WorldWideScience

Sample records for hybrid finite-element method

  1. A multigrid solution method for mixed hybrid finite elements

    Energy Technology Data Exchange (ETDEWEB)

    Schmid, W. [Universitaet Augsburg (Germany)

    1996-12-31

    We consider the multigrid solution of linear equations arising within the discretization of elliptic second order boundary value problems of the form by mixed hybrid finite elements. Using the equivalence of mixed hybrid finite elements and non-conforming nodal finite elements, we construct a multigrid scheme for the corresponding non-conforming finite elements, and, by this equivalence, for the mixed hybrid finite elements, following guidelines from Arbogast/Chen. For a rectangular triangulation of the computational domain, this non-conforming schemes are the so-called nodal finite elements. We explicitly construct prolongation and restriction operators for this type of non-conforming finite elements. We discuss the use of plain multigrid and the multilevel-preconditioned cg-method and compare their efficiency in numerical tests.

  2. Hybrid finite element and Brownian dynamics method for charged particles

    Energy Technology Data Exchange (ETDEWEB)

    Huber, Gary A., E-mail: ghuber@ucsd.edu; Miao, Yinglong [Howard Hughes Medical Institute, University of California San Diego, La Jolla, California 92093-0365 (United States); Zhou, Shenggao [Department of Mathematics and Mathematical Center for Interdiscipline Research, Soochow University, 1 Shizi Street, Suzhou, 215006 Jiangsu (China); Li, Bo [Department of Mathematics and Quantitative Biology Graduate Program, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0112 (United States); McCammon, J. Andrew [Howard Hughes Medical Institute, University of California San Diego, La Jolla, California 92093 (United States); Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093-0365 (United States); Department of Pharmacology, University of California San Diego, La Jolla, California 92093-0636 (United States)

    2016-04-28

    Diffusion is often the rate-determining step in many biological processes. Currently, the two main computational methods for studying diffusion are stochastic methods, such as Brownian dynamics, and continuum methods, such as the finite element method. A previous study introduced a new hybrid diffusion method that couples the strengths of each of these two methods, but was limited by the lack of interactions among the particles; the force on each particle had to be from an external field. This study further develops the method to allow charged particles. The method is derived for a general multidimensional system and is presented using a basic test case for a one-dimensional linear system with one charged species and a radially symmetric system with three charged species.

  3. Hybrid Fundamental Solution Based Finite Element Method: Theory and Applications

    Directory of Open Access Journals (Sweden)

    Changyong Cao

    2015-01-01

    Full Text Available An overview on the development of hybrid fundamental solution based finite element method (HFS-FEM and its application in engineering problems is presented in this paper. The framework and formulations of HFS-FEM for potential problem, plane elasticity, three-dimensional elasticity, thermoelasticity, anisotropic elasticity, and plane piezoelectricity are presented. In this method, two independent assumed fields (intraelement filed and auxiliary frame field are employed. The formulations for all cases are derived from the modified variational functionals and the fundamental solutions to a given problem. Generation of elemental stiffness equations from the modified variational principle is also described. Typical numerical examples are given to demonstrate the validity and performance of the HFS-FEM. Finally, a brief summary of the approach is provided and future trends in this field are identified.

  4. Topology optimization of bounded acoustic problems using the hybrid finite element-wave based method

    DEFF Research Database (Denmark)

    Goo, Seongyeol; Wang, Semyung; Kook, Junghwan

    2017-01-01

    This paper presents an alternative topology optimization method for bounded acoustic problems that uses the hybrid finite element-wave based method (FE-WBM). The conventional method for the topology optimization of bounded acoustic problems is based on the finite element method (FEM), which...

  5. Basic Finite Element Method

    International Nuclear Information System (INIS)

    Lee, Byeong Hae

    1992-02-01

    This book gives descriptions of basic finite element method, which includes basic finite element method and data, black box, writing of data, definition of VECTOR, definition of matrix, matrix and multiplication of matrix, addition of matrix, and unit matrix, conception of hardness matrix like spring power and displacement, governed equation of an elastic body, finite element method, Fortran method and programming such as composition of computer, order of programming and data card and Fortran card, finite element program and application of nonelastic problem.

  6. Groundwater flow analysis using mixed hybrid finite element method for radioactive waste disposal facilities

    International Nuclear Information System (INIS)

    Aoki, Hiroomi; Shimomura, Masanori; Kawakami, Hiroto; Suzuki, Shunichi

    2011-01-01

    In safety assessments of radioactive waste disposal facilities, ground water flow analysis are used for calculating the radionuclide transport pathway and the infiltration flow rate of groundwater into the disposal facilities. For this type of calculations, the mixed hybrid finite element method has been used and discussed about the accuracy of ones in Europe. This paper puts great emphasis on the infiltration flow rate of groundwater into the disposal facilities, and describes the accuracy of results obtained from mixed hybrid finite element method by comparing of local water mass conservation and the reliability of the element breakdown numbers among the mixed hybrid finite element method, finite volume method and nondegenerated finite element method. (author)

  7. Hybrid finite difference/finite element immersed boundary method.

    Science.gov (United States)

    E Griffith, Boyce; Luo, Xiaoyu

    2017-12-01

    The immersed boundary method is an approach to fluid-structure interaction that uses a Lagrangian description of the structural deformations, stresses, and forces along with an Eulerian description of the momentum, viscosity, and incompressibility of the fluid-structure system. The original immersed boundary methods described immersed elastic structures using systems of flexible fibers, and even now, most immersed boundary methods still require Lagrangian meshes that are finer than the Eulerian grid. This work introduces a coupling scheme for the immersed boundary method to link the Lagrangian and Eulerian variables that facilitates independent spatial discretizations for the structure and background grid. This approach uses a finite element discretization of the structure while retaining a finite difference scheme for the Eulerian variables. We apply this method to benchmark problems involving elastic, rigid, and actively contracting structures, including an idealized model of the left ventricle of the heart. Our tests include cases in which, for a fixed Eulerian grid spacing, coarser Lagrangian structural meshes yield discretization errors that are as much as several orders of magnitude smaller than errors obtained using finer structural meshes. The Lagrangian-Eulerian coupling approach developed in this work enables the effective use of these coarse structural meshes with the immersed boundary method. This work also contrasts two different weak forms of the equations, one of which is demonstrated to be more effective for the coarse structural discretizations facilitated by our coupling approach. © 2017 The Authors International  Journal  for  Numerical  Methods  in  Biomedical  Engineering Published by John Wiley & Sons Ltd.

  8. Hybrid Finite Element and Volume Integral Methods for Scattering Using Parametric Geometry

    DEFF Research Database (Denmark)

    Volakis, John L.; Sertel, Kubilay; Jørgensen, Erik

    2004-01-01

    n this paper we address several topics relating to the development and implementation of volume integral and hybrid finite element methods for electromagnetic modeling. Comparisons of volume integral equation formulations with the finite element-boundary integral method are given in terms of accu...... of vanishing divergence within the element but non-zero curl. In addition, a new domain decomposition is introduced for solving array problems involving several million degrees of freedom. Three orders of magnitude CPU reduction is demonstrated for such applications....

  9. Using Finite Element Method

    Directory of Open Access Journals (Sweden)

    M.H.R. Ghoreishy

    2008-02-01

    Full Text Available This research work is devoted to the footprint analysis of a steel-belted radial tyre (185/65R14 under vertical static load using finite element method. Two models have been developed in which in the first model the tread patterns were replaced by simple ribs while the second model was consisted of details of the tread blocks. Linear elastic and hyper elastic (Arruda-Boyce material models were selected to describe the mechanical behavior of the reinforcing and rubbery parts, respectively. The above two finite element models of the tyre were analyzed under inflation pressure and vertical static loads. The second model (with detailed tread patterns was analyzed with and without friction effect between tread and contact surfaces. In every stage of the analysis, the results were compared with the experimental data to confirm the accuracy and applicability of the model. Results showed that neglecting the tread pattern design not only reduces the computational cost and effort but also the differences between computed deformations do not show significant changes. However, more complicated variables such as shape and area of the footprint zone and contact pressure are affected considerably by the finite element model selected for the tread blocks. In addition, inclusion of friction even in static state changes these variables significantly.

  10. A novel hybrid stress-function finite element method immune to severe mesh distortion

    International Nuclear Information System (INIS)

    Cen Song; Zhou Mingjue; Fu Xiangrong

    2010-01-01

    This paper introduces a hybrid stress-function finite element method proposed recently for developing 2D finite element models immune to element shapes. Deferent from the first version of the hybrid-stress element constructed by Pian, the stress function φ of 2D elastic or fracture problem is regarded as the functional variable of the complementary energy functional. Then, the basic analytical solutions of φ are taken as the trial functions for finite element models, and meanwhile, the corresponding unknown stress-function constants are introduced. By using the principle of minimum complementary energy, these unknown stress-function constants can be expressed in terms of the displacements along element edges. Finally, the complementary energy functional can be rewritten in terms of element nodal displacement vector, and thus, the element stiffness matrix of such hybrid-function element can be obtained. As examples, two (8- and 12-node) quadrilateral plane elements and an arbitrary polygonal crack element are constructed by employing different basic analytical solutions of different stress functions. Numerical results show that, the 8- and 12-node plane models can produce the exact solutions for pure bending and linear bending problems, respectively, even the element shape degenerates into triangle and concave quadrangle; and the crack element can also predict accurate results with very low computational cost in analysis of stress-singularity problems.

  11. Hybrid variational principles and synthesis method for finite element neutron transport calculations

    International Nuclear Information System (INIS)

    Ackroyd, R.T.; Nanneh, M.M.

    1990-01-01

    A family of hybrid variational principles is derived using a generalised least squares method. Neutron conservation is automatically satisfied for the hybrid principles employing two trial functions. No interfaces or reflection conditions need to be imposed on the independent even-parity trial function. For some hybrid principles a single trial function can be employed by relating one parity trial function to the other, using one of the parity transport equation in relaxed form. For other hybrid principles the trial functions can be employed sequentially. Synthesis of transport solutions, starting with the diffusion theory approximation, has been used as a way of reducing the scale of the computation that arises with established finite element methods for neutron transport. (author)

  12. Numerical model for the analysis of unbounded prestressed structures using the hybrid type finite element method

    International Nuclear Information System (INIS)

    Barbieri, R.A.; Gastal, F.P.S.L.; Filho, A.C.

    2005-01-01

    Unbounded prestressed concrete has a growing importance all over the world and may be an useful technique for the structures involved in the construction of nuclear facilities. The absence of bonding means no strain compatibility so that equations developed for reinforced concrete are no longer valid. Practical estimates about the ultimate stress in the unbounded tendons may be obtained with empirical or numerical methods only. In order to contribute to the understanding on the behaviour of unbounded prestressed concrete members, a numerical model has been developed using a hybrid type finite element formulation for planar frame structures. Instead of short elements, as in the conventional finite element formulation, long elements may be used, improving computational efficiency. A further advantage is that the curvature variation within the element is obtained with higher accuracy if compared to the traditional formulation. This feature is important for unbounded tendons since its stresses depend on the whole member deformation. Second order effects in the planar frame are considered with either Updated or Partially Updated Lagrangian approaches. Instantaneous and time dependent behaviour as well as cyclic loads are considered too. Comparison with experimental results for prestressed concrete beams shows the adequacy of the proposed model. (authors)

  13. Hybrid finite volume/ finite element method for radiative heat transfer in graded index media

    Science.gov (United States)

    Zhang, L.; Zhao, J. M.; Liu, L. H.; Wang, S. Y.

    2012-09-01

    The rays propagate along curved path determined by the Fermat principle in the graded index medium. The radiative transfer equation in graded index medium (GRTE) contains two specific redistribution terms (with partial derivatives to the angular coordinates) accounting for the effect of the curved ray path. In this paper, the hybrid finite volume with finite element method (hybrid FVM/FEM) (P.J. Coelho, J. Quant. Spectrosc. Radiat. Transf., vol. 93, pp. 89-101, 2005) is extended to solve the radiative heat transfer in two-dimensional absorbing-emitting-scattering graded index media, in which the spatial discretization is carried out using a FVM, while the angular discretization is by a FEM. The FEM angular discretization is demonstrated to be preferable in dealing with the redistribution terms in the GRTE. Two stiff matrix assembly schemes of the angular FEM discretization, namely, the traditional assembly approach and a new spherical assembly approach (assembly on the unit sphere of the solid angular space), are discussed. The spherical assembly scheme is demonstrated to give better results than the traditional assembly approach. The predicted heat flux distributions and temperature distributions in radiative equilibrium are determined by the proposed method and compared with the results available in other references. The proposed hybrid FVM/FEM method can predict the radiative heat transfer in absorbing-emitting-scattering graded index medium with good accuracy.

  14. Hybrid finite volume/ finite element method for radiative heat transfer in graded index media

    International Nuclear Information System (INIS)

    Zhang, L.; Zhao, J.M.; Liu, L.H.; Wang, S.Y.

    2012-01-01

    The rays propagate along curved path determined by the Fermat principle in the graded index medium. The radiative transfer equation in graded index medium (GRTE) contains two specific redistribution terms (with partial derivatives to the angular coordinates) accounting for the effect of the curved ray path. In this paper, the hybrid finite volume with finite element method (hybrid FVM/FEM) (P.J. Coelho, J. Quant. Spectrosc. Radiat. Transf., vol. 93, pp. 89-101, 2005) is extended to solve the radiative heat transfer in two-dimensional absorbing-emitting-scattering graded index media, in which the spatial discretization is carried out using a FVM, while the angular discretization is by a FEM. The FEM angular discretization is demonstrated to be preferable in dealing with the redistribution terms in the GRTE. Two stiff matrix assembly schemes of the angular FEM discretization, namely, the traditional assembly approach and a new spherical assembly approach (assembly on the unit sphere of the solid angular space), are discussed. The spherical assembly scheme is demonstrated to give better results than the traditional assembly approach. The predicted heat flux distributions and temperature distributions in radiative equilibrium are determined by the proposed method and compared with the results available in other references. The proposed hybrid FVM/FEM method can predict the radiative heat transfer in absorbing-emitting-scattering graded index medium with good accuracy.

  15. Hybrid finite element method for describing the electrical response of biological cells to applied fields.

    Science.gov (United States)

    Ying, Wenjun; Henriquez, Craig S

    2007-04-01

    A novel hybrid finite element method (FEM) for modeling the response of passive and active biological membranes to external stimuli is presented. The method is based on the differential equations that describe the conservation of electric flux and membrane currents. By introducing the electric flux through the cell membrane as an additional variable, the algorithm decouples the linear partial differential equation part from the nonlinear ordinary differential equation part that defines the membrane dynamics of interest. This conveniently results in two subproblems: a linear interface problem and a nonlinear initial value problem. The linear interface problem is solved with a hybrid FEM. The initial value problem is integrated by a standard ordinary differential equation solver such as the Euler and Runge-Kutta methods. During time integration, these two subproblems are solved alternatively. The algorithm can be used to model the interaction of stimuli with multiple cells of almost arbitrary geometries and complex ion-channel gating at the plasma membrane. Numerical experiments are presented demonstrating the uses of the method for modeling field stimulation and action potential propagation.

  16. Programming the finite element method

    CERN Document Server

    Smith, I M; Margetts, L

    2013-01-01

    Many students, engineers, scientists and researchers have benefited from the practical, programming-oriented style of the previous editions of Programming the Finite Element Method, learning how to develop computer programs to solve specific engineering problems using the finite element method. This new fifth edition offers timely revisions that include programs and subroutine libraries fully updated to Fortran 2003, which are freely available online, and provides updated material on advances in parallel computing, thermal stress analysis, plasticity return algorithms, convection boundary c

  17. Hybrid Modeling and Optimization of Manufacturing Combining Artificial Intelligence and Finite Element Method

    CERN Document Server

    Quiza, Ramón; Davim, J Paulo

    2012-01-01

    Artificial intelligence (AI) techniques and the finite element method (FEM) are both powerful computing tools, which are extensively used for modeling and optimizing manufacturing processes. The combination of these tools has resulted in a new flexible and robust approach as several recent studies have shown. This book aims to review the work already done in this field as well as to expose the new possibilities and foreseen trends. The book is expected to be useful for postgraduate students and researchers, working in the area of modeling and optimization of manufacturing processes.

  18. Finite elements methods in mechanics

    CERN Document Server

    Eslami, M Reza

    2014-01-01

    This book covers all basic areas of mechanical engineering, such as fluid mechanics, heat conduction, beams, and elasticity with detailed derivations for the mass, stiffness, and force matrices. It is especially designed to give physical feeling to the reader for finite element approximation by the introduction of finite elements to the elevation of elastic membrane. A detailed treatment of computer methods with numerical examples are provided. In the fluid mechanics chapter, the conventional and vorticity transport formulations for viscous incompressible fluid flow with discussion on the method of solution are presented. The variational and Galerkin formulations of the heat conduction, beams, and elasticity problems are also discussed in detail. Three computer codes are provided to solve the elastic membrane problem. One of them solves the Poisson’s equation. The second computer program handles the two dimensional elasticity problems, and the third one presents the three dimensional transient heat conducti...

  19. Peridynamic Multiscale Finite Element Methods

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Timothy [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bond, Stephen D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Littlewood, David John [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Moore, Stan Gerald [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-12-01

    The problem of computing quantum-accurate design-scale solutions to mechanics problems is rich with applications and serves as the background to modern multiscale science research. The prob- lem can be broken into component problems comprised of communicating across adjacent scales, which when strung together create a pipeline for information to travel from quantum scales to design scales. Traditionally, this involves connections between a) quantum electronic structure calculations and molecular dynamics and between b) molecular dynamics and local partial differ- ential equation models at the design scale. The second step, b), is particularly challenging since the appropriate scales of molecular dynamic and local partial differential equation models do not overlap. The peridynamic model for continuum mechanics provides an advantage in this endeavor, as the basic equations of peridynamics are valid at a wide range of scales limiting from the classical partial differential equation models valid at the design scale to the scale of molecular dynamics. In this work we focus on the development of multiscale finite element methods for the peridynamic model, in an effort to create a mathematically consistent channel for microscale information to travel from the upper limits of the molecular dynamics scale to the design scale. In particular, we first develop a Nonlocal Multiscale Finite Element Method which solves the peridynamic model at multiple scales to include microscale information at the coarse-scale. We then consider a method that solves a fine-scale peridynamic model to build element-support basis functions for a coarse- scale local partial differential equation model, called the Mixed Locality Multiscale Finite Element Method. Given decades of research and development into finite element codes for the local partial differential equation models of continuum mechanics there is a strong desire to couple local and nonlocal models to leverage the speed and state of the

  20. Structural modeling techniques by finite element method

    International Nuclear Information System (INIS)

    Kang, Yeong Jin; Kim, Geung Hwan; Ju, Gwan Jeong

    1991-01-01

    This book includes introduction table of contents chapter 1 finite element idealization introduction summary of the finite element method equilibrium and compatibility in the finite element solution degrees of freedom symmetry and anti symmetry modeling guidelines local analysis example references chapter 2 static analysis structural geometry finite element models analysis procedure modeling guidelines references chapter 3 dynamic analysis models for dynamic analysis dynamic analysis procedures modeling guidelines and modeling guidelines.

  1. Simulation of ultrasonic wave propagation in anisotropic poroelastic bone plate using hybrid spectral/finite element method.

    Science.gov (United States)

    Nguyen, Vu-Hieu; Naili, Salah

    2012-08-01

    This paper deals with the modeling of guided waves propagation in in vivo cortical long bone, which is known to be anisotropic medium with functionally graded porosity. The bone is modeled as an anisotropic poroelastic material by using Biot's theory formulated in high frequency domain. A hybrid spectral/finite element formulation has been developed to find the time-domain solution of ultrasonic waves propagating in a poroelastic plate immersed in two fluid halfspaces. The numerical technique is based on a combined Laplace-Fourier transform, which allows to obtain a reduced dimension problem in the frequency-wavenumber domain. In the spectral domain, as radiation conditions representing infinite fluid halfspaces may be exactly introduced, only the heterogeneous solid layer needs to be analyzed by using finite element method. Several numerical tests are presented showing very good performance of the proposed procedure. A preliminary study on the first arrived signal velocities computed by using equivalent elastic and poroelastic models will be presented. Copyright © 2012 John Wiley & Sons, Ltd.

  2. Domain decomposition methods for mortar finite elements

    Energy Technology Data Exchange (ETDEWEB)

    Widlund, O.

    1996-12-31

    In the last few years, domain decomposition methods, previously developed and tested for standard finite element methods and elliptic problems, have been extended and modified to work for mortar and other nonconforming finite element methods. A survey will be given of work carried out jointly with Yves Achdou, Mario Casarin, Maksymilian Dryja and Yvon Maday. Results on the p- and h-p-version finite elements will also be discussed.

  3. Automation of finite element methods

    CERN Document Server

    Korelc, Jože

    2016-01-01

    New finite elements are needed as well in research as in industry environments for the development of virtual prediction techniques. The design and implementation of novel finite elements for specific purposes is a tedious and time consuming task, especially for nonlinear formulations. The automation of this process can help to speed up this process considerably since the generation of the final computer code can be accelerated by order of several magnitudes. This book provides the reader with the required knowledge needed to employ modern automatic tools like AceGen within solid mechanics in a successful way. It covers the range from the theoretical background, algorithmic treatments to many different applications. The book is written for advanced students in the engineering field and for researchers in educational and industrial environments.

  4. A Hybrid Finite Element-Fourier Spectral Method for Vibration Analysis of Structures with Elastic Boundary Conditions

    Directory of Open Access Journals (Sweden)

    Wan-You Li

    2014-01-01

    Full Text Available A novel hybrid method, which simultaneously possesses the efficiency of Fourier spectral method (FSM and the applicability of the finite element method (FEM, is presented for the vibration analysis of structures with elastic boundary conditions. The FSM, as one type of analytical approaches with excellent convergence and accuracy, is mainly limited to problems with relatively regular geometry. The purpose of the current study is to extend the FSM to problems with irregular geometry via the FEM and attempt to take full advantage of the FSM and the conventional FEM for structural vibration problems. The computational domain of general shape is divided into several subdomains firstly, some of which are represented by the FSM while the rest by the FEM. Then, fictitious springs are introduced for connecting these subdomains. Sufficient details are given to describe the development of such a hybrid method. Numerical examples of a one-dimensional Euler-Bernoulli beam and a two-dimensional rectangular plate show that the present method has good accuracy and efficiency. Further, one irregular-shaped plate which consists of one rectangular plate and one semi-circular plate also demonstrates the capability of the present method applied to irregular structures.

  5. Mixed-hybrid finite element method for the transport equation and diffusion approximation of transport problems

    International Nuclear Information System (INIS)

    Cartier, J.

    2006-04-01

    This thesis focuses on mathematical analysis, numerical resolution and modelling of the transport equations. First of all, we deal with numerical approximation of the solution of the transport equations by using a mixed-hybrid scheme. We derive and study a mixed formulation of the transport equation, then we analyse the related variational problem and present the discretization and the main properties of the scheme. We particularly pay attention to the behavior of the scheme and we show its efficiency in the diffusion limit (when the mean free path is small in comparison with the characteristic length of the physical domain). We present academical benchmarks in order to compare our scheme with other methods in many physical configurations and validate our method on analytical test cases. Unstructured and very distorted meshes are used to validate our scheme. The second part of this thesis deals with two transport problems. The first one is devoted to the study of diffusion due to boundary conditions in a transport problem between two plane plates. The second one consists in modelling and simulating radiative transfer phenomenon in case of the industrial context of inertial confinement fusion. (author)

  6. A hybrid finite element analysis and evolutionary computation method for the design of lightweight lattice components with optimized strut diameter

    DEFF Research Database (Denmark)

    Salonitis, Konstantinos; Chantzis, Dimitrios; Kappatos, Vasileios

    2017-01-01

    approaches or with the use of topology optimization methodologies. An optimization approach utilizing multipurpose optimization algorithms has not been proposed yet. This paper presents a novel user-friendly method for the design optimization of lattice components towards weight minimization, which combines...... finite element analysis and evolutionary computation. The proposed method utilizes the cell homogenization technique in order to reduce the computational cost of the finite element analysis and a genetic algorithm in order to search for the most lightweight lattice configuration. A bracket consisting...

  7. Mechanical Performance of Natural / Natural Fiber Reinforced Hybrid Composite Materials Using Finite Element Method Based Micromechanics and Experiments

    OpenAIRE

    Rahman, Muhammad Ziaur

    2017-01-01

    A micromechanical analysis of the representative volume element (RVE) of a unidirectional flax/jute fiber reinforced epoxy composite is performed using finite element analysis (FEA). To do so, first effective mechanical properties of flax fiber and jute fiber are evaluated numerically and then used in evaluating the effective properties of ax/jute/epoxy hybrid composite. Mechanics of Structure Genome (MSG), a new homogenization tool developed in Purdue University, is used to calculate the hom...

  8. Advanced finite element method in structural engineering

    CERN Document Server

    Long, Yu-Qiu; Long, Zhi-Fei

    2009-01-01

    This book systematically introduces the research work on the Finite Element Method completed over the past 25 years. Original theoretical achievements and their applications in the fields of structural engineering and computational mechanics are discussed.

  9. Review on Finite Element Method * ERHUNMWUN, ID ...

    African Journals Online (AJOL)

    ADOWIE PERE

    ABSTRACT: In this work, we have discussed what Finite Element Method (FEM) is, its historical development, advantages and ... residual procedures, are examples of the direct approach ... The paper centred on the "stiffness and deflection of ...

  10. The finite element method in electromagnetics

    CERN Document Server

    Jin, Jianming

    2014-01-01

    A new edition of the leading textbook on the finite element method, incorporating major advancements and further applications in the field of electromagnetics The finite element method (FEM) is a powerful simulation technique used to solve boundary-value problems in a variety of engineering circumstances. It has been widely used for analysis of electromagnetic fields in antennas, radar scattering, RF and microwave engineering, high-speed/high-frequency circuits, wireless communication, electromagnetic compatibility, photonics, remote sensing, biomedical engineering, and space exploration. The

  11. Finite element methods a practical guide

    CERN Document Server

    Whiteley, Jonathan

    2017-01-01

    This book presents practical applications of the finite element method to general differential equations. The underlying strategy of deriving the finite element solution is introduced using linear ordinary differential equations, thus allowing the basic concepts of the finite element solution to be introduced without being obscured by the additional mathematical detail required when applying this technique to partial differential equations. The author generalizes the presented approach to partial differential equations which include nonlinearities. The book also includes variations of the finite element method such as different classes of meshes and basic functions. Practical application of the theory is emphasised, with development of all concepts leading ultimately to a description of their computational implementation illustrated using Matlab functions. The target audience primarily comprises applied researchers and practitioners in engineering, but the book may also be beneficial for graduate students.

  12. Expanded Mixed Multiscale Finite Element Methods and Their Applications for Flows in Porous Media

    KAUST Repository

    Jiang, L.; Copeland, D.; Moulton, J. D.

    2012-01-01

    We develop a family of expanded mixed multiscale finite element methods (MsFEMs) and their hybridizations for second-order elliptic equations. This formulation expands the standard mixed multiscale finite element formulation in the sense that four

  13. The finite element response matrix method

    International Nuclear Information System (INIS)

    Nakata, H.; Martin, W.R.

    1983-02-01

    A new technique is developed with an alternative formulation of the response matrix method implemented with the finite element scheme. Two types of response matrices are generated from the Galerkin solution to the weak form of the diffusion equation subject to an arbitrary current and source. The piecewise polynomials are defined in two levels, the first for the local (assembly) calculations and the second for the global (core) response matrix calculations. This finite element response matrix technique was tested in two 2-dimensional test problems, 2D-IAEA benchmark problem and Biblis benchmark problem, with satisfatory results. The computational time, whereas the current code is not extensively optimized, is of the same order of the well estabilished coarse mesh codes. Furthermore, the application of the finite element technique in an alternative formulation of response matrix method permits the method to easily incorporate additional capabilities such as treatment of spatially dependent cross-sections, arbitrary geometrical configurations, and high heterogeneous assemblies. (Author) [pt

  14. Finite element method - theory and applications

    International Nuclear Information System (INIS)

    Baset, S.

    1992-01-01

    This paper summarizes the mathematical basis of the finite element method. Attention is drawn to the natural development of the method from an engineering analysis tool into a general numerical analysis tool. A particular application to the stress analysis of rubber materials is presented. Special advantages and issues associated with the method are mentioned. (author). 4 refs., 3 figs

  15. Finite Element Methods and Their Applications

    CERN Document Server

    Chen, Zhangxin

    2005-01-01

    This book serves as a text for one- or two-semester courses for upper-level undergraduates and beginning graduate students and as a professional reference for people who want to solve partial differential equations (PDEs) using finite element methods. The author has attempted to introduce every concept in the simplest possible setting and maintain a level of treatment that is as rigorous as possible without being unnecessarily abstract. Quite a lot of attention is given to discontinuous finite elements, characteristic finite elements, and to the applications in fluid and solid mechanics including applications to porous media flow, and applications to semiconductor modeling. An extensive set of exercises and references in each chapter are provided.

  16. Crack Propagation by Finite Element Method

    Directory of Open Access Journals (Sweden)

    Luiz Carlos H. Ricardo

    2018-01-01

    Full Text Available Crack propagation simulation began with the development of the finite element method; the analyses were conducted to obtain a basic understanding of the crack growth. Today structural and materials engineers develop structures and materials properties using this technique. The aim of this paper is to verify the effect of different crack propagation rates in determination of crack opening and closing stress of an ASTM specimen under a standard suspension spectrum loading from FDandE SAE Keyhole Specimen Test Load Histories by finite element analysis. To understand the crack propagation processes under variable amplitude loading, retardation effects are observed

  17. Image segmentation with a finite element method

    DEFF Research Database (Denmark)

    Bourdin, Blaise

    1999-01-01

    regularization results, make possible to imagine a finite element resolution method.In a first time, the Mumford-Shah functional is introduced and some existing results are quoted. Then, a discrete formulation for the Mumford-Shah problem is proposed and its $\\Gamma$-convergence is proved. Finally, some...

  18. A finite element method for neutron transport

    International Nuclear Information System (INIS)

    Ackroyd, R.T.

    1983-01-01

    A completely boundary-free maximum principle for the first-order Boltzmann equation is derived from the completely boundary-free maximum principle for the mixed-parity Boltzmann equation. When continuity is imposed on the trial function for directions crossing interfaces the completely boundary-free principle for the first-order Boltzmann equation reduces to a maximum principle previously established directly from first principles and indirectly by the Euler-Lagrange method. Present finite element methods for the first-order Boltzmann equation are based on a weighted-residual method which permits the use of discontinuous trial functions. The new principle for the first-order equation can be used as a basis for finite-element methods with the same freedom from boundary conditions as those based on the weighted-residual method. The extremum principle as the parent of the variationally-derived weighted-residual equations ensures their good behaviour. (author)

  19. Finite element methods for incompressible flow problems

    CERN Document Server

    John, Volker

    2016-01-01

    This book explores finite element methods for incompressible flow problems: Stokes equations, stationary Navier-Stokes equations, and time-dependent Navier-Stokes equations. It focuses on numerical analysis, but also discusses the practical use of these methods and includes numerical illustrations. It also provides a comprehensive overview of analytical results for turbulence models. The proofs are presented step by step, allowing readers to more easily understand the analytical techniques.

  20. Hybrid Direct and Iterative Solver with Library of Multi-criteria Optimal Orderings for h Adaptive Finite Element Method Computations

    KAUST Repository

    AbouEisha, Hassan M.

    2016-06-02

    In this paper we present a multi-criteria optimization of element partition trees and resulting orderings for multi-frontal solver algorithms executed for two dimensional h adaptive finite element method. In particular, the problem of optimal ordering of elimination of rows in the sparse matrices resulting from adaptive finite element method computations is reduced to the problem of finding of optimal element partition trees. Given a two dimensional h refined mesh, we find all optimal element partition trees by using the dynamic programming approach. An element partition tree defines a prescribed order of elimination of degrees of freedom over the mesh. We utilize three different metrics to estimate the quality of the element partition tree. As the first criterion we consider the number of floating point operations(FLOPs) performed by the multi-frontal solver. As the second criterion we consider the number of memory transfers (MEMOPS) performed by the multi-frontal solver algorithm. As the third criterion we consider memory usage (NONZEROS) of the multi-frontal direct solver. We show the optimization results for FLOPs vs MEMOPS as well as for the execution time estimated as FLOPs+100MEMOPS vs NONZEROS. We obtain Pareto fronts with multiple optimal trees, for each mesh, and for each refinement level. We generate a library of optimal elimination trees for small grids with local singularities. We also propose an algorithm that for a given large mesh with identified local sub-grids, each one with local singularity. We compute Schur complements over the sub-grids using the optimal trees from the library, and we submit the sequence of Schur complements into the iterative solver ILUPCG.

  1. Finite Element Method in Machining Processes

    CERN Document Server

    Markopoulos, Angelos P

    2013-01-01

    Finite Element Method in Machining Processes provides a concise study on the way the Finite Element Method (FEM) is used in the case of manufacturing processes, primarily in machining. The basics of this kind of modeling are detailed to create a reference that will provide guidelines for those who start to study this method now, but also for scientists already involved in FEM and want to expand their research. A discussion on FEM, formulations and techniques currently in use is followed up by machining case studies. Orthogonal cutting, oblique cutting, 3D simulations for turning and milling, grinding, and state-of-the-art topics such as high speed machining and micromachining are explained with relevant examples. This is all supported by a literature review and a reference list for further study. As FEM is a key method for researchers in the manufacturing and especially in the machining sector, Finite Element Method in Machining Processes is a key reference for students studying manufacturing processes but al...

  2. Crack Propagation by Finite Element Method

    OpenAIRE

    H. Ricardo, Luiz Carlos

    2017-01-01

    Crack propagation simulation began with the development of the finite element method; the analyses were conducted to obtain a basic understanding of the crack growth. Today structural and materials engineers develop structures and materials properties using this technique. The aim of this paper is to verify the effect of different crack propagation rates in determination of crack opening and closing stress of an ASTM specimen under a standard suspension spectrum loading from FD&E SAE Keyh...

  3. New mixed finite-element methods

    International Nuclear Information System (INIS)

    Franca, L.P.

    1987-01-01

    New finite-element methods are proposed for mixed variational formulations. The methods are constructed by adding to the classical Galerkin method various least-squares like terms. The additional terms involve integrals over element interiors, and include mesh-parameter dependent coefficients. The methods are designed to enhance stability. Consistency is achieved in the sense that exact solutions identically satisfy the variational equations.Applied to several problems, simple finite-element interpolations are rendered convergent, including convenient equal-order interpolations generally unstable within the Galerkin approach. The methods are subdivided into two classes according to the manner in which stability is attained: (1) circumventing Babuska-Brezzi condition methods; (2) satisfying Babuska-Brezzi condition methods. Convergence is established for each class of methods. Applications of the first class of methods to Stokes flow and compressible linear elasticity are presented. The second class of methods is applied to the Poisson, Timoshenko beam and incompressible elasticity problems. Numerical results demonstrate the good stability and accuracy of the methods, and confirm the error estimates

  4. A finite element method for neutron transport

    International Nuclear Information System (INIS)

    Ackroyd, R.T.

    1978-01-01

    A variational treatment of the finite element method for neutron transport is given based on a version of the even-parity Boltzmann equation which does not assume that the differential scattering cross-section has a spherical harmonic expansion. The theory of minimum and maximum principles is based on the Cauchy-Schwartz equality and the properties of a leakage operator G and a removal operator C. For systems with extraneous sources, two maximum and one minimum principles are given in boundary free form, to ease finite element computations. The global error of an approximate variational solution is given, the relationship of one the maximum principles to the method of least squares is shown, and the way in which approximate solutions converge locally to the exact solution is established. A method for constructing local error bounds is given, based on the connection between the variational method and the method of the hypercircle. The source iteration technique and a maximum principle for a system with extraneous sources suggests a functional for a variational principle for a self-sustaining system. The principle gives, as a consequence of the properties of G and C, an upper bound to the lowest eigenvalue. A related functional can be used to determine both upper and lower bounds for the lowest eigenvalue from an inspection of any approximate solution for the lowest eigenfunction. The basis for the finite element is presented in a general form so that two modes of exploitation can be undertaken readily. The model can be in phase space, with positional and directional co-ordinates defining points of the model, or it can be restricted to the positional co-ordinates and an expansion in orthogonal functions used for the directional co-ordinates. Suitable sets of functions are spherical harmonics and Walsh functions. The latter set is appropriate if a discrete direction representation of the angular flux is required. (author)

  5. Generalized multiscale finite element methods: Oversampling strategies

    KAUST Repository

    Efendiev, Yalchin R.; Galvis, Juan; Li, Guanglian; Presho, Michael

    2014-01-01

    In this paper, we propose oversampling strategies in the generalized multiscale finite element method (GMsFEM) framework. The GMsFEM, which has been recently introduced in Efendiev et al. (2013b) [Generalized Multiscale Finite Element Methods, J. Comput. Phys., vol. 251, pp. 116-135, 2013], allows solving multiscale parameter-dependent problems at a reduced computational cost by constructing a reduced-order representation of the solution on a coarse grid. The main idea of the method consists of (1) the construction of snapshot space, (2) the construction of the offline space, and (3) construction of the online space (the latter for parameter-dependent problems). In Efendiev et al. (2013b) [Generalized Multiscale Finite Element Methods, J. Comput. Phys., vol. 251, pp. 116-135, 2013], it was shown that the GMsFEM provides a flexible tool to solve multiscale problems with a complex input space by generating appropriate snapshot, offline, and online spaces. In this paper, we develop oversampling techniques to be used in this context (see Hou and Wu (1997) where oversampling is introduced for multiscale finite element methods). It is known (see Hou and Wu (1997)) that the oversampling can improve the accuracy of multiscale methods. In particular, the oversampling technique uses larger regions (larger than the target coarse block) in constructing local basis functions. Our motivation stems from the analysis presented in this paper, which shows that when using oversampling techniques in the construction of the snapshot space and offline space, GMsFEM will converge independent of small scales and high contrast under certain assumptions. We consider the use of a multiple eigenvalue problems to improve the convergence and discuss their relation to single spectral problems that use oversampled regions. The oversampling procedures proposed in this paper differ from those in Hou and Wu (1997). In particular, the oversampling domains are partially used in constructing local

  6. Application of finite-element-methods in food processing

    DEFF Research Database (Denmark)

    Risum, Jørgen

    2004-01-01

    Presentation of the possible use of finite-element-methods in food processing. Examples from diffusion studies are given.......Presentation of the possible use of finite-element-methods in food processing. Examples from diffusion studies are given....

  7. The finite element response Matrix method

    International Nuclear Information System (INIS)

    Nakata, H.; Martin, W.R.

    1983-01-01

    A new method for global reactor core calculations is described. This method is based on a unique formulation of the response matrix method, implemented with a higher order finite element method. The unique aspects of this approach are twofold. First, there are two levels to the overall calculational scheme: the local or assembly level and the global or core level. Second, the response matrix scheme, which is formulated at both levels, consists of two separate response matrices rather than one response matrix as is generally the case. These separate response matrices are seen to be quite beneficial for the criticality eigenvalue calculation, because they are independent of k /SUB eff/. The response matrices are generated from a Galerkin finite element solution to the weak form of the diffusion equation, subject to an arbitrary incoming current and an arbitrary distributed source. Calculational results are reported for two test problems, the two-dimensional International Atomic Energy Agency benchmark problem and a two-dimensional pressurized water reactor test problem (Biblis reactor), and they compare well with standard coarse mesh methods with respect to accuracy and efficiency. Moreover, the accuracy (and capability) is comparable to fine mesh for a fraction of the computational cost. Extension of the method to treat heterogeneous assemblies and spatial depletion effects is discussed

  8. The finite element method in engineering, 2nd edition

    International Nuclear Information System (INIS)

    Rao, S.S.

    1986-01-01

    This work provides a systematic introduction to the various aspects of the finite element method as applied to engineering problems. Contents include: introduction to finite element method; solution of finite element equations; solid and structural mechanics; static analysis; dynamic analysis; heat transfer; fluid mechanics and additional applications

  9. Extension to linear dynamics for hybrid stress finite element formulation based on additional displacements

    Science.gov (United States)

    Sumihara, K.

    Based upon legitimate variational principles, one microscopic-macroscopic finite element formulation for linear dynamics is presented by Hybrid Stress Finite Element Method. The microscopic application of Geometric Perturbation introduced by Pian and the introduction of infinitesimal limit core element (Baby Element) have been consistently combined according to the flexible and inherent interpretation of the legitimate variational principles initially originated by Pian and Tong. The conceptual development based upon Hybrid Finite Element Method is extended to linear dynamics with the introduction of physically meaningful higher modes.

  10. Adaptive finite element methods for differential equations

    CERN Document Server

    Bangerth, Wolfgang

    2003-01-01

    These Lecture Notes discuss concepts of `self-adaptivity' in the numerical solution of differential equations, with emphasis on Galerkin finite element methods. The key issues are a posteriori error estimation and it automatic mesh adaptation. Besides the traditional approach of energy-norm error control, a new duality-based technique, the Dual Weighted Residual method for goal-oriented error estimation, is discussed in detail. This method aims at economical computation of arbitrary quantities of physical interest by properly adapting the computational mesh. This is typically required in the design cycles of technical applications. For example, the drag coefficient of a body immersed in a viscous flow is computed, then it is minimized by varying certain control parameters, and finally the stability of the resulting flow is investigated by solving an eigenvalue problem. `Goal-oriented' adaptivity is designed to achieve these tasks with minimal cost. At the end of each chapter some exercises are posed in order ...

  11. Adaptive finite element method for shape optimization

    KAUST Repository

    Morin, Pedro; Nochetto, Ricardo H.; Pauletti, Miguel S.; Verani, Marco

    2012-01-01

    We examine shape optimization problems in the context of inexact sequential quadratic programming. Inexactness is a consequence of using adaptive finite element methods (AFEM) to approximate the state and adjoint equations (via the dual weighted residual method), update the boundary, and compute the geometric functional. We present a novel algorithm that equidistributes the errors due to shape optimization and discretization, thereby leading to coarse resolution in the early stages and fine resolution upon convergence, and thus optimizing the computational effort. We discuss the ability of the algorithm to detect whether or not geometric singularities such as corners are genuine to the problem or simply due to lack of resolution - a new paradigm in adaptivity. © EDP Sciences, SMAI, 2012.

  12. Adaptive finite element method for shape optimization

    KAUST Repository

    Morin, Pedro

    2012-01-16

    We examine shape optimization problems in the context of inexact sequential quadratic programming. Inexactness is a consequence of using adaptive finite element methods (AFEM) to approximate the state and adjoint equations (via the dual weighted residual method), update the boundary, and compute the geometric functional. We present a novel algorithm that equidistributes the errors due to shape optimization and discretization, thereby leading to coarse resolution in the early stages and fine resolution upon convergence, and thus optimizing the computational effort. We discuss the ability of the algorithm to detect whether or not geometric singularities such as corners are genuine to the problem or simply due to lack of resolution - a new paradigm in adaptivity. © EDP Sciences, SMAI, 2012.

  13. The finite element method its basis and fundamentals

    CERN Document Server

    Zienkiewicz, Olek C; Zhu, JZ

    2013-01-01

    The Finite Element Method: Its Basis and Fundamentals offers a complete introduction to the basis of the finite element method, covering fundamental theory and worked examples in the detail required for readers to apply the knowledge to their own engineering problems and understand more advanced applications. This edition sees a significant rearrangement of the book's content to enable clearer development of the finite element method, with major new chapters and sections added to cover: Weak forms Variational forms Multi-dimensional field prob

  14. A simple finite element method for linear hyperbolic problems

    International Nuclear Information System (INIS)

    Mu, Lin; Ye, Xiu

    2017-01-01

    Here, we introduce a simple finite element method for solving first order hyperbolic equations with easy implementation and analysis. Our new method, with a symmetric, positive definite system, is designed to use discontinuous approximations on finite element partitions consisting of arbitrary shape of polygons/polyhedra. Error estimate is established. Extensive numerical examples are tested that demonstrate the robustness and flexibility of the method.

  15. Human exposure assessment in the near field of GSM base-station antennas using a hybrid finite element/method of moments technique.

    Science.gov (United States)

    Meyer, Frans J C; Davidson, David B; Jakobus, Ulrich; Stuchly, Maria A

    2003-02-01

    A hybrid finite-element method (FEM)/method of moments (MoM) technique is employed for specific absorption rate (SAR) calculations in a human phantom in the near field of a typical group special mobile (GSM) base-station antenna. The MoM is used to model the metallic surfaces and wires of the base-station antenna, and the FEM is used to model the heterogeneous human phantom. The advantages of each of these frequency domain techniques are, thus, exploited, leading to a highly efficient and robust numerical method for addressing this type of bioelectromagnetic problem. The basic mathematical formulation of the hybrid technique is presented. This is followed by a discussion of important implementation details-in particular, the linear algebra routines for sparse, complex FEM matrices combined with dense MoM matrices. The implementation is validated by comparing results to MoM (surface equivalence principle implementation) and finite-difference time-domain (FDTD) solutions of human exposure problems. A comparison of the computational efficiency of the different techniques is presented. The FEM/MoM implementation is then used for whole-body and critical-organ SAR calculations in a phantom at different positions in the near field of a base-station antenna. This problem cannot, in general, be solved using the MoM or FDTD due to computational limitations. This paper shows that the specific hybrid FEM/MoM implementation is an efficient numerical tool for accurate assessment of human exposure in the near field of base-station antennas.

  16. A Note on Symplectic, Multisymplectic Scheme in Finite Element Method

    Institute of Scientific and Technical Information of China (English)

    GUO Han-Ying; JI Xiao-Mei; LI Yu-Qi; WU Ke

    2001-01-01

    We find that with uniform mesh, the numerical schemes derived from finite element method can keep a preserved symplectic structure in one-dimensional case and a preserved multisymplectic structure in two-dimensional case respectively. These results are in fact the intrinsic reason why the numerical experiments show that such finite element algorithms are accurate in practice.``

  17. Hydrothermal analysis in engineering using control volume finite element method

    CERN Document Server

    Sheikholeslami, Mohsen

    2015-01-01

    Control volume finite element methods (CVFEM) bridge the gap between finite difference and finite element methods, using the advantages of both methods for simulation of multi-physics problems in complex geometries. In Hydrothermal Analysis in Engineering Using Control Volume Finite Element Method, CVFEM is covered in detail and applied to key areas of thermal engineering. Examples, exercises, and extensive references are used to show the use of the technique to model key engineering problems such as heat transfer in nanofluids (to enhance performance and compactness of energy systems),

  18. Review of Tomographic Imaging using Finite Element Method

    Directory of Open Access Journals (Sweden)

    Mohd Fua’ad RAHMAT

    2011-12-01

    Full Text Available Many types of techniques for process tomography were proposed and developed during the past 20 years. This paper review the techniques and the current state of knowledge and experience on the subject, aimed at highlighting the problems associated with the non finite element methods, such as the ill posed, ill conditioned which relates to the accuracy and sensitivity of measurements. In this paper, considerations for choice of sensors and its applications were outlined and descriptions of non finite element tomography systems were presented. The finite element method tomography system as obtained from recent works, suitable for process control and measurement were also presented.

  19. A finite element conjugate gradient FFT method for scattering

    Science.gov (United States)

    Collins, Jeffery D.; Ross, Dan; Jin, J.-M.; Chatterjee, A.; Volakis, John L.

    1991-01-01

    Validated results are presented for the new 3D body of revolution finite element boundary integral code. A Fourier series expansion of the vector electric and mangnetic fields is employed to reduce the dimensionality of the system, and the exact boundary condition is employed to terminate the finite element mesh. The mesh termination boundary is chosen such that is leads to convolutional boundary operatores of low O(n) memory demand. Improvements of this code are discussed along with the proposed formulation for a full 3D implementation of the finite element boundary integral method in conjunction with a conjugate gradiant fast Fourier transformation (CGFFT) solution.

  20. Utilization of a hybrid finite-element based registration method to quantify heterogeneous tumor response for adaptive treatment for lung cancer patients

    Science.gov (United States)

    Sharifi, Hoda; Zhang, Hong; Bagher-Ebadian, Hassan; Lu, Wei; Ajlouni, Munther I.; Jin, Jian-Yue; (Spring Kong, Feng-Ming; Chetty, Indrin J.; Zhong, Hualiang

    2018-03-01

    Tumor response to radiation treatment (RT) can be evaluated from changes in metabolic activity between two positron emission tomography (PET) images. Activity changes at individual voxels in pre-treatment PET images (PET1), however, cannot be derived until their associated PET-CT (CT1) images are appropriately registered to during-treatment PET-CT (CT2) images. This study aimed to investigate the feasibility of using deformable image registration (DIR) techniques to quantify radiation-induced metabolic changes on PET images. Five patients with non-small-cell lung cancer (NSCLC) treated with adaptive radiotherapy were considered. PET-CTs were acquired two weeks before RT and 18 fractions after the start of RT. DIR was performed from CT1 to CT2 using B-Spline and diffeomorphic Demons algorithms. The resultant displacements in the tumor region were then corrected using a hybrid finite element method (FEM). Bitmap masks generated from gross tumor volumes (GTVs) in PET1 were deformed using the four different displacement vector fields (DVFs). The conservation of total lesion glycolysis (TLG) in GTVs was used as a criterion to evaluate the quality of these registrations. The deformed masks were united to form a large mask which was then partitioned into multiple layers from center to border. The averages of SUV changes over all the layers were 1.0  ±  1.3, 1.0  ±  1.2, 0.8  ±  1.3, 1.1  ±  1.5 for the B-Spline, B-Spline  +  FEM, Demons and Demons  +  FEM algorithms, respectively. TLG changes before and after mapping using B-Spline, Demons, hybrid-B-Spline, and hybrid-Demons registrations were 20.2%, 28.3%, 8.7%, and 2.2% on average, respectively. Compared to image intensity-based DIR algorithms, the hybrid FEM modeling technique is better in preserving TLG and could be useful for evaluation of tumor response for patients with regressing tumors.

  1. A multiscale mortar multipoint flux mixed finite element method

    KAUST Repository

    Wheeler, Mary Fanett; Xue, Guangri; Yotov, Ivan

    2012-01-01

    In this paper, we develop a multiscale mortar multipoint flux mixed finite element method for second order elliptic problems. The equations in the coarse elements (or subdomains) are discretized on a fine grid scale by a multipoint flux mixed finite

  2. Generalized multiscale finite element method. Symmetric interior penalty coupling

    KAUST Repository

    Efendiev, Yalchin R.; Galvis, Juan; Lazarov, Raytcho D.; Moon, M.; Sarkis, Marcus V.

    2013-01-01

    Motivated by applications to numerical simulations of flows in highly heterogeneous porous media, we develop multiscale finite element methods for second order elliptic equations. We discuss a multiscale model reduction technique in the framework of the discontinuous Galerkin finite element method. We propose two different finite element spaces on the coarse mesh. The first space is based on a local eigenvalue problem that uses an interior weighted L2-norm and a boundary weighted L2-norm for computing the "mass" matrix. The second choice is based on generation of a snapshot space and subsequent selection of a subspace of a reduced dimension. The approximation with these multiscale spaces is based on the discontinuous Galerkin finite element method framework. We investigate the stability and derive error estimates for the methods and further experimentally study their performance on a representative number of numerical examples. © 2013 Elsevier Inc.

  3. Generalized multiscale finite element method. Symmetric interior penalty coupling

    KAUST Repository

    Efendiev, Yalchin R.

    2013-12-01

    Motivated by applications to numerical simulations of flows in highly heterogeneous porous media, we develop multiscale finite element methods for second order elliptic equations. We discuss a multiscale model reduction technique in the framework of the discontinuous Galerkin finite element method. We propose two different finite element spaces on the coarse mesh. The first space is based on a local eigenvalue problem that uses an interior weighted L2-norm and a boundary weighted L2-norm for computing the "mass" matrix. The second choice is based on generation of a snapshot space and subsequent selection of a subspace of a reduced dimension. The approximation with these multiscale spaces is based on the discontinuous Galerkin finite element method framework. We investigate the stability and derive error estimates for the methods and further experimentally study their performance on a representative number of numerical examples. © 2013 Elsevier Inc.

  4. A mixed finite element domain decomposition method for nearly elastic wave equations in the frequency domain

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Xiaobing [Univ. of Tennessee, Knoxville, TN (United States)

    1996-12-31

    A non-overlapping domain decomposition iterative method is proposed and analyzed for mixed finite element methods for a sequence of noncoercive elliptic systems with radiation boundary conditions. These differential systems describe the motion of a nearly elastic solid in the frequency domain. The convergence of the iterative procedure is demonstrated and the rate of convergence is derived for the case when the domain is decomposed into subdomains in which each subdomain consists of an individual element associated with the mixed finite elements. The hybridization of mixed finite element methods plays a important role in the construction of the discrete procedure.

  5. A weak Galerkin least-squares finite element method for div-curl systems

    Science.gov (United States)

    Li, Jichun; Ye, Xiu; Zhang, Shangyou

    2018-06-01

    In this paper, we introduce a weak Galerkin least-squares method for solving div-curl problem. This finite element method leads to a symmetric positive definite system and has the flexibility to work with general meshes such as hybrid mesh, polytopal mesh and mesh with hanging nodes. Error estimates of the finite element solution are derived. The numerical examples demonstrate the robustness and flexibility of the proposed method.

  6. Finite element formulation for a digital image correlation method

    International Nuclear Information System (INIS)

    Sun Yaofeng; Pang, John H. L.; Wong, Chee Khuen; Su Fei

    2005-01-01

    A finite element formulation for a digital image correlation method is presented that will determine directly the complete, two-dimensional displacement field during the image correlation process on digital images. The entire interested image area is discretized into finite elements that are involved in the common image correlation process by use of our algorithms. This image correlation method with finite element formulation has an advantage over subset-based image correlation methods because it satisfies the requirements of displacement continuity and derivative continuity among elements on images. Numerical studies and a real experiment are used to verify the proposed formulation. Results have shown that the image correlation with the finite element formulation is computationally efficient, accurate, and robust

  7. Hybrid-finite-element analysis of some nonlinear and 3-dimensional problems of engineering fracture mechanics

    Science.gov (United States)

    Atluri, S. N.; Nakagaki, M.; Kathiresan, K.

    1980-01-01

    In this paper, efficient numerical methods for the analysis of crack-closure effects on fatigue-crack-growth-rates, in plane stress situations, and for the solution of stress-intensity factors for arbitrary shaped surface flaws in pressure vessels, are presented. For the former problem, an elastic-plastic finite element procedure valid for the case of finite deformation gradients is developed and crack growth is simulated by the translation of near-crack-tip elements with embedded plastic singularities. For the latter problem, an embedded-elastic-singularity hybrid finite element method, which leads to a direct evaluation of K-factors, is employed.

  8. Mathematical aspects of finite element methods for incompressible viscous flows

    Science.gov (United States)

    Gunzburger, M. D.

    1986-01-01

    Mathematical aspects of finite element methods are surveyed for incompressible viscous flows, concentrating on the steady primitive variable formulation. The discretization of a weak formulation of the Navier-Stokes equations are addressed, then the stability condition is considered, the satisfaction of which insures the stability of the approximation. Specific choices of finite element spaces for the velocity and pressure are then discussed. Finally, the connection between different weak formulations and a variety of boundary conditions is explored.

  9. Precise magnetostatic field using the finite element method

    International Nuclear Information System (INIS)

    Nascimento, Francisco Rogerio Teixeira do

    2013-01-01

    The main objective of this work is to simulate electromagnetic fields using the Finite Element Method. Even in the easiest case of electrostatic and magnetostatic numerical simulation some problems appear when the nodal finite element is used. It is difficult to model vector fields with scalar functions mainly in non-homogeneous materials. With the aim to solve these problems two types of techniques are tried: the adaptive remeshing using nodal elements and the edge finite element that ensure the continuity of tangential components. Some numerical analysis of simple electromagnetic problems with homogeneous and non-homogeneous materials are performed using first, the adaptive remeshing based in various error indicators and second, the numerical solution of waveguides using edge finite element. (author)

  10. Complex finite element sensitivity method for creep analysis

    International Nuclear Information System (INIS)

    Gomez-Farias, Armando; Montoya, Arturo; Millwater, Harry

    2015-01-01

    The complex finite element method (ZFEM) has been extended to perform sensitivity analysis for mechanical and structural systems undergoing creep deformation. ZFEM uses a complex finite element formulation to provide shape, material, and loading derivatives of the system response, providing an insight into the essential factors which control the behavior of the system as a function of time. A complex variable-based quadrilateral user element (UEL) subroutine implementing the power law creep constitutive formulation was incorporated within the Abaqus commercial finite element software. The results of the complex finite element computations were verified by comparing them to the reference solution for the steady-state creep problem of a thick-walled cylinder in the power law creep range. A practical application of the ZFEM implementation to creep deformation analysis is the calculation of the skeletal point of a notched bar test from a single ZFEM run. In contrast, the standard finite element procedure requires multiple runs. The value of the skeletal point is that it identifies the location where the stress state is accurate, regardless of the certainty of the creep material properties. - Highlights: • A novel finite element sensitivity method (ZFEM) for creep was introduced. • ZFEM has the capability to calculate accurate partial derivatives. • ZFEM can be used for identification of the skeletal point of creep structures. • ZFEM can be easily implemented in a commercial software, e.g. Abaqus. • ZFEM results were shown to be in excellent agreement with analytical solutions

  11. A Novel Polygonal Finite Element Method: Virtual Node Method

    Science.gov (United States)

    Tang, X. H.; Zheng, C.; Zhang, J. H.

    2010-05-01

    Polygonal finite element method (PFEM), which can construct shape functions on polygonal elements, provides greater flexibility in mesh generation. However, the non-polynomial form of traditional PFEM, such as Wachspress method and Mean Value method, leads to inexact numerical integration. Since the integration technique for non-polynomial functions is immature. To overcome this shortcoming, a great number of integration points have to be used to obtain sufficiently exact results, which increases computational cost. In this paper, a novel polygonal finite element method is proposed and called as virtual node method (VNM). The features of present method can be list as: (1) It is a PFEM with polynomial form. Thereby, Hammer integral and Gauss integral can be naturally used to obtain exact numerical integration; (2) Shape functions of VNM satisfy all the requirements of finite element method. To test the performance of VNM, intensive numerical tests are carried out. It found that, in standard patch test, VNM can achieve significantly better results than Wachspress method and Mean Value method. Moreover, it is observed that VNM can achieve better results than triangular 3-node elements in the accuracy test.

  12. Hybrid finite difference/finite element solution method development for non-linear superconducting magnet and electrical circuit breakdown transient analysis

    International Nuclear Information System (INIS)

    Kraus, H.G.; Jones, J.L.

    1986-01-01

    The problem of non-linear superconducting magnet and electrical protection circuit system transients is formulated. To enable studying the effects of coil normalization transients, coil distortion (due to imbalanced magnetic forces), internal coil arcs and shorts, and other normal and off-normal circuit element responses, the following capabilities are included: temporal, voltage and current-dependent voltage sources, current sources, resistors, capacitors and inductors. The concept of self-mutual inductance, and the form of the associated inductance matrix, is discussed for internally shorted coils. This is a Kirchhoff's voltage loop law and Kirchhoff's current node law formulation. The non-linear integrodifferential equation set is solved via a unique hybrid finite difference/integral finite element technique. (author)

  13. Numerical experiment on finite element method for matching data

    International Nuclear Information System (INIS)

    Tokuda, Shinji; Kumakura, Toshimasa; Yoshimura, Koichi.

    1993-03-01

    Numerical experiments are presented on the finite element method by Pletzer-Dewar for matching data of an ordinary differential equation with regular singular points by using model equation. Matching data play an important role in nonideal MHD stability analysis of a magnetically confined plasma. In the Pletzer-Dewar method, the Frobenius series for the 'big solution', the fundamental solution which is not square-integrable at the regular singular point, is prescribed. The experiments include studies of the convergence rate of the matching data obtained by the finite element method and of the effect on the results of computation by truncating the Frobenius series at finite terms. It is shown from the present study that the finite element method is an effective method for obtaining the matching data with high accuracy. (author)

  14. Finite element method for solving neutron transport problems

    International Nuclear Information System (INIS)

    Ferguson, J.M.; Greenbaum, A.

    1984-01-01

    A finite element method is introduced for solving the neutron transport equations. Our method falls into the category of Petrov-Galerkin solution, since the trial space differs from the test space. The close relationship between this method and the discrete ordinate method is discussed, and the methods are compared for simple test problems

  15. Engineering computation of structures the finite element method

    CERN Document Server

    Neto, Maria Augusta; Roseiro, Luis; Cirne, José; Leal, Rogério

    2015-01-01

    This book presents theories and the main useful techniques of the Finite Element Method (FEM), with an introduction to FEM and many case studies of its use in engineering practice. It supports engineers and students to solve primarily linear problems in mechanical engineering, with a main focus on static and dynamic structural problems. Readers of this text are encouraged to discover the proper relationship between theory and practice, within the finite element method: Practice without theory is blind, but theory without practice is sterile. Beginning with elasticity basic concepts and the classical theories of stressed materials, the work goes on to apply the relationship between forces, displacements, stresses and strains on the process of modeling, simulating and designing engineered technical systems. Chapters discuss the finite element equations for static, eigenvalue analysis, as well as transient analyses. Students and practitioners using commercial FEM software will find this book very helpful. It us...

  16. Matlab and C programming for Trefftz finite element methods

    CERN Document Server

    Qin, Qing-Hua

    2008-01-01

    Although the Trefftz finite element method (FEM) has become a powerful computational tool in the analysis of plane elasticity, thin and thick plate bending, Poisson's equation, heat conduction, and piezoelectric materials, there are few books that offer a comprehensive computer programming treatment of the subject. Collecting results scattered in the literature, MATLAB® and C Programming for Trefftz Finite Element Methods provides the detailed MATLAB® and C programming processes in applications of the Trefftz FEM to potential and elastic problems. The book begins with an introduction to th

  17. Galerkin finite element methods for wave problems

    Indian Academy of Sciences (India)

    basis functions (called G1FEM here) and quadratic basis functions (called G2FEM) ... mulation of Brookes & Hughes (1982) that implicitly incorporates numerical ..... functions and (c) SUPG method in the (kh − ω t)-plane for explicit Euler.

  18. Nonlinear nonstationary analysis with the finite element method

    International Nuclear Information System (INIS)

    Vaz, L.E.

    1981-01-01

    In this paper, after some introductory remarks on numerical methods for the integration of initial value problems, the applicability of the finite element method for transient diffusion analysis as well as dynamic and inelastic analysis is discussed, and some examples are presented. (RW) [de

  19. The future of the finite element method in geotechnics

    NARCIS (Netherlands)

    Brinkgreve, R.B.J.

    2012-01-01

    In this presentation a vision is given on tlie fiiture of the finite element method (FEM) for geotechnical engineering and design. In the past 20 years the FEM has proven to be a powerful method for estimating deformation, stability and groundwater flow in geoteclmical stmctures. Much has been

  20. Discontinuous Galerkin finite element methods for hyperbolic differential equations

    NARCIS (Netherlands)

    van der Vegt, Jacobus J.W.; van der Ven, H.; Boelens, O.J.; Boelens, O.J.; Toro, E.F.

    2002-01-01

    In this paper a suryey is given of the important steps in the development of discontinuous Galerkin finite element methods for hyperbolic partial differential equations. Special attention is paid to the application of the discontinuous Galerkin method to the solution of the Euler equations of gas

  1. A particle finite element method for machining simulations

    Science.gov (United States)

    Sabel, Matthias; Sator, Christian; Müller, Ralf

    2014-07-01

    The particle finite element method (PFEM) appears to be a convenient technique for machining simulations, since the geometry and topology of the problem can undergo severe changes. In this work, a short outline of the PFEM-algorithm is given, which is followed by a detailed description of the involved operations. The -shape method, which is used to track the topology, is explained and tested by a simple example. Also the kinematics and a suitable finite element formulation are introduced. To validate the method simple settings without topological changes are considered and compared to the standard finite element method for large deformations. To examine the performance of the method, when dealing with separating material, a tensile loading is applied to a notched plate. This investigation includes a numerical analysis of the different meshing parameters, and the numerical convergence is studied. With regard to the cutting simulation it is found that only a sufficiently large number of particles (and thus a rather fine finite element discretisation) leads to converged results of process parameters, such as the cutting force.

  2. Coupling of smooth particle hydrodynamics with the finite element method

    International Nuclear Information System (INIS)

    Attaway, S.W.; Heinstein, M.W.; Swegle, J.W.

    1994-01-01

    A gridless technique called smooth particle hydrodynamics (SPH) has been coupled with the transient dynamics finite element code ppercase[pronto]. In this paper, a new weighted residual derivation for the SPH method will be presented, and the methods used to embed SPH within ppercase[pronto] will be outlined. Example SPH ppercase[pronto] calculations will also be presented. One major difficulty associated with the Lagrangian finite element method is modeling materials with no shear strength; for example, gases, fluids and explosive biproducts. Typically, these materials can be modeled for only a short time with a Lagrangian finite element code. Large distortions cause tangling of the mesh, which will eventually lead to numerical difficulties, such as negative element area or ''bow tie'' elements. Remeshing will allow the problem to continue for a short while, but the large distortions can prevent a complete analysis. SPH is a gridless Lagrangian technique. Requiring no mesh, SPH has the potential to model material fracture, large shear flows and penetration. SPH computes the strain rate and the stress divergence based on the nearest neighbors of a particle, which are determined using an efficient particle-sorting technique. Embedding the SPH method within ppercase[pronto] allows part of the problem to be modeled with quadrilateral finite elements, while other parts are modeled with the gridless SPH method. SPH elements are coupled to the quadrilateral elements through a contact-like algorithm. ((orig.))

  3. Piezoelectric Accelerometers Modification Based on the Finite Element Method

    DEFF Research Database (Denmark)

    Liu, Bin; Kriegbaum, B.

    2000-01-01

    The paper describes the modification of piezoelectric accelerometers using a Finite Element (FE) method. Brüel & Kjær Accelerometer Type 8325 is chosen as an example to illustrate the advanced accelerometer development procedure. The deviation between the measurement and FE simulation results...

  4. A mixed finite element method for particle simulation in lasertron

    International Nuclear Information System (INIS)

    Le Meur, G.

    1987-03-01

    A particle simulation code is being developed with the aim to treat the motion of charged particles in electromagnetic devices, such as Lasertron. The paper describes the use of mixed finite element methods in computing the field components, without derivating them from scalar or vector potentials. Graphical results are shown

  5. Possibilities of Particle Finite Element Methods in Industrial Forming Processes

    Science.gov (United States)

    Oliver, J.; Cante, J. C.; Weyler, R.; Hernandez, J.

    2007-04-01

    The work investigates the possibilities offered by the particle finite element method (PFEM) in the simulation of forming problems involving large deformations, multiple contacts, and new boundaries generation. The description of the most distinguishing aspects of the PFEM, and its application to simulation of representative forming processes, illustrate the proposed methodology.

  6. A mixed finite element method for particle simulation in Lasertron

    International Nuclear Information System (INIS)

    Le Meur, G.

    1987-01-01

    A particle simulation code is being developed with the aim to treat the motion of charged particles in electromagnetic devices, such as Lasertron. The paper describes the use of mixed finite element methods in computing the field components, without derivating them from scalar or vector potentials. Graphical results are shown

  7. Deflation in preconditioned conjugate gradient methods for Finite Element Problems

    NARCIS (Netherlands)

    Vermolen, F.J.; Vuik, C.; Segal, A.

    2002-01-01

    We investigate the influence of the value of deflation vectors at interfaces on the rate of convergence of preconditioned conjugate gradient methods applied to a Finite Element discretization for an elliptic equation. Our set-up is a Poisson problem in two dimensions with continuous or discontinuous

  8. THE PRACTICAL ANALYSIS OF FINITE ELEMENTS METHOD ERRORS

    Directory of Open Access Journals (Sweden)

    Natalia Bakhova

    2011-03-01

    Full Text Available Abstract. The most important in the practical plan questions of reliable estimations of finite elementsmethod errors are considered. Definition rules of necessary calculations accuracy are developed. Methodsand ways of the calculations allowing receiving at economical expenditures of computing work the best finalresults are offered.Keywords: error, given the accuracy, finite element method, lagrangian and hermitian elements.

  9. Steam generator tube rupture simulation using extended finite element method

    Energy Technology Data Exchange (ETDEWEB)

    Mohanty, Subhasish, E-mail: smohanty@anl.gov; Majumdar, Saurin; Natesan, Ken

    2016-08-15

    Highlights: • Extended finite element method used for modeling the steam generator tube rupture. • Crack propagation is modeled in an arbitrary solution dependent path. • The FE model is used for estimating the rupture pressure of steam generator tubes. • Crack coalescence modeling is also demonstrated. • The method can be used for crack modeling of tubes under severe accident condition. - Abstract: A steam generator (SG) is an important component of any pressurized water reactor. Steam generator tubes represent a primary pressure boundary whose integrity is vital to the safe operation of the reactor. SG tubes may rupture due to propagation of a crack created by mechanisms such as stress corrosion cracking, fatigue, etc. It is thus important to estimate the rupture pressures of cracked tubes for structural integrity evaluation of SGs. The objective of the present paper is to demonstrate the use of extended finite element method capability of commercially available ABAQUS software, to model SG tubes with preexisting flaws and to estimate their rupture pressures. For the purpose, elastic–plastic finite element models were developed for different SG tubes made from Alloy 600 material. The simulation results were compared with experimental results available from the steam generator tube integrity program (SGTIP) sponsored by the United States Nuclear Regulatory Commission (NRC) and conducted at Argonne National Laboratory (ANL). A reasonable correlation was found between extended finite element model results and experimental results.

  10. Steam generator tube rupture simulation using extended finite element method

    International Nuclear Information System (INIS)

    Mohanty, Subhasish; Majumdar, Saurin; Natesan, Ken

    2016-01-01

    Highlights: • Extended finite element method used for modeling the steam generator tube rupture. • Crack propagation is modeled in an arbitrary solution dependent path. • The FE model is used for estimating the rupture pressure of steam generator tubes. • Crack coalescence modeling is also demonstrated. • The method can be used for crack modeling of tubes under severe accident condition. - Abstract: A steam generator (SG) is an important component of any pressurized water reactor. Steam generator tubes represent a primary pressure boundary whose integrity is vital to the safe operation of the reactor. SG tubes may rupture due to propagation of a crack created by mechanisms such as stress corrosion cracking, fatigue, etc. It is thus important to estimate the rupture pressures of cracked tubes for structural integrity evaluation of SGs. The objective of the present paper is to demonstrate the use of extended finite element method capability of commercially available ABAQUS software, to model SG tubes with preexisting flaws and to estimate their rupture pressures. For the purpose, elastic–plastic finite element models were developed for different SG tubes made from Alloy 600 material. The simulation results were compared with experimental results available from the steam generator tube integrity program (SGTIP) sponsored by the United States Nuclear Regulatory Commission (NRC) and conducted at Argonne National Laboratory (ANL). A reasonable correlation was found between extended finite element model results and experimental results.

  11. A finite element method for SSI time history calculation

    International Nuclear Information System (INIS)

    Ni, X.; Gantenbein, F.; Petit, M.

    1989-01-01

    The method which is proposed is based on a finite element modelization for the soil and the structure and a time history calculation. It has been developed for plane and axisymmetric geometries. The principle of this method is presented, then applications are given, first to a linear calculation for which results will be compared to those obtained by standard methods. Then results for a non linear behavior are described

  12. Thermohydraulic analysis in pipelines using the finite element method

    International Nuclear Information System (INIS)

    Costa, L.E.; Idelsohn, S.R.

    1984-01-01

    The Finite Element Method (FEM) is employed for the numerical solution of fluid flow problems with combined heat transfer mechanisms. Boussinesq approximations are used for the solution of the governing equations. The application of the FEM leads to a set of simultaneous nonlinear equations. The development of the method, for the solution of bidimensional and axisymmetric problems, is presented. Examples of fluid flow in pipes, including natural and forced convection, are solved with the proposed method and discussed in the paper. (Author) [pt

  13. A finite element method for SSI time history calculations

    International Nuclear Information System (INIS)

    Ni, X.M.; Gantenbein, F.; Petit, M.

    1989-01-01

    The method which is proposed is based on a finite element modelisation for the soil and the structure and a time history calculation. It has been developed for plane and axisymmetric geometries. The principle of this method will be presented, then applications will be given, first to a linear calculation for which results will be compared to those obtained by standard methods. Then results for a non linear behavior will be described

  14. Hybrid finite elements nanocomposite characterization by stochastic microstructuring

    Science.gov (United States)

    Esteva, Milton

    In this thesis the impact of entangled and non-straight fibers in the determination of the effective elastic and thermal properties of polymer nanocomposite (PNC) is addressed. Most of the models in recent studies assume nanotubes to be well dispersed straight fibers with fixed size. Nonetheless experiments reveal that nanotube formation become wavy during the manufacturing process, due to their high aspect ratio and low bending stiffness. Furthermore, experiments also show that nanotubes come in a variety of diameters and lengths. In the thesis an attempt to model the behavior of entangled fibers is made in which the distributions regarding the nanotube length and diameter are incorporated. First, an approach to generate random microstructures is developed. Then, using the finite element (FE) method with embedded fibers, the effective properties are computed for each of the random microstructures. This approach requires only a regular grid for the FE mesh, circumventing the requisite computationally costly and human labor intensive mesh refinement of ordinary FE in order to capture the local morphology of the composite material. Finally, a Monte Carlo simulation approach is used to obtain statistics of the computed effective physical properties. The numerical results are found in good agreement with experimental data reported in the open literature.

  15. Finite element and discontinuous Galerkin methods for transient wave equations

    CERN Document Server

    Cohen, Gary

    2017-01-01

    This monograph presents numerical methods for solving transient wave equations (i.e. in time domain). More precisely, it provides an overview of continuous and discontinuous finite element methods for these equations, including their implementation in physical models, an extensive description of 2D and 3D elements with different shapes, such as prisms or pyramids, an analysis of the accuracy of the methods and the study of the Maxwell’s system and the important problem of its spurious free approximations. After recalling the classical models, i.e. acoustics, linear elastodynamics and electromagnetism and their variational formulations, the authors present a wide variety of finite elements of different shapes useful for the numerical resolution of wave equations. Then, they focus on the construction of efficient continuous and discontinuous Galerkin methods and study their accuracy by plane wave techniques and a priori error estimates. A chapter is devoted to the Maxwell’s system and the important problem ...

  16. Convergence of a residual based artificial viscosity finite element method

    KAUST Repository

    Nazarov, Murtazo

    2013-02-01

    We present a residual based artificial viscosity finite element method to solve conservation laws. The Galerkin approximation is stabilized by only residual based artificial viscosity, without any least-squares, SUPG, or streamline diffusion terms. We prove convergence of the method, applied to a scalar conservation law in two space dimensions, toward an unique entropy solution for implicit time stepping schemes. © 2012 Elsevier B.V. All rights reserved.

  17. A code for obtaining temperature distribution by finite element method

    International Nuclear Information System (INIS)

    Bloch, M.

    1984-01-01

    The ELEFIB Fortran language computer code using finite element method for calculating temperature distribution of linear and two dimensional problems, in permanent region or in the transient phase of heat transfer, is presented. The formulation of equations uses the Galerkin method. Some examples are shown and the results are compared with other papers. The comparative evaluation shows that the elaborated code gives good values. (M.C.K.) [pt

  18. The finite element method and applications in engineering using ANSYS

    CERN Document Server

    Madenci, Erdogan

    2015-01-01

    This textbook offers theoretical and practical knowledge of the finite element method. The book equips readers with the skills required to analyze engineering problems using ANSYS®, a commercially available FEA program. Revised and updated, this new edition presents the most current ANSYS® commands and ANSYS® screen shots, as well as modeling steps for each example problem. This self-contained, introductory text minimizes the need for additional reference material by covering both the fundamental topics in finite element methods and advanced topics concerning modeling and analysis. It focuses on the use of ANSYS® through both the Graphics User Interface (GUI) and the ANSYS® Parametric Design Language (APDL). Extensive examples from a range of engineering disciplines are presented in a straightforward, step-by-step fashion. Key topics include: • An introduction to FEM • Fundamentals and analysis capabilities of ANSYS® • Fundamentals of discretization and approximation functions • Modeling techniq...

  19. Introduction to assembly of finite element methods on graphics processors

    International Nuclear Information System (INIS)

    Cecka, Cristopher; Lew, Adrian; Darve, Eric

    2010-01-01

    Recently, graphics processing units (GPUs) have had great success in accelerating numerical computations. We present their application to computations on unstructured meshes such as those in finite element methods. Multiple approaches in assembling and solving sparse linear systems with NVIDIA GPUs and the Compute Unified Device Architecture (CUDA) are presented and discussed. Multiple strategies for efficient use of global, shared, and local memory, methods to achieve memory coalescing, and optimal choice of parameters are introduced. We find that with appropriate preprocessing and arrangement of support data, the GPU coprocessor achieves speedups of 30x or more in comparison to a well optimized serial implementation on the CPU. We also find that the optimal assembly strategy depends on the order of polynomials used in the finite-element discretization.

  20. A finite element solution method for quadrics parallel computer

    International Nuclear Information System (INIS)

    Zucchini, A.

    1996-08-01

    A distributed preconditioned conjugate gradient method for finite element analysis has been developed and implemented on a parallel SIMD Quadrics computer. The main characteristic of the method is that it does not require any actual assembling of all element equations in a global system. The physical domain of the problem is partitioned in cells of n p finite elements and each cell element is assigned to a different node of an n p -processors machine. Element stiffness matrices are stored in the data memory of the assigned processing node and the solution process is completely executed in parallel at element level. Inter-element and therefore inter-processor communications are required once per iteration to perform local sums of vector quantities between neighbouring elements. A prototype implementation has been tested on an 8-nodes Quadrics machine in a simple 2D benchmark problem

  1. Assembly of finite element methods on graphics processors

    KAUST Repository

    Cecka, Cris

    2010-08-23

    Recently, graphics processing units (GPUs) have had great success in accelerating many numerical computations. We present their application to computations on unstructured meshes such as those in finite element methods. Multiple approaches in assembling and solving sparse linear systems with NVIDIA GPUs and the Compute Unified Device Architecture (CUDA) are created and analyzed. Multiple strategies for efficient use of global, shared, and local memory, methods to achieve memory coalescing, and optimal choice of parameters are introduced. We find that with appropriate preprocessing and arrangement of support data, the GPU coprocessor using single-precision arithmetic achieves speedups of 30 or more in comparison to a well optimized double-precision single core implementation. We also find that the optimal assembly strategy depends on the order of polynomials used in the finite element discretization. © 2010 John Wiley & Sons, Ltd.

  2. Finite Element Method for Analysis of Material Properties

    DEFF Research Database (Denmark)

    Rauhe, Jens Christian

    and the finite element method. The material microstructure of the heterogeneous material is non-destructively determined using X-ray microtomography. A software program has been generated which uses the X-ray tomographic data as an input for the mesh generation of the material microstructure. To obtain a proper...... which are used for the determination of the effective properties of the heterogeneous material. Generally, the properties determined using the finite element method coupled with X-ray microtomography are in good agreement with both experimentally determined properties and properties determined using......The use of cellular and composite materials have in recent years become more and more common in all kinds of structural components and accurate knowledge of the effective properties is therefore essential. In this wok the effective properties are determined using the real material microstructure...

  3. Two Scales, Hybrid Model for Soils, Involving Artificial Neural Network and Finite Element Procedure

    Directory of Open Access Journals (Sweden)

    Krasiński Marcin

    2015-02-01

    Full Text Available A hybrid ANN-FE solution is presented as a result of two level analysis of soils: a level of a laboratory sample and a level of engineering geotechnical problem. Engineering properties of soils (sands are represented directly in the form of ANN (this is in contrast with our former paper where ANN approximated constitutive relationships. Initially the ANN is trained with Duncan formula (Duncan and Chang [2], then it is re-trained (calibrated with some available experimental data, specific for the soil considered. The obtained approximation of the constitutive parameters is used directly in finite element method at the level of a single element at the scale of the laboratory sample to check the correct representation of the laboratory test. Then, the finite element that was successfully tested at the level of laboratory sample is used at the macro level to solve engineering problems involving the soil for which it was calibrated.

  4. [Application of Finite Element Method in Thoracolumbar Spine Traumatology].

    Science.gov (United States)

    Zhang, Min; Qiu, Yong-gui; Shao, Yu; Gu, Xiao-feng; Zeng, Ming-wei

    2015-04-01

    The finite element method (FEM) is a mathematical technique using modern computer technology for stress analysis, and has been gradually used in simulating human body structures in the biomechanical field, especially more widely used in the research of thoracolumbar spine traumatology. This paper reviews the establishment of the thoracolumbar spine FEM, the verification of the FEM, and the thoracolumbar spine FEM research status in different fields, and discusses its prospects and values in forensic thoracolumbar traumatology.

  5. A finite element method for flow problems in blast loading

    International Nuclear Information System (INIS)

    Forestier, A.; Lepareux, M.

    1984-06-01

    This paper presents a numerical method which describes fast dynamic problems in flow transient situations as in nuclear plants. A finite element formulation has been chosen; it is described by a preprocessor in CASTEM system: GIBI code. For these typical flow problems, an A.L.E. formulation for physical equations is used. So, some applications are presented: the well known problem of shock tube, the same one in 2D case and a last application to hydrogen detonation

  6. Two-dimensional isostatic meshes in the finite element method

    OpenAIRE

    Martínez Marín, Rubén; Samartín, Avelino

    2002-01-01

    In a Finite Element (FE) analysis of elastic solids several items are usually considered, namely, type and shape of the elements, number of nodes per element, node positions, FE mesh, total number of degrees of freedom (dot) among others. In this paper a method to improve a given FE mesh used for a particular analysis is described. For the improvement criterion different objective functions have been chosen (Total potential energy and Average quadratic error) and the number of nodes and dof's...

  7. A finite element modeling of a multifunctional hybrid composite beam with viscoelastic materials

    Science.gov (United States)

    Wang, Ya; Inman, Daniel J.

    2013-04-01

    The multifunctional hybrid composite structure studied here consists of a ceramic outer layer capable of withstanding high temperatures, a functionally graded ceramic layer combining shape memory alloy (SMA) properties of NiTi together with Ti2AlC (called Graded Ceramic/Metal Composite, or GCMeC), and a high temperature sensor patch, followed by a polymer matrix composite laced with vascular cooling channels all held together with various epoxies. Due to the recoverable nature of SMA and adhesive properties of Ti2AlC, the damping behavior of the GCMeC is largely viscoelastic. This paper presents a finite element formulation for this multifunctional hybrid structure with embedded viscoelastic material. In order to implement the viscoelastic model into the finite element formulation, a second order three parameter Golla-Hughes-McTavish (GHM) method is used to describe the viscoelastic behavior. Considering the parameter identification, a strategy to estimate the fractional order of the time derivative and the relaxation time is outlined. The curve-fitting aspects of both GHM and ADF show good agreement with experimental data obtained from dynamic mechanics analysis. The performance of the finite element of the layered multifunctional beam is verified through experimental model analysis.

  8. A multiscale mortar multipoint flux mixed finite element method

    KAUST Repository

    Wheeler, Mary Fanett

    2012-02-03

    In this paper, we develop a multiscale mortar multipoint flux mixed finite element method for second order elliptic problems. The equations in the coarse elements (or subdomains) are discretized on a fine grid scale by a multipoint flux mixed finite element method that reduces to cell-centered finite differences on irregular grids. The subdomain grids do not have to match across the interfaces. Continuity of flux between coarse elements is imposed via a mortar finite element space on a coarse grid scale. With an appropriate choice of polynomial degree of the mortar space, we derive optimal order convergence on the fine scale for both the multiscale pressure and velocity, as well as the coarse scale mortar pressure. Some superconvergence results are also derived. The algebraic system is reduced via a non-overlapping domain decomposition to a coarse scale mortar interface problem that is solved using a multiscale flux basis. Numerical experiments are presented to confirm the theory and illustrate the efficiency and flexibility of the method. © EDP Sciences, SMAI, 2012.

  9. An adaptive finite element method for steady and transient problems

    International Nuclear Information System (INIS)

    Benner, R.E. Jr.; Davis, H.T.; Scriven, L.E.

    1987-01-01

    Distributing integral error uniformly over variable subdomains, or finite elements, is an attractive criterion by which to subdivide a domain for the Galerkin/finite element method when localized steep gradients and high curvatures are to be resolved. Examples are fluid interfaces, shock fronts and other internal layers, as well as fluid mechanical and other boundary layers, e.g. thin-film states at solid walls. The uniform distribution criterion is developed into an adaptive technique for one-dimensional problems. Nodal positions can be updated simultaneously with nodal values during Newton iteration, but it is usually better to adopt nearly optimal nodal positions during Newton iteration upon nodal values. Three illustrative problems are solved: steady convection with diffusion, gradient theory of fluid wetting on a solid surface and Buckley-Leverett theory of two phase Darcy flow in porous media

  10. Analysis of Piezoelectric Solids using Finite Element Method

    Science.gov (United States)

    Aslam, Mohammed; Nagarajan, Praveen; Remanan, Mini

    2018-03-01

    Piezoelectric materials are extensively used in smart structures as sensors and actuators. In this paper, static analysis of three piezoelectric solids is done using general-purpose finite element software, Abaqus. The simulation results from Abaqus are compared with the results obtained using numerical methods like Boundary Element Method (BEM) and meshless point collocation method (PCM). The BEM and PCM are cumbersome for complex shape and complicated boundary conditions. This paper shows that the software Abaqus can be used to solve the governing equations of piezoelectric solids in a much simpler and faster way than the BEM and PCM.

  11. Finite element method for time-space-fractional Schrodinger equation

    Directory of Open Access Journals (Sweden)

    Xiaogang Zhu

    2017-07-01

    Full Text Available In this article, we develop a fully discrete finite element method for the nonlinear Schrodinger equation (NLS with time- and space-fractional derivatives. The time-fractional derivative is described in Caputo's sense and the space-fractional derivative in Riesz's sense. Its stability is well derived; the convergent estimate is discussed by an orthogonal operator. We also extend the method to the two-dimensional time-space-fractional NLS and to avoid the iterative solvers at each time step, a linearized scheme is further conducted. Several numerical examples are implemented finally, which confirm the theoretical results as well as illustrate the accuracy of our methods.

  12. Navier-Stokes equations by the finite element method

    International Nuclear Information System (INIS)

    Portella, P.E.

    1984-01-01

    A computer program to solve the Navier-Stokes equations by using the Finite Element Method is implemented. The solutions variables investigated are stream-function/vorticity in the steady case and velocity/pressure in the steady state and transient cases. For steady state flow the equations are solved simultaneously by the Newton-Raphson method. For the time dependent formulation, a fractional step method is employed to discretize in time and artificial viscosity is used to preclude spurious oscilations in the solution. The element used is the three node triangle. Some numerical examples are presented and comparisons are made with applications already existent. (Author) [pt

  13. Eddy current analysis by the finite element circuit method

    International Nuclear Information System (INIS)

    Kameari, A.; Suzuki, Y.

    1977-01-01

    The analysis of the transient eddy current in the conductors by ''Finite Element Circuit Method'' is developed. This method can be easily applied to various geometrical shapes of thin conductors. The eddy currents on the vacuum vessel and the upper and lower support plates of JT-60 machine (which is now being constructed by Japan Atomic Energy Research Institute) are calculated by this method. The magnetic field induced by the eddy current is estimated in the domain occupied by the plasma. And the force exerted to the vacuum vessel is also estimated

  14. Finite element method for simulation of the semiconductor devices

    International Nuclear Information System (INIS)

    Zikatanov, L.T.; Kaschiev, M.S.

    1991-01-01

    An iterative method for solving the system of nonlinear equations of the drift-diffusion representation for the simulation of the semiconductor devices is worked out. The Petrov-Galerkin method is taken for the discretization of these equations using the bilinear finite elements. It is shown that the numerical scheme is a monotonous one and there are no oscillations of the solutions in the region of p-n transition. The numerical calculations of the simulation of one semiconductor device are presented. 13 refs.; 3 figs

  15. Generalization of mixed multiscale finite element methods with applications

    Energy Technology Data Exchange (ETDEWEB)

    Lee, C S [Texas A & M Univ., College Station, TX (United States)

    2016-08-01

    Many science and engineering problems exhibit scale disparity and high contrast. The small scale features cannot be omitted in the physical models because they can affect the macroscopic behavior of the problems. However, resolving all the scales in these problems can be prohibitively expensive. As a consequence, some types of model reduction techniques are required to design efficient solution algorithms. For practical purpose, we are interested in mixed finite element problems as they produce solutions with certain conservative properties. Existing multiscale methods for such problems include the mixed multiscale finite element methods. We show that for complicated problems, the mixed multiscale finite element methods may not be able to produce reliable approximations. This motivates the need of enrichment for coarse spaces. Two enrichment approaches are proposed, one is based on generalized multiscale finte element metthods (GMsFEM), while the other is based on spectral element-based algebraic multigrid (rAMGe). The former one, which is called mixed GMsFEM, is developed for both Darcy’s flow and linear elasticity. Application of the algorithm in two-phase flow simulations are demonstrated. For linear elasticity, the algorithm is subtly modified due to the symmetry requirement of the stress tensor. The latter enrichment approach is based on rAMGe. The algorithm differs from GMsFEM in that both of the velocity and pressure spaces are coarsened. Due the multigrid nature of the algorithm, recursive application is available, which results in an efficient multilevel construction of the coarse spaces. Stability, convergence analysis, and exhaustive numerical experiments are carried out to validate the proposed enrichment approaches. iii

  16. Seakeeping with the semi-Lagrangian particle finite element method

    Science.gov (United States)

    Nadukandi, Prashanth; Servan-Camas, Borja; Becker, Pablo Agustín; Garcia-Espinosa, Julio

    2017-07-01

    The application of the semi-Lagrangian particle finite element method (SL-PFEM) for the seakeeping simulation of the wave adaptive modular vehicle under spray generating conditions is presented. The time integration of the Lagrangian advection is done using the explicit integration of the velocity and acceleration along the streamlines (X-IVAS). Despite the suitability of the SL-PFEM for the considered seakeeping application, small time steps were needed in the X-IVAS scheme to control the solution accuracy. A preliminary proposal to overcome this limitation of the X-IVAS scheme for seakeeping simulations is presented.

  17. Piezoelectric Analysis of Saw Sensor Using Finite Element Method

    Directory of Open Access Journals (Sweden)

    Vladimír KUTIŠ

    2013-06-01

    Full Text Available In this contribution modeling and simulation of surface acoustic waves (SAW sensor using finite element method will be presented. SAW sensor is made from piezoelectric GaN layer and SiC substrate. Two different analysis types are investigated - modal and transient. Both analyses are only 2D. The goal of modal analysis, is to determine the eigenfrequency of SAW, which is used in following transient analysis. In transient analysis, wave propagation in SAW sensor is investigated. Both analyses were performed using FEM code ANSYS.

  18. Scientific use of the finite element method in Orthodontics

    Science.gov (United States)

    Knop, Luegya; Gandini, Luiz Gonzaga; Shintcovsk, Ricardo Lima; Gandini, Marcia Regina Elisa Aparecida Schiavon

    2015-01-01

    INTRODUCTION: The finite element method (FEM) is an engineering resource applied to calculate the stress and deformation of complex structures, and has been widely used in orthodontic research. With the advantage of being a non-invasive and accurate method that provides quantitative and detailed data on the physiological reactions possible to occur in tissues, applying the FEM can anticipate the visualization of these tissue responses through the observation of areas of stress created from applied orthodontic mechanics. OBJECTIVE: This article aims at reviewing and discussing the stages of the finite element method application and its applicability in Orthodontics. RESULTS: FEM is able to evaluate the stress distribution at the interface between periodontal ligament and alveolar bone, and the shifting trend in various types of tooth movement when using different types of orthodontic devices. Therefore, it is necessary to know specific software for this purpose. CONCLUSIONS: FEM is an important experimental method to answer questions about tooth movement, overcoming the disadvantages of other experimental methods. PMID:25992996

  19. A Finite Element Method for Simulation of Compressible Cavitating Flows

    Science.gov (United States)

    Shams, Ehsan; Yang, Fan; Zhang, Yu; Sahni, Onkar; Shephard, Mark; Oberai, Assad

    2016-11-01

    This work focuses on a novel approach for finite element simulations of multi-phase flows which involve evolving interface with phase change. Modeling problems, such as cavitation, requires addressing multiple challenges, including compressibility of the vapor phase, interface physics caused by mass, momentum and energy fluxes. We have developed a mathematically consistent and robust computational approach to address these problems. We use stabilized finite element methods on unstructured meshes to solve for the compressible Navier-Stokes equations. Arbitrary Lagrangian-Eulerian formulation is used to handle the interface motions. Our method uses a mesh adaptation strategy to preserve the quality of the volumetric mesh, while the interface mesh moves along with the interface. The interface jump conditions are accurately represented using a discontinuous Galerkin method on the conservation laws. Condensation and evaporation rates at the interface are thermodynamically modeled to determine the interface velocity. We will present initial results on bubble cavitation the behavior of an attached cavitation zone in a separated boundary layer. We acknowledge the support from Army Research Office (ARO) under ARO Grant W911NF-14-1-0301.

  20. Strength Analysis on Ship Ladder Using Finite Element Method

    Science.gov (United States)

    Budianto; Wahyudi, M. T.; Dinata, U.; Ruddianto; Eko P., M. M.

    2018-01-01

    In designing the ship’s structure, it should refer to the rules in accordance with applicable classification standards. In this case, designing Ladder (Staircase) on a Ferry Ship which is set up, it must be reviewed based on the loads during ship operations, either during sailing or at port operations. The classification rules in ship design refer to the calculation of the structure components described in Classification calculation method and can be analysed using the Finite Element Method. Classification Regulations used in the design of Ferry Ships used BKI (Bureau of Classification Indonesia). So the rules for the provision of material composition in the mechanical properties of the material should refer to the classification of the used vessel. The analysis in this structure used program structure packages based on Finite Element Method. By using structural analysis on Ladder (Ladder), it obtained strength and simulation structure that can withstand load 140 kg both in static condition, dynamic, and impact. Therefore, the result of the analysis included values of safety factors in the ship is to keep the structure safe but the strength of the structure is not excessive.

  1. Mixed Generalized Multiscale Finite Element Methods and Applications

    KAUST Repository

    Chung, Eric T.

    2015-03-03

    In this paper, we present a mixed generalized multiscale finite element method (GMsFEM) for solving flow in heterogeneous media. Our approach constructs multiscale basis functions following a GMsFEM framework and couples these basis functions using a mixed finite element method, which allows us to obtain a mass conservative velocity field. To construct multiscale basis functions for each coarse edge, we design a snapshot space that consists of fine-scale velocity fields supported in a union of two coarse regions that share the common interface. The snapshot vectors have zero Neumann boundary conditions on the outer boundaries, and we prescribe their values on the common interface. We describe several spectral decompositions in the snapshot space motivated by the analysis. In the paper, we also study oversampling approaches that enhance the accuracy of mixed GMsFEM. A main idea of oversampling techniques is to introduce a small dimensional snapshot space. We present numerical results for two-phase flow and transport, without updating basis functions in time. Our numerical results show that one can achieve good accuracy with a few basis functions per coarse edge if one selects appropriate offline spaces. © 2015 Society for Industrial and Applied Mathematics.

  2. Adaptive Finite Element Methods for Elliptic Problems with Discontinuous Coefficients

    KAUST Repository

    Bonito, Andrea; DeVore, Ronald A.; Nochetto, Ricardo H.

    2013-01-01

    Elliptic PDEs with discontinuous diffusion coefficients occur in application domains such as diffusions through porous media, electromagnetic field propagation on heterogeneous media, and diffusion processes on rough surfaces. The standard approach to numerically treating such problems using finite element methods is to assume that the discontinuities lie on the boundaries of the cells in the initial triangulation. However, this does not match applications where discontinuities occur on curves, surfaces, or manifolds, and could even be unknown beforehand. One of the obstacles to treating such discontinuity problems is that the usual perturbation theory for elliptic PDEs assumes bounds for the distortion of the coefficients in the L∞ norm and this in turn requires that the discontinuities are matched exactly when the coefficients are approximated. We present a new approach based on distortion of the coefficients in an Lq norm with q < ∞ which therefore does not require the exact matching of the discontinuities. We then use this new distortion theory to formulate new adaptive finite element methods (AFEMs) for such discontinuity problems. We show that such AFEMs are optimal in the sense of distortion versus number of computations, and report insightful numerical results supporting our analysis. © 2013 Societ y for Industrial and Applied Mathematics.

  3. Heat Conduction Analysis Using Semi Analytical Finite Element Method

    International Nuclear Information System (INIS)

    Wargadipura, A. H. S.

    1997-01-01

    Heat conduction problems are very often found in science and engineering fields. It is of accrual importance to determine quantitative descriptions of this important physical phenomena. This paper discusses the development and application of a numerical formulation and computation that can be used to analyze heat conduction problems. The mathematical equation which governs the physical behaviour of heat conduction is in the form of second order partial differential equations. The numerical resolution used in this paper is performed using the finite element method and Fourier series, which is known as semi-analytical finite element methods. The numerical solution results in simultaneous algebraic equations which is solved using the Gauss elimination methodology. The computer implementation is carried out using FORTRAN language. In the final part of the paper, a heat conduction problem in a rectangular plate domain with isothermal boundary conditions in its edge is solved to show the application of the computer program developed and also a comparison with analytical solution is discussed to assess the accuracy of the numerical solution obtained

  4. Hermitian Mindlin Plate Wavelet Finite Element Method for Load Identification

    Directory of Open Access Journals (Sweden)

    Xiaofeng Xue

    2016-01-01

    Full Text Available A new Hermitian Mindlin plate wavelet element is proposed. The two-dimensional Hermitian cubic spline interpolation wavelet is substituted into finite element functions to construct frequency response function (FRF. It uses a system’s FRF and response spectrums to calculate load spectrums and then derives loads in the time domain via the inverse fast Fourier transform. By simulating different excitation cases, Hermitian cubic spline wavelets on the interval (HCSWI finite elements are used to reverse load identification in the Mindlin plate. The singular value decomposition (SVD method is adopted to solve the ill-posed inverse problem. Compared with ANSYS results, HCSWI Mindlin plate element can accurately identify the applied load. Numerical results show that the algorithm of HCSWI Mindlin plate element is effective. The accuracy of HCSWI can be verified by comparing the FRF of HCSWI and ANSYS elements with the experiment data. The experiment proves that the load identification of HCSWI Mindlin plate is effective and precise by using the FRF and response spectrums to calculate the loads.

  5. Generalized multiscale finite element methods. nonlinear elliptic equations

    KAUST Repository

    Efendiev, Yalchin R.; Galvis, Juan; Li, Guanglian; Presho, Michael

    2013-01-01

    In this paper we use the Generalized Multiscale Finite Element Method (GMsFEM) framework, introduced in [26], in order to solve nonlinear elliptic equations with high-contrast coefficients. The proposed solution method involves linearizing the equation so that coarse-grid quantities of previous solution iterates can be regarded as auxiliary parameters within the problem formulation. With this convention, we systematically construct respective coarse solution spaces that lend themselves to either continuous Galerkin (CG) or discontinuous Galerkin (DG) global formulations. Here, we use Symmetric Interior Penalty Discontinuous Galerkin approach. Both methods yield a predictable error decline that depends on the respective coarse space dimension, and we illustrate the effectiveness of the CG and DG formulations by offering a variety of numerical examples. © 2014 Global-Science Press.

  6. Linear finite element method for one-dimensional diffusion problems

    Energy Technology Data Exchange (ETDEWEB)

    Brandao, Michele A.; Dominguez, Dany S.; Iglesias, Susana M., E-mail: micheleabrandao@gmail.com, E-mail: dany@labbi.uesc.br, E-mail: smiglesias@uesc.br [Universidade Estadual de Santa Cruz (LCC/DCET/UESC), Ilheus, BA (Brazil). Departamento de Ciencias Exatas e Tecnologicas. Laboratorio de Computacao Cientifica

    2011-07-01

    We describe in this paper the fundamentals of Linear Finite Element Method (LFEM) applied to one-speed diffusion problems in slab geometry. We present the mathematical formulation to solve eigenvalue and fixed source problems. First, we discretized a calculus domain using a finite set of elements. At this point, we obtain the spatial balance equations for zero order and first order spatial moments inside each element. Then, we introduce the linear auxiliary equations to approximate neutron flux and current inside the element and architect a numerical scheme to obtain the solution. We offer numerical results for fixed source typical model problems to illustrate the method's accuracy for coarse-mesh calculations in homogeneous and heterogeneous domains. Also, we compare the accuracy and computational performance of LFEM formulation with conventional Finite Difference Method (FDM). (author)

  7. Perfectly matched layer for the time domain finite element method

    International Nuclear Information System (INIS)

    Rylander, Thomas; Jin Jianming

    2004-01-01

    A new perfectly matched layer (PML) formulation for the time domain finite element method is described and tested for Maxwell's equations. In particular, we focus on the time integration scheme which is based on Galerkin's method with a temporally piecewise linear expansion of the electric field. The time stepping scheme is constructed by forming a linear combination of exact and trapezoidal integration applied to the temporal weak form, which reduces to the well-known Newmark scheme in the case without PML. Extensive numerical tests on scattering from infinitely long metal cylinders in two dimensions show good accuracy and no signs of instabilities. For a circular cylinder, the proposed scheme indicates the expected second order convergence toward the analytic solution and gives less than 2% root-mean-square error in the bistatic radar cross section (RCS) for resolutions with more than 10 points per wavelength. An ogival cylinder, which has sharp corners supporting field singularities, shows similar accuracy in the monostatic RCS

  8. A collocation finite element method with prior matrix condensation

    International Nuclear Information System (INIS)

    Sutcliffe, W.J.

    1977-01-01

    For thin shells with general loading, sixteen degrees of freedom have been used for a previous finite element solution procedure using a Collocation method instead of the usual variational based procedures. Although the number of elements required was relatively small, nevertheless the final matrix for the simultaneous solution of all unknowns could become large for a complex compound structure. The purpose of the present paper is to demonstrate a method of reducing the final matrix size, so allowing solution for large structures with comparatively small computer storage requirements while retaining the accuracy given by high order displacement functions. Collocation points, a number are equilibrium conditions which must be satisfied independently of the overall compatibility of forces and deflections for a complete structure. (Auth.)

  9. Generalized multiscale finite element methods (GMsFEM)

    KAUST Repository

    Efendiev, Yalchin R.; Galvis, Juan; Hou, Thomasyizhao

    2013-01-01

    In this paper, we propose a general approach called Generalized Multiscale Finite Element Method (GMsFEM) for performing multiscale simulations for problems without scale separation over a complex input space. As in multiscale finite element methods (MsFEMs), the main idea of the proposed approach is to construct a small dimensional local solution space that can be used to generate an efficient and accurate approximation to the multiscale solution with a potentially high dimensional input parameter space. In the proposed approach, we present a general procedure to construct the offline space that is used for a systematic enrichment of the coarse solution space in the online stage. The enrichment in the online stage is performed based on a spectral decomposition of the offline space. In the online stage, for any input parameter, a multiscale space is constructed to solve the global problem on a coarse grid. The online space is constructed via a spectral decomposition of the offline space and by choosing the eigenvectors corresponding to the largest eigenvalues. The computational saving is due to the fact that the construction of the online multiscale space for any input parameter is fast and this space can be re-used for solving the forward problem with any forcing and boundary condition. Compared with the other approaches where global snapshots are used, the local approach that we present in this paper allows us to eliminate unnecessary degrees of freedom on a coarse-grid level. We present various examples in the paper and some numerical results to demonstrate the effectiveness of our method. © 2013 Elsevier Inc.

  10. Generalized multiscale finite element methods (GMsFEM)

    KAUST Repository

    Efendiev, Yalchin R.

    2013-10-01

    In this paper, we propose a general approach called Generalized Multiscale Finite Element Method (GMsFEM) for performing multiscale simulations for problems without scale separation over a complex input space. As in multiscale finite element methods (MsFEMs), the main idea of the proposed approach is to construct a small dimensional local solution space that can be used to generate an efficient and accurate approximation to the multiscale solution with a potentially high dimensional input parameter space. In the proposed approach, we present a general procedure to construct the offline space that is used for a systematic enrichment of the coarse solution space in the online stage. The enrichment in the online stage is performed based on a spectral decomposition of the offline space. In the online stage, for any input parameter, a multiscale space is constructed to solve the global problem on a coarse grid. The online space is constructed via a spectral decomposition of the offline space and by choosing the eigenvectors corresponding to the largest eigenvalues. The computational saving is due to the fact that the construction of the online multiscale space for any input parameter is fast and this space can be re-used for solving the forward problem with any forcing and boundary condition. Compared with the other approaches where global snapshots are used, the local approach that we present in this paper allows us to eliminate unnecessary degrees of freedom on a coarse-grid level. We present various examples in the paper and some numerical results to demonstrate the effectiveness of our method. © 2013 Elsevier Inc.

  11. Multiscale Finite Element Methods for Flows on Rough Surfaces

    KAUST Repository

    Efendiev, Yalchin

    2013-01-01

    In this paper, we present the Multiscale Finite Element Method (MsFEM) for problems on rough heterogeneous surfaces. We consider the diffusion equation on oscillatory surfaces. Our objective is to represent small-scale features of the solution via multiscale basis functions described on a coarse grid. This problem arises in many applications where processes occur on surfaces or thin layers. We present a unified multiscale finite element framework that entails the use of transformations that map the reference surface to the deformed surface. The main ingredients of MsFEM are (1) the construction of multiscale basis functions and (2) a global coupling of these basis functions. For the construction of multiscale basis functions, our approach uses the transformation of the reference surface to a deformed surface. On the deformed surface, multiscale basis functions are defined where reduced (1D) problems are solved along the edges of coarse-grid blocks to calculate nodalmultiscale basis functions. Furthermore, these basis functions are transformed back to the reference configuration. We discuss the use of appropriate transformation operators that improve the accuracy of the method. The method has an optimal convergence if the transformed surface is smooth and the image of the coarse partition in the reference configuration forms a quasiuniform partition. In this paper, we consider such transformations based on harmonic coordinates (following H. Owhadi and L. Zhang [Comm. Pure and Applied Math., LX(2007), pp. 675-723]) and discuss gridding issues in the reference configuration. Numerical results are presented where we compare the MsFEM when two types of deformations are used formultiscale basis construction. The first deformation employs local information and the second deformation employs a global information. Our numerical results showthat one can improve the accuracy of the simulations when a global information is used. © 2013 Global-Science Press.

  12. Finite element method for neutron diffusion problems in hexagonal geometry

    International Nuclear Information System (INIS)

    Wei, T.Y.C.; Hansen, K.F.

    1975-06-01

    The use of the finite element method for solving two-dimensional static neutron diffusion problems in hexagonal reactor configurations is considered. It is investigated as a possible alternative to the low-order finite difference method. Various piecewise polynomial spaces are examined for their use in hexagonal problems. The central questions which arise in the design of these spaces are the degree of incompleteness permissible and the advantages of using a low-order space fine-mesh approach over that of a high-order space coarse-mesh one. There is also the question of the degree of smoothness required. Two schemes for the construction of spaces are described and a number of specific spaces, constructed with the questions outlined above in mind, are presented. They range from a complete non-Lagrangian, non-Hermite quadratic space to an incomplete ninth order space. Results are presented for two-dimensional problems typical of a small high temperature gas-cooled reactor. From the results it is concluded that the space used should at least include the complete linear one. Complete spaces are to be preferred to totally incomplete ones. Once function continuity is imposed any additional degree of smoothness is of secondary importance. For flux shapes typical of the small high temperature gas-cooled reactor the linear space fine-mesh alternative is to be preferred to the perturbation quadratic space coarse-mesh one and the low-order finite difference method is to be preferred over both finite element schemes

  13. induction motor, unbalance, electrical loss, finite element method.

    Directory of Open Access Journals (Sweden)

    Camilo Andrés Cortés

    2008-09-01

    Full Text Available This paper shows the pattern of a 7.5 kW squirrel-cage induction motor’s electrical loss in balanced and unbalanced conditions, modelling the motor using the finite element method and comparing the results with experimental data obtained in the laboratory for the selected motor. Magnetic flux density variation was analysed at four places in the machine. The results so obtained sho- wed that the undervoltage unbalanced condition was the most critical from the motor’s total loss point of view. Regarding varia- tion of loss in parts of the motor, a constant iron loss pattern was found when the load was changed for each type of voltage supply and that the place where the loss had the largest rise was in the machine’s rotor.

  14. Flow Applications of the Least Squares Finite Element Method

    Science.gov (United States)

    Jiang, Bo-Nan

    1998-01-01

    The main thrust of the effort has been towards the development, analysis and implementation of the least-squares finite element method (LSFEM) for fluid dynamics and electromagnetics applications. In the past year, there were four major accomplishments: 1) special treatments in computational fluid dynamics and computational electromagnetics, such as upwinding, numerical dissipation, staggered grid, non-equal order elements, operator splitting and preconditioning, edge elements, and vector potential are unnecessary; 2) the analysis of the LSFEM for most partial differential equations can be based on the bounded inverse theorem; 3) the finite difference and finite volume algorithms solve only two Maxwell equations and ignore the divergence equations; and 4) the first numerical simulation of three-dimensional Marangoni-Benard convection was performed using the LSFEM.

  15. A finite-elements method for turbulent flow analysis

    International Nuclear Information System (INIS)

    Autret, A.

    1986-03-01

    The work discussed here covers turbulent flow calculations using GALERKIN's finite-element method. Turbulence effects on the mean field are taken into account by the k-epsilon model with two evolution equations: one for the kinetic energy of the turbulence, and one for the energy dissipation rate. The wall zone is covered by wall laws, and by REICHARDT's law in particular. A law is advanced for the epsilon input profile, and a numerical solution is proposed for the physically aberrant values of k and epsilon generated by the model. Single-equation models are reviewed comparatively with the k-epsilon model. A comparison between calculated and analytical solutions or calculated and experimental results is presented for decreasing turbulence behind a grid, for the flow between parallel flat plates with three REYNOLDS numbers, and for backward facing step. This part contains graphs and curves corresponding to results of the calculations presented in part one [fr

  16. A mixed finite element method for nonlinear diffusion equations

    KAUST Repository

    Burger, Martin; Carrillo, José ; Wolfram, Marie-Therese

    2010-01-01

    We propose a mixed finite element method for a class of nonlinear diffusion equations, which is based on their interpretation as gradient flows in optimal transportation metrics. We introduce an appropriate linearization of the optimal transport problem, which leads to a mixed symmetric formulation. This formulation preserves the maximum principle in case of the semi-discrete scheme as well as the fully discrete scheme for a certain class of problems. In addition solutions of the mixed formulation maintain exponential convergence in the relative entropy towards the steady state in case of a nonlinear Fokker-Planck equation with uniformly convex potential. We demonstrate the behavior of the proposed scheme with 2D simulations of the porous medium equations and blow-up questions in the Patlak-Keller-Segel model. © American Institute of Mathematical Sciences.

  17. Finite-element method modeling of hyper-frequency structures

    International Nuclear Information System (INIS)

    Zhang, Min

    1990-01-01

    The modelization of microwave propagation problems, including Eigen-value problem and scattering problem, is accomplished by the finite element method with vector functional and scalar functional. For Eigen-value problem, propagation modes in waveguides and resonant modes in cavities can be calculated in a arbitrarily-shaped structure with inhomogeneous material. Several microwave structures are resolved in order to verify the program. One drawback associated with the vector functional is the appearance of spurious or non-physical solutions. A penalty function method has been introduced to reduce spurious' solutions. The adaptive charge method is originally proposed in this thesis to resolve waveguide scattering problem. This method, similar to VSWR measuring technique, is more efficient to obtain the reflection coefficient than the matrix method. Two waveguide discontinuity structures are calculated by the two methods and their results are compared. The adaptive charge method is also applied to a microwave plasma excitor. It allows us to understand the role of different physical parameters of excitor in the coupling of microwave energy to plasma mode and the mode without plasma. (author) [fr

  18. The Mixed Finite Element Multigrid Method for Stokes Equations

    Science.gov (United States)

    Muzhinji, K.; Shateyi, S.; Motsa, S. S.

    2015-01-01

    The stable finite element discretization of the Stokes problem produces a symmetric indefinite system of linear algebraic equations. A variety of iterative solvers have been proposed for such systems in an attempt to construct efficient, fast, and robust solution techniques. This paper investigates one of such iterative solvers, the geometric multigrid solver, to find the approximate solution of the indefinite systems. The main ingredient of the multigrid method is the choice of an appropriate smoothing strategy. This study considers the application of different smoothers and compares their effects in the overall performance of the multigrid solver. We study the multigrid method with the following smoothers: distributed Gauss Seidel, inexact Uzawa, preconditioned MINRES, and Braess-Sarazin type smoothers. A comparative study of the smoothers shows that the Braess-Sarazin smoothers enhance good performance of the multigrid method. We study the problem in a two-dimensional domain using stable Hood-Taylor Q 2-Q 1 pair of finite rectangular elements. We also give the main theoretical convergence results. We present the numerical results to demonstrate the efficiency and robustness of the multigrid method and confirm the theoretical results. PMID:25945361

  19. A 3D Finite Element Method for Flexible Multibody Systems

    International Nuclear Information System (INIS)

    Gerstmayr, Johannes; Schoeberl, Joachim

    2006-01-01

    An efficient finite element (FE) formulation for the simulation of multibody systems is derived from Hamilton's principle. According to the classical assumptions of multibody systems, a large rotation formulation has been chosen, where large rotations and large displacements, but only small deformations of the single bodies are taken into account. The strain tensor is linearized with respect to a co-rotated frame. The present approach uses absolute coordinates for the degrees of freedom and forms an alternative to the floating frame of reference formulation that is based on relative coordinates and describes deformation with respect to a co-rotated frame. Due to the modified strain tensor, the present formulation distinguishes significantly from standard nodal based nonlinear FE methods. Constraints are defined in integral form for every pair of surfaces of two bodies. This leads to a small number of constraint equations and avoids artificial stress singularities. The resulting mass and stiffness matrices are constant apart from a transformation based on a single rotation matrix for each body. The particular structure of this transformation allows to prevent from the usually expensive factorization of the system Jacobian within implicit time--integration methods. The present method has been implemented and tested with the FE-package NGSolve and specific 3D examples are verified with a standard beam formulation

  20. Spectral Analysis of Large Finite Element Problems by Optimization Methods

    Directory of Open Access Journals (Sweden)

    Luca Bergamaschi

    1994-01-01

    Full Text Available Recently an efficient method for the solution of the partial symmetric eigenproblem (DACG, deflated-accelerated conjugate gradient was developed, based on the conjugate gradient (CG minimization of successive Rayleigh quotients over deflated subspaces of decreasing size. In this article four different choices of the coefficient βk required at each DACG iteration for the computation of the new search direction Pk are discussed. The “optimal” choice is the one that yields the same asymptotic convergence rate as the CG scheme applied to the solution of linear systems. Numerical results point out that the optimal βk leads to a very cost effective algorithm in terms of CPU time in all the sample problems presented. Various preconditioners are also analyzed. It is found that DACG using the optimal βk and (LLT−1 as a preconditioner, L being the incomplete Cholesky factor of A, proves a very promising method for the partial eigensolution. It appears to be superior to the Lanczos method in the evaluation of the 40 leftmost eigenpairs of five finite element problems, and particularly for the largest problem, with size equal to 4560, for which the speed gain turns out to fall between 2.5 and 6.0, depending on the eigenpair level.

  1. Numerical simulation for cracks detection using the finite elements method

    Directory of Open Access Journals (Sweden)

    S Bennoud

    2016-09-01

    Full Text Available The means of detection must ensure controls either during initial construction, or at the time of exploitation of all parts. The Non destructive testing (NDT gathers the most widespread methods for detecting defects of a part or review the integrity of a structure. In the areas of advanced industry (aeronautics, aerospace, nuclear …, assessing the damage of materials is a key point to control durability and reliability of parts and materials in service. In this context, it is necessary to quantify the damage and identify the different mechanisms responsible for the progress of this damage. It is therefore essential to characterize materials and identify the most sensitive indicators attached to damage to prevent their destruction and use them optimally. In this work, simulation by finite elements method is realized with aim to calculate the electromagnetic energy of interaction: probe and piece (with/without defect. From calculated energy, we deduce the real and imaginary components of the impedance which enables to determine the characteristic parameters of a crack in various metallic parts.

  2. Generalized multiscale finite element method for elasticity equations

    KAUST Repository

    Chung, Eric T.

    2014-10-05

    In this paper, we discuss the application of generalized multiscale finite element method (GMsFEM) to elasticity equation in heterogeneous media. We consider steady state elasticity equations though some of our applications are motivated by elastic wave propagation in subsurface where the subsurface properties can be highly heterogeneous and have high contrast. We present the construction of main ingredients for GMsFEM such as the snapshot space and offline spaces. The latter is constructed using local spectral decomposition in the snapshot space. The spectral decomposition is based on the analysis which is provided in the paper. We consider both continuous Galerkin and discontinuous Galerkin coupling of basis functions. Both approaches have their cons and pros. Continuous Galerkin methods allow avoiding penalty parameters though they involve partition of unity functions which can alter the properties of multiscale basis functions. On the other hand, discontinuous Galerkin techniques allow gluing multiscale basis functions without any modifications. Because basis functions are constructed independently from each other, this approach provides an advantage. We discuss the use of oversampling techniques that use snapshots in larger regions to construct the offline space. We provide numerical results to show that one can accurately approximate the solution using reduced number of degrees of freedom.

  3. Randomized Oversampling for Generalized Multiscale Finite Element Methods

    KAUST Repository

    Calo, Victor M.

    2016-03-23

    In this paper, we develop efficient multiscale methods for flows in heterogeneous media. We use the generalized multiscale finite element (GMsFEM) framework. GMsFEM approximates the solution space locally using a few multiscale basis functions. This approximation selects an appropriate snapshot space and a local spectral decomposition, e.g., the use of oversampled regions, in order to achieve an efficient model reduction. However, the successful construction of snapshot spaces may be costly if too many local problems need to be solved in order to obtain these spaces. We use a moderate quantity of local solutions (or snapshot vectors) with random boundary conditions on oversampled regions with zero forcing to deliver an efficient methodology. Motivated by the randomized algorithm presented in [P. G. Martinsson, V. Rokhlin, and M. Tygert, A Randomized Algorithm for the approximation of Matrices, YALEU/DCS/TR-1361, Yale University, 2006], we consider a snapshot space which consists of harmonic extensions of random boundary conditions defined in a domain larger than the target region. Furthermore, we perform an eigenvalue decomposition in this small space. We study the application of randomized sampling for GMsFEM in conjunction with adaptivity, where local multiscale spaces are adaptively enriched. Convergence analysis is provided. We present representative numerical results to validate the method proposed.

  4. Non linear permanent magnets modelling with the finite element method

    International Nuclear Information System (INIS)

    Chavanne, J.; Meunier, G.; Sabonnadiere, J.C.

    1989-01-01

    In order to perform the calculation of permanent magnets with the finite element method, it is necessary to take into account the anisotropic behaviour of hard magnetic materials (Ferrites, NdFeB, SmCo5). In linear cases, the permeability of permanent magnets is a tensor. This one is fully described with the permeabilities parallel and perpendicular to the easy axis of the magnet. In non linear cases, the model uses a texture function which represents the distribution of the local easy axis of the cristallytes of the magnet. This function allows a good representation of the angular dependance of the coercitive field of the magnet. As a result, it is possible to express the magnetic induction B and the tensor as functions of the field and the texture parameter. This model has been implemented in the software FLUX3D where the tensor is used for the Newton-Raphson procedure. 3D demagnetization of a ferrite magnet by a NdFeB magnet is a suitable representative example. They analyze the results obtained for an ideally oriented ferrite magnet and a real one using a measured texture parameter

  5. Fluid-film bearings: a finite element method of analysis

    International Nuclear Information System (INIS)

    Pururav, T.; Soni, R.S.; Kushwaha, H.S.; Mahajan, S.C.

    1995-01-01

    Finite element method (FEM) has become a very popular technique for the analysis of fluid-film bearings in the last few years. These bearings are extensively used in nuclear industry applications such as in moderator pumps and main coolant pumps. This report gives the methodology for the solution of Reynold's equation using FEM and its implementation in FE software LUBAN developed in house. It also deals with the mathematical basis and algorithm to account for the cavitation phenomena which makes these problems non-linear in nature. The dynamic coefficients of bearings are evaluated by one-step approach using variational principles. These coefficients are useful for the dynamic characterisation of fluid-film bearings. Several problems have been solved using this code including two real life problems, a circumferentially grooved journal bearing for which experimental results are available and the bearing of moderator pump of 500 MWe PHWR, have been solved. The results obtained for sample problems are in good agreement with the published literature. (author). 9 refs., 14 figs., 5 tabs., 2 ills

  6. Moving finite element method for ICF target implosion

    Science.gov (United States)

    Furuta, J.; Kawata, S.; Niu, K.

    1985-03-01

    One dimensional hydrodynamic codes for the analysis of internal confinement fusion (ICF) target implosion which include various effects were developed, but most of them utilize the artificial viscosity (e.g., Von Neumann's viscosity) which cannot reveal accurately the shock waves. A gain of ICF target implosion is much due to the dissipation at the shock fronts, so it is necessary to express correctly the shock waves which are affected by the viscosity. The width of the shock waves is usually a few times as large as the length of mean free path, therefore the meshes for the shock waves must be set to about 10 to the 4th to 10 to the 5th power. It is a serious problem because of the computational memories or CPU time. In the moving finite element (MPE) method, both nodal amplitudes and nodal positions move continuously with time in such a way as to satisfy simultaneous ordinary differential equations (OPDs) which minimize partial differential equation (PDE) residuals.

  7. A finite-elements method for turbulent flow analysis

    International Nuclear Information System (INIS)

    Autret, A.

    1986-03-01

    The work discussed here covers turbulent flow calculations using GALERKIN's finite-element method. In our specific case, we have to deal with monophasic incompressible flow in Boussinesq approximation in the normal operating conditions of a primary circuit of nuclear power plant. Turbulence effects on the mean field are taken into account by the k-epsilon model with two evolution equations: one for the kinetic energy of the turbulence, and one for the energy dissipation rate. The wall zone is covered by wall laws, and by REICHARDT's law in particular. A Law is advanced for the epsilon input profile, and a numerical solution is proposed for the physically aberrant values of k and epsilon generated by the model. Single-equation models are reviewed comparatively with the k-epsilon model. A comparison between calculated and analytical solutions or calculated and experimental results is presented for decreasing turbulence behind a grid, for the flow between parallel flat plates with three REYNOLDS numbers, and for backward facing step [fr

  8. Finite element analysis of CFRP reinforced silo structure design method

    Science.gov (United States)

    Yuan, Long; Xu, Xinsheng

    2017-11-01

    Because of poor construction, there is a serious problem of concrete quality in the silo project, which seriously affects the safe use of the structure. Concrete quality problems are mainly seen in three aspects: concrete strength cannot meet the design requirements, concrete cracking phenomenon is serious, and the unreasonable concrete vibration leads to a lot of honeycombs and surface voids. Silos are usually reinforced by carbon fiber cloth in order to ensure the safe use of silos. By the example of an alumina silo in a fly ash plant in Binzhou, Shandong Province, the alumina silo project was tested and examined on site. According to filed test results, the actual concrete strength was determined, and the damage causes of the silo was analysed. Then, a finite element analysis model of this silo was established, the CFRP cloth reinforcement method was adopted to strengthen the silo, and other technology like additional reinforcement, rebar planting, carbon fiber bonding technology was also expounded. The research of this paper is of great significance to the design and construction of silo structure.

  9. Analysis of gear reducer housing using the finite element method

    Science.gov (United States)

    Miklos, I. Zs; Miklos, C. C.; Alic, C. I.; Raţiu, S.

    2018-01-01

    The housing is an important component in the construction of gear reducers, having the role of fixing the relative position of the shafts and toothed wheels. At the same time, the housing takes over, via the bearings, the shaft loads resulting when the toothed wheel is engaging another toothed mechanism (i.e. power transmission through belts or chains), and conveys them to the foundation on which it is anchored. In this regard, in order to ensure the most accurate gearing, a high stiffness of the housing is required. In this paper, we present the computer-aided 3D modelling of the housing (in cast version) of a single stage cylindrical gear reducer, using the Autodesk Inventor Professional software, on the principle of constructive sizing. For the housing resistance calculation, we carried out an analysis using the Autodesk Simulation Mechanical software to apply the finite element method, based on the actual loads, as well as a comparative study of the stress and strain distribution, for several tightening values of the retaining bolts that secure the cover and the foundation housing.

  10. Finite element and finite difference methods in electromagnetic scattering

    CERN Document Server

    Morgan, MA

    2013-01-01

    This second volume in the Progress in Electromagnetic Research series examines recent advances in computational electromagnetics, with emphasis on scattering, as brought about by new formulations and algorithms which use finite element or finite difference techniques. Containing contributions by some of the world's leading experts, the papers thoroughly review and analyze this rapidly evolving area of computational electromagnetics. Covering topics ranging from the new finite-element based formulation for representing time-harmonic vector fields in 3-D inhomogeneous media using two coupled sca

  11. Hybrid Discrete Element - Finite Element Simulation for Railway Bridge-Track Interaction

    Science.gov (United States)

    Kaewunruen, S.; Mirza, O.

    2017-10-01

    At the transition zone or sometimes called ‘bridge end’ or ‘bridge approach’, the stiffness difference between plain track and track over bridge often causes aggravated impact loading due to uneven train movement onto the area. The differential track settlement over the transition has been a classical problem in railway networks, especially for the aging rail infrastructures around the world. This problem is also additionally worsened by the fact that the construction practice over the area is difficult, resulting in a poor compaction of formation and subgrade. This paper presents an advanced hybrid simulation using coupled discrete elements and finite elements to investigate dynamic interaction at the transition zone. The goal is to evaluate the dynamic stresses and to better understand the impact dynamics redistribution at the bridge end. An existing bridge ‘Salt Pan Creek Railway Bridge’, located between Revesby and Kingsgrove, has been chosen for detailed investigation. The Salt Pan Bridge currently demonstrates crushing of the ballast causing significant deformation and damage. Thus, it’s imperative to assess the behaviours of the ballast under dynamic loads. This can be achieved by modelling the nonlinear interactions between the steel rail and sleeper, and sleeper to ballast. The continuum solid elements of track components have been modelled using finite element approach, while the granular media (i.e. ballast) have been simulated by discrete element method. The hybrid DE/FE model demonstrates that ballast experiences significant stresses at the contacts between the sleeper and concrete section. These overburden stress exists in the regions below the outer rails, identify fouling and permanent deformation of the ballast.

  12. Reliability-Based Shape Optimization using Stochastic Finite Element Methods

    DEFF Research Database (Denmark)

    Enevoldsen, Ib; Sørensen, John Dalsgaard; Sigurdsson, G.

    1991-01-01

    stochastic fields (e.g. loads and material parameters such as Young's modulus and the Poisson ratio). In this case stochastic finite element techniques combined with FORM analysis can be used to obtain measures of the reliability of the structural systems, see Der Kiureghian & Ke (6) and Liu & Der Kiureghian...

  13. High-Order Curvilinear Finite Element Methods for Lagrangian Hydrodynamics [High Order Curvilinear Finite Elements for Lagrangian Hydrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Dobrev, Veselin A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kolev, Tzanio V. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Rieben, Robert N. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2012-09-20

    The numerical approximation of the Euler equations of gas dynamics in a movingLagrangian frame is at the heart of many multiphysics simulation algorithms. Here, we present a general framework for high-order Lagrangian discretization of these compressible shock hydrodynamics equations using curvilinear finite elements. This method is an extension of the approach outlined in [Dobrev et al., Internat. J. Numer. Methods Fluids, 65 (2010), pp. 1295--1310] and can be formulated for any finite dimensional approximation of the kinematic and thermodynamic fields, including generic finite elements on two- and three-dimensional meshes with triangular, quadrilateral, tetrahedral, or hexahedral zones. We discretize the kinematic variables of position and velocity using a continuous high-order basis function expansion of arbitrary polynomial degree which is obtained via a corresponding high-order parametric mapping from a standard reference element. This enables the use of curvilinear zone geometry, higher-order approximations for fields within a zone, and a pointwise definition of mass conservation which we refer to as strong mass conservation. Moreover, we discretize the internal energy using a piecewise discontinuous high-order basis function expansion which is also of arbitrary polynomial degree. This facilitates multimaterial hydrodynamics by treating material properties, such as equations of state and constitutive models, as piecewise discontinuous functions which vary within a zone. To satisfy the Rankine--Hugoniot jump conditions at a shock boundary and generate the appropriate entropy, we introduce a general tensor artificial viscosity which takes advantage of the high-order kinematic and thermodynamic information available in each zone. Finally, we apply a generic high-order time discretization process to the semidiscrete equations to develop the fully discrete numerical algorithm. Our method can be viewed as the high-order generalization of the so-called staggered

  14. Prediction of residual stress using explicit finite element method

    Directory of Open Access Journals (Sweden)

    W.A. Siswanto

    2015-12-01

    Full Text Available This paper presents the residual stress behaviour under various values of friction coefficients and scratching displacement amplitudes. The investigation is based on numerical solution using explicit finite element method in quasi-static condition. Two different aeroengine materials, i.e. Super CMV (Cr-Mo-V and Titanium alloys (Ti-6Al-4V, are examined. The usage of FEM analysis in plate under normal contact is validated with Hertzian theoretical solution in terms of contact pressure distributions. The residual stress distributions along with normal and shear stresses on elastic and plastic regimes of the materials are studied for a simple cylinder-on-flat contact configuration model subjected to normal loading, scratching and followed by unloading. The investigated friction coefficients are 0.3, 0.6 and 0.9, while scratching displacement amplitudes are 0.05 mm, 0.10 mm and 0.20 mm respectively. It is found that friction coefficient of 0.6 results in higher residual stress for both materials. Meanwhile, the predicted residual stress is proportional to the scratching displacement amplitude, higher displacement amplitude, resulting in higher residual stress. It is found that less residual stress is predicted on Super CMV material compared to Ti-6Al-4V material because of its high yield stress and ultimate strength. Super CMV material with friction coefficient of 0.3 and scratching displacement amplitude of 0.10 mm is recommended to be used in contact engineering applications due to its minimum possibility of fatigue.

  15. Residual-driven online generalized multiscale finite element methods

    KAUST Repository

    Chung, Eric T.

    2015-09-08

    The construction of local reduced-order models via multiscale basis functions has been an area of active research. In this paper, we propose online multiscale basis functions which are constructed using the offline space and the current residual. Online multiscale basis functions are constructed adaptively in some selected regions based on our error indicators. We derive an error estimator which shows that one needs to have an offline space with certain properties to guarantee that additional online multiscale basis function will decrease the error. This error decrease is independent of physical parameters, such as the contrast and multiple scales in the problem. The offline spaces are constructed using Generalized Multiscale Finite Element Methods (GMsFEM). We show that if one chooses a sufficient number of offline basis functions, one can guarantee that additional online multiscale basis functions will reduce the error independent of contrast. We note that the construction of online basis functions is motivated by the fact that the offline space construction does not take into account distant effects. Using the residual information, we can incorporate the distant information provided the offline approximation satisfies certain properties. In the paper, theoretical and numerical results are presented. Our numerical results show that if the offline space is sufficiently large (in terms of the dimension) such that the coarse space contains all multiscale spectral basis functions that correspond to small eigenvalues, then the error reduction by adding online multiscale basis function is independent of the contrast. We discuss various ways computing online multiscale basis functions which include a use of small dimensional offline spaces.

  16. hpGEM -- A software framework for discontinuous Galerkin finite element methods

    NARCIS (Netherlands)

    Pesch, L.; Bell, A.; Sollie, W.E.H.; Ambati, V.R.; Bokhove, Onno; van der Vegt, Jacobus J.W.

    2006-01-01

    hpGEM, a novel framework for the implementation of discontinuous Galerkin finite element methods, is described. We present structures and methods that are common for many (discontinuous) finite element methods and show how we have implemented the components as an object-oriented framework. This

  17. Stress analysis in pressure vessels by mixed finite element methods taking into account shear deformation

    International Nuclear Information System (INIS)

    Franca, L.P.; Toledo, E.M.; Loula, A.F.D.; Garcia, E.L.M.

    1988-12-01

    A new finite element method is employed to approximate axisymmetric shell problems. This formulation enhances stability and accuracy, from thin to moderately thick shells, compared to the correspondent Galerkin finite element approximations. Numerical results illustrate the good performance of the present method on some typical pressure vessels aplications. (author) [pt

  18. On angle conditions in the finite element method

    Czech Academy of Sciences Publication Activity Database

    Brandts, J.; Hannukainen, A.; Korotov, S.; Křížek, Michal

    2011-01-01

    Roč. 56, - (2011), s. 81-95 ISSN 1575-9822 R&D Projects: GA AV ČR(CZ) IAA100190803 Institutional research plan: CEZ:AV0Z10190503 Keywords : simplicial finite elements * minimum and maximum angle condition * ball conditions Subject RIV: BA - General Mathematics http://www.sema.org.es/ojs/index.php?journal=journal&page=article&op=viewArticle&path%5B%5D=612

  19. Multisymplectic Structure-Preserving in Simple Finite Element Method in High Dimensional Case

    Institute of Scientific and Technical Information of China (English)

    BAIYong-Qiang; LIUZhen; PEIMing; ZHENGZhu-Jun

    2003-01-01

    In this paper, we study a finite element scheme of some semi-linear elliptic boundary value problems in high-dhnensjonal space. With uniform mesh, we find that, the numerical scheme derived from finite element method can keep a preserved multisymplectic structure.

  20. Multisymplectic Structure-Preserving in Simple Finite Element Method in High Dimensional Case

    Institute of Scientific and Technical Information of China (English)

    BAI Yong-Qiang; LIU Zhen; PEI Ming; ZHENG Zhu-Jun

    2003-01-01

    In this paper, we study a finite element scheme of some semi-linear elliptic boundary value problems inhigh-dimensional space. With uniform mesh, we find that, the numerical scheme derived from finite element method cankeep a preserved multisymplectic structure.

  1. An implementation analysis of the linear discontinuous finite element method

    International Nuclear Information System (INIS)

    Becker, T. L.

    2013-01-01

    This paper provides an implementation analysis of the linear discontinuous finite element method (LD-FEM) that spans the space of (l, x, y, z). A practical implementation of LD includes 1) selecting a computationally efficient algorithm to solve the 4 x 4 matrix system Ax = b that describes the angular flux in a mesh element, and 2) choosing how to store the data used to construct the matrix A and the vector b to either reduce memory consumption or increase computational speed. To analyze the first of these, three algorithms were selected to solve the 4 x 4 matrix equation: Cramer's rule, a streamlined implementation of Gaussian elimination, and LAPACK's Gaussian elimination subroutine dgesv. The results indicate that Cramer's rule and the streamlined Gaussian elimination algorithm perform nearly equivalently and outperform LAPACK's implementation of Gaussian elimination by a factor of 2. To analyze the second implementation detail, three formulations of the discretized LD-FEM equations were provided for implementation in a transport solver: 1) a low-memory formulation, which relies heavily on 'on-the-fly' calculations and less on the storage of pre-computed data, 2) a high-memory formulation, which pre-computes much of the data used to construct A and b, and 3) a reduced-memory formulation, which lies between the low - and high-memory formulations. These three formulations were assessed in the Jaguar transport solver based on relative memory footprint and computational speed for increasing mesh size and quadrature order. The results indicated that the memory savings of the low-memory formulation were not sufficient to warrant its implementation. The high-memory formulation resulted in a significant speed advantage over the reduced-memory option (10-50%), but also resulted in a proportional increase in memory consumption (5-45%) for increasing quadrature order and mesh count; therefore, the practitioner should weigh the system memory constraints against any

  2. An implementation analysis of the linear discontinuous finite element method

    Energy Technology Data Exchange (ETDEWEB)

    Becker, T. L. [Bechtel Marine Propulsion Corporation, Knolls Atomic Power Laboratory, P.O. Box 1072, Schenectady, NY 12301-1072 (United States)

    2013-07-01

    This paper provides an implementation analysis of the linear discontinuous finite element method (LD-FEM) that spans the space of (l, x, y, z). A practical implementation of LD includes 1) selecting a computationally efficient algorithm to solve the 4 x 4 matrix system Ax = b that describes the angular flux in a mesh element, and 2) choosing how to store the data used to construct the matrix A and the vector b to either reduce memory consumption or increase computational speed. To analyze the first of these, three algorithms were selected to solve the 4 x 4 matrix equation: Cramer's rule, a streamlined implementation of Gaussian elimination, and LAPACK's Gaussian elimination subroutine dgesv. The results indicate that Cramer's rule and the streamlined Gaussian elimination algorithm perform nearly equivalently and outperform LAPACK's implementation of Gaussian elimination by a factor of 2. To analyze the second implementation detail, three formulations of the discretized LD-FEM equations were provided for implementation in a transport solver: 1) a low-memory formulation, which relies heavily on 'on-the-fly' calculations and less on the storage of pre-computed data, 2) a high-memory formulation, which pre-computes much of the data used to construct A and b, and 3) a reduced-memory formulation, which lies between the low - and high-memory formulations. These three formulations were assessed in the Jaguar transport solver based on relative memory footprint and computational speed for increasing mesh size and quadrature order. The results indicated that the memory savings of the low-memory formulation were not sufficient to warrant its implementation. The high-memory formulation resulted in a significant speed advantage over the reduced-memory option (10-50%), but also resulted in a proportional increase in memory consumption (5-45%) for increasing quadrature order and mesh count; therefore, the practitioner should weigh the system memory

  3. Finite element analysis of hybrid energy harvesting of piezoelectric and electromagnetic

    Directory of Open Access Journals (Sweden)

    Muhammad Yazid Muhammad Ammar Faris

    2017-01-01

    Full Text Available Harvesting energy from ambient vibrations is a highly required method because of the wide range of available sources that produce vibration energy application from industrial machinery to human motion application. In this paper, the implementation of harvesting energy from two technologies to form a hybrid energy harvester system was analyzed. These two technologies involve the piezoelectric harvesting energy and the electromagnetic harvesting energy. A finite element model was developed using the Ansys software with the harmonic analysis solver to analyze and examine hybrid harvesting energy system. Both power output generated from the magnet and the piezoelectric is then combined to form one unit of energy. Further, it was found that the result shows the system generate the maximum power output of 14.85 μW from 100 Hz, 4.905 m/s2, and 0.6 cm3 for resonance frequency, acceleration, and the volume respectively from the optimal energy harvester design. Normalized Power Density (NPD result of 10.29 kgs/m3 comparable with other literature also can be used in energy harvesting system for vibration application.

  4. Expanded Mixed Multiscale Finite Element Methods and Their Applications for Flows in Porous Media

    KAUST Repository

    Jiang, L.

    2012-01-01

    We develop a family of expanded mixed multiscale finite element methods (MsFEMs) and their hybridizations for second-order elliptic equations. This formulation expands the standard mixed multiscale finite element formulation in the sense that four unknowns (hybrid formulation) are solved simultaneously: pressure, gradient of pressure, velocity, and Lagrange multipliers. We use multiscale basis functions for both the velocity and the gradient of pressure. In the expanded mixed MsFEM framework, we consider both separable and nonseparable spatial scales. Specifically, we analyze the methods in three categories: periodic separable scales, G-convergent separable scales, and a continuum of scales. When there is no scale separation, using some global information can significantly improve the accuracy of the expanded mixed MsFEMs. We present a rigorous convergence analysis of these methods that includes both conforming and nonconforming formulations. Numerical results are presented for various multiscale models of flow in porous media with shale barriers that illustrate the efficacy of the proposed family of expanded mixed MsFEMs. © 2012 Society for Industrial and Applied Mathematics.

  5. Mixed hybrid finite elements and streamline computation for the potential flow problem

    NARCIS (Netherlands)

    Kaasschieter, E.F.; Huijben, A.J.M.

    1992-01-01

    An important class of problems in mathematical physics involves equations of the form -¿ · (A¿¿) = f. In a variety of problems it is desirable to obtain an accurate approximation of the flow quantity u = -A¿¿. Such an accurate approximation can be determined by the mixed finite element method. In

  6. An h-adaptive finite element method for turbulent heat transfer

    Energy Technology Data Exchange (ETDEWEB)

    Carriington, David B [Los Alamos National Laboratory

    2009-01-01

    A two-equation turbulence closure model (k-{omega}) using an h-adaptive grid technique and finite element method (FEM) has been developed to simulate low Mach flow and heat transfer. These flows are applicable to many flows in engineering and environmental sciences. Of particular interest in the engineering modeling areas are: combustion, solidification, and heat exchanger design. Flows for indoor air quality modeling and atmospheric pollution transport are typical types of environmental flows modeled with this method. The numerical method is based on a hybrid finite element model using an equal-order projection process. The model includes thermal and species transport, localized mesh refinement (h-adaptive) and Petrov-Galerkin weighting for the stabilizing the advection. This work develops the continuum model of a two-equation turbulence closure method. The fractional step solution method is stated along with the h-adaptive grid method (Carrington and Pepper, 2002). Solutions are presented for 2d flow over a backward-facing step.

  7. A least squares principle unifying finite element, finite difference and nodal methods for diffusion theory

    International Nuclear Information System (INIS)

    Ackroyd, R.T.

    1987-01-01

    A least squares principle is described which uses a penalty function treatment of boundary and interface conditions. Appropriate choices of the trial functions and vectors employed in a dual representation of an approximate solution established complementary principles for the diffusion equation. A geometrical interpretation of the principles provides weighted residual methods for diffusion theory, thus establishing a unification of least squares, variational and weighted residual methods. The complementary principles are used with either a trial function for the flux or a trial vector for the current to establish for regular meshes a connection between finite element, finite difference and nodal methods, which can be exact if the mesh pitches are chosen appropriately. Whereas the coefficients in the usual nodal equations have to be determined iteratively, those derived via the complementary principles are given explicitly in terms of the data. For the further development of the connection between finite element, finite difference and nodal methods, some hybrid variational methods are described which employ both a trial function and a trial vector. (author)

  8. A set of pathological tests to validate new finite elements

    Indian Academy of Sciences (India)

    M. Senthilkumar (Newgen Imaging) 1461 1996 Oct 15 13:05:22

    The finite element method entails several approximations. Hence it ... researchers have designed several pathological tests to validate any new finite element. The .... Three dimensional thick shell elements using a hybrid/mixed formu- lation.

  9. Development of polygon elements based on the scaled boundary finite element method

    International Nuclear Information System (INIS)

    Chiong, Irene; Song Chongmin

    2010-01-01

    We aim to extend the scaled boundary finite element method to construct conforming polygon elements. The development of the polygonal finite element is highly anticipated in computational mechanics as greater flexibility and accuracy can be achieved using these elements. The scaled boundary polygonal finite element will enable new developments in mesh generation, better accuracy from a higher order approximation and better transition elements in finite element meshes. Polygon elements of arbitrary number of edges and order have been developed successfully. The edges of an element are discretised with line elements. The displacement solution of the scaled boundary finite element method is used in the development of shape functions. They are shown to be smooth and continuous within the element, and satisfy compatibility and completeness requirements. Furthermore, eigenvalue decomposition has been used to depict element modes and outcomes indicate the ability of the scaled boundary polygonal element to express rigid body and constant strain modes. Numerical tests are presented; the patch test is passed and constant strain modes verified. Accuracy and convergence of the method are also presented and the performance of the scaled boundary polygonal finite element is verified on Cook's swept panel problem. Results show that the scaled boundary polygonal finite element method outperforms a traditional mesh and accuracy and convergence are achieved from fewer nodes. The proposed method is also shown to be truly flexible, and applies to arbitrary n-gons formed of irregular and non-convex polygons.

  10. Modelling of Conveyor Belt Passage by Driving Drum Using Finite Element Methods

    Directory of Open Access Journals (Sweden)

    Nikoleta Mikušová

    2017-12-01

    Full Text Available The finite element methods are used in many disciplines by the development of products, typically in mechanical engineering (for example in automotive industry, biomechanics, etc.. Some modern programs of the finite element's methods have specific tools (electromagnetic, fluid and structural simulations. The finite elements methods allow detailed presentation of structures by bending or torsion, complete design, testing and optimization before the prototype production. The aims of this paper were to the model of conveyor belt passage by driving drum. The model was created by the program Abaqus CAE. The created model presented data about forces, pressures, and deformation of the belt conveyor.

  11. Introduction to the Explicit Finite Element Method for Nonlinear Transient Dynamics

    CERN Document Server

    Wu, Shen R

    2012-01-01

    A systematic introduction to the theories and formulations of the explicit finite element method As numerical technology continues to grow and evolve with industrial applications, understanding the explicit finite element method has become increasingly important, particularly in the areas of crashworthiness, metal forming, and impact engineering. Introduction to the Explicit FiniteElement Method for Nonlinear Transient Dynamics is the first book to address specifically what is now accepted as the most successful numerical tool for nonlinear transient dynamics. The book aids readers in master

  12. A finite element modeling method for predicting long term corrosion rates

    International Nuclear Information System (INIS)

    Fu, J.W.; Chan, S.

    1984-01-01

    For the analyses of galvanic corrosion, pitting and crevice corrosion, which have been identified as possible corrosion processes for nuclear waste isolation, a finite element method has been developed for the prediction of corrosion rates. The method uses a finite element mesh to model the corrosive environment and the polarization curves of metals are assigned as the boundary conditions to calculate the corrosion cell current distribution. A subroutine is used to calculate the chemical change with time in the crevice or the pit environments. In this paper, the finite element method is described along with experimental confirmation

  13. ABOUT SOLUTION OF MULTIPOINT BOUNDARY PROBLEMS OF TWO-DIMENSIONAL STRUCTURAL ANALYSIS WITH THE USE OF COMBINED APPLICATION OF FINITE ELEMENT METHOD AND DISCRETE-CONTINUAL FINITE ELEMENT METHOD PART 2: SPECIAL ASPECTS OF FINITE ELEMENT APPROXIMATION

    Directory of Open Access Journals (Sweden)

    Pavel A. Akimov

    2017-12-01

    Full Text Available As is well known, the formulation of a multipoint boundary problem involves three main components: a description of the domain occupied by the structure and the corresponding subdomains; description of the conditions inside the domain and inside the corresponding subdomains, the description of the conditions on the boundary of the domain, conditions on the boundaries between subdomains. This paper is a continuation of another work published earlier, in which the formulation and general principles of the approximation of the multipoint boundary problem of a static analysis of deep beam on the basis of the joint application of the finite element method and the discrete-continual finite element method were considered. It should be noted that the approximation within the fragments of a domain that have regular physical-geometric parameters along one of the directions is expedient to be carried out on the basis of the discrete-continual finite element method (DCFEM, and for the approximation of all other fragments it is necessary to use the standard finite element method (FEM. In the present publication, the formulas for the computing of displacements partial derivatives of displacements, strains and stresses within the finite element model (both within the finite element and the corresponding nodal values (with the use of averaging are presented. Boundary conditions between subdomains (respectively, discrete models and discrete-continual models and typical conditions such as “hinged support”, “free edge”, “perfect contact” (twelve basic (basic variants are available are under consideration as well. Governing formulas for computing of elements of the corresponding matrices of coefficients and vectors of the right-hand sides are given for each variant. All formulas are fully adapted for algorithmic implementation.

  14. Quasistatic field simulations based on finite elements and spectral methods applied to superconducting magnets

    International Nuclear Information System (INIS)

    Koch, Stephan

    2009-01-01

    This thesis is concerned with the numerical simulation of electromagnetic fields in the quasi-static approximation which is applicable in many practical cases. Main emphasis is put on higher-order finite element methods. Quasi-static applications can be found, e.g., in accelerator physics in terms of the design of magnets required for beam guidance, in power engineering as well as in high-voltage engineering. Especially during the first design and optimization phase of respective devices, numerical models offer a cheap alternative to the often costly assembly of prototypes. However, large differences in the magnitude of the material parameters and the geometric dimensions as well as in the time-scales of the electromagnetic phenomena involved lead to an unacceptably long simulation time or to an inadequately large memory requirement. Under certain circumstances, the simulation itself and, in turn, the desired design improvement becomes even impossible. In the context of this thesis, two strategies aiming at the extension of the range of application for numerical simulations based on the finite element method are pursued. The first strategy consists in parallelizing existing methods such that the computation can be distributed over several computers or cores of a processor. As a consequence, it becomes feasible to simulate a larger range of devices featuring more degrees of freedom in the numerical model than before. This is illustrated for the calculation of the electromagnetic fields, in particular of the eddy-current losses, inside a superconducting dipole magnet developed at the GSI Helmholtzzentrum fuer Schwerionenforschung as a part of the FAIR project. As the second strategy to improve the efficiency of numerical simulations, a hybrid discretization scheme exploiting certain geometrical symmetries is established. Using this method, a significant reduction of the numerical effort in terms of required degrees of freedom for a given accuracy is achieved. The

  15. Studying apple bruise using a finite element method analysis

    Science.gov (United States)

    Pascoal-Faria, P.; Alves, N.

    2017-07-01

    Apple bruise damage from harvesting, handling, transporting and sorting is considered to be the major source of reduced fruit quality, resulting in a loss of profits for the entire fruit industry. Bruising is defined as damage and discoloration of fruit flesh, usually with no breach of the skin. The three factors which can physically cause fruit bruising are vibration, compression load and impact. The last one is the main source of bruise damage. Therefore, prediction of the level of damage, stress distribution and deformation of the fruits under external force has become a very important task. To address these problems a finite element analysis has been developed for studying Portuguese Royal Gala apple bruise. The results obtained will be suitable to apple distributors and sellers and will allow a reduction of the impact caused by bruise damage in apple annual production.

  16. On Round-off Error for Adaptive Finite Element Methods

    KAUST Repository

    Alvarez-Aramberri, J.

    2012-06-02

    Round-off error analysis has been historically studied by analyzing the condition number of the associated matrix. By controlling the size of the condition number, it is possible to guarantee a prescribed round-off error tolerance. However, the opposite is not true, since it is possible to have a system of linear equations with an arbitrarily large condition number that still delivers a small round-off error. In this paper, we perform a round-off error analysis in context of 1D and 2D hp-adaptive Finite Element simulations for the case of Poisson equation. We conclude that boundary conditions play a fundamental role on the round-off error analysis, specially for the so-called ‘radical meshes’. Moreover, we illustrate the importance of the right-hand side when analyzing the round-off error, which is independent of the condition number of the matrix.

  17. Quadratic Finite Element Method for 1D Deterministic Transport

    International Nuclear Information System (INIS)

    Tolar, D R Jr.; Ferguson, J M

    2004-01-01

    In the discrete ordinates, or SN, numerical solution of the transport equation, both the spatial ((und r)) and angular ((und (Omega))) dependences on the angular flux ψ(und r),(und (Omega))are modeled discretely. While significant effort has been devoted toward improving the spatial discretization of the angular flux, we focus on improving the angular discretization of ψ(und r),(und (Omega)). Specifically, we employ a Petrov-Galerkin quadratic finite element approximation for the differencing of the angular variable (μ) in developing the one-dimensional (1D) spherical geometry S N equations. We develop an algorithm that shows faster convergence with angular resolution than conventional S N algorithms

  18. On Round-off Error for Adaptive Finite Element Methods

    KAUST Repository

    Alvarez-Aramberri, J.; Pardo, David; Paszynski, Maciej; Collier, Nathan; Dalcin, Lisandro; Calo, Victor M.

    2012-01-01

    Round-off error analysis has been historically studied by analyzing the condition number of the associated matrix. By controlling the size of the condition number, it is possible to guarantee a prescribed round-off error tolerance. However, the opposite is not true, since it is possible to have a system of linear equations with an arbitrarily large condition number that still delivers a small round-off error. In this paper, we perform a round-off error analysis in context of 1D and 2D hp-adaptive Finite Element simulations for the case of Poisson equation. We conclude that boundary conditions play a fundamental role on the round-off error analysis, specially for the so-called ‘radical meshes’. Moreover, we illustrate the importance of the right-hand side when analyzing the round-off error, which is independent of the condition number of the matrix.

  19. Numerical Investigations on Several Stabilized Finite Element Methods for the Stokes Eigenvalue Problem

    Directory of Open Access Journals (Sweden)

    Pengzhan Huang

    2011-01-01

    Full Text Available Several stabilized finite element methods for the Stokes eigenvalue problem based on the lowest equal-order finite element pair are numerically investigated. They are penalty, regular, multiscale enrichment, and local Gauss integration method. Comparisons between them are carried out, which show that the local Gauss integration method has good stability, efficiency, and accuracy properties, and it is a favorite method among these methods for the Stokes eigenvalue problem.

  20. A Family of Multipoint Flux Mixed Finite Element Methods for Elliptic Problems on General Grids

    KAUST Repository

    Wheeler, Mary F.; Xue, Guangri; Yotov, Ivan

    2011-01-01

    In this paper, we discuss a family of multipoint flux mixed finite element (MFMFE) methods on simplicial, quadrilateral, hexahedral, and triangular-prismatic grids. The MFMFE methods are locally conservative with continuous normal fluxes, since

  1. A hybrid finite element - statistical energy analysis approach to robust sound transmission modeling

    Science.gov (United States)

    Reynders, Edwin; Langley, Robin S.; Dijckmans, Arne; Vermeir, Gerrit

    2014-09-01

    When considering the sound transmission through a wall in between two rooms, in an important part of the audio frequency range, the local response of the rooms is highly sensitive to uncertainty in spatial variations in geometry, material properties and boundary conditions, which have a wave scattering effect, while the local response of the wall is rather insensitive to such uncertainty. For this mid-frequency range, a computationally efficient modeling strategy is adopted that accounts for this uncertainty. The partitioning wall is modeled deterministically, e.g. with finite elements. The rooms are modeled in a very efficient, nonparametric stochastic way, as in statistical energy analysis. All components are coupled by means of a rigorous power balance. This hybrid strategy is extended so that the mean and variance of the sound transmission loss can be computed as well as the transition frequency that loosely marks the boundary between low- and high-frequency behavior of a vibro-acoustic component. The method is first validated in a simulation study, and then applied for predicting the airborne sound insulation of a series of partition walls of increasing complexity: a thin plastic plate, a wall consisting of gypsum blocks, a thicker masonry wall and a double glazing. It is found that the uncertainty caused by random scattering is important except at very high frequencies, where the modal overlap of the rooms is very high. The results are compared with laboratory measurements, and both are found to agree within the prediction uncertainty in the considered frequency range.

  2. Three-dimensional linear fracture mechanics analysis by a displacement-hybrid finite-element model

    International Nuclear Information System (INIS)

    Atluri, S.N.; Kathiresan, K.; Kobayashi, A.S.

    1975-01-01

    This paper deals with a finite-element procedures for the calculation of modes I, II and III stress intensity factors, which vary, along an arbitrarily curved three-dimensional crack front in a structural component. The finite-element model is based on a modified variational principle of potential energy with relaxed continuity requirements for displacements at the inter-element boundary. The variational principle is a three-field principle, with the arbitrary interior displacements for the element, interelement boundary displacements, and element boundary tractions as variables. The unknowns in the final algebraic system of equations, in the present displacement hybrid finite element model, are the nodal displacements and the three elastic stress intensity factors. Special elements, which contain proper square root and inverse square root crack front variations in displacements and stresses, respectively, are used in a fixed region near the crack front. Interelement displacement compatibility is satisfied by assuming an independent interelement boundary displacement field, and using a Lagrange multiplier technique to enforce such interelement compatibility. These Lagrangean multipliers, which are physically the boundary tractions, are assumed from an equilibrated stress field derived from three-dimensional Beltrami (or Maxwell-Morera) stress functions that are complete. However, considerable care should be exercised in the use of these stress functions such that the stresses produced by any of these stress function components are not linearly dependent

  3. Domain decomposition based iterative methods for nonlinear elliptic finite element problems

    Energy Technology Data Exchange (ETDEWEB)

    Cai, X.C. [Univ. of Colorado, Boulder, CO (United States)

    1994-12-31

    The class of overlapping Schwarz algorithms has been extensively studied for linear elliptic finite element problems. In this presentation, the author considers the solution of systems of nonlinear algebraic equations arising from the finite element discretization of some nonlinear elliptic equations. Several overlapping Schwarz algorithms, including the additive and multiplicative versions, with inexact Newton acceleration will be discussed. The author shows that the convergence rate of the Newton`s method is independent of the mesh size used in the finite element discretization, and also independent of the number of subdomains into which the original domain in decomposed. Numerical examples will be presented.

  4. Solution of finite element problems using hybrid parallelization with MPI and OpenMP Solution of finite element problems using hybrid parallelization with MPI and OpenMP

    Directory of Open Access Journals (Sweden)

    José Miguel Vargas-Félix

    2012-11-01

    Full Text Available The Finite Element Method (FEM is used to solve problems like solid deformation and heat diffusion in domains with complex geometries. This kind of geometries requires discretization with millions of elements; this is equivalent to solve systems of equations with sparse matrices and tens or hundreds of millions of variables. The aim is to use computer clusters to solve these systems. The solution method used is Schur substructuration. Using it is possible to divide a large system of equations into many small ones to solve them more efficiently. This method allows parallelization. MPI (Message Passing Interface is used to distribute the systems of equations to solve each one in a computer of a cluster. Each system of equations is solved using a solver implemented to use OpenMP as a local parallelization method.The Finite Element Method (FEM is used to solve problems like solid deformation and heat diffusion in domains with complex geometries. This kind of geometries requires discretization with millions of elements; this is equivalent to solve systems of equations with sparse matrices and tens or hundreds of millions of variables. The aim is to use computer clusters to solve these systems. The solution method used is Schur substructuration. Using it is possible to divide a large system of equations into many small ones to solve them more efficiently. This method allows parallelization. MPI (Message Passing Interface is used to distribute the systems of equations to solve each one in a computer of a cluster. Each system of equations is solved using a solver implemented to use OpenMP as a local parallelization method.

  5. Parallel iterative procedures for approximate solutions of wave propagation by finite element and finite difference methods

    Energy Technology Data Exchange (ETDEWEB)

    Kim, S. [Purdue Univ., West Lafayette, IN (United States)

    1994-12-31

    Parallel iterative procedures based on domain decomposition techniques are defined and analyzed for the numerical solution of wave propagation by finite element and finite difference methods. For finite element methods, in a Lagrangian framework, an efficient way for choosing the algorithm parameter as well as the algorithm convergence are indicated. Some heuristic arguments for finding the algorithm parameter for finite difference schemes are addressed. Numerical results are presented to indicate the effectiveness of the methods.

  6. Finite element time domain modeling of controlled-Source electromagnetic data with a hybrid boundary condition

    DEFF Research Database (Denmark)

    Cai, Hongzhu; Hu, Xiangyun; Xiong, Bin

    2017-01-01

    method which is unconditionally stable. We solve the diffusion equation for the electric field with a total field formulation. The finite element system of equation is solved using the direct method. The solutions of electric field, at different time, can be obtained using the effective time stepping...... method with trivial computation cost once the matrix is factorized. We try to keep the same time step size for a fixed number of steps using an adaptive time step doubling (ATSD) method. The finite element modeling domain is also truncated using a semi-adaptive method. We proposed a new boundary...... condition based on approximating the total field on the modeling boundary using the primary field corresponding to a layered background model. We validate our algorithm using several synthetic model studies....

  7. Mixed Element Formulation for the Finite Element-Boundary Integral Method

    National Research Council Canada - National Science Library

    Meese, J; Kempel, L. C; Schneider, S. W

    2006-01-01

    A mixed element approach using right hexahedral elements and right prism elements for the finite element-boundary integral method is presented and discussed for the study of planar cavity-backed antennas...

  8. Energy flow in plate assembles by hierarchical version of finite element method

    DEFF Research Database (Denmark)

    Wachulec, Marcin; Kirkegaard, Poul Henning

    method has been proposed. In this paper a modified hierarchical version of finite element method is used for modelling of energy flow in plate assembles. The formulation includes description of in-plane forces so that planes lying in different planes can be modelled. Two examples considered are: L......The dynamic analysis of structures in medium and high frequencies are usually focused on frequency and spatial averages of energy of components, and not the displacement/velocity fields. This is especially true for structure-borne noise modelling. For the analysis of complicated structures...... the finite element method has been used to study the energy flow. The finite element method proved its usefulness despite the computational expense. Therefore studies have been conducted in order to simplify and reduce the computations required. Among others, the use of hierarchical version of finite element...

  9. A discontinous Galerkin finite element method with an efficient time integration scheme for accurate simulations

    KAUST Repository

    Liu, Meilin; Bagci, Hakan

    2011-01-01

    A discontinuous Galerkin finite element method (DG-FEM) with a highly-accurate time integration scheme is presented. The scheme achieves its high accuracy using numerically constructed predictor-corrector integration coefficients. Numerical results

  10. Coupling multipoint flux mixed finite element methodswith continuous Galerkin methods for poroelasticity

    KAUST Repository

    Wheeler, Mary; Xue, Guangri; Yotov, Ivan

    2013-01-01

    We study the numerical approximation on irregular domains with general grids of the system of poroelasticity, which describes fluid flow in deformable porous media. The flow equation is discretized by a multipoint flux mixed finite element method

  11. The Full—Discrete Mixed Finite Element Methods for Nonlinear Hyperbolic Equations

    Institute of Scientific and Technical Information of China (English)

    YanpingCHEN; YunqingHUANG

    1998-01-01

    This article treats mixed finite element methods for second order nonlinear hyperbolic equations.A fully discrete scheme is presented and improved L2-error estimates are established.The convergence of both the function value andthe flux is demonstrated.

  12. Discontinuous Galerkin Subgrid Finite Element Method for Heterogeneous Brinkman’s Equations

    KAUST Repository

    Iliev, Oleg P.; Lazarov, Raytcho D.; Willems, Joerg

    2010-01-01

    We present a two-scale finite element method for solving Brinkman's equations with piece-wise constant coefficients. This system of equations model fluid flows in highly porous, heterogeneous media with complex topology of the heterogeneities. We

  13. A finite element method for netting application to fish cages and fishing gear

    CERN Document Server

    Priour, Daniel

    2014-01-01

    This book describes a finite element method for netting that describes the relation between forces and deformation of the netting and takes into account forces due to the twine elasticity, the hydrodynamic forces, the catch effect, the mesh opening stiffness.

  14. Containment penetration design and analysis by finite element methods

    International Nuclear Information System (INIS)

    Perry, R.F.; Rigamonti, G.; Dainora, J.

    1975-01-01

    Containment penetration designs which provide complete support to process piping containing high pressure and high temperature fluids and which do not employ cooling coils, require special provisions to sustain loadings associated with normal/abnormal conditions and to limit maximum temperature transmitted to the containment concrete wall. In order to accomodate piping loads and fluid temperatures within code and regulatory limitations, the containment penetration designs require careful analysis of two critical regions: 1) the portion of the penetration sleeve which is exposed to containment ambient conditions and 2) the portion of the penetration which connects the sleeve to process piping (flued head). Analytical models using finite element representation of process piping, penetration flued head, and exposed sleeve were employed to investigate the penetration assembly design. By application of flexible multi-step analyses, different penetration configurations were evaluated to determine the effects of key design parameters. Among the parameters studied were flued head angles with the process piping, sleeve length and wall thickness. Special designs employing fins welded to the sleeve to further lower the temperature at the concrete wall interface were also investigated and fin geometry effects reported. (Auth.)

  15. Seismic Analysis of Concrete Dam by Using Finite Element Method

    Directory of Open Access Journals (Sweden)

    Rozaina Ismail

    2017-01-01

    Full Text Available This paper reports a brief study on linear seismic analysis of Sg. Kinta Concrete Dam. The analysis was conducted in order to determine the performance and behaviour of the dam under seismic excitation. The dam was modelled as two-dimensional and developed based on the design drawing that is obtained from Angkasa Consulting Services Sdn. Bhd. The seismic analysis of the dam is conducted using finite element analysis software package LUSAS 14.3 and the dam has been analyse as a plain stress problem with a linear consideration. A set of historic data, with E1 Centro earthquake acceleration of about 0.50g is used as an earthquake excitation. The natural frequency and mode shape up to fifth mode of the dam has been obtained from the analysis to show the differences of the stress and deformation between each mode. The maximum horizontal and vertical stress of Sg. Kinta dam was found and the distribution of them was discussed in form of contours. The deformation of the dam were also been discussed by comparing the maximum displacement for each mode shaped.

  16. Essentials of the finite element method for mechanical and structural engineers

    CERN Document Server

    Pavlou, Dimitrios G

    2015-01-01

    Fundamental coverage, analytic mathematics, and up-to-date software applications are hard to find in a single text on the finite element method (FEM). Dimitrios Pavlou's Essentials of the Finite Element Method: For Structural and Mechanical Engineers makes the search easier by providing a comprehensive but concise text for those new to FEM, or just in need of a refresher on the essentials. Essentials of the Finite Element Method explains the basics of FEM, then relates these basics to a number of practical engineering applications. Specific topics covered include linear spring elements, bar elements, trusses, beams and frames, heat transfer, and structural dynamics. Throughout the text, readers are shown step-by-step detailed analyses for finite element equations development. The text also demonstrates how FEM is programmed, with examples in MATLAB, CALFEM, and ANSYS allowing readers to learn how to develop their own computer code. Suitable for everyone from first-time BSc/MSc students to practicing mechanic...

  17. Numerical solution of multi group-Two dimensional- Adjoint equation with finite element method

    International Nuclear Information System (INIS)

    Poursalehi, N.; Khalafi, H.; Shahriari, M.; Minoochehr

    2008-01-01

    Adjoint equation is used for perturbation theory in nuclear reactor design. For numerical solution of adjoint equation, usually two methods are applied. These are Finite Element and Finite Difference procedures. Usually Finite Element Procedure is chosen for solving of adjoint equation, because it is more use able in variety of geometries. In this article, Galerkin Finite Element method is discussed. This method is applied for numerical solving multi group, multi region and two dimensional (X, Y) adjoint equation. Typical reactor geometry is partitioned with triangular meshes and boundary condition for adjoint flux is considered zero. Finally, for a case of defined parameters, Finite Element Code was applied and results were compared with Citation Code

  18. Finite Element Analysis and Test Results Comparison for the Hybrid Wing Body Center Section Test Article

    Science.gov (United States)

    Przekop, Adam; Jegley, Dawn C.; Rouse, Marshall; Lovejoy, Andrew E.

    2016-01-01

    This report documents the comparison of test measurements and predictive finite element analysis results for a hybrid wing body center section test article. The testing and analysis efforts were part of the Airframe Technology subproject within the NASA Environmentally Responsible Aviation project. Test results include full field displacement measurements obtained from digital image correlation systems and discrete strain measurements obtained using both unidirectional and rosette resistive gauges. Most significant results are presented for the critical five load cases exercised during the test. Final test to failure after inflicting severe damage to the test article is also documented. Overall, good comparison between predicted and actual behavior of the test article is found.

  19. Extended finite element method and its application in heterogeneous materials with inclusions

    International Nuclear Information System (INIS)

    Du Chengbin; Jiang Shouyan; Ying Zongquan

    2010-01-01

    To simplify the technology of finite element mesh generation for particle reinforced material, enrichment techniques is used to account for the material interfaces in the framework of extended finite element method (XFEM). The geometry of material distribution is described by level set function, which allows one to model the internal boundaries of the microstructure without the adaptation of the mesh. The enrichment function is used to improve the shape function of classical finite element method (FEM) for the nodes supporting the elements cut by the interface. The key issue of XFEM including constructing displacement pattern, establishment of the governing equation and scheme of numerical integration is also presented. It is not necessarily matching the internal features of the inclusions using XFEM, so the generation of finite element mesh can be performed easily. Finally, a plate with multi-circular inclusions under uniaxial tension is simulated by XFEM and FEM, respectively. The results show that XFEM is highly effective and efficient.

  20. Time-domain finite-difference/finite-element hybrid simulations of radio frequency coils in magnetic resonance imaging

    International Nuclear Information System (INIS)

    Wang Shumin; Duyn, Jeff H

    2008-01-01

    A hybrid method that combines the finite-difference time-domain (FDTD) method and the finite-element time-domain (FETD) method is presented for simulating radio-frequency (RF) coils in magnetic resonance imaging. This method applies a high-fidelity FETD method to RF coils, while the human body is modeled with a low-cost FDTD method. Since the FDTD and the FETD methods are applied simultaneously, the dynamic interaction between RF coils and the human body is fully accounted for. In order to simplify the treatment of the highly irregular FDTD/FETD interface, composite elements are proposed. Two examples are provided to demonstrate the validity and effectiveness of the hybrid method in high-field receive-and-transmit coil design. This approach is also applicable to general bio-electromagnetic simulations

  1. Containment penetration design and analysis by finite element methods

    International Nuclear Information System (INIS)

    Perry, R.F.; Rigamonti, G.; Dainora, J.

    1975-01-01

    Containment penetration designs which provide complete support to process piping containing high pressure and high temperature fluids and which do not employ cooling coils, require special provisions to sustain loadings associated with normal/abnormal conditions and to limit maximum temperature transmitted to the containment concrete wall. In order to accommodate piping imposed loads and fluid temperatures within code and regulatory limitations, the containment penetration designs require careful analysis of two critical regions: the portion of the penetration sleeve which is exposed to containment ambient conditions and the portion of the penetration which connects the sleeve to process piping (flued head). The length and thickness of the sleeve must be designed to provide maximum heat dissipation to the atmosphere and minimum heat conduction through the sleeve to meet concrete temperature limitations. The sleeve must have the capability to transmit the postulated piping loads to concrete embedments in the containment shell. The penetration flued head design must be strong enough to transfer high mechanical loads and be flexible enough to accommodate the thermal stresses generated by the high temperature fluid. Analytical models using finite element representations of process piping, penetration flued head, and exposed sleeve were employed to investigate the penetration assembly design. By application of flexible multi-step analyses, different penetration configurations were evaluated to determine the effects of key design parameters. Among the parameters studied were flued head profiles, flued head angles with the process piping, sleeve length and wall thickness. Special designs employing fins welded to the sleeve to lower the temperature at the concrete wall interface were investigated and fin geometry effects reported

  2. Characterization of craniofacial sutures using the finite element method.

    Science.gov (United States)

    Maloul, Asmaa; Fialkov, Jeffrey; Wagner, Diane; Whyne, Cari M

    2014-01-03

    Characterizing the biomechanical behavior of sutures in the human craniofacial skeleton (CFS) is essential to understand the global impact of these articulations on load transmission, but is challenging due to the complexity of their interdigitated morphology, the multidirectional loading they are exposed to and the lack of well-defined suture material properties. This study aimed to quantify the impact of morphological features, direction of loading and suture material properties on the mechanical behavior of sutures and surrounding bone in the CFS. Thirty-six idealized finite element (FE) models were developed. One additional specimen-specific FE model was developed based on the morphology obtained from a µCT scan to represent the morphological complexity inherent in CFS sutures. Outcome variables of strain energy (SE) and von Mises stress (σvm) were evaluated to characterize the sutures' biomechanical behavior. Loading direction was found to impact the relationship between SE and interdigitation index and yielded varied patterns of σvm in both the suture and surrounding bone. Adding bone connectivity reduced suture strain energy and altered the σvm distribution. Incorporating transversely isotropic material properties was found to reduce SE, but had little impact on stress patterns. High-resolution µCT scanning of the suture revealed a complex morphology with areas of high and low interdigitations. The specimen specific suture model results were reflective of SE absorption and σvm distribution patterns consistent with the simplified FE results. Suture mechanical behavior is impacted by morphologic factors (interdigitation and connectivity), which may be optimized for regional loading within the CFS. © 2013 Elsevier Ltd. All rights reserved.

  3. New formulations on the finite element method for boundary value problems with internal/external boundary layers

    International Nuclear Information System (INIS)

    Pereira, Luis Carlos Martins

    1998-06-01

    New Petrov-Galerkin formulations on the finite element methods for convection-diffusion problems with boundary layers are presented. Such formulations are based on a consistent new theory on discontinuous finite element methods. Existence and uniqueness of solutions for these problems in the new finite element spaces are demonstrated. Some numerical experiments shows how the new formulation operate and also their efficacy. (author)

  4. A three-dimensional cell-based smoothed finite element method for elasto-plasticity

    International Nuclear Information System (INIS)

    Lee, Kye Hyung; Im, Se Yong; Lim, Jae Hyuk; Sohn, Dong Woo

    2015-01-01

    This work is concerned with a three-dimensional cell-based smoothed finite element method for application to elastic-plastic analysis. The formulation of smoothed finite elements is extended to cover elastic-plastic deformations beyond the classical linear theory of elasticity, which has been the major application domain of smoothed finite elements. The finite strain deformations are treated with the aid of the formulation based on the hyperelastic constitutive equation. The volumetric locking originating from the nearly incompressible behavior of elastic-plastic deformations is remedied by relaxing the volumetric strain through the mean value. The comparison with the conventional finite elements demonstrates the effectiveness and accuracy of the present approach.

  5. A three-dimensional cell-based smoothed finite element method for elasto-plasticity

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kye Hyung; Im, Se Yong [KAIST, Daejeon (Korea, Republic of); Lim, Jae Hyuk [KARI, Daejeon (Korea, Republic of); Sohn, Dong Woo [Korea Maritime and Ocean University, Busan (Korea, Republic of)

    2015-02-15

    This work is concerned with a three-dimensional cell-based smoothed finite element method for application to elastic-plastic analysis. The formulation of smoothed finite elements is extended to cover elastic-plastic deformations beyond the classical linear theory of elasticity, which has been the major application domain of smoothed finite elements. The finite strain deformations are treated with the aid of the formulation based on the hyperelastic constitutive equation. The volumetric locking originating from the nearly incompressible behavior of elastic-plastic deformations is remedied by relaxing the volumetric strain through the mean value. The comparison with the conventional finite elements demonstrates the effectiveness and accuracy of the present approach.

  6. Domain decomposition method for nonconforming finite element approximations of anisotropic elliptic problems on nonmatching grids

    Energy Technology Data Exchange (ETDEWEB)

    Maliassov, S.Y. [Texas A& M Univ., College Station, TX (United States)

    1996-12-31

    An approach to the construction of an iterative method for solving systems of linear algebraic equations arising from nonconforming finite element discretizations with nonmatching grids for second order elliptic boundary value problems with anisotropic coefficients is considered. The technique suggested is based on decomposition of the original domain into nonoverlapping subdomains. The elliptic problem is presented in the macro-hybrid form with Lagrange multipliers at the interfaces between subdomains. A block diagonal preconditioner is proposed which is spectrally equivalent to the original saddle point matrix and has the optimal order of arithmetical complexity. The preconditioner includes blocks for preconditioning subdomain and interface problems. It is shown that constants of spectral equivalence axe independent of values of coefficients and mesh step size.

  7. Hybrid determination of mixed-mode stress intensity factors on discontinuous finite-width plate by finite element and photoelasticity

    International Nuclear Information System (INIS)

    Baek, Tae Hyun; Chen, Lei; Hong, Dong Pyo

    2011-01-01

    For isotropic material structure, the stress in the vicinity of crack tip is generally much higher than the stress far away from it. This phenomenon usually leads to stress concentration and fracture of structure. Previous researches and studies show that the stress intensity factor is one of most important parameter for crack growth and propagation. This paper provides a convenient numerical method, which is called hybrid photoelasticity method, to accurately determine the stress field distribution in the vicinity of crack tip and mixed-mode stress intensity factors. The model was simulated by finite element method and isochromatic data along straight lines far away from the crack tip were calculated. By using the isochromatic data obtained from finite element method and a conformal mapping procedure, stress components and photoelastic fringes in the hybrid region were calculated. To easily compare calculated photoelastic fringes with experiment results, the fringe patterns were reconstructed, doubled and sharpened. Good agreement shows that the method presented in this paper is reliable and convenient. This method can then directly be applied to obtain mixed mode stress intensity factors from the experimentally measured isochromatic data along the straight lines

  8. Evaluating the performance of the particle finite element method in parallel architectures

    Science.gov (United States)

    Gimenez, Juan M.; Nigro, Norberto M.; Idelsohn, Sergio R.

    2014-05-01

    This paper presents a high performance implementation for the particle-mesh based method called particle finite element method two (PFEM-2). It consists of a material derivative based formulation of the equations with a hybrid spatial discretization which uses an Eulerian mesh and Lagrangian particles. The main aim of PFEM-2 is to solve transport equations as fast as possible keeping some level of accuracy. The method was found to be competitive with classical Eulerian alternatives for these targets, even in their range of optimal application. To evaluate the goodness of the method with large simulations, it is imperative to use of parallel environments. Parallel strategies for Finite Element Method have been widely studied and many libraries can be used to solve Eulerian stages of PFEM-2. However, Lagrangian stages, such as streamline integration, must be developed considering the parallel strategy selected. The main drawback of PFEM-2 is the large amount of memory needed, which limits its application to large problems with only one computer. Therefore, a distributed-memory implementation is urgently needed. Unlike a shared-memory approach, using domain decomposition the memory is automatically isolated, thus avoiding race conditions; however new issues appear due to data distribution over the processes. Thus, a domain decomposition strategy for both particle and mesh is adopted, which minimizes the communication between processes. Finally, performance analysis running over multicore and multinode architectures are presented. The Courant-Friedrichs-Lewy number used influences the efficiency of the parallelization and, in some cases, a weighted partitioning can be used to improve the speed-up. However the total cputime for cases presented is lower than that obtained when using classical Eulerian strategies.

  9. Stability Analysis of Anchored Soil Slope Based on Finite Element Limit Equilibrium Method

    Directory of Open Access Journals (Sweden)

    Rui Zhang

    2016-01-01

    Full Text Available Under the condition of the plane strain, finite element limit equilibrium method is used to study some key problems of stability analysis for anchored slope. The definition of safe factor in slices method is generalized into FEM. The “true” stress field in the whole structure can be obtained by elastic-plastic finite element analysis. Then, the optimal search for the most dangerous sliding surface with Hooke-Jeeves optimized searching method is introduced. Three cases of stability analysis of natural slope, anchored slope with seepage, and excavation anchored slope are conducted. The differences in safety factor quantity, shape and location of slip surface, anchoring effect among slices method, finite element strength reduction method (SRM, and finite element limit equilibrium method are comparatively analyzed. The results show that the safety factor given by the FEM is greater and the unfavorable slip surface is deeper than that by the slice method. The finite element limit equilibrium method has high calculation accuracy, and to some extent the slice method underestimates the effect of anchor, and the effect of anchor is overrated in the SRM.

  10. Bubble-Enriched Least-Squares Finite Element Method for Transient Advective Transport

    Directory of Open Access Journals (Sweden)

    Rajeev Kumar

    2008-01-01

    Full Text Available The least-squares finite element method (LSFEM has received increasing attention in recent years due to advantages over the Galerkin finite element method (GFEM. The method leads to a minimization problem in the L2-norm and thus results in a symmetric and positive definite matrix, even for first-order differential equations. In addition, the method contains an implicit streamline upwinding mechanism that prevents the appearance of oscillations that are characteristic of the Galerkin method. Thus, the least-squares approach does not require explicit stabilization and the associated stabilization parameters required by the Galerkin method. A new approach, the bubble enriched least-squares finite element method (BELSFEM, is presented and compared with the classical LSFEM. The BELSFEM requires a space-time element formulation and employs bubble functions in space and time to increase the accuracy of the finite element solution without degrading computational performance. We apply the BELSFEM and classical least-squares finite element methods to benchmark problems for 1D and 2D linear transport. The accuracy and performance are compared.

  11. Node-based finite element method for large-scale adaptive fluid analysis in parallel environments

    Energy Technology Data Exchange (ETDEWEB)

    Toshimitsu, Fujisawa [Tokyo Univ., Collaborative Research Center of Frontier Simulation Software for Industrial Science, Institute of Industrial Science (Japan); Genki, Yagawa [Tokyo Univ., Department of Quantum Engineering and Systems Science (Japan)

    2003-07-01

    In this paper, a FEM-based (finite element method) mesh free method with a probabilistic node generation technique is presented. In the proposed method, all computational procedures, from the mesh generation to the solution of a system of equations, can be performed fluently in parallel in terms of nodes. Local finite element mesh is generated robustly around each node, even for harsh boundary shapes such as cracks. The algorithm and the data structure of finite element calculation are based on nodes, and parallel computing is realized by dividing a system of equations by the row of the global coefficient matrix. In addition, the node-based finite element method is accompanied by a probabilistic node generation technique, which generates good-natured points for nodes of finite element mesh. Furthermore, the probabilistic node generation technique can be performed in parallel environments. As a numerical example of the proposed method, we perform a compressible flow simulation containing strong shocks. Numerical simulations with frequent mesh refinement, which are required for such kind of analysis, can effectively be performed on parallel processors by using the proposed method. (authors)

  12. [Research Progress and Prospect of Applications of Finite Element Method in Lumbar Spine Biomechanics].

    Science.gov (United States)

    Zhang, Zhenjun; Li, Yang; Liao, Zhenhua; Liu, Weiqiang

    2016-12-01

    Based on the application of finite element analysis in spine biomechanics,the research progress of finite element method applied in lumbar spine mechanics is reviewed and the prospect is forecasted.The related works,including lumbar ontology modeling,clinical application research,and occupational injury and protection,are summarized.The main research areas of finite element method are as follows:new accurate modeling process,the optimized simulation method,diversified clinical effect evaluation,and the clinical application of artificial lumbar disc.According to the recent research progress,the application prospects of finite element method,such as automation and individuation of modeling process,evaluation and analysis of new operation methods and simulation of mechanical damage and dynamic response,are discussed.The purpose of this paper is to provide the theoretical reference and practical guidance for the clinical lumbar problems by reviewing the application of finite element method in the field of the lumbar spine biomechanics.

  13. Node-based finite element method for large-scale adaptive fluid analysis in parallel environments

    International Nuclear Information System (INIS)

    Toshimitsu, Fujisawa; Genki, Yagawa

    2003-01-01

    In this paper, a FEM-based (finite element method) mesh free method with a probabilistic node generation technique is presented. In the proposed method, all computational procedures, from the mesh generation to the solution of a system of equations, can be performed fluently in parallel in terms of nodes. Local finite element mesh is generated robustly around each node, even for harsh boundary shapes such as cracks. The algorithm and the data structure of finite element calculation are based on nodes, and parallel computing is realized by dividing a system of equations by the row of the global coefficient matrix. In addition, the node-based finite element method is accompanied by a probabilistic node generation technique, which generates good-natured points for nodes of finite element mesh. Furthermore, the probabilistic node generation technique can be performed in parallel environments. As a numerical example of the proposed method, we perform a compressible flow simulation containing strong shocks. Numerical simulations with frequent mesh refinement, which are required for such kind of analysis, can effectively be performed on parallel processors by using the proposed method. (authors)

  14. A multilevel correction adaptive finite element method for Kohn-Sham equation

    Science.gov (United States)

    Hu, Guanghui; Xie, Hehu; Xu, Fei

    2018-02-01

    In this paper, an adaptive finite element method is proposed for solving Kohn-Sham equation with the multilevel correction technique. In the method, the Kohn-Sham equation is solved on a fixed and appropriately coarse mesh with the finite element method in which the finite element space is kept improving by solving the derived boundary value problems on a series of adaptively and successively refined meshes. A main feature of the method is that solving large scale Kohn-Sham system is avoided effectively, and solving the derived boundary value problems can be handled efficiently by classical methods such as the multigrid method. Hence, the significant acceleration can be obtained on solving Kohn-Sham equation with the proposed multilevel correction technique. The performance of the method is examined by a variety of numerical experiments.

  15. An Eulerian-Lagrangian finite-element method for modeling crack growth in creeping materials

    International Nuclear Information System (INIS)

    Lee Hae Sung.

    1991-01-01

    This study is concerned with the development of finite-element-solution methods for analysis of quasi-static, ductile crack growth in history-dependent materials. The mixed Eulerian-Langrangian description (ELD) kinematic model is shown to have several desirable properties for modeling inelastic crack growth. Accordingly, a variational statement based on the ELD for history-dependent materials is developed, and a new moving-grid finite-element method based on the variational statement is presented. The moving-grid finite-element method based on the variational statement is presented. The moving-grid finite-element method is applied to the analysis of transient, quasi-static, mode-III crack growth in creeping materials. A generalized Petrov-Galerkin method (GPG) is developed that simultaneously stabilizes the statement to admit L 2 basis functions for the nonlinear strain field. Quasi-static, model-III crack growth in creeping materials under small-scale-yielding (SSY) conditions is considered. The GPG/ELD moving-grid finite-element formulation is used to model a transient crack-growth problem. The GPG/ELD results compare favorably with previously-published numerical results and the asymptotic solutions

  16. Rigid finite element method in analysis of dynamics of offshore structures

    Energy Technology Data Exchange (ETDEWEB)

    Wittbrodt, Edmund [Gdansk Univ. of Technology (Poland); Szczotka, Marek; Maczynski, Andrzej; Wojciech, Stanislaw [Bielsko-Biala Univ. (Poland)

    2013-07-01

    This book describes new methods developed for modelling dynamics of machines commonly used in the offshore industry. These methods are based both on the rigid finite element method, used for the description of link deformations, and on homogeneous transformations and joint coordinates, which is applied to the modelling of multibody system dynamics. In this monograph, the bases of the rigid finite element method and homogeneous transformations are introduced. Selected models for modelling dynamics of offshore devices are then verified both by using commercial software, based on the finite element method, as well as by using additional methods. Examples of mathematical models of offshore machines, such as a gantry crane for Blowout-Preventer (BOP) valve block transportation, a pedestal crane with shock absorber, and pipe laying machinery are presented. Selected problems of control in offshore machinery as well as dynamic optimization in device control are also discussed. Additionally, numerical simulations of pipe-laying operations taking active reel drive into account are shown.

  17. Rigid Finite Element Method in Analysis of Dynamics of Offshore Structures

    CERN Document Server

    Wittbrodt, Edmund; Maczyński, Andrzej; Wojciech, Stanisław

    2013-01-01

    This book describes new methods developed for modelling dynamics of machines commonly used in the offshore industry. These methods are based both on the rigid finite element method, used for the description of link deformations, and on homogeneous transformations and joint coordinates, which is applied to the modelling of multibody system dynamics. In this monograph, the bases of the rigid finite element method  and homogeneous transformations are introduced. Selected models for modelling dynamics of offshore devices are then verified both by using commercial software, based on the finite element method, as well as by using additional methods. Examples of mathematical models of offshore machines, such as a gantry crane for Blowout-Preventer (BOP) valve block transportation, a pedestal crane with shock absorber, and pipe laying machinery are presented. Selected problems of control in offshore machinery as well as dynamic optimization in device control are also discussed. Additionally, numerical simulations of...

  18. Reactor calculation in coarse mesh by finite element method applied to matrix response method

    International Nuclear Information System (INIS)

    Nakata, H.

    1982-01-01

    The finite element method is applied to the solution of the modified formulation of the matrix-response method aiming to do reactor calculations in coarse mesh. Good results are obtained with a short running time. The method is applicable to problems where the heterogeneity is predominant and to problems of evolution in coarse meshes where the burnup is variable in one same coarse mesh, making the cross section vary spatially with the evolution. (E.G.) [pt

  19. Finite element modeling of reinforced concrete beams with a hybrid combination of steel and aramid reinforcement

    International Nuclear Information System (INIS)

    Hawileh, R.A.

    2015-01-01

    Highlights: • Modeling of concrete beams reinforced steel and FRP bars. • Developed finite element models achieved good results. • The models are validated via comparison with experimental results. • Parametric studies are performed. - Abstract: Corrosion of steel bars has an adverse effect on the life-span of reinforced concrete (RC) members and is usually associated with crack development in RC beams. Fiber reinforced polymer (FRP) bars have been recently used to reinforce concrete members in flexure due to their high tensile strength and superior corrosion resistance properties. However, FRP materials are brittle in nature, thus RC beams reinforced with such materials would exhibit a less ductile behavior when compared to similar members reinforced with conventional steel reinforcement. Recently, researchers investigated the performance of concrete beams reinforced with a hybrid combination of steel and Aramid Fiber Reinforced Polymer (AFRP) reinforcement to maintain a reasonable level of ductility in such members. The function of the AFRP bars is to increase the load-carrying capacity, while the function of the steel bars is to ensure ductility of the flexural member upon yielding in tension. This paper presents a three-dimensional (3D) finite element (FE) model that predicted the load versus mid-span deflection response of tested RC beams conducted by other researchers with a hybrid combination of steel and AFRP bars. The developed FE models account for the constituent material nonlinearities and bond–slip behavior between the reinforcing bars and adjacent concrete surfaces. It was concluded that the developed models can accurately capture the behavior and predicts the load-carrying capacity of such RC members. In addition, a parametric study is conducted using the validated models to investigate the effect of AFRP bar size, FRP material type, bond–slip action, and concrete compressive strength on the performance of concrete beams when reinforced

  20. Finite elements volumes methods: applications to the Navier-Stokes equations and convergence results

    International Nuclear Information System (INIS)

    Emonot, P.

    1992-01-01

    In the first chapter are described the equations modeling incompressible fluid flow and a quick presentation of finite volumes method. The second chapter is an introduction to the finite elements volumes method. The box model is described and a method adapted to Navier-Stokes problems is proposed. The third chapter shows a fault analysis of the finite elements volumes method for the Laplacian problem and some examples in one, two, three dimensional calculations. The fourth chapter is an extension of the error analysis of the method for the Navier-Stokes problem

  1. Geometrically Unfitted Finite Element Methods and Applications : Proceedings of the UCL Workshop 2016

    CERN Document Server

    Burman, Erik; Larson, Mats; Olshanskii, Maxim

    2017-01-01

    This book provides a snapshot of the state of the art of the rapidly evolving field of integration of geometric data in finite element computations. The contributions to this volume, based on research presented at the UCL workshop on the topic in January 2016, include three review papers on core topics such as fictitious domain methods for elasticity, trace finite element methods for partial differential equations defined on surfaces, and Nitsche’s method for contact problems. Five chapters present original research articles on related theoretical topics, including Lagrange multiplier methods, interface problems, bulk-surface coupling, and approximation of partial differential equations on moving domains. Finally, two chapters discuss advanced applications such as crack propagation or flow in fractured poroelastic media. This is the first volume that provides a comprehensive overview of the field of unfitted finite element methods, including recent techniques such as cutFEM, traceFEM, ghost penalty, and aug...

  2. Finite element method for radiation heat transfer in multi-dimensional graded index medium

    International Nuclear Information System (INIS)

    Liu, L.H.; Zhang, L.; Tan, H.P.

    2006-01-01

    In graded index medium, ray goes along a curved path determined by Fermat principle, and curved ray-tracing is very difficult and complex. To avoid the complicated and time-consuming computation of curved ray trajectories, a finite element method based on discrete ordinate equation is developed to solve the radiative transfer problem in a multi-dimensional semitransparent graded index medium. Two particular test problems of radiative transfer are taken as examples to verify this finite element method. The predicted dimensionless net radiative heat fluxes are determined by the proposed method and compared with the results obtained by finite volume method. The results show that the finite element method presented in this paper has a good accuracy in solving the multi-dimensional radiative transfer problem in semitransparent graded index medium

  3. A Floating Node Method for the Modelling of Discontinuities Within a Finite Element

    Science.gov (United States)

    Pinho, Silvestre T.; Chen, B. Y.; DeCarvalho, Nelson V.; Baiz, P. M.; Tay, T. E.

    2013-01-01

    This paper focuses on the accurate numerical representation of complex networks of evolving discontinuities in solids, with particular emphasis on cracks. The limitation of the standard finite element method (FEM) in approximating discontinuous solutions has motivated the development of re-meshing, smeared crack models, the eXtended Finite Element Method (XFEM) and the Phantom Node Method (PNM). We propose a new method which has some similarities to the PNM, but crucially: (i) does not introduce an error on the crack geometry when mapping to natural coordinates; (ii) does not require numerical integration over only part of a domain; (iii) can incorporate weak discontinuities and cohesive cracks more readily; (iv) is ideally suited for the representation of multiple and complex networks of (weak, strong and cohesive) discontinuities; (v) leads to the same solution as a finite element mesh where the discontinuity is represented explicitly; and (vi) is conceptually simpler than the PNM.

  4. Efficient improvement of virtual crack extension method by a derivative of the finite element stiffness matrix

    International Nuclear Information System (INIS)

    Ishikawa, H.; Nakano, S.; Yuuki, R.; Chung, N.Y.

    1991-01-01

    In the virtual crack extension method, the stress intensity factor, K, is obtained from the converged value of the energy release rate by the difference of the finite element stiffness matrix when some crack extension are taken. Instead of the numerical difference of the finite element stiffness, a new method to use a direct dirivative of the finite element stiffness matrix with respect to crack length is proposed. By the present method, the results of some example problems, such as uniform tension problems of a square plate with a center crack and a rectangular plate with an internal slant crack, are obtained with high accuracy and good efficiency. Comparing with analytical results, the present values of the stress intensity factors of the problems are obtained with the error that is less than 0.6%. This shows the numerical assurance of the usefulness of the present method. A personal computer program for the analysis is developed

  5. A parallel finite element method for the analysis of crystalline solids

    DEFF Research Database (Denmark)

    Sørensen, N.J.; Andersen, B.S.

    1996-01-01

    A parallel finite element method suitable for the analysis of 3D quasi-static crystal plasticity problems has been developed. The method is based on substructuring of the original mesh into a number of substructures which are treated as isolated finite element models related via the interface...... conditions. The resulting interface equations are solved using a direct solution method. The method shows a good speedup when increasing the number of processors from 1 to 8 and the effective solution of 3D crystal plasticity problems whose size is much too large for a single work station becomes possible....

  6. Numerical Study on Several Stabilized Finite Element Methods for the Steady Incompressible Flow Problem with Damping

    Directory of Open Access Journals (Sweden)

    Jilian Wu

    2013-01-01

    Full Text Available We discuss several stabilized finite element methods, which are penalty, regular, multiscale enrichment, and local Gauss integration method, for the steady incompressible flow problem with damping based on the lowest equal-order finite element space pair. Then we give the numerical comparisons between them in three numerical examples which show that the local Gauss integration method has good stability, efficiency, and accuracy properties and it is better than the others for the steady incompressible flow problem with damping on the whole. However, to our surprise, the regular method spends less CPU-time and has better accuracy properties by using Crout solver.

  7. Preisach hysteresis implementation in reluctance network method, comparison with finite element method

    OpenAIRE

    Allag , Hicham; Kedous-Lebouc , Afef; Latreche , Mohamed E. H.

    2008-01-01

    International audience; In this work, an implementation of static magnetic hysteresis in the reluctance network method is presented and its effectiveness is demonstrated. This implementation is achieved by a succession of iterative steps in the form of algorithm explained and developed for simple examples. However it remains valid for any magnetic circuit. The results obtained are compared to those given by finite element method simulation and essentially the effect of relaxation is discussed...

  8. Parallel algorithms for solving the diffusion equation by finite elements methods and by nodal methods

    International Nuclear Information System (INIS)

    Coulomb, F.

    1989-06-01

    The aim of this work is to study methods for solving the diffusion equation, based on a primal or mixed-dual finite elements discretization and well suited for use on multiprocessors computers; domain decomposition methods are the subject of the main part of this study, the linear systems being solved by the block-Jacobi method. The origin of the diffusion equation is explained in short, and various variational formulations are reminded. A survey of iterative methods is given. The elemination of the flux or current is treated in the case of a mixed method. Numerical tests are performed on two examples of reactors, in order to compare mixed elements and Lagrange elements. A theoretical study of domain decomposition is led in the case of Lagrange finite elements, and convergence conditions for the block-Jacobi method are derived; the dissection decomposition is previously the purpose of a particular numerical analysis. In the case of mixed-dual finite elements, a study is led on examples and is confirmed by numerical tests performed for the dissection decomposition; furthermore, after being justified, decompositions along axes of symmetry are numerically tested. In the case of a decomposition into two subdomains, the dissection decomposition and the decomposition with an integrated interface are compared. Alternative directions methods are defined; the convergence of those relative to Lagrange elements is shown; in the case of mixed elements, convergence conditions are found [fr

  9. Finite element method for one-dimensional rill erosion simulation on a curved slope

    Directory of Open Access Journals (Sweden)

    Lijuan Yan

    2015-03-01

    Full Text Available Rill erosion models are important to hillslope soil erosion prediction and to land use planning. The development of rill erosion models and their use has become increasingly of great concern. The purpose of this research was to develop mathematic models with computer simulation procedures to simulate and predict rill erosion. The finite element method is known as an efficient tool in many other applications than in rill soil erosion. In this study, the hydrodynamic and sediment continuity model equations for a rill erosion system were solved by the Galerkin finite element method and Visual C++ procedures. The simulated results are compared with the data for spatially and temporally measured processes for rill erosion under different conditions. The results indicate that the one-dimensional linear finite element method produced excellent predictions of rill erosion processes. Therefore, this study supplies a tool for further development of a dynamic soil erosion prediction model.

  10. Adaptive mixed finite element methods for Darcy flow in fractured porous media

    KAUST Repository

    Chen, Huangxin; Salama, Amgad; Sun, Shuyu

    2016-01-01

    In this paper, we propose adaptive mixed finite element methods for simulating the single-phase Darcy flow in two-dimensional fractured porous media. The reduced model that we use for the simulation is a discrete fracture model coupling Darcy flows in the matrix and the fractures, and the fractures are modeled by one-dimensional entities. The Raviart-Thomas mixed finite element methods are utilized for the solution of the coupled Darcy flows in the matrix and the fractures. In order to improve the efficiency of the simulation, we use adaptive mixed finite element methods based on novel residual-based a posteriori error estimators. In addition, we develop an efficient upscaling algorithm to compute the effective permeability of the fractured porous media. Several interesting examples of Darcy flow in the fractured porous media are presented to demonstrate the robustness of the algorithm.

  11. SAFE-3D, Stress Analysis of 3-D Composite Structure by Finite Elements Method

    International Nuclear Information System (INIS)

    Cornell, D.C.; Jadhav, K.; Crowell, J.S.

    1969-01-01

    1 - Description of problem or function: SAFE-3D is a finite-element program for the three-dimensional elastic analysis of heterogeneous composite structures. The program uses the following types of finite elements - (1) tetrahedral elements to represent the continuum, (2) triangular plane stress membrane elements to represent inner liner or outer case, and (3) uniaxial tension-compression elements to represent internal reinforcement. The structure can be of arbitrary geometry and have any distribution of material properties, temperatures, surface loadings, and boundary conditions. 2 - Method of solution: The finite-element variational method is used. Equilibrium equations are solved by the alternating component iterative method. 3 - Restrictions on the complexity of the problem - Maxima of: 5000 nodes; 16000 elements. The program cannot be applied to incompressible solids and is not recommended for Poisson's ratio in the range of nu between 0.495 and 0.5

  12. Analysis of global multiscale finite element methods for wave equations with continuum spatial scales

    KAUST Repository

    Jiang, Lijian; Efendiev, Yalchin; Ginting, Victor

    2010-01-01

    In this paper, we discuss a numerical multiscale approach for solving wave equations with heterogeneous coefficients. Our interest comes from geophysics applications and we assume that there is no scale separation with respect to spatial variables. To obtain the solution of these multiscale problems on a coarse grid, we compute global fields such that the solution smoothly depends on these fields. We present a Galerkin multiscale finite element method using the global information and provide a convergence analysis when applied to solve the wave equations. We investigate the relation between the smoothness of the global fields and convergence rates of the global Galerkin multiscale finite element method for the wave equations. Numerical examples demonstrate that the use of global information renders better accuracy for wave equations with heterogeneous coefficients than the local multiscale finite element method. © 2010 IMACS.

  13. Adaptive mixed finite element methods for Darcy flow in fractured porous media

    KAUST Repository

    Chen, Huangxin

    2016-09-21

    In this paper, we propose adaptive mixed finite element methods for simulating the single-phase Darcy flow in two-dimensional fractured porous media. The reduced model that we use for the simulation is a discrete fracture model coupling Darcy flows in the matrix and the fractures, and the fractures are modeled by one-dimensional entities. The Raviart-Thomas mixed finite element methods are utilized for the solution of the coupled Darcy flows in the matrix and the fractures. In order to improve the efficiency of the simulation, we use adaptive mixed finite element methods based on novel residual-based a posteriori error estimators. In addition, we develop an efficient upscaling algorithm to compute the effective permeability of the fractured porous media. Several interesting examples of Darcy flow in the fractured porous media are presented to demonstrate the robustness of the algorithm.

  14. Analysis of global multiscale finite element methods for wave equations with continuum spatial scales

    KAUST Repository

    Jiang, Lijian

    2010-08-01

    In this paper, we discuss a numerical multiscale approach for solving wave equations with heterogeneous coefficients. Our interest comes from geophysics applications and we assume that there is no scale separation with respect to spatial variables. To obtain the solution of these multiscale problems on a coarse grid, we compute global fields such that the solution smoothly depends on these fields. We present a Galerkin multiscale finite element method using the global information and provide a convergence analysis when applied to solve the wave equations. We investigate the relation between the smoothness of the global fields and convergence rates of the global Galerkin multiscale finite element method for the wave equations. Numerical examples demonstrate that the use of global information renders better accuracy for wave equations with heterogeneous coefficients than the local multiscale finite element method. © 2010 IMACS.

  15. Multigrid Finite Element Method in Calculation of 3D Homogeneous and Composite Solids

    Directory of Open Access Journals (Sweden)

    A.D. Matveev

    2016-12-01

    Full Text Available In the present paper, a method of multigrid finite elements to calculate elastic three-dimensional homogeneous and composite solids under static loading has been suggested. The method has been developed based on the finite element method algorithms using homogeneous and composite three-dimensional multigrid finite elements (MFE. The procedures for construction of MFE of both rectangular parallelepiped and complex shapes have been shown. The advantages of MFE are that they take into account, following the rules of the microapproach, heterogeneous and microhomogeneous structures of the bodies, describe the three-dimensional stress-strain state (without any simplifying hypotheses in homogeneous and composite solids, as well as generate small dimensional discrete models and numerical solutions with a high accuracy.

  16. Explicit Dynamic Finite Element Method for Predicting Implosion/Explosion Induced Failure of Shell Structures

    Directory of Open Access Journals (Sweden)

    Jeong-Hoon Song

    2013-01-01

    Full Text Available A simplified implementation of the conventional extended finite element method (XFEM for dynamic fracture in thin shells is presented. Though this implementation uses the same linear combination of the conventional XFEM, it allows for considerable simplifications of the discontinuous displacement and velocity fields in shell finite elements. The proposed method is implemented for the discrete Kirchhoff triangular (DKT shell element, which is one of the most popular shell elements in engineering analysis. Numerical examples for dynamic failure of shells under impulsive loads including implosion and explosion are presented to demonstrate the effectiveness and robustness of the method.

  17. Coupling multipoint flux mixed finite element methodswith continuous Galerkin methods for poroelasticity

    KAUST Repository

    Wheeler, Mary

    2013-11-16

    We study the numerical approximation on irregular domains with general grids of the system of poroelasticity, which describes fluid flow in deformable porous media. The flow equation is discretized by a multipoint flux mixed finite element method and the displacements are approximated by a continuous Galerkin finite element method. First-order convergence in space and time is established in appropriate norms for the pressure, velocity, and displacement. Numerical results are presented that illustrate the behavior of the method. © Springer Science+Business Media Dordrecht 2013.

  18. An adaptive finite element method for simulating surface tension with the gradient theory of fluid interfaces

    KAUST Repository

    Kou, Jisheng; Sun, Shuyu

    2014-01-01

    The gradient theory for the surface tension of simple fluids and mixtures is rigorously analyzed based on mathematical theory. The finite element approximation of surface tension is developed and analyzed, and moreover, an adaptive finite element method based on a physical-based estimator is proposed and it can be coupled efficiently with Newton's method as well. The numerical tests are carried out both to verify the proposed theory and to demonstrate the efficiency of the proposed method. © 2013 Elsevier B.V. All rights reserved.

  19. An adaptive finite element method for simulating surface tension with the gradient theory of fluid interfaces

    KAUST Repository

    Kou, Jisheng

    2014-01-01

    The gradient theory for the surface tension of simple fluids and mixtures is rigorously analyzed based on mathematical theory. The finite element approximation of surface tension is developed and analyzed, and moreover, an adaptive finite element method based on a physical-based estimator is proposed and it can be coupled efficiently with Newton\\'s method as well. The numerical tests are carried out both to verify the proposed theory and to demonstrate the efficiency of the proposed method. © 2013 Elsevier B.V. All rights reserved.

  20. Finite element modeling for buckling analysis of hybrid piezoelectric beam under electromechanical loads

    Directory of Open Access Journals (Sweden)

    Najeeb ur Rahman

    Full Text Available A one-dimensional finite element model for buckling analysis of hybrid piezoelectric beams under electromechanical load is presented in this work. The coupled zigzag theory is used for making the model. The inplane displacement is approximated as a combination of a global third order variation across the thickness with an additional layer wise linear variation. The longitudinal electric field is also taken into account. The deflection field is approximated to account for the transverse normal strain induced by electric fields. Two nodded elements with four mechanical and a variable number of electric degrees of freedom at each node are considered. To meet the convergence requirements for weak integral formulation, cubic Hermite interpolation function is used for deflection and electric potential at the sub-layers and linear interpolation function is used for axial displacement and shear rotation. The expressions for the variationally consistent stiffness matrix and load vector are derived and evaluated in closed form using exact integration. The present 1D-FE formulation of zigzag theory is validated by comparing the results with the analytical solution for simply-supported beam and 2D-FE results obtained using ABAQUS. The finite element model is free of shear locking. The critical buckling parameters are obtained for clamped-free and clamped-clamped hybrid beams. The obtained results are compared with the 2D-FE results to establish the accuracy of the zigzag theory for above boundary conditions. The effect of lamination angle on critical buckling load is also studied.

  1. The Analysis of Quadrupole Magnetic Focusing Effect by Finite Element Method

    International Nuclear Information System (INIS)

    Utaja

    2003-01-01

    Quadrupole magnets will introduce focusing effect to a beam of the charge particle passing parallel to the magnet faces. The focusing effect is need to control the particle beam, so that it is in accordance with necessity requirement stated. This paper describes the analysis of focusing effect on the quadrupole magnetic by the finite element method. The finite element method in this paper is used for solve the potential distribution of magnetic field. If the potential magnetic field distribution in every node have known, a charge particle trajectory can be traced. This charge particle trajectory will secure the focusing effect of the quadrupole magnets. (author)

  2. Simulation of three-dimensional, time-dependent, incompressible flows by a finite element method

    International Nuclear Information System (INIS)

    Chan, S.T.; Gresho, P.M.; Lee, R.L.; Upson, C.D.

    1981-01-01

    A finite element model has been developed for simulating the dynamics of problems encountered in atmospheric pollution and safety assessment studies. The model is based on solving the set of three-dimensional, time-dependent, conservation equations governing incompressible flows. Spatial discretization is performed via a modified Galerkin finite element method, and time integration is carried out via the forward Euler method (pressure is computed implicitly, however). Several cost-effective techniques (including subcycling, mass lumping, and reduced Gauss-Legendre quadrature) which have been implemented are discussed. Numerical results are presented to demonstrate the applicability of the model

  3. The Spectral/hp-Finite Element Method for Partial Differential Equations

    DEFF Research Database (Denmark)

    Engsig-Karup, Allan Peter

    2009-01-01

    dimensions. In the course the chosen programming environment is Matlab, however, this is by no means a necessary requirement. The mathematical level needed to grasp the details of this set of notes requires an elementary background in mathematical analysis and linear algebra. Each chapter is supplemented......This set of lecture notes provides an elementary introduction to both the classical Finite Element Method (FEM) and the extended Spectral/$hp$-Finite Element Method for solving Partial Differential Equations (PDEs). Many problems in science and engineering can be formulated mathematically...

  4. Discontinuous Galerkin finite element method with anisotropic local grid refinement for inviscid compressible flows

    NARCIS (Netherlands)

    van der Vegt, Jacobus J.W.; van der Ven, H.

    1998-01-01

    A new discretization method for the three-dimensional Euler equations of gas dynamics is presented, which is based on the discontinuous Galerkin finite element method. Special attention is paid to an efficient implementation of the discontinuous Galerkin method that minimizes the number of flux

  5. A Finite Element Removal Method for 3D Topology Optimization

    Directory of Open Access Journals (Sweden)

    M. Akif Kütük

    2013-01-01

    Full Text Available Topology optimization provides great convenience to designers during the designing stage in many industrial applications. With this method, designers can obtain a rough model of any part at the beginning of a designing stage by defining loading and boundary conditions. At the same time the optimization can be used for the modification of a product which is being used. Lengthy solution time is a disadvantage of this method. Therefore, the method cannot be widespread. In order to eliminate this disadvantage, an element removal algorithm has been developed for topology optimization. In this study, the element removal algorithm is applied on 3-dimensional parts, and the results are compared with the ones available in the related literature. In addition, the effects of the method on solution times are investigated.

  6. Assembly of finite element methods on graphics processors

    KAUST Repository

    Cecka, Cris; Lew, Adrian J.; Darve, E.

    2010-01-01

    in assembling and solving sparse linear systems with NVIDIA GPUs and the Compute Unified Device Architecture (CUDA) are created and analyzed. Multiple strategies for efficient use of global, shared, and local memory, methods to achieve memory coalescing

  7. Convergence of a residual based artificial viscosity finite element method

    KAUST Repository

    Nazarov, Murtazo

    2013-01-01

    . We prove convergence of the method, applied to a scalar conservation law in two space dimensions, toward an unique entropy solution for implicit time stepping schemes. © 2012 Elsevier B.V. All rights reserved.

  8. Time-independent hybrid enrichment for finite element solution of transient conduction–radiation in diffusive grey media

    Energy Technology Data Exchange (ETDEWEB)

    Mohamed, M. Shadi, E-mail: m.s.mohamed@durham.ac.uk [School of Engineering and Computing Sciences, University of Durham, South Road, Durham DH1 3LE (United Kingdom); Seaid, Mohammed; Trevelyan, Jon [School of Engineering and Computing Sciences, University of Durham, South Road, Durham DH1 3LE (United Kingdom); Laghrouche, Omar [Institute for Infrastructure and Environment, Heriot-Watt University, Edinburgh EH14 4AS (United Kingdom)

    2013-10-15

    We investigate the effectiveness of the partition-of-unity finite element method for transient conduction–radiation problems in diffusive grey media. The governing equations consist of a semi-linear transient heat equation for the temperature field and a stationary diffusion approximation to the radiation in grey media. The coupled equations are integrated in time using a semi-implicit method in the finite element framework. We show that for the considered problems, a combination of hyperbolic and exponential enrichment functions based on an approximation of the boundary layer leads to improved accuracy compared to the conventional finite element method. It is illustrated that this approach can be more efficient than using h adaptivity to increase the accuracy of the finite element method near the boundary walls. The performance of the proposed partition-of-unity method is analyzed on several test examples for transient conduction–radiation problems in two space dimensions.

  9. A 3D analysis of reinforced concrete structures by the finite element method

    International Nuclear Information System (INIS)

    Claure, J.D.; Campos Filho, A.

    1995-01-01

    Fundamental features of a computational model, based on the finite element methods, for the analysis of concrete structure are presented. The study comprehends short and long-term loading situations, where creep and shrinkage in concrete are considered. The reinforcement is inserted in the finite element model using an embedded model. A smeared crack model is used for the concrete cracking, which considers the contribution of concrete between cracks and allows the closing the cracks closing. The computational code MPGS (Multi-Purpose Graphic System) is used, to make easy the analysis and interpretation of the numeric results. (author). 8 refs., 4 figs

  10. An adaptative finite element method for turbulent flow simulations

    International Nuclear Information System (INIS)

    Arnoux-Guisse, F.; Bonnin, O.; Leal de Sousa, L.; Nicolas, G.

    1995-05-01

    After outlining the space and time discretization methods used in the N3S thermal hydraulic code developed at EDF/NHL, we describe the possibilities of the peripheral version, the Adaptative Mesh, which comprises two separate parts: the error indicator computation and the development of a module subdividing elements usable by the solid dynamics code ASTER and the electromagnetism code TRIFOU also developed by R and DD. The error indicators implemented in N3S are described. They consist of a projection indicator quantifying the space error in laminar or turbulent flow calculations and a Navier-Stokes residue indicator calculated on each element. The method for subdivision of triangles into four sub-triangles and tetrahedra into eight sub-tetrahedra is then presented with its advantages and drawbacks. It is illustrated by examples showing the efficiency of the module. The last concerns the 2 D case of flow behind a backward-facing step. (authors). 9 refs., 5 figs., 1 tab

  11. Modal representation of geometrically nonlinear behavior by the finite element method

    International Nuclear Information System (INIS)

    Nagy, D.A.

    1977-01-01

    A method is presented for representing mild geometrically nonlinear static behavior of thin-type structures, within the finite element method, in terms of linear elastic and linear (bifurcation) buckling analysis results for structural loading or geometry situations which violate the idealized restrictive (perfect) interpretation of linear behavior up to bifurcation. (Auth.)

  12. A Lagrangian finite element method for the simulation of flow of non-newtonian liquids

    DEFF Research Database (Denmark)

    Hassager, Ole; Bisgaard, C

    1983-01-01

    A Lagrangian method for the simulation of flow of non-Newtonian liquids is implemented. The fluid mechanical equations are formulated in the form of a variational principle, and a discretization is performed by finite elements. The method is applied to the slow of a contravariant convected Maxwell...

  13. A Gradient Weighted Moving Finite-Element Method with Polynomial Approximation of Any Degree

    Directory of Open Access Journals (Sweden)

    Ali R. Soheili

    2009-01-01

    Full Text Available A gradient weighted moving finite element method (GWMFE based on piecewise polynomial of any degree is developed to solve time-dependent problems in two space dimensions. Numerical experiments are employed to test the accuracy and effciency of the proposed method with nonlinear Burger equation.

  14. The discontinuous finite element method for solving Eigenvalue problems of transport equations

    International Nuclear Information System (INIS)

    Yang, Shulin; Wang, Ruihong

    2011-01-01

    In this paper, the multigroup transport equations for solving the eigenvalues λ and K_e_f_f under two dimensional cylindrical coordinate are discussed. Aimed at the equations, the discretizing way combining discontinuous finite element method (DFE) with discrete ordinate method (SN) is developed, and the iterative algorithms and steps are studied. The numerical results show that the algorithms are efficient. (author)

  15. A finite element method for calculating the 3-dimensional magnetic fields of cyclotron

    International Nuclear Information System (INIS)

    Zhao Xiaofeng

    1986-01-01

    A series of formula of the finite element method (scalar potential) for calculating the three-dimensional magnetic field of the main magnet of a sector focused cyclotron, and the realization method of the periodic boundary conditions in the code are given

  16. Finite element modelling of concrete beams reinforced with hybrid fiber reinforced bars

    Science.gov (United States)

    Smring, Santa binti; Salleh, Norhafizah; Hamid, NoorAzlina Abdul; Majid, Masni A.

    2017-11-01

    Concrete is a heterogeneous composite material made up of cement, sand, coarse aggregate and water mixed in a desired proportion to obtain the required strength. Plain concrete does not with stand tension as compared to compression. In order to compensate this drawback steel reinforcement are provided in concrete. Now a day, for improving the properties of concrete and also to take up tension combination of steel and glass fibre-reinforced polymer (GFRP) bars promises favourable strength, serviceability, and durability. To verify its promise and support design concrete structures with hybrid type of reinforcement, this study have investigated the load-deflection behaviour of concrete beams reinforced with hybrid GFRP and steel bars by using ATENA software. Fourteen beams, including six control beams reinforced with only steel or only GFRP bars, were analysed. The ratio and the ordinate of GFRP to steel were the main parameters investigated. The behaviour of these beams was investigated via the load-deflection characteristics, cracking behaviour and mode of failure. Hybrid GFRP-Steel reinforced concrete beam showed the improvement in both ultimate capacity and deflection concomitant to the steel reinforced concrete beam. On the other hand, finite element (FE) modelling which is ATENA were validated with previous experiment and promising the good result to be used for further analyses and development in the field of present study.

  17. Research of carbon composite material for nonlinear finite element method

    Science.gov (United States)

    Kim, Jung Ho; Garg, Mohit; Kim, Ji Hoon

    2012-04-01

    Works on the absorption of collision energy in the structural members are carried out widely with various material and cross-sections. And, with ever increasing safety concerns, they are presently applied in various fields including railroad trains, air crafts and automobiles. In addition to this, problem of lighting structural members became important subject by control of exhaust gas emission, fuel economy and energy efficiency. CFRP(Carbon Fiber Reinforced Plastics) usually is applying the two primary structural members because of different result each design parameter as like stacking thickness, stacking angle, moisture absorption ect. We have to secure the data for applying primary structural members. But it always happens to test design parameters each for securing the data. So, it has much more money and time. We can reduce the money and the time, if can ensure the CFRP material properties each design parameters. In this study, we experiment the coupon test each tension, compression and shear using CFRP prepreg sheet and simulate non-linear analyze at the sources - test result, Caron longitudinal modulus and matrix poisson's ratio using GENOAMQC is specialized at Composite analysis. And then we predict the result that specimen manufacture changing stacking angle and experiment in such a way of test method using GENOA-MCQ.

  18. An implicit finite element method for discrete dynamic fracture

    Energy Technology Data Exchange (ETDEWEB)

    Gerken, Jobie M. [Colorado State Univ., Fort Collins, CO (United States)

    1999-12-01

    A method for modeling the discrete fracture of two-dimensional linear elastic structures with a distribution of small cracks subject to dynamic conditions has been developed. The foundation for this numerical model is a plane element formulated from the Hu-Washizu energy principle. The distribution of small cracks is incorporated into the numerical model by including a small crack at each element interface. The additional strain field in an element adjacent to this crack is treated as an externally applied strain field in the Hu-Washizu energy principle. The resulting stiffness matrix is that of a standard plane element. The resulting load vector is that of a standard plane element with an additional term that includes the externally applied strain field. Except for the crack strain field equations, all terms of the stiffness matrix and load vector are integrated symbolically in Maple V so that fully integrated plane stress and plane strain elements are constructed. The crack strain field equations are integrated numerically. The modeling of dynamic behavior of simple structures was demonstrated within acceptable engineering accuracy. In the model of axial and transverse vibration of a beam and the breathing mode of vibration of a thin ring, the dynamic characteristics were shown to be within expected limits. The models dominated by tensile forces (the axially loaded beam and the pressurized ring) were within 0.5% of the theoretical values while the shear dominated model (the transversely loaded beam) is within 5% of the calculated theoretical value. The constant strain field of the tensile problems can be modeled exactly by the numerical model. The numerical results should therefore, be exact. The discrepancies can be accounted for by errors in the calculation of frequency from the numerical results. The linear strain field of the transverse model must be modeled by a series of constant strain elements. This is an approximation to the true strain field, so some

  19. 3-dimensional earthquake response analysis of embedded reactor building using hybrid model of boundary elements and finite elements

    International Nuclear Information System (INIS)

    Muto, K.; Motosaka, M.; Kamata, M.; Masuda, K.; Urao, K.; Mameda, T.

    1985-01-01

    In order to investigate the 3-dimensional earthquake response characteristics of an embedded structure with consideration for soil-structure interaction, the authors have developed an analytical method using 3-dimensional hybrid model of boundary elements (BEM) and finite elements (FEM) and have conducted a dynamic analysis of an actual nuclear reactor building. This paper describes a comparative study between two different embedment depths in soil as elastic half-space. As the results, it was found that the earthquake response intensity decreases with the increase of the embedment depth and that this method was confirmed to be effective for investigating the 3-D response characteristics of embedded structures such as deflection pattern of each floor level, floor response spectra in high frequency range. (orig.)

  20. INVESTIGATION OF HYDROELASTIC BEHAVIOR OF A PONTOON-TYPE VLFS DURING UNSTEADY EXTERNAL LOADS IN WAVE CONDITION USING A HYBRID FINITE ELEMENT-BOUNDARY ELEMENT (FE-ME METHOD

    Directory of Open Access Journals (Sweden)

    Yong Cheng

    2017-01-01

    Full Text Available The hydroelastic behaviour of a pontoon-type VLFS subjected to unsteady external loads in wave condition is investigated in the context of the time-domain modal expansion theory, in which the boundary element method (BEM based on time domain Kelvin sources is used for hydrodynamic forces and the finite element method (FEM is adopted for solving the deflections of the VLFS. In this analysis, the interpolation-tabulation scheme is applied to assess rapidly and accurately the free-surface Green function in finite water depth, and the boundary integral equation of a quarter VLFS model is further established taking advantage of symmetry of flow field and structure. The VLFS is modelled as an equivalent solid plate based on the Mindlin plate theory. The coupled plate-water model is performed to determine the wave-induced responses and transient behaviour under external loads such as a huge mass impact onto the structure and moving loads of an airplane, respectively. These results are verified with existing numerical results and experimental test. Then, the developed numerical tools are used in the study of the combined action taking into account of the mass drop/airplane landing as well as forward or reverse incident wave action. The deflections of the runway, the time history of vertical positions and the trajectory of the airplane are also presented through a systematic time-domain simulation, which illustrates the usefulness of the presently developed numerical solutions.

  1. Vibrations And Deformations Of Moderately Thick Plates In Stochastic Finite Element Method

    Directory of Open Access Journals (Sweden)

    Grzywiński Maksym

    2015-12-01

    Full Text Available The paper deals with some chosen aspects of stochastic dynamical analysis of moderately thick plates. The discretization of the governing equations is described by the finite element method. The main aim of the study is to provide the generalized stochastic perturbation technique based on classical Taylor expansion with a single random variable.

  2. Coupled convective and conductive heat transfer by up-wind finite element method

    International Nuclear Information System (INIS)

    Kushwaha, H.S.

    1981-01-01

    Some of concepts relating to finite element formulation of the Navier-Stoke's equations using mixed formulation and Penality formulation have been discussed. The two different approaches for solution of nonlinear differential equations for two different types of formulation have been described. Incremental Newton Raphson method can also be applied to mixed formulation. (author)

  3. A multipoint flux mixed finite element method on distorted quadrilaterals and hexahedra

    KAUST Repository

    Wheeler, Mary; Xue, Guangri; Yotov, Ivan

    2011-01-01

    In this paper, we develop a new mixed finite element method for elliptic problems on general quadrilateral and hexahedral grids that reduces to a cell-centered finite difference scheme. A special non-symmetric quadrature rule is employed that yields

  4. Stress analysis for shells with double curvature by finite element method

    International Nuclear Information System (INIS)

    Mueller, A.

    1981-08-01

    A simple triangular finite element for plates and shells, is presented. Since the rotation fields are assumed independent of the displacement fields, simple shape functions of second and third degree were used. An implicit penalty method allows one to solve thin shell problems since the Kirchoff-Love hypothesis are automatically satisfied. (Author) [pt

  5. Multiscale Model Reduction with Generalized Multiscale Finite Element Methods in Geomathematics

    KAUST Repository

    Efendiev, Yalchin R.; Presho, Michael

    2015-01-01

    In this chapter, we discuss multiscale model reduction using Generalized Multiscale Finite Element Methods (GMsFEM) in a number of geomathematical applications. GMsFEM has been recently introduced (Efendiev et al. 2012) and applied to various problems. In the current chapter, we consider some of these applications and outline the basic methodological concepts.

  6. Applications of mixed Petrov-Galerkin finite element methods to transient and steady state creep analysis

    International Nuclear Information System (INIS)

    Guerreiro, J.N.C.; Loula, A.F.D.

    1988-12-01

    The mixed Petrov-Galerkin finite element formulation is applied to transiente and steady state creep problems. Numerical analysis has shown additional stability of this method compared to classical Galerkin formulations. The accuracy of the new formulation is confirmed in some representative examples of two dimensional and axisymmetric problems. (author) [pt

  7. Use of the finite element displacement method to solve solid-fluid interaction vibration problems

    International Nuclear Information System (INIS)

    Brown, S.J.; Hsu, K.H.

    1978-01-01

    It is shown through comparison to experimental, theoretical, and other finite element formulations that the finite element displacement method can solve accurately and economically a certain class of solid-fluid eigenvalue problems. The problems considered are small displacements in the absence of viscous damping and are 2-D and 3-D in nature. In this study the advantages of the finite element method (in particular the displacement formulation) is apparent in that a large structure consisting of the cylinders, support flanges, fluid, and other experimental boundaries could be modeled to yield good correlation to experimental data. The ability to handle large problems with standard structural programs is the key advantage of the displacement fluid method. The greatest obstacle is the inability of the analyst to inhibit those rotational degrees of freedom that are unnecessary to his fluid-structure vibration problem. With judicious use of element formulation, boundary conditions and modeling, the displacement finite element method can be successfully used to predict solid-fluid response to vibration and seismic loading

  8. On the validation of the particle finite element method (PFEM) for complex engineering fluid flow problems

    OpenAIRE

    Larese De Tetto, Antonia; Rossi, Riccardo; Idelsohn Barg, Sergio Rodolfo; Oñate Ibáñez de Navarra, Eugenio

    2006-01-01

    Several comparisons between experiments and computational models are presented in the following pages. The objective is to verify the ability of Particle Finite Elements Methods (PFEM) [1] [2] to reproduce hydraulic phenomena involving large deformation of the fluid domain [4]. Peer Reviewed

  9. 2D deterministic radiation transport with the discontinuous finite element method

    International Nuclear Information System (INIS)

    Kershaw, D.; Harte, J.

    1993-01-01

    This report provides a complete description of the analytic and discretized equations for 2D deterministic radiation transport. This computational model has been checked against a wide variety of analytic test problems and found to give excellent results. We make extensive use of the discontinuous finite element method

  10. Stress and Deformation Analysis in Base Isolation Elements Using the Finite Element Method

    Directory of Open Access Journals (Sweden)

    Claudiu Iavornic

    2011-01-01

    Full Text Available In Modern tools as Finite Element Method can be used to study the behavior of elastomeric isolation systems. The simulation results obtained in this way provide a large series of data about the behavior of elastomeric isolation bearings under different types of loads and help in taking right decisions regarding geometrical optimizations needed for improve such kind of devices.

  11. Elastically deformable models based on the finite element method accelerated on graphics hardware using CUDA

    NARCIS (Netherlands)

    Verschoor, M.; Jalba, A.C.

    2012-01-01

    Elastically deformable models have found applications in various areas ranging from mechanical sciences and engineering to computer graphics. The method of Finite Elements has been the tool of choice for solving the underlying PDE, when accuracy and stability of the computations are more important

  12. Laminar forced convective/conductive heat transfer by finite element method

    International Nuclear Information System (INIS)

    Kushwaha, H.S.; Kakodkar, A.

    1982-01-01

    The present study is directed at developing a finite element computer program for solution of decoupled convective/conductive heat transfer problems. Penalty function formulation has been used to solve momentum equations and subsequently transient energy equation is solved using modified Crank-Nicolson method. The optimal upwinding scheme has been employed in energy equation to remove oscillations at high Peclet number. (author)

  13. SQA of finite element method (FEM) codes used for analyses of pit storage/transport packages

    Energy Technology Data Exchange (ETDEWEB)

    Russel, E. [Lawrence Livermore National Lab., CA (United States)

    1997-11-01

    This report contains viewgraphs on the software quality assurance of finite element method codes used for analyses of pit storage and transport projects. This methodology utilizes the ISO 9000-3: Guideline for application of 9001 to the development, supply, and maintenance of software, for establishing well-defined software engineering processes to consistently maintain high quality management approaches.

  14. Time-integration methods for finite element discretisations of the second-order Maxwell equation

    NARCIS (Netherlands)

    Sarmany, D.; Bochev, Mikhail A.; van der Vegt, Jacobus J.W.

    This article deals with time integration for the second-order Maxwell equations with possibly non-zero conductivity in the context of the discontinuous Galerkin finite element method DG-FEM) and the $H(\\mathrm{curl})$-conforming FEM. For the spatial discretisation, hierarchic

  15. A study on discontinuous Galerkin finite element methods for elliptic problems

    NARCIS (Netherlands)

    Janivita Joto Sudirham, J.J.S.; Sudirham, J.J.; van der Vegt, Jacobus J.W.; van Damme, Rudolf M.J.

    2003-01-01

    In this report we study several approaches of the discontinuous Galerkin finite element methods for elliptic problems. An important aspect in these formulations is the use of a lifting operator, for which we present an efficient numerical approximation technique. Numerical experiments for two

  16. Multiscale Model Reduction with Generalized Multiscale Finite Element Methods in Geomathematics

    KAUST Repository

    Efendiev, Yalchin R.

    2015-09-02

    In this chapter, we discuss multiscale model reduction using Generalized Multiscale Finite Element Methods (GMsFEM) in a number of geomathematical applications. GMsFEM has been recently introduced (Efendiev et al. 2012) and applied to various problems. In the current chapter, we consider some of these applications and outline the basic methodological concepts.

  17. An Introduction of Finite Element Method in the Engineering Teaching at the University of Camaguey.

    Science.gov (United States)

    Napoles, Elsa; Blanco, Ramon; Jimenez, Rafael; Mc.Pherson, Yoanka

    This paper illuminates experiences related to introducing finite element methods (FEM) in mechanical and civil engineering courses at the University of Camaguey in Cuba and provides discussion on using FEM in postgraduate courses for industry engineers. Background information on the introduction of FEM in engineering teaching is focused on…

  18. Application of finite element method in the solution of transport equation

    International Nuclear Information System (INIS)

    Maiorino, J.R.; Vieira, W.J.

    1985-01-01

    It is presented the application of finite element method in the solution of second order transport equation (self-adjoint) for the even parity flux. The angular component is treated by expansion in Legendre polinomials uncoupled of the spatial component, which is approached by an expansion in base functions, interpolated in each spatial element. (M.C.K.) [pt

  19. Comparison of ALE finite element method and adaptive smoothed finite element method for the numerical simulation of friction stir welding

    NARCIS (Netherlands)

    van der Stelt, A.A.; Bor, Teunis Cornelis; Geijselaers, Hubertus J.M.; Quak, W.; Akkerman, Remko; Huetink, Han; Menary, G

    2011-01-01

    In this paper, the material flow around the pin during friction stir welding (FSW) is simulated using a 2D plane strain model. A pin rotates without translation in a disc with elasto-viscoplastic material properties and the outer boundary of the disc is clamped. Two numerical methods are used to

  20. Application of the finite element method to the neutron transport equation

    International Nuclear Information System (INIS)

    Martin, W.R.

    1976-01-01

    This paper examines the theoretical and practical application of the finite element method to the neutron transport equation. It is shown that in principle the system of equations obtained by application of the finite element method can be solved with certain physical restrictions concerning the criticality of the medium. The convergence of this approximate solution to the exact solution with mesh refinement is examined, and a non-optical estimate of the convergence rate is obtained analytically. It is noted that the numerical results indicate a faster convergence rate and several approaches to obtain this result analytically are outlined. The practical application of the finite element method involved the development of a computer code capable of solving the neutron transport equation in 1-D plane geometry. Vacuum, reflecting, or specified incoming boundary conditions may be analyzed, and all are treated as natural boundary conditions. The time-dependent transport equation is also examined and it is shown that the application of the finite element method in conjunction with the Crank-Nicholson time discretization method results in a system of algebraic equations which is readily solved. Numerical results are given for several critical slab eigenvalue problems, including anisotropic scattering, and the results compare extremely well with benchmark results. It is seen that the finite element code is more efficient than a standard discrete ordinates code for certain problems. A problem with severe heterogeneities is considered and it is shown that the use of discontinuous spatial and angular elements results in a marked improvement in the results. Finally, time-dependent problems are examined and it is seen that the phenomenon of angular mode separation makes the numerical treatment of the transport equation in slab geometry a considerable challenge, with the result that the angular mesh has a dominant effect on obtaining acceptable solutions

  1. Hybrid finite element/waveguide mode analysis of passive RF devices

    Science.gov (United States)

    McGrath, Daniel T.

    1993-07-01

    A numerical solution for time-harmonic electromagnetic fields in two-port passive radio frequency (RF) devices has been developed, implemented in a computer code, and validated. Vector finite elements are used to represent the fields in the device interior, and field continuity across waveguide apertures is enforced by matching the interior solution to a sum of waveguide modes. Consequently, the mesh may end at the aperture instead of extending into the waveguide. The report discusses the variational formulation and its reduction to a linear system using Galerkin's method. It describes the computer code, including its interface to commercial CAD software used for geometry generation. It presents validation results for waveguide discontinuities, coaxial transitions, and microstrip circuits. They demonstrate that the method is an effective and versatile tool for predicting the performance of passive RF devices.

  2. Robust mixed finite element methods to deal with incompressibility in finite strain in an industrial framework

    International Nuclear Information System (INIS)

    Al-Akhrass, Dina

    2014-01-01

    Simulations in solid mechanics exhibit several difficulties, as dealing with incompressibility, with nonlinearities due to finite strains, contact laws, or constitutive laws. The basic motivation of our work is to propose efficient finite element methods capable of dealing with incompressibility in finite strain context, and using elements of low order. During the three last decades, many approaches have been proposed in the literature to overcome the incompressibility problem. Among them, mixed formulations offer an interesting theoretical framework. In this work, a three-field mixed formulation (displacement, pressure, volumetric strain) is investigated. In some cases, this formulation can be condensed in a two-field (displacement - pressure) mixed formulation. However, it is well-known that the discrete problem given by the Galerkin finite element technique, does not inherit the 'inf-sup' stability condition from the continuous problem. Hence, the interpolation orders in displacement and pressure have to be chosen in a way to satisfy the Brezzi-Babuska stability conditions when using Galerkin approaches. Interpolation orders must be chosen so as to satisfy this condition. Two possibilities are considered: to use stable finite element satisfying this requirement, or to use finite element that does not satisfy this condition, and to add terms stabilizing the FE Galerkin formulation. The latter approach allows the use of equal order interpolation. In this work, stable finite element P2/P1 and P2/P1/P1 are used as reference, and compared to P1/P1 and P1/P1/P1 formulations stabilized with a bubble function or with a VMS method (Variational Multi-Scale) based on a sub-grid-space orthogonal to the FE space. A finite strain model based on logarithmic strain is selected. This approach is extended to three and two field mixed formulations with stable or stabilized elements. These approaches are validated on academic cases and used on industrial cases. (author)

  3. Adaptive Multilevel Methods with Local Smoothing for $H^1$- and $H^{\\mathrm{curl}}$-Conforming High Order Finite Element Methods

    KAUST Repository

    Janssen, Bä rbel; Kanschat, Guido

    2011-01-01

    A multilevel method on adaptive meshes with hanging nodes is presented, and the additional matrices appearing in the implementation are derived. Smoothers of overlapping Schwarz type are discussed; smoothing is restricted to the interior of the subdomains refined to the current level; thus it has optimal computational complexity. When applied to conforming finite element discretizations of elliptic problems and Maxwell equations, the method's convergence rates are very close to those for the nonadaptive version. Furthermore, the smoothers remain efficient for high order finite elements. We discuss the implementation in a general finite element code using the example of the deal.II library. © 2011 Societ y for Industrial and Applied Mathematics.

  4. Comparative research of finite element methods for perforated structures of nuclear power plant primary equipment

    International Nuclear Information System (INIS)

    Xiong Guangming; Deng Xiaoyun; Jin Ting

    2013-01-01

    Many perforated structures are used for nuclear power plant primary equipment, and they are complex, and have various forms. In order to explore the analysis and evaluation method, this paper used finite element method and equivalent analytic method to do the comparative analysis of perforated structures. The paper considered the main influence factors (including perforated forms, arrangements, and etc.), obtaining the systematic analysis methods of perforated structures. (authors)

  5. Application of a circulation model in bays, using the finite element method

    International Nuclear Information System (INIS)

    Soares, R.

    1984-01-01

    The circulation of water was studied in different areas in 'Baia de Sepetiba', in the State of Rio de Janeiro, Brazil. The method applied on the mathematical studies was Galerkin's method and ths originated a system of equations which described all the water motions. The Finite Element method used, had great sensitivity to modifications of input data. Comparison between computed and measured data was made in order to verify the conclusions. (M.A.C.) [pt

  6. Development of three-dimensional transport code by the double finite element method

    International Nuclear Information System (INIS)

    Fujimura, Toichiro

    1985-01-01

    Development of a three-dimensional neutron transport code by the double finite element method is described. Both of the Galerkin and variational methods are adopted to solve the problem, and then the characteristics of them are compared. Computational results of the collocation method, developed as a technique for the vaviational one, are illustrated in comparison with those of an Ssub(n) code. (author)

  7. Finite element method for solving Kohn-Sham equations based on self-adaptive tetrahedral mesh

    International Nuclear Information System (INIS)

    Zhang Dier; Shen Lihua; Zhou Aihui; Gong Xingao

    2008-01-01

    A finite element (FE) method with self-adaptive mesh-refinement technique is developed for solving the density functional Kohn-Sham equations. The FE method adopts local piecewise polynomials basis functions, which produces sparsely structured matrices of Hamiltonian. The method is well suitable for parallel implementation without using Fourier transform. In addition, the self-adaptive mesh-refinement technique can control the computational accuracy and efficiency with optimal mesh density in different regions

  8. A finite element method for a time dependence soil-structure interactions calculations

    International Nuclear Information System (INIS)

    Ni, X.M.; Gantenbein, F.; Petit, M.

    1989-01-01

    The method which is proposed is based on a finite element modelisation for the soil and the structure and a time history calculation. It has been developed for plane and axisymmetric geometries. The principle of this method will be presented, then applications will be given, first to a linear calculation for which results will be compared to those obtained by standard methods. Then results for a non linear behavior will be described [fr

  9. An object-oriented class design for the generalized finite element method programming

    Directory of Open Access Journals (Sweden)

    Dorival Piedade Neto

    Full Text Available The Generalized Finite Element Method (GFEM is a numerical method based on the Finite Element Method (FEM, presenting as its main feature the possibility of improving the solution by means of local enrichment functions. In spite of its advantages, the method demands a complex data structure, which can be especially benefited by the Object-Oriented Programming (OOP. Even though the OOP for the traditional FEM has been extensively described in the technical literature, specific design issues related to the GFEM are yet little discussed and not clearly defined. In the present article it is described an Object-Oriented (OO class design for the GFEM, aiming to achieve a computational code that presents a flexible class structure, circumventing the difficulties associated to the method characteristics. The proposed design is evaluated by means of some numerical examples, computed using a code implemented in Python programming language.

  10. Evaluation of stable crack growth by using the finite element method

    International Nuclear Information System (INIS)

    Saarenheimo, A.

    1996-01-01

    In the study the analysis of stable crack growth by using the finite element method is considered. The results of numerical analyses are compared with the corresponding experimental results. The applications are reported in three separate papers enclosed at the end of the work. The first paper deals with the numerical analysis of a full scale pressure vessel test. The second and the third paper concern numerical analyses of fracture mechanical test specimens. In the literature study section of the work basic theories of fracture mechanics and common crack growth criteria are presented. The balance equations needed are written based on thermodynamical considerations. Physical interpretations of the energy release rate are briefly considered. Numerical calculation methods for determining the J-integral values are presented. The virtual crack extension method is used in the numerical examples. Also the Domain integral method and its implementation in the finite element method are described. (orig.) (70 refs.)

  11. The intervals method: a new approach to analyse finite element outputs using multivariate statistics

    Directory of Open Access Journals (Sweden)

    Jordi Marcé-Nogué

    2017-10-01

    Full Text Available Background In this paper, we propose a new method, named the intervals’ method, to analyse data from finite element models in a comparative multivariate framework. As a case study, several armadillo mandibles are analysed, showing that the proposed method is useful to distinguish and characterise biomechanical differences related to diet/ecomorphology. Methods The intervals’ method consists of generating a set of variables, each one defined by an interval of stress values. Each variable is expressed as a percentage of the area of the mandible occupied by those stress values. Afterwards these newly generated variables can be analysed using multivariate methods. Results Applying this novel method to the biological case study of whether armadillo mandibles differ according to dietary groups, we show that the intervals’ method is a powerful tool to characterize biomechanical performance and how this relates to different diets. This allows us to positively discriminate between specialist and generalist species. Discussion We show that the proposed approach is a useful methodology not affected by the characteristics of the finite element mesh. Additionally, the positive discriminating results obtained when analysing a difficult case study suggest that the proposed method could be a very useful tool for comparative studies in finite element analysis using multivariate statistical approaches.

  12. The intervals method: a new approach to analyse finite element outputs using multivariate statistics

    Science.gov (United States)

    De Esteban-Trivigno, Soledad; Püschel, Thomas A.; Fortuny, Josep

    2017-01-01

    Background In this paper, we propose a new method, named the intervals’ method, to analyse data from finite element models in a comparative multivariate framework. As a case study, several armadillo mandibles are analysed, showing that the proposed method is useful to distinguish and characterise biomechanical differences related to diet/ecomorphology. Methods The intervals’ method consists of generating a set of variables, each one defined by an interval of stress values. Each variable is expressed as a percentage of the area of the mandible occupied by those stress values. Afterwards these newly generated variables can be analysed using multivariate methods. Results Applying this novel method to the biological case study of whether armadillo mandibles differ according to dietary groups, we show that the intervals’ method is a powerful tool to characterize biomechanical performance and how this relates to different diets. This allows us to positively discriminate between specialist and generalist species. Discussion We show that the proposed approach is a useful methodology not affected by the characteristics of the finite element mesh. Additionally, the positive discriminating results obtained when analysing a difficult case study suggest that the proposed method could be a very useful tool for comparative studies in finite element analysis using multivariate statistical approaches. PMID:29043107

  13. Bending behaviors of fully covered biodegradable polydioxanone biliary stent for human body by finite element method.

    Science.gov (United States)

    Liu, Yanhui; Zhu, Guoqing; Yang, Huazhe; Wang, Conger; Zhang, Peihua; Han, Guangting

    2018-01-01

    This paper presents a study of the bending flexibility of fully covered biodegradable polydioxanone biliary stents (FCBPBs) developed for human body. To investigate the relationship between the bending load and structure parameter (monofilament diameter and braid-pin number), biodegradable polydioxanone biliary stents derived from braiding method were covered with membrane prepared via electrospinning method, and nine FCBPBSs were then obtained for bending test to evaluate the bending flexibility. In addition, by the finite element method, nine numerical models based on actual biliary stent were established and the bending load was calculated through the finite element method. Results demonstrate that the simulation and experimental results are in good agreement with each other, indicating that the simulation results can be provided a useful reference to the investigation of biliary stents. Furthermore, the stress distribution on FCBPBSs was studied, and the plastic dissipation analysis and plastic strain of FCBPBSs were obtained via the bending simulation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. A Family of Multipoint Flux Mixed Finite Element Methods for Elliptic Problems on General Grids

    KAUST Repository

    Wheeler, Mary F.

    2011-01-01

    In this paper, we discuss a family of multipoint flux mixed finite element (MFMFE) methods on simplicial, quadrilateral, hexahedral, and triangular-prismatic grids. The MFMFE methods are locally conservative with continuous normal fluxes, since they are developed within a variational framework as mixed finite element methods with special approximating spaces and quadrature rules. The latter allows for local flux elimination giving a cell-centered system for the scalar variable. We study two versions of the method: with a symmetric quadrature rule on smooth grids and a non-symmetric quadrature rule on rough grids. Theoretical and numerical results demonstrate first order convergence for problems with full-tensor coefficients. Second order superconvergence is observed on smooth grids. © 2011 Published by Elsevier Ltd.

  15. Finite element method with quadratic quadrilateral unit for solving two dimensional incompressible N-S equation

    International Nuclear Information System (INIS)

    Tao Ganqiang; Yu Qing; Xiao Xiao

    2011-01-01

    Viscous and incompressible fluid flow is important for numerous engineering mechanics problems. Because of high non linear and incompressibility for Navier-Stokes equation, it is very difficult to solve Navier-Stokes equation by numerical method. According to its characters of Navier-Stokes equation, quartic derivation controlling equation of the two dimensional incompressible Navier-Stokes equation is set up firstly. The method solves the problem for dealing with vorticity boundary and automatically meets incompressibility condition. Then Finite Element equation for Navier-Stokes equation is proposed by using quadratic quadrilateral unit with 8 nodes in which the unit function is quadratic and non linear.-Based on it, the Finite Element program of quadratic quadrilateral unit with 8 nodes is developed. Lastly, numerical experiment proves the accuracy and dependability of the method and also shows the method has good application prospect in computational fluid mechanics. (authors)

  16. A discontinous Galerkin finite element method with an efficient time integration scheme for accurate simulations

    KAUST Repository

    Liu, Meilin

    2011-07-01

    A discontinuous Galerkin finite element method (DG-FEM) with a highly-accurate time integration scheme is presented. The scheme achieves its high accuracy using numerically constructed predictor-corrector integration coefficients. Numerical results show that this new time integration scheme uses considerably larger time steps than the fourth-order Runge-Kutta method when combined with a DG-FEM using higher-order spatial discretization/basis functions for high accuracy. © 2011 IEEE.

  17. A multiscale finite element method for modeling fully coupled thermomechanical problems in solids

    KAUST Repository

    Sengupta, Arkaprabha; Papadopoulos, Panayiotis; Taylor, Robert L.

    2012-01-01

    This article proposes a two-scale formulation of fully coupled continuum thermomechanics using the finite element method at both scales. A monolithic approach is adopted in the solution of the momentum and energy equations. An efficient implementation of the resulting algorithm is derived that is suitable for multicore processing. The proposed method is applied with success to a strongly coupled problem involving shape-memory alloys. © 2012 John Wiley & Sons, Ltd.

  18. Trend analysis using non-stationary time series clustering based on the finite element method

    OpenAIRE

    Gorji Sefidmazgi, M.; Sayemuzzaman, M.; Homaifar, A.; Jha, M. K.; Liess, S.

    2014-01-01

    In order to analyze low-frequency variability of climate, it is useful to model the climatic time series with multiple linear trends and locate the times of significant changes. In this paper, we have used non-stationary time series clustering to find change points in the trends. Clustering in a multi-dimensional non-stationary time series is challenging, since the problem is mathematically ill-posed. Clustering based on the finite element method (FEM) is one of the methods ...

  19. A multiscale finite element method for modeling fully coupled thermomechanical problems in solids

    KAUST Repository

    Sengupta, Arkaprabha

    2012-05-18

    This article proposes a two-scale formulation of fully coupled continuum thermomechanics using the finite element method at both scales. A monolithic approach is adopted in the solution of the momentum and energy equations. An efficient implementation of the resulting algorithm is derived that is suitable for multicore processing. The proposed method is applied with success to a strongly coupled problem involving shape-memory alloys. © 2012 John Wiley & Sons, Ltd.

  20. The Guidelines for Modelling the Preloading Bolts in the Structural Connection Using Finite Element Methods

    OpenAIRE

    Paulina Krolo; Davor Grandić; Mladen Bulić

    2016-01-01

    The aim of this paper is the development of the two different numerical techniques for the preloading of bolts by the finite element method using the software Abaqus Standard. Furthermore, this paper gave detailed guidelines for modelling contact, method for solving the numerical error problems such as numerical singularity error and negative eigenvalues due to rigid body motion or the problem of the extensive elongation of bolts after pretension which is occurring during the analysis. The be...

  1. Application of finite element method in mechanical design of automotive parts

    Science.gov (United States)

    Gu, Suohai

    2017-09-01

    As an effective numerical analysis method, finite element method (FEM) has been widely used in mechanical design and other fields. In this paper, the development of FEM is introduced firstly, then the specific steps of FEM applications are illustrated and the difficulties of FEM are summarized in detail. Finally, applications of FEM in automobile components such as automobile wheel, steel plate spring, body frame, shaft parts and so on are summarized, compared with related research experiments.

  2. A local level set method based on a finite element method for unstructured meshes

    International Nuclear Information System (INIS)

    Ngo, Long Cu; Choi, Hyoung Gwon

    2016-01-01

    A local level set method for unstructured meshes has been implemented by using a finite element method. A least-square weighted residual method was employed for implicit discretization to solve the level set advection equation. By contrast, a direct re-initialization method, which is directly applicable to the local level set method for unstructured meshes, was adopted to re-correct the level set function to become a signed distance function after advection. The proposed algorithm was constructed such that the advection and direct reinitialization steps were conducted only for nodes inside the narrow band around the interface. Therefore, in the advection step, the Gauss–Seidel method was used to update the level set function using a node-by-node solution method. Some benchmark problems were solved by using the present local level set method. Numerical results have shown that the proposed algorithm is accurate and efficient in terms of computational time

  3. A local level set method based on a finite element method for unstructured meshes

    Energy Technology Data Exchange (ETDEWEB)

    Ngo, Long Cu; Choi, Hyoung Gwon [School of Mechanical Engineering, Seoul National University of Science and Technology, Seoul (Korea, Republic of)

    2016-12-15

    A local level set method for unstructured meshes has been implemented by using a finite element method. A least-square weighted residual method was employed for implicit discretization to solve the level set advection equation. By contrast, a direct re-initialization method, which is directly applicable to the local level set method for unstructured meshes, was adopted to re-correct the level set function to become a signed distance function after advection. The proposed algorithm was constructed such that the advection and direct reinitialization steps were conducted only for nodes inside the narrow band around the interface. Therefore, in the advection step, the Gauss–Seidel method was used to update the level set function using a node-by-node solution method. Some benchmark problems were solved by using the present local level set method. Numerical results have shown that the proposed algorithm is accurate and efficient in terms of computational time.

  4. OPTIMIZATION OF I-SECTION PROFILE DESIGN BY THE FINITE ELEMENT METHOD

    Directory of Open Access Journals (Sweden)

    Patryk Różyło

    2016-03-01

    Full Text Available This paper discusses the problem of design optimization for an I-section profile. The optimization process was performed using the Abaqus program. The numerical analysis of a strictly static problem was based on the finite element method. The scope of the analysis involved both determination of stresses and displacements in the profile and structure topology optimization. The main focus of the numerical analysis was put on reducing profile volume while maintaining the same load and similar stresses prior to and after optimization. The solution of the optimization problem is just an example of the potential of using this method in combination with the finite element method in the Abaqus environment. Nowadays numerical analysis is the most effective cost-reducing alternative to experimental tests and it enables structure examination by means of a computer.

  5. Finite element methods in incompressible, adiabatic, and compressible flows from fundamental concepts to applications

    CERN Document Server

    Kawahara, Mutsuto

    2016-01-01

    This book focuses on the finite element method in fluid flows. It is targeted at researchers, from those just starting out up to practitioners with some experience. Part I is devoted to the beginners who are already familiar with elementary calculus. Precise concepts of the finite element method remitted in the field of analysis of fluid flow are stated, starting with spring structures, which are most suitable to show the concepts of superposition/assembling. Pipeline system and potential flow sections show the linear problem. The advection–diffusion section presents the time-dependent problem; mixed interpolation is explained using creeping flows, and elementary computer programs by FORTRAN are included. Part II provides information on recent computational methods and their applications to practical problems. Theories of Streamline-Upwind/Petrov–Galerkin (SUPG) formulation, characteristic formulation, and Arbitrary Lagrangian–Eulerian (ALE) formulation and others are presented with practical results so...

  6. Determination of the ultimate load in concrete slabs by the yield line finite element method

    International Nuclear Information System (INIS)

    Vaz, L.E.; Feijo, B.; Martha, L.F.R.; Lopes, M.M.

    1984-01-01

    A method for calculating the ultimate load in reinforced concrete slabs is proposed. The method follows the finite element aproach representating the continuum slab as an assembly of rigid triangular plates connected along their sides through yield line elements. This approach leads to the definition of the displacement configuration of the plate only as a function of the transversal displacement at the nodes of the mesh (1 DOF per node) reducing significantly the number of DOF's in relation to the conventional formulation by means of the finite element method (minimum of 3 DOF per node). Nonlinear behaviour of the reinforced concrete section is considered in the definition of the moment rotation curve of the yield lines. The effect of the in plane forces acting in the middle surface of the plate is also taken into account. The validity of the model is verified comparing the numerical solutions with the results of the classical yield line theory. (Author) [pt

  7. Error Analysis of a Finite Element Method for the Space-Fractional Parabolic Equation

    KAUST Repository

    Jin, Bangti; Lazarov, Raytcho; Pasciak, Joseph; Zhou, Zhi

    2014-01-01

    © 2014 Society for Industrial and Applied Mathematics We consider an initial boundary value problem for a one-dimensional fractional-order parabolic equation with a space fractional derivative of Riemann-Liouville type and order α ∈ (1, 2). We study a spatial semidiscrete scheme using the standard Galerkin finite element method with piecewise linear finite elements, as well as fully discrete schemes based on the backward Euler method and the Crank-Nicolson method. Error estimates in the L2(D)- and Hα/2 (D)-norm are derived for the semidiscrete scheme and in the L2(D)-norm for the fully discrete schemes. These estimates cover both smooth and nonsmooth initial data and are expressed directly in terms of the smoothness of the initial data. Extensive numerical results are presented to illustrate the theoretical results.

  8. Finite element transport methods for criticality calculations - current status and potential applications

    International Nuclear Information System (INIS)

    Oliveira, C.R.E. de; Goddard, A.

    1991-01-01

    In this paper we review the current status of the finite element method applied to the solution of the neutron transport equation and we discuss its potential role in the field of criticality safety. We show that the method's ability in handling complex, irregular geometry in two- and three-dimensions coupled with its accurate solutions potentially renders it an attractive alternative to the longer-established Monte Carlo method. Details of the most favoured form of the method - that which combines finite elements in space and spherical harmonics in angle - are presented. This form of the method, which has been extensively investigated over the last decade by research groups at the University of London, has been numerically implemented in the finite element code EVENT. The code has among its main features the capability of solving fixed source eigenvalue and time-dependent complex geometry problems in two- and three-dimensions. Other features of the code include anisotropic up- and down-scatter, direct and/or adjoint solutions and access to standard data libraries. Numerical examples, ranging from simple criticality benchmark studies to the analysis of idealised three-dimensional reactor cores, are presented to demonstrate the potential of the method. (author)

  9. A Posteriori Error Estimation for Finite Element Methods and Iterative Linear Solvers

    Energy Technology Data Exchange (ETDEWEB)

    Melboe, Hallgeir

    2001-10-01

    This thesis addresses a posteriori error estimation for finite element methods and iterative linear solvers. Adaptive finite element methods have gained a lot of popularity over the last decades due to their ability to produce accurate results with limited computer power. In these methods a posteriori error estimates play an essential role. Not only do they give information about how large the total error is, they also indicate which parts of the computational domain should be given a more sophisticated treatment in order to reduce the error. A posteriori error estimates are traditionally aimed at estimating the global error, but more recently so called goal oriented error estimators have been shown a lot of interest. The name reflects the fact that they estimate the error in user-defined local quantities. In this thesis the main focus is on global error estimators for highly stretched grids and goal oriented error estimators for flow problems on regular grids. Numerical methods for partial differential equations, such as finite element methods and other similar techniques, typically result in a linear system of equations that needs to be solved. Usually such systems are solved using some iterative procedure which due to a finite number of iterations introduces an additional error. Most such algorithms apply the residual in the stopping criterion, whereas the control of the actual error may be rather poor. A secondary focus in this thesis is on estimating the errors that are introduced during this last part of the solution procedure. The thesis contains new theoretical results regarding the behaviour of some well known, and a few new, a posteriori error estimators for finite element methods on anisotropic grids. Further, a goal oriented strategy for the computation of forces in flow problems is devised and investigated. Finally, an approach for estimating the actual errors associated with the iterative solution of linear systems of equations is suggested. (author)

  10. Discrete-ordinates finite-element method for atmospheric radiative transfer and remote sensing

    International Nuclear Information System (INIS)

    Gerstl, S.A.W.; Zardecki, A.

    1985-01-01

    Advantages and disadvantages of modern discrete-ordinates finite-element methods for the solution of radiative transfer problems in meteorology, climatology, and remote sensing applications are evaluated. After the common basis of the formulation of radiative transfer problems in the fields of neutron transport and atmospheric optics is established, the essential features of the discrete-ordinates finite-element method are described including the limitations of the method and their remedies. Numerical results are presented for 1-D and 2-D atmospheric radiative transfer problems where integral as well as angular dependent quantities are compared with published results from other calculations and with measured data. These comparisons provide a verification of the discrete-ordinates results for a wide spectrum of cases with varying degrees of absorption, scattering, and anisotropic phase functions. Accuracy and computational speed are also discussed. Since practically all discrete-ordinates codes offer a builtin adjoint capability, the general concept of the adjoint method is described and illustrated by sample problems. Our general conclusion is that the strengths of the discrete-ordinates finite-element method outweight its weaknesses. We demonstrate that existing general-purpose discrete-ordinates codes can provide a powerful tool to analyze radiative transfer problems through the atmosphere, especially when 2-D geometries must be considered

  11. Main formulations of the finite element method for the problems of structural mechanics. Part 2

    Directory of Open Access Journals (Sweden)

    Ignat’ev Aleksandr Vladimirovich

    Full Text Available The author offers a classification of Finite Element formulations, which allows orienting in a great number of the published and continuing to be published works on the problem of raising the efficiency of this widespread numerical method. The second part of the article offers examination of straight formulations of FEM in the form of displacement approach, area method and classical mixed-mode method. The question of solution convergence according to FEM in the form of classical mixed-mode method is considered on the example of single-input single-output system of a beam in case of finite element grid refinement. The author draws a conclusion, that extinction of algebraic equations system of FEM in case of passage to the limit is not a peculiar feature of this method in general, but manifests itself only in some particular cases. At the same time the obtained results prove that FEM in mixed-mode form provides obtaining more stable results in case of finite element grid refinement in comparison with FEM in the form of displacement approach. It is quite obvious that the same qualities will appear also in two-dimensional systems.

  12. A fluid-solid finite element method for the analysis of reactor safety problems

    International Nuclear Information System (INIS)

    Mitra, Santanu; Kumar, Ashutosh; Sinhamahapatra, K.P.

    2006-01-01

    The work presented herein can broadly be categorized as a fluid-structure interaction problem. The response of a circular cylindrical structure subjected to cross flow is examined using the finite element method for both the liquid and the structure domains. The cylindrical tube is mounted elastically at the ends and is free to move under the action of the unsteady flow-induced forces. The fluid is considered to be acoustic compressible and viscous. A Galerkin finite element method implemented on a triangular mesh is used to solve the time-dependent Navier-Stokes equations. The cylinder motion is modeled using a five-degrees of freedom generalized shell element structural dynamics model. The numerical simulations of the response of the calandria tubes/pressure tubes, adjustor rod and shut-off rod of a nuclear reactor are presented. A few typical results are presented to assess the accuracy and applicability of the developed modules

  13. Variational Multiscale Finite Element Method for Flows in Highly Porous Media

    KAUST Repository

    Iliev, O.; Lazarov, R.; Willems, J.

    2011-01-01

    We present a two-scale finite element method (FEM) for solving Brinkman's and Darcy's equations. These systems of equations model fluid flows in highly porous and porous media, respectively. The method uses a recently proposed discontinuous Galerkin FEM for Stokes' equations by Wang and Ye and the concept of subgrid approximation developed by Arbogast for Darcy's equations. In order to reduce the "resonance error" and to ensure convergence to the global fine solution, the algorithm is put in the framework of alternating Schwarz iterations using subdomains around the coarse-grid boundaries. The discussed algorithms are implemented using the Deal.II finite element library and are tested on a number of model problems. © 2011 Society for Industrial and Applied Mathematics.

  14. Numerical analysis of creep brittle rupture by the finite element method

    International Nuclear Information System (INIS)

    Goncalves, O.J.A.; Owen, D.R.J.

    1983-01-01

    In this work an implicit algorithm is proposed for the numerical analysis of creep brittle rupture problems by the finite element method. This kind of structural failure, typical in components operating at high temperatures for long periods of time, is modelled using either a three dimensional generalization of the Kachanov-Rabotnov equations due to Leckie and Hayhurst or the Monkman-Grant fracture criterion together with the Linear Life Fraction Rule. The finite element equations are derived by the displacement method and isoparametric elements are used for the spatial discretization. Geometric nonlinear effects (large displacements) are accounted for by an updated Lagrangian formulation. Attention is also focussed on the solution of the highly stiff differential equations that govern damage growth. Finally the numerical results of a three-dimensional analysis of a pressurized thin cylinder containing oxidised pits in its external wall are discussed. (orig.)

  15. HYFRAC3D, 3-D Hydraulic Rock Fracture Propagation by Finite Element Method

    International Nuclear Information System (INIS)

    Advani, S.H.; Lee, J.K.; Lee, T.S.

    2001-01-01

    1 - Description of program or function: HYFRAC3D is a finite element program for simulation of three-dimensional fracture geometries with a two-dimensional planar solution. The model predicts the height, width and wing length over time for a hydraulic fracture propagating in a multi-layered system of rock with variable fluid flow and rock mechanics properties. 2 - Method of solution: The program uses the finite element Method of solution. A backward difference scheme is used by taking the weight functions on the time axis. This implicit time matching scheme requires iteration since the fracture configuration at time t+dt is not known. 3 - Restrictions on the complexity of the problem: Graphics output is not available and program is limited to fracture propagation in a single plane without proppant transport

  16. Comparison study between traditional and finite element methods for slopes under heavy rainfall

    Directory of Open Access Journals (Sweden)

    M. Rabie

    2014-08-01

    Moreover, slope stability concerning rainfall and infiltration is analyzed. Specially, two kinds of infiltrations (saturated and unsaturated are considered. Many slopes become saturated during periods of intense rainfall or snowmelt, with the water table rising to the ground surface, and water flowing essentially parallel to the direction of the “slope” and “Influence” of the change in shear strength, density, pore-water pressure and seepage force in soil slices on the slope stability is explained. Finally, it is found that classical limit equilibrium methods are highly conservative compared to the finite element approach. For assessment the factor of safety for slope using the later technique, no assumption needs to be made in advance about the shape or location of the failure surface, slice side forces and their directions. This document outlines the capabilities of the finite element method in the analysis of slope stability problems.

  17. An object-oriented decomposition of the adaptive-hp finite element method

    Energy Technology Data Exchange (ETDEWEB)

    Wiley, J.C.

    1994-12-13

    Adaptive-hp methods are those which use a refinement control strategy driven by a local error estimate to locally modify the element size, h, and polynomial order, p. The result is an unstructured mesh in which each node may be associated with a different polynomial order and which generally require complex data structures to implement. Object-oriented design strategies and languages which support them, e.g., C++, help control the complexity of these methods. Here an overview of the major classes and class structure of an adaptive-hp finite element code is described. The essential finite element structure is described in terms of four areas of computation each with its own dynamic characteristics. Implications of converting the code for a distributed-memory parallel environment are also discussed.

  18. Variational Multiscale Finite Element Method for Flows in Highly Porous Media

    KAUST Repository

    Iliev, O.

    2011-10-01

    We present a two-scale finite element method (FEM) for solving Brinkman\\'s and Darcy\\'s equations. These systems of equations model fluid flows in highly porous and porous media, respectively. The method uses a recently proposed discontinuous Galerkin FEM for Stokes\\' equations by Wang and Ye and the concept of subgrid approximation developed by Arbogast for Darcy\\'s equations. In order to reduce the "resonance error" and to ensure convergence to the global fine solution, the algorithm is put in the framework of alternating Schwarz iterations using subdomains around the coarse-grid boundaries. The discussed algorithms are implemented using the Deal.II finite element library and are tested on a number of model problems. © 2011 Society for Industrial and Applied Mathematics.

  19. Band-limited Green's Functions for Quantitative Evaluation of Acoustic Emission Using the Finite Element Method

    Science.gov (United States)

    Leser, William P.; Yuan, Fuh-Gwo; Leser, William P.

    2013-01-01

    A method of numerically estimating dynamic Green's functions using the finite element method is proposed. These Green's functions are accurate in a limited frequency range dependent on the mesh size used to generate them. This range can often match or exceed the frequency sensitivity of the traditional acoustic emission sensors. An algorithm is also developed to characterize an acoustic emission source by obtaining information about its strength and temporal dependence. This information can then be used to reproduce the source in a finite element model for further analysis. Numerical examples are presented that demonstrate the ability of the band-limited Green's functions approach to determine the moment tensor coefficients of several reference signals to within seven percent, as well as accurately reproduce the source-time function.

  20. Coupling of modal and finite elements methods for the diffraction of guided elastics waves: application to non destructive testing

    International Nuclear Information System (INIS)

    Baronian, V.

    2009-11-01

    A typical nondestructive examination based on guided elastic waves can be simulated by considering an elastic 2D (a plate) or 3D (a rod) guide that contains a defect (a crack, a local heterogeneity due to a weld etc.). Our aim is to solve numerically the problem of the scattering by a defect of a mode propagating in a guide. This has been achieved by developing a method that couples i) finite elements in the smallest possible region of the guide that contains the defect, with ii) the modal decomposition of waves outside this region. The main challenge consists in finding the right linking condition of both representations. A decisive tool is the obtaining of an orthogonality relation which makes it possible to project the finite element solution onto guided modes. For this, the problem is formulated in terms of hybrid vectors (displacement/stress) for which a bi-orthogonality relation exists, namely, the Fraser's relation. It is then possible to derive an exact (transparent) condition on the artificial boundaries of the finite element domain; the modal series taken into account being necessarily truncated, transparency is achieved only approximately. Eventually, this boundary condition is integrated in a variational approach (in terms of displacement) in order to develop a finite element method. The transparent boundary condition being expressed in terms of the hybrid vectors, the stress normal to the artificial boundary is introduced as a supplementary unknown, together with a mixed formulation. Both 2D and 3D isotropic guides with free boundary conditions have been considered numerically. Guided modes are computed thanks to an original modeling approach also based on the hybrid (displacement/stress) vectors; interestingly, bi-orthogonality relation expressed in a discrete form is preserved. The code implementing these methods leads to fast computations of the scattering matrix of a defect; once this matrix has been computed at various frequencies, the defect

  1. Hierarchical multiscale modeling for flows in fractured media using generalized multiscale finite element method

    KAUST Repository

    Efendiev, Yalchin R.

    2015-06-05

    In this paper, we develop a multiscale finite element method for solving flows in fractured media. Our approach is based on generalized multiscale finite element method (GMsFEM), where we represent the fracture effects on a coarse grid via multiscale basis functions. These multiscale basis functions are constructed in the offline stage via local spectral problems following GMsFEM. To represent the fractures on the fine grid, we consider two approaches (1) discrete fracture model (DFM) (2) embedded fracture model (EFM) and their combination. In DFM, the fractures are resolved via the fine grid, while in EFM the fracture and the fine grid block interaction is represented as a source term. In the proposed multiscale method, additional multiscale basis functions are used to represent the long fractures, while short-size fractures are collectively represented by a single basis functions. The procedure is automatically done via local spectral problems. In this regard, our approach shares common concepts with several approaches proposed in the literature as we discuss. We would like to emphasize that our goal is not to compare DFM with EFM, but rather to develop GMsFEM framework which uses these (DFM or EFM) fine-grid discretization techniques. Numerical results are presented, where we demonstrate how one can adaptively add basis functions in the regions of interest based on error indicators. We also discuss the use of randomized snapshots (Calo et al. Randomized oversampling for generalized multiscale finite element methods, 2014), which reduces the offline computational cost.

  2. Calculation of two-dimensional thermal transients by the finite element method

    International Nuclear Information System (INIS)

    Fontoura Rodrigues, J.L.A. da; Barcellos, C.S. de

    1981-01-01

    The linear heat conduction through anisotropic and/or heterogeneous matter, in either two-dimensional fields with any kind of geometry or three-dimensional fields with axial symmetry is analysed. It only accepts time-independent boundary conditions and it is possible to have internal heat generation. The solution is obtained by modal analysis employing the finite element method under Galerkin formulation. (Author) [pt

  3. Finite element methods for viscous incompressible flows a guide to theory, practice, and algorithms

    CERN Document Server

    Gunzburger, Max D

    2012-01-01

    In this book, the author examines mathematical aspects of finite element methods for the approximate solution of incompressible flow problems. The principal goal is to present some of the important mathematical results that are relevant to practical computations. In so doing, useful algorithms are also discussed. Although rigorous results are stated, no detailed proofs are supplied; rather, the intention is to present these results so that they can serve as a guide for the selection and, in certain respects, the implementation of algorithms.

  4. The application of finite element method for mhd viscous flow over a porous stretching sheet

    International Nuclear Information System (INIS)

    Mahmood, R.; Sajid, M.

    2007-01-01

    This work is concerned with the magnetohydrodynamic (MHD) viscous flow due to a porous stretching sheet. The similarity solution of the problem is obtained using finite element method. The physical quantities of interest like the fluid velocity and skin friction coefficient is obtained and discussed under the influence of suction parameter and Hartman number. It is evident from the results that MHD can be used to control the boundary layer thickness. (author)

  5. Integrated Circuit Interconnect Lines on Lossy Silicon Substrate with Finite Element Method

    OpenAIRE

    Sarhan M. Musa,; Matthew N. O. Sadiku

    2014-01-01

    The silicon substrate has a significant effect on the inductance parameter of a lossy interconnect line on integrated circuit. It is essential to take this into account in determining the transmission line electrical parameters. In this paper, a new quasi-TEM capacitance and inductance analysis of multiconductor multilayer interconnects is successfully demonstrated using finite element method (FEM). We specifically illustrate the electrostatic modeling of single and coupled in...

  6. Non-linear shape functions over time in the space-time finite element method

    Directory of Open Access Journals (Sweden)

    Kacprzyk Zbigniew

    2017-01-01

    Full Text Available This work presents a generalisation of the space-time finite element method proposed by Kączkowski in his seminal of 1970’s and early 1980’s works. Kączkowski used linear shape functions in time. The recurrence formula obtained by Kączkowski was conditionally stable. In this paper, non-linear shape functions in time are proposed.

  7. The Galerkin Finite Element Method for A Multi-term Time-Fractional Diffusion equation

    OpenAIRE

    Jin, Bangti; Lazarov, Raytcho; Liu, Yikan; Zhou, Zhi

    2014-01-01

    We consider the initial/boundary value problem for a diffusion equation involving multiple time-fractional derivatives on a bounded convex polyhedral domain. We analyze a space semidiscrete scheme based on the standard Galerkin finite element method using continuous piecewise linear functions. Nearly optimal error estimates for both cases of initial data and inhomogeneous term are derived, which cover both smooth and nonsmooth data. Further we develop a fully discrete scheme based on a finite...

  8. Numerical simulation of subwoofer array congurations using the Finite Element Method

    Directory of Open Access Journals (Sweden)

    Xavier Banyuls-Juan

    2017-08-01

    Full Text Available Teaching in the Master of Acoustic Engineering includes contents that require the modeling of acoustic systems of two types: simple systems through analytical theory and complex models using simulation techniques. In the present work, we describe an example of complex acoustic sources modeling using the finite element method: subwoofer sound radiation in different configurations. Numerical simulations in the frequency domain can calculate the radiation pattern of systems that do not have a simple analytical solution.

  9. Modal representation of geometrically nonlinear behavior by the finite element method

    International Nuclear Information System (INIS)

    Nagy, D.A.

    1977-01-01

    A method is presented for representing mild geometrically nonlinear static behavior of thin-type structures, within the finite element method, in terms of linear elastic and linear (bifurcation) buckling analysis results for structural loading or geometry situations which violate the idealized restrictive (perfect) interpretation of linear behavior up to bifurcation. Formulation of the finite element displacement method for material linearity but retaining the full, nonlinear strain-displacement relations (geometric nonlinearity) leads to highly nonlinear equations relating the unknown nodal generalized displacements r to the applied loading R. Restriction to small strains alone does not linearize these equations for thin-type structural configurations; only explicitly requiring that all products of displacement gadients be much smaller than the gadients themselves reduces the equations to the familiar linear form Ksub(e)r=R, where Ksub(e) is the elastic stiffness. Assuming then that the solutions r of the linear equations also satisfies the full nonlinear equations (i.e., that the above explicit requirement is satisfied), a second solution to the full equations can be sought for a one-parameter loading path lambdaR, leading to the well-known linear (bifurcation) buckling eigenvalue problem Ksub(e)X=-Ksub(g)XΛ where Ksub(g) is the geometric stiffness, X the matrix whose columns are the eigenvectors (so-called buckling mode shapes) and Λ is a diagonal matrix of eigenvalues lambda(i) (so-called load scale factors). From the viewpoint of the practising structural analyst using finite element software, the method presented here gives broader and deeper significance to an existing linear (bifurcation) buckling analysis capability, in that the additional computations are minimal beyond those already required for a linear static and buckling analysis, and should be easily performable within any well-designed general purpose finite element system

  10. Fretting wear simulation of press-fitted shaft with finite element analysis and influence function method

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dong Hyong; Kwon, Seok Jin [Korea Railroad Research Institute, Uiwang (Korea, Republic of); Choi, Jae Boong; Kim, Young Jin [Sungkyunkwan University, Suwon (Korea, Republic of)

    2008-01-15

    In this paper the fretting wear of press-fitted specimens subjected to a cyclic bending load was simulated using finite element analysis and numerical method. The amount of microslip and contact variable at press-fitted and bending load condition in a press-fitted shaft was analysed by applying finite element method. With the finite element analysis result, a numerical approach was applied to predict fretting wear based on modified Archard's equation and updating the change of contact pressure caused by local wear with influence function method. The predicted wear profiles of press-fitted specimens at the contact edge wear compared with the experimental results obtained by rotating bending fatigue tests. It is shown that the depth of fretting wear by repeated slip between shaft and boss reaches the maximum value at the contact edge. The initial surface profile is continuously changed by the wear at the contact edge, and then the corresponding contact variables are redistributed. The work establishes a basis for numerical simulation of fretting wear on press fits.

  11. Fretting wear simulation of press-fitted shaft with finite element analysis and influence function method

    International Nuclear Information System (INIS)

    Lee, Dong Hyong; Kwon, Seok Jin; Choi, Jae Boong; Kim, Young Jin

    2008-01-01

    In this paper the fretting wear of press-fitted specimens subjected to a cyclic bending load was simulated using finite element analysis and numerical method. The amount of microslip and contact variable at press-fitted and bending load condition in a press-fitted shaft was analysed by applying finite element method. With the finite element analysis result, a numerical approach was applied to predict fretting wear based on modified Archard's equation and updating the change of contact pressure caused by local wear with influence function method. The predicted wear profiles of press-fitted specimens at the contact edge wear compared with the experimental results obtained by rotating bending fatigue tests. It is shown that the depth of fretting wear by repeated slip between shaft and boss reaches the maximum value at the contact edge. The initial surface profile is continuously changed by the wear at the contact edge, and then the corresponding contact variables are redistributed. The work establishes a basis for numerical simulation of fretting wear on press fits

  12. Comparisons of Particle Tracking Techniques and Galerkin Finite Element Methods in Flow Simulations on Watershed Scales

    Science.gov (United States)

    Shih, D.; Yeh, G.

    2009-12-01

    This paper applies two numerical approximations, the particle tracking technique and Galerkin finite element method, to solve the diffusive wave equation in both one-dimensional and two-dimensional flow simulations. The finite element method is one of most commonly approaches in numerical problems. It can obtain accurate solutions, but calculation times may be rather extensive. The particle tracking technique, using either single-velocity or average-velocity tracks to efficiently perform advective transport, could use larger time-step sizes than the finite element method to significantly save computational time. Comparisons of the alternative approximations are examined in this poster. We adapt the model WASH123D to examine the work. WASH123D is an integrated multimedia, multi-processes, physics-based computational model suitable for various spatial-temporal scales, was first developed by Yeh et al., at 1998. The model has evolved in design capability and flexibility, and has been used for model calibrations and validations over the course of many years. In order to deliver a locally hydrological model in Taiwan, the Taiwan Typhoon and Flood Research Institute (TTFRI) is working with Prof. Yeh to develop next version of WASH123D. So, the work of our preliminary cooperationx is also sketched in this poster.

  13. Finite element methods for engineering sciences. Theoretical approach and problem solving techniques

    Energy Technology Data Exchange (ETDEWEB)

    Chaskalovic, J. [Ariel University Center of Samaria (Israel); Pierre and Marie Curie (Paris VI) Univ., 75 (France). Inst. Jean le Rond d' Alembert

    2008-07-01

    This self-tutorial offers a concise yet thorough grounding in the mathematics necessary for successfully applying FEMs to practical problems in science and engineering. The unique approach first summarizes and outlines the finite-element mathematics in general and then, in the second and major part, formulates problem examples that clearly demonstrate the techniques of functional analysis via numerous and diverse exercises. The solutions of the problems are given directly afterwards. Using this approach, the author motivates and encourages the reader to actively acquire the knowledge of finite- element methods instead of passively absorbing the material, as in most standard textbooks. The enlarged English-language edition, based on the original French, also contains a chapter on the approximation steps derived from the description of nature with differential equations and then applied to the specific model to be used. Furthermore, an introduction to tensor calculus using distribution theory offers further insight for readers with different mathematical backgrounds. (orig.)

  14. Dynamic analysis of fast-acting solenoid valves using finite element method

    International Nuclear Information System (INIS)

    Kwon, Ki Tae; Han, Hwa Taik

    2001-01-01

    It is intended to develop an algorithm for dynamic simulation of fast-acting solenoid valves. The coupled equations of the electric, magnetic, and mechanical systems should be solved simultaneously in a transient nonlinear manner. The transient nonlinear electromagnetic field is analyzed by the Finite Element Method (FEM), which is coupled with nonlinear electronic circuitry. The dynamic movement of the solenoid valve is analyzed at every time step from the force balances acting on the plunger, which include the electromagnetic force calculated from the finite element analysis as well as the elastic force by a spring and the hydrodynamic pressure force along the flow passage. Dynamic responses of the solenoid valves predicted by this algorithm agree well the experimental results including bouncing effects

  15. CHILES, Singularity Strength of Linear Elastic Bodies by Finite Elements Method

    International Nuclear Information System (INIS)

    Benzley, S.E.; Beisinger, Z.E.

    1981-01-01

    1 - Description of problem or function: CHILES is a finite element computer program that calculates the strength of singularities in linear elastic bodies. Plane stress, plane strain, and axisymmetric conditions are treated. Crack tip singularity problems are solved by this version of the code, but any type of integrable singularity may be properly modeled by modifying selected subroutines in the program. 2 - Method of solution: A generalized, quadrilateral finite element that includes a singular point at a corner node is incorporated in the code. The displacement formulation is used and inter-element compatibility is maintained so that monotone convergence is preserved. 3 - Restrictions on the complexity of the problem: CHILES allows three singular points to be modeled in the body being analyzed and each singular point may have coupled Mode I and II deformations. 1000 nodal points may be used

  16. Local Projection-Based Stabilized Mixed Finite Element Methods for Kirchhoff Plate Bending Problems

    Directory of Open Access Journals (Sweden)

    Xuehai Huang

    2013-01-01

    Full Text Available Based on stress-deflection variational formulation, we propose a family of local projection-based stabilized mixed finite element methods for Kirchhoff plate bending problems. According to the error equations, we obtain the error estimates of the approximation to stress tensor in energy norm. And by duality argument, error estimates of the approximation to deflection in H1-norm are achieved. Then we design an a posteriori error estimator which is closely related to the equilibrium equation, constitutive equation, and nonconformity of the finite element spaces. With the help of Zienkiewicz-Guzmán-Neilan element spaces, we prove the reliability of the a posteriori error estimator. And the efficiency of the a posteriori error estimator is proved by standard bubble function argument.

  17. Frame analysis of UNNES electric bus chassis construction using finite element method

    Science.gov (United States)

    Nugroho, Untoro; Anis, Samsudin; Kusumawardani, Rini; Khoiron, Ahmad Mustamil; Maulana, Syahdan Sigit; Irvandi, Muhammad; Mashdiq, Zia Putra

    2018-03-01

    Designing the chassis needs to be done element simulation analysis to gain chassis strength on an electric bus. The purpose of this research is to get the results of chassis simulation on an electric bus when having load use FEM (Finite element method). This research was conduct in several stages of process, such as modeling chassis by Autodesk Inventor and finite element simulation software. The frame is going to be simulated with static loading by determine fixed support and then will be given the vertical force. The fixed on the frame is clamped at both the front and rear suspensions. After the simulation based on FEM it can conclude that frame is still under elastic zone, until the frame design is safe to use.

  18. Finite element method for computational fluid dynamics with any type of elements; Finite Element Methode zur numerischen Stroemungsberechnung mit beliebigen Elementen

    Energy Technology Data Exchange (ETDEWEB)

    Steibler, P.

    2000-07-01

    The unsteady, turbulent flow is to be calculated in a complex geometry. For this purpose a stabilized finite element formulation in which the same functions for velocity and pressure are used is developed. Thus the process remains independent of the type of elements. This simplifies the application. Above all, it is easier to deal with the boundary conditions. The independency from the elements is also achieved by the extended uzawa-algorithm which uses quadratic functions for velocity and an element-constant pressure. This method is also programmed. In order to produce the unstructured grids, an algorithm is implemented which produces meshes consisting of triangular and tetrahedral elements with flow-dependent adaptation. With standard geometries both calculation methods are compared with results. Finally the flow in a draft tube of a Kaplan turbine is calculated and compared with results from model tests. (orig.) [German] Die instationaere, turbulente Stroemung in einer komplexen Geometrie soll berechnet werden. Dazu wird eine Stabilisierte Finite Element Formulierung entwickelt, bei der die gleichen Ansatzfunktionen fuer Geschwindigkeiten und Druck verwendet werden. Das Verfahren wird damit unabhaengig von der Form der Elemente. Dies vereinfacht die Anwendung. Vor allem wird der Umgang mit den Randbedingungen erleichert. Die Elementunabhaengigkeit erreicht man auch mit dem erweiterten Uzawa-Algorithmus, welcher quadratische Ansatzfunktionen fuer die Geschwindigkeiten und elementweisen konstanten Druck verwendet. Dieses Verfahren wird ebenso implementiert. Zur Erstellung der unstrukturierten Gitter wird ein Algorithmus erzeugt, der Netze aus Dreiecks- und Tetraederelementen erstellt, welche stroemungsabhaengige Groessen besitzen koennen. Anhand einiger Standardgeometrien werden die beiden Berechnungsmethoden mit Ergebnissen aus der Literatur verglichen. Als praxisrelevantes Beispiel wird abschliessend die Stroemung in einem Saugrohr einer Kaplanturbine berechnet

  19. Final Report of the Project "From the finite element method to the virtual element method"

    Energy Technology Data Exchange (ETDEWEB)

    Manzini, Gianmarco [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Gyrya, Vitaliy [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-12-20

    The Finite Element Method (FEM) is a powerful numerical tool that is being used in a large number of engineering applications. The FEM is constructed on triangular/tetrahedral and quadrilateral/hexahedral meshes. Extending the FEM to general polygonal/polyhedral meshes in straightforward way turns out to be extremely difficult and leads to very complex and computationally expensive schemes. The reason for this failure is that the construction of the basis functions on elements with a very general shape is a non-trivial and complex task. In this project we developed a new family of numerical methods, dubbed the Virtual Element Method (VEM) for the numerical approximation of partial differential equations (PDE) of elliptic type suitable to polygonal and polyhedral unstructured meshes. We successfully formulated, implemented and tested these methods and studied both theoretically and numerically their stability, robustness and accuracy for diffusion problems, convection-reaction-diffusion problems, the Stokes equations and the biharmonic equations.

  20. Compatible-strain mixed finite element methods for incompressible nonlinear elasticity

    Science.gov (United States)

    Faghih Shojaei, Mostafa; Yavari, Arash

    2018-05-01

    We introduce a new family of mixed finite elements for incompressible nonlinear elasticity - compatible-strain mixed finite element methods (CSFEMs). Based on a Hu-Washizu-type functional, we write a four-field mixed formulation with the displacement, the displacement gradient, the first Piola-Kirchhoff stress, and a pressure-like field as the four independent unknowns. Using the Hilbert complexes of nonlinear elasticity, which describe the kinematics and the kinetics of motion, we identify the solution spaces of the independent unknown fields. In particular, we define the displacement in H1, the displacement gradient in H (curl), the stress in H (div), and the pressure field in L2. The test spaces of the mixed formulations are chosen to be the same as the corresponding solution spaces. Next, in a conforming setting, we approximate the solution and the test spaces with some piecewise polynomial subspaces of them. Among these approximation spaces are the tensorial analogues of the Nédélec and Raviart-Thomas finite element spaces of vector fields. This approach results in compatible-strain mixed finite element methods that satisfy both the Hadamard compatibility condition and the continuity of traction at the discrete level independently of the refinement level of the mesh. By considering several numerical examples, we demonstrate that CSFEMs have a good performance for bending problems and for bodies with complex geometries. CSFEMs are capable of capturing very large strains and accurately approximating stress and pressure fields. Using CSFEMs, we do not observe any numerical artifacts, e.g., checkerboarding of pressure, hourglass instability, or locking in our numerical examples. Moreover, CSFEMs provide an efficient framework for modeling heterogeneous solids.

  1. Simulation of incompressible flows with heat and mass transfer using parallel finite element method

    Directory of Open Access Journals (Sweden)

    Jalal Abedi

    2003-02-01

    Full Text Available The stabilized finite element formulations based on the SUPG (Stream-line-Upwind/Petrov-Galerkin and PSPG (Pressure-Stabilization/Petrov-Galerkin methods are developed and applied to solve buoyancy-driven incompressible flows with heat and mass transfer. The SUPG stabilization term allows us to solve flow problems at high speeds (advection dominant flows and the PSPG term eliminates instabilities associated with the use of equal order interpolation functions for both pressure and velocity. The finite element formulations are implemented in parallel using MPI. In parallel computations, the finite element mesh is partitioned into contiguous subdomains using METIS, which are then assigned to individual processors. To ensure a balanced load, the number of elements assigned to each processor is approximately equal. To solve nonlinear systems in large-scale applications, we developed a matrix-free GMRES iterative solver. Here we totally eliminate a need to form any matrices, even at the element levels. To measure the accuracy of the method, we solve 2D and 3D example of natural convection flows at moderate to high Rayleigh numbers.

  2. A finite element method for solving the shallow water equations on the sphere

    Science.gov (United States)

    Comblen, Richard; Legrand, Sébastien; Deleersnijder, Eric; Legat, Vincent

    Within the framework of ocean general circulation modeling, the present paper describes an efficient way to discretize partial differential equations on curved surfaces by means of the finite element method on triangular meshes. Our approach benefits from the inherent flexibility of the finite element method. The key idea consists in a dialog between a local coordinate system defined for each element in which integration takes place, and a nodal coordinate system in which all local contributions related to a vectorial degree of freedom are assembled. Since each element of the mesh and each degree of freedom are treated in the same way, the so-called pole singularity issue is fully circumvented. Applied to the shallow water equations expressed in primitive variables, this new approach has been validated against the standard test set defined by [Williamson, D.L., Drake, J.B., Hack, J.J., Jakob, R., Swarztrauber, P.N., 1992. A standard test set for numerical approximations to the shallow water equations in spherical geometry. Journal of Computational Physics 102, 211-224]. Optimal rates of convergence for the P1NC-P1 finite element pair are obtained, for both global and local quantities of interest. Finally, the approach can be extended to three-dimensional thin-layer flows in a straightforward manner.

  3. Application of finite-element method to three-dimensional nuclear reactor analysis

    International Nuclear Information System (INIS)

    Cheung, K.Y.

    1985-01-01

    The application of the finite element method to solve a realistic one-or-two energy group, multiregion, three-dimensional static neutron diffusion problem is studied. Linear, quadratic, and cubic serendipity box-shape elements are used. The resulting sets of simultaneous algebraic equations with thousands of unknowns are solved by the conjugate gradient method, without forming the large coefficient matrix explicitly. This avoids the complicated data management schemes to store such a large coefficient matrix. Three finite-element computer programs: FEM-LINEAR, FEM-QUADRATIC and FEM-CUBIC were developed, using the linear, quadratic, and cubic box-shape elements respectively. They are self-contained, using simple nodal labeling schemes, without the need for separate finite element mesh generating routines. The efficiency and accuracy of these computer programs are then compared among themselves, and with other computer codes. The cubic element model is not recommended for practical usage because it gives almost identical results as the quadratic model, but it requires considerably longer computation time. The linear model is less accurate than the quadratic model, but it requires much shorter computation time. For a large 3-D problem, the linear model is to be preferred since it gives acceptable accuracy. The quadratic model may be used if improved accuracy is desired

  4. Mechanical strength calculation of the disk type windings with elastic couplings by the finite element method

    International Nuclear Information System (INIS)

    Sivkova, G.N.; Spirchenko, Yu.V.; Chvartatskij, P.V.

    1981-01-01

    Stressed-deformed state of toroidal field coils of the disc type with elastic couplings of the tokamaks has been investigated with provision for the effect of the central core pliability by means of the two-dimensional version of the finite element method. Numerical solution of the finite element method is performed by means of the ES 1040 computer according to the computer code permitting taking account of boundary conditions of elastic support. The calculation has been performed using as the example the project of T-20 facility coil of the disc type. Consideration of pliability of the central core of the facility inductor is accomplished by the introduction of additional rigidities to the complete matrix of rigidity. Scheme of the structure distretization includes 141 units, 211 elements. The accuracy of solution depends on the reduction accuracy of the volume load to unit forces and on the number of finite elements. Analysis of the solution convergence is performed by the comparison of solutions obtained for three different schemes of the disk discretization without regard for the inductor pliability. The comparative analysis of the results shows that transfer epures for all the three discretization versions practically coincide and stresses differ not more than by 10%. On the whole the above investigation has demonstrated good convergence of the problem solution [ru

  5. Parametric study on single shot peening by dimensional analysis method incorporated with finite element method

    Science.gov (United States)

    Wu, Xian-Qian; Wang, Xi; Wei, Yan-Peng; Song, Hong-Wei; Huang, Chen-Guang

    2012-06-01

    Shot peening is a widely used surface treatment method by generating compressive residual stress near the surface of metallic materials to increase fatigue life and resistance to corrosion fatigue, cracking, etc. Compressive residual stress and dent profile are important factors to evaluate the effectiveness of shot peening process. In this paper, the influence of dimensionless parameters on maximum compressive residual stress and maximum depth of the dent were investigated. Firstly, dimensionless relations of processing parameters that affect the maximum compressive residual stress and the maximum depth of the dent were deduced by dimensional analysis method. Secondly, the influence of each dimensionless parameter on dimensionless variables was investigated by the finite element method. Furthermore, related empirical formulas were given for each dimensionless parameter based on the simulation results. Finally, comparison was made and good agreement was found between the simulation results and the empirical formula, which shows that a useful approach is provided in this paper for analyzing the influence of each individual parameter.

  6. Parallelized Three-Dimensional Resistivity Inversion Using Finite Elements And Adjoint State Methods

    Science.gov (United States)

    Schaa, Ralf; Gross, Lutz; Du Plessis, Jaco

    2015-04-01

    The resistivity method is one of the oldest geophysical exploration methods, which employs one pair of electrodes to inject current into the ground and one or more pairs of electrodes to measure the electrical potential difference. The potential difference is a non-linear function of the subsurface resistivity distribution described by an elliptic partial differential equation (PDE) of the Poisson type. Inversion of measured potentials solves for the subsurface resistivity represented by PDE coefficients. With increasing advances in multichannel resistivity acquisition systems (systems with more than 60 channels and full waveform recording are now emerging), inversion software require efficient storage and solver algorithms. We developed the finite element solver Escript, which provides a user-friendly programming environment in Python to solve large-scale PDE-based problems (see https://launchpad.net/escript-finley). Using finite elements, highly irregular shaped geology and topography can readily be taken into account. For the 3D resistivity problem, we have implemented the secondary potential approach, where the PDE is decomposed into a primary potential caused by the source current and the secondary potential caused by changes in subsurface resistivity. The primary potential is calculated analytically, and the boundary value problem for the secondary potential is solved using nodal finite elements. This approach removes the singularity caused by the source currents and provides more accurate 3D resistivity models. To solve the inversion problem we apply a 'first optimize then discretize' approach using the quasi-Newton scheme in form of the limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) method (see Gross & Kemp 2013). The evaluation of the cost function requires the solution of the secondary potential PDE for each source current and the solution of the corresponding adjoint-state PDE for the cost function gradients with respect to the subsurface

  7. A simple finite element method for boundary value problems with a Riemann–Liouville derivative

    KAUST Repository

    Jin, Bangti; Lazarov, Raytcho; Lu, Xiliang; Zhou, Zhi

    2016-01-01

    © 2015 Elsevier B.V. All rights reserved. We consider a boundary value problem involving a Riemann-Liouville fractional derivative of order α∈(3/2,2) on the unit interval (0,1). The standard Galerkin finite element approximation converges slowly due to the presence of singularity term xα-1 in the solution representation. In this work, we develop a simple technique, by transforming it into a second-order two-point boundary value problem with nonlocal low order terms, whose solution can reconstruct directly the solution to the original problem. The stability of the variational formulation, and the optimal regularity pickup of the solution are analyzed. A novel Galerkin finite element method with piecewise linear or quadratic finite elements is developed, and L2(D) error estimates are provided. The approach is then applied to the corresponding fractional Sturm-Liouville problem, and error estimates of the eigenvalue approximations are given. Extensive numerical results fully confirm our theoretical study.

  8. A simple finite element method for boundary value problems with a Riemann–Liouville derivative

    KAUST Repository

    Jin, Bangti

    2016-02-01

    © 2015 Elsevier B.V. All rights reserved. We consider a boundary value problem involving a Riemann-Liouville fractional derivative of order α∈(3/2,2) on the unit interval (0,1). The standard Galerkin finite element approximation converges slowly due to the presence of singularity term xα-1 in the solution representation. In this work, we develop a simple technique, by transforming it into a second-order two-point boundary value problem with nonlocal low order terms, whose solution can reconstruct directly the solution to the original problem. The stability of the variational formulation, and the optimal regularity pickup of the solution are analyzed. A novel Galerkin finite element method with piecewise linear or quadratic finite elements is developed, and L2(D) error estimates are provided. The approach is then applied to the corresponding fractional Sturm-Liouville problem, and error estimates of the eigenvalue approximations are given. Extensive numerical results fully confirm our theoretical study.

  9. Use of adjoint methods in the probabilistic finite element approach to fracture mechanics

    Science.gov (United States)

    Liu, Wing Kam; Besterfield, Glen; Lawrence, Mark; Belytschko, Ted

    1988-01-01

    The adjoint method approach to probabilistic finite element methods (PFEM) is presented. When the number of objective functions is small compared to the number of random variables, the adjoint method is far superior to the direct method in evaluating the objective function derivatives with respect to the random variables. The PFEM is extended to probabilistic fracture mechanics (PFM) using an element which has the near crack-tip singular strain field embedded. Since only two objective functions (i.e., mode I and II stress intensity factors) are needed for PFM, the adjoint method is well suited.

  10. A novel finite element method for moving conductor eddy current problems

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Z.; Eastham, A.R.; Dawson, G.E. (Queen' s Univ., Kingston, Ontario (Canada). Dept. of Electrical Engineering)

    1993-11-01

    A novel finite element method, as an alternative to upwinding, is proposed based on the elimination of the factors which could cause numerical oscillation and instability by properly choosing a set of unconventional weighting functions. The proposed method is first developed and verified for a one dimensional case and then extended to two dimensional problems. The calculation results for a 2D problem, along with the exact solutions and those obtained from Galerkin's and ''optimal'' upwinding methods, show that the proposed method is superior to the other two methods in terms of accuracy and freedom from oscillation.

  11. Numerical modeling of contaminant transport in fractured porous media using mixed finite-element and finitevolume methods

    KAUST Repository

    Dong, Chen; Sun, Shuyu; Taylor, Glenn A.

    2011-01-01

    A mathematical model for contaminant species passing through fractured porous media is presented. In the numerical model, we combine two locally conservative methods; i.e., the mixed finite-element (MFE) method and the finite-volume method. Adaptive

  12. About solution of multipoint boundary problem of static analysis of deep beam with the use of combined application of finite element method and discrete-continual finite element method. part 1: formulation of the problem and general principles of approximation

    Directory of Open Access Journals (Sweden)

    Lyakhovich Leonid

    2017-01-01

    Full Text Available This paper is devoted to formulation and general principles of approximation of multipoint boundary problem of static analysis of deep beam with the use of combined application of finite element method (FEM discrete-continual finite element method (DCFEM. The field of application of DCFEM comprises structures with regular physical and geometrical parameters in some dimension (“basic” dimension. DCFEM presupposes finite element approximation for non-basic dimension while in the basic dimension problem remains continual. DCFEM is based on analytical solutions of resulting multipoint boundary problems for systems of ordinary differential equations with piecewise-constant coefficients.

  13. A Galerkin Finite Element Method for Numerical Solutions of the Modified Regularized Long Wave Equation

    Directory of Open Access Journals (Sweden)

    Liquan Mei

    2014-01-01

    Full Text Available A Galerkin method for a modified regularized long wave equation is studied using finite elements in space, the Crank-Nicolson scheme, and the Runge-Kutta scheme in time. In addition, an extrapolation technique is used to transform a nonlinear system into a linear system in order to improve the time accuracy of this method. A Fourier stability analysis for the method is shown to be marginally stable. Three invariants of motion are investigated. Numerical experiments are presented to check the theoretical study of this method.

  14. High Order Finite Element Method for the Lambda modes problem on hexagonal geometry

    International Nuclear Information System (INIS)

    Gonzalez-Pintor, S.; Ginestar, D.; Verdu, G.

    2009-01-01

    A High Order Finite Element Method to approximate the Lambda modes problem for reactors with hexagonal geometry has been developed. This method is based on the expansion of the neutron flux in terms of the modified Dubiner's polynomials on a triangular mesh. This mesh is fixed and the accuracy of the method is improved increasing the degree of the polynomial expansions without the necessity of remeshing. The performance of method has been tested obtaining the dominant Lambda modes of different 2D reactor benchmark problems.

  15. Analysis of wave motion in one-dimensional structures through fast-Fourier-transform-based wavelet finite element method

    Science.gov (United States)

    Shen, Wei; Li, Dongsheng; Zhang, Shuaifang; Ou, Jinping

    2017-07-01

    This paper presents a hybrid method that combines the B-spline wavelet on the interval (BSWI) finite element method and spectral analysis based on fast Fourier transform (FFT) to study wave propagation in One-Dimensional (1D) structures. BSWI scaling functions are utilized to approximate the theoretical wave solution in the spatial domain and construct a high-accuracy dynamic stiffness matrix. Dynamic reduction on element level is applied to eliminate the interior degrees of freedom of BSWI elements and substantially reduce the size of the system matrix. The dynamic equations of the system are then transformed and solved in the frequency domain through FFT-based spectral analysis which is especially suitable for parallel computation. A comparative analysis of four different finite element methods is conducted to demonstrate the validity and efficiency of the proposed method when utilized in high-frequency wave problems. Other numerical examples are utilized to simulate the influence of crack and delamination on wave propagation in 1D rods and beams. Finally, the errors caused by FFT and their corresponding solutions are presented.

  16. Numerical modeling of contaminant transport in fractured porous media using mixed finite-element and finitevolume methods

    KAUST Repository

    Dong, Chen

    2011-01-01

    A mathematical model for contaminant species passing through fractured porous media is presented. In the numerical model, we combine two locally conservative methods; i.e., the mixed finite-element (MFE) method and the finite-volume method. Adaptive triangle mesh is used for effective treatment of the fractures. A hybrid MFE method is employed to provide an accurate approximation of velocity fields for both the fractures and matrix, which are crucial to the convection part of the transport equation. The finite-volume method and the standard MFE method are used to approximate the convection and dispersion terms, respectively. The temporary evolution for the pressure distributions, streamline fields, and concentration profiles are obtained for six different arrangements of fractures. The results clearly show the distorted concentration effects caused by the ordered and disordered (random) patterns of the fractures and illustrate the robustness and efficiency of the proposed numerical model. © 2011 by Begell House Inc.

  17. A maximum-principle preserving finite element method for scalar conservation equations

    KAUST Repository

    Guermond, Jean-Luc

    2014-04-01

    This paper introduces a first-order viscosity method for the explicit approximation of scalar conservation equations with Lipschitz fluxes using continuous finite elements on arbitrary grids in any space dimension. Provided the lumped mass matrix is positive definite, the method is shown to satisfy the local maximum principle under a usual CFL condition. The method is independent of the cell type; for instance, the mesh can be a combination of tetrahedra, hexahedra, and prisms in three space dimensions. © 2014 Elsevier B.V.

  18. Calculation of two-dimensional thermal transients by the method of finite elements

    International Nuclear Information System (INIS)

    Fontoura Rodrigues, J.L.A. da.

    1980-08-01

    The unsteady linear heat conduction analysis throught anisotropic and/or heterogeneous matter, in either two-dimensional fields with any kind of geometry or three-dimensional fields with axial symmetry is presented. The boundary conditions and the internal heat generation are supposed time - independent. The solution is obtained by modal analysis employing the finite element method under Galerkin formulation. Optionally, it can be used with a reduced resolution method called Stoker Economizing Method wich allows a decrease on the program processing costs. (Author) [pt

  19. A maximum-principle preserving finite element method for scalar conservation equations

    KAUST Repository

    Guermond, Jean-Luc; Nazarov, Murtazo

    2014-01-01

    This paper introduces a first-order viscosity method for the explicit approximation of scalar conservation equations with Lipschitz fluxes using continuous finite elements on arbitrary grids in any space dimension. Provided the lumped mass matrix is positive definite, the method is shown to satisfy the local maximum principle under a usual CFL condition. The method is independent of the cell type; for instance, the mesh can be a combination of tetrahedra, hexahedra, and prisms in three space dimensions. © 2014 Elsevier B.V.

  20. Permeability computation on a REV with an immersed finite element method

    International Nuclear Information System (INIS)

    Laure, P.; Puaux, G.; Silva, L.; Vincent, M.

    2011-01-01

    An efficient method to compute permeability of fibrous media is presented. An immersed domain approach is used to represent the porous material at its microscopic scale and the flow motion is computed with a stabilized mixed finite element method. Therefore the Stokes equation is solved on the whole domain (including solid part) using a penalty method. The accuracy is controlled by refining the mesh around the solid-fluid interface defined by a level set function. Using homogenisation techniques, the permeability of a representative elementary volume (REV) is computed. The computed permeabilities of regular fibre packings are compared to classical analytical relations found in the bibliography.

  1. Numerical analysis of partially molten splat during thermal spray process using the finite element method

    Science.gov (United States)

    Zirari, M.; Abdellah El-Hadj, A.; Bacha, N.

    2010-03-01

    A finite element method is used to simulate the deposition of the thermal spray coating process. A set of governing equations is solving by a volume of fluid method. For the solidification phenomenon, we use the specific heat method (SHM). We begin by comparing the present model with experimental and numerical model available in the literature. In this study, completely molten or semi-molten aluminum particle impacts a H13 tool steel substrate is considered. Next we investigate the effect of inclination of impact of a partially molten particle on flat substrate. It was found that the melting state of the particle has great effects on the morphologies of the splat.

  2. Face-based smoothed finite element method for real-time simulation of soft tissue

    Science.gov (United States)

    Mendizabal, Andrea; Bessard Duparc, Rémi; Bui, Huu Phuoc; Paulus, Christoph J.; Peterlik, Igor; Cotin, Stéphane

    2017-03-01

    In soft tissue surgery, a tumor and other anatomical structures are usually located using the preoperative CT or MR images. However, due to the deformation of the concerned tissues, this information suffers from inaccuracy when employed directly during the surgery. In order to account for these deformations in the planning process, the use of a bio-mechanical model of the tissues is needed. Such models are often designed using the finite element method (FEM), which is, however, computationally expensive, in particular when a high accuracy of the simulation is required. In our work, we propose to use a smoothed finite element method (S-FEM) in the context of modeling of the soft tissue deformation. This numerical technique has been introduced recently to overcome the overly stiff behavior of the standard FEM and to improve the solution accuracy and the convergence rate in solid mechanics problems. In this paper, a face-based smoothed finite element method (FS-FEM) using 4-node tetrahedral elements is presented. We show that in some cases, the method allows for reducing the number of degrees of freedom, while preserving the accuracy of the discretization. The method is evaluated on a simulation of a cantilever beam loaded at the free end and on a simulation of a 3D cube under traction and compression forces. Further, it is applied to the simulation of the brain shift and of the kidney's deformation. The results demonstrate that the method outperforms the standard FEM in a bending scenario and that has similar accuracy as the standard FEM in the simulations of the brain-shift and of the kidney's deformation.

  3. Overlapping Schwarz for Nonlinear Problems. An Element Agglomeration Nonlinear Additive Schwarz Preconditioned Newton Method for Unstructured Finite Element Problems

    Energy Technology Data Exchange (ETDEWEB)

    Cai, X C; Marcinkowski, L; Vassilevski, P S

    2005-02-10

    This paper extends previous results on nonlinear Schwarz preconditioning ([4]) to unstructured finite element elliptic problems exploiting now nonlocal (but small) subspaces. The non-local finite element subspaces are associated with subdomains obtained from a non-overlapping element partitioning of the original set of elements and are coarse outside the prescribed element subdomain. The coarsening is based on a modification of the agglomeration based AMGe method proposed in [8]. Then, the algebraic construction from [9] of the corresponding non-linear finite element subproblems is applied to generate the subspace based nonlinear preconditioner. The overall nonlinearly preconditioned problem is solved by an inexact Newton method. Numerical illustration is also provided.

  4. Analysis of eigenfrequencies in piezoelectric transducers using the finite element method

    DEFF Research Database (Denmark)

    Jensen, Henrik

    1988-01-01

    transducers, which include the complete set of piezoelectric equations, have been included. They can find eigenfrequencies for undamped transducers and perform forced-response analysis for transducers with internal and radiation damping. The superelement technique is used to model the transducer backing......It is noted that the finite-element method is a valuable supplement to the traditional methods for design of novel transducer types because it can determine the vibrational pattern of piezoelectric transducers and is applicable to any geometry. Computer programs for analysis of axisymmetric...

  5. Dynamic transient analysis of rupture disks by the finite-element method

    International Nuclear Information System (INIS)

    Hsieh, B.J.

    1975-02-01

    A finite element method utilizing the principle of virtual work in convected coordinates is used to analyze the axisymmetric dynamic transient response of rupture disks. This method can treat non-linearities arising both from inelastic material properties and large displacements/rotations provided that the convected strains are small. This report contains extensive calculations using a variety of rupture disk geometries and attempts to relate the static buckling of such disks to their dynamic response characteristics. A majority of the calculations treat the response of 18 inch disks typical of those currently considered for use in the Clinch River Breeder Reactor intermediate heat transport system

  6. Application of the finite element method to neutronics problems with inhomogeneous boundray conditions

    International Nuclear Information System (INIS)

    Yoo, K.J.

    1982-01-01

    The albedo boundary conditions are incorporated into the finite element method using bicubic Hermite element functions in order to reduce the computer memory and computation time in two-group diffusion calculations by excluding the reflector regions in computation space. The basis functions at the core-reflector interfaces are newly established to satisfy the albedo boundary conditions, and then the ''weak'' form of two-group diffusion equations is discretized using the principle of the weighted residual method in combination with the Galerkin approximation. The discretized two-group diffusion equation is then solved by the Gaussian elimination method with the scaled column pivoting algorithm in one-dimensional problem and Gauss-Seidel method in two-dimensional problem. Prior to the application of the method to two-group diffusion problems, the same method is applied to the one-speed neutron transport equation in a bare slab reactor with the vacuum boundary condition to confirm its usefulness in the diffusion calculations. To investigate the applicability of our diffusion method, several numerical calculations are performed: two-dimensional IAEA benchmark problem and two-dimensional ZION problem. The results are compared with the available results from the conventional finite difference and other finite element methods. If the albedo values are appropriately adjusted, our results of the two-dimensional IAEA benchmark problem are agreed within 0.002% of ksub(eff) with the fine mesh PDQ results. Comparing with CITATION results, one-eighth of core memory and one-fifteenth of computing time are required to obtain the same accuracy even though no acceleration technique is used in the present case. Also, it is found that the results are comparable with the other finite element results. However, no significant saving is obtained in computation time comparing with the other finite element results, where the reflector regions are explicity included. This mainly comes from

  7. Application of the Finite Element Method in Atomic and Molecular Physics

    Science.gov (United States)

    Shertzer, Janine

    2007-01-01

    The finite element method (FEM) is a numerical algorithm for solving second order differential equations. It has been successfully used to solve many problems in atomic and molecular physics, including bound state and scattering calculations. To illustrate the diversity of the method, we present here details of two applications. First, we calculate the non-adiabatic dipole polarizability of Hi by directly solving the first and second order equations of perturbation theory with FEM. In the second application, we calculate the scattering amplitude for e-H scattering (without partial wave analysis) by reducing the Schrodinger equation to set of integro-differential equations, which are then solved with FEM.

  8. Homogenization of Periodic Masonry Using Self-Consistent Scheme and Finite Element Method

    Science.gov (United States)

    Kumar, Nitin; Lambadi, Harish; Pandey, Manoj; Rajagopal, Amirtham

    2016-01-01

    Masonry is a heterogeneous anisotropic continuum, made up of the brick and mortar arranged in a periodic manner. Obtaining the effective elastic stiffness of the masonry structures has been a challenging task. In this study, the homogenization theory for periodic media is implemented in a very generic manner to derive the anisotropic global behavior of the masonry, through rigorous application of the homogenization theory in one step and through a full three-dimensional behavior. We have considered the periodic Eshelby self-consistent method and the finite element method. Two representative unit cells that represent the microstructure of the masonry wall exactly are considered for calibration and numerical application of the theory.

  9. A finite element beam propagation method for simulation of liquid crystal devices.

    Science.gov (United States)

    Vanbrabant, Pieter J M; Beeckman, Jeroen; Neyts, Kristiaan; James, Richard; Fernandez, F Anibal

    2009-06-22

    An efficient full-vectorial finite element beam propagation method is presented that uses higher order vector elements to calculate the wide angle propagation of an optical field through inhomogeneous, anisotropic optical materials such as liquid crystals. The full dielectric permittivity tensor is considered in solving Maxwell's equations. The wide applicability of the method is illustrated with different examples: the propagation of a laser beam in a uniaxial medium, the tunability of a directional coupler based on liquid crystals and the near-field diffraction of a plane wave in a structure containing micrometer scale variations in the transverse refractive index, similar to the pixels of a spatial light modulator.

  10. Probabilistic finite element stiffness of a laterally loaded monopile based on an improved asymptotic sampling method

    DEFF Research Database (Denmark)

    Vahdatirad, Mohammadjavad; Bayat, Mehdi; Andersen, Lars Vabbersgaard

    2015-01-01

    shear strength of clay. Normal and Sobol sampling are employed to provide the asymptotic sampling method to generate the probability distribution of the foundation stiffnesses. Monte Carlo simulation is used as a benchmark. Asymptotic sampling accompanied with Sobol quasi random sampling demonstrates......The mechanical responses of an offshore monopile foundation mounted in over-consolidated clay are calculated by employing a stochastic approach where a nonlinear p–y curve is incorporated with a finite element scheme. The random field theory is applied to represent a spatial variation for undrained...... an efficient method for estimating the probability distribution of stiffnesses for the offshore monopile foundation....

  11. Finite element method for starved hydrodynamic lubrication with film separation and free surface effects

    DEFF Research Database (Denmark)

    Poulios, Konstantinos; Vølund, Anders; Klit, Peder

    2018-01-01

    This paper proposes a numerical method for determining the evolution of lubricant film thickness and pressure in partially and fully flooded regions of a hydrodynamic contact between two non-conformal rigid surfaces. The proposed method accounts for the classical Reynolds equation within the fully...... thickness is zero. Both pressure and film thickness fields are considered as unknowns to solve for in each time step and they are approximated through quadratic B-spline finite elements. The geometry of the gap between the rigid surfaces delimiting the lubricant is accounted for in the form of a unilateral...

  12. A multipoint flux mixed finite element method on distorted quadrilaterals and hexahedra

    KAUST Repository

    Wheeler, Mary

    2011-11-06

    In this paper, we develop a new mixed finite element method for elliptic problems on general quadrilateral and hexahedral grids that reduces to a cell-centered finite difference scheme. A special non-symmetric quadrature rule is employed that yields a positive definite cell-centered system for the pressure by eliminating local velocities. The method is shown to be accurate on highly distorted rough quadrilateral and hexahedral grids, including hexahedra with non-planar faces. Theoretical and numerical results indicate first-order convergence for the pressure and face fluxes. © 2011 Springer-Verlag.

  13. Linear dynamic analysis of arbitrary thin shells modal superposition by using finite element method

    International Nuclear Information System (INIS)

    Goncalves Filho, O.J.A.

    1978-11-01

    The linear dynamic behaviour of arbitrary thin shells by the Finite Element Method is studied. Plane triangular elements with eighteen degrees of freedom each are used. The general equations of movement are obtained from the Hamilton Principle and solved by the Modal Superposition Method. The presence of a viscous type damping can be considered by means of percentages of the critical damping. An automatic computer program was developed to provide the vibratory properties and the dynamic response to several types of deterministic loadings, including temperature effects. The program was written in FORTRAN IV for the Burroughs B-6700 computer. (author)

  14. Drop Test Using Finite Element Method for Transport Package of Radioactive Material

    International Nuclear Information System (INIS)

    Xu Xiaoxiao; Zhao Bing; Zhang Jiangang; Li Gouqiang; Wang Xuexin; Tang Rongyao

    2010-01-01

    Mechanical test for transport package of radioactive material is one of the important tests for demonstrating package structure design. Drop test of package is a kind of destructive test. It is a common method of adopting the pre-analysis to determine drop orientation.Mechanical test of a sealed source package was calculated with finite element method (FEM) software. Based on the analysis of the calculation results, some values were obtained such as the stress, strain, acceleration and the drop orientation which causes the most severe damage, and the calculation results were compared with the results of test. (authors)

  15. Explicit dynamics for numerical simulation of crack propagation by the extended finite element method

    International Nuclear Information System (INIS)

    Menouillard, T.

    2007-09-01

    Computerized simulation is nowadays an integrating part of design and validation processes of mechanical structures. Simulation tools are more and more performing allowing a very acute description of the phenomena. Moreover, these tools are not limited to linear mechanics but are developed to describe more difficult behaviours as for instance structures damage which interests the safety domain. A dynamic or static load can thus lead to a damage, a crack and then a rupture of the structure. The fast dynamics allows to simulate 'fast' phenomena such as explosions, shocks and impacts on structure. The application domain is various. It concerns for instance the study of the lifetime and the accidents scenario of the nuclear reactor vessel. It is then very interesting, for fast dynamics codes, to be able to anticipate in a robust and stable way such phenomena: the assessment of damage in the structure and the simulation of crack propagation form an essential stake. The extended finite element method has the advantage to break away from mesh generation and from fields projection during the crack propagation. Effectively, crack is described kinematically by an appropriate strategy of enrichment of supplementary freedom degrees. Difficulties connecting the spatial discretization of this method with the temporal discretization of an explicit calculation scheme has then been revealed; these difficulties are the diagonal writing of the mass matrix and the associated stability time step. Here are presented two methods of mass matrix diagonalization based on the kinetic energy conservation, and studies of critical time steps for various enriched finite elements. The interest revealed here is that the time step is not more penalizing than those of the standard finite elements problem. Comparisons with numerical simulations on another code allow to validate the theoretical works. A crack propagation test in mixed mode has been exploited in order to verify the simulation

  16. Evaluation of Strip Footing Bearing Capacity Built on the Anthropogenic Embankment by Random Finite Element Method

    Science.gov (United States)

    Pieczynska-Kozlowska, Joanna

    2014-05-01

    One of a geotechnical problem in the area of Wroclaw is an anthropogenic embankment layer delaying to the depth of 4-5m, arising as a result of historical incidents. In such a case an assumption of bearing capacity of strip footing might be difficult. The standard solution is to use a deep foundation or foundation soil replacement. However both methods generate significant costs. In the present paper the authors focused their attention on the influence of anthropogenic embankment variability on bearing capacity. Soil parameters were defined on the basis of CPT test and modeled as 2D anisotropic random fields and the assumption of bearing capacity were made according deterministic finite element methods. Many repeated of the different realizations of random fields lead to stable expected value of bearing capacity. The algorithm used to estimate the bearing capacity of strip footing was the random finite element method (e.g. [1]). In traditional approach of bearing capacity the formula proposed by [2] is taken into account. qf = c'Nc + qNq + 0.5γBN- γ (1) where: qf is the ultimate bearing stress, cis the cohesion, qis the overburden load due to foundation embedment, γ is the soil unit weight, Bis the footing width, and Nc, Nq and Nγ are the bearing capacity factors. The method of evaluation the bearing capacity of strip footing based on finite element method incorporate five parameters: Young's modulus (E), Poisson's ratio (ν), dilation angle (ψ), cohesion (c), and friction angle (φ). In the present study E, ν and ψ are held constant while c and φ are randomized. Although the Young's modulus does not affect the bearing capacity it governs the initial elastic response of the soil. Plastic stress redistribution is accomplished using a viscoplastic algorithm merge with an elastic perfectly plastic (Mohr - Coulomb) failure criterion. In this paper a typical finite element mesh was assumed with 8-node elements consist in 50 columns and 20 rows. Footings width B

  17. Main formulations of the finite element method for the problems of structural mechanics. Part 3

    Directory of Open Access Journals (Sweden)

    Ignat’ev Aleksandr Vladimirovich

    2015-01-01

    Full Text Available In this paper the author offers is the classification of the formulae of Finite Element Method. This classification help to orient in a huge number of published articles, as well as those to be published, which are dedicated to the problem of enhancing the efficiency of the most commonly used method. The third part of the article considers the variation formulations of FEM and the energy principles lying in the basis of it. If compared to the direct method, which is applied only to finite elements of a simple geometrical type, the variation formulations of FEM are applicable to the elements of any type. All the variation methods can be conventionally divided into two groups. The methods of the first group are based on the principle of energy functional stationarity - a potential system energy, additional energy or on the basis of these energies, which means the full energy. The methods of the second group are based on the variants of mathematical methods of weighted residuals for solving the differential equations, which in some cases can be handled according to the principle of possible displacements or extreme energy principles. The most widely used and multipurpose is the approach based on the use of energy principles coming from the energy conservation law: principle of possible changes in stress state, principle of possible change in stress-strain state.

  18. Mechanical stress calculations for toroidal field coils by the finite element method

    International Nuclear Information System (INIS)

    Soell, M.; Jandl, O.; Gorenflo, H.

    1976-09-01

    After discussing fundamental relationships of the finite element method, this report describes the calculation steps worked out for mechanical stress calculations in the case of magnetic forces and forces produced by thermal expansion or compression of toroidal field coils using the SOLID SAP IV computer program. The displacement and stress analysis are based on the 20-node isoparametric solid element. The calculation of the nodal forces produced by magnetic body forces are discussed in detail. The computer programs, which can be used generally for mesh generation and determination of the nodal forces, are published elsewhere. (orig.) [de

  19. Residual-based a posteriori error estimation for multipoint flux mixed finite element methods

    KAUST Repository

    Du, Shaohong; Sun, Shuyu; Xie, Xiaoping

    2015-01-01

    A novel residual-type a posteriori error analysis technique is developed for multipoint flux mixed finite element methods for flow in porous media in two or three space dimensions. The derived a posteriori error estimator for the velocity and pressure error in L-norm consists of discretization and quadrature indicators, and is shown to be reliable and efficient. The main tools of analysis are a locally postprocessed approximation to the pressure solution of an auxiliary problem and a quadrature error estimate. Numerical experiments are presented to illustrate the competitive behavior of the estimator.

  20. An efficient discontinuous Galerkin finite element method for highly accurate solution of maxwell equations

    KAUST Repository

    Liu, Meilin

    2012-08-01

    A discontinuous Galerkin finite element method (DG-FEM) with a highly accurate time integration scheme for solving Maxwell equations is presented. The new time integration scheme is in the form of traditional predictor-corrector algorithms, PE CE m, but it uses coefficients that are obtained using a numerical scheme with fully controllable accuracy. Numerical results demonstrate that the proposed DG-FEM uses larger time steps than DG-FEM with classical PE CE) m schemes when high accuracy, which could be obtained using high-order spatial discretization, is required. © 1963-2012 IEEE.

  1. Multi-dimensional Fokker-Planck equation analysis using the modified finite element method

    Czech Academy of Sciences Publication Activity Database

    Náprstek, Jiří; Král, Radomil

    2016-01-01

    Roč. 744, č. 1 (2016), č. článku 012177. ISSN 1742-6588. [International Conference on Motion and Vibration Control (MOVIC 2016) /13./ and International Conference on Recent Advances in Structural Dynamics (RASD 2016) /12./. Southampton, 04.07.2016-06.07.2016] R&D Projects: GA ČR(CZ) GP14-34467P; GA ČR(CZ) GA15-01035S Institutional support: RVO:68378297 Keywords : Fokker-Planck equation * finite element method * single degree of freedom systems (SDOF) Subject RIV: JM - Building Engineering http://iopscience.iop.org/article/10.1088/1742-6596/744/1/012177

  2. Survey of the status of finite element methods for partial differential equations

    Science.gov (United States)

    Temam, Roger

    1986-01-01

    The finite element methods (FEM) have proved to be a powerful technique for the solution of boundary value problems associated with partial differential equations of either elliptic, parabolic, or hyperbolic type. They also have a good potential for utilization on parallel computers particularly in relation to the concept of domain decomposition. This report is intended as an introduction to the FEM for the nonspecialist. It contains a survey which is totally nonexhaustive, and it also contains as an illustration, a report on some new results concerning two specific applications, namely a free boundary fluid-structure interaction problem and the Euler equations for inviscid flows.

  3. The Galerkin finite element method for a multi-term time-fractional diffusion equation

    KAUST Repository

    Jin, Bangti

    2015-01-01

    © 2014 The Authors. We consider the initial/boundary value problem for a diffusion equation involving multiple time-fractional derivatives on a bounded convex polyhedral domain. We analyze a space semidiscrete scheme based on the standard Galerkin finite element method using continuous piecewise linear functions. Nearly optimal error estimates for both cases of initial data and inhomogeneous term are derived, which cover both smooth and nonsmooth data. Further we develop a fully discrete scheme based on a finite difference discretization of the time-fractional derivatives, and discuss its stability and error estimate. Extensive numerical experiments for one- and two-dimensional problems confirm the theoretical convergence rates.

  4. Radiative transfer with finite elements. Pt. 1. Basic method and tests

    Energy Technology Data Exchange (ETDEWEB)

    Richling, S. [Heidelberg Univ. (Germany). Inst. fuer Theoretische Astrophysik; Meinkoehn, E. [Heidelberg Univ. (Germany). Inst. fuer Theoretische Astrophysik]|[Heidelberg Univ. (Germany). Inst. fuer Angewandte Mathematik; Kryzhevoi, N. [Heidelberg Univ. (Germany). Inst. fuer Theoretische Astrophysik]|[Heidelberg Univ. (DE). Interdisziplinaeres Zentrum fuer Wissenschaftliches Rechnen (IWR); Kanschat, G. [Heidelberg Univ. (Germany). Inst. fuer Angewandte Mathematik]|[Heidelberg Univ. (DE). Interdisziplinaeres Zentrum fuer Wissenschaftliches Rechnen (IWR)

    2001-10-01

    A finite element method for solving the monochromatic radiation transfer equation including scattering in three dimensions is presented. The algorithm employs unstructured grids which are adaptively refined. Adaptivity as well as ordinate parallelization reduce memory requirements and execution time and make it possible to calculate the radiation field across several length scales for objects with strong opacity gradients. An a posteriori error estimate for one particular quantity is obtained by solving the dual problem. The application to a sample of test problems reveals the properties of the implementation. (orig.)

  5. Analysis of polyethylene terephthalate PET plastic bottle jointing system using finite element method (FEM)

    Science.gov (United States)

    Zaidi, N. A.; Rosli, Muhamad Farizuan; Effendi, M. S. M.; Abdullah, Mohamad Hariri

    2017-09-01

    For almost all injection molding applications of Polyethylene Terephthalate (PET) plastic was analyzed the strength, durability and stiffness of properties by using Finite Element Method (FEM) for jointing system of wood furniture. The FEM was utilized for analyzing the PET jointing system for Oak and Pine as wood based material of furniture. The difference pattern design of PET as wood jointing furniture gives the difference value of strength furniture itself. The results show the wood specimen with grooves and eclipse pattern design PET jointing give lower global estimated error is 28.90%, compare to the rectangular and non-grooves wood specimen of global estimated error is 63.21%.

  6. Lagrangian analysis of multiscale particulate flows with the particle finite element method

    Science.gov (United States)

    Oñate, Eugenio; Celigueta, Miguel Angel; Latorre, Salvador; Casas, Guillermo; Rossi, Riccardo; Rojek, Jerzy

    2014-05-01

    We present a Lagrangian numerical technique for the analysis of flows incorporating physical particles of different sizes. The numerical approach is based on the particle finite element method (PFEM) which blends concepts from particle-based techniques and the FEM. The basis of the Lagrangian formulation for particulate flows and the procedure for modelling the motion of small and large particles that are submerged in the fluid are described in detail. The numerical technique for analysis of this type of multiscale particulate flows using a stabilized mixed velocity-pressure formulation and the PFEM is also presented. Examples of application of the PFEM to several particulate flows problems are given.

  7. Buckling Analysis of Single and Multi Delamination In Composite Beam Using Finite Element Method

    Science.gov (United States)

    Simanjorang, Hans Charles; Syamsudin, Hendri; Giri Suada, Muhammad

    2018-04-01

    Delamination is one type of imperfection in structure which found usually in the composite structure. Delamination may exist due to some factors namely in-service condition where the foreign objects hit the composite structure and creates inner defect and poor manufacturing that causes the initial imperfections. Composite structure is susceptible to the compressive loading. Compressive loading leads the instability phenomenon in the composite structure called buckling. The existence of delamination inside of the structure will cause reduction in buckling strength. This paper will explain the effect of delamination location to the buckling strength. The analysis will use the one-dimensional modelling approach using two- dimensional finite element method.

  8. Three-dimensional analysis of eddy current with the finite element method

    International Nuclear Information System (INIS)

    Takano, Ichiro; Suzuki, Yasuo

    1977-05-01

    The finite element method is applied to three-dimensional analysis of eddy current induced in a large Tokamak device (JT-60). Two techniques to study the eddy current are presented: those of ordinary vector potential and modified vector potential. The latter is originally developed for decreasing dimension of the global matrix. Theoretical treatment of these two is given. The skin effect for alternate current flowing in the circular loop of rectangular cross section is examined as an example of the modified vector potential technique, and the result is compared with analytical one. This technique is useful in analysis of the eddy current problem. (auth.)

  9. Numerical simulation and design of a fluxset sensor by finite element method

    Energy Technology Data Exchange (ETDEWEB)

    Preis, K.; Bardi, I.; Biro, O.; Richter, K.R. [Technical Univ. of Graz (Austria); Pavo, J. [Technical Univ. of Budapest (Hungary); Gasparics, A. [Research Inst. for Material Science, Budapest (Hungary); Ticar, I. [Univ. of Maribor (Slovenia)

    1998-09-01

    A 3D model of a fluxset sensor serving to measure magnetic fields arising in Eddy Current Nondestructive Testing applications is analyzed by the finite element method. The voltage induced in the pick-up coil is obtained by computing the flux of the core of the sensor for several values of the exciting current at various external fields. It is shown that the time shift of the ensuing voltage impulse depends linearly on the external field in a wide range. The behavior of the sensor is furthermore simulated in a real nondestructive testing arrangement consisting of an exciting coil located above a conducting plate with a crack.

  10. Application of the finite element method to problems with heat radiation exchange

    International Nuclear Information System (INIS)

    Breitbach, G.; Altes, J.

    1985-07-01

    The calculation of temperature distributions for systems exchanging heat radiation requires in a first step the determination of the heat fluxes caused by radiation at its surfaces. In this paper the radiation transport equation is developed and it is shown, that it can be derived from a variational principle. The functional of the variational principle is the starting point of a numerical solution method. By using Finite Element Procedures a system of linear equations is derived, which supplies an approximation of the radiosity. Having the radiosity the heat flux at the surfaces, which governs as the boundary condition the temperature distribution in the structure, can be calculated. (orig.) [de

  11. A strongly conservative finite element method for the coupling of Stokes and Darcy flow

    KAUST Repository

    Kanschat, G.

    2010-08-01

    We consider a model of coupled free and porous media flow governed by Stokes and Darcy equations with the Beavers-Joseph-Saffman interface condition. This model is discretized using divergence-conforming finite elements for the velocities in the whole domain. Discontinuous Galerkin techniques and mixed methods are used in the Stokes and Darcy subdomains, respectively. This discretization is strongly conservative in Hdiv(Ω) and we show convergence. Numerical results validate our findings and indicate optimal convergence orders. © 2010 Elsevier Inc.

  12. Residual-based a posteriori error estimation for multipoint flux mixed finite element methods

    KAUST Repository

    Du, Shaohong

    2015-10-26

    A novel residual-type a posteriori error analysis technique is developed for multipoint flux mixed finite element methods for flow in porous media in two or three space dimensions. The derived a posteriori error estimator for the velocity and pressure error in L-norm consists of discretization and quadrature indicators, and is shown to be reliable and efficient. The main tools of analysis are a locally postprocessed approximation to the pressure solution of an auxiliary problem and a quadrature error estimate. Numerical experiments are presented to illustrate the competitive behavior of the estimator.

  13. Study on interaction between induced and natural fractures by extended finite element method

    Science.gov (United States)

    Xu, DanDan; Liu, ZhanLi; Zhuang, Zhuo; Zeng, QingLei; Wang, Tao

    2017-02-01

    Fracking is one of the kernel technologies in the remarkable shale gas revolution. The extended finite element method is used in this paper to numerically investigate the interaction between hydraulic and natural fractures, which is an important issue of the enigmatic fracture network formation in fracking. The criteria which control the opening of natural fracture and crossing of hydraulic fracture are tentatively presented. Influence factors on the interaction process are systematically analyzed, which include the approach angle, anisotropy of in-situ stress and fluid pressure profile.

  14. Proton recoil spectra in spherical proportional counters calculated with finite element and Monte Carlo methods

    Energy Technology Data Exchange (ETDEWEB)

    Benmosbah, M. [Laboratoire de Chimie Physique et Rayonnement Alain Chambaudet, UMR CEA E4, Universite de Franche-Comte, 16 route de Gray, 25030 Besancon Cedex (France); Groetz, J.E. [Laboratoire de Chimie Physique et Rayonnement Alain Chambaudet, UMR CEA E4, Universite de Franche-Comte, 16 route de Gray, 25030 Besancon Cedex (France)], E-mail: jegroetz@univ-fcomte.fr; Crovisier, P. [Service de Protection contre les Rayonnements, CEA Valduc, 21120 Is/Tille (France); Asselineau, B. [Laboratoire de Metrologie et de Dosimetrie des Neutrons, IRSN, Cadarache BP3, 13115 St Paul-lez-Durance (France); Truffert, H.; Cadiou, A. [AREVA NC, Etablissement de la Hague, DQSSE/PR/E/D, 50444 Beaumont-Hague Cedex (France)

    2008-08-11

    Proton recoil spectra were calculated for various spherical proportional counters using Monte Carlo simulation combined with the finite element method. Electric field lines and strength were calculated by defining an appropriate mesh and solving the Laplace equation with the associated boundary conditions, taking into account the geometry of every counter. Thus, different regions were defined in the counter with various coefficients for the energy deposition in the Monte Carlo transport code MCNPX. Results from the calculations are in good agreement with measurements for three different gas pressures at various neutron energies.

  15. An efficient discontinuous Galerkin finite element method for highly accurate solution of maxwell equations

    KAUST Repository

    Liu, Meilin; Sirenko, Kostyantyn; Bagci, Hakan

    2012-01-01

    A discontinuous Galerkin finite element method (DG-FEM) with a highly accurate time integration scheme for solving Maxwell equations is presented. The new time integration scheme is in the form of traditional predictor-corrector algorithms, PE CE m, but it uses coefficients that are obtained using a numerical scheme with fully controllable accuracy. Numerical results demonstrate that the proposed DG-FEM uses larger time steps than DG-FEM with classical PE CE) m schemes when high accuracy, which could be obtained using high-order spatial discretization, is required. © 1963-2012 IEEE.

  16. Complex wavenumber Fourier analysis of the B-spline based finite element method

    Czech Academy of Sciences Publication Activity Database

    Kolman, Radek; Plešek, Jiří; Okrouhlík, Miloslav

    2014-01-01

    Roč. 51, č. 2 (2014), s. 348-359 ISSN 0165-2125 R&D Projects: GA ČR(CZ) GAP101/11/0288; GA ČR(CZ) GAP101/12/2315; GA ČR GPP101/10/P376; GA ČR GA101/09/1630 Institutional support: RVO:61388998 Keywords : elastic wave propagation * dispersion errors * B-spline * finite element method * isogeometric analysis Subject RIV: JR - Other Machinery Impact factor: 1.513, year: 2014 http://www.sciencedirect.com/science/article/pii/S0165212513001479

  17. Finite element method used in strength calculations of nuclear power plant pressure vessels

    International Nuclear Information System (INIS)

    Hanulak, E.

    1987-01-01

    A software system based on the use of the finite element method in linear and nonlinear elastomechanics was developed for assessing the strength and service life of steam generators and pressurizers for WWER type nuclear power plants. The individual programs are briefly described. They are written in FORTRAN IV, some modules are in ASSEMBLER. Programs EGUSAP, NEANKO, ROSYNA are designed for the calculation of stress and deformation, programs ROSYNA, NEANKO and NTEPLO are used for the calculation of temperature fields. Programs SPOJ and STATES are used for assessing the strength and service life of screw joints and other nodes of the WWER-440 type steam generators and pressurizers. (Z.M.)

  18. Pellet Cladding Mechanical Interaction Modeling Using the Extended Finite Element Method

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, Benjamin W.; Jiang, Wen; Dolbow, John E.; Peco, Christian

    2016-09-01

    As a brittle material, the ceramic UO2 used as light water reactor fuel experiences significant fracturing throughout its life, beginning with the first rise to power of fresh fuel. This has multiple effects on the thermal and mechanical response of the fuel/cladding system. One such effect that is particularly important is that when there is mechanical contact between the fuel and cladding, cracks that extending from the outer surface of the fuel into the volume of the fuel cause elevated stresses in the adjacent cladding, which can potentially lead to cladding failure. Modeling the thermal and mechanical response of the cladding in the vicinity of these surface-breaking cracks in the fuel can provide important insights into this behavior to help avoid operating conditions that could lead to cladding failure. Such modeling has traditionally been done in the context of finite-element-based fuel performance analysis by modifying the fuel mesh to introduce discrete cracks. While this approach is effective in capturing the important behavior at the fuel/cladding interface, there are multiple drawbacks to explicitly incorporating the cracks in the finite element mesh. Because the cracks are incorporated in the original mesh, the mesh must be modified for cracks of specified location and depth, so it is difficult to account for crack propagation and the formation of new cracks at other locations. The extended finite element method (XFEM) has emerged in recent years as a powerful method to represent arbitrary, evolving, discrete discontinuities within the context of the finite element method. Development work is underway by the authors to implement XFEM in the BISON fuel performance code, and this capability has previously been demonstrated in simulations of fracture propagation in ceramic nuclear fuel. These preliminary demonstrations have included only the fuel, and excluded the cladding for simplicity. This paper presents initial results of efforts to apply XFEM to

  19. A review of some a posteriori error estimates for adaptive finite element methods

    Czech Academy of Sciences Publication Activity Database

    Segeth, Karel

    2010-01-01

    Roč. 80, č. 8 (2010), s. 1589-1600 ISSN 0378-4754. [European Seminar on Coupled Problems. Jetřichovice, 08.06.2008-13.06.2008] R&D Projects: GA AV ČR(CZ) IAA100190803 Institutional research plan: CEZ:AV0Z10190503 Keywords : hp-adaptive finite element method * a posteriori error estimators * computational error estimates Subject RIV: BA - General Mathematics Impact factor: 0.812, year: 2010 http://www.sciencedirect.com/science/article/pii/S0378475408004230

  20. Numerical simulations of earthquakes and the dynamics of fault systems using the Finite Element method.

    Science.gov (United States)

    Kettle, L. M.; Mora, P.; Weatherley, D.; Gross, L.; Xing, H.

    2006-12-01

    Simulations using the Finite Element method are widely used in many engineering applications and for the solution of partial differential equations (PDEs). Computational models based on the solution of PDEs play a key role in earth systems simulations. We present numerical modelling of crustal fault systems where the dynamic elastic wave equation is solved using the Finite Element method. This is achieved using a high level computational modelling language, escript, available as open source software from ACcESS (Australian Computational Earth Systems Simulator), the University of Queensland. Escript is an advanced geophysical simulation software package developed at ACcESS which includes parallel equation solvers, data visualisation and data analysis software. The escript library was implemented to develop a flexible Finite Element model which reliably simulates the mechanism of faulting and the physics of earthquakes. Both 2D and 3D elastodynamic models are being developed to study the dynamics of crustal fault systems. Our final goal is to build a flexible model which can be applied to any fault system with user-defined geometry and input parameters. To study the physics of earthquake processes, two different time scales must be modelled, firstly the quasi-static loading phase which gradually increases stress in the system (~100years), and secondly the dynamic rupture process which rapidly redistributes stress in the system (~100secs). We will discuss the solution of the time-dependent elastic wave equation for an arbitrary fault system using escript. This involves prescribing the correct initial stress distribution in the system to simulate the quasi-static loading of faults to failure; determining a suitable frictional constitutive law which accurately reproduces the dynamics of the stick/slip instability at the faults; and using a robust time integration scheme. These dynamic models generate data and information that can be used for earthquake forecasting.

  1. Estimation of graphite dust production in ITER TBM using finite element method

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Ji-Ho, E-mail: jhkang@kaeri.re.kr [Korea Atomic Energy Research Institute, 989-111, Daekeok-Daero, Yuseong-Gu, Daejeon 305-353 (Korea, Republic of); Kim, Eung Seon [Korea Atomic Energy Research Institute, 989-111, Daekeok-Daero, Yuseong-Gu, Daejeon 305-353 (Korea, Republic of); Ahn, Mu-Young; Lee, Youngmin; Park, Yi-Hyun; Cho, Seungyon [National Fusion Research Institute, 169-148, Gwahak-ro, Yuseong-gu, Daejeon (Korea, Republic of)

    2015-12-15

    Highlights: • Graphite dust production was estimated for the Korean Helium Cooled Ceramic Reflector. • Wear amount was calculated by Archard model using finite element analysis results. • Life time estimation of graphite dust production was done. - Abstract: In this study, an estimation method of graphite dust production in the pebble-bed type reflector region of the Korean Helium Cooled Ceramic Reflector (HCCR) Test Blanket Module (TBM) of the International Thermonuclear Experimental Reactor (ITER) project using Finite Element Method (FEM) was proposed and the total amount of dust production was calculated. A unit-cell model of uniformly arranged pebbles was defined with thermal and mechanical loadings. A commercial FEM program, Abaqus V6.10, was used to model and solve the stress field under multiple contact constraints between pebbles in the unit-cell. Resultant normal contact forces and slip distances on the contact points were applied into the Archard adhesive wear model to calculate the amount of graphite dust. The Finite Element (FE) analysis was repeated at 27 unit-cell locations chosen to form an interpolated dust density function for the entire region of the reflector. The dust production calculation was extended to the life time of the HCCR and the total graphite dust production was estimated to 0.279 g at the end of the life time with the maximum graphite dust density of 0.149 μg/mm{sup 3}. The dust explosion could be a safety issue with the calculated dust density level and it requires that an appropriate maintenance to remove sufficient amount of graphite dust regularly to prevent the possibility of dust explosion.

  2. Estimation of graphite dust production in ITER TBM using finite element method

    International Nuclear Information System (INIS)

    Kang, Ji-Ho; Kim, Eung Seon; Ahn, Mu-Young; Lee, Youngmin; Park, Yi-Hyun; Cho, Seungyon

    2015-01-01

    Highlights: • Graphite dust production was estimated for the Korean Helium Cooled Ceramic Reflector. • Wear amount was calculated by Archard model using finite element analysis results. • Life time estimation of graphite dust production was done. - Abstract: In this study, an estimation method of graphite dust production in the pebble-bed type reflector region of the Korean Helium Cooled Ceramic Reflector (HCCR) Test Blanket Module (TBM) of the International Thermonuclear Experimental Reactor (ITER) project using Finite Element Method (FEM) was proposed and the total amount of dust production was calculated. A unit-cell model of uniformly arranged pebbles was defined with thermal and mechanical loadings. A commercial FEM program, Abaqus V6.10, was used to model and solve the stress field under multiple contact constraints between pebbles in the unit-cell. Resultant normal contact forces and slip distances on the contact points were applied into the Archard adhesive wear model to calculate the amount of graphite dust. The Finite Element (FE) analysis was repeated at 27 unit-cell locations chosen to form an interpolated dust density function for the entire region of the reflector. The dust production calculation was extended to the life time of the HCCR and the total graphite dust production was estimated to 0.279 g at the end of the life time with the maximum graphite dust density of 0.149 μg/mm"3. The dust explosion could be a safety issue with the calculated dust density level and it requires that an appropriate maintenance to remove sufficient amount of graphite dust regularly to prevent the possibility of dust explosion.

  3. Test Functions for Three-Dimensional Control-Volume Mixed Finite-Element Methods on Irregular Grids

    National Research Council Canada - National Science Library

    Naff, R. L; Russell, T. F; Wilson, J. D

    2000-01-01

    .... For control-volume mixed finite-element methods, vector shape functions are used to approximate the distribution of velocities across cells and vector test functions are used to minimize the error...

  4. Extended Finite Element Method with Simplified Spherical Harmonics Approximation for the Forward Model of Optical Molecular Imaging

    Directory of Open Access Journals (Sweden)

    Wei Li

    2012-01-01

    Full Text Available An extended finite element method (XFEM for the forward model of 3D optical molecular imaging is developed with simplified spherical harmonics approximation (SPN. In XFEM scheme of SPN equations, the signed distance function is employed to accurately represent the internal tissue boundary, and then it is used to construct the enriched basis function of the finite element scheme. Therefore, the finite element calculation can be carried out without the time-consuming internal boundary mesh generation. Moreover, the required overly fine mesh conforming to the complex tissue boundary which leads to excess time cost can be avoided. XFEM conveniences its application to tissues with complex internal structure and improves the computational efficiency. Phantom and digital mouse experiments were carried out to validate the efficiency of the proposed method. Compared with standard finite element method and classical Monte Carlo (MC method, the validation results show the merits and potential of the XFEM for optical imaging.

  5. Soft tissue deformation estimation by spatio-temporal Kalman filter finite element method.

    Science.gov (United States)

    Yarahmadian, Mehran; Zhong, Yongmin; Gu, Chengfan; Shin, Jaehyun

    2018-01-01

    Soft tissue modeling plays an important role in the development of surgical training simulators as well as in robot-assisted minimally invasive surgeries. It has been known that while the traditional Finite Element Method (FEM) promises the accurate modeling of soft tissue deformation, it still suffers from a slow computational process. This paper presents a Kalman filter finite element method to model soft tissue deformation in real time without sacrificing the traditional FEM accuracy. The proposed method employs the FEM equilibrium equation and formulates it as a filtering process to estimate soft tissue behavior using real-time measurement data. The model is temporally discretized using the Newmark method and further formulated as the system state equation. Simulation results demonstrate that the computational time of KF-FEM is approximately 10 times shorter than the traditional FEM and it is still as accurate as the traditional FEM. The normalized root-mean-square error of the proposed KF-FEM in reference to the traditional FEM is computed as 0.0116. It is concluded that the proposed method significantly improves the computational performance of the traditional FEM without sacrificing FEM accuracy. The proposed method also filters noises involved in system state and measurement data.

  6. A blended continuous–discontinuous finite element method for solving the multi-fluid plasma model

    Energy Technology Data Exchange (ETDEWEB)

    Sousa, E.M., E-mail: sousae@uw.edu; Shumlak, U., E-mail: shumlak@uw.edu

    2016-12-01

    The multi-fluid plasma model represents electrons, multiple ion species, and multiple neutral species as separate fluids that interact through short-range collisions and long-range electromagnetic fields. The model spans a large range of temporal and spatial scales, which renders the model stiff and presents numerical challenges. To address the large range of timescales, a blended continuous and discontinuous Galerkin method is proposed, where the massive ion and neutral species are modeled using an explicit discontinuous Galerkin method while the electrons and electromagnetic fields are modeled using an implicit continuous Galerkin method. This approach is able to capture large-gradient ion and neutral physics like shock formation, while resolving high-frequency electron dynamics in a computationally efficient manner. The details of the Blended Finite Element Method (BFEM) are presented. The numerical method is benchmarked for accuracy and tested using two-fluid one-dimensional soliton problem and electromagnetic shock problem. The results are compared to conventional finite volume and finite element methods, and demonstrate that the BFEM is particularly effective in resolving physics in stiff problems involving realistic physical parameters, including realistic electron mass and speed of light. The benefit is illustrated by computing a three-fluid plasma application that demonstrates species separation in multi-component plasmas.

  7. Adaptive Multilevel Methods with Local Smoothing for $H^1$- and $H^{\\mathrm{curl}}$-Conforming High Order Finite Element Methods

    KAUST Repository

    Janssen, Bärbel

    2011-01-01

    A multilevel method on adaptive meshes with hanging nodes is presented, and the additional matrices appearing in the implementation are derived. Smoothers of overlapping Schwarz type are discussed; smoothing is restricted to the interior of the subdomains refined to the current level; thus it has optimal computational complexity. When applied to conforming finite element discretizations of elliptic problems and Maxwell equations, the method\\'s convergence rates are very close to those for the nonadaptive version. Furthermore, the smoothers remain efficient for high order finite elements. We discuss the implementation in a general finite element code using the example of the deal.II library. © 2011 Societ y for Industrial and Applied Mathematics.

  8. Gear hot forging process robust design based on finite element method

    International Nuclear Information System (INIS)

    Xuewen, Chen; Won, Jung Dong

    2008-01-01

    During the hot forging process, the shaping property and forging quality will fluctuate because of die wear, manufacturing tolerance, dimensional variation caused by temperature and the different friction conditions, etc. In order to control this variation in performance and to optimize the process parameters, a robust design method is proposed in this paper, based on the finite element method for the hot forging process. During the robust design process, the Taguchi method is the basic robust theory. The finite element analysis is incorporated in order to simulate the hot forging process. In addition, in order to calculate the objective function value, an orthogonal design method is selected to arrange experiments and collect sample points. The ANOVA method is employed to analyze the relationships of the design parameters and design objectives and to find the best parameters. Finally, a case study for the gear hot forging process is conducted. With the objective to reduce the forging force and its variation, the robust design mathematical model is established. The optimal design parameters obtained from this study indicate that the forging force has been reduced and its variation has been controlled

  9. Finite Element Modeling of Thermo Creep Processes Using Runge-Kutta Method

    Directory of Open Access Journals (Sweden)

    Yu. I. Dimitrienko

    2015-01-01

    Full Text Available Thermo creep deformations for most heat-resistant alloys, as a rule, nonlinearly depend on stresses and are practically non- reversible. Therefore, to calculate the properties of these materials the theory of plastic flow is most widely used. Finite-element computations of a stress-strain state of structures with account of thermo creep deformations up to now are performed using main commercial software, including ANSYS package. However, in most cases to solve nonlinear creep equations, one should apply explicit or implicit methods based on the Euler method of approximation of time-derivatives. The Euler method is sufficiently efficient in terms of random access memory in computations, however this method is cumbersome in computation time and does not always provide a required accuracy for creep deformation computations.The paper offers a finite-element algorithm to solve a three-dimensional problem of thermo creep based on the Runge-Kutta finite-difference schemes of different orders with respect to time. It shows a numerical test example to solve the problem on the thermo creep of a beam under tensile loading. The computed results demonstrate that using the Runge-Kutta method with increasing accuracy order allows us to obtain a more accurate solution (with increasing accuracy order by 1 a relative error decreases, approximately, by an order too. The developed algorithm proves to be efficient enough and can be recommended for solving the more complicated problems of thermo creep of structures.

  10. APPROX, 1-D and 2-D Function Approximation by Polynomials, Splines, Finite Elements Method

    International Nuclear Information System (INIS)

    Tollander, Bengt

    1975-01-01

    1 - Nature of physical problem solved: Approximates one- and two- dimensional functions using different forms of the approximating function, as polynomials, rational functions, Splines and (or) the finite element method. Different kinds of transformations of the dependent and (or) the independent variables can easily be made by data cards using a FORTRAN-like language. 2 - Method of solution: Approximations by polynomials, Splines and (or) the finite element method are made in L2 norm using the least square method by which the answer is directly given. For rational functions in one dimension the result given in L(infinite) norm is achieved by iterations moving the zero points of the error curve. For rational functions in two dimensions, the norm is L2 and the result is achieved by iteratively changing the coefficients of the denominator and then solving the coefficients of the numerator by the least square method. The transformation of the dependent and (or) independent variables is made by compiling the given transform data card(s) to an array of integers from which the transformation can be made

  11. Solution of 3D inverse scattering problems by combined inverse equivalent current and finite element methods

    International Nuclear Information System (INIS)

    Kılıç, Emre; Eibert, Thomas F.

    2015-01-01

    An approach combining boundary integral and finite element methods is introduced for the solution of three-dimensional inverse electromagnetic medium scattering problems. Based on the equivalence principle, unknown equivalent electric and magnetic surface current densities on a closed surface are utilized to decompose the inverse medium problem into two parts: a linear radiation problem and a nonlinear cavity problem. The first problem is formulated by a boundary integral equation, the computational burden of which is reduced by employing the multilevel fast multipole method (MLFMM). Reconstructed Cauchy data on the surface allows the utilization of the Lorentz reciprocity and the Poynting's theorems. Exploiting these theorems, the noise level and an initial guess are estimated for the cavity problem. Moreover, it is possible to determine whether the material is lossy or not. In the second problem, the estimated surface currents form inhomogeneous boundary conditions of the cavity problem. The cavity problem is formulated by the finite element technique and solved iteratively by the Gauss–Newton method to reconstruct the properties of the object. Regularization for both the first and the second problems is achieved by a Krylov subspace method. The proposed method is tested against both synthetic and experimental data and promising reconstruction results are obtained

  12. Solution of 3D inverse scattering problems by combined inverse equivalent current and finite element methods

    Energy Technology Data Exchange (ETDEWEB)

    Kılıç, Emre, E-mail: emre.kilic@tum.de; Eibert, Thomas F.

    2015-05-01

    An approach combining boundary integral and finite element methods is introduced for the solution of three-dimensional inverse electromagnetic medium scattering problems. Based on the equivalence principle, unknown equivalent electric and magnetic surface current densities on a closed surface are utilized to decompose the inverse medium problem into two parts: a linear radiation problem and a nonlinear cavity problem. The first problem is formulated by a boundary integral equation, the computational burden of which is reduced by employing the multilevel fast multipole method (MLFMM). Reconstructed Cauchy data on the surface allows the utilization of the Lorentz reciprocity and the Poynting's theorems. Exploiting these theorems, the noise level and an initial guess are estimated for the cavity problem. Moreover, it is possible to determine whether the material is lossy or not. In the second problem, the estimated surface currents form inhomogeneous boundary conditions of the cavity problem. The cavity problem is formulated by the finite element technique and solved iteratively by the Gauss–Newton method to reconstruct the properties of the object. Regularization for both the first and the second problems is achieved by a Krylov subspace method. The proposed method is tested against both synthetic and experimental data and promising reconstruction results are obtained.

  13. Fracture Capabilities in Grizzly with the extended Finite Element Method (X-FEM)

    Energy Technology Data Exchange (ETDEWEB)

    Dolbow, John [Idaho National Lab. (INL), Idaho Falls, ID (United States); Zhang, Ziyu [Idaho National Lab. (INL), Idaho Falls, ID (United States); Spencer, Benjamin [Idaho National Lab. (INL), Idaho Falls, ID (United States); Jiang, Wen [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-09-01

    Efforts are underway to develop fracture mechanics capabilities in the Grizzly code to enable it to be used to perform deterministic fracture assessments of degraded reactor pressure vessels (RPVs). A capability was previously developed to calculate three-dimensional interaction- integrals to extract mixed-mode stress-intensity factors. This capability requires the use of a finite element mesh that conforms to the crack geometry. The eXtended Finite Element Method (X-FEM) provides a means to represent a crack geometry without explicitly fitting the finite element mesh to it. This is effected by enhancing the element kinematics to represent jump discontinuities at arbitrary locations inside of the element, as well as the incorporation of asymptotic near-tip fields to better capture crack singularities. In this work, use of only the discontinuous enrichment functions was examined to see how accurate stress intensity factors could still be calculated. This report documents the following work to enhance Grizzly’s engineering fracture capabilities by introducing arbitrary jump discontinuities for prescribed crack geometries; X-FEM Mesh Cutting in 3D: to enhance the kinematics of elements that are intersected by arbitrary crack geometries, a mesh cutting algorithm was implemented in Grizzly. The algorithm introduces new virtual nodes and creates partial elements, and then creates a new mesh connectivity; Interaction Integral Modifications: the existing code for evaluating the interaction integral in Grizzly was based on the assumption of a mesh that was fitted to the crack geometry. Modifications were made to allow for the possibility of a crack front that passes arbitrarily through the mesh; and Benchmarking for 3D Fracture: the new capabilities were benchmarked against mixed-mode three-dimensional fracture problems with known analytical solutions.

  14. A simple nodal force distribution method in refined finite element meshes

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jai Hak [Chungbuk National University, Chungju (Korea, Republic of); Shin, Kyu In [Gentec Co., Daejeon (Korea, Republic of); Lee, Dong Won [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Cho, Seungyon [National Fusion Research Institute, Daejeon (Korea, Republic of)

    2017-05-15

    In finite element analyses, mesh refinement is frequently performed to obtain accurate stress or strain values or to accurately define the geometry. After mesh refinement, equivalent nodal forces should be calculated at the nodes in the refined mesh. If field variables and material properties are available at the integration points in each element, then the accurate equivalent nodal forces can be calculated using an adequate numerical integration. However, in certain circumstances, equivalent nodal forces cannot be calculated because field variable data are not available. In this study, a very simple nodal force distribution method was proposed. Nodal forces of the original finite element mesh are distributed to the nodes of refined meshes to satisfy the equilibrium conditions. The effect of element size should also be considered in determining the magnitude of the distributing nodal forces. A program was developed based on the proposed method, and several example problems were solved to verify the accuracy and effectiveness of the proposed method. From the results, accurate stress field can be recognized to be obtained from refined meshes using the proposed nodal force distribution method. In example problems, the difference between the obtained maximum stress and target stress value was less than 6 % in models with 8-node hexahedral elements and less than 1 % in models with 20-node hexahedral elements or 10-node tetrahedral elements.

  15. Coupling finite elements and reliability methods - application to safety evaluation of pressurized water reactor vessels

    International Nuclear Information System (INIS)

    Pitner, P.; Venturini, V.

    1995-02-01

    When reliability studies are extended form deterministic calculations in mechanics, it is necessary to take into account input parameters variabilities which are linked to the different sources of uncertainty. Integrals must then be calculated to evaluate the failure risk. This can be performed either by simulation methods, or by approximations ones (FORM/SORM). Model in mechanics often require to perform calculation codes. These ones must then be coupled with the reliability calculations. Theses codes can involve large calculation times when they are invoked numerous times during simulations sequences or in complex iterative procedures. Response surface method gives an approximation of the real response from a reduced number of points for which the finite element code is run. Thus, when it is combined with FORM/SORM methods, a coupling can be carried out which gives results in a reasonable calculation time. An application of response surface method to mechanics reliability coupling for a mechanical model which calls for a finite element code is presented. It corresponds to a probabilistic fracture mechanics study of a pressurized water reactor vessel. (authors). 5 refs., 3 figs

  16. Solution of the diffusion equations for several groups by the finite elements method

    International Nuclear Information System (INIS)

    Arredondo S, C.

    1975-01-01

    The code DELFIN has been implemented for the solution of the neutrons diffusion equations in two dimensions obtained by applying the approximation of several groups of energy. The code works with any number of groups and regions, and can be applied to thermal reactors as well as fast reactor. Providing it with the diffusion coefficients, the effective sections and the fission spectrum we obtain the results for the systems multiplying constant and the flows of each groups. The code was established using the method of finite elements, which is a form of resolution of the variational formulation of the equations applying the Ritz-Galerkin method with continuous polynomial functions by parts, in one case of the Lagrange type with rectangular geometry and up to the third grade. The obtained results and the comparison with the results in the literature, permit to reach the conclusion that it is convenient, to use the rectangular elements in all the cases where the geometry permits it, and demonstrate also that the finite elements method is better than the finite differences method. (author)

  17. Parametric optimization and design validation based on finite element analysis of hybrid socket adapter for transfemoral prosthetic knee.

    Science.gov (United States)

    Kumar, Neelesh

    2014-10-01

    Finite element analysis has been universally employed for the stress and strain analysis in lower extremity prosthetics. The socket adapter was the principal subject of interest due to its importance in deciding the knee motion range. This article focused on the static and dynamic stress analysis of the designed hybrid adapter developed by the authors. A standard mechanical design validation approach using von Mises was followed. Four materials were considered for the analysis, namely, carbon fiber, oil-filled nylon, Al-6061, and mild steel. The paper analyses the static and dynamic stress on designed hybrid adapter which incorporates features of conventional male and female socket adapters. The finite element analysis was carried out for possible different angles of knee flexion simulating static and dynamic gait situation. Research was carried out on available design of socket adapter. Mechanical design of hybrid adapter was conceptualized and a CAD model was generated using Inventor modelling software. Static and dynamic stress analysis was carried out on different materials for optimization. The finite element analysis was carried out on the software Autodesk Inventor Professional Ver. 2011. The peak value of von Mises stress occurred in the neck region of the adapter and in the lower face region at rod eye-adapter junction in static and dynamic analyses, respectively. Oil-filled nylon was found to be the best material among the four with respect to strength, weight, and cost. Research investigations on newer materials for development of improved prosthesis will immensely benefit the amputees. The study analyze the static and dynamic stress on the knee joint adapter to provide better material used for hybrid design of adapter. © The International Society for Prosthetics and Orthotics 2013.

  18. Failure analysis of natural gas buried X65 steel pipeline under deflection load using finite element method

    International Nuclear Information System (INIS)

    Liu, P.F.; Zheng, J.Y.; Zhang, B.J.; Shi, P.

    2010-01-01

    A 3D parametric finite element model of the pipeline and soil is established using finite element method to perform the failure analysis of natural gas buried X65 steel pipeline under deflection load. The pipeline is assumed to be loaded in a parabolic deflection displacement along the axial direction. Based on the true stress-strain constitutive relationship of X65 steel, the elastic-plastic finite element analysis employs the arc-length algorithm and non-linear stabilization algorithm respectively to simulate the strain softening properties of pipeline after plastic collapse. Besides, effects of the soil types and model sizes on the maximum deflection displacement of pipeline are investigated. The proposed finite element method serves as a base available for the safety design and evaluation as well as engineering acceptance criterion for the failure of pipeline due to deflection.

  19. Weak form implementation of the semi-analytical finite element (SAFE) method for a variety of elastodynamic waveguides

    Science.gov (United States)

    Hakoda, Christopher; Lissenden, Clifford; Rose, Joseph L.

    2018-04-01

    Dispersion curves are essential to any guided wave NDE project. The Semi-Analytical Finite Element (SAFE) method has significantly increased the ease by which these curves can be calculated. However, due to misconceptions regarding theory and fragmentation based on different finite-element software, the theory has stagnated, and adoption by researchers who are new to the field has been slow. This paper focuses on the relationship between the SAFE formulation and finite element theory, and the implementation of the SAFE method in a weak form for plates, pipes, layered waveguides/composites, curved waveguides, and arbitrary cross-sections is shown. The benefits of the weak form are briefly described, as is implementation in open-source and commercial finite element software.

  20. Assessment of finite element and smoothed particles hydrodynamics methods for modeling serrated chip formation in hardened steel

    Directory of Open Access Journals (Sweden)

    Usama Umer

    2016-05-01

    Full Text Available This study aims to perform comparative analyses in modeling serrated chip morphologies using traditional finite element and smoothed particles hydrodynamics methods. Although finite element models are being employed in predicting machining performance variables for the last two decades, many drawbacks and limitations exist with the current finite element models. The problems like excessive mesh distortions, high numerical cost of adaptive meshing techniques, and need of geometric chip separation criteria hinder its practical implementation in metal cutting industries. In this study, a mesh free method, namely, smoothed particles hydrodynamics, is implemented for modeling serrated chip morphology while machining AISI H13 hardened tool steel. The smoothed particles hydrodynamics models are compared with the traditional finite element models, and it has been found that the smoothed particles hydrodynamics models have good capabilities in handling large distortions and do not need any geometric or mesh-based chip separation criterion.

  1. Efficient evaluation of the Coulomb force in the Gaussian and finite-element Coulomb method.

    Science.gov (United States)

    Kurashige, Yuki; Nakajima, Takahito; Sato, Takeshi; Hirao, Kimihiko

    2010-06-28

    We propose an efficient method for evaluating the Coulomb force in the Gaussian and finite-element Coulomb (GFC) method, which is a linear-scaling approach for evaluating the Coulomb matrix and energy in large molecular systems. The efficient evaluation of the analytical gradient in the GFC is not straightforward as well as the evaluation of the energy because the SCF procedure with the Coulomb matrix does not give a variational solution for the Coulomb energy. Thus, an efficient approximate method is alternatively proposed, in which the Coulomb potential is expanded in the Gaussian and finite-element auxiliary functions as done in the GFC. To minimize the error in the gradient not just in the energy, the derived functions of the original auxiliary functions of the GFC are used additionally for the evaluation of the Coulomb gradient. In fact, the use of the derived functions significantly improves the accuracy of this approach. Although these additional auxiliary functions enlarge the size of the discretized Poisson equation and thereby increase the computational cost, it maintains the near linear scaling as the GFC and does not affects the overall efficiency of the GFC approach.

  2. SAFE-AXISYM, Stress Analysis of Axisymmetric Composite Structure by Finite Elements Method

    International Nuclear Information System (INIS)

    Cornell, D.C.

    1967-01-01

    1 - Nature of physical problem solved: SAFE-AXISYM is a program for the analysis of multi-material axisymmetric composite structures. It is designed for the analysis of heterogeneous structures such as reinforced and/or prestressed concrete vessels. The structure is assumed to be linearly elastic, and only bodies of revolution subjected to axisymmetric loading can be treated. 2 - Method of solution: SAFE-AXISYM uses a finite element method with a modified Gauss-Seidel iteration scheme. A reference grid subdivides the structure into ring-like small, finite elements, the vertices of which are called nodes. The grid may be generated by hand, by the computer or by a combination of the two methods. Each node has two degrees of freedom, translation in the and in the axial direction. Both zero and non-zero fixed displacement constraints may be assumed, and the loading condition may be mechanical and/or thermal. 3 - Restrictions on the complexity of the problem: Multi-material structures with varying rigidities converge very slowly. Not valid for incompressible materials. Maximum number of nodes = 475. Maximum number of elements = 1100

  3. Modelling of tunnelling processes and rock cutting tool wear with the particle finite element method

    Science.gov (United States)

    Carbonell, Josep Maria; Oñate, Eugenio; Suárez, Benjamín

    2013-09-01

    Underground construction involves all sort of challenges in analysis, design, project and execution phases. The dimension of tunnels and their structural requirements are growing, and so safety and security demands do. New engineering tools are needed to perform a safer planning and design. This work presents the advances in the particle finite element method (PFEM) for the modelling and the analysis of tunneling processes including the wear of the cutting tools. The PFEM has its foundation on the Lagrangian description of the motion of a continuum built from a set of particles with known physical properties. The method uses a remeshing process combined with the alpha-shape technique to detect the contacting surfaces and a finite element method for the mechanical computations. A contact procedure has been developed for the PFEM which is combined with a constitutive model for predicting the excavation front and the wear of cutting tools. The material parameters govern the coupling of frictional contact and wear between the interacting domains at the excavation front. The PFEM allows predicting several parameters which are relevant for estimating the performance of a tunnelling boring machine such as wear in the cutting tools, the pressure distribution on the face of the boring machine and the vibrations produced in the machinery and the adjacent soil/rock. The final aim is to help in the design of the excavating tools and in the planning of the tunnelling operations. The applications presented show that the PFEM is a promising technique for the analysis of tunnelling problems.

  4. Solving nonlinear nonstationary problem of heat-conductivity by finite element method

    Directory of Open Access Journals (Sweden)

    Антон Янович Карвацький

    2016-11-01

    Full Text Available Methodology and effective solving algorithm of non-linear dynamic problems of thermal and electric conductivity with significant temperature dependence of thermal and physical properties are given on the basis of finite element method (FEM and Newton linearization method. Discrete equations system FEM was obtained with the use of Galerkin method, where the main function is the finite element form function. The methodology based on successive solving problems of thermal and electrical conductivity has been examined in the work in order to minimize the requirements for calculating resources (RAM. in particular. Having used Mathcad software original programming code was developed to solve the given problem. After investigation of the received results, comparative analyses of accurate solution data and results of numerical solutions, obtained with the use of Matlab programming products, was held. The geometry of one fourth part of the finite sized cylinder was used to test the given numerical model. The discretization of the calculation part was fulfilled using the open programming software for automated Gmsh nets with tetrahedral units, while ParaView, which is an open programming code as well, was used to visualize the calculation results. It was found out that the maximum value violation of potential and temperature determination doesn`t exceed 0,2-0,83% in the given work according to the problem conditions

  5. Crack modeling of rotating blades with cracked hexahedral finite element method

    Science.gov (United States)

    Liu, Chao; Jiang, Dongxiang

    2014-06-01

    Dynamic analysis is the basis in investigating vibration features of cracked blades, where the features can be applied to monitor health state of blades, detect cracks in an early stage and prevent failures. This work presents a cracked hexahedral finite element method for dynamic analysis of cracked blades, with the purpose of addressing the contradiction between accuracy and efficiency in crack modeling of blades in rotor system. The cracked hexahedral element is first derived with strain energy release rate method, where correction of stress intensity factors of crack front and formulation of load distribution of crack surface are carried out to improve the modeling accuracy. To consider nonlinear characteristics of time-varying opening and closure effects caused by alternating loads, breathing function is proposed for the cracked hexahedral element. Second, finite element method with contact element is analyzed and used for comparison. Finally, validation of the cracked hexahedral element is carried out in terms of breathing effects of cracked blades and natural frequency in different crack depths. Good consistency is acquired between the results with developed cracked hexahedral element and contact element, while the computation time is significantly reduced in the previous one. Therefore, the developed cracked hexahedral element achieves good accuracy and high efficiency in crack modeling of rotating blades.

  6. Generalized multiscale finite element methods for problems in perforated heterogeneous domains

    KAUST Repository

    Chung, Eric T.

    2015-06-08

    Complex processes in perforated domains occur in many real-world applications. These problems are typically characterized by physical processes in domains with multiple scales. Moreover, these problems are intrinsically multiscale and their discretizations can yield very large linear or nonlinear systems. In this paper, we investigate multiscale approaches that attempt to solve such problems on a coarse grid by constructing multiscale basis functions in each coarse grid, where the coarse grid can contain many perforations. In particular, we are interested in cases when there is no scale separation and the perforations can have different sizes. In this regard, we mention some earlier pioneering works, where the authors develop multiscale finite element methods. In our paper, we follow Generalized Multiscale Finite Element Method (GMsFEM) and develop a multiscale procedure where we identify multiscale basis functions in each coarse block using snapshot space and local spectral problems. We show that with a few basis functions in each coarse block, one can approximate the solution, where each coarse block can contain many small inclusions. We apply our general concept to (1) Laplace equation in perforated domains; (2) elasticity equation in perforated domains; and (3) Stokes equations in perforated domains. Numerical results are presented for these problems using two types of heterogeneous perforated domains. The analysis of the proposed methods will be presented elsewhere. © 2015 Taylor & Francis

  7. Fast solution of neutron diffusion problem by reduced basis finite element method

    International Nuclear Information System (INIS)

    Chunyu, Zhang; Gong, Chen

    2018-01-01

    Highlights: •An extremely efficient method is proposed to solve the neutron diffusion equation with varying the cross sections. •Three orders of speedup is achieved for IAEA benchmark problems. •The method may open a new possibility of efficient high-fidelity modeling of large scale problems in nuclear engineering. -- Abstract: For the important applications which need carry out many times of neutron diffusion calculations such as the fuel depletion analysis and the neutronics-thermohydraulics coupling analysis, fast and accurate solutions of the neutron diffusion equation are demanding but necessary. In the present work, the certified reduced basis finite element method is proposed and implemented to solve the generalized eigenvalue problems of neutron diffusion with variable cross sections. The order reduced model is built upon high-fidelity finite element approximations during the offline stage. During the online stage, both the k eff and the spatical distribution of neutron flux can be obtained very efficiently for any given set of cross sections. Numerical tests show that a speedup of around 1100 is achieved for the IAEA two-dimensional PWR benchmark problem and a speedup of around 3400 is achieved for the three-dimensional counterpart with the fission cross-sections, the absorption cross-sections and the scattering cross-sections treated as parameters.

  8. Dynamic analysis of suspension cable based on vector form intrinsic finite element method

    Science.gov (United States)

    Qin, Jian; Qiao, Liang; Wan, Jiancheng; Jiang, Ming; Xia, Yongjun

    2017-10-01

    A vector finite element method is presented for the dynamic analysis of cable structures based on the vector form intrinsic finite element (VFIFE) and mechanical properties of suspension cable. Firstly, the suspension cable is discretized into different elements by space points, the mass and external forces of suspension cable are transformed into space points. The structural form of cable is described by the space points at different time. The equations of motion for the space points are established according to the Newton’s second law. Then, the element internal forces between the space points are derived from the flexible truss structure. Finally, the motion equations of space points are solved by the central difference method with reasonable time integration step. The tangential tension of the bearing rope in a test ropeway with the moving concentrated loads is calculated and compared with the experimental data. The results show that the tangential tension of suspension cable with moving loads is consistent with the experimental data. This method has high calculated precision and meets the requirements of engineering application.

  9. Finite Element Method Application in Areal Rainfall Estimation Case Study; Mashhad Plain Basin

    Directory of Open Access Journals (Sweden)

    M. Irani

    2016-10-01

    Full Text Available Introduction: The hydrological models are very important tools for planning and management of water resources. These models can be used for identifying basin and nature problems and choosing various managements. Precipitation is based on these models. Calculations of rainfall would be affected by displacement and region factor such as topography, etc. Estimating areal rainfall is one of the basic needs in meteorological, water resources and others studies. There are various methods for the estimation of rainfall, which can be evaluated by using statistical data and mathematical terms. In hydrological analysis, areal rainfall is so important because of displacement of precipitation. Estimating areal rainfall is divided to three methods: 1- graphical. 2-topographical. 3-numerical. This paper represented calculating mean precipitation (daily, monthly and annual using Galerkin’s method (numerical method and it was compared with other methods such as kriging, IDW, Thiessen and arithmetic mean. In this study, there were 42 actual gauges and thirteen dummies in Mashhad plain basin which is calculated by Galerkin’s method. The method included the use of interpolation functions, allowing an accurate representation of shape and relief of catchment with numerical integration performed by Gaussian quadrature and represented the allocation of weights to stations. Materials and Methods:The estimation of areal rainfall (daily, monthly,… is the basic need for meteorological project. In this field ,there are various methods that one of them is finite element method. Present study aimed to estimate areal rainfall with a 16-year period (1997-2012 by using Galerkin method ( finite element in Mashhad plain basin for 42 station. Therefore, it was compared with other usual methods such as arithmetic mean, Thiessen, Kriging and IDW. The analysis of Thiessen, Kriging and IDW were in ArcGIS10.0 software environment and finite element analysis did by using of Matlab

  10. Mixed Finite Element Method for Static and Dynamic Contact Problems with Friction and Initial Gaps

    Directory of Open Access Journals (Sweden)

    Lanhao Zhao

    2014-01-01

    Full Text Available A novel mixed finite element method is proposed for static and dynamic contact problems with friction and initial gaps. Based on the characteristic of local nonlinearity for the problem, the system of forces acting on the contactor is divided into two parts: external forces and contact forces. The displacement of structure is chosen as the basic variable and the nodal contact force in contact region under local coordinate system is selected as the iteration variable to confine the nonlinear iteration process in the potential contact surface which is more numerically efficient. In this way, the sophisticated contact nonlinearity is revealed by the variety of the contact forces which are determined by the external load and the contact state stick, slip, or separation. Moreover, in the case of multibody contact problem, the flexibility matrix is symmetric and sparse; thus, the iterative procedure becomes easily carried out and much more economical. In the paper, both the finite element formulations and the iteration process are given in detail for static and dynamic contact problems. Four examples are included to demonstrate the accuracy and applicability of the presented method.

  11. Simulation on Temperature Field of Radiofrequency Lesions System Based on Finite Element Method

    International Nuclear Information System (INIS)

    Xiao, D; Qian, Z; Li, W; Qian, L

    2011-01-01

    This paper mainly describes the way to get the volume model of damaged region according to the simulation on temperature field of radiofrequency ablation lesion system in curing Parkinson's disease based on finite element method. This volume model reflects, to some degree, the shape and size of the damaged tissue during the treatment with all tendencies in different time or core temperature. By using Pennes equation as heat conduction equation of radiofrequency ablation of biological tissue, the author obtains the temperature distribution field of biological tissue in the method of finite element for solving equations. In order to establish damage models at temperature points of 60 deg. C, 65 deg. C, 70 deg. C, 75 deg. C, 80 deg. C, 85 deg. C and 90 deg. C while the time points are 30s, 60s, 90s and 120s, Parkinson's disease model of nuclei is reduced to uniform, infinite model with RF pin at the origin. Theoretical simulations of these models are displayed, focusing on a variety of conditions about the effective lesion size on horizontal and vertical. The results show the binary complete quadratic non-linear joint temperature-time models of the maximum damage diameter and maximum height. The models can comprehensively reflect the degeneration of target tissue caused by radio frequency temperature and duration. This lay the foundation for accurately monitor of clinical RF treatment of Parkinson's disease in the future.

  12. The Numerical Simulation of the Crack Elastoplastic Extension Based on the Extended Finite Element Method

    Directory of Open Access Journals (Sweden)

    Xia Xiaozhou

    2013-01-01

    Full Text Available In the frame of the extended finite element method, the exponent disconnected function is introduced to reflect the discontinuous characteristic of crack and the crack tip enrichment function which is made of triangular basis function, and the linear polar radius function is adopted to describe the displacement field distribution of elastoplastic crack tip. Where, the linear polar radius function form is chosen to decrease the singularity characteristic induced by the plastic yield zone of crack tip, and the triangle basis function form is adopted to describe the displacement distribution character with the polar angle of crack tip. Based on the displacement model containing the above enrichment displacement function, the increment iterative form of elastoplastic extended finite element method is deduced by virtual work principle. For nonuniform hardening material such as concrete, in order to avoid the nonsymmetry characteristic of stiffness matrix induced by the non-associate flowing of plastic strain, the plastic flowing rule containing cross item based on the least energy dissipation principle is adopted. Finally, some numerical examples show that the elastoplastic X-FEM constructed in this paper is of validity.

  13. Moving finite element method aided by computerized symbolic manipulation and its application to dynamic fracture simulation

    International Nuclear Information System (INIS)

    Nishioka, Toshihisa; Takemoto, Yutaka

    1988-01-01

    Recently, the authors have shown that the combined method of the path-independent J' integral (dynamic J integral) and a moving isoparametric element procedure is an effective tool for the calculation of dynamic stress intensity factors. In the moving element procedure, the nodal pattern of the elements near a crack tip moves according to the motion of the crack-tip. An iterative numerical technique was used in the previous procedure to find the natural coordinates (ξ, η) at the newly created nodes. This technique requires additional computing time because of the nature of iteration. In the present paper, algebraic expressions for the transformation of the global coordinates (x, y) to the natural coordinates (ξ, η) were obtained by using a computerized symbolic manipulation system (REDUCE 3.2). These algebraic expressions are also very useful for remeshing or zooming techniques often used in finite element analysis. The present moving finite element method demonstrates its effectiveness for the simulation of a fast fracture. (author)

  14. Application of Dynamic Analysis in Semi-Analytical Finite Element Method.

    Science.gov (United States)

    Liu, Pengfei; Xing, Qinyan; Wang, Dawei; Oeser, Markus

    2017-08-30

    Analyses of dynamic responses are significantly important for the design, maintenance and rehabilitation of asphalt pavement. In order to evaluate the dynamic responses of asphalt pavement under moving loads, a specific computational program, SAFEM, was developed based on a semi-analytical finite element method. This method is three-dimensional and only requires a two-dimensional FE discretization by incorporating Fourier series in the third dimension. In this paper, the algorithm to apply the dynamic analysis to SAFEM was introduced in detail. Asphalt pavement models under moving loads were built in the SAFEM and commercial finite element software ABAQUS to verify the accuracy and efficiency of the SAFEM. The verification shows that the computational accuracy of SAFEM is high enough and its computational time is much shorter than ABAQUS. Moreover, experimental verification was carried out and the prediction derived from SAFEM is consistent with the measurement. Therefore, the SAFEM is feasible to reliably predict the dynamic response of asphalt pavement under moving loads, thus proving beneficial to road administration in assessing the pavement's state.

  15. A comparison of numerical methods used for finite element modelling of soft tissue deformation

    KAUST Repository

    Pathmanathan, P

    2009-05-01

    Soft tissue deformation is often modelled using incompressible non-linear elasticity, with solutions computed using the finite element method. There are a range of options available when using the finite element method, in particular the polynomial degree of the basis functions used for interpolating position and pressure, and the type of element making up the mesh. The effect of these choices on the accuracy of the computed solution is investigated, using a selection of model problems motivated by typical deformations seen in soft tissue modelling. Model problems are set up with discontinuous material properties (as is the case for the breast), steeply changing gradients in the body force (as found in contracting cardiac tissue), and discontinuous first derivatives in the solution at the boundary, caused by a discontinuous applied force (as in the breast during mammography). It was found that the choice of pressure basis functions is vital in the presence of a material interface, higher-order schemes do not perform as well as may be expected when there are sharp gradients, and in general it is important to take the expected regularity of the solution into account when choosing a numerical scheme. © IMechE 2009.

  16. A comparison of numerical methods used for finite element modelling of soft tissue deformation

    KAUST Repository

    Pathmanathan, P; Gavaghan, D; Whiteley, J

    2009-01-01

    Soft tissue deformation is often modelled using incompressible non-linear elasticity, with solutions computed using the finite element method. There are a range of options available when using the finite element method, in particular the polynomial degree of the basis functions used for interpolating position and pressure, and the type of element making up the mesh. The effect of these choices on the accuracy of the computed solution is investigated, using a selection of model problems motivated by typical deformations seen in soft tissue modelling. Model problems are set up with discontinuous material properties (as is the case for the breast), steeply changing gradients in the body force (as found in contracting cardiac tissue), and discontinuous first derivatives in the solution at the boundary, caused by a discontinuous applied force (as in the breast during mammography). It was found that the choice of pressure basis functions is vital in the presence of a material interface, higher-order schemes do not perform as well as may be expected when there are sharp gradients, and in general it is important to take the expected regularity of the solution into account when choosing a numerical scheme. © IMechE 2009.

  17. Efficient formulation of the finite element method for heat conduction in solids

    International Nuclear Information System (INIS)

    Sandsmark, N.; Aamodt, B.; Medonos, S.

    1977-01-01

    The purpose of the paper is to describe efficient methods and computer programs for analysis of heat conduction problems related to design and control of components of nuclear power plants and similar structures where thermal problems are of interest. A short presentation of basic equations and the finite element formulation of three-dimensional stationary and transient heat conduction is given. The finite element types that are used are isoparametric hexahedrons with eight or twenty nodes. The use of consistent as well as diagonal capacity matrices is discussed. Reduction of the transient heat conduction problem may be accomplished by means of the 'master-slave' technique. Furthermore, the superelement technique is discussed for both stationary and transient heat conduction. For the solution of transient problems, the trapezoidal time integration scheme is used. The methods and principles outlined in the paper are materialized in a computer program, NV615, which is one of the application programs in the program system SESAM-69. A brief description is given of NV615. Furthermore, attention is given to combined heat conduction and subsequent thermal stress analysis. Data representing geometry, calculated temperature distribution etc. may be transferred automatically from the heat conduction program to stress analysis programs. As an example of practical application the temperature distribution versus time in a turbine wheel during start up is analysed. Thermal stresses are calculated at selected time instants

  18. Second-order wave diffraction by a circular cylinder using scaled boundary finite element method

    International Nuclear Information System (INIS)

    Song, H; Tao, L

    2010-01-01

    The scaled boundary finite element method (SBFEM) has achieved remarkable success in structural mechanics and fluid mechanics, combing the advantage of both FEM and BEM. Most of the previous works focus on linear problems, in which superposition principle is applicable. However, many physical problems in the real world are nonlinear and are described by nonlinear equations, challenging the application of the existing SBFEM model. A popular idea to solve a nonlinear problem is decomposing the nonlinear equation to a number of linear equations, and then solves them individually. In this paper, second-order wave diffraction by a circular cylinder is solved by SBFEM. By splitting the forcing term into two parts, the physical problem is described as two second-order boundary-value problems with different asymptotic behaviour at infinity. Expressing the velocity potentials as a series of depth-eigenfunctions, both of the 3D boundary-value problems are decomposed to a number of 2D boundary-value sub-problems, which are solved semi-analytically by SBFEM. Only the cylinder boundary is discretised with 1D curved finite-elements on the circumference of the cylinder, while the radial differential equation is solved completely analytically. The method can be extended to solve more complex wave-structure interaction problems resulting in direct engineering applications.

  19. Analysis of submerged implant towards mastication load using 3D finite element method (FEM

    Directory of Open Access Journals (Sweden)

    Widia Hafsyah Sumarlina Ritonga

    2016-11-01

    Full Text Available Introduction: The surgical procedure for implantation of a surgical implant comprising a stage for the implant design nonsubmerged and two stages for submerged. Submerged implant design often used in Faculty of Dentistry Universitas Padjadjaran because it is safer in achieving osseointegration. This study was conducted to evaluate the failure of dental implant based on location and the value of internal tensiones as well as supporting tissues when given mastication load by using the 3D Finite Element Method (FEM. Methods: This study used a photograph of the mandibular CBCT patient and CT Scan Micro one implant submerged. Radiograph image was then converted into a digital model of the 3D computerized finite element, inputted the material properties, pedestal, then simulated the occlusion load  as much as 87N and 29N of frictional Results: The maximum tension location on the implant was located on the  exact side of the contact area between the implant and alveolar crest. The maximum tension value was 193.31MPa on the implant body. The value was below the limit value of the ability of the titanium alloy to withstand fracture (860 MPa. Conclusion: The location of the maximum tension on the body of the implant was located on the exact contact area between the implant-abutment and alveolar crest. Under the mastication load, this implant design found no failure.

  20. Precise magnetostatic field using the finite element method; Calculo de campos magnetostaticos com precisao utilizando o metodo dos elementos finitos

    Energy Technology Data Exchange (ETDEWEB)

    Nascimento, Francisco Rogerio Teixeira do

    2013-07-01

    The main objective of this work is to simulate electromagnetic fields using the Finite Element Method. Even in the easiest case of electrostatic and magnetostatic numerical simulation some problems appear when the nodal finite element is used. It is difficult to model vector fields with scalar functions mainly in non-homogeneous materials. With the aim to solve these problems two types of techniques are tried: the adaptive remeshing using nodal elements and the edge finite element that ensure the continuity of tangential components. Some numerical analysis of simple electromagnetic problems with homogeneous and non-homogeneous materials are performed using first, the adaptive remeshing based in various error indicators and second, the numerical solution of waveguides using edge finite element. (author)

  1. Mixed finite element-based fully conservative methods for simulating wormhole propagation

    KAUST Repository

    Kou, Jisheng; Sun, Shuyu; Wu, Yuanqing

    2015-01-01

    Wormhole propagation during reactive dissolution of carbonates plays a very important role in the product enhancement of oil and gas reservoir. Because of high velocity and nonuniform porosity, the Darcy–Forchheimer model is applicable for this problem instead of conventional Darcy framework. We develop a mixed finite element scheme for numerical simulation of this problem, in which mixed finite element methods are used not only for the Darcy–Forchheimer flow equations but also for the solute transport equation by introducing an auxiliary flux variable to guarantee full mass conservation. In theoretical analysis aspects, based on the cut-off operator of solute concentration, we construct an analytical function to control and handle the change of porosity with time; we treat the auxiliary flux variable as a function of velocity and establish its properties; we employ the coupled analysis approach to deal with the fully coupling relation of multivariables. From this, the stability analysis and a priori error estimates for velocity, pressure, concentration and porosity are established in different norms. Numerical results are also given to verify theoretical analysis and effectiveness of the proposed scheme.

  2. Ballistic calculation of nonequilibrium Green's function in nanoscale devices using finite element method

    International Nuclear Information System (INIS)

    Kurniawan, O; Bai, P; Li, E

    2009-01-01

    A ballistic calculation of a full quantum mechanical system is presented to study 2D nanoscale devices. The simulation uses the nonequilibrium Green's function (NEGF) approach to calculate the transport properties of the devices. While most available software uses the finite difference discretization technique, our work opts to formulate the NEGF calculation using the finite element method (FEM). In calculating a ballistic device, the FEM gives some advantages. In the FEM, the floating boundary condition for ballistic devices is satisfied naturally. This paper gives a detailed finite element formulation of the NEGF calculation applied to a double-gate MOSFET device with a channel length of 10 nm and a body thickness of 3 nm. The potential, electron density, Fermi functions integrated over the transverse energy, local density of states and the transmission coefficient of the device have been studied. We found that the transmission coefficient is significantly affected by the top of the barrier between the source and the channel, which in turn depends on the gate control. This supports the claim that ballistic devices can be modelled by the transport properties at the top of the barrier. Hence, the full quantum mechanical calculation presented here confirms the theory of ballistic transport in nanoscale devices.

  3. Solving the Einstein constraint equations on multi-block triangulations using finite element methods

    Energy Technology Data Exchange (ETDEWEB)

    Korobkin, Oleg; Pazos, Enrique [Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803 (United States); Aksoylu, Burak [Center for Computation and Technology, Louisiana State University, Baton Rouge, LA 70803 (United States); Holst, Michael [Department of Mathematics, University of California at San Diego 9500 Gilman Drive La Jolla, CA 92093-0112 (United States); Tiglio, Manuel [Department of Physics, University of Maryland, College Park, MD 20742 (United States)

    2009-07-21

    In order to generate initial data for nonlinear relativistic simulations, one needs to solve the Einstein constraints, which can be cast into a coupled set of nonlinear elliptic equations. Here we present an approach for solving these equations on three-dimensional multi-block domains using finite element methods. We illustrate our approach on a simple example of Brill wave initial data, with the constraints reducing to a single linear elliptic equation for the conformal factor psi. We use quadratic Lagrange elements on semi-structured simplicial meshes, obtained by triangulation of multi-block grids. In the case of uniform refinement the scheme is superconvergent at most mesh vertices, due to local symmetry of the finite element basis with respect to local spatial inversions. We show that in the superconvergent case subsequent unstructured mesh refinements do not improve the quality of our initial data. As proof of concept that this approach is feasible for generating multi-block initial data in three dimensions, after constructing the initial data we evolve them in time using a high-order finite-differencing multi-block approach and extract the gravitational waves from the numerical solution.

  4. Solving the Einstein constraint equations on multi-block triangulations using finite element methods

    International Nuclear Information System (INIS)

    Korobkin, Oleg; Pazos, Enrique; Aksoylu, Burak; Holst, Michael; Tiglio, Manuel

    2009-01-01

    In order to generate initial data for nonlinear relativistic simulations, one needs to solve the Einstein constraints, which can be cast into a coupled set of nonlinear elliptic equations. Here we present an approach for solving these equations on three-dimensional multi-block domains using finite element methods. We illustrate our approach on a simple example of Brill wave initial data, with the constraints reducing to a single linear elliptic equation for the conformal factor ψ. We use quadratic Lagrange elements on semi-structured simplicial meshes, obtained by triangulation of multi-block grids. In the case of uniform refinement the scheme is superconvergent at most mesh vertices, due to local symmetry of the finite element basis with respect to local spatial inversions. We show that in the superconvergent case subsequent unstructured mesh refinements do not improve the quality of our initial data. As proof of concept that this approach is feasible for generating multi-block initial data in three dimensions, after constructing the initial data we evolve them in time using a high-order finite-differencing multi-block approach and extract the gravitational waves from the numerical solution.

  5. Mixed finite element-based fully conservative methods for simulating wormhole propagation

    KAUST Repository

    Kou, Jisheng

    2015-10-11

    Wormhole propagation during reactive dissolution of carbonates plays a very important role in the product enhancement of oil and gas reservoir. Because of high velocity and nonuniform porosity, the Darcy–Forchheimer model is applicable for this problem instead of conventional Darcy framework. We develop a mixed finite element scheme for numerical simulation of this problem, in which mixed finite element methods are used not only for the Darcy–Forchheimer flow equations but also for the solute transport equation by introducing an auxiliary flux variable to guarantee full mass conservation. In theoretical analysis aspects, based on the cut-off operator of solute concentration, we construct an analytical function to control and handle the change of porosity with time; we treat the auxiliary flux variable as a function of velocity and establish its properties; we employ the coupled analysis approach to deal with the fully coupling relation of multivariables. From this, the stability analysis and a priori error estimates for velocity, pressure, concentration and porosity are established in different norms. Numerical results are also given to verify theoretical analysis and effectiveness of the proposed scheme.

  6. Effects of Process Parameters on Copper Powder Compaction Process Using Multi-Particle Finite Element Method

    Science.gov (United States)

    Güner, F.; Sofuoğlu, H.

    2018-01-01

    Powder metallurgy (PM) has been widely used in several industries; especially automotive and aerospace industries and powder metallurgy products grow up every year. The mechanical properties of the final product that is obtained by cold compaction and sintering in powder metallurgy are closely related to the final relative density of the process. The distribution of the relative density in the die is affected by parameters such as compaction velocity, friction coefficient and temperature. Moreover, most of the numerical studies utilizing finite element approaches treat the examined environment as a continuous media with uniformly homogeneous porosity whereas Multi-Particle Finite Element Method (MPFEM) treats every particles as an individual body. In MPFEM, each of the particles can be defined as an elastic- plastic deformable body, so the interactions of the particles with each other and the die wall can be investigated. In this study, each particle was modelled and analyzed as individual deformable body with 3D tetrahedral elements by using MPFEM approach. This study, therefore, was performed to investigate the effects of different temperatures and compaction velocities on stress distribution and deformations of copper powders of 200 µm-diameter in compaction process. Furthermore, 3-D MPFEM model utilized von Mises material model and constant coefficient of friction of μ=0.05. In addition to MPFEM approach, continuum modelling approach was also performed for comparison purposes.

  7. Numerical Investigation of Slab-Column Connection by Finite Element Method

    International Nuclear Information System (INIS)

    Akram, T.; Shaikh, M.A.; Memon, A.A.

    2007-01-01

    The flat slab-on-column construction subjected to high transverse stresses concentrated at the slab-column connection can lead to a non-ductile, sudden and brittle punching failure and results in the accidental collapse of flat slab buildings. The major parameters affecting the slab-column connection are the concrete strength, slab thickness, slab reinforcement and aspect ratio of column. The application of numerical methods based on the finite element theory for solving practical tasks allow to perform virtual testing of structures and explore their behavior under load and other effects in different conditions taking into account the elastic and plastic behavior of materials, appearance and development of cracks and other damages (disintegrations), and finally to simulate the failure mechanism and its consequences. In this study, the models are developed to carry out the finite element analysis of slab- column connection using ADINA (Automatic Dynamic Incremental Nonlinear Analysis) by varying the slab thickness and slab confining reinforcement and to investigate their effect on the deflection and load carrying capacity. Test results indicate that by increasing the slab thickness, the deflection and the load carrying capacity of slab-column connection increases, more over, by increasing the slab confining reinforcement, the deflection decreases where as the load carrying capacity increases. (author)

  8. Numerical simulation of a flow-like landslide using the particle finite element method

    Science.gov (United States)

    Zhang, Xue; Krabbenhoft, Kristian; Sheng, Daichao; Li, Weichao

    2015-01-01

    In this paper, an actual landslide process that occurred in Southern China is simulated by a continuum approach, the particle finite element method (PFEM). The PFEM attempts to solve the boundary-value problems in the framework of solid mechanics, satisfying the governing equations including momentum conservation, displacement-strain relation, constitutive relation as well as the frictional contact between the sliding mass and the slip surface. To warrant the convergence behaviour of solutions, the problem is formulated as a mathematical programming problem, while the particle finite element procedure is employed to tackle the issues of mesh distortion and free-surface evolution. The whole procedure of the landslide, from initiation, sliding to deposition, is successfully reproduced by the continuum approach. It is shown that the density of the mass has little influence on the sliding process in the current landslide, whereas both the geometry and the roughness of the slip surface play important roles. Comparative studies are also conducted where a satisfactory agreement is obtained.

  9. Elastic-plastic analysis using an efficient formulation of the finite element method

    International Nuclear Information System (INIS)

    Aamodt, B.; Mo, O.

    1975-01-01

    Based on the flow theory of plasticity, the von Mises or the Tresca yield criterion and the isotropic hardening law, an incremental stiffness relationship can be established for a finite element model of the elasto-plastic structure. However, instead of including all degrees of freedom and all finite elements of the total model in a nonlinear solution process, a separation of elastic and plastic parts of the structure can be carried out. Such a separation can be obtained by identifying elastic parts of the structure as 'elastic' superelements and elasto-plastic parts of the structure as 'elasto-plastic' superelements. Also, it may be of advantage to use several levels of superelements in modelling the elastic parts of the structure. For the 'elasto-plastic' superelements the specific plastic computations such as updating of the incremental stiffness matrix and subsequent reduction (i.e. static condensation of all degrees of freedom being local to the superelements) have to be carried out repeatedly during the nonlinear solution process. The solution of the nonlinear equations is performed utilizing a combination of load incrementation and equilibrium interations. The present method of analysis is demonstrated for two larger examples of elasto-plastic analysis. (Auth.)

  10. Tooth Fracture Detection in Spiral Bevel Gears System by Harmonic Response Based on Finite Element Method

    Directory of Open Access Journals (Sweden)

    Yuan Chen

    2017-01-01

    Full Text Available Spiral bevel gears occupy several advantages such as high contact ratio, strong carrying capacity, and smooth operation, which become one of the most widely used components in high-speed stage of the aeronautical transmission system. Its dynamic characteristics are addressed by many scholars. However, spiral bevel gears, especially tooth fracture occurrence and monitoring, are not to be investigated, according to the limited published issues. Therefore, this paper establishes a three-dimensional model and finite element model of the Gleason spiral bevel gear pair. The model considers the effect of tooth root fracture on the system due to fatigue. Finite element method is used to compute the mesh generation, set the boundary condition, and carry out the dynamic load. The harmonic response spectra of the base under tooth fracture are calculated and the influence of main parameters on monitoring failure is investigated as well. The results show that the change of torque affects insignificantly the determination of whether or not the system has tooth fracture. The intermediate frequency interval (200 Hz–1000 Hz is the best interval to judge tooth fracture occurrence. The best fault test region is located in the working area where the system is going through meshing. The simulation calculation provides a theoretical reference for spiral bevel gear system test and fault diagnosis.

  11. Contact Stress Analysis for Gears of Different Helix Angle Using Finite Element Method

    Directory of Open Access Journals (Sweden)

    Patil Santosh

    2014-07-01

    Full Text Available The gear contact stress problem has been a great point of interest for many years, but still an extensive research is required to understand the various parameters affecting this stress. Among such parameters, helix angle is one which has played a crucial role in variation of contact stress. Numerous studies have been carried out on spur gear for contact stress variation. Hence, the present work is an attempt to study the contact stresses among the helical gear pairs, under static conditions, by using a 3D finite element method. The helical gear pairs on which the analysis is carried are 0, 5, 15, 25 degree helical gear sets. The Lagrange multiplier algorithm has been used between the contacting pairs to determine the stresses. The helical gear contact stress is evaluated using FE model and results have also been found at different coefficient of friction, varying from 0.0 to 0.3. The FE results have been further compared with the analytical calculations. The analytical calculations are based upon Hertz and AGMA equations, which are modified to include helix angle. The commercial finite element software was used in the study and it was shown that this approach can be applied to gear design efficiently. The contact stress results have shown a decreasing trend, with increase in helix angle.

  12. Safety assessment of a shallow foundation using the random finite element method

    Science.gov (United States)

    Zaskórski, Łukasz; Puła, Wojciech

    2015-04-01

    A complex structure of soil and its random character are reasons why soil modeling is a cumbersome task. Heterogeneity of soil has to be considered even within a homogenous layer of soil. Therefore an estimation of shear strength parameters of soil for the purposes of a geotechnical analysis causes many problems. In applicable standards (Eurocode 7) there is not presented any explicit method of an evaluation of characteristic values of soil parameters. Only general guidelines can be found how these values should be estimated. Hence many approaches of an assessment of characteristic values of soil parameters are presented in literature and can be applied in practice. In this paper, the reliability assessment of a shallow strip footing was conducted using a reliability index β. Therefore some approaches of an estimation of characteristic values of soil properties were compared by evaluating values of reliability index β which can be achieved by applying each of them. Method of Orr and Breysse, Duncan's method, Schneider's method, Schneider's method concerning influence of fluctuation scales and method included in Eurocode 7 were examined. Design values of the bearing capacity based on these approaches were referred to the stochastic bearing capacity estimated by the random finite element method (RFEM). Design values of the bearing capacity were conducted for various widths and depths of a foundation in conjunction with design approaches DA defined in Eurocode. RFEM was presented by Griffiths and Fenton (1993). It combines deterministic finite element method, random field theory and Monte Carlo simulations. Random field theory allows to consider a random character of soil parameters within a homogenous layer of soil. For this purpose a soil property is considered as a separate random variable in every element of a mesh in the finite element method with proper correlation structure between points of given area. RFEM was applied to estimate which theoretical

  13. A two-dimensional discontinuous heterogeneous finite element method for neutron transport calculations

    International Nuclear Information System (INIS)

    Masiello, E.; Sanchez, R.

    2007-01-01

    A discontinuous heterogeneous finite element method is presented and discussed. The method is intended for realistic numerical pin-by-pin lattice calculations when an exact representation of the geometric shape of the pins is made without need for homogenization. The method keeps the advantages of conventional discrete ordinate methods, such as fast execution together with the possibility to deal with a large number of spatial meshes, while minimizing the need for geometric modeling. It also provides a complete factorization in space, angle, and energy for the discretized matrices and minimizes, thus, storage requirements. An angular multigrid acceleration technique has also been developed to speed up the rate of convergence of the inner iterations. A particular aspect of this acceleration is the introduction of boundary restriction and prolongation operators that minimize oscillatory behavior and enhance positivity. Numerical tests are presented that show the high precision of the method and the efficiency of the angular multigrid acceleration. (authors)

  14. Iterative and multigrid methods in the finite element solution of incompressible and turbulent fluid flow

    Science.gov (United States)

    Lavery, N.; Taylor, C.

    1999-07-01

    Multigrid and iterative methods are used to reduce the solution time of the matrix equations which arise from the finite element (FE) discretisation of the time-independent equations of motion of the incompressible fluid in turbulent motion. Incompressible flow is solved by using the method of reduce interpolation for the pressure to satisfy the Brezzi-Babuska condition. The k-l model is used to complete the turbulence closure problem. The non-symmetric iterative matrix methods examined are the methods of least squares conjugate gradient (LSCG), biconjugate gradient (BCG), conjugate gradient squared (CGS), and the biconjugate gradient squared stabilised (BCGSTAB). The multigrid algorithm applied is based on the FAS algorithm of Brandt, and uses two and three levels of grids with a V-cycling schedule. These methods are all compared to the non-symmetric frontal solver. Copyright

  15. Finite Element Analysis of Increasing Column Section and CFRP Reinforcement Method under Different Axial Compression Ratio

    Science.gov (United States)

    Jinghai, Zhou; Tianbei, Kang; Fengchi, Wang; Xindong, Wang

    2017-11-01

    Eight less stirrups in the core area frame joints are simulated by ABAQUS finite element numerical software. The composite reinforcement method is strengthened with carbon fiber and increasing column section, the axial compression ratio of reinforced specimens is 0.3, 0.45 and 0.6 respectively. The results of the load-displacement curve, ductility and stiffness are analyzed, and it is found that the different axial compression ratio has great influence on the bearing capacity of increasing column section strengthening method, and has little influence on carbon fiber reinforcement method. The different strengthening schemes improve the ultimate bearing capacity and ductility of frame joints in a certain extent, composite reinforcement joints strengthening method to improve the most significant, followed by increasing column section, reinforcement method of carbon fiber reinforced joints to increase the minimum.

  16. Three-dimensional photoacoustic tomography based on graphics-processing-unit-accelerated finite element method.

    Science.gov (United States)

    Peng, Kuan; He, Ling; Zhu, Ziqiang; Tang, Jingtian; Xiao, Jiaying

    2013-12-01

    Compared with commonly used analytical reconstruction methods, the frequency-domain finite element method (FEM) based approach has proven to be an accurate and flexible algorithm for photoacoustic tomography. However, the FEM-based algorithm is computationally demanding, especially for three-dimensional cases. To enhance the algorithm's efficiency, in this work a parallel computational strategy is implemented in the framework of the FEM-based reconstruction algorithm using a graphic-processing-unit parallel frame named the "compute unified device architecture." A series of simulation experiments is carried out to test the accuracy and accelerating effect of the improved method. The results obtained indicate that the parallel calculation does not change the accuracy of the reconstruction algorithm, while its computational cost is significantly reduced by a factor of 38.9 with a GTX 580 graphics card using the improved method.

  17. Coarse mesh finite element method for boiling water reactor physics analysis

    International Nuclear Information System (INIS)

    Ellison, P.G.

    1983-01-01

    A coarse mesh method is formulated for the solution of Boiling Water Reactor physics problems using two group diffusion theory. No fuel assembly cross-section homogenization is required; water gaps, control blades and fuel pins of varying enrichments are treated explicitly. The method combines constrained finite element discretization with infinite lattice super cell trial functions to obtain coarse mesh solutions for which the only approximations are along the boundaries between fuel assemblies. The method is applied to bench mark Boiling Water Reactor problems to obtain both the eigenvalue and detailed flux distributions. The solutions to these problems indicate the method is useful in predicting detailed power distributions and eigenvalues for Boiling Water Reactor physics problems

  18. Generalized Multiscale Finite Element Methods for Wave Propagation in Heterogeneous Media

    KAUST Repository

    Chung, Eric T.

    2014-11-13

    Numerical modeling of wave propagation in heterogeneous media is important in many applications. Due to their complex nature, direct numerical simulations on the fine grid are prohibitively expensive. It is therefore important to develop efficient and accurate methods that allow the use of coarse grids. In this paper, we present a multiscale finite element method for wave propagation on a coarse grid. The proposed method is based on the generalized multiscale finite element method (GMsFEM) (see [Y. Efendiev, J. Galvis, and T. Hou, J. Comput. Phys., 251 (2012), pp. 116--135]). To construct multiscale basis functions, we start with two snapshot spaces in each coarse-grid block, where one represents the degrees of freedom on the boundary and the other represents the degrees of freedom in the interior. We use local spectral problems to identify important modes in each snapshot space. These local spectral problems are different from each other and their formulations are based on the analysis. To the best of knowledge, this is the first time that multiple snapshot spaces and multiple spectral problems are used and necessary for efficient computations. Using the dominant modes from local spectral problems, multiscale basis functions are constructed to represent the solution space locally within each coarse block. These multiscale basis functions are coupled via the symmetric interior penalty discontinuous Galerkin method which provides a block diagonal mass matrix and, consequently, results in fast computations in an explicit time discretization. Our methods\\' stability and spectral convergence are rigorously analyzed. Numerical examples are presented to show our methods\\' performance. We also test oversampling strategies. In particular, we discuss how the modes from different snapshot spaces can affect the proposed methods\\' accuracy.

  19. Analysis of Tire Tractive Performance on Deformable Terrain by Finite Element-Discrete Element Method

    Science.gov (United States)

    Nakashima, Hiroshi; Takatsu, Yuzuru

    The goal of this study is to develop a practical and fast simulation tool for soil-tire interaction analysis, where finite element method (FEM) and discrete element method (DEM) are coupled together, and which can be realized on a desktop PC. We have extended our formerly proposed dynamic FE-DE method (FE-DEM) to include practical soil-tire system interaction, where not only the vertical sinkage of a tire, but also the travel of a driven tire was considered. Numerical simulation by FE-DEM is stable, and the relationships between variables, such as load-sinkage and sinkage-travel distance, and the gross tractive effort and running resistance characteristics, are obtained. Moreover, the simulation result is accurate enough to predict the maximum drawbar pull for a given tire, once the appropriate parameter values are provided. Therefore, the developed FE-DEM program can be applied with sufficient accuracy to interaction problems in soil-tire systems.

  20. Calculation of foundation response to spatially varying ground motion by finite element method

    International Nuclear Information System (INIS)

    Wang, F.; Gantenbein, F.

    1995-01-01

    This paper presents a general method to compute the response of a rigid foundation of arbitrary shape resting on a homogeneous or multilayered elastic soil when subjected to a spatially varying ground motion. The foundation response is calculated from the free-field ground motion and the contact tractions between the foundation and the soil. The spatial variation of ground motion in this study is introduced by a coherence function and the contact tractions are obtained numerically using the Finite Element Method in the process of calculating the dynamic compliance of the foundation. Applications of this method to a massless rigid disc supported on an elastic half space and to that founded on an elastic medium consisting of a layer of constant thickness supported on an elastic half space are described. The numerical results obtained are in very good agreement with analytical solutions published in the literature. (authors). 5 refs., 8 figs

  1. A parametric finite element method for solid-state dewetting problems with anisotropic surface energies

    Science.gov (United States)

    Bao, Weizhu; Jiang, Wei; Wang, Yan; Zhao, Quan

    2017-02-01

    We propose an efficient and accurate parametric finite element method (PFEM) for solving sharp-interface continuum models for solid-state dewetting of thin films with anisotropic surface energies. The governing equations of the sharp-interface models belong to a new type of high-order (4th- or 6th-order) geometric evolution partial differential equations about open curve/surface interface tracking problems which include anisotropic surface diffusion flow and contact line migration. Compared to the traditional methods (e.g., marker-particle methods), the proposed PFEM not only has very good accuracy, but also poses very mild restrictions on the numerical stability, and thus it has significant advantages for solving this type of open curve evolution problems with applications in the simulation of solid-state dewetting. Extensive numerical results are reported to demonstrate the accuracy and high efficiency of the proposed PFEM.

  2. Dynamic mortar finite element method for modeling of shear rupture on frictional rough surfaces

    Science.gov (United States)

    Tal, Yuval; Hager, Bradford H.

    2017-09-01

    This paper presents a mortar-based finite element formulation for modeling the dynamics of shear rupture on rough interfaces governed by slip-weakening and rate and state (RS) friction laws, focusing on the dynamics of earthquakes. The method utilizes the dual Lagrange multipliers and the primal-dual active set strategy concepts, together with a consistent discretization and linearization of the contact forces and constraints, and the friction laws to obtain a semi-smooth Newton method. The discretization of the RS friction law involves a procedure to condense out the state variables, thus eliminating the addition of another set of unknowns into the system. Several numerical examples of shear rupture on frictional rough interfaces demonstrate the efficiency of the method and examine the effects of the different time discretization schemes on the convergence, energy conservation, and the time evolution of shear traction and slip rate.

  3. Application of Assembly of Finite Element Methods on Graphics Processors for Real-Time Elastodynamics

    KAUST Repository

    Cecka, Cris

    2012-01-01

    This chapter discusses multiple strategies to perform general computations on unstructured grids, with specific application to the assembly of matrices in finite element methods (FEMs). It reviews and applies two methods for assembly of FEMs to produce and accelerate a FEM model for a nonlinear hyperelastic solid where the assembly, solution, update, and visualization stages are performed solely on the GPU, benefiting from speed-ups in each stage and avoiding costly GPUCPU transfers of data. For each method, the chapter discusses the NVIDIA GPU hardware\\'s limiting resources, optimizations, key data structures, and dependence of the performance with respect to problem size, element size, and GPU hardware generation. Furthermore, this chapter informs potential users of the benefits of GPU technology, provides guidelines to help them implement their own FEM solutions, gives potential speed-ups that can be expected, and provides source code for reference. © 2012 Elsevier Inc. All rights reserved.

  4. Some applications of the moving finite element method to fluid flow and related problems

    International Nuclear Information System (INIS)

    Berry, R.A.; Williamson, R.L.

    1983-01-01

    The Moving Finite Element (MFE) method is applied to one-dimensional, nonlinear wave type partial differential equations which are characteristics of fluid dynamic and related flow phenomena problems. These equation systems tend to be difficult to solve because their transient solutions exhibit a spacial stiffness property, i.e., they represent physical phenomena of widely disparate length scales which must be resolved simultaneously. With the MFE method the node points automatically move (in theory) to optimal locations giving a much better approximation than can be obtained with fixed mesh methods (with a reasonable number of nodes) and with significantly reduced artificial viscosity or diffusion content. Three applications are considered. In order of increasing complexity they are: (1) a thermal quench problem, (2) an underwater explosion problem, and (3) a gas dynamics shock tube problem. The results are briefly shown

  5. Study on validation method for femur finite element model under multiple loading conditions

    Science.gov (United States)

    Guan, Fengjiao; Zhang, Guanjun; Liu, Jie; Wang, Shujing; Luo, Xu

    2018-03-01

    Acquisition of accurate and reliable constitutive parameters related to bio-tissue materials was beneficial to improve biological fidelity of a Finite Element (FE) model and predict impact damages more effectively. In this paper, a femur FE model was established under multiple loading conditions with diverse impact positions. Then, based on sequential response surface method and genetic algorithms, the material parameters identification was transformed to a multi-response optimization problem. Finally, the simulation results successfully coincided with force-displacement curves obtained by numerous experiments. Thus, computational accuracy and efficiency of the entire inverse calculation process were enhanced. This method was able to effectively reduce the computation time in the inverse process of material parameters. Meanwhile, the material parameters obtained by the proposed method achieved higher accuracy.

  6. Elastic-plastic analysis of an axi-symmetric problem by a finite element method

    International Nuclear Information System (INIS)

    Isozaki, Toshikuni

    1984-06-01

    Generally speaking, many structures are designed and fabricated on the basis of an axi-symmetric structure. Finite Element Method is the capable method to solve these axi-symmetric problems beyond the elastic limit. As the first step to solve these problems, the computer program for the elastic-plastic analysis of the axi-symmetric problem is composed. The basic program is based upon that described in Zienkiewicz's text book to solve the elastic plane stress problem, taking the plastic stress matrix by Yamada's method into consideration and it is converted to solve the axi-symmetric problem. For the verification of the program, the plane strain problem of a cylindrical tube under internal pressure was solved. The computed results were compared with those shown in ADINA's user's manual. They showed close agreement. (author)

  7. Use of the iterative solution method for coupled finite element and boundary element modeling

    International Nuclear Information System (INIS)

    Koteras, J.R.

    1993-07-01

    Tunnels buried deep within the earth constitute an important class geomechanics problems. Two numerical techniques used for the analysis of geomechanics problems, the finite element method and the boundary element method, have complementary characteristics for applications to problems of this type. The usefulness of combining these two methods for use as a geomechanics analysis tool has been recognized for some time, and a number of coupling techniques have been proposed. However, not all of them lend themselves to efficient computational implementations for large-scale problems. This report examines a coupling technique that can form the basis for an efficient analysis tool for large scale geomechanics problems through the use of an iterative equation solver

  8. Spectral finite element method wave propagation, diagnostics and control in anisotropic and inhomogeneous structures

    CERN Document Server

    Gopalakrishnan, Srinivasan; Roy Mahapatra, Debiprosad

    2008-01-01

    The use of composites and Functionally Graded Materials (FGMs) in structural applications has increased. FGMs allow the user to design materials for a specified functionality and have many uses in structural engineering. However, the behaviour of these structures under high-impact loading is not well understood. This book is the first to apply the Spectral Finite Element Method (SFEM) to inhomogeneous and anisotropic structures in a unified and systematic manner. It focuses on some of the problems with this media which were previously thought unmanageable. Types of SFEM for regular and damaged 1-D and 2-D waveguides, solution techniques, methods of detecting the presence of damages and their locations, and methods for controlling the wave propagation responses are discussed. Tables, figures and graphs support the theory and case studies are included. This book is of value to senior undergraduates and postgraduates studying in this field, and researchers and practicing engineers in structural integrity.

  9. Moving finite elements: A continuously adaptive method for computational fluid dynamics

    International Nuclear Information System (INIS)

    Glasser, A.H.; Miller, K.; Carlson, N.

    1991-01-01

    Moving Finite Elements (MFE), a recently developed method for computational fluid dynamics, promises major advances in the ability of computers to model the complex behavior of liquids, gases, and plasmas. Applications of computational fluid dynamics occur in a wide range of scientifically and technologically important fields. Examples include meteorology, oceanography, global climate modeling, magnetic and inertial fusion energy research, semiconductor fabrication, biophysics, automobile and aircraft design, industrial fluid processing, chemical engineering, and combustion research. The improvements made possible by the new method could thus have substantial economic impact. Moving Finite Elements is a moving node adaptive grid method which has a tendency to pack the grid finely in regions where it is most needed at each time and to leave it coarse elsewhere. It does so in a manner which is simple and automatic, and does not require a large amount of human ingenuity to apply it to each particular problem. At the same time, it often allows the time step to be large enough to advance a moving shock by many shock thicknesses in a single time step, moving the grid smoothly with the solution and minimizing the number of time steps required for the whole problem. For 2D problems (two spatial variables) the grid is composed of irregularly shaped and irregularly connected triangles which are very flexible in their ability to adapt to the evolving solution. While other adaptive grid methods have been developed which share some of these desirable properties, this is the only method which combines them all. In many cases, the method can save orders of magnitude of computing time, equivalent to several generations of advancing computer hardware

  10. Analysis of 2D reactor core using linear perturbation theory and nodal finite element methods

    International Nuclear Information System (INIS)

    Adrian Mugica; Edmundo del Valle

    2005-01-01

    In this work the multigroup steady state neutron diffusion equations are solved using the nodal finite element method (NFEM) and the Linear Perturbation Theory (LPT) for XY geometry. The NFEM used corresponds to the Raviart-Thomas schemes RT0 and RT1, interpolating 5 and 12 parameters respectively in each node of the space discretization. The accuracy of these methods is related with the dimension of the space approximation and the mesh size. Therefore, using fine meshes and the RT0 or RT1 nodal methods leads to a large an interesting eigenvalue problem. The finite element method used to discretize the weak formulation of the diffusion equations is the Galerkin one. The algebraic structure of the discrete eigenvalue problem is obtained and solved using the Wielandt technique and the BGSTAB iterative method using the SPARSKIT package developed by Yousef Saad. The results obtained with LPT show good agreement with the results obtained directly for the perturbed problem. In fact, the cpu time to solve a single problem, the unperturbed and the perturbed one, is practically the same but when one is focused in shuffling many times two different assemblies in the core then the LPT technique becomes quite useful to get good approximations in a short time. This particular problem was solved for one quarter-core with NFEM. Thus, the computer program based on LPT can be used to perform like an analysis tool in the fuel reload optimization or combinatory analysis to get reload patterns in nuclear power plants once that it had been incorporated with the thermohydraulic aspects needed to simulate accurately a real problem. The maximum differences between the NFEM and LPT for the three LWR reactor cores are about 250 pcm. This quantity is considered an acceptable value for this kind of analysis. (authors)

  11. Finite Element Method in the Three Dimensions Deformation Computation ofKartini Reactor Stack

    International Nuclear Information System (INIS)

    Supriyono; Syarip; Wibisono, I

    2000-01-01

    The calculation of the Kartini reactor stack i.e. one of the nuclearinstallations in P3TM-BATAN Yogyakarta by using SAP 90 software have beendone. The calculation is done as a safety review of building towards theearthquake style in Yogyakarta. The 3-dimension deformation calculation isperformed by the numeric method i.e. finite element method with the form ofelements is the shell. The result obtained showed that the construction oftower safe to the existing earthquake, where the moment exerted as a resultof earthquake style was different under the moment having been kept by thebuilding structure. By knowing the deformation on the stack it is expectedcould be used for concluding the strength of the whole reactor building.(author)

  12. A New Method for 3D Finite Element Modeling of Human Mandible Based on CT Data

    Institute of Scientific and Technical Information of China (English)

    于力牛; 叶铭; 王成焘

    2004-01-01

    This study presents a reliable method for the semi-automatic generation of an FE model, which determines both geometrical data and bone properties from patient CT scans.3D FE analysis is one of the best approaches to predict the stress and strain distribution in complex bone structures, but its accuracy strongly depends on the precision of input information. In geometric reconstruction, various methods of image processing, geometric modeling and finite element analysis are combined and extended. Emphasis is given to the assignment of the material properties based on the density values computed from CT data. Through this technique, the model with high geometric and material similarities were generated in an easy way. Consequently, the patient-specific FE model from mandible CT data is realized also.

  13. On the application of finite element method in the solution of steady state diffusion equation

    International Nuclear Information System (INIS)

    Ono, S.

    1982-01-01

    The solution of the steady state neutron diffusion equation is obtained by using the finite element method. Specifically the variational approach is used for one dimensional problems and the weighted residual method (Galerkin) for one and two dimensional problems. The spatial domain is divided into retangular elements and the neutron flux is approximated by linear (one dimensional case), and bilinear (two-dimensional case) functions. Numerical results are obtained with a FORTRAN IV computer program and compared with those obtained by the finite difference CITATION code. The results show that linear or bilinear functions, do not satisfactorily describe the differential parameters in highly heterogeneous reactor cases, but provide good results for integral parameters such as multiplication factor. (Author) [pt

  14. Bending Moment Calculations for Piles Based on the Finite Element Method

    Directory of Open Access Journals (Sweden)

    Yu-xin Jie

    2013-01-01

    Full Text Available Using the finite element analysis program ABAQUS, a series of calculations on a cantilever beam, pile, and sheet pile wall were made to investigate the bending moment computational methods. The analyses demonstrated that the shear locking is not significant for the passive pile embedded in soil. Therefore, higher-order elements are not always necessary in the computation. The number of grids across the pile section is important for bending moment calculated with stress and less significant for that calculated with displacement. Although computing bending moment with displacement requires fewer grid numbers across the pile section, it sometimes results in variation of the results. For displacement calculation, a pile row can be suitably represented by an equivalent sheet pile wall, whereas the resulting bending moments may be different. Calculated results of bending moment may differ greatly with different grid partitions and computational methods. Therefore, a comparison of results is necessary when performing the analysis.

  15. Adaptive Finite Element Method Assisted by Stochastic Simulation of Chemical Systems

    KAUST Repository

    Cotter, Simon L.; Vejchodský , Tomá š; Erban, Radek

    2013-01-01

    Stochastic models of chemical systems are often analyzed by solving the corresponding Fokker-Planck equation, which is a drift-diffusion partial differential equation for the probability distribution function. Efficient numerical solution of the Fokker-Planck equation requires adaptive mesh refinements. In this paper, we present a mesh refinement approach which makes use of a stochastic simulation of the underlying chemical system. By observing the stochastic trajectory for a relatively short amount of time, the areas of the state space with nonnegligible probability density are identified. By refining the finite element mesh in these areas, and coarsening elsewhere, a suitable mesh is constructed and used for the computation of the stationary probability density. Numerical examples demonstrate that the presented method is competitive with existing a posteriori methods. © 2013 Society for Industrial and Applied Mathematics.

  16. Error analysis of semidiscrete finite element methods for inhomogeneous time-fractional diffusion

    KAUST Repository

    Jin, B.; Lazarov, R.; Pasciak, J.; Zhou, Z.

    2014-01-01

    © 2014 Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved. We consider the initial-boundary value problem for an inhomogeneous time-fractional diffusion equation with a homogeneous Dirichlet boundary condition, a vanishing initial data and a nonsmooth right-hand side in a bounded convex polyhedral domain. We analyse two semidiscrete schemes based on the standard Galerkin and lumped mass finite element methods. Almost optimal error estimates are obtained for right-hand side data f (x, t) ε L∞ (0, T; Hq(ω)), ≤1≥ 1, for both semidiscrete schemes. For the lumped mass method, the optimal L2(ω)-norm error estimate requires symmetric meshes. Finally, twodimensional numerical experiments are presented to verify our theoretical results.

  17. SAFE-PLANE, Stress Analysis of Planar Structure by Finite Elements Method

    International Nuclear Information System (INIS)

    Cornell, D.C.; Reich, Morris

    1967-01-01

    1 - Description of problem or function: SAFE-PLANE is applied to two- dimensional structures of arbitrary geometry under in-plane loads. Either plane stress or plane strain conditions may be imposed. Mechanical and thermal loads are permitted. 2 - Method of solution: The finite-element method is used to construct a mathematical model by assembling discrete elements. The total potential energy of the structure is determined and subsequently minimized by iteration on components of the displacement field until static equilibrium of the structure is attained. Strains and stresses are computed from the resulting displacements. 3 - Restrictions on the complexity of the problem: Multi-material structures with varying rigidities converge very slowly. Not valid for incompressible materials. Maximum number of nodal points = 675. Maximum number of elements = 1350

  18. A numerical method to estimate AC loss in superconducting coated conductors by finite element modelling

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Z; Jiang, Q; Pei, R; Campbell, A M; Coombs, T A [Engineering Department, University of Cambridge, Trumpington Street, Cambridge CB2 1PZ (United Kingdom)

    2007-04-15

    A finite element method code based on the critical state model is proposed to solve the AC loss problem in YBCO coated conductors. This numerical method is based on a set of partial differential equations (PDEs) in which the magnetic field is used as the state variable. The AC loss problems have been investigated both in self-field condition and external field condition. Two numerical approaches have been introduced: the first model is configured on the cross-section plane of the YBCO tape to simulate an infinitely long superconducting tape. The second model represents the plane of the critical current flowing and is able to simulate the YBCO tape with finite length where the end effect is accounted. An AC loss measurement has been done to verify the numerical results and shows a good agreement with the numerical solution.

  19. The study of carrying capacity of timber slabs with use the finite elements method

    Directory of Open Access Journals (Sweden)

    Demeshok Vitalii

    2017-01-01

    Full Text Available In the article, the results of the study of behavior of timber slab under influence of fire with the standard “time-temperature” curve are presented. The finite element method was used for it. For the calculation we constructed a grid models of timber slabs. As a result of solution of the thermal problem was obtained temperature distribution and the graphs of maximum deflection of timber slabs and its slew rate depending on the time of the test. The obtained graphs allow to obtain data on the occurrence of the limit state of loss of bearing capacity by comparing current values of displacements and velocities with the maximum allowable. Analysis of the graphs shows that the criteria limit state of loss of bearing capacity does not occur. Calculation method of evaluating the fire resistance of timber slabs was developed. For it use database about strain-stress state of this slabs in conditions of influence of the fire.

  20. Dynamic analysis of an axially moving beam subject to inner pressure using finite element method

    Energy Technology Data Exchange (ETDEWEB)

    Hua, Hongliang; Qiu, Ming; Liao, Zhenqiang [Nanjing University of Science and Technology, Nanjing (China)

    2017-06-15

    A dynamic model of an axially moving flexible beam subject to an inner pressure is present. The coupling principle between a flexible beam and inner pressure is analyzed first, and the potential energy of the inner pressure due to the beam bending is derived using the principle of virtual work. A 1D hollow beam element contain inner pressure is established. The finite element method and Lagrange’s equation are used to derive the motion equations of the axially moving system. The dynamic responses are analyzed by Newmark-β time integration method. Based on the computed dynamic responses, the effects of inner pressure on beam dynamics are discussed. Some interesting phenomenon is observed.

  1. A Kriging Model Based Finite Element Model Updating Method for Damage Detection

    Directory of Open Access Journals (Sweden)

    Xiuming Yang

    2017-10-01

    Full Text Available Model updating is an effective means of damage identification and surrogate modeling has attracted considerable attention for saving computational cost in finite element (FE model updating, especially for large-scale structures. In this context, a surrogate model of frequency is normally constructed for damage identification, while the frequency response function (FRF is rarely used as it usually changes dramatically with updating parameters. This paper presents a new surrogate model based model updating method taking advantage of the measured FRFs. The Frequency Domain Assurance Criterion (FDAC is used to build the objective function, whose nonlinear response surface is constructed by the Kriging model. Then, the efficient global optimization (EGO algorithm is introduced to get the model updating results. The proposed method has good accuracy and robustness, which have been verified by a numerical simulation of a cantilever and experimental test data of a laboratory three-story structure.

  2. Discontinuous Galerkin Subgrid Finite Element Method for Heterogeneous Brinkman’s Equations

    KAUST Repository

    Iliev, Oleg P.

    2010-01-01

    We present a two-scale finite element method for solving Brinkman\\'s equations with piece-wise constant coefficients. This system of equations model fluid flows in highly porous, heterogeneous media with complex topology of the heterogeneities. We make use of the recently proposed discontinuous Galerkin FEM for Stokes equations by Wang and Ye in [12] and the concept of subgrid approximation developed for Darcy\\'s equations by Arbogast in [4]. In order to reduce the error along the coarse-grid interfaces we have added a alternating Schwarz iteration using patches around the coarse-grid boundaries. We have implemented the subgrid method using Deal.II FEM library, [7], and we present the computational results for a number of model problems. © 2010 Springer-Verlag Berlin Heidelberg.

  3. Solving ill-posed control problems by stabilized finite element methods: an alternative to Tikhonov regularization

    Science.gov (United States)

    Burman, Erik; Hansbo, Peter; Larson, Mats G.

    2018-03-01

    Tikhonov regularization is one of the most commonly used methods for the regularization of ill-posed problems. In the setting of finite element solutions of elliptic partial differential control problems, Tikhonov regularization amounts to adding suitably weighted least squares terms of the control variable, or derivatives thereof, to the Lagrangian determining the optimality system. In this note we show that the stabilization methods for discretely ill-posed problems developed in the setting of convection-dominated convection-diffusion problems, can be highly suitable for stabilizing optimal control problems, and that Tikhonov regularization will lead to less accurate discrete solutions. We consider some inverse problems for Poisson’s equation as an illustration and derive new error estimates both for the reconstruction of the solution from the measured data and reconstruction of the source term from the measured data. These estimates include both the effect of the discretization error and error in the measurements.

  4. Optimal design of geometrically nonlinear shells of revolution with using the mixed finite element method

    Science.gov (United States)

    Stupishin, L. U.; Nikitin, K. E.; Kolesnikov, A. G.

    2018-02-01

    The article is concerned with a methodology of optimal design of geometrically nonlinear (flexible) shells of revolution of minimum weight with strength, stability and strain constraints. The problem of optimal design with constraints is reduced to the problem of unconstrained minimization using the penalty functions method. Stress-strain state of shell is determined within the geometrically nonlinear deformation theory. A special feature of the methodology is the use of a mixed finite-element formulation based on the Galerkin method. Test problems for determining the optimal form and thickness distribution of a shell of minimum weight are considered. The validity of the results obtained using the developed methodology is analyzed, and the efficiency of various optimization algorithms is compared to solve the set problem. The developed methodology has demonstrated the possibility and accuracy of finding the optimal solution.

  5. Error analysis of semidiscrete finite element methods for inhomogeneous time-fractional diffusion

    KAUST Repository

    Jin, B.

    2014-05-30

    © 2014 Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved. We consider the initial-boundary value problem for an inhomogeneous time-fractional diffusion equation with a homogeneous Dirichlet boundary condition, a vanishing initial data and a nonsmooth right-hand side in a bounded convex polyhedral domain. We analyse two semidiscrete schemes based on the standard Galerkin and lumped mass finite element methods. Almost optimal error estimates are obtained for right-hand side data f (x, t) ε L∞ (0, T; Hq(ω)), ≤1≥ 1, for both semidiscrete schemes. For the lumped mass method, the optimal L2(ω)-norm error estimate requires symmetric meshes. Finally, twodimensional numerical experiments are presented to verify our theoretical results.

  6. Complete Tangent Stiffness for eXtended Finite Element Method by including crack growth parameters

    DEFF Research Database (Denmark)

    Mougaard, J.F.; Poulsen, P.N.; Nielsen, L.O.

    2013-01-01

    the crack geometry parameters, such as the crack length and the crack direction directly in the virtual work formulation. For efficiency, it is essential to obtain a complete tangent stiffness. A new method in this work is presented to include an incremental form the crack growth parameters on equal terms......The eXtended Finite Element Method (XFEM) is a useful tool for modeling the growth of discrete cracks in structures made of concrete and other quasi‐brittle and brittle materials. However, in a standard application of XFEM, the tangent stiffness is not complete. This is a result of not including...... with the degrees of freedom in the FEM‐equations. The complete tangential stiffness matrix is based on the virtual work together with the constitutive conditions at the crack tip. Introducing the crack growth parameters as direct unknowns, both equilibrium equations and the crack tip criterion can be handled...

  7. Error Estimates for a Semidiscrete Finite Element Method for Fractional Order Parabolic Equations

    KAUST Repository

    Jin, Bangti

    2013-01-01

    We consider the initial boundary value problem for a homogeneous time-fractional diffusion equation with an initial condition ν(x) and a homogeneous Dirichlet boundary condition in a bounded convex polygonal domain Ω. We study two semidiscrete approximation schemes, i.e., the Galerkin finite element method (FEM) and lumped mass Galerkin FEM, using piecewise linear functions. We establish almost optimal with respect to the data regularity error estimates, including the cases of smooth and nonsmooth initial data, i.e., ν ∈ H2(Ω) ∩ H0 1(Ω) and ν ∈ L2(Ω). For the lumped mass method, the optimal L2-norm error estimate is valid only under an additional assumption on the mesh, which in two dimensions is known to be satisfied for symmetric meshes. Finally, we present some numerical results that give insight into the reliability of the theoretical study. © 2013 Society for Industrial and Applied Mathematics.

  8. 2.5-D frequency-domain viscoelastic wave modelling using finite-element method

    Science.gov (United States)

    Zhao, Jian-guo; Huang, Xing-xing; Liu, Wei-fang; Zhao, Wei-jun; Song, Jian-yong; Xiong, Bin; Wang, Shang-xu

    2017-10-01

    2-D seismic modelling has notable dynamic information discrepancies with field data because of the implicit line-source assumption, whereas 3-D modelling suffers from a huge computational burden. The 2.5-D approach is able to overcome both of the aforementioned limitations. In general, the earth model is treated as an elastic material, but the real media is viscous. In this study, we develop an accurate and efficient frequency-domain finite-element method (FEM) for modelling 2.5-D viscoelastic wave propagation. To perform the 2.5-D approach, we assume that the 2-D viscoelastic media are based on the Kelvin-Voigt rheological model and a 3-D point source. The viscoelastic wave equation is temporally and spatially Fourier transformed into the frequency-wavenumber domain. Then, we systematically derive the weak form and its spatial discretization of 2.5-D viscoelastic wave equations in the frequency-wavenumber domain through the Galerkin weighted residual method for FEM. Fixing a frequency, the 2-D problem for each wavenumber is solved by FEM. Subsequently, a composite Simpson formula is adopted to estimate the inverse Fourier integration to obtain the 3-D wavefield. We implement the stiffness reduction method (SRM) to suppress artificial boundary reflections. The results show that this absorbing boundary condition is valid and efficient in the frequency-wavenumber domain. Finally, three numerical models, an unbounded homogeneous medium, a half-space layered medium and an undulating topography medium, are established. Numerical results validate the accuracy and stability of 2.5-D solutions and present the adaptability of finite-element method to complicated geographic conditions. The proposed 2.5-D modelling strategy has the potential to address modelling studies on wave propagation in real earth media in an accurate and efficient way.

  9. 3D CSEM inversion based on goal-oriented adaptive finite element method

    Science.gov (United States)

    Zhang, Y.; Key, K.

    2016-12-01

    We present a parallel 3D frequency domain controlled-source electromagnetic inversion code name MARE3DEM. Non-linear inversion of observed data is performed with the Occam variant of regularized Gauss-Newton optimization. The forward operator is based on the goal-oriented finite element method that efficiently calculates the responses and sensitivity kernels in parallel using a data decomposition scheme where independent modeling tasks contain different frequencies and subsets of the transmitters and receivers. To accommodate complex 3D conductivity variation with high flexibility and precision, we adopt the dual-grid approach where the forward mesh conforms to the inversion parameter grid and is adaptively refined until the forward solution converges to the desired accuracy. This dual-grid approach is memory efficient, since the inverse parameter grid remains independent from fine meshing generated around the transmitter and receivers by the adaptive finite element method. Besides, the unstructured inverse mesh efficiently handles multiple scale structures and allows for fine-scale model parameters within the region of interest. Our mesh generation engine keeps track of the refinement hierarchy so that the map of conductivity and sensitivity kernel between the forward and inverse mesh is retained. We employ the adjoint-reciprocity method to calculate the sensitivity kernels which establish a linear relationship between changes in the conductivity model and changes in the modeled responses. Our code uses a direcy solver for the linear systems, so the adjoint problem is efficiently computed by re-using the factorization from the primary problem. Further computational efficiency and scalability is obtained in the regularized Gauss-Newton portion of the inversion using parallel dense matrix-matrix multiplication and matrix factorization routines implemented with the ScaLAPACK library. We show the scalability, reliability and the potential of the algorithm to deal with

  10. Elasto-plastic analysis using an efficient formulation of the finite element method

    International Nuclear Information System (INIS)

    Aamodt, B.; Mo, O.

    1975-01-01

    Based on the flow theory of plasticity, the von Mises or the Tresca yield criterion and the isotropic hardening law, an incremental stiffness relationship can be established for a finite element model of the elasto-plastic structure. However, instead of including all degrees of freedom and all finite elements of the total model in a nonlinear solution process, a separation of elastic and plastic parts of the structure can be carried out. Such a separation can be obtained by identifying elastic parts of the structure as 'elastic' superelements and elasto-plastic parts of the structure as 'elasto-plastic' superelements. Also, it may be of advantage to use several levels of superelements in modelling the elastic parts of the structure. The solution of the nonlinear equations is performed utilizing a combination of load incrementation and equilibrium iterations. In this connection, a comparative numerical study of the Newton-Raphson iteration scheme, the initial stress method, and modified Newton-Raphson iteration schemes is presented. The present method of analysis is demonstrated for two larger examples of elasto-plastic analysis. Firstly, an elasto-plastic analysis of a plate with a central hole and subjected to tensile forces is carried out. The results are compared with experimental values. Secondly, a three dimensional analysis of a thick plate with a central through-crack subjected to tensile forces is considered. The variation through the plate thickness of the size of the plastic zones at the crack tip is studied. The numerical examples show that the present method is a powerful and efficient tool in elasto-plastic analysis

  11. Thermal Analysis on Radial Flux Permanent Magnet Generator (PMG using Finite Element Method

    Directory of Open Access Journals (Sweden)

    Hilman Syaeful A Syaeful A

    2011-05-01

    Full Text Available The main source of heat in the permanent magnet generator (PMG is the total losses which f come from winding losses, core losses and rotational losses. Total heat arising from such these losses must be properly distributed and maintained so as not to exceed the maximum allowable temperature to prevent damage to insulation on the winding and demagnetization on the permanent magnet machines. In this research, we consider thermal analysis which is occurred on the radial flux PMG by using finite element method to determine the extent to which the heat generated can be properly distributed. The simulation results show that there are no points of heat concentration or hot spot. The simulation maximum temperatures of the permanent magnet and the winding are 39.1oC and 72.5oC respectively while the experimental maximum temperature of the winding is 62oC.

  12. SOLUTION OF TRANSIENT HEAT CONDUCTION PROBLEM BY THE FINITE ELEMENT METHOD

    Directory of Open Access Journals (Sweden)

    Süleyman TAŞGETİREN

    1995-01-01

    Full Text Available Determination of temperature distribution is generally the first step in the design of machine elements subjected to ubnormal temperatures in their service life and for selection of materials. During this heat transfer analysis, the boundary and enviromental conditions must be modeled realistically and the geometry must be well represented. A variety of materials deviating from simple constant property isotropic material to composit materials having different properties according to direction of reinforcements are to be analysed. Then, the finite element method finds a large application area due to its use of same notation in heat transfer analysis and mechanical analysis of elements. In this study, the general formulation of two dimensional transient heat conduction is developed and a sample solution is given for arectangular bar subjected to convection baundary condition.

  13. B-spline based finite element method in one-dimensional discontinuous elastic wave propagation

    Czech Academy of Sciences Publication Activity Database

    Kolman, Radek; Okrouhlík, Miloslav; Berezovski, A.; Gabriel, Dušan; Kopačka, Ján; Plešek, Jiří

    2017-01-01

    Roč. 46, June (2017), s. 382-395 ISSN 0307-904X R&D Projects: GA ČR(CZ) GAP101/12/2315; GA MŠk(CZ) EF15_003/0000493 Grant - others:AV ČR(CZ) DAAD-16-12; AV ČR(CZ) ETA-15-03 Program:Bilaterální spolupráce; Bilaterální spolupráce Institutional support: RVO:61388998 Keywords : discontinuous elastic wave propagation * B-spline finite element method * isogeometric analysis * implicit and explicit time integration * dispersion * spurious oscillations Subject RIV: BI - Acoustics OBOR OECD: Acoustics Impact factor: 2.350, year: 2016 http://www.sciencedirect.com/science/article/pii/S0307904X17300835

  14. Frequency response analysis of cylindrical shells conveying fluid using finite element method

    International Nuclear Information System (INIS)

    Seo, Young Soo; Jeong, Weui Bong; Yoo, Wan Suk; Jeong, Ho Kyeong

    2005-01-01

    A finite element vibration analysis of thin-walled cylindrical shells conveying fluid with uniform velocity is presented. The dynamic behavior of thin-walled shell is based on the Sanders' theory and the fluid in cylindrical shell is considered as inviscid and incompressible so that it satisfies the Laplace's equation. A beam-like shell element is used to reduce the number of degree-of-freedom by restricting to the circumferential modes of cylindrical shell. An estimation of frequency response function of the pipe considering of the coupled effects of the internal fluid is presented. A dynamic coupling condition of the interface between the fluid and the structure is used. The effective thickness of fluid according to circumferential modes is also discussed. The influence of fluid velocity on the frequency response function is illustrated and discussed. The results by this method are compared with published results and those by commercial tools

  15. One-Dimensional Finite Elements An Introduction to the FE Method

    CERN Document Server

    Öchsner, Andreas

    2013-01-01

     This textbook presents finite element methods using exclusively  one-dimensional elements. The aim is to present the complex methodology in  an easily understandable but mathematically correct fashion. The approach of  one-dimensional elements enables the reader to focus on the understanding of  the principles of basic and advanced mechanical problems. The reader easily  understands the assumptions and limitations of mechanical modeling as well  as the underlying physics without struggling with complex mathematics. But  although the description is easy it remains scientifically correct.   The approach using only one-dimensional elements covers not only standard  problems but allows also for advanced topics like plasticity or the  mechanics of composite materials. Many examples illustrate the concepts and  problems at the end of every chapter help to familiarize with the topics.

  16. A Modified Computational Scheme for the Stochastic Perturbation Finite Element Method

    Directory of Open Access Journals (Sweden)

    Feng Wu

    Full Text Available Abstract A modified computational scheme of the stochastic perturbation finite element method (SPFEM is developed for structures with low-level uncertainties. The proposed scheme can provide second-order estimates of the mean and variance without differentiating the system matrices with respect to the random variables. When the proposed scheme is used, it involves finite analyses of deterministic systems. In the case of one random variable with a symmetric probability density function, the proposed computational scheme can even provide a result with fifth-order accuracy. Compared with the traditional computational scheme of SPFEM, the proposed scheme is more convenient for numerical implementation. Four numerical examples demonstrate that the proposed scheme can be used in linear or nonlinear structures with correlated or uncorrelated random variables.

  17. INFLUENCE OF BROKEN ROTOR BARS LOCATION IN THE SQUIRREL CAGE INDUCTION MOTOR USING FINITE ELEMENT METHOD

    Directory of Open Access Journals (Sweden)

    N. Halem

    2013-06-01

    Full Text Available It is well known that the number of broken bars and varying load affect on the amplitudes of specific harmonic components in the process analysis of induction motors under broken rotor bars. The location of broken bars is an important factor which affects the diagnosis of the broken bars defect. In this paper the simulation is determinate for different cases for distribution of broken bars under induction motor pole in order to show the impact of broken bars location upon the amplitude of harmonic fault. The simulation results are obtained by using time stepping finite elements (TSFE method. The geometrical characteristics of motor, the effects of slotting and the magnetic saturation of lamination core are included in induction motor model.

  18. INFLUENCE OF BROKEN ROTOR BARS LOCATION IN THE SQUIRREL CAGE INDUCTION MOTOR USING FINITE ELEMENT METHOD

    Directory of Open Access Journals (Sweden)

    N. Halem

    2015-07-01

    Full Text Available It is well known that the number of broken bars and varying load affect on the amplitudes of specific harmonic components  in the process analysis of induction motors under broken rotor bars. The location of broken bars is an important factor which affects the diagnosis of the broken bars defect. In this paper the simulation is determinate for different cases for distribution of broken bars under induction motor pole in order to show the impact of broken bars location upon the amplitude of harmonic fault. The simulation results are obtained by using time stepping finite elements (TSFE method. The geometrical characteristics of motor, the effects of slotting and the magnetic saturation of lamination core are included in induction motor model.

  19. Computational statics and dynamics an introduction based on the finite element method

    CERN Document Server

    Öchsner, Andreas

    2016-01-01

    This book introduces readers to modern computational mechanics based on the finite element method. It helps students succeed in mechanics courses by showing them how to apply the fundamental knowledge they gained in the first years of their engineering education to more advanced topics. In order to deepen readers’ understanding of the derived equations and theories, each chapter also includes supplementary problems. These problems start with fundamental knowledge questions on the theory presented in the chapter, followed by calculation problems. In total over 80 such calculation problems are provided, along with brief solutions for each. This book is especially designed to meet the needs of Australian students, reviewing the mathematics covered in their first two years at university. The 13-week course comprises three hours of lectures and two hours of tutorials per week.

  20. On approximation of non-Newtonian fluid flow by the finite element method

    Science.gov (United States)

    Svácek, Petr

    2008-08-01

    In this paper the problem of numerical approximation of non-Newtonian fluid flow with free surface is considered. Namely, the flow of fresh concrete is addressed. Industrial mixtures often behaves like non-Newtonian fluids exhibiting a yield stress that needs to be overcome for the flow to take place, cf. [R.B. Bird, R.C. Armstrong, O. Hassager, Dynamics of Polymeric Liquids, vol. 1, Fluid Mechanics, Wiley, New York, 1987; R.P. Chhabra, J.F. Richardson, Non-Newtonian Flow in the Process Industries, Butterworth-Heinemann, London, 1999]. The main interest is paid to the mathematical formulation of the problem and to discretization with the aid of finite element method. The described numerical procedure is applied onto the solution of several problems.