivation as a simple ionic model able to reproduce the main dynamical properties of the material. Advantages and limits of the two strategies (either ab initio or classical) are discussed in comparison with the time and length scales (from pico to microsecond scale) necessary to comprehensively study the relevant properties of hybrid perovskites from molecular reorientations to electrocaloric effects. The state-of-the-art of the molecular dynamics modeling of hybrid perovskites is reviewed by focusing on a selection of showcase applications of methylammonium lead halide: molecular cations disorder; temperature evolution of vibrations; thermally activated defects diffusion; thermal transport. We finally discuss the perspectives in the modeling of hybrid perovskites by molecular dynamics.

  8. Travelling Waves in Hybrid Chemotaxis Models

    KAUST Repository

    Franz, Benjamin

    2013-12-18

    Hybrid models of chemotaxis combine agent-based models of cells with partial differential equation models of extracellular chemical signals. In this paper, travelling wave properties of hybrid models of bacterial chemotaxis are investigated. Bacteria are modelled using an agent-based (individual-based) approach with internal dynamics describing signal transduction. In addition to the chemotactic behaviour of the bacteria, the individual-based model also includes cell proliferation and death. Cells consume the extracellular nutrient field (chemoattractant), which is modelled using a partial differential equation. Mesoscopic and macroscopic equations representing the behaviour of the hybrid model are derived and the existence of travelling wave solutions for these models is established. It is shown that cell proliferation is necessary for the existence of non-transient (stationary) travelling waves in hybrid models. Additionally, a numerical comparison between the wave speeds of the continuum models and the hybrid models shows good agreement in the case of weak chemotaxis and qualitative agreement for the strong chemotaxis case. In the case of slow cell adaptation, we detect oscillating behaviour of the wave, which cannot be explained by mean-field approximations. © 2013 Society for Mathematical Biology.

  9. HYbrid Coordinate Ocean Model (HYCOM): Global

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Global HYbrid Coordinate Ocean Model (HYCOM) and U.S. Navy Coupled Ocean Data Assimilation (NCODA) 3-day, daily forecast at approximately 9-km (1/12-degree)...

  10. Boltzmann Transport in Hybrid PIC HET Modeling

    Science.gov (United States)

    2015-07-01

    Paper 3. DATES COVERED (From - To) July 2015-July 2015 4. TITLE AND SUBTITLE Boltzmann transport in hybrid PIC HET modeling 5a. CONTRACT NUMBER In...produced a variety of self-consistent electron swarm codes, such as the Magboltz code, focused on directly solving the steady Boltzmann trans-port...Std. 239.18 Boltzmann transport in hybrid PIC HET modeling IEPC-2015- /ISTS-2015-b- Presented at Joint Conference of 30th International

  11. Statistical Model Checking for Stochastic Hybrid Systems

    DEFF Research Database (Denmark)

    David, Alexandre; Du, Dehui; Larsen, Kim Guldstrand

    2012-01-01

    This paper presents novel extensions and applications of the UPPAAL-SMC model checker. The extensions allow for statistical model checking of stochastic hybrid systems. We show how our race-based stochastic semantics extends to networks of hybrid systems, and indicate the integration technique...... applied for implementing this semantics in the UPPAAL-SMC simulation engine. We report on two applications of the resulting tool-set coming from systems biology and energy aware buildings....

  12. A gas kinetic scheme for hybrid simulation of partially rarefied flows

    Science.gov (United States)

    Colonia, S.; Steijl, R.; Barakos, G.

    2017-06-01

    Approaches to predict flow fields that display rarefaction effects incur a cost in computational time and memory considerably higher than methods commonly employed for continuum flows. For this reason, to simulate flow fields where continuum and rarefied regimes coexist, hybrid techniques have been introduced. In the present work, analytically defined gas-kinetic schemes based on the Shakhov and Rykov models for monoatomic and diatomic gas flows, respectively, are proposed and evaluated with the aim to be used in the context of hybrid simulations. This should reduce the region where more expensive methods are needed by extending the validity of the continuum formulation. Moreover, since for high-speed rare¦ed gas flows it is necessary to take into account the nonequilibrium among the internal degrees of freedom, the extension of the approach to employ diatomic gas models including rotational relaxation process is a mandatory first step towards realistic simulations. Compared to previous works of Xu and coworkers, the presented scheme is de¦ned directly on the basis of kinetic models which involve a Prandtl number correction. Moreover, the methods are defined fully analytically instead of making use of Taylor expansion for the evaluation of the required derivatives. The scheme has been tested for various test cases and Mach numbers proving to produce reliable predictions in agreement with other approaches for near-continuum flows. Finally, the performance of the scheme, in terms of memory and computational time, compared to discrete velocity methods makes it a compelling alternative in place of more complex methods for hybrid simulations of weakly rarefied flows.

  13. Traffic flow modeling: a Genealogy

    NARCIS (Netherlands)

    Van Wageningen-Kessels, F.L.M.; Hoogendoorn, S.P.; Vuik, C.; Van Lint, J.W.C.

    2014-01-01

    80 years ago, Bruce Greenshields presented the first traffic flow model at the Annual Meeting of the Highway Research Board. Since then, many models and simulation tools have been developed. We show a model tree with four families of traffic flow models, all descending from Greenshields' model. The

  14. Atomistic-Continuum Hybrid Simulation of Heat Transfer between Argon Flow and Copper Plates

    CERN Document Server

    Mao, Yijin; Chen, C L

    2016-01-01

    A simulation work aiming to study heat transfer coefficient between argon fluid flow and copper plate is carried out based on atomistic-continuum hybrid method. Navier-Stokes equations for continuum domain are solved through the Pressure Implicit with Splitting of Operators (PISO) algorithm, and the atom evolution in molecular domain is solved through the Verlet algorithm. The solver is validated by solving Couette flow and heat conduction problems. With both momentum and energy coupling method applied, simulations on convection of argon flows between two parallel plates are performed. The top plate is kept as a constant velocity and has higher temperature, while the lower one, which is modeled with FCC copper lattices, is also fixed but has lower temperature. It is found that, heat transfer between argon fluid flow and copper plate in this situation is much higher than that at macroscopic when the flow is fully developed.

  15. DSMC-LBM hybrid scheme for flows with variable rarefaction conditions

    Science.gov (United States)

    di Staso, Gianluca; Succi, Sauro; Toschi, Federico; Clercx, Herman

    2015-11-01

    The kinetic description of gases, based on the Boltzmann equation, allows to cover flow regimes ranging from the rarefied to the continuum limit. The two limits are traditionally studied by numerically approximating the Boltzmann equation via Direct Simulation Monte Carlo (DSMC) method or the Lattice Boltzmann Equation method (LBM). While DSMC is suitable for rarefied flows, its computational cost makes it unpractical to study hydrodynamic flows. The LBM has instead proved itself to be an efficient and accurate method in the hydrodynamic limit even though simulation of rarefied flows requires additional modeling. Here, results on the development of a hybrid scheme capable of coupling the LBM and the DSMC methods and able to efficiently simulate flows with variable rarefaction conditions are presented. The coupling scheme is based on Grad's moment method approach and the local single particle distribution function at a given order of truncation is built by using the Hermite polynomials expansion approach and Gauss-Hermite quadratures. The capabilities of the hybrid approach for simulating flows in the transition regime are illustrated in the case of planar Couette and Poiseuille flows.

  16. Flow Element Models

    DEFF Research Database (Denmark)

    Heiselberg, Per; Nielsen, Peter V.

    Air distribution in ventilated rooms is a flow process that can be divided into different elements such as supply air jets, exhaust flows, thermal plumes, boundary layer flows, infiltration and gravity currents. These flow elements are isolated volumes where the air movement is controlled...... by a restricted number of parameters, and the air movement is fairly independent of the general flow in the enclosure. In many practical situations, the most convenient· method is to design the air distribution system using flow element theory....

  17. A Mathematical Model for Suppression Subtractive Hybridization

    OpenAIRE

    2002-01-01

    Suppression subtractive hybridization (SSH) is frequently used to unearth differentially expressed genes on a whole-genome scale. Its versatility is based on combining cDNA library subtraction and normalization, which allows the isolation of sequences of varying degrees of abundance and differential expression. SSH is a complex process with many adjustable parameters that affect the outcome of gene isolation.We present a mathematical model of SSH based on DNA hybridization kinetics for assess...

  18. A Hybrid 3D Indoor Space Model

    Science.gov (United States)

    Jamali, Ali; Rahman, Alias Abdul; Boguslawski, Pawel

    2016-10-01

    GIS integrates spatial information and spatial analysis. An important example of such integration is for emergency response which requires route planning inside and outside of a building. Route planning requires detailed information related to indoor and outdoor environment. Indoor navigation network models including Geometric Network Model (GNM), Navigable Space Model, sub-division model and regular-grid model lack indoor data sources and abstraction methods. In this paper, a hybrid indoor space model is proposed. In the proposed method, 3D modeling of indoor navigation network is based on surveying control points and it is less dependent on the 3D geometrical building model. This research proposes a method of indoor space modeling for the buildings which do not have proper 2D/3D geometrical models or they lack semantic or topological information. The proposed hybrid model consists of topological, geometrical and semantical space.

  19. A Hybrid 3D Indoor Space Model

    Directory of Open Access Journals (Sweden)

    A. Jamali

    2016-10-01

    Full Text Available GIS integrates spatial information and spatial analysis. An important example of such integration is for emergency response which requires route planning inside and outside of a building. Route planning requires detailed information related to indoor and outdoor environment. Indoor navigation network models including Geometric Network Model (GNM, Navigable Space Model, sub-division model and regular-grid model lack indoor data sources and abstraction methods. In this paper, a hybrid indoor space model is proposed. In the proposed method, 3D modeling of indoor navigation network is based on surveying control points and it is less dependent on the 3D geometrical building model. This research proposes a method of indoor space modeling for the buildings which do not have proper 2D/3D geometrical models or they lack semantic or topological information. The proposed hybrid model consists of topological, geometrical and semantical space.

  20. Hybrid RANS/LES of turbulent flow in a rotating rib-roughened channel

    Science.gov (United States)

    Xun, Qian-Qiu; Wang, Bing-Chen

    2016-07-01

    In this paper, we investigate the effect of the Coriolis force on the flow field in a rib-roughened channel subjected to either clockwise or counter-clockwise system rotation using hybrid RANS/LES based on wall modelling. A simplified dynamic forcing scheme incorporating backscatter is proposed for the hybrid simulation approach. The flow is characterized by a Reynolds number of Re = 1.5 × 104 and a rotation number Ro ranging from -0.6 to 0.6. The mean flow speed and turbulence level near the roughened wall are enhanced under counter-clockwise rotation and suppressed under clockwise rotation. The Coriolis force significantly influences the stability of the wall shear layer and the free shear layers generated by the ribs. Consequently, it is interesting to observe that the classification of the roughness type relies not only on the pitch ratio, but also on the rotation number in the context of rotating rib-roughened flows. In order to validate the present hybrid approach, the first- and second-order statistical moments of the velocity field obtained from the simulations are thoroughly compared with the available laboratory measurement data.

  1. Modelling of data uncertainties on hybrid computers

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, Anke (ed.)

    2016-06-15

    The codes d{sup 3}f and r{sup 3}t are well established for modelling density-driven flow and nuclide transport in the far field of repositories for hazardous material in deep geological formations. They are applicable in porous media as well as in fractured rock or mudstone, for modelling salt- and heat transport as well as a free groundwater surface. Development of the basic framework of d{sup 3}f and r{sup 3}t had begun more than 20 years ago. Since that time significant advancements took place in the requirements for safety assessment as well as for computer hardware development. The period of safety assessment for a repository of high-level radioactive waste was extended to 1 million years, and the complexity of the models is steadily growing. Concurrently, the demands on accuracy increase. Additionally, model and parameter uncertainties become more and more important for an increased understanding of prediction reliability. All this leads to a growing demand for computational power that requires a considerable software speed-up. An effective way to achieve this is the use of modern, hybrid computer architectures which requires basically the set-up of new data structures and a corresponding code revision but offers a potential speed-up by several orders of magnitude. The original codes d{sup 3}f and r{sup 3}t were applications of the software platform UG /BAS 94/ whose development had begun in the early nineteennineties. However, UG had recently been advanced to the C++ based, substantially revised version UG4 /VOG 13/. To benefit also in the future from state-of-the-art numerical algorithms and to use hybrid computer architectures, the codes d{sup 3}f and r{sup 3}t were transferred to this new code platform. Making use of the fact that coupling between different sets of equations is natively supported in UG4, d{sup 3}f and r{sup 3}t were combined to one conjoint code d{sup 3}f++. A direct estimation of uncertainties for complex groundwater flow models with the

  2. Hybrid simulation models of production networks

    CERN Document Server

    Kouikoglou, Vassilis S

    2001-01-01

    This book is concerned with a most important area of industrial production, that of analysis and optimization of production lines and networks using discrete-event models and simulation. The book introduces a novel approach that combines analytic models and discrete-event simulation. Unlike conventional piece-by-piece simulation, this method observes a reduced number of events between which the evolution of the system is tracked analytically. Using this hybrid approach, several models are developed for the analysis of production lines and networks. The hybrid approach combines speed and accuracy for exceptional analysis of most practical situations. A number of optimization problems, involving buffer design, workforce planning, and production control, are solved through the use of hybrid models.

  3. Hybrid Models in Loop Quantum Cosmology

    CERN Document Server

    Navascués, B Elizaga; Marugán, G A Mena

    2016-01-01

    In the framework of Loop Quantum Cosmology, inhomogeneous models are usually quantized by means of a hybrid approach that combines loop quantization techniques with standard quantum field theory methods. This approach is based on a splitting of the phase space in a homogeneous sector, formed by global, zero-modes, and an inhomogeneous sector, formed by the remaining, infinite number of modes, that describe the local degrees of freedom. Then, the hybrid quantization is attained by adopting a loop representation for the homogeneous gravitational sector, while a Fock representation is used for the inhomogeneities. The zero-mode of the Hamiltonian constraint operator couples the homogeneous and inhomogeneous sectors. The hybrid approach, therefore, is expected to provide a suitable quantum theory in regimes where the main quantum effects of the geometry are those affecting the zero-modes, while the inhomogeneities, still being quantum, can be treated in a more conventional way. This hybrid strategy was first prop...

  4. Hybrid modelling of anaerobic wastewater treatment processes.

    Science.gov (United States)

    Karama, A; Bernard, O; Genovesi, A; Dochain, D; Benhammou, A; Steyer, J P

    2001-01-01

    This paper presents a hybrid approach for the modelling of an anaerobic digestion process. The hybrid model combines a feed-forward network, describing the bacterial kinetics, and the a priori knowledge based on the mass balances of the process components. We have considered an architecture which incorporates the neural network as a static model of unmeasured process parameters (kinetic growth rate) and an integrator for the dynamic representation of the process using a set of dynamic differential equations. The paper contains a description of the neural network component training procedure. The performance of this approach is illustrated with experimental data.

  5. Stochastic power flow modeling

    Energy Technology Data Exchange (ETDEWEB)

    1980-06-01

    The stochastic nature of customer demand and equipment failure on large interconnected electric power networks has produced a keen interest in the accurate modeling and analysis of the effects of probabilistic behavior on steady state power system operation. The principle avenue of approach has been to obtain a solution to the steady state network flow equations which adhere both to Kirchhoff's Laws and probabilistic laws, using either combinatorial or functional approximation techniques. Clearly the need of the present is to develop sound techniques for producing meaningful data to serve as input. This research has addressed this end and serves to bridge the gap between electric demand modeling, equipment failure analysis, etc., and the area of algorithm development. Therefore, the scope of this work lies squarely on developing an efficient means of producing sensible input information in the form of probability distributions for the many types of solution algorithms that have been developed. Two major areas of development are described in detail: a decomposition of stochastic processes which gives hope of stationarity, ergodicity, and perhaps even normality; and a powerful surrogate probability approach using proportions of time which allows the calculation of joint events from one dimensional probability spaces.

  6. Turbomachinery Flows Modeled

    Science.gov (United States)

    Adamczyk, John J.

    1997-01-01

    Last year, researchers at the NASA Lewis Research Center used the average passage code APNASA to complete the largest three-dimensional simulation of a multistage axial flow compressor to date. Consisting of 29 blade rows, the configuration is typical of those found in aeroengines today. The simulation, which was executed on the High Performance Computing and Communications (HPCC) Program IBM SP2 parallel computer located at the NASA Ames Research Center, took nearly 90 hr to complete. Since the completion of this activity, a fine-grain, parallel version of APNASA has been written by a team of researchers from General Electric, NASA Lewis, and NYMA. Timing studies performed on the SP2 have shown that, with eight processors assigned to each blade row, the simulation time is reduced by a factor of six. For this configuration, the simulation time would be 15 hr. The reduction in computing time indicates that an overnight turnaround of a multistage configuration simulation is feasible. In addition, average passage forms of two-equation turbulence models were formulated. These models are currently being incorporated into APNASA.

  7. Hybrid solution of the averaged Navier-Stokes equations for turbulent flow

    Science.gov (United States)

    Lima, J. A.; Perez-Guerrero, J. S.; Cotta, R. M.

    The Generalized Integral Transform Technique (GITT) is utilized in the hybrid numerical-analytical solution of the Reynolds averaged Navier-Stokes equations, for developing turbulent flow inside a parallel-plates channel. An algebraic turbulence model is employed in modelling the turbulent diffusivity. The automatic global error control feature inherent to this approach, permits the determination of fully converged reference results for the validation of purely numerical methods. Therefore, numerical results for different values of Reynolds number are obtained, both for illustrating the convergence characteristics of the integral transform approach, and for critical comparisons with previously reported results through different models and numerical schemes.

  8. UZ Flow Models and Submodels

    Energy Technology Data Exchange (ETDEWEB)

    P. Dixon

    2004-02-11

    The purpose of this Model Report is to document the unsaturated zone (UZ) fluid flow and tracer transport models and submodels as well as the flow fields generated utilizing the UZ Flow and Transport Model of Yucca Mountain (UZ Model), Nevada. This work was planned in ''Technical Work Plan (TWP) for: Performance Assessment Unsaturated Zone'' (BSC 2002 [160819], Section 1.10, Work Package AUZM06). The UZ Model has revised, updated, and enhanced the previous UZ Flow Model REV 00 ICN 01 (BSC 2001 [158726]) by incorporation of the conceptual repository design with new grids, recalibration of property sets, and more comprehensive validation effort. The flow fields describe fracture-fracture, matrix-matrix, and fracture-matrix liquid flow rates and their spatial distributions as well as moisture conditions in the UZ system. These 3-D UZ flow fields are used directly by Performance Assessment (PA). The model and submodels evaluate important hydrogeologic processes in the UZ as well as geochemistry and geothermal conditions. These provide the necessary framework to test conceptual hypotheses of flow and transport at different scales and predict flow and transport behavior under a variety of climatic conditions. In addition, this Model Report supports several PA activities, including abstractions, particle-tracking transport simulations, and the UZ Radionuclide Transport Model.

  9. Weather forecasting based on hybrid neural model

    Science.gov (United States)

    Saba, Tanzila; Rehman, Amjad; AlGhamdi, Jarallah S.

    2017-02-01

    Making deductions and expectations about climate has been a challenge all through mankind's history. Challenges with exact meteorological directions assist to foresee and handle problems well in time. Different strategies have been investigated using various machine learning techniques in reported forecasting systems. Current research investigates climate as a major challenge for machine information mining and deduction. Accordingly, this paper presents a hybrid neural model (MLP and RBF) to enhance the accuracy of weather forecasting. Proposed hybrid model ensure precise forecasting due to the specialty of climate anticipating frameworks. The study concentrates on the data representing Saudi Arabia weather forecasting. The main input features employed to train individual and hybrid neural networks that include average dew point, minimum temperature, maximum temperature, mean temperature, average relative moistness, precipitation, normal wind speed, high wind speed and average cloudiness. The output layer composed of two neurons to represent rainy and dry weathers. Moreover, trial and error approach is adopted to select an appropriate number of inputs to the hybrid neural network. Correlation coefficient, RMSE and scatter index are the standard yard sticks adopted for forecast accuracy measurement. On individual standing MLP forecasting results are better than RBF, however, the proposed simplified hybrid neural model comes out with better forecasting accuracy as compared to both individual networks. Additionally, results are better than reported in the state of art, using a simple neural structure that reduces training time and complexity.

  10. MODA - A hybrid atmospheric pollutant dispersion model

    Energy Technology Data Exchange (ETDEWEB)

    Favaron, M.; Oliveti Selmi, O. [Servizi Territorio srl, Milan (Italy); Sozzi, R. [Agenzia Regionale Protezione Ambiente (ARPA) Lazio, Rieti (Italy)

    2004-07-01

    MODA is a Gaussian-hybrid atmospheric dispersion model, intended for regulatory applications, and designed to meet the following requirements: ability to operate in complex terrain, standard use of a refined description of turbulence, operational efficiency (in terms of both speed and ease to change simulation parameters), ease of integration in modelling interfaces, output compatibility with the widely-used ISC3. MODA can operate in two modes: a standard mode, in which the pollutant dispersion is treated as Gaussian, and an advanced mode, in which the hybrid relations are used to compute the pollutant concentrations. (orig.)

  11. Flow cytometry-based DNA hybridization and polymorphism analysis

    Energy Technology Data Exchange (ETDEWEB)

    Cai, H.; Kommander, K.; White, P.S.; Nolan, J.P.

    1998-07-01

    Functional analysis of the humane genome, including the quantification of differential gene expression and the identification of polymorphic sites and disease genes, is an important element of the Human Genome Project. Current methods of analysis are mainly gel-based assays that are not well-suited to rapid genome-scale analyses. To analyze DNA sequence on a large scale, robust and high throughput assays are needed. The authors are developing a suite of microsphere-based approaches employing fluorescence detection to screen and analyze genomic sequence. The approaches include competitive DNA hybridization to measure DNA or RNA targets in unknown samples, and oligo ligation or extension assays to analyze single-nucleotide polymorphisms. Apart from the advances of sensitivity, simplicity, and low sample consumption, these flow cytometric approaches have the potential for high throughput multiplexed analysis using multicolored microspheres and automated sample handling.

  12. SCAN-based hybrid and double-hybrid density functionals from models without fitted parameters

    OpenAIRE

    Hui, Kerwin; Chai, Jeng-Da

    2015-01-01

    By incorporating the nonempirical SCAN semilocal density functional [Sun, Ruzsinszky, and Perdew, Phys. Rev. Lett. 115, 036402 (2015)] in the underlying expression of four existing hybrid and double-hybrid models, we propose one hybrid (SCAN0) and three double-hybrid (SCAN0-DH, SCAN-QIDH, and SCAN0-2) density functionals, which are free from any fitted parameters. The SCAN-based double-hybrid functionals consistently outperform their parent SCAN semilocal functional for self-interaction probl...

  13. Hybrid models in loop quantum cosmology

    Science.gov (United States)

    Elizaga Navascués, Beatriz; Martín-Benito, Mercedes; Mena Marugán, Guillermo A.

    2016-06-01

    In the framework of Loop Quantum Cosmology (LQC), inhomogeneous models are usually quantized by means of a hybrid approach that combines loop quantization techniques with standard quantum field theory methods. This approach is based on a splitting of the phase space in a homogeneous sector, formed by global, zero-modes and an inhomogeneous sector, formed by the remaining, infinite number of modes, that describe the local degrees of freedom. Then, the hybrid quantization is attained by adopting a loop representation for the homogeneous gravitational sector, while a Fock representation is used for the inhomogeneities. The zero-mode of the Hamiltonian constraint operator couples the homogeneous and inhomogeneous sectors. The hybrid approach, therefore, is expected to provide a suitable quantum theory in regimes where the main quantum effects of the geometry are those affecting the zero-modes, while the inhomogeneities, still being quantum, can be treated in a more conventional way. This hybrid strategy was first proposed for the simplest cosmological midisuperspaces: the Gowdy models, and it has been later applied to the case of cosmological perturbations. This paper reviews the construction and main applications of hybrid LQC.

  14. Removal of Nutrients from Septic Effluent with Re-circulated Hybrid Tidal Flow Constructed Wetland

    Science.gov (United States)

    Lihua Cui; Jigkun Feng; Ying Ouyang; Peiwen. Deng

    2012-01-01

    Hybrid tidal flow constructed wetland (CW) with recirculation is an improved biological and engineering technique for removal of excess nutrients and certain pollutants from wastewater. This study investigated the removal efficiency of total phosphorus (TP), ammonia-nitrogen (NH3-N), and total nitrogen (TN) from septic tank effluent with the hybrid tidal flow CW system...

  15. A hybrid wind farm parameterization for mesoscale and climate models

    Science.gov (United States)

    Pan, Y.; Archer, C. L.

    2016-12-01

    To better understand the potential impacts of wind farms on weather and climate at the local to regional scale, a new hybrid wind farm parameterization is proposed here for mesoscale models, such as the Weather Research and Forecasting Model (WRF), or climate models, such as the Community Atmosphere Model (CAM). All previous wind farm parameterizations treat all the wind turbines in the same grid cell as identical (i.e., they all share the same upstream wind velocity) and ignore the effect of wind direction. By contrast, the new hybrid model considers each individual wind turbine, based on its position in the layout and on wind direction. The new parameterization is developed starting from large eddy simulations (LES) of existing wind farms, in which the local flow around each wind turbine is directly simulated at high spatial ( 3.5 m) and temporal ( 0.1 s) resolutions and the effects of subgrid-scale processes are modeled. Based on analytic and statistical relationships between the LES results and several geometric properties of the wind farm layout (such as blockage ratio and blocking distance), the new hybrid parameterization predicts the local upstream wind speed of each individual wind turbine in the same grid cell, and thus successfully account for the effects of layout and wind direction with little computational cost. With the newly predicted upstream velocity, the turbine-induced forces and added turbulence kinetic energy (TKE) in the atmosphere are derived analytically. The wind speed, wind speed deficit, and TKE profiles and power production obtained with the hybrid parameterization for the test case (the 48-turbine Lillgrund wind farm in Sweden) are in better agreement with the LES results than previous parameterizations. Future work includes the insertion of the hybrid parameterization into the WRF code to assess impacts on near-surface properties, such as temperature and heat and momentum fluxes, in the region surrounding the wind farm.

  16. Hybrid quantum teleportation: A theoretical model

    Energy Technology Data Exchange (ETDEWEB)

    Takeda, Shuntaro; Mizuta, Takahiro; Fuwa, Maria; Yoshikawa, Jun-ichi; Yonezawa, Hidehiro; Furusawa, Akira [Department of Applied Physics, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan)

    2014-12-04

    Hybrid quantum teleportation – continuous-variable teleportation of qubits – is a promising approach for deterministically teleporting photonic qubits. We propose how to implement it with current technology. Our theoretical model shows that faithful qubit transfer can be achieved for this teleportation by choosing an optimal gain for the teleporter’s classical channel.

  17. UZ Flow Models and Submodels

    Energy Technology Data Exchange (ETDEWEB)

    Y. Wu

    2004-11-01

    The purpose of this report is to document the unsaturated zone (UZ) flow models and submodels, as well as the flow fields that have been generated using the UZ flow model(s) of Yucca Mountain, Nevada. In this report, the term ''UZ model'' refers to the UZ flow model and the several submodels, which include tracer transport, temperature or ambient geothermal, pneumatic or gas flow, and geochemistry (chloride, calcite, and strontium) submodels. The term UZ flow model refers to the three-dimensional models used for calibration and simulation of UZ flow fields. This work was planned in the ''Technical Work Plan (TWP) for: Unsaturated Zone Flow Analysis and Model Report Integration'' (BSC 2004 [DIRS 169654], Section 1.2.7). The table of included Features, Events, and Processes (FEPs), Table 6.2-11, is different from the list of included FEPs assigned to this report in the ''Technical Work Plan for: Unsaturated Zone Flow Analysis and Model Report Integration'' (BSC 2004 [DIRS 169654], Table 2.1.5-1), as discussed in Section 6.2.6. The UZ model has revised, updated, and enhanced the previous UZ model (BSC 2001 [DIRS 158726]) by incorporating the repository design with new grids, recalibration of property sets, and more comprehensive validation effort. The flow fields describe fracture-fracture, matrix-matrix, and fracture-matrix liquid flow rates, and their spatial distributions as well as moisture conditions in the UZ system. These three-dimensional UZ flow fields are used directly by Total System Performance Assessment (TSPA). The model and submodels evaluate important hydrogeologic processes in the UZ as well as geochemistry and geothermal conditions. These provide the necessary framework to test hypotheses of flow and transport at different scales, and predict flow and transport behavior under a variety of climatic conditions. In addition, the limitations of the UZ model are discussed in Section 8.11.

  18. Novel Hybrid Model: Integrating Scrum and XP

    Directory of Open Access Journals (Sweden)

    Zaigham Mushtaq

    2012-06-01

    Full Text Available Scrum does not provide any direction about how to engineer a software product. The project team has to adopt suitable agile process model for the engineering of software. XP process model is mainly focused on engineering practices rather than management practices. The design of XP process makes it suitable for simple and small size projects and not appropriate for medium and large projects. A fine integration of management and engineering practices is desperately required to build quality product to make it valuable for customers. In this research a novel framework hybrid model is proposed to achieve this integration. The proposed hybrid model is actually an express version of Scrum model. It possesses features of engineering practices that are necessary to develop quality software as per customer requirements and company objectives. A case study is conducted to validate the proposal of hybrid model. The results of the case study reveal that proposed model is an improved version of XP and Scrum model.

  19. A Marine Traffic Flow Model

    Directory of Open Access Journals (Sweden)

    Tsz Leung Yip

    2013-03-01

    Full Text Available A model is developed for studying marine traffic flow through classical traffic flow theories, which can provide us with a better understanding of the phenomenon of traffic flow of ships. On one hand, marine traffic has its special features and is fundamentally different from highway, air and pedestrian traffic. The existing traffic models cannot be simply extended to marine traffic without addressing marine traffic features. On the other hand, existing literature on marine traffic focuses on one ship or two ships but does not address the issues in marine traffic flow.

  20. Identification and Prediction of Large Pedestrian Flow in Urban Areas Based on a Hybrid Detection Approach

    Directory of Open Access Journals (Sweden)

    Kaisheng Zhang

    2016-12-01

    Full Text Available Recently, population density has grown quickly with the increasing acceleration of urbanization. At the same time, overcrowded situations are more likely to occur in populous urban areas, increasing the risk of accidents. This paper proposes a synthetic approach to recognize and identify the large pedestrian flow. In particular, a hybrid pedestrian flow detection model was constructed by analyzing real data from major mobile phone operators in China, including information from smartphones and base stations (BS. With the hybrid model, the Log Distance Path Loss (LDPL model was used to estimate the pedestrian density from raw network data, and retrieve information with the Gaussian Progress (GP through supervised learning. Temporal-spatial prediction of the pedestrian data was carried out with Machine Learning (ML approaches. Finally, a case study of a real Central Business District (CBD scenario in Shanghai, China using records of millions of cell phone users was conducted. The results showed that the new approach significantly increases the utility and capacity of the mobile network. A more reasonable overcrowding detection and alert system can be developed to improve safety in subway lines and other hotspot landmark areas, such as the Bundle, People’s Square or Disneyland, where a large passenger flow generally exists.

  1. Flow Over a Model Submarine

    Science.gov (United States)

    Jiménez, Juan; Smits, Alexander

    2003-11-01

    Experimental investigation over a DARPA SUBOFF submarine model (SUBOFF Model) was performed using flow visualization and Digital Particle Image Velocimetry (DPIV). The model has an axisymmetric body with sail and fins, and it was supported by a streamlined strut that was formed by the extension of the sail appendage. The range of flow conditions studied correspond to a Reynolds numbers based on model length, Re_L, of about 10^5. Velocity vector fields, turbulence intensities, vorticity fields, and flow visualization in the vicinity of the junction flows are presented. In the vicinity of the control surface and sail hull junctions, the presence of streamwise vortices in the form of horseshoe or necklace vortices locally dominates the flow. The effects of unsteady motions about an axis passing through the sail are also investigated to understand the evolution of the unsteady wake.

  2. CORSICA modelling of ITER hybrid operation scenarios

    Science.gov (United States)

    Kim, S. H.; Bulmer, R. H.; Campbell, D. J.; Casper, T. A.; LoDestro, L. L.; Meyer, W. H.; Pearlstein, L. D.; Snipes, J. A.

    2016-12-01

    The hybrid operating mode observed in several tokamaks is characterized by further enhancement over the high plasma confinement (H-mode) associated with reduced magneto-hydro-dynamic (MHD) instabilities linked to a stationary flat safety factor (q ) profile in the core region. The proposed ITER hybrid operation is currently aiming at operating for a long burn duration (>1000 s) with a moderate fusion power multiplication factor, Q , of at least 5. This paper presents candidate ITER hybrid operation scenarios developed using a free-boundary transport modelling code, CORSICA, taking all relevant physics and engineering constraints into account. The ITER hybrid operation scenarios have been developed by tailoring the 15 MA baseline ITER inductive H-mode scenario. Accessible operation conditions for ITER hybrid operation and achievable range of plasma parameters have been investigated considering uncertainties on the plasma confinement and transport. ITER operation capability for avoiding the poloidal field coil current, field and force limits has been examined by applying different current ramp rates, flat-top plasma currents and densities, and pre-magnetization of the poloidal field coils. Various combinations of heating and current drive (H&CD) schemes have been applied to study several physics issues, such as the plasma current density profile tailoring, enhancement of the plasma energy confinement and fusion power generation. A parameterized edge pedestal model based on EPED1 added to the CORSICA code has been applied to hybrid operation scenarios. Finally, fully self-consistent free-boundary transport simulations have been performed to provide information on the poloidal field coil voltage demands and to study the controllability with the ITER controllers. Extended from Proc. 24th Int. Conf. on Fusion Energy (San Diego, 2012) IT/P1-13.

  3. Prediction of separation flows around a 6:1 prolate spheroid using RANS/LES hybrid approaches

    Institute of Scientific and Technical Information of China (English)

    Zhixiang Xiao; Yufei Zhang; Jingbo Huang; Haixin Chen; Song Fu

    2007-01-01

    This paper presents hybrid Reynolds-averaged Navier-Stokes (RANS) and large-eddy-simulation (LES) methods for the separated flows at high angles of attack around a 6:1 prolate spheroid. The RANS/LES hybrid meth-ods studied in this work include the detached eddy simula-tion (DES) based on Spalart-Allmaras (S-A), Menter's k-w shear-stress-transport (SST) and k-ω with weakly nonlinear eddy viscosity formulation (Wilcox-Durbin+, WD+) mod-els and the zonaI-RANS/LES methods based on the SST and WD+ models. The switch from RANS near the wall to LES in the core flow region is smooth through the implementation of a flow-dependent blending function for the zonal hybrid method. All the hybrid methods are designed to have a RANS mode for the attached flows and have a LES behavior for the separated flows. The main objective of this paper is to apply the hybrid methods for the high Reynolds number separated flows around prolate spheroid at high-incidences.A fourth-order central scheme with fourth-order artificial viscosity is applied for spatial differencing. The fully implicit lower-upper symmetric-Gauss-Seidel with pseudo time sub-iteration is taken as the temporal differentiation. Com-parisons with available measurements are carried out for pressure distribution, skin friction, and profiles of velocity,etc. Reasonable agreement with the experiments, accounting for the effect on grids and fundamental turbulence models,is obtained for the separation flows.

  4. Modeling lithium/hybrid-cathode batteries

    Energy Technology Data Exchange (ETDEWEB)

    Gomadam, Parthasarathy M.; Merritt, Don R.; Scott, Erik R.; Schmidt, Craig L.; Skarstad, Paul M. [Medtronic Energy and Component Center, 6700 Shingle Creek Pkwy, Brooklyn Center, MN 55430 (United States); Weidner, John W. [Center for Electrochemical Engineering, Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208 (United States)

    2007-12-06

    This document describes a first-principles-based mathematical model developed to predict the voltage-capacity behavior of batteries having hybrid cathodes comprising a mixture of carbon monofluoride (CF{sub x}) and silver vanadium oxide (SVO). These batteries typically operate at moderate rates of discharge, lasting several years. The model presented here is an accurate tool for design optimization and performance prediction of batteries under current drains that encompass both the application rate and accelerated testing. (author)

  5. Influence of Deterministic Attachments for Large Unifying Hybrid Network Model

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Large unifying hybrid network model (LUHPM) introduced the deterministic mixing ratio fd on the basis of the harmonious unification hybrid preferential model, to describe the influence of deterministic attachment to the network topology characteristics,

  6. Hybrid model for QCD deconfining phase boundary

    Science.gov (United States)

    Srivastava, P. K.; Singh, C. P.

    2012-06-01

    Intensive search for a proper and realistic equations of state (EOS) is still continued for studying the phase diagram existing between quark gluon plasma (QGP) and hadron gas (HG) phases. Lattice calculations provide such EOS for the strongly interacting matter at finite temperature (T) and vanishing baryon chemical potential (μB). These calculations are of limited use at finite μB due to the appearance of notorious sign problem. In the recent past, we had constructed a hybrid model description for the QGP as well as HG phases where we make use of a new excluded-volume model for HG and a thermodynamically-consistent quasiparticle model for the QGP phase and used them further to get QCD phase boundary and a critical point. Since then many lattice calculations have appeared showing various thermal and transport properties of QCD matter at finite T and μB=0. We test our hybrid model by reproducing the entire data for strongly interacting matter and predict our results at finite μB so that they can be tested in future. Finally we demonstrate the utility of the model in fixing the precise location, the order of the phase transition and the nature of CP existing on the QCD phase diagram. We thus emphasize the suitability of the hybrid model as formulated here in providing a realistic EOS for the strongly interacting matter.

  7. Hybrid modeling and prediction of dynamical systems

    Science.gov (United States)

    Lloyd, Alun L.; Flores, Kevin B.

    2017-01-01

    Scientific analysis often relies on the ability to make accurate predictions of a system’s dynamics. Mechanistic models, parameterized by a number of unknown parameters, are often used for this purpose. Accurate estimation of the model state and parameters prior to prediction is necessary, but may be complicated by issues such as noisy data and uncertainty in parameters and initial conditions. At the other end of the spectrum exist nonparametric methods, which rely solely on data to build their predictions. While these nonparametric methods do not require a model of the system, their performance is strongly influenced by the amount and noisiness of the data. In this article, we consider a hybrid approach to modeling and prediction which merges recent advancements in nonparametric analysis with standard parametric methods. The general idea is to replace a subset of a mechanistic model’s equations with their corresponding nonparametric representations, resulting in a hybrid modeling and prediction scheme. Overall, we find that this hybrid approach allows for more robust parameter estimation and improved short-term prediction in situations where there is a large uncertainty in model parameters. We demonstrate these advantages in the classical Lorenz-63 chaotic system and in networks of Hindmarsh-Rose neurons before application to experimentally collected structured population data. PMID:28692642

  8. Modeling Size Polydisperse Granular Flows

    Science.gov (United States)

    Lueptow, Richard M.; Schlick, Conor P.; Isner, Austin B.; Umbanhowar, Paul B.; Ottino, Julio M.

    2014-11-01

    Modeling size segregation of granular materials has important applications in many industrial processes and geophysical phenomena. We have developed a continuum model for granular multi- and polydisperse size segregation based on flow kinematics, which we obtain from discrete element method (DEM) simulations. The segregation depends on dimensionless control parameters that are functions of flow rate, particle sizes, collisional diffusion coefficient, shear rate, and flowing layer depth. To test the theoretical approach, we model segregation in tri-disperse quasi-2D heap flow and log-normally distributed polydisperse quasi-2D chute flow. In both cases, the segregated particle size distributions match results from full-scale DEM simulations and experiments. While the theory was applied to size segregation in steady quasi-2D flows here, the approach can be readily generalized to include additional drivers of segregation such as density and shape as well as other geometries where the flow field can be characterized including rotating tumbler flow and three-dimensional bounded heap flow. Funded by The Dow Chemical Company and NSF Grant CMMI-1000469.

  9. Modeling of curvilinear suspension flows

    Science.gov (United States)

    Morris, Jeffrey F.; Boulay, Fabienne

    1996-11-01

    The curvilinear parallel-plate and cone-and-plate rheometric flows of monodisperse noncolloidal suspensions have been modeled. Although nonuniform in shear rate, dotγ, the parallel-plate flow has been shown experimentally(A. W. Chow, S. W. Sinton, J. H. Iwayima & T. S. Stephens 1994 Phys. Fluids) 6, 2561. not to exhibit particle migration, contrary to predictions of prior suspension-flow modeling. Predictions of nonuniform particle volume fraction, φ, by the suspension-balance model(P. R. Nott & J. F. Brady 1994 J. Fluid Mech.) 275, 157. for parallel-plate and cone-and-plate flow without normal stress differences are presented. The ``nonmigration'' in parallel-plate flow may be attributed to bulk suspension normal stress differences: assuming the bulk stress has the form Σ ~ η dotγ Q(φ) with η the fluid viscosity, nonmigration is predicted for parallel-plate flow provided that Q_33 = (1/2) Q_11 at the bulk φ of interest, with 1 the flow direction and 3 the vorticity direction. Extending the model to include normal stress differences satisfying this requirement, a range of migration behavior is predicted for the cone-and-plate flow depending upon the ratio Q_11/Q_22.

  10. Hybrid Energy System Modeling in Modelica

    Energy Technology Data Exchange (ETDEWEB)

    William R. Binder; Christiaan J. J. Paredis; Humberto E. Garcia

    2014-03-01

    In this paper, a Hybrid Energy System (HES) configuration is modeled in Modelica. Hybrid Energy Systems (HES) have as their defining characteristic the use of one or more energy inputs, combined with the potential for multiple energy outputs. Compared to traditional energy systems, HES provide additional operational flexibility so that high variability in both energy production and consumption levels can be absorbed more effectively. This is particularly important when including renewable energy sources, whose output levels are inherently variable, determined by nature. The specific HES configuration modeled in this paper include two energy inputs: a nuclear plant, and a series of wind turbines. In addition, the system produces two energy outputs: electricity and synthetic fuel. The models are verified through simulations of the individual components, and the system as a whole. The simulations are performed for a range of component sizes, operating conditions, and control schemes.

  11. Mathematical Modeling of Hybrid Electrical Engineering Systems

    Directory of Open Access Journals (Sweden)

    A. A. Lobaty

    2016-01-01

    Full Text Available A large class of systems that have found application in various industries and households, electrified transportation facilities and energy sector has been classified as electrical engineering systems. Their characteristic feature is a combination of continuous and discontinuous modes of operation, which is reflected in the appearance of a relatively new term “hybrid systems”. A wide class of hybrid systems is pulsed DC converters operating in a pulse width modulation, which are non-linear systems with variable structure. Using various methods for linearization it is possible to obtain linear mathematical models that rather accurately simulate behavior of such systems. However, the presence in the mathematical models of exponential nonlinearities creates considerable difficulties in the implementation of digital hardware. The solution can be found while using an approximation of exponential functions by polynomials of the first order, that, however, violates the rigor accordance of the analytical model with characteristics of a real object. There are two practical approaches to synthesize algorithms for control of hybrid systems. The first approach is based on the representation of the whole system by a discrete model which is described by difference equations that makes it possible to synthesize discrete algorithms. The second approach is based on description of the system by differential equations. The equations describe synthesis of continuous algorithms and their further implementation in a digital computer included in the control loop system. The paper considers modeling of a hybrid electrical engineering system using differential equations. Neglecting the pulse duration, it has been proposed to describe behavior of vector components in phase coordinates of the hybrid system by stochastic differential equations containing generally non-linear differentiable random functions. A stochastic vector-matrix equation describing dynamics of the

  12. Simulating groundwater flow in karst aquifers with distributed parameter models—Comparison of porous-equivalent media and hybrid flow approaches

    Science.gov (United States)

    Kuniansky, Eve L.

    2016-09-22

    been developed that incorporate the submerged conduits as a one-dimensional pipe network within the aquifer rather than as discrete, extremely transmissive features in a porous-equivalent medium; these submerged conduit models are usually referred to as hybrid models and may include the capability to simulate both laminar and turbulent flow in the one-dimensional pipe network. Comparisons of the application of a porous-equivalent media model with and without turbulence (MODFLOW-Conduit Flow Process mode 2 and basic MODFLOW, respectively) and a hybrid (MODFLOW-Conduit Flow Process mode 1) model to the Woodville Karst Plain near Tallahassee, Florida, indicated that for annual, monthly, or seasonal average hydrologic conditions, all methods met calibration criteria (matched observed groundwater levels and average flows). Thus, the increased effort required, such as the collection of data on conduit location, to develop a hybrid model and its increased computational burden, is not necessary for simulation of average hydrologic conditions (non-laminar flow effects on simulated head and spring discharge were minimal). However, simulation of a large storm event in the Woodville Karst Plain with daily stress periods indicated that turbulence is important for matching daily springflow hydrographs. Thus, if matching streamflow hydrographs over a storm event is required, the simulation of non-laminar flow and the location of conduits are required. The main challenge in application of the methods and approaches for developing hybrid models relates to the difficulty of mapping conduit networks or having high-quality datasets to calibrate these models. Additionally, hybrid models have long simulation times, which can preclude the use of parameter estimation for calibration. Simulation of contaminant transport that does not account for preferential flow through conduits or extremely permeable zones in any approach is ill-advised. Simulation results in other karst aquifers or other

  13. Hybrid flux splitting schemes for numerical resolution of two-phase flows

    Energy Technology Data Exchange (ETDEWEB)

    Flaatten, Tore

    2003-07-01

    This thesis deals with the construction of numerical schemes for approximating. solutions to a hyperbolic two-phase flow model. Numerical schemes for hyperbolic models are commonly divided in two main classes: Flux Vector Splitting (FVS) schemes which are based on scalar computations and Flux Difference Splitting (FDS) schemes which are based on matrix computations. FVS schemes are more efficient than FDS schemes, but FDS schemes are more accurate. The canonical FDS schemes are the approximate Riemann solvers which are based on a local decomposition of the system into its full wave structure. In this thesis the mathematical structure of the model is exploited to construct a class of hybrid FVS/FDS schemes, denoted as Mixture Flux (MF) schemes. This approach is based on a splitting of the system in two components associated with the pressure and volume fraction variables respectively, and builds upon hybrid FVS/FDS schemes previously developed for one-phase flow models. Through analysis and numerical experiments it is demonstrated that the MF approach provides several desirable features, including (1) Improved efficiency compared to standard approximate Riemann solvers, (2) Robustness under stiff conditions, (3) Accuracy on linear and nonlinear phenomena. In particular it is demonstrated that the framework allows for an efficient weakly implicit implementation, focusing on an accurate resolution of slow transients relevant for the petroleum industry. (author)

  14. An hybrid finite volume finite element method for variable density incompressible flows

    Science.gov (United States)

    Calgaro, Caterina; Creusé, Emmanuel; Goudon, Thierry

    2008-04-01

    This paper is devoted to the numerical simulation of variable density incompressible flows, modeled by the Navier-Stokes system. We introduce an hybrid scheme which combines a finite volume approach for treating the mass conservation equation and a finite element method to deal with the momentum equation and the divergence free constraint. The breakthrough relies on the definition of a suitable footbridge between the two methods, through the design of compatibility condition. In turn, the method is very flexible and allows to deal with unstructured meshes. Several numerical tests are performed to show the scheme capabilities. In particular, the viscous Rayleigh-Taylor instability evolution is carefully investigated.

  15. Base Flow Model Validation Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The program focuses on turbulence modeling enhancements for predicting high-speed rocket base flows. A key component of the effort is the collection of high-fidelity...

  16. Second Order Cone Programming (SOCP) Relaxation Based Optimal Power Flow with Hybrid VSC-HVDC Transmission and Active Distribution Networks

    DEFF Research Database (Denmark)

    Ding, Tao; Li, Cheng; Yang, Yongheng

    2017-01-01

    The detailed topology of renewable resource bases may have the impact on the optimal power flow of the VSC-HVDC transmission network. To address this issue, this paper develops an optimal power flow with the hybrid VSC-HVDC transmission and active distribution networks to optimally schedule...... the generation output and voltage regulation of both networks, which leads to a non-convex programming model. Furthermore, the non-convex power flow equations are based on the Second Order Cone Programming (SOCP) relaxation approach. Thus, the proposed model can be relaxed to a SOCP that can be tractably solved...

  17. Numerical experiments modelling turbulent flows

    Directory of Open Access Journals (Sweden)

    Trefilík Jiří

    2014-03-01

    Full Text Available The work aims at investigation of the possibilities of modelling transonic flows mainly in external aerodynamics. New results are presented and compared with reference data and previously achieved results. For the turbulent flow simulations two modifications of the basic k – ω model are employed: SST and TNT. The numerical solution was achieved by using the MacCormack scheme on structured non-ortogonal grids. Artificial dissipation was added to improve the numerical stability.

  18. Computational modeling of concrete flow

    DEFF Research Database (Denmark)

    Roussel, Nicolas; Geiker, Mette Rica; Dufour, Frederic

    2007-01-01

    This paper provides a general overview of the present status regarding computational modeling of the flow of fresh concrete. The computational modeling techniques that can be found in the literature may be divided into three main families: single fluid simulations, numerical modeling of discrete...

  19. Hybrid optimization model of product concepts

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Deficiencies of applying the simple genetic algorithm to generate concepts were specified. Based on analyzing conceptual design and the morphological matrix of an excavator, the hybrid optimization model of generating its concepts was proposed, viz. an improved adaptive genetic algorithm was applied to explore the excavator concepts in the searching space of conceptual design, and a neural network was used to evaluate the fitness of the population. The optimization of generating concepts was finished through the "evolution - evaluation" iteration. The results show that by using the hybrid optimization model, not only the fitness evaluation and constraint conditions are well processed, but also the search precision and convergence speed of the optimization process are greatly improved. An example is presented to demonstrate the advantages of the proposed method and associated algorithms.

  20. Hybrid Modelling Approach to Prairie hydrology: Fusing Data-driven and Process-based Hydrological Models

    Science.gov (United States)

    Mekonnen, B.; Nazemi, A.; Elshorbagy, A.; Mazurek, K.; Putz, G.

    2012-04-01

    Modeling the hydrological response in prairie regions, characterized by flat and undulating terrain, and thus, large non-contributing areas, is a known challenge. The hydrological response (runoff) is the combination of the traditional runoff from the hydrologically contributing area and the occasional overflow from the non-contributing area. This study provides a unique opportunity to analyze the issue of fusing the Soil and Water Assessment Tool (SWAT) and Artificial Neural Networks (ANNs) in a hybrid structure to model the hydrological response in prairie regions. A hybrid SWAT-ANN model is proposed, where the SWAT component and the ANN module deal with the effective (contributing) area and the non-contributing area, respectively. The hybrid model is applied to the case study of Moose Jaw watershed, located in southern Saskatchewan, Canada. As an initial exploration, a comparison between ANN and SWAT models is established based on addressing the daily runoff (streamflow) prediction accuracy using multiple error measures. This is done to identify the merits and drawbacks of each modeling approach. It has been found out that the SWAT model has better performance during the low flow periods but with degraded efficiency during periods of high flows. The case is different for the ANN model as ANNs exhibit improved simulation during high flow periods but with biased estimates during low flow periods. The modelling results show that the new hybrid SWAT-ANN model is capable of exploiting the strengths of both SWAT and ANN models in an integrated framrwork. The new hybrid SWAT-ANN model simulates daily runoff quite satisfactorily with NSE measures of 0.80 and 0.83 during calibration and validation periods, respectively. Furthermore, an experimental assessment was performed to identify the effects of the ANN training method on the performance of the hybrid model as well as the parametric identifiability. Overall, the results obtained in this study suggest that the fusion

  1. Simulation of flow in the microcirculation using a hybrid Lattice-Boltzman and Finite Element algorithm

    Science.gov (United States)

    Gonzalez-Mancera, Andres; Gonzalez Cardenas, Diego

    2014-11-01

    Flow in the microcirculation is highly dependent on the mechanical properties of the cells suspended in the plasma. Red blood cells have to deform in order to pass through the smaller sections in the microcirculation. Certain deceases change the mechanical properties of red blood cells affecting its ability to deform and the rheological behaviour of blood. We developed a hybrid algorithm based on the Lattice-Boltzmann and Finite Element methods to simulate blood flow in small capillaries. Plasma was modeled as a Newtonian fluid and the red blood cells' membrane as a hyperelastic solid. The fluid-structure interaction was handled using the immersed boundary method. We simulated the flow of plasma with suspended red blood cells through cylindrical capillaries and measured the pressure drop as a function of the membrane's rigidity. We also simulated the flow through capillaries with a restriction and identify critical properties for which the suspended particles are unable to flow. The algorithm output was verified by reproducing certain common features of flow int he microcirculation such as the Fahraeus-Lindqvist effect.

  2. Prediction of Pressure Drop of Slurry Flow in Pipeline by Hybrid Support Vector Regression and Genetic Algorithm Model%基于SVR-GA模型的浆态管流压力差的预测

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    This paper describes a robust support vector regression (SVR) methodology, which can offer superior performance for important process engineering problems. The method incorporates hybrid support vector regression and genetic algorithm technique (SVR-GA) for efficient tuning of SVR mcta-parameters. The algorithm has been applied for prediction of pressure drop of solid liquid slurry flow. A comparison with selected correlations in the literature showed that the developed SVR correlation noticeably improved the prediction of pressure drop over a wide range of operating conditions, physical properties, and pipe diameters.

  3. A hybrid FEM-DEM approach to the simulation of fluid flow laden with many particles

    Science.gov (United States)

    Casagrande, Marcus V. S.; Alves, José L. D.; Silva, Carlos E.; Alves, Fábio T.; Elias, Renato N.; Coutinho, Alvaro L. G. A.

    2017-04-01

    In this work we address a contribution to the study of particle laden fluid flows in scales smaller than TFM (two-fluid models). The hybrid model is based on a Lagrangian-Eulerian approach. A Lagrangian description is used for the particle system employing the discrete element method (DEM), while a fixed Eulerian mesh is used for the fluid phase modeled by the finite element method (FEM). The resulting coupled DEM-FEM model is integrated in time with a subcycling scheme. The aforementioned scheme is applied in the simulation of a seabed current to analyze which mechanisms lead to the emergence of bedload transport and sediment suspension, and also quantify the effective viscosity of the seabed in comparison with the ideal no-slip wall condition. A simulation of a salt plume falling in a fluid column is performed, comparing the main characteristics of the system with an experiment.

  4. Hamiltonian approach to hybrid plasma models

    CERN Document Server

    Tronci, Cesare

    2010-01-01

    The Hamiltonian structures of several hybrid kinetic-fluid models are identified explicitly, upon considering collisionless Vlasov dynamics for the hot particles interacting with a bulk fluid. After presenting different pressure-coupling schemes for an ordinary fluid interacting with a hot gas, the paper extends the treatment to account for a fluid plasma interacting with an energetic ion species. Both current-coupling and pressure-coupling MHD schemes are treated extensively. In particular, pressure-coupling schemes are shown to require a transport-like term in the Vlasov kinetic equation, in order for the Hamiltonian structure to be preserved. The last part of the paper is devoted to studying the more general case of an energetic ion species interacting with a neutralizing electron background (hybrid Hall-MHD). Circulation laws and Casimir functionals are presented explicitly in each case.

  5. Officer Accessions Flow Model

    Science.gov (United States)

    2011-07-31

    18]) General Charles Campbell noted that , although…. “the Army has a system for organizing, staffing, equipping, training, deploying, sustaining...Harrell, Charles , Ghosh, Biman K., & Bowden Jr.,Royce O. 2004. Simulation Using ProModel. Second edition. McGraw Hill, New York. [22] Klimas, J...RUNS: A Senior Leader Reference Handbook. U.S. Army War College, Carlisle, PA. [24] McNeill , Dan K. 2005 (August). Army Force Generation

  6. Coherence Imaging Measurements of Impurity Flow in the Compact Toroidal Hybrid Experiment

    Science.gov (United States)

    Ennis, D. A.; Hartwell, G. J.; Johnson, C. A.; Maurer, D. A.; Allen, S. L.; Meyer, W. H.; Samuell, C. M.

    2016-10-01

    Measurements of impurity ion emissivity and velocity in the Compact Toroidal Hybrid (CTH) experiment are achieved with a new optical coherence imaging diagnostic. The Coherence Imaging Spectroscopy (CIS) technique measures the spectral coherence of an emission line with an imaging interferometer of fixed delay. CIS has a number of advantages when compared to dispersive Doppler spectroscopy, including higher throughput and the capability to provide 2D spectral images, making it ideal for investigating the non-axisymmetric geometry of CTH plasmas. Furthermore, detailed measurements of the ion flow structure provided by CIS combined with predictive computational models could also provide spatially resolved images of complex flow structures, such as those associated with an island divertor. First CIS measurements of CTH plasmas reveal strong signals for C III (465 nm), He II (468 nm) and C II (513 nm) emission. Preliminary analysis of C III interferograms indicate a net toroidal flow on the order of 10 km/s during the time of peak current. Bench tests using Zn and Cd light sources reveal that the temperature of the instrument must be actively controlled to within 0.01°C to limit phase drift of the interferometer resulting in artificially measured flow. Results from this diagnostic will aid in characterizing the ion flow in planned island divertor and MHD mode-locking experiments. Work supported by USDoE Grant DE-FG02-00ER54610.

  7. Hybrid Multiphase CFD Solver for Coupled Dispersed/Segregated Flows in Liquid-Liquid Extraction

    Directory of Open Access Journals (Sweden)

    Kent E. Wardle

    2013-01-01

    Full Text Available The flows in stage-wise liquid-liquid extraction devices include both phase segregated and dispersed flow regimes. As a additional layer of complexity, for extraction equipment such as the annular centrifugal contactor, free-surface flows also play a critical role in both the mixing and separation regions of the device and cannot be neglected. Traditionally, computional fluid dynamics (CFD of multiphase systems is regime dependent—different methods are used for segregated and dispersed flows. A hybrid multiphase method based on the combination of an Eulerian multifluid solution framework (per-phase momentum equations and sharp interface capturing using Volume of Fluid (VOF on selected phase pairs has been developed using the open-source CFD toolkit OpenFOAM. Demonstration of the solver capability is presented through various examples relevant to liquid-liquid extraction device flows including three-phase, liquid-liquid-air simulations in which a sharp interface is maintained between each liquid and air, but dispersed phase modeling is used for the liquid-liquid interactions.

  8. Infectious disease modeling a hybrid system approach

    CERN Document Server

    Liu, Xinzhi

    2017-01-01

    This volume presents infectious diseases modeled mathematically, taking seasonality and changes in population behavior into account, using a switched and hybrid systems framework. The scope of coverage includes background on mathematical epidemiology, including classical formulations and results; a motivation for seasonal effects and changes in population behavior, an investigation into term-time forced epidemic models with switching parameters, and a detailed account of several different control strategies. The main goal is to study these models theoretically and to establish conditions under which eradication or persistence of the disease is guaranteed. In doing so, the long-term behavior of the models is determined through mathematical techniques from switched systems theory. Numerical simulations are also given to augment and illustrate the theoretical results and to help study the efficacy of the control schemes.

  9. Flow-injection amperometric glucose biosensors based on graphene/Nafion hybrid electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Bong Gill, E-mail: k1811@kaist.ac.kr [Department of Chemical and Biomolecular Engineering (BK21 Program), KAIST, Daejeon 305-701 (Korea, Republic of); Im, Jinkyu, E-mail: JINQ@paran.com [Department of Chemistry and Research Institute of Basic Sciences, Kyung Hee University, 1 Hoegidong, Dongdamoongu, Seoul (Korea, Republic of); Kim, Hoon Sik, E-mail: khs2004@khu.ac.kr [Department of Chemistry and Research Institute of Basic Sciences, Kyung Hee University, 1 Hoegidong, Dongdamoongu, Seoul (Korea, Republic of); Park, HoSeok, E-mail: phs0727@khu.ac.kr [Department of Chemical Engineering, College of Engineering, Kyung Hee University, 1 Seochon-dong, Giheung-gu, Youngin-si, Gyeonggi-do 446-701 (Korea, Republic of)

    2011-11-30

    Graphical abstract: Amperometric biosensors based on graphene hybrids showed the fast, sensitive, and stable amperometric responses in the flow injection system for automatically monitoring glucose. Display Omitted Highlights: > Flow-injection amperometric glucose biosensors were fabricated using reduced graphene oxide/Nafion hybrids. > The electrochemical kinetics of biosensors were comprehensively investigated by analysing electron transfer rate, charge transfer resistance, and ion diffusion coefficient, respectively. > The biosensors exhibited the fast, sensitive, and stable amperometric responses in the flow injection system for detecting glucose. - Abstract: In this research, we demonstrated the fabrication of flow-injection amperometric glucose biosensors based on RGO/Nafion hybrids. The nanohybridization of the reduced graphene oxide (RGO) by Nafion provided the fast electron transfer (ET) for the sensitive amperometric biosensor platforms. The ET rate (k{sub s}) and the charge transfer resistance (R{sub CT}) of GOx-RGO/Nafion hybrids were evaluated to verify the accelerated ET. Moreover, hybrid biosensors revealed a quasi-reversible and surface controlled process, as confirmed by the low peak-to-peak ({Delta}E{sub p}) and linear relations between I{sub p} and scan rate ({nu}). Hybrid biosensors showed the fast response time of {approx}3 s, the sensitivity of 3.8 {mu}A mM{sup -1} cm{sup -2}, the limit of detection of 170 {mu}M, and the linear detection range of 2-20 mM for the flow-injection amperometric detection of glucose. Furthermore, interference effect of oxidizable species such as ascorbic acid (AA) and uric acid (UA) on the performance of hybrid biosensors was prevented at the operating potential of -0.20 V even under the flow injection mode. Therefore, the fast, sensitive, and stable amperometric responses of hybrid biosensors in the flow injection system make it highly suitable for automatically monitoring glucose.

  10. Mutiscale Modeling of Segregation in Granular Flows

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Jin [Iowa State Univ., Ames, IA (United States)

    2007-01-01

    force networks. This algorithm provides a possible route to constructing a continuum model with microstructural information supplied from it. Microstructures in gas fluidized beds are also analyzed using a hybrid method, which couples the discrete element method (DEM) for particle dynamics with the averaged two-fluid (TF) equations for the gas phase. Multi-particle contacts are found in defluidized regions away from bubbles in fluidized beds. The multi-particle contacts invalidate the binary-collision assumption made in the kinetic theory of granular flows for the defluidized regions. Large ratios of contact forces to drag forces are found in the same regions, which confirms the relative importance of contact forces in determining particle dynamics in the defluidized regions.

  11. Fluid and hybrid models for streamers

    Science.gov (United States)

    Bonaventura, Zdeněk

    2016-09-01

    Streamers are contracted ionizing waves with self-generated field enhancement that propagate into a low-ionized medium exposed to high electric field leaving filamentary trails of plasma behind. The widely used model to study streamer dynamics is based on drift-diffusion equations for electrons and ions, assuming local field approximation, coupled with Poisson's equation. For problems where presence of energetic electrons become important a fluid approach needs to be extended by a particle model, accompanied also with Monte Carlo Collision technique, that takes care of motion of these electrons. A combined fluid-particle approach is used to study an influence of surface emission processes on a fast-pulsed dielectric barrier discharge in air at atmospheric pressure. It is found that fluid-only model predicts substantially faster reignition dynamics compared to coupled fluid-particle model. Furthermore, a hybrid model can be created in which the population of electrons is divided in the energy space into two distinct groups: (1) low energy `bulk' electrons that are treated with fluid model, and (2) high energy `beam' electrons, followed as particles. The hybrid model is then capable not only to deal with streamer discharges in laboratory conditions, but also allows us to study electron acceleration in streamer zone of lighting leaders. There, the production of fast electrons from streamers is investigated, since these (runaway) electrons act as seeds for the relativistic runaway electron avalanche (RREA) mechanism, important for high-energy atmospheric physics phenomena. Results suggest that high energy electrons effect the streamer propagation, namely the velocity, the peak electric field, and thus also the production rate of runaway electrons. This work has been supported by the Czech Science Foundation research project 15-04023S.

  12. New hybrid model of proton exchange membrane fuel cell

    Institute of Scientific and Technical Information of China (English)

    WANG Rui-min; CAO Guang-yi; ZHU Xin-jian

    2007-01-01

    Model and simulation are good tools for design optimization of fuel cell systems. This paper proposes a new hybrid model of proton exchange membrane fuel cell (PEMFC). The hybrid model includes physical component and black-box component. The physical component represents the well-known part of PEMFC, while artificial neural network (ANN) component estimates the poorly known part of PEMFC. The ANN model can compensate the performance of the physical model. This hybrid model is implemented on Matlab/Simulink software. The hybrid model shows better accuracy than that of the physical model and ANN model. Simulation results suggest that the hybrid model can be used as a suitable and accurate model for PEMFC.

  13. Modeling of renewable hybrid energy sources

    Directory of Open Access Journals (Sweden)

    Dumitru Cristian Dragos

    2009-12-01

    Full Text Available Recent developments and trends in the electric power consumption indicate an increasing use of renewable energy. Renewable energy technologies offer the promise of clean, abundant energy gathered from self-renewing resources such as the sun, wind, earth and plants. Virtually all regions of the world have renewable resources of one type or another. By this point of view studies on renewable energies focuses more and more attention. The present paper intends to present different mathematical models related to different types of renewable energy sources such as: solar energy and wind energy. It is also presented the validation and adaptation of such models to hybrid systems working in geographical and meteorological conditions specific to central part of Transylvania region. The conclusions based on validation of such models are also shown.

  14. Hybrid2: The hybrid system simulation model, Version 1.0, user manual

    Energy Technology Data Exchange (ETDEWEB)

    Baring-Gould, E.I.

    1996-06-01

    In light of the large scale desire for energy in remote communities, especially in the developing world, the need for a detailed long term performance prediction model for hybrid power systems was seen. To meet these ends, engineers from the National Renewable Energy Laboratory (NREL) and the University of Massachusetts (UMass) have spent the last three years developing the Hybrid2 software. The Hybrid2 code provides a means to conduct long term, detailed simulations of the performance of a large array of hybrid power systems. This work acts as an introduction and users manual to the Hybrid2 software. The manual describes the Hybrid2 code, what is included with the software and instructs the user on the structure of the code. The manual also describes some of the major features of the Hybrid2 code as well as how to create projects and run hybrid system simulations. The Hybrid2 code test program is also discussed. Although every attempt has been made to make the Hybrid2 code easy to understand and use, this manual will allow many organizations to consider the long term advantages of using hybrid power systems instead of conventional petroleum based systems for remote power generation.

  15. A New Equation Solver for Modeling Turbulent Flow in Coupled Matrix-Conduit Flow Models.

    Science.gov (United States)

    Hubinger, Bernhard; Birk, Steffen; Hergarten, Stefan

    2016-07-01

    Karst aquifers represent dual flow systems consisting of a highly conductive conduit system embedded in a less permeable rock matrix. Hybrid models iteratively coupling both flow systems generally consume much time, especially because of the nonlinearity of turbulent conduit flow. To reduce calculation times compared to those of existing approaches, a new iterative equation solver for the conduit system is developed based on an approximated Newton-Raphson expression and a Gauß-Seidel or successive over-relaxation scheme with a single iteration step at the innermost level. It is implemented and tested in the research code CAVE but should be easily adaptable to similar models such as the Conduit Flow Process for MODFLOW-2005. It substantially reduces the computational effort as demonstrated by steady-state benchmark scenarios as well as by transient karst genesis simulations. Water balance errors are found to be acceptable in most of the test cases. However, the performance and accuracy may deteriorate under unfavorable conditions such as sudden, strong changes of the flow field at some stages of the karst genesis simulations.

  16. Glyphosate drift promotes changes in fitness and transgene gene flow in canola (Brassica napus) and hybrids

    Science.gov (United States)

    Londo, Jason P.; Bautista, Nonnatus S.; Sagers, Cynthia L.; Lee, E. Henry; Watrud, Lidia S.

    2010-01-01

    Background and Aims With the advent of transgenic crops, genetically modified, herbicide-resistant Brassica napus has become a model system for examining the risks and potential ecological consequences of escape of transgenes from cultivation into wild compatible species. Escaped transgenic feral B. napus and hybrids with compatible weedy species have been identified outside of agriculture and without the apparent selection for herbicide resistance. However, herbicide (glyphosate) exposure can extend beyond crop field boundaries, and a drift-level of herbicide could function as a selective agent contributing to increased persistence of transgenes in the environment. Methods The effects of a drift level (0·1 × the field application rate) of glyphosate herbicide and varied levels of plant competition were examined on plant fitness-associated traits and gene flow in a simulated field plot, common garden experiment. Plants included transgenic, glyphosate-resistant B. napus, its weedy ancestor B. rapa, and hybrid and advanced generations derived from them. Key Results The results of this experiment demonstrate reductions in reproductive fitness for non-transgenic genotypes and a contrasting increase in plant fitness for transgenic genotypes as a result of glyphosate-drift treatments. Results also suggest that a drift level of glyphosate spray may influence the movement of transgenes among transgenic crops and weeds and alter the processes of hybridization and introgression in non-agronomic habitats by impacting flowering phenology and pollen availability within the community. Conclusions The results of this study demonstrate the potential for persistence of glyphosate resistance transgenes in weedy plant communities due to the effect of glyphosate spray drift on plant fitness. Additionally, glyphosate drift has the potential to change the gene-flow dynamics between compatible transgenic crops and weeds, simultaneously reducing direct introgression into weedy species

  17. Hybrid Explicit Residual Distribution Scheme for Compressible Multiphase Flows

    Science.gov (United States)

    Bacigaluppi, Paola; Abgrall, Rémi; Kaman, Tulin

    2017-03-01

    The aim of this work is the development of a fully explicit scheme in the framework of time dependent hyperbolic problems with strong interacting discontinuities to retain high order accuracy in the context of compressible multiphase flows. A new methodology is presented to compute compressible two-fluid problems applied to the five equation reduced model given in Kapila et al. (Physics of Fluids 2001). With respect to other contributions in that area, we investigate a method that provides mesh convergence to the exact solutions, where the studied non-conservative system is associated to consistent jump relations. The adopted scheme consists of a coupled predictor-corrector scheme, which follows the concept of residual distributions in Ricchiuto and Abgrall (J. Comp. Physics 2010), with a classical Glimm’s scheme (J. Sci. Stat. Comp. 1982) applied to the area where a shock is occurring. This numerical methodology can be easily extended to unstructured meshes. Test cases on a perfect gas for a two phase compressible flow on a Riemann problem have verified that the approximation converges to its exact solution. The results have been compared with the pure Glimm’s scheme and the expected exact solution, finding a good overlap.

  18. C1-Continuous relative permeability and hybrid upwind discretization of three phase flow in porous media

    Science.gov (United States)

    Lee, S. H.; Efendiev, Y.

    2016-10-01

    Three-phase flow in a reservoir model has been a major challenge in simulation studies due to slowly convergent iterations in Newton solution of nonlinear transport equations. In this paper, we examine the numerical characteristics of three-phase flow and propose a consistent, "C1-continuous discretization" (to be clarified later) of transport equations that ensures a convergent solution in finite difference approximation. First, we examine three-phase relative permeabilities that are critical in solving nonlinear transport equations. Three-phase relative permeabilities are difficult to measure in the laboratory, and they are often correlated with two-phase relative permeabilities (e.g., oil-gas and water-oil systems). Numerical convergence of non-linear transport equations entails that three-phase relative permeability correlations are a monotonically increasing function of the phase saturation and the consistency conditions of phase transitions are satisfied. The Modified Stone's Method II and the Linear Interpolation Method for three-phase relative permeability are closely examined for their mathematical properties. We show that the Linear Interpolation Method yields C1-continuous three-phase relative permeabilities for smooth solutions if the two phase relative permeabilities are monotonic and continuously differentiable. In the second part of the paper, we extend a Hybrid-Upwinding (HU) method of two-phase flow (Lee, Efendiev and Tchelepi, ADWR 82 (2015) 27-38) to three phase flow. In the HU method, the phase flux is divided into two parts based on the driving forces (in general, it can be divided into several parts): viscous and buoyancy. The viscous-driven and buoyancy-driven fluxes are upwinded differently. Specifically, the viscous flux, which is always co-current, is upwinded based on the direction of the total velocity. The pure buoyancy-induced flux is shown to be only dependent on saturation distributions and counter-current. In three-phase flow, the

  19. Multiscale Modeling of Graphite/CNT/Epoxy Hybrid Composites

    Science.gov (United States)

    2016-03-09

    AFRL-AFOSR-VA-TR-2016-0154 Multiscale Modeling of Graphite/CNT/Epoxy Hybrid Composites Gregory Odegard MICHIGAN TECHNOLOGICAL UNIVERSITY Final Report...SUBTITLE Multiscale Modeling of Graphite/CNT/Epoxy Hybrid Composites 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA9550-13-1-0030 5c. PROGRAM ELEMENT NUMBER...DISTRIBUTION A: Distribution approved for public release. Final Report Multiscale Modeling of Graphite/CNT/Epoxy Hybrid Composites Grant FA9550-13-1-0030 PI

  20. Hybrid Models of Alternative Current Filter for Hvdc

    Directory of Open Access Journals (Sweden)

    Ufa Ruslan A.

    2017-01-01

    Full Text Available Based on a hybrid simulation concept of HVDC, the developed hybrid AC filter models, providing the sufficiently full and adequate modeling of all single continuous spectrum of quasi-steady-state and transient processes in the filter, are presented. The obtained results suggest that usage of the hybrid simulation approach is carried out a methodically accurate with guaranteed instrumental error solution of differential equation systems of mathematical models of HVDC.

  1. Modeling and Analysis of Hybrid Dynamic Systems Using Hybrid Petri Nets

    OpenAIRE

    GHOMRI Latefa; Alla, Hassane

    2008-01-01

    Some extensions of PNs permitting HDS modeling were presented here. The first models to be presented are continuous PNs. This model may be used for modeling either a continuous system or a discrete system. In this case, it is an approximation that is often satisfactory. Hybrid PNs combine in the same formalism a discrete PN and a continuous PN. Two hybrid PN models were considered in this chapter. The first, called the hybrid PN, has a deterministic behavior; this means that we can predict th...

  2. Hybrid Modeling Improves Health and Performance Monitoring

    Science.gov (United States)

    2007-01-01

    Scientific Monitoring Inc. was awarded a Phase I Small Business Innovation Research (SBIR) project by NASA's Dryden Flight Research Center to create a new, simplified health-monitoring approach for flight vehicles and flight equipment. The project developed a hybrid physical model concept that provided a structured approach to simplifying complex design models for use in health monitoring, allowing the output or performance of the equipment to be compared to what the design models predicted, so that deterioration or impending failure could be detected before there would be an impact on the equipment's operational capability. Based on the original modeling technology, Scientific Monitoring released I-Trend, a commercial health- and performance-monitoring software product named for its intelligent trending, diagnostics, and prognostics capabilities, as part of the company's complete ICEMS (Intelligent Condition-based Equipment Management System) suite of monitoring and advanced alerting software. I-Trend uses the hybrid physical model to better characterize the nature of health or performance alarms that result in "no fault found" false alarms. Additionally, the use of physical principles helps I-Trend identify problems sooner. I-Trend technology is currently in use in several commercial aviation programs, and the U.S. Air Force recently tapped Scientific Monitoring to develop next-generation engine health-management software for monitoring its fleet of jet engines. Scientific Monitoring has continued the original NASA work, this time under a Phase III SBIR contract with a joint NASA-Pratt & Whitney aviation security program on propulsion-controlled aircraft under missile-damaged aircraft conditions.

  3. Verification of Model of Calculation of Intra-Chamber Parameters In Hybrid Solid-Propellant Rocket Engines

    Directory of Open Access Journals (Sweden)

    Zhukov Ilya S.

    2016-01-01

    Full Text Available On the basis of obtained analytical estimate of characteristics of hybrid solid-propellant rocket engine verification of earlier developed physical and mathematical model of processes in a hybrid solid-propellant rocket engine for quasi-steady-state flow regime was performed. Comparative analysis of calculated and analytical data indicated satisfactory comparability of simulation results.

  4. Verification of Model of Calculation of Intra-Chamber Parameters In Hybrid Solid-Propellant Rocket Engines

    OpenAIRE

    Zhukov Ilya S.; Borisov Boris V.; Bondarchuk Sergey S.; Zhukov Alexander S.

    2016-01-01

    On the basis of obtained analytical estimate of characteristics of hybrid solid-propellant rocket engine verification of earlier developed physical and mathematical model of processes in a hybrid solid-propellant rocket engine for quasi-steady-state flow regime was performed. Comparative analysis of calculated and analytical data indicated satisfactory comparability of simulation results.

  5. Analysis of chromosome aberration data by hybrid-scale models

    Energy Technology Data Exchange (ETDEWEB)

    Indrawati, Iwiq [Research and Development on Radiation and Nuclear Biomedical Center, National Nuclear Energy Agency (Indonesia); Kumazawa, Shigeru [Nuclear Technology and Education Center, Japan Atomic Energy Research Institute, Honkomagome, Tokyo (Japan)

    2000-02-01

    This paper presents a new methodology for analyzing data of chromosome aberrations, which is useful to understand the characteristics of dose-response relationships and to construct the calibration curves for the biological dosimetry. The hybrid scale of linear and logarithmic scales brings a particular plotting paper, where the normal section paper, two types of semi-log papers and the log-log paper are continuously connected. The hybrid-hybrid plotting paper may contain nine kinds of linear relationships, and these are conveniently called hybrid scale models. One can systematically select the best-fit model among the nine models by among the conditions for a straight line of data points. A biological interpretation is possible with some hybrid-scale models. In this report, the hybrid scale models were applied to separately reported data on chromosome aberrations in human lymphocytes as well as on chromosome breaks in Tradescantia. The results proved that the proposed models fit the data better than the linear-quadratic model, despite the demerit of the increased number of model parameters. We showed that the hybrid-hybrid model (both variables of dose and response using the hybrid scale) provides the best-fit straight lines to be used as the reliable and readable calibration curves of chromosome aberrations. (author)

  6. Modelling supervisory controller for hybrid power systems

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, A.; Bindner, H.; Lundsager, P. [Risoe National Lab., Roskilde (Denmark); Jannerup, O. [Technical Univ. of Denmark, Dept. of Automation, Lyngby (Denmark)

    1999-03-01

    Supervisory controllers are important to achieve optimal operation of hybrid power systems. The performance and economics of such systems depend mainly on the control strategy for switching on/off components. The modular concept described in this paper is an attempt to design standard supervisory controllers that could be used in different applications, such as village power and telecommunication applications. This paper presents some basic aspects of modelling and design of modular supervisory controllers using the object-oriented modelling technique. The functional abstraction hierarchy technique is used to formulate the control requirements and identify the functions of the control system. The modular algorithm is generic and flexible enough to be used with any system configuration and several goals (different applications). The modularity includes accepting modification of system configuration and goals during operation with minor or no changes in the supervisory controller. (au)

  7. A Hybrid Teaching and Learning Model

    Science.gov (United States)

    Juhary, Jowati Binti

    This paper aims at analysing the needs for a specific teaching and learning model for the National Defence University of Malaysia (NDUM). The main argument is that whether there are differences between teaching and learning for academic component versus military component at the university. It is further argued that in order to achieve excellence, there should be one teaching and learning culture. Data were collected through interviews with military cadets. It is found that there are variations of teaching and learning strategies for academic courses, in comparison to a dominant teaching and learning style for military courses. Thus, in the interest of delivering quality education and training for students at the university, the paper argues that possibly a hybrid model for teaching and learning is fundamental in order to generate a one culture of academic and military excellence for the NDUM.

  8. Hybrid adaptive control of a dragonfly model

    Science.gov (United States)

    Couceiro, Micael S.; Ferreira, Nuno M. F.; Machado, J. A. Tenreiro

    2012-02-01

    Dragonflies show unique and superior flight performances than most of other insect species and birds. They are equipped with two pairs of independently controlled wings granting an unmatchable flying performance and robustness. In this paper, it is presented an adaptive scheme controlling a nonlinear model inspired in a dragonfly-like robot. It is proposed a hybrid adaptive ( HA) law for adjusting the parameters analyzing the tracking error. At the current stage of the project it is considered essential the development of computational simulation models based in the dynamics to test whether strategies or algorithms of control, parts of the system (such as different wing configurations, tail) as well as the complete system. The performance analysis proves the superiority of the HA law over the direct adaptive ( DA) method in terms of faster and improved tracking and parameter convergence.

  9. Hybrid CFD/CAA Modeling for Liftoff Acoustic Predictions

    Science.gov (United States)

    Strutzenberg, Louise L.; Liever, Peter A.

    2011-01-01

    This paper presents development efforts at the NASA Marshall Space flight Center to establish a hybrid Computational Fluid Dynamics and Computational Aero-Acoustics (CFD/CAA) simulation system for launch vehicle liftoff acoustics environment analysis. Acoustic prediction engineering tools based on empirical jet acoustic strength and directivity models or scaled historical measurements are of limited value in efforts to proactively design and optimize launch vehicles and launch facility configurations for liftoff acoustics. CFD based modeling approaches are now able to capture the important details of vehicle specific plume flow environment, identifY the noise generation sources, and allow assessment of the influence of launch pad geometric details and sound mitigation measures such as water injection. However, CFD methodologies are numerically too dissipative to accurately capture the propagation of the acoustic waves in the large CFD models. The hybrid CFD/CAA approach combines the high-fidelity CFD analysis capable of identifYing the acoustic sources with a fast and efficient Boundary Element Method (BEM) that accurately propagates the acoustic field from the source locations. The BEM approach was chosen for its ability to properly account for reflections and scattering of acoustic waves from launch pad structures. The paper will present an overview of the technology components of the CFD/CAA framework and discuss plans for demonstration and validation against test data.

  10. Hybrid Active and Passive Control of Vibratory Power Flow in Flexible Isolation System

    Directory of Open Access Journals (Sweden)

    Y.P. Xiong

    2000-01-01

    Full Text Available A hybrid active and passive vibration control strategy is developed to reduce the total power flows from machines, subject to multiple excitations, to supporting flexible structures. The dynamic interactions between machines, controllers, and receiving structures are studied. A force feedback control process governed by a proportional control law is adopted to produce active control forces to cancel the transmitted forces in the mounts. Computational simulations of a simple and a multiple dimensional hybrid vibration isolation system are performed to study the force transmissibility and the total power flows from vibration sources through active and passive isolators to the supporting structures. The investigation focuses on the effects of a hybrid control approach to the reduction of power flow transmissions and the influence of the dynamic characteristics of the control on power flow spectra. The hybrid control mechanism is synthesised from the power flow analysis. Conclusions and control strategies, well supported by numerical simulations, are deduced providing very useful guidelines for hybrid vibration isolation design.

  11. Online traffic flow model applying dynamic flow-density relation

    CERN Document Server

    Kim, Y

    2002-01-01

    This dissertation describes a new approach of the online traffic flow modelling based on the hydrodynamic traffic flow model and an online process to adapt the flow-density relation dynamically. The new modelling approach was tested based on the real traffic situations in various homogeneous motorway sections and a motorway section with ramps and gave encouraging simulation results. This work is composed of two parts: first the analysis of traffic flow characteristics and second the development of a new online traffic flow model applying these characteristics. For homogeneous motorway sections traffic flow is classified into six different traffic states with different characteristics. Delimitation criteria were developed to separate these states. The hysteresis phenomena were analysed during the transitions between these traffic states. The traffic states and the transitions are represented on a states diagram with the flow axis and the density axis. For motorway sections with ramps the complicated traffic fl...

  12. A hybrid model of mammalian cell cycle regulation.

    Directory of Open Access Journals (Sweden)

    Rajat Singhania

    Full Text Available The timing of DNA synthesis, mitosis and cell division is regulated by a complex network of biochemical reactions that control the activities of a family of cyclin-dependent kinases. The temporal dynamics of this reaction network is typically modeled by nonlinear differential equations describing the rates of the component reactions. This approach provides exquisite details about molecular regulatory processes but is hampered by the need to estimate realistic values for the many kinetic constants that determine the reaction rates. It is difficult to estimate these kinetic constants from available experimental data. To avoid this problem, modelers often resort to 'qualitative' modeling strategies, such as Boolean switching networks, but these models describe only the coarsest features of cell cycle regulation. In this paper we describe a hybrid approach that combines the best features of continuous differential equations and discrete Boolean networks. Cyclin abundances are tracked by piecewise linear differential equations for cyclin synthesis and degradation. Cyclin synthesis is regulated by transcription factors whose activities are represented by discrete variables (0 or 1 and likewise for the activities of the ubiquitin-ligating enzyme complexes that govern cyclin degradation. The discrete variables change according to a predetermined sequence, with the times between transitions determined in part by cyclin accumulation and degradation and as well by exponentially distributed random variables. The model is evaluated in terms of flow cytometry measurements of cyclin proteins in asynchronous populations of human cell lines. The few kinetic constants in the model are easily estimated from the experimental data. Using this hybrid approach, modelers can quickly create quantitatively accurate, computational models of protein regulatory networks in cells.

  13. A muscle model for hybrid muscle activation

    Directory of Open Access Journals (Sweden)

    Klauer Christian

    2015-09-01

    Full Text Available To develop model-based control strategies for Functional Electrical Stimulation (FES in order to support weak voluntary muscle contractions, a hybrid model for describing joint motions induced by concurrent voluntary-and FES induced muscle activation is proposed. It is based on a Hammerstein model – as commonly used in feedback controlled FES – and exemplarily applied to describe the shoulder abduction joint angle. Main component of a Hammerstein muscle model is usually a static input nonlinearity depending on the stimulation intensity. To additionally incorporate voluntary contributions, we extended the static non-linearity by a second input describing the intensity of the voluntary contribution that is estimated by electromyography (EMG measurements – even during active FES. An Artificial Neural Network (ANN is used to describe the static input non-linearity. The output of the ANN drives a second-order linear dynamical system that describes the combined muscle activation and joint angle dynamics. The tunable parameters are adapted to the individual subject by a system identification approach using previously recorded I/O-data. The model has been validated in two healthy subjects yielding RMS values for the joint angle error of 3.56° and 3.44°, respectively.

  14. Modelling of Natural and Hybrid Ventilation

    DEFF Research Database (Denmark)

    Heiselberg, Per

    be installed in existing buildings after a few modifications. In contrast, ventilation systems using only natural forces such as wind and thermal buoyancy need to be designed together with the building, since the building itself and its components are the elements that can reduce or increase air movement...... as well as influence the air content (dust, pollution etc.). Architects and engineers need to acquire qualitative and quantitative information about the interactions between building characteristics and natural ventilation in order to design buildings and systems consistent with a passive low......-energy approach. These lecture notes focus on modelling of natural and hybrid ventilation driven by thermal buoyancy, wind and/or mechanical driving forces for a single zone with one, two or several openings....

  15. Solution of wind integrated thermal generation system for environmental optimal power flow using hybrid algorithm

    Directory of Open Access Journals (Sweden)

    Ambarish Panda

    2016-09-01

    Full Text Available A new evolutionary hybrid algorithm (HA has been proposed in this work for environmental optimal power flow (EOPF problem. The EOPF problem has been formulated in a nonlinear constrained multi objective optimization framework. Considering the intermittency of available wind power a cost model of the wind and thermal generation system is developed. Suitably formed objective function considering the operational cost, cost of emission, real power loss and cost of installation of FACTS devices for maintaining a stable voltage in the system has been optimized with HA and compared with particle swarm optimization algorithm (PSOA to prove its effectiveness. All the simulations are carried out in MATLAB/SIMULINK environment taking IEEE30 bus as the test system.

  16. A hybrid DEM/CFD approach for solid-liquid flows

    Institute of Scientific and Technical Information of China (English)

    QIU Liu-chao; WU Chuan-yu

    2014-01-01

    A hybrid scheme coupling the discrete element method (DEM) with the computational fluid dynamics (CFD) is developed to model solid-liquid flows. Instead of solving the pressure Poisson equation, we use the compressible volume-averaged continuity and momentum equations with an isothermal stiff equation of state for the liquid phase in our CFD scheme. The motion of the solid phase is obtained by using the DEM, in which the particle-particle and particle-wall interactions are modelled by using the theoretical contact mechanics. The two phases are coupled through the Newton’s third law of motion. To verify the proposed method, the sedi-mentation of a single spherical particle is simulated in water, and the results are compared with experimental results reported in the literature. In addition, the drafting, kissing, and tumbling (DKT) phenomenon between two particles in a liquid is modelled and rea-sonable results are obtained. Finally, the numerical simulation of the density-driven segregation of a binary particulate suspension in-volving 10 000 particles in a closed container is conducted to show that the presented method is potentially powerful to simulate real particulate flows with large number of moving particles.

  17. Simulations of cavity flow noise and turbulent jet noise using a hybrid method

    Directory of Open Access Journals (Sweden)

    Hai-Yan Bie

    2016-02-01

    Full Text Available A hybrid method was explored to investigate the generation and near-field radiation of aerodynamic sound from an unsteady turbulent flow over a two-dimensional open cavity and three-dimensional jet flow. A two-dimensional cavity model was established to study the unsteady flow and radiated jet sound. It was revealed that the radiated sound that generated by the boundary layer separation and vortex impact cavity wall intervened in the front of the cavity, and an obvious interference phenomenon appeared. The far-field radiated sound generated by the cavity presented obvious directivity, and the sound pressure in the area located at 45°–135° interval was much higher. Then, the unsteady turbulence jet noises of the elliptical and rectangular nozzles were analyzed. It was revealed that the scale and intensity of the vortexes generated by the elliptical nozzle were larger than those by the rectangular nozzle. The jet noise of the elliptical nozzle is lower than that of the rectangular nozzle. Besides, the sound pressure distributions of the two nozzles presented obvious directivity. The sound pressure in the short-axis direction of the nozzle section was higher than that in the long-axis direction.

  18. Asymmetrical gene flow in a hybrid zone of Hawaiian Schiedea (Caryophyllaceae species with contrasting mating systems.

    Directory of Open Access Journals (Sweden)

    Lisa E Wallace

    Full Text Available Asymmetrical gene flow, which has frequently been documented in naturally occurring hybrid zones, can result from various genetic and demographic factors. Understanding these factors is important for determining the ecological conditions that permitted hybridization and the evolutionary potential inherent in hybrids. Here, we characterized morphological, nuclear, and chloroplast variation in a putative hybrid zone between Schiedea menziesii and S. salicaria, endemic Hawaiian species with contrasting breeding systems. Schiedea menziesii is hermaphroditic with moderate selfing; S. salicaria is gynodioecious and wind-pollinated, with partially selfing hermaphrodites and largely outcrossed females. We tested three hypotheses: 1 putative hybrids were derived from natural crosses between S. menziesii and S. salicaria, 2 gene flow via pollen is unidirectional from S. salicaria to S. menziesii and 3 in the hybrid zone, traits associated with wind pollination would be favored as a result of pollen-swamping by S. salicaria. Schiedea menziesii and S. salicaria have distinct morphologies and chloroplast genomes but are less differentiated at the nuclear loci. Hybrids are most similar to S. menziesii at chloroplast loci, exhibit nuclear allele frequencies in common with both parental species, and resemble S. salicaria in pollen production and pollen size, traits important to wind pollination. Additionally, unlike S. menziesii, the hybrid zone contains many females, suggesting that the nuclear gene responsible for male sterility in S. salicaria has been transferred to hybrid plants. Continued selection of nuclear genes in the hybrid zone may result in a population that resembles S. salicaria, but retains chloroplast lineage(s of S. menziesii.

  19. A hybrid Fermi-Ulam-bouncer model

    Energy Technology Data Exchange (ETDEWEB)

    Leonel, Edson D; McClintock, P V E [Department of Physics, Lancaster University, Lancaster LA1 4YB (United Kingdom)

    2005-01-28

    Some dynamical and chaotic properties are studied for a classical particle bouncing between two rigid walls, one of which is fixed and the other moves in time, in the presence of an external field. The system is a hybrid, behaving not as a purely Fermi-Ulam model, nor as a bouncer, but as a combination of the two. We consider two different kinds of motion of the moving wall: (i) periodic and (ii) random. The dynamics of the model is studied via a two-dimensional nonlinear area-preserving map. We confirm that, for periodic oscillations, our model recovers the well-known results of the Fermi-Ulam model in the limit of zero external field. For intense external fields, we establish the range of control parameters values within which invariant spanning curves are observed below the chaotic sea in the low energy domain. We characterize this chaotic low energy region in terms of Lyapunov exponents. We also show that the velocity of the particle, and hence also its kinetic energy, grow according to a power law when the wall moves randomly, yielding clear evidence of Fermi acceleration.

  20. Stochastic models for turbulent reacting flows

    Energy Technology Data Exchange (ETDEWEB)

    Kerstein, A. [Sandia National Laboratories, Livermore, CA (United States)

    1993-12-01

    The goal of this program is to develop and apply stochastic models of various processes occurring within turbulent reacting flows in order to identify the fundamental mechanisms governing these flows, to support experimental studies of these flows, and to further the development of comprehensive turbulent reacting flow models.

  1. An Object Detection Method Using Wavelet Optical Flow and Hybrid Linear-Nonlinear Classifier

    Directory of Open Access Journals (Sweden)

    Pengcheng Han

    2013-01-01

    Full Text Available We propose a new computational intelligence method using wavelet optical flow and hybrid linear-nonlinear classifier for object detection. With the existing optical flow methods, it is difficult to accurately estimate moving objects with diverse speeds. We propose a wavelet-based optical flow method, which uses wavelet decomposition in optical flow motion estimation. The algorithm can accurately detect moving objects with variable speeds in a scene. In addition, we use the hybrid linear-nonlinear classifier (HLNLC to classify moving objects and static background. HLNLC transforms a nonoptimal scalar variable into its likelihood ratio and uses a scalar quantity as the decision variable. This approach is appropriate for the classification of optical flow feature vectors with unequal variance matrices. The experimental results confirm that our proposed object detection method has an improved accuracy and computation efficiency over other state-of-the-art methods.

  2. A Hybrid Model of a Brushless DC Motor

    DEFF Research Database (Denmark)

    Bendtsen, Jan Dimon; Hansen, Hans Brink; Kallesøe, Carsten Skovmose

    2007-01-01

    This paper presents a novel approach to modeling of a Brush-Less Direct Current Motor (BLDCM) driven by an inverter using hybrid systems theory. Hybrid systems combine continuous and discrete (event-based) dynamics, which is exactly the case in an inverter-driven BLDCM. The model presented in thi...

  3. A hydrodynamic model for granular material flows including segregation effects

    Science.gov (United States)

    Gilberg, Dominik; Klar, Axel; Steiner, Konrad

    2017-06-01

    The simulation of granular flows including segregation effects in large industrial processes using particle methods is accurate, but very time-consuming. To overcome the long computation times a macroscopic model is a natural choice. Therefore, we couple a mixture theory based segregation model to a hydrodynamic model of Navier-Stokes-type, describing the flow behavior of the granular material. The granular flow model is a hybrid model derived from kinetic theory and a soil mechanical approach to cover the regime of fast dilute flow, as well as slow dense flow, where the density of the granular material is close to the maximum packing density. Originally, the segregation model has been formulated by Thornton and Gray for idealized avalanches. It is modified and adapted to be in the preferred form for the coupling. In the final coupled model the segregation process depends on the local state of the granular system. On the other hand, the granular system changes as differently mixed regions of the granular material differ i.e. in the packing density. For the modeling process the focus lies on dry granular material flows of two particle types differing only in size but can be easily extended to arbitrary granular mixtures of different particle size and density. To solve the coupled system a finite volume approach is used. To test the model the rotational mixing of small and large particles in a tumbler is simulated.

  4. Modeling of karst aquifer genesis: Influence of exchange flow

    Science.gov (United States)

    Bauer, Sebastian; Liedl, Rudolf; Sauter, Martin

    2003-10-01

    This paper presents a numerical model study simulating the early karstification of a single conduit embedded in a fissured system. A hybrid continuum-discrete pipe flow model (CAVE) is used for the modeling. The effects of coupling of the two flow systems on type and duration of early karstification are studied for different boundary conditions. Assuming fixed head boundaries at both ends of the conduit, coupling of the two flow systems via exchange flow between the conduit and the fissured system leads to an enhanced evolution of the conduit. This effect is valid over a wide range of initial conduit diameters, and karstification is accelerated by a factor of about 100 as compared to the case of no exchange flow. Parameter studies reveal the influence of the exchange coefficient and of the hydraulic conductivity of the fissured system on the development time for the conduit. In a second scenario the upstream fixed head boundary is switched to a fixed flow boundary at a specified flow rate during the evolution, limiting the amount of water draining toward the evolving conduit. Depending on the flow rate specified, conduit evolution may be slowed down or greatly impaired if exchange flow is considered.

  5. Hybrid Model for Cascading Outage in a Power System: A Numerical Study

    Science.gov (United States)

    Susuki, Yoshihiko; Takatsuji, Yu; Hikihara, Takashi

    Analysis of cascading outages in power systems is important for understanding why large blackouts emerge and how to prevent them. Cascading outages are complex dynamics of power systems, and one cause of them is the interaction between swing dynamics of synchronous machines and protection operation of relays and circuit breakers. This paper uses hybrid dynamical systems as a mathematical model for cascading outages caused by the interaction. Hybrid dynamical systems can combine families of flows describing swing dynamics with switching rules that are based on protection operation. This paper refers to data on a cascading outage in the September 2003 blackout in Italy and shows a hybrid dynamical system by which propagation of outages reproduced is consistent with the data. This result suggests that hybrid dynamical systems can provide an effective model for the analysis of cascading outages in power systems.

  6. Quantitative data analysis methods for bead-based DNA hybridization assays using generic flow cytometry platforms.

    Science.gov (United States)

    Corrie, S R; Lawrie, G A; Battersby, B J; Ford, K; Rühmann, A; Koehler, K; Sabath, D E; Trau, M

    2008-05-01

    Bead-based assays are in demand for rapid genomic and proteomic assays for both research and clinical purposes. Standard quantitative procedures addressing raw data quality and analysis are required to ensure the data are consistent and reproducible across laboratories independent of flow platform. Quantitative procedures have been introduced spanning raw histogram analysis through to absolute target quantitation. These included models developed to estimate the absolute number of sample molecules bound per bead (Langmuir isotherm), relative quantitative comparisons (two-sided t-tests), and statistical analyses investigating the quality of raw fluorescence data. The absolute target quantitation method revealed a concentration range (below probe saturation) of Cy5-labeled synthetic cytokeratin 19 (K19) RNA of c.a. 1 x 10(4) to 500 x 10(4) molecules/bead, with a binding constant of c.a. 1.6 nM. Raw hybridization frequency histograms were observed to be highly reproducible across 10 triplex assay replicates and only three assay replicates were required to distinguish overlapping peaks representing small sequence mismatches. This study provides a quantitative scheme for determining the absolute target concentration in nucleic acid hybridization reactions and the equilibrium binding constants for individual probe/target pairs. It is envisaged that such studies will form the basis of standard analytical procedures for bead-based cytometry assays to ensure reproducibility in inter- and intra-platform comparisons of data between laboratories. (c) 2008 International Society for Advancement of Cytometry.

  7. Hybrid Dynamical Systems Modeling, Stability, and Robustness

    CERN Document Server

    Goebel, Rafal; Teel, Andrew R

    2012-01-01

    Hybrid dynamical systems exhibit continuous and instantaneous changes, having features of continuous-time and discrete-time dynamical systems. Filled with a wealth of examples to illustrate concepts, this book presents a complete theory of robust asymptotic stability for hybrid dynamical systems that is applicable to the design of hybrid control algorithms--algorithms that feature logic, timers, or combinations of digital and analog components. With the tools of modern mathematical analysis, Hybrid Dynamical Systems unifies and generalizes earlier developments in continuous-time and discret

  8. Lumiproxy: A Hybrid Representation of Image-Based Models

    Institute of Scientific and Technical Information of China (English)

    Bin Sheng; Jian Zhu; En-Hua; Yan-Ci Zhang

    2009-01-01

    In this paper, we present a hybrid representation of image-based models combining the textured planes and the hierarchical points. Taking a set of depth images as input, our method starts from classifying input pixels into two categories, indicating the planar and non-planar surfaces respectively. For the planar surfaces, the geometric coefficients are reconstructed to form the uniformly sampled textures. For nearly planar surfaces, some textured planes, called lumiproxies,are constructed to represent the equivalent visual appearance. The Hough transform is used to find the positions of these textured planes, and optic flow measures are used to determine their textures. For remaining pixels corresponding to the non-planar geometries, the point primitive is applied, reorganized as the OBB-tree structure. Then, texture mapping and point splatting are employed together to render the novel views, with the hardware acceleration.

  9. Two dimensional cellular automaton for evacuation modeling: hybrid shuffle update

    CERN Document Server

    Arita, Chikashi; Appert-Rolland, Cécile

    2015-01-01

    We consider a cellular automaton model with a static floor field for pedestrians evacuating a room. After identifying some properties of real pedestrian flows, we discuss various update schemes, and we introduce a new one, the hybrid shuffle update. The properties specific to pedestrians are incorporated in variables associated to particles called phases, that represent their step cycles. The dynamics of the phases gives naturally raise to some friction, and allows to reproduce several features observed in experiments. We study in particular the crossover between a low- and a high-density regime that occurs when the density of pedestrian increases, the dependency of the outflow in the strength of the floor field, and the shape of the queue in front of the exit.

  10. Nafion/organically modified silicate hybrids membrane for vanadium redox flow battery

    Energy Technology Data Exchange (ETDEWEB)

    Teng, Xiangguo; Xi, Jingyu; Wu, Zenghua [Laboratory of Advanced Power Sources, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055 (China); Zhao, Yongtao; Qiu, Xinping [Laboratory of Advanced Power Sources, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055 (China); Key Laboratory of Organic Optoelectronics and Molecular, Tsinghua University, Beijing 100084 (China); Chen, Liquan [Laboratory of Advanced Power Sources, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055 (China); Laboratory for Solid State Ionics, Institute of Physics, Chinese Academy of Sciences, Beijing 100080 (China)

    2009-04-15

    In our previous work, Nafion/SiO{sub 2} hybrid membrane was prepared via in situ sol-gel method and used for the vanadium redox flow battery (VRB) system. The VRB with modified Nafion membrane has shown great advantages over that of the VRB with Nafion membrane. In this work, a novel Nafion/organically modified silicate (ORMOSIL) hybrids membrane was prepared via in situ sol-gel reactions for mixtures of tetraethoxysilane (TEOS) and diethoxydimethylsilane (DEDMS). The primary properties of Nafion/ORMOSIL hybrids membrane were measured and compared with Nafion and Nafion/SiO{sub 2} hybrid membrane. The permeability of vanadium ions through the Nafion/ORMOSIL hybrids membrane was measured using an UV-vis spectrophotometer. The results indicate that the hybrids membrane has a dramatic reduction in crossover of vanadium ions compared with Nafion membrane. Fourier transform infrared spectra (FT-IR) analysis of the hybrids membrane reveals that the ORMOSIL phase is well formed within hybrids membrane. Cell tests identify that the VRB with Nafion/ORMOSIL hybrids membrane presents a higher coulombic efficiency (CE) and energy efficiency (EE) compared with that of the VRB with Nafion and Nafion/SiO{sub 2} hybrid membrane. The highest EE of the VRB with Nafion/ORMOSIL hybrids membrane is 87.4% at 20 mA cm{sup -2}, while the EE of VRB with Nafion and the EE of VRB with Nafion/SiO{sub 2} hybrid membrane are only 73.8% and 79.9% at the same current density. The CE and EE of VRB with Nafion/ORMOSIL hybrids membrane is nearly no decay after cycling more than 100 times (60 mA cm{sup -2}), which proves the Nafion/ORMOSIL hybrids membrane possesses high chemical stability during long charge-discharge process under strong acid solutions. The self-discharge rate of the VRB with Nafion/ORMOSIL hybrids membrane is the slowest among the VRB with Nafion, Nafion/SiO{sub 2} and Nafion/ORMOSIL membrane, which further proves the excellent vanadium ions blocking characteristic of the prepared

  11. Adaptive control using a hybrid-neural model: application to a polymerisation reactor

    Directory of Open Access Journals (Sweden)

    Cubillos F.

    2001-01-01

    Full Text Available This work presents the use of a hybrid-neural model for predictive control of a plug flow polymerisation reactor. The hybrid-neural model (HNM is based on fundamental conservation laws associated with a neural network (NN used to model the uncertain parameters. By simulations, the performance of this approach was studied for a peroxide-initiated styrene tubular reactor. The HNM was synthesised for a CSTR reactor with a radial basis function neural net (RBFN used to estimate the reaction rates recursively. The adaptive HNM was incorporated in two model predictive control strategies, a direct synthesis scheme and an optimum steady state scheme. Tests for servo and regulator control showed excellent behaviour following different setpoint variations, and rejecting perturbations. The good generalisation and training capacities of hybrid models, associated with the simplicity and robustness characteristics of the MPC formulations, make an attractive combination for the control of a polymerisation reactor.

  12. Hybrid concept for the parameterization of the cascade of linear reservoirs for river flow routing using artificial neural networks

    Science.gov (United States)

    Úrek, Peter Å.; Szolgay, Jan; Čistý, Milan

    2010-05-01

    The lack of hydraulic and morphological data in many cases does not allow for using hydraulic methods for the simulation of the flood wave transformation between two river cross-sections. Under such conditions, as a rational alternative to hydraulic routing, hydrological routing models appear to be a suitable in the practice for flow forecasting. These models, beside numerical hydraulic models (and also models belonging to the class of non-storage routing methods), are in operational use in Slovakia. Usually, the morphological and hydraulic characteristics of the modelled river reaches and of the flow conditions are reflected in the routing model parameters, which are estimated by calibration and are kept constant for a given model during the simulation. In this contribution a new hybrid concept of model parameterization of the KLN model is presented. The KLN model is based on the state-space representation of the cascade of linear reservoirs. In the multilinear concept the travel-time parameter of the model was allowed to vary during simulation according to changing flow conditions. The model parameter changes in time according to an assumed relationship between the travel time of flood peaks and of selected characteristics of the flood wave. This relationship was estimated using artificial neural networks (ANN). In order to include all several possible effects, several setups of the ANN, which could possibly affect the model parameter, were tested. The ANN was trained to estimate the optimal values of model parameter and is used on- line during the routing procedure. The proposed hybrid concept is compared with other models used in practice.

  13. Synchronizability Analysis of Harmonious Unification Hybrid Preferential Model

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    The harmonious unification hybrid preferential model uses the dr ratio to adjust the proportion of deterministic preferential attachment and random preferential attachment, enriched the only deterministic preferential network model,

  14. Hybrid Information Retrieval Model For Web Images

    CERN Document Server

    Bassil, Youssef

    2012-01-01

    The Bing Bang of the Internet in the early 90's increased dramatically the number of images being distributed and shared over the web. As a result, image information retrieval systems were developed to index and retrieve image files spread over the Internet. Most of these systems are keyword-based which search for images based on their textual metadata; and thus, they are imprecise as it is vague to describe an image with a human language. Besides, there exist the content-based image retrieval systems which search for images based on their visual information. However, content-based type systems are still immature and not that effective as they suffer from low retrieval recall/precision rate. This paper proposes a new hybrid image information retrieval model for indexing and retrieving web images published in HTML documents. The distinguishing mark of the proposed model is that it is based on both graphical content and textual metadata. The graphical content is denoted by color features and color histogram of ...

  15. Battery Sizing for Plug-in Hybrid Electric Vehicles in Beijing: A TCO Model Based Analysis

    OpenAIRE

    Cong Hou; Hewu Wang; Minggao Ouyang

    2014-01-01

    This paper proposes a total cost of ownership (TCO) model for battery sizing of plug-in hybrid electric vehicles (PHEVs). The proposed systematic TCO model innovatively integrates the Beijing driving database and optimal PHEV energy management strategies developed earlier. The TCO, including battery, fuel, electricity, and salvage costs, is calculated in yearly cash flows. The salvage cost, based on battery degradation model, is proposed for the first time. The results show that the optimal b...

  16. Hybrid supply chain model for material requirement planning under financial constraints: A case study

    Science.gov (United States)

    Curci, Vita; Dassisti, Michele; Josefa, Mula Bru; Manuel, Díaz Madroñero

    2014-10-01

    Supply chain model (SCM) are potentially capable to integrate different aspects in supporting decision making for enterprise management tasks. The aim of the paper is to propose an hybrid mathematical programming model for optimization of production requirements resources planning. The preliminary model was conceived bottom-up from a real industrial case analysed oriented to maximize cash flow. Despite the intense computational effort required to converge to a solution, optimisation done brought good result in solving the objective function.

  17. Battery Sizing for Plug-in Hybrid Electric Vehicles in Beijing: A TCO Model Based Analysis

    OpenAIRE

    Cong Hou; Hewu Wang; Minggao Ouyang

    2014-01-01

    This paper proposes a total cost of ownership (TCO) model for battery sizing of plug-in hybrid electric vehicles (PHEVs). The proposed systematic TCO model innovatively integrates the Beijing driving database and optimal PHEV energy management strategies developed earlier. The TCO, including battery, fuel, electricity, and salvage costs, is calculated in yearly cash flows. The salvage cost, based on battery degradation model, is proposed for the first time. The results show that the optimal b...

  18. Simulation-optimization framework for multi-site multi-season hybrid stochastic streamflow modeling

    Science.gov (United States)

    Srivastav, Roshan; Srinivasan, K.; Sudheer, K. P.

    2016-11-01

    A simulation-optimization (S-O) framework is developed for the hybrid stochastic modeling of multi-site multi-season streamflows. The multi-objective optimization model formulated is the driver and the multi-site, multi-season hybrid matched block bootstrap model (MHMABB) is the simulation engine within this framework. The multi-site multi-season simulation model is the extension of the existing single-site multi-season simulation model. A robust and efficient evolutionary search based technique, namely, non-dominated sorting based genetic algorithm (NSGA - II) is employed as the solution technique for the multi-objective optimization within the S-O framework. The objective functions employed are related to the preservation of the multi-site critical deficit run sum and the constraints introduced are concerned with the hybrid model parameter space, and the preservation of certain statistics (such as inter-annual dependence and/or skewness of aggregated annual flows). The efficacy of the proposed S-O framework is brought out through a case example from the Colorado River basin. The proposed multi-site multi-season model AMHMABB (whose parameters are obtained from the proposed S-O framework) preserves the temporal as well as the spatial statistics of the historical flows. Also, the other multi-site deficit run characteristics namely, the number of runs, the maximum run length, the mean run sum and the mean run length are well preserved by the AMHMABB model. Overall, the proposed AMHMABB model is able to show better streamflow modeling performance when compared with the simulation based SMHMABB model, plausibly due to the significant role played by: (i) the objective functions related to the preservation of multi-site critical deficit run sum; (ii) the huge hybrid model parameter space available for the evolutionary search and (iii) the constraint on the preservation of the inter-annual dependence. Split-sample validation results indicate that the AMHMABB model is

  19. Estimating hybrid choice models with the new version of Biogeme

    OpenAIRE

    Bierlaire, Michel

    2010-01-01

    Hybrid choice models integrate many types of discrete choice modeling methods, including latent classes and latent variables, in order to capture concepts such as perceptions, attitudes, preferences, and motivatio (Ben-Akiva et al., 2002). Although they provide an excellent framework to capture complex behavior patterns, their use in applications remains rare in the literature due to the difficulty of estimating the models. In this talk, we provide a short introduction to hybrid choice model...

  20. Literature Review on the Hybrid Flow Shop Scheduling Problem with Unrelated Parallel Machines

    Directory of Open Access Journals (Sweden)

    Eliana Marcela Peña Tibaduiza

    2017-01-01

    Full Text Available Context: The flow shop hybrid problem with unrelated parallel machines has been less studied in the academia compared to the flow shop hybrid with identical processors. For this reason, there are few reports about the kind of application of this problem in industries. Method: A literature review of the state of the art on flow-shop scheduling problem was conducted by collecting and analyzing academic papers on several scientific databases. For this aim, a search query was constructed using keywords defining the problem and checking the inclusion of unrelated parallel machines in such definition; as a result, 50 papers were finally selected for this study. Results: A classification of the problem according to the characteristics of the production system was performed, also solution methods, constraints and objective functions commonly used are presented. Conclusions: An increasing trend is observed in studies of flow shop with multiple stages, but few are based on industry case-studies.

  1. Fabrication of Nanopillar Micropatterns by Hybrid Mask Lithography for Surface-Directed Liquid Flow

    Directory of Open Access Journals (Sweden)

    Fumihito Arai

    2013-06-01

    Full Text Available This paper presents a novel method for fabricating nanopillar micropatterns for surface-directed liquid flows. It employs hybrid mask lithography, which uses a mask consisting of a combination of a photoresist and nanoparticles in the photolithography process. The nanopillar density is controlled by varying the weight ratio of nanoparticles in the composite mask. Hybrid mask lithography was used to fabricate a surface-directed liquid flow. The effect of the surface-directed liquid flow, which was formed by the air-liquid interface due to nanopillar micropatterns, was evaluated, and the results show that the oscillation of microparticles, when the micro-tool was actuated, was dramatically reduced by using a surface-directed liquid flow. Moreover, the target particle was manipulated individually without non-oscillating ambient particles.

  2. Hybrids of Gibbs Point Process Models and Their Implementation

    Directory of Open Access Journals (Sweden)

    Adrian Baddeley

    2013-11-01

    Full Text Available We describe a simple way to construct new statistical models for spatial point pattern data. Taking two or more existing models (finite Gibbs spatial point processes we multiply the probability densities together and renormalise to obtain a new probability density. We call the resulting model a hybrid. We discuss stochastic properties of hybrids, their statistical implications, statistical inference, computational strategies and software implementation in the R package spatstat. Hybrids are particularly useful for constructing models which exhibit interaction at different spatial scales. The methods are demonstrated on a real data set on human social interaction. Software and data are provided.

  3. Interspecific hybrids of dwarf hamsters and Phasianidae birds as animal models for studying the genetic and developmental basis of hybrid incompatibility.

    Science.gov (United States)

    Ishishita, Satoshi; Matsuda, Yoichi

    2016-10-13

    Hybrid incompatibility is important in speciation as it prevents gene flow between closely related populations. Reduced fitness from hybrid incompatibility may also reinforce prezygotic reproductive isolation between sympatric populations. However, the genetic and developmental basis of hybrid incompatibility in higher vertebrates remains poorly understood. Mammals and birds, both amniotes, have similar developmental processes, but marked differences in development such as the XY/ZW sex determination systems and the presence or absence of genomic imprinting. Here, we review the sterile phenotype of hybrids between the Phodopus dwarf hamsters P. campbelli and P. sungorus, and the inviable phenotype of hybrids between two birds of the family Phasianidae, chicken (Gallus gallus domesticus) and Japanese quail (Coturnix japonica). We propose hypotheses for developmental defects that are associated with these hybrid incompatibilities. In addition, we discuss the genetic and developmental basis for these defects in conjunction with recent findings from mouse and avian models of genetics, reproductive biology and genomics. We suggest that these hybrids are ideal animal models for studying the genetic and developmental basis of hybrid incompatibility in amniotes.

  4. Simulation of hybrid vehicle propulsion with an advanced battery model

    Energy Technology Data Exchange (ETDEWEB)

    Nallabolu, S.; Kostetzer, L.; Rudnyi, E. [CADFEM GmbH, Grafing (Germany); Geppert, M.; Quinger, D. [LION Smart GmbH, Frieding (Germany)

    2011-07-01

    In the recent years there has been observed an increasing concern about global warming and greenhouse gas emissions. In addition to the environmental issues the predicted scarcity of oil supplies and the dramatic increase in oil price puts new demands on vehicle design. As a result energy efficiency and reduced emission have become one of main selling point for automobiles. Hybrid electric vehicles (HEV) have therefore become an interesting technology for the governments and automotive industries. HEV are more complicated compared to conventional vehicles due to the fact that these vehicles contain more electrical components such as electric machines, power electronics, electronic continuously variable transmissions (CVT), and embedded powertrain controllers. Advanced energy storage devices and energy converters, such as Li-ion batteries, ultracapacitors, and fuel cells are also considered. A detailed vehicle model used for an energy flow analysis and vehicle performance simulation is necessary. Computer simulation is indispensible to facilitate the examination of the vast hybrid electric vehicle design space with the aim to predict the vehicle performance over driving profiles, estimate fuel consumption and the pollution emissions. There are various types of mathematical models and simulators available to perform system simulation of vehicle propulsion. One of the standard methods to model the complete vehicle powertrain is ''backward quasistatic modeling''. In this method vehicle subsystems are defined based on experiential models in the form of look-up tables and efficiency maps. The interaction between adjacent subsystems of the vehicle is defined through the amount of power flow. Modeling the vehicle subsystems like motor, engine, gearbox and battery is under this technique is based on block diagrams. The vehicle model is applied in two case studies to evaluate the vehicle performance and fuel consumption. In the first case study the affect

  5. Modeling of plasma and thermo-fluid transport in hybrid welding

    Science.gov (United States)

    Ribic, Brandon D.

    Hybrid welding combines a laser beam and electrical arc in order to join metals within a single pass at welding speeds on the order of 1 m min -1. Neither autonomous laser nor arc welding can achieve the weld geometry obtained from hybrid welding for the same process parameters. Depending upon the process parameters, hybrid weld depth and width can each be on the order of 5 mm. The ability to produce a wide weld bead increases gap tolerance for square joints which can reduce machining costs and joint fitting difficulty. The weld geometry and fast welding speed of hybrid welding make it a good choice for application in ship, pipeline, and aerospace welding. Heat transfer and fluid flow influence weld metal mixing, cooling rates, and weld bead geometry. Cooling rate affects weld microstructure and subsequent weld mechanical properties. Fluid flow and heat transfer in the liquid weld pool are affected by laser and arc energy absorption. The laser and arc generate plasmas which can influence arc and laser energy absorption. Metal vapors introduced from the keyhole, a vapor filled cavity formed near the laser focal point, influence arc plasma light emission and energy absorption. However, hybrid welding plasma properties near the opening of the keyhole are not known nor is the influence of arc power and heat source separation understood. A sound understanding of these processes is important to consistently achieving sound weldments. By varying process parameters during welding, it is possible to better understand their influence on temperature profiles, weld metal mixing, cooling rates, and plasma properties. The current literature has shown that important process parameters for hybrid welding include: arc power, laser power, and heat source separation distance. However, their influence on weld temperatures, fluid flow, cooling rates, and plasma properties are not well understood. Modeling has shown to be a successful means of better understanding the influence of

  6. Modeling and Simulation of Metallurgical Process Based on Hybrid Petri Net

    Science.gov (United States)

    Ren, Yujuan; Bao, Hong

    2016-11-01

    In order to achieve the goals of energy saving and emission reduction of iron and steel enterprises, an increasing number of modeling and simulation technologies are used to research and analyse metallurgical production process. In this paper, the basic principle of Hybrid Petri net is used to model and analyse the Metallurgical Process. Firstly, the definition of Hybrid Petri Net System of Metallurgical Process (MPHPNS) and its modeling theory are proposed. Secondly, the model of MPHPNS based on material flow is constructed. The dynamic flow of materials and the real-time change of each technological state in metallurgical process are simulated vividly by using this model. The simulation process can implement interaction between the continuous event dynamic system and the discrete event dynamic system at the same level, and play a positive role in the production decision.

  7. An atomistic-continuum hybrid simulation of fluid flows over superhydrophobic surfaces

    OpenAIRE

    Li, Qiang; He, Guo-Wei

    2009-01-01

    Recent experiments have found that slip length could be as large as on the order of 1 μm for fluid flows over superhydrophobic surfaces. Superhydrophobic surfaces can be achieved by patterning roughness on hydrophobic surfaces. In the present paper, an atomistic-continuum hybrid approach is developed to simulate the Couette flows over superhydrophobic surfaces, in which a molecular dynamics simulation is used in a small region near the superhydrophobic surface where the continuum assumption i...

  8. Tandem cylinder flow and noise predictions using a hybrid RANS/LES approach

    OpenAIRE

    M. Weinmann; Sandberg, R.D.; Doolan, C.

    2014-01-01

    The performance of a novel hybrid RANS/LES methodology for accurate flow and noise predictions of the NASA Tandem Cylinder Experiment is investigated. The proposed approach, the modified Flow Simulation Methodology (FSM), is based on scaling the turbulence viscosity and the turbulence kinetic energy dissipation rate with a damping function. This damping function consists of three individual components, a function based on the Kolmogorov length-scale ensuring correct behaviour in the direct nu...

  9. Controlled Flow Distortion in an Offset Diffuser using Hybrid Trapped Vorticity

    Science.gov (United States)

    Burrows, T. J.; Vukasinovic, B.; Glezer, A.

    2016-11-01

    Trapped vorticity concentration engendered by deliberate modification of the internal surface of an offset diffuser is coupled with a spanwise array of surface-integrated fluidic-oscillating jets for hybrid flow control of streamwise vorticity concentrations that dominate the base flow and give rise to flow distortions at the engine inlet. The local and global characteristics of the diffuser flow in the absence and presence of the actuation are investigated at Mach numbers up to M = 0.7, using surface oil-flow visualization and pressure distributions, and particle image velocimetry. It is shown that two sources of streamwise vorticity dominate the base flow distortion, namely, corner and a central pair of counter-rotating vortices. The present investigations demonstrate that the actuation affects the topology, strength and scale of the trapped vorticity and thereby its coupling to and interaction with the counter rotating streamwise vortices, where the central vortex pair becomes fully suppressed. As a result, the actuation significantly alters the evolution of the flow within the diffuser, and leads to significant suppression of pressure distortion at the engine inlet (by about 80%) at actuation level that is less than 0.7% of the diffuser's mass flow rate. These findings indicate the utility of hybrid trapped vorticity actuation for mitigating adverse effects of secondary vorticity concentrations formed by local separation and corner flows. Supported by ONR.

  10. ROBUST-HYBRID GENETIC ALGORITHM FOR A FLOW-SHOP SCHEDULING PROBLEM (A Case Study at PT FSCM Manufacturing Indonesia

    Directory of Open Access Journals (Sweden)

    Johan Soewanda

    2007-01-01

    Full Text Available This paper discusses the application of Robust Hybrid Genetic Algorithm to solve a flow-shop scheduling problem. The proposed algorithm attempted to reach minimum makespan. PT. FSCM Manufacturing Indonesia Plant 4's case was used as a test case to evaluate the performance of the proposed algorithm. The proposed algorithm was compared to Ant Colony, Genetic-Tabu, Hybrid Genetic Algorithm, and the company's algorithm. We found that Robust Hybrid Genetic produces statistically better result than the company's, but the same as Ant Colony, Genetic-Tabu, and Hybrid Genetic. In addition, Robust Hybrid Genetic Algorithm required less computational time than Hybrid Genetic Algorithm

  11. Computational modelling of SCC flow

    DEFF Research Database (Denmark)

    Geiker, Mette Rica; Thrane, Lars Nyholm; Szabo, Peter

    2005-01-01

    To benefit from the full potential of self-compacting concrete (SCC) prediction tools are needed for the form filling of SCC. Such tools should take into account the properties of the concrete, the shape and size of the structural element, the position of rebars, and the casting technique. Exampl...... of computational models for the time dependent flow behavior are given, and advantages and disadvantages of discrete particle and single fluid models are briefly described.......To benefit from the full potential of self-compacting concrete (SCC) prediction tools are needed for the form filling of SCC. Such tools should take into account the properties of the concrete, the shape and size of the structural element, the position of rebars, and the casting technique. Examples...

  12. A Hybrid Nodal Method for Time-Dependent Incompressible Flow in Two-Dimensional Arbitrary Geometries

    Energy Technology Data Exchange (ETDEWEB)

    Toreja, A J; Uddin, R

    2002-10-21

    A hybrid nodal-integral/finite-analytic method (NI-FAM) is developed for time-dependent, incompressible flow in two-dimensional arbitrary geometries. In this hybrid approach, the computational domain is divided into parallelepiped and wedge-shaped space-time nodes (cells). The conventional nodal integral method (NIM) is applied to the interfaces between adjacent parallelepiped nodes (cells), while a finite analytic approach is applied to the interfaces between parallelepiped and wedge-shaped nodes (cells). In this paper, the hybrid method is formally developed and an application of the NI-FAM to fluid flow in an enclosed cavity is presented. Results are compared with those obtained using a commercial computational fluid dynamics code.

  13. Hybrid static-runtime information flow and declassification enforcement

    NARCIS (Netherlands)

    Rocha, Bruno P.S.; Conti, Mauro; Etalle, Sandro; Crispo, Bruno

    There are different paradigms for enforcing information flow and declassification policies. These approaches can be divided into static analyzers and runtime enforcers. Each class has its own strengths and weaknesses, each being able to enforce a different set of policies. In this paper, we

  14. Hybrid static-runtime information flow and declassification enforcement

    NARCIS (Netherlands)

    Rocha, Bruno P.S.; Conti, Mauro; Etalle, Sandro; Crispo, Bruno

    2013-01-01

    There are different paradigms for enforcing information flow and declassification policies. These approaches can be divided into static analyzers and runtime enforcers. Each class has its own strengths and weaknesses, each being able to enforce a different set of policies. In this paper, we introduc

  15. Up-Scaled Supercritical Flow Synthesis of Hybrid Materials

    DEFF Research Database (Denmark)

    Hellstern, Henrik Christian; Becker, Jacob; Hald, Peter

    A new, up-scaled supercritical flow synthesis apparatus is currently under construction in Aarhus. A module based system allows for a range of parameter studies with improved parameter control. The dual-reactor setup enables both single phase and core-shell nanoparticle synthesis, and the large...

  16. Hybrid nonlinear model of the angular vestibulo-ocular reflex.

    Science.gov (United States)

    Ranjbaran, Mina; Galiana, Henrietta L

    2013-01-01

    A hybrid nonlinear bilateral model for the horizontal angular vestibulo-ocular reflex (AVOR) is presented in this paper. The model relies on known interconnections between saccadic burst circuits in the brainstem and ocular premotor areas in the vestibular nuclei during slow and fast phase intervals. A viable switching strategy for the timing of nystagmus events is proposed. Simulations show that this hybrid model replicates AVOR nystagmus patterns that are observed in experimentally recorded data.

  17. Distributed AC power flow method for AC and AC-DC hybrid ...

    African Journals Online (AJOL)

    DR OKE

    Hence the distribution power flow models to be developed were supposed to include both mesh and DG modeling (Sedghi ... Newton-Raphson based power flow methods, namely Newton ... Equation (1) is the mathematical realization of this ...

  18. Design, analysis and modeling of a novel hybrid powertrain system based on hybridized automated manual transmission

    Science.gov (United States)

    Wu, Guang; Dong, Zuomin

    2017-09-01

    Hybrid electric vehicles are widely accepted as a promising short to mid-term technical solution due to noticeably improved efficiency and lower emissions at competitive costs. In recent years, various hybrid powertrain systems were proposed and implemented based on different types of conventional transmission. Power-split system, including Toyota Hybrid System and Ford Hybrid System, are well-known examples. However, their relatively low torque capacity, and the drive of alternative and more advanced designs encouraged other innovative hybrid system designs. In this work, a new type of hybrid powertrain system based hybridized automated manual transmission (HAMT) is proposed. By using the concept of torque gap filler (TGF), this new hybrid powertrain type has the potential to overcome issue of torque gap during gearshift. The HAMT design (patent pending) is described in details, from gear layout and design of gear ratios (EV mode and HEV mode) to torque paths at different gears. As an analytical tool, mutli-body model of vehicle equipped with this HAMT was built to analyze powertrain dynamics at various steady and transient modes. A gearshift was decomposed and analyzed based basic modes. Furthermore, a Simulink-SimDriveline hybrid vehicle model was built for the new transmission, driveline and vehicle modular. Control strategy has also been built to harmonically coordinate different powertrain components to realize TGF function. A vehicle launch simulation test has been completed under 30% of accelerator pedal position to reveal details during gearshift. Simulation results showed that this HAMT can eliminate most torque gap that has been persistent issue of traditional AMT, improving both drivability and performance. This work demonstrated a new type of transmission that features high torque capacity, high efficiency and improved drivability.

  19. Bond graph model-based fault diagnosis of hybrid systems

    CERN Document Server

    Borutzky, Wolfgang

    2015-01-01

    This book presents a bond graph model-based approach to fault diagnosis in mechatronic systems appropriately represented by a hybrid model. The book begins by giving a survey of the fundamentals of fault diagnosis and failure prognosis, then recalls state-of-art developments referring to latest publications, and goes on to discuss various bond graph representations of hybrid system models, equations formulation for switched systems, and simulation of their dynamic behavior. The structured text: • focuses on bond graph model-based fault detection and isolation in hybrid systems; • addresses isolation of multiple parametric faults in hybrid systems; • considers system mode identification; • provides a number of elaborated case studies that consider fault scenarios for switched power electronic systems commonly used in a variety of applications; and • indicates that bond graph modelling can also be used for failure prognosis. In order to facilitate the understanding of fault diagnosis and the presented...

  20. Modeling Hybridization Kinetics of Gene Probes in a DNA Biochip Using FEMLAB

    Directory of Open Access Journals (Sweden)

    Ahsan Munir

    2017-05-01

    Full Text Available Microfluidic DNA biochips capable of detecting specific DNA sequences are useful in medical diagnostics, drug discovery, food safety monitoring and agriculture. They are used as miniaturized platforms for analysis of nucleic acids-based biomarkers. Binding kinetics between immobilized single stranded DNA on the surface and its complementary strand present in the sample are of interest. To achieve optimal sensitivity with minimum sample size and rapid hybridization, ability to predict the kinetics of hybridization based on the thermodynamic characteristics of the probe is crucial. In this study, a computer aided numerical model for the design and optimization of a flow-through biochip was developed using a finite element technique packaged software tool (FEMLAB; package included in COMSOL Multiphysics to simulate the transport of DNA through a microfluidic chamber to the reaction surface. The model accounts for fluid flow, convection and diffusion in the channel and on the reaction surface. Concentration, association rate constant, dissociation rate constant, recirculation flow rate, and temperature were key parameters affecting the rate of hybridization. The model predicted the kinetic profile and signal intensities of eighteen 20-mer probes targeting vancomycin resistance genes (VRGs. Predicted signal intensities and hybridization kinetics strongly correlated with experimental data in the biochip (R2 = 0.8131.

  1. Parallel genetic algorithms with migration for the hybrid flow shop scheduling problem

    Directory of Open Access Journals (Sweden)

    K. Belkadi

    2006-01-01

    Full Text Available This paper addresses scheduling problems in hybrid flow shop-like systems with a migration parallel genetic algorithm (PGA_MIG. This parallel genetic algorithm model allows genetic diversity by the application of selection and reproduction mechanisms nearer to nature. The space structure of the population is modified by dividing it into disjoined subpopulations. From time to time, individuals are exchanged between the different subpopulations (migration. Influence of parameters and dedicated strategies are studied. These parameters are the number of independent subpopulations, the interconnection topology between subpopulations, the choice/replacement strategy of the migrant individuals, and the migration frequency. A comparison between the sequential and parallel version of genetic algorithm (GA is provided. This comparison relates to the quality of the solution and the execution time of the two versions. The efficiency of the parallel model highly depends on the parameters and especially on the migration frequency. In the same way this parallel model gives a significant improvement of computational time if it is implemented on a parallel architecture which offers an acceptable number of processors (as many processors as subpopulations.

  2. A hybrid model of a subminiature helicopter in horizontal turn

    Institute of Scientific and Technical Information of China (English)

    Chen Li; Gong Zhenbang; Liu Liang

    2007-01-01

    A hybrid model of a subminiature helicopter in horizontal turn is presented. This model is based on a mechanism model and its compensated neural network (NN). First, the nonlinear dynamics of a subminiature helicopter is established. Through the linearization of the nonlinear dynamics on a trim point, the linear time-invariant mechanism model in horizontal turn is obtained. Then a diagonal recursive neural network is used to compensate the model error between the mechanism model and the nonlinear model, thus the hybrid model of a subminiature helicopter in horizontal turn is achieved. Simulation results show that the hybrid model has higher accuracy than the mechanism model and the obtained compensated-NN has good generalization capability.

  3. Experimental Study of the Swirling Oxidizer Flow in HTPB/N2O Hybrid Rocket Motor

    Directory of Open Access Journals (Sweden)

    Mohammad Mahdi Heydari

    2017-01-01

    Full Text Available Effects of swirling oxidizer flow on the performance of a HTPB/N2O Hybrid rocket motor were studied. A hybrid propulsion laboratory has been developed, to characterize internal ballistics characteristics of swirl flow hybrid motors and to define the operating parameters, like fuel regression rate, specific impulse, and characteristics velocity and combustion efficiency. Primitive variables, like pressure, thrust, temperature, and the oxidizer mass flow rate, were logged. A modular motor with 70 mm outer diameter and variable chamber length is designed for experimental analysis. The injector module has four tangential injectors and one axial injector. Liquid nitrous oxide (N2O as an oxidizer is injected at the head of combustion chamber into the motor. The feed system uses pressurized air as the pressurant. Two sets of tests have been performed. Some tests with axial and tangential oxidizer injection and a test with axial oxidizer injection were done. The test results show that the fuel grain regression rate has been improved by applying tangential oxidizer injection at the head of the motor. Besides, it was seen that combustion efficiency of motors with the swirl flow was about 10 percent more than motors with axial flow.

  4. Cellular automata models for synchronized traffic flow

    CERN Document Server

    Jiang Rui

    2003-01-01

    This paper presents a new cellular automata model for describing synchronized traffic flow. The fundamental diagrams, the spacetime plots and the 1 min average data have been analysed in detail. It is shown that the model can describe the outflow from the jams, the light synchronized flow as well as heavy synchronized flow with average speed greater than approximately 24 km h sup - sup 1. As for the synchronized flow with speed lower than 24 km h sup - sup 1 , it is unstable and will evolve into the coexistence of jams, free flow and light synchronized flow. This is consistent with the empirical findings (Kerner B S 1998 Phys. Rev. Lett. 81 3797).

  5. N-S/DSMC hybrid simulation of hypersonic flow over blunt body including wakes

    Science.gov (United States)

    Li, Zhonghua; Li, Zhihui; Li, Haiyan; Yang, Yanguang; Jiang, Xinyu

    2014-12-01

    A hybrid N-S/DSMC method is presented and applied to solve the three-dimensional hypersonic transitional flows by employing the MPC (modular Particle-Continuum) technique based on the N-S and the DSMC method. A sub-relax technique is adopted to deal with information transfer between the N-S and the DSMC. The hypersonic flows over a 70-deg spherically blunted cone under different Kn numbers are simulated using the CFD, DSMC and hybrid N-S/DSMC method. The present computations are found in good agreement with DSMC and experimental results. The present method provides an efficient way to predict the hypersonic aerodynamics in near-continuum transitional flow regime.

  6. Hybrid Modelling of Individual Movement and Collective Behaviour

    KAUST Repository

    Franz, Benjamin

    2013-01-01

    Mathematical models of dispersal in biological systems are often written in terms of partial differential equations (PDEs) which describe the time evolution of population-level variables (concentrations, densities). A more detailed modelling approach is given by individual-based (agent-based) models which describe the behaviour of each organism. In recent years, an intermediate modelling methodology - hybrid modelling - has been applied to a number of biological systems. These hybrid models couple an individual-based description of cells/animals with a PDE-model of their environment. In this chapter, we overview hybrid models in the literature with the focus on the mathematical challenges of this modelling approach. The detailed analysis is presented using the example of chemotaxis, where cells move according to extracellular chemicals that can be altered by the cells themselves. In this case, individual-based models of cells are coupled with PDEs for extracellular chemical signals. Travelling waves in these hybrid models are investigated. In particular, we show that in contrary to the PDEs, hybrid chemotaxis models only develop a transient travelling wave. © 2013 Springer-Verlag Berlin Heidelberg.

  7. Hybrid ODE/SSA methods and the cell cycle model

    Science.gov (United States)

    Wang, S.; Chen, M.; Cao, Y.

    2017-07-01

    Stochastic effect in cellular systems has been an important topic in systems biology. Stochastic modeling and simulation methods are important tools to study stochastic effect. Given the low efficiency of stochastic simulation algorithms, the hybrid method, which combines an ordinary differential equation (ODE) system with a stochastic chemically reacting system, shows its unique advantages in the modeling and simulation of biochemical systems. The efficiency of hybrid method is usually limited by reactions in the stochastic subsystem, which are modeled and simulated using Gillespie's framework and frequently interrupt the integration of the ODE subsystem. In this paper we develop an efficient implementation approach for the hybrid method coupled with traditional ODE solvers. We also compare the efficiency of hybrid methods with three widely used ODE solvers RADAU5, DASSL, and DLSODAR. Numerical experiments with three biochemical models are presented. A detailed discussion is presented for the performances of three ODE solvers.

  8. A Structural Model Decomposition Framework for Hybrid Systems Diagnosis

    Science.gov (United States)

    Daigle, Matthew; Bregon, Anibal; Roychoudhury, Indranil

    2015-01-01

    Nowadays, a large number of practical systems in aerospace and industrial environments are best represented as hybrid systems that consist of discrete modes of behavior, each defined by a set of continuous dynamics. These hybrid dynamics make the on-line fault diagnosis task very challenging. In this work, we present a new modeling and diagnosis framework for hybrid systems. Models are composed from sets of user-defined components using a compositional modeling approach. Submodels for residual generation are then generated for a given mode, and reconfigured efficiently when the mode changes. Efficient reconfiguration is established by exploiting causality information within the hybrid system models. The submodels can then be used for fault diagnosis based on residual generation and analysis. We demonstrate the efficient causality reassignment, submodel reconfiguration, and residual generation for fault diagnosis using an electrical circuit case study.

  9. Hybrid Computational Model for High-Altitude Aeroassist Vehicles Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A hybrid continuum/noncontinuum computational model will be developed for analyzing the aerodynamics and heating on aeroassist vehicles. Unique features of this...

  10. Nuclear Hybrid Energy System Modeling: RELAP5 Dynamic Coupling Capabilities

    Energy Technology Data Exchange (ETDEWEB)

    Piyush Sabharwall; Nolan Anderson; Haihua Zhao; Shannon Bragg-Sitton; George Mesina

    2012-09-01

    The nuclear hybrid energy systems (NHES) research team is currently developing a dynamic simulation of an integrated hybrid energy system. A detailed simulation of proposed NHES architectures will allow initial computational demonstration of a tightly coupled NHES to identify key reactor subsystem requirements, identify candidate reactor technologies for a hybrid system, and identify key challenges to operation of the coupled system. This work will provide a baseline for later coupling of design-specific reactor models through industry collaboration. The modeling capability addressed in this report focuses on the reactor subsystem simulation.

  11. Hybridized electromagnetic-triboelectric nanogenerator for scavenging air-flow energy to sustainably power temperature sensors.

    Science.gov (United States)

    Wang, Xue; Wang, Shuhua; Yang, Ya; Wang, Zhong Lin

    2015-04-28

    We report a hybridized nanogenerator with dimensions of 6.7 cm × 4.5 cm × 2 cm and a weight of 42.3 g that consists of two triboelectric nanogenerators (TENGs) and two electromagnetic generators (EMGs) for scavenging air-flow energy. Under an air-flow speed of about 18 m/s, the hybridized nanogenerator can deliver largest output powers of 3.5 mW for one TENG (in correspondence of power per unit mass/volume: 8.8 mW/g and 14.6 kW/m(3)) at a loading resistance of 3 MΩ and 1.8 mW for one EMG (in correspondence of power per unit mass/volume: 0.3 mW/g and 0.4 kW/m(3)) at a loading resistance of 2 kΩ, respectively. The hybridized nanogenerator can be utilized to charge a capacitor of 3300 μF to sustainably power four temperature sensors for realizing self-powered temperature sensor networks. Moreover, a wireless temperature sensor driven by a hybridized nanogenerator charged Li-ion battery can work well to send the temperature data to a receiver/computer at a distance of 1.5 m. This work takes a significant step toward air-flow energy harvesting and its potential applications in self-powered wireless sensor networks.

  12. A speed-flow relationship model of highway traffic flow

    Institute of Scientific and Technical Information of China (English)

    WANG Wei; LI Wei; REN Gang

    2005-01-01

    In the view that the generally used speed-flow relationship model is insufficient in the traffic analysis under over-saturated conditions, this paper first establishes the theoretical models of speed flow relationship for each highway class based upon a large number of traffic data collected from the field. Then by analyzing the traffic flow dissipation mechanism under peak hour over-saturated traffic conditions, the speed flow relationship model structures for each highway class are reviewed under different traffic load conditions. Through curve-fitting of large numbers of observed data, functional equations of general speed-flow relationship models for each highway class under any traffic load conditions are established. The practical model parameters for each highway class under different design speeds are also put forward. This model is successful in solving the speed-forecasting problem of the traffic flow under peak hour over-saturated conditions. This provides the theoretical bases for the development of projects related to highway network planning, economic analysis, etc.

  13. A toy terrestrial carbon flow model

    Science.gov (United States)

    Parton, William J.; Running, Steven W.; Walker, Brian

    1992-01-01

    A generalized carbon flow model for the major terrestrial ecosystems of the world is reported. The model is a simplification of the Century model and the Forest-Biogeochemical model. Topics covered include plant production, decomposition and nutrient cycling, biomes, the utility of the carbon flow model for predicting carbon dynamics under global change, and possible applications to state-and-transition models and environmentally driven global vegetation models.

  14. DEVELOPMENT OF A HYBRID MODEL FOR THREE-DIMENSIONAL GIS

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    This paper presents a hybrid model for three-dimensional Geographical Information Systems which is an integration of surface- and volume-based models. The Triangulat ed Irregular Network (TIN) and octree models are integrated in this hybrid model. The TIN model works as a surface-based model which mainly serves for surface presentation and visualization. On the other hand, the octree encoding supports volumetric analysis. The designed data structure brings a major advantage in the three-dimensional selective retrieval. This technique increases the efficiency of three-dimensional data operation.

  15. Two-compartment model for competitive hybridization on molecular biochips

    Science.gov (United States)

    Chechetkin, V. R.

    2007-01-01

    During competitive hybridization the specific and non-specific fractions of tested biomolecules in solution bind jointly with the specific probes immobilized in a separate cell of a microchip. The application of two-compartment model to the two-component hybridization allows analytically investigating the underlying kinetics. It is shown that the behaviour with the non-monotonous growth of complexes formed by the non-specific fraction on a probe cell is a typical feature of competitive hybridization for both diffusion-limited and reaction-limited kinetics. The physical reason behind such an evolution consists in the fact that the characteristic hybridization time for the perfect complexes turns out longer with respect to that for the mismatch complexes. This behaviour should be taken into account for the choice of optimum hybridization and washing conditions for the analysis of specific fraction.

  16. Two-compartment model for competitive hybridization on molecular biochips

    Energy Technology Data Exchange (ETDEWEB)

    Chechetkin, V.R. [Theoretical Department of Division for Perspective Investigations, Troitsk Institute of Innovation and Thermonuclear Investigations (TRINITI), Troitsk, 142190 Moscow Region (Russian Federation)]. E-mail: chechet@biochip.ru

    2007-01-08

    During competitive hybridization the specific and non-specific fractions of tested biomolecules in solution bind jointly with the specific probes immobilized in a separate cell of a microchip. The application of two-compartment model to the two-component hybridization allows analytically investigating the underlying kinetics. It is shown that the behaviour with the non-monotonous growth of complexes formed by the non-specific fraction on a probe cell is a typical feature of competitive hybridization for both diffusion-limited and reaction-limited kinetics. The physical reason behind such an evolution consists in the fact that the characteristic hybridization time for the perfect complexes turns out longer with respect to that for the mismatch complexes. This behaviour should be taken into account for the choice of optimum hybridization and washing conditions for the analysis of specific fraction.

  17. A hybrid Scatter/Transform cloaking model

    Directory of Open Access Journals (Sweden)

    Gad Licht

    2015-01-01

    Full Text Available A new Scatter/Transform cloak is developed that combines the light bending of refraction characteristic of a Transform cloak with the scatter cancellation characteristic of a Scatter cloak. The hybrid cloak incorporates both Transform’s variable index of refraction with modified linear intrusions to maximize the Scatter cloak effect. Scatter/Transform improved the scattering cross-section of cloaking in a 2-dimensional space to 51.7% compared to only 39.6% or 45.1% respectively with either Scatter or Transform alone. Metamaterials developed with characteristics based on the new ST hybrid cloak will exhibit superior cloaking capabilities.

  18. The development of a mathematical model of a hybrid airship

    Science.gov (United States)

    Abdul Ghaffar, Alia Farhana

    The mathematical model of a winged hybrid airship is developed for the analysis of its dynamic stability characteristics. A full nonlinear equation of motion that describes the dynamics of the hybrid airship is determined and for completeness, some of the components in the equations are estimated using the appropriate methods that has been established and used in the past. Adequate assumptions are made in order to apply any relevant computation and estimation methods. While this hybrid airship design is unique, its modeling and stability analysis were done according to the typical procedure of conventional airships and aircrafts. All computations pertaining to the hybrid airship's equation of motion are carried out and any issues related to the integration of the wing to the conventional airship design are discussed in this thesis. The design of the hybrid airship is also slightly modified to suit the demanding requirement of a complete and feasible mathematical model. Then, linearization is performed under a chosen trim condition, and eigenvalue analysis is carried out to determine the general dynamic stability characteristics of the winged hybrid airship. The result shows that the winged hybrid airship possesses dynamic instability in longitudinal pitch motion and lateral-directional slow roll motion. This is due to the strong coupling between the aerostatic lift from the buoyant gas and aerodynamic lift from the wing.

  19. Exploratory Topology Modelling of Form-Active Hybrid Structures

    DEFF Research Database (Denmark)

    Holden Deleuran, Anders; Pauly, Mark; Tamke, Martin;

    2016-01-01

    The development of novel form-active hybrid structures (FAHS) is impeded by a lack of modelling tools that allow for exploratory topology modelling of shaped assemblies. We present a flexible and real-time computational design modelling pipeline developed for the exploratory modelling of FAHS tha...

  20. Site-Scale Saturated Zone Flow Model

    Energy Technology Data Exchange (ETDEWEB)

    G. Zyvoloski

    2003-12-17

    The purpose of this model report is to document the components of the site-scale saturated-zone flow model at Yucca Mountain, Nevada, in accordance with administrative procedure (AP)-SIII.lOQ, ''Models''. This report provides validation and confidence in the flow model that was developed for site recommendation (SR) and will be used to provide flow fields in support of the Total Systems Performance Assessment (TSPA) for the License Application. The output from this report provides the flow model used in the ''Site-Scale Saturated Zone Transport'', MDL-NBS-HS-000010 Rev 01 (BSC 2003 [162419]). The Site-Scale Saturated Zone Transport model then provides output to the SZ Transport Abstraction Model (BSC 2003 [164870]). In particular, the output from the SZ site-scale flow model is used to simulate the groundwater flow pathways and radionuclide transport to the accessible environment for use in the TSPA calculations. Since the development and calibration of the saturated-zone flow model, more data have been gathered for use in model validation and confidence building, including new water-level data from Nye County wells, single- and multiple-well hydraulic testing data, and new hydrochemistry data. In addition, a new hydrogeologic framework model (HFM), which incorporates Nye County wells lithology, also provides geologic data for corroboration and confidence in the flow model. The intended use of this work is to provide a flow model that generates flow fields to simulate radionuclide transport in saturated porous rock and alluvium under natural or forced gradient flow conditions. The flow model simulations are completed using the three-dimensional (3-D), finite-element, flow, heat, and transport computer code, FEHM Version (V) 2.20 (software tracking number (STN): 10086-2.20-00; LANL 2003 [161725]). Concurrently, process-level transport model and methodology for calculating radionuclide transport in the saturated zone at Yucca

  1. Hybrid modeling of xanthan gum bioproduction in batch bioreactor.

    Science.gov (United States)

    Zabot, Giovani L; Mecca, Jaqueline; Mesomo, Michele; Silva, Marceli F; Prá, Valéria Dal; de Oliveira, Débora; Oliveira, J Vladimir; Castilhos, Fernanda; Treichel, Helen; Mazutti, Marcio A

    2011-10-01

    This work is focused on hybrid modeling of xanthan gum bioproduction process by Xanthomonas campestris pv. mangiferaeindicae. Experiments were carried out to evaluate the effects of stirred speed and superficial gas velocity on the kinetics of cell growth, lactose consumption and xanthan gum production in a batch bioreactor using cheese whey as substrate. A hybrid model was employed to simulate the bio-process making use of an artificial neural network (ANN) as a kinetic parameter estimator for the phenomenological model. The hybrid modeling of the process provided a satisfactory fitting quality of the experimental data, since this approach makes possible the incorporation of the effects of operational variables on model parameters. The applicability of the validated model was investigated, using the model as a process simulator to evaluate the effects of initial cell and lactose concentration in the xanthan gum production.

  2. Modeling interregional freight flow by distribution systems

    NARCIS (Netherlands)

    Davydenko, I.; Tavasszy, L.A.; Blois, C.J. de

    2013-01-01

    Distribution Centers with a warehousing function have an important influence on the flow of goods from production to consumption, generating substantial goods flow and vehicle movements. This paper extends the classical 4-step freight modeling framework with a logistics chain model, explicitly model

  3. Hybrid reliability model for fatigue reliability analysis of steel bridges

    Institute of Scientific and Technical Information of China (English)

    曹珊珊; 雷俊卿

    2016-01-01

    A kind of hybrid reliability model is presented to solve the fatigue reliability problems of steel bridges. The cumulative damage model is one kind of the models used in fatigue reliability analysis. The parameter characteristics of the model can be described as probabilistic and interval. The two-stage hybrid reliability model is given with a theoretical foundation and a solving algorithm to solve the hybrid reliability problems. The theoretical foundation is established by the consistency relationships of interval reliability model and probability reliability model with normally distributed variables in theory. The solving process is combined with the definition of interval reliability index and the probabilistic algorithm. With the consideration of the parameter characteristics of theS−N curve, the cumulative damage model with hybrid variables is given based on the standards from different countries. Lastly, a case of steel structure in the Neville Island Bridge is analyzed to verify the applicability of the hybrid reliability model in fatigue reliability analysis based on the AASHTO.

  4. Modelling of the Czochralski flow

    OpenAIRE

    Jan Franc

    1998-01-01

    The Czochralski method of the industrial production of a silicon single crystal consists of pulling up the single crystal from the silicon melt. The flow of the melt during the production is called the Czochralski flow. The mathematical description of the flow consists of a coupled system of six P.D.E. in cylindrical coordinates containing Navier-Stokes equations (with the stream function), heat convection-conduction equations, convection-diffusion equation for oxygen impurity and an equation...

  5. Overland flow : interfacing models with measurements

    NARCIS (Netherlands)

    Loon, van E.E.

    2002-01-01

    Index words: overland flow, catchment scale, system identification, ensemble simulations.This study presents new techniques to identify scale-dependent overland flow models and use these for ensemble-based predictions. The techniques are developed on the basis of overland flow, rain, discharge, soil

  6. Hybrid, explicit-implicit, finite-volume schemes on unstructured grids for unsteady compressible flows

    Science.gov (United States)

    Timofeev, Evgeny; Norouzi, Farhang

    2016-06-01

    The motivation for using hybrid, explicit-implicit, schemes rather than fully implicit or explicit methods for some unsteady high-speed compressible flows with shocks is firstly discussed. A number of such schemes proposed in the past are briefly overviewed. A recently proposed hybridization approach is then introduced and used for the development of a hybrid, explicit-implicit, TVD (Total Variation Diminishing) scheme of the second order in space and time on smooth solutions in both, explicit and implicit, modes for the linear advection equation. Further generalizations of this finite-volume method for the Burgers, Euler and Navier-Stokes equations discretized on unstructured grids are mentioned in the concluding remarks.

  7. Optimization of Realistic Multi-Stage Hybrid Flow Shop Scheduling Problems with Missing Operations Using Meta-Heuristics

    Directory of Open Access Journals (Sweden)

    M. Saravanan

    2014-03-01

    Full Text Available A Hybrid flow shop scheduling is characterized ‘n’ jobs ‘m’ machines with ‘M’ stages by unidirectional flow of work with a variety of jobs being processed sequentially in a single-pass manner. The paper addresses the multi-stage hybrid flow shop scheduling problems with missing operations. It occurs in many practical situations such as stainless steel manufacturing company. The essential complexity of the problem necessitates the application of meta-heuristics to solve hybrid flow shop scheduling. The proposed Simulated Annealing algorithm (SA compared with Particle Swarm Optimization (PSO with the objective of minimization of makespan. It is show that the SA algorithm is efficient in finding out good quality solutions for the hybrid flow shop problems with missing operations.

  8. Queuing Network Analysis on Hybrid Flow Shop Scheduling

    Directory of Open Access Journals (Sweden)

    Fuqing Zhao

    2012-11-01

    Full Text Available In this study, we consider a queuing model extension for a production system composed of several parallel machines and the same number of transporters. To obtain the minimum waiting time of the jobs in the queue, we present an exact solution for the proposed queuing model. The solution integrates M/M/C system with M/M/1 system. We obtain explicit expressions for its steady-state behavior under M/M/C and M/M/1 assumptions. Further, in order to illustrate the usefulness of the proposed methods, numerical examples are solved. On the basis of the results of these examples, some important conclusions are drawn.

  9. A hybrid random field model for scalable statistical learning.

    Science.gov (United States)

    Freno, A; Trentin, E; Gori, M

    2009-01-01

    This paper introduces hybrid random fields, which are a class of probabilistic graphical models aimed at allowing for efficient structure learning in high-dimensional domains. Hybrid random fields, along with the learning algorithm we develop for them, are especially useful as a pseudo-likelihood estimation technique (rather than a technique for estimating strict joint probability distributions). In order to assess the generality of the proposed model, we prove that the class of pseudo-likelihood distributions representable by hybrid random fields strictly includes the class of joint probability distributions representable by Bayesian networks. Once we establish this result, we develop a scalable algorithm for learning the structure of hybrid random fields, which we call 'Markov Blanket Merging'. On the one hand, we characterize some complexity properties of Markov Blanket Merging both from a theoretical and from the experimental point of view, using a series of synthetic benchmarks. On the other hand, we evaluate the accuracy of hybrid random fields (as learned via Markov Blanket Merging) by comparing them to various alternative statistical models in a number of pattern classification and link-prediction applications. As the results show, learning hybrid random fields by the Markov Blanket Merging algorithm not only reduces significantly the computational cost of structure learning with respect to several considered alternatives, but it also leads to models that are highly accurate as compared to the alternative ones.

  10. Numerical modeling of fluidic flow meters

    Science.gov (United States)

    Choudhury, D.; Patel, B. R.

    1992-05-01

    The transient fluid flow in fluidic flow meters has been modeled using Creare.x's flow modeling computer program FLUENT/BFC that solves the Navier-Stokes equations in general curvilinear coordinates. The numerical predictions of fluid flow in a fluidic flow meter have been compared with the available experimental results for a particular design, termed the PC-4 design. Overall flow structures such as main jet bending, and primary and secondary vortices predicted by FLUENT/BFC are in excellent agreement with flow visualization results. The oscillation frequencies of the PC-4 design have been predicted for a range of flow rates encompassing laminar and turbulent flow and the results are in good agreement with experiments. The details of the flow field predictions reveal that an important factor that determines the onset of oscillations in the fluidic flow meter is the feedback jet momentum relative to the main jet momentum. The insights provided by the analysis of the PC-4 fluidic flow meter design have led to an improved design. The improved design has sustained oscillations at lower flow rates compared with the PC-4 design and has a larger rangeability.

  11. Carbon nano-strings as reporters in lateral flow devices for DNA sensing by hybridization.

    Science.gov (United States)

    Kalogianni, Despina P; Boutsika, Lemonia M; Kouremenou, Panagiota G; Christopoulos, Theodore K; Ioannou, Penelope C

    2011-05-01

    Presently, there is a growing interest in the development of lateral flow devices for nucleic acid analysis that enable visual detection of the target sequence (analyte) while eliminating several steps required for pipetting, incubation, and washing out the excess of reactants. In this paper, we present, for the first time, lateral flow tests exploiting oligonucleotide-functionalized and antibody-functionalized carbon nanoparticles (carbon nano-strings, CBNS) as reporters that enable confirmation of the target DNA sequence by hybridization. The CBNS reporters were applied to (a) the detection of PCR products and (b) visual genotyping of single nucleotide polymorphisms in human genomic DNA. Biotinylated PCR product was hybridized with a dA-tailed probe. In one assay configuration, the hybrid is captured at the test zone of the strip by immobilized streptavidin and detected by (dT)(30)-CBNS. In a second configuration, the hybrids are captured from immobilized (dA) strands and detected by antibiotin-CBNS. As low as 2.5 fmol of amplified DNA can be detected. For visual genotyping, allele-specific primers with a 5' oligo(dA) segment are extended by DNA polymerase with a concomitant incorporation of biotin moieties. Extension products are detected either by (dT)(30)-CBNS or by antibiotin-CBNS. Only three cycles of extension reaction are sufficient for detection. No purification of the PCR products or the extension product is required.

  12. Fluid Survival Tool: A Model Checker for Hybrid Petri Nets

    NARCIS (Netherlands)

    Postema, Björn; Remke, Anne; Haverkort, Boudewijn R.; Ghasemieh, Hamed

    2014-01-01

    Recently, algorithms for model checking Stochastic Time Logic (STL) on Hybrid Petri nets with a single general one-shot transition (HPNG) have been introduced. This paper presents a tool for model checking HPNG models against STL formulas. A graphical user interface (GUI) not only helps to demonstra

  13. Nuclear Hybrid Energy System Model Stability Testing

    Energy Technology Data Exchange (ETDEWEB)

    Greenwood, Michael Scott [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Cetiner, Sacit M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Fugate, David W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-04-01

    A Nuclear Hybrid Energy System (NHES) uses a nuclear reactor as the basic power generation unit, and the power generated is used by multiple customers as combinations of thermal power or electrical power. The definition and architecture of a particular NHES can be adapted based on the needs and opportunities of different localities and markets. For example, locations in need of potable water may be best served by coupling a desalination plant to the NHES. Similarly, a location near oil refineries may have a need for emission-free hydrogen production. Using the flexible, multi-domain capabilities of Modelica, Argonne National Laboratory, Idaho National Laboratory, and Oak Ridge National Laboratory are investigating the dynamics (e.g., thermal hydraulics and electrical generation/consumption) and cost of a hybrid system. This paper examines the NHES work underway, emphasizing the control system developed for individual subsystems and the overall supervisory control system.

  14. Nonlinear lower hybrid modeling in tokamak plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Napoli, F.; Schettini, G. [Università Roma Tre, Dipartimento di Ingegneria, Roma (Italy); Castaldo, C.; Cesario, R. [Associazione EURATOM/ENEA sulla Fusione, Centro Ricerche Frascati (Italy)

    2014-02-12

    We present here new results concerning the nonlinear mechanism underlying the observed spectral broadening produced by parametric instabilities occurring at the edge of tokamak plasmas in present day LHCD (lower hybrid current drive) experiments. Low frequency (LF) ion-sound evanescent modes (quasi-modes) are the main parametric decay channel which drives a nonlinear mode coupling of lower hybrid (LH) waves. The spectrum of the LF fluctuations is calculated here considering the beating of the launched LH wave at the radiofrequency (RF) operating line frequency (pump wave) with the noisy background of the RF power generator. This spectrum is calculated in the frame of the kinetic theory, following a perturbative approach. Numerical solutions of the nonlinear LH wave equation show the evolution of the nonlinear mode coupling in condition of a finite depletion of the pump power. The role of the presence of heavy ions in a Deuterium plasma in mitigating the nonlinear effects is analyzed.

  15. Pseudospectral Model for Hybrid PIC Hall-effect Thruster Simulation

    Science.gov (United States)

    2015-07-01

    1149. 8Goebel, D. M. and Katz, I., Fundamentals of Electric Propulsion : Ion and Hall Thrusters, John Wiley & Sons, Inc., 2008. 9Martin, R., J.W., K...Bilyeu, D., and Tran, J., “Dynamic Particle Weight Remapping in Hybrid PIC Hall -effect Thruster Simulation,” 34th Int. Electric Propulsion Conf...Paper 3. DATES COVERED (From - To) July 2015-July 2015 4. TITLE AND SUBTITLE Pseudospectral model for hybrid PIC Hall -effect thruster simulationect

  16. Hybrid Modeling and Optimization of Yogurt Starter Culture Continuous Fermentation

    Directory of Open Access Journals (Sweden)

    Silviya Popova

    2009-10-01

    Full Text Available The present paper presents a hybrid model of yogurt starter mixed culture fermentation. The main nonlinearities within a classical structure of continuous process model are replaced by neural networks. The new hybrid model accounts for the dependence of the two microorganisms' kinetics from the on-line measured characteristics of the culture medium - pH. Then the model was used further for calculation of the optimal time profile of pH. The obtained results are with agreement with the experimental once.

  17. Design and Implementation of “Many Parallel Task” Hybrid Subsurface Model

    Energy Technology Data Exchange (ETDEWEB)

    Agarwal, Khushbu; Chase, Jared M.; Schuchardt, Karen L.; Scheibe, Timothy D.; Palmer, Bruce J.; Elsethagen, Todd O.

    2011-11-01

    Continuum scale models have been used to study subsurface flow, transport, and reactions for many years. Recently, pore scale models, which operate at scales of individual soil grains, have been developed to more accurately model pore scale phenomena, such as precipitation, that may not be well represented at the continuum scale. However, particle-based models become prohibitively expensive for modeling realistic domains. Instead, we are developing a hybrid model that simulates the full domain at continuum scale and applies the pore model only to areas of high reactivity. The hybrid model uses a dimension reduction approach to formulate the mathematical exchange of information across scales. Since the location, size, and number of pore regions in the model varies, an adaptive Pore Generator is being implemented to define pore regions at each iteration. A fourth code will provide data transformation from the pore scale back to the continuum scale. These components are coupled into a single hybrid model using the SWIFT workflow system. Our hybrid model workflow simulates a kinetic controlled mixing reaction in which multiple pore-scale simulations occur for every continuum scale timestep. Each pore-scale simulation is itself parallel, thus exhibiting multi-level parallelism. Our workflow manages these multiple parallel tasks simultaneously, with the number of tasks changing across iterations. It also supports dynamic allocation of job resources and visualization processing at each iteration. We discuss the design, implementation and challenges associated with building a scalable, Many Parallel Task, hybrid model to run efficiently on thousands to tens of thousands of processors.

  18. Atmospheric Flow over Terrain using Hybrid RANS/LES

    OpenAIRE

    Bechmann, A.; Sørensen, Niels; Johansen, J

    2007-01-01

    Due to years of growth in installed wind power, new sites for wind turbines are in constant demand. With increased use of ever more complex sites, local wind phenomena can be expected to greatly increase the load on wind turbines. This work describes how Large-Eddy Simulation (LES) can be used to estimate the wind in complex terrain. A newly developed LES-model is presented and is validated by predicting the wind over the Askervein hill. We believe, that the ability of LES to capture load gen...

  19. Mechanisms Underlying Mammalian Hybrid Sterility in Two Feline Interspecies Models.

    Science.gov (United States)

    Davis, Brian W; Seabury, Christopher M; Brashear, Wesley A; Li, Gang; Roelke-Parker, Melody; Murphy, William J

    2015-10-01

    The phenomenon of male sterility in interspecies hybrids has been observed for over a century, however, few genes influencing this recurrent phenotype have been identified. Genetic investigations have been primarily limited to a small number of model organisms, thus limiting our understanding of the underlying molecular basis of this well-documented "rule of speciation." We utilized two interspecies hybrid cat breeds in a genome-wide association study employing the Illumina 63 K single-nucleotide polymorphism array. Collectively, we identified eight autosomal genes/gene regions underlying associations with hybrid male sterility (HMS) involved in the function of the blood-testis barrier, gamete structural development, and transcriptional regulation. We also identified several candidate hybrid sterility regions on the X chromosome, with most residing in close proximity to complex duplicated regions. Differential gene expression analyses revealed significant chromosome-wide upregulation of X chromosome transcripts in testes of sterile hybrids, which were enriched for genes involved in chromatin regulation of gene expression. Our expression results parallel those reported in Mus hybrids, supporting the "Large X-Effect" in mammalian HMS and the potential epigenetic basis for this phenomenon. These results support the value of the interspecies feline model as a powerful tool for comparison to rodent models of HMS, demonstrating unique aspects and potential commonalities that underpin mammalian reproductive isolation.

  20. Modelling of the Czochralski flow

    Directory of Open Access Journals (Sweden)

    Jan Franc

    1998-01-01

    Full Text Available The Czochralski method of the industrial production of a silicon single crystal consists of pulling up the single crystal from the silicon melt. The flow of the melt during the production is called the Czochralski flow. The mathematical description of the flow consists of a coupled system of six P.D.E. in cylindrical coordinates containing Navier-Stokes equations (with the stream function, heat convection-conduction equations, convection-diffusion equation for oxygen impurity and an equation describing magnetic field effect.

  1. MULTICRITERIA HYBRID FLOW SHOP SCHEDULING PROBLEM: LITERATURE REVIEW, ANALYSIS, AND FUTURE RESEARCH

    Directory of Open Access Journals (Sweden)

    Marcia de Fatima Morais

    2014-12-01

    Full Text Available This research focuses on the Hybrid Flow Shop production scheduling problem, which is one of the most difficult problems to solve. The literature points to several studies that focus the Hybrid Flow Shop scheduling problem with monocriteria functions. Despite of the fact that, many real world problems involve several objective functions, they can often compete and conflict, leading researchers to concentrate direct their efforts on the development of methods that take consider this variant into consideration. The goal of the study is to review and analyze the methods in order to solve the Hybrid Flow Shop production scheduling problem with multicriteria functions in the literature. The analyses were performed using several papers that have been published over the years, also the parallel machines types, the approach used to develop solution methods, the type of method develop, the objective function, the performance criterion adopted, and the additional constraints considered. The results of the reviewing and analysis of 46 papers showed opportunities for future research on this topic, including the following: (i use uniform and dedicated parallel machines, (ii use exact and metaheuristics approaches, (iv develop lower and uppers bounds, relations of dominance and different search strategies to improve the computational time of the exact methods,  (v develop  other types of metaheuristic, (vi work with anticipatory setups, and (vii add constraints faced by the production systems itself.

  2. ROBUST-HYBRID GENETIC ALGORITHM FOR A FLOW-SHOP SCHEDULING PROBLEM (A Case Study at PT FSCM Manufacturing Indonesia)

    OpenAIRE

    Johan Soewanda; Tanti Octavia; Iwan Halim Sahputra

    2007-01-01

    This paper discusses the application of Robust Hybrid Genetic Algorithm to solve a flow-shop scheduling problem. The proposed algorithm attempted to reach minimum makespan. PT. FSCM Manufacturing Indonesia Plant 4's case was used as a test case to evaluate the performance of the proposed algorithm. The proposed algorithm was compared to Ant Colony, Genetic-Tabu, Hybrid Genetic Algorithm, and the company's algorithm. We found that Robust Hybrid Genetic produces statistically better result than...

  3. Microgravity two-phase flow regime modeling

    Energy Technology Data Exchange (ETDEWEB)

    Lee, D.; Best, F.R.; Faget, N.

    1987-01-01

    A flow pattern or flow regime is the characteristics spatial distribution of the phases of fluid in a duct. Since heat transfer and pressure drop are dependent on the characteristic distribution of the phases, it is necessary to describe flow patterns in an appropriate manner so that a hydrodynamic or heat transfer theory applicable to that pattern can be chosen. The objective of the present analysis is to create a flow regime map based on physical modeling of vapor/liquid interaction phenomena in a microgravity environment. In the present work, four basic flow patterns are defined: dispersed flow, stratified flow, slug flow, and annular flow. Fluid properties, liquid and vapor flow rates, and pipe size were chosen as the principal parameters. It is assumed that a transition from one flow pattern to another will occur when there is a change in the dominant force which controls that flow pattern. The forces considered in this modeling are surface tension force, both force, inertial force, friction, and turbulent fluctuations.

  4. Average-passage flow model development

    Science.gov (United States)

    Adamczyk, John J.; Celestina, Mark L.; Beach, Tim A.; Kirtley, Kevin; Barnett, Mark

    1989-01-01

    A 3-D model was developed for simulating multistage turbomachinery flows using supercomputers. This average passage flow model described the time averaged flow field within a typical passage of a bladed wheel within a multistage configuration. To date, a number of inviscid simulations were executed to assess the resolution capabilities of the model. Recently, the viscous terms associated with the average passage model were incorporated into the inviscid computer code along with an algebraic turbulence model. A simulation of a stage-and-one-half, low speed turbine was executed. The results of this simulation, including a comparison with experimental data, is discussed.

  5. Modeling interregional freight flow by distribution systems

    NARCIS (Netherlands)

    Davydenko, I.; Tavasszy, L.A.; Blois, C.J. de

    2013-01-01

    Distribution Centers with a warehousing function have an important influence on the flow of goods from production to consumption, generating substantial goods flow and vehicle movements. This paper extends the classical 4-step freight modeling framework with a logistics chain model, explicitly

  6. Accelerating a hybrid continuum-atomistic fluidic model with on-the-fly machine learning

    CERN Document Server

    Stephenson, David; Lockerby, Duncan A

    2016-01-01

    We present a hybrid continuum-atomistic scheme which combines molecular dynamics (MD) simulations with on-the-fly machine learning techniques for the accurate and efficient prediction of multiscale fluidic systems. By using a Gaussian process as a surrogate model for the computationally expensive MD simulations, we use Bayesian inference to predict the system behaviour at the atomistic scale, purely by consideration of the macroscopic inputs and outputs. Whenever the uncertainty of this prediction is greater than a predetermined acceptable threshold, a new MD simulation is performed to continually augment the database, which is never required to be complete. This provides a substantial enhancement to the current generation of hybrid methods, which often require many similar atomistic simulations to be performed, discarding information after it is used once. We apply our hybrid scheme to nano-confined unsteady flow through a high-aspect-ratio converging-diverging channel, and make comparisons between the new s...

  7. Bio-bar-code functionalized magnetic nanoparticle label for ultrasensitive flow injection chemiluminescence detection of DNA hybridization.

    Science.gov (United States)

    Bi, Sai; Zhou, Hong; Zhang, Shusheng

    2009-10-07

    A signal amplification strategy based on bio-bar-code functionalized magnetic nanoparticles as labels holds promise to improve the sensitivity and detection limit of the detection of DNA hybridization and single-nucleotide polymorphisms by flow injection chemiluminescence assays.

  8. Constraining hybrid inflation models with WMAP three-year results

    CERN Document Server

    Cardoso, A

    2006-01-01

    We reconsider the original model of quadratic hybrid inflation in light of the WMAP three-year results and study the possibility of obtaining a spectral index of primordial density perturbations, $n_s$, smaller than one from this model. The original hybrid inflation model naturally predicts $n_s\\geq1$ in the false vacuum dominated regime but it is also possible to have $n_s<1$ when the quadratic term dominates. We therefore investigate whether there is also an intermediate regime compatible with the latest constraints, where the scalar field value during the last 50 e-folds of inflation is less than the Planck scale.

  9. Approximate Model for Turbulent Stagnation Point Flow.

    Energy Technology Data Exchange (ETDEWEB)

    Dechant, Lawrence [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-01-01

    Here we derive an approximate turbulent self-similar model for a class of favorable pressure gradient wedge-like flows, focusing on the stagnation point limit. While the self-similar model provides a useful gross flow field estimate this approach must be combined with a near wall model is to determine skin friction and by Reynolds analogy the heat transfer coefficient. The combined approach is developed in detail for the stagnation point flow problem where turbulent skin friction and Nusselt number results are obtained. Comparison to the classical Van Driest (1958) result suggests overall reasonable agreement. Though the model is only valid near the stagnation region of cylinders and spheres it nonetheless provides a reasonable model for overall cylinder and sphere heat transfer. The enhancement effect of free stream turbulence upon the laminar flow is used to derive a similar expression which is valid for turbulent flow. Examination of free stream enhanced laminar flow suggests that the rather than enhancement of a laminar flow behavior free stream disturbance results in early transition to turbulent stagnation point behavior. Excellent agreement is shown between enhanced laminar flow and turbulent flow behavior for high levels, e.g. 5% of free stream turbulence. Finally the blunt body turbulent stagnation results are shown to provide realistic heat transfer results for turbulent jet impingement problems.

  10. Diagnosing Hybrid Systems: a Bayesian Model Selection Approach

    Science.gov (United States)

    McIlraith, Sheila A.

    2005-01-01

    In this paper we examine the problem of monitoring and diagnosing noisy complex dynamical systems that are modeled as hybrid systems-models of continuous behavior, interleaved by discrete transitions. In particular, we examine continuous systems with embedded supervisory controllers that experience abrupt, partial or full failure of component devices. Building on our previous work in this area (MBCG99;MBCG00), our specific focus in this paper ins on the mathematical formulation of the hybrid monitoring and diagnosis task as a Bayesian model tracking algorithm. The nonlinear dynamics of many hybrid systems present challenges to probabilistic tracking. Further, probabilistic tracking of a system for the purposes of diagnosis is problematic because the models of the system corresponding to failure modes are numerous and generally very unlikely. To focus tracking on these unlikely models and to reduce the number of potential models under consideration, we exploit logic-based techniques for qualitative model-based diagnosis to conjecture a limited initial set of consistent candidate models. In this paper we discuss alternative tracking techniques that are relevant to different classes of hybrid systems, focusing specifically on a method for tracking multiple models of nonlinear behavior simultaneously using factored sampling and conditional density propagation. To illustrate and motivate the approach described in this paper we examine the problem of monitoring and diganosing NASA's Sprint AERCam, a small spherical robotic camera unit with 12 thrusters that enable both linear and rotational motion.

  11. Developed generalised unified power flow controller model in the Newton–Raphson power-flow analysis using combined mismatches method

    DEFF Research Database (Denmark)

    Kamel, Salah; Jurado, Francisco; Chen, Zhe

    2016-01-01

    This study proposes the generalised unified power flow controller (GUPFC) model in the hybrid current power mismatch Newton-Raphson formulation (HPCIM). In this model, active power, real and imaginary current components are injected at the terminals of series impedances of GUPFC. These injected...... values are calculated during the iterative process based on the desired controlled values and buses voltage at the terminals of GUPFC. The parameters of GUPFC can be calculated during the iterative process and the final values are updated after load flow convergence. Using the developed GUPFC model......, the original structure and symmetry of the admittance and Jacobian matrices can still be kept, the changing of Jacobian matrix is eliminated. Consequently, the complexities of the computer load flow program codes with GUPFC are reduced. The HPCIM load flow code with the proposed model is written in C...

  12. Overview of initial research into the effects of strong vortex flow on hybrid rocket combustion and performance

    Science.gov (United States)

    Gloyer, P.; Knuth, William H.; Goodman, J.

    1993-01-01

    An examination of the effect of vortex flow on hybrid rocket combustion and performance is underway. Emphasis is on response of the fuel regression rate when subjected to vortex flow. Initial results show that there is a definite effect of the vortex on fuel regression rate. Future work will focus on quantitatively measuring this regression rate. This work is part of an overall program to develop an ultra low cost fuel system for hybrid rocket engines.

  13. Runoff prediction using an integrated hybrid modelling scheme

    Science.gov (United States)

    Remesan, Renji; Shamim, Muhammad Ali; Han, Dawei; Mathew, Jimson

    2009-06-01

    SummaryRainfall runoff is a very complicated process due to its nonlinear and multidimensional dynamics, and hence difficult to model. There are several options for a modeller to consider, for example: the type of input data to be used, the length of model calibration (training) data and whether or not the input data be treated as signals with different frequency bands so that they can be modelled separately. This paper describes a new hybrid modelling scheme to answer the above mentioned questions. The proposed methodology is based on a hybrid model integrating wavelet transformation, a modelling engine (Artificial Neural Network) and the Gamma Test. First, the Gamma Test is used to decide the required input data dimensions and its length. Second, the wavelet transformation decomposes the input signals into different frequency bands. Finally, a modelling engine (ANN in this study) is used to model the decomposed signals separately. The proposed scheme was tested using the Brue catchment, Southwest England, as a case study and has produced very positive results. The hybrid model outperforms all other models tested. This study has a wider implication in the hydrological modelling field since its general framework could be applied to other model combinations (e.g., model engine could be Support Vector Machines, neuro-fuzzy systems, or even a conceptual model. The signal decomposition could be carried out by Fourier transformation).

  14. Analytical models for complex swirling flows

    Science.gov (United States)

    Borissov, A.; Hussain, V.

    1996-11-01

    We develops a new class of analytical solutions of the Navier-Stokes equations for swirling flows, and suggests ways to predict and control such flows occurring in various technological applications. We view momentum accumulation on the axis as a key feature of swirling flows and consider vortex-sink flows on curved axisymmetric surfaces with an axial flow. We show that these solutions model swirling flows in a cylindrical can, whirlpools, tornadoes, and cosmic swirling jets. The singularity of these solutions on the flow axis is removed by matching them with near-axis Schlichting and Long's swirling jets. The matched solutions model flows with very complex patterns, consisting of up to seven separation regions with recirculatory 'bubbles' and vortex rings. We apply the matched solutions for computing flows in the Ranque-Hilsch tube, in the meniscus of electrosprays, in vortex breakdown, and in an industrial vortex burner. The simple analytical solutions allow a clear understanding of how different control parameters affect the flow and guide selection of optimal parameter values for desired flow features. These solutions permit extension to other problems (such as heat transfer and chemical reaction) and have the potential of being significantly useful for further detailed investigation by direct or large-eddy numerical simulations as well as laboratory experimentation.

  15. Modeling and simulation of reactive flows

    CERN Document Server

    Bortoli, De AL; Pereira, Felipe

    2015-01-01

    Modelling and Simulation of Reactive Flows presents information on modeling and how to numerically solve reactive flows. The book offers a distinctive approach that combines diffusion flames and geochemical flow problems, providing users with a comprehensive resource that bridges the gap for scientists, engineers, and the industry. Specifically, the book looks at the basic concepts related to reaction rates, chemical kinetics, and the development of reduced kinetic mechanisms. It considers the most common methods used in practical situations, along with equations for reactive flows, and va

  16. Development of a continuum/rarefied hybrid scheme for flows with thermal and chemical non-equilibrium

    Science.gov (United States)

    Michaelis, Christopher Harold

    2001-07-01

    The motion of a gas may be studied from the microscopic or macroscopic point of view. At the microscopic level, molecules are constantly moving and colliding, and occasionally reacting to form new species. The accepted model for describing gases at the microscopic level is the Boltzmann equation. In contrast, macroscopic models rely on the conservation laws, combined with constitutive relations, which approximate the molecular relaxation in a gas. The resulting set of equations, called the Navier- Stokes equations, represent an approximation to the Boltzmann equation for small non-equilibrium. For flows that are sufficiently rarefied, the Navier- Stokes equations no longer represent an accurate approximation of the Boltzmann equation. Numerical solutions of the Boltzmann equation may be obtained through the direct simulation of molecular motion. Such approaches are termed Monte Carlo, or particle methods. In principle, particle methods can be used to simulate all flows, regardless of the degree of non-equilibrium. There are many instances where neither approach is ideal. One such example is the reentry of a blunt body through the atmosphere. Ahead of the body, there is a very strong shock wave that cannot be adequately modeled by the Navier-Stokes equations, due to the degree of non- equilibrium. At the surface of the blunt body, the temperature is substantially colder than the surrounding flow, resulting in a large increase in the density next to the surface. In this region, where the flow is near- continuum, particle methods are not computationally efficient. A numerical method that utilizes the Navier-Stokes equations in regions of near-continuum flow and a particle method everywhere else is ideal. In this study, a hybrid scheme, for the efficient numerical simulation of flows with thermal and chemical non-equilibrium, is successfully demonstrated. The hybrid method was applied to extreme, high Mach number flows, where vibrational and chemical relaxation are

  17. Feller Property for a Special Hybrid Jump-Diffusion Model

    Directory of Open Access Journals (Sweden)

    Jinying Tong

    2014-01-01

    Full Text Available We consider the stochastic stability for a hybrid jump-diffusion model, where the switching here is a phase semi-Markovian process. We first transform the process into a corresponding jump-diffusion with Markovian switching by the supplementary variable technique. Then we prove the Feller and strong Feller properties of the model under some assumptions.

  18. HistoFlex--a microfluidic device providing uniform flow conditions enabling highly sensitive, reproducible and quantitative in situ hybridizations.

    Science.gov (United States)

    Søe, Martin Jensen; Okkels, Fridolin; Sabourin, David; Alberti, Massimo; Holmstrøm, Kim; Dufva, Martin

    2011-11-21

    A microfluidic device (the HistoFlex) designed to perform and monitor molecular biological assays under dynamic flow conditions on microscope slide-substrates, with special emphasis on analyzing histological tissue sections, is presented. Microscope slides were reversibly sealed onto a cast polydimethylsiloxane (PDMS) insert, patterned with distribution channels and reaction chambers. Topology optimization was used to design reaction chambers with uniform flow conditions. The HistoFlex provided uniform hybridization conditions, across the reaction chamber, as determined by hybridization to microscope slides of spotted DNA microarrays when applying probe concentrations generally used in in situ hybridization (ISH) assays. The HistoFlex's novel ability in online monitoring of an in situ hybridization assay was demonstrated using direct fluorescent detection of hybridization to 18S rRNA. Tissue sections were not visually damaged during assaying, which enabled adapting a complete ISH assay for detection of microRNAs (miRNA). The effects of flow based incubations on hybridization, antibody incubation and Tyramide Signal Amplification (TSA) steps were investigated upon adapting the ISH assay for performing in the HistoFlex. The hybridization step was significantly enhanced using flow based incubations due to improved hybridization efficiency. The HistoFlex device enabled a fast miRNA ISH assay (3 hours) which provided higher hybridization signal intensity compared to using conventional techniques (5 h 40 min). We further demonstrate that the improved hybridization efficiency using the HistoFlex permits more complex assays e.g. those comprising sequential hybridization and detection of two miRNAs to be performed with significantly increased sensitivity. The HistoFlex provides a new histological analysis platform that will allow multiple and sequential assays to be performed under their individual optimum assay conditions. Images can subsequently be recorded either in

  19. Modelling of hybrid scenario: from present-day experiments towards ITER

    Science.gov (United States)

    Litaudon, X.; Voitsekhovitch, I.; Artaud, J. F.; Belo, P.; Bizarro, João P. S.; Casper, T.; Citrin, J.; Fable, E.; Ferreira, J.; Garcia, J.; Garzotti, L.; Giruzzi, G.; Hobirk, J.; Hogeweij, G. M. D.; Imbeaux, F.; Joffrin, E.; Koechl, F.; Liu, F.; Lönnroth, J.; Moreau, D.; Parail, V.; Schneider, M.; Snyder, P. B.; the ASDEX-Upgrade Team; Contributors, JET-EFDA; the EU-ITM ITER Scenario Modelling Group

    2013-07-01

    The ‘hybrid’ scenario is an attractive operating scenario for ITER since it combines long plasma duration with the reliability of the reference H-mode regime. We review the recent European modelling effort carried out within the Integrated Scenario Modelling group which aims at (i) understanding the underlying physics of the hybrid regime in ASDEX-Upgrade and JET and (ii) extrapolating them towards ITER. JET and ASDEX-Upgrade hybrid scenarios performed under different experimental conditions have been simulated in an interpretative and predictive way in order to address the current profile dynamics and its link with core confinement, the relative importance of magnetic shear, s, and E × B flow shear on the core turbulence, pedestal stability and H-L transition. The correlation of the improved confinement with an increased s/q at outer radii observed in JET and ASDEX-Upgrade discharges is consistent with the predictions based on the GLF23 model applied in the simulations of the ion and electron kinetic profiles. Projections to ITER hybrid scenarios have been carried out focusing on optimization of the heating/current drive schemes to reach and ultimately control the desired plasma equilibrium using ITER actuators. Firstly, access condition to the hybrid-like q-profiles during the current ramp-up phase has been investigated. Secondly, from the interpreted role of the s/q ratio, ITER hybrid scenario flat-top performance has been optimized through tailoring the q-profile shape and pedestal conditions. EPED predictions of pedestal pressure and width have been used as constraints in the interpretative modelling while the core heat transport is predicted by GLF23. Finally, model-based approach for real-time control of advanced tokamak scenarios has been applied to ITER hybrid regime for simultaneous magnetic and kinetic profile control.

  20. Hybrid programming model for implicit PDE simulations on multicore architectures

    KAUST Repository

    Kaushik, Dinesh K.

    2011-01-01

    The complexity of programming modern multicore processor based clusters is rapidly rising, with GPUs adding further demand for fine-grained parallelism. This paper analyzes the performance of the hybrid (MPI+OpenMP) programming model in the context of an implicit unstructured mesh CFD code. At the implementation level, the effects of cache locality, update management, work division, and synchronization frequency are studied. The hybrid model presents interesting algorithmic opportunities as well: the convergence of linear system solver is quicker than the pure MPI case since the parallel preconditioner stays stronger when hybrid model is used. This implies significant savings in the cost of communication and synchronization (explicit and implicit). Even though OpenMP based parallelism is easier to implement (with in a subdomain assigned to one MPI process for simplicity), getting good performance needs attention to data partitioning issues similar to those in the message-passing case. © 2011 Springer-Verlag.

  1. Flow in a model turbine stator

    Science.gov (United States)

    Buggeln, R. C.; Shamroth, S. J.; Briley, W. R.

    1985-10-01

    In view of the complex nature of the flowfield in the hot section of gas turbine engines, the need to predict heat transfer and flow losses, the possible appearance of separation and strong secondary flows, etc., the present effort is focusing upon a Navier-Stokes approach to the three dimensional turbine stator problem. The advantages of a full Navier-Stokes approach are clear since when combined with a suitable turbulence model these equations represent the flow and heat transfer physics. In particular, the Navier-Stokes equations accurately represent possible separated regions and regions of significant secondary flow. In addition, the Navier-Stokes approach allows representation of the entire flow field by a single set of equations, thus avoiding problems associated with representing different regions of the flow by different equations and then matching flow regions.

  2. NUMERICAL MODEL FOR FLOW MOTION WITH VEGETATION

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jian-tao; SU Xiao-hui

    2008-01-01

    A set of governing equations for turbulent flows in vegetated area were derived with the assumption that vegetation is of straight and rigid cylinder. The effect of vegetation on flow motion was represented by additional inertial and drag forces. The new model was validated by available experimental data for open channel flows passing through vegetated areas with different vegetation size, density and distribution. Numerical results are in good agreement with the experimental data. Finally, the flow around a supposed isolated vegetated pile was simulated and the effects of vegetation density on the wake flow were discussed. It is found that the presence of vegetation, even at a very low density, has the pronounced influence on the dissipation of flow energy, both inside the vegetation domain and outside it in the wake flow region.

  3. Regression modeling of ground-water flow

    Science.gov (United States)

    Cooley, R.L.; Naff, R.L.

    1985-01-01

    Nonlinear multiple regression methods are developed to model and analyze groundwater flow systems. Complete descriptions of regression methodology as applied to groundwater flow models allow scientists and engineers engaged in flow modeling to apply the methods to a wide range of problems. Organization of the text proceeds from an introduction that discusses the general topic of groundwater flow modeling, to a review of basic statistics necessary to properly apply regression techniques, and then to the main topic: exposition and use of linear and nonlinear regression to model groundwater flow. Statistical procedures are given to analyze and use the regression models. A number of exercises and answers are included to exercise the student on nearly all the methods that are presented for modeling and statistical analysis. Three computer programs implement the more complex methods. These three are a general two-dimensional, steady-state regression model for flow in an anisotropic, heterogeneous porous medium, a program to calculate a measure of model nonlinearity with respect to the regression parameters, and a program to analyze model errors in computed dependent variables such as hydraulic head. (USGS)

  4. Dynamic modelling of packaging material flow systems.

    Science.gov (United States)

    Tsiliyannis, Christos A

    2005-04-01

    A dynamic model has been developed for reused and recycled packaging material flows. It allows a rigorous description of the flows and stocks during the transition to new targets imposed by legislation, product demand variations or even by variations in consumer discard behaviour. Given the annual reuse and recycle frequency and packaging lifetime, the model determines all packaging flows (e.g., consumption and reuse) and variables through which environmental policy is formulated, such as recycling, waste and reuse rates and it identifies the minimum number of variables to be surveyed for complete packaging flow monitoring. Simulation of the transition to the new flow conditions is given for flows of packaging materials in Greece, based on 1995--1998 field inventory and statistical data.

  5. A structured modeling approach for dynamic hybrid fuzzy-first principles models

    NARCIS (Netherlands)

    Lith, van Pascal F.; Betlem, Ben H.L.; Roffel, Brian

    2002-01-01

    Hybrid fuzzy-first principles models can be attractive if a complete physical model is difficult to derive. These hybrid models consist of a framework of dynamic mass and energy balances, supplemented with fuzzy submodels describing additional equations, such as mass transformation and transfer rate

  6. Modeling process flow using diagrams

    NARCIS (Netherlands)

    Kemper, B.; de Mast, J.; Mandjes, M.

    2010-01-01

    In the practice of process improvement, tools such as the flowchart, the value-stream map (VSM), and a variety of ad hoc variants of such diagrams are commonly used. The purpose of this paper is to present a clear, precise, and consistent framework for the use of such flow diagrams in process

  7. Modeling process flow using diagrams

    NARCIS (Netherlands)

    Kemper, B.; de Mast, J.; Mandjes, M.

    2010-01-01

    In the practice of process improvement, tools such as the flowchart, the value-stream map (VSM), and a variety of ad hoc variants of such diagrams are commonly used. The purpose of this paper is to present a clear, precise, and consistent framework for the use of such flow diagrams in process improv

  8. HistoFlex-a microfluidic device providing uniform flow conditions enabling highly sensitive, reproducible and quantitative in situ hybridizations

    DEFF Research Database (Denmark)

    Søe, Martin Jensen; Okkels, Fridolin; Sabourin, David;

    2011-01-01

    slides of spotted DNA microarrays when applying probe concentrations generally used in in situ hybridization (ISH) assays. The HistoFlex's novel ability in online monitoring of an in situ hybridization assay was demonstrated using direct fluorescent detection of hybridization to 18S rRNA. Tissue sections...... were not visually damaged during assaying, which enabled adapting a complete ISH assay for detection of microRNAs (miRNA). The effects of flow based incubations on hybridization, antibody incubation and Tyramide Signal Amplification (TSA) steps were investigated upon adapting the ISH assay...

  9. Nuclear Hybrid Energy Systems FY16 Modeling Efforts at ORNL

    Energy Technology Data Exchange (ETDEWEB)

    Cetiner, Sacit M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Greenwood, Michael Scott [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Harrison, Thomas J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Qualls, A. L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Guler Yigitoglu, Askin [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Fugate, David W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-09-01

    A nuclear hybrid system uses a nuclear reactor as the basic power generation unit. The power generated by the nuclear reactor is utilized by one or more power customers as either thermal power, electrical power, or both. In general, a nuclear hybrid system will couple the nuclear reactor to at least one thermal power user in addition to the power conversion system. The definition and architecture of a particular nuclear hybrid system is flexible depending on local markets needs and opportunities. For example, locations in need of potable water may be best served by coupling a desalination plant to the nuclear system. Similarly, an area near oil refineries may have a need for emission free hydrogen production. A nuclear hybrid system expands the nuclear power plant from its more familiar central power station role by diversifying its immediately and directly connected customer base. The definition, design, analysis, and optimization work currently performed with respect to the nuclear hybrid systems represents the work of three national laboratories. Idaho National Laboratory (INL) is the lead lab working with Argonne National Laboratory (ANL) and Oak Ridge National Laboratory. Each laboratory is providing modeling and simulation expertise for the integration of the hybrid system.

  10. High-Resolution Numerical Model for Shallow Water Flows and Pollutant Diffusions

    Institute of Scientific and Technical Information of China (English)

    王嘉松; 何友声

    2002-01-01

    A finite-volume high-resolution numerical model for coupling the shallow water flows and pollutant diffusions was presented based on using a hybrid TVD scheme in space discretization and a Runge-Kutta method in time discretization. Numerical simulations for modelling dam- break, enlarging open channel flow and pollutant dispersion were implemented and compared with experimental data or other published computations. The validation of this method shows that it can not only deal with the problem involving discontinuities and unsteady flows, but also solve the general shallow water flows and pollutant diffusions.

  11. The discrete multi-hybrid system for the simulation of solid-liquid flows.

    Directory of Open Access Journals (Sweden)

    Alessio Alexiadis

    Full Text Available This study proposes a model based on the combination of Smoothed Particle Hydrodynamics, Coarse Grained Molecular Dynamics and the Discrete Element Method for the simulation of dispersed solid-liquid flows. The model can deal with a large variety of particle types (non-spherical, elastic, breakable, melting, solidifying, swelling, flow conditions (confined, free-surface, microscopic, and scales (from microns to meters. Various examples, ranging from biological fluids to lava flows, are simulated and discussed. In all cases, the model captures the most important features of the flow.

  12. Membrane-less hybrid flow battery based on low-cost elements

    Science.gov (United States)

    Leung, P. K.; Martin, T.; Shah, A. A.; Mohamed, M. R.; Anderson, M. A.; Palma, J.

    2017-02-01

    The capital cost of conventional redox flow batteries is relatively high (>USD 200/kWh) due to the use of expensive active materials and ion-exchange membranes. This paper presents a membrane-less hybrid organic-inorganic flow battery based on the low-cost elements zinc (92.7% with the use of carbon felt electrodes. In the presence of a fully oxidized active species close to its solubility limit, dissolution of the deposited anode is relatively slow (<2.37 g h-1 cm-2) with an equivalent corrosion current density of <1.9 mA cm-2. In a parallel plate flow configuration, the resulting battery was charge-discharge cycled at 30 mA cm-2 with average coulombic and energy efficiencies of c.a. 71.8 and c.a. 42.0% over 20 cycles, respectively.

  13. Modelling Canopy Flows over Complex Terrain

    Science.gov (United States)

    Grant, Eleanor R.; Ross, Andrew N.; Gardiner, Barry A.

    2016-06-01

    Recent studies of flow over forested hills have been motivated by a number of important applications including understanding CO_2 and other gaseous fluxes over forests in complex terrain, predicting wind damage to trees, and modelling wind energy potential at forested sites. Current modelling studies have focussed almost exclusively on highly idealized, and usually fully forested, hills. Here, we present model results for a site on the Isle of Arran, Scotland with complex terrain and heterogeneous forest canopy. The model uses an explicit representation of the canopy and a 1.5-order turbulence closure for flow within and above the canopy. The validity of the closure scheme is assessed using turbulence data from a field experiment before comparing predictions of the full model with field observations. For near-neutral stability, the results compare well with the observations, showing that such a relatively simple canopy model can accurately reproduce the flow patterns observed over complex terrain and realistic, variable forest cover, while at the same time remaining computationally feasible for real case studies. The model allows closer examination of the flow separation observed over complex forested terrain. Comparisons with model simulations using a roughness length parametrization show significant differences, particularly with respect to flow separation, highlighting the need to explicitly model the forest canopy if detailed predictions of near-surface flow around forests are required.

  14. Modelling Canopy Flows over Complex Terrain

    Science.gov (United States)

    Grant, Eleanor R.; Ross, Andrew N.; Gardiner, Barry A.

    2016-12-01

    Recent studies of flow over forested hills have been motivated by a number of important applications including understanding CO_2 and other gaseous fluxes over forests in complex terrain, predicting wind damage to trees, and modelling wind energy potential at forested sites. Current modelling studies have focussed almost exclusively on highly idealized, and usually fully forested, hills. Here, we present model results for a site on the Isle of Arran, Scotland with complex terrain and heterogeneous forest canopy. The model uses an explicit representation of the canopy and a 1.5-order turbulence closure for flow within and above the canopy. The validity of the closure scheme is assessed using turbulence data from a field experiment before comparing predictions of the full model with field observations. For near-neutral stability, the results compare well with the observations, showing that such a relatively simple canopy model can accurately reproduce the flow patterns observed over complex terrain and realistic, variable forest cover, while at the same time remaining computationally feasible for real case studies. The model allows closer examination of the flow separation observed over complex forested terrain. Comparisons with model simulations using a roughness length parametrization show significant differences, particularly with respect to flow separation, highlighting the need to explicitly model the forest canopy if detailed predictions of near-surface flow around forests are required.

  15. Incorporating groundwater flow into the WEPP model

    Science.gov (United States)

    William Elliot; Erin Brooks; Tim Link; Sue Miller

    2010-01-01

    The water erosion prediction project (WEPP) model is a physically-based hydrology and erosion model. In recent years, the hydrology prediction within the model has been improved for forest watershed modeling by incorporating shallow lateral flow into watershed runoff prediction. This has greatly improved WEPP's hydrologic performance on small watersheds with...

  16. Analysis of Cortical Flow Models In Vivo

    Science.gov (United States)

    Benink, Hélène A.; Mandato, Craig A.; Bement, William M.

    2000-01-01

    Cortical flow, the directed movement of cortical F-actin and cortical organelles, is a basic cellular motility process. Microtubules are thought to somehow direct cortical flow, but whether they do so by stimulating or inhibiting contraction of the cortical actin cytoskeleton is the subject of debate. Treatment of Xenopus oocytes with phorbol 12-myristate 13-acetate (PMA) triggers cortical flow toward the animal pole of the oocyte; this flow is suppressed by microtubules. To determine how this suppression occurs and whether it can control the direction of cortical flow, oocytes were subjected to localized manipulation of either the contractile stimulus (PMA) or microtubules. Localized PMA application resulted in redirection of cortical flow toward the site of application, as judged by movement of cortical pigment granules, cortical F-actin, and cortical myosin-2A. Such redirected flow was accelerated by microtubule depolymerization, showing that the suppression of cortical flow by microtubules is independent of the direction of flow. Direct observation of cortical F-actin by time-lapse confocal analysis in combination with photobleaching showed that cortical flow is driven by contraction of the cortical F-actin network and that microtubules suppress this contraction. The oocyte germinal vesicle serves as a microtubule organizing center in Xenopus oocytes; experimental displacement of the germinal vesicle toward the animal pole resulted in localized flow away from the animal pole. The results show that 1) cortical flow is directed toward areas of localized contraction of the cortical F-actin cytoskeleton; 2) microtubules suppress cortical flow by inhibiting contraction of the cortical F-actin cytoskeleton; and 3) localized, microtubule-dependent suppression of actomyosin-based contraction can control the direction of cortical flow. We discuss these findings in light of current models of cortical flow. PMID:10930453

  17. Modeling of hybrid vehicle fuel economy and fuel engine efficiency

    Science.gov (United States)

    Wu, Wei

    "Near-CV" (i.e., near-conventional vehicle) hybrid vehicles, with an internal combustion engine, and a supplementary storage with low-weight, low-energy but high-power capacity, are analyzed. This design avoids the shortcoming of the "near-EV" and the "dual-mode" hybrid vehicles that need a large energy storage system (in terms of energy capacity and weight). The small storage is used to optimize engine energy management and can provide power when needed. The energy advantage of the "near-CV" design is to reduce reliance on the engine at low power, to enable regenerative braking, and to provide good performance with a small engine. The fuel consumption of internal combustion engines, which might be applied to hybrid vehicles, is analyzed by building simple analytical models that reflect the engines' energy loss characteristics. Both diesel and gasoline engines are modeled. The simple analytical models describe engine fuel consumption at any speed and load point by describing the engine's indicated efficiency and friction. The engine's indicated efficiency and heat loss are described in terms of several easy-to-obtain engine parameters, e.g., compression ratio, displacement, bore and stroke. Engine friction is described in terms of parameters obtained by fitting available fuel measurements on several diesel and spark-ignition engines. The engine models developed are shown to conform closely to experimental fuel consumption and motored friction data. A model of the energy use of "near-CV" hybrid vehicles with different storage mechanism is created, based on simple algebraic description of the components. With powertrain downsizing and hybridization, a "near-CV" hybrid vehicle can obtain a factor of approximately two in overall fuel efficiency (mpg) improvement, without considering reductions in the vehicle load.

  18. Simulation and modeling of turbulent flows

    CERN Document Server

    Gatski, Thomas B; Lumley, John L

    1996-01-01

    This book provides students and researchers in fluid engineering with an up-to-date overview of turbulent flow research in the areas of simulation and modeling. A key element of the book is the systematic, rational development of turbulence closure models and related aspects of modern turbulent flow theory and prediction. Starting with a review of the spectral dynamics of homogenous and inhomogeneous turbulent flows, succeeding chapters deal with numerical simulation techniques, renormalization group methods and turbulent closure modeling. Each chapter is authored by recognized leaders in their respective fields, and each provides a thorough and cohesive treatment of the subject.

  19. Simple models for shear flow transition

    Science.gov (United States)

    Barkley, Dwight

    2011-11-01

    I will discuss recent developments in modeling transitional shear flows with simple two-variable models. Both pipe flow and plane Couette flow are considered. The essential insight is that most large-scale features of these shear flows can be traced to a change from excitability to bistability in the local dynamics. Models are presented in two variables, turbulence intensity and mean shear. A PDE model of pipe flow captures the essence of the puff-slug transition as a change from excitability to bistability. Extended models with turbulence as deterministic transient chaos or multiplicative noise reproduce almost all large-scale features of transitional pipe flow. In particular they capture metastable localized puffs, puff splitting, slugs, localized edge states, a continuous transition to sustained turbulence via spatiotemporal intermittency (directed percolation), and a subsequent increase in turbulence fraction towards uniform, featureless turbulence. A model that additionally takes into account the symmetries of plane Couette flow reproduces localized turbulence and periodic turbulent-laminar bands.

  20. A General Thermal Equilibrium Discharge Flow Model

    Institute of Scientific and Technical Information of China (English)

    ZHAO; Min-fu; ZHANG; Dong-xu; LV; Yu-feng

    2015-01-01

    In isentropic and thermal equilibrium assumptions,a discharge flow model was derived,which unified the rules of normal temperature water discharge,high temperature and high pressure water discharge,two-phase critical flow,saturated steam and superheated steam critical

  1. Modeling a Hybrid Microgrid Using Probabilistic Reconfiguration under System Uncertainties

    Directory of Open Access Journals (Sweden)

    Hadis Moradi

    2017-09-01

    Full Text Available A novel method for a day-ahead optimal operation of a hybrid microgrid system including fuel cells, photovoltaic arrays, a microturbine, and battery energy storage in order to fulfill the required load demand is presented in this paper. In the proposed system, the microgrid has access to the main utility grid in order to exchange power when required. Available municipal waste is utilized to produce the hydrogen required for running the fuel cells, and natural gas will be used as the backup source. In the proposed method, an energy scheduling is introduced to optimize the generating unit power outputs for the next day, as well as the power flow with the main grid, in order to minimize the operational costs and produced greenhouse gases emissions. The nature of renewable energies and electric power consumption is both intermittent and unpredictable, and the uncertainty related to the PV array power generation and power consumption has been considered in the next-day energy scheduling. In order to model uncertainties, some scenarios are produced according to Monte Carlo (MC simulations, and microgrid optimal energy scheduling is analyzed under the generated scenarios. In addition, various scenarios created by MC simulations are applied in order to solve unit commitment (UC problems. The microgrid’s day-ahead operation and emission costs are considered as the objective functions, and the particle swarm optimization algorithm is employed to solve the optimization problem. Overall, the proposed model is capable of minimizing the system costs, as well as the unfavorable influence of uncertainties on the microgrid’s profit, by generating different scenarios.

  2. Modeling Rotating Turbulent Flows with the Body Force Potential Model.

    Science.gov (United States)

    Bhattacharya, Amitabh; Perot, Blair

    2000-11-01

    Like a Reynolds Stress Transport equation model, the turbulent potential model has an explicit Coriolis acceleration term that appears in the model that accounts for rotation effects. In this work the additional secondary effects that system rotation has on the dissipation rate, return-to-isotropy, and fast pressure strain terms are also included in the model. The resulting model is tested in the context of rotating isotropic turbulence, rotating homogeneous shear flow, rotating channel flow, and swirling pipe flow. Many of the model changes are applicable to Reynolds stress transport equation models. All model modifications are frame indifferent.

  3. The innovative concept of three-dimensional hybrid receptor modeling

    Science.gov (United States)

    Stojić, A.; Stanišić Stojić, S.

    2017-09-01

    The aim of this study was to improve the current understanding of air pollution transport processes at regional and long-range scale. For this purpose, three-dimensional (3D) potential source contribution function and concentration weighted trajectory models, as well as new hybrid receptor model, concentration weighted boundary layer (CWBL), which uses a two-dimensional grid and a planetary boundary layer height as a frame of reference, are presented. The refined approach to hybrid receptor modeling has two advantages. At first, it considers whether each trajectory endpoint meets the inclusion criteria based on planetary boundary layer height, which is expected to provide a more realistic representation of the spatial distribution of emission sources and pollutant transport pathways. Secondly, it includes pollutant time series preprocessing to make hybrid receptor models more applicable for suburban and urban locations. The 3D hybrid receptor models presented herein are designed to identify altitude distribution of potential sources, whereas CWBL can be used for analyzing the vertical distribution of pollutant concentrations along the transport pathway.

  4. Fatigue reliability based on residual strength model with hybrid uncertain parameters

    Institute of Scientific and Technical Information of China (English)

    Jun Wang; Zhi-Ping Qiu

    2012-01-01

    The aim of this paper is to evaluate the fatigue reliability with hybrid uncertain parameters based on a residual strength model.By solving the non-probabilistic setbased reliability problem and analyzing the reliability with randomness,the fatigue reliability with hybrid parameters can be obtained.The presented hybrid model can adequately consider all uncertainties affecting the fatigue reliability with hybrid uncertain parameters.A comparison among the presented hybrid model,non-probabilistic set-theoretic model and the conventional random model is made through two typical numerical examples.The results show that the presented hybrid model,which can ensure structural security,is effective and practical.

  5. Viscoelastic flow simulations in model porous media

    Science.gov (United States)

    De, S.; Kuipers, J. A. M.; Peters, E. A. J. F.; Padding, J. T.

    2017-05-01

    We investigate the flow of unsteadfy three-dimensional viscoelastic fluid through an array of symmetric and asymmetric sets of cylinders constituting a model porous medium. The simulations are performed using a finite-volume methodology with a staggered grid. The solid-fluid interfaces of the porous structure are modeled using a second-order immersed boundary method [S. De et al., J. Non-Newtonian Fluid Mech. 232, 67 (2016), 10.1016/j.jnnfm.2016.04.002]. A finitely extensible nonlinear elastic constitutive model with Peterlin closure is used to model the viscoelastic part. By means of periodic boundary conditions, we model the flow behavior for a Newtonian as well as a viscoelastic fluid through successive contractions and expansions. We observe the presence of counterrotating vortices in the dead ends of our geometry. The simulations provide detailed insight into how flow structure, viscoelastic stresses, and viscoelastic work change with increasing Deborah number De. We observe completely different flow structures and different distributions of the viscoelastic work at high De in the symmetric and asymmetric configurations, even though they have the exact same porosity. Moreover, we find that even for the symmetric contraction-expansion flow, most energy dissipation is occurring in shear-dominated regions of the flow domain, not in extensional-flow-dominated regions.

  6. Computational modelling flow and transport

    NARCIS (Netherlands)

    Stelling, G.S.; Booij, N.

    1999-01-01

    Lecture notes CT wa4340. Derivation of equations using balance principles; numerical treatment of ordinary differential equations; time dependent partial differential equations; the strucure of a computer model:DUFLO; usage of numerical models.

  7. Battery thermal models for hybrid vehicle simulations

    Science.gov (United States)

    Pesaran, Ahmad A.

    This paper summarizes battery thermal modeling capabilities for: (1) an advanced vehicle simulator (ADVISOR); and (2) battery module and pack thermal design. The National Renewable Energy Laboratory's (NREL's) ADVISOR is developed in the Matlab/Simulink environment. There are several battery models in ADVISOR for various chemistry types. Each one of these models requires a thermal model to predict the temperature change that could affect battery performance parameters, such as resistance, capacity and state of charges. A lumped capacitance battery thermal model in the Matlab/Simulink environment was developed that included the ADVISOR battery performance models. For thermal evaluation and design of battery modules and packs, NREL has been using various computer aided engineering tools including commercial finite element analysis software. This paper will discuss the thermal ADVISOR battery model and its results, along with the results of finite element modeling that were presented at the workshop on "Development of Advanced Battery Engineering Models" in August 2001.

  8. Hybrid stent device of flow-diverting effect and stent-assisted coil embolization formed by fractal structure.

    Science.gov (United States)

    Kojima, Masahiro; Irie, Keiko; Masunaga, Kouhei; Sakai, Yasuhiko; Nakajima, Masahiro; Takeuchi, Masaru; Fukuda, Toshio; Arai, Fumihito; Negoro, Makoto

    2016-05-01

    This paper presents a novel hybrid medical stent device. This hybrid stent device formed by fractal mesh structures provides a flow-diverting effect and stent-assisted coil embolization. Flow-diverter stents decrease blood flow into an aneurysm to prevent its rupture. In general, the mesh size of a flow-diverter stent needs to be small enough to prevent blood flow into the aneurysm. Conventional flow-diverter stents are not available for stent-assisted coil embolization, which is an effective method for aneurysm occlusion, because the mesh size is too small to insert a micro-catheter for coil embolization. The proposed hybrid stent device is capable of stent-assisted coil embolization while simultaneously providing a flow-diverting effect. The fractal stent device is composed of mesh structures with fine and rough mesh areas. The rough mesh area can be used to insert a micro-catheter for stent-assisted coil embolization. Flow-diverting effects of two fractal stent designs were composed to three commercially available stent designs. Flow-diverting effects were analyzed using computational fluid dynamics (CFD) analysis and particle image velocimetry (PIV) experiment. Based on the CFD and PIV results, the fractal stent devices reduce the flow velocity inside an aneurism just as much as the commercially available flow-diverting stents while allowing stent-assisted coil embolization.

  9. Comparative Simulation Study of Production Scheduling in the Hybrid and the Parallel Flow

    Directory of Open Access Journals (Sweden)

    Varela Maria L.R.

    2017-06-01

    Full Text Available Scheduling is one of the most important decisions in production control. An approach is proposed for supporting users to solve scheduling problems, by choosing the combination of physical manufacturing system configuration and the material handling system settings. The approach considers two alternative manufacturing scheduling configurations in a two stage product oriented manufacturing system, exploring the hybrid flow shop (HFS and the parallel flow shop (PFS environments. For illustrating the application of the proposed approach an industrial case from the automotive components industry is studied. The main aim of this research to compare results of study of production scheduling in the hybrid and the parallel flow, taking into account the makespan minimization criterion. Thus the HFS and the PFS performance is compared and analyzed, mainly in terms of the makespan, as the transportation times vary. The study shows that the performance HFS is clearly better when the work stations’ processing times are unbalanced, either in nature or as a consequence of the addition of transport times just to one of the work station processing time but loses advantage, becoming worse than the performance of the PFS configuration when the work stations’ processing times are balanced, either in nature or as a consequence of the addition of transport times added on the work stations’ processing times. This means that physical layout configurations along with the way transport time are including the work stations’ processing times should be carefully taken into consideration due to its influence on the performance reached by both HFS and PFS configurations.

  10. A new dynamics model for traffic flow

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    As a study method of traffic flow, dynamics models were developedand applied in the last few decades. However, there exist some flaws in most existing models. In this note, a new dynamics model is proposed by using car-following theory and the usual connection method of micro-macro variables, which can overcome some ubiquitous problems in the existing models. Numerical results show that the new model can very well simulate traffic flow conditions, such as congestion, evacuation of congestion, stop-and-go phenomena and phantom jam.

  11. Hybrid Scheduling Model for Independent Grid Tasks

    Directory of Open Access Journals (Sweden)

    J. Shanthini

    2015-01-01

    Full Text Available Grid computing facilitates the resource sharing through the administrative domains which are geographically distributed. Scheduling in a distributed heterogeneous environment is intrinsically very hard because of the heterogeneous nature of resource collection. Makespan and tardiness are two different measures of scheduling, and many of the previous researches concentrated much on reduction of makespan, which measures the machine utilization. In this paper, we propose a hybrid scheduling algorithm for scheduling independent grid tasks with the objective of reducing total weighted tardiness of grid tasks. Tardiness is to measure the due date performance, which has a direct impact on cost for executing the jobs. In this paper we propose BG_ATC algorithm which is a combination of best gap (BG search and Apparent Tardiness Cost (ATC indexing algorithm. Furthermore, we implemented these two algorithms in two different phases of the scheduling process. In addition to that, the comparison was made on results with various benchmark algorithms and the experimental results show that our algorithm outperforms the benchmark algorithms.

  12. Hybrid Scheduling Model for Independent Grid Tasks.

    Science.gov (United States)

    Shanthini, J; Kalaikumaran, T; Karthik, S

    2015-01-01

    Grid computing facilitates the resource sharing through the administrative domains which are geographically distributed. Scheduling in a distributed heterogeneous environment is intrinsically very hard because of the heterogeneous nature of resource collection. Makespan and tardiness are two different measures of scheduling, and many of the previous researches concentrated much on reduction of makespan, which measures the machine utilization. In this paper, we propose a hybrid scheduling algorithm for scheduling independent grid tasks with the objective of reducing total weighted tardiness of grid tasks. Tardiness is to measure the due date performance, which has a direct impact on cost for executing the jobs. In this paper we propose BG_ATC algorithm which is a combination of best gap (BG) search and Apparent Tardiness Cost (ATC) indexing algorithm. Furthermore, we implemented these two algorithms in two different phases of the scheduling process. In addition to that, the comparison was made on results with various benchmark algorithms and the experimental results show that our algorithm outperforms the benchmark algorithms.

  13. Efficient Proof Engines for Bounded Model Checking of Hybrid Systems

    DEFF Research Database (Denmark)

    Fränzle, Martin; Herde, Christian

    2005-01-01

    In this paper we present HySat, a new bounded model checker for linear hybrid systems, incorporating a tight integration of a DPLL-based pseudo-Boolean SAT solver and a linear programming routine as core engine. In contrast to related tools like MathSAT, ICS, or CVC, our tool exploits all...

  14. A novel Monte Carlo approach to hybrid local volatility models

    NARCIS (Netherlands)

    A.W. van der Stoep (Anton); L.A. Grzelak (Lech Aleksander); C.W. Oosterlee (Cornelis)

    2017-01-01

    textabstractWe present in a Monte Carlo simulation framework, a novel approach for the evaluation of hybrid local volatility [Risk, 1994, 7, 18–20], [Int. J. Theor. Appl. Finance, 1998, 1, 61–110] models. In particular, we consider the stochastic local volatility model—see e.g. Lipton et al. [Quant.

  15. (Hybrid) Baryons in the Flux-Tube Model

    CERN Document Server

    Page, P R

    1999-01-01

    We construct baryons and hybrid baryons in the non-relativistic flux-tube model of Isgur and Paton. The motion of the flux-tube with the three quark positions fixed, except for centre of mass corrections, is discussed. It is shown that the problem can to an excellent approximation be reduced to the independent motion of a junction and strings.

  16. New Models of Hybrid Leadership in Global Higher Education

    Science.gov (United States)

    Tonini, Donna C.; Burbules, Nicholas C.; Gunsalus, C. K.

    2016-01-01

    This manuscript highlights the development of a leadership preparation program known as the Nanyang Technological University Leadership Academy (NTULA), exploring the leadership challenges unique to a university undergoing rapid growth in a highly multicultural context, and the hybrid model of leadership it developed in response to globalization.…

  17. Incorporating RTI in a Hybrid Model of Reading Disability

    Science.gov (United States)

    Spencer, Mercedes; Wagner, Richard K.; Schatschneider, Christopher; Quinn, Jamie M.; Lopez, Danielle; Petscher, Yaacov

    2014-01-01

    The present study seeks to evaluate a hybrid model of identification that incorporates response to instruction and intervention (RTI) as one of the key symptoms of reading disability. The 1-year stability of alternative operational definitions of reading disability was examined in a large-scale sample of students who were followed longitudinally…

  18. A Hybrid Analytical-Numerical Solution to the Laminar Flow inside Biconical Ducts

    Directory of Open Access Journals (Sweden)

    Thiago Antonini Alves

    2015-10-01

    Full Text Available In this work was presented a hybrid analytical-numerical solution to hydrodynamic problem of fully developed Newtonian laminar flow inside biconical ducts employing the Generalized Integral Transform Technique (GITT. In order to facilitate the analytical treatment and the application of the boundary conditions, a Conformal Transform was used to change the domain into a more suitable coordinate system. Thereafter, the GITT was applied on the momentum equation to obtain the velocity field. Numerical results were obtained for quantities of practical interest, such as maximum and minimum velocity, Fanning friction factor, Poiseuille number, Hagenbach factor and hydrodynamic entry length.

  19. THE FINITE VOLUME PROJECTION METHOD WITH HYBRID UNSTRUCTURED TRIANGULAR COLLOCATED GRIDS FOR INCOMPRESSIBLE FLOWS

    Institute of Scientific and Technical Information of China (English)

    GAO Wei; DUAN Ya-li; LIU Ru-xun

    2009-01-01

    In this article a finite volume method is proposed to solve viscous incompressible Navier-Stokes equations in two-dimensional regions with corners and curved boundaries. A hybrid collocated-grid variable arrangement is adopted, in which the velocity and pressure are stored at the centroid and the circumcenters of the triangular control cell, respectively. The cell flux is defined at the mid-point of the cell face. Second-order implicit time integration schemes are used for convection and diffusion terms. The second-order upwind scheme is used for convection fluxes. The present method is validated by results of several viscous flows.

  20. Hybrid multiscale modeling and prediction of cancer cell behavior.

    Science.gov (United States)

    Zangooei, Mohammad Hossein; Habibi, Jafar

    2017-01-01

    Understanding cancer development crossing several spatial-temporal scales is of great practical significance to better understand and treat cancers. It is difficult to tackle this challenge with pure biological means. Moreover, hybrid modeling techniques have been proposed that combine the advantages of the continuum and the discrete methods to model multiscale problems. In light of these problems, we have proposed a new hybrid vascular model to facilitate the multiscale modeling and simulation of cancer development with respect to the agent-based, cellular automata and machine learning methods. The purpose of this simulation is to create a dataset that can be used for prediction of cell phenotypes. By using a proposed Q-learning based on SVR-NSGA-II method, the cells have the capability to predict their phenotypes autonomously that is, to act on its own without external direction in response to situations it encounters. Computational simulations of the model were performed in order to analyze its performance. The most striking feature of our results is that each cell can select its phenotype at each time step according to its condition. We provide evidence that the prediction of cell phenotypes is reliable. Our proposed model, which we term a hybrid multiscale modeling of cancer cell behavior, has the potential to combine the best features of both continuum and discrete models. The in silico results indicate that the 3D model can represent key features of cancer growth, angiogenesis, and its related micro-environment and show that the findings are in good agreement with biological tumor behavior. To the best of our knowledge, this paper is the first hybrid vascular multiscale modeling of cancer cell behavior that has the capability to predict cell phenotypes individually by a self-generated dataset.

  1. Brain anatomical structure segmentation by hybrid discriminative/generative models.

    Science.gov (United States)

    Tu, Z; Narr, K L; Dollar, P; Dinov, I; Thompson, P M; Toga, A W

    2008-04-01

    In this paper, a hybrid discriminative/generative model for brain anatomical structure segmentation is proposed. The learning aspect of the approach is emphasized. In the discriminative appearance models, various cues such as intensity and curvatures are combined to locally capture the complex appearances of different anatomical structures. A probabilistic boosting tree (PBT) framework is adopted to learn multiclass discriminative models that combine hundreds of features across different scales. On the generative model side, both global and local shape models are used to capture the shape information about each anatomical structure. The parameters to combine the discriminative appearance and generative shape models are also automatically learned. Thus, low-level and high-level information is learned and integrated in a hybrid model. Segmentations are obtained by minimizing an energy function associated with the proposed hybrid model. Finally, a grid-face structure is designed to explicitly represent the 3-D region topology. This representation handles an arbitrary number of regions and facilitates fast surface evolution. Our system was trained and tested on a set of 3-D magnetic resonance imaging (MRI) volumes and the results obtained are encouraging.

  2. A hybrid ensemble-OI Kalman filter for efficient data assimilation into a 3-D biogeochemical model of the Mediterranean

    KAUST Repository

    Tsiaras, Kostas P.

    2017-04-20

    A hybrid ensemble data assimilation scheme (HYBRID), combining a flow-dependent with a static background covariance, was developed and implemented for assimilating satellite (SeaWiFS) Chl-a data into a marine ecosystem model of the Mediterranean. The performance of HYBRID was assessed against a model free-run, the ensemble-based singular evolutive interpolated Kalman (SEIK) and its variant with static covariance (SFEK), with regard to the assimilated variable (Chl-a) and non-assimilated variables (dissolved inorganic nutrients). HYBRID was found more efficient than both SEIK and SFEK, reducing the Chl-a error by more than 40% in most areas, as compared to the free-run. Data assimilation had a positive overall impact on nutrients, except for a deterioration of nitrates simulation by SEIK in the most productive area (Adriatic). This was related to SEIK pronounced update in this area and the phytoplankton limitation on phosphate that lead to a built up of excess nitrates. SEIK was found more efficient in productive and variable areas, where its ensemble exhibited important spread. SFEK had an effect mostly on Chl-a, performing better than SEIK in less dynamic areas, adequately described by the dominant modes of its static covariance. HYBRID performed well in all areas, due to its “blended” covariance. Its flow-dependent component appears to track changes in the system dynamics, while its static covariance helps maintaining sufficient spread in the forecast. HYBRID sensitivity experiments showed that an increased contribution from the flow-dependent covariance results in a deterioration of nitrates, similar to SEIK, while the improvement of HYBRID with increasing flow-dependent ensemble size quickly levels off.

  3. Hybrid modelling of a sugar boiling process

    CERN Document Server

    Lauret, Alfred Jean Philippe; Gatina, Jean Claude

    2012-01-01

    The first and maybe the most important step in designing a model-based predictive controller is to develop a model that is as accurate as possible and that is valid under a wide range of operating conditions. The sugar boiling process is a strongly nonlinear and nonstationary process. The main process nonlinearities are represented by the crystal growth rate. This paper addresses the development of the crystal growth rate model according to two approaches. The first approach is classical and consists of determining the parameters of the empirical expressions of the growth rate through the use of a nonlinear programming optimization technique. The second is a novel modeling strategy that combines an artificial neural network (ANN) as an approximator of the growth rate with prior knowledge represented by the mass balance of sucrose crystals. The first results show that the first type of model performs local fitting while the second offers a greater flexibility. The two models were developed with industrial data...

  4. Hybrid PIV-PTV technique for measuring blood flow in rat mesenteric vessels.

    Science.gov (United States)

    Ha, Hojin; Nam, Kweon-Ho; Lee, Sang Joon

    2012-11-01

    The micro-particle tracking velocimetry (μ-PTV) technique is used to obtain the velocity fields of blood flow in the microvasculature under in vivo conditions because it can provide the blood velocity distribution in microvessels with high spatial resolution. The in vivo μ-PTV technique usually requires a few to tens of seconds to obtain a whole velocity profile across the vessel diameter because of the limited number density of tracer particles under in vivo conditions. Thus, the μ-PTV technique alone is limited in measuring unsteady blood flows that fluctuate irregularly due to the heart beating and muscle movement in surrounding tissues. In this study, a new hybrid PIV-PTV technique was established by combining PTV and particle image velocimetry (PIV) techniques to resolve the drawbacks of the μ-PTV method in measuring blood flow in microvessels under in vivo conditions. Images of red blood cells (RBCs) and fluorescent particles in rat mesenteric vessels were obtained simultaneously. Temporal variations of the centerline blood velocity were monitored using a fast Fourier transform-based cross-correlation PIV method. The fluorescence particle images were analyzed using the μ-PTV technique to extract the spatial distribution of the velocity vectors. Data from the μ-PTV and PIV methods were combined to obtain a better estimate of the velocity profile in actual blood flow. This technique will be useful in investigating hemodynamics in microcirculation by measuring unsteady irregular blood flows more accurately.

  5. Hybrid Sludge Modeling in Water Treatment Processes

    OpenAIRE

    Brenda, Marian

    2015-01-01

    Sludge occurs in many waste water and drinking water treatment processes. The numeric modeling of sludge is therefore crucial for developing and optimizing water treatment processes. Numeric single-phase sludge models mainly include settling and viscoplastic behavior. Even though many investigators emphasize the importance of modeling the rheology of sludge for good simulation results, it is difficult to measure, because of settling and the viscoplastic behavior. In this thesis, a new method ...

  6. Tracer technology modeling the flow of fluids

    CERN Document Server

    Levenspiel, Octave

    2012-01-01

    A vessel’s behavior as a heat exchanger, absorber, reactor, or other process unit is dependent upon how fluid flows through the vessel.  In early engineering, the designer would assume either plug flow or mixed flow of the fluid through the vessel.  However, these assumptions were oftentimes inaccurate, sometimes being off by a volume factor of 100 or more.  The result of this unreliable figure produced ineffective products in multiple reaction systems.   Written by a pioneering researcher in the field of chemical engineering, the tracer method was introduced to provide more accurate flow data.  First, the tracer method measured the actual flow of fluid through a vessel.  Second, it developed a suitable model to represent the flow in question.  Such models are used to follow the flow of fluid in chemical reactors and other process units, like in rivers and streams, or solid and porous structures.  In medicine, the tracer method is used to study the flow of chemicals—harmful  and harmless—in the...

  7. Modelling and analysis of real-time and hybrid systems

    Energy Technology Data Exchange (ETDEWEB)

    Olivero, A.

    1994-09-29

    This work deals with the modelling and analysis of real-time and hybrid systems. We first present the timed-graphs as model for the real-time systems and we recall the basic notions of the analysis of real-time systems. We describe the temporal properties on the timed-graphs using TCTL formulas. We consider two methods for property verification: in one hand we study the symbolic model-checking (based on backward analysis) and in the other hand we propose a verification method derived of the construction of the simulation graph (based on forward analysis). Both methods have been implemented within the KRONOS verification tool. Their application for the automatic verification on several real-time systems confirms the practical interest of our approach. In a second part we study the hybrid systems, systems combining discrete components with continuous ones. As in the general case the analysis of this king of systems is not decidable, we identify two sub-classes of hybrid systems and we give a construction based method for the generation of a timed-graph from an element into the sub-classes. We prove that in one case the timed-graph obtained is bi-similar with the considered system and that there exists a simulation in the other case. These relationships allow the application of the described technics on the hybrid systems into the defined sub-classes. (authors). 60 refs., 43 figs., 8 tabs., 2 annexes.

  8. A hybrid parallel framework for the cellular Potts model simulations

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Yi [Los Alamos National Laboratory; He, Kejing [SOUTH CHINA UNIV; Dong, Shoubin [SOUTH CHINA UNIV

    2009-01-01

    The Cellular Potts Model (CPM) has been widely used for biological simulations. However, most current implementations are either sequential or approximated, which can't be used for large scale complex 3D simulation. In this paper we present a hybrid parallel framework for CPM simulations. The time-consuming POE solving, cell division, and cell reaction operation are distributed to clusters using the Message Passing Interface (MPI). The Monte Carlo lattice update is parallelized on shared-memory SMP system using OpenMP. Because the Monte Carlo lattice update is much faster than the POE solving and SMP systems are more and more common, this hybrid approach achieves good performance and high accuracy at the same time. Based on the parallel Cellular Potts Model, we studied the avascular tumor growth using a multiscale model. The application and performance analysis show that the hybrid parallel framework is quite efficient. The hybrid parallel CPM can be used for the large scale simulation ({approx}10{sup 8} sites) of complex collective behavior of numerous cells ({approx}10{sup 6}).

  9. Multiple Temperature Model for Near Continuum Flows

    Energy Technology Data Exchange (ETDEWEB)

    XU, Kun; Liu, Hongwei [Hong Kong University of Science and Technology, Kowloon (Hong Kong); Jiang, Jianzheng [Chinese Academy ofSciences, Beijing (China)

    2007-09-15

    In the near continuum flow regime, the flow may have different translational temperatures in different directions. It is well known that for increasingly rarefied flow fields, the predictions from continuum formulation, such as the Navier-Stokes equations, lose accuracy. These inaccuracies may be partially due to the single temperature assumption in the Navier-Stokes equations. Here, based on the gas-kinetic Bhatnagar-Gross-Krook (BGK) equation, a multitranslational temperature model is proposed and used in the flow calculations. In order to fix all three translational temperatures, two constraints are additionally proposed to model the energy exchange in different directions. Based on the multiple temperature assumption, the Navier-Stokes relation between the stress and strain is replaced by the temperature relaxation term, and the Navier-Stokes assumption is recovered only in the limiting case when the flow is close to the equilibrium with the same temperature in different directions. In order to validate the current model, both the Couette and Poiseuille flows are studied in the transition flow regime.

  10. Flow field mapping in data rack model

    Directory of Open Access Journals (Sweden)

    Matěcha J.

    2013-04-01

    Full Text Available The main objective of this study was to map the flow field inside the data rack model, fitted with three 1U server models. The server model is based on the common four-processor 1U server. The main dimensions of the data rack model geometry are taken fully from the real geometry. Only the model was simplified with respect to the greatest possibility in the experimental measurements. The flow field mapping was carried out both experimentally and numerically. PIV (Particle Image Velocimetry method was used for the experimental flow field mapping, when the flow field has been mapped for defined regions within the 2D/3D data rack model. Ansys CFX and OpenFOAM software were used for the numerical solution. Boundary conditions for numerical model were based on data obtained from experimental measurement of velocity profile at the output of the server mockup. This velocity profile was used as the input boundary condition in the calculation. In order to achieve greater consistency of the numerical model with experimental data, the numerical model was modified with regard to the results of experimental measurements. Results from the experimental and numerical measurements were compared and the areas of disparateness were identified. In further steps the obtained proven numerical model will be utilized for the real geometry of data racks and data.

  11. QCD Phase Transition in a new Hybrid Model Formulation

    CERN Document Server

    Srivastava, P K

    2013-01-01

    Search of a proper and realistic equations of state (EOS) for strongly interacting matter used in the study of QCD phase diagram still appears as a challenging task. Recently, we have constructed a hybrid model description for the quark gluon plasma (QGP) as well as hadron gas (HG) phases where we use a new excluded-volume model for HG and a thermodynamically-consistent quasiparticle model for the QGP phase. We attempt to use them to get a QCD phase boundary and a critical point. We test our hybrid model by reproducing the entire lattice QCD data for strongly interacting matter at zero baryon chemical potential ($\\mu_{B}$)and predict the results at finite $\\mu_{B}$ and $T$.

  12. Strongly Interacting Matter at Finite Chemical Potential: Hybrid Model Approach

    Science.gov (United States)

    Srivastava, P. K.; Singh, C. P.

    2013-06-01

    Search for a proper and realistic equation of state (EOS) for strongly interacting matter used in the study of the QCD phase diagram still appears as a challenging problem. Recently, we constructed a hybrid model description for the quark-gluon plasma (QGP) as well as hadron gas (HG) phases where we used an excluded volume model for HG and a thermodynamically consistent quasiparticle model for the QGP phase. The hybrid model suitably describes the recent lattice results of various thermodynamical as well as transport properties of the QCD matter at zero baryon chemical potential (μB). In this paper, we extend our investigations further in obtaining the properties of QCD matter at finite value of μB and compare our results with the most recent results of lattice QCD calculation.

  13. Base Flow Model Validation Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The innovation is the systematic "building-block" validation of CFD/turbulence models employing a GUI driven CFD code (RPFM) and existing as well as new data sets to...

  14. DYNAMIC CHARACTERISTICS OF ELECTRO-HYDRAULIC PROPORTIONAL PRESSURE-FLOW HYBRID VALVE

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The structure principles under the flow and pressure working conditions are studied, in order to investigate the dynamic characteristics of the electro-hydraulic proportional pressure-flow hybrid valve. According to the structure principles under the two different working conditions, the transfer functions under such conditions are derived. With the transfer functions, some structure elements that may affect its performance, are investigated, afterwards some principles of optimality and effective methods for improving the dynamic performance of the valve are proposed. The conclusions can be used to instruct engineering applications and products designing. The test results conform to the results of the theoretical analysis and simulation, which proves the correctness of the study and simulation works.

  15. Power Quality Improvement Using Hybrid Power Flow Controller in Power System

    Directory of Open Access Journals (Sweden)

    Manidhar Thula ,

    2014-01-01

    Full Text Available This paper discusses the applicability of Hybrid Power Flow Controller (HPFC as an alternative to Unified Power Flow Controller (UPFC for improvement of power system performance. UPFC is a flexible AC transmission system (FACTS device containing two switching converters, one in series and one in shunt. To configure the HPFC, one of the switching converters of the UPFC is replaced by thyristor controlled variable impedances, thus reducing the cost. In this paper, the HPFC has been configured by multilevel Voltage Source Converter (VSC used for the shunt compensation branches and a thyristor controlled variable impedance used for series compensation. It is shown that with suitable control the HPFC can inject a voltage of required magnitude in series with the line at any desired angle, just like UPFC. This helps in providing compensation equivalent to UPFC and improving the steady state stability limits of the power system.

  16. A study on flow distribution for integrated hybrid actuator by analysis of reed valve

    Energy Technology Data Exchange (ETDEWEB)

    Woo, Jang Mi; Kang, Seung Hwan; Ko, Han Seo [Sungkyunkwan University, Suwon (Korea, Republic of); Goo, Nam Seo; Li, Yong Zhe [Konkuk University, Seoul (Korea, Republic of)

    2016-05-15

    Many studies have been conducted recently on an integrated hybrid actuator due to the increasing need for unmanned aircraft and guided weapons. In this study, flow distribution was analyzed for a reed valve which was used for flow regulation to improve the performance of the actuator. By using a Fluid structural interaction (FSI) technique with Computational fluid dynamics (CFD) having a moving mesh, numerical analysis was performed according to the thickness, shape and driving frequency of the reed valve. From the calculated results, the maximum performance of the reed valve was found at the valve thickness of 0.15 mm and the driving frequency of 250 Hz for a no-load state. The optimum thickness and shape for the valve for each driving frequency were also realized.

  17. Hybrid water flow-like algorithm with Tabu search for traveling salesman problem

    Science.gov (United States)

    Bostamam, Jasmin M.; Othman, Zulaiha

    2016-08-01

    This paper presents a hybrid Water Flow-like Algorithm with Tabu Search for solving travelling salesman problem (WFA-TS-TSP).WFA has been proven its outstanding performances in solving TSP meanwhile TS is a conventional algorithm which has been used since decades to solve various combinatorial optimization problem including TSP. Hybridization between WFA with TS provides a better balance of exploration and exploitation criteria which are the key elements in determining the performance of one metaheuristic. TS use two different local search namely, 2opt and 3opt separately. The proposed WFA-TS-TSP is tested on 23 sets on the well-known benchmarked symmetric TSP instances. The result shows that the proposed WFA-TS-TSP has significant better quality solutions compared to WFA. The result also shows that the WFA-TS-TSP with 3-opt obtained the best quality solution. With the result obtained, it could be concluded that WFA has potential to be further improved by using hybrid technique or using better local search technique.

  18. Active diagnosis of hybrid systems - A model predictive approach

    OpenAIRE

    2009-01-01

    A method for active diagnosis of hybrid systems is proposed. The main idea is to predict the future output of both normal and faulty model of the system; then at each time step an optimization problem is solved with the objective of maximizing the difference between the predicted normal and faulty outputs constrained by tolerable performance requirements. As in standard model predictive control, the first element of the optimal input is applied to the system and the whole procedure is repeate...

  19. Hybrid Neuro-Fuzzy Classifier Based On Nefclass Model

    Directory of Open Access Journals (Sweden)

    Bogdan Gliwa

    2011-01-01

    Full Text Available The paper presents hybrid neuro-fuzzy classifier, based on NEFCLASS model, which wasmodified. The presented classifier was compared to popular classifiers – neural networks andk-nearest neighbours. Efficiency of modifications in classifier was compared with methodsused in original model NEFCLASS (learning methods. Accuracy of classifier was testedusing 3 datasets from UCI Machine Learning Repository: iris, wine and breast cancer wisconsin.Moreover, influence of ensemble classification methods on classification accuracy waspresented.

  20. Advanced Geometric Modeler with Hybrid Representation

    Institute of Scientific and Technical Information of China (English)

    杨长贵; 陈玉健; 等

    1996-01-01

    An advanced geometric modeler GEMS4.0 has been developed,in which feature representation is used at the highest level abstraction of a product model.Boundary representation is used at the bottom level,while CSG model is adopted at the median level.A BRep data structure capable of modeling non-manifold is adopted.UNRBS representation is used for all curved surfaces,Quadric surfaces have dual representations consisting of their geometric data such as radius,center point,and center axis.Boundary representation of free form surfaces is easily built by sweeping and skinning method with NURBS geometry.Set operations on curved solids with boundary representation are performed by an evaluation process consisting of four steps.A file exchange facility is provided for the conversion between product data described by STEP and product information generated by GEMS4.0.

  1. Gradient-augmented hybrid interface capturing method for incompressible two-phase flow

    Science.gov (United States)

    Zheng, Fu; Shi-Yu, Wu; Kai-Xin, Liu

    2016-06-01

    Motivated by inconveniences of present hybrid methods, a gradient-augmented hybrid interface capturing method (GAHM) is presented for incompressible two-phase flow. A front tracking method (FTM) is used as the skeleton of the GAHM for low mass loss and resources. Smooth eulerian level set values are calculated from the FTM interface, and are used for a local interface reconstruction. The reconstruction avoids marker particle redistribution and enables an automatic treatment of interfacial topology change. The cubic Hermit interpolation is employed in all steps of the GAHM to capture subgrid structures within a single spacial cell. The performance of the GAHM is carefully evaluated in a benchmark test. Results show significant improvements of mass loss, clear subgrid structures, highly accurate derivatives (normals and curvatures) and low cost. The GAHM is further coupled with an incompressible multiphase flow solver, Super CE/SE, for more complex and practical applications. The updated solver is evaluated through comparison with an early droplet research. Project supported by the National Natural Science Foundation of China (Grant Nos. 10972010, 11028206, 11371069, 11372052, 11402029, and 11472060), the Science and Technology Development Foundation of China Academy of Engineering Physics (CAEP), China (Grant No. 2014B0201030), and the Defense Industrial Technology Development Program of China (Grant No. B1520132012).

  2. Evaluation of a general hybrid RANS/LES model in smooth wall reattachment

    Science.gov (United States)

    Haering, Sigfried; Moser, Robert

    2016-11-01

    Hybrid RANS/LES modeling approaches often exhibit deficiencies when used for common problems of engineering interest containing flow features such as unsteady smooth-wall separation and reattachment with non-trivial domains and discretization. Often, problem specific modifications and tuning must be employed rendering these models ineffective as generally predictive tools. A new broadly applicable hybrid RANS/LES modeling approach that is being developed to specifically address challenges associated with complex geometries and flows is presented. In general, the approach seeks to a balance between theoretical and actual modeled turbulent kinetic energy provided information from the underlying turbulence model, the resolved turbulence, and the available resolution. Anisotropy in the grid and resolved field are directly integrated into this balance. Here, we examine model performance with the case of a wall-mounted smooth hump of Greenblatt et al.. Excellent agreement with experimental results is attained while significantly outperforming delayed detached eddy simulation (DDES) for nearly the same computational expense and without any problem-specific modifications.

  3. Simulation of Wind-solar Hybrid Microgrid and Power Flow Analysis%风光互补微电网仿真与潮流分析

    Institute of Scientific and Technical Information of China (English)

    冯华; 冯彪; 孙志军

    2013-01-01

    Matlab/Simulink was applied in the modelling and simulation of wind-solar hybrid microgrid by using wind-solar hybrid as micro power source. According to the structure of wind-solar hybrid microgrid,the grid node types were simplified and identified. Power flow analysis was done by applying Newton-Raphson-based linear model,the result of which showed that the flow convergence is better, and it can provide a theoretical reference for the development of wind-solar hybrid microgrid.%以风光互补作为微电源,利用Matlab/Simulink对风光互补微电网建模并进行仿真,根据风光互补微电网结构,简化、明确微电网节点类型,基于牛顿拉夫逊法为基础的线性化模型对构建微电网进行相关潮流分析,潮流收敛较好,为风光互补微电网的发展提供有效的理论依据。

  4. Long-wave approximation for hybridization modeling of local surface plasmonic resonance in nanoshells.

    Science.gov (United States)

    Li, Ben Q; Liu, Changhong

    2011-01-15

    A hybridization model for the localized surface plasmon resonance of a nanoshell is developed within the framework of long-wave approximation. Compared with the existing hybridization model derived from the hydrodynamic simulation of free electron gas, this approach is much simpler and gives identical results for a concentric nanoshell. Also, with this approach, the limitations associated with the original hybridization model are succinctly stated. Extension of this approach to hybridization modeling of more complicated structures such as multiplayered nanoshells is straightforward.

  5. Improved modeling techniques for turbomachinery flow fields

    Energy Technology Data Exchange (ETDEWEB)

    Lakshminarayana, B.; Fagan, J.R. Jr.

    1995-12-31

    This program has the objective of developing an improved methodology for modeling turbomachinery flow fields, including the prediction of losses and efficiency. Specifically, the program addresses the treatment of the mixing stress tensor terms attributed to deterministic flow field mechanisms required in steady-state Computational Fluid Dynamic (CFD) models for turbomachinery flow fields. These mixing stress tensors arise due to spatial and temporal fluctuations (in an absolute frame of reference) caused by rotor-stator interaction due to various blade rows and by blade-to-blade variation of flow properties. This will be accomplished in a cooperative program by Penn State University and the Allison Engine Company. These tasks include the acquisition of previously unavailable experimental data in a high-speed turbomachinery environment, the use of advanced techniques to analyze the data, and the development of a methodology to treat the deterministic component of the mixing stress tenor.

  6. MCRG Flow for the nonlinear Sigma Model

    CERN Document Server

    Koerner, Daniel; Wipf, Andreas

    2013-01-01

    A study of the renormalization group flow in the three-dimensional nonlinear O(N) sigma model using Monte Carlo Renormalization Group (MCRG) techniques is presented. To achieve this, we combine an improved blockspin transformation with the canonical demon method to determine the flow diagram for a number of different truncations. Systematic errors of the approach are highlighted. Results are discussed with hindsight on the fixed point structure of the model and the corresponding critical exponents. Special emphasis is drawn on the existence of a nontrivial ultraviolet fixed point as required for theories modeling the asymptotic safety scenario of quantum gravity.

  7. A hybrid RANS-LES approach with delayed-DES and wall-modelled LES capabilities

    Energy Technology Data Exchange (ETDEWEB)

    Shur, Mikhail L. [New Technologies and Services, 14, Dobrolyubov Avenue, 197198 St. Petersburg (Russian Federation); Spalart, Philippe R. [Boeing Commercial Airplanes, P.O. Box 3707, Seattle, WA 98124 (United States); Strelets, Mikhail Kh. [New Technologies and Services, 14, Dobrolyubov Avenue, 197198 St. Petersburg (Russian Federation)], E-mail: strelets@mail.rcom.ru; Travin, Andrey K. [New Technologies and Services, 14, Dobrolyubov Avenue, 197198 St. Petersburg (Russian Federation)

    2008-12-15

    A CFD strategy is proposed that combines delayed detached-eddy simulation (DDES) with an improved RANS-LES hybrid model aimed at wall modelling in LES (WMLES). The system ensures a different response depending on whether the simulation does or does not have inflow turbulent content. In the first case, it reduces to WMLES: most of the turbulence is resolved except near the wall. Empirical improvements to this model relative to the pure DES equations provide a great increase of the resolved turbulence activity near the wall and adjust the resolved logarithmic layer to the modelled one, thus resolving the issue of 'log layer mismatch' which is common in DES and other WMLES methods. An essential new element here is a definition of the subgrid length-scale which depends not only on the grid spacings, but also on the wall distance. In the case without inflow turbulent content, the proposed model performs as DDES, i.e., it gives a pure RANS solution for attached flows and a DES-like solution for massively separated flows. The coordination of the two branches is carried out by a blending function. The promise of the model is supported by its satisfactory performance in all the three modes it was designed for, namely, in pure WMLES applications (channel flow in a wide Reynolds-number range and flow over a hydrofoil with trailing-edge separation), in a natural DDES application (an airfoil in deep stall), and in a flow where both branches of the model are active in different flow regions (a backward-facing-step flow)

  8. Hybrid grey model to forecast monitoring series with seasonality

    Institute of Scientific and Technical Information of China (English)

    WANG Qi-jie; LIAO Xin-hao; ZHOU Yong-hong; ZOU Zheng-rong; ZHU Jian-jun; PENG Yue

    2005-01-01

    The grey forecasting model has been successfully applied to many fields. However, the precision of GM(1,1) model is not high. In order to remove the seasonal fluctuations in monitoring series before building GM(1,1) model, the forecasting series of GM(1,1) was built, and an inverse process was used to resume the seasonal fluctuations. Two deseasonalization methods were presented , i.e., seasonal index-based deseasonalization and standard normal distribution-based deseasonalization. They were combined with the GM(1,1) model to form hybrid grey models. A simple but practical method to further improve the forecasting results was also suggested. For comparison, a conventional periodic function model was investigated. The concept and algorithms were tested with four years monthly monitoring data. The results show that on the whole the seasonal index-GM(1,1) model outperform the conventional periodic function model and the conventional periodic function model outperform the SND-GM(1,1) model. The mean absolute error and mean square error of seasonal index-GM(1,1) are 30.69% and 54.53% smaller than that of conventional periodic function model, respectively. The high accuracy, straightforward and easy implementation natures of the proposed hybrid seasonal index-grey model make it a powerful analysis technique for seasonal monitoring series.

  9. NUMERICAL MODELING OF COMPOUND CHANNEL FLOWS

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A numerical model capable of predicting flow characteristics in a compound channel was established with the 3-D steady continuity and momentum equations along with the transport equations for turbulence kinetic energy and dissipation rate. Closure was achieved with the aid of algebraic relations for turbulent shear stresses. The above equations were discretized with implicit difference approach and solved with a step method along the flow direction. The computational results showing the lateral distribution of vertical average velocities and the latio of total flow in the compound channel agree well with the available experimental data.

  10. Mesoscopic Rhelogical Model for Polymeric Media Flows

    Science.gov (United States)

    Koshelev, K.; Kuznetcov, A.; Merzlikina, D.; Pyshnograi, G.; Pyshnograi, I.; Tolstykh, M. Y.

    2017-01-01

    The paper compares hydrodynamic properties of three-dimensional flows of polymer melts. A modified Vinogradov and Pokrovskii rheological model is used for the mathematical description of nonlinear viscoelastic fluid flows in a planeparallel channel with a sudden convergence. Discrete analogs for partial differential equations were obtained via the control volume method separating physical processes. The numerical implementation is carried out using the GPU-based parallel computing technology. Velocity and pressure fields have been calculated for two samples of polyethylene melts and the circulating flow at the entrance of the slit channel is noticeable. It is shown that the size of the vortex zone depends significantly on melt rheology.

  11. Particle in the Brusselator Model with Flow

    DEFF Research Database (Denmark)

    Kuptsov, P.V.; Kuznetsov, S.P.; Mosekilde, Erik

    2002-01-01

    We consider the interaction of a small moving particle with a stationary space-periodic pattern in a chemical reaction-diffusion system with a flow. The pattern is produced by a one-dimensional Brusselator model that is perturbed by a constant displacement from the equilibrium state at the inlet....... By partially blocking the flow, the particle gives rise to a local increment of the flow rate. For certain parameter values a response with intermittent Hopf and Turing type structures is observed. In other regimes a wave of substitution of missing peaks runs across the pattern....

  12. SIMPLE LATTICE BOLTZMANN MODEL FOR TRAFFIC FLOWS

    Institute of Scientific and Technical Information of China (English)

    Yan Guangwu; Hu Shouxin

    2000-01-01

    A lattice Boltzmann model with 5-bit lattice for traffic flows is proposed.Using the Chapman-Enskog expansion and multi-scale technique,we obtain the higher-order moments of equilibrium distribution function.A simple traffic light problem is simulated by using the present lattice Boltzmann model,and the result agrees well with analytical solution.

  13. Review and selection of unsaturated flow models

    Energy Technology Data Exchange (ETDEWEB)

    Reeves, M.; Baker, N.A.; Duguid, J.O. [INTERA, Inc., Las Vegas, NV (United States)

    1994-04-04

    Since the 1960`s, ground-water flow models have been used for analysis of water resources problems. In the 1970`s, emphasis began to shift to analysis of waste management problems. This shift in emphasis was largely brought about by site selection activities for geologic repositories for disposal of high-level radioactive wastes. Model development during the 1970`s and well into the 1980`s focused primarily on saturated ground-water flow because geologic repositories in salt, basalt, granite, shale, and tuff were envisioned to be below the water table. Selection of the unsaturated zone at Yucca Mountain, Nevada, for potential disposal of waste began to shift model development toward unsaturated flow models. Under the US Department of Energy (DOE), the Civilian Radioactive Waste Management System Management and Operating Contractor (CRWMS M&O) has the responsibility to review, evaluate, and document existing computer models; to conduct performance assessments; and to develop performance assessment models, where necessary. This document describes the CRWMS M&O approach to model review and evaluation (Chapter 2), and the requirements for unsaturated flow models which are the bases for selection from among the current models (Chapter 3). Chapter 4 identifies existing models, and their characteristics. Through a detailed examination of characteristics, Chapter 5 presents the selection of models for testing. Chapter 6 discusses the testing and verification of selected models. Chapters 7 and 8 give conclusions and make recommendations, respectively. Chapter 9 records the major references for each of the models reviewed. Appendix A, a collection of technical reviews for each model, contains a more complete list of references. Finally, Appendix B characterizes the problems used for model testing.

  14. A model for transonic plasma flow

    Energy Technology Data Exchange (ETDEWEB)

    Guazzotto, Luca, E-mail: luca.guazzotto@rochester.edu [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States); Hameiri, Eliezer, E-mail: hameiri@cims.nyu.edu [Courant Institute of Mathematical Sciences, New York University, New York, New York 10012 (United States)

    2014-02-15

    A linear, two-dimensional model of a transonic plasma flow in equilibrium is constructed and given an explicit solution in the form of a complex Laplace integral. The solution indicates that the transonic state can be solved as an elliptic boundary value problem, as is done in the numerical code FLOW [Guazzotto et al., Phys. Plasmas 11, 604 (2004)]. Moreover, the presence of a hyperbolic region does not necessarily imply the presence of a discontinuity or any other singularity of the solution.

  15. Multiview coding mode decision with hybrid optimal stopping model.

    Science.gov (United States)

    Zhao, Tiesong; Kwong, Sam; Wang, Hanli; Wang, Zhou; Pan, Zhaoqing; Kuo, C-C Jay

    2013-04-01

    In a generic decision process, optimal stopping theory aims to achieve a good tradeoff between decision performance and time consumed, with the advantages of theoretical decision-making and predictable decision performance. In this paper, optimal stopping theory is employed to develop an effective hybrid model for the mode decision problem, which aims to theoretically achieve a good tradeoff between the two interrelated measurements in mode decision, as computational complexity reduction and rate-distortion degradation. The proposed hybrid model is implemented and examined with a multiview encoder. To support the model and further promote coding performance, the multiview coding mode characteristics, including predicted mode probability and estimated coding time, are jointly investigated with inter-view correlations. Exhaustive experimental results with a wide range of video resolutions reveal the efficiency and robustness of our method, with high decision accuracy, negligible computational overhead, and almost intact rate-distortion performance compared to the original encoder.

  16. Whispered speaker identification based on feature and model hybrid compensation

    Institute of Scientific and Technical Information of China (English)

    GU Xiaojiang; ZHAO Heming; Lu Gang

    2012-01-01

    In order to increase short time whispered speaker recognition rate in variable chan- nel conditions, the hybrid compensation in model and feature domains was proposed. This method is based on joint factor analysis in training model stage. It extracts speaker factor and eliminates channel factor by estimating training speech speaker and channel spaces. Then in the test stage, the test speech channel factor is projected into feature space to engage in feature compensation, so it can remove channel information both in model and feature domains in order to improve recognition rate. The experiment result shows that the hybrid compensation can obtain the similar recognition rate in the three different training channel conditions and this method is more effective than joint factor analysis in the test of short whispered speech.

  17. Modelling of gas flow through metallic foams

    Energy Technology Data Exchange (ETDEWEB)

    Crosnier, S. [CEA Grenoble, Dept. de Thermohydraulique et de Physique, 38 (France); Riva, R. [CEA Cadarache, 13 - Saint Paul lez Durance (France); Bador, B.; Blet, V.

    2003-09-01

    The transport and distribution of gases (hydrogen at the anode and air at the cathode) and water over the front surfaces of the electrodes in contact with electrolyte membrane are of great importance for the enhancement of efficiency of the Proton Exchange Membrane Fuel Cells (PEMFC). The use of metallic foam as a flow distributor in comparison with grooved plate (formed by parallel channels) commonly used in commercial fuel cells may be advantageous since this porous material has a porosity close to unity and then high specific surface area. In fact, the potentially active surface area is generally considered to be almost equal to the front surface area of the electrodes. In order to ensure a homogeneous flow distribution all over the active surface of such devices, a good understanding of gas flow through these particular porous media is necessary. For that purpose, studying of two-phase flow (oxygen, hydrogen and water) through metallic foams must be undertaken. This is carried out in the present work but, in a first step, only for single-phase flow, since the behaviour of two-phase flow derives from the first one. Novels hydraulic models have then been developed in the literature these last years. However, these models do not take into account the viscous dissipation of the flow along the walls bordering the porous media. Unfortunately, metallic foam used as distributors in fuel cell have thigh thickness (of the order of the millimeter), that shedding a doubt on the validity of the latter assumption. In this paper, we review the different hydraulic models in order to discuss the relevance and the limits of each to describe single-phase flow through foams which could be used as distributor in a fuel cell. For that purpose, numerical solutions obtained using modified MC3D-REPO package originally developed for the modelling of multicomponent two-phase flows in granular porous media have been compared to experimental data measured on a dedicated hydraulic device

  18. Nonlocal modeling of granular flows down inclines.

    Science.gov (United States)

    Kamrin, Ken; Henann, David L

    2015-01-07

    Flows of granular media down a rough inclined plane demonstrate a number of nonlocal phenomena. We apply the recently proposed nonlocal granular fluidity model to this geometry and find that the model captures many of these effects. Utilizing the model's dynamical form, we obtain a formula for the critical stopping height of a layer of grains on an inclined surface. Using an existing parameter calibration for glass beads, the theoretical result compares quantitatively to existing experimental data for glass beads. This provides a stringent test of the model, whose previous validations focused on driven steady-flow problems. For layers thicker than the stopping height, the theoretical flow profiles display a thickness-dependent shape whose features are in agreement with previous discrete particle simulations. We also address the issue of the Froude number of the flows, which has been shown experimentally to collapse as a function of the ratio of layer thickness to stopping height. While the collapse is not obvious, two explanations emerge leading to a revisiting of the history of inertial rheology, which the nonlocal model references for its homogeneous flow response.

  19. Unsaturated zone flow modeling for GWTT-95

    Energy Technology Data Exchange (ETDEWEB)

    Ho, C.K.; Altman, S.J.; McKenna, S.A.; Arnold, B.W. [Sandia National Labs., Albuqureque, NM (United States)

    1996-12-01

    Various models of unsaturated flow in fractured tuff have been developed and implemented to assess groundwater travel times at the potential repository at Yucca Mountain, Nevada. Kaplan used one-dimensional models to describe the uncertainty and sensitivity of travel times to various processes at Yucca Mountain. Robey and Arnold et al. used a two-dimensional equivalent continuum model (ECM) with inter- and intra-unit heterogeneity in an attempt to assess fast-flow paths through the unsaturated, fractured tuff at Yucca Mountain (GWTT-94). However, significant flow through the fractures in previous models was not simulated due to the characteristics of the ECM, which requires the matrix to be nearly saturated before flow through the fractures is initiated. In the current study (GWTT-95), four two-dimensional cross-sections at Yucca Mountain are simulated using both the ECM and dual-permeability (DK) models. The properties of both the fracture and matrix domains are geostatistically simulated, yielding completely heterogeneous continua. Then, simulations of flow through the four cross-sections are performed using spatially non-uniform infiltration boundary conditions. Steady-state groundwater travel times from the potential repository to the water table are calculated.

  20. Unsaturated zone flow modeling for GWTT-95

    Energy Technology Data Exchange (ETDEWEB)

    Ho, C.K.; Altman, S.J.; McKenna, S.A.; Arnold, B.W.

    1995-12-31

    In accordance with the Nuclear Regulatory Commission regulation regarding groundwater travel times at geologic repositories, various models of unsaturated flow in fractured tuff have been developed and implemented to assess groundwater travel times at the potential repository at Yucca Mountain, Nevada. Kaplan used one-dimensional models to describe the uncertainty and sensitivity of travel times to various processes at Yucca Mountain. Robey and Arnold et al. used a two-dimensional equivalent continuum model (ECM) with inter- and intra-unit heterogeneity in an attempt to assess fast-flow paths through the unsaturated, fractured tuff at Yucca Mountain (GWTT-94). However, significant flow through the fractures in previous models was not simulated due to the characteristics of the ECM, which requires the matrix to be nearly saturated before flow through the fractures is initiated. In the current study (GWTT-95), four two-dimensional cross-sections at Yucca Mountain are simulated using both the ECM and dual-permeability (DK) models. The properties of both the fracture and matrix domains are geostatistically simulated, yielding completely heterogeneous continua. Then, simulations of flow through the four cross-sections are performed using spatially nonuniform infiltration boundary conditions. Steady-state groundwater travel times from the potential repository to the water table are calculated.

  1. DISCRETE AND CONTINUUM MODELLING OF GRANULAR FLOW

    Institute of Scientific and Technical Information of China (English)

    H. P. Zhu; Y. H. WU; A. B. Yu

    2005-01-01

    This paper analyses three popular methods simulating granular flow at different time and length scales:discrete element method (DEM), averaging method and viscous, elastic-plastic continuum model. The theoretical models of these methods and their applications to hopper flows are discussed. It is shown that DEM is an effective method to study the fundamentals of granular flow at a particle or microscopic scale. By use of the continuum approach, granular flow can also be described at a continuum or macroscopic scale. Macroscopic quantities such as velocity and stress can be obtained by use of such computational method as FEM. However, this approach depends on the constitutive relationship of materials and ignores the effect of microscopic structure of granular flow. The combined approach of DEM and averaging method can overcome this problem. The approach takes into account the discrete nature of granular materials and does not require any global assumption and thus allows a better understanding of the fundamental mechanisms of granular flow. However, it is difficult to adapt this approach to process modelling because of the limited number of particles which can be handled with the present computational capacity, and the difficulty in handling non-spherical particles.Further work is needed to develop an appropriate approach to overcome these problems.

  2. LES and Hybrid LES/RANS Study of Flow and Heat Transfer around a Wall-Bounded Short Cylinder

    Science.gov (United States)

    Borello, D.; Delibra, G.; Hanjalić, K.; Rispoli, F.

    The flow in plate-fin-and-tube heat exchangers is featured by interesting dynamics of vortical structures, which, due to close proximity of bounding walls that suppress instabilities, differs significantly from the better-known patterns around long cylinders. Typically, several distinct vortex systems can be identified both in front and behind the pin. Their signature on the pin and end-walls reflects directly in the local heat transfer. The Reynolds numbers is usually moderate and the incoming flow is non-turbulent, transiting to turbulence on or just behind the first or few subsequent pin/tube rows. Upstream from the first pin a sequence of several horseshoe vortices attached to the boundingwall is created, while the unsteady wake contains also multiple vortical systems which control the entrainment of fresh fluid and its mixing with the hot fluid that was in contact with the heated surfaces [1]. The conventional CFD using standard turbulence models, as practiced by heat exchangers industries, falls short in capturing the subtle details of the complex vortex systems. A fine-grid LES can provide accurate solutions, but for more complex configurations and higher Re numbers a hybrid RANS/LES using a coarser grid seems a more rational option, provided it can capture all important flow and vortical features.

  3. Numerical study of the enhancement of heat transfer for hybrid CuO-Cu Nanofluids flowing in a circular pipe.

    Science.gov (United States)

    Balla, Hyder H; Abdullah, Shahrir; Mohdfaizal, Wan; Zulkifli, Rozli; Sopian, Kamaruzaman

    2013-01-01

    A numerical simulation model for laminar flow of nanofluids in a pipe with constant heat flux on the wall was built to study the effect of the Reynolds number on convective heat transfer and pressure loss. The investigation was performed for hybrid nanofluids consisting of CuO-Cu nanoparticles and compared with CuO and Cu in which the nanoparticles have a spherical shape with size 50, 50, 50nm respectively. The nanofluids were prepared, following which the thermal conductivity and dynamic viscosity were measured for a range of temperatures (10 -60°C). The numerical results obtained were compared with the existing well-established correlation. The prediction of the Nusselt number for nanofluids agrees well with the Shah correlation. The comparison of heat transfer coefficients for CuO, Cu and CuO-Cu presented an increase in thermal conductivity of the nanofluid as the convective heat transfer coefficient increased. It was found that the pressure loss increases with an increase in the Reynolds number, nanoparticle density and particle volume fraction. However, the flow demonstrates enhancement in heat transfer which becomes greater with an increase in the Reynolds number for the nanofluid flow.

  4. Credit Scoring Model Hybridizing Artificial Intelligence with Logistic Regression

    Directory of Open Access Journals (Sweden)

    Han Lu

    2013-01-01

    Full Text Available Today the most commonly used techniques for credit scoring are artificial intelligence and statistics. In this paper, we started a new way to use these two kinds of models. Through logistic regression filters the variables with a high degree of correlation, artificial intelligence models reduce complexity and accelerate convergence, while these models hybridizing logistic regression have better explanations in statistically significance, thus improve the effect of artificial intelligence models. With experiments on German data set, we find an interesting phenomenon defined as ‘Dimensional interference’ with support vector machine and from cross validation it can be seen that the new method gives a lot of help with credit scoring.

  5. A Hybrid Tool for User Interface Modeling and Prototyping

    Science.gov (United States)

    Trætteberg, Hallvard

    Although many methods have been proposed, model-based development methods have only to some extent been adopted for UI design. In particular, they are not easy to combine with user-centered design methods. In this paper, we present a hybrid UI modeling and GUI prototyping tool, which is designed to fit better with IS development and UI design traditions. The tool includes a diagram editor for domain and UI models and an execution engine that integrates UI behavior, live UI components and sample data. Thus, both model-based user interface design and prototyping-based iterative design are supported

  6. IMPLICIT REPRESENTATION FOR THE MODELLING OF HYBRID DYNAMIC SYSTEMS

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Hybrid systems can be represented by a discrete event model interacting with a continuous model, and the interface by ideal switching components which modify the topology of a system at the switching time. This paper deals with the modelling of such systems using the bond graph approach. The paper shows the interest of the implicit representation: to derive a unique state equation with jumping parameters, to derive the implicit state equation with index of nilpotency one corresponding to each configuration, to analyze the properties of those models and to compute the discontinuity.

  7. A hybrid approach to monthly streamflow forecasting: Integrating hydrological model outputs into a Bayesian artificial neural network

    Science.gov (United States)

    Humphrey, Greer B.; Gibbs, Matthew S.; Dandy, Graeme C.; Maier, Holger R.

    2016-09-01

    Monthly streamflow forecasts are needed to support water resources decision making in the South East of South Australia, where baseflow represents a significant proportion of the total streamflow and soil moisture and groundwater are important predictors of runoff. To address this requirement, the utility of a hybrid monthly streamflow forecasting approach is explored, whereby simulated soil moisture from the GR4J conceptual rainfall-runoff model is used to represent initial catchment conditions in a Bayesian artificial neural network (ANN) statistical forecasting model. To assess the performance of this hybrid forecasting method, a comparison is undertaken of the relative performances of the Bayesian ANN, the GR4J conceptual model and the hybrid streamflow forecasting approach for producing 1-month ahead streamflow forecasts at three key locations in the South East of South Australia. Particular attention is paid to the quantification of uncertainty in each of the forecast models and the potential for reducing forecast uncertainty by using the hybrid approach is considered. Case study results suggest that the hybrid models developed in this study are able to take advantage of the complementary strengths of both the ANN models and the GR4J conceptual models. This was particularly the case when forecasting high flows, where the hybrid models were shown to outperform the two individual modelling approaches in terms of the accuracy of the median forecasts, as well as reliability and resolution of the forecast distributions. In addition, the forecast distributions generated by the hybrid models were up to 8 times more precise than those based on climatology; thus, providing a significant improvement on the information currently available to decision makers.

  8. HYBRID TRUST MODEL FOR INTERNET ROUTING

    Directory of Open Access Journals (Sweden)

    Pekka Rantala

    2011-05-01

    Full Text Available The current Internet is based on a fundamental assumption of reliability and good intent among actors inthe network. Unfortunately, unreliable and malicious behaviour is becoming a major obstacle forInternet communication. In order to improve the trustworthiness and reliability of the networkinfrastructure, we propose a novel trust model to be incorporated into BGP routing. In our approach,trust model is defined by combining voting and recommendation to direct trust estimation for neighbourrouters located in different autonomous systems. We illustrate the impact of our approach with cases thatdemonstrate the indication of distrusted paths beyond the nearest neighbours and the detection of adistrusted neighbour advertising a trusted path. We simulated the impact of weighting voted and directtrust in a rectangular grid of 15*15 nodes (autonomous systems with a randomly connected topology.

  9. Hybrid Trust Model for Internet Routing

    CERN Document Server

    Rantala, Pekka; Isoaho, Jouni

    2011-01-01

    The current Internet is based on a fundamental assumption of reliability and good intent among actors in the network. Unfortunately, unreliable and malicious behaviour is becoming a major obstacle for Internet communication. In order to improve the trustworthiness and reliability of the network infrastructure, we propose a novel trust model to be incorporated into BGP routing. In our approach, trust model is defined by combining voting and recommendation to direct trust estimation for neighbour routers located in different autonomous systems. We illustrate the impact of our approach with cases that demonstrate the indication of distrusted paths beyond the nearest neighbours and the detection of a distrusted neighbour advertising a trusted path. We simulated the impact of weighting voted and direct trust in a rectangular grid of 15*15 nodes (autonomous systems) with a randomly connected topology.

  10. Unsaturated Zone Flow Model Expert Elicitation Project

    Energy Technology Data Exchange (ETDEWEB)

    Coppersmith, K. J.

    1997-05-30

    This report presents results of the Unsaturated Zone Flow Model Expert Elicitation (UZFMEE) project at Yucca Mountain, Nevada. This project was sponsored by the US Department of Energy (DOE) and managed by Geomatrix Consultants, Inc. (Geomatrix), for TRW Environmental Safety Systems, Inc. The objective of this project was to identify and assess the uncertainties associated with certain key components of the unsaturated zone flow system at Yucca Mountain. This assessment reviewed the data inputs, modeling approaches, and results of the unsaturated zone flow model (termed the ''UZ site-scale model'') being developed by Lawrence Berkeley National Laboratory (LBNL) and the US Geological Survey (USGS). In addition to data input and modeling issues, the assessment focused on percolation flux (volumetric flow rate per unit cross-sectional area) at the potential repository horizon. An understanding of unsaturated zone processes is critical to evaluating the performance of the potential high-level nuclear waste repository at Yucca Mountain. A major goal of the project was to capture the uncertainties involved in assessing the unsaturated flow processes, including uncertainty in both the models used to represent physical controls on unsaturated zone flow and the parameter values used in the models. To ensure that the analysis included a wide range of perspectives, multiple individual judgments were elicited from members of an expert panel. The panel members, who were experts from within and outside the Yucca Mountain project, represented a range of experience and expertise. A deliberate process was followed in facilitating interactions among the experts, in training them to express their uncertainties, and in eliciting their interpretations. The resulting assessments and probability distributions, therefore, provide a reasonable aggregate representation of the knowledge and uncertainties about key issues regarding the unsaturated zone at the Yucca

  11. A New Hybrid Model Rotor Flux Observer and Its Application

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A new hybrid model rotor flux observer, based on a new voltage model, is presented. In the first place, the voltage model of an induction machine was constructed by using the modeling method discussed in this paper and then the current model using a flux feedback was adopted in this flux observer. Secondly, the two models were combined via a filter and then the rotor flux observer was established. In the M-T synchronous coordinate, the observer was analyzed theoretically and several important functions were derived. A comparison between the observer and the traditional models was made using Matlab software. The simulation results show that the observer model had a better performance than the traditional model.

  12. A Hybrid Latent Class Analysis Modeling Approach to Analyze Urban Expressway Crash Risk.

    Science.gov (United States)

    Yu, Rongjie; Wang, Xuesong; Abdel-Aty, Mohamed

    2017-02-07

    Crash risk analysis is rising as a hot research topic as it could reveal the relationships between traffic flow characteristics and crash occurrence risk, which is beneficial to understand crash mechanisms which would further refine the design of Active Traffic Management System (ATMS). However, the majority of the current crash risk analysis studies have ignored the impact of geometric characteristics on crash risk estimation while recent studies proved that crash occurrence risk was affected by the various alignment features. In this study, a hybrid Latent Class Analysis (LCA) modeling approach was proposed to account for the heterogeneous effects of geometric characteristics. Crashes were first segmented into homogenous subgroups, where the optimal number of latent classes was identified based on bootstrap likelihood ratio tests. Then, separate crash risk analysis models were developed using Bayesian random parameter logistic regression technique; data from Shanghai urban expressway system were employed to conduct the empirical study. Different crash risk contributing factors were unveiled by the hybrid LCA approach and better model goodness-of-fit was obtained while comparing to an overall total crash model. Finally, benefits of the proposed hybrid LCA approach were discussed.

  13. Amendment to Validated dynamic flow model

    DEFF Research Database (Denmark)

    Knudsen, Torben

    2011-01-01

    The purpose of WP2 is to establish flow models relating the wind speed at turbines in a farm. Until now, active control of power reference has not been included in these models as only data with standard operation has been available. In this report the first data series with power reference...... excitations from the Thanet farm are used for trying to update some of the models discussed in D2.5. Because of very limited amount of data only simple dynamic transfer function models can be obtained. The three obtained data series are somewhat different. Only the first data set seems to have the front...... turbine in undisturbed flow. For this data set both the multiplicative model and in particular the simple first order transfer function model can predict the down wind wind speed from upwind wind speed and loading....

  14. Multiphase reacting flows modelling and simulation

    CERN Document Server

    Marchisio, Daniele L

    2007-01-01

    The papers in this book describe the most widely applicable modeling approaches and are organized in six groups covering from fundamentals to relevant applications. In the first part, some fundamentals of multiphase turbulent reacting flows are covered. In particular the introduction focuses on basic notions of turbulence theory in single-phase and multi-phase systems as well as on the interaction between turbulence and chemistry. In the second part, models for the physical and chemical processes involved are discussed. Among other things, particular emphasis is given to turbulence modeling strategies for multiphase flows based on the kinetic theory for granular flows. Next, the different numerical methods based on Lagrangian and/or Eulerian schemes are presented. In particular the most popular numerical approaches of computational fluid dynamics codes are described (i.e., Direct Numerical Simulation, Large Eddy Simulation, and Reynolds-Averaged Navier-Stokes approach). The book will cover particle-based meth...

  15. A Policy Model for Secure Information Flow

    Science.gov (United States)

    Adetoye, Adedayo O.; Badii, Atta

    When a computer program requires legitimate access to confidential data, the question arises whether such a program may illegally reveal sensitive information. This paper proposes a policy model to specify what information flow is permitted in a computational system. The security definition, which is based on a general notion of information lattices, allows various representations of information to be used in the enforcement of secure information flow in deterministic or nondeterministic systems. A flexible semantics-based analysis technique is presented, which uses the input-output relational model induced by an attacker’s observational power, to compute the information released by the computational system. An illustrative attacker model demonstrates the use of the technique to develop a termination-sensitive analysis. The technique allows the development of various information flow analyses, parametrised by the attacker’s observational power, which can be used to enforce what declassification policies.

  16. A Secured Hybrid Architecture Model for Internet Banking (e - Banking

    Directory of Open Access Journals (Sweden)

    Ganesan R

    2009-05-01

    Full Text Available Internet banking has made it easy to carry out the personal or business financial trans action without going to bank and at any suitable time. This facility enables to transfer money to other accounts and checking current balance alongside the status of any financial transaction made in the account. However, in order to maintain privacy and t o avoid any misuse of transactions, it is necessary to follow a secured architecture model which ensures the privacy and integrity of the transactions and provides confidence on internet banking is stable. In this research paper, a secured hybrid architect ure model for the internet banking using Hyperelliptic curve cryptosystem and MD5 is described. This hybrid model is implemented with the hyperelliptic curve cryptosystem and it performs the encryption and decryption processes in an efficient way merely wi th an 80 - bit key size. The various screen shots given in this contribution shows that the hybrid model which encompasses HECC and MD5 can be considered in the internet banking environment to enrich the privacy and integrity of the sensitive data transmitte d between the clients and the application server

  17. Reverse engineering cellular decisions for hybrid reconfigurable network modeling

    Science.gov (United States)

    Blair, Howard A.; Saranak, Jureepan; Foster, Kenneth W.

    2011-06-01

    Cells as microorganisms and within multicellular organisms make robust decisions. Knowing how these complex cells make decisions is essential to explain, predict or mimic their behavior. The discovery of multi-layer multiple feedback loops in the signaling pathways of these modular hybrid systems suggests their decision making is sophisticated. Hybrid systems coordinate and integrate signals of various kinds: discrete on/off signals, continuous sensory signals, and stochastic and continuous fluctuations to regulate chemical concentrations. Such signaling networks can form reconfigurable networks of attractors and repellors giving them an extra level of organization that has resilient decision making built in. Work on generic attractor and repellor networks and on the already identified feedback networks and dynamic reconfigurable regulatory topologies in biological cells suggests that biological systems probably exploit such dynamic capabilities. We present a simple behavior of the swimming unicellular alga Chlamydomonas that involves interdependent discrete and continuous signals in feedback loops. We show how to rigorously verify a hybrid dynamical model of a biological system with respect to a declarative description of a cell's behavior. The hybrid dynamical systems we use are based on a unification of discrete structures and continuous topologies developed in prior work on convergence spaces. They involve variables of discrete and continuous types, in the sense of type theory in mathematical logic. A unification such as afforded by convergence spaces is necessary if one wants to take account of the affect of the structural relationships within each type on the dynamics of the system.

  18. Chaos control in traffic flow models

    CERN Document Server

    Shahverdiev, E M; Shahverdiev, Elman Mohammed; Tadaki, Shin-ichi

    1998-01-01

    Chaos control in some of the one- and two-dimensional traffic flow dynamical models in the mean field theory is studied.One dimensional model is investigated taking into account the effect of random delay. Two dimensional model takes into account the effects of overpasses, symmetric distribution of cars and blockages of cars moving in the same direction. Chaos synchronization is performed within both replica and nonreplica approaches, and using parameter perturbation method.

  19. Elliptic flow and nuclear modification factors of D-mesons at FAIR in a Hybrid-Langevin approach

    CERN Document Server

    Lang, Thomas; Steinheimer, Jan; Bleicher, Marcus

    2013-01-01

    The Compressed Baryonic Matter (CBM) experiment at the Facility for Anti-proton and Ion Research (FAIR) will provide new possibilities for charm-quark ($D$-meson) observables in heavy-ion collisions at low collision energies and high baryon densities. To predict the collective flow and nuclear modification factors of charm quarks in this environment, we apply a Langevin approach for the transport of charm quarks in the UrQMD (hydrodynamics + Boltzmann) hybrid model. Due to the inclusion of event-by-event fluctuations and a full (3+1) dimensional hydrodynamical evolution, the UrQMD hybrid approach provides a realistic evolution of the matter produced in heavy-ion collisions. As drag and diffusion coefficients we use a resonance approach for elastic heavy-quark scattering and assume a decoupling temperature of the charm quarks from the hot medium of $130\\, \\MeV$. Hadronization of the charm quarks to $D$-mesons by coalescence is included. Since the initial charm-quark distribution at FAIR is unknown, we utilize ...

  20. A Hybrid Approach to Solve a Model of Closed-Loop Supply Chain

    Directory of Open Access Journals (Sweden)

    Nafiseh Tokhmehchi

    2015-01-01

    Full Text Available This paper investigates a closed-loop supply chain network, including plants, demand centers, as well as collection centers, and disposal centers. In forward flow, the products are directly sent to demand centers, after being produced by plants, but in the reverse flow, reused products are returned to collection centers and, after investigating, are partly sent to disposal centers and the other part is resent to plants for remanufacturing. The proposed mathematical model is based on mixed-integer programming and helps minimizing the total cost. Total costs include the expenditure of establishing new centers, producing new products, cargo transport in the network, and disposal. The model aims to answer these two questions. (1 What number and in which places the plants, collection centers, and disposal centers will be constructed. (2 What amount of products will be flowing in each segment of the chain, in order to minimize the total cost. Four types of tuned metaheuristic algorithms were used, which are hybrid forms of genetic and firefly algorithms. Finally an adequate number of instances are generated to analyse the behavior of proposed algorithms. Computational results reveal that iterative sequentialization hybrid provides better solution compared with the other approaches in large size.

  1. Modelling hybrid stars in quark-hadron approaches

    Energy Technology Data Exchange (ETDEWEB)

    Schramm, S. [FIAS, Frankfurt am Main (Germany); Dexheimer, V. [Kent State University, Department of Physics, Kent, OH (United States); Negreiros, R. [Federal Fluminense University, Gragoata, Niteroi (Brazil)

    2016-01-15

    The density in the core of neutron stars can reach values of about 5 to 10 times nuclear matter saturation density. It is, therefore, a natural assumption that hadrons may have dissolved into quarks under such conditions, forming a hybrid star. This star will have an outer region of hadronic matter and a core of quark matter or even a mixed state of hadrons and quarks. In order to investigate such phases, we discuss different model approaches that can be used in the study of compact stars as well as being applicable to a wider range of temperatures and densities. One major model ingredient, the role of quark interactions in the stability of massive hybrid stars is discussed. In this context, possible conflicts with lattice QCD simulations are investigated. (orig.)

  2. Hybrid Modeling of Elastic Wave Scattering in a Welded Cylinder

    Science.gov (United States)

    Mahmoud, A.; Shah, A. H.; Popplewell, N.

    2003-03-01

    In the present study, a 3D hybrid method, which couples the finite element region with guided elastic wave modes, is formulated to investigate the scattering by a non-axisymmetric crack in a welded steel pipe. The algorithm is implemented on a parallel computing platform. Implementation is facilitated by the dynamic memory allocation capabilities of Fortran 90™ and the parallel processing directives of OpenMp™. The algorithm is validated against available numerical results. The agreement with a previous 2D hybrid model is excellent. Novel results are presented for the scattering of the first longitudinal mode from different non-axisymmetric cracks. The trend of the new results is consistent with the previous findings for the axisymmetric case. The developed model has potential application in ultrasonic nondestructive evaluation of welded steel pipes.

  3. A hybrid neural network model for consciousness

    Institute of Scientific and Technical Information of China (English)

    蔺杰; 金小刚; 杨建刚

    2004-01-01

    A new framework for consciousness is introduced based upon traditional artificial neural network models. This framework reflects explicit connections between two parts of the brain: one global working memory and distributed modular cerebral networks relating to specific brain functions. Accordingly this framework is composed of three layers,physical mnemonic layer and abstract thinking layer,which cooperate together through a recognition layer to accomplish information storage and cognition using algorithms of how these interactions contribute to consciousness:(1)the reception process whereby cerebral subsystems group distributed signals into coherent object patterns;(2)the partial recognition process whereby patterns from particular subsystems are compared or stored as knowledge; and(3)the resonant learning process whereby global workspace stably adjusts its structure to adapt to patterns' changes. Using this framework,various sorts of human actions can be explained,leading to a general approach for analyzing brain functions.

  4. A hybrid neural network model for consciousness

    Institute of Scientific and Technical Information of China (English)

    蔺杰; 金小刚; 杨建刚

    2004-01-01

    A new framework for consciousness is introduced based upon traditional artificial neural network models. This framework reflects explicit connections between two parts of the brain: one global working memory and distributed modular cerebral networks relating to specific brain functions. Accordingly this framework is composed of three layers, physical mnemonic layer and abstract thinking layer, which cooperate together through a recognition layer to accomplish information storage and cognition using algorithms of how these interactions contribute to consciousness: (l) the reception process whereby cerebral subsystems group distributed signals into coherent object patterns; (2) the partial recognition process whereby patterns from particular subsystems are compared or stored as knowledge; and (3) the resonant learning process whereby global workspace stably adjusts its structure to adapt to patterns' changes. Using this framework, various sorts of human actions can be explained, leading to a general approach for analyzing brain functions.

  5. Dangerous situations in a synchronized flow model

    Science.gov (United States)

    Jiang, Rui; Wu, Qing-Song

    2007-04-01

    This paper studies the dangerous situation (DS) in a synchronized flow model. The DS on the two branches of the fundamental diagram are investigated, respectively. It is shown that different relationship between DS probability and the density exists in the synchronized flow and in the jams. Moreover, we prove that there is no DS caused by non-stopped car although the model itself is a non-exclusion process. We classify the DS into four sub-types and study the probability of these four sub-types. The simulation result is consistent with the real traffic.

  6. Recent progress in battery models for hybrid wind power systems

    Energy Technology Data Exchange (ETDEWEB)

    Manwell, J.F.; McGowan, J.G.; Baring-Gould, I.; Stein, W. [Univ. of Massachusetts, Amherst, MA (United States)

    1995-12-31

    This paper summarizes the latest University of Massachusetts work on the analytical modeling and experimental testing of battery component models for hybrid power systems. An extension of the Kinetic Battery Model (KiBaM), developed at the University of Massachusetts is presented. The original model was based on a combination of phenomenological and physical considerations. As described in this paper, the modified KiBaM can now model the sharp increase in voltage near the end of charging, and the sharp drop in voltage when the battery is nearly empty. This model may readily be coupled with a DC load or charging source (such as a DC wind turbine or photovoltaic panels) to determine the corresponding DC bus voltage. For example, it is now an integral part of the DC bus section of the University of Massachusetts HYBRID simulation models. The paper describes the development of the extensions to the KiBaM model and the method of determining the constants from test data. On the experimental/applications side, it includes an illustration of how the constants are obtained from representative data (using a specially developed testing apparatus), and an example of how the model can be used.

  7. Modelling fluid flow in a reciprocating compressor

    Directory of Open Access Journals (Sweden)

    Tuhovcak Jan

    2015-01-01

    Full Text Available Efficiency of reciprocating compressor is strongly dependent on the valves characteristics, which affects the flow through the suction and discharge line. Understanding the phenomenon inside the compressor is necessary step in development process. Commercial CFD tools offer wide capabilities to simulate the flow inside the reciprocating compressor, however they are too complicated in terms of computational time and mesh creation. Several parameters describing compressor could be therefore examined without the CFD analysis, such is valve characteristic, flow through the cycle and heat transfer. The aim of this paper is to show a numerical tool for reciprocating compressor based on the energy balance through the cycle, which provides valve characteristics, flow through the cycle and heat losses from the cylinder. Spring-damping-mass model was used for the valve description. Boundary conditions were extracted from the performance test of 4-cylinder semihermetic compressor and numerical tool validation was performed with indicated p-V diagram comparison.

  8. Modelling fluid flow in a reciprocating compressor

    Science.gov (United States)

    Tuhovcak, Jan; Hejčík, Jiří; Jícha, Miroslav

    2015-05-01

    Efficiency of reciprocating compressor is strongly dependent on the valves characteristics, which affects the flow through the suction and discharge line. Understanding the phenomenon inside the compressor is necessary step in development process. Commercial CFD tools offer wide capabilities to simulate the flow inside the reciprocating compressor, however they are too complicated in terms of computational time and mesh creation. Several parameters describing compressor could be therefore examined without the CFD analysis, such is valve characteristic, flow through the cycle and heat transfer. The aim of this paper is to show a numerical tool for reciprocating compressor based on the energy balance through the cycle, which provides valve characteristics, flow through the cycle and heat losses from the cylinder. Spring-damping-mass model was used for the valve description. Boundary conditions were extracted from the performance test of 4-cylinder semihermetic compressor and numerical tool validation was performed with indicated p-V diagram comparison.

  9. A light neutralino in hybrid models of supersymmetry breaking

    CERN Document Server

    Dudas, Emilian; Parmentier, Jeanne; 10.1016

    2008-01-01

    We show that in gauge mediation models where heavy messenger masses are provided by the adjoint Higgs field of an underlying SU(5) theory, a generalized gauge mediation spectrum arises with the characteristic feature of having a neutralino much lighter than in the standard gauge or gravity mediation schemes. This naturally fits in a hybrid scenario where gravity mediation, while subdominant with respect to gauge mediation, provides mu and B mu parameters in the TeV range.

  10. A Novel of Hybrid Maintenance Management Models for Industrial Applications

    OpenAIRE

    Tahir, Zulkifli

    2010-01-01

    It is observed through empirical studies that the effectiveness of industrial process have been increased by a well organized of machines maintenance structure. In current research, a novel of maintenance concept has been designed by hybrid several maintenance management models with Decision Making Grid (DMG), Analytic Hierarchy Process (AHP) and Fuzzy Logic. The concept is designed for maintenance personnel to evaluate and benchmark the maintenance operations and to reveal important maintena...

  11. Controllability in hybrid kinetic equations modeling nonequilibrium multicellular systems.

    Science.gov (United States)

    Bianca, Carlo

    2013-01-01

    This paper is concerned with the derivation of hybrid kinetic partial integrodifferential equations that can be proposed for the mathematical modeling of multicellular systems subjected to external force fields and characterized by nonconservative interactions. In order to prevent an uncontrolled time evolution of the moments of the solution, a control operator is introduced which is based on the Gaussian thermostat. Specifically, the analysis shows that the moments are solution of a Riccati-type differential equation.

  12. Incorporating RTI in a Hybrid Model of Reading Disability

    OpenAIRE

    2014-01-01

    The present study seeks to evaluate a hybrid model of identification that incorporates response-to-intervention (RTI) as a one of the key symptoms of reading disability. The one-year stability of alternative operational definitions of reading disability was examined in a large scale sample of students who were followed longitudinally from first to second grade. The results confirmed previous findings of limited stability for single-criterion based operational definitions of reading disability...

  13. Locked Nucleic Acid Flow Cytometry-fluorescence in situ Hybridization (LNA flow-FISH): A Method for Bacterial Small RNA Detection

    Science.gov (United States)

    2012-01-10

    Friedrich, U. & Lenke, J. Improved Enumeration of Lactic Acid Bacteria in Mesophilic Dairy Starter Cultures by Using Multiplex Quantitative Real...messenger RNA using locked nucleic acid probes. Anal. Biochem. 390, 109-114 (2009). 13. Waters, L. & Storz, G. Regulatory RNAs in bacteria . Cell. 136, 615...Video Article Locked Nucleic Acid Flow Cytometry-fluorescence in situ Hybridization (LNA flow-FISH): a Method for Bacterial Small RNA Detection Kelly

  14. Statics of levitated vehicle model with hybrid magnets

    Institute of Scientific and Technical Information of China (English)

    Desheng LI; Zhiyuan LU; Tianwu DONG

    2009-01-01

    By studying the special characteristics of permanent and electronic magnets, a levitated vehicle model with hybrid magnets is established. The mathematical model of the vehicle is built based on its dynamics equation by studying its machine structure and working principle. Based on the model, the basic characteristics and the effect between the excluding forces from permanent magnets in three different spatial directions are analyzed, statics characteristics of the interference forces in three different spatial directions are studied, and self-adjusting equilibrium characteristics and stabilization are analyzed. Based on the structure above, the vehicle can levitate steadily by control system adjustment.

  15. Hybrid Surface Mesh Adaptation for Climate Modeling

    Institute of Scientific and Technical Information of China (English)

    Ahmed Khamayseh; Valmor de Almeida; Glen Hansen

    2008-01-01

    Solution-driven mesh adaptation is becoming quite popular for spatial error control in the numerical simulation of complex computational physics applications, such as climate modeling. Typically, spatial adaptation is achieved by element subdivision (h adaptation) with a primary goal of resolving the local length scales of interest. A second, lesspopular method of spatial adaptivity is called "mesh motion" (r adaptation); the smooth repositioning of mesh node points aimed at resizing existing elements to capture the local length scales. This paper proposes an adaptation method based on a combination of both element subdivision and node point repositioning (rh adaptation). By combining these two methods using the notion of a mobility function, the proposed approach seeks to increase the flexibility and extensibility of mesh motion algorithms while providing a somewhat smoother transition between refined regions than is pro-duced by element subdivision alone. Further, in an attempt to support the requirements of a very general class of climate simulation applications, the proposed method is de-signed to accommodate unstructured, polygonal mesh topologies in addition to the most popular mesh types.

  16. Numerical modeling of the debris flows runout

    Science.gov (United States)

    Federico, Francesco; Cesali, Chiara

    2017-06-01

    Rapid debris flows are identified among the most dangerous of all landslides. Due to their destructive potential, the runout length has to be predicted to define the hazardous areas and design safeguarding measures. To this purpose, a continuum model to predict the debris flows mobility is developed. It is based on the well known depth-integrated avalanche model proposed by Savage and Hutter (S&H model) to simulate the dry granular materials flows. Conservation of mass and momentum equations, describing the evolving geometry and the depth averaged velocity distribution, are re-written taking into account the effects of the interstitial pressures and the possible variation of mass along the motion due to erosion/deposition processes. Furthermore, the mechanical behaviour of the debris flow is described by a recently developed rheological law, which allows to take into account the dissipative effects of the grain inelastic collisions and friction, simultaneously acting within a `shear layer', typically at the base of the debris flows. The governing PDEs are solved by applying the finite difference method. The analysis of a documented case is finally carried out.

  17. Magnetic equivalent circuit model for unipolar hybrid excitation synchronous machine

    Directory of Open Access Journals (Sweden)

    Kupiec Emil

    2015-03-01

    Full Text Available Lately, there has been increased interest in hybrid excitation electrical machines. Hybrid excitation is a construction that combines permanent magnet excitation with wound field excitation. Within the general classification, these machines can be classified as modified synchronous machines or inductor machines. These machines may be applied as motors and generators. The complexity of electromagnetic phenomena which occur as a result of coupling of magnetic fluxes of separate excitation systems with perpendicular magnetic axis is a motivation to formulate various mathematical models of these machines. The presented paper discusses the construction of a unipolar hybrid excitation synchronous machine. The magnetic equivalent circuit model including nonlinear magnetization curves is presented. Based on this model, it is possible to determine the multi-parameter relationships between the induced voltage and magnetomotive force in the excitation winding. Particular attention has been paid to the analysis of the impact of additional stator and rotor yokes on above relationship. Induced voltage determines the remaining operating parameters of the machine, both in the motor and generator mode of operation. The analysis of chosen correlations results in an identification of the effective control range of electromotive force of the machine.

  18. Modeling wall effects in a micro-scale shock tube using hybrid MD-DSMC algorithm

    Science.gov (United States)

    Watvisave, D. S.; Puranik, B. P.; Bhandarkar, U. V.

    2016-07-01

    Wall effects in a micro-scale shock tube are investigated using the Direct Simulation Monte Carlo method as well as a hybrid Molecular Dynamics-Direct Simulation Monte Carlo algorithm. In the Direct Simulation Monte Carlo simulations, the Cercignani-Lampis-Lord model of gas-surface interactions is employed to incorporate the wall effects, and it is shown that the shock attenuation is significantly affected by the choice of the values of tangential momentum accommodation coefficient. A loosely coupled Molecular Dynamics-Direct Simulation Monte Carlo approach is then employed to demonstrate incomplete accommodation in micro-scale shock tube flows. This approach uses fixed values of the accommodation coefficients in the gas-surface interaction model, with their values determined from a separate dynamically similar Molecular Dynamics simulation. Finally, a completely coupled Molecular Dynamics-Direct Simulation Monte Carlo algorithm is used, wherein the bulk of the flow is modeled using Direct Simulation Monte Carlo, while the interaction of gas molecules with the shock tube walls is modeled using Molecular Dynamics. The two regions are separate and coupled both ways using buffer zones and a bootstrap coupling algorithm that accounts for the mismatch of the number of molecules in both regions. It is shown that the hybrid method captures the effect of local properties that cannot be captured using a single value of accommodation coefficient for the entire domain.

  19. SATURATED ZONE FLOW AND TRANSPORT MODEL ABSTRACTION

    Energy Technology Data Exchange (ETDEWEB)

    B.W. ARNOLD

    2004-10-27

    The purpose of the saturated zone (SZ) flow and transport model abstraction task is to provide radionuclide-transport simulation results for use in the total system performance assessment (TSPA) for license application (LA) calculations. This task includes assessment of uncertainty in parameters that pertain to both groundwater flow and radionuclide transport in the models used for this purpose. This model report documents the following: (1) The SZ transport abstraction model, which consists of a set of radionuclide breakthrough curves at the accessible environment for use in the TSPA-LA simulations of radionuclide releases into the biosphere. These radionuclide breakthrough curves contain information on radionuclide-transport times through the SZ. (2) The SZ one-dimensional (I-D) transport model, which is incorporated in the TSPA-LA model to simulate the transport, decay, and ingrowth of radionuclide decay chains in the SZ. (3) The analysis of uncertainty in groundwater-flow and radionuclide-transport input parameters for the SZ transport abstraction model and the SZ 1-D transport model. (4) The analysis of the background concentration of alpha-emitting species in the groundwater of the SZ.

  20. A hybrid double-observer sightability model for aerial surveys

    Science.gov (United States)

    Griffin, Paul C.; Lubow, Bruce C.; Jenkins, Kurt J.; Vales, David J.; Moeller, Barbara J.; Reid, Mason; Happe, Patricia J.; Mccorquodale, Scott M.; Tirhi, Michelle J.; Schaberi, Jim P.; Beirne, Katherine

    2013-01-01

    Raw counts from aerial surveys make no correction for undetected animals and provide no estimate of precision with which to judge the utility of the counts. Sightability modeling and double-observer (DO) modeling are 2 commonly used approaches to account for detection bias and to estimate precision in aerial surveys. We developed a hybrid DO sightability model (model MH) that uses the strength of each approach to overcome the weakness in the other, for aerial surveys of elk (Cervus elaphus). The hybrid approach uses detection patterns of 2 independent observer pairs in a helicopter and telemetry-based detections of collared elk groups. Candidate MH models reflected hypotheses about effects of recorded covariates and unmodeled heterogeneity on the separate front-seat observer pair and back-seat observer pair detection probabilities. Group size and concealing vegetation cover strongly influenced detection probabilities. The pilot's previous experience participating in aerial surveys influenced detection by the front pair of observers if the elk group was on the pilot's side of the helicopter flight path. In 9 surveys in Mount Rainier National Park, the raw number of elk counted was approximately 80–93% of the abundance estimated by model MH. Uncorrected ratios of bulls per 100 cows generally were low compared to estimates adjusted for detection bias, but ratios of calves per 100 cows were comparable whether based on raw survey counts or adjusted estimates. The hybrid method was an improvement over commonly used alternatives, with improved precision compared to sightability modeling and reduced bias compared to DO modeling.

  1. Laser speckle imaging of rat retinal blood flow with hybrid temporal and spatial analysis method

    Science.gov (United States)

    Cheng, Haiying; Yan, Yumei; Duong, Timothy Q.

    2009-02-01

    Noninvasive monitoring of blood flow in retinal circulation will reveal the progression and treatment of ocular disorders, such as diabetic retinopathy, age-related macular degeneration and glaucoma. A non-invasive and direct BF measurement technique with high spatial-temporal resolution is needed for retinal imaging. Laser speckle imaging (LSI) is such a method. Currently, there are two analysis methods for LSI: spatial statistics LSI (SS-LSI) and temporal statistical LSI (TS-LSI). Comparing these two analysis methods, SS-LSI has higher signal to noise ratio (SNR) and TSLSI is less susceptible to artifacts from stationary speckle. We proposed a hybrid temporal and spatial analysis method (HTS-LSI) to measure the retinal blood flow. Gas challenge experiment was performed and images were analyzed by HTS-LSI. Results showed that HTS-LSI can not only remove the stationary speckle but also increase the SNR. Under 100% O2, retinal BF decreased by 20-30%. This was consistent with the results observed with laser Doppler technique. As retinal blood flow is a critical physiological parameter and its perturbation has been implicated in the early stages of many retinal diseases, HTS-LSI will be an efficient method in early detection of retina diseases.

  2. Hybrid Reynolds-Averaged/Large Eddy Simulation of a Cavity Flameholder; Assessment of Modeling Sensitivities

    Science.gov (United States)

    Baurle, R. A.

    2015-01-01

    Steady-state and scale-resolving simulations have been performed for flow in and around a model scramjet combustor flameholder. The cases simulated corresponded to those used to examine this flowfield experimentally using particle image velocimetry. A variety of turbulence models were used for the steady-state Reynolds-averaged simulations which included both linear and non-linear eddy viscosity models. The scale-resolving simulations used a hybrid Reynolds-averaged / large eddy simulation strategy that is designed to be a large eddy simulation everywhere except in the inner portion (log layer and below) of the boundary layer. Hence, this formulation can be regarded as a wall-modeled large eddy simulation. This effort was undertaken to formally assess the performance of the hybrid Reynolds-averaged / large eddy simulation modeling approach in a flowfield of interest to the scramjet research community. The numerical errors were quantified for both the steady-state and scale-resolving simulations prior to making any claims of predictive accuracy relative to the measurements. The steady-state Reynolds-averaged results showed a high degree of variability when comparing the predictions obtained from each turbulence model, with the non-linear eddy viscosity model (an explicit algebraic stress model) providing the most accurate prediction of the measured values. The hybrid Reynolds-averaged/large eddy simulation results were carefully scrutinized to ensure that even the coarsest grid had an acceptable level of resolution for large eddy simulation, and that the time-averaged statistics were acceptably accurate. The autocorrelation and its Fourier transform were the primary tools used for this assessment. The statistics extracted from the hybrid simulation strategy proved to be more accurate than the Reynolds-averaged results obtained using the linear eddy viscosity models. However, there was no predictive improvement noted over the results obtained from the explicit

  3. Hybrid and adaptive meta-model-based global optimization

    Science.gov (United States)

    Gu, J.; Li, G. Y.; Dong, Z.

    2012-01-01

    As an efficient and robust technique for global optimization, meta-model-based search methods have been increasingly used in solving complex and computation intensive design optimization problems. In this work, a hybrid and adaptive meta-model-based global optimization method that can automatically select appropriate meta-modelling techniques during the search process to improve search efficiency is introduced. The search initially applies three representative meta-models concurrently. Progress towards a better performing model is then introduced by selecting sample data points adaptively according to the calculated values of the three meta-models to improve modelling accuracy and search efficiency. To demonstrate the superior performance of the new algorithm over existing search methods, the new method is tested using various benchmark global optimization problems and applied to a real industrial design optimization example involving vehicle crash simulation. The method is particularly suitable for design problems involving computation intensive, black-box analyses and simulations.

  4. Lagrangian filtered density function for LES-based stochastic modelling of turbulent dispersed flows

    CERN Document Server

    Innocenti, A; Chibbaro, S

    2016-01-01

    The Eulerian-Lagrangian approach based on Large-Eddy Simulation (LES) is one of the most promising and viable numerical tools to study turbulent dispersed flows when the computational cost of Direct Numerical Simulation (DNS) becomes too expensive. The applicability of this approach is however limited if the effects of the Sub-Grid Scales (SGS) of the flow on particle dynamics are neglected. In this paper, we propose to take these effects into account by means of a Lagrangian stochastic SGS model for the equations of particle motion. The model extends to particle-laden flows the velocity-filtered density function method originally developed for reactive flows. The underlying filtered density function is simulated through a Lagrangian Monte Carlo procedure that solves for a set of Stochastic Differential Equations (SDEs) along individual particle trajectories. The resulting model is tested for the reference case of turbulent channel flow, using a hybrid algorithm in which the fluid velocity field is provided b...

  5. Improved modeling techniques for turbomachinery flow fields

    Energy Technology Data Exchange (ETDEWEB)

    Lakshminarayana, B. [Pennsylvania State Univ., University Park, PA (United States); Fagan, J.R. Jr. [Allison Engine Company, Indianapolis, IN (United States)

    1995-10-01

    This program has the objective of developing an improved methodology for modeling turbomachinery flow fields, including the prediction of losses and efficiency. Specifically, the program addresses the treatment of the mixing stress tensor terms attributed to deterministic flow field mechanisms required in steady-state Computational Fluid Dynamic (CFD) models for turbo-machinery flow fields. These mixing stress tensors arise due to spatial and temporal fluctuations (in an absolute frame of reference) caused by rotor-stator interaction due to various blade rows and by blade-to-blade variation of flow properties. These tasks include the acquisition of previously unavailable experimental data in a high-speed turbomachinery environment, the use of advanced techniques to analyze the data, and the development of a methodology to treat the deterministic component of the mixing stress tensor. Penn State will lead the effort to make direct measurements of the momentum and thermal mixing stress tensors in high-speed multistage compressor flow field in the turbomachinery laboratory at Penn State. They will also process the data by both conventional and conditional spectrum analysis to derive momentum and thermal mixing stress tensors due to blade-to-blade periodic and aperiodic components, revolution periodic and aperiodic components arising from various blade rows and non-deterministic (which includes random components) correlations. The modeling results from this program will be publicly available and generally applicable to steady-state Navier-Stokes solvers used for turbomachinery component (compressor or turbine) flow field predictions. These models will lead to improved methodology, including loss and efficiency prediction, for the design of high-efficiency turbomachinery and drastically reduce the time required for the design and development cycle of turbomachinery.

  6. An isentropic and sigma coordinate hybrid numerical model - Model development and some initial tests. [for atmospheric simulations

    Science.gov (United States)

    Uccellini, L. W.; Johnson, D. R.; Schlesinger, R. E.

    1979-01-01

    A solution is presented for matching boundary conditions across the interface of an isentropic and sigma coordinate hybrid model. A hybrid model based on the flux form of the primitive equations is developed which allows direct vertical exchange between the model domains, satisfies conservation principles with respect to transport processes, and maintains a smooth transition across the interface without need for artificial adjustment or parameterization schemes. The initial hybrid model simulations of a jet streak propagating in a zonal channel are used to test the feasibility of the hybrid model approach. High efficiency of the hybrid model is demonstrated.

  7. Baroclinic flow and the Lorenz-84 model

    NARCIS (Netherlands)

    Veen, Lennaert van

    2002-01-01

    The bifurcation diagram of a truncation to six degrees of freedom of the equations for quasi-geostrophic, baroclinic flow is investigated. Period doubling cascades and Shil'nikov bifurcations lead to chaos in this model. The low dimension of the chaotic attractor suggests the possibility to reduce t

  8. Modelling of flow phenomena during DC casting

    NARCIS (Netherlands)

    Zuidema, J.

    2005-01-01

    Modelling of Flow Phenomena during DC Casting Jan Zuidema The production of aluminium ingots, by semi-continuous casting, is a complex process. DC Casting stands for direct chill casting. During this process liquid aluminium transforms to solid aluminium while cooling down. This is not an instanta

  9. Modelling of flow phenomena during DC casting

    NARCIS (Netherlands)

    Zuidema, J.

    2005-01-01

    Modelling of Flow Phenomena during DC Casting Jan Zuidema The production of aluminium ingots, by semi-continuous casting, is a complex process. DC Casting stands for direct chill casting. During this process liquid aluminium transforms to solid aluminium while cooling down. This is not an

  10. Adaptive Lattice Boltzmann Model for Compressible Flows

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A new lattice Boltzmann model for compressible flows is presented. The main difference from the standard lattice Boltzmann model is that the particle velocities are no longer constant, but vary with the mean velocity and internal energy. The adaptive nature of the particle velocities permits the mean flow to have a high Mach number. The introduction of a particle potential energy makes the model suitable for a perfect gas with arbitrary specific heat ratio. The Navier-Stokes (N-S) equations are derived by the Chapman-Enskog method from the BGK Boltzmann equation. Two kinds of simulations have been carried out on the hexagonal lattice to test the proposed model. One is the Sod shock-tube simulation. The other is a strong shock of Mach number 5.09 diffracting around a corner.

  11. Hybrid solution for the laminar flow of power-law fluids inside rectangular ducts

    Science.gov (United States)

    Lima, J. A.; Pereira, L. M.; Macêdo, E. N.; Chaves, C. L.; Quaresma, J. N. N.

    The so-called generalized integral transform technique (GITT) is employed in the hybrid numerical-analytical solution of two-dimensional fully-developed laminar flow of non-Newtonian power-law fluids inside rectangular ducts. The characteristic of the automatic and straightforward global error control procedure inherent to this approach, permits the determination of fully converged benchmark results to assess the performance of purely numerical techniques. Therefore, numerical results for the product Fanning friction factor-generalized Reynolds number are computed for different values of power-law index and aspect ratio, which are compared with previously reported results in the literature, providing critical comparisons among them as well as illustrating the powerfulness of the integral transform approach. The resulting velocity profiles computed by using this methodology are also compared with those calculated by approximated methods for power-law fluids, within the range of governing parameters studied.

  12. Designing a Hybrid Laminar-Flow Control Experiment: The CFD-Experiment Connection

    Science.gov (United States)

    Streett, C. L.

    2003-01-01

    The NASA/Boeing hybrid laminar flow control (HLFC) experiment, designed during 1993-1994 and conducted in the NASA LaRC 8-foot Transonic Pressure Tunnel in 1995, utilized computational fluid dynamics and numerical simulation of complex fluid mechanics to an unprecedented extent for the design of the test article and measurement equipment. CFD was used in: the design of the test wing, which was carried from definition of desired disturbance growth characteristics, through to the final airfoil shape that would produce those growth characteristics; the design of the suction-surface perforation pattern that produced enhanced crossflow-disturbance growth: and in the design of the hot-wire traverse system that produced minimal influence on measured disturbance growth. These and other aspects of the design of the test are discussed, after the historical and technical context of the experiment is described.

  13. A Novel Software Simulator Model Based on Active Hybrid Architecture

    Directory of Open Access Journals (Sweden)

    Amr AbdElHamid

    2015-01-01

    Full Text Available The simulated training is an important issue for any type of missions such as aerial, ground, sea, or even space missions. In this paper, a new flexible aerial simulator based on active hybrid architecture is introduced. The simulator infrastructure is applicable to any type of training missions and research activities. This software-based simulator is tested on aerial missions to prove its applicability within time critical systems. The proposed active hybrid architecture is introduced via using the VB.NET and MATLAB in the same simulation loop. It exploits the remarkable computational power of MATLAB as a backbone aircraft model, and such mathematical model provides realistic dynamics to the trainee. Meanwhile, the Human-Machine Interface (HMI, the mission planning, the hardware interfacing, data logging, and MATLAB interfacing are developed using VB.NET. The proposed simulator is flexible enough to perform navigation and obstacle avoidance training missions. The active hybrid architecture is used during the simulated training, and also through postmission activities (like the generation of signals playback reports for evaluation purposes. The results show the ability of the proposed architecture to fulfill the aerial simulator demands and to provide a flexible infrastructure for different simulated mission requirements. Finally, a comparison with some existing simulators is introduced.

  14. Water-sediment flow models for river reaches sediment related pollution control.

    Science.gov (United States)

    Sil, Briti Sundar; Choudhury, Parthasarathi

    2012-07-01

    Hybrid water-sediment flow models for river reaches have been for predicting sediment and sediment related pollutions in water courses. The models are developed by combining sediment rating model and the Muskingum model applicable for a reach. The models incorporate sediment concentration and water discharge variables for a river reach; allow defining downstream sediment rating curve in terms of upstream water discharges. The model is useful in generating sediment concentration graph for a station having no water discharge records. The hybrid models provide forecasting forms that can be used to forecast downstream sediment concentration/water discharges 2kx time unit ahead. The forecasting models are useful for applications in real time namely, in the real time management of sediment related pollution in water courses and in issuing flood warning. Integration of sediment rating model and the Muskingum model increases model parameters and nonlinearity requiring efficient estimation technique for parameter identification. To identify parameters in the hybrid models genetic algorithm (GA) based optimization technique can be used. The new model relies on the Muskingum model, obey continuity requirement and the parameters can be used in the Muskingum model with water discharges to estimate/predict downstream water discharge values. The proposed model formulations are demonstrated for simulating and forecasting sediment concentration and water discharges in the Mississippi River Basin, USA. Model parameters are estimated using non-dominated sorting Genetic Algorithm II (NSGA-II). Model results show satisfactory model performances.

  15. MODEL APLIKASI FIKIH MUAMALAH PADA FORMULASI HYBRID CONTRACT

    Directory of Open Access Journals (Sweden)

    Ali Murtadho

    2013-10-01

    Full Text Available Modern literatures of fiqh mu’āmalah talk alot about various contract formulation with capability of maximizing profit in shariah finance industry. This new contract modification is the synthesis among existing contracts which is formulated in such a way to be an integrated contract. This formulation is known as a hybrid contract or multicontract (al-'uqūd al-murakkabah. Some of them are, bay' bi thaman 'ājil, Ijārah muntahiyah bi ’l-tamlīk dan mushārakah mutanāqiṣah. This study intends to further describe models of hybrid contract, and explore the shari'ah principles in modern financial institutions. This study found a potential shift from the ideal values of the spirit of shari'ah into the spirit of competition based shari'ah formally.

  16. System Modeling and Diagnostics for Liquefying-Fuel Hybrid Rockets

    Science.gov (United States)

    Poll, Scott; Iverson, David; Ou, Jeremy; Sanderfer, Dwight; Patterson-Hine, Ann

    2003-01-01

    A Hybrid Combustion Facility (HCF) was recently built at NASA Ames Research Center to study the combustion properties of a new fuel formulation that burns approximately three times faster than conventional hybrid fuels. Researchers at Ames working in the area of Integrated Vehicle Health Management recognized a good opportunity to apply IVHM techniques to a candidate technology for next generation launch systems. Five tools were selected to examine various IVHM techniques for the HCF. Three of the tools, TEAMS (Testability Engineering and Maintenance System), L2 (Livingstone2), and RODON, are model-based reasoning (or diagnostic) systems. Two other tools in this study, ICS (Interval Constraint Simulator) and IMS (Inductive Monitoring System) do not attempt to isolate the cause of the failure but may be used for fault detection. Models of varying scope and completeness were created, both qualitative and quantitative. In each of the models, the structure and behavior of the physical system are captured. In the qualitative models, the temporal aspects of the system behavior and the abstraction of sensor data are handled outside of the model and require the development of additional code. In the quantitative model, less extensive processing code is also necessary. Examples of fault diagnoses are given.

  17. Fuzzy-hybrid land vehicle driveline modelling based on a moving window subtractive clustering approach

    Science.gov (United States)

    Economou, J. T.; Knowles, K.; Tsourdos, A.; White, B. A.

    2011-02-01

    In this article, the fuzzy-hybrid modelling (FHM) approach is used and compared to the input-output system Takagi-Sugeno (TS) modelling approach which correlates the drivetrain power flow equations with the vehicle dynamics. The output power relations were related to the drivetrain bounded efficiencies and also to the wheel slips. The model relates also to the wheel and ground interactions via suitable friction coefficient models relative to the wheel slip profiles. The wheel slip had a significant efficiency contribution to the overall driveline system efficiency. The peak friction slip and peak coefficient of friction values are known a priori during the analysis. Lastly, the rigid body dynamical power has been verified through both simulation and experimental results. The mathematical analysis has been supported throughout the paper via experimental data for a specific electric robotic vehicle. The identification of the localised and input-output TS models for the fuzzy hybrid and the experimental data were obtained utilising the subtractive clustering (SC) methodology. These results were also compared to a real-time TS SC approach operating on periodic time windows. This article concludes with the benefits of the real-time FHM method for the vehicle electric driveline due to the advantage of both the analytical TS sub-model and the physical system modelling for the remaining process which can be clearly utilised for control purposes.

  18. A Simple Hybrid Model for Short-Term Load Forecasting

    Directory of Open Access Journals (Sweden)

    Suseelatha Annamareddi

    2013-01-01

    Full Text Available The paper proposes a simple hybrid model to forecast the electrical load data based on the wavelet transform technique and double exponential smoothing. The historical noisy load series data is decomposed into deterministic and fluctuation components using suitable wavelet coefficient thresholds and wavelet reconstruction method. The variation characteristics of the resulting series are analyzed to arrive at reasonable thresholds that yield good denoising results. The constitutive series are then forecasted using appropriate exponential adaptive smoothing models. A case study performed on California energy market data demonstrates that the proposed method can offer high forecasting precision for very short-term forecasts, considering a time horizon of two weeks.

  19. Active diagnosis of hybrid systems - A model predictive approach

    DEFF Research Database (Denmark)

    Tabatabaeipour, Seyed Mojtaba; Ravn, Anders P.; Izadi-Zamanabadi, Roozbeh;

    2009-01-01

    A method for active diagnosis of hybrid systems is proposed. The main idea is to predict the future output of both normal and faulty model of the system; then at each time step an optimization problem is solved with the objective of maximizing the difference between the predicted normal and faulty...... outputs constrained by tolerable performance requirements. As in standard model predictive control, the first element of the optimal input is applied to the system and the whole procedure is repeated until the fault is detected by a passive diagnoser. It is demonstrated how the generated excitation signal...

  20. Hybrid Upwinding for Two-Phase Flow in Heterogeneous Porous Media with Buoyancy and Capillarity

    Science.gov (United States)

    Hamon, F. P.; Mallison, B.; Tchelepi, H.

    2016-12-01

    In subsurface flow simulation, efficient discretization schemes for the partial differential equations governing multiphase flow and transport are critical. For highly heterogeneous porous media, the temporal discretization of choice is often the unconditionally stable fully implicit (backward-Euler) method. In this scheme, the simultaneous update of all the degrees of freedom requires solving large algebraic nonlinear systems at each time step using Newton's method. This is computationally expensive, especially in the presence of strong capillary effects driven by abrupt changes in porosity and permeability between different rock types. Therefore, discretization schemes that reduce the simulation cost by improving the nonlinear convergence rate are highly desirable. To speed up nonlinear convergence, we present an efficient fully implicit finite-volume scheme for immiscible two-phase flow in the presence of strong capillary forces. In this scheme, the discrete viscous, buoyancy, and capillary spatial terms are evaluated separately based on physical considerations. We build on previous work on Implicit Hybrid Upwinding (IHU) by using the upstream saturations with respect to the total velocity to compute the relative permeabilities in the viscous term, and by determining the directionality of the buoyancy term based on the phase density differences. The capillary numerical flux is decomposed into a rock- and geometry-dependent transmissibility factor, a nonlinear capillary diffusion coefficient, and an approximation of the saturation gradient. Combining the viscous, buoyancy, and capillary terms, we obtain a numerical flux that is consistent, bounded, differentiable, and monotone for homogeneous one-dimensional flow. The proposed scheme also accounts for spatially discontinuous capillary pressure functions. Specifically, at the interface between two rock types, the numerical scheme accurately honors the entry pressure condition by solving a local nonlinear problem

  1. Petascale computation performance of lightweight multiscale cardiac models using hybrid programming models.

    Science.gov (United States)

    Pope, Bernard J; Fitch, Blake G; Pitman, Michael C; Rice, John J; Reumann, Matthias

    2011-01-01

    Future multiscale and multiphysics models must use the power of high performance computing (HPC) systems to enable research into human disease, translational medical science, and treatment. Previously we showed that computationally efficient multiscale models will require the use of sophisticated hybrid programming models, mixing distributed message passing processes (e.g. the message passing interface (MPI)) with multithreading (e.g. OpenMP, POSIX pthreads). The objective of this work is to compare the performance of such hybrid programming models when applied to the simulation of a lightweight multiscale cardiac model. Our results show that the hybrid models do not perform favourably when compared to an implementation using only MPI which is in contrast to our results using complex physiological models. Thus, with regards to lightweight multiscale cardiac models, the user may not need to increase programming complexity by using a hybrid programming approach. However, considering that model complexity will increase as well as the HPC system size in both node count and number of cores per node, it is still foreseeable that we will achieve faster than real time multiscale cardiac simulations on these systems using hybrid programming models.

  2. An analysis platform for multiscale hydrogeologic modeling with emphasis on hybrid multiscale methods.

    Science.gov (United States)

    Scheibe, Timothy D; Murphy, Ellyn M; Chen, Xingyuan; Rice, Amy K; Carroll, Kenneth C; Palmer, Bruce J; Tartakovsky, Alexandre M; Battiato, Ilenia; Wood, Brian D

    2015-01-01

    One of the most significant challenges faced by hydrogeologic modelers is the disparity between the spatial and temporal scales at which fundamental flow, transport, and reaction processes can best be understood and quantified (e.g., microscopic to pore scales and seconds to days) and at which practical model predictions are needed (e.g., plume to aquifer scales and years to centuries). While the multiscale nature of hydrogeologic problems is widely recognized, technological limitations in computation and characterization restrict most practical modeling efforts to fairly coarse representations of heterogeneous properties and processes. For some modern problems, the necessary level of simplification is such that model parameters may lose physical meaning and model predictive ability is questionable for any conditions other than those to which the model was calibrated. Recently, there has been broad interest across a wide range of scientific and engineering disciplines in simulation approaches that more rigorously account for the multiscale nature of systems of interest. In this article, we review a number of such approaches and propose a classification scheme for defining different types of multiscale simulation methods and those classes of problems to which they are most applicable. Our classification scheme is presented in terms of a flowchart (Multiscale Analysis Platform), and defines several different motifs of multiscale simulation. Within each motif, the member methods are reviewed and example applications are discussed. We focus attention on hybrid multiscale methods, in which two or more models with different physics described at fundamentally different scales are directly coupled within a single simulation. Very recently these methods have begun to be applied to groundwater flow and transport simulations, and we discuss these applications in the context of our classification scheme. As computational and characterization capabilities continue to improve

  3. Traffic flow dynamics data, models and simulation

    CERN Document Server

    Treiber, Martin

    2013-01-01

    This textbook provides a comprehensive and instructive coverage of vehicular traffic flow dynamics and modeling. It makes this fascinating interdisciplinary topic, which to date was only documented in parts by specialized monographs, accessible to a broad readership. Numerous figures and problems with solutions help the reader to quickly understand and practice the presented concepts. This book is targeted at students of physics and traffic engineering and, more generally, also at students and professionals in computer science, mathematics, and interdisciplinary topics. It also offers material for project work in programming and simulation at college and university level. The main part, after presenting different categories of traffic data, is devoted to a mathematical description of the dynamics of traffic flow, covering macroscopic models which describe traffic in terms of density, as well as microscopic many-particle models in which each particle corresponds to a vehicle and its driver. Focus chapters on ...

  4. Poly(TEMPO)/Zinc Hybrid-Flow Battery: A Novel, "Green," High Voltage, and Safe Energy Storage System.

    Science.gov (United States)

    Winsberg, Jan; Janoschka, Tobias; Morgenstern, Sabine; Hagemann, Tino; Muench, Simon; Hauffman, Guillaume; Gohy, Jean-François; Hager, Martin D; Schubert, Ulrich S

    2016-03-16

    The combination of a polymer-based 2,2,6,6-tetramethylpiperidinyl-N-oxyl (TEMPO) catholyte and a zinc anode, together with a cost-efficient size-exclusion membrane, builds a new type of semi-organic, "green," hybrid-flow battery, which features a high potential range of up to 2 V, high efficiencies, and a long life time.

  5. Formation of hybrid gold nanoparticle network aggregates by specific host-guest interactions in a turbulent flow reactor

    NARCIS (Netherlands)

    Weinhart-Mejia, R.; Huskens, Jurriaan

    2014-01-01

    A multi-inlet vortex mixer (MIVM) was used to investigate the formation of hybrid gold nanoparticle network aggregates under highly turbulent flow conditions. To form aggregates, gold nanoparticles were functionalized with β-cyclodextrin (CD) and mixed with adamantyl (Ad)-terminated

  6. Utilization of flow cytometry to identify chimeral sectors in leaf tissue of Lolium multiflorum x L. arundinaceum hybrids

    Science.gov (United States)

    We have identified a method whereby Lolium multiflorum (Lm) or L. arundinaceum (Fa) genomes are preferentially eliminated through a mitotic loss behavior in interspecific Lm x Fa F1 hybrids, generating either dihaploid Lm lines or Fa lines. Flow cytometry, a method for rapidly characterizing optical...

  7. Dynamic Stability Enhancement and Power Flow Control of a Hybrid Wind and Marine-Current Farm Using SMES

    DEFF Research Database (Denmark)

    Wang, Li; Chen, Shiang-Shong; Lee, Wei-Jen

    2009-01-01

    This paper presents a control scheme based on a superconducting magnetic energy storage (SMES) unit to achieve both power flow control and damping enhancement of a novel hybrid wind and marine-current farm (MCF) connected to a large power grid. The performance of the studied wind farm (WF) is sim...

  8. Formation of hybrid gold nanoparticle network aggregates by specific host-guest interactions in a turbulent flow reactor

    NARCIS (Netherlands)

    Mejia Ariza, Raquel; Huskens, Jurriaan

    2014-01-01

    A multi-inlet vortex mixer (MIVM) was used to investigate the formation of hybrid gold nanoparticle network aggregates under highly turbulent flow conditions. To form aggregates, gold nanoparticles were functionalized with β-cyclodextrin (CD) and mixed with adamantyl (Ad)-terminated poly(propyleneim

  9. On the mixture model for multiphase flow

    Energy Technology Data Exchange (ETDEWEB)

    Manninen, M.; Taivassalo, V. [VTT Energy, Espoo (Finland). Nuclear Energy; Kallio, S. [Aabo Akademi, Turku (Finland)

    1996-12-31

    Numerical flow simulation utilising a full multiphase model is impractical for a suspension possessing wide distributions in the particle size or density. Various approximations are usually made to simplify the computational task. In the simplest approach, the suspension is represented by a homogeneous single-phase system and the influence of the particles is taken into account in the values of the physical properties. This study concentrates on the derivation and closing of the model equations. The validity of the mixture model is also carefully analysed. Starting from the continuity and momentum equations written for each phase in a multiphase system, the field equations for the mixture are derived. The mixture equations largely resemble those for a single-phase flow but are represented in terms of the mixture density and velocity. The volume fraction for each dispersed phase is solved from a phase continuity equation. Various approaches applied in closing the mixture model equations are reviewed. An algebraic equation is derived for the velocity of a dispersed phase relative to the continuous phase. Simplifications made in calculating the relative velocity restrict the applicability of the mixture model to cases in which the particles reach the terminal velocity in a short time period compared to the characteristic time scale of the flow of the mixture. (75 refs.)

  10. Experimental evaluations of the microchannel flow model.

    Science.gov (United States)

    Parker, K J

    2015-06-07

    Recent advances have enabled a new wave of biomechanics measurements, and have renewed interest in selecting appropriate rheological models for soft tissues such as the liver, thyroid, and prostate. The microchannel flow model was recently introduced to describe the linear response of tissue to stimuli such as stress relaxation or shear wave propagation. This model postulates a power law relaxation spectrum that results from a branching distribution of vessels and channels in normal soft tissue such as liver. In this work, the derivation is extended to determine the explicit link between the distribution of vessels and the relaxation spectrum. In addition, liver tissue is modified by temperature or salinity, and the resulting changes in tissue responses (by factors of 1.5 or greater) are reasonably predicted from the microchannel flow model, simply by considering the changes in fluid flow through the modified samples. The 2 and 4 parameter versions of the model are considered, and it is shown that in some cases the maximum time constant (corresponding to the minimum vessel diameters), could be altered in a way that has major impact on the observed tissue response. This could explain why an inflamed region is palpated as a harder bump compared to surrounding normal tissue.

  11. Multiobjective muffler shape optimization with hybrid acoustics modeling.

    Science.gov (United States)

    Airaksinen, Tuomas; Heikkola, Erkki

    2011-09-01

    This paper considers the combined use of a hybrid numerical method for the modeling of acoustic mufflers and a genetic algorithm for multiobjective optimization. The hybrid numerical method provides accurate modeling of sound propagation in uniform waveguides with non-uniform obstructions. It is based on coupling a wave based modal solution in the uniform sections of the waveguide to a finite element solution in the non-uniform component. Finite element method provides flexible modeling of complicated geometries, varying material parameters, and boundary conditions, while the wave based solution leads to accurate treatment of non-reflecting boundaries and straightforward computation of the transmission loss (TL) of the muffler. The goal of optimization is to maximize TL at multiple frequency ranges simultaneously by adjusting chosen shape parameters of the muffler. This task is formulated as a multiobjective optimization problem with the objectives depending on the solution of the simulation model. NSGA-II genetic algorithm is used for solving the multiobjective optimization problem. Genetic algorithms can be easily combined with different simulation methods, and they are not sensitive to the smoothness properties of the objective functions. Numerical experiments demonstrate the accuracy and feasibility of the model-based optimization method in muffler design.

  12. Hybrid model decomposition of speech and noise in a radial basis function neural model framework

    DEFF Research Database (Denmark)

    Sørensen, Helge Bjarup Dissing; Hartmann, Uwe

    1994-01-01

    applied is based on a combination of the hidden Markov model (HMM) decomposition method, for speech recognition in noise, developed by Varga and Moore (1990) from DRA and the hybrid (HMM/RBF) recognizer containing hidden Markov models and radial basis function (RBF) neural networks, developed by Singer...... and Lippmann (1992) from MIT Lincoln Lab. The present authors modified the hybrid recognizer to fit into the decomposition method to achieve high performance speech recognition in noisy environments. The approach has been denoted the hybrid model decomposition method and it provides an optimal method...... for decomposition of speech and noise by using a set of speech pattern models and a noise model(s), each realized as an HMM/RBF pattern model...

  13. Modeling groundwater flow on massively parallel computers

    Energy Technology Data Exchange (ETDEWEB)

    Ashby, S.F.; Falgout, R.D.; Fogwell, T.W.; Tompson, A.F.B.

    1994-12-31

    The authors will explore the numerical simulation of groundwater flow in three-dimensional heterogeneous porous media. An interdisciplinary team of mathematicians, computer scientists, hydrologists, and environmental engineers is developing a sophisticated simulation code for use on workstation clusters and MPPs. To date, they have concentrated on modeling flow in the saturated zone (single phase), which requires the solution of a large linear system. they will discuss their implementation of preconditioned conjugate gradient solvers. The preconditioners under consideration include simple diagonal scaling, s-step Jacobi, adaptive Chebyshev polynomial preconditioning, and multigrid. They will present some preliminary numerical results, including simulations of groundwater flow at the LLNL site. They also will demonstrate the code`s scalability.

  14. Symposium on unsaturated flow and transport modeling

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, E.M.; Gee, G.W.; Nelson, R.W. (eds.)

    1982-09-01

    This document records the proceedings of a symposium on flow and transport processes in partially saturated groundwater systems, conducted at the Battelle Seattle Research Center on March 22-24, 1982. The symposium was sponsored by the US Nuclear Regulatory Commission for the purpose of assessing the state-of-the-art of flow and transport modeling for use in licensing low-level nuclear waste repositories in partially saturated zones. The first day of the symposium centered around research in flow through partially saturated systems. Papers were presented with the opportunity for questions following each presentation. In addition, after all the talks, a formal panel discussion was held during which written questions were addressed to the panel of the days speakers. The second day of the Symposium was devoted to solute and contaminant transport in partially saturated media in an identical format. Individual papers are abstracted.

  15. Dynamics of electrochemical flows 3 Closure models

    CERN Document Server

    Xu, Chengjun

    2013-01-01

    The electrolyte (comprising of solute ions and solvents) flow-through the porous media is frequently encountered in nature or in many engineering applications, such as the electrochemical systems, manufacturing of composites, oil production, geothermal engineering, nuclear thermal disposal, soil pollution. Our previous work derived the interfacial interaction terms between the solid and the fluid, which can be used to investigate the details of transports of mass, heat, electric flied, potential, or momentum in the process of the electrochemical flows-through porous electrode. In this work, we establish the closure models for these interfacial interaction terms to close the governing equations from mathematical algebra. The interfacial interaction terms regard to the electric field, potential and electric force are firstly revealed. Our new theory provides a new approach to describe the electrochemical flows-through porous media.

  16. Allele distributions at hybrid incompatibility loci facilitate the potential for gene flow between cultivated and weedy rice in the US.

    Science.gov (United States)

    Craig, Stephanie M; Reagon, Michael; Resnick, Lauren E; Caicedo, Ana L

    2014-01-01

    The accumulation of independent mutations over time in two populations often leads to reproductive isolation. Reproductive isolation between diverging populations may be reinforced by barriers that occur either pre- or postzygotically. Hybrid sterility is the most common form of postzygotic isolation in plants. Four postzygotic sterility loci, comprising three hybrid sterility systems (Sa, s5, DPL), have been recently identified in Oryza sativa. These loci explain, in part, the limited hybridization that occurs between the domesticated cultivated rice varieties, O. sativa spp. japonica and O. sativa spp. indica. In the United States, cultivated fields of japonica rice are often invaded by conspecific weeds that have been shown to be of indica origin. Crop-weed hybrids have been identified in crop fields, but at low frequencies. Here we examined the possible role of these hybrid incompatibility loci in the interaction between cultivated and weedy rice. We identified a novel allele at Sa that seemingly prevents loss of fertility in hybrids. Additionally, we found wide-compatibility type alleles at strikingly high frequencies at the Sa and s5 loci in weed groups, and a general lack of incompatible alleles between crops and weeds at the DPL loci. Our results suggest that weedy individuals, particularly those of the SH and BRH groups, should be able to freely hybridize with the local japonica crop, and that prezygotic factors, such as differences in flowering time, have been more important in limiting weed-crop gene flow in the past. As the selective landscape for weedy rice changes due to increased use of herbicide resistant strains of cultivated rice, the genetic barriers that hinder indica-japonica hybridization cannot be counted on to limit the flow of favorable crop genes into weeds.

  17. Allele distributions at hybrid incompatibility loci facilitate the potential for gene flow between cultivated and weedy rice in the US.

    Directory of Open Access Journals (Sweden)

    Stephanie M Craig

    Full Text Available The accumulation of independent mutations over time in two populations often leads to reproductive isolation. Reproductive isolation between diverging populations may be reinforced by barriers that occur either pre- or postzygotically. Hybrid sterility is the most common form of postzygotic isolation in plants. Four postzygotic sterility loci, comprising three hybrid sterility systems (Sa, s5, DPL, have been recently identified in Oryza sativa. These loci explain, in part, the limited hybridization that occurs between the domesticated cultivated rice varieties, O. sativa spp. japonica and O. sativa spp. indica. In the United States, cultivated fields of japonica rice are often invaded by conspecific weeds that have been shown to be of indica origin. Crop-weed hybrids have been identified in crop fields, but at low frequencies. Here we examined the possible role of these hybrid incompatibility loci in the interaction between cultivated and weedy rice. We identified a novel allele at Sa that seemingly prevents loss of fertility in hybrids. Additionally, we found wide-compatibility type alleles at strikingly high frequencies at the Sa and s5 loci in weed groups, and a general lack of incompatible alleles between crops and weeds at the DPL loci. Our results suggest that weedy individuals, particularly those of the SH and BRH groups, should be able to freely hybridize with the local japonica crop, and that prezygotic factors, such as differences in flowering time, have been more important in limiting weed-crop gene flow in the past. As the selective landscape for weedy rice changes due to increased use of herbicide resistant strains of cultivated rice, the genetic barriers that hinder indica-japonica hybridization cannot be counted on to limit the flow of favorable crop genes into weeds.

  18. Ultrasound assessment of mesenteric blood flow in neonates with hypoplastic left heart before and after hybrid palliation.

    Science.gov (United States)

    Cozzi, Corin T; Galantowicz, Mark; Cheatham, John P; Nicholson, Lisa; Fernandez, Richard; Backes, Carl H; McCaw, Carrie; Cua, Clifford L

    2015-08-01

    Altered mesenteric perfusion may be a contributor to the development of necrotising enterocolitis in patients with hypoplastic left heart syndrome. The goal of this study was to document mesenteric flow patterns in patients with hypoplastic left heart syndrome pre- and post-hybrid procedure. A prospective study on all patients with hypoplatic left heart syndrome undergoing the hybrid procedure was conducted. Doppler ultrasound analysis of the coeliac and superior mesenteric artery was performed. A total of 13 patients were evaluated. There was a significant difference in the coeliac artery effective velocity-time intergral pre- and post-hybrid procedure (8.69±3.84 versus 12.51±4.95 cm, respectively). There were significant differences in the superior mesenteric artery antegrade velocity-time integral pre- and post-hybrid procedure (6.86±2.45 versus 10.52±2.64 cm, respectively) and superior mesenteric artery effective velocity-time integral pre- and post-hybrid procedure (6.22±2.68 versus 9.73±2.73 cm, respectively). There were no significant differences between the coeliac and superior mesenteric artery Doppler indices in the pre-hybrid procedure; there were, however, significant differences in the post-hybrid procedure between coeliac and superior mesenteric artery antegrade velocity-time integral (13.8 2±5.60 versus 10.52±2.64 cm, respectively) and effective velocity-time integral (13.04±4.71 versus 9.73±2.73 cm, respectively). Doppler mesenteric indices of perfusion improve in patients with hypoplastic left heart syndrome after the hybrid procedure; however, there appears to be preferential flow to the coeliac artery versus the superior mesenteric artery in these patients post-procedure.

  19. Experimental Validation of a Thermoelastic Model for SMA Hybrid Composites

    Science.gov (United States)

    Turner, Travis L.

    2001-01-01

    This study presents results from experimental validation of a recently developed model for predicting the thermomechanical behavior of shape memory alloy hybrid composite (SMAHC) structures, composite structures with an embedded SMA constituent. The model captures the material nonlinearity of the material system with temperature and is capable of modeling constrained, restrained, or free recovery behavior from experimental measurement of fundamental engineering properties. A brief description of the model and analysis procedures is given, followed by an overview of a parallel effort to fabricate and characterize the material system of SMAHC specimens. Static and dynamic experimental configurations for the SMAHC specimens are described and experimental results for thermal post-buckling and random response are presented. Excellent agreement is achieved between the measured and predicted results, fully validating the theoretical model for constrained recovery behavior of SMAHC structures.

  20. Numerical simulation of particulate flows using a hybrid of finite difference and boundary integral methods.

    Science.gov (United States)

    Bhattacharya, Amitabh; Kesarkar, Tejas

    2016-10-01

    A combination of finite difference (FD) and boundary integral (BI) methods is used to formulate an efficient solver for simulating unsteady Stokes flow around particles. The two-dimensional (2D) unsteady Stokes equation is being solved on a Cartesian grid using a second order FD method, while the 2D steady Stokes equation is being solved near the particle using BI method. The two methods are coupled within the viscous boundary layer, a few FD grid cells away from the particle, where solutions from both FD and BI methods are valid. We demonstrate that this hybrid method can be used to accurately solve for the flow around particles with irregular shapes, even though radius of curvature of the particle surface is not resolved by the FD grid. For dilute particle concentrations, we construct a virtual envelope around each particle and solve the BI problem for the flow field located between the envelope and the particle. The BI solver provides velocity boundary condition to the FD solver at "boundary" nodes located on the FD grid, adjacent to the particles, while the FD solver provides the velocity boundary condition to the BI solver at points located on the envelope. The coupling between FD method and BI method is implicit at every time step. This method allows us to formulate an O(N) scheme for dilute suspensions, where N is the number of particles. For semidilute suspensions, where particles may cluster, an envelope formation method has been formulated and implemented, which enables solving the BI problem for each individual particle cluster, allowing efficient simulation of hydrodynamic interaction between particles even when they are in close proximity. The method has been validated against analytical results for flow around a periodic array of cylinders and for Jeffrey orbit of a moving ellipse in shear flow. Simulation of multiple force-free irregular shaped particles in the presence of shear in a 2D slit flow has been conducted to demonstrate the robustness of

  1. Hybrid model of arm for analysis of regional blood oxygenation in non-invasive optical diagnostics

    Science.gov (United States)

    Nowocień, Sylwester; Mroczka, Janusz

    2017-06-01

    The paper presents a new comprehensive approach to modeling and analysis of processes occurring during the blood flow in the arm's small vessels as well as non-invasive measurement method of mixed venous oxygen saturation. During the work, a meta-analysis of available physiological data was performed and based on its result a hybrid model of forearm vascular tree was proposed. The model, in its structure, takes into account a classical nonlinear hydro-electric analogy in conjunction with light-tissue interaction. Several geometries of arm vascular tree obtained from magnetic resonance angiography (MRA) image were analyzed which allowed to proposed the structure of electrical analog network. Proposed model allows to simulate the behavior of forearm blood flow from the vascular tree mechanics point of view, as well as effects of the impact of cuff and vessel wall mechanics on the recorded photoplethysmographic signals. In particular, it allows to analyze the reaction and anatomical effects in small vessels and microcirculation caused by occlusive maneuver in selected techniques, what was of particular interest to authors and motivation to undertake research in this area. Preliminary studies using proposed model showed that inappropriate selection of occlusion maneuver parameters (e.g. occlusion time, cuff pressure etc.), cause dangerous turbulence of blood flow in the venous section of the vascular tree.

  2. An Assessment of a Proposed Hybrid Neural Network for Daily Flow Prediction in Arid Climate

    Directory of Open Access Journals (Sweden)

    Milad Jajarmizadeh

    2014-01-01

    Full Text Available Rainfall-runoff simulation in hydrology using artificial intelligence presents the nonlinear relationships using neural networks. In this study, a hybrid network presented as a feedforward modular neural network (FF-MNN has been developed to predict the daily rainfall-runoff of the Roodan watershed at the southern part of Iran. This FF-MNN has three layers—input, hidden, and output. The hidden layer has two types of neural expert or module. Hydrometeorological data of the catchment were collected for 21 years. Heuristic method was used to develop the MNN for exploring daily flow generalization. Two training algorithms, namely, backpropagation with momentum and Levenberg-Marquardt, were used. Sigmoid and linear transfer functions were employed to explore the network’s optimum behavior. Cross-validation and predictive uncertainty assessments were carried out to protect overtiring and overparameterization, respectively. Results showed that the FF-MNN could satisfactorily predict stream flow during testing period. The Nash-Sutcliff coefficient, coefficient of determination, and root mean square error obtained using MNN during training and test periods were 0.85, 0.85, and 39.4 and 0.57, 0.58, and 32.2, respectively. The predictive uncertainties for both periods were 0.39 and 0.44, respectively. Generally, the study showed that the FF-MNN can give promising prediction for rainfall-runoff relations.

  3. Evaluation of electrode materials for all-copper hybrid flow batteries

    Science.gov (United States)

    Leung, Puiki; Palma, Jesus; Garcia-Quismondo, Enrique; Sanz, Laura; Mohamed, M. R.; Anderson, Marc

    2016-04-01

    This work evaluates a number of two- and three-dimensional electrodes for the reactions of an all-copper hybrid flow battery. Half- and full-cell experiments are conducted by minimizing the crossover effect of the copper(II) species. The battery incorporates a Nafion® cation exchange membrane and the negative electrolyte is maintained at the monovalent (colourless) state by the incorporating copper turnings in the electrolyte reservoir. Under such conditions, the half-cell coulombic efficiencies of the negative electrode reactions are all higher than 90% regardless of electrode materials and the state-of-charge (SOC). With charge-discharge cycling the half-cell from a 0% SOC, the coulombic efficiencies of the positive electrode reactions are lower than 76% with the planar carbon electrode, which further decrease in shorter charge-discharge cycles. Polarization and half-cell charge-discharge experiments suggest that the high-surface-area electrodes effectively reduce the overpotentials and improve the coulombic efficiencies of both electrode reactions. When copper fibres and carbon felt are used as the negative and positive electrodes, the average coulombic and voltage efficiencies of an all-copper flow battery are as high as c.a. 99% and c.a. 60% at 50 mA cm-2 for 35 cycles.

  4. PSO based Optimal Power Flow with Hybrid Distributed Generators and UPFC

    Directory of Open Access Journals (Sweden)

    S.G. Bharathi dasan

    2012-09-01

    Full Text Available Distributed Generation (DG is a small source of electric power conversion from nonconventionalenergy sources and Hybrid DGs is often the most cost-effective and reliable way toproduce power. Optimal Power flow (OPF study is conducted on a power system to achieve one of the following objectives: cost/loss minimization or Available transfer capability (ATCcalculation in a deregulated environment. The optimality of control variables would definitely change with respect to the location, quantity and combination of power injection by DGs. On the other hand, FACTS controllers are effective in utilizing the existing transmission network whichis very important especially in a deregulated system. Unified Power flow controller (UPFC, a second generation FACTS controller, is well known for minimizing the cost of generation/losses with a good voltage profile as well as for ATC improvement. This paper conducts a detailed OPF study on a 9 bus system [7] for the above mentioned three objectives, with DGs and UPFC. To solve the OPF problem, Particle Swarm Optimization (PSO, a non conventional technique is used.

  5. Data Analysis for the NASA/Boeing Hybrid Laminar Flow Control Crossflow Experiment

    Science.gov (United States)

    Eppink, Jenna L.; Wlezien, Richard

    2011-01-01

    The Hybrid-Laminar Flow Control (HLFC) Crossflow Experiment, completed in 1995. generated a large database of boundary layer stability and transition data that was only partially analyzed before data analysis was abruptly ended in the late 1990's. Renewed interest in laminar flow technologies prompted additional data analysis, to integrate all data, including some post-test roughness and porosity measurements. The objective is to gain new insights into the effects of suction on boundary layer stability. A number of challenges were encountered during the data analysis, and their solutions are discussed in detail. They include the effect of the probe vibration, the effect of the time-varying surface temperature on traveling crossflow instabilities, and the effect of the stationary crossflow modes on the approximation of wall location. Despite the low turbulence intensity of the wind tunnel (0.01 to 0.02%), traveling crosflow disturbances were present in the data, in some cases at amplitudes up to 1% of the freestream velocity. However, the data suggests that transition was dominated by stationary crossflow. Traveling crossflow results and stationary data in the presence of suction are compared with linear parabolized stability equations results as a way of testing the quality of the results.

  6. SCAN-based hybrid and double-hybrid density functionals from parameter-free models

    CERN Document Server

    Hui, Kerwin

    2015-01-01

    By incorporating the nonempirical SCAN semilocal density functional [Sun, Ruzsinszky, and Perdew, Phys. Rev. Lett. 115, 036402 (2015)] in the underlying expression, we propose one hybrid (SCAN0) and three double-hybrid (SCAN0-DH, SCAN-QIDH, and SCAN0-2) density functionals, which are free of any empirical parameter. The SCAN-based hybrid and double-hybrid functionals consistently outperform their parent SCAN semilocal functional for a wide range of applications. The SCAN-based semilocal, hybrid, and double-hybrid functionals generally perform better than the corresponding PBE-based functionals. In addition, the SCAN0-2 and SCAN-QIDH double-hybrid functionals significantly reduce the qualitative failures of the SCAN semilocal functional, such as the self-interaction error and noncovalent interaction error, extending the applicability of the SCAN-based functionals to a very diverse range of systems.

  7. Hybrid channel flow-type mechanisms in the Greater Himalayan Sequence (West Nepal): new constraints from vorticity of flow and quartz petrofabric analyses.

    Science.gov (United States)

    Frassi, Chiara

    2016-04-01

    Central Thrust is located ˜5 km structurally below the previous mapped locations. Deformation temperature increases up structural section from ˜450°C to ˜650°C and overlaps with peak metamorphic temperature indicating that penetrative shearing was responsible for the exhumation of the GHS occurred at "close" to peak metamorphic conditions. I interpreted the telescoping and the inversion of the paleo-isotherms at the base of the GHS as produced mainly by a sub-simple shearing (Wm = 0.88-1) pervasively distributed through the lower portion of the GHS. The results are consistent with hybrid channel flow-type models where the boundary between lower and upper portions of the GHS, broadly corresponding to the tectono-metamorphic discontinuity recently documented in west Nepal, represents the limit between buried material, affected by dominant simple shearing, and exhumed material affected by a general flow dominates by pure shearing. This interpretation is consistent with the recent models suggesting the simultaneous operation of channel flow- and critical wedge-type processes at different structural depth.

  8. Hybrid perturbation methods based on statistical time series models

    Science.gov (United States)

    San-Juan, Juan Félix; San-Martín, Montserrat; Pérez, Iván; López, Rosario

    2016-04-01

    In this work we present a new methodology for orbit propagation, the hybrid perturbation theory, based on the combination of an integration method and a prediction technique. The former, which can be a numerical, analytical or semianalytical theory, generates an initial approximation that contains some inaccuracies derived from the fact that, in order to simplify the expressions and subsequent computations, not all the involved forces are taken into account and only low-order terms are considered, not to mention the fact that mathematical models of perturbations not always reproduce physical phenomena with absolute precision. The prediction technique, which can be based on either statistical time series models or computational intelligence methods, is aimed at modelling and reproducing missing dynamics in the previously integrated approximation. This combination results in the precision improvement of conventional numerical, analytical and semianalytical theories for determining the position and velocity of any artificial satellite or space debris object. In order to validate this methodology, we present a family of three hybrid orbit propagators formed by the combination of three different orders of approximation of an analytical theory and a statistical time series model, and analyse their capability to process the effect produced by the flattening of the Earth. The three considered analytical components are the integration of the Kepler problem, a first-order and a second-order analytical theories, whereas the prediction technique is the same in the three cases, namely an additive Holt-Winters method.

  9. A Hybrid Model for QCD Deconfining Phase Boundary

    CERN Document Server

    Srivastava, P K

    2012-01-01

    Intensive search for a proper and realistic equations of state (EOS) is still continued for studying the phase diagram existing between quark gluon plasma (QGP) and hadron gas (HG) phases. Lattice calculations provide such EOS for the strongly interacting matter at finite temperature ($T$) and vanishing baryon chemical potential ($\\mu_{B}$). These calculations are of limited use at finite $\\mu_{B}$ due to the appearance of notorious sign problem. In the recent past, we had constructed a hybrid model description for the QGP as well as HG phases where we make use of a new excluded-volume model for HG and a thermodynamically-consistent quasiparticle model for the QGP phase and used them further to get QCD phase boundary and a critical point. Since then many lattice calculations have appeared showing various thermal and transport properties of QCD matter at finite $T$ and $\\mu_{B}=0$. We test our hybrid model by reproducing the entire data for strongly interacting matter and predict our results at finite $\\mu_{B}...

  10. Description of Strongly Interacting Matter in A Hybrid Model

    CERN Document Server

    Srivastava, P K

    2014-01-01

    Search for a proper and realistic equation of state (EOS) for strongly interacting matter used in the study of the QCD phase diagram still appears as a challenging problem. Recently, we constructed a hybrid model description for the quark gluon plasma (QGP) as well as hadron gas (HG) phases where we used an excluded volume model for HG and a thermodynamically consistent quasiparticle model for the QGP phase. The hybrid model suitably describes the recent lattice results of various thermodynamical as well as transport properties of the QCD matter at zero baryon chemical potential ($\\mu_{B}$). In this paper, we extend our investigations further in obtaining the properties of QCD matter at finite value of $\\mu_{B}$ and compare our results with the most recent results of lattice QCD calculation. Finally we demonstrate the existence of two different limiting energy regimes and propose that the connection point of these two limiting regimes would foretell the existence of critical point (CP) of the deconfining phas...

  11. Interval forecasts of a novelty hybrid model for wind speeds

    Directory of Open Access Journals (Sweden)

    Shanshan Qin

    2015-11-01

    Full Text Available The utilization of wind energy, as a booming technology in the field of renewable energies, has been highly regarded around the world. Quantification of uncertainties associated with accurate wind speed forecasts is essential for regulating wind power generation and integration. However, it remains difficult work primarily due to the stochastic and nonlinear characteristics of wind speed series. Traditional models for wind speed forecasting mostly focus on generating certain predictive values, which cannot properly handle uncertainties. For quantifying potential uncertainties, a hybrid model constructed by the Cuckoo Search Optimization (CSO-based Back Propagation Neural Network (BPNN is proposed to establish wind speed interval forecasts (IFs by estimating the lower and upper bounds. The quality of IFs is assessed quantitatively using IFs coverage probability (IFCP and IFs normalized average width (IFNAW. Moreover, to assess the overall quality of IFs comprehensively, a tradeoff between informativeness (IFNAW and validity (IFCP of IFs is examined by coverage width-based criteria (CWC. As an applicative study, wind speeds from the Xinjiang Region in China are used to validate the proposed hybrid model. The results demonstrate that the proposed model can construct higher quality IFs for short-term wind speed forecasts.

  12. A site dependent top height growth model for hybrid aspen

    Institute of Scientific and Technical Information of China (English)

    Tord Johansson

    2013-01-01

    In this study height growth models for hybrid aspen were developed using three growth equations. The mean age of the hybrid aspen was 21 years (range 15−51 years) with a mean stand density of 946 stems ha-1 (87−2374) and a mean diameter at breast height (over bark) of 19.6 cm (8.5−40.8 cm). Site index was also examined in relation to soil type. Multiple samples were collected for three types of soil: light clay, medium clay and till. Site index curves were constructed using the col-lected data and compared with published reports. A number of dynamic equations were assessed for modeling top-height growth from total age. A Generalized Algebraic Difference Approach model derived by Cieszewski (2001) performed the best. This model explained 99% of the observed variation in tree height growth and exhibited no apparent bias across the range of predicted site indices. There were no significant differences between the soil types and site indices.

  13. MODELING THE CHAIN CONFORMATION OF POLYMER MELTS IN CONTRACTION FLOW

    Institute of Scientific and Technical Information of China (English)

    Qing Shen; Jian-feng Hu; Qing-feng Gu

    2003-01-01

    A constitutive model of quasi-Newtonian fluid based on the type of flow is used in abrupt planar contraction flow.The numerical results from finite element analysis are consistent with experimental data for stress patterns and velocity profiles in the flow field. The chain conformations of polymer melts are then investigated in such a planar contraction by using the phenomenological model with internal parameters proposed by the author. That is, the shape and orientation of polymer chain coils are predicted and discussed in different flow regions of the contraction flow field that possess simple shear flow, extensional flow, vortical flow, and mixed flow respectively.

  14. KNGEOID14: A national hybrid geoid model in Korea

    Science.gov (United States)

    Kang, S.; Sung, Y. M.; KIM, H.; Kim, Y. S.

    2016-12-01

    This study describes in brief the construction of a national hybrid geoid model in Korea, KNGEOID14, which can be used as an accurate vertical datum in/around Korea. The hybrid geoid model should be determined by fitting the gravimetric geoid to the geometric geoid undulations from GNSS/Leveling data which were presented the local vertical level. For developing the gravimetric geoid model, we determined all frequency parts (long, middle and short-frequency) of gravimetric geoid using all available data with optimal remove-restore technique based on EGM2008 reference surface. In remove-restore technique, the EGM2008 model to degree 360, RTM reduction method were used for calculating the long, middle and short-frequency part of gravimetric geoid, respectively. A number of gravity data compiled for modeling the middle-frequency part, residual geoid, containing 8,866 points gravity data on land and ocean areas. And, the DEM data gridded by 100m×100m were used for short-frequency part, is the topographic effect on the geoid generated by RTM method. The accuracy of gravimetric geoid model were evaluated by comparison with GNSS/Leveling data was about -0.362m ± 0.055m. Finally, we developed the national hybrid geoid model in Korea, KNGEOID14, corrected to gravimetric geoid with the correction term by fitting the about 1,200 GNSS/Leveling data on Korean bench marks. The correction term is modeled using the difference between GNSS/Leveling derived geoidal heights and gravimetric geoidal heights. The stochastic model used in the calculation of correction term is the LSC technique based on second-order Markov covariance function. The post-fit error (mean and std. dev.) of the KNGEOID14 model was evaluated as 0.001m ± 0.033m. Concerning the result of this study, the accurate orthometric height at any points in Korea will be easily and precisely calculated by combining the geoidal height from KNGEOID14 and ellipsoidal height from GPS observation technique.

  15. Ionocovalency and Applications 1. Ionocovalency Model and Orbital Hybrid Scales

    Directory of Open Access Journals (Sweden)

    Yonghe Zhang

    2010-11-01

    Full Text Available Ionocovalency (IC, a quantitative dual nature of the atom, is defined and correlated with quantum-mechanical potential to describe quantitatively the dual properties of the bond. Orbiotal hybrid IC model scale, IC, and IC electronegativity scale, XIC, are proposed, wherein the ionicity and the covalent radius are determined by spectroscopy. Being composed of the ionic function I and the covalent function C, the model describes quantitatively the dual properties of bond strengths, charge density and ionic potential. Based on the atomic electron configuration and the various quantum-mechanical built-up dual parameters, the model formed a Dual Method of the multiple-functional prediction, which has much more versatile and exceptional applications than traditional electronegativity scales and molecular properties. Hydrogen has unconventional values of IC and XIC, lower than that of boron. The IC model can agree fairly well with the data of bond properties and satisfactorily explain chemical observations of elements throughout the Periodic Table.

  16. Nonlinear Thermoelastic Model for SMAs and SMA Hybrid Composites

    Science.gov (United States)

    Turner, Travis L.

    2004-01-01

    A constitutive mathematical model has been developed that predicts the nonlinear thermomechanical behaviors of shape-memory-alloys (SMAs) and of shape-memory-alloy hybrid composite (SMAHC) structures, which are composite-material structures that contain embedded SMA actuators. SMAHC structures have been investigated for their potential utility in a variety of applications in which there are requirements for static or dynamic control of the shapes of structures, control of the thermoelastic responses of structures, or control of noise and vibrations. The present model overcomes deficiencies of prior, overly simplistic or qualitative models that have proven ineffective or intractable for engineering of SMAHC structures. The model is sophisticated enough to capture the essential features of the mechanics of SMAHC structures yet simple enough to accommodate input from fundamental engineering measurements and is in a form that is amenable to implementation in general-purpose structural analysis environments.

  17. Hierarchical modeling and control of hybrid systems with two layers; Hierarchische Modellierung und Regelung hybrider Systeme auf zwei Ebenen

    Energy Technology Data Exchange (ETDEWEB)

    Stursberg, Olaf; Paschedag, Tina; Rungger, Matthias; Ding, Hao [Kassel Univ. (Germany). Fachgebiet Regelungs- und Systemtheorie

    2010-08-15

    While hybrid dynamic models are, to a certain degree, established for modeling systems with heterogeneous dynamics, most approaches for design and analysis of hybrid systems are restricted to monolithic models without hierarchy. This contribution first shows, how modular hybrid systems with two layers of decision, as appropriate for representing manufacturing systems for example, can be modeled systematically. The second part proposes a technique for fixing discrete inputs (for coordinating control) and continuous inputs (for embedded continuous controllers) in combination. The method uses a graph-based search on the upper decision layer, while principles of predictive control are used on the lower layer. The procedure of modeling and control is illustrated for a manufacturing process. (orig.)

  18. Graphical Models for Optimal Power Flow

    CERN Document Server

    Dvijotham, Krishnamurthy; Chertkov, Michael; Misra, Sidhant; Vuffray, Marc

    2016-01-01

    Optimal power flow (OPF) is the central optimization problem in electric power grids. Although solved routinely in the course of power grid operations, it is known to be strongly NP-hard in general, and weakly NP-hard over tree networks. In this paper, we formulate the optimal power flow problem over tree networks as an inference problem over a tree-structured graphical model where the nodal variables are low-dimensional vectors. We adapt the standard dynamic programming algorithm for inference over a tree-structured graphical model to the OPF problem. Combining this with an interval discretization of the nodal variables, we develop an approximation algorithm for the OPF problem. Further, we use techniques from constraint programming (CP) to perform interval computations and adaptive bound propagation to obtain practically efficient algorithms. Compared to previous algorithms that solve OPF with optimality guarantees using convex relaxations, our approach is able to work for arbitrary distribution networks an...

  19. A hybrid model for improving response time in distributed data mining.

    Science.gov (United States)

    Krishnaswamy, Shonali; Loke, Seng W; Zaslasvky, Arkady

    2004-12-01

    This paper presents a hybrid distributed data mining (DDM) model for optimization of response time. The model combines a mobile agent approach with client server strategies to reduce the overall response time. The hybrid model proposes and develops accurate a priori estimates of the computation and communication components of response time as the costing strategy to support optimization. Experimental evaluation of the hybrid model is presented.

  20. Chromosome mapping radiation hybrid data and stochastic spin models

    CERN Document Server

    Falk, C T

    1995-01-01

    This work approaches human chromosome mapping by developing algorithms for ordering markers associated with radiation hybrid data. Motivated by recent work of Boehnke et al. [1], we formulate the ordering problem by developing stochastic spin models to search for minimum-break marker configurations. As a particular application, the methods developed are applied to 14 human chromosome-21 markers tested by Cox et al. [2]. The methods generate configurations consistent with the best found by others. Additionally, we find that the set of low-lying configurations is described by a Markov-like ordering probability distribution. The distribution displays cluster correlations reflecting closely linked loci.

  1. Software development infrastructure for the HYBRID modeling and simulation project

    Energy Technology Data Exchange (ETDEWEB)

    Aaron S. Epiney; Robert A. Kinoshita; Jong Suk Kim; Cristian Rabiti; M. Scott Greenwood

    2016-09-01

    One of the goals of the HYBRID modeling and simulation project is to assess the economic viability of hybrid systems in a market that contains renewable energy sources like wind. The idea is that it is possible for the nuclear plant to sell non-electric energy cushions, which absorb (at least partially) the volatility introduced by the renewable energy sources. This system is currently modeled in the Modelica programming language. To assess the economics of the system, an optimization procedure is trying to find the minimal cost of electricity production. The RAVEN code is used as a driver for the whole problem. It is assumed that at this stage, the HYBRID modeling and simulation framework can be classified as non-safety “research and development” software. The associated quality level is Quality Level 3 software. This imposes low requirements on quality control, testing and documentation. The quality level could change as the application development continues.Despite the low quality requirement level, a workflow for the HYBRID developers has been defined that include a coding standard and some documentation and testing requirements. The repository performs automated unit testing of contributed models. The automated testing is achieved via an open-source python script called BuildingsP from Lawrence Berkeley National Lab. BuildingsPy runs Modelica simulation tests using Dymola in an automated manner and generates and runs unit tests from Modelica scripts written by developers. In order to assure effective communication between the different national laboratories a biweekly videoconference has been set-up, where developers can report their progress and issues. In addition, periodic face-face meetings are organized intended to discuss high-level strategy decisions with management. A second means of communication is the developer email list. This is a list to which everybody can send emails that will be received by the collective of the developers and managers

  2. Exploring The Lambda Model Of The Hybrid Superstring

    CERN Document Server

    Schmidtt, David M

    2016-01-01

    The purpose of this contribution is to initiate the study of integrable deformations for different superstring theory formalisms that manifest the property of (classical) integrability. In this paper we choose the hybrid formalism of the superstring in the background AdS_{2}xS^{2} and explore in detail the most immediate consequences of its lambda-deformation. The resulting action functional corresponds to the lambda-model of the matter part of the fairly more sophisticated pure spinor formalism, which is also known to be classical integrable. In particular, the deformation preserves the integrability and the one-loop conformal invariance of its parent theory, hence being a marginal deformation.

  3. On The Modelling Of Hybrid Aerostatic - Gas Journal Bearings

    DEFF Research Database (Denmark)

    Morosi, Stefano; Santos, Ilmar

    2011-01-01

    Gas journal bearing have been increasingly adopted in modern turbo-machinery applications, as they meet the demands of operation at higher rotational speeds, in clean environment and great efficiency. Due to the fact that gaseous lubricants, typically air, have much lower viscosity than more...... modeling for hybrid lubrication of a compressible fluid film journal bearing. Additional forces are generated by injecting pressurized air into the bearing gap through orifices located on the bearing walls. A modified form of the compressible Reynolds equation for active lubrication is derived. By solving...

  4. Turbulence modelling of thermal plasma flows

    Science.gov (United States)

    Shigeta, Masaya

    2016-12-01

    This article presents a discussion of the ideas for modelling turbulent thermal plasma flows, reviewing the challenges, efforts, and state-of-the-art simulations. Demonstrative simulations are also performed to present the importance of numerical methods as well as physical models to express turbulent features. A large eddy simulation has been applied to turbulent thermal plasma flows to treat time-dependent and 3D motions of multi-scale eddies. Sub-grid scale models to be used should be able to express not only turbulent but also laminar states because both states co-exist in and around thermal plasmas which have large variations of density as well as transport properties under low Mach-number conditions. Suitable solution algorithms and differencing schemes must be chosen and combined appropriately to capture multi-scale eddies and steep gradients of temperature and chemical species, which are turbulent features of thermal plasma flows with locally variable Reynolds and Mach numbers. Several simulations using different methods under different conditions show commonly that high-temperature plasma regions exhibit less turbulent structures, with only large eddies, whereas low-temperature regions tend to be more turbulent, with numerous small eddies. These numerical results agree with both theoretical insight and photographs that show the characteristics of eddies. Results also show that a turbulence transition of a thermal plasma jet through a generation-breakup process of eddies in a torch is dominated by fluid dynamic instability after ejection rather than non-uniform or unsteady phenomena.

  5. Modeling density segregation in granular flow

    Science.gov (United States)

    Xiao, Hongyi; Lueptow, Richard; Umbanhowar, Paul

    2015-11-01

    A recently developed continuum-based model accurately predicts segregation in flows of granular mixtures varying in particle size by considering the interplay of advection, diffusion and segregation. In this research, we extend the domain of the model to include density driven segregation. Discrete Element Method (DEM) simulations of density bidisperse flows of mono-sized particles in a quasi-2D bounded heap were performed to determine the dependence of the density driven segregation velocity on local shear rate, particle concentration, and a segregation length which scales with the particle size and the logarithm of the density ratio. With these inputs, the model yields theoretical predictions of density segregation patterns that quantitatively match the DEM simulations over a range of density ratios (1.11-3.33) and flow rates (19.2-113.6 cm3/s). Matching experiments with various combinations of glass, steel and ceramic particles were also performed which reproduced the segregation patterns obtained in both the simulations and the theory.

  6. Modelling debris flows down general channels

    Directory of Open Access Journals (Sweden)

    S. P. Pudasaini

    2005-01-01

    Full Text Available This paper is an extension of the single-phase cohesionless dry granular avalanche model over curved and twisted channels proposed by Pudasaini and Hutter (2003. It is a generalisation of the Savage and Hutter (1989, 1991 equations based on simple channel topography to a two-phase fluid-solid mixture of debris material. Important terms emerging from the correct treatment of the kinematic and dynamic boundary condition, and the variable basal topography are systematically taken into account. For vanishing fluid contribution and torsion-free channel topography our new model equations exactly degenerate to the previous Savage-Hutter model equations while such a degeneration was not possible by the Iverson and Denlinger (2001 model, which, in fact, also aimed to extend the Savage and Hutter model. The model equations of this paper have been rigorously derived; they include the effects of the curvature and torsion of the topography, generally for arbitrarily curved and twisted channels of variable channel width. The equations are put into a standard conservative form of partial differential equations. From these one can easily infer the importance and influence of the pore-fluid-pressure distribution in debris flow dynamics. The solid-phase is modelled by applying a Coulomb dry friction law whereas the fluid phase is assumed to be an incompressible Newtonian fluid. Input parameters of the equations are the internal and bed friction angles of the solid particles, the viscosity and volume fraction of the fluid, the total mixture density and the pore pressure distribution of the fluid at the bed. Given the bed topography and initial geometry and the initial velocity profile of the debris mixture, the model equations are able to describe the dynamics of the depth profile and bed parallel depth-averaged velocity distribution from the initial position to the final deposit. A shock capturing, total variation diminishing numerical scheme is implemented to

  7. Causality in Psychiatry: A Hybrid Symptom Network Construct Model

    Directory of Open Access Journals (Sweden)

    Gerald eYoung

    2015-11-01

    Full Text Available Causality or etiology in psychiatry is marked by standard biomedical, reductionistic models (symptoms reflect the construct involved that inform approaches to nosology, or classification, such as in the DSM-5 (Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition; American Psychiatric Association, 2013. However, network approaches to symptom interaction (i.e., symptoms are formative of the construct; e.g., McNally, Robinaugh, Wu, Wang, Deserno, & Borsboom, 2014, for PTSD (posttraumatic stress disorder are being developed that speak to bottom-up processes in mental disorder, in contrast to the typical top-down psychological construct approach. The present article presents a hybrid top-down, bottom-up model of the relationship between symptoms and mental disorder, viewing symptom expression and their causal complex as a reciprocally dynamic system with multiple levels, from lower-order symptoms in interaction to higher-order constructs affecting them. The hybrid model hinges on good understanding of systems theory in which it is embedded, so that the article reviews in depth nonlinear dynamical systems theory (NLDST. The article applies the concept of emergent circular causality (Young, 2011 to symptom development, as well. Conclusions consider that symptoms vary over several dimensions, including: subjectivity; objectivity; conscious motivation effort; and unconscious influences, and the degree to which individual (e.g., meaning and universal (e.g., causal processes are involved. The opposition between science and skepticism is a complex one that the article addresses in final comments.

  8. A hybrid neural network model for noisy data regression.

    Science.gov (United States)

    Lee, Eric W M; Lim, Chee Peng; Yuen, Richard K K; Lo, S M

    2004-04-01

    A hybrid neural network model, based on the fusion of fuzzy adaptive resonance theory (FA ART) and the general regression neural network (GRNN), is proposed in this paper. Both FA and the GRNN are incremental learning systems and are very fast in network training. The proposed hybrid model, denoted as GRNNFA, is able to retain these advantages and, at the same time, to reduce the computational requirements in calculating and storing information of the kernels. A clustering version of the GRNN is designed with data compression by FA for noise removal. An adaptive gradient-based kernel width optimization algorithm has also been devised. Convergence of the gradient descent algorithm can be accelerated by the geometric incremental growth of the updating factor. A series of experiments with four benchmark datasets have been conducted to assess and compare effectiveness of GRNNFA with other approaches. The GRNNFA model is also employed in a novel application task for predicting the evacuation time of patrons at typical karaoke centers in Hong Kong in the event of fire. The results positively demonstrate the applicability of GRNNFA in noisy data regression problems.

  9. Causality in Psychiatry: A Hybrid Symptom Network Construct Model

    Science.gov (United States)

    Young, Gerald

    2015-01-01

    Causality or etiology in psychiatry is marked by standard biomedical, reductionistic models (symptoms reflect the construct involved) that inform approaches to nosology, or classification, such as in the DSM-5 [Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition; (1)]. However, network approaches to symptom interaction [i.e., symptoms are formative of the construct; e.g., (2), for posttraumatic stress disorder (PTSD)] are being developed that speak to bottom-up processes in mental disorder, in contrast to the typical top-down psychological construct approach. The present article presents a hybrid top-down, bottom-up model of the relationship between symptoms and mental disorder, viewing symptom expression and their causal complex as a reciprocally dynamic system with multiple levels, from lower-order symptoms in interaction to higher-order constructs affecting them. The hybrid model hinges on good understanding of systems theory in which it is embedded, so that the article reviews in depth non-linear dynamical systems theory (NLDST). The article applies the concept of emergent circular causality (3) to symptom development, as well. Conclusions consider that symptoms vary over several dimensions, including: subjectivity; objectivity; conscious motivation effort; and unconscious influences, and the degree to which individual (e.g., meaning) and universal (e.g., causal) processes are involved. The opposition between science and skepticism is a complex one that the article addresses in final comments. PMID:26635639

  10. Incorporating immigrant flows into microsimulation models.

    Science.gov (United States)

    Duleep, Harriet Orcutt; Dowhan, Daniel J

    2008-01-01

    Building on the research on immigrant earnings reviewed in the first article of this series, "Research on Immigrant Earnings," the preceding article, "Adding Immigrants to Microsimulation Models," linked research results to various issues essential for incorporating immigrant earnings into microsimulation models. The discussions of that article were in terms of a closed system. That is, it examined a system in which immigrant earnings and emigration are forecast for a given population represented in the base sample in the microsimulation model. This article, the last in the series, addresses immigrant earnings projections for open systems--microsimulation models that include projections of future immigration. The article suggests a simple method to project future immigrants and their earnings. Including the future flow of immigrants in microsimulation models can dramatically affect the projected Social Security benefits of some groups.

  11. Hybrid Logical Analyses of the Ambient Calculus

    DEFF Research Database (Denmark)

    Bolander, Thomas; Hansen, Rene Rydhof

    2010-01-01

    In this paper, hybrid logic is used to formulate three control flow analyses for Mobile Ambients, a process calculus designed for modelling mobility. We show that hybrid logic is very well-suited to express the semantic structure of the ambient calculus and how features of hybrid logic can...

  12. Flow cytometric sorting of fecal bacteria after in situ hybridization with polynucleotide probes.

    Science.gov (United States)

    Bruder, Lena M; Dörkes, Marcel; Fuchs, Bernhard M; Ludwig, Wolfgang; Liebl, Wolfgang

    2016-10-01

    The gut microbiome represents a key contributor to human physiology, metabolism, immune function, and nutrition. Elucidating the composition and genetics of the gut microbiota under various conditions is essential to understand how microbes function individually and as a community. Metagenomic analyses are increasingly used to study intestinal microbiota. However, for certain scientific questions it is sufficient to examine taxon-specific submetagenomes, covering selected bacterial genera in a targeted manner. Here we established a new variant of fluorescence in situ hybridization (FISH) combined with fluorescence-activated cell sorting (FACS), providing access to the genomes of specific taxa belonging to the complex community of the intestinal microbiota. In contrast to standard oligonucleotide probes, the RNA polynucleotide probe used here, which targets domain III of the 23S rRNA gene, extends the resolution power in environmental samples by increasing signal intensity. Furthermore, cells hybridized with the polynucleotide probe are not subjected to harsh pretreatments, and their genetic information remains intact. The protocol described here was tested on genus-specifically labeled cells in various samples, including complex fecal samples from different laboratory mouse types that harbor diverse intestinal microbiota. Specifically, as an example for the protocol described here, RNA polynucleotide probes could be used to label Enterococcus cells for subsequent sorting by flow cytometry. To detect and quantify enterococci in fecal samples prior to enrichment, taxon-specific PCR and qPCR detection systems have been developed. The accessibility of the genomes from taxon-specifically sorted cells for subsequent molecular analyses was demonstrated by amplification of functional genes. Copyright © 2016 Elsevier GmbH. All rights reserved.

  13. Efficient Vaccine Distribution Based on a Hybrid Compartmental Model.

    Directory of Open Access Journals (Sweden)

    Zhiwen Yu

    Full Text Available To effectively and efficiently reduce the morbidity and mortality that may be caused by outbreaks of emerging infectious diseases, it is very important for public health agencies to make informed decisions for controlling the spread of the disease. Such decisions must incorporate various kinds of intervention strategies, such as vaccinations, school closures and border restrictions. Recently, researchers have paid increased attention to searching for effective vaccine distribution strategies for reducing the effects of pandemic outbreaks when resources are limited. Most of the existing research work has been focused on how to design an effective age-structured epidemic model and to select a suitable vaccine distribution strategy to prevent the propagation of an infectious virus. Models that evaluate age structure effects are common, but models that additionally evaluate geographical effects are less common. In this paper, we propose a new SEIR (susceptible-exposed-infectious šC recovered model, named the hybrid SEIR-V model (HSEIR-V, which considers not only the dynamics of infection prevalence in several age-specific host populations, but also seeks to characterize the dynamics by which a virus spreads in various geographic districts. Several vaccination strategies such as different kinds of vaccine coverage, different vaccine releasing times and different vaccine deployment methods are incorporated into the HSEIR-V compartmental model. We also design four hybrid vaccination distribution strategies (based on population size, contact pattern matrix, infection rate and infectious risk for controlling the spread of viral infections. Based on data from the 2009-2010 H1N1 influenza epidemic, we evaluate the effectiveness of our proposed HSEIR-V model and study the effects of different types of human behaviour in responding to epidemics.

  14. Application of soft computing based hybrid models in hydrological variables modeling: a comprehensive review

    Science.gov (United States)

    Fahimi, Farzad; Yaseen, Zaher Mundher; El-shafie, Ahmed

    2017-05-01

    Since the middle of the twentieth century, artificial intelligence (AI) models have been used widely in engineering and science problems. Water resource variable modeling and prediction are the most challenging issues in water engineering. Artificial neural network (ANN) is a common approach used to tackle this problem by using viable and efficient models. Numerous ANN models have been successfully developed to achieve more accurate results. In the current review, different ANN models in water resource applications and hydrological variable predictions are reviewed and outlined. In addition, recent hybrid models and their structures, input preprocessing, and optimization techniques are discussed and the results are compared with similar previous studies. Moreover, to achieve a comprehensive view of the literature, many articles that applied ANN models together with other techniques are included. Consequently, coupling procedure, model evaluation, and performance comparison of hybrid models with conventional ANN models are assessed, as well as, taxonomy and hybrid ANN models structures. Finally, current challenges and recommendations for future researches are indicated and new hybrid approaches are proposed.

  15. Application of soft computing based hybrid models in hydrological variables modeling: a comprehensive review

    Science.gov (United States)

    Fahimi, Farzad; Yaseen, Zaher Mundher; El-shafie, Ahmed

    2016-02-01

    Since the middle of the twentieth century, artificial intelligence (AI) models have been used widely in engineering and science problems. Water resource variable modeling and prediction are the most challenging issues in water engineering. Artificial neural network (ANN) is a common approach used to tackle this problem by using viable and efficient models. Numerous ANN models have been successfully developed to achieve more accurate results. In the current review, different ANN models in water resource applications and hydrological variable predictions are reviewed and outlined. In addition, recent hybrid models and their structures, input preprocessing, and optimization techniques are discussed and the results are compared with similar previous studies. Moreover, to achieve a comprehensive view of the literature, many articles that applied ANN models together with other techniques are included. Consequently, coupling procedure, model evaluation, and performance comparison of hybrid models with conventional ANN models are assessed, as well as, taxonomy and hybrid ANN models structures. Finally, current challenges and recommendations for future researches are indicated and new hybrid approaches are proposed.

  16. Porosity model for flows in CMP

    Institute of Scientific and Technical Information of China (English)

    ZHANG Chao-hui; YE Wei; LUO Jian-bin; WEN Shi-zhu

    2006-01-01

    In an effort to explore the contribution of the pad which is usually full of pores,to the performance of CMP (chemical mechanical polishing),a three-dimensional flow model of CMP is presented by assuming that the fluids in the porous layer comply with Darcy's law,which states that the flow velocity is proportional to the pressure gradient and inverse proportional to the viscosity.The flow equation is deduced accordingly and,by taking advantage of the multilevel technique and line relaxation technique,numerical simulations are carried out to reveal the relationships between the load capacities and operational parameters (including pivot height,roll angle and pitch angle),under conditions with different porous parameters and different thicknesses of the porous layer.The little porous parameter will lead to a prominent increase of load capability (for instance,the load and the moment predicted),which is still augmented by the thicker layer parameter.This will result in a higher material removal ratio of CMP.A pad full of large pores will be used to deduce load capability,facilitating the free flow of the fluids through the pores.The research will add some insights on the mechanism of the CMP technique.

  17. An introduction to multilevel flow modeling

    DEFF Research Database (Denmark)

    Lind, Morten

    2011-01-01

    environment. MFM has a primary focus on plant goals and functions and provide a methodological way of using those concepts to represent complex industrial plant. The paper gives a brief introduction to the historical development, introduces the concepts of MFM and presents the application of the concepts......Multilevel Flow Modeling (MFM) is a methodology for functional modeling of industrial processes on several interconnected levels of means-end and part-whole abstractions. The basic idea of MFM is to represent an industrial plant as a system which provides the means required to serve purposes in its...

  18. Novel sulfonated polyimide/zwitterionic polymer-functionalized graphene oxide hybrid membranes for vanadium redox flow battery

    Science.gov (United States)

    Cao, Li; Kong, Lei; Kong, Lingqian; Zhang, Xingxiang; Shi, Haifeng

    2015-12-01

    Hybrid membranes (SPI/ZGO) composed of sulfonated polyimide (SPI) and zwitterionic polymer-functionalized graphene oxide (ZGO) are fabricated via a solution-casting method for vanadium redox flow battery (VRB). Successful preparation of ZGO fillers and SPI/ZGO hybrid membranes are demonstrated by FT-IR, XPS and SEM, indicating that ZGO fillers is homogeneously dispersed into SPI matrix. Through controlling the interfacial interaction between SPI matrix and ZGO fillers, the physicochemical properties, e.g., vanadium ion barrier and proton transport pathway, of hybrid membranes are tuned via the zwitterionic acid-base interaction in the hybrid membrane, showing a high ion selectivity and good stability with the incorporated ZGO fillers. SPI/ZGO-4 hybrid membrane proves a higher cell efficiencies (CE: 92-98%, EE: 65-79%) than commercial Nafion 117 membrane (CE: 89-94%, EE: 59-70%) for VRB application at 30-80 mA cm-2. The assembled VRB with SPI/ZGO-4 membrane presents a stable cycling charge-discharge performance over 280 times, which demonstrates its excellent chemical stability under the strong acidic and oxidizing conditions. SPI/ZGO hybrid membranes show a brilliant perspective for VRB application.

  19. Hybrid Perturbation methods based on Statistical Time Series models

    CERN Document Server

    San-Juan, Juan Félix; Pérez, Iván; López, Rosario

    2016-01-01

    In this work we present a new methodology for orbit propagation, the hybrid perturbation theory, based on the combination of an integration method and a prediction technique. The former, which can be a numerical, analytical or semianalytical theory, generates an initial approximation that contains some inaccuracies derived from the fact that, in order to simplify the expressions and subsequent computations, not all the involved forces are taken into account and only low-order terms are considered, not to mention the fact that mathematical models of perturbations not always reproduce physical phenomena with absolute precision. The prediction technique, which can be based on either statistical time series models or computational intelligence methods, is aimed at modelling and reproducing missing dynamics in the previously integrated approximation. This combination results in the precision improvement of conventional numerical, analytical and semianalytical theories for determining the position and velocity of a...

  20. A HYBRID PETRI-NET MODEL OF GRID WORKFLOW

    Institute of Scientific and Technical Information of China (English)

    Ji Yimu; Wang Ruchuan; Ren Xunyi

    2008-01-01

    In order to effectively control the random tasks submitted and executed in grid workflow, a grid workflow model based on hybrid petri-net is presented. This model is composed of random petri-net, colored petri-net and general petri-net. Therein random petri-net declares the relationship between the number of grid users' random tasks and the size of service window and computes the server intensity of grid system. Colored petri-net sets different color for places with grid services and provides the valid interfaces for grid resource allocation and task scheduling. The experiment indicated that the model presented in this letter could compute the valve between the number of users' random tasks and the size of grid service window in grid workflow management system.

  1. Proposal: A Hybrid Dictionary Modelling Approach for Malay Tweet Normalization

    Science.gov (United States)

    Muhamad, Nor Azlizawati Binti; Idris, Norisma; Arshi Saloot, Mohammad

    2017-02-01

    Malay Twitter message presents a special deviation from the original language. Malay Tweet widely used currently by Twitter users, especially at Malaya archipelago. Thus, it is important to make a normalization system which can translated Malay Tweet language into the standard Malay language. Some researchers have conducted in natural language processing which mainly focuses on normalizing English Twitter messages, while few studies have been done for normalize Malay Tweets. This paper proposes an approach to normalize Malay Twitter messages based on hybrid dictionary modelling methods. This approach normalizes noisy Malay twitter messages such as colloquially language, novel words, and interjections into standard Malay language. This research will be used Language Model and N-grams model.

  2. What, if anything, are hybrids: enduring truths and challenges associated with population structure and gene flow

    OpenAIRE

    Gompert, Zachariah; Buerkle, C Alex

    2016-01-01

    Abstract Hybridization is a potent evolutionary process that can affect the origin, maintenance, and loss of biodiversity. Because of its ecological and evolutionary consequences, an understanding of hybridization is important for basic and applied sciences, including conservation biology and agriculture. Herein, we review and discuss ideas that are relevant to the recognition of hybrids and hybridization. We supplement this discussion with simulations. The ideas we present have a long histor...

  3. An efficient genetic algorithm for a hybrid flow shop scheduling problem with time lags and sequence-dependent setup time

    Directory of Open Access Journals (Sweden)

    Farahmand-Mehr Mohammad

    2014-01-01

    Full Text Available In this paper, a hybrid flow shop scheduling problem with a new approach considering time lags and sequence-dependent setup time in realistic situations is presented. Since few works have been implemented in this field, the necessity of finding better solutions is a motivation to extend heuristic or meta-heuristic algorithms. This type of production system is found in industries such as food processing, chemical, textile, metallurgical, printed circuit board, and automobile manufacturing. A mixed integer linear programming (MILP model is proposed to minimize the makespan. Since this problem is known as NP-Hard class, a meta-heuristic algorithm, named Genetic Algorithm (GA, and three heuristic algorithms (Johnson, SPTCH and Palmer are proposed. Numerical experiments of different sizes are implemented to evaluate the performance of presented mathematical programming model and the designed GA in compare to heuristic algorithms and a benchmark algorithm. Computational results indicate that the designed GA can produce near optimal solutions in a short computational time for different size problems.

  4. A Mathematical and Numerical Model for the Analysis of Hybrid Rocket Motors

    Directory of Open Access Journals (Sweden)

    Florin MINGIREANU

    2011-12-01

    Full Text Available The hybrid rocket motors (HRM use a two-phase propellant system. This offers some remarkable advantages but also arises some difficulties like the neutralization of their instabilities. The non-acoustic combustion instabilities are high-amplitude pressure oscillations that have too low frequencies to be associated with acoustics. Acoustic type combustion instabilities are self-excited oscillations generated by the interaction between acoustic waves and combustion. The goal of the present work is to develop a simplified model of the coupling of the hybrid combustion process with the complete unsteady flow, starting from the combustion port and ending with the nozzle. This model must be useful for transient and stability analysis and also for scaling of HRMs. The numerical results obtained with our model show a good agreement with published experimental and numerical results. The computational and stability analysis models developed in this work are simple, computationally efficient and offer the advantage of taking into account a large number of functional and constructive parameters that are used by the engineers.

  5. Modeling and Optimizing Energy Utilization of Steel Production Process: A Hybrid Petri Net Approach

    Directory of Open Access Journals (Sweden)

    Peng Wang

    2013-01-01

    Full Text Available The steel industry is responsible for nearly 9% of anthropogenic energy utilization in the world. It is urgent to reduce the total energy utilization of steel industry under the huge pressures on reducing energy consumption and CO2 emission. Meanwhile, the steel manufacturing is a typical continuous-discrete process with multiprocedures, multiobjects, multiconstraints, and multimachines coupled, which makes energy management rather difficult. In order to study the energy flow within the real steel production process, this paper presents a new modeling and optimization method for the process based on Hybrid Petri Nets (HPN in consideration of the situation above. Firstly, we introduce the detailed description of HPN. Then the real steel production process from one typical integrated steel plant is transformed into Hybrid Petri Net model as a case. Furthermore, we obtain a series of constraints of our optimization model from this model. In consideration of the real process situation, we pick the steel production, energy efficiency and self-made gas surplus as the main optimized goals in this paper. Afterwards, a fuzzy linear programming method is conducted to obtain the multiobjective optimization results. Finally, some measures are suggested to improve this low efficiency and high whole cost process structure.

  6. A non-hybrid method for the PDF equations of turbulent flows on unstructured grids

    CERN Document Server

    Bakosi, J; Boybeyi, Z; 10.1016/j.jcp.2008.02.024

    2010-01-01

    In probability density function (PDF) methods of turbulent flows, the joint PDF of several flow variables is computed by numerically integrating a system of stochastic differential equations for Lagrangian particles. A set of parallel algorithms is proposed to provide an efficient solution of the PDF transport equation, modeling the joint PDF of turbulent velocity, frequency and concentration of a passive scalar in geometrically complex configurations. An unstructured Eulerian grid is employed to extract Eulerian statistics, to solve for quantities represented at fixed locations of the domain (e.g. the mean pressure) and to track particles. All three aspects regarding the grid make use of the finite element method (FEM) employing the simplest linear FEM shape functions. To model the small-scale mixing of the transported scalar, the interaction by exchange with the conditional mean model is adopted. An adaptive algorithm that computes the velocity-conditioned scalar mean is proposed that homogenizes the statis...

  7. Hybridizing Daphnia communities from ten neighbouring lakes: spatio-temporal dynamics, local processes, gene flow and invasiveness.

    Science.gov (United States)

    Yin, Mingbo; Gießler, Sabine; Griebel, Johanna; Wolinska, Justyna

    2014-04-12

    In natural communities of cyclical parthenogens, rapid response to environmental change is enabled by switching between two reproduction modes. While long periods of asexual reproduction allow some clones to outcompete others, and may result in "clonal erosion", sexual reproduction restores genetic variation in such systems. Moreover, sexual reproduction may result in the formation of interspecific hybrids. These hybrids can then reach high abundances, through asexual clonal reproduction. In the present study, we explored genetic variation in water fleas of the genus Daphnia. The focus was on the short-term dynamics within several clonal assemblages from the hybridizing Daphnia longispina complex and the impact of gene flow at small spatial scales. Daphnia individuals belonged either to the parental species D. galeata and D. longispina, or to different hybrid classes, as identified by 15 microsatellite markers. The distribution and genotypic structure of parental species, but not hybrids, corresponded well with the geographical positions of the lakes. Within parental species, the genetic distance among populations of D. galeata was lower than among populations of D. longispina. Moreover, D. galeata dominance was associated with higher phosphorous load. Finally, there was no evidence for clonal erosion. Our results suggest that the contemporary structure of hybridizing Daphnia communities from ten nearby lakes is influenced by colonization events from neighbouring habitats as well as by environmental factors. Unlike the parental species, however, there was little evidence for successful dispersal of hybrids, which seem to be produced locally. Finally, in contrast to temporary Daphnia populations, in which a decrease in clonal diversity was sometimes detectable over a single growing season, the high clonal diversity and lack of clonal erosion observed here might result from repeated hatching of sexually produced offspring. Overall, our study provides insights into

  8. A Probability-Based Hybrid User Model for Recommendation System

    Directory of Open Access Journals (Sweden)

    Jia Hao

    2016-01-01

    Full Text Available With the rapid development of information communication technology, the available information or knowledge is exponentially increased, and this causes the well-known information overload phenomenon. This problem is more serious in product design corporations because over half of the valuable design time is consumed in knowledge acquisition, which highly extends the design cycle and weakens the competitiveness. Therefore, the recommender systems become very important in the domain of product domain. This research presents a probability-based hybrid user model, which is a combination of collaborative filtering and content-based filtering. This hybrid model utilizes user ratings and item topics or classes, which are available in the domain of product design, to predict the knowledge requirement. The comprehensive analysis of the experimental results shows that the proposed method gains better performance in most of the parameter settings. This work contributes a probability-based method to the community for implement recommender system when only user ratings and item topics are available.

  9. Hybrid TS fuzzy modelling and simulation for chaotic Lorenz system

    Institute of Scientific and Technical Information of China (English)

    Li De-Quan

    2006-01-01

    The projection of the chaotic attractor observed from the Lorenz system in the X-Z plane is like a butterfly, hence the classical Lorenz system is widely known as the butterfly attractor, and has served as a prototype model for studying chaotic behaviour since it was coined. In this work we take one step further to investigate some fundamental dynamic behaviours of a novel hybrid Takagi-Sugeno (TS) fuzzy Lorenz-type system, which is essentially derived from the delta-operator-based TS fuzzy modelling for complex nonlinear systems, and contains the original Lorenz system of continuous-time TS fuzzy form as a special case. By simply and appropriately tuning the additional parametric perturbations in the two-rule hybrid TS fuzzy Lorenz-type system, complex (two-wing) butterfly attractors observed from this system in the three dimensional (3D) X-Y-Z space are created, which have not yet been reported in the literature, and the forming mechanism of the compound structures have been numerically investigated.

  10. A survey of air flow models for multizone structures

    Energy Technology Data Exchange (ETDEWEB)

    Feustel, H.E.; Dieris, J.

    1991-03-01

    Air flow models are used to simulate the rates of incoming and outgoing air flows for a building with known leakage under given weather and shielding conditions. Additional information about the flow paths and air-mass flows inside the building can only by using multizone air flow models. In order to obtain more information on multizone air flow models, a literature review was performed in 1984. A second literature review and a questionnaire survey performed in 1989, revealed the existence of 50 multizone air flow models, all developed since 1966, two of which are still under development. All these programs use similar flow equations for crack flow but differ in the versatility to describe the full range of flow phenomena and the algorithm provided for solving the set of nonlinear equations. This literature review was found that newer models are able to describe and simulate the ventilation systems and interrelation of mechanical and natural ventilation. 27 refs., 2 figs., 1 tab.

  11. Modelling the solar wind interaction with Mercury by a quasi-neutral hybrid model

    Directory of Open Access Journals (Sweden)

    E. Kallio

    Full Text Available Quasi-neutral hybrid model is a self-consistent modelling approach that includes positively charged particles and an electron fluid. The approach has received an increasing interest in space plasma physics research because it makes it possible to study several plasma physical processes that are difficult or impossible to model by self-consistent fluid models, such as the effects associated with the ions’ finite gyroradius, the velocity difference between different ion species, or the non-Maxwellian velocity distribution function. By now quasi-neutral hybrid models have been used to study the solar wind interaction with the non-magnetised Solar System bodies of Mars, Venus, Titan and comets. Localized, two-dimensional hybrid model runs have also been made to study terrestrial dayside magnetosheath. However, the Hermean plasma environment has not yet been analysed by a global quasi-neutral hybrid model.

    In this paper we present a new quasi-neutral hybrid model developed to study various processes associated with the Mercury-solar wind interaction. Emphasis is placed on addressing advantages and disadvantages of the approach to study different plasma physical processes near the planet. The basic assumptions of the approach and the algorithms used in the new model are thoroughly presented. Finally, some of the first three-dimensional hybrid model runs made for Mercury are presented.

    The resulting macroscopic plasma parameters and the morphology of the magnetic field demonstrate the applicability of the new approach to study the Mercury-solar wind interaction globally. In addition, the real advantage of the kinetic hybrid model approach is to study the property of individual ions, and the study clearly demonstrates the large potential of the approach to address these more detailed issues by a quasi-neutral hybrid model in the future.

    Key words. Magnetospheric physics

  12. Empirical Estimation of Hybrid Model: A Controlled Case Study

    Directory of Open Access Journals (Sweden)

    Sadaf Un Nisa

    2012-07-01

    Full Text Available Scrum and Extreme Programming (XP are frequently used models among all agile models whereas Rational Unified Process (RUP is one of the widely used conventional plan driven software development models. The agile and plan driven approaches both have their own strengths and weaknesses. Although RUP model has certain drawbacks, such as tendency to be over budgeted, slow in adaptation to rapidly changing requirements and reputation of being impractical for small and fast paced projects. XP model has certain drawbacks such as weak documentation and poor performance for medium and large development projects. XP has a concrete set of engineering practices that emphasizes on team work where managers, customers and developers are all equal partners in collaborative teams. Scrum is more concerned with the project management. It has seven practices namely Scrum Master, Scrum teams, Product Backlog, Sprint, Sprint Planning Meeting, Daily Scrum Meeting and Sprint Review. Keeping above mentioned context in view, this paper intends to propose a hybrid model naming SPRUP model by combining strengths of Scrum, XP and RUP by eliminating their weaknesses to produce high quality software. The proposed SPRUP model is validated through a controlled case study.

  13. Modeling variability in porescale multiphase flow experiments

    Energy Technology Data Exchange (ETDEWEB)

    Ling, Bowen; Bao, Jie; Oostrom, Mart; Battiato, Ilenia; Tartakovsky, Alexandre M.

    2017-07-01

    Microfluidic devices and porescale numerical models are commonly used to study multiphase flow in biological, geological, and engineered porous materials. In this work, we perform a set of drainage and imbibition experiments in six identical microfluidic cells to study the reproducibility of multiphase flow experiments. We observe significant variations in the experimental results, which are smaller during the drainage stage and larger during the imbibition stage. We demonstrate that these variations are due to sub-porescale geometry differences in microcells (because of manufacturing defects) and variations in the boundary condition (i.e.,fluctuations in the injection rate inherent to syringe pumps). Computational simulations are conducted using commercial software STAR-CCM+, both with constant and randomly varying injection rate. Stochastic simulations are able to capture variability in the experiments associated with the varying pump injection rate.

  14. Modeling variability in porescale multiphase flow experiments

    Science.gov (United States)

    Ling, Bowen; Bao, Jie; Oostrom, Mart; Battiato, Ilenia; Tartakovsky, Alexandre M.

    2017-07-01

    Microfluidic devices and porescale numerical models are commonly used to study multiphase flow in biological, geological, and engineered porous materials. In this work, we perform a set of drainage and imbibition experiments in six identical microfluidic cells to study the reproducibility of multiphase flow experiments. We observe significant variations in the experimental results, which are smaller during the drainage stage and larger during the imbibition stage. We demonstrate that these variations are due to sub-porescale geometry differences in microcells (because of manufacturing defects) and variations in the boundary condition (i.e., fluctuations in the injection rate inherent to syringe pumps). Computational simulations are conducted using commercial software STAR-CCM+, both with constant and randomly varying injection rates. Stochastic simulations are able to capture variability in the experiments associated with the varying pump injection rate.

  15. Hybrid Gyrofluid/Gyrokinetic Modeling of Tokamak Turbulence with GryfX

    Science.gov (United States)

    Mandell, Noah; Dorland, Bill; Highcock, Edmund; Hammett, Greg

    2016-10-01

    Gyrofluid models are more efficient than gyrokinetic models, but have a disadvantage in their potential lack of physics fidelity. Here we present three major improvements to the physics fidelity and speed of gyrofluid models, which we encapsulate in the GryfX gyrofluid turbulence code. First, we implement a new nonlinear closure to model the cascade of free energy simultaneously in k⊥ and v⊥ via nonlinear phase-mixing (NLPM). Second, we use a hybrid algorithm that improves zonal flow physics by simulating zonal flow modes with a fully gyrokinetic model. These two improvements bring heat flux predictions from nonlinear GryfX simulations into agreement with the gyrokinetic code GS2. Third, we implement the equations on modern heterogeneous computing platforms, both as a standalone simulation tool that exploits the power of GPUs and as a component of TRINITY (a transport modeling code for tokamaks). GryfX has a roughly 1,200 times performance advantage over GS2 due to the combination of GPU acceleration and the reduction of hundreds of velocity space grid points to six gyrofluid moments. This makes GryfX ideal for large parameter scans, and enables the use of the TRINITY-GryfX system for efficient multi-scale analysis of tokamak turbulence on transport time scales. Present address: Chalmers University, Gothenburg, Sweden.

  16. Modeling steam pressure under martian lava flows

    Science.gov (United States)

    Dundas, Colin M.; Keszthelyi, Laszlo P.

    2013-01-01

    Rootless cones on Mars are a valuable indicator of past interactions between lava and water. However, the details of the lava–water interactions are not fully understood, limiting the ability to use these features to infer new information about past water on Mars. We have developed a model for the pressurization of a dry layer of porous regolith by melting and boiling ground ice in the shallow subsurface. This model builds on previous models of lava cooling and melting of subsurface ice. We find that for reasonable regolith properties and ice depths of decimeters, explosive pressures can be reached. However, the energy stored within such lags is insufficient to excavate thick flows unless they draw steam from a broader region than the local eruption site. These results indicate that lag pressurization can drive rootless cone formation under favorable circumstances, but in other instances molten fuel–coolant interactions are probably required. We use the model results to consider a range of scenarios for rootless cone formation in Athabasca Valles. Pressure buildup by melting and boiling ice under a desiccated lag is possible in some locations, consistent with the expected distribution of ice implanted from atmospheric water vapor. However, it is uncertain whether such ice has existed in the vicinity of Athabasca Valles in recent history. Plausible alternative sources include surface snow or an aqueous flood shortly before the emplacement of the lava flow.

  17. VisFlow - Web-based Visualization Framework for Tabular Data with a Subset Flow Model.

    Science.gov (United States)

    Yu, Bowen; Silva, Claudio T

    2017-01-01

    Data flow systems allow the user to design a flow diagram that specifies the relations between system components which process, filter or visually present the data. Visualization systems may benefit from user-defined data flows as an analysis typically consists of rendering multiple plots on demand and performing different types of interactive queries across coordinated views. In this paper, we propose VisFlow, a web-based visualization framework for tabular data that employs a specific type of data flow model called the subset flow model. VisFlow focuses on interactive queries within the data flow, overcoming the limitation of interactivity from past computational data flow systems. In particular, VisFlow applies embedded visualizations and supports interactive selections, brushing and linking within a visualization-oriented data flow. The model requires all data transmitted by the flow to be a data item subset (i.e. groups of table rows) of some original input table, so that rendering properties can be assigned to the subset unambiguously for tracking and comparison. VisFlow features the analysis flexibility of a flow diagram, and at the same time reduces the diagram complexity and improves usability. We demonstrate the capability of VisFlow on two case studies with domain experts on real-world datasets showing that VisFlow is capable of accomplishing a considerable set of visualization and analysis tasks. The VisFlow system is available as open source on GitHub.

  18. Parameter estimation and actuator characteristics of hybrid magnetic bearings for axial flow blood pump applications.

    Science.gov (United States)

    Lim, Tau Meng; Cheng, Shanbao; Chua, Leok Poh

    2009-07-01

    Axial flow blood pumps are generally smaller as compared to centrifugal pumps. This is very beneficial because they can provide better anatomical fit in the chest cavity, as well as lower the risk of infection. This article discusses the design, levitated responses, and parameter estimation of the dynamic characteristics of a compact hybrid magnetic bearing (HMB) system for axial flow blood pump applications. The rotor/impeller of the pump is driven by a three-phase permanent magnet brushless and sensorless motor. It is levitated by two HMBs at both ends in five degree of freedom with proportional-integral-derivative controllers, among which four radial directions are actively controlled and one axial direction is passively controlled. The frequency domain parameter estimation technique with statistical analysis is adopted to validate the stiffness and damping coefficients of the HMB system. A specially designed test rig facilitated the estimation of the bearing's coefficients in air-in both the radial and axial directions. Experimental estimation showed that the dynamic characteristics of the HMB system are dominated by the frequency-dependent stiffness coefficients. By injecting a multifrequency excitation force signal onto the rotor through the HMBs, it is noticed in the experimental results the maximum displacement linear operating range is 20% of the static eccentricity with respect to the rotor and stator gap clearance. The actuator gain was also successfully calibrated and may potentially extend the parameter estimation technique developed in the study of identification and monitoring of the pump's dynamic properties under normal operating conditions with fluid.

  19. Comparing flow-through and static ice cave models for Shoshone Ice Cave

    Directory of Open Access Journals (Sweden)

    Kaj E. Williams

    2015-05-01

    Full Text Available In this paper we suggest a new ice cave type: the “flow-through” ice cave. In a flow-through ice cave external winds blow into the cave and wet cave walls chill the incoming air to the wet-bulb temperature, thereby achieving extra cooling of the cave air. We have investigated an ice cave in Idaho, located in a lava tube that is reported to have airflow through porous wet end-walls and could therefore be a flow-through cave. We have instrumented the site and collected data for one year. In order to determine the actual ice cave type present at Shoshone, we have constructed numerical models for static and flow-through caves (dynamic is not relevant here. The models are driven with exterior measurements of air temperature, relative humidity and wind speed. The model output is interior air temperature and relative humidity. We then compare the output of both models to the measured interior air temperatures and relative humidity. While both the flow-through and static cave models are capable of preserving ice year-round (a net zero or positive ice mass balance, both models show very different cave air temperature and relative humidity output. We find the empirical data support a hybrid model of the static and flow-through models: permitting a static ice cave to have incoming air chilled to the wet-bulb temperature fits the data best for the Shoshone Ice Cave.

  20. Observing and Modeling Earth's Energy Flows

    Science.gov (United States)

    Stevens, Bjorn; Schwartz, Stephen E.

    2012-07-01

    This article reviews, from the authors' perspective, progress in observing and modeling energy flows in Earth's climate system. Emphasis is placed on the state of understanding of Earth's energy flows and their susceptibility to perturbations, with particular emphasis on the roles of clouds and aerosols. More accurate measurements of the total solar irradiance and the rate of change of ocean enthalpy help constrain individual components of the energy budget at the top of the atmosphere to within ±2 W m-2. The measurements demonstrate that Earth reflects substantially less solar radiation and emits more terrestrial radiation than was believed even a decade ago. Active remote sensing is helping to constrain the surface energy budget, but new estimates of downwelling surface irradiance that benefit from such methods are proving difficult to reconcile with existing precipitation climatologies. Overall, the energy budget at the surface is much more uncertain than at the top of the atmosphere. A decade of high-precision measurements of the energy budget at the top of the atmosphere is providing new opportunities to track Earth's energy flows on timescales ranging from days to years, and at very high spatial resolution. The measurements show that the principal limitation in the estimate of secular trends now lies in the natural variability of the Earth system itself. The forcing-feedback-response framework, which has developed to understand how changes in Earth's energy flows affect surface temperature, is reviewed in light of recent work that shows fast responses (adjustments) of the system are central to the definition of the effective forcing that results from a change in atmospheric composition. In many cases, the adjustment, rather than the characterization of the compositional perturbation (associated, for instance, with changing greenhouse gas concentrations, or aerosol burdens), limits accurate determination of the radiative forcing. Changes in clouds contribute